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Preface

The rapid technological developments in microelectronics and associated tech-
nologies have realized contemporary networking and computing paradigm, viz.
shared sensor networks. This paradigm primarily relies on tiny sensor nodes, as key
building blocks, to form a number of applications such as smart transport system,
smart home, smart cities, smart irrigation system, and infrastructure and environment
monitoring. The tiny sensor nodes, in the above-cited application domains, are
vulnerable to in situ attacks, errors, and faults. On the similar account, the data sent
by tiny nodes in the form of sensor readings is susceptible to transit attacks and
errors. A multi-aspect and comprehensive anomaly detection and verification system
is, therefore, desired to aptly identify anomalies (or abnormalities) and convey this
information to a central node. The system is known as abnormality identification and
confirmation system in the subsequent discussion. The contemporary abnormality
identification systems are unable to accurately detect the causes of abnormalities.
The solitary focus of existing systems is on the identification of abnormalities. To
determine the root causes of abnormalities is imperative to remove them.

This book has elucidated an on-the-spot confirmation service for sensor net-
works, which leverages from the mobile agent technology to ascertain the root
cause of abnormalities. A detailed system, which is not only able to detect
abnormalities but can also identify the root cause of abnormalities, is introduced for
smart home sensor networks. The system empowers mobile agents to employ data
which is received through a synchronized resource management technique to carry
out the in situ analysis of susceptible nodes. The synchronized resource manage-
ment technique allows tiny nodes to share statuses of their resources with related
cluster leader nodes for better network resource administration. Moreover, the key
proposition of the work presented in this book is to use the information received
through the synchronized resource management technique to identify numerous
kinds of resource-consumption status-related abnormalities. Another key aim of the
presented system is to maximize the usage of received synchronized resource
management technique-based observations for abnormality identification. In this
account, the statistical relationships between varied features of interest are exploited
to identify abnormalities which occur due to faults on nodes and exhaustion of
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resource and denial-of-sleep attacks. The system employs the data received from
synchronized resource management technique-based observations using mobile
agents to verify the root causes of abnormalities.

The frequent transmissions of mobile agents cannot be performed due to the fact
that transmission is an energy-expensive operation as compared to processing
operation. To solve this problem, two methods, namely weighted-sum optimization
and 2-sigma, are presented. The nature of the proposed effective mobile agent
transmission methods is generic. The proposed methods, therefore, can also be
employed by other mobile agent-enabled applications for wireless sensor networks.
This book has also introduced a mobile agent-enabled method that performs
abnormality identification and confirmation using cross-layer features. It employs
fuzzy logic and cross-layer optimization techniques to identify cross-layer abnor-
malities and optimize mobile agent transmission. A regions computation technique
is presented, which employs statistical methods to facilitate decision making about
mobile agent transmission and abnormality identification. A cross-layer rule-base,
based on the fuzzy logic, is presented along with algorithmic specifications to
identify abnormalities and to facilitate transmissions of mobile agents after taking
into account the communication link states.

A non-validated system design may adversely affect the resources of a wireless
sensor network or even it may go into a standstill state. Therefore, this study
extends the theory of Petri net to the formal characterization and investigation of an
abnormality identification and confirmation system which employs mobile agent
technology in tiny resource-constrained sensor networks. Formal definitions, of the
presented system, using standard Petri net, are elucidated to formalize and verify the
behavioral characteristics and also flow of the work of the presented methods.
A Generalized Stochastic Petri net (GSPN) model is formulated to study the
time-based conduct of the presented system in an immensely non-deterministic
communication environment of wireless sensor networks. The formal behavior is
then verified by experiments that are carried out on a real test bed. The performance
of the proposed methods is thoroughly analyzed through theoretical analyses,
experimentation on a real test bed, extensive simulations, and comparisons with
related schemes. The results indicate the abilities of the proposed methods to detect
different nature of abnormalities with high accuracies and increase network lifetime
by optimizing mobile agent transmission in addition to effectively identifying the
sources of abnormalities.

This book has focused on a single node mobile agent itinerary model. In future
work, the proposed work could be extended to a multi-node mobile agent itinerary
model in large-scale networks. Another possible extension could be the exploitation
of higher-order joins to detect more complex natures of abnormalities.

Islamabad, Pakistan Muhammad Usman
Gold Coast, QLD, Australia Vallipuram Muthukkumarasamy
Gold Coast, QLD, Australia Xin-Wen Wu
Islamabad, Pakistan Surraya Khanum
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Chapter 1
Introduction

A fundamental feature of resource-limited wireless sensor networks (WSNs) which
distinguishes them from traditional networking paradigms is their data-centric
nature. Reliable data reception is of paramount importance in order to accomplish
application-specific tasks in WSNs. The classical approach for abnormality identi-
fication is to detect abnormalities in received data at a central or distributed loca-
tions in a network. This approach is, however, unable to identify the root cause of
abnormalities, that is, if abnormalities are occurred on-the-spot or in transmission.
The work elucidated in this book has introduced an innovative approach to confirm
the root cause of abnormalities by employing mobile agents (or merely agents for
brevity). The detailed abnormality identification and confirmation system along with
its underlying methods is designed, evaluated, and analyzed throughout this book.

1.1 Overview

1.1.1 Wireless Sensor Networks

Wireless sensor networks (sensor networks for brevity) are formed of numerous tiny
nodes (or motes) [1]. A mote typically has one or more sensors (i.e., transducers)
and analog-to-digital converters. The transducers periodically or continuously sense a
physical phenomenon (depending upon application requirements) and convert phys-
ical or environmental parameters into electrical signals. This signal is then passed
through a conditioning phase which performs various functions such as filtering and
analog-to-digital conversion. The digital signal is then used by a tiny processor for
application-specific processing. Sensed data is typically forwarded to a base station, a
central authority, through a multihop or single-hop communication link. A user (or a

© Springer Nature Singapore Pte Ltd. 2018
M. Usman et al.,Mobile Agent-Based Anomaly Detection
and Verification System for Smart Home Sensor Networks,
https://doi.org/10.1007/978-981-10-7467-7_1
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2 1 Introduction

system administrator) can then retrieve and analyze received sensed data through a
user application.

Recent advancements in the domain of information technology have enhanced
the use of sensor networks in several application domains such as smart irrigation
systems, health monitoring, smart home, smart cities, smart transport systems, and
industrialmonitoring and process control [2]. These applications are briefly discussed
below.

Smart home: Tiny sensors are used for smoke detection, automated doors and win-
dows, motion detection, automatic air condition switches, andmany such purposes in
a smart home environment. These sensing devices form a smart home senor network
which is managed locally or remotely through a smart phone or computing device
application.

Built infrastructure monitoring: Frequent physical inspections and monitoring of
a built infrastructure are not possible due to the growth in the numbers of construction
of buildings, bridges, and other mechanical or civil structures in recent years. Sensors
are, therefore, deployed for structural health monitoring, damage detection, and even
for an automated control of structures.

Healthmonitoring: Advancements in healthcare facilities includingmedicines have
caused a rapid decrease in morbidity rates in recent years. This has resulted in an
increase in an aging population. The implanted, wearable, and ambient monitoring
sensors form a class of sensor networks, namely body area networks, to offer health
monitoring services for the elderly.

Industrial monitoring and process control: Increasing a productivity and safety
of manufacturing plants and staff are growing requirements for many large-scale
organizations. Tiny sensors are used for industrial automation, process control, and
manufacturing monitoring to meet productivity and safety requirements.

Smart cities: Sensor networks are one of the essential constituent technologies of
smart cities. Sensors can be used to monitor traffic, street lights, environment, trans-
portation, water consumption, electricity consumption, and gas consumption in smart
cities.

Sensor networks offer a unique and coherent amalgamation of distributed sens-
ing, processing, and communication capabilities. This characteristic distinguishes
sensor networks from the rest of the networks. Some other distinguishing features of
sensor networks are discussed below. Mote, fundamental building blocks of sensor
networks, has low battery power, small memory, low computational capacity, and
limited communication range. Sensor networks have different deployment types such
as flat or cluster-based and fixed or mobile deployment. The nature of motes with
respect to resources in sensor networks is either a homogeneous or heterogeneous.
Motes interact with their environment in order to sense and report a physical phe-
nomenon to a cluster leader or base station. The data traffic pattern of sensor networks
is, therefore, different from traditional networks. Sensor networks may have bursty
data traffic patterns in some applications, that is, motes detect an event such as fire
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and then continuously track and report it to a central node [3]. Alternatively, in some
applications such as built infrastructure monitoring, motes may periodically report
the status of a structure to a central node [4]. Other distinguishing features of sen-
sor networks include an application-orientated nature, the absence of network-wide
global identities, and the data-centric nature of networks. These unique characteris-
tics demand a carefully articulated design of the sensor network application in order
to effectively achieve application-specific goals.

1.1.2 Agents in Sensor Networks

A software agent is typically composed of data and code [5]. It can roam among
differentmotes in order to perform its designated task.An agentworks autonomously,
and it may communicate with other agents and entities such as other motes, cluster
leaders, and a base station in a network. There are two types of agents, namely weak
and strong with respect to mobility [6]. In the case of weak mobility, only states of
code and data are maintained, that is, a new execution of an agent starts on the next
mote. On the other hand, in the case of strong mobility, the state of the execution
of an agent is halted at a random point in time on a mote and then continues it on
the next mote. The execution of agent resumes from the state it was stopped on the
previous mote. Note that in the case of strong mobility, data, execution state (i.e.,
status of stack and program counter), and code are all transmitted from one mote to
another mote.

Sensor networks have been traditionally based on a client-server computing
model. In this computing model, motes gather sensed data from a physical phe-
nomenon and transmit it to a corresponding cluster leader or base station depending
upon the network topology. Sensor networks, however, typically have a low network
bandwidth, which can cause congestion or a bottleneck problem at cluster leader or
base station motes. In order to solve such problems, Qi et al. [7] suggested the use
of agents for multiresolutional data integration in resource-limited networks.

Over the years, agents have been successfully employed in sensor networks in
order to perform a number of tasks, for instance, parallelism, code and data dissem-
ination, localization, fusion of distributed data, collaborative signal and information
processing, and security services [5, 7]. A few prominent benefits of agents are given
below [8]. (i) They can take computing operations to the sources of data instead of
anticipating transfer of raw data over unreliable links. This can decrease the costs of
energy which are otherwise incurred. (ii) Agents reduce network latency. (iii) Agents
are autonomous entities, as they are able to perform asynchronous operations. This
feature enables the initiator motes of agents to perform other operations. (iv) Finally,
agents add the properties of fault tolerance and robustness in a system.

Despite several advantages, there are a few challengeswhich should be considered
before deploying agents in sensor networks. The key challenges are controlling com-
munication cost, the size of the agent, and the inter-mote movement of the agents.
Transmission is an expensive operation as compared to a processing operation. A
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transmission of a single bit costs as much energy as is consumed by an execution of
800–1000 instructions [9]. The size of agents may affect both energy and memory
resources. Agents, therefore, should be efficiently programmed in order to minimize
their impact on the memory of a sensor mote. Memory techniques such as virtual
memory, stack, and last in, first out (LIFO) may be adopted in order to accommodate
a large-sized agent or multiple agents on a single mote. An inter-mote agent move-
ment may pose security threats. Therefore, an appropriate security mechanism must
be incorporated in order to secure agents against antagonist motes and legitimate
motes against adversary agents.

1.2 Motivation

Over the course of the last decade, sensing technology has appeared as a promi-
nent research domain in information technology, largely due to its popularity among
numerous applications. This fact has motivated the research community to design
innovative solutions for sensor networks. The work carried out in this study is an
attempt to design, evaluate, and analyze a robust system with its underlying meth-
ods for sensor networks. The nature of the presented system is generic, so that it
can be deployed on most of the periodically sensed data transmitting applications.
The proposed system and underlying methods are, however, tailor-made for the two
applications, namely built environment monitoring [10] and smart home sensor net-
work [11].

In a built environment monitoring application, motes are deployed on multiple
buildings in order to monitor usages of water, electricity, gas, and also emissions
of carbon dioxide (CO2). Motes transmit sensor readings to their respective cluster
leaders after a specified interval of time. Cluster leaders then forward aggregated data
to a base station. A user can make decisions by performing an analysis on received
data. On the other hand, as discussed in the previous section, motes such as gas
sensors and temperature sensors sense their environment and transmit readings to
a central node in a sensor network. Sensed data, at a central node, is then used to
know the current state of a sensed phenomenon and to take appropriate action(s), if
required. A typical smart home sensor network is depicted in Fig. 1.1.

In both of the above-stated practical applications, low resource motes are des-
ignated to perform a sensing task and then to report that sensed data to respective
resource-rich cluster leaders or a base station mote. The desired performance of both
motivating applications is largely reliant on correctness of values of the obtained read-
ings at a central supervisorymote.Motes alongwith their transmitted sensor readings
are, however, susceptible to both types of abnormalities, that is, in situ (on-the-spot)
and in transit (in transmission). These abnormalities can be caused by numerous fac-
tors such as errors, attacks, and faults. Application-specific goals of a sensor network
cannot be achieved without timely detecting inconsistencies in received sensed data.
This study, therefore, has presented an abnormality identification and confirmation
system which not only can detect abnormalities with high accuracy, but also can ver-
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Fig. 1.1 Smart home sensor network

ify the source of abnormalities to effectively counter them. The proposed system has
exploited a heterogeneous nature of devices in sensor networks. The system is set up
that most of the abnormality identification and on-the-spot confirmation processing
are performed by resource-rich motes.

1.3 Problem Domain

Abnormality identification systems are typically deployed to find abnormal and
infrequent patterns in network data [12]. Over recent years, the research domain
of the abnormality identification in resource-constrained networks has fascinated
the research community [13–16], mainly because of its significance to provide key
services such as secure working of a network, event reporting, and data reliability.
This study, however, has focused on the two main services, namely fault detection
and intrusion detection.

A well-equipped and well-designed abnormality identification and confirmation
systemmust be capable of identifying the root causes of occurrence of abnormalities
after their detection in order to effectively mitigate them. Nevertheless, the existing
schemes are only designed to detect abnormalities [13–16], which severely limits
their effectiveness. The identification of sources of abnormalities can be carried out
throughon-the-spot confirmation of a susceptiblemote. The on-the-spot confirmation
of a susceptible mote can be typically carried out by the physical confirmation of



6 1 Introduction

a malicious mote. However, recurrent physical accesses to motes are not always
possible, especially when they are positioned on hazardous terrains or within the
premises of privately owned buildings and infrastructures. The approach of a physical
diagnosis is also time-consuming.

This study has, therefore, introduced an automated and efficient service to per-
form on-the-spot confirmation of the mistrustful behavior of a mote using agents. A
detailed system, with underlying methods, is designed. The system uses information
received through a synchronized resource management scheme to detect different
natures of abnormalities. The synchronized resource management scheme facilitates
the sharing of resource status by motes with their cluster leaders for better resource
management. An operating system for sensor networks, namely TinyOS, facilitates
the synchronized resource management mechanism, also known as the Coordinated
ResourceManagement (CRM)mechanism, bymeans of low-level interfaces in order
to administer and share state of the hardware of amote over the network [17, 18]. This
study has employed synchronized resource management scheme-based information
to detect different nature of abnormalities such as those triggered by anomalous
sensor reading values and memory and battery statuses of motes. The statistical rela-
tionship among features of the synchronized resource management scheme-based
observations is investigated to identify more complex nature of abnormalities such
as produced by resource exhaustion and denial-of-sleep attacks, and mote faults. The
synchronized resource management scheme-based observations are further used by
agents to confirm the cause of abnormalities.

The cautious transmission of agents is desired in sensor networks because of the
resource-limited characteristics of tiny motes (as discussed in previous section). In
order to carefully but effectively transmit agents, the two methods, namely 2-sigma
andweighted-sum optimization, are elucidated. This study has also presented a cross-
layer scheme which can discover cross-layer abnormalities and can also effectively
transmit agents after consulting the current state of a communication link. An under-
lying regions computation method is presented in order to define different regions
over a cross-layer feature space to facilitate the processes of agent transmission and
detection of abnormalities. A corresponding cross-layer fuzzy logic rule-base is for-
mulated, and algorithmic specifications are presented for agent transmission and
detection of cross-layer abnormalities.

The completeness and correctness are key properties that need to be verified
before the deployment of a system. A system, without its validation, may go into
a halt state or it may not be able to satisfy the user requirements. Formal methods
and formal modeling languages, such as Petri nets, specify formal definitions and
facilitate the verification of large and complex systems [19]. This study, therefore,
extends the Petri net theory to address and formally verify the algorithmic properties
of the system. Furthermore, not considering the effect of temporal behavior of the
time-sensitive abnormality identification and identification systemsmay reduce their
utility after their deployment. Therefore, the Petri net model verification is performed
to formulate a Generalized Stochastic Petri net (GSPN) model to examine time-
based conduct of the presented system. This process has also helped in enabling the
system to detect temporal abnormalities which are caused because of late arrivals
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of data packets containing on-the-spot confirmation results and values of features.
The theoretical analyses, simulations, experiments on a real test bed, and comparison
with related schemes are performed to thoroughly examine the performance of the
methods in different settings.

1.4 Book Organization

This chapter has dealt with an overview of sensor networks, agents, motivating appli-
cations, and the problem domain for the study. The book is structured as described
below. Chapter 2 overviews related work, identifies limitations in works presented in
the related literature, and highlights the context of this study. Chapter 3 presents the
network model, an architecture of abnormality identification and confirmation mod-
ule, and algorithmic specifications of the presented system. Chapter 3 also details
the formal specifications, formal characterization and analysis, temporal behavior
modeling, and temporal behavior validation of the system through implementation
on a real test bed. Chapter 4 explains the methods for the first-order abnormalities
and agent transmission optimization. The formal specifications and verification of
the methods, simulation and implementation results, and findings of a comparative
study are also discussed. Chapter 5 elaborates on the fuzzy logic-based cross-layer
system along with its theoretical and implementation results. Chapter 6 concludes
the key findings and outlines the future directions of this study.
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Chapter 2
Background

A number of novel threats have been developed for low resource networks because
of advancements in technology and innovations in attack techniques in the recent
years. Prevention-based methods alone, therefore, may not offer a comprehensive
security and fault detection solution for sensor networks. Aptly formed detection-
based methods can supplement prevention-based methods to provide more robust
security mechanisms. Abnormality identification is a detection-based method that is
employed for providing a security service, namely intrusion identification. It may
also be employed in other application domains such as object tracking and fault
detection [1]. A key focus of this study is to design and analyze a system which can
detect abnormalities that are typically originated due to faults and intrusions on tiny
nodes and the data transmitted by them.

This chapter reviews related previous studies in order to underline their limi-
tations and highlight the research context of this study. Attack types and sensor
network security mechanisms are briefly reviewed first to highlight the position of
detection of abnormality mechanisms in the sensor network defense. The abnormal-
ity identification preliminaries and the types of abnormalities in sensor networks
are then discussed. An objective of this study is to design, evaluate, and analyze a
system to detect and verify abnormalities in sensor networks. Different abnormality
identification schemes for sensor networks are, therefore, reviewed and critically
analyzed. The related previous studies which employ agents in abnormality identi-
fication applications for sensor networks are also reviewed. A critical review on the
related research on the cross-layer abnormality identification, security of agents, and
formal modeling and verification is also presented toward the end of this chapter in
order to set the research context of this study.

© Springer Nature Singapore Pte Ltd. 2018
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2.1 Sensor Network Security

As discussed in the preceding chapter, the nature of sensor networks is different
from that of traditional computer networks. One of the foremost distinguishing char-
acteristics is the limited resources of sensor networks. Abnormality identification
is a well-studied domain in traditional wireless and wired networks, but because
of the distinctive nature of sensor networks, these methods may not be suitable for
resource-limited networks. Another key characteristic which needs to be considered
while articulating an abnormality identification system for sensor networks is their
wireless communication channels. Sensor networks typically operate on a broadcast
communication mode, which makes them susceptible to a variety of attacks. Sensor
networks may also adopt a point-to-point communication mode based on application
requirements. Continuous surveillance of sensor nodes in applications where they
are deployed on difficult terrains is not feasible in order to protect them from physi-
cal attacks. Sensor nodes are typically deployed in a large scale. As a consequence,
it is not adequate to design a centralized security or fault detection mechanism. A
decentralized and collaborative security mechanism is, therefore, more suitable for
sensor networks in such cases.

Sensor networksmay suffer fromabnormalities due to attacks, faults, and errors [2,
3]. The attack-based threats for sensor networks are classified into three categories,
namely Insider versus outsider,Active versus passive, and Laptop-class versus mote-
class attacks [4].

Insider versus outsider attacks: The former type of attacks are performed by
legitimate nodes, whereas latter attacks are initiated by external nodes.

Active versus passive attacks: In active attacks, an adversary node modifies or
fabricates a network traffic, whereas in passive attacks it just monitors or eavesdrops
transmitting data packets.

Laptop-class versus mote-class attacks: In laptop-class attacks, an antagonist
uses amore powerful device such as a laptop-class device to carry out attacks,whereas
nodes with similar capabilities to victim nodes are used to launch mote-class attacks.

In another threat classification, Zia and Zomaya [5] introduced four threat classes,
namely interruption, interception, modification, and fabrication of Fleeger [6] in
sensor networks.

Interruption: A communication link between two or more nodes is lost in an
interruption threat. Examples can be node capture and jamming attacks.

Interception: A whole network or a part of a network compromises by an antag-
onist node. For example, node capture, denial-of-sleep, resource exhaustion, black
hole, and sinkhole attacks.

Modification: An antagonist node captures and modifies data in a modification
threat. Example attacks are denial of service (DoS) and flooding attacks.

Fabrication: In this class of threats, an adversary node injects false data in a
network traffic. A simple example of fabrication threats can be a sybil attack.

There are a number of measures which can be taken to secure sensor networks
from vulnerabilities and attacks. Some of the key security services are secure local-
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ization and data aggregation, secure auditing, cryptography, keymanagement, secure
routing, access control, and abnormality identification. A choice of a security ser-
vice mainly emerges from security requirements and available resources of network.
Ngai [7] classifies securitymeasures in three broad categories, namely protect, detect,
and react.

Protect: This network defense approach is based on biometrics, firewalls, and
cryptographic techniques.

Detect: The security services like intrusion and abnormality identification belong
to the detect class of defense mechanisms. The study focuses on identification and
confirmation of sources of abnormalities which are caused by attacks and faults on
sensor nodes and their transmitted data.

React: This type of sensor network defense mechanism usually functions after
detection of attacks or faults in a network. It can be based on action(s) such as
decrement in trust count of a node, announcement of a node as a malicious or faulty,
minimizing communication with suspicious nodes, and disconnecting a node from
rest of the network.

Intrusions are activities which are carried out by antagonists to distract the normal
functionality of a node or network. A software system, namely intrusion detection
system (IDS), is employed to identify abnormalities. The prevalent IDS systems
can be classified on the basis of detection methodology, detection approach, and
detection location. The IDS can be categorized into three broad classes with respect
to the detection methodologies, namely protocol state analysis, misuse detection,
and abnormality identification [8].

Stateful protocol analysis: The priori profiles of the normal activities of the
entities of a system are compared with that of real events in the process of stateful
protocol analysis to identify abnormalities. This IDS methodology is not commonly
used in sensor networks.

Misuse detection: This methodology works on the basis of priori assumptions,
experiences, knowledge, and information. It is also called rule-based IDS. In amisuse
detectionmethod, signatures of known intrusions arematchedwith the current events
of the system to detect intrusion activities. This method is simple and useful for
detecting known attacks, but it cannot identify novel attacks.

Abnormality Identification: This methodology creates a normal profile of a
subject on the basis of its usual activities. After that, the normal profile is compared
with the current activities of the system. Significant deviation from normal activities
is considered as an intrusion. This method can detect novel attacks, but it is complex
and resource hungry. One of the focuses of this study is to detect abnormalities
by optimally utilizing the resources of sensor networks. There are two types of
abnormality identification profiles, namely dynamic and static. The dynamic one is
automatically updated with the observance of new incidents. On the contrary, the
static one is typically established by a user and has constant behavior definition.
Defining a comprehensive profile that has all normal activities is not a trivial job
in sensor networks. In numerous applications, normal behavior constantly evolves.
It is, thus, a challenging task to define a usual behavior notion of a system. The
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specifications of an application should be considered while designing an abnormality
identification system.

The IDS can be deployed either at a host or network level [9]. A host-based
IDS focuses on detecting misuse or abnormal use of the resources of node such as
battery, processor, and memory. On the contrary, a network-focused IDS focuses
on detecting interferences and abnormalities in network traffic. Sometimes both
deployment types are used in conjunction with each other and known as hybrid
IDS. The detection location of an IDS can be either centralized or distributed. In a
case of a centralized detection location, an abnormality identification module (AIM)
is installed on a central node, whereas ADMs are installed on several distributed
nodes in the case of a distributed detection type. The work presented in this study
employs static detection methodology, a hybrid detection approach, and a distributed
location to identify different nature of abnormalities. The problem domain of this
study, as a research map, is depicted in Fig. 2.1.

Data, network, and node are three key types of abnormalities that are prevalent
in sensor networks [10]. The data abnormalities are associated with data which are
collected by a single or numerous sensors in a sensor mode. Sensor readings, which
are accumulated within a certain location, typically show similarity and consistency.
A discrepancy in the accumulated data is considered as data abnormality. There may
be numerous causes for data abnormalities for instance diverse nature of attacks,
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Table 2.1 Abnormalities and their potential reasons: Republished with permission of Taylor and
Francis Group LLC Books, from Security for Multihop Wireless Networks, Muhammad Usman,
Vallipuram Muthukkumarasamy, Xin-Wen Wu, and Surraya Khanum, edited by Shafiullah Khan
and Jaime Lloret Mauri, 2014; permission conveyed through Copyright Clearance Center, Inc.

Abnormality Potential reasons

Data Different nature of attacks, errors, abrupt mote restarts,
abnormal events, non-synchronizations, and faults of
hardware/software

Node Degradation of resources, mote restarts and failure,
malfunctioning, and physical threats

Network Connectivity loss, recurrent connectivity, loops in routing,
network elements failures, and transmission storms

errors, mote restart, non-synchronization, and software or hardware errors. Data
abnormalities are classified into temporal, spatial, and spatiotemporal abnormali-
ties. Physical attacks, node failures, and nodemalfunctioning are usual causes of node
abnormalities. Motes are imitated by cloning in physical attacks. Node abnormalities
include resource degradation, node failures, and node resets. Network abnormalities
are instigated because of the jamming attack, that is, interference or non-availability
in the communication frequency, faults in network-wide elements such as gateways,
sensor mote failures. Network abnormalities occur due to exploiting limitations in
routing protocols [9]. A complete connectivity loss, loop in routing, recurrent con-
nectivity, and transmission storm abnormalities are also known as network abnor-
malities. The summary of the types of abnormalities and their potential reasons is
given in Table2.1 [10].

2.2 Abnormality Identification

The research community has examined and employed numerous techniques and
methods from several disciplines such as statistics, artificial intelligence, machine
learning, data mining, and also from other domains, to design and develop schemes
to identify abnormalities. The literature of abnormality identification is, therefore,
classified into four classes, namely statistical, artificial intelligence and agent-based,
learning, and other schemes in this section for a critical review purpose. The repre-
sentative schemes of each class are discussed in this section. It is pertinent to mention
that some schemes may belong to more than one category. They are, however, classi-
fied into those classes which are more relevant. Figure2.2 [11] illustrates a high-level
abnormality identification taxonomy in sensor networks.
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Fig. 2.2 A taxonomy: Republishedwith permission of Taylor and Francis Group LLCBooks, from
Security for Multihop Wireless Networks, Muhammad Usman, Vallipuram Muthukkumarasamy,
Xin-Wen Wu, and Surraya Khanum, edited by Shafiullah Khan and Jaime Lloret Mauri, 2014;
permission conveyed through Copyright Clearance Center, Inc.

2.2.1 Statistical Schemes

Statistical abnormality identification schemes are classical techniques. In a statistical
model, relationships among variables are characterized through mathematical rela-
tions. This kind of model should hold either of two properties, namely randomness
or systematic variation. A classical division of statistical techniques is parametric
versus nonparametric [1].

2.2.1.1 Parametric Schemes

This kind of techniques relies on a supposition that the underlying data distribution
information is known. Another imperative assumption about parametric schemes is
normally distributed data. This kind of techniques requires change in parameters after
certain period of time. This class may be divided as: Gaussian and non-Gaussian.

Gaussian Schemes: Gaussian (bell shape or normal) distribution of variables is
presumed in themodel. An ecological application-focused abnormality identification
method is presented to identify incidents and deduce absent readings in data [12].
The fundamental concept of the technique is to identify spatiotemporal association
among sensed readings. The technique employs previous knowledge of sensed data
to identify abnormalities, as eachmotematches its present and past observations with
adjoining motes. A fundamental shortcoming of the technique is its sole focus on
uni-dimensional abnormalities which occurs because of spatiotemporal data abnor-
malities.

A scheme presented byWuet al. [13] determines abnormalities in two dimensions.
It first discovers anomalous sensors and then identifies the boundaries of events. The
scheme recognizes spatially associated abnormalities bymatchingmedian valuewith
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each observation that is obtained from the neighbor motes. The fundamental concept
is to deploy algorithm on every mote to identify abnormal readings along the bound-
aries of events. Abnormal signals and readings, showing occurrence of an incident,
may not be differentiated in the scheme. Furthermore, mote which observes same
type of incidents should spatially be associated. Therefore, the authors presented two
algorithms to identify anomalous motes and detect boundaries of events.

In former algorithm, every mote computes differences between own readings and
their median with that of neighbor motes. A mote is declared as abnormal if the
deviation is large. The latter algorithm computes two zones for each sensor node.
The deviations are then individually computed by employing the former algorithm.
If median value of single zone is ominously diverse than other mote, the mote is
announced as abnormal. The scheme employs a receiver operating characteristic
(ROC) analysis to adaptively calculate the values of thresholds. The ROC is a graph-
ical plot which is typically used to show the performance of a binary classifier [14].
The computation of ROC values is an energy consuming process. Therefore, this
approach is not useful for resource-limited motes.

Non-Gaussian Schemes: The distribution of data is not normal in such schemes.
Jun and colleagues studied a non-Gaussian abnormality identification scheme which
can detect spatiotemporal abnormalities [15]. Abnormalities are presumed as non-
correlated with respect to space and time. Abnormalities are characterized as per
impulsive noise behavior having distribution, namely Symmetric α-Stable (SαS).
Each cluster member mote carries out local abnormality identification and corrects
temporally abnormal data which are then transmitted to the respective cluster chief
nodes. The cluster chief node then receives that data and further discovers and cor-
rects spatial abnormalities in data. This abnormality identification scheme offers two
benefits: (i) a communication cost decrease and (ii) an increase in the quality of
accumulated data. In spite of these benefits, the distribution, namely SαS might not
be suitable for networks because of their dynamic nature of topology.

2.2.1.2 Nonparametric Schemes

These schemes have no presumptions about data distribution [16]. These schemes
are, therefore, more suited to sensor networks with dynamic topology. Nonpara-
metric schemes characteristically use one of two methods, namely Histogram and
Kernel functions [16]. The former provides a probability distributionwithin a specific
range [17]. A histogram is typically composed of rectangular bars. The tallness of a
bar is directly proportional to data frequency in a defined range. Histogram represents
continuous type of data, not like bar graphs which plot categorical data. A scheme
was presented by Xie et al. for hierarchical networks [18]. Their scheme constructs
histograms in both an online and a distributed fashion. The new histogram estimate
errors are theoretically studied and optimum parameter values are derived for abnor-
mality identification. A main flaw of the scheme is, however, its consideration of
only univariate data.
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Alternatively, kernel function-based approaches have been studied in the non-
parametric class of statistical abnormality identification in the literature. Kernel, a
weighting function, is employed for the estimation of the probability density func-
tions of random variables for abnormality identification [19]. A number of kernel
function-based detection techniques have been studied over the recent years. Palpanas
et al. [20] presented a technique which needs no advance distribution information
of sensed data. Every mote locally identifies abnormalities by using an estimator,
namely kernel density. The sensed data is abnormal if it is outside user-defined limits
on a node in question. A basic limitation of this technique is its only suitability for
univariate data.

Subramaniam and colleagues [21] furthered Palpanas et al. [20] work. Their
scheme ismeant for abnormality identification inmultidimensional data. The scheme
has two approaches to identify global abnormalities. In the former approach, every
mote identifies local abnormalities, as suggested by Palpanas et al. [20]. An abnor-
mality report is then forwarded by a sensor node to its parent node in order to detect
further abnormalities. This process continues till the sink mote identifies global
abnormalities. On the other hand, in the latter approach, each mote identifies global
abnormalities by employing estimator at global level. The empirical evaluation of the
scheme demonstrates that it can identify abnormalities with high accuracy. However,
this scheme is not able to identify spatial abnormalities.

2.2.1.3 Markov Process Model

The Markov process model is one such approach for abnormality identification in
which a model of data can be either parametric or nonparametric. The kind of model
treats incidents as state variables and uses a matrix, namely transition matrix to
characterize the transition frequencies that occurs among states [22]. The abnormal
conduct is then identified by matching input and output among two consecutive
states. This method is essentially suitable for sequential schemes. A type of the
Markov process model, namely Hidden Markov Model (HMM) is also employed in
statistical abnormality identification. In HMM, transitions and associated states are
veiled and merely the productions are observable [23]. A typical HMM is illustrated
in Fig. 2.3 [11].

Paschalidis et al. [24] have presented an identification method which can discover
both time-based and spatial abnormalities. The method uses tree indexed Markov
chains in order to formalize a spatial architecture. The temporal values are replaced
with integers on the vertices of the trees in the Markov chains. Large deviations from
previous abnormality free traces are then considered as abnormalities. The method
uses decision rules in order to differentiate between usual and abnormal activity. This
estimate takes to the discovery of both temporal and spatial abnormalities. However,
this is not feasible in some applications to define a comprehensive usual behavior of
motes because of the vibrant nature of the network behavior.

Gao and colleagues [25] presented an indirect association-based abnormality iden-
tification method. Their work relies on a theory that an indirect association among
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several attributes of data may be used to formulate the routine behavior of a node.
The Markov chain is then employed for calculating a state-transition probability
matrix which is employed to identify abnormalities. This method is proficient for
simultaneous identification of multiple types of abnormalities, but it causes a sub-
stantial computational overhead, which is not appropriate for resource-constrained
networks.

Zheng et al. [26] presented a sequential technique formobile nodes. The technique
relies on a multiscale examination of the network traffic. The authors claim that the
time duration length of capturing data trafficmay affect the abnormality identification
outcomes. The examination of data in various timescales is, therefore, important.
A method, namely discrete wavelet transform (DWT), is used for multiscale data
study. It may also be employed for the decorrelation of probabilistic procedures. A
stochastic model is designed to enhance the detection rate. An algorithm, namely
expectationmaximization (EM), has been employed to compute theparameter values.
The algorithm also identifies variations in the predictedmodel by examining the score
of variation. The score of variation is calculated as entropy among current and past
values. The abnormalities are then identified by discovering changes in the score
of variation. This procedure is appropriate for discovering timescale abnormalities
in the data, but this is energy-rich approach due to the large amount of processing
involved in the abnormality identification process.

2.2.1.4 Time Series Model

This is a non-random ordered arrangement of data. Dissimilar to other statistical
techniques, the time series model works on basic supposition that the consecutive
measurements are collected after equal breaks of time [27]. The time series study
has typically two aims, namely (i) identifying the conduct of a model that is based on
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the arrangement of measurements and (ii) predicting the future conduct of a model.
Singh and colleagues [28] discussed a schemewhichworks on an assumption that the
variables used for abnormality identification should be integers that are nonnegative.
The model is employed for forecasting static time series. The values of mean and
variance remain static over the passage of time in the model.

The model has two algorithms. The initial algorithm amends the abnormal data of
every mote at the base station or sink mote by employing predicted values. The final
algorithm is then used for abnormality identification in mote data having 95% value
of the confidence interval. A high-level pseudocode of the algorithms is given in
Algorithms 2.1 and 2.2. In this scheme, the abnormality identification is performed
in a noncooperative manner. This technique has two fundamental weaknesses. First,
the forecast of the stationary behavior over the time series is not suitable for sensor
networks, as typically they have dynamic topology. Second, the temporal and con-
textual internode relationship is not considered, which may make the abnormality
identification procedure more strong.

Chuah and Fu [29] presented an abnormality identification scheme by employ-
ing time series examination in an ECG application. In the method, physiological
motes are positioned to observe numerous physiological actions like heartbeats and
pulse rate of senior citizens. Sensor nodes transmit data periodically throughwireless
link with a computer which employs an adaptive window-based discord discovery
(AWDD) technique for detecting anomalous pulse rates and heartbeats. The anoma-
lous data is then transmitted to a distant station where a doctor can identify diseases
in order to take adequate remedial actions, if required. The method, however, does
not consider synchronization between transmitted and received sensed data.

Algorithm 2.1 Determining reasonable model and forecasting
1: Find prevalent structure of autocorrelation
2: Calculate AR(p), order p is determined using AIC criterion
3: Calculate step 2 residual MA(q) through mandate of q
4: Carry out examination of residual
5: Forecast upcoming measurements and remove abnormalities

Algorithm 2.2 Abnormality identification
1: Identify 95% of the confidence interval (μ ± 1.96σ ) whereμ is predicted and σ denotes standard

error values
2: Confirm null hypothesis
3: Accept/ ignore values using step 2 //Rejection shows abnormal value



2.2 Abnormality Identification 19

2.2.1.5 Regression Analysis

This is a statistical procedure which is used to find the relationship among multiple
variables. A regression analysis is typically performed to identify the underlying
effect of single (dependent) variable on next (independent) variable(s) [30]. These
variables may be either associated or non-associated. Curiac et al. presented an
auto regression-based malicious node detection scheme [31]. The scheme deploys
detectors which are positioned at the central node to screen observations of member
nodes. The present and past observations are then matched by using autoregressive
predictors for abnormality identification. The difference of the present value from
a user-defined bound is treated as abnormal that results in the initiation of a block,
namely decision block. The block then handles the malicious mote. This scheme is
beneficial in predicting association between diverse variables, but the collection of
an appropriate forecast measure is not a trivial task.

Kim and colleagues [32] presented a nonparametric regression abnormality iden-
tification scheme for heterogeneous sensor networks. The office room is deliberated
as a use case, wherein abnormal everyday incidents are forecasted by using the
combination of regression analysis and Bayesian network. The scheme learns the
usual conduct of motes and assesses the extent of abnormality. The analysis of the
proposed scheme was performed in an office room. The experiment location was
furnished with motion and light detectors in order to accumulate sensed data with
no or small advance information. The abnormalities were then discovered on the
collected data by using the bound value which was derived during the learning stage.
This method is modest yet useful for only smaller networks.

2.2.2 Artificial Intelligence and Agent-Based Schemes

Artificial intelligence is a discipline of designing and studying intelligent agents.
Intelligent agents are entities which perceive events from their surroundings and take
appropriate action(s), if required, in order to enhance the success likelihood of a sys-
tem. The objective of the intelligent agent-based schemes is tomimic human intellect
in tiny motes to perform numerous tasks [33]. Intelligent agent-based abnormality
identification schemes have been mainly proposed in the domains, namely Artificial
Neural Network, Artificial Immune System, Genetic Algorithm, Game Theory, and
Agent.

2.2.2.1 Artificial Neural Networks

Adaptive resonance theory (ART) learns new knowledge without forgetting previ-
ously obtained knowledge [34]. ART has a chronological learning ability. ART is
typically capable of updating existing labels, or it can create a novel class for fresh
observations if they do not fit to the prevalent data classes. A typical ART is made
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up of two fields, namely comparison, denoted by F1, and recognition, represented
by F2, having n and m neurons, correspondingly, where n denotes features and m
represents categories. The links between the layers F1 and F2 have variable weights
which are denoted by Wij. A sensitivity threshold or vigilance aspect ρ assesses the
similarity between the provided input and learned classes. A classical generalized
high-level structure of ART is drawn in Fig. 2.4 [11].

Walchli et al. [35] proposed an abnormality identification technique for discov-
ering abnormalities in signals using the Fuzzy ART neural network, viz. ART neu-
ral. The technique employs fuzzy ART to compute, categorize, and compress the
sensed observations by employing time series examination. This technique is able
to update prevalent label classes, though it is resource-extensive, particularly pro-
cessing and memory expensive. Yuan et al. [36] designed and analyzed a fuzzy
ART-based method in order to predict missing observations in sensor networks.
Their proposed imputation technique considers the spatiotemporal information of
network. The scheme is reliant on a supposition that the nodes in network are highly
linked with respect to space and time. Pearson correlation coefficients and R-squared
values are then employed for confirmation of the space association. An improved
algorithm is employed to predict the absent data. The scheme is simple yet effec-
tive, but only focus on spatial and temporal abnormalities. Moreover, the usage of
processing-intensive fuzzy ART only discovers single kind of abnormalities that
might not be appropriate resource-constrained networks.

2.2.2.2 Artificial Immune System

The artificial immune system (AIS) is an adaptive technique which is inspired by
theoretical immunology [37]. The usage of AIS for the abnormality identification in
sensor networks is a relatively fresh method. Fu et al. [38] presented a biologically
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inspired abnormality identificationmodel for layered networks. Themodel combines
the benefits of fuzzy and AIS theory. The method has three components, namely co-
simulation, global recognition, and sensing of local danger. In the situation of an
antagonistic mote launching a hazard, the motes in the locality of enemy mote sense
the hazard to send an indication to the coordinator of personal area network (PAN)
whichworks as a choicemaker. The choicemaker broadcasts a danger area according
to the obtained danger signals. The decision maker begins and preserves a pool of
receptors. The pool of receptors produces antibodies on the basis of the antigens.
The principle of negative selection is then employed to discover abnormalities in the
traffic. The technique employs parameters of PHY and MAC layers for abnormality
identification. The model is adaptable and flexible, but it is resource-expensive and
it might not be able of differentiating among abnormalities occur due to faults and
attacks.

Salmon et al. [39] designed a danger theory immune-inspired technique for abnor-
mality identification. The fundamental concept of the work is to employ Dendritic
Cell Algorithm (DCA) for abnormality identification. This scheme has four phases,
namely collection, analysis, decision, and reaction. The researchers associated mul-
tiple computational elements into their immune-stimulated counterparts. Mapping
between the computational and biological elements is given in Table2.2 [11]. In the
initial phase, antigens and signals are saved. An investigation is then carried out in
the second phase to produce output signals which discover the development state
of the Dendritic Cells (DC). DCs perform the classification as usual or abnormal
and identify their grade of abnormality in the next phase. In the terminal phase, T
and B cells are activated in order to tackle the abnormal mote. This technique mim-
ics immune system of human beings, and it has the ability of self-protection, but
the confirmation of the qualities and quantities of antigens and antibodies is further
required. More work is also needed to assess the performance of the scheme against
multiple natures of abnormalities.

Table 2.2 Mapping between computational and biological elements: Republished with permis-
sion of Taylor and Francis Group LLC Books, from Security for Multihop Wireless Networks,
Muhammad Usman, Vallipuram Muthukkumarasamy, Xin-Wen Wu, and Surraya Khanum, edited
by Shafiullah Khan and Jaime Lloret Mauri, 2014; permission conveyed through Copyright Clear-
ance Center, Inc.

Computational elements Biological elements

Attack Pathogen

Sensor mote Tissue

coverage of mote Danger area

Abnormality identity knowledge Antigens

Decision manager element in sensor lymph lymph node

Abnormality identification manager and
context manager element

Dendritic cells

Abnormality countermeasure element T and B cells

Countermeasure initiated by network
protection system

Antibody
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2.2.2.3 Genetic Algorithm

Genetic algorithms (GAs) were designed to imitate the natural evolution processes in
order to solve computational problems [40]. A GA-based abnormality identification
technique was presented by Khanna et al. [41]. The technique uses information of
packet, status of battery, utilization of data, and quality of service (QoS) orthodoxy
parameters for abnormality identification. Sensor nodes are categorized as cluster
head, inter-cluster routers, common sensor nodes, and inactive nodes (sleep state).
The leader mote uses a GA-based competing fitness function for optimally selecting
cluster heads or inter-cluster routers that works as local observing motes. The native
observingmotes observe the actions of their neighbormotes usingdiverse parameters,
namely modification or dropping of packets, value of signal strength , rate of packet
transmission, delay in response, and fake transmissions from conceded motes. The
technique optimizes previous abnormality identification methodologies in terms of
detection capability. Nevertheless, the scalability of the technique necessitates the
further validation.

Gene expression programming (GEP) mimics organic progression for program-
ming. AGEP-oriented abnormality identification technique, in which a GEP forecast
model for data traffic was used for time series study of the usual data traffic was pre-
sented by Gao et al. [42]. The abnormality identification technique is composed of 5
tuples: (Pm,Fs,M ,F,Op), where Pm denotes the parameter set, Fs represents the set
of function,M shows the set of variables,F illustrates the function for fitness, andOp

is a set for operation. The set of parameter is reliant on the size of population, Psize.
The gene can possess either tail T or head H if the following relation is fulfilled.

Gene =

⎧
⎪⎪⎨

⎪⎪⎩

H ,

T ,

H = h,
T = h − 1

(2.1)

In the above equation, H is a component quantity of h and T is a component
quantity of h + 1. The function set, Fs, has simple operators, i.e., −, +, ∗, and ÷.
The set for variable, M , has two factors, namely traffic length, i, and time, t. The
fitness can be obtained from the resultant relation.

Fn = R2 = 1 − SSE/SST (2.2)

where the symbols SST and SSE are total of square and total of square of error of the
overall variable set, correspondingly. The fitness function, F , relies on R-Squared
that yields the square value of the coefficient of the Pearson product correlation.
A GEP-based abnormality identification algorithm is given in Algorithm 2.3. This
technique enhances the efficacy of conventional time series methods by removing
the requirement of advance information about data traffic characteristics. However,
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the depletion of energy of such a rigorous procedure might have an adversarial effect
on the low resources of motes.

Algorithm 2.3 Gene expression programming
Input: DatasetMt , here the data length is i
Output: correlation coefficient, relative error, and Time series mode
1: On the basis of i, convert data into i + 1 time series data
2: Initialize population using Genes which are progressed by abnormality identification procedure

3: Assess fitness of individuals
4: Stop as soon as maximum threshold is obtained, else continue
5: Select best
6: Carry out each operation
7: Goto Step 3

2.2.2.4 Game Theory

The abnormality identification procedure is modeled as a game among an abnormal-
ity identification module and an adversary in the game theory. One such model was
studied by Agha et al. [43]. The factors for risk such as previous conduct of adver-
sary and types of recognized attacks are known in this technique, and abnormality
identification is carried out using these factors. An opponent may have three choices,
namely attack on group, no attack on group, and attack on additional group in a fixed
cluster scenario. On the contrary, the identification module has two response types,
viz. protect group or protect a different group. This produces a 2∗3matrix among two
players. Increasing the turnover of every player, that is, obtaining the Nash equilib-
rium in the game, is a stimulating. It is also not constantly likely to enlist all possible
positions of a system because of the active type of network topology.

Reddy [44] designed amechanismwhich employs a zero-sum game for abnormal-
ity identification in transmitting data trail. Consider a network group having seven
motes in a transmitting trail of two motes. Further assume that two out of those
seven nodes are malicious. Furthermore, there is a non-malicious node among two
abnormal motes. Let σ be the proportion of motes which are arbitrarily selected as
examination points and � is the dedicated acknowledgment facts in trail of packets.
The likelihood of identifying an antagonist mote, Pd , can then be computed as

Pd = Py = 1 − Pack (2.3)

where Py is the probability of packets that are dropped from acknowledgment facts
and Pack is the probability of acknowledgments at a foundation mote from acknowl-
edgment facts. The Pack can be computed as
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Pack =
n∑

i=1

Pem(i) (2.4)

wherePem(i) is anomalousmotes packets probability. The packets probability among
selected check points may be computed from the following relations.

P(m,n) = Pack − Pack(n) (2.5)

P(m,n) =
n∑

j=1

Pack(j) −
m∑

j=1

Pack(j) (2.6)

Employing 2.3 to 2.6, the number of abnormal motes in a particular path may be
computed from the following relation.

xCPack = (x!)/((Pack !) ∗ (x − Pack)!) = Pd (2.7)

This technique is useful in the determination of a doubtful mote which is origin of
abnormalities in network traffic. The technique is reliant on a game, namely cooper-
ative zero-sum. An adequate choice and localization of a non-malicious mote among
two or more antagonist motes is, however, not a trivial task without advance knowl-
edge of the present network state. Furthermore, due to the cooperative approach, the
inclusion of even only one opponent may spoil the entire procedure of the identifi-
cation of an abnormal mote.

2.2.2.5 Agent

Agents are intelligent software entities which roam over the network to perform their
designated jobs. The works carried out by Ketel [45], Pugliese and colleagues [46],
Eludiora and colleagues [47], and Khanum and colleagues [48] have been chosen
in this study to compare the multi-aspect performance of studied abnormality iden-
tification and confirmation system with these schemes. The rationale of choosing
these schemes is similarity of the research domain, that is, employing the agent
technology for abnormality/ intrusion/ attack detection in sensor networks. How-
ever, the work presented in this study has not only extended the role of agents to
fine-grained description of the confirmation of abnormalities, but has also detected
different types of abnormalities with high accuracies. The details of the working of
the related schemes are provided below.

Krugel and Toth [49] conducted one of the pioneer studies which employed agents
for abnormality identification. In their scheme, agents are dispatched as guards to
carry out arbitrary sampling. If abnormality is found in an arbitrary inspection of a
component of a network, then a complete identification is started.Thisworkdecreases
the cost related to the transmission and receipt of agents to every mote, but in non-
appearance of guards, motes are susceptible to attacks.
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Ketel [45] presented an architecture which employs the agent technology for a
distributed abnormality identification. The technique uses several static and agents,
namely Agents (MA), Static Agents (SA), and Nodal Agent (NA) to detect abnormali-
ties. The structure hasMobile Agent Server (MAS) and Victim Node List (VNL). SAs
are positioned on every cluster leader node. An SA transmits a message to an MAS
after detecting an abnormal activity on a mote. MAS transmits an MA to monitor a
node after detecting a threat. MAs are classified as thin and thick agents. The for-
mer and latter are associated with the resource-constrained and resource-rich motes,
correspondingly. NAs are located on the observing motes in order to identify local
abnormalities. Lastly, VNL has a list of victim motes at every cluster leader mote.
VNL is accountable for issuing the route map of anMA. The configuration of several
elements or agents on motes enhances the abnormality identification system cost.

Pugliese and colleagues [46] presented a rule-based technique for identifying
network-layer abnormalities by employing agents. The essence of weak process
model (WPM) is used to decrease the reachability rules. The attack model is cat-
egorized into high and low attack classes. The researchers have, however, merely
reported initial implementation outcomes. A comprehensive performance is needed
in order to confirm its utility for resource-limited sensor networks.

Eludiora and colleagues [47] presented an identification scheme in which motes
directly interact with leader node rather than cluster leaders. The agents are used
by leader nodes to interact with each other. A designated role of the agents is to
wander between multiple motes and leader nodes to carry out the job of abnormality
identification. The scheme is based on two algorithms, one each for data analysis
and abnormality identification. The first algorithm detects denial of service (DoS)
threats and thus appraises the status of a mote. On the contrary, the next algorithm
computes the failure probability of a leader node to discover the abnormality. The
scheme is designed for the networks where motes and base stations have only one
hop distance. The one hop communication decreases consumption of energy, but it
can cause a communication bottleneck on leader node. This tactic is not suitable
for large networks and it only focuses on the DoS attacks which are other major
limitations of the scheme.

A hierarchical abnormality identification system for sensor network has been
designed by Khanum and colleagues [48]. The scheme employs three agents, namely
Management,Analyzer, andCoordinating. Thefirst ismobile,where second and third
are static agents in nature. Motes are positioned in a clustered topology. Abnormal-
ity identification architectures are installed on each cluster leader node. Abnormal-
ities are discovered at two levels, i.e., network and node. The cluster leaders detect
network-wide abnormalities, whereas node-wide abnormalities are discovered by
the Analyzer agents. Khanum et al. [48] has presented an abnormality identification
architecture at a high level, since they have not provided any internal details about
the abnormality identification technique. The cost that is related with the wandering
of agents is not analyzed.
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2.2.3 Learning Schemes

Learning algorithms enable computer and associated devices to learn frompast obser-
vations to make decisions [50]. The learning process is typically based on extracting
valuable patterns of data and forecasting on fresh data on the basis of the previously
obtained knowledge [51]. Sensor nodes may be skilled by employing one among
three algorithms, namely supervised, semi-supervised, and unsupervised learning
to set normal behavior at deployment time. The selection of an algorithm can be
made due to a number of factors such as availability of resources, network size, and
abnormality identification method.

2.2.3.1 Supervised Learning

This techniques tags a training set using a pair (feature, label), represented as (ai,
bi),...,(an, bn), here i = 1 to n. The goal of the approach is to tag each instance of
features of fresh input data. This class can be considered as a regression function
or classifier. The supervised learning is a regression problem if c ∈ R and if c is
based on “real” values, whereas it is a classification problem if c is based on “whole”
values [52]. The likelihood of data classification is high and provides more accurate
outcomes, but this is a time taking and energy extensive approach. Moreover, this is
not always likely to receive a tagged dataset.

A key model from this class is known as support vector machine (SVM), which is
a non-probabilistic binary and linear classifier which generates a hyperplane which
divides data in dual classes by having a maximum likely distance. The vectors which
lie near to the separating lines are the main point of interests. Figure2.5 [11] repre-
sents a linear SVM graph which classifies a data set into two categories in a two-
dimensional plane. SVM-based distributed abnormality identification scheme was
presented by Rajasegarar and colleagues [53]. In the technique, local quarter spheres
are calculated by each child mote and then they are transmitted to the respective
parent motes. The respective parents are accountable for the local abnormality iden-
tification. Parent motes compute the universal radius using the obtained value of
native radii. The parent motes then transmit the universal radius to all offspring in
order to identify the universal abnormalities in their vicinities. This technique is able
to discover both native and universal abnormalities, but the calculation of only quar-
ter sphere might error some key information that may be employed for abnormality
identification.

Xiao et al. [54] designed a Nave Bayes algorithm to discover abnormal motes in a
network. The classifier, viz., Bayes presumes the occurrence of particular parameters
from a class (usual or abnormal), which is unconnected to the occurrence of other
parameters in a particular class.Abnormal conduct of amote is discoveredby employ-
ing numerous parameters such as energy consumption, interaction. The experiment
results demonstrate that the Nave Bayes classifier provides a higher identification
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rate and less false positive rate. Nonetheless, the researchers have not analyzed the
characteristic shortcomings of the methodology in this technique.

2.2.3.2 Semi-supervised Learning

This learning technique employs large unlabeled data along with small labeled data
in order to form a robust classifier [55]. This technique is particularly beneficial
in health and bioengineering domains where labeled data is not easily available
because of high labeling cost of data. This cost is high because of the involvement of
the human expertise. This technique is not typically employed in sensor networks for
abnormality identification due to trouble in getting training data which encompasses
all likelihoods of usual and abnormal conduct of a mote or network in advance.

2.2.3.3 Unsupervised Learning

These schemes use a non-labeled data set with features (ai,...,an) for building clas-
sifiers. This scheme needs a threshold or certain criterian to identify abnormalities
in a data set. The choice of an adequate threshold is a difficult task particularly in
dynamic sensor network applications where a state of the usual conduct of the sys-
tem keeps changing. A approach method of this class is clustering of measurements
and then identification of abnormalities using distance from boundary or centroid
of the cluster. This technique is apt for such applications where training data is not
available.

InK-means clustering k-means of every cluster is computed [56]. These centroids
are then linked with a training set. Next, every individual datum is linked with the
nearest mean. As a consequence, each individual point is associated with one of the
centroids. An abnormality identification technique, using k-means clustering, was
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presented by Rajasegara et al. [57]. In the technique, every mote gathers local data
in order to create a normal profile. These normal profiles are then transmitted to
associated cluster leader. The cluster leaders collect local data and create a universal
normal profile which is transmitted to all sensor nodes in their proximities. The pro-
cess of abnormality identification is carried out using universal profile. The k-means
technique is employed to improve the process of clustering. This technique involves a
noteworthy communication burden, as cluster leader motes transmit universal profile
to every member mote.

Xie and colleagues [58] presented an abnormality identification technique which
employs an unsupervised learning method, namely Principal Component Analysis
(PCA)which is amathematical procedurewhich changes the associated variables into
non-correlated variables using orthogonal transformations. The transformed vari-
ables are called as principal components (PC). The technique employs a distance-
orientedmethod for decreasing feature size frommultivariate to univariate in order to
enhance the abnormality identification procedure. An error coefficient is presented to
consider the information loss that is caused during the conversion process. This tech-
nique has significantly reduced the training burden, but it suffers from the additional
conversion cost.

An ellipsoidal neighborhood outlier (abnormality) factor for distributed abnor-
mality identification was designed by Rajasegarar and colleagues [59]. The scheme
presents a distributed abnormality identification architecture which employs sev-
eral hyperellipsoidal clusters to model the data of each sensor node in the network.
A method for the computation of a difference score among internode hyperellip-
soidal models is presented. The experimental results demonstrate a reduction in the
communication overhead as compared to the centralized schemes. In another study,
Rajasegarar et al. [60] presented a distributed hyperspherical cluster-based algorithm.
The algorithmminimizes the communication overhead by merging different clusters
and transmitting a compact description to other nodes for abnormality identifica-
tion. The objective of the scheme is to detect global abnormalities at node level.
These schemes are, however, susceptible to a collusion attack, in which antagonist
nodes can collude to compromise the reliability of the computed hyperellipsoidal
and hyperspherical models which are used for the abnormality identification.

2.2.4 Other Schemes

There are several other abnormality identification schemes in the literature which
may not belong to any of the above-mentioned classes. This section reviews such
few related schemes.
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2.2.4.1 Graph Theory

Graph theory has also been employed for abnormality identification in addition to
other purposes such as aggregation of sensor readings as suggested by Bokareva
et al. [61]. Ngai et al. [62, 63] presented novel algorithms for the detection of an
abnormal mote by employing the graph theory. The scheme has two steps. Initially, a
base station collects a list of doubtful motes. Finally, it set the precise location of the
abnormal mote by using a graph, namely network flow. This scheme is helpful for
the identification of the conspiring motes. A voting scheme is employed in order to
announce a suspicious mote as abnormal or usual because of their past conduct. This
tactic is beneficial in identifying node abnormalities, but it is a resource-expensive
approach, especially in the worst case scenario, i.e., when an abnormality stays at
the width or breadth end of a graph.

Ho and colleagues [64] designed a detection method which incorporates group
information aspect before the positioning of a network. The identification is then
performed at mote level after they receive a demand from their adjoining sensor
to transmit a message. Every group is recognized using its exclusive deployment
location. A mote, in every group, is positioned on the (a, b) location that may be
computed from the following relation.

f (a, b) = 1/(2πσ 2)e((a−ag)2+(b−bg)2)/2σ 2
(2.8)

In the above relation, (a, b) is the location of a sensor mote in a group and (ag, bg)
represents the placement position of g. The notation σ denotes the standard deviation.
If i mote, a group gi member, gets a demand from an adjoining mote j, then i
confirms that the distance among the group and adjoining mote is less than a pre-
specified distance. If the distance is less, then j is treated as a genuine mote. Else, it
is considered as an abnormal mote. This technique is beneficial in the identification
of abnormalities that occurs due to replica motes. The efficiency of this technique is,
however, highly dependent on the correct positioning and advance knowledge of the
conduct of the network that might not always be possible.

2.2.4.2 Subjective Logic

Yuan et al. [65] modeled a subjective logic grounded abnormality identification
framework. It is appropriate for those cases where ambiguity and partial knowledge
is required. The framework has two algorithms. The initial algorithm combines the
adjoiningmotes judgment in order to select the fate of a sensor mote as either usual or
abnormal. However, this technique has three shortcomings. (i) The decision-making
procedure may also involve abnormal motes, which may disturb the abnormality
identification procedure. (ii) This procedure cannot distinguish between abnormal
and usual data. (iii) A bound for the locality is fixed as 0.5 that might not be appro-
priate in every situation. To address these limitations, the researchers extended the
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concept and suggested the next algorithm that has the following refinements in the
abnormality identification procedure. (i) The elimination of the judgment of a doubt-
ful mote. (ii) The spatial correlation between data is used to discriminate between the
abnormal and usual data. (iii) The past information is taken into account to weigh the
belief of adjoining motes. In spite of enhancement in the abnormality identification
procedure, the consideration of past data may need more memory space. Moreover,
the deliberation of the time-based correlation may further enhance the strength of
the framework.

2.2.4.3 Fuzzy Logic

Fuzzy logic is a class of many-valued logic which can handle imprecise data for
the approximate reasoning unlike the traditional crisp logic which is meant for fixed
reasoning. The received sensor readings at a cluster leader node or a base station
are often imprecise, even if they are located within close proximity to each other.
This may affect the accuracy of the decisions which are made by cluster leaders
or a base station. Fuzzy logic is, therefore, employed in abnormality identification
applications in sensor networks to improve their performance.

Chi and Cho [66] designed a fuzzy logic-oriented abnormality identification tech-
nique in order to integrate a security mechanism into a routing protocol, namely
directed diffusion. Several routing parameters like energy level of mote, error rate,
rate of message transmission, and neighbor motes list are used to construct the rules
for abnormality identification. This scheme, however, only focuses on the detection
and prevention of the attacks. Furthermore, it is only suitable for directed diffusion-
based senor networks.

PonoMarchuk and Seo [67] proposed a technique which is based on two lev-
els of detection. First, an abnormality identification module monitors and identifies
abnormalities on the packet inter-arrival time and packet reception rate, based on
the user-defined threshold values. Second, composite rules, which consider both
features for abnormality identification purposes, are employed for abnormality iden-
tification. The experimental results, based on a simulation study, show the capability
of the technique to detect abnormalities with a high detection rate. This technique,
however, needs the user knowledge in order to set the values of the thresholds in the
first stage and the values of the parameters in the second stage. Furthermore, unified
optimization of the threshold and parameter values are also not investigated.

Linda and colleagues [68] examined the role of fuzzy logic in abnormality iden-
tification for the security of embedded sensor networks. The scheme presents an
algorithm which formulates a rule-base on the basis of fuzzy logic to model the nor-
mal behavior. The rules are generated from an incoming stream of data packets by
employing a clustering algorithm. This authors, however, have not analyzed compu-
tational and memory overheads of the presented method. This does not establish its
suitability for extremely low resource embedded sensor networks.

In another study, Kumarage et al. [69] presented an abnormality identification
scheme which employs a fuzzy data modeling approach. The scheme performs par-
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titioning, by employing the fuzzy c-means clustering, of the sensed data which is
transmitted by the industrial sensor nodes. The abnormality identification is then
carried out in a nonparametric and non-probabilistic fashion by the means of fuzzy
membership functions. Adaptive thresholds are computed for the abnormality identi-
fication. The scheme achieves high accuracy as compared to competing schemes. An
iterative process of the computation of a threshold value, however, is not an efficient
approach for resource-constrained sensor networks.

Amore sophisticated abnormality identificationmodelwas designed and analyzed
by Moshtaghi et al. [70]. The model introduces a new mechanism to estimate the
parameters of Takagi-Sugeno fuzzy logic methodology. An incremental approach is
adopted for the computation of an inverse of the covariance matrix and a weighted
samplemean in order to construct the fuzzy rule-base which evolves with the passage
of time. The constructed rule-base is then employed for the abnormality identification
process. This scheme is, however, not suitable for those sensor networks which have
a dynamic behavior.

2.2.4.4 Cross-Layer Abnormality Identification

Two or more features from different layers of an Open System Interconnection (OSI)
model are employed for the abnormality identification in the cross-layer abnormality
identificationmodels. Over the years, the community has presented a number of such
abnormality identification methods for sensor networks [71–75]. One such approach
was presented by Onat and colleagues [67] where every mote preserves a profile
of its adjoining motes. The profile has two features, namely rate of packet arrival
and received power average. This technique is, however, not capable of detecting
more sophisticated abnormalities due to the trivial nature of the underlying detection
method.

Bhuse [72], in his PhD dissertation, investigated the use of multiple layer features,
namely physical (PHY),Media Access Control (MAC), network, and application for
the abnormality identification. In PHY layer, the Received Signal Strength Indica-
tor (RSSI) value is employed for abnormality identification. The neighboring motes
RSSI value is computed and a noteworthy nonconformity from that base value is
treated as an abnormality. InMAC layer, S-MAC and TDMAprotocols are employed
for the abnormality identification. In these protocols, slots of time are assigned to
motes for communication. The interaction outside an allocated slot indicates an intru-
sion activity. In network layer, a protocol is proposed which uses forwarding tables
that are created by the protocols for the abnormality identification procedure. This
procedure needs the incorporation of high-level knowledge in tables in order to for-
mulate abnormality detection tables (ADTs). Abnormalities are then identified using
ADTs. In application layer, a time for round trip is treated as an abnormality identifi-
cation feature. Boubiche et al. [73] presented a technique for layer-wise abnormality
identification. A common feature of the above-mentioned schemes is their capability
to detect the layer-wise abnormalities in the respective layers.
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Becker and colleagues [74] employed multiple learning algorithms such as k-
Nearest Neighbors, Support Vector Machines, Bayes Classifier, Neural Network
using multiple features from different layers. An experiment study illustrates that
the naive approaches, for example, Bayes classifier and decision tree serve improved
performance in contrast with the other techniques. In the experimentation setup,
several features are employed for the abnormality identification. The performance of
this abnormality identification technique is, however, heavily reliant on the selection
of appropriate features. A fundamental method of using several features might not
be adequate for resource-limited motes.

More recently, Dai and colleagues [75] presented a multivariate classification
method for the identification of abnormal motes in large networks. The detection
process is based on the multivariate classification technique. The multivariate tech-
nique excerpts the preferences of a mote related to the malicious behavior. It then
creates a sample space for all motes which are the network constituents. This is fol-
lowed by the detection of anomalous motes using given criteria. The experimental
outcomes show that a false detection rate is less than 0.5%. In spite of having low
rate of false detection, the effectiveness of this technique depends on identification
criteria. The choice of appropriate identification criteria is not a trivial job in certain
sensor network applications, particularly where motes have a vibrant behavior.

2.2.4.5 Other Schemes

Li et al. [76] presented a quantitative approach for the identification of anomalous
motes. The approach is based on the data transmission quality (DTQ) function. A
sensor network is separated into multiple groups. Every mote keeps a DTQ table of
its adjoining motes. The DTQ function is provided in the subsequent relation.

DTQ = kD/E × (STB())/(P()) (2.9)

In the above relation, k is an integer which is greater than 0 andD/E represents the
packets count that are communicated in a unit energy. The notation STB() represents
a factor for the stability of data dispatch, and P() is the likelihood of effectively
communicated data packets. TheDTQ function value stays static or varies efficiently
for usual motes and changes for anomalous motes. The concluding fate of a mote as
usual or abnormal is defined using voting between members of the group. The voting
technique is, however, vulnerable to the conspiring threats.

Krontiris and colleagues [77] designed a novice abnormality identification
approach. In the method, selected motes, namely watchdog motes, carries out the
job of observing the neighboring motes. The watchdog motes are selected as per
the following criteria. Assume a situation, where mote A has a communication con-
nection with mote B. Then mote A and other motes which are located inside the
juncture of the radio range of mote A and mote B may work as regulator. A regula-
tor mote observes adjoining motes as per the following mechanism. (i) If a specific
mote drops n data packets in t time, a triggered is then triggered by a regulator
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mote. (ii) In a particular location, if regulator motes trigger alarms, then the doubtful
mote is broadcasted as an abnormal mote. This method is simple, but vulnerable
to high false positive rate. Moreover, voting requirement by half of the motes in
order to announce a doubtful mote as an abnormal mote might not be appropri-
ate for few sensor network applications, especially where high rate of detection is
required.

Krishnamachari and colleagues [78] presented a distribution algorithm for the
detection of environmental events of interest. The algorithm explicitly takes into
account the possibility of the faults in sensor measurements for detecting these faults.
The performance of the proposed algorithm has been analyzed through simulation
study and analysis. The outcomes indicate that themethod can detect 85 to 95% faults.
Lazarevice et al. [79] has conducted a detailed comparative study to identify different
kind of network intrusions. A number of abnormality identification techniques and
their extendedworks have been evaluated on theDAPRAdata set. The results indicate
superior performance of some schemes as compared to other schemes.

This section has first discussed the statistical abnormality identification schemes.
A number of related schemes, which use artificial intelligence, agent technology,
machine learning, fuzzy logic, and several other methods for abnormality identifica-
tion, are then critically reviewed. The security of agent will be reviewed in the next
section, as our proposed abnormality identification and confirmation system rely on
the agent technology for the confirmation of abnormalities.

2.3 Security of Agents

A key challenge in agent-enabled applications is to secure agents from antagonist
nodes. This is a non-trivial task due to the complete control of a host node on an
agent during its execution.

2.3.1 Securing Agents on Middleware

A networking system, in general, and sensor network, in particular, can be catego-
rized into three layers, namely application,middleware, and hardware from the view-
point of layered architecture. The security on these systems can be deployed on any
of these layers [80]. A number of middleware architectures have been designed and
studied in the literature which integrated security at middleware of agent applications
[80–84]. These architectures facilitate easy modification or even complete removal
of the applications without interfering in the security mechanisms of the tiny sensor
nodes.
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2.3.2 Other Approaches

Over the years, some studies have also been conducted in other types of networks in
order to secure agents from antagonists. Some of the few prominent schemes from
the literature are reviewed below [85–89].

One of the pioneer works, about the identification of the manipulation attack
against the agents, was carried out by Vigna [85]. In the work, agents can grab traces
of the execution of the instructions which are executed by a malicious node during
the execution of an agent on that node. The traces are logs of the actions which
are performed by agents. Each node saves traces of the execution of agents and
then transmits the hash of those traces in order to save the network bandwidth. A
parent node of an agent can then verify the integrity of the execution of an agent
by re-executing it and matching the traces. This solution, however, demands high
computational and memory resources to compute hash values and store traces. This
solution is, therefore, not feasible for low resource sensor networks.

Zhang et al. [86] designed a secure integrated scheme for agents andWeb services.
The scheme offers an authentication protocol which does not require a username–
password pair for authentication, due to the fact that this kind of authentication is
infeasible for agents. The presented protocol, therefore, relies on an identity-based
public key management algorithm. An analysis carried out by the authors shows that
the scheme can simplify the key management process. This scheme is, however, only
focused on Web services.

A study on securing agents with designated hosts was conducted byMu et al. [87].
In the presented model, a parent node of an agent selects a destination node for
that agent and then performs an authentication with the node. This approach avoids
the misuse and non-repudiation problems. The model is theoretically verified in the
electronic commerce settings. This scheme, however, needs a full scale experimental
analysis to be deemed as effective for the intended purpose.

In another work, Malik et al. [88] designed a secure transfer procedure for agents
among agencies (i.e., agent-host nodes). Mobile-C is a multi-agent platform which
supports C and C++ static and agents. In the proposal, all agents are authenticated by
a trusted third party, a system administrator in this case. The design of the framework
is inspired from the Secure Shell (SHH) protocol. The transmitter and receiver nodes
authenticate each other using public key cryptography before the transmission and
reception of an agent. The receiver node also verifies the integrity of the received
agent. A turnaround time for agents is evaluated in different scenarios. The authors,
however, have not performed any attack-analysis in order to show the usefulness of
the cryptographic methods to secure agents.

More recently, Esparza and colleagues [89] employed watermarking and finger-
printing approaches for the detection of an agent manipulation attack. The presented
approach, namely agent watermarking (MAW), enables an agent parent node to con-
firm the execution integrity of the agent on the basis of the inserted watermark. The
authors further presented a technique to detect and punish an antagonist node by
using a trusted third party. The usability of the schemes is demonstrated through a
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proof-of-concept and an extensive performance evaluation. The target of the MAW
is traditional networks, but we have extended this approach in networks because the
size of a watermark can be varied in order to enable MAW to work in low resource
sensor networks.

2.4 Formal Modeling and Analysis

Abadly designed agent-enabled system can go into a static state, or it may even badly
affect the restricted resources of motes by not performing its intended functional-
ity. Formal modeling is, therefore, typically employed in order to address formal
descriptions and verification of the correctness of large systems [90]. The process of
formal modeling and analysis also removes inconsistencies from the overall system
design. It also ensures the completeness of a system design by the identification of
missing or invalid requirements. The missing requirements can then be included in
the system design or invalid requirements can be improved to obtain a better overall
design. Over the course of recent years, formal modeling has been a well-studied
procedure of the validation of the system behavior prior to its implementation. In
the last decade, the community of researchers has carried out numerous studies to
formally verify wireless communication systems [91–93]. Similarly, some attempts
have also been carried out to formally characterize protocols [94–96].

Verification of algorithms, protocols, or even systems can also be useful in creat-
ing their best designs for resource-constrained sensor networks. Numerous studies
have performed to formally prove the security procedures for sensor networks along
similar lines. Law and colleagues [97] formally modeled and analyzed a distributed
key management architecture for sensor networks, which has two interconnected
supervised and unsupervised security kingdoms. A tool, namely CoProve is used to
confirm the correctness of the presented protocols. The specifications of protocols
are fed as input. A working example situation of the system is then studied to assess
the performance of the protocols. In a PhD work, Werner [98] applied formalism for
checking of energy consumption models by motes in already defined settings. This
method, however, may not be adequate for stochastic systems.

The Automated Validation of Internet Security Protocols and Applications
(AVISPA) is also studied in the literature [99]. It presents a formalism to provide the
specification of security protocols. Over the years, the tools like Co- Prove, AVISPA,
and brute-force algorithms have been used for validation of security protocols. How-
ever, the Petri net theory is a mathematical modeling language. The mathematical
foundations of Petri net theory give sturdy guarantee on descriptions, modeling,
and verifications of qualitative and quantitative properties of systems [100]. Despite
having enriched properties for modeling and verification, the Petri net theory has
not been extensively studied in sensor network security literature in general, and
abnormality identification schemes in particular. Over the course of the last decade,
a few notable security solutions have been formally modeled and verified using the
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Petri net theory in sensor networks [101–104]. These studies, however, have several
limitations which are discussed below.

In 2009, He et al. [101] employed Petri nets to design and formally verify an
enhanced secure localization scheme for sensor networks. Both localization and
attack driven models are constructed using the Petri net theory. A state equation
technique is then employed to perform a reachability analysis. A state equation-
based analysis demonstrates that only the secure states are reachable in the system
design. The authors have, however, not conducted a thorough behavior analysis of the
security protocol. Furthermore, the formal models have not been validated through
simulation or real implementation.

Rodriguez et al. [102] exploited the dynamic characteristics of the Petri net the-
ory, namely synchronization and concurrency in order to model and formally verify
an encryption scheme for sensor networks. The communication system is modeled
through standard Petri nets. An elliptic curve-based cryptography protocol is then
modeled and illustrated using place and transition invariants. The authors have only
derived the reachability set to analyze the behavior of the presented cryptographic
protocol. Furthermore, the constructed model is trivial and it is incapable of estimat-
ing temporal behavior of the protocol, which is an important performance metric for
any security protocol.

Tseng et al. [103] verified a robust self certificate-based user authentication
scheme for sensor networks by using the Petri net theory. A security analysis of
an authentication scheme is performed after the construction of a standard Petri net
model. The Petri net model is simulated on HPSim in order to verify the reacha-
bility of different states from the root state. An extensive analysis of the behavioral
properties is, however, not conducted to estimate the aptness of the authentication
scheme.

More recently, Sbai and Escheikh [104] employed Petri nets for the verification of
an encryption scheme in sensor networks. A Petri netmodel of the encryption scheme
is constructed through Promela, a modeling language. The correctness properties are
then formulated through linear temporal logic.Adedicatedmodel checker tool, SPIN,
is used to validate the correctness of the encryption scheme. Like other schemes, this
work is also focused on only limited aspects of the behavior analysis of an encryption
scheme.

2.5 Limitations

A well-designed abnormality identification mechanism can detect an inconsistent,
a malfunctioning, or a troublesome node which may disrupt the usual working of a
sensor network. Designing an adequate abnormality identification system is a tough
task considering the unique characteristics of sensor networks. One key design con-
sideration, while articulating an abnormality identification mechanism for sensor
networks, is the placement of abnormality identification modules in the network.
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Traditionally, centralized or distributed design choices have been used for the posi-
tioning of abnormality identification modules.

Another key design choice is to discover abnormalities with minimum energy
cost. The main focus of the existing schemes is, therefore, on articulating the light
weight abnormality identificationmethods alongwith an acceptable rate of detection.
This method might extend the lifetime of a network. However, this might not be
capable to identify the sophisticated nature of abnormalities in a timely manner.
The failure of identifying such abnormalities might have the worst effect on the
functionality and lifetime of the network. Thus, there must be a balance among
making an abnormality identification mechanism lightweight and its ability to detect
sophisticated abnormalities.

A literature survey, performed throughout this chapter, has shown that themajority
of the prevalent abnormality identification schemes have merely focused on the
identification of abnormalities [10, 12, 15, 18–21, 105]. It is, however, imperative
to discover the origin of abnormalities for their effective mitigation, which is to
our knowledge not considered in the existing literature. This book has, therefore,
presented an agent-enabled abnormality identification system that not only identifies
different types of abnormalities, but also offers a service for on-the-spot confirmation
of abnormal motes by using agents.

The survey of literature also reveals that agents are employed in different roles
in existing abnormality identification schemes [45, 47, 48]. However, a common
limitation of these techniques is their non-consideration of infrastructure and com-
munication costs which are linked with agents. The work presented in this study has,
therefore, considered these factors and deployed abnormality identification modules
on resource-rich cluster leader nodes and also presentedmethods for the optimization
of agent transmission.

Securing agents from antagonists have not been studied extensively in the sensor
network literature. This is, in fact, explored more in the literature related to tradi-
tional networks. The focus of the schemes in traditional networks is, however, only
on a security performance. These schemes may not be readily applied because of
their limited resources. Therefore, this study has extended the MAW approach [89]
to sensor networks by making necessary amendments to secure agents from agent
execution integrity attacks.

A few schemes in the literature have considered the detection of abnormalities at
different layers of an OSI model [72, 75]. These schemes, however, have not con-
sidered a cross-layer optimization in a Zigbee-IEEE 802.15.4 standard to detect the
different nature of abnormalities. This study has considered a cross-layer approach,
not only for the abnormality identification, but also for the effective transmission of
agents after taking into account the current state of the communication link. Fuzzy
logic is further used to improve the performance of the proposed method.

The review of related works also shows that many schemes are merely designed
and their detailed analyses have not been performed in order to validate their apt-
ness. Absence of the detailed analyses highlights a key point, that is, whether those
schemes are adequate for resource-limited networks. In this view, the performance
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of the methods presented in this study is thoroughly investigated through theoretical
analyses, experiments on a real test bed, and extensive simulations.

2.6 Summary

This chapter has first provided a background on the sensor network security in order
to highlight the problem domain of this study. Schemes from the abnormality iden-
tification literature are then critically reviewed. This is followed by a discussion on
agent security, where a middleware architecture is presented to integrate the secu-
rity in agent-based resource-constrained network applications in a middleware layer.
A brief overview of the literature on the formal modeling and analysis is also pre-
sented and limitations in the existing related schemes have been highlighted to set
the research context of this study.

In the next chapter, the abnormality identification and confirmation system has
been elucidated.

2.7 Bibliographic Notes

The types of anomalies, discussed in Sect. 2.1, were first introduced by [10] and
subsequently discussed with associated concepts in [11]. The taxonomy of schemes,
focused on abnormality identification, and subsequent discussion on these schemes
and their limitations were first provided in [11].
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Chapter 3
Abnormality Identification and Confirmation
System

3.1 Introduction

Abnormalities can severely disrupt the performance of a sensor network application.
In aworst-case scenario, abnormalities caused by attacks or faults can completely halt
the functioning of a sensor network application. The timely detection of abnormalities
and then identification of the source of abnormalities are, therefore, imperative for
their effective mitigation. This chapter has introduced an abnormality identification
and confirmation system which can not only timely detect the different nature of
abnormalities, but also effectively identify the source of abnormalities.

This chapter is structured as follows: A few formal definitions and terminolo-
gies are discussed in Sect. 3.2. The network model is drawn in Sect. 3.3. The internal
structural details of the presented system are described in Sect. 3.4. The algorithmic
specifications of the system and their complexity analysis are presented in Sect. 3.5.
The model formulation and its formal analysis are carried out in Sect. 3.6. The exten-
sion of themodel ismade by defining a relatedGeneralized Stochastic Petri netmodel
in Sect. 3.7 to formalize the time-based characteristics of the presented system. The
time-based conduct validation of the system through experimentation on a real test
bed is performed in Sect. 3.8. The key results of the work are presented in Sect. 3.9.
Finally, the conclusion is drawn in Sect. 3.10.

3.2 Terminologies and Formal Definitions

All symbolism is locally defined at the time of their first use, and a list of key notations
is provided in Appendix A for reference. The readers are referred to the study [12] for
the definition of Petri and Generalized Stochastic Petri nets. The formal definitions
of behavioral and structural properties, namely reachability, safeness, boundedness,
liveness, and deadlock are given in [1, 2].

© Springer Nature Singapore Pte Ltd. 2018
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3.3 Network Model

The structure of the network is presumed to be a clustered network with hierarchy.
A rth cluster Cr is formed by the collection of s number of motes,msn, at the lowest
level, namely leaf level, such that Cr = {msni |1, , s}. Let msnq represent the node
of interest from the cluster Cr . The symbol MSN represents all member nodes in the
network. The cluster leader nodes (CLNs) are in-charge nodes of their proximities,
and they are equipped with more resources as compared to other ordinary member
nodes. TheΞ number of CLNs is linkedwith a node, namely base station (BS), which
is chief of the network and responsible to operate application and handle received
data. A generic formation of the network model is illustrated in Fig. 3.1 [3]. The
general network functionality has following characteristics:

• The interaction between constituents of the network is non-deterministic due to
several aspects such as channel errors and environmental influence [4].

• The CLNs keep track of the statuses of the resources of the member nodes
through the synchronized resource management technique which is facilitated
by TinyOS [5].

• The agents, namely abnormality agents (AAs), have watermark embedded in their
codes. Thus, they are safe from attacks [6]. The key steps of the algorithm used
in this study are following: (i) Select p and q as numbers, namely prime numbers,
where p × q = N, (ii) insert N in graph G, (iii) generate watermark W to create
G, (iv) embed W in the original code O to generate Oo code so that if the given

    Cluster Member Node

Cluster Leader Node

Base Station

Mobile Agent

Communication Link

Fig. 3.1 Networkmodel: c©AcademyPublisher, reprinted fromM.Usman,V.Muthukkumarsamy,
and X.-W.Wu. A resource-efficient system for detection and verification of anomalies using mobile
agents in wireless sensor networks. Journal of Networks, 9(12):3427–3444, 2014
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input I , the recognizer R is able to extractW and N (v) employ tamperproofing to
avoid the removal ofW (generating O1), (vi) employ obfuscation to make analysis
difficult (generating O2), at this stage, R andW becomes R 0 andW 0, (vii) extract
R

′
and distribute code O3, (viii) the attacker can generate O4 by modifying O3,

and (ix) finally, the cluster leader node can then verify the originality of the code
by applying R

′
to O4 in the case of an attack.

• The movement of AA is restricted among only cluster leader and member nodes
for optimum utilization of energy resources.

• All leaf nodes are assumed to be susceptible to different nature of abnormalities.
The other entities in the network are considered as secure.

• The bootstrap values of all member nodes are kept within [0,1], a closed interval.
These values vary at run time due to the dynamic changes in the behavior of nodes.

3.4 Architecture of Abnormality Identification and
Confirmation Module

The description of the composition of abnormality identification and confirmation
module (ADVM) is elucidated below.

3.4.1 Abnormality Identification and Confirmation Module

Every cluster leader node is set up with its own ADVM which accomplishes several
imperative tasks such as detection of abnormalities, transmission of agents, and
transmission optimization of agents. The ADVM is made up of three sub-modules,
namely coordination unit, abnormality agent, and repository Fig. 3.2 [3] depicts the
deployment of ADVMs on several cluster leader nodes.

Coordination Unit: This is a main component of ADVM. It facilitates coordina-
tion among internal elements of ADVM and detection of abnormalities coordination
with the BS node. The element CU fetches readings from inbound data traffic to
carry out abnormality identification. The legitimate reading is transmitted to Aggre-
gation Unit (AU) which aggregates sensed data and periodically transmits them to
BS. Conversely, that is, in the case of anomalous data, CU is entitled to initiate the
following actions: (i) Transmit abnormality agent to perform on-the-spot confirma-
tion of suspicious node, (ii) trigger an alarm to the BS node, (iii) declare the cluster
member node as faulty or antagonist, and (iv) reduce interaction with the doubtful
node.

Abnormality Agent: It is a tiny piece of codewhich is made up of four fragments,
namely identity, data, code, and itinerary. Every agent possesses an inimitable iden-
tity. The agent itinerary is based on the target node address. The code fragment is
composed of on-the-spot confirmation procedure code. The data fragment contains
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Fig. 3.2 A depiction of the deployment of ADVM on the cluster leader nodes: c© Academy
Publisher, reprinted from M. Usman, V. Muthukkumarsamy, and X.-W. Wu. A resource-efficient
system for detection and verification of anomalies using mobile agents in wireless sensor networks.
Journal of Networks, 9(12):3427–3444, 2014

Identity Itinerary Code Data

Anomaly Agent_A

Cluster_1 Member Node_1 for (k =1, i = 1 to S_msnq[i] = )  do
CMP (S_msnq [i], S_agntq [k])
if (CMP (S_msnq [i], S_agntq [k]) = = 
TRUE then
i++, k++
R          0
else
R           1
end if
end for

SR BY MS

15.21 85.21 91.0

14.91 85.17 92.0

Fig. 3.3 The depiction of the internal composition of an abnormality agent: c©Academy Publisher,
reprinted from M. Usman, V. Muthukkumarsamy, and X.-W. Wu. A resource-efficient system for
detection and verification of anomalies using mobile agents in wireless sensor networks. Journal of
Networks, 9(12):3427–3444, 2014

values of previous data packets that are employed for on-the-spot confirmation of
suspicious node. Fig. 3.3 [3] shows the composition of an abnormality agent.
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CU can activate an agent for on-the-spot confirmation of the doubtful node
after the identification of abnormalities in received data packets. The following cases
may occur as a consequence of the agent transmission: (i) the correct execution of
an agent on a doubtful node and communication of on-the-spot confirmation result
to a cluster leader node, (ii) transfer of agent to doubtful node is endangered to
the attack, namely agent-execution manipulation, and (iii) the doubtful node may
escape the examination of an agent and as a result it may not transmit back any
outcome to the cluster leader node. For the case (i), the agent will transfer the required
values of the data to the cluster leader node. For the case of (ii), the mechanisms
for the protection of agent-execution integrity may be integrated to secure from the
execution-manipulation attack [7]. For the case (iii), if the doubtful node prohibits
the examination of the agent, and no outcome is transmitted to the cluster leader
node, this will prove abnormal status of node, that is the eventual aim of transmitting
that agent.

Repository: It is denoted by RP , and it can store the values of features of interest
of the normal profile and other associated data as five tuples. These five tuples then
facilitate the procedures of identification of abnormalities and transmission of agents.
The composition of repository is conceived as an addition to the preliminary concept
stated in [8]. The tuples can be formally defined as shown below.

RP = 〈msnidq , RS, FS, AO, AS〉 (3.1)

In Eq. (3.1), msnidq is a column vector that keeps the identities of nodes which are
members of a particular cluster. The tuple, RS, stores statuses of the resources of
nodes. Every member node has several resources, for instance, memory and battery.
The values of these resources are kept in the memory in the form of an m × n
matrix; here m represents strength of member nodes in terms of numbers and n
denotes resources. The FS tuple, on the other hand, stores values of features. The
single value of FS, for nodes with similar responsibilities in the cluster, is stored on
the cluster leader node for the optimum utilization of its memory. If the sufficient
memory space is available, then different values of FS can be stored to facilitate
high level of security. The fundamental structure of FS is shown below.

FS = 〈λ, j,ϕ, υ, f 〉 (3.2)

In Eq.3.2, λ outlines the minimum to maximum boundaries of the values of the
sensor reading. For instance, λ can keep values in the range of 16−34 ◦C to set the
usual behavior of a member node of the cluster. The j feature represents the time
interval, which is used to observe the actions of the member node for a specific
duration of time. This activity saves record of the usual behavior of the member node
in connection with other factors such as sensor reading and resource status. The ϕ
feature keeps the values for the actions which are entitled such as sleeping, wake-up,
sensing, and transmission of sensed data values, which are performed by the member
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nodes. The f and υ features represent count of the received packets and status of
member node resources, respectively.

The AO tuple is aw×nmatrix. Thismatrix savesw abnormal observations,which
stores the computed values of thresholds that are used to optimize the transmission
of abnormality agents. The optimization of agent transmission method is described
in the next chapter (see Sects. 4.2.2 and 4.2.3). The structure of the AO is expressed
below.

AO = FS
′

(3.3)

The FS
′
feature stores values of λ

′
, j

′
, ϕ

′
, υ

′
, and f

′
, the notation λ

′
denotes

the abnormal values of sensor readings, the j
′
feature represents the unusual actions

which are performed by the member node, the ϕ
′
feature denotes actions performed

by the member node but they are unauthorized, and the f
′
feature represents the

unusual frequency of the received data packets.
The AS tuple represents the values of the set of actions that aids the functionality

of the abnormality identification procedure. The AS tuple is made up of two action
classes, viz. κ and τ .

AS = 〈κ, τ 〉 (3.4)

In Eq. (3.4), κ represents the actions related to the abnormality identification
procedure. Subsequently, the ADVM transmits the usual reading to a unit, namely
aggregation unit. If the received observation is anomalous, then an abnormality agent
would be transmitted by the detection module. Alternatively, it may take diverse
action(s): (i) declaring the relevant member node as faulty of anomalous to other
member nodes within that cluster, transmitting an alarm to the chief node, i.e., BS,
and reducing the interaction with the doubtful node. The τ tuple denotes tuning
actions such as changes in the limits of the zones, namely normal, tolerated, and
anomalous. It is stated that the κ action is automatically executed by ADVM after
the receipt of every observation, on the other hand, the τ action can be started by a
user from the BS node. Tables3.1 [3] and 3.2 [3] present descriptions of the set of
actions. Similarly, Figs. 3.4 [3] and 3.5 [3] illustrate flows of the actions. Note that
the detection part of the sample set of actions and corresponding flow of those actions
are based on the first-order abnormalities detection algorithm which is presented in
Sect. 4.2.1.

3.5 Algorithms and Analysis

The trustworthiness of the sensor network applications is mainly reliant on the accu-
rately received data. However, data packets, communicated by the cluster member
nodes, are vulnerable to attacks and faults. A resilient abnormality identification sys-
tem, therefore,must be capable of detecting the origin of abnormalities alongwith the
detection of abnormalities before taking fitting actions against the antagonist cluster
member node. The system, described in this book, can discover abnormalities and

http://dx.doi.org/10.1007/978-981-10-7467-7_4
http://dx.doi.org/10.1007/978-981-10-7467-7_4
http://dx.doi.org/10.1007/978-981-10-7467-7_4
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Table 3.1 κ actions definitions: c© Academy Publisher, reprinted from M. Usman, V. Muthukku-
marsamy, and X.-W. Wu. A resource-efficient system for detection and verification of anomalies
using mobile agents in wireless sensor networks. Journal of Networks, 9(12):3427–3444, 2014

State Description

A Carry out identification of abnormalities procedure on the basis of the first-order bounds

B Transmit aggregated data to the related unit, i.e., aggregation unit

C Cluster leader node verifies the member node behavior to facilitate the communication
of the agent

D Forward an agent to the member node for on-the-spot confirmation of the node

E Reduce the interaction with the cluster member node

F Communicate status of faulty node to other leader nodes

G Transmit an alarm to BS regarding the malicious cluster member node

Table 3.2 τ actions definitions: c© Academy Publisher, reprinted from M. Usman, V. Muthukku-
marsamy, and X.-W. Wu. A resource-efficient system for detection and verification of anomalies
using mobile agents in wireless sensor networks. Journal of Networks, 9(12):3427–3444, 2014

State Description

H Update bounds of the normal zone of FS

I Update bounds of the tolerance zone of FS

J Update abnormality identification bounds of the λ and j features

K Update abnormality identification bounds of the j and υ features

L Update abnormality identification bounds of the ϕ and υ features

M Update abnormality identification bounds of the ϕ and j features

N Update abnormality identification bounds of the F and j features

A

B C

D E F G

Fig. 3.4 Flow of states of κ actions: c© Academy Publisher, reprinted from M. Usman,
V. Muthukkumarsamy, and X.-W. Wu. A resource-efficient system for detection and verification of
anomalies usingmobile agents in wireless sensor networks. Journal of Networks, 9(12):3427–3444,
2014

then it is capable of using those values for on-the-spot confirmation of the doubtful
cluster member nodes by using abnormality identification. This section elucidates
algorithmic specifications of the system.
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H I

J K L M N

Fig. 3.5 Flow of states of τ actions: c© Academy Publisher, reprinted from M. Usman, V.
Muthukkumarsamy, and X.-W. Wu. A resource-efficient system for detection and verification of
anomalies usingmobile agents in wireless sensor networks. Journal of Networks, 9(12):3427–3444,
2014

Algorithm 3.1 Collection of the values of features by a cluster member node

Input: Bl
t

Output: Fq
1: At t time
2: if Bl

c ≥ Bl
t then //confirm the status of battery

3: while i ≤ j do
4: Clct ( Fq [i] ) //accumulate the ith feature values of the ith cluster member node
5: S_msnq [i] ← Fq [i] //save ith segment value in the stack
6: Fq ← Fq + Fq [i] //combine values before dispatch
7: i ← i + 1
8: end while
9: TRNSMT Fq to clnq //dispatch data packet, Fq , to clnq
10: go to sleep mode
11: else
12: msnq fails to wake up
13: end if

3.5.1 Features Collection by the Cluster Member Node

A node in question, namely msnq , awakens at t time to verify the status of the
battery. If Bl

c, the current level of battery of msnq , is higher than the already defined
threshold, Bl

t , then it accumulates values for v features. The value of v is 3, and
Fq = {MS, BY, SR}, whereMS, SR, and BY denotememory status, sensor reading,
and battery status, respectively. The msnq node stores the values of Fq in its stack
memory segment after the concatenation of the values to facilitate the on-the-spot
confirmation procedure. Then stored values are communicated to, clnq , the related
cluster leader node, for more processing. The msnq node moves into the sleep state
after performing its assigned job. This procedure is performed periodically according
the requirements of the application specifications. The pseudocode of this procedure
is provided in Algorithm 3.1 [9].



3.5 Algorithms and Analysis 53

3.5.2 Abnormality Identification by the Cluster Leader Node

A cluster leader node, clnq , obtains the data traffic, from the msnq , based on the
values of features, that is, Fq = {MS, BY, SR}, inside the specified timeslot, that is,

T lb
i ≤ Tar (Fq) := T

Fq
ar ≤ T ub

i , where T lb
i represents the initial time, T ub

i denotes the

end time, and Tar (Fq) a function that calculates the time of arrival, T
Fq
ar , of Fq . The

IEEE standard, namely 802.15.4, categorizes the timeline of communication into
two approaches, viz. Contention-Free Period (CFP) and Contention Access Period
(CAP) [10]. In the former approach, msnq attains the timeslot which is guaranteed
to interact with the clnq . The abnormality identification algorithm uses the CFP
approach for obtaining the values of Fq . The msnq node is assumed as abnormal if
the received values of Fq are outside of the designated timeslot. A classic example
situation is shown in Fig. 3.6 [9], wherein the clnq node receives the values of Fq
outside of the designated timeslot. Therefore, in such cases, the msnq node must be
treated as abnormal. In the situation, if the values of Fq are not received by the clnq
node from themsnq node within the designated timeslot, then it sends the agent, AA,
to themsnq node to carry out on-the-spot confirmation of its antagonist behavior. The
agent transmits old values of Fq to verify themsnq node is behaving abnormally or if
the abnormality has occurred during the communication of the values of Fq among the
msnq and clnq nodes. In this situation, the clnq node also decreases the trust counter
of themsnq node by a ς factor (which is a system administrator specified number) and
transfers dal

i to BS, which is an alarm. In the situation, when the node, namely clnq
obtains the values of Fq inside the designated timeslot, it carries out the identification
of abnormalities procedure by matching the Fq values with that of the related normal
profile bounds, Pr fq = {(SRlb, SRub), (MSlb, MSub), (BY lb, BYub)}, to identify

t2t3

Allocated slot t

Unallocated slot t'
Flow of transmission towards the cln q

t0 =T i
lbt1 =T i

ub

Data packet containing Fq

Fig. 3.6 A classic example situation of time-based abnormality: c© Academy Publisher, reprinted
from M. Usman, V. Muthukkumarsamy, and X.-W. Wu. Specification and validation of enhanced
mobile agent-enabled anomaly detection in resource constrained networks. Journal of Networks,
10(6):353–368, 2015
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Algorithm 3.2 Abnormality detection by the cluster leader node
Input: Fq , Pr fq , T R
Output: SR, dali , dagi , AA, T R

1: if T lb
i ≤ Tar (Fq ) := T

Fq
ar ≤ T ub

i then //check Fq is received inside designated timeslot
2: CHK (Fq , Pr fq ) //perform abnormality identification
3: if CHK = = T RUE then
4: A_unt ← SR //save reading to aggregation unit
5: T RNSMT dagi to BS //dispatch accumulated data toe BS after T ub

i
6: break
7: else
8: T RNSMT dali to BS //trigger abnormality alarm to BS
9: T RNSMT AA to msnq //transmit abnormality agent to msnq
10: if T R > 0 then //check level of trust
11: Decr T R by ς //decrement the level of trust
12: end if
13: end if
14: else
15: T RNSMT dali to BS //trigger abnormality alert to BS
16: T RNSMT AA to msnq //transmit abnormality agent to msnq
17: if T R > 0 then //check level of trust
18: Decr T R by ς //decrease the level of trust
19: end if
20: end if

the abnormalities. If the matching result is correct, then the values of SR are accu-
mulated by A_unt within a designated interval of time prior to dispatch to BS. In the
contrary, if the clnq node identifies an abnormal reading, then it transmits an agent
for on-the-spot confirmation of the antagonist actions of the msnq node, triggers an
alarm, dal

i , to BS, and also reduces the count of trust by the ς value. The pseudocode
for the procedure of the abnormality detection is given in Algorithm 3.2 [9].

3.5.3 Anomalous Node Confirmation

A node, namely msnq , which is a cluster member node, receives AA. It then inserts
the abnormalities detection related data values into the stack segment of the memory,
denoted by S_msnq . This is the part of the node memory which is reserved for on-
the-spot confirmation of the origin of abnormalities procedure. The AA carries out
this procedure by matching the MS, SR, and BY values of the stack segment of the
memory of the mote and the values that are brought by the agent. If the results are
correct, then the value 0, normal rank of the mote, is saved.

If even not a single value is matched, then the value 1, showing the mote status as
under on-the-spot attack or fault, is saved. The either form of the results is forwarded
to the related cluster leadermote. It is pertinent to observe that if the presented system
is only positioned for those abnormalities which happen due to errors or faults, the
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Algorithm 3.3 Anomalous mote confirmation
Input: AA, readings of SR, BY , MS saved in S_msnq
Output: WR
1: msnq obtains AA //msnq receives abnormality agent
2: PUSH AA in S_agntq //abnormality agent saves in the dedicated space of memory
3: for (k = 1, i = 1 to S_msnq [i] = ε) do
4: CMP (S_msnq [i], S_agntq [k]) //contrast past saved values of parameters with those

values which are carried by the abnormality agent
5: if (CMP (S_msnq [i], S_agntq [k])) = = T RUE then
6: i + +, k + +
7: R ← 0 //save “0” result, showing no abnormalities
8: else
9: R ← 1 //save “1” result, representing abnormalities
10: end if
11: end for
12: WMA(R) := WR //abnormality agent integrate watermark in outcome
13: T RNSMT W R to clnq //dispatch the watermarked outcome to clnq

value of R will be directly communicated to the related cluster leader mote. On the
contrary, if the presented system is also positioned for other types of abnormalities
occur due to attacks, the agent is designated to include a watermark in the result. This
approach prevents result from the manipulation attack. The insertion of watermark
in result, however, increases transmission and communication costs of on-the-spot
confirmation procedure. The overhead of the watermarking is examined in Sect. 3.8.
The pseudocode of this procedure is provided in Algorithm 3.3 [9].

3.5.4 Status Update on the Cluster Leader Mote

Amote, clnq , getsWR, the watermark inserted result, inside the specified time limit
and disintegrates the result andwatermark. If the obtained result shows the antagonist
status of the member mote, then the cluster leader mote reduces the value of trust of
a doubtful mote by ς factor and transmits an alert to BS to update the status of mote.
On the contrary, if the obtained notification is “0”, then the member mote is treated
as trouble-free mote and the leader mote takes no action against the member mote. If
no result, regarding on-the-spot confirmation, is received by the leader mote inside
the specified time limit, it reduces the value of trust of the member mote and sends
an alert to BS.

It is imperative to note that leader mote would broadcast an alert and reduce
the value of trust in situations such as after discovery of abnormalities and after
obtaining on-the-spot confirmation results. If on-the-spot confirmation procedure
is not successful and BS is not communicated with the abnormality identification
result, then a system administrator may have no information about the detection of
abnormality. The pseudocode of is listed in Algorithm 3.4 [9].
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Algorithm 3.4 Update of status on the cluster leader mote
Input: WR, T R
Output: T R, dalj
1: if T lb

j ≤ Tar (WR) := TWR
ar ≤ T ub

j then //check confirmation outcome obtained inside the
designated timeslot

2: RmW (WR) := R //separate watermark from outcome
3: if R = = 1 ∧ T R > 0 then //check confirmation outcome and values of trust
4: Decr T R by ς //decrease the value of trust
5: T RANSMT dalj to BS //dispatch alert
6: else
7: break
8: end if
9: else
10: if T R > 0 then
11: Decr T R by ς //decrease the value or trust
12: T RANSMT dalj to BS //dispatch alert
13: end if
14: end if

Algorithm 3.5 Status update on the base station mote

Input: dagi ∧ dali ∨ dalj
Output: update A_rep, update Adata
1: if BS mote receives dali ∨ dalj then //obtained packet is an alert
2: update Arep //repository of application update
3: break
4: else if BS mote receives dagi then //aggregated data inside the obtained packet
5: update A_data //application data update
6: else
7: break
8: end if

3.5.5 Update of Status on Base Station

Amote, namelyBS, obtains either the abnormality alarm, denoted by dal
j or dal

i , or the
data which is aggregated, represented by dag

i , from the leader mote. For the former,
BS triggers a message for user to inform about antagonist status of the member mote.
For the latter, BS stores the accumulated data for further analysis. The pseudocode
is listed in Algorithm 3.5 [9].

3.5.6 Complexity Analysis

The space and time complexities of the proposed algorithms are analyzed in this
section.
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Theorem 3.1 The space complexity for (i) the procedure for the collection of the
values of features bymsnq has upper bound by l[a]; (ii) the procedure of abnormality
identification on clnq is Ca + l[b]; (iii) the procedure of on-the-spot confirmation
of msnq is l[c]; (iv) the procedure of update of status on clnq is l[d]; and (v) the
procedure of update of status on BS is l[e].
Proof (i). Let FS1 = {λ,ϕ, υ} represent the features of interest values that are calcu-
lated onmsnq and then employed byAA for on-the-spot confirmation procedure. The
notation l[a] represents the stack memory length which stores the values of features
and msnq[x] denotes the stack memory length, where msnq[x] > l[a]. Assuming
a as values of maximum number of features that are collected by msnq , the space
complexity has upper bound as l[a].

(ii). Let Fq ={SR; MS; BY }be the values of the featureswhich are receivedby the
clnq . Let Pr fq = {(SRlb, SRub)(MSlb, MSub), (BY lb, BYub)} be the corresponding
bounds to perform the abnormality identification on features. Thus, the space of
memory consumed by b features, which belong to Fq , becomes l[b]. The clnq takes
constant memory spaces C1, C2, C3, and C4 to store the values of the bounds for the
abnormality identification, aggregated sensed data (dag

i ) allocated timeslot values
(T lb

i and T ub
i ), and the trust value (T R) of the msnq , respectively. The abnormality

confirmation agent consumes C5 and C6 spaces of memory to save data and code
of the abnormality confirmation agent, correspondingly, where space of memory
reserved for data also stores the values of identity and itinerary of the abnormality
confirmation agent (AA). Therefore, the overall space of memory consumed by the
abnormality identification procedure is

⋃6
a=1 Ca + l[b].

(iii). Let msnq [y] assume as the stack memory length of msnq which accommo-
dates the procedure of on-the-spot confirmation. The mote msnq [y] must fulfill the
following two conditions: (a) msnq [y] > l[b] and (b) msnq [y] > C6, where C7 =
C5

⋃
C6. This implies that the msnq memory must facilitate the accumulated Fq

values, and the data and code of AA for on-the-spot confirmation procedure. Let l[c]
be an upper bound of total Fq memory for both C6 and l[b], the space complexity
for on-the-spot confirmation of msnq is l[c].

(iv). The clnq takes constant memory spaces C4, C8, and C10 to store the trust
value (T R) allocated timeslot values (T lb

i ), and T ub
i , and in situ confirmation result

value (WR). These memory spaces must hold the relation C10 > C8 > C4, as C10

holds thewatermarked on-the-spot confirmation result (WR)which takesmore space
as compared to T lb

i and T ub
i values (stored by C8 memory space) and the T R value

(stored by C4 memory space). Thus, considering l[d] as the upper bound of the
combined C4, C8, and C10 spaces, the space complexity of the algorithm of the
status update on the clnq is l[d].

(v). The BS mote takes C11 memory space to store received abnormality alarm,
dal
i or dal

i , from the clnq . Similarly, the memory space C12 is taken by the BS mote
to store the received aggregated data (dal

j ). Considering l[e] = C11
⋃

C12, the space
complexity for the status update on the BS is l[e]4.
Theorem 3.2 The time complexity for (i) The procedure for the collection of the
values of features by msnq is O(l); (ii) the procedure of abnormality identification
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on clnq is U; (iii) the procedure of on-the-spot confirmation of msnq is O(m); (iv)
the procedure of update of status on clnq is constant time V ; and (v) the procedure
of update of status on BS is constant time W.

Proof (i). Time complexity for procedure of collection of features is primarily depen-
dent on FS1 = {λ,ϕ, υ}; here FS1 = {ι, f } is calculated on clnq after obtaining FS1
values frommsnq . Letmsnq takes l time to accumulate values of FS1 from its prox-
imity and save them. The motemsnq consumesU1, a constant time, to communicate
Fq values to clnq . Taking the case of upper bound, the features collection procedure
has O(l) time complexity.

(ii). The clnq takes constant time U2 to get the featuresFq from msnq , U3

time to check the condition T lb
i ≤ Tar (Fq) := T

Fq
ar ≤ T ub

i , that is, Fq received
within the allocated timeslot, andU4 time to perform the abnormality identification,
CHK (Fq, Pr fq). The clnq consumes U5 time to aggregate the sensor reading, U6

time to check the trust value consumes,U7 time to decrement the trust value,U8 time
for the abnormality confirmation agent dispatch to msnq ; here msnq is antagonist
in such situations. The clnq consumes U9 time to transmit abnormality alarm, dal

i ,
to the BS mote. Thus, considering

⋃
=

∑9
i=2

⋃
i , the algorithm for the abnormality

identification procedure runs in a constant time U .
(iii). The mote msnq receives AA and transmits on-the-spot confirmation result

to clnq inU10 toU11 times. The motemsnq takesU12 time to add a watermark in on-
the-spot confirmation result. The mote msnq takes m time to carry out the operation
of comparison among the values of Smsnq and Sagntq . Thus, by taking the upper limit
on time consumed by the procedure of comparison, the complexity of on-the-spot
confirmation procedure is O(m).

(iv). The clnq takes constant V1 time to check confirmation result within the
allocated timeslot values. It takes constant time V2 to remove the watermark from
the received result, V3 to check the confirmation result, V4 to check trust value, V5

to decrement the trust value, and V6 to transmit an abnormality alarm to BS. Thus,
considering V =

∑6
i=1 Vi , the algorithm for the status update procedure on the clnq

runs in a constant time V .
(v). The BSmote consumes constant timeW1 to receive an abnormality alarm, dal

i
or dal

j , from the clnq . Similarly, the BS mote consumes timeW2 to store the received
aggregated data, dal

j . Thus, considering W = W1 + W2, the algorithm for the status
update procedure on the BS mote runs in a constant time W .

3.6 Formal Model

The above-cited algorithmic specifications are primarily transformed into associated
Petri net modules. Subsequently, an integration, viz. bottom-up is performed to val-
idate a unified model that specifies the formalization of the properties of the system.
This procedure is initiated by a refined mapping between algorithmic specifications
and Petri net modules. In this course of events, both on-the-spot and during the
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transmission abnormal states of the member motes are also considered. The states,
namely the wakeup by mote, threshold level, and other are formalized using places,
which are represented by p, whereas transitions which are denoted by t are used to
formalize different actions, such as activation of mote, check of battery level.

The first algorithmic description shows the procedure of collection of Fq bymsnq .
The formal procedure description is provided next.
Net module 1: (Collection of features bymsnq ). The features collection net module,
(PN1), is a 5-tuple net: PN1 = (P1, T1, F1, W1, (M0)1), where P1 = {p1, p2,
p3, p4} and T1 = {t1, t2, t3, t4, t5} are non-empty, finite, and disjoint sets of places
and transitions, correspondingly. F1 = {(p1, t1), (t1, p2), (p2, t2), (p2, t3), (p2, t4),
(t2, p3), (t3, p3), (t4, p3), (p3, t5), (t5, p4)}. W1(p1, t1) = W1(t1, p2) = W1(p2, t2)
= W1(p2, t3) = W1(p2, t4) = W1(t2, p3) = W1(t3, p3) = W1(t4, p3) = 1, W1(p3, t5) =
W1(t5, p4) = 3, and (M0)1 = p1.

The formal description of the identification of the abnormalities is provided below.

Net module 2: (Abnormality identification by the clnq ). The abnormality identifi-
cation net module, (PN2), is a 5-tuple net: PN2 = (P2, T2, F2, W2, (M0)2), where
P2 = {p5, p6, p7, p8, p9, p10} and T2 = {t6, t7, t8, t9, t10, t11, t12, t13} are non-empty,
finite, and disjoint sets of places and transitions, correspondingly. F2 = {(p5, t6),
(t6, p6), (p6, t7), (p6, t8), (p6, t9), (t7, p7), (t7, p8), (t8, p7), (t8, p8), (t9, p7), (t9, p8),
(p7, t10), (p8, t11), (t10, p9), (t11, p10), (p9, t12), (p10, t13)}.W2(p5, t6)=W2(t6, p6)=
W2(p8, t11) = W2(t11, p10) = W2(p10, t13) = 3, W2(p6, t7) = W2(p6, t8) = W2(p6, t9)
= W2(t7, p7) = W2(t7, p8) = W2(t8, p7) = W2(t8, p8) = W2(t9, p7) = W2(t9, p8) =
W2(p7, t10) = W2(t10, p9) = W2(p9, t12) = 1, and (M0)2 = 3p5.

The on-the-spot confirmation procedure which is carried out on msnq is formal-
ized next.
Net module 3: (Anomalous mote, msnq , confirmation). The abnormal mote confir-
mation net module 3, (PN3), is a 5-tuple net: PN3 = (P3, T3, F3,W3, (M0)3), where
P3 = {p11, p12, p13} and T3 = {t14, t15, t16, t17, t18} are non-empty, finite, and disjoint
sets of places and transitions, correspondingly. F3 = {(p11, t14), (t14, p12), (p12, t15),
(p12, t16), (p12, t17), (t15, p13), (t16, p13), (t17, p13), (p13, t18)}. W3(p11, t14) =
W3(t14, p12) = 3, W3(p12, t15) = W3(p12, t16) = W3(p12, t17) = W3(t15, p13) =
W3(t16, p13) = W3(t17, p13) = W3(p13, t18) = 1, and (M0)3 = 3p11.

The next procedure elucidates msnq status update on clnq after the on-the-spot
confirmation procedure. The formal description is provided next.
Net module 4: (Update of status on clnq ). The update of status on the cluster leader
mote net module, (PN4), is a 5-tuple net: PN4 = (P4, T4, F4, W4, (M0)4), where
P4 = {p14, p15, p16, p17} and T4 = {t19, t20} are non-empty, finite, and disjoint
sets of places and transitions, correspondingly. F4 = {(p14, t19), (t19, p15), (p15, t20),
(t20, p16), (t20, p17)}. W4(p14, t19) = W4(t19, p15) = W4(p15, t20) = W4(t20, p16) =
W4(t20, p17) = 1 and (M0)4 = p14.

Last but not least, fifth and final algorithmic description elucidates the procedure
of on-the-spot confirmation result and handling of aggregated data by BS.
Net module 5: (Update of status on BS). The update of status on BS net module,
(PN5), is a 5-tuple net: PN5 = (P5, T5, F5, W5, (M0)5), where P5 = {p18, p19, p20}



60 3 Abnormality Identification and Confirmation System

and T5 = {t21, t22, t23} are non-empty, finite, and disjoint sets of places and transi-
tions, correspondingly. F5 = {(p18, t22), (t21, p19), (t22, p19), (p19, t23), (t23, p20)}.
W5(p18, t22) = W5(t21, p19) = W5(t22, p19) = W5(p19, t23) = W5(t23, p20) = 1 and
(M0)5 = p18.

Once we formally describe the distinct net modules, the subsequent stage is to
systematically build a unified model to portray the complete flow of the work of the
system. The unified model ought to fulfill all algorithmic stipulations of the system.
This stage is imperative because each netmodulemight formalize a correct and stable
conduct, but joining of last transitions or places of preceding net module might not
be suitable with initial transitions or places of following modules. Consequently,
to retain the consistent model, the prior and posterior conditions of every net are
considered in the formation of the overall model, else, the absent transitions or
places might bring the system into standstill state, or individual modules might stay
disconnected.

To formulate the unified model, net modules are integrated in transition-place
or place-transition connection method. Moreover, arcs from places to transitions
and vice versa are presented as F6 = {(t5, p5), (t12, p18), (t13, p11), (t18, p14),
(p16, t21)}. Then associated weights are specified as W6(t5, p5) = W6(t13, p11) =
3 and W6(t12, p18) = W6(t18, p14) = W6(p16, t21) = 1. This demonstrates within uni-
fied model, a rudimentary weight of each link is set as 1 or 3 other than those states
which model the procedure of the identification of abnormalities and their weights
which are computed by executions of the relations g1, g2, g3, g4, and g5. It is perti-
nent to observe that the above-specified five relations are primary fragments of the
abnormality detection presented in Sect. 3.5.

The first relation, namely g1, verifies the current level of battery, Bl
c, of the cluster

member mote,msnq . Themsnq mote may begin its work if Bl
c is equivalent or larger

than the already defined level of threshold, Bl
t . If B

l
c of msnq is lower than Bl

t , then
msnq is treated as dead or malfunctioning. This relation is specified below.

g1 = f (Bl
c, B

l
t ) =

{
1, Bl

c ≥ Bl
t ,

0, Otherwise.
(3.5)

The second relation, g2, confirms a packet, which possesses the Fq values, is
collected inside a specified timeslot, T l

t1 , or not. This relations is described as

g2 = f (T lb
i , T

Fq
ar , T ub

i ) =
{
k, T lb

i ≤ T
Fq
ar ≤ T ub

i ,

0, Otherwise.
(3.6)

The notation T
Fq
ar denotes an arrival time of packet having features readings. The

symbolism T lb
i and symbolism T ub

i represent initial and final times of the allocated
timeslot to collect Fq , correspondingly. The notation k denotes features of the usual
behavior profile ofmsnq , in this case k =3. If a packet is obtained inside the designated
timeslot, then k features are used for the identification of abnormalities.
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Subsequently, the identification of abnormalities procedure is performed as per
nature of features. A related relation among g3 and g4 is processed for the features
with fixed and bounded value bounds, correspondingly. The features having fixed
values, for instance, memory status of msnq , are discrete in nature because they are
based on discrete values, for example, 89% and 86%. On the contrary, the features
with bounded values, for instance battery status and sensor reading, are modeled
as continuous random variables and they are based on real values. These kind of
parameters have lower and upper limit values to outline the usual behavior of msnq .

g3 = f (Plb
rg ,m

fq
rg, Pub

rg ) =
{
1, Plb

rg ≤ m
fq
rg ≤ Pub

rg ,

0, Otherwise.
(3.7)

g4 = f (m
fq
f x , P

fq
f x ) =

{
1, m

fq
f x = P

fq
f x ,

0, Otherwise.
(3.8)

The notation m
fq
rg represents a bounded-feature value which is obtained from

msnq . Correspondingly, Plb
rg and Pub

rg denote minimum andmaximum limits, in order

to specify the usual conduct ofmsnq with regard tom
fq
rg . The symbolm

fq
f x represents

received fixed-feature value, and P
fq
f x denotes associated value of the normal profile.

Lastly, the last relation, g5, verifies thewell-timed receipt of on-the-spot confirmation
result.

g5 = f (T lb
j , TWR

ar , T ub
j ) =

{
1, T lb

j ≤ TWR
ar ≤ T ub

j ,

0, Otherwise.
(3.9)

The symbolization TWR
ar represents the arrival time of watermarked on-the-

spot confirmation result, WR. The notations T lb
j and T ub

j show initial and end
times of a timeslot which is designated to collect on-the-spot confirmation result,
correspondingly.

The descriptions of transitions and places of the unified model are provided in
Table3.3 [9], and the unified model is drawn in Fig. 3.7. States are shown by small
circles in Fig. 3.7 [9]. On the contrary, transitions are represented by tiny dark rect-
angles. A tiny dark circle, known as token, in p1, represents the start state of the
modeled behavior of the system. Transfer (firing) of single token from initial to suc-
ceeding place represents the variation in a state within the system. The model is
stated below.
Unified model The unified model, PN, is a 5-tuple net: PN = (P, T ,F ,W,M0),
where P = ⋃5

i=1 Pi , T = ⋃5
i=1 Ti , F =

⋃6
i=1 Fi , W = 1 ∀ arcs except W(p3, t5)

= W(t5, p4) = W(t5, p5) = W(t6, p6) = W(p8, t11) = W(t11, p10) = W(p10, t13)
= W(t13, p11) = W(p11, t14) = W(t14, p12) = 3, W(p1, t19) = g1, W(p5, t6) = g2,
W(p6, t7) = g3, W(p6, t8) = g3, W(p6, t9) = g4,W(p14, t19) = g5, and M0 = p1.

p1 grasps a token when the working of the system is initiated as a first work cycle.
Tokens, in the net module 1, remain equivalent to the quantity of parameters in nor-
mal profile. The tokens are three in number. Then the movement of these tokens will
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Table 3.3 Descriptions of places and transitions: c©AcademyPublisher, reprinted fromM.Usman,
V. Muthukkumarsamy, and X.-W. Wu. Specification and validation of enhanced mobile agent-
enabled anomaly detection in resource constrained networks. Journal of Networks, 10(6):353–368,
2015

Place Description Transition Description

p1 msnq wakes up t1 msnq checks the battery level

p2 msnq is prepared to accumulate the
values of features

t2 The msnq accumulates the SR values

p3 The collected values of features are
stored

t3 msnq accumulated the MS value

p4 msnq goes into the sleep mode t4 msnq collects the value of BY

p5 clnq is ready to receive Fq t5 msnq transmits the accumulated Fq
values

p6 clnq is prepared to carry out the
abnormality identification

t6 clnq waits for T ub
i to receive Fq

p7 clnq is ready to aggregate the data t7 clnq checks the SR value for
(SRlb, SRub)

p8 clnq is prepared in decrementing a
count of trust

t8 clnq checks MS value for
(MSlb, MSub)

p9 clnq is prepared to communicate
aggregated data

t9 clnq checks BY value for
(BY lb, BYub)

p10 clnq is ready to transmit AA t10 clnq aggregates the sensed data

p11 msnq is ready to receive the AA t11 clnq is prepared in decrementing a
count of trust

p12 AA is prepared to compare data for
on-the-spot confirmation

t12 clnq transmits the aggregated data

p13 AA is prepared to communicate
on-the-spot confirmation result after
the insertion of watermark

t13 clnq transmits AA to msnq

p14 clnq is prepared to get on-the-spot
confirmation result

t14 msnq receives AA

p15 clnq is prepared to check on-the-spot
confirmation result

t15 AA compares SR with already saved
values

p16 An alarm is transmitted to BS by
clnq

t16 AA compares the values of MS with
already saved values

p17 Status result saved by clnq t17 AA compares BY with previously
stored values

p18 BS is prepared to receive the
accumulated data

t18 AA transmits the watermarked
on-the-spot confirmation result to
clnq

p19 BS is ready to analyze the data t19 clnq waits for T ub
j time to obtain

on-the-spot confirmation result

p20 BS is prepared to obtain the
application data

t20 clnq verifies the result

t21 BS gets an alarm

t22 BS gets aggregated data

t23 BS updates repository
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Fig. 3.7 The unified Petri net model: c© Academy Publisher, reprinted from M. Usman, V.
Muthukkumarsamy, and X.-W.Wu. Specification and validation of enhanced mobile agent-enabled
anomaly detection in resource constrained networks. Journal of Networks, 10(6):353–368, 2015
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represent the present states of the behavior of the system. The subsequent functional
description articulates the procedure of abnormality identification that is carried out
by clnq . The clnq mote obtains the Fq values from msnq and carries out the abnor-
mality identification procedure. Then three tokens in p5 are accumulated in the net
module 2. These tokens are consequential of the firing of t5, representing the com-
munication of the aggregated values of Fq . These tokens are then amalgamated at p7,
representing accumulation of sensor readings at clnq . On the contrary, three tokens
remain at p8 and afterward, each token denoting a single feature value. Subsequently,
msnq gets an agent that carries out on-the-spot confirmation procedure.

Firing of t12, denoting the communication of accumulated data, transfers a token
into p11, that is the initial place of the net module 5 (i.e., the procedure of the update
of status on BS). On the contrary, the firing of t13, representing the communication of
agent, produces three tokens into p11. These three tokens, each of them representing
single feature values, are amalgamated at p13, denoting the prepared to communicate
an agent to clnq state. The firing of t18 produces a token in p14, denoting ready to
receive MA from msnq state.

A token is received by p18, as a consequence of the firing of t12, representing the
communication of accumulated data to BS. The aggregated data are then prepared
to be saved and examined by the user. Otherwise, the firing of t21 produces a token
in p19 to save and examine an obtained alarm by the user.

The behavioral properties, namely boundedness and liveness, of the proposed sys-
tem are characterized and verified below. The boundedness expresses the maximum
possible number of tokens within the system, i.e., the maximum possible processes
can be possessed by the system at a state. Alternatively, the property of liveness repre-
sents the system has no deadlock. The flow of work and reachability of the abnormal
states in the unified model are also studied below. Figure3.8 [9], illustrating the
reachability tree, formalizes the overall flow of the work of the system.

Theorem 3.3 The PN, unified model, is 3-bounded.

Proof For all p ∈ P and M(p) = 1 apart from Pe = {p4, p5, p6, p8, p10, p11, p12},
which has three tokens. The corresponding transitions are Te = {t5, t6, t7, t8, t9, t11,
t13, t14},Pe ⊂ P , and Te ⊂ T . This permits the autonomous handling of each feature
for the procedure of abnormality identification. There are three features that move
over explicit places of the system; therefore, PN is 3-bounded.

Theorem 3.4 Every transition in PN is live at level 4 other than Tl transitions that
are provisionally live at level 0.

Proof For all t ∈ T , the liveness level is 4 apart from Tl , that is live at 0 level
iff the output of conditions g1, g3, g4, g5 �= 1 and g2 �= k, where Tl ⊂ T and Tl =
{t1, t6, t7, t8, t9, t19}. This property holds given that the condition-basedweighted arcs
exist which input those transitions that formalize the procedure of abnormality iden-
tification. The arc conditions that possess certain weights and associated transitions
are (g1, t1), (g2, t6), (g3, t7), (g2, t6), (g3, t8), (g4, t9), and (g5, t19).
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Fig. 3.8 The reachability tree: c© Academy Publisher, reprinted from M. Usman, V. Muthukku-
marsamy, and X.-W. Wu. Specification and validation of enhanced mobile agent-enabled anomaly
detection in resource constrained networks. Journal of Networks, 10(6):353–368, 2015

Theorem 3.5 A number of net modules,
⋃4

i=1 PNi , are executable in a sequence,
where PN5 is sequentially executed after PN2 and PN4 to formulate the overall
flow of the work of the system.

Proof PN1 performs the procedure of the collection of the Fq values by reachable
markings M0[t1〉 M1[t2〉 M2[t5〉 M̂5, M0[t1〉 M1[t2〉 M2[t5〉 M̃6, M0[t1〉 M1[t3〉 M3[t5〉
M̂7, M0[t1〉 M1[t3〉 M3[t5〉 M̃8, M0[t1〉 M1[t4〉 M4[t5〉 M̂9, and M0[t1〉 M1[t4〉 M4[t5〉
˜M10, as shown in Fig. 3.8, wherêM(·) and˜M(·) represent the final and all other states,
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correspondingly. The final states denote the sleep status of msnq , subsequent to the
communication of Fq next to their accumulation. Subsequently, only the instance
of sensor reading is discussed, which is easy to encompass to other features. The
procedure of the abnormality identification is carried out after the procedure of the
collection of Fq values by the subsequent reachable marking sequences: M6[t6〉
M11[t7〉 M14[t10〉 M20[t12〉˜M26 and M6[t6〉 M11[t7〉 M15[t11〉 M21[t13〉˜M27, here ear-
lier marking represents the communicated of accumulated data, dag

i , whereas the
final marking denotes the communication of agent to msnq . Correspondingly, on-

the-spot confirmation procedure is performed by M27[t14〉 M33[t15〉 M39[t18〉 ˜M44

marking, that is followed by M44[t19〉 M47[t20〉˜M51and M44[t19〉 M47[t20〉̂M50 mark-
ings for saving result of on-the-spot confirmation, R, on clnq and communication of
accumulated data, dag

i , or watermark inserted confirmation result,WR, to BS, corre-
spondingly. The earliermodule is completed, whereas the lastmodule has subsequent
M51[t21〉 M56[t23〉 ̂M59 marking. This implies that the

⋃4
i=1 PNi modules execute

in a sequence. A uniquely reachable M26[t22〉 M32[t23〉 ̂M38 marking is joined after
the M6[t6〉 M11[t7〉 M14[t10〉 M20[t12〉˜M26 marking, which is a accessible marking of
PN2. Therefore, PN5 executes sequentially to PN4 and PN2, as shown in Fig. 3.8,
denoting a reachability tree.

Theorem 3.6 The procedure of abnormality identification for each feature can be
executed in parallel to each other.

Proof The proof for this theorem is a direct consequence for the proof of Theorem 1.
Let the situation when amodel is 3-bounded. In such a situation, a token in p2, denot-
ing the M1 state, empowers Tq = {t1, t2, ..., tv} transition set for associated feature set
Fq = { f s1, f s1, ..., f sv}. This confirms an independent and parallel execution of the
procedure of abnormality identification for every feature. This is obvious through a
pattern that the M1[t2〉 M2[t5〉 M6[t6〉 M11[t7〉 M15[t11〉 M21[t13〉 M27[t14〉 M33[t15〉
M39[t18〉 M44[t19〉 M47[t20〉 M51[t21〉 M56[t23〉 ̂M59, M1[t3〉 M3[t5〉 M8[t6〉 M12[t8〉
M17[t11〉 M23[t13〉 M29[t14〉 M35[t16〉 M41[t18〉 M45[t19〉 M48[t20〉 M53[t21〉 M57[t23〉
̂M60, andM1[t4〉 M4[t5〉 M10[t6〉 M13[t9〉 M19[t11〉 M25[t13〉 M31[t14〉 M37[t16〉 M43[t18〉
M46[t19〉 M49[t20〉 M55[t21〉 M55[t23〉 ̂M61 markings are accessible to represent the
sovereign management of features, viz. battery status, memory status, and sensor
reading, as illustrated in Fig. 3.8.

The accessibility of the states: M
′
j ∈ RM(M0), which denotes the procedure of

the abnormality identification, is verified subsequently.

Theorem 3.7 The abnormality identification states, that is, M j [ti 〉M ′
j , are only

reachable when the system is abnormality free, where Mj = M0, M
′
j = (M1), (M11,

M12, M13), (M14, M15), (M16, M17), (M18, M19), (M47, M48, M49), and ti = t1, t6,
t7, t8, t9, t19 for associated accessible markings.

Proof M1, a marking, is accessible iffW(p1, t1) = 1 in the unified model. If imple-
mentation of the relation g1 produces a number except 1, then msnq is assumed as
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abnormal because of either or faulty status. Therefore, M1 is not accessible in such
situations. Correspondingly, the M11, M12, and M13 markings are reachable through
the marking sequences M0[t1〉 M1[t2〉 M2[t5〉 M6[t6〉 M11, M0[t1〉 M1[t3〉 M3[t5〉
M8[t6〉 M12, and M0[t1〉 M1[t4〉 M4[t5〉 M10[t6〉 M13 markings, correspondingly, iff
W(p5, t6) = k, that is obtained through the relation g2. Otherwise, ifW(p5, t6) �= k,
then these states are not accessible, representing the abnormal conduct ofmsnq . Next,
t7, t8, and t9 transitions are fired to reach (M14, M15), (M16, M17), and (M18, M19)

markings, correspondingly. The relation g3 specifies the weights of arcs of the t7
and t8 markings for the (M14, M15) and (M16, M17) markings, correspondingly. By
the same token, the relation g4 specifies the weight of the arc of the t9 transition
for the (M18, M19) markings. The result, except 1 relation, makes states inaccess-
ible, denoting the abnormal values of usual behavior profile parameters of msnq . If
the outcome of the g5 �= relation execution is 1, then the states M47, M48, and M49

become inaccessible because of discrepancy among the tokens and weights of arcs
in the inbound place of arcs, namely transition-place.

The proof supports the argument the abnormal states are inaccessible in the model
and merely those states are accessible that show the usual behavior of msnq . There-
fore, the unified model is proficient in identifying different types of abnormalities
that are occurred due to faulty feature values and also due to time-based abnormal-
ities that caused because of the late arrivals of on-the-spot confirmation results and
observations.

An imperative inference of the unified model is joining of small but significant
descriptions in the specifications of algorithms of the primary design of the system.
The enhanced procedure of features collection (i.e., Algorithm 3.1) sets the member
mote into sleep mode when it finishes its allocated job. This modification, in the
initial functional description, avoids the needless consumption of energy. An addi-
tional important modification is made in the procedure of abnormality identification
(i.e., Algorithm 3.2), here clnq waits for the assigned slot of time to get Fq . This
aspect permits the system to be able to identify time-based abnormalities which
occurred because of the non-arrival or late arrival of Fq at clnq .

3.7 Unified GSPN Model

The fitting time-based conduct of an identification system is important to identify
and confirm the origin of abnormalities in a timely fashion. There exist two impor-
tant procedures which need the time-based conduct study: (i) the joint procedure
of collection of feature values on msnq and their receipt by clnq ; this is denoted
as α procedure in subsequent discussion and (ii) the joint procedure of abnormal-
ity identification, agent dispatch, on-the-spot confirmation, and confirmation result
receipt on clnq are denoted as β procedure in subsequent discussion. The analysis of
the time-based behavior of the system is carried out in non-deterministic interaction
setting of sensor networks that is typically occurred due to channel faults, traffic
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features, and environmental factors. The unified model is converted into associated
unified GSPN model.

The strategy definitions of model are reliant on rates, transition categories, mem-
ory definitions, and server semantics. The transitions are assumed as immediate other
than those that are part of the calculation of α and β procedures. The immediate tran-
sition weight is set as 1; on the other hand, the timed transition rate is adjustable as
per the computation carried out by them. The timed transition rates are defined on
the basis of MICAz mote resource capability [11].

The individual firing semantic is adopted for timed transitions, wherein a single
token stays in the inbound place till the expiry of timer. The processing of the system
is executed in a sequence. Thus, solitary server definitions are selected for every
transition, other than (t2, t3, t4), (t7, t8, t9), and (t15, t16, t17) transitions, because
these transitions have k-server definitions because of parallel computation in the
model. It is evident k = 3, i.e., there are three features for abnormality identification.
Moreover, the policy of age memory is assumed for all transitions because of the
involvement of the continuous operations. On the basis of the above-cited semantics,
the formalization of the model is provided next.

Unified GSPN model: GSPN is an 8-tuple net: GSPN = (P, T , �(·), I−(·), O+(·),
H(·),W(·),M0), whereP = ⋃5

i=1 Pi , T = ⋃5
i=1 Ti , I

−(·) ∪ O+(·) =F =
⋃6

i=1 Fi .
The flow of the work of the beneath Petri net executes sequentially, and there is no
inhibition arc. Thus, �(·) = ∅ and H(·) = ∅. The time transitions weight W(·) = t1
= t2 = t3 = t4 = 0.25ms, t5 = 6ms, t7 = t8 = t9 = t11 = t15 = t16 = t17 = 1ms, t13 = t14 =
15ms, t18 = 1ms. Lastly, the first marking M0 = p1.

The time-based conduct of the procedures, namely α and β, is examined below
through the above-cited model. The time consumed by α is calculated as

α = αt
1 + αt

2 + αt
3 (3.10)

The symbolαt
1 represents the time consumedby the procedure of the accumulation

of Fq values (denoted by the t1 to t4 transitions in themodel). Theαt
2 notation denotes

the time consumed by Fq to reach to clnq frommsnq (formalized by the t5 transition).
Lastly, the notation αt

3 represents the deferment of the receipt of Fq on clnq because
of environmental aspects, channel faults, and traffic features. The deferment happens
on the transmission link that is formalized by the arc, viz. (t5, p5). The consumption
of time by β can be computed from the subsequent formula.

β =
6∑

i=1

βt
i (3.11)

The symbol βt
1 represents the total time consumed by the procedure of the abnor-

mality identification carried out by clnq (denoted by the transitions, viz. t7, t8, t9,
and t11 in the unified GSPN model), the notation βt

2 denotes the communication
time consumed by the agent for roaming from clnq to msnq (represented by the t13
transition), the symbol βt

3 denotes the time consumed by the agent to carry out the
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job of on-the-spot confirmation on msnq (represented by the t14 to t17 transitions),
and the symbol βt

4 represents the time consumed by on-the-spot confirmation result
receipt on clnq (represented by the t18 transition). The symbols βt

5 and βt
6 represent

the deferment aspects for the receipt of the agent on msnq and on-the-spot confir-
mation result on clnq , correspondingly. The βt

5 and βt
6 factors happen at links that

are formalized by the (t13, p11) and (t18, p14) arcs, correspondingly.
The deferment aspects αt

3, β
t
5, and βt

6 are treated within the [0,1] closed interval
for the study; here 0 denotes none delay (i.e., denoting the lower-fault-susceptible
transmission link) and 1 represents the 100% deferment (i.e., denoting the higher-
fault-susceptible transmission link). Moreover, the deferment aspects possess expo-
nential distributions, that is in line with needs of Petri net-based formal modeling of
the probabilistic procedures [12]. The tiny motes, that is, msnq and clnq , are treated
10 m apart for theoretical analysis and conforming trials.

Mainly, a sensitivity study on αt
3, βt

5, and βt
6 delay aspects was performed. To

complete this job, the α3 procedure was randomized on the [0,1] closed interval.
This produced the outcome that consumption of time by a procedure, viz. α in
lower-fault-susceptible transmission link remained 6.99 ms. In contrast, a solitary
α procedure took 8.00 ms time in the transmission link, which delays transmission
of messages between msnq clnq up to 100%. The model outcomes of the time-
based conduct of the procedure, viz. α are given in the higher part of Fig. 3.9 [9].
The associated statistics which contain standard deviation (σ), mean (μ), minimum
(Min), and maximum (Max) values of the outcomes are shown in Table3.4 [9].
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Fig. 3.9 The time-based conduct of the α procedure: c© Academy Publisher, reprinted from
M. Usman, V. Muthukkumarsamy, and X.-W. Wu. Specification and validation of enhanced mobile
agent-enabled anomalydetection in resource constrainednetworks. Journal ofNetworks, 10(6):353–
368, 2015
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Table 3.4 The α procedure statistics: c© Academy Publisher, reprinted from M. Usman, V.
Muthukkumarsamy, and X.-W.Wu. Specification and validation of enhanced mobile agent-enabled
anomaly detection in resource constrained networks. Journal of Networks, 10(6):353–368, 2015

Model μ σ Min Max

Unified GSPN model 7.35 0.273 6.99 8.00

Implementation 7.86 0.274 7.50 8.50

Unified GSPN Model

Implementation
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Fig. 3.10 The time-based conduct of the β procedure: c© Academy Publisher, reprinted from
M. Usman, V. Muthukkumarsamy, and X.-W. Wu. Specification and validation of enhanced mobile
agent-enabled anomalydetection in resource constrainednetworks. Journal ofNetworks, 10(6):353–
368, 2015

Table 3.5 The β procedure statistics: c© Academy Publisher, reprinted from M. Usman, V.
Muthukkumarsamy, and X.-W.Wu. Specification and validation of enhanced mobile agent-enabled
anomaly detection in resource constrained networks. Journal of Networks, 10(6):353–368, 2015

Model μ σ Min Max

Unified GSPN model 49.30 7.88 38.96 69.92

Implementation 51.24 8.54 39.76 71.35

Subsequently, the procedures, viz. βt
5 and β

t

6, were randomized over the [0,1]
closed interval to study the time-based conduct of the procedure, viz. β. In such
a situation, the β procedure consumed 38.96 ms and 69.92 ms for the lower and
higher-fault-susceptible transmission links, correspondingly. The model outcomes
are given in the higher part of Fig. 3.10 [9], and the associated statistics are provided
in Table3.5 [9].
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3.8 Time-Based Behavior Validation

The time-based conduct is corroborated by the implementation of algorithms on
TinyOS, working on resource constrained MICAz motes, that are equipped with the
Atmel ATmega128L microcontroller [11]. The moderately higher data transmitter
radio of above-cited mote can transfer data at transfer rate of 250 kb/s. MICAz has 4
kb and 128 KB of EEPROM and program flash memory, correspondingly. The mote
may be furnished with a supplementary 512-kb serial flash memory that is capable
of holding over 100,000 measurements.

The topology of the network is based on two accessible MICAz motes that were
positioned to carry out experiments. This topology of network is adequate for the
corroboration of the time-based conduct of the procedures, viz. α and β because of
the reason that these procedures are carried out by communication and processing
between clnq and msnq . Thus, one accessible mote was positioned as clnq ; on the
other hand, the second was positioned as msnq . It is imperative to indicate that the
outcomes acquired from the topology of network may be generalized by assuming
the transmission link between clnq and msnq as a unit constituent of the over the
network interaction.

The agent was coded, having 762 bytes of size including data and code. The
802.15.4 and Zigbee amenable MICAz motes can only sent 127 bytes (i.e., payload
has 102 and header has 25 bytes) in one data packet [8]. Thus, the agent was divided
into eight data packets on the mote that transmits the agent and congregated as an
agent on the mote that receives the agent to perform its allocated job. The size of
header was fixed as 25 bytes for all packets, where the size of the payload for initial
seven packets was set as 102 bytes and for the final data packet was set as 48 bytes.
Correspondingly, the each data packet size that had the Fq values was fixed as 31
bytes (i.e., payload has 6 and header has 25 bytes). The on-the-spot confirmation
result data packet size was fixed as 27 bytes (i.e., payload has 2 and header has 27
bytes). Moreover, the deferment aspect was introduced in the experiments through
exponential distribution to imitate the delay that has non-deterministic occurrence
in the networks.

Five scenarios were studied to comprehensively examine the time-based conduct
of the system. The initial two scenarios were developed for the confirmation of the
time-based conduct outcomes of procedures, viz. α and β acquired by formalization
performed in Sect. 3.7. The third situation was developed to examine the overhead
effect on the time-based conduct of the system that was occurred due to securing
the agent by inserting watermark and also by enabling the agent to insert watermark
in on-the-spot confirmation outcomes. The final two situations were developed for
supplementary analysis of the time-based conduct of the system.

Situation 1: The development of the procedure, viz. α was carried out to confirm
the outcomes received by the procedure, viz.α formalized in Sect. 3.7. The outcomes
discovered that the time consumed by the procedure, viz. α as compared to the uni-
fiedGSPNmodel was somewhat higher, that is, among 7.50ms and 8.50ms for lower
fault-prone and higher fault-prone transmission links, correspondingly. These out-
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comes are given in the lower part of Fig. 3.9 [3] and the associated numbers are pro-
vided in Table3.4 [3]. It is evident from Table3.4 the initial and final limit variances
among formal model and development outcomes for the procedure, viz.α are merely
0.51 and 0.50 ms, correspondingly. This difference is insignificant, and it may have
caused because of the ecological effects, namely humidity, temperature, etc.

Situation 2: The development of the procedure, viz. β was performed to confirm
the outcomes attained through the procedure, viz. β formalized in Sect. 3.7. In this
situation, the on-the-spot confirmation outcomeswere communicated to clnq without
insertingwatermark. In reality, this situation is valid once the system is configured for
the identification and confirmation of the abnormalities occurred due to only on-the-
spot on during the transmission faults or errors. The time consumed by the procedure,
viz. β was among 39.76 and 71.35 ms in the experiments, as compared to the formal
model, it was among 38.96 and 69.92 ms, as depicted in Fig. 3.10. The associated
numbers are shown in Table3.5 [9]. Time taken by a procedure, viz. β is minimal
to carry out the jobs of the abnormality identification, on-the-spot confirmation, and
on-the-spot confirmation result receipt on clnq , that is 10 m apart from msnq .

Situation 3: Then, in the procedure, viz. β, the agent was developed to insert
watermarks in on-the-spot confirmation outcomes that were sent to clnq by the agent
of msnq . In this situation, the Radix-k encoding is employed to insert the watermark
in the data and code of the agent [6] to safeguard agent from on-the-spot or in
transmission attacks. This situation, in reality, is valid when system is proficient in
the identification and confirmation of the abnormalities also occurred due to on-the-
spot and in transmission attacks. In this situation, the agent size was increased up to
977 bytes that was initially 762 bytes because of its supplementary ability of inserting
watermark in on-the-spot confirmation outcome. The overhead of around 25% was
occurred due to insertion of awatermark in the agent. Therefore, the overall size of the
agent was 1220 bytes. The agent was divided into 12 data packets for transmission by
following the standard, namely Zigbee/802.15.4. The initial 11 data packets had the
size of 127 bytes. However, the last packet size remained 123 bytes. In this situation,
the on-the-spot confirmation outcome size was 127 bytes.

The trials outcome, in such situations, show the time consumption for situation
where the abnormality agent was watermark secured and capable of inserting the
watermark in on-the-spot confirmation outcome was 61.71 ms and 113.83 for lower
and higher-error-susceptible communication links. In contrast, in the case of the
usual abnormality agent, the time taken was 39.76 and 71.35 ms for lower and
higher-error-susceptible communication links, correspondingly. This indicates the
burden of time consumption was 62.68 and 64.37% in contrast to β procedure with
usual abnormality agent (i.e., Case 2). The outcomes are given in Fig. 3.11 [9], and
associated numbers are provided in Table3.6 [9].

Situation 4: In this situation, the distance among msnq and clnq was random-
ized from 3 to 15 m by keeping the other configurations intact. The distance was
randomized to examine the consequence of the distance on on-the-spot confirmation
procedure that is carried out by the agent. The outcomes illustrate the time taken
remained among 61.20 and 61.94 ms if the distance varied among 3 and 15 m,
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Fig. 3.11 The β procedure with the normal and secure abnormality agent: c© Academy Publisher,
reprinted from M. Usman, V. Muthukkumarsamy, and X.-W. Wu. Specification and validation of
enhanced mobile agent-enabled anomaly detection in resource constrained networks. Journal of
Networks, 10(6):353–368, 2015

Table 3.6 The β procedure statistics: c© Academy Publisher, reprinted from M. Usman, V.
Muthukkumarsamy, and X.-W.Wu. Specification and validation of enhanced mobile agent-enabled
anomaly detection in resource constrained networks. Journal of Networks, 10(6):353–368, 2015

Model μ σ Min Max

β procedure with secure
abnormality agent

80.81 13.69 61.71 113.83

β procedure with normal
abnormality agent

51.24 8.54 39.76 71.35

correspondingly, for the lower-fault-susceptible transmission link. Correspondingly,
consumption of time remained among 112.50 and 115.04 ms for the higher-fault-
susceptible transmission link if the distance varied among 3 and 15 m, correspond-
ingly. These outcomes show that an surge in the value of distance among msnq
and clnq has minor effect on the time-based conduct of the procedure, viz. β. These
outcomes are shown in Fig. 3.12 and the associated statistics are given in Table3.7 [9]

Situation 5: The procedure, viz. β was developed, and its time-based conduct
was examined for both continuously and periodic data communicating applications.
The conduct of a fire-tracking network was studied for the former case, where msnq
transmits sensed data continuously to associated clnq after the identification of an
unusual event [13]. Such an application, the memory, viz. serial flash, was employed
to save Fq values that were used by the agent to carry out the job of on-the-spot
confirmation on msnq . On the contrary, in the latter applications, conduct of a built
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Fig. 3.12 Theβ procedurewith a distance factor: c©AcademyPublisher, reprinted fromM.Usman,
V. Muthukkumarsamy, and X.-W. Wu. Specification and validation of enhanced mobile agent-
enabled anomaly detection in resource constrained networks. Journal of Networks, 10(6):353–368,
2015

Table 3.7 The statistics of the β procedure with the distance factor: c© Academy Publisher,
reprinted from M. Usman, V. Muthukkumarsamy, and X.-W. Wu. Specification and validation
of enhanced mobile agent-enabled anomaly detection in resource constrained networks. Journal of
Networks, 10(6):353–368, 2015

Distance (m) μ σ Min Max

3 80.10 13.34 61.20 112.50

6 80.42 13.47 61.24 112.75

9 80.73 13.61 61.66 113.71

12 81.04 13.81 61.90 113.95

15 81.66 14.30 61.94 115.04

infrastructure observing network, wherein msnq intermittently communicates data
to the associated clnq [14], was examined.

It was found, in the experiments, that the continuously transmitting data appli-
cation unavoidably saves additional observations prior to the receipt of the agent
to carry out the job of the on-the-spot confirmation on msnq . Thus, the agent was
supposed to devote more time to carry out the job of on-the-spot confirmation for
this type of applications. This surges total time of procedure, viz. β. The experiment
outcomes show the time consumed by the procedure, viz. β was among 73.29 and
104.25 ms for continuous application in contrast to 39.76 and 71.35 ms for periodic
application. Moreover, it was notedmsnq saved 10 additional values of observations
for the job of on-the-spot confirmation prior to the receipt of the agent.

This has not only enhanced the consumption of time by the job of on-the-spot
confirmation from 3.79 to 37.9 ms, but also took additional memory of 60 bytes to
save the values of 10 observations. This outcome infers that on-the-spot confirmation
procedure is more suitable to periodically data transmitting applications because of
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Muthukkumarsamy, and X.-W.Wu. Specification and validation of enhanced mobile agent-enabled
anomaly detection in resource constrained networks. Journal of Networks, 10(6):353–368, 2015

Table 3.8 Statistics of applications: c© Academy Publisher, reprinted from M. Usman, V.
Muthukkumarsamy, and X.-W.Wu. Specification and validation of enhanced mobile agent-enabled
anomaly detection in resource constrained networks. Journal of Networks, 10(6):353–368, 2015

Model μ σ Min Max

Continuous application 83.63 7.88 73.29 104.25

Periodic application 51.24 8.54 39.76 71.35

less consumption of memory and time. The time-based conduct outcomes are given
in Fig. 3.13 [9], and the associated statistics summary is shown in Table3.8 [9]. The
further results of the usage of memory are listed in Sects. 4.4.2.1 and 5.7 in the
following chapter.

3.9 Discussion

The main conclusions of the theoretical investigation and experiment outcomes are
listed below.

• The structure of the proposed system is comprehensive and correct.
• The proposed system has the ability to identify the time-based abnormalities along
with performing on-the-spot confirmation and identification of abnormalities in
the data that are received from member motes.

• The proposed system has adequate time-based conduct in a highly non-
deterministic transmission environment.

http://dx.doi.org/10.1007/978-981-10-7467-7_4
http://dx.doi.org/10.1007/978-981-10-7467-7_5
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• The proposed system consumes 64.37% more time to carry out the job of on-
the-spot confirmation when it is configured for identification and confirmation of
abnormalities that are occurred due to attacks, dissimilar to situation when the
network is configured only for abnormalities that are occurred due to errors or
faults.

• The randomization in near distance has a minor effect on time-based conduct of
system. This infers the system is appropriate for smart home, built infrastructure
monitoring, and other such applications, where sensor motes are typically posi-
tioned in a comparatively adjacent proximity.

• The system is highly suitable for periodic data sending applications in comparison
to continuous data sending applications.

3.10 Summary

This chapter has presented a detailed agent-enabled abnormality identification and
confirmation system in order to address the research questions 1 and 2 and also to
satisfy the corresponding requirements 1 and 2. The architecture of the abnormality
identification and confirmation module has been presented in detail. The algorith-
mic specifications of the proposed system for the network entities such as cluster
member, cluster leader, and base station motes have also been elucidated. The space
and time complexity analyses were performed to analyze the performance of the
proposed algorithms. A unified formal model of the system was formulated to char-
acterize and study its properties. The unified formal model was then extended into
a unified GSPN model to characterize the time-based conduct of the system. The
time-based conduct of the system was then confirmed through implementation on
the real test bed in a number of scenarios. The theoretical analyses and experiment
outcomes have advocated the capability of the system to detect behavioral abnormal-
ities occurred due to faulty values of features and time-based conduct abnormalities
occurred due to the deferred arrivals of observations and on-the-spot confirmation
outcomes at the cluster leader motes. The results have also demonstrated the apt-
ness of the time-based conduct of the system in a communication environment that
is non-deterministic. The experimental results also endorsed the fact the system is
more adequate for periodic data sending applications like smart home sensor net-
works in comparison with the continuously data transmitting applications such as
the fire-tracking applications.

3.11 Bibliographic Notes

The idea of the resource-efficient abnormality identification and confirmation sys-
tem was first introduced in [15, 16]. It was then discussed in detail and thoroughly
analyzed in [3]. The formal modeling, verification, and analyses have been carried
out in [9].
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Appendix

Quantified Operations

This appendix quantifies the individual operations involved in α and β processes
discussed in Sect. 3.7, Chap. 3. First, Tables3.9 and 3.10 are presented, which quan-
tifies the operations of α process, reported in Fig. 3.9. Then, Tables3.11 and 3.12
are presented, which quantifies the operations of β process reported in Fig. 3.10.
Tables3.9, 3.10, 3.11, and 3.12 are given on the following pages.

Table 3.9 Quantification of
the operations of the alpha
process (Unified GSPN
Model) results reported in
Fig. 3.9

Iterations αt
1 αt

2 αt
3

1 1.5 5.5 0.98

2 1.5 5.5 0.95

3 1.5 5.5 1.00

4 1.5 5.5 0.00

5 1.5 5.5 0.52

6 1.5 5.5 0.33

1 1.5 5.5 0.71

8 1.5 5.5 0.15

9 1.5 5.5 1.00

10 1.5 5.5 0.75

11 1.5 5.5 0.93

12 1.5 5.5 0.28

13 1.5 5.5 0.44

14 1.5 5.5 0.65

15 1.5 5.5 0.59

16 1.5 5.5 0.24

17 1.5 5.5 0.66

18 1.5 5.5 0.74

19 1.5 5.5 0.14

20 1.5 5.5 0.00

http://dx.doi.org/10.1007/978-981-10-7467-7_3
http://dx.doi.org/10.1007/978-981-10-7467-7_3
http://dx.doi.org/10.1007/978-981-10-7467-7_3
http://dx.doi.org/10.1007/978-981-10-7467-7_3
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Table 3.10 Quantification of the operations of the alpha process (Implementation) results reported
in Fig. 3.9

Iterations αt
1 αt

2 αt
3

1 1.75 5.75 0.54

2 1.75 5.75 0.57

3 1.75 5.75 1.95

4 1.75 5.75 0.00

5 1.75 5.75 0.52

6 1.75 5.75 1.00

1 1.75 5.75 0.71

8 1.75 5.75 0.54

9 1.75 5.75 1.00

10 1.75 5.75 0.00

11 1.75 5.75 0.73

12 1.75 5.75 0.88

13 1.75 5.75 0.44

14 1.75 5.75 0.65

15 1.75 5.75 0.57

16 1.75 5.75 0.74

17 1.75 5.75 0.65

18 1.75 5.75 0.65

19 1.75 5.75 0.14

20 1.75 5.75 0.85

Table 3.11 Quantification of the operations of theβ process (UnifiedGSPNModel) results reported
in Fig. 3.10

Iterations β1 β2 β3 β4 β5 β36

1 4.2 30.35 3.5 0.81 18.50 0.32

2 4.2 30.35 3.5 0.81 23.20 0.32

3 4.2 30.35 3.5 0.81 1.77 0.32

4 4.2 30.35 3.5 0.81 23.67 0.32

5 4.2 30.35 3.5 0.81 12.01 0.32

6 4.2 30.35 3.5 0.81 0.00 0.32

7 4.2 30.35 3.5 0.81 4.18 0.32

8 4.2 30.35 3.5 0.81 9.72 0.32

9 4.2 30.35 3.5 0.81 26.71 0.32

(continued)

http://dx.doi.org/10.1007/978-981-10-7467-7_3
http://dx.doi.org/10.1007/978-981-10-7467-7_3
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Table 3.11 (continued)

Iterations β1 β2 β3 β4 β5 β36

10 4.2 30.35 3.5 0.81 27.28 0.32

11 4.2 30.35 3.5 0.81 2.22 0.32

12 4.2 30.35 3.5 0.81 27.74 0.32

13 4.2 30.35 3.5 0.81 26.68 0.32

14 4.2 30.35 3.5 0.81 8.26 0.32

15 4.2 30.35 3.5 0.81 17.87 0.32

16 4.2 30.35 3.5 0.81 1.99 0.32

1 4.2 30.35 3.5 0.81 30.35 0.32

18 4.2 30.35 3.5 0.81 23.81 0.32

19 4.2 30.35 3.5 0.81 17.53 0.32

20 4.2 30.35 3.5 0.81 18.50 0.32

Table 3.12 Quantification of the operations of the β process (Implementation) results reported in
Fig. 3.10

Iterations β1 β2 β3 β4 β5 β36

1 4.3 30.28 3.79 0.86 15.90 0.17

2 4.3 30.28 3.79 0.86 22.72 0.14

3 4.3 30.28 3.79 0.86 3.62 0.85

4 4.3 30.28 3.79 0.86 1.83 0.41

5 4.3 30.28 3.79 0.86 3.33 0.19

6 4.3 30.28 3.79 0.86 5.55 0.04

7 4.3 30.28 3.79 0.86 4.39 0.43

8 4.3 30.28 3.79 0.86 24.92 0.34

9 4.3 30.28 3.79 0.86 0.03 0.00

10 4.3 30.28 3.79 0.86 11.06 0.47

11 4.3 30.28 3.79 0.86 2.34 0.81

12 4.3 30.28 3.79 0.86 19.86 0.24

13 4.3 30.28 3.79 0.86 2.41.90 0.00

14 4.3 30.28 3.79 0.86 8.77 0.020

15 4.3 30.28 3.79 0.86 30.78 0.85

16 4.3 30.28 3.79 0.86 5.65 0.64

17 4.3 30.28 3.79 0.86 0.64 0.86

18 4.3 30.28 3.79 0.86 3.14 0.28

19 4.3 30.28 3.79 0.86 6.49 0.24

20 4.3 30.28 3.79 0.86 3.08 0.09

http://dx.doi.org/10.1007/978-981-10-7467-7_3
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Chapter 4
First-Order Abnormalities: Agent
Transmission Optimization

4.1 Introduction

The system, presented in the preceding chapter, is not only able to identify different
types of abnormalities, but also empowers agents to use the synchronized resource
management scheme information to carry out on-the-spot diagnosis of the member
motes to discover the origin of abnormalities. This chapter introduces a method
which exploits the statistical association among different features of the synchronized
resource management scheme-based observations to discover a number of first-order
abnormalities that are occurred due to denial-of-sleep attacks, battery exhaustion
attacks, and faulty motes. The constrained energy resources of networks demand
careful communication of agents. Therefore, two novel methods, namely 2-sigma
and weighted sum, for abnormality confirmation agent transmission optimization
are presented in this chapter.

This structure of this chapter is described below. Section4.2 presents algorithms
of the proposed methods along with their complexity analysis. The formal mod-
eling and analysis of the proposed methods is carried out in Sect. 4.3. The details
of the simulation setup, corresponding results and analysis, implementation results,
and comparative study are discussed in Sect. 4.4. Lastly, Sect. 4.5. recapitulates the
contributions of this chapter.

4.2 Algorithms and Analysis

This section elucidates the algorithmic specifications of the first-order abnormality
identification, 2-sigma, and weighted-sum optimization methods.

© Springer Nature Singapore Pte Ltd. 2018
M. Usman et al.,Mobile Agent-Based Anomaly Detection
and Verification System for Smart Home Sensor Networks,
https://doi.org/10.1007/978-981-10-7467-7_4
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4.2.1 First-Order Abnormality Identification by the Cluster
Leader Mote

One of the key goals of this work is to maximize the use of received synchronized
resource management scheme-based observation, Oj , values and computed infor-
mation of FS2 = {j , f } for the abnormality identification process, where Oj = FS1
= {λ, ϕ, ν}. To this end, the statistical associations between FS = {λ, ϕ, ν, j , f }
features have been exploited to identify certain nature of group abnormalities that
are occurred by on-the-spot attacks or faults, resource exhaustion attacks, denial-of-
sleep attacks, and faults onmotes. The first-order join is specified as two-dimensional
linkage between two features by setting bounds of every feature to calculate normal
profile region. A first-order join amongλ and j features has been established to detect
abnormalities caused by on-the-spot faults or attacks. The sign of such abnormalities
on clnq is receiving of faulty sensor reading values outside the allocated timeslots.
The combined usual region for j and λ features can be derived by (4.1)

N (λ, j) =
∫ λ f l

λil

∫ j f l

jil

f (λ, j) dj dλ (4.1)

where notation N represents the usual zone in relation to λ and j features, and
subscripts il shows start and f l denotes finish boundary of the particular feature.
The subsequent join is made up by combining features, namely j and ν, to discover
abnormalities occurred due to the attack, viz. resource exhaustion. The sign of these
abnormalities is an unforeseen increase in the consumption of resources in regard to
the timeslot. The usual region of an attack, viz. resource exhaustion, is calculated by
(4.2).

N (j, ν) =
∫ j f l

jil

∫ ν f l

νil

f (j, ν) dν dj (4.2)

The succeeding two joins are (ϕ, j ) and (ϕ, ν) which discover abnormalities that
caused because of faults or attacks on the resources of a mote. In such situations,
the signs are unfamiliar consumption of resources during the execution of usual jobs
and unapproved activities executed by the mote in regard to time. Usual boundaries
for joins (ϕ, j ) and (ϕ, ν) are computed by (4.3) and (4.4).

N (ϕ, j) =
ϕ f l∑
ϕil

∫ j f l

jil

f (ϕ, j) dj (4.3)

N (ϕ, ν) =
ϕ f l∑
ϕil

∫ ν f l

νil

f (ϕ, ν) dν (4.4)

Lastly, a join is formed between features, viz. f and j , to discover the abnormal-
ities occurred due to an attack, viz. denial-of-sleep and defective mote. The sign for
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Table 4.1 Joins, associated abnormalities, and their details: c©Academy Publisher, reprinted from
Usman et al. [1]

Join Abnormalities Description

N (λ, j) On-the-spot attack or fault Abnormal sensed data in regard to time

N (j , ν) Resource exhaustion attack The unexpected rise in the consumption
of battery in regard to time

N (ϕ, j) Faulty mote The unapproved actions performed by the
tiny mote in regard to time

N (ϕ, ν) Fault on a mote, attack on the resources
of a mote

The excessive battery consumption while
carrying out usual jobs

N ( f , j) Denial-of-sleep attack, faulty mote The monotonous communication of
packets in regard to time

these abnormalities at the leader mote of the cluster is the incorrect count of packet.
The usual boundary for the join is derived by (4.5).

N ( f, j) =
f f l∑
fil

∫ j f l

jil

f ( f, j) dj (4.5)

The above-mentioned joins, associated abnormalities, and their details are given
in Table4.1 [1].

To discover the abnormalities, clnq obtains Oj frommsnq . The unit, namely coor-
dination, then excerpts the FS1 = {λ, ϕ, ν} values from obtained Oj to carry out the
abnormality identification procedure by employing joins. Ifmsnq is observed as nor-
mal after receiving Oj , then sensed data is aggregated by (A_unt). On the contrary,
if msnq is observed as abnormal, then the abnormality identification algorithm ini-
tiates the optimization of the (abnormality) agent transmission process (i.e., Phase 2
of either Algorithms 4.2 or 4.3 as specified by the system administrator). Phase 2
of Algorithm 4.3 yields msnq behavior (Beh) as abnormal (BA), tolerated category
1 (BTη), tolerated category 2 (BTγ), or tolerated category 3 (BTζ ). For abnormal
conduct, the abnormality identification and confirmation module sends the agent to
msnq to carry out on-the-spot confirmation. On the contrary, for the categories, viz.
1, 2, and 3, the abnormality identification and confirmation module broadcastsmsnq
as abnormal to other member motes and leader motes, reduces the interaction with
msnq , and issues an alarm to BS, correspondingly. Phase 2 of Algorithm 4.2, on the
contrary to Phase 2 of Algorithm 4.3, performs the abnormality agent transmission
optimization process and takes adequate action by itself; that is, it does not return any
value to Algorithm 4.1 and rest of the processing is performed by Phase 2 of Algo-
rithm 4.2 by itself. The abnormality identification procedure pseudocode is provided
in Algorithm 4.1 [1].
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Algorithm 4.1 First-order abnormality identification by the cluster leader mote
Input: Oj

Output: AA, store dag , transmit dali , announce msnq as anomalous, minimize communication
with msnq

1: clnq receives Oj from msnq
2: CU extract FS1 = {λ, ϕ, ν} from Oj
3: Compute FS2 = { j, f }
4: CHK (Anof ) = ∫ λ f l

λil

∫ j f l
jil

f (λ, j) dj dλ

∧ N (j, ν) = ∫ j f l
jil

∫ ν f l
νil

f (j, ν) dν dj

∧ N (ϕ, ν) =
∑ϕ f l

ϕil

∫ ν f l
νil

f (ϕ, ν) dν

∧ N (ϕ, j) = ∑ϕ f l
ϕil

∫ j f l
jil

f (ϕ, j) dj

∧ N ( f, j) =
∑ f f l

fil

∫ j f l
jil

f ( f, j) dj //perform first-order abnormality identification
5: if CHK (Anof ) == T RUE then
6: A_unt ← SR //aggregate sensed data in aggregation unit
7: else
8: CALL Beh = AAO(FS) //invoke Phase 2 of Algorithm 4.3
9: if CHK (Beh = BA) == T RUE then //msnq behavior found as anomalous
10: TRNSMT AA to msnq //transmit abnormality agent to the msnq
11: else if CHK (Beh = BTη) == T RUE then //msnq behavior found as BTη tolerated
12: A_unt ← SR ∧ CU announce the msnq as anomalous to msns and other clns
13: else if CHK (Beh = BTγ ) == T RUE then //msnq behavior found as BTγ tolerated
14: A_unt ← SR ∧ CU reduces the interaction with msnq
15: else if CHK (Beh = BTζ ) == T RUE then //msnq behavior found as BTζ tolerated
16: A_unt ← SR ∧ CU transmits dali to BS
17: end if
18: end if

4.2.2 2-Sigma Optimization by the Cluster Leader Mote

Abnormality agent should not be spontaneously communicated on the network
because of the costly transmission operation. The curtailment of the agent trans-
mission, however, should be carefully designed so that it should not disturb the
performance of the identification and confirmation system. The 2-sigma technique
uses two standard deviations in order to outline a curtailment region on probability
distributions of parameters in feature set, FS. An observation which stays between
first and second deviations (i.e., 1σ < FS ≤ 2σ or −1σ > FS ≥ −2σ) is treated
as tolerated, and the one which stays outside the two deviations (i.e., FS > 2σ or
FS < −2σ) is considered as appropriate to send the abnormality agent to carry out
the job of on-the-spot confirmation ofmsnq . In the situation of the usual observation,
the value of the SR is accumulated by the aggregation unit. On the contrary, the value
of trust ofmsnq is decremented in the case if the observation lies in the tolerance zone.
The abnormality agent is triggered to carry out the job of on-the-spot confirmation
of msnq once the trust level of the msnq reaches the lower bound, that is, 0. Setting
up a tolerance zone results in the fewer communications of agents that decreases the
consumption of energy by both the msnq and clnq motes; hence, the overall lifetime
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Algorithm 4.2 2-sigma optimization
Input: FS
Output: −1σ,−2σ, 1σ, 2σ for all fi ∈ FS

Phase 1: Compute zones (FS)
1: At tk time
2: for each fi ∈ FS do
3: Compute −1σ, 1σ,−2σ, 2σ //compute values of threshold
4: Compute (Nz) = −1σ ≤ fi ≤ 1σ //compute normal zone (Nz)
5: Compute (T z) = 1σ < fi ≤ 2σ ∧ −1σ > fi ≥ −2σ //compute tolerance zone (T z)
6: Compute (Az) = fi > 2σ ∧ fi < −2σ //compute anomalous zone (Az)
7: end for

Input: FS
Output: SR, dali , AA

Phase 2: 2-Sigma transmission optimization (FS)
1: for FS do
2: if −1σ ≤ FS ≤ 1σ then //check for normal behavior
3: Beh ← BN
4: Goto 13
5: else if 1σ < FS ≤ 2σ ∧ −1σ > FS ≥ −2σ then //check for tolerated behavior
6: Beh ← BT
7: Goto 15
8: else //FS > 2σ ∧ FS < −2σ implies that the behavior is anomalous
9: Beh ← BA
10: Goto 22
11: end if
12: end for
13: A_unt ← SR //aggregate sensed data in the aggregation unit
14: Goto 24
15: if T R > 0 then //check the trust value
16: Decr T R by ς //decrement the trust value
17: else
18: T RNSMTdali to BS //send abnormality alert to BS
19: T RNSMT AA to msnq //send abnormality agent to msnq
20: Goto 24
21: end if
22: T RNSMTdali to BS //send abnormality alert to BS
23: T RNSMT AA to msnq //send abnormality agent to msnq
24: break

of the sensor network increases. A conceptual view of the 2-sigmamethod is depicted
in Fig. 4.1 [2]. The 2-sigma agent transmission optimization procedure pseudocode
is given in Algorithm 4.2 [2].
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Fig. 4.1 Visualization of the
2-sigma method: c© 2012
IEEE. Reprinted, with
permission, from Usman
et al. [2]

Normal observation
Tolerated observation
Anomalous observation

1σ 2σ-1σ-2σ

4.2.3 Weighted-Sum Optimization

The abnormality identification and confirmation module may bear the anomalous
conduct of msnq to optimize the agent communication for on-the-spot confirmation
procedure. An essential approach for the optimization of agent communication can
be to carry out the analysis of every feature, fi , to check its existence in the usual (i.e.,
−1σ ≤ fi ≤ 1σ), tolerated (i.e., 1σ < fi ≤ 2σ OR −1σ > fi ≥ −2σ), or abnormal
(i.e., fi > 2σ OR fi < −2σ) zones (as detailed in Sect. 5.2.2). The transmission
of agent can then be restricted for the zone, viz. tolerance and transmitted only for
the abnormal region. This tactic, however, may not treat the previous conduct of the
mote and send the agent simply on the basis of the existence of existing abnormal
observation (i.e., due to the temporary anomalous behavior), and it might result
in unnecessary broadcast of the agent. Thus, the agent communication procedure
should consider theweighted sumof the historical instances and existing observations
for more robust abnormality agent transmission decision making. The historical
observation score, Smsnq , of the msnq can be computed from the Eq. (4.6).

Smsnq = α1(
Ωi1

h
) + α2(

Ωi2

h
) (4.6)

In the above equation, α1 and α2 are the weighting influences for tolerated and
abnormal occurrences of fi , correspondingly. The weighting influences α2 > α1 and
α1 + α2 = 1. The weighting factor α2 is allocated with a larger value because of the
reason that it is related with abnormal occurrences of fi . In (4.6), Smsnq possesses
value in [0, 1] unit interval, and it is derived as a function of two key factors:

• Ωi1: fi number of occurrences from h pastmeasurements that observe the condition
1σ < fi ≤ 2σ or 1 σ > fi ≥ −2σ.

• Ωi2: fi number of occurrences from h past observations that observe the condition
fi > 2σ or fi < −2σ.

http://dx.doi.org/10.1007/978-981-10-7467-7_5
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It is evident from above-cited descriptions that the factors, viz. Ωi1 + Ωi2 = h.
To optimize weighting factors’ values, viz. α1 and α2, the term α1 + α2 = 1 can
be adjusted as α2 = 1 − α1, h can be set as c constant, and Ωi1 + Ωi2 = h can be
adjusted as Ωi2 = c − Ωi1. Consequently, (4.6) can be amended as shown below.

Smsnq = α1(
Ωi1

c
) + α2(

c − Ωi1

c
) (4.7)

Since α1 +α2 = 1 and α2 > α1, thus α1 ∈ [0, 0.5). In the succeeding discussion,
the window extent of the past observations is set as c, here c = 10. This process is
simple to generalize. This shows that Ωi1 ∈ [1, 10], here Ωi1 = 1 denotes there is
only solitary measurement in h which occurs in a zone, viz. tolerance, whereas Ωi1

= 10 represents there are all previous measurements in a zone, viz. tolerance, and
none measurement in a zone, viz. anomalous.

The statisticalmean values of objective functions are selected and associatedmean
value of initial parameters (i.e., α1 and β1) that are linked with the tolerated occur-
rences of fi is identified to optimize parameters. The high value of initial parameters
is not selected because of the reason that the succeeding parameters (i.e., α2 and β2)
possess high primacy because of their linkage with the abnormal occurrences of fi .

The subsequent objective function, which is obtained from (4.7), is defined to
optimize the parameters α1 and α2 to the extend that Smsnq obtains the mean value,
where x and w denote Ωi1 and α1, correspondingly.

f (w, x) = (1 − w) + (2w − 1)
x

10
(4.8)

Assume x ∈ [1, 10] and w ∈ [0, 0.5) due to the reasons that α1 ∈ [0, 0.5)
and Ωi1 ∈ [1, 10]. This provides the f (w, x) = 0.47 mean value of the objective
function. The associated w value, which produces objective function f (w, x) mean
value, stays in the limit [0.35, 0.47], having deviation 0.005 on either sides of value.
The mean of bound produces 0.415 ≈ 0.42 that is taken as an optimal w value for
above-cited situation. Figure4.2 [1] shows a three-dimensional vision of the f (w, x)
objective function.

The optimum α1 = 0.42 value is obtained from above-cited process. By the
implication of the relation α2 = 1 − α1, the value for α2 may be inferred as 0.58.
The concluding score for the transmission of an agent can be computed from (4.9).

StAA = Smsnq

2
+ β1u + β2v (4.9)

where the β1 and β2 parameters are weighting influences for the recent observation
that stay in the zones, viz. 1σ < fi ≤ 2σ OR −1σ > fi ≥ −2σ, and fi > 2σ OR
fi < −2σ, correspondingly. It is imperative to observe that the weighting influencing
sets {α1,α2} and {β1,β2} are autonomous and possess no relation. The weighting
influences β2 > β1 and β1 + β2 = 1. The weighting influence β2 possesses the large
value as it is linked with the present abnormal occurrence of fi .
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Fig. 4.2 Visualization of the objective function f (w, x): c© Academy Publisher, reprinted from
Usman et al. [1]

In (4.9), the notation StAA possesses number in [0, 1] unit interval and it is com-
puted as a three-parameter function, viz. Smsnq , u, and v. The Smsnq is derived from
(4.10), where the definitions of u and v are elucidated next.

• u = 1, iff present fi ’s occurrence fulfills the 1σ < fi ≤ 2σ or −1σ > fi ≥ −2 σ
condition, else u = 0.

• v = 1, iff present fi ’s occurrence fulfills the fi > 2σ OR fi < −2σ condition, else
v = 0.

The association among u and v parameters is described as v= 1− u. The weight-
ing influences equality β1 + β2 = 1 can be reordered as β2 = 1 − β1. Consequently,
(4.9) may be rearranged as given below.

StAA = Smsnq

2
+ 1 + 2β1u − β1 − u (4.10)

Since β1 + β2 = 1 and β2 > β1, thus β1 ∈ [0, 0.5) and Smsnq ∈ [0, 1]. The
subsequent objective function, which is computed from (4.10), is defined to enhance
the β1 and β2 parameters to the extent that StAA attains the mean value, where y and
z denote β1 and StAA, correspondingly.

f (y, z) =
{

z
2 + 1 − y, u = 0,
z
2 + y, u = 1.

(4.11)

To calculate the objective function f (y, z) mean value, assume z ∈ [0, 1) and
y ∈ [0, 0.5) and equivalent to Smsnq ∈ [0, 1] and β1 ∈ [0, 0.5), correspondingly.



4.2 Algorithms and Analysis 89

The f (y, z) objective function may has two situations, namely situation 1: u = 0
and situation 2: u = 1. The situation 1 has the minimum (min) (1), maximum (max)
(1.01), and mean (1.0049) values. On the contrary, the situation 2 has min (0), max
(0.99), and mean (0.5048) values. The associated y value of both situations stays
in the bound [0.2401, 0.2499]. The interval mean produces 0.245 ≈ 0.25 that is
considered as an optimal parameter y value.

On the basis of the calculation of the f (y, z) objective function, the optimized
β1 = 0.25 value is derived. Again by the implication of the relation β2 = 1−β1, the
β2 value is acquired as 0.75.

The computed value of agent transmission, StAA, must be larger than already set
threshold ψ to send an agent, where ψ ∈ (0, 1). It is imperative to observe that the
terminating upper limit level of total score of agent dispatch, StAA, is fixed as 1.
Nonetheless, this would not change decision of agent dispatch, because any value
higher than ψ is considered as reasonable for the communication of agent. More-
over, if the score of agent dispatch is below than ψ, the abnormality identification
and confirmation module may take other usual actions, for instance, reducing the
interaction with msnq , announcing msnq as abnormal to other leader motes and
member motes, and transmitting an alarm to BS for tolerated categories, viz. 1, 2,
and 3, correspondingly (as discussed in Sect. 4.2.1). This tactic initiates less frequent
communications of agents which decreases consumption of energy and enhances
total lifetime of the network. The pseudocode of the procedure of the optimization
of agent transmission is provided in Algorithm 4.3 [1]. Observe that Algorithm 4.3
(Phase 1) is executed only when the system is deployed and on every occasion when
tuning action (denoted by τ and discussed in Sect. 3.4.1) is carried out by the user; on
the contrary, Phase 2 is computed by the abnormality identification and confirmation
module for every received abnormal observation.

4.2.4 Complexity Analysis

The space and time complexity of the algorithms is discussed below.

Theorem 4.1 The space complexity for (i) the procedure for the abnormality iden-
tification on clnq is Cn + l[n] and (ii) the procedure for the optimization of the
abnormality agent transmission on clnq is constant Cv .

Proof (i) Assume FS2 = {j, f } be the numbers which are computed on clnq after
obtaining the Oj observation, where Oj possesses FS1 values. Therefore, FS =
FS1 ∪ FS2 = {λ,ϕ, υ, j, f }. FS2 consumes l[ j] memory space. The entire space
consumed by n FS features thus becomes l[n] = l[ j] ∪ l[m]; here, l[ j] < l[m]. The
clnq mote consumes constant spaces, viz.C1,C2, andC3, to save values of thresholds
for joins, combined value, and outcome of the optimization of the transmission of
agent procedure, correspondingly. The agent takes C4 and C5 spaces to save data
and code, correspondingly. Therefore, the entire memory space consumed by the
abnormality identification procedure is ∪5

n=1Cn + l[n].

http://dx.doi.org/10.1007/978-981-10-7467-7_3
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Algorithm 4.3Weighted sum optimization
Input: FS
Output: −1σ,−2σ, 1σ, 2σ for all fi ∈ FS

Phase 1: Compute zones (FS)
1: At tk time
2: for each fi ∈ FS do
3: Compute −1σ, 1σ,−2σ, 2σ //compute values of threshold
4: Compute (Nz) = -1 σ ≤ fi ≤ 1 σ //compute normal zone (Nz)
5: Compute (T z) = 1 σ < fi ≤ 2 σ ∧ -1 σ > fi ≥ -2 σ //compute tolerance zone (T z)
6: Update (Az) = fi > 2σ ∧ fi < −2σ //compute anomalous zone (Az)
7: end for

Input: FS
Output: Beh

Phase 2: Weighted sum transmission optimization (FS)
1: for each fi ∈ FS do
2: Compute Smsnq = α1(

Ωi1
w

) + α2(
Ωi2
w

) //compute the historical observation score Smsnq

3: Compute StAA = Smsnq
2 + β1y + β2z //compute the abnormality agent transmission score

StAA
4: if StAA ≥ ψ then //check for the anomalous behavior
5: Beh ← BA
6: break
7: else if StAA < ψ∧ ≥ ζ then //check for the BTζ tolerated behavior
8: Beh ← BTζ

9: break
10: else if StAA < ζ ∧ ≥ γ then //check for the BTγ tolerated behavior
11: Beh ← BTγ

12: break
13: else if StAA < γ∧ ≥ η then //check for the BTη tolerated behavior
14: Beh ← BTη

15: break
16: else //StAA < η implies that the behavior is normal
17: Beh ← BN
18: end if
19: end for
20: return Beh to Algorithm 4.1.

(ii) The clnq takes constant memory spacesC7,C8,C9, andC10 to save weighting
factors α1, α2, β1, and β2 values, correspondingly. The memory spaces C11 and C12

are consumed by clnq to save fi instances values from w past tolerated and abnor-
mal observations. Correspondingly, clnq consumes C13 space to save the tolerated
or abnormal occurrence value of the present-obtained observation. The C14, C15,
C16, and C17 memory spaces are consumed by clnq to save the score of the past
observations of msnq , the score of agent transmission, the value of the threshold for
the agent transmission, and the conduct status of msnq , correspondingly. Assuming
Cv = ∪17

v=7Cv , the complexity of procedure of dispatch of agent is constant Cv .

Theorem 4.2 (i) the abnormality identification procedure on clnq executes in
constant D time for usual measurements and it has the O(n) time complexity for
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abnormal observations and (ii) for the optimization of transmission of agent proce-
dure on clnq is O(y).

Proof (i) The clnq consumes the constant time D2 to receive the observation from
msnq , D3 time to retrieve FS1 values, and D4 time to calculate the FS2 values. To
accumulate sensor reading, msnq takes the D5 time to send the outcome to BS for
further examination. clnq consumes D6 time to carry out the abnormality identifi-
cation procedure by employing the joins and allocating the appropriate behavior to
msnq the value of that is obtained after the calculation carried out by the procedure
of optimization of transmission of agent, where D6 > D5. clnq takes D7 time for
the transmission of agent to msnq ; msnq is abnormal in such a situation. There-
fore, assuming D = ∑7

i=2 Di , the procedure of the identification of abnormality
executes in D constant time. Furthermore, Algorithm 4.2 calls the phase, viz. agent
transmission optimization for abnormal observations that has the time complexity of
O(n).

(ii) clnq consumes y time to examine multiple zones for n features to categorize
as usual, tolerated, or abnormal to carry out the optimization of agent dispatch pro-
cedure. By taking the upper limit case, time complexity for optimization of dispatch
of agent procedure becomes O(y).

4.3 Formal Modeling and Analysis

This section first addresses the individual formal specifications of the algorithmic
specifications presented in this chapter. This is followed by the unified model formu-
lation. Finally, the behavioral and structural properties are formulated and analyzed.

4.3.1 Model Formulation

The first algorithmic specification elucidates the method for the first-order abnor-
mality identification by the clnq . The formal specification of the method is shown
below.

Net module FO: The first-order abnormality identification module, (PNFO ), is
a 5-tuple net: PNFO = (PFO , TFO , FFO , WFO , (M0)FO), where PFO = {p21, p22,
p23, p41} and TFO = {t24, t25,..., t31, t47,..., t51} are non-empty, finite, and disjoint sets
of places and transitions, correspondingly. FFO = {(p21, t24), (p21, t25), (p21, t26),
(p21, t27), (p21, t28), (t24, p22), (t25, p22), (t26, p22), (t27, p22), (t28, p22), (t24, p23),
(t25, p23), (t26, p23), (t27, p23), (t28, p23), (p22, t29), (p23, t30), (p23, t30), (p41, t47),
(p41, t48), (p41, t49), (p41, t50), (p41, t51)} is set of arcs, WFO = 1 is weight for all
arcs, and (M0)FO = p21 denotes solitary token in the initial place.
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The executionof thefirst-order abnormality identification algorithm is followedby
the invocation of the 2-sigma abnormality agent transmission optimization method,
which is formally characterized next.

Netmodule 2S: The 2-sigma optimizationmodule, (PN2S), is a 5-tuple net: PN2S

= (P2S , T2S , F2S ,W2S , (M0)2S), where P2S = {p24, p25,..., p29} and TFO = {t32, t33,...,
t38} are non-empty, finite, and disjoint sets of places and transitions, correspondingly.
FFO = {(p24, t32), (t32, p25), (t32, p26), (p25, t33), (p26, t34), (t34, p27), (t34, p28), (p27,
t35), (p27, t36), (p28, t37), (t37, p29), (p29, t38)} is set of arcs, W2S = 1 is weight for
all arcs, and (M0)2S = p24 denotes solitary token in the initial place of PN2S .

Alternatively, depending upon the requirements of the user, the execution of the
first-order abnormality identification algorithm can be followed by the invocation of
the weighted-sum abnormality agent transmission optimization method, which can
be formally defined as given below.

Net module WS: The weighted-sum optimization module, (PNWS), is a 5-tuple
net: PNWS = (PWS , TWS , FWS ,WWS , (M0)WS), where PWS = {p30, p31,..., p40} and
TWS = {t39, t40,..., t46} are non-empty, finite, and disjoint sets of places and transitions,
correspondingly. FWS = {(p30, t39), (p30, t40), (t39, p31), (t40, p31), (p31, t41), (t41,
p32), (t41, p33), (p32, t46), (p33, t42), (t42, p34), (t42, p35), (p34, t46), (p35, t43), (t43,
p36), (t43, p37), (p36, t46), (p37, t44), (t44, p38), (t44, p39), (p38, t46), (p39, t45), (t45,
p40), (p40, t46)} is set of arcs, WWS = 1 is weight for all arcs, and (M0)WS = p21
denotes solitary token in the initial place of PNWS .

In order to formulate the unified model, the modules are joined in the transition-
place manner. In this process, the following additional arcs have been introduced:
Fa = {(t30, p30), (t31, p24) (t46, p41)}. The corresponding weights are defined as
Wa(t30, p30) = Wa(t31, p24) = Wa(t46, p41) = 1. The resultant unified model, (PNu),
is depicted in Fig. 4.3 and formally described below.

Unified model The (PNu), a unified PN model, is a 5-tuple net: PNu = (Pu, Tu,
Fu, Wu, (Mu)0), where Pu = {PFO , P2S , PWS} and Tu = {TFO , T2S , TWS} are non-
empty, finite, and disjoint sets of places and transitions, correspondingly. Similarly,
Fu = {FFO , F2S , FWS , Fa} and Wu = 1 is weight for all arcs including additional
arcs. Finally, (M0)u = p21.

4.3.2 Formal Characterization and Analysis

On the basis of the formal specifications stated above, the behavioral properties,
namely safeness and liveness of the proposed algorithmic specifications, can be
formally verified as shown below.

Theorem 4.3 The model, PNu, is safe.

Proof For all p ∈ Pu , M(p) = 1. Although firing of the transitions t24, t25, t26, t27,
and t28 yields 5 tokens in the place p22 or p23, these tokens, however, merge together
and flow as a single token in the rest of the net. This yields that the unified Petri net
model, PNu , is safe.
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Fig. 4.3 The unified formal model
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Theorem 4.4 The unified Petri net model, PNu, is level 4 live.

Proof The terminal transitions t29, t33. t35, t36, t38, and {t47, t48, t49, t50} are level 4
live as there are firing sequences for all these transitions. The firing sequence for the
transition t29 is {t24, t25, t26, t27, t28} → t29. Then, the firing sequence for the transition
t33 is {t24, t25, t26, t27, t28} → t31 → t32 → t33. Similarly, the firing sequence for the
transitions t35 and t36 is {t24, t25, t26, t27, t28} → → t31 → t32 → t34 which then leads
to either t35 or t36 depending on the state of the system. Next, the firing sequence for
the transition t38 is {t24, t25, t26, t27, t28} → → t31 → t32 → t34 → t37 → t38. The
firing sequence for the set of transitions {t47, t48, t49, t50} is t1 → {t24, t25, t26, t27,
t28} → t30 → {t39, t40} → {{t41, t46}, {t41, t42, t46}, {t41, t42, t43, t46}, {t41, t42, t43, t44,
t46}, {t41, t42, t43, t44, t45, t46}} → {t47, t48, t49, t50}. Finally, the firing sequence for the
transition t29 can also achieved as t1 → {t24, t25, t26, t27, t28} → t30 → {t39, t40} →
{{t41, t46}, {t41, t42, t46}, {t41, t42, t43, t46}, {t41, t42, t43, t44, t46}, {t41, t42, t43, t44, t45,
t46}} → t51 → t29. Thus, PNu is level 4 live, that is, no deadlock exists in the model,
PNu .

4.4 Performance Evaluation

The temporal behavior of the abnormality identification and confirmation system has
been thoroughly investigated through implementation on a small-scale real test bed
in the previous chapter. A simulation study has been carried out and elucidated to
analyze the conduct of the system in a large-scale network. The proposed algorithms
have also been implemented on a real mote tomeasure their consumption of memory,
consumption of energy, and processing time. Finally, the comparison of the system
has been made with a few recent competing schemes.

4.4.1 Simulation Study

In the simulation study, the first-order abnormality identification algorithm was
employed for identifying abnormalities. Similarly, the 2-sigma and weighted-sum
algorithms were employed for abnormality agent transmission optimization. The
simulation scenarios have been developed to analyze the system performance, in
discrete event and object-oriented environment that emulates events in a sequential
order [3]. The environment of simulation was based on the following setup.
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4.4.1.1 Simulation Setup

• Network model: The horizon of simulation had the Wd × Lg square meter area.
k motes were arbitrarily positions in multiple simulation scenarios. The BS was
positioned at (a, b) location.

• Motemodel: The standard capability of resources ofMICAzwas employed [4]. The
flash data logger, SRAM, and program memories were set as MFLASH , MSRAM ,
and MP , correspondingly. The overall mote energy was set as NE at the start
of network lifetime. Energy consumption, by a mote during the sleep state, was
supposed as NEslp.

• Mote categorization: The scenario of smart home scenario was assumed to study
the consumption of energy. The motes were characterized as non-security and
security motes. In practice, the non-security sensors may include temperature,
humidity, and pressure sensors, whereas the light and motion detectors may be
considered as security sensors. A limit, σ, was fixed for security motes, whereas
a comparatively lenient limit, 2σ, was fixed for the non-security sensors.

• Model for dissipation of communication energy: A common model was employed
for energy consumption [5]. The following relations were employed to evaluate
the dissipation of energy by radio hardware to send l-bits on d distance.

ET x (l, d) = ET x−elec(l) + ET x−amp(l, d) (4.12)

PU (u) =
{
l Eelec + lε f sd2 d < d0,
l Eelec + lεmpd4 d ≥ d0

(4.13)

Correspondingly, to get l-bits, the consumption of energy was evaluated from the
relation.

ERx (l) = ERx−elec(l) + l Eelec (4.14)

where Eelec denotes the electronic energy dissipation which has multiple aspects
such as filtering, digital coding, modulation, and spread of signals. Correspond-
ingly, ε f sd2 and εmpd4 are the energies of amplifier that relies on multiple aspects,
viz. distance among receivers and senders and acceptable bit-fault rate. It is imper-
ative to note that Eelec is equal to (ET x + EDA) for cluster leader motes and ET x

for cluster member motes for communication; here, ET x represents the transmis-
sion energy and EDA denotes the energy of data accumulation. On the contrary,
the Eelec values were equal to ERx for leader and member motes while getting
packets.

• Network lifetime: An approach, viz. “first mote die” approach, was employed for
analysis [6].

• Propagation model: The d2 (free space, fs) and d4 (multipath fading, mp)
power loss models were employed as propagation models [5]. If distances among
receivers and senders were less than d0 threshold, then fs , otherwise mp model,
was employed.
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• Traffic model: The cluster member motes were set to periodically transmit sensed
data. The cluster member motes sent sensed data after each t seconds. The sent
sensed data had Pkt size, having both payload and header. The payload of usual
packet, shown in Fig. 4.4 [1], had FS1 values that were sent by cluster member
motes. The features, viz. υ, T , and λ, were assumed as continuous variables in
analysis; on the contrary, F and ϕ were treated as discrete variables.

• Cluster formation: The groups (clusters) were made by employing LEACH, a
famous cluster creation algorithm [5]. The scenarios were based on heterogeneous
motes (in terms of resource capability), andLEACH facilitates suchmotes to create
the cluster-oriented topology.

• Abnormality agent: The developed agent sizewas 762 bytes (having itinerary, data,
code, and identity). An agent is not dispatched as solitary packet due to its larger
size. Thus, the agent was divided into several frames according to the specification
of 802.15.4 standard [7]. Themaximum allowed frame limit is 127 bytes (i.e., with
the payload and header sizes of 102 and 25 bytes, correspondingly) on the basis of
802.15.4 specifications. Thus, the agent was divided into eight data packets. The
size of header was fixed as 25 × 8 = 200 bytes. On the contrary, the size of the
payload of initial seven data packets was 102× 7 = 714 bytes, and for final packet,
48× 1 = 48 bytes. The total size of initial seven packets, by employing the ((header
size × number of packet) + (payload × size number of packets)) formula, was (25
× 7) + (102 × 7) = 175 + 714 = 889 bytes. Correspondingly, the final packet size
was (1 × 25) + (1 × 48) = 25 + 48 = 73 bytes. Therefore, the agent size was 962
bytes after its division. The packet size, which takes the outcome of on-the-spot
confirmation procedure, was 27 bytes (i.e., 2 and 25 payload and header sizes), as
that packet just transmits the outcome of the confirmation procedure as either 0”
or 1 denoting ‘usual” or abnormal status, correspondingly. The structure of data
packets of agent and confirmation procedure is shown in Figs. 4.5, 4.6, and 4.7 [1].

• Anomalous traffic: The 25% anomalous traffic was randomly generated by abnor-
mal motes in the simulation horizon. The usual and abnormal traffics of data were
accumulated and afterward employed for computing first-order bounds.

• Thresholds for agent transmission optimization: The six-sigma rule-based values,
viz. −2σ, −1σ, 1σ, and 2σ, were employed to optimize transmission of agent [8].
The weighting factors values were fixed as α1, α2, β1, and β2. The agent trans-
mission threshold was set as ψ; on the contrary, the zones for tolerance were set
as Tolη, Tolγ , and Tolζ .

• Iterations: The reported outcomes are based on 30 iterations of the simulated
experiments.

The subsequent seeds were employed to form simulation cases: k = 30 − 150,
Wd = 100, Lg = 100, a, b = 50, ET x , ERX = 50 × 10−9 Joules, εmp = 1.3 × 10−3

× 10−12 Joules/bit/m4, ε f s = 10 × 10−12 Joules/bit/m2, EDA = 5 × 10−9

Joules/bit /signal, Mp = 128 kb, MSRAM = 4 kb, M f lash = 512 kb, NE = 1e4 nJ ,
t = 0.1, Pkt = 31 bytes, NEslp = 1 nJ/t , −1σ to 1σ = 0.68, −2σ to 2σ = 0.95, λ
= 13 ◦C to 39 ◦C, T = 0–1, 2–3, 4–5s, ϕ = 1 for allowed job carried out and 0 for
not-allowed job carried out, υ = 100% (i.e., full battery) → 0% (i.e., empty battery),
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Frame Control Sequence Number Address Information f1 f2 f3 Frequency Check Sequence

31 Bytes

2 Bytes 1 Byte 20 Bytes 6 Bytes 2 Bytes

Fig. 4.4 Usual data packet: c© Academy Publisher, reprinted from Usman et al. [1]

Frame Control Sequence Number Address Information Frequency Check Sequence

73 Bytes

2 Bytes 1 Byte 20 Bytes 48 Bytes 2 Bytes

Mobile Agent Paylod

Fig. 4.5 Agent data packets (excluding last packet): c©Academy Publisher, reprinted fromUsman
et al. [1]

Frame Control Sequence Number Address Information Frequency Check Sequence

127 Bytes

2 Bytes 1 Byte 20 Bytes 102 Bytes 2 Bytes

Mobile Agent Paylod

Fig. 4.6 Last data packet of agent: c© Academy Publisher, reprinted from Usman et al. [1]

Frame Control Sequence Number Address Information Frequency Check Sequence

27 Bytes

2 Bytes 1 Byte 20 Bytes 2 Bytes 2 Bytes

Verification Result

Fig. 4.7 On-the-spot confirmation outcome data packet: c© Academy Publisher, reprinted from
Usman et al. [1]

F = 1 for every timely obtained and 0 for each deferred obtained packet, h = 10, α1

= 0.42, α2 = 0.58, β1 = 0.25, β2 = 0.75, η = 0.50, ψ = 0.55, ζ = 0.40, and γ = 0.45.

4.4.1.2 Results and Analysis

The comprehensive performance of the abnormality identification and confirmation
system was measured in regard to the subsequent performance measures:

• Rate of abnormality detection: This measure provides the percentage of the abnor-
malities identified from total abnormalities.

• Estimation of Energy consumption: The consumption of energy is assessed for
both usual and abnormal network traffics. This facilitates to measure the effect of
employing agents for on-the-spot confirmation on the energy level of a mote with
limited resources.
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• Number of transmitted agents: This measure assists in computing the number of
agents that are sent with employing and without employing optimization of agent
communication procedure.

The initial group of experiments was carried out to measure the rate of detection
of first-order abnormalities that occurred due to on-the-spot faults (see N (λ, T )

join, as described in Sect. 4.2.1). In this group of experiments, member motes of
cluster uninterruptedly sent FS1 values in place of periodic communications to the
corresponding leader motes of clusters. The produced network traffic was comprised
of 5000 packets that were sent by thirty member motes to their respective leader
motes. In such a situation, the abnormality identification and confirmation module
discovered 99% of the abnormalities. For network traffic having 7000, 9000, 11000,
and13000measurements sent by60, 90, 120, and150membermotes, the abnormality
identification rates were 98.80%, 98.40%, 98.20%, and 98%, correspondingly. The
trials’ outcomes illustrate the identification rate of abnormalities occurred due to on
the spot faults remained in the limit between 98 and 99%.

The second and next abnormalities are associated with consumption of resources
by member motes. A resource exhaustion attack was performed on the member
motes, in which member motes sent low-value status of battery rather than values
that are expected residual battery values (see second join N (T , υ), as elucidated in
Sect. 4.2.1). The total rate of detection of abnormalities occurs due to exhaustion
of resource attack randomized among 98.60 and 99%. The rates of detection for
5000, 7000, 9000, 11000, and 13000 observations remained 99%, 98.80%, 98.80%,
98.60%, and 98.60%, correspondingly. Then, the abnormality identification and con-
firmation modules on the leader motes were configured to identify the abnormalities
occurred due to faulty motes (see third N (ϕ, υ), as described in Sect. 4.2.1). In these
trials, the energy stock of defective member motes consumed rapidly because of
the unapproved activities carried out by the motes. As a result, the motes sent low-
level status of battery in place of expected values to the related leader motes. In this
group of experiments, the rates of detection were 98.2%, 98.80%, 99%, 97.80%, and
98.80% for 5000, 7000, 9000, 11000, and 13000 observations, correspondingly.

Then, the case of faulty motes was investigated (see fourth join N (ϕ, T ), as
described in Sect. 4.2.1), wherein defective member motes sent abnormal values of
the allowed activities in regard to time duration. In such situations, the abnormality
identification and confirmation modules, positioned on every leader mote of the
cluster, spotted 98.2%, 98.80%, 99.2%, 98%, and 98.80% abnormalities for 5000,
7000, 9000, 11000, and 13000 observations, correspondingly. Lastly, the denial-
of-sleep attack situations were introduced (see fifth join N (F, T ), as elucidated in
Sect. 4.2.1). In these situations, the member motes of clusters unremittingly sent
observations other than intermittent communications. In this group of trails, the
rates of detection for 5000, 7000, 9000, 11000, and 13000 observations were 98%,
98.60%, 99%, 97.80%, and 98.80%, correspondingly. In all above-cited situations,
agents were able to recognize the origin of abnormalities which have caused on
the spot or in transmission. The plot revealed in Fig. 4.8 [1] gives the abnormality
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Fig. 4.8 Rate of detecting
first-order abnormalities: c©
Academy Publisher,
reprinted from Usman et al.
[1]
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Fig. 4.9 Energy
consumption by transmission
of packets: c© Academy
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identification outcomes. It is evident that the accuracy of detection is higher for every
join as it remained among 97.80 and 99.20%.

Next, the consumption of energy in situations, i.e., usual and abnormal packets
are sent in variable mote density situations, is examined. The usual data traffic had
packets that were sent from member motes to their respective leader motes of the
clusters. On the contrary, the abnormal traffic had packets of agents that were sent
from leader motes to the doubtful member motes for on-the-spot confirmation and
outcomes of on-the-spot confirmation procedures that were sent back to leader motes
of the clusters. It is obvious from Fig. 4.9 [1] that the line that represents the con-
sumption of energy by transmission of 5000, 7000, 9000, 11000, and 13000 usual
packets that were sent by 30, 60, 90, 120, and 150 member motes to corresponding
leader motes has a stable evolution in positive path beside x-axis. This illustrates the
steady surge in consumption of energy as statistic of packets rises in network traffic,
whereas the consumption of energy by abnormal traffic of the network which has
agents and on-the-spot confirmation packets incline to change and has a moderately
non-stable evolution. This is because of the randomization in the detection accuracy
of related leader motes of the clusters and also variations involved in underlying
abnormal traffic.
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Fig. 4.10 Energy
consumption by receiving
packets: c© Academy
Publisher, reprinted from
Usman et al. [1]
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The energy consumption cost of receiving packets is studied next. Figure4.10 [1]
shows the consumption of energy outcomes for receiving both usual and abnormal
packets. The consumption of energy due to the reception of packets trails the similar
tendency as displayed by the packets sent with a somewhat minor cost. The traffic,
having 5000–7000 packets, instigated the consumption of 0.0686–0.177J energy
for sending and 0.0682–0.176J energy for getting the usual traffic. Likewise, for
sending and getting abnormal traffic, the consumed energy by network was 0.517–
1.592J and 0.51215–1.591 J, correspondingly. The moderately low consumption
of energy during getting data traffic is because of the reason the communication
procedure includes distance influence alongwith the static quantity of energy spent by
transceiver for dispatch of data.An imperative fact that is clear fromFigs. 4.9 and 5.10
is variance in scale of consumption of energy by usual traffic with abnormal traffic.
This variance of consumption of energy scale is due to the additional traffic sent on
the network as agents and on-the-spot confirmation outcome packets for the situation
of abnormal traffic. The resource-wealthy group head motes can effortlessly manage
such an overhead. Though, the resource-constrained member motes may rapidly
consume their energy that promotes the usage of optimization of agent transmission
procedure to save the energy resources of resource-constrained motes.

The abnormality identification and confirmation modules, positioned on clus-
ter leader motes, sent 1240, 1770, 2140, 2570, and 3249 agents subsequent to the
identification of same number of abnormalities by not using optimization of agent
transmission procedure in the traffic having 5000, 7000, 9000, 11000, and 13000
data packets, correspondingly. As cited above, this rapidly consumed energy bud-
get of resource-constrained cluster member motes. The proposed abnormality agent
transmission optimization methods (i.e., Algorithms 4.2 and 4.3) were, therefore,
employed.As a result, the transmissions of agentswere decreased to 818, 1204, 1477,
1825, and 2177 in the case of 2-sigma optimization method (i.e., Algorithm 4.2). On
the other hand, the transmissions of agents were decreased to 600, 993, 1080, 1513,
and 1560 in the case of the weighted-sum optimization method (i.e., Algorithm 4.3).
These results are shown in Fig. 4.11 [1]. This decreased the consumption of energy by
both reception and transmission abnormal traffics on the network to around 29–34%

http://dx.doi.org/10.1007/978-981-10-7467-7_5
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Fig. 4.11 Optimization of
agent transmission: c©
Academy Publisher,
reprinted from Usman et al.
[1]
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Fig. 4.12 Consumption of
energy by transmission of
agent: c© Academy
Publisher, reprinted from
Usman et al. [1]
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Fig. 4.13 Consumption of
energy by receiving agent:
c© Academy Publisher,
reprinted from Usman et al.
[1]
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for the situation of the usage of 2-sigma optimization procedure. The reduction of
the energy dissipation was even higher in the case of the weighted-sum optimization
method, that is, down to around 42–52%, as depicted in Figs. 4.12 [1] and 4.13 [1].

The above-mentioned analysis reveals that the abnormality identification and con-
firmation system is not merely able to identify first-order abnormalities with higher
rate of detection but also able to effectively carry out on-the-spot confirmation job on



102 4 First-Order Abnormalities: Agent Transmission Optimization

suspicious motes. Moreover, the optimization of agent transmission procedure that
considers both previous and present observations to enhance the procedure of agent
transmission can extend the lifetime of the network l by approximately 42–52%.
Correspondingly, the optimization of agent transmission procedure that outlines the
restriction zones on the probability distribution of features extends the lifetime of
the network approximately 29–34%.

As indicated by the simulation results, most of the network energy is consumed
by transmission and reception of agents in the functioning of the abnormality iden-
tification and confirmation system. This study has proposed two methods, namely
2-sigma and weighted-sum optimization, to optimize the agent transmission. How-
ever, because of the inherent characteristics of the agent-enabled tiny sensor mote
networks, if our proposed system is deployedonhomogeneous networkswith battery-
operated mote, then transmissions and receptions of agents will result in quick deple-
tion of battery resources of certain cluster leaders and some of their member motes.
This may result in re-clustering of the network, which is an energy-consuming pro-
cess. The re-clustering of a network is also not suitable due to the sensed data stored
for on-the-spot confirmation purposes. The transmission of this data from one cluster
leader mote to another cluster leader mote will also consume energy, and the old data
may not remain suitable for on-the-spot confirmation procedure. Thus, the system is
better suited for heterogeneous sensor networks.

4.4.2 Implementation

The algorithms have been implemented on MICAz [4], having TinyOS 2.1.1 [9], to
study their effect on low resources of real sensor motes. MICAz has a microproces-
sor (ATmega128L). The configuration EEPROM, data logger, and flash memories
of MICAz have 4, 512, and 128 kb storage memories, correspondingly. The algo-
rithms are developed using nesC [10] that is employed for developing applications
in TinyOS. The aim of development is estimation of consumption of energy and
memory resources with processing time consumed by algorithms. It is pertinent to
note that the worst situation, that is, all relations within the algorithms were finished
in order to measure the effect of algorithms on resources of MICAz. Moreover, only
those algorithms, of the system, are implemented which execute either on cluster
member motes or on cluster leader motes.

4.4.2.1 Memory Consumption

The nesC produces a report for consumption of memory by programs in the phase
of compilation. The report shows the statuses of ROM and RAM of MICAz in
bytes. The overall consumption of memory (i.e., ROM and RAM together) by Algo-
rithms 4.1, 4.2, 4.3, and 4.4 were 1567, 2132, 3130, and 1124 bytes, correspondingly.
This outcome shows that the consumption of memory by Algorithms 4.2 and 4.3 is



4.4 Performance Evaluation 103

more than Algorithms 4.1 and 4.4 due because of the former algorithms include
the processing, transmission, and reception of agent. Algorithms 4.2 and 4.4 run on
resource-wealthy leader motes of the clusters. Therefore, the high consumption of
memory may be achieved by such motes. The running of Algorithms 4.1 and 4.3, on
member motes of the clusters, takes 1567 and 3130 bytes memory, correspondingly,
that may be accommodated by MICAz memory subsystem. Moreover, the running
of Algorithm 4.3 is infrequent; that is, it runs only when a doubtful cluster member
mote is identified within the cluster and the leader mote of the cluster transmits an
agent for on-the-spot confirmation of the doubtful cluster member mote after the
consideration of the optimization of agent transmission procedure.

It is pertinent to note that the abnormality agent inhabits the memory of the cluster
member mote for a limited amount of time. Per se, an agent is removed that clears
engaged space of the memory as early as it sends on-the-spot confirmation outcome
to the leader mote of the cluster. Thus, the effect of agent on the memory of the
member mote of the cluster is for relatively short term.

The memory consumption by Algorithms 4.1, 4.2, and 4.3 was 2559, 1066, and
1206 bytes, correspondingly. This shows that the abnormality identification with the
first-order joins (i.e., Algorithm 4.1) consumes more memory as compared to the
abnormality identification on individual features (i.e., Algorithm 4.2). Similarly, 2-
sigma method for optimization of agent transmission (i.e., Algorithm 4.2) consumes
less memory as compared to the weighted-sum method (i.e., Algorithm 4.3). This
indicates that although the weighted-sum method is more efficient as it causes less
frequent abnormality agent transmission, it consumes more resources during execu-
tion of the algorithm. The memory consumption outcomes are given in Table4.2 [1].

4.4.2.2 Processing Time

The processing times for Algorithms 4.1, 4.2, 4.3, and 4.4 were 6.93, 32.51, 7.65,
and 4.01 ms, correspondingly. Algorithms 4.2 and 4.3 carry out the task of the
identification of abnormality, on-the-spot confirmation, and their total spent time
was 40.16 ms. Algorithms 4.2 and 4.3 consumed large amount of processing time in

Table 4.2 Memory consumption: c© Academy Publisher, reprinted from Usman et al. [15]

Algorithm RAM Rom

4.1 29 1538

4.2 41 2091

4.3 59 3071

4.4 23 1101

5.1 50 2509

5.2 22 1044

5.3 24 1182
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Table 4.3 Processing time and energy consumption: c©AcademyPublisher, reprinted fromUsman
et al. [15]

Algorithm Processing time (ms) Energy consumption (µJ)

4.1 6.93 55.60

4.2 32.51 3647.12

4.3 7.65 1570.96

4.4 4.01 39.73

5.1 37.25 4039.91

5.2 3.97 38.67

5.3 4.13 40.02

comparison to Algorithms 4.1 and 4.4 because of the immersion abnormality agent
processing. This processing time result is in line with theoretical outcomes illustrated
in Sect. 3.5.6.

The processing times for Algorithms 4.1, 4.2, and 4.3 were 37.25. 3.97, and
4.13 ms, correspondingly. This shows that the combined elapsed time for the first-
order abnormality identification (i.e., Algorithm 4.1) and on-the-spot confirmation
procedure (i.e., Algorithm 4.3) was 44.9 ms. If a cluster leader mote also employs the
procedure of optimization of agent transmission, then the overall process consumes
48.87ms time in the case of the 2-sigmamethod (i.e., Algorithm 4.2) and 49.03ms in
the case of the weighted-sum method (i.e., Algorithm 4.3), which are quite efficient.
These results are shown in Table4.3 [1].

4.4.2.3 Energy Consumption

The procedure of collection of features by the cluster member mote (i.e., Algo-
rithm 4.1) consumed 55.60 µJ of energy in each iteration. Algorithms 4.2 and 4.4
consumed 3647.12 µJ and 39.73 µJ of energy, correspondingly. These algorithms,
however, run on resource-wealthy cluster leader motes that can manage such a con-
sumption of energy. The dissipation of energy by Algorithm 4.3 was 1570.96 µJ.
Nevertheless, this energy is merely spent by doubtful cluster member mote for on
the spot confirmation procedure. Similarly, Algorithms 4.1, 5.2, and 5.3 consumed
4039.91, 38.67, and 40.02 µJ energy. Algorithm 4.1 consumed higher amount of
energy as it involves the transmission of the abnormality agent. This energy con-
sumption is, however, manageable by resource-rich cluster leader motes. The energy
consumption results are provided in Table4.3 [1].

http://dx.doi.org/10.1007/978-981-10-7467-7_3
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4.4.3 Comparative Study and Discussion

The abnormality identification and confirmation system is contrasted with three
relatively latest associated techniques presented by Ketel [11], Eludiora and col-
leagues [12], and Khanum and colleagues [13]. As discussed in Sect. 2.2.2.5, these
schemes have been chosen due to the similarity of the use of agent technology for
abnormality/intrusion/attack identification in networks. It is pertinent to mention
that the job of the abnormality confirmation agent in abnormality identification and
confirmation system is to verify that the abnormalities are caused on the spot or
in transition unlike the work presented by Wagner [14] which assumes a secure
link among a sensor mote and BS. Therefore, no comparison of our work can be
made with this secure aggregation technique. However, our abnormality identifica-
tion and confirmation system can be used in conjunction with theWagner’s approach
to achieve more reliable functionality of sensor networks. It is pertinent to note that
the primary contribution of this study is not to improve the detection accuracy, but
to identify abnormalities caused due to the different nature of faults and attacks, in
addition to on-the-spot confirmation of doubtful motes and optimization of agent
dispatch. However, a fuzzy logic-established cross-layer abnormality identification
technique has been presented in Chap. 5 which increases the detection accuracy and
that work has been compared with the related abnormality identification schemes
(see Sect. 5.7).

The comparison has been made in the following six aspects: (i) role of the agent,
(ii) nature of identified abnormalities, (iii) agents per mote, (iv) identification time
complexity, (v) homogeneous or heterogeneous nature of sensor network, and (vi)
agent dispatch optimization. In the system, the agents are mobile and solitary agent
per mote is sent for on-the-spot confirmation of the doubtful conduct of a cluster
member mote by using the resources of the mote. On the other hand, the scheme
presented by Ketel [11] employs three agents, namely static, mobile, and nodal
agents, for the abnormality identification procedure. The technique put forwarded
by Eludiora et al. [12] employs an agent for the inter-BS regulatory interaction.
Correspondingly, theworkbyKhanumandcolleagues [13] employs two static agents,
namely management and coordination, and an agent that is mobile and employed
to perform the abnormality identification procedure. Both Khanum et al. [13] and
Ketel [11] used three agents for abnormality identification. The usage of numerous
agents not only surges the cost of computation, but it also needs added calculation
for inter-agent interaction. The usage of numerous agents also surges the interaction
and computation workload of a network.

An imperative variance among the system and other techniques is communication
of an agent by a specific kind of mote. In the system, an agent is only sent by resource
wide motes (i.e., by cluster leader motes) and obtained by cluster member motes in
comparison to other techniques, where agents are sent by all motes. This method
of other techniques can rapidly consume the resources of energy of member motes.
In contrast, the member motes in the system obtain the agent only for on-the-spot
confirmation procedure (i.e., not very frequently). This tactic puts the minimum

http://dx.doi.org/10.1007/978-981-10-7467-7_2
http://dx.doi.org/10.1007/978-981-10-7467-7_5
http://dx.doi.org/10.1007/978-981-10-7467-7_5
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load on the resource-constrained member motes. Moreover, the system does not
facilitate the movement of agent among cluster member motes (i.e., among non-
cluster leader motes inside or outside). This policy successfully uses total resources
of network without refuting the job of the agent in the abnormality identification and
confirmation system.

The abnormalities identified in the studies carried out by Ketel [11] and Eludiora
and colleagues [12] are DoS attack-based and mote abnormalities, correspondingly.
The technique studied by Khanum et al [13] only identifies reading abnormalities. In
contrast, the system can discover numerous natures of first-order abnormalities that
are produced by denial-of-sleep threat, exhaustion of battery, and other attacks. The
complexity of detection of the technique put forwarded by Ketel [11] cannot be com-
puted, because it is a high-level technique and no implementation (or algorithmic)
descriptions of the abnormality identification procedure are given. The abnormal-
ity identification complexity of Eludiora et al. [12] technique is O(n2) [12]. The
technique by Khanum et al. [13] and system discovers abnormalities within O(n)

time. Moreover, the system is appropriate for networks with heterogeneous nature
of motes.

Moreover, not any among existing techniques has solved the problem of opti-
mization of agent transmission [11–13]. The system improves the procedure of agent
transmission by taking into account the past and present occurrences of the abnormal
observations. A comparative summary of the techniques is given in Table4.4 [1].

Table 4.4 Comparison summary: c© Academy Publisher, reprinted from Usman et al. [15]

Technique/system Agent role Abnormalities Agents/mote Complexity of
detection

Ketel [11] Abnormality
information
collection

Mote
abnormalities
through
neighbor
monitoring

3 Not applicable

Eludiora et al. [12] Inter-BS control
communication

Abnormalities
caused by DoS
attack

1 O(n2)

Khanum et al. [13] Local
abnormality

Sensor reading
abnormalities

3 O(n)

The system On-the-spot
confirmation

Denial-of-sleep
and resource
exhaustion
attacks along
with mote faults

1 O(n)
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4.5 Summary

The algorithm, presented in this chapter, maximizes the use of synchronized resource
management scheme-based observations and defines an association among features
of interest to detect abnormalities occur due to on-the-spot attacks or faults, resource
exhaustion attacks, attacks on the resources of motes, and denial-of-sleep attacks.
This chapter has also addressed the third research question and satisfied the corre-
sponding third requirement by proposing twomethods, namely 2-sigma andweighted
sum, for abnormality confirmation agent transmission optimization. The former
method defines the curtailment regions on underlying probability distributions to cur-
tail transmission of abnormality confirmation agents, whereas in the latter method,
the cluster leader mote considers both the current and anomalous behaviors of the
cluster member sensor motes in order to compute the abnormality confirmation agent
transmission score and consequently transmitting abnormality confirmation agents
to carry out the job of on-the-spot confirmation.

The performance of the algorithms has been thoroughly investigated in terms
of a complexity analysis, formal modeling and analysis, a simulation study, imple-
mentation on a real mote, and a comparison study. The outcomes have indicated
that the first-order abnormality identification algorithm can discover the occurrence
of numerous first order abnormalities because of the denial-of-sleep attack, resource
exhaustion attack, and errors on motes with the accuracy between 97.80 and 99.20%.
Similarly, the 2-sigma and weighted-sum abnormality confirmation agent transmis-
sion optimization algorithms reduced the abnormality confirmation agent transmis-
sion overhead by as much as 29–34% and 42–52%, correspondingly, unlike related
schemes which have not considered the optimization of agent transmission [11–13].
The implementation on a real mote advocated the suitability of the algorithms for
low-resource sensor motes. Finally, the comparative study has demonstrated that
the system can detect denial-of-sleep and resource exhaustion attacks and errors on
motes with detection complexity O(n), dissimilar to related techniques presented
by Eludiora et al. [12] and Khanum et al. [13] which can detect DoS attack and
sensor reading abnormalities with the detection complexity of O(n2) and O(n),
correspondingly.

A scheme for cross-layer abnormality identification and abnormality confirmation
optimization has been introduced in the next chapter.

4.6 Bibliographic Notes

The notion of the first-order anomalies was elucidated in [1]. The concept of 2-
sigma optimization was presented in [2]. The idea of weighted-sum optimization
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methodwas introduced in [1]. The simulation study results and analyseswere initially
reported in [1].
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Chapter 5
Cross-Layer Identification and Transmission
of Agent Using Fuzzy Logic

5.1 Introduction

As highlighted in the preceding chapters, themotes and their transmitted data are sus-
ceptible to on-the-spot and in transmission abnormalities. An agent-enabled abnor-
mality identification technique in such scenarios not only identifies abnormalities
in a smart home, but also provides a mechanized service to confirm the origin of
abnormalities prior to informing an administrator regarding the abnormalities. The
community of researchers has also studied other roles of agents in the abnormality
identification applications for sensor networks [1–3]. These roles include arbitrary
specimen collection of network traffic anddistribution of networkmanagement statis-
tics. Previous studies, however, do not take into account the state of the connection
among interaction motes prior to the dispatch of agents. A low-quality state of com-
munication link might initiate faults in code or data of agent during communication
that might eventually disturb its allocated functionality.

The past agent-enabled abnormality identification techniques have identified crisp
data boundaries to illustrate the motes behavior [1–3]. This may trigger needless
alarms in cases when received data values stay closer to the boundaries of the normal
profile. For instance, take an example of the smart home situation, where a mote
is nominated to detect and transmit the apartment temperature. The usual conduct
of the mote is bounded with the [14 ◦C, 21 ◦C] closed interval. In this situation,
any value near to 14 ◦C or 21 ◦C, such as 13.9 ◦C or 21.2 ◦C, will trigger a needless
alarm for a user. Fuzzy logic may be helpful in such cases to set soft limits for
related choice making [4]. An abnormality identification technique, that embodies
the conduct of motes merely using fuzzy logic, is incapable to deliberate randomness
of underlying data to define usual conduct of motes. Moreover, the existing agent-
enabled abnormality identification techniques have also not taken into account the
state of the communication link for both the abnormality identification and agent
transmission [1–3].

© Springer Nature Singapore Pte Ltd. 2018
M. Usman et al.,Mobile Agent-Based Anomaly Detection
and Verification System for Smart Home Sensor Networks,
https://doi.org/10.1007/978-981-10-7467-7_5
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To tackle the above-cited shortcomings, this chapter has presented an agent-
enabled cross-layer abnormality identification technique. The presented technique
relies on statistical processes that take into account the stochastic inconsistency in
the data to identify three zones, viz. usual, tolerance, and abnormal, on a feature
space that is formed on cross-layer features. The usual zone describes usual con-
duct of a mote. The tolerance zone is identified to handle measurements that lie
near to the usual zone. The technique reduces trust count of a mote if a measure-
ment frommote stays inside the tolerance zone, and the administrator will merely be
informedwhen the level of trust decreases under an already defined bound. The agent
is sent for on-the-spot confirmation of the mote to confirm the origin of abnormali-
ties, only if a measurement stays in the abnormal zone or trust value approaches the
minor limit. The lenient bounds between the abnormal and tolerance zones and fuzzy
logic-enabled rule-base are formulated to identify cross-layer abnormalities and to
efficiently send agents. The presented technique is applied on mote-based test bed,
and experiment outcomes show its capability to identify cross-layer abnormalities
having higher accuracy and increase the life of network.

5.2 Network Model

The network is supposed to be a digraph that is described as G = (V, E), here V
denotes vertices (i.e., motes) and E represents edges (i.e., interaction channels) in
smart home. Motes V =

⋃3
i=1 Vi form smart home, here V1 is a top-level mote that

could be a desktop or a laptop; it acts as a network chief, and interconnected with
m resource-extensive cluster leader motes, i.e., V2 = v1, v2, ..., vm . The motes V3 =⋃m

j=1 V3 j formm clusters, here V3 j = v j , s j1, s j2, ..., s jk . The notation V3 j represents
the jth cluster inside a network, v j denotes the cluster leader mote in that particular
cluster, and k represents member motes within that cluster. The mote sets cardinality
should hold the relation |V1| ≤ |V2| ≤ |V3| to create a hierarchical smart home sensor
network, where V1, V2, and V3 are the upper, middle, and leaf (lower) level motes,
correspondingly.

The motes that belong to the mote types, namely V2 and V3 are IEEE 802.15.4-
compliant MICAz sensors. V2 kind of motes are resource-extensive, as they have
supplementary memory and possess continued supply of power. In contrast, the
motes, viz. V3 have minimal battery and memory assets. These motes are positioned
to sense their vicinity, save the observations and status of battery in memory for on
the spot confirmation procedure, and then send those observations to the associated
V2 typemote. The V2 kind ofmotes identify cross-layer abnormalities on the obtained
packets and send agents for on-the-spot confirmation of the mote after taking into
account the state of the communication link.
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5.3 Cross-Layer Abnormality Identification Module
Architecture

EveryV2 typemote is armedwith a cross-layer abnormality identificationmodule that
identifies cross-layer abnormalities and alsodoes the jobof transmissionof agent after
taking into account the state of the communication channel. Cross-layer abnormality
identificationmodule has three elements, viz. expert (cross-layer) system , controlling
unit, and mobile agent, as shown in Fig. 5.1 [5].

Controlling unit works as a controller within intra-module and among inter-
module elements to support the abnormality identification and agent transmission
procedures. Controlling unit gets packets from V3 motes and forwards those pack-
ets to an element, namely cross-layer expert system, that carries out the jobs of
abnormality identification and agent transmission, and transmits back the outcome
of controlling unit. The typical sensed data, that is, without abnormality, is sent to
aggregation unit, that saves it for a predetermined amount of time before sending
it to V1 mote for the next necessary action. If the measurement is found abnormal,
controlling unit transmits an agent to perform on-the-spot confirmation of V3 mote
to discover the origin of the abnormalities.

The agent employs received values of past packets to perform the job of
on-the-spot confirmation on V3 mote. The agent then carries out a comparison among
saved data of the sensed readings and battery status with that of data carried by agent
to execute the job of on-the-spot confirmation. If data is matched, then V3 mote is
assumed to be abnormality free. Else, the abnormal position of the mote is commu-

Cross-layer crisp observations
             from V3 nodes

Inference 
Scheme

tin
U

noitagergg
A

Cross-Layer
Rule-Base

noitacifizzuF

noitacifizzufe
D

Cross-layer expert system

Mobile
Agent

Controlling
Unit

Cross-layer anomaly detection module

Coordination 
with V2 nodes

To V1
node

To V3
nodes

Fig. 5.1 Cross-layer abnormality identification module architecture: c© 2015 IEEE. Reprinted,
with permission, from Usman et al. [5]
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nicated to the associated V2 mote. For more description of on-the-spot confirmation
procedure, readers are referred to Sect. 3.5.3.

A fuzzy scheme fuzzifies data of crisp nature into corresponding fuzzy values and
computes them by employing a rules set to get fuzzy nature of data [6]. Then fuzzy
data is converted back to get a single (crisp) outcome that initiates the already defined
action execution. The expert system then gets cross-layer (crisp) features data from
coordinator and fuzzifies data by employing functions, namelymembership functions
discussed in Sect. 5.4.2. The fuzzified data is then employed for the decision making
regarding agent transmission and cross-layer abnormality identification, as illustrated
in Sect. 5.4.3. Lastly, the unit, viz. defuzzification defuzzifies the output by using a
method, namely maximum, that is, by choosing the data value that has the highest
membership value.

5.4 The Proposed Scheme

This section first discusses cross-layer feature set which is employed for abnormality
identification and abnormality confirmation agent transmission decision making.
This is followed by an elucidation of the regions computation method. Finally, the
initial arrangement of the cross-layer rule-base is elucidated in detail.

5.4.1 Cross-Layer Feature Set

The conduct of V3, that is, IEEE 802.15.4-acquiescent MICAz, mote is formalized
by features of mote and communication link. The values of the mote features are sent
by V3 motes to their associated V2 motes. Other features comprises of Battery Status
(BS) and Sensor Reading (SR). The SR might comprise of observations of motion,
temperature, and pressure detection sensors.

The state of communication channel is formalized on the basis of three commu-
nication link features, viz. Received Signal Strength Indicator (RSSI), Packet Error
Rate (PER), and Link Quality Indicator (LQI) for making decisions on agent trans-
mission and abnormality identification. The communication link features’ values are
obtained by V2 mote from obtained data of V3 mote. The (MICAz) mote works on
2.4 GHZ radio frequency [7]. Its data rate is 250 Kbps, and range of adaptive trans-
mission power is −25 ∼ 0 dBm. The transceiver chip (CC2420 RF) calculates the
values of average correlation (CORR) and RSSI of every obtained data packet to
calculate the value of LQI feature. The CORR value provides the raw information of
communication link inside the [8, 9] closed interval, where 50 denotes the worst and
110 represents the best case values. This research has treated LQI = CORR to cal-
culate the value of LQI as suggested by Tang et al. [7]. This indicates that the motes
necessitate not to carry out any added calculation in order to calculate the RSSI and
LQI values to make agent transmission and abnormality identification decisions.

http://dx.doi.org/10.1007/978-981-10-7467-7_3
http://dx.doi.org/10.1007/978-981-10-7467-7_5
http://dx.doi.org/10.1007/978-981-10-7467-7_5
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The PER values are imperative for the accurate execution of on-the-spot confir-
mation procedure, because the SR and BS values acquired from received packets are
employed by the confirmation procedure. The ignorance of errors in obtained packet
may result in incorrect outcome of on the spot confirmation procedure. Hence, only
those data packets that clear the 16-bit CRC are assumed to be collected [7]. The
value of PER is calculated as count of collected packets over entire sent packets.

5.4.2 Regions Computation

The restricted energy resource of motes requires cautious transmission of agents to
perform the function of on-the-spot confirmation. Therefore, the cross-layer abnor-
mality identification module divides the feature space of each feature of V3 motes
into three zones, viz. usual, tolerance, and abnormal. The usual zone sets the usual
conduct of motes. If values of features of collected packets are not inside the usual
zone, however, in its vicinity, then it might not be adequate to instantly send an agent
to perform on-the-spot confirmation procedure because of energy expensive trans-
mission operation [10]. The abnormality identification module treats this zone as a
tolerance zone and decreases the value of trust of V3 mote after getting the packets
having measurements in tolerance zone. An agent is sent when V2 mote loses trust on
V3 mote to some extent. Packets that have measurements outer than tolerance zone
are considered as abnormal by the abnormality identification module, and an agent
is instantly sent to perform its allocated job. The procedure for zones computation is
illustrated below.

Formally, consider X be a Universe of Discourse (UoD), denoting feature space
of one V3 mote feature, here X = {N , T, A}. The (fuzzy) numbers, namely N , T , and
A represent usual, tolerance, and abnormal zones, correspondingly in X UoD. The
fuzzy number domains are outlined below.

N = [c∗, d∗]
T = [a∗, c∗] ⋃ [d∗, f ∗]
A = [−∞, b∗] ⋃ [e∗,+∞]
In the above definitions, a∗ = a ± sl , b∗ = b ± Al

r , c
∗ = c ± (s/

√
n)l , d∗ =

d ± (s/
√
n)r , e∗ = e ± Ar

r , and f ∗ = f ± sr , and the parameters a∗ to f ∗ must
follow the association f ∗ ≥ e∗ ≥ d∗ ≥ c∗ ≥ b∗ ≥ a∗ to outline the fuzzy numbers
domains. The notation s denotes the standard deviation of n trial measurements that
are employed to calculate the zones. The symbol Ar represents the abnormal zone
limit. The superscripts r and l do not show the power, in fact these are right-side and
left-side parameters values on horizontal axis.The left parameter number is computed
by the subtraction operation, whereas the right parameter number is calculated by the
addition operation of the statistic (computed by a statistical process) from or to the
value of mean. The a to f variables are custom tuning variables that are employed
to tune parameter values to update the calculated zones. The adjustment variable
values are not dependent on the parameter values that are computed using statistical
methods.
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The limit values of domains are computed by performing the statistical calcula-
tions on n sampled measurements. The usual zone that is outlined by N is calculated
using standard deviation of the mean value of n measurements, i.e., s/

√
n. Then the

left and right sides of the mean (x) along the x-axis are bounded by the values c∗ =
c ± (s/

√
n)l and d∗ = d ± (s/

√
n)r , respectively, to outline the usual conduct of V3

mote.
Correspondingly, the limits of the tolerance zone, outlined by T , are calculated by

computation of s on n measurements. On the basis of this calculation, the limits [d∗
= d ± (s/

√
n)r , f ∗ = f ± sr ] and [a∗ = a ± sl , c∗ = c± (s/

√
n)l] outline the right

and left tolerance zones, correspondingly. Lastly, the abnormal region is computed
using the following relation.

Al
r = (s/

√
n)l + sl/2 (5.1)

Ar
r = (s/

√
n)r + sr/2 (5.2)

Above relations outline the upper limit abnormal zone and lower limit of right abnor-
mal zones, correspondingly. The limits [e∗ = e± Ar

r , +∞) and (−∞, b∗ = b± Al
r ]

outline the right and left abnormal zones domains, correspondingly, on the basis of
above-cited calculations, as illustrated in Fig. 5.2 [5].

The membership function for N can be computed as

MN (x) =
{
1, c∗ < x < d∗
0, x ≤ c∗, x ≤ d∗ (5.3)

Similarly, the membership function for T is defined as

MT (x) =

⎧
⎪⎪⎨

⎪⎪⎩

1, x = c∗, x = d∗
(x − a∗)/(c∗ − a∗), a∗ ≤ x ≤ c∗
( f ∗ − x)/( f ∗ − d∗), d∗ ≤ x ≤ f ∗
0, x < a∗, x > f ∗, c∗ < x < d∗

(5.4)

Fig. 5.2 Membership
functions: c© 2015 IEEE.
Reprinted, with permission,
from Usman et al. [5]
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Lastly, the membership function for A is calculated by

MA(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1, x < a∗, x > f ∗
(b∗ − x)/(b∗ − a∗), a∗ ≤ x ≤ b∗
(x − e∗)/( f ∗ − e∗), e∗ ≤ x ≤ f ∗
0, b∗ < x < e∗

(5.5)

The N , T , and A fuzzy number membership functions are illustrated in Fig. 5.2.
The N is based on membership function with crisp values. Note that this is a distinct
situation of membership functions. The design characteristics are selected to enable
the system to decrease trust count of V3 mote immediately after falling of cross-
layer measurements in zones computed by T , though values are nearer to frontier of
N . An example is provided below to show the calculation of parameter values and
subsequently outline the zones.

Example 1 Let, for instance, a situation where a V3 mote senses its vicinity and
intelligence the readings of temperature to corresponding V2 mote. Consider X be a
UoD for temperature readings, n = 51, x = 21.11, s = 3.47, and a to f = 0. This
infers s/

√
n = 0.47. Therefore, the usual zone can outlined as [c∗ = c ± (s/

√
n)l =

19.62, d∗ = d ± (s/
√
n)r = 20.58]. Next, the tolerance zones are demarked as [a∗ =

a ± sl = 16.71, c∗ = c ± (s/
√
n)l] = 19.62] and [d∗ = d ± (s/

√
n)r = 20.58, f ∗ =

f ± sr = 23.49]. Lastly, the abnormal zones are calculated as (−∞, b∗ = b ± Al
r =

18.17] and [e∗ = e ± Ar
r = 22.03, ∞). Tuning variable values (i.e., a to f ) are fixed

as 0. However, an administrator can set numbers to recompute the calculated zones
in practice. Moreover, membership values could be allocated by employing relations
(5.3) to (5.5).

5.4.3 Cross-Layer Rule-Base

The system rule-base has cross-layer features’ rules that execute the obtained network
traffic for decision making about agent transmission and abnormality identification.
The rule-base is comprises of IF antecedent(s), THEN consequent(s) rules, here
antecedents are based on five input linguistic (i.e., cross-layer features) variables,
viz. Battery Status (BS), Sensor Reading (SR), Packet Error Rate (PER), Received
Signal Strength Indicator (RSSI ), and Link Quality Indicator (LQI ). These vari-
ables are associated with a logical operator: AND. Every input linguistic variable
comprises of three values, namely A, T , and N , in its term-set. It is important to
observe that the term-set scale may be adjusted according to the choice of user to
adjust the system performance.

The resultant (i.e., the output linguistic variable representedbyD) has three values,
viz. D1, D2, and D3, where D1 represents the outcome of the accumulated data for
situation where obtained data is usual, D2 decrements the value of trust, and finally,
D3 transmits the agent to carry out on-the-spot confirmation. The D1, D2, and D3

decisions are based on triangular-shaped functions that are defined by three values
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Table 5.1 Cross-layer rule-base: c© 2015 IEEE. Reprinted, with permission, from Usman et al. [5]

Rule no. SR BS LQI RSSI PER D

1 NSR NBS NLQI NRSSI NPER D1

2 TSR NBS NLQI NRSSI NPER D2

3 ASR NBS NLQI NRSSI NPER D3

4 NSR TBS NLQI NRSSI NPER D2

. . . . . . .

. . . . . . .

. . . . . . .

242 TSR ABS ALQI ARSSI APER D3

243 ASR ABS ALQI ARSSI APER D3

(tr , tm , tl), where tr , tm , and tl are the right, middle, and left values on horizontal
axis. The decision variable parameters have following values: D1 = (0, 0.2, 0.4), D2

= (0.3, 0.5, 0.7), and D3 = (0.6, 0.8, 1). A key design aspect of rule-base is rules
perform the D3 action in the case when merely solitary feature value is abnormal.
The initial rule syntax, as an example, is shown below.

(SR = NSR) ∧ (BS = NBS) ∧ (LQI = NLQI ) ∧ (RSSI = NRSSI ) ∧ (PER =
NPER) → D = D1

Conceptually, in the ancestor segment of the above-cited rule, the NSR , NBS , NLQI ,
NRSSI , and NPER are the values possessed by input linguistic variables, namely SR,
BS, LQI , RSSI , and PER, correspondingly. Consequent resultant segment facil-
itates accumulation of data. Input linguistic variables are 5 in presented techniques
and every variable could possess 3 values. Therefore, entire rules, with every likely
combination, are 243. The generic rule-base structure is provided in Table5.1 [5].

5.5 Algorithm and Analysis

Thealgorithmexecutes onV2 motes, that are resource rich, after receiving the network
traffic from V3 motes. The algorithm comprises of two procedures, viz. Initialization
andMain. The former is accountable for the calculation of the zones. It is initially run
at the system deployment time and thereafter runs only if user aims to recalculate the
zones and rule-base update. It takes the sampled measurement values and value of
n variable as input to calculate x , (s/

√
n)l , (s/

√
n)r , sl , sr , Al

r , and Ar
r parameters.

The zone is then determined using these numbers, and membership functions are
computed by using relations (6.3) to (6.5). A user-set empirical rule-base is produced
next to running initial phase.

The later procedure carries out the tasks of agent transmission and abnormality
identification by using the rule-base. The phase runs after obtaining each packet
value from V3 motes. In this stage, the abnormality identification module fetches the
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crisp values of features, viz. BS, SR, RSSI , and LQI , from the obtained packets
and also calculates the PER value. Then, these numbers are fuzzified by employing
membership functions that are outlined in (6.3) to (6.5), and further executed by the
rule-base. Next, the process of defuzzification of (decision) variable is carried out by
employing the maximum method, to perform actions, viz. accumulation of reading,
decrease in the value of trust of V3 mote, or agent transmission. The procedure
pseudocode is described Algorithm 5.1 [5].

Algorithm 5.1 Cross-Layer Abnormality Identification and Agent Transmission
Initialization Procedure

Require: n sampled measurements, n value
Ensure: Membership functions
1: for SR, BS, LQI , RSSI , PER do
2: Calculate: Eset = { E(1), E(2), E(3), E(4), E(5), E(6), E(7)} {//E(1) = x , E(2) = sl ,

E(3) = sr , E(4) = (s/
√
n)l , E(5) = (s/

√
n)r E(6) = Al

r , E(7) = Ar
r}

3: Est Reg(Eset) {//Compute zones for every feature}
4: ConstructMeb MN (x), MT (x), MA(x) {//Build membership functions of every feature}
5: end for

Main procedure
Require: Dat Pkt , RlBs {//data packet and cross-layer rule-base}
Ensure: Accumulate SR and save SR BS LQI , RSSI , PER, NewTrust , or transmit MA
1: for each Dat Pkt do
2: GetVal(SR, BS LQI , RSSI , PER)
3: Fuzzify: Fuzzset = { f uzz(SR), f uzz(BS), f uzz(LQI ), f uzz(RSSI ), f uzz(PER)}

{//using (6.3) to (6.5) for every feature}
4: for Fuzzset = { f uzz(SR), f uzz(BS), f uzz(LQI ), f uzz(RSSI ), f uzz(PER)} do
5: Eval RlBs(Fuzzset) {//Evaluate rule-base}
6: end for
7: Def uzzDes(D1, D2, D3) {// Defuzzify decision}
8: if D == D1 then {//checking decision}
9: Agg(SR)∧ Str(SR, BS, LQI , RSSI , PER) {//accumulate SR and save values for every

feature}
10: else if D == D2 then {//checking decision}
11: DecrTrst (Tr ) {Decrease trust value}
12: else
13: TrnsmtMA {Send agent}
14: end if
15: end for

5.5.1 Complexity Analysis

This part of the chapter provides the space and time complexities of the algorithm.

Theorem 5.1 (i) The space complexity for Procedure 1 of the algorithm is nl[i] and
(ii) Procedure is nl[ j].
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Proof (i) V2 mote takes constant memory spaces C33 to C39 for storing E(1) to
E(7) values, respectively, for a cross-layer feature. Similarly, the V2 type mote takes
memory space C40 to store the values of an estimated region and C41 space to store
the values of a constructed membership function of the feature. Considering l[i] as
the total memory space taken by a single cross-layer feature to execute Phase 1 (i.e.,
Initialization Procedure) of Algorithm 5.1, the memory space taken by n features is
nl[i].

(ii) The V2 type mote takes constant space C42 to store the value of a cross-layer
feature to perform an abnormality identification and abnormality confirmation agent
transmission decision. The V2 type mote takes memory spaces C43, C44, C45 to store
a fuzzified value, relevant rules in the rule-base, and a dufuzzified decision of a cross-
layer feature. Let l[ ja] = C42, C31, C44, C45 be the memory space taken by a single
cross-layer feature, then the total memory space taken by n features is nl[ ja]. The V2

type mote further takes C2, C4, C5, and C6 memory spaces to store aggregate sensed
data, trust values, and code and data of abnormality confirmation agent, respectively.
Let l[ jb] = C2, C4, C5, and C6. Thus, considering nl[ j] = l[ ja] + l[ jb], the memory
space taken by Phase 2 (i.e., Main procedure) of Algorithm 5.1 is nl[ j].
Theorem 5.2 The cost of computation of (i) Procedure 1 is O(n) and (ii) Procedure
2 is O(n2).

Proof (i) The procedure of calculating the statistical parameter values, zone compu-
tation, and calculation of membership functions consumes constant time for every
job for n features. Therefore, taking n(1 + 1 + 1) as overall complexity, the cost is
O(n).

(ii) Procedure 2 consumes constant time in order to carry out every jobs, viz.
receiving cross-layer feature values from obtained packets, defuzzification, fuzzifi-
cation, and decision making on n number of features jobs. Finally, time n consumed
by Procedure 2 to execute n rules. Therefore, the computation complexity is O(n2).

Observe that O(n2) represents a larger complexity than O(n) in the proof of
Theorem 5.1 due to the reason that the Procedure 2 involves the execution of rule-
base, that is a processing intensive task in comparison with other jobs within the
algorithm.

5.6 Formal Modeling and Analysis

The algorithmic specifications of the proposed cross-layer abnormality identification
and abnormality confirmation agent transmission algorithm are first formally defined
in this section. The functionality of the algorithm is then formally characterized and
analyzed. Cross-layer model: The unified Petri net model, (PNc), is a 5-tuple net:
PNc = (Pc, Tc, Fc, Wc, (Mc)0), where Pc = p42, p42, ..., p51 and Tc = t52, t53, ...,
t67 are non-empty, finite, and disjoint sets of places and transitions, respectively.
Fc = (p42, t52), (p42, t53), (p42, t54), (p42, t55), (p42, t56), (p42, t57), (p52, t43), (p53,
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t44), (p54, t45), (p55, t46), (p56, t4), (p57, t48), (p43, t58), (p44, t59), (p45, t60), (p46, t61),
(p47, t62), (p48, t63), (t58, p49), (t59, p49), (t60, p49), (t61, p49), (t62, p49), (t63, p49),
(p49, t64), (t64, p50), (p50, t65), (t65, p51), (p51, t66), (p51, t67). The weight for all arcs
is 1 except the weight of the arc (p50, t65) which is determined through the execution
of the function g6, that is, Wc((p50, t65) = g6. Finally, (Mc)0 = p42.

The above definition formally defines the cross-layer abnormality identification
and abnormality confirmation agent transmission method, and the corresponding
formal model is depicted in Fig. 5.3. The reachability tree for Petri net model PNc
is elucidated in Appendix C. The place p42 possess solitary token while receiving a
data packet, Dat Pkt , from the V3 type mote, which enables transitions t52 to t57 to
fire the token. The transitions t52 to t57 model the process of obtaining the cross-layer
feature values from obtained Dat Pkt . The firing of the token from the place p42
yields one token in each of the places p43 to p48 and enables transitions t58 to t63
which model the fuzzification process of cross-layer features. The firing of tokens
from the places p43 to p48 then yields six token at the place p49. The six tokens
merge into a single token, which flows through the rest of the model to formulate the
workflow of the algorithm. The merged token in the place p49 enables the transition
t64 which denotes the execution of the rule-base. The fine-grained mapping of the

Fig. 5.3 Configuration panel GUI: c© 2015 IEEE. Reprinted, with permission, from Usman
et al. [5]
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cross-layer rule-base is carried out in the Petri net model depicted in the dotted line
inset in Fig. 5.3, where transitions t164 t

243
64 represent rules in the rule-base.

The firing of the token from the place p49 yields a token in the place p50 which
enables the transition t65, denoting the process of the defuzzification of the decision.
The firing of the token from the place p50 is, however, determined by the execution
of the condition g6, which models the decision defuzzification process along with
the transition t65. The decision D1 or D2 yields single token into the final place, that
is p51. In contrast, in the case of abnormal values of features, the outcome “0” of the
condition g6 will assign “0” weight to arc (p50, t65). This means the abnormal state
is not reachable in the cross-layer formal model. The condition g6 is shown below.

g6(x) =
{
1, D = D1 or D2

0, D = D3
(5.6)

On the basis of the above definition and discussion, the following results can be
derived.

Theorem 5.3 The PNc is 6-bounded.

Proof For all p ∈ PNc, M(p) = 1. The firing of the token from the place p42,
however, yields one token each in places p43 to p48. This means PNc has six tokens
at a time. Though those tokens merge at the place p49 to constitute the rest of the
workflow of the PNc, the full number of obtained tokens in PNc is 6. Thus, PNc is
6-bounded.

Theorem 5.4 Transitions in PNc are live at level 4 other than the t65 transition that
is provisionally live at 0 level.

Proof For all t ∈ T , the liveness level is 4 other than t65, which is live at 0 level iff
the condition g6 output is 6 = 1. This implies that PNc goes into the deadlock state
only when abnormalities are found in the cross-layer features. This result is valid till
the weighted arc that are based on condition exists, that is (g6, t65), which inputs the
transition which models the defuzzification process after performing the cross-layer
abnormality identification process.

5.7 Performance Evaluation

The performance is assessedwith regards consumption ofmemory and energy, detec-
tion accuracy, and estimation of processing time.

The algorithms are programmed on two MICAz and solitary laptop mote-based
test bed, denoting aminimumfunctional smart home asPOC, that is, proof of concept.
A mote was positions as V3 mote that was answerable to sense its vicinity and
sending the readings of temperature to V2 mote. The V2 mote was accountable for
abnormality identification, accumulation and then communication of accumulated
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data to V1 mote, and transmission of agent to V3 mote for on-the-spot confirmation
procedure. An application was programmed to control the abnormality identification
system.

The application has fiveworking layers. The lowermost layer (i.e., layer 5) carries
out main tasks such as vicinity temperature sensing and on-the-spot confirmation on
V3 mote, the agent transmission and abnormality identification on V2 mote, and zones
calculation and zone update on V1 mote. The next layer, that is, layer 4 takes care of
storage job through the network. On V3 mote, it saved status of battery and sensed
readings, that are employed by agent for on-the-spot confirmation procedure. Layer
4 also preserves the accumulated data, rule-base, and trust count on V2 mote. In the
end, on V1 mote, the abnormality identification outcomes that are sent by V2 mote
and an update regarding mote identities are also saved by layer 4.

Layer 3 handles communication interfaces of motes and carries out the following
important jobs: (i) the communication of sensor reading from V3 to V2 motes, (ii) the
abnormality identification message and accumulated data communication from V2

to V1 motes, (iii) the communication of agents for on-the-spot confirmation from V2

to V3 motes, and (iv) finally, the communication of on-the-spot confirmation result
from V3 to V2 motes. The upper layer, that is, layer 2 fetches the data from collected
packets and forwards them to the next upper layer, that is, layer 5, to carry out its
designated tasks. Layer 2 also generates data packets and hands over them to next
upper layer, that is, layer 3 for packet transmission. In the end, the topmost layer,
that is, layer 1 offers GUIs to handle and supervise the abnormality identification
system.

Software application has two modules, viz. configuration and report panels.
Observe that because of the modular method, the accessible choices of parameter
selection on module graphical user interfaces (GUIs) could be changed or new mod-
ules may be integrated according to user choice. Configuration panel GUI is based
on three constituents, viz. (i) mote configuration, (ii) regions (zones) computation,
and (iii) rules definition. Initial constituent is accountable for identifying class of
motes, namely pressure, temperature, and motion, and also setting motes’ identities
and their locations in smart home. The constituent provides a facility to increment or
decrement the trust level for a certain mote. It empowers users to look a house plan
to identify the position of motes in the network. The second constituent facilitates
user to calculate or tune the parameter values to define zones. The third and final
constituent provides a facility to set fuzzy rules. GUI module, namely configuration
panel, is depicted in Fig. 5.3 [5].

Report Panel module offers a service to retrieve an abnormalities report. The
report could be produced in regard to the network component identity, identity of
room, and type of mote for particular duration of time and date. Three abnormality
observations, in the inverse sequential order, are shown inside the window of report
panel. Report may be watched through Detailed View option button. Report panel
GUI is depicted in Fig. 5.4 [5].

The network traffic of 1000 rounds transmitted from V3 to V2 mote was sampled
to calculate zones and configuring expert systems for experiments. The BS, LQI,
SR, and RSSI feature values of every packet were stored, whereas the PER values
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Fig. 5.4 Report panel GUI: c© 2015 IEEE. Reprinted, with permission, from Usman et al. [5]

were calculated for each five packets. The measurements of link and mote features
are shown in Figs. 5.5 and 5.6 [5], correspondingly, and statistics of measurements
are plotted in Table5.2 [5].

The n parameter value was fixed as 50. As a result, the values shown in Table5.3
[5] were acquired to set the zones for trials. The 10% arbitrarily produced abnormal
traffic was integrated in data. Rule-base was formed by employing configuration
panel. The decrease in the trust count was fixed as 0.33 for measurements in the
tolerance zone. The agent was communicated in only those cases where the value of
trust was 0. The value of trust was reset as 1 every time it touched 0 for the sake of
trials. In practice, though, the algorithm must transmit an alarm as early as the value
of trust value will touch the lower limit.

The trials were also carried out with a well-known algorithm, namely decision
tree to offer the baseline results. The decision tree detection accuracies were 98.8%
for SR, 98.5% for BS, 98.7% for LQI , 98.4% for RSSI , and 98.7% for PER.
In contrast, the accuracy was stable at around 100% for the presented algorithms.
These results are depicted in Fig. 5.7 [5]. The presented algorithm, however, needs
the domain knowledge to adequately define rule-base to identify abnormalities with
higher accuracy.
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Fig. 5.5 Mote features: c© 2015 IEEE. Reprinted, with permission, from Usman et al. [5]
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Table 5.2 Sampled cross-layer data statistics: c© 2015 IEEE. Reprinted, with permission, from
Usman et al. [5]

Feature category Feature Mean Standard deviation

mote SR 20.08 1.43

mote BS 53.70 0.50

Link RSSI −76.65 0.33

Link LQI 106.75 1.28

Link PER 0.0033 0.001

Table 5.3 Cross-layer expert system parameters: c© 2015 IEEE. Reprinted, with permission, from
Usman et al. [5]

Features a∗ b∗ c∗ d∗ e∗ f ∗

SR 18.65 19.26 19.88 20.28 20.90 21.51

BS 53.20 53.41 53.63 53.77 53.99 54.20

RSSI −76.98 −76.83 −76.70 −76.60 −76.46 −76.32

LQI 105.47 106.02 106.57 106.93 107.48 108.03

PER 0.0020 0.0024 0.0029 0.0031 0.0036 0.0040

Fig. 5.7 Detection
accuracy: c© 2015 IEEE.
Reprinted, with permission,
from Usman et al. [5]
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The trials were conducted by using cross-layer technique (i.e., the presented tech-
nique) and bywithout using cross-layer technique (i.e., the prevailing techniques) for
the consumption of energy estimation by agent transmission procedure [1–3]. For the
existing techniques (i.e., without taking into account the state of the communication
for the decision of agent transmission), the expenditure of energy for the transmission
of agent was among 3764.32 J for 200 to 18821.60 J for 1000 packets. In contrast,
for the presented technique case, the dissipation of energy was among 1613.28 J for
200 to 10217.44 J for 1000 packets, as given in Fig. 5.8 [5]. The outcomes of trials
show the presented technique could save 42.85 to 54.29% J energy in comparison to
prevalent techniques that do not take into account state of communication channel
prior to agents dispatch.
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Fig. 5.8 Consumption of
energy: c© 2015 IEEE.
Reprinted, with permission,
from Usman et al. [5]
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Table 5.4 Memory, processing, time, and consumption of energy outcomes: c© 2015 IEEE.
Reprinted, with permission, from Usman et al. [5]

Procedure RAM (bytes) ROM (bytes) Processing time
(ms)

Consumption of
energy(µJ)

Phase 1 81 4013 12.73 113.12

Phase 2 1439 73303 282.86 2554.76

The outcomes for implementation of algorithm for usage ofmemory, consumption
of energy, and processing time are summarized in Table5.4. These outcomes yield
two findings: (i) the procedure is adequate for constrained resource motes and (ii)
the outcomes of implementation are in line with the theoretical outcomes described
in Sect. 5.5.1.

To further establish the effectiveness of the proposed abnormality identification
and confirmation system, the results have been compared with the two approaches
[11]. The first approach employs linear programming-based hyperellipsoidal formu-
lation. The second approach, on the contrary, employs hypersphere to capture the
usual behavior in higher dimensional space. The results of CESVM and QSSVM
show that these approaches can achieve the best detection performance of 99.32 and
80%, respectively. In contrast, the detection accuracy of our proposed scheme was
steady at 100%.

5.8 Discussion

The main points from the experiments are as follows. Firstly, the domain expertise is
needed to adequately setup the abnormality identification system. A simple training
or a user manual may be required to enable users to operate the developed application
software in real world settings. The user can then manage the performance of the
system using configuration and report panels.

http://dx.doi.org/10.1007/978-981-10-7467-7_5
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The technique can discover cross-layer abnormalities caused in features, namely
SR, BY , LQI , RSSI , and PER with high accuracy. The technique employs statis-
tical procedures to define abnormal, tolerated, and usual regions using fuzzy logic
to discover cross-layer abnormalities and optimize abnormality confirmation agent
transmission. This approach has resulted in high-detection accuracy (i.e., up to
100%), and it can save 54.29–42.85% energy resources in comparison to the other
techniques [1–3] that do not take into account the state of the communication link
for the dispatch of abnormality confirmation agent.

It is pertinent to observe that the non-consideration of the poor communication
link-state may result in non-reliable transmission of the abnormality identification
agent. In such situations, abnormality identification system must be able to use other
measures for instance updating a user regarding abnormalities. The related schemes
have not considered this key factor [1–3]. On the contrary, the scheme presented in
this chapter empowers the cross-layer abnormality identification module to facili-
tate other jobs like updating the user regarding abnormalities in the situations when
abnormality confirmation agent cannot be reliably transmitted due to poor commu-
nication link-state. This advocates that the proposed scheme offers more reliable and
energy efficient service to transmit abnormality confirmation agents to carry out their
designated task.

5.9 Summary

Arobust abnormality identification system is indispensable for smart homes to update
users in a timely way regarding abnormalities occur due to errors in transmission,
attacks, or mote faults. This chapter has discussed the design and implementation
rationales of an innovative cross-layer abnormality identification technique for smart
homes in order to address the first and third research questions and also to satisfy
the corresponding first and third requirements. The technique uses simple but effec-
tive statistical processes with fuzzy logic to identify cross-layer abnormalities. The
technique also provides the service to dispatch abnormality confirmation agents after
taking into account the state of the communication link.

The technique has been implemented on real mote-based test bed. The detec-
tion accuracy results of the proposed scheme have been compared with crisp-logic
classification algorithm. The outcomes show the detection accuracy of the proposed
scheme which was steady at 100%. In contrast, the detection accuracies of the crisp-
logic case were 98.8% for SR, 98.5% for BY , 98.7% for LQI , 98.4% for RSSI , and
98.7% for PER. The results also show capability of the proposed scheme to save
the energy consumed by the dispatch of the abnormality confirmation agent in poor
state of the communication link situations as high as 42.85 to 54.29% in contrast
to the other techniques. A software application has been programmed to control the
abnormality identification system in smart home that allows users to improve the
functioning of the technique.
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5.10 Bibliographic Notes

The method for cross-layer abnormality identification and transmission of agent
transmission optimization using fuzzy logic was presented in [5]. The implementa-
tion and theoretical analysis results were reported in [5].
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Chapter 6
Conclusions

The number of state-of-the-art sensor network applications has been increasing with
the passage of time due to advancements in the broader field of the information tech-
nology. This has increased the demand of the design and development of innovative
services to cater for the unique requirements of the sensor network applications. This
book has elucidated a novel service for on-the-spot confirmation of suspicious mali-
cious motes to discover the origin of abnormalities in sensor network applications,
for example, smart home and built infrastructuremonitoring. The identification of the
source of abnormalities is imperative in order to timely and effectivelymitigate them.
The internal structure and details of the abnormality identification and confirmation
system, along with a number of related methods for the abnormality identification
and agent transmission optimization, have been introduced throughout this text.

In order to conclude the discussion on the work presented in this text, this chapter
first outlines theworkpresented in this book.The limitations of the discussedmethods
and corresponding precautionary measures are discussed next. Finally, a discussion
on the possible avenues for future research is provided.

6.1 Book Outlook

To offer a big picture of the abnormality identification schemes in the literature, a
taxonomy has been formulated in Chap.2, refer to Sects. 2.1 and 2.2 [1]. This process
has not only provided the big picture of the literature, but also helped in the identifi-
cation of the problem domain. More specifically, related literature was analyzed and
broadly classified into statistical, artificial intelligence and agent-enabled, machine
learning, and other schemes. The related literature of the agents security and formal
modeling and analysis has also been reviewed to set the research context.

© Springer Nature Singapore Pte Ltd. 2018
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An agent-enabled abnormality identification and confirmation system, with its
internal architecture and algorithmic specifications, has been introduced in Chap.3,
refer to Sects. 3.4 and 3.5 [5–7]. The algorithmic specifications include features col-
lection by cluster member mote, abnormality identification by cluster leader mote,
anomalous mote confirmation, and update of status on the leader mote and BS. The
system has been designed to not only detect abnormalities which occur due to the
erroneous values of the synchronized resourcemanagement technique-based features
and temporal abnormalities that are occurred due to the arrival delay of measure-
ments, but also to perform on-the-spot confirmation of the member motes using the
information accumulated by the synchronized resource management technique.

The on-the-spot confirmation procedure is, however, time-sensitive. To examine
the temporal conduct of the system, the formalization of individual functionalities has
been, therefore, performed using formalismof Petri nets inChap.3, refer to Sects. 3.6,
3.7, and 3.8 [2]. The bottom-up amalgamation of the individual net components (i.e.,
each algorithmic specification) was then performed to make a unified model that
embodies the conduct characteristics like liveness and boundedness, and also the
global workflow of the system. The analysis has shown that the design of the system
is deadlock free and correct in order to complete its designated tasks, as there was
no deadlock state in the model, which can halt the system, and the tokens were
able to successfully reach the terminal states, denoting the correctness of the model.
The standard model was prolonged into an equivalent high category Generalized
Stochastic model to characterize and examine the time-based conduct of the system
in an extremely non-deterministic interaction environment of the sensor networks.
The Generalized Stochastic Petri Net-based conduct of the systemwas then endorsed
via experiments performedon a test bed composed of resource-limitedMICAzmotes.

A number of case scenarios have been experimented to systematically study the
time-based conduct of the system. The outcomes have demonstrated that the system
consumes 64.36% more time to carry out the job of on-the-spot confirmation when
system is also configured for the identification and confirmation of the abnormalities
occur due to attacks, dissimilar to when it is configured only for the abnormalities
occur due to errors or faults. The additional time is taken due to the overhead involved
to secure the abnormality confirmation agent by employing the water marking tech-
nique. The impact of the change in the distance on the temporal behavior of the
system has also been studied. The results have indicated that the change in the close
proximity has minimum effect on the time-based conduct of the system. This shows
that the system is largely adequate for sensor applications, viz. smart home and built
infrastructure monitoring wheremotes are typically configured in close vicinity from
each other.

The results have also indicated that the system is more adequate to periodically
data sending applications as compared to continuous data sending applications, as
continuous data sending applications store more number of observations for on the
spot confirmation procedure. As a consequence, the abnormality confirmation agent
requires more resources and time to carry out the job of on-the-spot confirmation
in continuously data sending applications as compared to periodically data sending
applications.

http://dx.doi.org/10.1007/978-981-10-7467-7_3
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A method for detecting first-order abnormalities in the synchronized resource
management technique-based observations has been elucidated in Chap.4, refer to
Sect. 4.2.1 [2]. The method has exploited statistical association among features of
normal profile to identify numerous kinds of abnormalities such as occurred due to
on-the-spot attacks or faults, exhaustion of resource threats, faulty motes, attacks on
the resources of motes, and denial-of-sleep attacks. The results have shown that the
method can identify first-order abnormalities with a detection accuracy of between
97.80 and 99.20%. It has also been observed that the method can detect more types
of abnormalities which occur due to denial-of-sleep threat, exhaustion of resource
threat, and mote faults with O(n) detection complexity, unlike related techniques
presented by Eludiora and colleagues [3] and Khanum and colleagues [4] which can
detect DoS attack and sensor reading abnormalities with the detection complexity of
O(n2) and O(n), respectively.

Two methods for the optimization of dispatch of agents were also elucidated in
Chap.4, refer to Sects. 4.2.2 and 4.2.3, to extend network lifetime. The first method,
namely two-sigma, employed two standard deviations in order to outline curtailment
zones on probability distributions of the normal profile features to optimize transmis-
sion of agents [5, 6]. On the other hand, the second method, namely weighted sum
optimization, incorporated the previous and present conducts of the mote to optimize
dispatch of agent procedure to enhance the network lifetime [7]. The experiment
outcomes have shown that the 2-sigma and weighted sum abnormality confirma-
tion agent transmission optimization methods reduced the abnormality confirmation
agent transmission overhead by as much as 29% − 34% and 42% − 52%, respec-
tively, unlike related schemes [3, 4, 8] which have overlooked the optimization of
abnormality confirmation agent dispatch.

A fuzzy logic-oriented cross-layer abnormality identification and agent transmis-
sion optimization scheme has been elucidated in Chap.5, refer to Sects. 5.3, 5.4, and
5.5 [9]. The main characteristics of the method are as follows: (i) a zone calcula-
tion technique, on the basis of statistical processes, was presented to define multiple
zones for making decisions regarding abnormality identification and agent dispatch,
(ii) a fuzzy logic-oriented rule-base was formulated and an associated method was
studied to identify the cross-layer abnormalities and dispatch an agent after taking
into account the state of communication channel, and (iii) finally, the techniques
were deployed on mote-based test bed with a developed application to assess its
performance in smart home.

The outcomes have indicated the detection accuracy of the proposed scheme was
steady at 100%.On the contrary, the identification accuracies of crisp logic, a baseline
situation, were 98.8% for SR, 98.5% for BY , 98.7% for LQI , 98.4% for RSSI , and
98.7% for PER. The experiments have also shown the ability of the technique to
save energy consumed by the abnormality confirmation agent dispatch in poor state
situations of communication link as high as 42.85 to 54.29% in contrast to the related
schemes [4, 8, 10], that do not take into account the state of the communication link
for the dispatch of abnormality confirmation agent.

In summary, this book has elucidated an agent-enabled abnormality identification
and confirmation system for sensor networks. The system, in addition to detecting

http://dx.doi.org/10.1007/978-981-10-7467-7_4
http://dx.doi.org/10.1007/978-981-10-7467-7_4
http://dx.doi.org/10.1007/978-981-10-7467-7_4
http://dx.doi.org/10.1007/978-981-10-7467-7_5
http://dx.doi.org/10.1007/978-981-10-7467-7_5
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different types of abnormalities, offers a novel service to discover the origin of
abnormalities after their identification. The temporal behavior of the system has
been thoroughly investigated to establish its aptness for applications, namely smart
home sensor network and built infrastructure monitoring. A number of methods,
namely two-sigma andweighted sum optimization, have been designed and analyzed
to effectively transmit agents in order to increase the network longevity. An agent-
enabled cross-layer abnormality identification and confirmation scheme has been
elucidated, which is capable to identify cross-layer abnormalities and effectively
dispatch agent after taking into account the state of communication link.

6.2 Limitations

The agent-enabled abnormality identification and confirmation system and related
methods, which are presented in this text, can detect different kinds of abnormalities
with high accuracy, optimize agent transmission using a number of methods, and
perform on-the-spot diagnosis of motes to identify the origin of abnormalities. The
system and associated methods, however, have a few limitations which may affect
their performance in certain situations. In most of the situations, some precautionary
measures can be taken to either entirely negate orminimize that effect. The limitations
with corresponding precautionary measures are discussed below.

The system is designed for cluster-based sensor networks. The abnormality iden-
tification module is designed to be configured on resource-redundant cluster leader
motes. At the time of abnormality identification application deployment, the system
administrator must consider the size of clusters in the network. Cluster leader motes
should have enough memory to accommodate different normal profiles of cluster
member motes. In some applications, such as smart home sensor networks, different
sensors with similar roles in the network can be grouped together to have a single
normal profile to optimize consumption of memory.

The transmission of agents in a network can cause the communication bottleneck
at cluster leader motes. This can change the temporal behavior of on-the-spot confir-
mation procedure. It is, therefore, recommended that the system administrator must
perform a worst case temporal behavior analysis at the time of abnormality identifi-
cation application deployment. That is, transmit agents to all cluster member sensor
motes and then compute the time taken from the agent transmissions to on-the-spot
confirmation results arrival at cluster leader motes. The computed time then must be
integrated into on-the-spot confirmation decision making process to accommodate
the presence of a particular number of motes at certain positions within a cluster.

Another potential limitation of the elucidated abnormality identification and con-
firmation system, like other cluster-based applications, is the possibility of the failure
of a cluster leader mote. It is, therefore, imperative that the cluster leader mote must
share the abnormality identification and confirmation related information with other
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trusted motes to avoid any such failure. The frequency of the information sharing,
however, must be carefully set by considering the available memory and energy
resources of the sensor network.

6.3 Further Research

The work carried out in this study can be extended in a number of directions.
On-the-spot confirmation usingmultihop agent itinerary: This study has focused
on a singlemote agent itinerarymodel, that is, a agent can only traverse from a cluster
leader mote to a cluster member mote and vice versa. Although single mote agent
itinerary is suitable for cluster-based applications, viz. smart home and built infras-
tructuremonitoring sensor networks, it may not be suitable for large sensor networks.
The new algorithms and protocols, therefore, could be designed to effectively per-
form on-the-spot confirmation of motes which are away from the base station. The
energy consumption by the process of the agent transmission over a multihop link
must be carefully analyzed while designing new algorithms.
Higher-order abnormality identification: This study has considered abnormali-
ties in the synchronized resource management technique-based individual features,
and their first-order joins to detect abnormalities caused by erroneous values of fea-
tures, mote faults and attacks, resource exhaustion attacks, attacks on the resources of
motes, and denial-of-sleep attacks. Another possible extension could be the exploita-
tion of high-order joins. This may result in detection of more complex and different
natures of abnormalities. The system designer, however, must consider the suitability
of the computational complexity of the detection mechanism for low resource sensor
networks while designing a high-order joins algorithm.
Contextual and spatiotemporal abnormality identification: Another interesting
future work direction could be the construction of different normal profiles for mul-
tiple kinds of motes within a sensor network. For instance, in a smart home, different
normal devices in regards to their role and hardware capability should have different
normal profiles. Not only the contextual information of sensors, but also the spa-
tiotemporal correlation (if any) can be integrated in the normal profile of motes for
the robust abnormality identification. The resultant abnormality identification mech-
anism, however, should satisfy the hardware constraints of multiple sensors within
the network.
Mobile sensor networks and cyber-physical systems: The feasibility of utilizing
elucidated abnormality identification and on-the-spot confirmation system formobile
sensor networks and cyber-physical systems can also be investigated as a future
work. An interesting research direction could be prediction of itinerary of an agent
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in a mobile wireless sensor network by considering the past movement of motes
within the network. Similarly, the stochastic model of the system may be extended
to cyber-physical systems to verify the aptness of the system.
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Appendix A
Reachability Trees

The reachability trees for the Petri net models, namely unified formal model (refer to
Chap.4, Sect. 4.3) and cross-layer model (refer to Chap.5, Sect. 5.6), are elucidated
in this appendix. FigureA.1 depicts the reachability tree for the unified Petri net
model, PNu . The Petri net model PNu executes the first-order anomaly detection
by the cluster leader nodes through the reachable markings M62[t24, t25, t26, t27, t28〉
˜M63 and M62[t24, t25, t26, t27, t28〉̂M64, where˜M(·) and̂M(·) denote the non-terminal
and terminal states, respectively. The non-terminal state denotes the state where the
cluster leader node invokes a relevant algorithm for the anomaly verification agent
transmission optimization. The terminal state, on the other hand, denotes the state
where the cluster leader node aggregates the sensed data.

The Petri net model PNu then executes the 2-sigma anomaly verification agent
transmission optimization algorithm through the markings M62[t24, t25, t26, t27, t28〉
M63 [t31〉 M66 [t32〉̂M68, M62[t24, t25, t26, t27, t28〉 M63 [t31〉 M66 [t32〉 M69 [t34〉̂M72,
and M62[t24, t25, t26, t27, t28〉 M63 [t31〉 M66 [t32〉 M69 [t34〉 M73 [t37〉 ̂M76. The state
̂M68 denotes the normal behavior of msnq ,̂M72 represents the state of checking the

trust value of the cluster member node, and̂M76 shows the state where the cluster
leader node transmits the anomaly verification agent and anomaly alarm to the cluster
member node and the base station, respectively.

Alternatively, the Petri net model PNu executes the weighted-sum optimization
algorithm through the markings M62 [t24, t25, t26, t27, t28〉 M63 [t30〉 M65[t39, t40〉 M67

[t41〉 M70 [t46〉̂M82,M62 [t24, t25, t26, t27, t28〉 M63 [t30〉 M65[t39, t40〉 M67 [t41〉 M70 [t46〉
M83 [t51〉 ̂M64, M62 [t24, t25, t26, t27, t28〉 M63 [t30〉 M65[t39, t40〉 M67 [t41〉 M71 [t42〉
M74 [t46〉̂M82,M62 [t24, t25, t26, t27, t28〉 M63 [t30〉 M65[t39, t40〉 M67 [t41〉 M71 [t42〉 M74

[t46〉 M83 [t51〉̂M64,M62 [t24, t25, t26, t27, t28〉 M63 [t30〉 M65[t39, t40〉 M67 [t41〉 M71 [t42〉
M75 [t43〉 M77 [t46〉̂M82,M62 [t24, t25, t26, t27, t28〉 M63 [t30〉 M65[t39, t40〉 M67 [t41〉 M71

[t42〉 M75 [t43〉 M77 [t46〉 M83 [t51〉̂M64,M62 [t24, t25, t26, t27, t28〉 M63 [t30〉 M65[t39, t40〉
M67 [t41〉 M71 [t42〉 M75 [t43〉 M78 [t44〉 M79 [t46〉̂M82, M62 [t24, t25, t26, t27, t28〉 M63

[t30〉 M65[t39, t40〉 M67 [t41〉 M71 [t42〉 M75 [t43〉 M78 [t44〉 M79 [t46〉 M83 [t51〉 ̂M64,
M62 [t24, t25, t26, t27, t28〉 M63 [t30〉 M65[t39, t40〉 M67 [t41〉 M71 [t42〉 M75 [t43〉 M78
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Fig. A.1 Reachability tree for Petri net model PNu

[t44〉 M80 [t45〉 M81 [t46〉 ̂M82, and M62 [t24, t25, t26, t27, t28〉 M63 [t30〉 M65[t39, t40〉
M67 [t41〉 M71 [t42〉 M75 [t43〉 M78 [t44〉 M80 [t45〉 M81 [t46〉 M83 [t51〉̂M64 to optimize
anomaly verification agent transmission.

The cross-layer Petri net model PNc, shown in Fig.A.2, executes the cross-layer
anomaly detection and anomaly verification agent transmission optimization algo-
rithm through the markings M84 [t52, t53, t54, t55, t56, t57〉 M85, M86, M87, M88, M89,
M90 [t58, t59, t60, t61, t62, t63〉 M91 [t164, t264, ..., t24364 〉 M93 [t65〉 ̂M92 and M84 [t52, t53,
t54, t55, t56, t57〉 M85, M86, M87, M88, M89, M90 [t58, t59, t60, t61, t62, t63〉 M91 [t164, t264,
..., t24364 〉 M93 [t65〉̂M94, wherêM92 and̂M94 are terminal states which show states of
the cluster leader node to aggregate sensed data and decrement the trust value of the
cluster member node, respectively.
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Fig. A.2 Reachability tree
for Petri net model PNc
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