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PREFACE 

This book is intended to provide the practicing engineer with the necessary 
background to apply real-time theory to the design of embedded components 
and systems in order to successfully field a real-time embedded system. The 
book also is intended to provide a senior-year undergraduate or first-year grad-
uate student in electrical engineering, computer science, or related fields of 
study with a balance of fundamental theory, review of industry practice, and 
hands-on experience to prepare for a career in the real-time embedded system 
industries. Typical industries include aerospace, medical diagnostic and thera-
peutic systems, telecommunications, automotive, robotics, industrial process 
control, media systems, computer gaming, and electronic entertainment, as 
well as multimedia applications for general-purpose computing. Real-time sys-
tems have traditionally been fielded as hard real-time applications, such as digi-
tal flight control systems, antilock braking systems, and missile guidance. More 
recently, however, intense interest in soft real-time systems has arisen due to 
the quickly growing market for real-time digital media services and systems.

This updated edition adds three new chapters focused on key technology ad-
vancements in embedded systems and with wider coverage of real-time archi-
tectures. The overall focus remains the RTOS (Real-Time Operating System), 
but use of Linux for soft real-time, hybrid FPGA (Field Programmable Gate 
Array) architectures and advancements in multi-core system-on-chip (SoC), 
as well as software strategies for asymmetric and symmetric multiprocessing 
(AMP and SMP) relevant to real-time embedded systems, has been added. 
Specifically, a new Chapter 9 provides an overview of RTOS advancements, 
including AMP and SMP configurations, with a discussion of future directions 
for RTOS use in multi-core architectures, such as SoC. A new Chapter 10 is 
devoted to open source RTOS, with emphasis on FreeRTOS. A new Chapter 
11 is focused on methods to integrate embedded Linux into real-time embed-
ded systems, with emphasis on soft real-time requirements, methods to patch 
and improve the Linux kernel for predictable response, and finally best prac-
tices for implementation of real-time services and applications that make use of 
POSIX real-time extensions in the 1003.1 2013 standard. The original Chapters 
9, 10, and 11 have been preserved and are now Chapters 12 to 14, and Part 
III remains unchanged other than chapter renumbering to accommodate the 
insertion of the new chapters. 
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John Pratt, a new co-author, has contributed extensively to this edition, with 
specific focus on FreeRTOS, and brings a unique perspective to this updated 
version with his commercial mobile embedded systems expertise. 

The new Linux examples and extended coverage of Linux in this edition 
are based upon a summer version of the course Real-Time Embedded Systems 
taught at the University of Colorado, Boulder, to offer an alternative to the tra-
ditional fall course that has used the Wind River VxWorks RTOS. The summer 
course has emphasized the same hard and soft real-time theory, but practice 
has focused on using Linux to achieve predictable response for systems that 
require real-time, but where occasional missed deadlines are not catastrophic. 
For example, mobile digital media, augmented reality applications, computer 
vision and digital entertainment and interactive systems. While hard real-time 
mission critical systems are still a major concern, many emergent applications 
require predictable response and simply need to provide high-quality of ser-
vice. The use of buffering and time stamps to work ahead and provide high-
quality presentation of results is, for example, a method used in digital video 
encode, transport, and decode, where the systems software is not required to 
provide deterministic proven hard real-time processing, as has been the goal 
for the RTOS. Likewise, many systems today use best-effort or soft real-time 
embedded Linux configurations with coprocessors, either FPGA or ASIC (Ap-
plication Specific Integrated Circuits), that provide guaranteed hard real-time 
processing with hardware state machines. 

Numerous improvements and corrections have been made to the original 
edition text to improve readability and clarity based on excellent feedback by 
many undergraduate and graduate students at the University of Colorado who 
have used the original edition text since August 2006.

While it’s impossible to keep up with all the advancements related to real-
time embedded systems, we hope the reader will find the new chapters and 
expanded example material included on the DVD a useful extension to tradi-
tional cyclic executive and RTOS real-time system components and systems 
architecture. The expanded guidelines and strategies are intended to help the 
practicing engineer and to introduce advanced undergraduate and graduate 
students in computer and software engineering disciplines to design strategies 
and methods to tackle many of the challenges found in real-time embedded 
systems. This challenging engineering area continues to evolve and relies upon 
the careful validation and verification efforts of practicing engineers to ensure 
and balance safety, cost, and capabilities of these complex and critical applica-
tions on which we all depend.
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Companion Files

Companion files (figures and code listings) for this title are also available by 
contacting info@merclearning.com.

 Sam Siewert 
 December 2015
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C H A P T E R

INTRODUCTION

1
In this chapter

 ● A Brief History of Real-Time Systems
 ● A Brief History of Embedded Systems

1.1 Introduction

The concept of real-time digital computing systems is an emergent con-
cept compared to most engineering theory and practice. When requested to 
complete a task or provide a service in real time, the common understand-
ing is that this task must be done upon request and completed while the 
requester waits for the completion as an output response. If the response to 
the request is too slow, the requester may consider lack of response a fail-
ure. The concept of real-time computing is really no different. Requests for 
real-time service on a digital computing platform are most often indicated 
by asynchronous interrupts. More specifi cally, inputs that constitute a real-
time service request indicate a real-world event sensed by the system—for 
example, a new video frame has been digitized and placed in memory for 
processing. The computing platform must now process input related to the 
service request and produce an output response prior to a deadline mea-
sured relative to an event sensed earlier. The real-time digital computing 
system must produce a response upon request while the user and/or system 
waits. After the deadline established for the response, relative to the re-
quest time, the user gives up or the system fails to meet requirements if no 
response has been produced.
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A common way to defi ne real time as a noun is the time during which 
a process takes place or occurs. Used as an adjective, real-time relates to 
computer applications or processes that can respond with low bounded la-
tency to user requests. One of the best and most accurate ways to defi ne 
real time for computing systems is to clarify what is meant by correct real-
time behavior. A correct real-time system must produce a functionally (al-
gorithmically and mathematically) correct output response prior to a well-
defi ned deadline relative to the request for a service.

The concept of embedded systems has a similar and related history to 
real-time systems and is mostly a narrowing of scope to preclude general-
purpose desktop computer platforms that might be included in a real-time 
system. For example, the NASA Johnson Space Center mission control 
center includes a large number of commercial desktop workstations for 
processing of near real-time telemetry data. Often desktop real-time sys-
tems provide only soft real-time services or near real-time services rather 
than hard real-time services. Embedded systems typically provide hard 
real-time services or a mixture of hard and soft real-time services.

Again, a commonsense defi nition of embedding is helpful for under-
standing what is meant by a real-time embedded system. Embedding means 
to enclose or implant as essential or characteristic. From the viewpoint of 
computing systems, an embedded system is a special-purpose computer 
completely contained within the device it controls and not directly observ-
able by the user of the system. An embedded system performs specifi c 
predefi ned services rather than user-specifi ed functions and services as a 
general-purpose computer does.

The real-time embedded systems industry is full of specialized termi-
nology that has developed as a subset of general computing systems termi-
nology. To help you with that terminology, this book includes a glossary of 
common industry defi nitions. Although this book attempts to defi ne spe-
cialized terminology in context, on occasion the glossary can help if you 
want to read the text out of order or when the contextual defi nition is not 
immediately clear.

1.2 A Brief History of Real-Time Systems

The origin of real time comes from the recent history of process con-
trol using digital computing platforms. In fact, an early defi nitive text on 
the concept was published in 1965 [Martin65]. The concept of real time is 
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also rooted in computer simulation, where a simulation that runs at least 
as fast as the real-world physical process it models is said to run in real 
time. Many simulations must make a trade-off between running at or faster 
than real-time with less or more model fi delity. The same is true for real-
time graphical user interfaces (GUI), such as those provided by computer 
game engines. Not too much later than Martin’s 1965 text on real-time 
systems, a defi nitive paper was published that set forth the foundation for 
a mathematical defi nition of hard real-time—“Scheduling Algorithms for 
Multiprogramming in a Hard-Real-Time Environment” [Liu73]. Liu and 
Layland also defi ned the concept of soft real-time in 1973; however there 
is still no universally accepted formal defi nition of soft real-time. Numer-
ous research papers and work have been completed to defi ne QoS (Quality 
of Service) systems where systems either are occasionally allowed to miss 
deadlines or use strategies where start-up latency and buffering are used 
to allow for elasticity in real-time systems. Expanded coverage of soft real-
time concepts and use of best-effort operating systems for soft real-time 
requirements has been added to the second edition of this book in Chapter 
11 for readers working with embedded Linux and requirements not as strict 
as hard real-time, where deadlines must never be missed since by defi nition 
this means total system failure.

The concept of hard real-time systems became better understood 
based upon experience and problems noticed with fi elded systems—one of 
the most famous examples early on was the Apollo 11 lunar module descent 
guidance overload. The Apollo 11 system suffered CPU resource overload 
that threatened to cause descent guidance services to miss deadlines and al-
most resulted in aborting the fi rst landing on the Moon. During descent of 
the lunar module and use of the radar system, astronaut Buzz Aldrin notes 
a computer guidance system alarm. As recounted in the book Failure Is Not 
an Option [Kranz00], Buzz radios, “Program alarm. It’s a 1202.” Eugene 
Kranz, the mission operations director for Apollo 11, goes on to explain, 
“The alarm tells us that the computer is behind in its work. If the alarms 
continue, the guidance, navigation, and crew display updates will become 
unreliable. If the alarms are sustained, the computer could grind to a halt, 
possibly aborting the mission.” Ultimately, based upon experience with this 
overload condition gained in simulation, the decision was to press on and 
ignore the alarm—as we all know, the Eagle did land and Neil Armstrong 
did later safely set foot on the Moon. How, in general, do you know that 
a system is overloaded with respect to CPU, memory, or IO resources? 
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Clearly, it is benefi cial to maintain some resource margin when the cost of 
failure is too high to be acceptable (as was the case with the lunar lander), 
but how much margin is enough? When is it safe to continue operation de-
spite resource shortages? In some cases, the resource shortage might just 
be a temporary overload from which the system can recover and continue 
to provide service meeting design requirements. The alarm 1202 may not 
have been the root cause of the overload, and in fact some accounts point to 
alarm 1201 as a cause, but the key is that the processor overload indicated 
by the 1202 was the result of more computing than could be handled by 
required deadlines when the addition of alarm processing was added to the 
normal workload. Peter Adler gives a more detailed account for those read-
ers interested in the accurate history accounts as given by engineers who 
were directly involved [Adler 98].

Since Apollo 11, more interesting real-time problems observed in the 
fi eld have shown real-time systems design to be even more complicated 
than simply ensuring margins. For example, the Mars Pathfi nder spacecraft 
was nearly lost due to a real-time processing issue. The problem was not 
due to an overload, but rather a priority inversion causing a deadline to 
be missed despite having a reasonable CPU margin. The Pathfi nder prior-
ity inversion scenario is described in detail in Chapter 6, “Multiresource 
Services.” As you’ll see, ensuring safe, mutually exclusive access to shared 
memory can cause priority inversion. While safe access is required for func-
tional correctness, meeting response deadlines is also a requirement for 
real-time systems. A real-time system must produce functionally correct 
answers on time, before deadlines for overall system correctness. Given 
some systems development experience, most engineers are familiar with 
how to design and test a system for correct function. Furthermore, most 
hardware engineers are familiar with methods to design digital logic timing 
and verify correctness. When hardware, fi rmware, and software are com-
bined in a real-time embedded system, response timing must be designed 
and tested to ensure that the integrated system meets deadline require-
ments. This requires system-level design and test that go beyond hardware 
or software methods typically used.

As history has shown, systems that were well tested still failed to pro-
vide responses by required deadlines. How do unexpected overloads or in-
versions happen? To answer these questions, some fundamental hard real-
time theory must fi rst be understood—this is the impetus for the “System 
Resources” chapter. By the end of the fi rst section of this book, you should 
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be able to explain what happened in scenarios such as the Apollo 11 descent 
and the Mars Pathfi nder deadline overrun and how to avoid such pitfalls.

1.3 A Brief History of Embedded Systems

Embedding is a much older concept than real time. Embedded digital 
computing systems are are an essential part of any real-time embedded 
system and process that senses input to produce responses as output to ac-
tuators. The sensors and actuators are components providing IO and defi ne 
the interface between an embedded system and the rest of the system or 
application. Left with this as the defi nition of an embedded digital com-
puter, you could argue that a general-purpose workstation is an embedded 
system; after all, a mouse, keyboard, and video display provide sensor/actu-
ator-driven IO between the digital computer and a user. However, to satisfy 
the defi nition of an embedded system better, we distinguish the types of 
services provided.

A general-purpose workstation provides a platform for unspecifi ed, 
to-be determined sets of services, whereas an embedded system provides 
a well-defi ned service or set of services, such as antilock braking control. 
In general, providing general services is impractical for applications such 
as computation of  to the nth digit, payroll, or offi ce automation on an 
embedded system. Finally, the point of an embedded system is to cost-
effectively provide a more limited set of services in a larger system, such as 
an automobile, aircraft, or telecommunications switching center.

1.4 Real-Time Services

The concept of a real-time service is fundamental in real-time embed-
ded systems.

Conceptually, a real-time service provides a transformation of inputs 
to outputs in an embedded system to provide a function. For example, 
a service might provide thermal control for a subsystem by sensing tem-
perature with thermistors (temperature-sensitive resistors) to cool the sub-
system with a fan or to heat it with electric coils. The service provided in 
this example is thermal management such that the subsystem temperature 
is maintained within a set range. Many real-time embedded services are 
digital control functions and are periodic in nature. An example of a real-
time service that has a function other than digital control is digital media 
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processing. A well-known real-time digital media processing application is 
the encoding of audio for transport over a network with playback (decod-
ing) on a distant network node. When the record and playback services are 
run on two nodes and duplex transport is provided, the system provides 
voice communication services. In some sense, all computer applications are 
services, but real-time services must provide the function within time con-
straints that are defi ned by the application. In the case of digital control, 
the services must provide the function within time constraints required to 
maintain stability. In the case of voice services, the function must occur 
within time constraints so that the human ear is reasonably pleased by clear 
audio. The service itself is not a hardware, fi rmware, or software entity, but 
rather a conceptual state machine that transforms an input stream into an 
output stream with regular and reliable timing.

Listing 1.1 is a pseudo code outline of a basic service that polls an input 
interface for a specifi c input vector.

Listing 1.1: Pseudo Code for Basic Real-Time Service

void provide_service(void)
{
  if( initialize_service() == ERROR)
    exit(FAILURE_TO_INITIALIZE);
  else
    in_service = TRUE;
  while(in_service)
  {
    if(checkForEvent(EVENT_MASK) == TRUE)
    {
      read_input(input_buffer);
      output_buffer=do_service(input_buffer);
      write_output(output_buffer);
    }
  }
  shutdown_service();
}

This implementation is simple and lends itself well to a hardware state 
machine (shown in Figure 1.1). Implementing a service as a single loop-
ing state machine is often not a practical software implementation on a 
microprocessor when multiple services must share a single CPU. As more 
services are added, the loop must be maintained and all services are limited 
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Event Sensing /
STATUS=POLL

Initialization /
STATUS=START

SRVC-MODE=INITIALIZE

SRVC-MODE=ERROR

SRVC-MODE=INITIALIZE

SRVC-MODE=READY

SRVC-MODE=READY

Read /
STATUS=SAMPLE

SRVC-MODE=ENCODE

SRVC-MODE=ENCODE

Execute /
STATUS=BUSY

SRVC-MODE=TRANSFORM

SRVC-MODE=DECODE

SRVC-MODE=TRANSFORM

Write /
STATUS=COMMAND

SRVC-MODE=READY

SRVC-MODE=DECODE

SRVC-MODE=READY

FIGURE 1.1: A Simple Polling State Machine for Real-Time Services
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to a maximum rate established by the main loop period. This architecture 
for real-time services has historically been called the Main+ISR or Cyclic 
Executive design when applied to software services running on a microcon-
troller or microprocessor. Chapter 2 will describe the Cyclic Executive and 
Main+ISR system architectures in more detail. As the Executive approach 
is scaled, multiple services must check for events in a round-robin fashion. 
While one service is in the Execute state shown in Figure 1.1, the others are 
not able to continue polling, which causes signifi cant latency to be added to 
the sensing of the real-world events. So, Main+ISR works okay for systems 
with a few simple services that all operate at some basic period or multiple 
thereof in the main loop. For systems concerned only with throughput, 
polling services are acceptable and perhaps even preferable, but for real-
time services where event detection latency matters, multiple polling ser-
vices do not scale well. For large numbers of services, this approach is not a 
good option without signifi cant use of concurrent hardware state machines 
to assist main loop functions.

When a software implementation is used for multiple services on a 
single CPU, software polling is often replaced with hardware offl oad of the 
event detection and input encoding. The offl oad is most often done with 
an ADC (Analog-to-Digital Converter) and DMA (Direct Memory Access) 
engine that implements the Event Sensing state in Figure 1.1. This hard-
ware state machine then asserts an interrupt input into the CPU, which 
in turn sets a fl ag used by a scheduling state machine to indicate that a 
software data processing service should be dispatched for execution. The 
following is a pseudo code outline of a basic event-driven software service:

void provide_service(void)
{
  if( initialize_service() == ERROR)
    exit(FAILURE_TO_INITIALIZE);
  else
    in_service = TRUE;
  while(in_service)
  {
    if(waitFor(service_request_event, timeout) != TIMEOUT)
    {
      read_input(input_buffer);
      output_buffer=do_service(input_buffer);
      write_output(output_buffer);
    }
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      else post_timeout_error();
    post_service_aliveness(serviceIDSelf());
  }
  shutdown_service();
}

The preceding waitFor function is a state that the service sits in until 
a real-world event is sensed. When the event the service is tied to occurs, 
an interrupt service routine releases the software state machine so that it 
reads input, processes that input to transform it, and then writes the output 
to an actuation interface. Before entering the waitFor state, the software 
state machine fi rst initializes itself by creating resources that it needs while 
in service. For example, the service may need to reserve working memory 
for the input buffer transformation. Assuming that initialization goes well, 
the service sets a fl ag indicating that it is entering the service loop, which 
is executed indefi nitely until some outside agent terminates the service by 
setting the service fl ag to FALSE, causing the service loop to be exited. In 
the waitFor state, the service is idle until activated by a sensed event or by 
a timeout.

Timeouts are implemented using hardware interval timers that also as-
sert interrupts to the multiservice CPU. If an interval timer expires, time-
out conditions are handled by an error function because the service is nor-
mally expected to be released prior to the timeout. The events that activate 
the state machine are expected to occur on a regular interval or at least 
within some maximum period. If the service is activated from the waitFor 
state by an event, then the service reads input from the sensor interface (if 
necessary), processes that input, and produces output to an actuator inter-
face. Regardless of whether the service is activated by a timeout or a real-
world event, the service always checks in with the system health and status 
monitoring service by posting an aliveness indication. A separate service 
designed to watch all other services to ensure all services continue to oper-
ate on a maximum period can then handle cases where any of the services 
fail to continue operation.

The waitFor state is typically implemented by associating hardware 
interface interrupt assertion with software interrupt handling. If the service 
is implemented as a digital hardware Mealy/Moore SM (State Machine)  
the SM would transition from the waitFor state to an input state based 
upon clocked combinational logic and the present input vector driven from 
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a sensor ADC interface. The hardware state machine would then execute 
combinational logic and clock and latch fl ip-fl op register inputs and outputs 
until an output vector is produced and ultimately causes actuation with a 
DAC (Digital to Analog Converter). Ultimately, the state of the real world 
is polled by a hardware state machine, by a software state machine, or by 
a combination of both. Some combination of both is often the best trade-
off and is one of the most popular approaches. Implementing service data 
in software provides fl exibility so that modifi cations and upgrades can be 
made much more easily as compared to hardware modifi cation. 

Because a real-time service is triggered by a real-world event and pro-
duces a corresponding system response, how long this transformation of 
input to output takes is a key design issue. Given the broad defi nition of ser-
vice, a real-time service may be implemented with hardware, fi rmware, and/
or software components. In general, most services require an integration 
of components, including at least hardware and software. The real-world 
events are detected using sensors, often transducers and analog-to-digital 
converters, and are tied to a microprocessor interrupt with data, control, 
and status buffers. This sensor interface provides the input needed for ser-
vice processing. The processing transforms the input data associated with 
the event into a response output. The response output is most often imple-
mented as a digital-to-analog converter interface to an electromechanical 
actuator. The computed response is then output to the digital-to-analog 
interface to control some device situated in the real world. As noted, much 
of the real-time embedded theory today comes from digital control and 
process control where computing systems were embedded early on into 
vehicles and factories to provide automated control. Furthermore, digital 
control has a distinct advantage over analog because it can be programmed 
without hardware modifi cation. An analog control system, or analog com-
puter, requires rewiring and modifi cation of inductors, capacitors, and re-
sistors used in control circuitry.

Real-time digital control and process control services are periodic by 
nature. Either the system polls sensors on a periodic basis, or the sensor 
components provide digitized data on a known sampling interval with an 
interrupt generated to the controller. The periodic services in digital con-
trol systems implement the control law of a digital control system. When 
a microprocessor is dedicated to only one service, the design and imple-
mentation of services are fairly simple. In this book, we will deal with sys-
tems that include many services, many sensor interfaces, many actuator 
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interfaces, and one or more processors. Before delving into this complexity, 
let’s review the elements of a service as shown in Figure 1.2.

Input
Latency 

Context
Switch 

Latency 

Event
Sensed Interrupt Dispatch

Execution

Preemption Dispatch

ExecutionInterference

Completion 
(IO Queued)

Output
Latency 

Actuation
(IO Completion)

Time

Response Time = TimeActuation – TimeSensed 
(From Event to Response)

FIGURE 1.2 Real-Time Service Timeline

Figure 1.2 shows a typical service implemented with hardware IO com-
ponents, including analog-to-digital converter interfaces to sensors (trans-
ducers) and digital-to-analog converter interfaces to actuators. The service 
processing is often implemented with a software component running as a 
thread of execution on a microprocessor. The service thread of execution 
may be preempted while executing by the arrival of interrupts from events 
and other services. You can also implement the service processing without 
software. The service may be implemented as a hardware state machine 
with dedicated hardware processing operating in parallel with other service 
processing. Implementing service processing in a software component has 
the advantage that the service may be updated and modifi ed more easily. 
Often, after the processing or protocol related to a service is well known 
and stable, the processing can be accelerated with hardware state machines 
that either replace the software component completely in the extreme case 
or, most often, accelerate specifi c portions of the processing.

For example, a computer vision system that tracks an object in real 
time may fi lter an image, segment it, fi nd the centroid of a target image, 
and command an actuator to tilt and pan the camera to keep the target 
object in its fi eld of view. The entire image processing may be completed 
30 times per second from an input camera. The fi ltering step of process-
ing can be as simple as applying a threshold to every pixel in a 640 × 480 
image. However, applying the threshold operation with software can be 
time-consuming, so it can be accelerated by offl oading this step of the 
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processing to a state machine that applies the threshold before the input in-
terrupt is asserted. The segmentation and centroid fi nding may be harder to 
offl oad because these algorithms are still being refi ned for the system. The 
service timeline for the hardware accelerated service processing is shown 
in Figure 1.3. In Figure 1.3, interference from other services is not shown, 
but would still be possible.
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FIGURE 1.3 Real-Time Service Timeline with Hardware Acceleration

Ultimately, all real-time services may be hardware only or a mix of 
hardware and software processing in order to link events to actuations to 
monitor and control some aspect of an overall system. Finally, in both Fig-
ure 1.2 and Figure 1.3, response time is shown as being limited by the sum 
of the IO latency, context switch latency, execution time, and potential in-
terference time. Input latency comes from the time it takes sensor inputs to 
be converted into digital form and transferred over an interface into work-
ing memory. Context switch latency comes from the time it takes code to 
acknowledge an interrupt indicating data is available, to save register values 
and stack for whatever program may already be executing (preemption), 
and to restore state if needed for the service that will process the newly 
available data. Execution ideally proceeds without interruption, but if the 
system provides multiple services, then the CPU resources may be shared 
and interference from other services will increase the response time. Fi-
nally, after a service produces digital output, there will be some latency in 
the transfer from working memory to device memory and potential DAC 
conversion for actuation output. In some systems, it is possible to overlap 
IO latency with execution time, especially execution of other services dur-
ing IO latency for the current service that would otherwise leave the CPU 
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underused. Initially we will assume no overlap, but in Chapter 4, we’ll dis-
cuss design and tuning methods to exploit IO-execution overlap.

In some cases, a real-time service might simply provide an IO transfor-
mation in real time, such as a video encoder display system for a multimedia 
application. Nothing is being controlled per se as in a digital control appli-
cation. However, such systems, referred to as continuous media real-time 
applications, defi nitely have all the characteristics of a real-time service. 
Continuous media services, like digital control, require periodic services—
in the case of video, most often for frame rates of 30 or 60 frames per sec-
ond. Similarly, digital audio continuous media systems require encoding, 
processing, and decoding of audio sound at kilohertz frequencies. In gen-
eral, a real-time service may be depicted as a processing pipeline between a 
periodic source and sink, as shown in Figure 1.4. Furthermore, the pipeline 
may involve several processors and more than one IO interface. The Figure 
1.4 application simply provides video encoding, compression, transport of 
data over a network, decompression, and decoding for display. If the ser-
vices on each node in the network do not provide real-time services, the 
overall quality of the video display at the pipeline sink may have undesirable 
qualities, such as frame jitter and dropouts.  

Real-time continuous media services often include signifi cant hardware 
acceleration. For example, the pipeline depicted in Figure 1.4 might in-
clude a compression and decompression state machine rather than per-
forming compression and decompression in the software service on each 
node. Also, most continuous media processing systems include a data-plane 
and a control-plane for hardware and software components. The data-plane 
includes all elements in the real-time service pipeline, whereas the control-
plane includes non-real-time management of the pipeline through an API 
(Application Program Interface). A similar approach can be taken for the 
architecture of a digital control system that requires occasional manage-
ment. In the case of the video pipeline shown in Figure 1.4, the control API 
might allow a user to increase or decrease the frame rate. The source might 
inherently be able to encode frames at 30 fps (frames per second), but the 
frames may be decimated and retimed to 24 fps.
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FIGURE 1.4 Distributed Continuous Media Real-Time Service

So far, all the applications and service types considered have been pe-
riodic. One of the most common examples of a real-time service that is not 
periodic by nature is error-handling service. Normally a system does not have 
periodic or regular faults—if it does, the system most likely needs to be re-
placed! So, fault handling is often asynchronous. The timeline and character-
istics of an asynchronous real-time service are, however, no different from 
those already studied. In Chapter 2, “System Resources,” the characteristics 
of services will be investigated further so that different types of services can 
be better understood and designed for more optimal performance.

1.5 Real-Time Standards

The POSIX (Portable Operating Systems Interface) real-time stan-
dards have been consolidated into a single updated 1003.1 standard as 
of 2013 [POSIX 1003.1]. Originally, the real-time standards recognized 
by IEEE (Institute of Electrical and Electronic Engineers) as well as the 
Open Group were written as specifi c extensions to the POSIX base stan-
dards, including:

1. IEEE Std 2003.1b-2000: Testing specification for POSIX part 1 includ-
ing real-time extensions

2. IEEE Std 1003.13-1998: Real-time profile standard to address embed-
ded real-time applications and smaller footprint devices

3. IEEE Std 1003.1b-1993: Real-time extension



INTRODUCTION • 17

4. IEEE Std 1003.1c-1995: Threads 

5. IEEE Std 1003.1d-1999: Additional real-time extensions 

6. IEEE Std 1003.1j-2000: Advanced real-time extensions 

7. IEEE Std 1003.1q-2000: Tracing

The fi rst and one of the most signifi cant updates made to the original 
base standard for real-time systems was designated 1003.1b, which specifi es 
the API (Application Programmer Interface) that most RTOS (Real-Time 
Operating System) fully and Linux operating systems implement mostly. 
The POSIX 1003.1b extensions include defi nition of real-time operating 
system mechanisms:

1. Priority Scheduling 

2. Real-Time Signals 

3. Clocks and Timers 

4. Semaphores 

5. Message Passing 

6. Shared Memory 

7. Asynchronous and Synchronous I/O 

8. Memory Locking 

Some additional interesting real-time standards that go beyond the 
RTOS or general-purpose operating system support include:

1. DO-178B and updated DO-178C, Software Considerations in Airborne 
Systems and Equipment Certification

2. JSR-1, the Real-Time Specification for Java, recently updated by NIST 
(National Institute of Standards and Technology)

3. The TAO Real-Time CORBA (Common Object Request Broker 
Architecture) implementation

4. The IETF (Internet Engineering Task Force) RTP (Real-Time Trans-
port Protocol) and RTCP (Real-Time Control Protocol) RFC 3550

5. The IETF RTSP (Real-Time Streaming Protocol) RFC 2326
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Summary

Now that you are armed with a basic defi nition of the concept of a real-
time embedded system, we can proceed to delve into real-time theory and 
embedded resource management theory and practice. (A large number of 
specifi c terms and terminology are used in real-time embedded systems, so 
be sure to consult the complete glossary of commonly used terms at the end 
of this book.) This theory is the best place to start because it is fundamen-
tal. A good understanding of the theory is required before you can proceed 
with the more practical aspects of engineering components for design and 
implementation of a real-time embedded system.

The Exercises, Labs, and the Example projects included with this text 
on the DVD  are intended to be entertaining as well as an informative and 
valuable experience—the best way to develop expertise with real-time em-
bedded systems is to build and experiment with real systems. Although the 
Example systems can be built for a low cost, they provide a meaningful ex-
perience that can be transferred to more elaborate projects typical in indus-
try. All the Example projects presented here include a list of components, 
list of services, and a basic outline for design and implementation. They 
have all been implemented successfully numerous times by students at the 
University of Colorado. For more challenge, you may want to combine ele-
ments and mix up services from one example with another; for example, it 
is possible to place an NTSC  (National Television Systems Council) cam-
era on the grappler of the robotic arm to recognize targets for pickup with 
computer vision. A modifi cation such as this one to include a video stream 
is a nice fusion of continuous media and robotic applications that requires 
the application of digital control theory as well.

Exercises

1. Provide examples of real-time embedded systems you are familiar with 
and describe how these systems meet the common definition of real-
time and embedded.

2. Find the Liu and Layland paper and read through Section 3. Why do 
they make the assumption that all requests for services are periodic? 
Why might this be a problem with a real application?

3. Defi ne hard and soft real-time services and describe why and how they 
are different.

ON THE DVD
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C H A P T E R

SYSTEM RESOURCES

2
In this chapter

 ● Introduction
 ● Resource Analysis
 ● Real-Time Service Utility
 ● Scheduling Classes
 ● The Cyclic Executive
 ● Scheduler Concepts
 ● Real-Time Operating Systems
 ● Thread-Safe Reentrant Functions

2.1 Introduction

Real-time embedded systems must provide deterministic behavior and 
often have more rigorous time- and safety-critical system requirements 
compared to general-purpose desktop computing systems. For example, 
a satellite real-time embedded system must survive launch and the space 
environment, must be very effi cient in terms of power and mass, and must 
meet high reliability standards. Applications that provide a real-time service 
could in some cases be much simpler if they were not resource-constrained 
by system requirements typical of an embedded environment.

For example, a desktop multimedia application can provide MPEG 
(Motion Picture Experts Group) playback services on a high-end PC with 
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a high degree of quality without signifi cant specialized hardware or soft-
ware design; this type of scenario is “killing the problem with resources.” 
The resources of a desktop system often include a high throughput CPU 
(GHz clock rate and billions of instructions per second), a high bandwidth, 
low-latency bus (gigabit), a large-capacity memory system (gigabytes), and 
virtually unlimited public utility power. By comparison, an antilock braking 
system must run off the automobile’s 12-volt DC (Direct Current) power 
system, survive the under-hood thermal and vibration environment, and 
provide braking control at a reasonable consumer cost. So for most real-
time embedded systems, simply killing the problem with resources is not a 
valid option.

The engineer must instead carefully consider resource limitations, 
including power, mass, size, memory capacity, processing, and IO band-
width. Furthermore, complications of reliable operation in hazardous en-
vironments may require specialized resources, such as error detecting and 
correcting memory systems. To successfully implement real-time services 
in a system providing embedded functions, resource analysis must be com-
pleted to ensure that these services not only are functionally correct but 
also produce output on time and with high reliability and availability. Part I 
of this book, “Real-Time Embedded Theory,” provides a resource view of 
real-time embedded systems and methods to make optimal use of these 
resources. In Chapter 3, “Processing,” we will focus on how to analyze CPU 
resources. In Chapter 4, “IO Resources,” resources will be characterized 
and methods of analysis presented. Chapter 5, “Memory,” provides mem-
ory resource analysis methods. Chapter 6, “Multiresource Services,” pro-
vides an overview of how these three basic resources related to workload 
throughput relate to more fundamental resources, such as power, mass, 
and size. Chapters 2 through 6 provide the classic hard real-time view of re-
source sizing, margins, and deterministic system behavior. Chapter 7, “Soft 
Real-Time Services,” completes the resource view by presenting the latest 
concepts for soft real-time resource management, where occasional service 
deadline misses and failure to maintain resource margins are allowed. The 
second edition provides a new Chapter 11 to provide guidance on how to 
use embedded Linux as a soft real-time operating system for the soft real-
time services described in Chapter 7. 

The three fundamental resources, CPU, memory, and IO, are excellent 
places to start understanding the architecture of real-time embedded sys-
tems and how to meet design requirements and objectives. Furthermore, 
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resource analysis is critical to the hardware, fi rmware, and software design 
in a real-time embedded system. Upon completion of the entire book, you 
will also understand all system resource issues, including cost, performance, 
power usage, thermal operating ranges, and reliability. Part II, “Designing 
Real-Time Embedded Components,” provides a detailed look at the design 
of components with three new chapters in the second edition to expand 
coverage of FreeRTOS, embedded Linux, and advancements in RTOS to 
support multi-core. Part III, “Putting It All Together,” provides an over-
view of how to integrate these components into a system. However, the 
material in Part I is most critical, because a system designed around the 
wrong CPU architecture, insuffi cient memory, or IO bandwidth is sure to 
fail. From a real-time services perspective, insuffi cient memory, CPU, or 
IO can make the entire project infeasible, failing to meet requirements. It 
is important to not only understand how to look at the three main resources 
individually, but also consider multiresource issues, trade-offs, and how the 
main three interplay with other resources, such as power. Multiresource 
constraints, such as power usage, may result in less memory or a slower 
CPU clock rate, for example. In this sense, power constraints could in the 
end cause a problem with a design’s capability to meet real-time deadlines. 

2.2 Resource Analysis

Looking more closely at some of the real-time service examples intro-
duced in Chapter 1, there are common resources that must be sized and 
managed in any real-time embedded system, including the following:

 Processing: Any number of microprocessors or micro-controllers net-
worked together

 Memory: All storage elements in the system, including volatile and 
nonvolatile storage

 IO: Input and output that encodes sensed data and is used for decoding 
for actuation

In the upcoming three chapters, we will characterize and derive formal 
models for each of the key resources: processing, IO, and memory. Here 
are brief outlines of how each key resource will be examined.

Traditionally the main focus of real-time resource analysis and theory 
has been centered around processing and how to schedule multiplexed 
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execution of multiple services on a single processor. Scheduling resource 
usage requires the system software to make a decision to allocate a re-
source, such as the CPU, to a specifi c thread of execution. The mechanics 
of multiplexing the CPU by preempting a running thread, saving its state, 
and dispatching a new thread is called a thread context switch. Schedul-
ing involves implementing a policy, whereas preemption and dispatch 
are context-switching mechanisms. When a CPU is multiplexed with an 
RTOS scheduler and context-switching mechanism, the system architect 
must determine whether the CPU resources are suffi cient given the set 
of service threads to be executed and whether the services will be able to 
reliably complete execution prior to system-required deadlines. The global 
demands upon the CPU must be determined. Furthermore, the reliabil-
ity of the overall system hinges upon the repeatability of service execution 
prior to deadlines; ideally, every service request will behave so that meet-
ing deadlines can be guaranteed. If deadlines can be guaranteed, then the 
system is safe. Because its behavior does not change over time in terms of 
ability to provide services by well-defi ned deadlines, the system is also con-
sidered deterministic. Before looking more closely at how to implement a 
deterministic system, a better understanding of system resources and what 
can make system response vary over time is required.  

The main considerations include speed of instruction execution (clock 
rate), the effi ciency of executing instructions (average Clocks Per Instruc-
tion [CPI]), algorithm complexity, and frequency of service requests. To-
day, given that many processors are superscalar pipelines, which provide 
the ability to process one or more instructions in a clock cycle, the inverse 
of CPI, IPC (Instructions Per Clock), is also used instead of CPI. Either 
way, other than a change of denominator and numerator, the ratio has the 
same ability to indicate execution effi ciency, much like MPG (Miles Per 
Gallon) or GPM (Gallons Per Mile). Chapter 3 provides a detailed exami-
nation of processing:

Speed: Clock Rate for Instruction Execution.

 Effi ciency: CPI or IPC (Instructions Per Clock); processing stalls due 
to hazards; for example, read data dependency, cache misses, and write 
buffer overfl ow stalls.

 Algorithm complexity: Ci = instruction count on service longest path 
for service i and, ideally, is deterministic; if Ci is not known, the worst 
case should be used—WCET (Worst-Case Execution Time) is the 
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longest, most ineffi ciently executed path for service; WCET is one com-
ponent of response time (as shown in Figures 1.2 and 1.3 in Chapter 1); 
other contributions to response time come from input latency; dispatch 
latency; execution; interference by higher-priority services and inter-
rupts; and output latency.

Service Frequency: Ti = Service Release Period.

Chapter 13, “Performance Tuning,” provides tips for resolving execu-
tion effi ciency issues. Execution effi ciency is not a real-time requirement, 
but ineffi cient code can lead to large WCETs, missed deadlines, and dif-
fi cult scheduling. So, understanding methods for tuning software perfor-
mance can become important.

Input and output channels between processor cores and devices are 
one of the most important resources in real-time embedded systems and 
perhaps one of the most often overlooked as far as theory and analysis. In 
a real-time embedded system, low latency for IO is fundamental. The re-
sponse time of a service can be highly infl uenced by IO latency, as is evi-
dent in Figures 1.2 and 1.3 of Chapter 1. Many processor cores have the 
capability to continue processing instructions while IO reads are pending 
or while IO writes are draining out of buffers to devices. This decoupling 
helps effi ciency tremendously, but when the service processing requires 
read data to continue or when write buffers become full, processing can 
stall; furthermore, no response is complete until writes actually drain to 
output device interfaces. So, key IO parameters are latency, bandwidth, 
read/write queue depths, and coupling between IO channels and the 
CPU. The coverage of IO resource management in Chapter 4 includes 
the following:

 ● Latency

 Arbitration latency for shared IO interfaces

 Read latency

 Time for data transit from device to CPU core

 Registers, Tightly Coupled Memory (TCM), and L1 cache for zero 
wait state

 Single cycle access

 Bus interface read requests and completions: split transactions and 
delay
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 Write latency

 – Time for data transit from CPU core to device

 – Posted writes prevent CPU stalls

 – Posted writes require bus interface queue

 ● Bandwidth (BW)

 Average bytes or words transferred per unit time

 BW says nothing about latency, so it is not a panacea for real-time 
systems

 ● Queue depth

 Write buffer stalls will decrease efficiency when queues fill up

 Read buffers—most often stalled by need for data to process

 ● CPU coupling

 DMA channels help decouple the CPU from IO

 Programmed IO strongly couples the CPU to IO

 Cycle stealing requires occasional interaction between the CPU and 
DMA engines

Memory resources are designed based upon cost, capacity, and access 
latency. Ideally all memory would be zero wait state so that the processing 
elements in the system could access data in a single processing cycle. Due 
to cost, the memory is most often designed as a hierarchy, with the fastest 
memory being the smallest due to high cost, and large-capacity memory the 
largest and lowest cost per unit storage. Nonvolatile memory is most often 
the slowest access. The management, sizing, and allocation of memory for 
real-time embedded systems will be covered in detail in Chapter 5, which 
includes the following:

 ● Memory hierarchy from least to most latency

 Level-1 cache

 Single cycle access

 Typically Harvard architecture—separate data and instruction caches

 Locked for use as fast memory, unlocked for set-associative, or direct 
mapped caches
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 ● Level-2 cache or TCM

 Few or no wait-states (e.g., two cycle access)

 Typically unified (contains both data and code)

 Locked for use as TCM, unlocked to back L1 caches

 ● MMRs (Memory Mapped Registers)

 ● Main memory—SRAM, SDRAM, DDR (see Appendix A Glossary)

 Processor bus interface and controller

 Multicycle access latency on-chip

 Many-cycle access latency off-chip

 ● MMIO (Memory Mapped IO) devices

 ● Nonvolatile memory like flash, EEPROM, and battery-backed SRAM

 Slowest read/write access, most often off-chip

 Requires algorithm for block erase: interrupt upon completion and 
poll for completion for flash and EEPROM

 ● Total capacity for code, data, stack, and heap requires careful planning

 ● Allocation of data, code, stack, and heap to physical hierarchy will sig-
nificantly affect performance

Traditionally, real-time theory and systems design have focused almost 
entirely on sharing CPU resources and, to a lesser extent, issues related to 
shared memory, IO latency, IO scheduling, and synchronization of services. 
To really understand the performance of a real-time embedded system and 
to properly size resources for the services to be supported, all three re-
sources must be considered as well as interactions between them. A given 
system may experience problems meeting service deadlines because it is:

 ●  CPU bound: Insufficient execution cycles during release period and 
due to inefficiency in execution

 ●  IO bound: Too much total IO latency during the release period and/or 
poor scheduling of IO during execution

 ●  Memory bound: Insufficient memory capacity or too much memory 
access latency during the release period



28 • REAL-TIME EMBEDDED COMPONENTS AND SYSTEMS WITH LINUX AND RTOS

In fact, most modern microprocessors have MMIO (Memory Mapped 
IO) architectures so that memory access latency and device IO latency con-
tribute together to response latency. Most often, many execution cycles can 
be overlapped with IO and memory access time for better effi ciency, but this 
requires careful scheduling of IO during a service release. The concept of 
overlap and IO scheduling is discussed in detail in Chapter 4, “IO Resources.”

This book provides a more balanced characterization of all three major 
resources.

At a high level, a real-time embedded system can be characterized in 
terms of CPU, IO, and memory resource margin maintained as depicted in 
Figure 2.1. The box at the origin in the fi gure depicts the region where a 
system would have high CPU, IO, and memory margins—this is ideal, but 
perhaps not realistic due to cost, mass, power, and size constraints. The 
box in the top-right corner depicts the region where a system has very little 
resource margin.

CPU-Utility

IO-Utility

Memory-Utility 

FIGURE 2.1 Real-Time Embedded System Resource Characterization

Often the resource margin that a real-time embedded system is designed 
to maintain depends upon a number of higher-level design factors, including:

 ● System cost
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 ● Reliability required (how often is the system allowed to fail if it is a soft 
real-time system?)

 ● Availability required (how often the system is expected to be out of 
service or in service?)

 ● Risk of oversubscribing resources (how deterministic are resource de-
mands?)

 ● Impact of oversubscription (if resource margin is insufficient, what are 
the consequences?)

Unfortunately, prescribing general margins for any system with specifi c 
values is diffi cult. However, here are some basic guidelines for resource 
sizing and margin maintenance:

 CPU: The set of proposed services must be allocated to processors so 
that each processor in the system meets the Lehoczky, Sha, Ding the-
orem for feasibility. Normally, the CPU margin required is less than 
the RM LUB (Rate Monotonic Least Upper Bound) of approximately 
30%. You’ll see why this is in Chapter 3, “Processing.” The amount of 
margin required depends upon the service parameters—mostly their 
relative release periods and how harmonic the periods are. Further-
more, for asymmetric MP (MultiProcessor) systems, scaling may be 
fairly linear if the loads on each processor are, in fact, independent. 
If services on different processors have dependencies and share re-
sources, such as memory, or require message-based synchronization, 
however, the scalability is subject to Amdahl’s law. Amdahl’s law pro-
vides estimation for the speedup provided by additional processors 
when dependencies exist between the processing on each processor. 
Potential speedup is discussed further in the “Processing” section of 
this chapter as well.

 IO: Total IO latency for a given service should never exceed the re-
sponse deadline or the service release period (often the deadline and 
period are the same). You’ll see that execution and IO can be over-
lapped so that the response time is not the simple sum of IO latency 
and execution time. In the worst case, the response time can be as is 
suggested by Figures 1.2 and 1.3 in Chapter 1. Overlapping IO time 
with execution time is therefore a key concept for better performance. 
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Overlap theory is presented in Chapter 4, “IO Resources.” Scheduling 
IO so that it overlaps is often called IO latency hiding.

 Memory: The total memory capacity should be suffi cient for the worst-
case static and dynamic memory requirements for all services. Further-
more, the memory access latency summed with the IO latency should 
not exceed the service release period. Memory latency can be hidden 
by overlapping memory latency with careful instruction scheduling and 
use of cache to improve performance.

The largest challenge in real-time embedded systems is dealing with the 
trade-off between determinism and effi ciency gained from less determinis-
tic architectural features, such as set-associative caches and overlapped IO 
and execution. To be completely safe, the system must be shown to have 
deterministic timing and use of resources so that feasibility can be proven. 
For hard real-time systems where the consequences of failure are too se-
vere to ever allow, the worst case must always be assumed. For soft real-
time systems, a better trade-off can be made to get higher performance for 
lower cost, but with higher probability of occasional service failures.

In the worst case, the response time equation is
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All services Si in a hard real-time system must have response times less 
than their required deadline, and the response time must be assumed to 
be the sum of the total worst-case latency. Worst-case latency is computed 
as shown in Figure 1.2 and accounted for in the foregoing equations. It is 
not easy, but WCET, IO latency, and memory latency can most often be 
measured or modelled to compute response time. The interference time 
during the response timeline of any given Si by all instances of Sj, which 
by defi nition have higher priority than the Si of interest, is in fact one of 
the more challenging components to compute, as we will see in Chapter 3. 
Not all systems have true hard real-time requirements so that the absolute 
worst-case response needs to be assumed, but many do. Commercial air-
craft fl ight control systems do need to make worst-case assumptions to be 
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safe. However, worst-case assumptions need not be made for all services, 
just for those required to maintain controlled fl ight.

2.3 Real-Time Service Utility

To more formally describe various types of real-time services, the real-
time research community devised the concept of a service utility function. 
The service utility function for a simple real-time service is depicted in Fig-
ure 2.2. The service is said to be released when the service is ready to start 
execution following a service request, most often initiated by an interrupt.

Deadline

Time

Release

Utility

100%

0%
After Deadline, 
Utility is Negative 

FIGURE 2.2 Hard Real-Time Service Utility

Notice that the utility of the service producing a response any time 
prior to the deadline relative to the request is full, and at the instant fol-
lowing the deadline, the utility becomes not only zero but actually negative. 
The implication is that continuing processing of this service request after 
the deadline not only is futile but also may actually cause more harm to the 
system than simply discontinuing the service processing. A late response 
might actually be worse than no response.

More specifi cally, if an early response is also undesirable, as it would 
be for an isochronal service, then the utility is negative up to the deadline, 
full at the deadline, and negative again after the deadline as depicted in 
Figure 2.3. For an isochronal service, early completion of response pro-
cessing requires the response to be held or buffered up to the deadline 
if it is computed early. The services depicted in Figures 2.2 and 2.3 are 
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said to be hard real-time because the utility of a late response (or early in 
the case of isochronal) is not only zero but also negative. A hard real-time 
system suffers signifi cant harm from improperly timed responses. For ex-
ample, an aircraft may lose control if the digital autopilot produces a late 
control surface actuation, or a satellite may be lost if a thrust is applied too 
long. Hard real-time services, isochronal or simple, require correct timing 
to avoid loss of life and/or physical assets. For digital control systems, early 
responses can be just as destabilizing as late responses, so they are typi-
cally hard isochronal services, but most often employ buffer-and-hold for 
responses computed early.

How does a hard real-time service compare to a typical non-real-time 
application? Figure 2.4 shows a service that is considered to produce a 
response with best effort. Basically, the non-real-time service has no real 
deadline because full utility is realized whenever a best-effort application 
fi nally produces a result. Most desktop systems and even many embed-
ded computing systems are designed to maximize overall throughput for 
a workload with no guarantee on response time, but with maximum effi -
ciency in processing the workload. For example, on a desktop system, there 
is no limit on how much the CPU can be oversubscribed and how much IO 
backlog may be generated. Memory is typically limited, but as CPU and 
IO backlog increases, response times become longer. No guarantee on any 
particular response time can be made for best-effort systems with backlogs. 
Some embedded systems—for example, a storage system interface—also 
may have no real-time guarantees. For embedded systems that need no 

Deadline

Time

Release

Utility

100%

0%
After DeadlineBefore Deadline 

FIGURE 2.3 Isochronal Service Utility
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deadline guarantees, it makes sense that the design attempts to maximize 
throughput. A high throughput system may, in fact, have low latency in 
processing requests, but this still does not imply any sort of guarantee of 
response by a deadline relative to the request. As shown in Figure 2.4, full 
utility is assumed no matter when the response is generated.

Utility

Release

100%

0%

Deadline Does  Not Exist

FIGURE 2.4 Best-Effort Service Utility

The real-time research community agrees upon the defi nitions of hard 
real-time, isochronal, and best-effort services. The exact defi nition of soft 
real-time services is, by contrast, somewhat unclear. One idea for the con-
cept of soft real-time is similar to the idea of receiving partial credit for late 
homework because a service that produces a late response still provides 
some utility to the system. An alternative idea for the concept of soft real-
time is also similar to a well-known homework policy in which some service 
dropouts are acceptable. In this case, by analogy, no credit is given for late 
homework, but the student is allowed to drop his or her lowest score or 
scores. Either defi nition of soft real-time clearly falls between the extremes 
of the hard real-time and the best-effort utility curves. Figure 2.5 depicts 
the soft real-time concept where some function greater than or equal to 
zero exists for soft real-time service responses after the response dead-
line—if the function is identically zero, a well-designed system will simply 
terminate the service after the deadline, and a service dropout will occur. If 
some partial utility can be realized for a late response, a well-designed sys-
tem may want to allow for some fi xed amount of service overrun, as shown 
in Figure 2.5.

For continuous media applications (video and audio), most often there 
is no reason for producing late responses because they cause frame jitter. 
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Often, it is best for these applications if the previous frame or sound-bite 
output is produced again and the late output dropped when the next frame 
is delivered on time. Of course, if multiple service dropouts occur in a row, 
this leads to unacceptable quality of service. The advantage of a dropout 
policy is that processing can be terminated as soon as it is determined that 
the current service in progress will miss its deadline, thereby freeing up 
CPU resources. By analogy, if an instructor gives zero credit for late home-
work (and no partial credit for partially completed work), wise students will 
cease work on that homework as soon as they realize they can’t fi nish and 
reallocate their time to homework for other classes. Other classes may have 
a different credit policy for accepting late work, but given that work on the 
futile homework has been dropped, students may have plenty of time to 
fi nish other work on time.

A policy known as the anytime algorithm is analogous to receiving par-
tial credit for partially completed homework and partial utility for a partially 
complete service. The concept of an anytime algorithm can be implement-
ed only for services where iterative refi nement is possible—that is, the al-
gorithm produces an initial solution long before the deadline, but can pro-
duce a better solution (response) if allowed to continue processing up to the 
deadline for response. If the deadline is reached before the algorithm fi nds 
a more optimal solution than the current best, then it simply responds with 
the best solution found so far. Anytime algorithms have been used most for 
robotic and AI (Artifi cial Intelligence) real-time applications where iterative 
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Time
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FIGURE 2.5 Soft Real-Time Utility Curve
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refi nement can be benefi cial. For example, a robotic navigation system 
might include a path-planning search algorithm for the map it is building in 
memory. When the robot encounters an obstacle, it must decide whether to 
turn left or right. When not much of the environment is mapped, a simple 
random selection of left or right might be the best response possible. Later 
on, after more of the environment is mapped, the algorithm might need to 
run longer to fi nd a path to its goal or at least one that gets the robot closer 
to its goal. Anytime algorithms are designed to be terminated at their dead-
lines and produce the best solution at that time, so by defi nition anytime 
services do not overrun deadlines, but rather provide some partial utility 
solution following their release. The information derived during previous 
partial solutions may in fact be used in subsequent service releases; for ex-
ample, in the robot path-planning scenario, paths and partial paths could 
be saved in memory for reuse when the robot returns to a location occu-
pied previously. This is the concept of iterative refi nement. The storage of 
intermediate results for iterative refi nement requires additional memory 
resources (a dynamic programming method), but can lead to optimal solu-
tions prior to the decision deadline, such as a robot that fi nds an optimal 
path more quickly and still avoids collisions and/or lengthy pauses to think! 
Why wouldn’t the example robotic application simply halt when encounter-
ing an obstacle, run the search algorithm as long as it takes to fi nd a solu-
tion, or determine that it has insuffi cient mapping or no possible path? This 
is possible, but may be undesirable if it is better that the robot not stand 
still too long because sometimes it may be better to do something rather 
than nothing.  

By making a random choice, the robot might get lucky and map out 
more of the environment more quickly. Anytime algorithms are not always 
the best approach for services, but clearly they are another option for less 
deterministic services and avoiding overruns. If the robot simply ran until 
it determined the optimal answer each time, then this would constitute a 
best-effort service rather than anytime. Figure 2.6 depicts an anytime real-
time utility curve.

Finally, services can be some combination of the previously explained 
service types: hard, isochronal, best-effort, soft, or anytime. For example, 
what about a soft isochronal service? An isochronal service can achieve par-
tial utility for responses prior to the deadline, full utility at the deadline, and 
again partial utility after the deadline. For example, in a continuous media 
system, it may not be possible to hold early responses until the deadline, 
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and it may also be benefi cial to produce a late response—allow an overrun. 
In some sense, the idea of a hard isochronal service is hard to imagine, yet 
feedback digital control systems are a very important example of a hard iso-
chronal application—that is, always producing the response exactly at the 
desired deadline relative to release. Isochronal systems are normally imple-
mented using hold buffers and traditional hard real-time services, early ser-
vice completions must be buffered, and CPU scheduling must ensure that 
late responses will never happen. So, a soft isochronal service would be far 
easier to implement because there is no need for early completion buffer-
ing and no need to detect and terminate services that overrun deadlines. 
Allowing indefi nite overrun of any soft real-time service can ultimately be a 
problem. If overruns continue to occur and service releases start to overlap 
for the same service, the loading simply climbs higher and higher. How can 
such a system ever recover? Allowing indefi nite overruns would be similar 
to the scenario where the overly conscientious student continues to work 
on more and more late homework, ultimately lowering grades in all courses 
to the point that total failure is the ultimate outcome. The example of a soft 
isochronal service is depicted in Figure 2.7.

Clearly, an intelligent real-time agent would use a resource-scheduling 
policy that leads to maximum utility in all responses for all services. For 
multiple services, the concept of maximizing total utility requires a normal-
ization of utility scales. One possible way to normalize utility scales is to as-
sign an importance factor to each service. Furthermore, in an ideal system, 
different policies would be applied for overruns based upon the known util-
ity functions for each service and relative importance of each service. Using 
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FIGURE 2.6 Anytime Service Utility
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the student example again, the student being the ideal and ultimate sched-
uler in resource overload is smart enough to do the following:

1. Ensure sufficient margin for hard deadlines—attending classes where 
attendance is required.

2. Use a best-effort approach for extracurricular activities.

3. Turn in late submissions for reduced credit in classes that allow this.

4. Apply the anytime policy for classes that do not accept late submissions, 
yet award partial credit.

5. Hold onto assignments completed early in classes where absent-minded 
professors might misplace an early submission.

Students are much smarter than most real-time embedded systems. It 
is likely that implementation of a resource-scheduling algorithm as intel-
ligent and optimal as a student’s is not practical for an embedded system. 
However, most real-time embedded systems do mix policies like the intel-
ligent student did in the example, but most often only two at a time. One of 
the most frequently used mixes is a set of hard real-time services with some 
best-effort services. Guarantees for the hard real-time services are proven 
using methods discussed later in Chapter 3, and best-effort services simply 
use all the leftover resource by executing in slack time.

The primary focus of this text is on understanding hard real time; how-
ever, soft real-time and isochronal services are also covered. An examination 
of anytime services is not provided in this text. Anytime services are 
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important to AI and robotic systems where planning algorithms that are NP 
hard (Nondeterministic Polynomial bound on compute time) must be run 
in real time. This is a very specialized form of a real-time embedded system. 
Because soft real-time services are more generalized and less deterministic 
compared to hard real-time services, soft real time is treated as an open is-
sue in this text—a subject that is an open research area—whereas hard real 
time is well understood and specifi c hard real-time policies can be proven 
optimal albeit with some system constraints and assumptions. The optimal-
ity will be demonstrated later in this chapter.

2.4 Scheduling Classes

Scheduling services and their usage of resources can be accomplished 
by a large variety of methods. In this section, we consider scheduling sys-
tem processors with work. In general, a system might have more than one 
processor (CPU), and any given processor might host one or more services. 
Allocating a CPU to each service provided by the system might be simplest 
from a scheduling viewpoint, but, clearly, this would also be a costly solu-
tion. Furthermore, running services to completion, ignoring all other re-
quests, on a fi rst-come, fi rst-served basis is also simple, but problems such 
as service starvation and missing deadlines can arise with this approach. To 
better understand real-time processor scheduling, you fi rst need to review 
the taxonomy of all major scheduling policies that can be implemented, as 
shown in Figure 2.8.
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FIGURE 2.8 CPU Resource-Scheduling Taxonomy
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As is the case with most policies, no one policy is optimal for all system 
requirements, not even when all services must be hard real-time. The poli-
cies that can be made optimal and have traditionally been used for hard re-
al-time systems are Rate Monotonic, Deadline Monotonic, and, to a lesser 
extent, EDF (Earliest Deadline First)/LLF (Least Laxity First). The fi rst 
branch in the taxonomy is based upon hardware design; does the system 
contain a single CPU or multiple CPUs?

2.4.1 Multiprocessor Systems
For multiprocessor systems, the fi rst resource usage policy decision 

is whether each CPU will be used for a specifi c predetermined function 
(asymmetric, distributed) or whether workload will be assigned dynamically 
(symmetric). Most general-purpose MP platforms provide SMP (Symmet-
ric MultiProcessing) where the OS determines how to assign work to the 
set of available processors and most often attempts to balance the workload 
on all processors. An SMP OS is not simple to implement, and overhead for 
workload balancing can be high, so many embedded multiprocessor sys-
tems are asymmetric or distributed. Asymmetric multiprocessing is used 
frequently to take a service that was initially provided by software running 
on a general-purpose CPU and offl oad it to a hardware state machine or tai-
lored CPU to implement the service, therefore offl oading the more gener-
al-purpose multiservice CPU. Distributed systems are typically asymmetric 
and communicate via message passing on a network rather than through 
shared memory, bus, or cross-bar. Other than the issue of load balancing, 
multiprocessor systems are most distinguished by their hardware architec-
ture—shared memory, distributed message passing, or some hybrid of the 
two. The classic taxonomy for such systems includes SISD (Single Instruc-
tion, Single Data), SIMD (Single Instruction, Multi-Data), MISD (Multi-
Instruction, Single Data), and MIMD (Multi-Instruction, Multi-Data). So, 
all the combinations of single or multiple instruction processing combined 
with single or multiple data paths are possible for MP architecture. Most 
embedded multiprocessor systems are multiple instruction and multiple 
data path hardware architectures that employ multiple CPUs for speedup.

2.5 The Cyclic Executive

Many real-time systems, including complex, hard real-time, safety-crit-
ical systems, provide real-time services using a cyclic executive architec-
ture. Cyclic executives do not require an RTOS or generalized scheduling 
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mechanism. A cyclic executive provides a loop control structure to explicitly 
interleave execution of more than one periodic process on a single CPU. 
The cyclic executive is often implemented as a main loop with an invariant 
loop body known as the cyclic schedule. A cyclic schedule includes function 
calls for each periodic service provided within the major period of the over-
all loop. The loop may include event polling to determine when to dispatch 
functions, and functions that need to be called at a higher frequency than 
the main loop will often be called multiple times within the loop. Likewise, 
functions implementing periodic services that need to be run at much low-
er frequency than the main loop may be called only on specifi c loop counts 
or only when polled events indicate a service request. For example, the 
NASA Space Shuttle fl ight software uses a cyclic executive design for the 
PASS (Primary Avionics Subsystem) and has provided decades of defect-
free operation, providing real-time control of a complex system [Carlow84].

The Space Shuttle PASS fl ight software includes the hard real-time 
safety-critical GN&C (Guidance, Navigation, and Control) services that are 
dispatched by a cyclic executive from a dispatch table confi gured and se-
lected based upon the current fl ight stage of the shuttle (ascent, on-orbit, 
reentry). The highest frequency services maintain shuttle fl ight control and 
operate on a 40-millisecond period. As Carlow notes, “The high-frequency 
executive is scheduled at a relatively high priority to cycle at a 25 Hz rate 
and initiate all principal function processes directly related to vehicle fl ight 
control. Mid-frequency and low-frequency executives are scheduled at 
lower priorities. They initiate principal function processes, which operate 
at rates of 6.25 Hz down to 0.25 Hz.” The scheduling of the GN&C execu-
tives is provided by the Process Management, which uses a multitasking 
priority queue structure and schedules the CPU in response to requests 
made through a service interface that defi nes event frequency and prior-
ity for service requests. This higher-level scheduler handles requests from 
the GN&C cyclic executive: SM (Systems Management), which monitors 
systems for faults, and VCO (Vehicle Checkout), which is used for prefl ight 
and on-orbit coast avionic systems testing. The GN&C cyclic executive is 
scheduled to run periodically at 25 Hz (40-millisecond period) and includes 
its own dispatch table to sequence GN&C services at the high, medium, 
and low frequencies previously described.

The cyclic executive architecture has been an important and successful 
approach for hard real-time systems. Carlow explains the overall system: 
“[the fl ight software] architectures refl ect a synchronous design approach 
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within which the dispatching of each application process is timed to always 
occur at a specifi c point relative to the start of the overall system cycle or 
loop.” Although the cyclic executive has been successful due to its sim-
plicity and deterministic character, one of its drawbacks is the diffi culty 
required to modify the cyclic schedule. For PASS, Carlow points out that 
“a major benefi t of this approach is repeatability; however, there is only 
limited fl exibility to accommodate change.”

The cyclic executive is often extended to handle asynchronous events 
with interrupts rather than relying only upon loop-based polling of inputs. 
This extension of the executive is called the Main+ISR design. As the name 
implies, this approach involves a main loop cyclic executive with the ad-
dition of ISRs (Interrupt Service Routines). The ISRs handle asynchro-
nous events that interrupt the normal execution sequence of an embedded 
microprocessor. In the Main+ISR approach, the ISRs are best kept short 
and simple so they relay event data to the Main loop for handling. The 
Main+ISR approach has some advantage over the pure cyclic executive and 
polling for event input because it may reduce latency between event oc-
currence and handling. However, the Main+ISR approach has pitfalls as 
well. For example, if an input device malfunctions and raises interrupts at 
a much higher frequency than expected, signifi cant interference to loop 
processing may be introduced. Although Main+ISR is more responsive to 
events as they occur, it may be less stable unless a concerted effort is made 
to protect the system for potential interrupt malfunctions related to inter-
rupt source devices.

2.6 Scheduler Concepts

The design of a generalized RTOS scheduler for processor resources 
is covered well in most operating system texts. Here, we will briefl y re-
view some of the major concepts as they relate to real-time scheduling 
of the CPU resource. Real-time services may be implemented as threads 
of execution that have an execution context and are set into execution by 
a scheduler that determines which thread to dispatch. Dispatch is a ba-
sic mechanism to preempt the currently running thread, save its context, 
and restore the context of the thread to be run along with modifi cation of 
the instruction pointer or program counter to start or resume execution 
of the new thread. The scheduler must implement the CPU sharing poli-
cy, and the dispatcher must provide the context switch for each thread of 
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execution. The dispatcher is required to save and restore all the state that 
each thread of execution uses, including the following:

1. Registers

2. Stack

3. Program counter

4. Thread state

This would be a minimum execution context and is typical of real-time 
schedulers. By comparison, most general-purpose operating systems, like 
Linux, execute threads in the context of a process and maintain a process 
descriptor for each thread. The process context includes much more ad-
ditional state, such as IO context, shared memory, and dynamic memory 
allocations. The thread state is one of the best ways to understand how a 
scheduler works. As illustrated in Table 2.1, thread states are based upon 
resources needed in the thread execution context.

Table 2.1 State Transition Table for a Thread of Execution

Thread 
State

Description Transition Description

Ready Thread is queued and 
ready to run, but has not 
been dispatched 
(given CPU)

Running Thread selected for 
dispatch based upon 
scheduling policy

Running Thread is executing on 
CPU

Pending Thread needs another 
resource in addition to 
the CPU

Delayed Wait requested by thread

Suspended Thread raised unhandled 
exception during 
execution

Ready Thread yields CPU

Nonexistent Thread exits

Pending Thread is waiting on a 
resource in addition to 
CPU

Ready Additional resource has 
become available

Suspended Pending thread is 
suspended by another 
thread
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Thread 
State

Description Transition Description

Delayed Thread is waiting for delay 
period to end

Ready Delay has expired

Suspended Delayed thread is sus-
pended by another thread

Suspended Thread has raised unhan-
dled exception or has been 
suspended by command 
from another thread

Ready Suspension removed by 
another thread—thread 
activated

Nonexis-
tent

Thread has not been cre-
ated or allocated resources

Ready Thread creation and 
activation

Dispatch policy, how the scheduler decides which thread from the set 
of all those that are ready for dispatch, was the main differentiation in the 
taxonomy in Figure 2.8. As threads become ready to run, pointers to their 
context are normally placed on a ready queue by the scheduler for dispatch 
in the order determined by the scheduling policy. The scheduler must up-
date the ready queue based upon new service request arrivals. The dis-
patcher will simply loop if the ready queue is empty. Note, however, that 
in VxWorks, neither the scheduler nor the dispatcher shows up as a task. 
Also, unlike some operating systems, VxWorks does not include an idle task 
in the default confi guration. In VxWorks, the scheduler and dispatcher are 
kernel context services rather than task context services. Preemptive sched-
ulers are driven by interrupts and task calls into the kernel API. An inter-
rupt or API call can cause the scheduler to switch context and to potentially 
dispatch a new thread or allow the same thread to continue execution. In 
VxWorks, an interrupt or an API call made by the currently running task 
are the only ways that the currently running task can be preempted. A fi xed-
priority preemptive scheduler simply dispatches threads from the ready 
queue based upon a priority they have been assigned at creation unless the 
application adjusts the priority at runtime. Most often, if two threads have 
the same priority, they are dispatched on a fi rst-come, fi rst-served basis. 
Almost all RTOSs include priority preemptive schedulers with support for 
the basic thread states outlined in Table 2.1.

One of the major drawbacks of a priority preemptive scheduling policy 
is the cost or overhead of the context switch that occurs on every interrupt. 
Systems such as Linux and Windows, which use a time-slice preemption 
scheme where an OS timer tick is generated every so many milliseconds by 
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a programmable interval timer, have high overhead. By comparison, most 
RTOSs do not use a time-slice tick, and instead reschedule only when IO 
generates an interrupt or when a thread makes a system call that results in 
yielding the CPU—a delay, exit, yield, call for an unavailable resource in 
addition to the CPU, or suspension due to exception. Otherwise, RTOS 
threads normally run to completion unless an event releases a thread (makes 
it ready) at higher priority than the presently executing thread.

Given an MP or uniprocessor hardware architecture, if more than one 
service can be requested on a given processor, the next branch in the tax-
onomy concerns whether requests will preempt services already in progress 
or queue and wait for services in progress to run to completion.

2.6.1 Preemptive vs. Non-preemptive Schedulers
Non-preemptive scheduling policy has existed for general-purpose 

computing from the beginning of computing systems. In general, this cat-
egory can be subdivided into batch and cooperative processing. In batch 
systems, jobs that are submitted to a work queue are dispatched by the sys-
tem OS and run to completion. The two most well-known dispatch policies 
are FCFS (First Come First Served) and SJN (Shortest Job Next). The SJN 
policy has the advantage of completing the largest number of jobs per unit 
time, but long jobs may never be serviced, and furthermore, SJN requires 
an estimate of how long each job will require execution. Because real-time 
services are inherently characterized by producing a response relative to a 
request and before a deadline, neither non-preemptive policy is of interest 
in this text.

All real-time services must provide a response relative to requests for 
the service (a release), and the response is most often constrained by a 
deadline. At the very least, because real-time systems are request-oriented 
based upon real-world events, clearly these systems must support preemp-
tion or they must poll the real world on a regular basis and provide periodic 
service processing. Two non-preemptive approaches are sometimes used 
in real-time systems: data fl ow and multi-frequency cyclic executives. In a 
data fl ow, input interfaces are periodically checked, and when data is avail-
able, this data is processed and output is produced for consumption by the 
next service in the fl ow or terminated by producing a response. In datafl ow 
processing, the inputs that start a fl ow are checked in a deterministic order 
most often, and fl ows are executed from start to fi nish or source to sink.
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The best property of this type of scheduling policy is that it is fully deter-
ministic—the order of execution in the service and between services (fl ows) 
is fully predictable. The disadvantage is that some fl ows may be known to 
require execution much more frequently than others—a modifi cation to 
this scheme leads to a multi-frequency executive (MFE). In the MFE, spe-
cifi c functions (data fl ows) are executed at a higher frequency than others. 
For example, a control system data fl ow may require execution 100 times 
per second for stable operation, whereas the guidance function may require 
execution only 1 time per second to direct the system to a target (hopefully 
without losing control!). Either approach may use asynchronous interrupts 
or may only poll input status registers; however, context switches beyond 
simple interrupt servicing are not done. That is, data fl ows are not switched 
prior to completion, and executive functions are not switched prior to com-
pletion; after a fl ow or executive function is dispatched (given the CPU), it 
runs to completion without signifi cant preemption.

Preemptive service releases have an advantage in that the service can 
be designed much more independently than data fl ows or executives. Each 
service can assume that it will execute following release from an interrupt 
as if it is the only service on the CPU, except each service must be pre-
emptible between release and completion (generation of response). The 
preemption of threads, ISRs, and the kernel requires an operating system 
that will save and restore context for each executable service. Furthermore, 
each service must execute reentrant code if it is shared and must synchro-
nize access to any globally shared resources. These requirements are true of 
any preemptive multi-programmed system. The services are independent 
in the sense that no specifi c cooperation between services is required unless 
code or data is shared. Shared code or data simply requires reentrant code 
and shared data access synchronization. The services can be considered to 
be running asynchronously other than specifi c synchronization points for 
shared resource access. Thus, each service can be designed as a separate 
state machine rather than one state machine composed of many smaller 
state machines (as is typical of executives). Also, one fl ow of execution may, 
in fact, preempt another in cases where one service is more important than 
another (e.g., maybe one service has a shorter deadline or more negative 
impact if not completed by its deadline).

Because preemption opens up the possibility that more than one ser-
vice might be ready to run, and there are fewer CPU resources than ser-
vices ready to run, a dispatch decision must be made. One of the simplest 
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dispatch policies is to give the CPU to the service assigned highest prior-
ity. These assigned priorities are never changed; they are fi xed. To decide 
how to assign priorities, two common real-time policies are to assign high-
est priority to the service with the shortest release period (highest request 
frequency), which is known as RM (Rate Monotonic), and to assign the 
highest priority to the services with the shortest deadline relative to release, 
which is known as DM (Deadline Monotonic). Note that RM is identical 
to DM when the release period equals the deadline. As you will see in this 
chapter, the RM (and related DM) policy can be shown to provably meet 
system deadline requirements given deterministic release periods and ser-
vice execution times. However, one major drawback is that fi xed priorities 
do not guarantee maximum use of the CPU.

To attempt full usage of CPU resources and prove that services can 
meet deadlines, you are forced to consider preemptive dynamic-priority 
policies. Two dynamic policies have been shown to have the capability to 
fully use CPU and guarantee deadlines, assuming service execution times 
and request intervals are deterministic or bounded. Liu and Layland pro-
posed Earliest Deadline First (EDF), along with RM, and showed them to 
be optimal—that is, policies that can schedule any set of services that can 
be scheduled (an exhaustive proof!). However, although RM is simpler, Liu 
and Layland also showed that RM fundamentally requires margin and less 
than full CPU use unless service requests are harmonic.

By comparison, in EDF, any time a new service request arrives (indi-
cated by an interrupt asynchronous), the EDF scheduling policy adjusts 
all priorities so that the service with the earliest deadline is given highest 
priority. Ignoring the overhead of determining which service has the ear-
liest impending deadline and ignoring overhead of priority reassignment, 
EDF can be shown to provide full use of the CPU where possible—even 
when requests intervals are not harmonic. The downside of EDF is that if 
request rates vary or execution times vary, the effect upon services is hard 
to predict—which service will miss its deadline in an overload? Variations 
on EDF have been proposed that intend to improve the determinism of 
the system given variations, including Least Laxity First (LLF). The LLF 
policy assigns highest priority to the service that has the least difference 
between remaining execution time and its deadline—a measure of which 
service deadline is most pressing. The idea is that laxity may vary based 
upon execution rates, whereas the EDF assignment is not at all infl uenced 
by execution rate.
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Given this overview of resource-scheduling policies, you may wonder 
how these policies actually instantiate the various utility functions presented 
in the fi rst section of this chapter. They don’t, other than the hard real-time 
utility curve. If you can prove that with a policy and deterministic param-
eters all services will complete prior to deadlines, the only utility curve this 
maps to is the hard real-time curve. Recall that the hard real-time utility 
curve provides full credit for any response delivered before the deadline 
relative to service request and no credit or negative credit for late response. 
The isochronal utility function can be implemented as a hard real-time ser-
vice with early completions held until the response deadline. This approach 
can be used to implement both hard and soft isochronal services. Policies 
and scheduling mechanisms for implementation of soft real-time utility and 
anytime services are open research areas.

2.6.2 Preemptive Fixed-Priority Scheduling Policy
Fixed-priority preemptive policy is most widely used by real-time em-

bedded systems employing an RTOS. Early on, most hard real-time sys-
tems used cyclic executives or multi-frequency executives often found in 
systems such as the Space Shuttle GN&C primary avionics subsystem. The 
RTOS scheduling framework offers the same deterministic scheduling as 
the cyclic executive, but with far more fl exibility in how services are defi ned 
and maintained. The principal reason for the pervasiveness of the RTOS 
in larger scale confi gurable real-time embedded systems is the fact that 
the policy has been proven optimal and a feasibility test exists, along with 
the ease of defi ning services as tasks rather than loop or interrupt contexts. 
The RM feasibility tests provide a method to prove that a given set of ser-
vices (implemented as RTOS tasks) can be guaranteed to all meet their 
deadlines if the RM policy is used to assign priorities. For hard real-time 
systems where proof that services will not miss deadlines is desired, RM is 
an obvious choice. For example, RM is often used for commercial aircraft, 
for satellite systems, or any other system where failure to meet all deadlines 
can result in signifi cant loss of life and/or assets. Finally, as you will see in 
this section, with an RM policy, you can predict and control exactly which 
services will miss deadlines in an overload scenario.

First, let’s look at why the RM priority policy is optimal. Recall that 
the RM policy requires a framework where services are released asynchro-
nously (typically via an interrupt) and placed on a ready queue, indicating 
they need to run. A scheduler then dispatches each service based upon 
the highest priority task in the ready queue (all services are implemented 
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as tasks and assumed to have unique priority). The service/task dispatched 
continues to run to completion unless an interrupt preempts the task pres-
ently executing. Following an interrupt, the scheduler reevaluates the 
ready queue and possibly dispatches a new task (a context switch) if a task 
of higher priority is added to the ready queue compared to that running 
prior to the interrupt. When a context switch occurs and a task/service is 
preempted prior to running to completion, this is called interference. In a 
fi xed-priority preemptive system with only one service/task, interference 
is not possible. In a system with more than one service/task, any given task 
may be interfered with by all tasks that have been assigned higher priority.

With this fi xed-priority preemptive framework, the scheduling problem 
must be further constrained to derive a formal mathematical model that 
proves deterministic behavior. Clearly it is impossible to prove determinis-
tic behavior for a system that has nondeterministic inputs. Liu and Layland 
recognized this and proposed what they believed to be a reasonable set of 
assumptions and constraints on real systems to formulate a deterministic 
model. The assumptions and constraints are as follows:

A1: All services requested on periodic basis, the period is constant

A2: Completion-time < period

A3: Service requests are independent (no known phasing)

A4: Runtime is known and deterministic (WCET may be used)

C1: Deadline = period by defi nition

C2: Fixed-priority, preemptive, run-to-completion scheduling

A5:  Critical instant—longest response time for a service occurs when 
all system services are requested simultaneously (maximum inter-
ference case for lowest priority service)

As noted earlier, A1 to An are assumptions and C1 to Cn are constraints 
as presented by Liu and Layland in their paper.

Given the fi xed-priority preemptive scheduling framework and as-
sumptions described in the preceding list, we can now examine alternatives 
for assigning priorities and identify a policy that is optimal. Showing that 
the RM policy is optimal is most easily accomplished by inspecting a system 
with a small number of services.  

An example with two services follows. Given services S1 and S2 
with periods T1 and T2, execution times C1 and C2, and release periods 
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T2 > T1, take, for example, T1 = 2, T2 = 5, C1 = 1, C2 = 2, and then if prio(S1) 
> prio(S2), note Figure 2.9.

S1 Makes Deadline if prio(S1)> prio(S2)

D1 D1
D2

T1

T2

S2

S1

FIGURE 2.9 Example of RM Priority Assignment Policy</fc>

In this two-service example, the only other policy (swapping priorities 
from the preceding example) does not work. Given services S1 and S2 with 
periods T1 and T2 and C1 and C2 with T2 > T1, for example, T1 = 2, T2 = 5, 
C1 = 1, C2 = 2, and then if prio(S2) > prio(S1), note Figure 2.10.

S1 Misses Deadline if prio(S2) > prio(S1)

T1

T2

S2

S1

FIGURE 2.10 Example of Non-Optimal Priority Assignment Policy
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The conclusion that can be drawn is that for a two-service system, the 
RM policy is optimal, whereas the only alternative is not optimal because 
the alternative policy fails when a workable schedule does exist! The same 
argument can be posed for a three-service system, a four-service system, 
and fi nally an N-service system. In all cases, it can be shown that the RM 
policy is optimal. In Chapter 3, the Rate Monotonic Least Upper Bound 
(RM LUB) is derived and proven. Chapter 3 also provides system sched-
uling feasibility tests derived from RM theory that you can use to deter-
mine whether system CPU margin will be suffi cient for a real-time safe 
operation.

2.7 Real-Time Operating Systems

Many real-time embedded systems include an RTOS, which provides 
CPU scheduling, memory management, and driver interfaces for IO in ad-
dition to boot or BSP (Board Support Package) fi rmware. In this text, ex-
ample code included is based upon either the VxWorks RTOS from Wind 
River Systems or Linux. The VxWorks RTOS is available for academic li-
censing from Wind River through the University program free of charge 
(see Appendix C, “Wind River University Program Information”). Likewise, 
Linux is freely available in a number of distributions that can be tailored 
for embedded platforms (see Appendix C, section titled “Real-Time Linux 
Distributions and Resources”). Key features that an RTOS or an embedded 
real-time Linux distribution should have include the following:

 ● A fully preemptible kernel so that an interrupt or real-time task can 
preempt the kernel scheduler and kernel services with priority.

 ● Low well-bounded interrupt latency.

 ● Low well-bounded process, task, or thread context switch latency.

 ● Capability to fully control all hardware resources and to override any 
built-in operating system resource management.

 ● Execution tracing tools.

 ● Cross-compiling, cross-debugging, and host-to-target interface tools to 
support code development on an embedded microprocessor.
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 ● Full support for POSIX 1003.1b synchronous and asynchronous inter-
task communication, control, and scheduling (Now integrated in IEEE 
POSIX 1003.1 2013).

 ● Priority inversion-safe options for mutual exclusion semaphores used 
with priority-preemptive run-to-completion scheduling (the mutual ex-
clusion semaphore referred to in this text includes features that extend 
the early concepts for semaphores introduced by Dijkstra). Note that 
for the Linux CFS (Completely Fair Scheduler) inversion-safe mutual 
exclusion features are not needed, but if the default scheduling for 
threads is changed to FIFO (First-In, First-Out) in Linux and real-time 
priorities assigned, then some method to deal with potential unbounded 
priority inversion is needed (discussed in more detail in Chapter 6).

 ● Capability to lock memory address ranges into cache.

 ● Capability to lock memory address ranges into working memory if 
virtual.

 ● Memory with paging is implemented.

 ● High-precision time-stamping, interval timers, and real-time clocks and 
virtual timers.

The VxWorks, ThreadX, Nucleus, Micro-C-OS, RTEMs (Real-Time Ex-
ecutive for Military Systems), and many other available real-time operating 
systems provide the features in the preceding list. This has been the main 
selling point of the RTOS because it provides time-to-market acceleration 
compared to designing and coding a real-time executive from scratch, yet 
provides very direct and effi cient interfacing between software applications 
and hardware platforms. Some RTOS options are proprietary and require 
licensing, and some, such as RTEMs, FreeRTOS, and Micro-C-OS, require 
limited or no licensing, especially for academic or personal use only (a more 
complete list can be found in Appendix D, “RTOS Resources”).

Linux was originally designed to be a multiuser operating system with 
memory protection, abstracted process domains, signifi cantly automated 
resource management, and scalability for desktop and large clusters of 
general-purpose computing platforms. Embedding and adapting Linux for 
real-time require distribution packaging, kernel patches, and the addition 
of support tools to provide the eleven key features listed previously. Several 
companies support real-time Linux distributions, including TimeSys Linux, 
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Wind River Linux, Concurrent RedHawk Linux, and a few others (a more 
complete list can be found in Appendix C, section titled “Real-Time Linux 
Distributions and Resources”). Real-time distributions of Linux may incor-
porate any of the following patches to improve predictable response:

1. The Robust Mutex patch (https://www.kernel.org/doc/Documentation/
robust-futexes.txt)

2. Linux preemptible kernel patch (https://rt.wiki.kernel.org/index.php/
CONFIG_PREEMPT_RT_Patch)

3. POSIX clocks and timers patches (http://linux.die.net/man/3/clock_get-
time, http://elinux.org/High_Resolution_Timers )

4. Linux KernelShark (http://rostedt.homelinux.com/kernelshark/, http://
elinux.org/images/6/64/Elc2011_rostedt.pdf )

5. Use of POSIX Pthreads with the FIFO scheduling class and real-time 
priorities, which are mapped onto Linux kernel tasks by NPTL (Native 
POSIX Threads Library) [Drepper03], which requires root user 
privileges as found in examples on the DVD.

Finally, the other option is to write your own resource-management 
kernel. In Chapter 13, “Performance Tuning,” you’ll see that although an 
RTOS provides a generic framework for resource-management and multi-
service applications, the cost of these generalized features is code footprint 
and overhead. So, in Chapter 8, “Embedded System Components,” basic 
concepts for real-time kernel services are summarized. Understanding the 
basic mechanisms will be helpful to anyone considering development of a 
custom kernel. Building a custom resource-management kernel is not as 
daunting as it fi rst may seem, but using a preexisting RTOS may also be 
an attractive option based upon complexity of services, portability require-
ments, time to market, and numerous system requirements. Because it is 
not clear whether use of an RTOS or development of a custom resource 
kernel is the better option, both approaches are discussed in this text.

In general, an RTOS provides a threading mechanism, in some cas-
es referred to as a task context, which is the implementation of a service. 
A service is the theoretical concept of an execution context. The RTOS 
most often implements this as a thread of execution, with a well-known 
entry point into a code (text) segment, through a function, and a memory 
context for this thread of execution, which is called the thread context. In 

ON THE DVD
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VxWorks, this is referred to as a task and the TCB (Task Control Block). In 
Linux, this is referred to as a process and a process descriptor. In the case 
of VxWorks, the context is fairly small, and in the case of a Linux process, 
the context is relatively complex, including IO status, memory usage con-
text, process state, execution stack, register state, and identifying data. In 
this book, thread will be used to describe the general implementation of a 
service (at the very least a thread of execution), task to describe an RTOS 
implementation, and process to describe the typical Linux implementation. 
Note that Linux FIFO threads are similar in many ways to a VxWorks task 
because with NPTL these threads are mapped directly onto Linux kernel 
tasks.

Typical RTOS CPU scheduling is fi xed-priority preemptive, with the 
capability to modify priorities at runtime by applications, therefore also 
supporting dynamic-priority preemptive. Real-time response with bounded 
latency for any number of services requires preemption based upon in-
terrupts. Systems where latency bounds are more relaxed might instead 
use polling for events and run threads to completion, increasing effi ciency 
by avoiding disruptive asynchronous context switch overhead due to inter-
rupts. Remember, as presented in Chapter 1, we assume that response la-
tency must be deterministic and that this is more important than through-
put and overall effi ciency. If you are designing an embedded system that 
does not really have real-time requirements, avoid asynchronous interrupts 
altogether. Dealing with asynchronous interrupts requires debugging in 
interrupt context and can add complexity that might be fully avoidable in 
a non-real-time system. First, what really constitutes a real-time deadline 
requirement must be understood. By completion of Chapter 3, you should 
be able to clearly recognize whether a system requires priority preemptive 
scheduling. An RTOS provides priority preemptive scheduling as a mecha-
nism that allows an application to implement a variety of scheduling poli-
cies:

 ● RM (Rate Monotonic) or DM (Deadline Monotonic), fixed priority

 ● EDF (Earliest Deadline First) or LLF (Least Laxity First), dynamic 
priority

 ● Simple run-to-completion cooperative tasking

These policies are a small subset of the larger taxonomy of scheduling 
policies presented previously (refer to Figure 2.8). In the case of simple 
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run-to-completion cooperative tasking, the 
value of the RTOS is mostly the BSP, boot, 
driver, and memory management because 
the application really handles the scheduling. 
Given that bounded latency is most often a 
hard requirement in any real-time system, 
the focus is further limited to RM, EDF, 
and LLF. Ultimately, a real-time scheduler 
needs to support dispatch, execution context 
management, and preemption. In the sim-
plest scenario, where services run to comple-
tion, but may be preempted by higher-prior-
ity service, the thread states are depicted in 
Figure 2.11.

In the state transition diagram shown in 
Figure 2.11, we assume that a thread in ex-

ecution never has to wait for any resources in addition to the CPU, that it 
never encounters an unrecoverable error, and that there is never a need to 
delay execution. If this could be guaranteed, the scheduling for this type of 
system is fairly simple. All services can be implemented as threads, with a 
stack, a register state, and a thread state of executing or ready on a priority 
ordered queue. Most often, threads that implement services operate on 
memory or on an IO interface. In this case, the memory or IO is a sec-
ondary resource, which if shared or if signifi cant latency is associated with 
use, may require the thread to wait and enter a pending state until this 
secondary resource becomes available. In Figure 2.12, we add a pending 
state, which a thread enters when a secondary resource is not immediately 
available during execution. When this secondary resource becomes avail-
able—for example, when a device has data available—that resource can 
set an atomic test-and-set fl ag (a semaphore), indicating availability to the 
scheduler to transition the pending thread back to the ready state.

In addition, if a thread may be arbitrarily delayed by a programmable 
amount of time, then it will need to enter a delayed state, as shown in Fig-
ure 2.13. A delay is simply implemented by a hardware interval timer that 
provides an interrupt after a programmable number of CPU clock cycles 
or external interval-timer count that is incremented by dedicated oscilla-
tor cycles. When the timer is set, an interrupt handler for the expiration is 
installed so that the delay timeout results in restoration of the thread from 
delayed state back to ready state.

 

Ready

Executing 

Dispatch Interference
(preemption) 

FIGURE 2.11 Basic Dispatch and Preemp-
tion States
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ReadyPending 

Executing 

Dispatch 

Wait on
Resource

(semTake()) Interference
(preemption) 

Resource
Ready

(semGive())  

FIGURE 2.12 Basic Service States Showing Pending on Secondary Resource

In addition, if a thread may be arbitrarily delayed by a programmable 
amount of time, then it will need to enter a delayed state, as shown in Fig-
ure 2.13. A delay is simply implemented by a hardware interval timer that 
provides an interrupt after a programmable number of CPU clock cycles or 
external oscillator cycles. When the timer is set, an interrupt handler for the 
expiration is installed so that the delay timeout results in restoration of the 
thread from delayed state back to ready state.

DelayedReadyPending 

Executing 

Dispatch 

Yield
(taskDelay(),

Pause()) 

Wait on 
Resource

(semTake()) 
 Interference

(preemption) 
 

Resource 
Ready

(semGive())
 

Delay
Time Out  

FIGURE 2.13 Basic Service States Including Programmed Delays
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Finally, if a thread of execution encounters a non-recoverable error—
for example, division by zero in the code—then continuation could lead to 
signifi cant system endangerment. In the case of division by zero, this will 
cause an overfl ow result, which in turn might generate faulty command 
output to an actuator, such as a satellite thruster, which could cause loss of 
the asset. If the division by zero is handled by an exception handler that re-
calculates the result and therefore recovers within the service, continuation 
might be possible, but often recovery is not possible.

Because the very next instruction might cause total system failure, a 
non-recoverable exception should result in suspension of that thread. Fig-
ure 2.14 shows the addition of a suspended state. If a thread or task that 
is already in the delayed state can also be suspended by another task, as is 
the case with VxWorks, then additional states are possible in the suspended 
state, including delayed+suspended, pending+suspended, and simple sus-
pended.

DelayedReadyPending 

Suspended 

Executing 

Dispatch 

Yield
(taskDelay(),

Pause()) 

Wait on
Resource

(semTake()) 

Interference  
(preemption) 

Suspend
(unhandled 
exception, 

FIGURE 2.14 Service States Including Programmed Suspension or Suspension Due to Exception
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Although scheduling the CPU for multiple services with the implemen-
tation of threads, tasks, or processes is the main function of an RTOS, the 
RTOS also provides management of memory and IO along with methods to 
synchronize and coordinate usage of these secondary resources along with 
the CPU. Secondary resources lead to the addition of the pending state if 
their availability at runtime can’t be guaranteed in advance. Furthermore, 
if two threads must synchronize, one thread may have to enter the pend-
ing state to wait for another thread to execute up to the rendezvous point 
in its code. In Chapter 6, you’ll see that this seemingly simple requirement 
imposed by secondary resources and the need for thread synchronization 
leads to signifi cant complexity.

The RTOS provides IO resource management through a driver inter-
face, which includes common entry points for reading/writing data, open-
ing/closing a session with a device by a thread, and confi guring the IO 
device. The coordination of access to devices by multiple threads and the 
synchronization of thread execution with device data availability are im-
plemented through the pending state. In the simplest case, an Interrupt 
Service Routine (ISR) can indicate device data availability by setting a 
semaphore (fl ag), which allows the RTOS to transition the thread waiting 
for data to process from pending back to the ready state. Likewise, when 
a thread wants to write data to an IO output buffer, if the buffer is cur-
rently full, the device can synchronize buffer availability with the thread 
again through an ISR and a binary semaphore. In Chapter 8, you’ll see 
that all IO and thread synchronization can be handled by ISRs and binary 
semaphores, but that alternative mechanisms, such as message queues, 
can also be used.

Memory in the simplest scenarios can be mapped and allocated once 
during boot of the system and never modifi ed at runtime. This is the ideal 
scenario because the usage of memory is deterministic in space and time. 
Memory usage may vary, but the maximum used is predetermined, as is the 
time to claim, use, and release memory. In general, the use of the C library 
malloc is frowned upon in real-time embedded systems because this dy-
namic memory-management function provides allocation and de-allocation 
of arbitrary segments of memory. Over time, if the segments truly are of 
arbitrary size, the allocation segments must be coalesced to avoid external 
fragmentation of memory, as shown in Figure 2.15.

Likewise, if arbitrarily sized segments are mapped onto minimum size 
blocks of memory (e.g., 4 KB blocks), then allocation of a 1-byte buffer 
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will require 4,096 bytes to be allocated, with 4,095 bytes within this block 
wasted. This internal fragmentation is shown in Figure 2.16.

Segment-1 

Segment-2 

Segment-3 

Segment-4 

New Segment 
Free

FIGURE 2.15 Memory Fragmentation for Data Segments or Arbitrary Size

New Segment 
Free

Blocks

Segment-1 

Segment-2 

Segment-3
Unused
Block 
Space

FIGURE 2.16 Internal Block Fragmentation for Fixed-Size Dynamic Allocation

In many real-time embedded systems, a compromise for memory man-
agement can be reached whereby most working data segments are prede-
termined, and specifi c usage heaps (dynamically allocated blocks of mem-
ory) can be defi ned that have little to no external or internal fragmentation 
issues.

Overall, because an RTOS provides general mechanisms for CPU, 
memory, and IO resource management, adopting an off-the-shelf RTOS, 
such as VxWorks or embedded Linux, is an attractive choice. However, if 
the resource usage and management requirements are well understood and 
simple, developing a custom resource kernel may be a good alternative. 
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2.8 Thread-Safe Reentrant Functions

When an RTOS scheduling mechanism is used, care must be taken 
to consider whether functions may be called by multiple thread contexts. 
Many real-time services may use common utility functions, and a single 
implementation of these common functions will save signifi cant code space 
memory. However, if one function may be called by more than one thread 
and those threads are concurrently active, the shared function must be writ-
ten to provide reentrant function support so that it is thread-safe. Threads 
are considered concurrently active if more than one thread context is either 
executing or awaiting execution in the ready state in the dispatch queue. In 
this scenario, thread A might have called function F and could have been 
preempted before completing execution of F by thread B, which also calls 
function F. If F is a pure function that uses no global data and operates only 
on input parameters through stack, then this concurrent use is safe. Howev-
er, if F uses any global data, this data may be corrupted and/or the function 
may produce incorrect results. For example, if F is a function that retrieves 
the current position of a satellite stored as a global state and returns a copy 
of that position to the caller, the state information could be corrupted, and 
inconsistent states could be returned to both callers. For this example, as-
sume function F is defi ned as follows:

typedef struct position {double x, y, z;} POSITION;
POSITION satellite_pos = {0.0, 0.0, 0.0};
POSITION get_position(void)
{
     double alt, lat, long;
     read_altitude(&alt);
     read_latitude(&lat);
     read_longitude(&long);

      /* Multiple function calls are required to convert the 
geodetic navigational sensor state to a state in inertial 
coordinates

     */
     satellite_pos.x = update_x_position(alt, lat, long);
     satellite_pos.y = update_y_position(alt, lat, long);
     satellite_pos.z = update_z_position(alt, lat, long);
     return satellite_pos;
}
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Now, if thread A has executed up to the point where it has completed its 
call to update_x_position, but not yet to the rest of get_position, and thread 
B preempts A, updating the position fully, thread A will be returned an 
inconsistent state. The state A returned will include a more recent value for 
x and older values for y and z because the alt, lat, and long variables are on 
the stack that is copied for each thread context. Thread B will be returned 
a consistent copy of the state updated from a set of sensor readings made 
in one call, but A will have the x value from B’s call and will compute y and 
z from the alt, lat, long values on its stack sampled at an earlier time. The 
function as written here is not thread-safe and is not reentrant due to the 
global data, which is updated so that interrupts and preemption can cause 
partial update of the global data. VxWorks provides several mechanisms 
that can be used to make functions reentrant. One strategy is to protect the 
global data from partial updates by preventing preemption for the update 
critical section using taskLock() and taskUnlock(). The solution to make 
this function thread-safe using taskLock() and taskUnlock() is

typedef struct position {double x, y, z;} POSITION;
POSITION satellite_pos = {0.0, 0.0, 0.0};
POSITION get_position(void)
{

double alt, lat, long;
POSITION current_satellite_pos;
read_altitude(&alt);
read_latitude(&lat);
read_longitude(&long);

/* Multiple function calls are required to convert the 
geodetic navigational sensor state to a state in iner-
tial coordinates. The code between Lock and Unlock is the 
critical section.
*/
taskLock();
current_satellite_pos.x = update_x_position(alt, lat, long);
current_satellite_pos.y = update_y_position(alt, lat, long);
current_satellite_pos.z = update_z_position(alt, lat, long);
satellite_pos = current_satellite_pos; /* assumes struc-
ture assignment */
taskUnlock();
return current_satellite_pos;

}
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The use of Lock and Unlock prevents the return of an inconsistent state 
to either function because it prevents preemption during the update of the 
local and global satellite position. The function is now thread-safe, but po-
tentially will cause a higher-priority thread to wait upon a lower-priority 
thread to complete this critical section of code. The VxWorks RTOS pro-
vides alternatives, including task variables (copies of global variables main-
tained with task context), interrupt level Lock and Unlock, and an inver-
sion-safe mutex. The simplest way to ensure thread safety is to avoid the use 
of global data and to implement only pure functions that use only local stack 
data; however, this may be impractical. Chapter 8 provides a more detailed 
discussion of methods to make common library functions thread-safe.

Summary

A real-time embedded system should be analyzed to understand re-
quirements and how they relate to system resources. The best place to start 
is with a solid understanding of CPU, memory, and IO requirements so that 
hardware can be properly sized in terms of CPU clock rate (instructions 
per second), memory capacity, memory access latency, and IO bandwidth 
and latency. After you size these basic three resources, determine resource 
margin requirements, and establish determinism and reliability require-
ments, then you can further refi ne the hardware design for the processing 
platform to determine power, mass, and size. In many cases, an RTOS pro-
vides a quick way to provide management of CPU, memory, and IO along 
with basic fi rmware to boot the software services for an application. Even 
if an off-the-shelf RTOS is used, it is important to understand the common 
implementations of these resource-management features along with theory 
on resource usage policy. In Chapter 3, the focus is CPU resource manage-
ment; in Chapter 4, it is IO interface management; in Chapter 5, memory 
management; and in Chapter 6 multiresource management. In general, for 
real-time embedded systems, service response latency is a primary con-
sideration, and overall, the utility of the response over time should be well 
understood for the application being designed. Traditional hard real-time 
systems require response by deadline or the system is said to have failed. 
In Chapter 7, we consider soft real-time systems where occasional missed 
deadlines are allowed and missed deadline handling and service recovery 
are designed into the system.
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Exercises

1. Provide an example of a hard real-time service found in a commonly 
used embedded system and describe why this service utility fits the 
hard real-time utility curve.

2. Provide an example of a hard real-time isochronal service found in a 
commonly used embedded system and describe why this service utility 
fits the isochronal real-time utility curve.

3. Provide an example of a soft real-time service found in a commonly 
used embedded system and describe why this service utility fits the 
soft real-time utility curve.

4. Implement a VxWorks task that is spawned at the lowest priority level 
possible and that calls semTake to enter the pending state, waiting for 
an event indicated by semGive. From the VxWorks shell, start this task 
and verify that it is in the pending state. Now, call a function that gives 
the semaphore the task is waiting on and verify that it completes execu-
tion and exits.

5. Implement a Linux process that is executed at the default priority for a 
user-level application and waits on a binary semaphore to be given by 
another application. Run this process and verify its state using the ps 
command to list its process descriptor. Now, run a separate process to 
give the semaphore causing the first process to continue execution and 
exit. Verify completion.

6. Read Liu and Layland’s RMA paper (don’t get hung up on math). 
Please summarize the paper’s main points (at least three or more) in a 
short paragraph.

7. Write a paragraph comparing the RM and the Deadline Driven or 
EDF (Earliest Deadline First) policies described in Liu and Layland in 
your own words and be complete, but keep it to one reasonably concise 
paragraph. Note that the Deadline Driven scheduling in Liu and Lay-
land is now typically called a dynamic-priority EDF policy. In general 
a number of policies that are deadline-driven have evolved from the 
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Deadline Driven scheduling Liu and Layland describe, including EDF 
and Least Laxity First. Give at least two specific differences. 

8. Cross Compiling Code for VxWorks: 

You will need to download the file “two_tasks.c” from the DVD 
example code.

Create a Tornado project that includes this file, and download the file 
to a lab target. Using the windshell use the function moduleShow 
to verify that the object code has been downloaded. Submit evidence 
that you have run moduleShow in your lab report (copy and paste into 
your report or do a Ctrl+PrntScrn). 

Next, still in the windshell, do an lkup “test_task” to verify that the 
function entry point for two_tasks example has been dynamically 
linked into the kernel symbol table. Place evidence in your report. 

Note that typing “help” on a windshell command line will provide a 
summary of these basic commands. In addition, all commands can be 
looked up in the VxWorks API manual.

Capture the output from the moduleShow command in the Windshell 
and paste it into your lab write-up to prove that you’ve done this. 

9. Notice the two functions test_tasks1() and test_tasks2() in the 
two_tasks.c file. Describe what each of these functions do. Run each 
function in the windshell by typing the function name at the wind-
shell prompt. Explain the difference as to how synchronization of 
tasks is achieved in two different functions —namely, test_task1 and 
test_task2. 

10.  Run the Windview (now called Systemviewer) tool and capture output 
while the test_tasks program is running. Explain what you see—please 
identify your tasks, where two tasks are running on the CPU, and 
where they synchronize with semTake and semGive. Provide a detailed 
explanation and annotate the trace directly by using “Ctrl+PrntScrn” 
and “Ctrl-v” to paste an image into your write-up and mark up the 

ON THE DVD
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graphic directly. Describe the difference between test_tasks1() and 
test_tasks2() and how this is shown by the Windview (Systemviewer) 
output. 

11.  Now modify the two_tasks.c code so that you create a third task named 
“mytesttask” and write an entry point function that calls “pause()” and 
nothing else. Use the “i” command in the windshell and capture output 
to prove that you created this task. Does this task show execution on 
Windview? Why or why not? 

12.  For the next portion of the lab, you will experiment with creating a 
bootable project for the simulator. Create a bootable project based upon 
the Simulator BSP and configure a new kernel image so that it includes 
POSIX message queues. Build this kernel and launch the simulator with 
this image instead of the default image. Download an application project 
with the posix_mq.c DVD code, and if you did the first part right, you 
will get no errors on download. Do lkup “send” and you should see the 
function entry points in the posix_mq.c module. Cut and paste this 
output into your submission to show you did this. 

13.  Set a break point in function sender with the windshell command 
“b sender.” Now run mq_demo from the windshell. When the break 
point is hit, start a Debug session using the “bug” icon. Use the Debug 
menu and select “Attach...” and attach to the “Sender” task. You should 
see a debug window with the cursor sitting at the sender function entry 
point. Switch the View to “Mixed Source and Disassembly” and now 
count the number of instructions from the sender entry up to the call 
to mq_open. How many steps are there from a break point set at this 
entry point until you enter mq_open using the single step into? Pro-
vide a capture showing the break point output from your windshell. 
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C H A P T E R

PROCESSING

3
In this chapter

 ● Introduction
 ● Preemptive Fixed-Priority Policy
 ● Feasibility
 ● Rate-Monotonic Least Upper Bound
 ● Necessary and Sufficient Feasibility
 ● Deadline-Monotonic Policy
 ● Dynamic-Priority Policies

3.1 Introduction

Processing input data and producing output data for a system response 
in real time do not necessarily require large CPU resources, but rather 
careful use of CPU resources. Before considering how to make optimal use 
of CPU resources in a real-time embedded system, you must fi rst better un-
derstand what is meant by processing in real time. The mantra of real-time 
system correctness is that the system must not only produce the required 
output response for a given input (functional correctness), but also do so in 
a timely manner (before a deadline). A deadline in a real-time system is a 
relative time after a service request by which time the system must produce 
a response. The relative deadline seems to be a simple concept, but a more 
formal specifi cation of real-time services is helpful due to the many types 
of applications. For example, the processing in a voice or video real-time 
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system is considered high-quality if the service continuously provides out-
put neither too early nor too late, without too much latency and without too 
much jitter between frames. Similarly, in digital control applications, the 
ideal system has a constant time delay between sensor sampling and actua-
tor outputs. However, by comparison, a real-time service that monitors a 
satellite’s health and status and initiates a safe recovery sequence when the 
satellite is in danger must enter the recovery as quickly as possible after the 
dangerous condition is detected. Digital control and continuous media (au-
dio and video) are isochronal real-time services. Responses should not be 
generated too long after or too early after a service request. System health 
monitoring, however, is a simple real-time service where the system must 
produce a response (initiate the recovery sequence) no later than some 
deadline following the request.

3.2 Preemptive Fixed-Priority Policy

Given that the RM priority assignment policy is optimal, as shown in 
the previous chapter, we now want to determine whether a proposed set of 
services is feasible. By feasible, we mean that the proposed set of services 
can be scheduled given a fi xed and known amount of CPU resource. One 
such test is the RM LUB: Liu and Layland proposed this simple feasibil-
ity test they call the RM Least Upper Bound (RM LUB). The RM LUB is 
defi ned as


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U: Utility of the CPU resource achievable

Ci: Execution time of Service i

m:  Total number of services in the system sharing common CPU 
resources

Ti: Release period of Service i

Without much closer inspection of how this RM LUB was derived, it is 
purely magical and must be accepted on faith.

Rather than just accept the RM LUB, we can instead examine the 
properties of a set of services and their feasibility and generalize this infor-
mation: can we in general determine a feasibility test for a set of proposed 
services sharing a CPU according to RM policy?
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To answer this question, we can simply diagram the timing for release, 
preemption, dispatch, and completion of a set of services from the critical 
instant and later. The critical instant assumes that in the worst case, all ser-
vices might be requested at the same time. If we do attempt to understand 
a system by diagramming, for what period of time must the system be ana-
lyzed? If we analyze the scheduling with the RM policy for some arbitrary 
period, we may not observe the release and completion of all services in the 
proposed set. So, to observe all services, we at least need to diagram the 
service execution over a period equal to or greater than the largest period in 
the set of services. You’ll see that if we really want to understand the use of 
the system, we actually must diagram the execution over the least common 
multiple of all periods for the proposed set of services, or LCM time. These 
concepts are best understood by taking a real example. Let’s also see how 
this real example compares to the RM LUB.

For a system, can all Cs fi t in the largest T over LCM (Least Com-
mon Multiple) time? Given Services S1, S2 with periods T1 and T2 and C1 
and C2, assume T2 > T1, for example, T1 = 2, T2 = 5, C1 = 1, C2 = 1; and 
then if prio(S1) > prio(S2), you can see that they can by inspecting a timing 
diagram, as shown in Figure 3.1.
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FIGURE 3.1 Example of Two-Service Feasibility Testing by Examination

The actual utilization of 70% is lower than the RM LUB of 83.3%, and 
the system is feasible by inspection. So, the RM LUB appears to correctly 
predict feasibility for this case.

Why did Liu and Layland call the RM LUB a least upper bound? Let’s 
inspect this bound a little more closely by looking at a case that increases 
utility, but remains feasible. Perhaps we can even exceed their RM LUB.

In this example, RM LUB is safely exceeded, given Services S1, S2 with 
periods T1 and T2 and C1 and C2; and assuming T2 = T1, for example, T1 = 2, 
T2 = 5, C1 = 1, C2 = 2; and then if prio(S1) > prio(S2), note Figure 3.2.
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By inspection, this two-service case with 90% utility is feasible, yet the 
utility exceeds the RM LUB. So, what good is the RM LUB? The RM LUB 
is a pessimistic feasibility test that will fail some proposed service sets that 
actually work, but it will never pass a set that doesn’t work. A more formal 
way of describing the RM LUB is that it is a suffi cient feasibility test, but 
not necessary.
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FIGURE 3.2 Example of Two-Service Case Exceeding RM LUB

The formal differences between sufficient, necessary and 
necessary and sufficient

What exactly is meant by a sufficient condition or a necessary and sufficient con-
dition? Necessary, sufficient, and necessary and sufficient have well-defined meaning in 
logic. As defined in Wikipedia, the free online encyclopedia, here are the standard 
definitions of all three:

Necessary condition: To say that A is necessary for B is to say that B cannot occur 
without A occurring or that whenever (wherever, etc.) B occurs, so does A. Drinking 
water regularly is necessary for a human to stay alive. If A is a necessary condition 
for B, then the logical relation between them is expressed as “If B then A” or “B 
only if A” or “B → A.”

Sufficient condition: To say that A is sufficient for B is to say precisely the converse: 
that A cannot occur without B, or whenever A occurs, B occurs. That there is a fire 
is sufficient for there being smoke. If A is a sufficient condition for B, then the logi-
cal relation between them is expressed as “If A then B” or “A only if B” or “A → B.”

Necessary and sufficient condition: To say that A is necessary and sufficient for 
B is to say two things: (1) A is necessary for B and (2) A is sufficient for B. The 
logical relationship is therefore “A if and only if B.” In general, to prove “P if Q,” 
it is equivalent to proving both the statements “if P, then Q” and “if Q, then P.”
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For real-time scheduling feasibility tests, suffi cient therefore means 
that passing the test guarantees that the proposed service set will not miss 
deadlines; however, failing a suffi cient feasibility test does not imply that 
the proposed service set will miss deadlines. An N&S (Necessary and Suf-
fi cient) feasibility test is exact—if a service set passes the N&S feasibility 
test, it will not miss deadlines, and if it fails to pass the N&S feasibility 
test, it is guaranteed to miss deadlines. Therefore, an N&S feasibility test 
is more exact compared to a suffi cient feasibility test. The suffi cient test is 
conservative and, in some scenarios, downright pessimistic. The RM LUB 
is useful, however, in that it provides a simple way to prove that a proposed 
service set is feasible. The suffi cient RM LUB does not prove that a service 
set is infeasible—to do this, you must apply an N&S feasibility test. Pres-
ently, the RM LUB is the least complex feasibility test to apply. The RM 
LUB is O(n) order n complexity—requiring summation of service execu-
tion times and comparison to a simple expression that is a function of the 
number of services in the proposed set. By comparison, the only known 
N&S feasibility tests for the RM policy are O(n3)—requiring iteration loops 
bounded by the number of services nested twice so that three nested loops 
must be executed (as shown in the “Feasibility” section of this chapter). If 
the feasibility test is performed once during design, then it makes sense to 
test the proposed service set with an N&S test. However, for quick calcula-
tions, “back of the envelope calculations,” the RM LUB is still useful. In 
some cases, it also may be useful to perform a feasibility test in real time. In 
this case, the system providing real-time services might receive a request to 
support an additional service with known RM properties (period, execution 
time, and deadline) while presently running an existing service set—this is 
called online or on-demand scheduling; for this type of system, the feasibil-
ity test itself requires resources for evaluation—keeping the requirements 
of the feasibility test minimal may be advantageous. Either way, for online 
scheduling, the feasibility test is a service itself and requires resources like 
any other service.

Now that you understand how the RM LUB is useful, let’s see how the 
RM LUB is derived. After understanding the RM LUB derivation, N&S 
feasibility algorithms are easier to understand as well. Finally, much like the 
demonstration that the RM policy is optimal with two services, it’s easier 
to derive the RM LUB for two services (if you want to understand the full 
derivation of the RM LUB for an unlimited number of services, see Liu and 
Layland’s paper [Liu73]).
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3.3 Feasibility

Feasibility tests provide a binary result that indicates whether a set of 
services (threads or tasks) can be scheduled given their Ci, Ti, and Di speci-
fi cation. So the input is an array of service identifi ers (Si) and specifi cations 
for each, and the output is TRUE if the set can be safely scheduled so that 
none of the deadlines will be missed and FALSE if any one of the deadlines 
might be missed. There are two types of feasibility tests:

 ● Sufficient

 ● Necessary and Sufficient (N&S)

Suffi cient feasibility tests will always fail a service set that is not real-
time-safe (i.e., that can miss deadlines). However, a suffi cient test will also 
fail a service set that is real-time-safe occasionally as well. Suffi cient fea-
sibility tests are not precise. The suffi cient tests are conservative because 
they will never pass an unsafe set of services. N&S tests are precise. An 
N&S feasibility test will not pass a service set that is unsafe and likewise will 
not fail any test that is safe. The RM LUB is a suffi cient test and therefore 
safe, but it will fail service sets that actually can be safely scheduled.

All Service Sets 
Safe & Unsafe

 

Safe Service Set 
Passing N&S Test

Safe Service Set
Passing Sufficient Test  

FIGURE 3.3 Relationship between Sufficient and N&S Feasibility Tests



PROCESSING • 73

By comparison, the Scheduling Point and Completion tests for the RM 
policy are N&S and therefore precise. Examples showing the imprecise but 
safe characteristic of the RM LUB are examined in the following section. It 
will also become clear that service sets with relatively harmonic periods can 
easily fail the suffi cient RM LUB and be shown to be safe when analyzed—
the more precise N&S feasibility tests will correctly predict such harmonic 
service sets as safe that may not pass the RM LUB. The N&S test will pre-
cisely identify the safe service set. The suffi cient tests are yet another subset 
of the N&S safe subset, as depicted in Figure 3.3.

3.4 Rate-Monotonic Least Upper Bound

Taking the same two-service example shown earlier in Figure 3.2, we 
have the following set of proposed services. Given Services S1, S2 with pe-
riods T1 and T2 and execution times C1 and C2, assume that the services are 
released with T1 = 2, T2 = 5, execute deterministically with C1 = 1, C2 = 2, 
and are scheduled by the RM policy so that prio(S1) > prio(S2). If this pro-
posed system can be shown to be feasible so that it can be scheduled with 
the RM policy over the LCM (Least Common Multiple) period derived 
from all proposed service periods, then the Lehoczky, Sha, and Ding theo-
rem [Briand99] guarantees it real-time-safe. The theorem is based upon 
the fact that given the periodic releases of each service, the LCM schedule 
will simply repeat over and over, as shown in Figure 3.4.

Note that there can be up to [T2 / T1] releases of S1 during T2 as indicat-
ed by the #1, #2, and #3 execution traces for S1 in Figure 3.4. Furthermore, 
note that in this particular scenario the utilization U is 90%.

The CI (Critical Instant) is a worst-case assumption that the demands 
upon the system might include simultaneous requests for service by all ser-
vices in the system! This eliminates the complexity of assuming some sort 
of known relationship or phasing between service requests and makes the 
RM LUB a more general result.

Given this motivating two-service example, we can now devise a strat-
egy to derive the RM LUB for any given set of services S for which each 
service Si has an arbitrary Ci, Ti. Taking this example, we examine two cases:

 Case 1[Figure 3.4]: C1 short enough to fi t all three releases in T2 (fi ts 
S2 critical time zone)
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 Case 2 [Figure 3.7]: C1 too large to fi t last release in T2 (doesn’t fi t S2 
critical time zone)

Examine U in both cases to fi nd common U upper bound. The critical 
time zone is depicted in Figure 3.5.

In Case 1, all three S1 releases requiring C1 execution time fi t in T2 as 
shown in Figure 3.5. This is expressed by

     1 2 1 2 1/C T T T T  (3.1)

Eq–3 : U =

Eq–2 : C2 = T2 – C1

Eq–1 : C1 T2 – T1  

C.I

#1 #2 #3

(i.e.,  C1 is small enough to fit into fractional 3rd T1 showsn as                )
(i.e, C2 = T2 - Interference from C1 releases)  

T1

T2

S1

S2

T2/T1

 T2/T1

C1

T1

C2

T2
+

FIGURE 3.5 Example of Critical Time Zone

Note that the expression is the minimum number of times that T1 oc-
curs fully during T2. The expression is the fractional amount of time that 
the third occurrence of T1 overlaps with T2. Equation 3.2 simply expresses 
the length of C2 to be long enough to use all time not used by S1—note that 

T1

C.I.

#1 #2 #3

T2

S1

S2

FIGURE 3.4 Two-Service Example Used to Derive RM LUB
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when the third release of S1 just fi ts in the critical time zone shown by the 
arrow beneath release #3 of S1 in time segment fi ve, then S1 occurs exactly  
[T2 /T1] times during T2.

 
    2 2 1 2 1/C T C T T  (3.2)

From Figure 3.5 it should be clear that if C1 was increased and C2 held 
constant, the schedule would not be feasible; likewise if C2 was increased 
and C1 held constant, they just fi t! It is also interesting to note that, looking 
over the LCM, we do not have full utility, but rather 90%. Equation 3.3 
defi nes the utility for the two services.

 
 1 2

1 2

U
C C
T T

 (3.3)

At this point, let’s plug the expression for C2 in Equation 3.2 into Equa-
tion 3.3, which creates Equation 3.4:

 
       2 1 2 11

1 2

/T C T TC
U

T T
 (3.4)

Now, simplify by the following algebraic steps: 

        1 2 11 2

1 2 2

/C T TC T
U

T T T
 (pull out T2 term)

        1 2 11

1 2

/
1

C T TC
U

T T
 (note that T2 term is 1) 

 
      
  

2 1
1 1

2

/
1 1 /

T T
U C T

T
 (combine C1 terms)

This gives you Equation 3.5:

 
 
      
  

2 1
1 1

2

/
1 1 /

T T
U C T

T
 (3.5)

What is interesting about Equation 3.5 is that U monotonically decreas-
es with increasing C1 when (T2 > T1). Recall that T2 must be greater than T1 
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given the RM priority policy assumed here. The term   2 1
1

2

/
1 /

T T
T

T

    
  

is always less than zero because T2 is greater than T1. This may not be imme-
diately obvious, so let’s analyze the characteristics of this expression a little 
more closely. Say that we fi x T1 = 1 and because T2 must be greater than T1, 
we let it be any value from 1 + to ∞. Note that when T2 = 1, this is a degener-
ate case where the periods are equal—you’ll fi nd out later why this is some-

thing we never allow. If we plot the expression
  2 1

2

/T T

T
, you see that it is a 

periodic function that oscillates between 1 and 2 as we increase T2, equaling 
1 anytime T2 is a multiple of T1. By comparison, the term (1/ T1)is constant 
and equal to 1 in this specifi c example (we could set T1 to any constant 
value—try this and verify that the condition still holds true). Figure 3.6 
shows the periodic relationship between T2 and T1 that guarantees that U 
monotonically decreases with increasing C1 when (T2 > T1) for Case 1.

Ratio of maximum occurrences of a smaller period over larger period

1

T2 /T1

1 3 4 72 5 6 8

1.1

1.2

1.2

1.4

1.5

1.6

1.7

1.8

1.9

T2 /T1

T2

FIGURE 3.6 Case 1 Relationship of T2 and T1

So, now that you understand the scenario where C1 just fi ts into the 
critical time zone, let’s look at Case 2.

In Case 2, the last release of S1 does not fi t into T2—that is, C1 spills 
over T2 boundary on last release, as shown in Figure 3.6. This spillover con-
dition of the last release of S1 during T2 is expressed simply as Equation 3.6:
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     1 2 1 2 1/C T T T T  (3.6)

Equation 3.6 is the same as Equation 3.1, but with the inequality 
fl ipped—when S1’s C1 is just a little too large to fi t in the critical time zone 
shown in Figure 3.7.

/

T2T1

U

C1

C.I

#1 #2 #3S1

S2

T2

T1

C2C1

C2

C1 T2 T1 T2 T1

/T2 T1
/T2 T1

C1

FIGURE 3.7 Case 2 Overrun of Critical Time Zone by S1

Even though S1 overruns the critical time zone, time remains for S2, and 
we could fi nd a value of C2 for S2 that still allows it to meet its deadline of T2. 
To compute this smaller C2, we fi rst note that S1 release #1 plus #2 in Fig-
ure 3.7 along with some fraction of #3 leave some amount of time left over 
for S2. However, if we simply look at the fi rst two occurrences of T1 during 
T2, leaving out the third release of S1 during T2, then we see that this time 
is the sum of all full occurrences of T1 during T2, which can be expressed 
as   1 2 1/T T T . Furthermore, the amount of time that S1 takes during this 

  1 2 1/T T T duration is exactly   1 2 1/C T T . From these observations we de-

rive Equation 3.7:

        2 1 2 1 1 2 1/ /C T T T C T T  (3.7)

Substituting Equation 3.7 into the utility Equation 3.3 again as before, 
we get

Equation 3.8:

 
          1 2 1 1 2 11

1 2

/ /T T T C T TC
U

T T
 (3.8)

Now simplifying by the following algebraic steps:

         
1 2 11

1 2 2 1
1 2

/
( / ) /

C T TC
U T T T T

T T
 (separating terms)

               1 2 2 1 1 1 2 2 1/ / 1 / 1 / /U T T T T C T T T T  (pulling out com-
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mon C1 term)

This gives us Equation 3.9:

                1 2 2 1 1 1 2 2 1/ / 1 / 1 / /U T T T T C T T T T  (3.9)

What is interesting about Equation 3.9 is that U monotonically increases 
with increasing C1 when (T2 > T1). Recall again that T2 must be greater than 
T1 given the RM priority policy assumed here. The term    2 2 11 / /T T T  
is always smaller than  21 / T  because T2 is greater than T1. As before, this 
may not be immediately obvious, so let’s analyze the characteristics of this 
expression a little closer—once again, we fi x T1 = 1 and because T2 must 
be greater than T1, we let it be any value from 1+ to ∞. Now if we plot this 
again, you see that    2 2 11 / /T T T  is less than 1 in all cases and therefore 
also less than (1/ T1 ), as can be seen in Figure 3.8.

0.5

0.95

1

1                   2                    3                    4                    5                    6                     7                   8

Ratio of maximum occurrences of a smaller period over larger period

T2 /T1

T2

T2 /T1

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

FIGURE 3.8 Case 2 Relationship of T2 and T1

So, now we also understand the scenario where C1 just overruns the 
critical time zone. The key concept is that in Case 1, we have the maximum 
number of occurrences of S1 during T2 and in Case 2 we have the minimum.

If we now examine the utility functions for both Case 1 and Case 2:

  
      
  

2 1
1 1

2

/
1 1 /

T T
U C T

T
 (3.10)
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                1 2 2 1 1 1 2 2 1/ / 1 / 1 / /U T T T T C T T T T  (3.11)

Let’s plot the two utility functions on the same graph, setting T1=1, 
T2 = 1+ to ∞, and C1 = 0 to T1.

1

1.
4

1.
8

2.
2

2.
6

3

3.
4

3.
8 0 0.
2 0.

4 0.
6 0.
8 1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

U

Period-2

C-1

0.9- 1
0.8-0. 9
0.7-0. 8
0.6-0. 7
0.5-0. 6
0.4-0. 5
0.3-0. 4
0.2-0. 3
0.1-0. 2
0-0.1

Case-1 Utility

FIGURE 3.9 Case 1 Utility with Varying T2 and C1

When C1 = 0, this is not particularly interesting because this means that 
S2 is the only service that requires CPU resource; likewise, when C1 = T2, then 
this is also not so interesting since it means that S1 uses all of the CPU resource 
and never allows S2 to run. Looking at the utility plot for Equation 3.5 in Fig-
ure 3.9 and Equation 3.9 in Figure 3.10, we can clearly see the periodicity of 
utility where maximum utility is achieved when T1 and T2 are harmonic.

What we really want to know is where the utility is equal for both cases 
so that we can determine utility independent of whether C1 exceeds or is 
less than the critical time zone. This is most easily determined by subtract-
ing Figure 3.9 and Figure 3.10 data to fi nd where the two function differ-
ences are zero. Figure 3.11 shows that the two function differences are zero 
on a diagonal when T2 is varied from 1 times to 2 times T1 and C1 is varied 
from zero to T1.

Finally, if we then plot the diagonal of either utility curve (from Equa-
tion 3.5 or Equation 3.9) as shown in Figure 3.12, we see identical curves 
that clearly have a minimum near 83% utility.
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FIGURE 3.10 Case 2 Utility with Varying T2 and C1
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FIGURE 3.11 Intersection of Case 1 and Case 2 Utility Curves
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FIGURE 3.12 Two-Service Utility Minimum for Both Cases

Recall that Liu and Layland claim the least upper bound for safe utility 
given any arbitrary set of services (any relation between periods and any re-

lation between critical time zones) is defi ned as: 1

1
( / ) (2 1).

m
m

i i
i

U C T m


    

For two services we see that 1(2 1) 0.83mm   !

We have now empirically determined that there is a minimum safe 
bound on utility for any given set of services, but in so doing, we can also 
clearly see that this bound can be exceeded safely for specifi c T1, T2, and C1 
relations.

For completeness, let’s now fi nish the two-service RM least upper 
bound proof mathematically. We’ll argue that the two cases are valid only 
when they intersect, and given the two sets of equations this can occur only 
when C1 is equal for both cases:

    
    

 

1 2 1 2 1

2 2 1 2 1

1 2

1 2

/

/

C T T T T

C T C T T

C C
U

T T

Now, plug C1 and C2 simultaneously into the utility equation to get 
Equation 3.12:
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        2 1 2 1 2 1 2 1

1 2

/ /T T T T T C T T
U

T T

 
             2 1 2 1 2 2 1 2 1 2 1

1 2

/ ( / ) /T T T T T T T T T T T
U

T T

 
                 2 1 2 1 2 2 2 1 1 2 1 2 1

1 2

/ / / /T T T T T T T T T T T T T
U

T T

                      2 1 2 1 2 1 1 2 2 1 2 1/ / 1 / / / /U T T T T T T T T T T T T

                      2 1 1 2 2 1 2 1 2 1 2 11 / / / / / /U T T T T T T T T T T T T

                          
2

1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 11 / / / / / / / /U T T T T T T T T T T T T T T T T

                     1 2 2 1 2 1 2 1 2 11 / / / / /U T T T T T T T T T T  (3.12)

Now, let whole integer number of interferences of S1 to S2 over T2 
be    2 1/I T T  and the fractional interference be       2 1 2 1/ /f T T T T . 

From this, we can derive a simple expression for utility:

  
 

     
 2 1

1
1

/

f f
U

T T
 (3.13)

The derivation for Equation 3.11 is based upon substitution of I and f 
into Equation 3.12 as follows:

                    1 2 2 1 2 1 2 1 2 11 / / / / /U T T T T T T T T T T

                     1 2 2 1 2 1 2 1 2 11 / 1 / / / /U T T T T T T T T T T  based on 

ceiling(N.d) = 1 + fl oor(N.d)

                     1 2 2 1 2 1 2 1 2 11 / 1 / / / /U T T T T T T T T T T

      1 21 / 1U T T f f

  
 

     
 2 1

1
1

/

f f
U

T T
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By adding and subtracting the same denominator term to Equation 
3.13, we can get:

 
 

             2 1 2 1 2 1

1
1

/ / /

f f
U

T T T T T T

  
 

      

1
1

f f
U

I f

The smallest I possible is 1, and the LUB for U occurs when I is mini-
mized, so we substitute 1 for I to get:

 
 

2

1
1

f f
U

f

      
 

Now taking the derivative of U w.r.t. f, and solving for the extreme, we 
get:

     
 

   
   



2

2

1 1 2 1
/ 0

1

f f f f
U f

f

Solving for f, we get:

  1/22 1f

And, plugging f back into U, we get:

  1/22 2 1U

The RM LUB of 1(2 1)mm   is  1/22 2 1  for m=2, which is true for 

the two-service case—QED.

Having derived the RM LUB by inspection and by mathematical ma-
nipulation, what did we actually learn from this? Most importantly, the 
pessimism of the RM LUB that leads to low utility for real-time safety is 
based upon a bound that works for all possible combinations of T1 and T2. 
Specifi cally, the RM LUB is pessimistic for cases where T1 and T2 are har-
monic—in these cases it is possible to safely achieve 100% utility! In many 
cases, as shown by demonstration in Figure 3.5 and the Lehoczky, Sha, 
Ding theorem, we can also safely utilize a CPU at levels below 100% but 



84 • REAL-TIME EMBEDDED COMPONENTS AND SYSTEMS WITH LINUX AND RTOS

above the RM LUB. The RM LUB still has value since it is a simple and 
quick feasibility check that is suffi cient. When going through the derivation, 
it should now be evident that in many cases it is not possible to safely utilize 
100% of the CPU resource with fi xed-priority preemptive scheduling and 
the RM policy; in the next section the Lehoczky, Sha, Ding theorem is pre-
sented and provides a necessary and suffi cient feasibility test for RM policy.  

3.5 Necessary and Sufficient Feasibility

Two algorithms for determination of N&S feasibility testing with RM 
policy are easily employed:

 ● Scheduling Point Test

 ● Completion Time Test

To always achieve 100% utility for any given service set, you must use 
a more complicated policy with dynamic priorities. You can achieve 100% 
utility for fi xed-priority preemptive services, but only if their relative periods 
are harmonic. Note also that RM theory does not account for IO latency. 
The implicit assumption is that IO latency is either insignifi cant or known 
deterministic values that can be considered separately from execution and 
interference time. In the upcoming “Deadline-Monotonic Policy” section, 
you’ll see that it’s straightforward to slightly modify RM policy and feasibil-
ity tests to account for a deadline shorter than the release period, therefore 
allowing for additional output latency. Input latency can be similarly dealt 
with, if it’s a constant latency, by considering the effective release of the 
service to occur when the associated interrupt is asserted rather than the 
real-world event. Because the actual time from effective release to effective 
release is no different than from event to event, the effective period of the 
service is unchanged due to input latency. As long as the additional latency 
shown in Figure 3.13 is acceptable and does not destabilize the service, it 
can be ignored. However, if the input latency varies, this causes period jit-
ter. In cases where period jitter exists, you simply assume the worst-case 
frequency or shortest period possible.

3.5.1 Scheduling Point Test
Recall that by the Lehoczky, Sha, Ding theorem, if a set of services can 

be shown to meet all deadlines from the critical instant up to the longest 
deadline of all tasks in the set, then the set is feasible. Recall the critical 
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instant assumption from Liu and Layland’s paper, which states that in the 
worst case, all services might be requested at the same point in time. Based 
upon this common set of assumptions, Lehoczky, Sha, and Ding introduced 
an iterative test for this theorem called the Scheduling Point Test:
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 ● Where n is the number of tasks in the set Si to Sn, where S1 has higher 
priority than S2, and Sn has higher priority than Sn>1.

 ● j identifies Sj, a service in the set between S1 and Sn.

 ● k identifies Sk, a service whose l periods must be analyzed.

 ● l represents the number of periods of Sk to be analyzed.
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FIGURE 3.13 Service Effective Release and Deadline
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represents the number of times Sj executes within l period of Sk.
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 is the time required by Sj to execute within l periods of Sk—

if the sum of these times for the set of tasks is smaller than l period of Sk, 
then the service set is feasible.

The following is a C code algorithm included with test code on the 
DVD for the Scheduling Point Test, assuming arrays are sorted according 
to the RM policy where period[0] is the highest priority and shortest period:

#include <math.h>
#include <stdio.h>

#define TRUE 1
#define FALSE 0
#define U32_T unsigned int

int scheduling_point_feasibility(U32_T numServices, 
                                 U32_T period[], U32_T wcet[],
                                 U32_T deadline[])
{
   int rc = TRUE, i, j, k, l, status, temp;

   for (i=0; i < numServices; i++) //  iterate from highest to 
lowest priority

   {
      status=0;

      for (k=0; k<=i; k++) 
      {
          for (l=1; l <= (floor((double)period[i]/(double)
                          period[k])); l++)
          {
               temp=0;

               for (j=0; j<=i; j++) temp += wcet[j] * 
               ceil((double)l*(double)period[k]/(double)
               period[j]);

ON THE DVD
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               if (temp <= (l*period[k]))
      {
       status=1;
       break;
      }
           }
           if (status) break;
      }
      if (!status) rc=FALSE;
   }
   return rc;
}

3.5.2 Completion Time Test
The Completion Time Test is presented as an alternative to the Sched-

uling Point Test [Briand99]:
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 is the number of executions of Sj at time t.
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T
is the demand of Sj in time at t.

 ● an(t) is the total cumulative demand from the n tasks up to time t.

Passing this test requires proving that an(t) is less than or equal to the 
deadline for Sn, which proves that Sn is feasible. Proving this same property 
for all S from S1 to Sn proves that the service set is feasible.

The following is a C code algorithm for the Completion Time Test, as-
suming arrays are sorted according to the RM policy where period[0] is the 
highest priority and shortest period:

#include <math.h>
#include <stdio.h>

#define TRUE 1
#define FALSE 0
#define U32_T unsigned int
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int completion_time_feasibility(U32_T numServices, 
                                U32_T period[], U32_T wcet[], 
                                U32_T deadline[])
{
  int i, j;
  U32_T an, anext;
  
  // assume feasible until we find otherwise
  int set_feasible=TRUE;
   
  //printf(“numServices=%d\n”, numServices);
  
  for (i=0; i < numServices; i++)
  {
       an=0; anext=0;
       
       for (j=0; j <= i; j++)
       {
           an+=wcet[j];
       }
       
    //printf(“i=%d, an=%d\n”, i, an);

       while(1)
       {
             anext=wcet[i];
      
             for (j=0; j < i; j++)
                 anext += ceil(((double)an)/((double)period[j]))
                                 *wcet[j];
   
             if (anext == an)
                break;
             else
                an=anext;

    //printf(“an=%d, anext=%d\n”, an, anext);
       }
       
    //printf(“an=%d, deadline[%d]=%d\n”, an, i, deadline[i]);
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       if (an > deadline[i])
       {
          set_feasible=FALSE;
       }
  }
  
  return set_feasible;
}

3.6 Deadline-Monotonic Policy

Deadline-monotonic (DM) policy is very similar to RM except that 
highest priority is assigned to the service with the shortest deadline. The 
DM policy is a fi xed-priority policy (be sure not to confuse this with EDF 
(Earliest Deadline First), where priority is assigned dynamically with high-
est priority assigned to the active service with the nearest or earliest dead-
line at any given point in time). The DM policy eliminates the original RM 
assumption that service period must equal service deadline and allows RM 
theory to be applied for scenarios even when deadline is less than the pe-
riod. This is useful for dealing with signifi cant output latency. The DM 
policy can be shown to be optimal fi xed-priority assignment policy like RM 
policy because Di and Ti differ only by a constant value, and Di ≤ Ti. The 
DM policy feasibility tests are most easily implemented as iterative tests 
like Scheduling Point and the Completion Time Test for RM policy. This 
policy and associated feasibility tests were fi rst introduced by Alan Burns 
and Neil Audsley [Audsley93]. The suffi cient feasibility test they fi rst intro-
duced is simple and intuitive:

     : 1 : 1.0i i

i i

C I
i i n

D D
 (3.14)

Ci is the execution time for service i, and Ii is the interference time 
service i must tolerate over its deadline Di time period since the time of 
request for service.

Equation 3.14 states that for all services from 1 to n, if the deadline 
interval is long enough to contain the service execution time interval plus 
all interfering execution time intervals, then the service is feasible. If all 
services are feasible, then the system is feasible (real-time-safe).

Interference to Service Si is due to preemption by all higher-priority 
services S1 to Si-1, and the total interference time is the number of releases 
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of Sj over the deadline interval Di. The number of Si interferences is then 
multiplied by execution time Cj and summed for all Sj. Note that Sj always 
has higher priority than Si.
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However, even Equation 3.16 does not exactly account for partial inter-
ference. So, both Equations 3.15 and 3.16 when used with Equation 3.14 
are only sufficient feasibility tests.

A slightly different approach to dealing with Ti ≠ Di is to simply assume 
that Si has a shorter period than it really does until Ti = Di. This approach is 
a variation of period transform that would affect overall utilization, but al-
lows the RM policy and feasibility approaches to be applied without modifi -
cation, including the N&S Completion Time Test and/or Scheduling Point 
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Test. In general, period transform is used to increase the frequency of a 
periodic service to raise its RM priority, often by dividing the implementa-
tion of the service into multiple parts. Because output latencies typically are 
not a huge portion of response time, period transform is a practical way to 
force real-world problems into the RM framework—deriving a DM N&S 
feasibility test would be another option. However, the N&S DM feasibility 
test is complex, so unless there is a huge output latency, period transform 
is the best approach due to the large body of well-understood RM theory.

An alternative to RM or DM is the dynamic-priority policies derived 
from the deadline-driven dynamic-priority approach, fi rst presented by 
Liu and Layland. In the next section, we’ll explore the advantages and dis-
advantages of dynamic priorities compared to static. Today, for hard real-
time systems that must provide deterministic responses to service requests, 
fi xed-priority RM policy remains the most widely used and universally ac-
cepted theory.

3.7 Dynamic-Priority Policies

Priority preemptive dynamic-priority systems can be thought of as a 
more complex class of priority preemptive where priorities are adjusted 
by the scheduler every time a new service is released and ready to run. 
The concept was fi rst formally introduced by Liu and Layland [Liu73] with 
their description of deadline-driven scheduling policy. The policy Liu and 
Layland specifi ed in their paper later became known as an EDF (Earliest 
Deadline First) dynamic-priority policy. The policy is called EDF because 
the scheduler gives highest priority to the service that has the soonest dead-
line whenever a dispatch decision is made. This also means that anytime an 
additional thread is placed on the ready queue, the EDF scheduler must 
reevaluate all dispatch priorities because the newly added thread may not 
have a deadline later than all the existing threads on the ready queue. Basi-
cally, the EDF scheduler must be able to insert the new thread into the 
queue based upon time to its deadline relative to the time to deadline for all 
other threads—the insertion has a complexity that is of the order n – O(n), 
where n is the number of threads on the queue. By comparison a fi xed-pri-
ority policy scheduler can be implemented with complexity that is O(1), or 
constant time using priority queues. Liu and Layland proved that the poten-
tial utility for EDF is full and that deadlines can be guaranteed with EDF. 
This is an incredible result when compared to fi xed-priority RM policy. 
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Essentially no margin is required for real-time safety. Is this really true? If 
so, then why wouldn’t EDF be the only policy ever used for real-time sys-
tems? Figure 3.14 shows a scenario where the fi xed-priority RM policy fails, 
and EDF succeeds. Furthermore, it shows that a related dynamic priority 
policy, LLF (Least Laxity First), also succeeds where RM fails.

Like EDF, LLF is a dynamic-priority policy where services on the 
ready queue are assigned higher priority if their laxity is the least. Laxity 
is the time difference between their deadline and remaining computation 
time. This requires the scheduler to know all outstanding service request 
times, their deadlines, the current time, and remaining computation time 
for all services, and to reassign priorities to all services on every preemp-
tion. Estimating remaining computation time for each service can be dif-
fi cult and typically requires a worst-case approximation. Like EDF, LLF 
can also schedule 100% of the CPU for schedules that can’t be scheduled 
by the static RM policy.

Example T1                2                 C1             1                U1             0.5            LCM =         70         

RM Schedule
S1 ?????????
S2 ????????
S3 LATE
EDF Schedule
S1
S2
S3
TTD
S1 2               X                 2                 X               2                 X                2                X                 2                X
S2
S3
LLF Schedule
S1
S2
S3
Laxity
S1
S2
S3

T2                5                 C2             1                U2             0.2                 
T3                7                 C3             2                U3         0.285714      Utot =      0.985714         

5               4                 X                 X               X                5                 4                3                 X                X
7                6                 5                 4                3                 5                 X               7                 6                 5

1                X                 1                 X                1                 X                1               X                1                 X
4                3                  X                X               X                 4                 3               2                 X                X
5                4                  3                 2                2                 2                 X               2                 4                 3

FIGURE 3.14 RM Policy Overload Scenario

Intuitively, it’s hard to believe that the use of any resource can be 
safe with no margin at all. Even the slightest miscalculation on resources 
required can cause an overload (overuse of resources). This is a likely 
scenario given that determining the actual execution time that all ser-
vices will require is not easy unless very pessimistic worst-case times are 
assumed. So, it becomes interesting to consider what happens to threads 
or services in an overload scenario for a given policy. For EDF, overload 
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leads to nondeterministic failure—that is, it’s very hard to predict exactly 
which and how many services will miss their deadlines in an overload. It 
depends upon the state of the relative priorities during the overload, which 
in turn depends upon the order of time to deadline times for all services 
ready to run.

By comparison, for fi xed-priority polices such as RM, in an overload, 
all services of lower priority than the service that is overrunning may miss 
their deadline, yet all services of higher priority are guaranteed not to be 
affected, as shown in Figure 3.15.

S i

Si+1 Services Continue to
Meet Deadlines
Prio(Si+n) > Prioi (Si)  

 Si = over-running service
Misses Deadline

Si-1 Services all Miss
Their Deadlines
Prio(Si-n) < Prioi (Si)  S i-1

S i+1

FIGURE 3.15 RM Policy Overload Scenario

For EDF an overrun by any service may cause all other services on 
the ready queue to miss their deadlines; a new service added to the queue, 
therefore adjusting priorities for all, will not preempt the overrunning ser-
vice. The overrunning service has a time to deadline that is negative because 
it has passed, so it continues to be the highest priority service and continues 
to cause others to wait and potentially miss deadlines. In an overrun sce-
nario, common policy is to terminate the release of a service that has over-
run. This causes a service dropout. However, simply detecting overrun and 
terminating the overrunning service take some CPU resource, which with-
out any margin means that some other service will miss its deadline—with 
overrun control EDF becomes much more well behaved in an overload 
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scenario—the services with the soonest deadlines will then clearly be the 
ones to lose out. However, determining which services this will be in ad-
vance— based upon the dynamics of releases relative to each other—is 
still diffi cult. Figure 3.16 graphically depicts the potentially cascading EDF 
overload failure scenario— all services queued while the overrunning ser-
vice executes potentially miss their deadlines, and the next service is likely 
to overrun as well, causing a cascading failure. Probably the best option for 
an EDF overload is to dump all services in the queue—this at least would 
be more deterministic.

Si = over-running 

 Si-1 = over-running service 

 Si-2 = over-running 

Prio(Si-2-n) < Prio(Si-2)

Si-2

Terminate Si over-run  

Terminate Si-1 over-run  

Si-1

Si

Si-1

Si-2

Prio(Si-1-n) < Prio(Si-1)

Si-1

Prio(Si-n) < Prio(Si)

FIGURE 3.16 EDF Policy Cascading Failure Overload Scenario

Variations of EDF exist where a different policy is encoded into the 
deadline-driven, dynamic-priority framework (defi ned originally by Liu and 
Layland). One of the more interesting variations is LLF. In LLF, highest 
priority is assigned to the service that has the least difference between its 
remaining execution time and its upcoming deadline. Laxity is the time 
difference between their deadline and remaining computation time for a 
service. Determining the least laxity service requires the scheduler to know 
all outstanding service request times, their deadlines, the current time, and 
remaining computation time for all services. After all this is known, the 
scheduler must then reassign priorities to all services on every event that 
adds another service to the ready queue. Estimating remaining computa-
tion time for each service can be diffi cult and typically requires a worst-case 
approximation. The LLF policy encodes the concept of imminence, which 
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intuitively makes sense—every student knows that they should work on the 
homework where they have the most to do and that is due soonest fi rst—
unless of course that particular homework is not worth much credit.

In some sense, all priority encoding policies, dynamic or static, miss the 
point—what we really want to do is encode which service is most important 
and make sure that it gets the resources it needs fi rst. We want an intel-
ligent scheduler, like a student who takes into consideration laxity, impact 
of missing a deadline for a given assignment, cost of dropping one or more, 
and then intelligently determines how to spend resources for maximum 
benefi t. This concept is an open research area in soft real-time systems and 
has been investigated by a number of researchers [Brandt99]. In fact, since 
the landmark Liu and Layland formalization of RM and deadline-driven 
scheduling, most of the processor resource research has been oriented to 
one of four things:

 ● Generalization and reducing constraints for RM application

 ● Solving problems related to RM application for real systems

 ● Devising alternative policies for deadline-driven scheduling

 ● Devising new soft real-time policies to reduce margin required in RM 
policy

In Chapter 7, “Soft Real-Time Services,” we will explore some of the 
methods that have been proposed to adapt RM and deadline-driven poli-
cies to situations where an occasional service dropout or overrun is accept-
able. Soft real-time methods for handling missed deadlines will be more 
closely examined, along with more in-depth coverage of EDF and LLF 
scheduling.

Summary

Fixed-priority preemptive scheduling with an RM priority assignment 
policy (shortest period has highest priority) is most often used and advised 
for hard real-time systems. Hard real-time systems by defi nition must have 
deadline guarantees because the consequences of a missed deadline are 
total system failure, signifi cant loss of assets, and possible loss of human life. 
All service sets run as threads of execution should be tested with a suffi cient 
or better yet N&S feasibility test before being fi elded for hard real-time 
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operation. Passing an N&S feasibility test guarantees a service set will meet 
its deadlines as long as Ci, Ti, and Di were properly specifi ed and are deter-
ministic or worst-case. For quick analysis, a suffi cient test such as the RM 
LUB may be useful. The potential disharmony in period is the reason that 
the RM LUB is less than full utility for two or more services. Services that 
have harmonic periods can be safely scheduled with utility exceeding the 
RM LUB despite failing to pass this test and will pass an N&S test. In gen-
eral, dynamic-priority policies, such as EDF and LLF, are not considered 
safe for hard real-time systems due to their diffi cult-to-predict deadline-
overrun characteristics. Dynamic-priority policies do work well for soft 
real-time applications, such as game engines, video, audio, and multimedia 
applications, where an occasional service dropout is acceptable.

Exercises

1. Code the sufficient RM scheduling feasibility test [Liu73, p. 9, Theorem 
5] for following ANSI C function prototype: 
int RM_sufficient( 
int Ntasks, 
int *tid, 
unsigned long int *T, 
unsigned long int *C,
unsigned long int *D);

 Where Ntasks is the number of tasks in the task set, tid is an array of 
unique task Ids, T is an array of the release periods, C is an array of the 
computation times, and D is an array of the deadlines (T must equal D 
for each tid in RM). Finally, the function should simply return 1 if the 
system can be scheduled, and 0 if it can’t.

2. Code the Completion Time Test (Chapter 2 of RTECS text, Processing 
section) for the following ANSI C function prototype: 
int Sched_completion( 
int Ntasks, 
int *tid, 
unsigned long int *T, 
unsigned long int *C,
unsigned long int *D);
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 Where parameters are defined again as in #1. Assume that T must equal 
D in all cases.

3. Describe in your own words what the difference is between a 
“sufficient” and a “necessary and sufficient” scheduling feasibility test. 

4. Why is the sufficient RM least upper bound so pessimistic?

5. If EDF can be shown to meet deadlines and potentially has 100% CPU 
resource utilization, then why is it not typically the hard real-time policy 
of choice? That is, what are drawbacks to using EDF compared to RM/
DM? In an overload situation, how will EDF fail? 

6. Code a function to compute the Fibonacci sequence to any number 
of terms. The sequence is 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . . The 
Fibonacci sequence or Fibonacci numbers begin with 0 and 1. The next 
term is then the sum of the two previous terms. (Do not be concerned if 
your Fibonacci number overflows an unsigned 32-bit integer—just let it 
overflow). 

7. Now, determine how many terms in the sequence correspond to 10 mil-
liseconds of computation on a lab target PC (note that the answer may 
vary depending upon the specific target used). The easiest way to do 
this is to use WindView to measure the CPU time taken by a task calling 
your function with a large value—see how long that takes and then scale 
up or down the number as needed to achieve 10 milliseconds of compu-
tation. Repeat this to determine how many terms are required for 
20 milliseconds of computation using WindView. 

8. Given a task set with two tasks calling your Fibonacci sequence, one 
with N terms for 10 milliseconds of execution and the other for 20 mil-
liseconds, is the system feasible if the 10 millisecond task is released 
every 20 milliseconds and the 20 millisecond task every 50 milliseconds 
(i.e., T1=20 msec, T2=50 msec, C1=10 msec, C2=20 msec and all Di’s = 
Ti’s)? Base your answer upon the Lehockzy, Sha, and Ding theorem. 

9. Run the foregoing system and either show evidence that it works or 
explain why it won’t. 
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In this chapter

 ● Introduction
 ● Worst-Case Execution Time
 ● Intermediate IO
 ● Execution Efficiency
 ● IO Architecture

4.1 Introduction

The input and output to a service shown previously in Figure 3.13 re-
quire IO to/from a device such as a sensor or actuator (encoder or decoder). 
This IO is part of the response time, and as shown in Chapter 3, it simply 
adds to response latency, but does not affect the service execution or in-
terference time during the response. Most services, unless they are trivial, 
involve some intermediate IO after the initial sensor input and before the 
fi nal posting of output data to a write buffer. This intermediate IO is most 
often MMR (Memory-Mapped Register) or memory device IO. If this in-
termediate IO has single core cycle latency, zero wait-state, then it has no 
additional impact on the service response time. However, if the interme-
diate IO stalls the CPU core, then this increases the response time while 
the CPU processing pipeline is stalled. Rather than considering this inter-
mediate IO as device IO, it is more easily modeled as execution effi ciency. 
Device IO latency is hundreds, thousands, and even millions of core cycles. 
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By comparison, intermediate IO latency is typically tens or hundreds of 
core cycles—if more latency than this is possible, then the core hardware 
design should be reworked.

4.2 Worst-Case Execution Time

Ideally the execution time for a service release would be determinis-
tic. For simple microprocessor architectures, this may be true. The Intel 
8088 and the Motorola 68000, for example, have no CPU pipeline and no 
cache, and given memory that has no wait-states, you can take a block of 
code and count the instructions from start to fi nish. Furthermore, for these 
architectures, the number of CPU cycles required to execute each instruc-
tion is known—some instructions may take more cycles than others, but all 
are known numbers. So, the total number of CPU clock cycles required to 
execute a block of code can be calculated. To compute deterministic execu-
tion time for a service, the following system characteristics are necessary:

 ● Exact number of instructions executed from service release input up to 
response output.

 ● The exact number of CPU clock cycles for each instruction is known.

 ● The number of CPU clock cycles for a given instruction is constant.

Let’s assume that the second and third characteristics are true, provid-
ing deterministic hardware. The same set of instructions always requires 
the same number of CPU clocks to execute. This alone does not guarantee 
deterministic execution time because an algorithm may be data-driven. The 
number of loop iterations or the depth of recursion of the algorithm may 
be a function of the inputs to the algorithm. For data-driven algorithms, 
the path length, or total instruction count, is a function of the input. Most 
algorithms are data-driven. Any block of code that contains decision con-
structs, such as “if” statements or “case” statements, will execute a different 
path based upon the outcome of the “if” expression or the “case” statement. 
For simple data-driven algorithms and code blocks, you can simply count 
instructions in all paths and compare to determine the longest path. This 
appears simple enough for a small block of code and simple algorithm, but 
what about an application that performs a complex service? For example, 
assume a service needs to fi nd the root of a function where the function is 
not simple. In the case of fi nding a root for a function that is determined 
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by integrating sensor rates over time, the function is data-driven and not 
known a priori. Say you want to predict when a rolling satellite will be 
brought to rest via deceleration using a thruster—that is, when the thrust 
function (and therefore acceleration) causes the velocity function to reach 
zero. The thrust function is often known for a particular type of thruster. 
One method to fi nd the root of any function is to iterate, bisecting an in-
terval to defi ne x and feeding the bisection value into F(x) = 0 to test how 
close the current guess for x is to zero. If the guess is higher, then a lesser 
or greater subinterval will be selected for the next iteration. If F(x) is a con-
tinuous function, then with successive iterations, the interval will become 
diminishingly small and the bisection of that interval, or x, will come closer 
and closer to the true value of x where F(x) is zero. How much iteration will 
this take? The answer depends upon the following requirements:

 ● Accuracy of x needed

 ● Complexity of the function F(x)

 ● The initial interval

Finally, some functions may actually have more than one solution as 
well. Many numerical methods are similar to fi nding roots by bisection in 
that they require a total path length that varies with the input. For such 
algorithms, you need to place an upper bound on the path length to defi ne 
WCET (Worst-Case Execution Time).

Assuming an upper bound on the algorithmic path length and determin-
istic hardware, then the WCET is safe as an input to an RM (Rate-Mono-
tonic) feasibility test. A service release that requires less than the maximum 
path length simply enjoys more than necessary resource margin. With the 
evolution of CPU hardware design, most microprocessors have evolved to 
maximize throughput and provide better overall effi ciency by employing 
acceleration to the most commonly executed instruction sequences and 
data references. This is typifi ed by the RISC (Reduced Instruction Set 
Computer) with instruction pipelining and use of memory caches. As CPU 
core clock rates increased, memory access latency for comparably scaled 
capacity has generally not kept pace. So, most RISC pipelined architectures 
make use of cache, a small zero wait-state (single CPU cycle access latency) 
memory. Unfortunately, cache is too small to hold many applications. So, 
set associative memories are used to temporarily hold main memory data—
when the cache holds data for an address referenced by a program, this is a 
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hit, and the single-cycle access to data and/or code allows the CPU pipeline 
to fetch an instruction or load data into a register in a single cycle. A cache 
miss, however, stalls the pipeline. Furthermore, IO from MMRs (Memory-
Mapped Registers) may require more than a single CPU core cycle and will 
likewise stall the CPU pipeline if the data is needed for the next instruction. 
Detecting potential stalls and avoiding them is an art that can increase ex-
ecution effi ciency overall for a CPU—for example, instructions that cause 
an MMR read can be executed out of order so that the instruction requiring 
the read data is executed as late as possible, delaying the potential pipeline 
stall.

The point of pipelining, described in detail in the next section, is to 
increase overall execution effi ciency. However, as is evident from the exam-
ples of cache misses and MMR latencies that may cause a data-dependency 
stall, pipelines will stall, and this is a function of the instruction and data 
stream. The effi ciency is therefore data- and code-driven and not deter-
ministic. So, execution effi ciency will vary, even for the same block of code, 
because cache contents may be a function not only of the current thread 
of execution but also of the previous threads that executed in the past. In 
summary, WCET is a function of the longest path length and the effi ciency 
in executing that path. Equation 4.1 describes WCET:

 worst_caseWCET CPI Longest_Path_Instruction_Count

Clock_Period

   


 (4.1)

The CPI is a fi gure that describes effi ciency in pipelined execution as 
the number of Clocks Per Instruction on average that are required to ex-
ecute each instruction in a block of code. In the next two sections, “Inter-
mediate IO” and “Execution Effi ciency,” we discuss how best- and worst-
case CPI can be determined or at least approximated well. The longest path 
instruction count must be determined by inspection, formal software engi-
neering proof, or actual instruction count traces in a simulator or with the 
target CPU architecture. Warning—most CPU core documentation states 
a CPI that is best-case rather than worst-case.

For full determinism in WCET for hard real-time systems, you must 
guarantee the following:

 ● All memory access is to known latency memory, including locked cache 
or main memory with zero or bounded wait-states.
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 ● Unlocked cache hits are not expected in unlocked cache because the hit 
rate is not deterministic.

 ● Overlap of CPU and device IO is not expected nor required to meet 
deadlines.

 ● Full accounting for all pipeline hazards in addition to cache misses and 
device IO read/write wait states.

 ● Stalls are lumped into CPI and taken as worst-case (e.g., branch-density 
× branch penalty).

 ● Longest path is known, and instruction count for it is known.

For soft real-time systems, you can allow occasional service dropouts or 
limited overruns and therefore use ACET (Average-Case Execution Time). 
The ACET can be estimated from the following information:

 ● Expected L1 and L2 cache hit/miss ratio and cache miss penalty.

 ● Expected overlap of CPU and device IO required for deadlines.

 ● All other pipeline hazards are typically secondary and can be ignored 
like branch misprediction.

 ● Average length path is known, and the instruction count for it is known.

In summary, you have the following two equations which are Worst-
Case Execution Time and Average-Case Exeuction Time (4.2):

Effective

Effective

WCET Memory_Latency Device_IO_Latency

Longest_Path_Inst_Count CPI

ACET Expected_Cache_Miss_Rate Miss_Penalty

NOA IO _ Latency Expected_Path_Inst_Count CPI

  
  

    
        

In these equations in 4.2, the effective CPI accounts for secondary 
pipeline hazards, such as branch mispredictions. The term NOA (Non-
Overlap Allowed) is 1.0 if IO time is not overlapped with processing at all.
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4.3 Intermediate IO

In a non-preemptive run-to-completion system with a pipelined CPU, six 
key related equations describe CPU-IO overlap. Note that the IO described 
here is device IO that occurs during the service execution, rather than the 
initial IO, which releases the service in the fi rst place. In some sense, the 
device IO occurring during service execution can be considered micro-IO 
and usually consists of MMR access rather than block-oriented DMA (Direct 
Memory Access) IO. Although this intermediate IO is much lower-latency 
than the initial block IO latency, it reduces the execution effi ciency signifi -
cantly. Ideally, with careful generation of machine code (compiler optimiza-
tions), careful hardware design for pipeline instruction reordering, and care-
ful service design, you can minimize the loss of effi ciency due to micro- IO. 
First, you must understand what it means to overlap IO with CPU.

Consider the following execution and IO overlap defi nitions:

 ● ICT = Instruction Count Time (Time to execute a block of instructions 
with no stalls = CPU Cycles × CPU Clock Period)

 ● IOT = Bus Interface IO Time (Bus IO Cycles × Bus Clock Period)

 ● OR = Overlap Required—percentage of CPU cycles that must be con-
current with IO cycles

 ● NOA = Non-Overlap Allowable for Si to meet Di—percentage of CPU 
cycles that can be in addition to IO cycle time without missing service 
deadline

 ● Di = Deadline for Service Si relative to release (interrupt initiating 
execution)

 ● CPI = Clocks Per Instruction for a block of instructions

The characteristics of overlapping IO cycles with CPU cycles for a service Si 
are summarized as follows by the fi ve possible overlap conditions for CPU 
time and IO time relative to Si deadline Di:

1. Di >= IOT is required; otherwise if Di < IOT, Si is IO-Bound.

2. Di >= ICT is required; otherwise if Di < ICT, Si is CPU-Bound.

3. Di >= (IOT + ICT) requires no overlap of IOT with ICT.

4. If Di < (IOT + ICT) where (Di >= IOT and Di >= ICT), overlap of IOT 
with ICT is required.
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5. If Di < (IOT + ICT) where (Di < IOT or Di < ICT), deadline Di can’t be 
met regardless of overlap.

For all fi ve overlap conditions listed here, ICT > 0 and IOT > 0 must be 
true. If ICT and IOT are zero, no service is required. If ICT or IOT alone 
is zero, then no overlap is possible. When IOT = O, this is an ideal service 
with no intermediate IO.

From these observations about overlap in a non-preemptive system, we 
can deduce the following axioms:

 CPIworst_case = (ICT + IOT) / ICT (4.3)

 CPIbest_case = (max(ICT, IOT)) / ICT (4.4)

 CPIrequired = Di / ICT (4.5)

 OR = 1  [(Di  IOT) / ICT] (4.6)

 CPIrequired = [ICT(1  OR) + IOT] / ICT (4.7)

 NOA = (Di – IOT) / ICT (4.8)

 OR + NOA = 1 (by definition) (4.9)

Equations 4.7 and 4.8 provide a cross-check. Equation 4.7 should al-
ways match Equation 4.5 as long as condition 4 or 3 is true. Equation 4.9 
should always be 1.0 by defi nition—whatever isn’t overlapped must be al-
lowable, or it would be required. When no overlapping of core device IO 
cycles is possible with core CPU cycles, then the following condition must 
hold for a service to guarantee a deadline:

 Bus_IO_Cycles Core_to_Bus_Factor

Core_Cycles i iWCET D

   
 

 (4.10)

The WCET must be less than the service’s deadline because we have 
not considered interference in this CPU-IO overlap analysis. Recall that 
interference time must be added to release IO latency and WCET:

           response( ), Deadlinei i iS T 

 
1

response( ) IO_Latency( ) Memory_Latency( ) interference( )
1

WCET
i

i i i i j
j

T T T T



     (4.11)
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The WCET deduced from Equation 4.10 must therefore be an input 
into the normal RM feasibility analysis that models interference. The Core-
to-Bus-Factor term is ideally 1. This is a zero wait-state case where the 
processor clock rate and bus transaction rate are perfectly matched. Most 
often, a read or write will require multiple core cycles. The overlap re-
quired (OR) is indicative of how critical execution effi ciency is to a service’s 
capability to meet deadlines. If OR is high, then the capability to meet 
deadlines requires high effi ciency, and deadline overruns are likely when 
the pipeline stalls. In a soft real-time system, it may be reasonable to count 
on an OR of 10% to 30%, which can be achieved through compiler opti-
mizations (code scheduling), hand optimizations (use of prefetching), and 
hardware pipeline hazard handling. Note that the ICT and IOT in Figure 
4.1 are shown in nanoseconds as an example for a typical 100MHz to 1GHz 
CPU core executing a typical block of code of 100 to 6,000 instructions with 
a CPIeffective= 1.0. It is not possible to have OR > 1.0, so the cases where OR 
is greater than 1.0 are not feasible.
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4.4 Execution Efficiency

When WCET is too worst-case, a well-tuned and pipelined CPU ar-
chitecture increases instruction throughput per unit time and signifi cantly 
reduces the probability of WCET occurrences. In other words, a pipelined 
CPU reduces the overall CPI required to execute a block of code. In some 
cases, IPC (Instructions Per Clock), which is the inverse of CPI, is used as 
a fi gure of merit to describe the overall possible throughput of a pipelined 
CPU. A CPU with better throughput has a lower CPI and a higher IPC. In 
this text, we will use only CPI, noting that:

1
CPI

IPC


The point of pipelined hardware architecture is to ensure that an in-
struction is completed every clock for all instructions in the ISA (Instruc-
tion Set Architecture). Normally CPI is 1.0 or less overall in modern pipe-
lined systems. Figure 4.2 shows a simple CPU pipeline and its stage overlap 
such that one instruction is completed (retired) every CPU clock.

IF ID Execute Write-
Back

IF ID Execute Write-
Back

IF ID Execute Write-
Back

IF ID Execute Write-
Back

IF ID Execute Write-
Back

IF ID Execute Write-
Back

FIGURE 4.2 Simple Pipeline Stage Overlap (Depth=4)
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In Figure 4.2, the stages are Instruction Fetch (IF), Instruction De-
code (ID), Execute, and register Write-Back. This example pipeline is four 
stages, so for the pipeline to reach steady-state operation and a CPI of 1.0, 
it requires four CPU cycles until a Write-Back occurs on every IF. At this 
point, as long as the stage overlapping can continue, one instruction is com-
pleted every CPU clock.

Pipeline design requires minimization of hazards, so the pipeline must 
stall the one-cycle Write-Backs to produce correct results. The strategies 
for pipeline design are well described by computer architecture texts [Hen-
nessy03], but are summarized here for convenience. Hazards that may stall 
the pipeline and increase CPI include the following:

 ● Instruction and data cache misses, requiring a high-latency cache load 
from main memory

 ● High-latency device reads or writes, requiring the pipeline to wait for 
completion

 ● Code branches—change in locality of execution and data reference

The instruction and data cache misses can be reduced by increasing 
cache size, keeping a separate data and instruction cache (Harvard architec-
ture), and allowing the pipeline to execute instructions out of order so that 
something continues to execute while a cache miss is being handled. The haz-
ard can’t be eliminated unless all code and data can be locked into a Level-1 
cache (Level-1 cache is single-cycle access to the core by defi nition).

The high-latency device read/write hazard is very typical in embedded 
systems where device interfaces to sensors and actuators are controlled and 
monitored via MMRs. When these devices and their registers are written 
or read, this can stall the pipeline while the read or write completes. A split-
transaction bus interface to device MMRs can greatly reduce the pipeline 
hazard by allowing reads to be posted and the pipeline to continue until the 
read completion is really needed—likewise a split-transaction bus allows 
writes to be posted to a bus interface queue in a single cycle. When a write 
is posted, the pipeline goes on assuming the MMR write will ultimately 
complete, but that other instructions in the pipeline do not necessarily need 
this to complete before they execute.

Finally, code branching hazards can be reduced by branch prediction 
and speculative execution of both branches—even with branch prediction 
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and speculative execution, a misprediction typically requires some stall 
cycles to recover.

By far, the pipeline hazards that contribute most to lowering CPI are 
cache misses and core bus interface IO latency (e.g., MMR access). Branch 
mispredictions and other pipeline hazards often result in stalls of much 
shorter duration (by orders of magnitude) compared to cache misses and 
device IO. The indeterminism of cache misses can be greatly reduced by 
locking code in instruction cache and locking data in data cache. A Level-1 
instruction and data cache is often too small to lock down all code and all 
data required, but some architectures include a Level-2 cache, which is 
much larger and can also be locked. Level-2 cache usually has 2-cycle or 
more, but less than 10-cycle access time—locking code and data into L2 
cache is much like having a 1 or more wait-state memory. Low wait-state 
memory is often referred to as a TCM (Tightly Coupled Memory). This is 
ideal for a real-time embedded system because it eliminates much of the 
non-determinism of cache hit/miss ratios that are data-stream- and instruc-
tion-stream-driven. An L2 cache is often unifi ed (holds instructions and 
data) and 256 KB, 512 KB, or more in size. So, you should lock all real-time 
service code and data into L1 or L2 caches, most often L2, leaving L1 to in-
crease effi ciency with dynamic loading. All best-effort service code and data 
segments can be kept in main memory because deadlines and determinism 
are not an issue, and any unlocked L1 or L2 cache increases the execution 
effi ciency of these main-memory-based best-effort services.

Eliminating non-determinism of device IO latency and pipeline hazards 
is very diffi cult. When instructions are allowed to execute while a write is 
draining to a device, this is called weakly consistent. This is okay in many cir-
cumstances, but not when the write must occur before other instructions not 
yet executed for correctness. Posting writes is also ultimately limited by the 
posted write bus interface queue depth—when the queue is full, subsequent 
writes must stall the CPU until the queue is drained by at least one pend-
ing write. Likewise, for split-transaction reads, when an instruction actually 
uses data from the earlier executed read instruction, then the pipeline must 
stall until the read completes. Otherwise the dependent instruction would 
execute with stale data, and the execution would be errant. A stall where the 
pipeline must wait for a read completion is called a data-dependency stall. 
When split-transaction reads are scheduled with a register as a destination, 
this can create another hazard called register pressure—the register await-
ing read completion is tied up and can’t be used at all by other instructions 
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until the read completes, even though they are not dependent upon the read. 
You can reduce register pressure by adding a lot of general-purpose registers 
(most pipelined RISC architectures have dozens and dozens of them) as well 
as by providing an option to read data from devices into cache. Reading from 
a memory-mapped device into cache is normally done with a cache pre-fetch 
instruction. In the worst case, we must assume that all device IO during ex-
ecution of a service stalls the pipeline so that

best_caseWCET (CPI Longest_Path_Instruction_Count) Stall_Cycles

Clock_Period

    


If you can keep the stall cycles to a deterministic minimum by lock-
ing code into L2 cache (or L1 if possible) and by reducing device IO stall 
cycles, then you can also reduce WCET. Cache locking helps immensely 
and is fully deterministic.

4.5 IO Architecture

In this chapter, IO has been examined as a resource in terms of latency 
(time) and bandwidth (bytes/second). The view has been from the perspec-
tive of a single processor core and IO between that processor core and 
peripherals. The emergence of advanced ASIC architectures, such as SoC 
(System on Chip), has brought about embedded single-chip system designs 
that integrate multiple processors with many peripherals in more complex 
interconnections than BIU (Bus Interface Unit) designs. Figure 4.3 pro-
vides an overview of the many interconnection networks that can be used 
on-chip and between multichip or even multi-subsystem designs, including 
traditional bus architectures.

Interconnection Network

Point-to-Point

StaticDynamic

Bus

Blocking Non-blocking  

Arbitrated/Routed  

(Frames, Sequences, Packets)  

Switched

Benes Clos Cross barOmega

Ring  Hub  Tree  Mesh  

Fully
Connected

FIGURE 4.3 Taxonomy of Interconnection Networks
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The cross-bar interconnection fully connects all processing and IO 
components without any blocking. The cross-bar is said to be dynamic be-
cause a matrix of switches must be set to create a pathway between two end 
points, as shown in Figure 4.4. The number of switches required is a qua-
dratic function of the number of end points such that N points can be con-
nected by N2 switches—this is a costly interconnection. Blocking occurs 
when the connection between two end points prevents the simultaneous 
connection between two others due to common pathways that can’t be used 
simultaneously. The bus interconnection, like a cross-bar, is dynamic, but is 
fully blocking because it must be time-multiplexed and allows no more than 
two end points within the entire system to be connected at once.

P1  

P 2  

P 3  

P 4  

FIGURE 4.4 Cross-Bar Interconnection Network

Summary

The overall response time of a service includes input, intermediate IO, 
and output latency. The input and output latencies can most often be de-
termined and added to the overall response time. Intermediate IO is more 
complex because intermediate IO includes register, memory bus, and, in 
general, interconnection network latencies that will stall an individual pro-
cessor’s execution. The stall time reduces execution effi ciency for each pro-
cessor, and unless these stall cycles can be used for other work, increases 
WCET for the service.
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Exercises

1. If a processor has a cache hit rate of 99.5% and a cache miss penalty 
of 160 core processor cycles, what will the average CPI be for 1,000 
instructions?

2. If a system must complete frame processing so that 100,000 frames are 
completed per second and the instruction count per frame processed is 
2,120 instructions on a 1GHz processor core, what is the CPI required 
for this system? What is the overlap between instructions and IO time if 
the intermediate IO time is 4.5 microseconds?

3. Read Sha, Rajkumar, et al.’s paper, “Priority Inheritance Protocols: An 
Approach to Real-Time Synchronization.”[ShaRajkumar90] Write a 
brief summary, noting at least three key concepts from this paper.

4. Review the DVD code for heap_mq.c and posix_mq.c. Write a brief 
paragraph describing how these two message queue applications are 
similar and how they are different. Make sure you not only read the 
code but also build it, load it, and execute it to make sure you under-
stand how both applications work.

5. Write VxWorks code that spawns two tasks: A and B. A should initialize 
and enter a while(1) loop in which it does a semGive on a global binary 
semaphore S1 and then does a semTake on a different global binary 
semaphore S2. B should initialize and enter a while(1) loop in which 
it does a semTake of S1, delays 1 second, and then does a semGive of 
S2. Test your code on a target or VxSim and turn in all sources with 
evidence that it works correctly (e.g., show counters that increment in 
windshell dump).

6. Now run the code from the previous problem and analyze a WindView 
(now System Viewer) trace for it. Capture WindView trace and add 
annotations by hand, clearly showing semGive and semTake events, the 
execution time, and delay time, and note any unexpected aspects of the 
trace.

7. Use taskSwitchHookAdd and taskSwitchHookDelete to add some of 
your own code to the Wind kernel context switch sequence, and prove it 
works by increasing a global counter for each preempt/dispatch context 
switch and time-stamping a global with the last preempt/dispatch time 
with the x86 PIT (programmable interval timer)—see the DVD 

ON THE DVD

ON THE DVD
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sample PIT code. The VxWorks “tickGet()” call can also be used to 
sample relative times, but is accurate only to the tick resolution (1 
millisecond assuming sysClkRateSet(1000)). Make an On/Off wrapper 
function for your add and delete so that you can turn on your switch 
hook easily from a windsh command line and look at the values of your 
two globals. Turn in your code and windshell output showing that it 
works.

8. Modify your hook so that it will compute separate preempt and dis-
patch counts for a specific task ID or set of task IDs (up to 10) and the 
last preempt and dispatch times for all tasks you are monitoring. Run 
your code from #4, and monitor it by calling your On/Off wrapper 
before running your test tasks. What are your counts and last times and 
how do they compare with WindView analysis?

9. Use your program to analyze the number of tNetTask dispatches/
preemptions and modify the code to track the average time between dis-
patch and preemption. Write a program to gather stats on tNetTask for 
30 seconds. What is the number of dispatches/preemptions? What is the 
average dispatch time?
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5.1 Introduction

In the previous chapter, memory was analyzed from the perspective of 
latency, and, in this sense, was treated like most any other IO device. For a 
real-time embedded system, this is a useful way to view memory, although it’s 
very atypical compared to general-purpose computing. In general, memory is 
typically viewed as a logical address space for software to use as a temporary 
store for intermediate results while processing input data to produce output 
data. The physical address space is a hardware view where memory devices 
of various type and latency are either mapped into address space through 
chip selects and buses or hidden as caches for mapped devices. Most often an 
MMU (Memory Management Unit) provides the logical-to-physical address 
mapping (often one-to-one for embedded systems) and provides address 
range and memory access attribute checking. For example, some memory 
segments may have attributes set so they are read-only. Typically, all code 
is placed in read-only attribute memory segments. Memory-Mapped IO 
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(MMIO) address space most often has a non-cacheable attribute set to pre-
vent output data from being cached and never actually written to a device. 
From a higher-level software viewpoint, where memory is viewed as a glob-
al store and an interface to MMIO, it’s often useful to set up shared memo-
ry segments useable by more than one service. When memory is shared by 
more than one service, care must be taken to prevent inconsistent memory 
updates and reads. From a resource perspective, total memory capacity, 
memory access latency, and memory interface bandwidth must be suffi -
cient to meet requirements.

5.2 Physical Hierarchy

The physical memory hierarchy for an embedded processor can vary 
signifi cantly based upon hardware architecture. However, most often, the 
Harvard architecture is used, which has evolved from GPCs (general-pur-
pose computers) and is often employed by embedded systems as well. The 
typical Harvard architecture with separate L1 (Level-1) instruction and 
data caches but with unifi ed L2 (Level-2) cache and either on-chip SRAM 
or external DDR (Dynamic Data RAM) is shown in Figure 5.1.
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FIGURE 5.1 Harvard Architecture Physical Memory Hierarchy
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From the software viewpoint, memory is a global resource in a single 
address space with all other MMIO devices as shown in Figure 5.2.
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FIGURE 5.2 Logical Partitioning and Segmenting of Physical Memory Hierarchy by Firmware

Memory system design has been most infl uenced by GPC architecture 
and goals to maximize throughput, but not necessarily to minimize the la-
tency for any single memory access or operation. The multilevel cached 
memory hierarchy for GPC platforms now often includes Harvard L1 and 
unifi ed L2 caches on-chip with off-chip L3 unifi ed cache. The caches for 
GPCs are most often set-associative with aging bits for each cache set (line) 
so that the LRU (Least Recently Used) sets are replaced when a cache 
line must be loaded. An N-way set-associative cache can load an address 
reference into any N ways in the cache, allowing for the LRU line to be 
replaced. The LRU replacement policy, or approximation thereof, leads 
to a high cache hit-to-miss ratio so that a processor most often fi nds data 
in cache and does not have to suffer the penalty of a cache miss. The set-
associative cache is a compromise between a direct-mapped and a fully as-
sociative cache. In a direct-mapped cache, each address can be loaded into 
one and only one cache line, making the replacement policy simple, yet 
often causing cache thrashing. Thrashing occurs when two addresses are 
referenced and keep knocking each other out of cache, greatly decreasing 
cache effi ciency. Ideally, a cache memory would be so fl exible that the LRU 
set (line) for the entire cache would be replaced each time, minimizing 
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the likelihood of thrashing. Cost of fully associative array memory prevents 
this, as does the cost of so many aging bits, and most caches are four-way or 
eight-way set-associative with 2 or 3 aging bits for LRU. Figure 5.3 shows 
a direct-mapped cache where a main memory that is four times the size of 
the cache memory has memory sets (collections of four or more 32-bit byte 
addressable words), which can be loaded only into one cache set.

Direct-Mapped Cache

Main Memory
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S2
S3

A14
A13
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A10
A9
A8
A7
A6
A5
A4
A3
A2
A1
A0

FIGURE 5.3 Direct Mapping of Memory to Cache Lines (Sets)

By comparison, Figure 5.4 shows a two-way set-associative cache for a 
main memory four times the size of the cache. Each line can be loaded into 
one of four locations in the cache. The addition of 2 bits to record how re-
cently each line was accessed relative to the other three in the set allows the 
cache controller to replace lines that are LRU. The LRU policy assumes that 
lines that have not been accessed recently are less likely to be accessed again 
anytime soon. This has been shown to be true for most code where execution 
has locality of reference, where data is used within small address ranges (of-
ten in loops) distributed throughout memory for general-purpose programs.

For real-time embedded systems, the unpredictability of cache hits/
misses is a problem. It makes it very diffi cult to estimate WCET (Worst-
Case Execution Time). In the extreme case, it’s really only safe to assume 
that every cache access could incur the miss penalty. For this reason, for 
hard real-time systems, it’s perhaps advisable not to use cache. However, 
this would greatly reduce throughput to obtain deterministic execution. So, 
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rather than including multilevel caches, many real-time embedded systems 
instead make investment in TCM (Tightly Coupled Memory), which is sin-
gle-cycle access for the processor, yet has no cache functionality.

2-Way Set-Associative Cache
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FIGURE 5.4 Two-Way Set-Associative Mapping of Memory to Cache Lines (Sets)

Furthermore, TCM is often dual ported so that service data (or context) 
can be loaded via DMA and read/written at the same time. Some GPC pro-
cessors include L1 or L2 caches that have the capability to lock ways so that 
the cache can be turned into this type of TCM for embedded applications.

The realization that GPC cache architecture is not always benefi cial to 
real-time embedded systems, especially hard real-time systems, has led to 
the emergence of the software-managed cache. Furthermore, compared 
to GPCs, where it is very diffi cult to predict the care with which code will 
be written, embedded code is often carefully analyzed and optimized so 
that data access is carefully planned. A software-managed cache uses appli-
cation-specifi c logic to schedule loading of a TCM with service execution 
context by DMA from a larger, higher-latency external memory. Hardware 
cost of a GPC cache architecture is avoided, and the management of execu-
tion context tailored for the real-time services—the scheduling of DMAs 
and the worst-case delay for completing a TCM load—must, of course, still 
be carefully considered.
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5.3 Capacity and Allocation

The most basic resource concern associated with memory should always 
be total capacity needed. Many algorithms include space and time trade-
offs, and services often need signifi cant data context for processing. Keep in 
mind that cache does not contribute to total capacity because it stores only 
copies of data rather than unique data. This is another downside to cache 
for embedded systems where capacity is often limited. Furthermore, la-
tency for access to memory devices should be considered carefully because 
high latency access can signifi cantly increase WCET and cause problems 
meeting real-time deadlines. So, data sets accessed with high frequency 
should, of course, be stored in the lowest latency memory.

5.4 Shared Memory

Often two services fi nd it useful share a memory data segment or code 
segment. In the case of a shared data segment, the read/write access to this 
shared memory must be guaranteed to be consistent so that one service in 
the middle of a write is not preempted by another, which could then read 
partially updated data. For example, a satellite system might sample sen-
sors and store the satellite state vector in a shared memory segment. The 
satellite state vector would typically include 3 double precision numbers 
with the X, Y, Z location relative to the center of Earth, 3 double precision 
numbers for the velocity, and 3 more double precision numbers with the 
acceleration relative to Earth. Overall, this state would likely have 9 double 
precision numbers that can’t be updated in a single CPU cycle. Further-
more, the state vector might also contain the attitude, attitude rate, and 
attitude acceleration—up to 18 numbers! Clearly it would be possible for a 
service updating this state to be preempted via an interrupt, causing a con-
text switch to another service that uses the state. Using a partially updated 
state would likely result in control being issued based upon corrupt state 
information and might even cause loss of the satellite.

To safely allow for shared memory data, the mutual exclusion semaphore 
was introduced [Tanenbaum87]. The mutex semaphore protects a critical 
section of code that is executed to access the shared memory resource. In 
VxWorks, two functions support this: semTake(Semid) and semGive(Semid). 
The semTake(Semid) blocks the calling service if Semid=0 and allows it to 
continue execution if Semid=1. The semGive(Semid) increments Semid by 
1, leaving it at 1 if it is already 1. When the semGive(Semid) causes Semid 
to go from 0 to 1, any services blocked earlier by a call to semTake(Semid) 
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when Semid was 0 now unblocks one of the waiting services. Typically the 
waiting services are unblocked in fi rst-in, fi rst-out order. By surrounding the 
code that writes and/or reads the shared memory with semTake(Semid) and 
semGive(Semid) using a common Semid, the updates and reads are guaran-
teed to be mutually exclusive. The critical sections are shown in Table 5.1.

Table 5.1 Shared Memory Writer and Reader Example

Update-Code Read-Code

… …

semTake(Semid); semTake(Semid);

X = getX(); control(X, Y, Z);

Y = getY(); semGive(Semid);

Z = getZ(); …

semGive(Semid); …

… …

Clearly if the Update-Code was interrupted and preempted by the 
Read-Code at line 4, for example, then the control(X, Y, Z) function would 
be using the new X and possibly an incorrect and defi nitely old Y and Z. 
However, the semTake(Semid) and semGive(Semid) guarantee that the 
Read-Code can’t preempt the Update-Code no matter what the RM poli-
cies are. How does it do this? The semTake(Semid) is a TSL instruction 
(Test and Set-Lock). In a single cycle, supported by hardware, the Semid 
memory location is fi rst tested to see if it is 0 or 1. If 1, set to 0, and execution 
continues; if Semid is 0 on the test, the value of Semid is unchanged, and 
the next instruction is a branch to a wait-queue and CPU yield. Whenever 
a service does a semGive(Semid), the wait-queue is checked and the fi rst 
waiting service is unblocked. The unblocking is achieved by dispatching the 
waiting service from the wait-queue and then placing it on the ready-queue 
for execution inside the critical section at its normal priority.

5.5 ECC Memory

For safety-critical real-time embedded systems it is imperative that 
data corruption not go undetected and ideally should be corrected in real 
time if possible. This can be accomplished by using ECC (Error Correcting 
Circuitry) memory interfaces. An ECC memory interface can detect 
and correct SBEs (Single Bit Errors) and also can detect MBEs (Multi-
Bit Errors), but cannot correct MBEs. One common ECC SBE detec-
tion and correction method used is Hamming code, which is most often 
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implemented as a SECDED (Single Error Correction, Double Error 
Detection) method as described here. When data is written to memory, 
parity bits are calculated according to a Hamming encoding and added to 
a memory word extension (an additional 8 bits for a 32-bit word). When 
data is read out, check bits are computed by the ECC logic. These check 
bits, called the syndrome, encode read data errors as follows:

1. If Check-Bits = 0 AND parity-encoded-word = parity-read-word  => 
NO ERRORS

2. If Check-Bits != 0 AND parity-encoded-word != parity-read-word => 
SBE, CAN CORRECT

3. If Check-Bits != 0 AND parity-encoded-word = parity-read-word => 
DOUBLE BIT ERROR DETECTED, HALT

4. If Check-Bits = 0 AND parity-encoded-word != parity-read-word  => 
parity-word ERROR

On double bit MBEs, the processor normally halts since the next in-
struction executed with unknown corrupted data could cause a fatal error. 
By halting the CPU will go through a hardware watchdog timer reset and 
safe recovery instead.

For a correctable SBE the CPU raises a non-maskable interrupt, which 
software should handle by acknowledging and then reading the address of the 
SBE location, and fi nally writing the corrected data back to the memory loca-
tion from the read register. The ECC automatically corrects data as it is read 
from memory into registers, but most often it is up to the software to write the 
corrected data in the register back to the corrupted memory location. By halt-
ing, the CPU will go through a hardware watchdog timer reset and safe recov-
ery.  However, for the most common Hamming code formulation presented 
here, MBEs beyond double bit can’t be reliably detected and will lead to er-
rant behavior.  Most often, ECC is used to protect memory form SEUs (Single 
Event Upsets), where a single bit fl ips at a time due to particle radiation from 
the solar wind or background cosmic radiation.  So, while space-based sys-
tems, high altitude aircraft and very rarely some terrestrial computing systems 
are impacted by SEUs, the failure mode is such that normally only one or two 
bits will fl ip.  The Hamming ECC methods are not suffi cient to protect against 
more signifi cant large impact memory failures.  Corruption of many bits or 
loss of memory banks should be protected by mirroring memory devices, or 
mirroring in addition to use of Hamming ECC.
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To understand how Hamming encoding works to compute extended 
parity and a syndrome capable of SBE detection/correction and double bit 
MBE detection, it is best to learn by example. Figure 5.5 shows a Hamming 
encoding for an 8-bit word with 4 parity bits and an overall word parity bit 
shown as pW.

In the Figure 5.6 example, the syndrome computed is nonzero and the 
pW is not equal to PW2, which is the case for a correctable SBE. Notice that 
the syndrome value of binary 1010 encodes the errant bit position for bit-5, 
which is data bit d02. Figure 5.7 illustrates a double bit fl ip MBE scenario.

Note that the syndrome is nonzero, but pW1=pW2, which can only hap-
pen for 2, 4, 6, or 8 bit fl ips, meaning that an uncorrectable double bit MBE 
has occurred. Figure 5.8 shows a scenario where the ED parity is corrupted.

In this case, the syndrome is zero and pW1=pW2, indicating a parity er-
ror on the overall encoded data word. This is a correctable SBE. Similarly, 
it’s possible that one of the Hamming extended parity bits could be fl ipped 
as a detectable and correctable SBE, as shown in Figure 5.9.

This covers all the basic correctable SBE possibilities as well as showing how 
an uncorrectable MBE is detected. Overall, the Hamming encoding provides 

FIGURE 5.5 Hamming Encoding for 8-Bit Word with No Error in Computed Syndrome
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perfect detection of SBEs and MBEs, unlike a single parity bit for a word, 
which can detect all SBEs, but can detect MBEs only where an odd number of 
bits are fl ipped. In this sense, a single parity bit is an imperfect detector and also 
offers no correction because it does not encode the location of SBEs.

FIGURE 5.6 Hamming Syndrome Catches and Corrects pW SBE

FIGURE 5.7 Hamming Syndrome Catches MBE, but Can’t Correct the Data
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FIGURE 5.8 Hamming Syndrome Catches and Corrects pW SBE

FIGURE 5.9 Hamming Syndrome Catches and Corrects Corrupt Parity Bit SBE
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5.6 Flash File Systems

Flash technology has mostly replaced the use of EEPROM (Electroni-
cally Erasable Programmable Read-Only Memory) as the primary update-
able and nonvolatile memory used for embedded systems. Usage of EE-
PROM continues for low-cost, low-capacity NVRAM (NonVolatile RAM) 
system requirements, but most often Flash memory technology is used for 
boot code storage and for storage of nonvolatile fi les. Flash fi le systems 
emerged not long after Flash devices. Flash offers in-circuit read, write, 
erase, lock, and unlock operations on sectors. The erase and lock operations 
operate on the entire sector, most often 128 KB in size. Read and write 
operations can be a byte, word, or block. The most prevalent Flash technol-
ogy is NAND (Not AND) Flash, where the memory device locations are 
erased to all 1s, and writes are the NAND of the write data and the current 
memory contents. Data can be written only to erased locations with all 1s 
unless it is unchanged, and sectors can typically be erased 100,000 times or 
more before they are expected to fail as read-only memory.

Based upon the characteristics of Flash, it’s clear that minimizing sector 
erases will maximize Flash part lifetime. Furthermore, if sectors are erased 
at an even pace over the entire capacity, then the full capacity will be avail-
able for the overall expected lifetime. This can be done fairly easily for us-
ages such as boot code and boot code updates. Each update simply moves 
the new write data above the previously written data and sectors are erased 
as needed. When the top of Flash is encountered, the new data wraps back 
to the beginning sector. The process results in even wear because all sectors 
are erased in order over time. File systems are more diffi cult to implement 
with wear leveling because arbitrarily sized fi les and a multiplicity of them 
lead to fragmentation of the Flash memory. The key to wear leveling for 
a Flash fi le system is to map fi le system blocks to sectors so that the same 
sector rotation and even number of erases can be maintained as was done 
for the single fi le boot code update scheme. A scenario for mapping two 
fi les, each with two 512-byte LBAs (Logical Block Addresses), and a Flash 
device with two sectors, each sector 2,048 bytes in size (for simplicity of the 
example), shows that 16 LBA updates can be accommodated for 5 sector 
erases. This scenario is shown in Figure 5.10 for 16 updates and total of 5 
sector erases (3 for Sector 0 and 2 for Section 1). Continuing this pattern 
32 updates can be completed for 10 sector erases (5 for section 0 and 5 for 
sector 1). In general this scenario has approximately six times more updates 
than evenly distributed erases.
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With wear leveling, Flash is expected to wear evenly so that the overall 
lifetime is the sum of the erase limits for all the sectors rather than the limit 
on one, yielding a lifetime with millions of erases and orders of magnitude 
more fi le updates than this. Wear leveling is fundamental to making fi le 
system usage with Flash practical.

FIGURE 5.10 Simple Flash Wear Leveling Example

Summary

Memory resource capacity, access latency, and overall access band-
width should be considered when analyzing or designing a real-time em-
bedded memory system. While most GPC architectures are concerned 
principally with memory throughput and capacity, real-time embedded 
systems are comparatively more cost-sensitive and often are designed for 
less throughput, but with more deterministic and lower worst-case access 
latency.
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Exercises

1. Describe why a multilevel cache architecture might not be ideal for a 
hard real-time embedded system.

2. Write VxWorks code that starts two tasks, one which writes one of two 
phrases alternatively to a shared memory buffer, including: (1) “The 
quick brown fox jumps over the lazy dog” and (2) “All good dogs go to 
heaven” and when it’s done have it call TaskDelay(143). Now add a 
second task that reads the phrases and prints them out. Make the reader 
task higher priority than the writer and have it call TaskDelay(37). How 
many times does the reader task print out the correct phrases before 
they become jumbled?

3. Fix the problem in #2 using semTake() and semGive in VxWorks to 
protect the readers/writers critical section.

4. Develop an example of a 32-bit Hamming encoded word (39 bits total) 
and show a correctable SBE scenario.

5. For the foregoing problem, now show an uncorrectable MBE scenario.
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6.1 Introduction

Ideally, the service response as illustrated in Figure 3.13 of Chapter 3 
is based upon input latency, acquiring the CPU resource, interference, and 
output latency only. However, many services need more resources than 
just the CPU to execute. For example, many services may need mutually 
exclusive access to shared memory resources or a shared intermediate IO 
resource. If this resource is not in use by another service, this presents no 
problem. However, if a service is released and preempts another running 
service based upon RM policy, only to fi nd that it lacks a resource held by 
another service, then it is blocked. When a service is blocked, it must yield 
the CPU despite the RM policy. We hope that the preempted service that 
holds the additional resource will complete its mutually exclusive use of 
that resource, at which time the high-priority service will unblock, poten-
tially preempt other services, and continue execution. However, as you’ll 
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see in this chapter, blocking may not be temporary if conditions are suf-
fi cient for deadlock or priority inversion.

6.2 Blocking

Blocking occurs anytime a service can be dispatched by the CPU, but 
isn’t because it is lacking some other resource, such as access to a shared 
memory critical section or access to a bus. When blocking has a known 
latency, it could simply be added into response time, accounted for, and 
therefore would not adversely affect RM analysis, although it would com-
plicate it. The bigger concern is unbounded blocking, where the amount 
of time a service will be blocked awaiting a resource is indefi nite or at least 
hard to calculate. Three phenomena related to resource sharing can cause 
this: deadlock, livelock, and unbounded priority inversion. Deadlock and 
livelock are always unbounded by defi nition. Priority inversion can be tem-
porary, but under certain conditions, priority inversion can be indefi nite. 
Blocking can be extremely dangerous because it can cause a very underuti-
lized system to miss deadlines. This is counterintuitive—how can a system 
with only 5% CPU loading miss deadlines? If a service is blocked for an in-
defi nite time, then the CPU is yielded for an indefi nite time, leaving plenty 
of CPU margin, but the service fails to produce a response by its deadline.

6.3 Deadlock and Livelock

In Figure 6.1, service S1 needs resources A and C, S2 needs A and B, 
and S3 needs B and C. If S1 acquires A, then S2 acquires B, then S3 ac-
quires C followed by requests by each for their other required resource, a 
circular wait evolves, as shown in Figure 6.1. Circular wait, also known as 
the deadly embrace, causes indefi nite deadlock. No progress can be made 
by Services 1, 2, or 3 in Figure 6.1 unless resources held by each are re-
leased. Deadlock can be prevented by making sure the circular wait sce-
nario is impossible. It can be detected if each service is designed to post 
a keep-alive, as discussed in Chapter 14, “High Availability and Reliability 
Design.” When the keep-alive is not posted due to the deadlock, then a 
supervisory service can restart the deadlocked service. However, it’s pos-
sible that when deadlock is detected and services are restarted, they could 
simply reenter the deadlock over and over. This variant is called livelock 
and also prevents progress completely despite detection and breaking of 
the deadlock.
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One solution to prevent livelock following deadlock detection and re-
starting is to include a random back-off time on restart for each service that 
was involved—this ensures that one beats the other two to the resource 
subset needed and completes acquisition, allowing each service the same 
opportunity in turn.

What if the supervisor service is involved in the deadlock? In this case, a 
hardware timer known as a watchdog timer is used to require the supervisor 
service to reset a countdown timer periodically. If the supervisor service be-
comes deadlocked and can’t reset the watchdog timer countdown, then the 
watchdog timer expires and resets the entire system with a hardware reset. 
This causes the fi rmware to reboot the system in hopes that the supervisor 
deadlock will not evolve again. These strategies will be discussed in more 
detail in Chapter 11, which covers high-availability and high-reliability de-
sign methods.

Even with random back-off, the amount of time that a service will fail 
to make progress is hard to predict and will likely cause a deadline to be 
missed, even when the CPU is not highly loaded. The best solution is to 
eliminate the conditions necessary for circular wait. One method of avoid-
ance is to require a total order on the locking of all resources that can be si-
multaneously acquired. In general, deadlock conditions should be avoided, 
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FIGURE 6.1 Shared Resource Deadlock (Circular Wait)
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but detection and recovery schemes are advisable as well. Further discus-
sion on this topic of avoidance versus detection and recovery can be found 
in current research [Minoura82] [Reveliotis00].

6.4 Critical Sections to Protect Shared Resources

Shared memory is often used in embedded systems to share data be-
tween two services. The alternative is to pass messages between services, 
but often even messages are passed by synchronizing access to a shared buf-
fer. Different choices for service-to-service communication will be exam-
ined more closely in Chapter 8, “Embedded System Components.” When 
shared memory is used, because real-time systems allow for event-driven 
preemption of services by higher-priority service releases at any time, 
shared resources, such as shared memory, must be protected to ensure mu-
tually exclusive access. So, if one service is updating a shared memory loca-
tion (writing), it must fully complete the update before another service is 
allowed to preempt the writer and read the same location, as described al-
ready in Chapter 4. If this mutex (mutually exclusive access) to the update/
read data is not enforced, then the reader might read a partially updated 
message. If the code for each service that either updates or reads the shared 
data is surrounded with a semTake() and semGive() (e.g., in VxWorks), then 
the update and read will be uninterrupted despite the preemptive nature 
of the RTOS scheduling. The fi rst caller to semTake() will enter the criti-
cal update section, but the second caller will be blocked and not allowed to 
enter the partially updated data, causing the original service in the critical 
section to always fully update or read the data. When the current user of the 
critical section calls semGive() upon leaving the critical section, the service 
blocked on the semTake() is then allowed to continue safely into the critical 
section. The need and use of semaphores to protect such shared resources 
are a well-understood concept in multithreaded operating systems.

6.5 Priority Inversion

Priority inversion is simply defi ned as any time that a high-priority ser-
vice has to wait while a lower-priority service runs—this can occur in any 
blocking scenario. We’re most concerned about unbounded priority inver-
sion. If the inversion is bounded, then this can be lumped into the response 
latency and accounted for so that the RM analysis is still possible. The use 
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of any mutex (mutual exclusion) semaphore can cause a temporary inver-
sion while a higher-priority service is blocked to allow a lower-priority ser-
vice to complete a shared memory read or update in its entirety. As long as 
the lower-priority service executes for a critical section WCET, the inver-
sion is known to last no longer than the lower-priority service’s WCET for 
the critical section.

What causes unbounded priority inversion? Three conditions are nec-
essary for unbounded inversion:

 ● Three or more services with unique priority in the system—High (H), 
Medium (M), Low (L) priority sets of services.

 ● At least two services of different priority share a resource with mutex 
protection—one or more high H and one or more low L involved.

 ● One or more services not involved in the mutex has priority M between 
the two (H, L) involved in the mutex.

It is important to note that the scheduler must be priority-preemptive 
run-to-completion. Unbounded inversion is not a problem with fair sched-
ulers that use time slices to ensure that all services make continual progress 
through periodic timer-based preemption, thus not allowing the M inter-
fering task to interfere indefi nitely—L will complete, albeit slowed down 
by M. As such, fair schedulers may either not address the issue at all or, to 
prevent increase latency, (bounded, but lengthy delay of L by M), incor-
porate simple solutions, such as highest-locker protocol, which we describe 
in the next section on solutions to lengthy or unbounded inversion. Linux, 
Solaris, and Java typically provide a highest-locker option for mutex critical 
sections to hurry up L by elevating L’s priority to the ceiling priority when 
an inversion is detected.

To fully describe the problem better before more discussion on solu-
tions, the reader should understand that a member of the H priority service 
set catches an L priority service in the critical section and is blocked on the 
semTake(semid). While the L priority service executes in the critical sec-
tion, one or more M priority services interfere with the L priority service’s 
progress for an indefi nite amount of time—the H priority service must con-
tinue to wait not only for the L priority service to fi nish the critical section, 
but for the duration of all interference to the L priority service. How long 
will this interference go on? This would be hard to put an upper bound 
on—clearly it could be longer than the deadline for the H priority service.
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Figure 6.2 depicts a shared memory usage scenario for a spacecraft 
system that has two services using or calculating navigational data providing 
the vehicle’s position and attitude in inertial space—one service is a low-
priority thread of execution that periodically points an instrument based 
upon position and attitude at a target planet to look for a landing site. A 
second service, running a high priority, is using basic navigational sensor 
readings and computed trajectory information to update the best estimate 
of the current navigational state. In Figure 6.2 it can be seen that a set of M 
priority services {M} that are unrelated to the shared memory data critical 
section can cause H to block for as long as M services continue to preempt 
the L service stuck in the critical section.

Critical
Code
Section
(Shared
Memory
Spacecraft
State)  

 

 

 
 

 

Inertial_Position(&x, &y, &z,
down_range, cross_range,
orbit_elements); 

Attitude_Estimate(x, y, z,
mars_image, &attitude); 

Scan_Landing_Site
x, y, z, attitude);

Service H   

Services {M}  

H blocked on 
SemTake here

 
 

L preempted
here 

Continuing
interference
by M priority
services
using critical
section

Service L

FIGURE 6.2 Unbounded Priority Inversion Scenario

6.5.1 Unbounded Priority Inversion Solutions
One of the fi rst solutions to unbounded priority inversion is to use task 

or interrupt locking (VxWorks intLock() and intUnlock() or task Lock () 
and task Unlock ()) to prevent preemptions in critical sections completely, 
which operates in the same way as a priority ceiling protocol. Priority in-
heritance was introduced as a more optimal method that limits the ampli-
fi cation of priority in a critical section only to the level required to bound 
inversions. By comparison, interrupt locking and priority ceiling essentially 
disable all preemption for the duration of the critical section, but very ef-
fectively bound the inversion. To describe better what is meant by priority 
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inheritance, you must understand the basic strategy to avoid indefi nite in-
terference while a low-priority task is in a critical section. Basically, the H 
priority service gives its priority temporarily to the L priority service so 
that it will not be preempted by the M priority services while fi nishing up 
the critical section—normally the L priority service restores the priority 
loaned to it as soon as it leaves the critical section. The priority of the L 
service is temporarily amplifi ed to the H priority to prevent the unbounded 
inversion. One downside to priority inheritance is that it can chain. When 
H blocks, it is possible that shortly after H loans its priority to L, another 
H+n priority service will block on the same semaphore, therefore requiring 
a new inheritance of H+n by L so that H+n is not blocked by services of 
priority H+1 to H+n–1 interfering with L, which has priority H [Sha90]. 
The chaining is complex, so it would be easier to simply give L a priority 
that is so high that chaining is not necessary. 

The idea to set a ceiling priority once and for all rather than “loaning” 
priorities in a dynamic chain became known as the priority ceiling emula-
tion protocol (also known as highest-locker, although there may be detailed 
differences in how the ceiling is specifi ed and whether it can be changed 
at runtime or only with recompilation). The ideal priority ceiling protocol 
would simply set the priority to the highest for all critical section users, 
assuming this can be determined by the operating system and is more ex-
acting than emulation, where the programmer provides a best guess and 
was fi rst described in terms of Ada language server and client tasks [Good-
enough88]. The Java real-time extensions include a feature that is called 
priority ceiling emulation protocol [Java RT]. The ceiling priority in priority 
ceiling emulation protocol is initialized at the time critical sections are con-
structed (coded) and can’t be changed after that in Java. With priority ceil-
ing emulation protocol, when the inversion occurs, L is temporarily loaned 
the pre-confi gured ceiling priority, ensuring that it completes the critical 
section with one priority amplifi cation. However, the ceiling protocol is not 
ideal because it may either over-amplify the priority of L higher than it re-
ally needs to be, or through programming error, not amplify it enough to 
limit the inversion. Over-amplifi cation could cause other problems, such as 
signifi cant interference to high-frequency, high-priority services. Most real-
time systems have gravitated to priority ceiling emulation protocol (highest-
locker) for simplicity and with trust that the programmer constructing the 
critical section will know well the priorities of the users of the critical sec-
tion. The advantage of the more complex priority inheritance is that the 
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ceiling does not need to be adjusted when code changes are made or priori-
ties adjusted (it would be easy to forget a ceiling adjustment).

In highest-locker, virtually identical to priority ceiling emulation, the 
priority of L is amplifi ed to the highest priority of all those services that 
can potentially request access to the critical section based on programmer 
understanding (and in that sense, assuming the programming knows the 
correct ceiling priority to choose while constructing the critical section, 
highest-locker and priority ceiling emulation protocol are identical). The 
highest-locker protocol has been used in Unix systems for time-sensitive 
digital media applications, such as streaming, encoding, and decoding [Va-
halia96]. The only downside to highest-locker is that it requires the pro-
grammer to indicate to the operating system what the highest-locker pri-
ority should be, just like the Java priority ceiling emulation protocol. Any 
mistake in specifi cation of the highest-locker priority may cause unbounded 
inversion to persist. In theory, the programmer should know very well what 
services can enter a given critical section and therefore also know the cor-
rect highest-locker priority.

The problem of priority inversion became famous with the Mars Path-
fi nder spacecraft. The Pathfi nder spacecraft was on fi nal approach to Mars 
and would need to complete a critical engine burn to capture into a Mar-
tian orbit within a few days after a cruise trajectory lasting many months. 
The mission engineers readied the craft by enabling new services. Services 
such as meteorological processing from instruments were designed to help 
determine the insertion orbit around Mars because one of the objectives 
of the mission was to land the Sojourner rover on the surface in a location 
free of dangerous dust storms. When the new services were activated dur-
ing this critical fi nal approach, the Pathfi nder began to reboot when one of 
the highest-priority services failed to service the hardware watchdog timer. 
Discussed in more detail in Chapter 14, “High Availability and Reliability 
Design,” watchdog timers are used to ensure that software continues to ex-
ecute sanely. If the countdown watchdog timer is not reset periodically by 
the highest-priority periodic service, the system is wired to reset and reboot 
to recover from software failures, such as deadlock or livelock. Further-
more, most systems will reboot in an attempt to recover several times, and 
if this repeats more than three times, the system will safe itself, expecting 
operator intervention to fi x the recurring software problem.

It was not immediately evident to the mission engineers why Pathfi nder 
was rebooting, other than it was caused by failure to reset the watchdog 
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timer. Based upon phenomena studied in this chapter alone, reasons for a 
watchdog timeout could include the following:

 ● Deadlock or livelock preventing the watchdog reset service from 
executing

 ● Loss of software sanity due to programming errors, such as a bad 
pointer, an improperly handled processor exception, such as divide by 
zero, or a bus error

 ● Overload due to miscalculation of WCETs for the final approach service 
set

 ● A hardware malfunction of the watchdog timer or associated circuitry

 ● A multi-bit error in memory due to space radiation causing a bit upset

Most often, the reason for reset is stored in a nonvolatile memory that is 
persistent through a watchdog reset so that exceptions due to programming 
errors, memory bit upsets, and hardware malfunctions would be apparent 
as the reason for reset and/or through anomalies in system health and status 
telemetry.

After analysis on the ground using a test-bed with identical hardware 
and data playback along with analysis of code, it was determined that Path-
fi nder might be suffering from priority inversion. Ideally, a theory like this 
would be validated fi rst on the ground in the test-bed by recreating condi-
tions to verify that the suspected bug could cause the observed behavior. 
Priority inversion was suspected because a message-passing method in the 
VxWorks RTOS used by fi rmware developers was found to ultimately use 
shared memory with an option bit for priority, FCFS (First Come First 
Served), or inversion safe policy for the critical section protecting the shared 
memory section. In the end, the theory proved correct, and the mission was 
saved and became a huge success. This story has helped underscore the 
importance of understanding multiresource interactions in embedded sys-
tems as well as design for fi eld debugging. Prior to the Pathfi nder incident, 
the problem of priority inversion was mostly viewed as an esoteric possibil-
ity rather than a likely failure scenario. The unbounded inversion on Path-
fi nder resulted from shared data used by H, M, and L priority services that 
were made active by mission controllers during fi nal approach.
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6.6 Power Management and Processor Clock Modulation

Power and layout considerations for embedded hardware often drive 
real-time embedded systems to designs with less memory and lower-speed 
processor clocks. The power consumed by an embedded processor is de-
termined by switching power, short-circuit current, and current leakage 
within the logic circuit design. The power equations summarizing and used 
to model the power used by an ASIC (Application Specifi c Integrated Cir-
cuit) design are

Paverage = Pswitching + Pshort_circuit + Pleakage

Pswitching = (Sprobability)(CL)(Vsupply)2(fclk) — due to capacitor 
charge/discharge for switching 

Pshort_circuit = t(Sprobability)(Vsupply)(Ishort) — due to current 
fl ow when gates switch

Where the terms in the foregoing equations are defi ned as follows:

1. Pleakage is the power loss based upon threshold voltage.

2. Sprobability is the probability that gates will switch, or a fraction of gate 
switches on average.

3. CL is load capacitance.

4. Ishort is short-circuit current.

5. fclk is the CPU clock frequency.

The easiest parameters to control are the Vsupply and the processor clock 
frequency in order to reduce power consumption.

Furthermore, the more power put in, the more heat generated. Often 
real-time embedded systems must operate with high reliability and at low 
cost so that active cooling is not practical. Consider an embedded satellite 
control system—a fan is not even feasible for cooling because the elec-
tronics will operate in a vacuum. Often passive thermal conduction and 
radiation are used to control temperatures for embedded systems. More 
recently, most embedded systems have been designed with processor clock 
modulation so that Vsupply can be reduced along with CPU clock rate under 
the control of fi rmware when it’s entering less busy modes of operation or 
when the system is overheating.
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Summary

Real-time embedded systems are most often designed according to 
hardware power, mass, layout, and cost constraints, which in turn defi ne 
the processor, IO, and memory resources available for use by fi rmware 
and software. Analysis of a single resource, such as CPU, memory, or IO 
alone, is well understood for real-time embedded systems—the subject of 
Chapters 3, 4, and 5. The analysis of multiresource usage, such as CPU 
and memory, has more recently been examined. The case of multiple ser-
vices sharing memory and CPU leads to the understanding that deadlock, 
livelock, and priority inversion could interfere with a service’s capability to 
execute and complete prior to a deadline—even when there is more than 
suffi cient CPU resource. The complexity of multiple resource usage by a 
set of services can lead to scenarios where a system otherwise determined 
to be hard real-time safe can still fail.

Exercises

1. Implement the RM LUB (Least Upper Bound) feasibility test presented 
in an Excel spreadsheet. Verify CPU scheduling feasibility by hand-
drawing timing diagrams and using the spreadsheet. Example: T1=3, 
T2=5, T3=15, C1=1, C2=2, C3=3. What is the LCM of the periods and 
total utility? Does the example work? Does it pass the RM LUB feasibil-
ity test? Why or why not?

2. Given that EDF can provide 100% CPU utilization and provides a 
deadline guarantee, why isn’t EDF always used instead of fixed-priority 
RMA?

3. Using the same example from #1 (T1=3, T2=5, T3=15, C1=1, C2=2, 
C3=3), does the system work with the EDF policy? How about LLF? 
Do EDF and LLF result in the same or a different scheduling?

4. Examine the example code deadlock.c for Linux from the DVD that 
demonstrates deadlock and fix it.

5. Examine the example code prio_invert.c from the DVD that dem-
onstrates priority inversion, and use WindView to show that without 
priority inheritance protocol the inversion occurs, and that with it the 
problem is corrected.
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C H A P T E R

SOFT REAL-TIME SERVICES

7
In this chapter

 ● Introduction
 ● Missed Deadlines
 ● Quality of Service
 ● Alternatives to Rate-Monotonic Policy
 ● Mixed Hard and Soft Real-Time Services

7.1 Introduction

Soft real time is a simple concept, defi ned by the utility curve presented 
in Chapter 2, “System Resources.” The complexity of soft real-time systems 
arises from how to handle resource overload scenarios. By defi nition, soft 
real-time systems are not designed to guarantee service in worst-case us-
age scenarios. So, for example, back-to-back cache misses causing a service 
execution effi ciency to be much lower than expected might cause that ser-
vice’s deadline or another lower-priority service’s deadline to be overrun. 
How long should any service be allowed to run past its deadline, if at all? 
How will the quality of the services be impacted by an overrun or by a re-
covery method that might terminate the release of an overrunning service? 
This chapter provides some guidance on how to handle these soft real-time 
scenarios and, in addition, explains why soft real-time methods can work 
well for some services sets.
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7.2 Missed Deadlines

Missed deadlines can be handled in a number of ways:

 ● Termination of the overrunning service as soon as the deadline is passed

 ● Allowing an overrunning service to continue running past a deadline for 
a limited duration

 ● Allowing and overrunning service to run past a deadline indefinitely

Terminating the overrunning scenario as soon as the deadline is passed 
is known as a service dropout. The outputs from the service are not pro-
duced, and the computations completed up to that point are abandoned. 
For example, an MPEG (Motion Picture Expert’s Group) decoder service 
would discontinue the decoding and not produce an output frame for dis-
play. The observable result of this handling is a decrease in quality of ser-
vice. A frame dropout results in a potentially displeasing video quality for a 
user. If dropouts rarely occur back to back and rarely in general, this might 
be acceptable quality. If soft real-time service overruns are handled with 
termination and dropouts, the expected frequency of dropouts and reduc-
tion in quality of service should be computed.

The advantage of service dropouts is that the impact of the overrunning 
service is isolated to that service alone—other higher-priority and lower-
priority services will not be adversely impacted as long as the overrun can 
be quickly detected and handled. For an RM policy, the failure mode is 
limited to the single overrunning service (refer to Figure 3.15 of Chapter 
3). Quick overrun detection and handling always result in some residual in-
terference to other services and could cause additional services to also miss 
their deadlines—a cascading failure. If some resource margin is maintained 
for dropout handling, this impact can still be isolated to the single overrun-
ning service.

Allowing a service to continue an overrun beyond the specifi ed dead-
line is risky because the overrun causes unaccounted-for interference to 
other services. Allowing such a service to overrun indefi nitely could cause 
all other services to fail of lesser priority in an RM policy system. For this 
reason, it’s most often advisable to handle overruns with termination and 
limited service dropouts. Deterministic behavior in a failure scenario is the 
next best thing compared to deterministic behavior that guarantees success. 
Dynamic-priority services are more susceptible to cascading failures (refer 
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to Figure 3.16 in Chapter 3) and therefore also more risky as far as impact 
of an overrun and time for the system to recover. Cascading failures make 
the computation of dropout impact on quality of service harder to estimate.

7.3 Quality of Service

Quality of service (QoS) for a real-time system can be quantifi ed based 
upon the frequency that services produce an incorrect result or a late result 
compared to how often they function correctly. A real-time system is said 
to be correct only if it produces correct results on time. In Chapter 14, 
“High Availability and Reliability Design,” the classic design methods and 
defi nitions of availability and reliability will be examined. The QoS concept 
is certainly related. The traditional defi nition of availability of a service is 
defi ned as follows:

 ● Availability = MTTF / (MTTF + MTTR)

 ● MTTF = Mean Time to Failure (How long the system is expected to run 
without failure)

 ● MTBF = MTTF + MTTR (Mean Time Between Failures, including 
recovery from earlier failures)

 ● MTTR = Mean Time to Recovery

The MTBF may be confused with MTTF on occasion and for small MTTR, 
MTBF and MTTF differ only by MTTR. For many systems the MTTR is 
seconds or at most minutes and the MTTF is often hundreds of thousands 
or millions of hours, so in practice, MTBF ≈ MTTF as long as MTTR is << 
MTBF. This is depicted as follows:

available recovery available recovery

MTBF

Failure #1 Failure #2
MTTF

MTTR
FIGURE 7.1 Difference between MTBF and MTTF
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If a service has higher availability, does it in fact also have higher qual-
ity? From the viewpoint of service dropouts, measured in terms of frames 
delivered—for example, for a video decoder—then higher availability does 
mean fewer service dropouts over a given period of time. This formulation 
for QoS can be expressed as:

 ● QoS = 1 – Drop_outs / Deliveries

 ● Where QoS = 1 is full quality and 0 is no quality of service

So, in this example, availability and QoS are directly related to the degree 
that number of dropouts will be directly proportional to availability. How-
ever, delivering decoded frames for display is an isochronal process (de-
fi ned in Chapter 2). Presenting frames for display too early causes frame jit-
ter and lower QoS with no service dropouts and 100% availability. Systems 
providing isochronal services and output most often use a DM (Deadline-
Monotonic) policy and buffer and hold outputs that are completed prior to 
the isochronal deadline to avoid jitter. The measure of QoS is application-
specifi c. For example, isochronal networks often defi ne QoS as the degree 
to which packets transported approximate a constant bit-rate dedicated cir-
cuit. To understand QoS well, the specifi c application domain for a service 
must be well understood. In the remaining sections of this chapter, soft 
real-time methods that can be used to establish QoS for an application are 
reviewed.

7.4 Alternatives to Rate-Monotonic Policy

The RM policy can lead to pessimistic maintenance of high-resource 
margins for sets of services that lack harmony (described in Chapter 3, “Pro-
cessing”). Furthermore, RM policy makes restrictive assumptions, such as 
T=D. Because QoS is a bit harder to nail down categorically, designers of 
soft real-time systems should consider alternatives to RM policy that might 
better fi t their application-specifi c measures of QoS. For example, in Figure 
7.2, the RM policy would cause a deadline overrun and a service dropout, 
decreasing QoS, but it’s evident that EDF or LLF dynamic-priority policies 
will result in higher QoS because both avoid the overrun and subsequent 
service dropout.

The EDF and LLF policies are not always better from a QoS view-
point. Figure 7.3 shows how EDF, LLF, and RM all perform equally well 
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Example 2 T1 2 C1 1 U1 0.5 LCM = 910
T2 5 C2 1 U2 0.2
T3 7 C3 1 U3 0.142857
T4 13 C4 2 U4 0.153846 Utot = 0.996703

RM Schedule
S1 ????????
S2
S3
S4 FAILURE
EDF Schedule
S1
S2
S3
S4
TTD
S1 2 X 2 X 2 X 2 X 2 X 2 X 2 X
S2 5 4 X X X 5 X X X X 5 4 3 2
S3 7 6 5 4 X X X 7 6 5 4 3 X X
S4 13 12 11 10 9 8 7 6 5 4 X X X X
LLF Schedule
S1
S2
S3
S4
Laxity
S1 1 X 1 X 1 X 1 X 1 X 1 X 1 X
S2 4 3 X X X 4 X X X X 4 3 2 1
S3 6 5 4 3 X X X 6 5 4 X X X X
S4 11 10 9 8 7 6 5 4 4 3 2 1 X X

FIGURE 7.2 Highly Loaded System—RM Deadline Overrun

Example 3 T1 3 C1 1 U1 0.33 LCM = 15
T2 5 C2 2 U2 0.4
T3 15 C3 3 U3 0.2 Utot = 0.93

RM Schedule
S1
S2
S3
EDF Schedule
S1
S2
S3
TTD
S1 3 X X 3 X X 3 X X 3 X X 3 X X
S2 5 4 3 X X 5 4 3 X X 5 4 X X X
S3 15 14 13 12 11 10 9 8 7 6 5 4 3 2 X
LLF Schedule
S1
S2
S3
Laxity
S1 2 X X 2 X X 2 X X 2 X X 2 X X
S2 3 2 2 X X 3 3 2 X X 3 3 X X X
S3 12 11 10 9 8 8 7 6 5 5 4 3 3 2 X

FIGURE 7.3 Three Policies and Three Common Schedules
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for a given service scenario. From a practical viewpoint, the decision to 
be made on scheduling policy should be a balance between the impact on 
QoS by the more adaptive EDF and LLF policies compared to the more 
predictable failure modes and deterministic behavior of RM in an overload 
situation. This may be diffi cult to compute and might be best evaluated by 
trying all three policies with extensive testing.

In cases where EDF, LLF, and RM perform equally well in a non-
overload scenario, RM might be a better choice because the impact of 
a failure is simpler to contain; that is, there is less likelihood of cas-
cading service dropouts given upper bounds on overrun detection and 
handling.

As shown in Figure 7.4, it’s well worth noting that systems designed 
to have harmonic service request periods do equally well with EDF, LLF, 
and RM. Designing systems to be harmonic can greatly simplify real-time 
scheduling.

Example 4 T1 2 C1 1 U1 0.5 LCM = 16
T2 4 C2 1 U2 0.25
T3 16 C3 4 U3 0.25 Utot = 1

RM Schedule
S1
S2
S3
EDF Schedule
S1
S2
S3
TTD
S1 2 X 2 X 2 X 2 X 2 X 2 X 2 X 2 X
S2 4 3 X X 4 3 X X 4 3 X X 4 3 X X
S3 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
LLF Schedule
S1
S2
S3
Laxity
S1 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X
S2 3 2 X X 3 2 X X 3 2 X X 3 2 X X
S3 12 11 10 9 9 8 7 6 6 5 4 3 3 2 1 0

FIGURE 7.4 Full Utility from a Harmonic Schedule

Figure 7.5 shows yet another example of a harmonic schedule where 
policy is inconsequential.

For isochronal services, DM policy can have an advantage by relax-
ing T=D. This allows for analysis of systems where services can complete 
early to buffer and hold outputs to reduce presentation jitter and thereby 
increase QoS. Figure 7.6 shows a scenario where the DM policy succeeds 
when the RM would fail due to requirements where D can be greater or 
less than the release period T.
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Example 5 T1 2 C1 1 U1 0.5 LCM = 10
T2 5 C2 2 U2 0.4
T3 10 C3 1 U3 0.1 Utot = 1

RM Schedule
S1
S2
S3
EDF Schedule
S1
S2
S3
TTD
S1 2 X 2 X 2 X 2 X 2 X
S2 5 4 3 2 X 5 4 3 X X
S3 10 9 8 7 6 5 4 3 2 1
LLF Schedule
S1
S2
S3
Laxity
S1 1 X 1 X 1 X 1 X 1 X
S2 3 2 2 1 X 3 3 2 X X
S3 9 8 7 6 5 4 3 2 1 0

FIG URE 7.5 A Harmonic Service Set

Example 6 T1 2 C1 1 U1 0.5 LCM = 70 For DM D1 2
T2 5 C2 1 U2 0.2 D2 3 EARLIER
T3 7 C3 1 U3 0.142857 D3 7
T4 13 C4 2 U4 0.153846 Utot = 0.996703 D4 15 LATER

RM Schedule
S1 ????????
S2
S3
S4 FAILURE

DM Schedule
S1
S2
S3
S4

OVERLAP OVERLAP

RM D2,3RM D4,1

DM D2,1

RM D2,1

DM D2,2

RM D2,2

DM D2,3
DM R4,2

DM D4,1
DM R2,4

DM R2,2 DM R2,3

FIGURE 7.6 Deadline-Monotonic Can Work Where RM Fails

7.5 Mixed Hard and Soft Real-Time Services

Many systems include services that are hard real-time, soft real-time, 
and best-effort. For example, a computer vision system on an assembly line 
may have hard real-time services, where missing a deadline would cause 
shutdown of the process being controlled. Likewise, operators may want to 
occasionally monitor what the computer vision systems “sees.” The video 
for monitoring should have good QoS so that a human monitor can assess 
how well the system is working, whether lighting is suffi cient, and whether 
frame rates appear reasonable. Finally, in the same system, operators may 
occasionally want to dump maintenance data and have no real requirements 
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for how fast this is done—it can be done in the background whenever spare 
cycles are available.

The mixing of hard, soft, and best effort can be done by admitting the 
services into multiple periodic servers for each. The hard real-time services 
can be scheduled within a time period (epoch) during which the CPU is 
dedicated to hard real-time services (all others are preempted). Another 
approach is to transform the period for all the hard real-time services so 
that they have priorities that encode their importance. Either way, we en-
sure that the hard real-time services will preempt all soft services and best-
effort services on a deterministic and periodic basis.

Best-effort services can always be handled by simply scheduling all 
these services at the lowest priority and at an equal priority among them. At 
lowest priority, best-effort services become slack time stealers that execute 
only when no real-time (hard or soft) services are requesting processor re-
sources.

Summary

Soft real-time services assume that some service releases will fail to 
meet deadline requirements. Careful consideration should be given to how 
service deadline overruns will be handled and how this will impact QoS.

Exercises

1. Review posix_clock.c and posix_rt_timers.c contained on the DVD. 
Write a brief paragraph describing how these two modules work and 
what features of the POSIX 1003.1b real-time extensions they demon-
strate. Make sure you not only read the code but also build it, load it, 
and execute it to make sure you understand how both applications work.

2. Build load and analyze the DVD itimer_test.c module for VxWorks and 
describe how it works. Specifically what states does the itimer_test() 
task context transition between if it is spawned in a task context using sp 
itimer_test()?

3. Build, load, and run the DVD posix_sw_wd.c software watchdog moni-
tor code, and describe how it executes, providing evidence for your 

ON THE DVD
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description with supporting WindView (now known as System Viewer 
[WRS06]) traces.

4. Use the Cheddar real-time scheduling analysis tool (found at http://
beru.univ-brest.fr/~singhoff/cheddar/ ) and run both simulation and 
worst-case analysis on the scheduling examples found on the DVD and 
described in Figures 7.2, 7.3, 7.4, 7.5, and 7.6.
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8
In this chapter

 ● Introduction
 ● Hardware Components
 ● Firmware Components
 ● RTOS System Software
 ● Software Application Components

8.1 Introduction

System design can be approached in a bottom-up or a top-down fash-
ion. The bottom-up approach consists of determining the fundamental 
components that go into a system. The top-down approach is a hierarchical 
breakdown of the system into subsystems and then into components. The 
top-down approach can be viewed as a concrete breakdown of the system 
into smaller parts as suggested here, but often an abstract top-down ap-
proach is useful where the system is broken down by service and function. 
This functional top-down approach is described in Chapter 15, “System 
Life Cycle.” In this chapter, we fi rst examine common components of a 
real-time embedded system in the concrete sense, going from the overall 
system down to components. Familiarity of the components can assist the 
designer in making more optimal system design decisions. The design of a 
real-time embedded system can be viewed as a hierarchy of subsystems, as 
depicted in Figure 8.1, showing a real-time stereo-vision tracking system.
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Stereo-Vision
Tracker

Stereo Vision
Sensor

Tilt/Pan 
Actuation

Processing

Cabling

Sensor/
Actuator IO

ProcessingCabling Tilt/Pan 
Actuation

Sensor/
Actuator IO

Stereo Vision
Sensor

FIGURE 8.1 Subsystems in a Stereo-Vision Tracking System

The stereo-vision tracking system has a simple goal—keep a bright 
object in the fi eld of view of both cameras even if the object moves and 
estimate the distance from the camera assembly to the object. A more 
functional service view of the same stereo-vision tracking system would 
look much different. This is depicted by the hierarchy for the same system 
shown in Figure 8.2.

Stereo-Vision
Tracking

Field-of-View
Centroid 
Reporting

Stereo Ranging Range 
Reporting

Tilt/Pan Target
Tracking 

FIGURE 8.2 Services in a Stereo-Vision Tracking System

The stereo-vision tracking system is an example design that is examined 
in more detail in Chapter 18, “Computer Vision Applications.”
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8.2 Hardware Components

The hardware components of a real-time embedded system will in-
clude a wide range of components that are mechanical and electrical. For 
example, in the stereo-vision tracking system we have:

 ● Structural and mechanical—camera assembly

 ● Electromechanical actuators—tilt and pan servos

 ● Electromechanical sensors (transducers)—none, but servo position sen-
sors could be added

 ● Optical sensors—NTSC cameras

 ● Cabling—power, NTSC signal, RS232, CAT-5 twisted pairs

 ● Digital state machines, microcontrollers, and microprocessors—x86 
microprocessor, PIC microcontroller

 ● Analog front-end (sensor) and back-end (actuator) circuits—NTSC, 
TTL pulse-width modulation

 ● Networks or bus interfaces—RS232 serial, Ethernet, PCI

 ● Thermal management—CPU fans

Typically additional test equipment hardware may also require includ-
ing monitors, development computing environment, oscilloscope, digital 
multimeter, and a logic analyzer. This, however, is not part of the system, 
although required to fully implement and verify its proper implementation 
and operation.

In the following sections, basic hardware components, such as those 
used in the stereo-vision tracking system, are described.

8.2.1 Sensors
Sensors are devices that respond to physical stimulus (light, heat, pres-

sure, stress/strain, acceleration, magnetism) by transforming the associated 
energy into electrical energy or by modifying the electrical properties in a 
circuit. For example, a camera is a sensor that converts photon energy into 
electrical charge that represents the photon fl ux for each picture element in 
an array. A thermistor is a resistor circuit where the resistance of the therm-
istor changes with temperature, and therefore so does the circuit current at 
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a given voltage and voltage drop across the load. A sensor assembly may also 
interface this analog front end to a digital encoding interface. Analog-to-
digital converters (ADCs) are used to sample and hold charge, thereby con-
verting the analog circuit current/voltage into a digital value. For example, 
an 8-bit ADC will encode a sensor circuit operational voltage range into 256 
levels. Without encoding, sensors are useful in analog control systems, but 
for use in digital control systems, encoding is critical. Real-time embedded 
systems therefore require digital encoding of all sensor inputs, with the 
exception of subsystems, which are all analog.

The sensor AFE (Analog Front End) involves physics that are very par-
ticular to the environmental phenomena being sensed and the method for 
generating measurable changes in an analog circuit based upon physical 
stimulus. Many sensors are electromechanical devices where mechanical 
stimulus, such as stress/strain, the force per unit area and resulting defor-
mation, or motion, causes a change in analog circuit voltage/current. Resis-
tance in many materials is a function of stress, strain, and/or temperature; 
thus these mechanical properties can be measured using the right material 
as a resistor in a circuit in the AFE. Motion can be sensed also with a varia-
tion of resistance through potentiometers, where resistance is modifi ed by 
mechanically varying the resistive path in a circuit. A simple example is the 
use of a multi-turn potentiometer to modify resistance in a circuit with rota-
tion. The sensor couples a physical phenomenon to an electrical one. This 
coupling may be more erudite, as is the case with an optical encoder that 
uses periodic interruption of an optical-coupler (LED and photodiode) in a 
circuit through mechanical mechanisms, such as a fi lter wheel. In this case 
the optical-coupler interruptions are counted to estimate rotation.

The sensor always includes the AFE, but may also include the analog-
to-digital encoding as well. In the case of an NTSC (National Television 
Standards Committee) camera, the camera outputs an analog signal that 
encodes photo-intensity in an image fi eld of view in an analog raster output. 
The NTSC analog signal can be further encoded from the NTSC signal 
into a digital image, which is an array of alpha-RGB (Red, Green, Blue) 
pixels that indicate luminance and chrominance of subareas of the cam-
era’s fi eld of view—picture element or pixel alpha-RGB values encoded 
using an ADC. This is the approach taken in the stereo-vision example. An 
alternative might employ a CCD (Charge Coupled Device) camera, which 
provides a more direct encoding of photo-intensity (photon fl ux) in terms of 
electrical charge. The range of methods used by sensors to encode the wide 
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range of physical phenomena and associated energy into electrical energy 
is too broad to comprehensively discuss in this text. The key concept, how-
ever, is that all sensors do convert physical stimulus into electrical outputs 
that affect an analog circuit, which in turn can be encoded into a digital 
input using an ADC. The ADC implementation has signifi cant impact on 
the encoding capability, including the following:

 ● Sampling frequency

 ● Sample accuracy

 ● Input range

The ADC takes an analog input (voltage or current) and converts it into 
a digital word, most often from 8-bit to 16-bit. The ADC requires a refer-
ence voltage, Vref, and normally encodes all inputs into a range of values 

from zero to: ref

(2 )n

V
, so that for a 5V reference, a typical 16-bit ADC can 

encode the voltage in an AFE into increments representing a change of 
0.0763 millivolts, with an input range of 0 to 5V for the AFE signal. The 
resolution can clearly be increased by reducing the reference voltage Vref; 
however, this is at the cost of constraining the input range. This trade-off 
drives the selection of how many bits the ADC provides in the encoding—
to accommodate large input ranges and high resolution, the ADC must 
have more bits for the encoding. The fi nal question is, how fast can the AFE 
be sampled? This depends upon the type of ADC:

 ● Flash—using comparators, one per voltage step, and resistors

 ● Successive approximation—comparators and counting logic

The fl ash ADC conversion speed is the sum of the comparator delays 
and logic delay—typically fl ash ADCs are the fastest variety. The succes-
sive approximation ADC uses comparators to determine fi rst whether the 
input is greater than half the reference, then whether it’s greater than one 
quarter, and so on until the LSB (Least Signifi cant Bit) comparison is made 
and the signal level has been approximated successively to the bit accuracy 
of the ADC—this takes as many clock cycles as the ADC has bits. One 
more issue with any ADC is how the input signal is sampled—if it changes 
signifi cantly during the ADC process, then the results will not be accurate, 
so ADCs must sample and hold the input. The sample and hold time will 
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add latency and thus reduce the maximum inter-sample frequency. Fur-
thermore, the ADC may automatically sample and provide an interrupt or 
FIFO input to a state machine or microprocessor, or the ADC may require 
commands to sample the input and then convert it. For high-rate encoding, 
such as video, a dedicated hardware state machine typically provides the 
ADC control and stores encoded data in a FIFO for transfer to a micropro-
cessor via DMA. Methods for transferring encoded data are discussed in 
more detail in the “Firmware Components” section.

8.2.2 Actuators
Fundamentally, an actuator is a transducer that converts electrical en-

ergy into some other form, such as sound, motion, heat, or electromag-
netism. The simplest form of actuation is switching. The relay provides a 
mechanism that can be actuated to open or close a switch on command 
from a digital IO interface. This on/off control does not provide continuous 
output or simple variation of output amplitude over time. A servomecha-
nism, or servo, is an actuator that converts electrical energy into mechanical 
rotation, using a motor and a control interface. Heating elements that are 
simple resistors can be modulated to provide heat for a system that requires 
minimum operating temperatures. Likewise, for systems that require ac-
tive cooling, actuator subsystems can provide cooling using fans, louvers, 
or some other form of conductive, convective, or radiative cooling. Digital 
values are decoded into analog signals through an analog back end (ABE) 
for actuation so that a digitally encoded value drives the voltage in the ABE 
circuit. This is most often done using either PWM (Pulse-Width Modula-
tion) or a DAC (Digital-to-Analog Converter) so that the amplitude in the 
ABE can be driven by a stream of digital encoded outputs. With PWM, a 
periodic digital pulse (e.g., TTL logic level) is driven out with a duty cycle 
that is proportional to the desired amplitude of the signal at a given point in 
time. The DAC provides the proportional output automatically based upon 
the last commanded digital output rather than decoding using a digital duty 
cycle. Much like ADC sensor interfaces, DAC actuator interfaces should be 
characterized by the following:

 ● Type of actuation—on/off or DAC/PWM modulated

 ● Speed of actuation

 ● Accuracy of modulation
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Most often for accurate high-rate actuators, a DAC is required rather 
than relays or PWM. For audio output, PCM (Pulse Code Modulation) is 
used for input sampling and driving an output DAC for duration and at 
variable output levels.

Actuators can be very unstable and suffer overshoot or failure to settle 
without careful design and potential feedback from sensors. For example, a 
scanning mirror can be used to move an optical fi eld of view very accurately 
by defl ecting a pickoff mirror on an optical path through a small angle. An 
electromechanical mechanism known as a voice-coil fl exure can be driven 
by a DAC so that electromagnetic coils are used to defl ect a mirror on a 
rubber fl exure to the left or right; furthermore, the mirror can be restored 
to a previous position by allowing the fl exure to spring back, dampened by 
the electromagnetic coils. Some of the high-rate feedback control for such 
an actuator might be implemented as a traditional analog control circuit 
rather than relying upon the digital real-time embedded system to provide 
such control.

8.2.3 IO Interfaces
The IO in general to and from a real-time embedded system can be 

classifi ed fi rst as either analog or digital. In the case of analog IO, as seen 
in the previous section, an ADC is required to encode analog inputs and a 
DAC, PWM, or relay interface is required to decode digital outputs when 
analog IO is interfaced to a real-time embedded system. Many embedded 
systems may actually be subsystems in a much larger system and therefore 
may not actually have direct analog IO—instead, many real-time embed-
ded systems have digital IO only or in addition to analog IO. Either way, 
at some point, all IO becomes digital once encoded or prior to decode. So, 
prior to the ABE or after the AFE, the embedded system simply sees digital 
IO. The form of the digital IO, however, can vary signifi cantly and can be 
characterized as:

 ● Word-at-a-time IO

 ● Block IO

Furthermore, the method of interfacing word or block IO can be:

 ● Memory Mapped IO

 ● Port IO
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In the case of word IO, a simple set of registers defi nes the interface 
to the AFE/ABE and provides status, data, and control for encode/decode. 
A single word is written to an ABE for output to a data register and the 
output started by setting control bits and output status monitored using 
the status register. Likewise, for an AFE interface, status can be polled to 
determine when new encoded data is available and samples commanded 
through control and monitored via status. The word IO interfaces require 
signifi cant interaction with the real-time embedded system and are not very 
effi cient, but do provide simple low-rate IO interfaces. These interfaces 
may require programmed IO where a CPU is involved in each input and 
output for all phases of the read/write, status monitoring, and control. This 
is often not desirable for higher-rate interfaces, where even powerful CPUs 
would spend way too many cycles on programmed IO and not enough on 
processing to provide services. So, most high-rate interfaces have a block 
IO interface where a state machine or DMA engine provides command and 
control of the word encoding/decoding and less frequently interrupts the 
CPU when signifi cantly large blocks of data have been encoded/decoded—
typically 1024, 2048, or 4096 byte blocks.

Processor cores traditionally have provided IO through dedicated pins 
from the CPU to other devices called IO ports. An alternative is to save on 
off-chip interface pins by memory mapping IO onto existing address and 
data lines in/out of the CPU so that IO causes devices to be read or written 
in the same address space as memory devices. Many processors, in fact, 
provide both port IO and memory mapped IO, such as the Intel x86. When 
devices are memory mapped, care must be taken to ensure that the MMU 
(Memory Management Unit) is aware that particular address ranges are 
being used for device IO so that output data is not cached, so that writes 
are fully drained to the device rather than buffered when needed, and so 
that the address range is allowed to be accessed without exception. Memory 
locations can be cached, and often it is not necessary for the CPU to wait 
for writes to be updated in actual memory devices once writes have been 
queued—for device IO, normally all writes should be fully drained and not 
cached so that actuation is reliable. If, for example, an output to a DAC was 
cached for later write-back and this output was driving isochronal speaker 
output, this would cause an actuation dropout.

Figure 8.3 shows the components of the stereo-vision sensor subsys-
tem for the stereo-vision tracker. This sensor device consists of two NTSC 
(National Television Standards Committee) cameras and two PCI frame 
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grabbers, which acquire and encode the NTSC camera output. The data 
acquisition is composed of an NTSC signal encoding interface, a PCI bus 
data IO DMA channel, and a programmable DMA engine. The encoding 
is performed at 30 frames per second for a selection of video-encoding for-
mats, including the maximum resolution of 640x480 32-bit pixels, where 
each pixel is composed of an 8-bit intensity, alpha, and three 8-bit fi elds 
encoding RGB (Red, Green, Blue). The AFE for an NTSC encoder uses a 
PLL (Phase Lock Loop) to synchronize with the NTSC signal in order to 
sample and digitize the signal to form a YCrCb (Y=luminance, CrCb=red 
and blue chrominance). The color NTSC signal format was an enhance-
ment to the original grayscale television signal format. The basic NTSC sig-
nal format includes 525 horizontal traces to illuminate a phosphor screen, 
with 262.5 even scan lines and 262.5 odd with blanking time for signal re-
tracing. The intensity of the tracing beam is modulated during the even/
odd interlaced line tracing such that each pixel is illuminated for 125 nano-
seconds for 427 pixels/line and 10 microseconds of blanking between lines, 
yielding a scan line time of 63.6 microseconds. The NTSC camera produces 
a signal conforming to this NTSC standard for direct input into a standard 
television monitor. The interlacing of horizontal scan lines—that is, tracing 
odd lines followed by even lines tracing each frame—reduces fl icker at the 
NTSC frame rate of approximately 30 fps (29.97 actual). The AFE PLL 
synchronizes with the scan line by detecting the NTSC sync and blanking 
levels and then programs the ADCs to sample the signal for each pixel to 
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Encoder IO DMA EngineData IO Bus

FIGURE 8.3 NTSC Vision Subsystem in Stereo-Vision Tracking System
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encode YCrCb. The YCrCb data is latched into an internal FIFO memory, 
and a synchronized DMA engine drains the FIFO with PCI bus transfers 
from the encoder to host system memory. The YCrCb format for NTSC 
was chosen so that grayscale televisions can display color NTSC signals by 
simply using the luminance portion of the signal alone. Most encoders sup-
port automatic conversion from YCrCb into alpha-RGB using linear scaling 
formulae based upon characteristics of human vision:

0.51 0.186
R Y Cr

G Y Cr Cb

B Y Cb

 
    
 

The relationship between the YCrCb and RGB signals are:
0.3 0.59 0.11

(0.3 0.59 0.11 )
(0.3 0.59 0.11 )

Y R G B

Cr R Y R R G B

Cb B Y B R G B

  
     
     

The DMA engine is a simple processor with an RISC instruction set 
that provides control over the encoding as well as the PCI DMA transfer 
and generation of host interrupts. So, for example, microcode can be writ-
ten to encode the 525 NTSC input even and odd lines with 427 pixels, each 
into a range of formats (e.g., 320x240 alpha-RGB or 80x60 grayscale) based 
upon the ADC sampling rates with instructions to transfer the encoded 
data and to generate an interrupt at the completion of each frame encoded 
and transferred over PCI. The 320x240 alpha-RGB frames (307,200 bytes/
frame) are transferred by the DMA engine using multiple PCI bus bursts, 
typically 512 bytes to 4K each. This is typical of a high-rate block transfer 
IO interface for a high data rate sensor. In the case of this example, two 
encoders are bursting video data on the PCI bus simultaneously to two dif-
ferent DMA buffers in two different host memory address ranges.

The stereo-vision tracker also incorporates a low-rate actuation IO in-
terface to enable the system to tilt and pan the stereo-vision sensor (cam-
eras and baseline mount) to follow a bright target that may be moving in 
order to keep the target in both camera fi elds of view. Figure 8.4 describes 
the components making up this low-rate actuation subsystem.

The tilt/pan actuation subsystem uses two servos to provide the tilt and 
pan rotational degrees of freedom. The servos are commanded with a TTL 
PWM signal (Servo PWM IO) generated by a microcontroller (Servo Con-
troller). The specifi c signal generated, and thus position of the servo, can 
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be commanded by a microprocessor through a multi-drop serial interface 
(Serial Command IF). The serial command interface is simple and allows 
the microprocessor to write out command data only 1 byte at a time. This is 
a typical low-rate interface.

8.2.4 Processor Complex or SoC
Almost all modern real-time embedded systems include a general-pur-

pose CPU to process fi rmware/software to provide updateable and fl exible 
services by processing and linking sensor inputs to actuator outputs. If the 
services that a real-time embedded system must provide are so well known 
that they can be fully committed to a hardware state machine, then perhaps 
a processor complex (or set of interconnected CPUs or CPU cores) is not 
needed. Most often services are expected to change over time or are not 
well enough specifi ed initially or way too complex to consider hardware-
only implementations. The processor complex may be composed of the fol-
lowing:

 ● A single CPU with port IO and bus interface MMIO

 ● Multiple CPUs on an internal bus with port/MMIO

 ● Multiple CPUs with an interconnection network and port/MMIO

 ● An SoC (System on a Chip) with multiple CPU cores interconnected 
on-chip with memory, IO, flash, and any number of peripherals making 
it a single-chip solution

Serial 
Command IF

Servo PWM 
IO

Servo
Controller Servo

Tilt/Pan
Actuation 

FIGURE 8.4 Tilt/Pan Servo Subsystem in Stereo-Vision Tracking System
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In the case of our working example, the stereo-vision system, a main x86 
CPU provides an image processing platform to compute the centroid of the 
target object as seen by the left and right cameras and encoded using the 
PCI-bus NTSC encoder subsystem. The servo control is achieved using the 
Servo Controller, a Microchip PIC that commands multiple servos to tilt/pan 
the camera assembly using TTL logic-level PWM based upon a serial byte 
stream command to the controller. Figure 8.5 shows the subsystems (Servo 
Control and Image Processing) that compose the overall stereo-vision system 
processing to provide the tracking and ranging services. The Servo Control 
subsystem uses a digital control law based upon calculated centroid inputs to 
tilt/pan the stereo-vision sensors in real time to keep the target in the fi eld of 
view and produces a series of servo commands as output. The Image Process-
ing subsystem uses alpha-RGB video frames at a maximum rate of 30 fps to 
compute the centroid of the target as seen by each camera and the range to 
the target based upon a triangulation calculation.

Image
Processing 

Image
Segmentation 

Target
Centroid 

Stereo Range
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Processing
(x86, PCI-IO) 

Servo Control 

Servo
Command 

FIGURE 8.5 Processing Subsystem in Stereo-Vision Tracking System

8.2.5 Processor and IO Interconnection
For multi-CPU real-time embedded systems, an interconnection net-

work is required to enable IO and processing to be distributed. The inter-
connection network can be

 ● Simple bus or back-plane (e.g., PCI or VME)

 ● On-chip local bus with bus interface unit to back-plane IO bus

 ● A crossbar on-chip interconnection between CPUs

 ● An off-board network—for example, firewire, USB, Ethernet
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Figure 8.6 shows taxonomy for interconnection strategies that can be 
used to integrate CPUs and IO interfaces in an embedded system.

Interconnection Network
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Bus

Blocking Non-blocking

Arbitrated/Routed
(Frames, Sequences, Packets)

Switched

Benes Clos Cross-barOmega

Fully
Connected

Ring Hub Tree Mesh

Point-to-Point

FIGURE 8.6 Taxonomy of Processor-IO Interconnection Strategies

Most embedded systems are integrated with a scalable bus architec-
ture, point-to-point serial links, or networks.

8.2.6 Bus Interconnection
Many different bus architectures have been used and are being used 

for embedded systems. To better understand integration of processing and 
IO with a bus interconnection, this chapter will examine the VME (Versa 
Module Extension) bus and the PCI (Peripheral Component Interconnect) 
bus. The VME bus has historically been a popular and simple bus architec-
ture used with embedded systems, and, by contrast, PCI is an emergent bus 
architecture that offers traditional parallel bus integration as well as high-
speed serial interconnection with PCI Express.

The PCI bus, introduced as a replacement for the ISA (Industry Stan-
dard Architecture) bus prevalent in the desktop PC domain, has evolved and 
become a popular IO to processor complex integration method in embedded 
systems. A goal of the fi rst PCI standard, 2.1, was to provide a bus where 
IO adapters could be interfaced to processor complexes with plug-and-play 
integration. Plug and play provides a standard for PCI controllers (masters) 
to probe the bus and fi nd devices after they have been added without any 
modifi cation to the master interface. The PCI bus was designed to integrate 
with the legacy ISA bus through an interface called the South Bus. The main 
PCI controller interface was called the North Bus. At the time that PCI was 
fi rst introduced, many embedded systems were integrated using the VME 
bus (Versa Local Bus Module Expansion). Building a real-time embedded 
system based upon bus integration allows system designers to decompose 
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the system into subsystems with interface and processor boards that can be 
designed, built, and tested as units and later integrated on a standard inter-
connection. Both VME and PCI provide this modularity compared to custom 
back-plane or onboard integration. The bus integration also provides a fast 
signal interface compared to packet or frame transmission networks (this has 
started to change recently, as we’ll see later). Table 8.1 briefl y summarizes 
both VME-32 and PCI 2.x, comparing features.

TABLE 8.1 Comparison of PCI and VME Buses

Feature VME bus PCI 2.x bus

Bus transfers Asynchronous 20 MHz Synch clock 33/66 MHz

Target addressing 32, 24, or 16 bit address 
(A32, A24, A16)

Multiplexed 32/64 bit ad-
dress/data bus

Data transfer 32, 24, or 16 bit separate 
data bus

Multiplexed with 32 bit 
address bus

Data transfer types Word or block transfer 
limited to a specific block 
size (e.g., 512 bytes)

Burst transfer always with 
min and max length

Device interrupt mecha-
nism

Daisy-chained priority 
interrupts

4 shared interrupt lines: 
A-D routed to program-
mable interrupt controller

Interrupt vectoring Interrupt data cycle fol-
lowing interrupt level

Map A-D onto processor 
vector—e.g., onto IRQ 
0…15 on x86 with direct 
IRQ to vector mapping

Bus access arbitration for 
multiple initiators 
(masters)

No arbitration, firmware 
or custom controller must 
ensure mutex access

Built-in hidden 
arbitration

Device addressing Custom-designed MMIO Plug ‘n’ play configuration 
space allows firmware to 
set an MMIO or IO base 
address at run time

Expansion and form 
factors

Custom bus integration 
on 6U boards with 3U/6U 
D-shell form factor

No custom expansion, 
but many standard form 
factors: compact PCI, 
PC/104+, PMC, and 
standard PC 2.x

Faster options VME-64+ PCI-X 1.0a, 2.0, and PCI 
Express
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The features of PCI that have made it successful and a popular integra-
tion bus are burst transfer (most IO has become high-rate and is most ef-
fi cient with block transfer), built-in arbitration, and plug-and-play confi gu-
ration. The two most commonly used form factors for real-time embedded 
systems are Compact PCI (D-shell back-plane connector) and PC/104+ (a 
stackable small board form factor). The PCI bus has also been very popu-
lar as a chipset interconnection on single-board embedded systems. One 
reason for the popularity of PCI as a chip interconnection on board is the 
defi nition of PCI bridges, which allow for bus-to-bus PCI integration. The 
PCI 2.x standard provides 32-bit 33-MHz bus cycles and up to 64-bit at 66 
MHz for updated 2.x, yielding bandwidth of 128 million bytes per second 
to 512 million bytes per second. The effective bandwidth given arbitration, 
addressing, and device response latency overhead will be signifi cantly re-
duced by bus transaction protocol overhead, but still on the order of 100 to 
500 million bytes per second. For the stereo-vision example, which trans-
fers two streams of 32-bit alpha-RGB 320 × 240 frames 30 times per sec-
ond, it requires 18,432,000 bytes per second, or approximately 20% of the 
available PCI 2.1 effective bandwidth (assuming effective bandwidth is 100 
million bytes per second). A single, full-resolution encoding (525 × 427) 
video stream would require 26,901,000 bytes per second, or about 27% of 
PCI 2.1 effective bandwidth.

The chipset used for video encoding in the stereo-vision example is 
the Bt878, now also updated as the Cirrus Stream Machine, and works by 
fetching DMA RISC engine code from host memory, so some additional 
PCI transfers are initiated by the chip to fetch code as well as transfer of 
frame data to the host memory. The stereo-vision systems implemented at 
the University of Colorado using PCI 2.1 have had no problem making use 
of PCI 2.1 for this application with a 320 × 240 30 fps alpha-RGB encoding. 
Many embedded applications have more than enough bandwidth available 
from PCI 2.x. One fi nal important feature of PCI is that initiators can con-
fi gure targets for a maximum and minimum burst length. The minimum 
serves as a method to reduce overhead so that targets can’t transfer small 
blocks that would incur high overhead for each bus-arbitration and address 
cycle compared to fewer larger block transfers. The maximum prevents a 
target from overusing the bus and provides some fairness in bus arbitration 
for multi-target systems.

Since the fi rst edition, many embedded camera systems now use USB 
2.0 for standard defi nition or lower-resolution high-defi nition (e.g., 720p) 
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for raw uncompressed video. At about 1080p at 30 Hz and above, if frames 
are not compressed, UBS 2.0 has insuffi cient bandwidth to transport the 
frames. So, many USB 2.0 web cameras and embedded cameras have built-
in MPEG-2 or MPEG-4 encoders. For machine and computer vision appli-
cations, raw uncompressed frames are ideal because the image processing 
algorithms generally can’t work on compressed data directly. In fact, most 
cameras today have built-in MPEG-4 encoders, including embedded SPI 
(Serial Peripheral Interface), MIPI (Media Independent Peripheral Inter-
face), and even gigabit Ethernet cameras. Developers and researchers in 
machine and computer vision therefore sometimes still use NTSC analog 
cameras or use Camera Link, direct parallel LVDS (Low-Voltage Differen-
tial Signal) bus, or specialized gigabit Vision Ethernet links. Most mobile 
phones use SPI or MIPI and provide lower-resolution digital video or high-
defi nition snapshots. This too is changing rapidly as of the time of publica-
tion of this second edition, with the emergence of USB 3.0 cameras, gigabit 
Vision Ethernet, and continued use of NTSC and Camera Link. The author 
most often uses NTSC-to-USB-2.0 frame grabbers, Camera Link to USB 
3.0 bridges, or standard defi nition with USB 2.0 to avoid the overhead of 
decoding digital video frames in computer and machine vision applications. 
Finally, to come full circle to PCI, PCI Express, which is largely compatible 
with PCI in general from a software and driver viewpoint, also continues to 
be a great transport for digital video [Siewert14].

Since the publication of the fi rst edition of this book, the trend toward 
high-speed differential serial IO has continued to evolve with the emer-
gence of USB-3.0, PCI Express 3.0, and the emergence of Thunderbolt 
and announcements of new PCI Express 4.0 and USB-3.1 standards. PCI 
Express 4.0 is capable of 16 billion transactions per second with 128b/130b 
encoding (130 bits to encoded 128 data bits) and an effective data rate of 
15.754 billion bits per second at the link layer. The new USB-3.1 will be 
capable of data transfer rates close to 10 billion bits per second and uses 
a low-overhead 128b/132b encoding. Most of the early differential serial 
buses used 8b/10b encoding to control running disparity (the number of 
repeated 1’s or 0’s—logic high or low) to improve signal integrity. Overall, 
the use of differential serial continues to be the pervasive technology for 
high data rate IO for both embedded and general-purpose computing. The 
trend can be traced back to the original development of gigabit Ethernet, 
USB, and PCI Express, which have for the most part completely replaced 
traditional serial and parallel bus protocols in the new millennium and are 
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likely to continue to be the pervasive interconnection technologies. The 
following chapters, unchanged from the fi rst edition, trace the emergence 
of differential serial links, buses, and transport protocols and the transi-
tion to high-speed differential serial links from analog serial and parallel 
buses. The development of encoding methods to improve signal integrity 
(8b/10b) and the use of link layer and higher-layer protocols to improve er-
ror handling for all methods of interconnection can be traced back to the 
development of Infi niband in 1999, which has become a high-performance 
computing interconnection standard, but has infl uenced many other relat-
ed standards, such as USB, Ethernet, and PCI Express. An understanding 
of the history that led to the emergence of PCI Express, USB, and gigabit 
Ethernet will assist the reader with strategies to scale embedded solutions, 
methods to interface high data rate devices, such as cameras, and provide a 
long-term vision for IO.

The commercial computing market, specifi cally high-speed network-
ing, graphics, and databases, pushed PCI and other parallel bus technolo-
gies at the turn of the millennium in the year 2000 to evolve into a very high-
bandwidth interconnection. At that time, the AGP (Accelerated Graphics 
Port) standard was developed as a specifi c single-target expansion for PCI 
to accommodate high-bandwidth RAMDAC (RAM Digital-to-Analog Con-
verters) used to drive monitors with high-fi delity graphics. Following PCI 
2.x, the PCI-X 1.0a and PCI-X 2.0 standards were developed for network-
ing and database host bus adapters and provide 64-bit 133 MHz and up to 
64-bit 266/533 MHz bandwidth. The theoretical limit of the PCI bus signal-
ing is 533 MHz. At this speed, the problem of skew between the address/
data lines is signifi cant and requires careful layout of the bus traces and 
advanced signaling techniques that make PCI-X 2.0 expensive and diffi cult 
to implement, especially for buses that accommodate more than one target 
and initiator.

The development of gigabit Ethernet in the early years of the new mil-
lennium (2000) at 1 G and 10 G rates (where G = gigabit/sec) helped drive 
the demand for high-rate PCI bus development for host interfaces to this 
new high-speed network interconnection. The PCI-X 1.0a standard, at 64-
bit 133 MHz (just over 1 GB/sec), became popular for gigabit Ethernet 
network interfaces at this time; however, this high-end parallel bus was still 
not suffi cient to support 10 G Ethernet. To support 10 G Ethernet, PCI Ex-
press was developed, which has a drastically different signaling and physical 
layer than PCI or PCI-X. PCI Express provides high-speed 2.5 G serial byte 
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lanes that can be ganged up. With the introduction of PCI-X, the standard 
introduced an important new concept—split transactions.

In PCI 2.x, when a device has high response latency, the bus delays un-
til the target device responds. With the delay policy, having even one slow 
target on the bus decreases performance for all targets and initiators on the 
bus. Split transactions eliminate this delay by providing buffer queues for 
writes to the bus so that they can be posted by an initiator and drained to a 
slow target over the bus when it’s ready. The initiator is not delayed in this 
case as long as the write buffer queue is not exhausted before the data is 
drained to the target. Likewise, on reads, split transaction allows the initia-
tor to post a read request to the bus, which initiates the target read, and if 
the target is slow, allows the target to negotiate for completion in a later 
transaction—the bus is freed in the meantime for other transactions. Both 
PCI-X and PCI Express are split-transaction bus standards—this greatly 
improves the effective bandwidth because it does not allow the bus to be 
held for arbitrarily long delay periods. However, there is, of course, still 
arbitration and addressing overhead.

8.2.7 High-Speed Serial Interconnection
As traditional back-plane buses have become problematic as far as lay-

ing out signal traces and dealing with high-speed signaling and skew (rates 
above 100 MHz), several new high-speed serial interconnection standards 
were introduced, including:

 ● Universal Serial Bus

 ● Firewire

 ● PCI Express

 ● Gigabit Ethernet

All four serial/network interconnections can be used for real-time em-
bedded systems and provide an attractive alternative to bus integration. A full 
discussion of all the high-rate serial protocols is beyond the scope of this text.

The wide adoption of PCI for real-time embedded systems in the past 
and key features of PCI Express make it an interconnection for scaling ex-
isting systems that became popular in the new millennium, and it contin-
ues to grow and has become pervasive. PCI Express can be routed on a 
board, on a back-plane, and even out of a box on a cable for short distances. 
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Furthermore, it’s composed of serial byte lanes operating at 2.5 G for each 
lane, with the capability to gang up lanes in x1, x2, x4, x8, and x16 con-
fi gurations. The stated design goal of PCI-E (PCI Express) is to maximize 
the bandwidth per pin on the interconnection. Each PCI-E byte lane is 
full duplex, allowing concurrent transmit and receive at 2.5 G. Given these 
characteristics, we can compare the PCI 2.x, PCI-X, and PCI-E standards 
as far as bandwidth per pin:

1. PCI-E: [(2.5 Gb/s/direction X 8b/direction) X (1B/8b)]/40 pins = 100 
MB/s/pin

2. PCI 2.x: [(32b X 33 MhZ) X (1B/8b)]/84 pins = 1.58 MB/s/pin

3. PCI-X 2.0 266: [(64b X 266 MhZ) X (1B/8b)]/150 pins = 7.09 MB/s/pin

The trend for PCI-E continues to improve from this initial 2.5 billion 
transactions per second and high effective bandwidth per pin with rates in 
PCI-E 4.0 expected to top out at 16 billion transactions per second per byte 
lane; this latest version of PCI-E, PCI-E 4.0, was announced in 2011 and 
the fi nal specifi cation has been targeted for release in 2017. The link layer 
encoding and the higher-level transport layers used in PCI-E add overhead, 
but the effective data transfer rates are still very high and the pin effi ciency 
is still much higher than any previous parallel bus IO. The ability to gang up 
serial byte lanes from x1 to x4, x8, x16, and even x32 PCI-E will also keep 
PCI-E relevant for some time to come.

PCI-E clearly has the advantage from the perspective of intercon-
nection layout and cabling over earlier parallel bus technologies, such as 
PCI 2.x and PCI-X. The complication is that serial byte lane transmission 
requires signifi cant digital signal processing on each byte lane. Like fi ber 
channel and gigabit Ethernet, PCI-E uses an 8b/10b encoding scheme 
with a link layer and network layered architecture to achieve 2.5 G transfer 
rates. Given the demands of gigabit transport, the cost of this digital signal 
processing and network stack implementation has actually become more 
feasible than the cost of traditional bus high-speed layout. Furthermore, 
the ability to use high-speed serial interconnection on-chip, onboard, and 
off-board makes these standards more attractive than traditional bus archi-
tectures. Finally, PCI-E has been designed to be compatible with PCI 2.x 
and PCI-X from the fi rmware viewpoint, despite a radically different data 
transport method. The PCI-E standard supports the same plug-and-play 
confi guration, burst transfers, interrupts, and all basic features of PCI 2.x.
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The PCI-E interconnection provides byte lane interconnection with a 
network layered architecture, as shown in Figure 8.7.

Frame 

Seq# CRC

HDRTransaction

Link

Physical

PCI PnP Driver 

Frame

FIGURE 8.7 PCI Express Byte Lane Network Architecture

The PCI-E standard provides not only signifi cantly more bandwidth 
compared to PCI 2.x and PCI-X but also some features to support real-
time continuous media with isochronal channels. The isochronal channels 
provide bandwidth and latency performance guarantees for transport. The 
advent of PCI-E, USB, Firewire, and gigabit Ethernet has provided an al-
ternative interconnection architecture for real-time embedded systems. It 
is likely that these new high-speed serial interconnections will be designed 
into many future real-time embedded systems.

8.2.8 Low-Speed Serial Interconnection
Many real-time embedded systems include not only high-rate IO for 

services such as video or network transport but also low-rate command/re-
sponse or monitoring interfaces. For example, in our stereo-vision system, 
the servos are commanded through a low-rate multi-drop RS232 interface. 
The Microchip PIC (Programmable Integrated Circuit) has a TTL logic-
level digital serial interface that can be interfaced to the higher-voltage 
RS232 serial interface. The servos in the stereo-vision application can tilt/
pan through wide angles quickly, but have an accuracy of only several de-
grees, so the command rate required for tracking a quickly moving object 
at a distance of 10 feet or more is on the order of 1 to hundreds of millisec-
onds. The command protocol used on the PIC is a simple byte stream com-
mand format with opcode bytes and operand bytes. To command a given 
servo to a new position simply requires sending a PIC address (because the 
serial interconnection is multi-drop), a servo address, and opcode byte, fol-
lowed by a servo position operand. A command therefore requires 4 bytes, 
and at a 1 millisecond rate, this is only 4,000 bytes/second. Clearly PCI, 
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USB, Firewire, or any of the previously presented high-rate interconnec-
tion architectures are not warranted for this type of interface.  

The RS232, common serial, point-to-point data transmission has been 
used in real-time embedded systems since the advent of the industry and 
remains a common low-rate and debug interface. The RS232 link normally 
tops out around 115,200 bits/second (about 12 KB/sec) and is not capable of 
long-distance transmission due to line noise at the 12-volt signaling levels it 
uses. Other options have evolved that provide similar low- to medium-rate 
transmission with longer distance, multi-drop, and higher bit rates. These 
options are widely used in real-time embedded systems:

 ● RS422—a differential +/- 5v serial link capable of 1 megabit/sec and 
distances up to 1 km

 ● Multi-drop RS232, RS422—adding a protocol to address targets on a 
common link with capability to forward

 ● I2C—a medium-speed digital interconnection typically used onboard to 
interconnect chips such as EEPROM to a processor

 ● SPI (Serial Peripheral Interface)—a digital serial protocol capable of 
medium rates 

A full discussion of all the low- to medium-rate serial protocols is be-
yond the scope of this text and continues to evolve rapidly over time, but 
the introduction provided here is a good starting point.

8.2.9 Interconnection Systems
Having discussed the components that can be used to interconnect 

devices with processors in a real-time embedded system, let’s briefl y dis-
cuss how these components might be arranged in an interconnection ar-
chitecture. Real-time embedded system architectures and design will be 
discussed more fully in Chapter 12, but an overview will help summarize 
the possibilities. Two architectures are most common. The fi rst is the hier-
archical network interconnecting a main processor complex with a number 
of microcontrollers. This architecture has been most popular in robotics 
and also for aerospace applications, where many sensors and actuators are 
distributed in a large system, yet processing and services provide system-
level functions. For example, a robotic arm that has fi ve degrees of free-
dom (base, shoulder, elbow, wrist, and claw) with torque control so that 
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it can handle massive objects might include a microcontroller to provide 
control for each joint motor. The fi ve microcontrollers, one at each joint, 
can interface locally to the actuation motor with a DAC and provide closed-
loop feedback control based upon local position and stress/strain sensors 
to provide smooth rotation, even when the arm is handling objects with 
signifi cant mass. Providing the local control reduces the amount of cabling 
back to the main processor. The DAC and the sensor interface cabling are 
routed to the microcontroller, which is physically integrated local to each 
joint (or control point). The microcontroller has more than suffi cient ca-
pability to provide the torque control and closed-loop monitoring. Now, 
the fi ve microcontrollers can be interfaced via a low- to medium-rate serial 
interconnection back to the main processor complex for commands and to 
provide status—the main processor complex runs complex services, such as 
path planning, possibly camera-based object recognition, a user interface, 
and system health and status monitoring. In fact, the robotics community 
likens this hierarchical approach to the human body, which includes local 
refl ex control as well as centralized processing in the brain—for example, 
Rodney Brooks’s subsumption architecture [Brooks86].

The alternative to the hierarchical interconnection is a centralized pro-
cessor complex integrated on a high-rate interconnection, such as PCI, with 
many IO device interfaces also integrated on PCI. This architecture has an 
advantage in that all processing can be done in a single processor complex; 
the distributed processing of the hierarchical architecture requires differ-
ent development, debug, and test methods compared to the processor com-
plex. Often the processor complex is a microprocessor with an RTOS, and 
the microcontrollers are simple Main+ISR applications. The downside to 
the centralized processing is that most often all IO cabling must come from 
the common central processing enclosure and be routed to sensors and 
actuators distributed throughout the system. Deciding which type of archi-
tecture makes most sense is often driven by the system requirements for 
actuators and sensors—the number, how distributed they are, how much 
latency in sensor/actuator activation is allowable, and, of course, cost and 
complexity.

8.2.10 Memory Subsystems
Real-time embedded systems require nonvolatile data storage to boot 

the system and to start services. After a power-on reset, the processors 
in the processor complex each vector to a hardware-defi ned starting ad-
dress to execute code. This starting address, typically a high address, such 
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as 0xFFE0_0000, is designed to map a nonvolatile storage device, such as 
EEPROM or Flash memory, so that boot code can be stored permanently 
at this address and executed following a reset to initialize the system. The 
boot code initializes all basic interfaces and normally loads a basic RTOS so 
that application services can be loaded and run. The code (often called text 
segment), data (initialized, uninitialized, and read-only), heap, and stack 
segments must be created in a working memory by fi rmware. Figure 8.8 
shows a typical memory map for an embedded system.

 Boot ROM (Flash)  

Working Memory  

MMIO 

0x0000_0000

0x01FF_FFFF 
0x0200_0000 

0x03FF_FFFF 
0x0400_0000 

0x04FF_FFFF 

0xFFEF_FFFF 

0xFFFF_FFFF 

0xFFF0_0000 
1 Mbyte Boot ROM device
(reset vector address @ high address)

4015 Mbytes unused

16 Mbytes Memory Mapped IO
(Device Function Registers)

32 Mbytes unused
(space left for memory upgrades)

Main Working Memory for OS/Apps
(e.g. 32 Mbytes SRAM, SDRAM, DDR)

0x0500_0000 

FIGURE 8.8 Common Memory Map for an Embedded System

The memory map is really a logical view of memory from the viewpoint 
of address space through which fi rmware and software can access devices. 
From a hardware viewpoint, memory is better described as a hierarchy of 
storage devices, including:

 ● Registers (CPU and memory mapped for device control)

 ● Cache

 ● Working Memory

 ● Extended Memory

Figure 8.9 shows a typical memory hierarchy for an embedded system.
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FIGURE 8.9 Common Physical Memory Hierarchy for an Embedded System

8.3 Firmware Components

Some components can be realized only in hardware, but many can be 
implemented with software or fi rmware (noting that software interfacing di-
rectly to hardware is typically called fi rmware). Furthermore, if the real-time 
embedded system has any software-based services or even just management, 
fi rmware is needed to interface hardware resources to software applications.

8.3.1 Boot Code
The universal defi nition of fi rmware is code or software that runs out of 

a nonvolatile device to make hardware resources available for the rest of the 
application software. Firmware providing this function is normally referred 
to in general as board support package (BSP) fi rmware because tradition-
ally this fi rmware has initialized and made available all onboard resources 
for a processor complex to software applications. Before the resources have 
been fully initialized, the fi rmware boots the board by executing code out 
of a nonvolatile device so that one or more basic interfaces are made oper-
able and the system can now download additional application software. For 
example, the BSP boot fi rmware might initialize an Ethernet interface and 
provide TFTP download of application code for execution.
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8.3.2 Device Drivers
Device interface drivers are most often considered fi rmware because 

they directly interface to hardware resources and make those resources 
available to higher-level software applications. The architecture of a device 
driver interface is depicted in Figure 8.10 and includes both an HW device 
interface and an SW application interface.

FIGURE 8.10 Device Driver Firmware Interface
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8.3.3 Operating System Services
Not all real-time embedded systems require an operating system, as 

discussed in Chapter 3. Most RTOS implementations do, however, provide 
a layer of software that acts a single interface for all applications to gain ac-
cess to system resources. Furthermore, most real-time systems incorporate 
an RTOS, which provides a framework for resource management and for 
scheduling processor resources with an RM policy. The RTOS also pro-
vides commonly needed services and libraries used by application servic-
es. The most fundamental services and mechanisms provided include the 
following:

 ● Priority preemptive scheduler for threads

 ● Thread control block management

 ● Inter-thread synchronization and communication (e.g., semaphores and 
message queues)

 ● Basic IO for system debug and bring-up (e.g., serial, Ethernet, LED)

 ● Interrupt service routine installation on interrupt vectors

 ● Transition from boot to operational state

 ● Timers for delays and blocked thread timeouts

 ● Drivers for basic hardware devices (serial, Ethernet, timers, nonvolatile 
memory)

Extended services beyond these may be provided to assist development and 
debug of a system:

 ● Cross debug agent

 ● Interactive shell to view control blocks and system context

 ● Ability to dynamically load and execute code object files

 ● Interface to resource analysis tools (e.g., WindView, now known as Sys-
tem Viewer)

8.4 RTOS System Software

An RTOS does not need to provide the same wealth of system services 
as a full multiuser operating system, such as Linux. The understanding is 
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that the RTOS user prefers simpler mechanisms and is willing to take on 
more responsibility in the application to explicitly manage resources. For 
this reason, it is important that programmers work with an RTOS code with 
extra precaution to avoid timewasting debug sessions. Some good coding 
practices that are even more important with an RTOS compared to Win-
dows or Linux include the following:

 ● Always check return codes for an RTOS API function call.

 ● Be aware of stack sizes for each task created, and stack usage by local C 
variables and parameters passed to ensure that stack overruns are not 
causing problems.

 ● Use tools such as the Tornado browser and WindView to ensure that 
you have not overloaded the CPU.

 ● VxWorks compiled with the MMU Basic has memory protection only 
for the kernel code, so check array bounds extra carefully to ensure that 
wild writes are not destabilizing code.

 ● Do not use printf in time-critical code because it introduces blocking 
that will significantly change timing (instead use logMsg() calls).

 ● Be careful to use only API calls that are documented as okay to use in 
interrupt handlers in your kernel and ISR code (e.g., you can’t receive a 
message in an ISR, but you can send one).

 ● Set priorities of tasks according to RM theory and demote standard 
VxWorks services if required.

 ● Write shutdown functions for tasks that release all resources that tasks 
create and use.

Following the preceding precautions will make writing RTOS code eas-
ier. The standard RTOS mechanisms are designed to make multithreaded 
real-time applications simpler. Multiple threads need methods for sharing 
resources, sharing data, synchronizing, keeping track of time, and receiv-
ing notifi cation of asynchronous events. The DVD includes numerous ex-
amples of using basic mechanisms in the VxWorks RTOS.

8.4.1 Message Queues
The VxWorks RTOS supports both POSIX and native message queue 

mechanisms. Message queues are used to synchronize tasks and to pass 

ON THE DVD



180 • REAL-TIME EMBEDDED COMPONENTS AND SYSTEMS WITH LINUX AND RTOS

data between them. The enqueue and dequeue operations are thread-safe 
(a partial write or read is not possible).

Both types of message queues can be read and written in blocking or 
non-blocking modes. For blocking modes, when a task does a read on an 
empty message queue, it blocks until a message is enqueued by another 
task, allowing it to read and continue. Likewise when a task tries to write a 
full message queue in blocking mode, it is blocked until the queue has room 
for the new message. It is wise to set a timeout upper bound rather than 
using WAIT_FOREVER so that indefi nite blocking will not occur and er-
rors in synchronization and resource management will be detected through 
timeouts rather than failure to make progress.

For non-blocking message queues, when a task does a read on an empty 
queue, it will be returned the error code EAGAIN, indicating that no mes-
sages were available to read and that the task should try again later. Like-
wise, for a non-blocking message queue, a task will get the same EAGAIN 
error code if it tries to write to a full queue. This indicates that the writer 
should try again later, perhaps allowing a read of that queue to create space.

The POSIX message queues include a feature to enqueue messages 
with a priority level and to read the priority when messages are dequeued. 
Higher-priority messages are always dequeued fi rst. This essentially allows 
a sender to put an important message onto the head of the queue. Example 
code for usage of message queues in VxWorks can be found on the DVD 
in the VxWorks-Examples directory. The posix_mq.c shows basic features 
of POSIX message queues, including priorities. The heap_mq.c fi le shows 
how pointers to heap allocated buffers can be used with message queues 
for zero copy buffers. For the heap message queue, the sender must always 
allocate and set the pointer before sending it, and the receiver should de-
termine when it is safe to de-allocate the buffer. Message queue sends can 
be called in ISR context, but receive can never be called in ISR context, 
only in task context.

8.4.2 Binary Semaphores
The binary semaphore is the simplest and most often used mechanism 

in the RTOS. The semGive() function is often used in ISR context to un-
block a service handling task when data becomes available as indicated by a 
hardware interrupt. The semTake() call is most often used by tasks to wait 
for a server request (new data available) or to synchronize with another 

ON THE DVD
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task. The two_tasks.c code on the DVD provides an example of tasks that 
synchronize each other using a binary semaphore. Care should be taken to 
set the binary semaphore initial state (FULL or EMPTY), and the protocol 
for unblocking must be selected. Protocols for unblocking include SEM_Q_
FIFO and SEM_Q_PRIORITY. For SEM_Q_FIFO, if multiple tasks 
block on the same semaphore, then they are unblocked in the order that 
they originally arrived and blocked. If instead SEM_Q_PRIORITY is used, 
then the highest priority task will be unblocked fi rst. The FIFO protocol 
ensures fairness, and the PRIORITY protocol helps minimize potential pri-
ority inversion. Finally in cases where multiple tasks may be blocked and if 
all blocking tasks should be released at the same time, the semFlush() func-
tion provides this feature.

8.4.3 Mutex Semaphores
Mutex semaphores are tracked by task and include protocol for un-

blocking tasks waiting to enter critical sections protected by the mutual 
exclusion semTake() and semGive(). A mutual exclusion semaphore uses 
the same take and give calls, but is created with semMCreate() in VxWorks. 
For mutex semaphores, three unblocking protocols can be specifi ed:

PRIORITY: Unblocks highest priority task fi rst.

FIFO: Unblocks in the same order tasks arrived in for fairness.

 INVERSION_SAFE: Implements priority inheritance described in 
Chapter 6.

Mutex semaphores should be used to implement reentrant functions 
when these functions need to access global resources. Initial conditions are 
important, and most often mutex semaphores are initially set full to allow 
initial access to critical sections. The prio_invert.c code shows an example 
of using an inversion-safe mutex semaphore in VxWorks.

8.4.4 Software Virtual Timers
Most embedded hardware systems include several hardware interval 

timers. A PIT (Programmable Interval Timer) can be set so that it will gen-
erate an interrupt on a periodic basis, often 1, 10, or 100 milliseconds. The 
ISR handling the hardware PIT interrupt (IRQ0 on the x86 architecture) 
updates virtual timers, which keep track of the interrupt count (called ticks 
in VxWorks). All taskDelay() calls, timeouts specifi ed, and calls to tickGet() 
are driven by the PIT interrupt rate. If the basic rate is set to 1 millisecond 
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with sysClkRateSet(1000), then timing accuracy for delays and timeouts 
will be within 2 milliseconds. It is possible to have just missed a tick expira-
tion when a timer is fi rst set and also possible to overrun at least one tick 
before a timeout handler is invoked. The PIT can be set to raise timer inter-
rupts more frequently than 1000x per second, but this starts to require sig-
nifi cant CPU time to maintain virtual time at high rates. The DVD includes 
three examples to demonstrate the use of virtual time, including itimer_
test.c, posix_clock.c, and posix_rt_timers.c.

8.4.5 Software Signals
Software signals can be thought of as the software equivalent of an 

interrupt. They are the main mechanism providing asynchronous han-
dling of events in task context. A task can set itself up to catch signals 
thrown by other tasks or by ISRs. The DVD includes rt_signal_test.c, 
which demonstrates the use of POSIX real-time signals. The POSIX sig-
nals queue, unlike most signals, which prevents loss of signals if a signal is 
thrown while the catching task is in the process of handling a previously 
thrown signal.

8.5 Software Application Components

Software components represent the most easily updated and fl exible 
implementation of services in a real-time embedded system. The service 
state machine can be coded in an RTOS framework readily using tasks and 
task synchronization mechanisms, including binary semaphores, mutex 
semaphores, message queues, ring buffers, and ISRs.

8.5.1 Application Services
Application services are software images loaded after boot and after 

some form of RTOS is functional to provide specifi c services. These ser-
vices are simply software implementations of service state machines and 
execute code within the context of a task.

Services must often be synchronized with each other or ISRs. This is 
normally accomplished with a binary semaphore. The binary semaphore 
blocks the calling task until the semaphore is given by an ISR or another 
task. So, if a task calls semTake(S) where S=0, the task is blocked and en-
ters a pending state until another task or ISR uses semGive(S) to set S=1. 
When S is set, then all tasks blocked (in a queue) are unblocked in queue 
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order one at a time based upon creation with the SEM_Q_FIFO option. 
Some RTOS frameworks, such as VxWorks, provide a semFlush(S), which 
unblocks all tasks presently blocked on S, no matter how many have queued 
on S. The following example, “two tasks,” provides a simple instructive ex-
ample of the use of a binary semaphore by two service tasks in the VxWorks 
RTOS framework. The two tasks C code is

#include “vxWorks.h”
#include “semLib.h”
#include “sysLib.h”

SEM_ID synch_sem;                                                                   
int abort_test = FALSE;
int take_cnt = 0;
int give_cnt = 0;
 
void task_a(void)
{
  int cnt = 0;
  while(!abort_test)
  {
    taskDelay(1000);
    for(cnt=0;cnt < 10000000;cnt++);
    semGive(synch_sem); 
    give_cnt++;
  }
}

void task_b(void)
{
  int cnt = 0;
  while(!abort_test)
  {
    for(cnt=0;cnt < 10000000;cnt++);
    take_cnt++;
    semTake(synch_sem, WAIT_FOREVER);
    taskDelay(1000); 
  }
}

void test_tasks(void)
{
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  sysClkRateSet(1000);
  synch_sem = semBCreate(SEM_Q_FIFO, SEM_FULL);
  /* receiver runs at a higher priority than the sender */
  if(taskSpawn(“task_a”, 10, 0, 4000, task_a, 0, 0, 0, 0, 0, 
                0, 0, 0, 0, 0) == ERROR)
  {
    printf(“Task A task spawn failed\n”);
  }
  else
    printf(“Task A task spawned\n”);
  if(taskSpawn(“task b”, 11, 0, 4000, task_b, 0, 0, 0, 0, 0, 
                0, 0, 0, 0, 0) == ERROR) 
  {
    printf(“Task B task spawn failed\n”);
  }
  else
    printf(“Task B task spawned\n”);
}

The test_tasks function spawns Task A and Task B with entry points 
task_a() and task_b(). Task A is assigned priority 10, which is higher than 
Task B priority 11. The semaphore synch_sem is initially set full (=1). When 
Task A is spawned, it will preempt Task B, but will delay for 1 second (1,000 
ticks), and then execute a loop and give synch_sem. Because Task A yields 
the CPU initially, Task B will execute despite being lower priority and will 
execute its loop and take synch_sem. On the fi rst execution of Task B, the 
take will be successful, and Task B will then delay for 1 second—the state 
of synch_sem will be empty (=0) at this point. Following the take by Task 
B, Task A will have come out of delay and will preempt B regardless of 
whether it’s done with its delay and busy—at this point Task A will give 
synch_sem, and this strict alternation will continue. The initial condition of 
synch_sem (full=1 or empty=0) is critical as well as the relative priorities of 
Task A and Task B. It is possible for the two tasks to deadlock if the initial 
conditions are different. The example will always alternate as it’s provided 
here, but if Task A, the giver, did not yield the CPU with a task delay call 
and was assigned higher priority, it’s possible that Task B would never run 
because it can’t preempt Task A. This system as presented here will not 
deadlock either because circular wait is not possible given the priorities and 
the initial conditions. 
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8.5.2 Reentrant Application Libraries
Code shared by multiple threads of execution, as is often the case with 

application code, must be reentrant. Reentrant code is able to be inter-
rupted and preempted in the execution context of one thread and then ex-
ecuted in the context of a new thread without side effects that would cause 
either thread to suffer functional bugs. So, reentrant code must carefully 
handle global resources and protect them so that they are mutually exclu-
sively used by multiple threads. The following are the four main methods 
to ensure that global data is either protected or converted into task-specifi c 
context data:

 ● Protection of data with use of intLock() and intUnlock() to ensure that 
preemption around global data accesses is impossible at the ISR and 
task level.

 ● Protection of data with use of taskLock() and taskUnlock() to ensure 
that preemption around global data accesses is impossible at the task 
level.

 ● Elimination of global data with task variables so that data is no longer 
shared but owned by a task context and stored in the TCB (Task Control 
Block).

 ● Protection of global data with use of semMCreate() to establish a mutex 
semaphore and semTake() and semGive() to wrap the critical sections 
where global data is manipulated with multiple instructions that could 
otherwise be interrupted or preempted.

 ● Use of stack data only (C parameters and function locals) so that each 
calling task has its own copy of the data.

Any of these global data elimination or protection methods will make 
functions thread-safe so that they are reentrant and can be used by multiple 
concurrently active threads. One of the best and simplest ways to make a 
function thread-safe is to recall that global data can be eliminated by mak-
ing use of stack-only. In C, local variables and parameters are maintained 
in stack memory. Every VxWorks task must specify stack space when task-
Spawn() is called. Insuffi cient stack space and declaration of large arrays 
as C locals can introduce bugs. However, stack-only variables in functions 
implement a pure function that is thread-safe.
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8.5.3 Communicating and Synchronized Services
Application code normally requires multiple services to synchronize 

and to share data or global resources. As discussed in the previous chapter, 
a region of memory can be shared by two tasks and updated or read in a 
critical section using a mutex semaphore—the mutex semaphore guaran-
tees mutually exclusive access to the shared memory by one task at a time 
in spite of the possibility of preemption of one task by another. A higher-
level abstraction of this is the message queue (see Figure 8.11). The mes-
sage queue provides a buffer shared by two tasks and allows each task to 
atomically enqueue or dequeue a message buffer. The atomic enqueue and 
dequeue operations are implemented using a critical section.

S1 S2

FIGURE 8.11 Message Queue Communication between Tasks

A critical section simply requires that other tasks (services) are not able 
to preempt S1 or S2 while they are in the middle of copying a message from 
their local memory into the global message queue buffer. The underlying 
implementation can use mutex semaphores to prevent more than one task 
from entering the critical section. Other methods that can be used include 
taskLock, taskUnlock, whereby the scheduler is actually disabled around 
the critical section (no preemption is possible at all!). Finally, it’s also pos-
sible to use intLock, intUnlock to mask out interrupts entirely in a critical 
section—recall that preemption occurs through an interrupt or an RTOS 
system call (a yield inside a critical section is an error). The taskLock ap-
proach works, but prevents all scheduling during the critical section and 
therefore has negative impact on the RM policy. Likewise, the intLock ap-
proach works as well because it disables scheduling changes in addition 
to masking interrupts and potentially missing events associated with those 
interrupts. The user of the message queue, however, does not need to be 
concerned with the implementation, but rather that the enqueue and de-
queue are atomic (non-preemptible). The implementation of the message 
queue should ideally not disable scheduling and should prevent unbounded 
priority inversion.
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The message queue, once created, has simple semantics for the en-
queue and dequeue that can be either BLOCKING or NONBLOCKING. 
The message queue is created with a fi xed message size, a maximum queue 
length, and BLOCKING or NONBLOCKING semantics. When the queue 
is created BLOCKING, writers to a full queue will be blocked when they 
try to enqueue a message. Likewise, readers will be blocked when they try 
to dequeue a message from an empty queue. With the alternative NON-
BLOCKING semantics, the writer to a full queue will simply be returned 
an error code, EAGAIN, indicating that the enqueue was not successful. 
Likewise, the reader of an empty queue will be returned EAGAIN, indicat-
ing that there was nothing to dequeue. A service using the message queue 
in a NONBLOCKING mode may want to do other work and attempt to 
enqueue or dequeue again at a later time. The BLOCKING semantics are 
used when the service has nothing else worthwhile to do if it can’t enqueue 
or dequeue successfully.

One downside of message queues is that they require a copy of the S1 
local buffer in the global message queue buffer—this is not so effi cient. A 
variant use of message queues that improves effi ciency is the heap message 
queue. In this case, pointers are sent as messages rather than data. The 
pointers are set to point to a buffer allocated by the sender, and the pointer 
received is used to access and process the buffer—the receiver normally 
frees the buffer. It is critical that the sender allocate the buffer and the re-
ceiver de-allocate to avoid exhaustion of the associated buffer heap (a pool 
of reusable buffers). Figure 8.12 shows a heap message queue. The heap 
message queue avoids the copy otherwise required, which takes consider-
able CPU time and wastes memory due to double-buffering of the same 
data.

S1 S2

Message
Heap

S1 Allocates Message
Buffer in Message Heap

S2 Processes the 
Message Buffer

Data and Frees the Buffer
for Re-use 

FIGURE 8.12 Heap-Based Message Queue Communication between Tasks
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Because the buffer heap associated with the message queue is typically 
much larger than the queue depth (size), normally the queue will become 
fi lled with pointers and block writers before the heap is exhausted. As long 
as the sender always allocates heap and the receiver always de-allocates, the 
heap message queue works safely and much more effi ciently.

Summary

A real-time embedded system is composed of hardware, fi rmware, and 
software components. Services can be implemented in hardware, fi rmware, 
or software, or some combination of the three. Component design should 
be completed so that components can be tested as individual units and then 
integrated into a larger system design.

Exercises

1. Read the following chapters in PCI System Architecture by Shanley and 
Anderson: 1, 2, 17, 18, and 19. This should give you a good overview 
of the PCI design and how to write code to probe for PCI devices and 
configure them. You will also find Sections 3.1–3.3 and Section 3.9 of 
Chapter 3 from the VxWorks Programmer’s Guide useful.

2. Write a VxWorks ISR that calls tickAnnounce every tick and does a 
semGive on a global binary semaphore every N ticks of the system clock, 
where N is a global variable such that the semGive frequency is adjust-
able via the shell. Now, write a VxWorks task that does a semTake and 
immediately updates a global counter to record virtual ticks. Write a 
driver program to test both the ISR and task and provide output that 
provides evidence that you got it working. So, for example, if you adjust 
N to 1000, on our system your count should increase by one every sec-
ond. Please note that you are replacing the VxWorks virtual timer ISR, 
so you must call tickAnnounce so the kernel can still keep track of time!

3. Now write an abstracted top-half for your driver that includes all of the 
standard driver entry points (open, read, write, and close) and blocks a 
calling task on a read until N ticks has elapsed, at which time it stuffs the 
read buffer with a time structure, including seconds and milliseconds. 
Write a test driver that opens the abstracted device and reads from it in 
a loop, printing the time in seconds and milliseconds—provide evidence 
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this is working. A write to your driver should allow for a reset of the 
virtual time value maintained by your driver (i.e., writing anything resets 
it to zero).

4. Write a PCI device probing function that can be used to find devices on 
PCI bus 0 and determines vendor ID. Use your code to find the Cirrus 
logic PCI video adapters and the Intel North-Bridge chipset in the lab 
and provide evidence that your code works (these devices will be found 
on every target—some targets may have additional devices as well).

5. Write a PCI probing function to determine the configuration of the 
North bridge including: latency timing and the arbitration control, and 
finally determine if the NB will allow memory access by masters other 
than the main CPU. Demonstrate that your probe works and describe 
your probe output. Finally, describe how the NB/SB interface in PCI 
allows for shared interrupts (PCI and IRQ).
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C H A P T E R

TRADITIONAL HARD REAL-TIME 
OPERATING SYSTEMS

9
In this chapter

 ● Introduction
 ● AMP (Asymmetric Multi-core Processing)
 ● SMP (Symmetric Multi-core Processing)
 ● Future Directions for RTOS

9.1 Introduction

Hard real-time operating systems have historically been an alternative 
to cyclic executives, which are normally built as a main loop with the addi-
tion of ISR (Interrupt Service Routines), and must provide a predictable re-
sponse so that rate-monotonic policies for priority-preemptive scheduling 
can guarantee a predictable response. The RTOS (Real-Time Operating 
System) has advantages over the cyclic executive in that it provides a frame-
work for services with a large body of code to reuse when building embed-
ded applications along with a scheduler for priority-preemptive scheduling 
so that RMA (Rate-Monotonic Analysis)–designed services can be directly 
implemented in this framework. However, the RTOS has traditionally re-
mained a single-processor core framework, designed for AMP (Asymmet-
ric Multi-core Processing), where system designs that integrate multiple 
cores must simply run multiple instances of the RTOS on each core. This 
has changed. Like general-purpose operating systems, such as Linux, many 
RTOS now also can be confi gured and integrated for SMP (Symmetric 
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Multi-core Processing). This makes the RTOS solution more scalable and 
more effi cient compared to AMP, but does introduce new complexities and 
challenges. In this chapter, we review the fundamental concepts of AMP 
RTOS, introduce the concepts key to SMP operating systems, discuss new 
support added to popular RTOS, such as VxWorks, and fi nally provide a 
discussion of future directions for RTOS, where many of the features will 
be potentially inspired by popular commercial operating systems, such as 
Linux. The chapter should assist the reader with fundamental design deci-
sions, such as when to leverage open source embedded Linux in a system 
compared to open source FreeRTOS or a commercial proprietary RTOS, 
like VxWorks.

9.2  Evolution of Real-Time Scheduling and 
Resource Management

Before diving into AMP, SMP, and future directions for both RTOS 
and traditional OS support for soft or hard real-time as extensions to best-
effort support, it is helpful to quickly review the evolution of hard real-
time systems. As shown in Figure 9.1, HRT (Hard Real-Time) has evolved 
from simple cyclic executives (composed of several main loops that oper-
ate at a deterministic frequency) with asynchronous ISRs or simple polling 
of interfaces to the AMP RTOS (main topic of this text), and now toward 
mixed support of non-real-time best-effort services alongside HRT and 
SRT on one platform. At present, there is no consensus on how to mix 
support on one multi-core platform; however, we will review a number of 
viable options and discuss advantages, disadvantages, and pitfalls in each. 
The historical evolution depicted in Figure 9.1 is approximate, but provides 
a representation of how systems focused on throughput and multiuser in-
teraction have co-evolved alongside systems more focused on predictable 
or deterministic response for real-time applications, such as digital control 
and process control systems.

Figure 9.1 begs the question of whether the two lines of system evo-
lution and architecture will ever merge. Many researchers and practicing 
engineers believe they should remain separate, but a growing contingent 
would like to see merging of the two lines, at least in terms of confi guration 
of one system framework for one or the other types of applications and sys-
tem solutions. The authors do not advocate either view, but rather attempt 
to provide the reader some guidelines on how to build systems that support 
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Unix Multi-User Systems
(1971, Bell Labs – Thompson,
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1970’s–present 

1980’s–present 

2000’s–present 

FIGURE 9.1 History of the Co-evolution of Real-Time and Throughput-Oriented Systems
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a range of solutions, from hard real-time to best-effort, as well as systems 
that include mixed support.

9.3 AMP (Asymmetric Multi-core Processing)

AMP (Asymmetric Multi-core Processing) is fundamental to the RTOS 
and is the assumed architecture in a hard real-time system. It has proven 
to be just as reliable as a cyclic executive, with some distinct advantages 
from the software engineering viewpoint in terms of helping to organize 
larger embedded projects and to decouple scheduling and synchronization 
from the application itself. AMP has been the main topic of this text, and 
it is likely that AMP RTOS will continue to be the fundamental real-time 
embedded system architecture for some time to come. The AMP RTOS, 
as we have seen with VxWorks examples provided in this text, provides a 
framework on a single-processor (single CPU and core) system whereby 
the cyclic executive is replaced by a scheduler with task control, synchro-
nization primitives for tasks, and a library of system code that applications 
can use to coordinate processing, specify real-time RMA task priorities, and 
meet deadlines relative to service requests.  

The RTOS scheduler framework and tasking have a distinct advantage 
over the cyclic executive in that they provide a standard approach to cod-
ing services, ISRs, and synchronizing them so that multiple developers and 
larger software engineering efforts have more uniformity. The main disad-
vantage of the AMP RTOS, just like the cyclic executive, is that scaling to 
more than one CPU core means replication of the whole RTOS kernel on 
each processor core (just like the cyclic executive would be replicated on 
each processor core for scaling). To synchronize two CPUs, each running 
an RTOS and set of services, we now require message passing over a bus 
or network. The complexity of embedded applications today, such as the 
computer vision applications depicted in Figure 9.2, has motivated the use 
of device interface drivers and modularization of software components with 
tasking used to implement concurrent processing.

Commercial RTOS, such as VxWorks, have long supported message 
passing over cluster and bus interconnection networks (e.g., TIPC [Trans-
parent Interprocess Communication] and Wind River’s MIPC [Multi-core 
InterProcess Communication]). For RMA and mission critical applications, 
where ability to meet deadlines reliably must be formally validated and ver-
ifi ed, the AMP approach, as depicted in Figure 9.2, is a simple extension 
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for scaling. We see two instances of the entire RTOS in the solution shown 
in Figure 9.2. If the design came from a single processor and ran slow, per-
haps missing deadlines and lacking RMA margin, then we simply divide up 
the services according to a software engineering design partitioning (this is 
subjective), but also often divide interfaces, as shown in Figure 9.2, where 
the camera interface is now on the fi rst processor and the servo interface is 
on the second. The partitioning of software interfaces and device driver in-
terfaces reduces loading on each of the two AMP processors, but, of course, 
we add back some overhead to form and pass messages between them. To 
summarize, the dual-core solution may be required because of the compu-
tational complexity of the image analysis for the Flight Tracker, which likely 
involves multiple services on the fi rst processor simply to characterize the 
target of interest (the landing plane). Often continuous image processing 
(computer vision) requires all of the safely available CPU capability of an 
AMP computing node because of the resolution of the images, the frame 
rate, and/or the complexity of the algorithm applied. The stabilization and 
pointing can simply accept commands over TIPC or simple TCP/IP (Trans-
mission Control Protocol/Internet Protocol) from the fi rst processor and 
dedicate itself to digital control to point and stabilize the camera at the tilt, 
pan, and zoom specifi ed.

As seen in the previous example, a wide range of real-time systems that 
require scaling of computer resources can be solved with AMP. The one 
downside is that running multiple instances of an RTOS (e.g., VxWorks or 

FIGURE 9.2 Example AMP Architecture for Computer Vision
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FreeRTOS) adds overhead to the design. If we could have also hosted the 
service for stabilization and pointing on the fi rst processor, we would have 
had lower cost and no need for the interconnection network (e.g., Ether-
net), and would have saved space, power, and mass in our design. Prior 
to the new millennium, the idea of multiple processor cores on a single 
CPU die was not feasible, but today SoC (System on Chip) processors are 
plentiful and provide dual-core, quad-core, or better on a single chip, with 
multiple IO interfaces so that the two distinct CPU systems shown in Fig-
ure 9.2 could be re-integrated onto a single-chip SoC solution. This does 
not necessarily mean that AMP will not work. It is possible that two distinct 
embedded compute nodes could become one SoC that still runs two RTOS 
instances with services dedicated to each, communicating via a message-
passing protocol like TIPC.

The advantage of AMP, whether the design involves two distinct com-
puting nodes or an SoC, is that we can analyze the service loading with 
RMA on each RTOS, using methods as presented in this text, with no real 
added complexity. The only new complexity is the message passing be-
tween the two RTOS instances and their services, but this is really just 
like any other form of inter-task communication and synchronization, as 
previously presented. Furthermore, the porting of a working solution from 
a legacy system with multiple processor boards to an SoC might be more 
straightforward and require less re-verifi cation. However, the downside of 
multiple RTOS instances is a major detractor since it involves signifi cantly 
more code to confi gure and maintain even if verifi cation is essentially the 
same for the otherwise identical RTOS instances. The RTOS, of course, 
uses memory, processing, and IO resources as well, which could represent 
substantial overhead.

In an effort to reduce the scaling overhead, many non-real-time sys-
tems have made use of a newer architecture known as SMP. For example, 
Linux has SMP support and normally installs in an SMP confi guration since 
most tablets, laptops, and servers today are multi-core. This is typically true 
of any modern general-purpose operating system. Based on simplicity, ef-
fi cient scaling, and lower overhead of a single operating system instance 
managing services running on multiple cores, the attraction of SMP to 
embedded solutions is likewise compelling. One fi nal consideration before 
deciding to jump into SMP rather than AMP is the underlying multi-core 
hardware architecture.
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Multi-core SoCs can and do come in many different hardware architec-
tures. For example, the NVIDIA Jetson quad-core SoC with 192-core GPU 
(Graphics Processing Unit) coprocessor is an interesting option available at 
the time this edition was written (shown in Figure 9.3). One of the authors 
is using the Jetson for embedded computer vision applications for passive 
stereo vision and visible-plus-infrared image fusion in real time. Likewise, 
Intel has some interesting new SoCs leveraging the “x86” instruction-set 
and providing quad-core or better on embedded Intel Atom solutions. The 
key consideration is how these new SoCs provide concurrent processing in 
terms of how the CPU cores are interconnected on the chip and whether 
all cores are general-purpose or whether some are special-purpose copro-
cessors, like a GPU. In the case of computer vision, much of the processing 
associated with image processing can be offl oaded and accelerated by the 
coprocessor, therefore freeing up the main SoC cores for other purposes.  

FIGURE 9.3 NVIDIA Jetson ARM SoC with Ubuntu Linux Platform

One way to classify and describe multi-core architectures and the scal-
ing of processing in general is Flynn’s taxonomy, as shown in Figure 9.3. 
Taking the cross product of the rows and columns gives us SISD (Single 
Instruction, Single Data), MISD (Multiple Instruction Single Data), SIMD 
(Single Instruction, Multiple Data), and MIMD (Multiple Instruction, 
Multiple Data).

Many processors include instruction-set extensions to provide multi-
word instructions for applications, like image processing, including Intel 
(SSE instructions), ARM (NEON instructions), and PowerPC (Altivec in-
structions). For example, an operation like XOR can apply to more than just 
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a single 32-bit word and can provide XOR of two 128-bit operands. Finally, 
AMP is an MIMD architecture, but a specifi c type of MIMD that uses mes-
sage passing between two RTOS and application software stacks.

For today’s hardware architecture, we really need to extend Flynn’s 
taxonomy to include a wider variety of vector coprocessors (SIMD)—for 
example, SPMD (Single Program Multiple Data) processors, like GPUs. 
An updated Flynn taxonomy that notes this is shown in Figure 9.5.

Single Instruction Multiple Instruction

Single Data SISD (Traditional Uni-
processor)

MISD (Voting schemes and 
active-active controllers)

Multiple Data SIMD (SSE 4.2, Vector 
Processing)
SPMD (Single Program 
Multiple Data), GO-GPU

MIMD (Distributed systems 
(MPMD), Clusters with MPI/
PVM (SPMD), AMP/SMP)

FIGURE 9.5 Updates to Flynn’s Taxonomy to Show SPMD (GPU Vector Coprocessors)

The hardware architecture is critical since SMP makes the most sense 
for SoCs that provide MIMD capability and ideally an interconnection that 
is uniform. When the interconnection is uniform, we call this UMA (Uni-
form Memory Access), and this means that all processors can access any 
address with same cost (latency) for that access. Many MIMD hardware 
architectures are NUMA (Non-Uniform Memory Access) where latency 
for memory access depends upon the processor core and address being 
accessed in memory, or they are true message-passing architectures where 
the CPUs and their memories are interfaced in a true AMP fashion, with 
a TIPC, TCP/IP, or other type of message transport network. The NUMA 
MIMD hardware architectures that use on-chip interconnection that is 
point-to-point or require minimal forwarding of memory access transac-
tions work best for SMP. Ideally SMP solutions would all run on UMA 
MIMD hardware architectures, but they do not. This just means that SMP 

Single Instruction Multiple Instruction

Single Data SISD (single processor) MISD (Voting schemes and 
active-active controllers)

Multiple Data SIMD (SSE 4.2, ARM 
NEON, PowerPC Altivec)

MIMD (e.g., Clusters with 
TIPC)

FIGURE 9.4 Flynn’s Taxonomy of Concurrent/Parallel System Architectures
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on NUMA requires a bit of care in software to ensure effi ciency, as we will 
see in the next section.

In Chapter 11, we will discuss use of embedded Linux as an alternative 
to FreeRTOS or VxWorks. We will see that in some cases, much if not all of 
the real-time processing can be done by a special-purpose coprocessor or 
an FPGA (Field Programmable Gate Array), in which case, if all real-time 
services are offl oaded from the processor that hosts the RTOS or general-
purpose operating system, then perhaps an RTOS is not needed at all. Hold 
that thought for Chapter 11, for a more in-depth exploration.

The main takeaway from this section on AMP is that it is still a very 
valid option for embedded systems due to simplicity and ease of testing 
during development (each AMP node can stand alone), and many legacy 
multiprocessor systems were built this way and will be encountered. Now, 
if time permits, you have signifi cant potential gain in effi ciency by going 
to SMP, and if you are willing to consider more complexity in partitioning 
hard real-time, soft, and non-real-time services, SMP can offer cost savings 
and performance advantages.

9.4 SMP (Symmetric Multi-core Processing)

In the previous section we discussed the motivation for SMP compared 
to AMP, but what constitutes SMP was left a mystery. SMP is best under-
stood by fi rst understanding AMP well, much like an RTOS is best under-
stood by fi rst really understanding a cyclic executive. SMP adds operating 
system scheduling and resource management complexity compared to the 
more obvious AMP approach of replicating the entire RTOS and dividing 
the services up by off-line analysis of resource demands and by interface(s) 
used, as is most often done in AMP. Recall that one of the main reasons we 
are driven to multiple processors (and cores) is that one core just can’t keep 
up with the algorithms or data rates required of it for the service we want to 
provide. Computer vision is a great application example since it is process-, 
data-, and IO-intensive and fi nding its way into many interesting embedded 
applications. So, what is SMP?

SMP runs the RTOS on just one of the processor cores on an SMP 
(UMA or NUMA) system, and the RTOS then maps tasks onto any one of 
the “n” cores at runtime during dispatch. Furthermore, for memory man-
agement, it must decide exactly where to allocate heap buffers at runtime—
for example, when a C program calls malloc, it must decide on which core 
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ISRs run, where driver code runs, and from which core memory-mapped 
IO is done. This is all dynamic. This breaks the RMA rules we have studied 
so far. The collision of SMP (largely developed on non-real-time systems 
for throughput scaling) and hard real-time systems in particular requires 
careful and cautious consideration. The combination of real-time services 
with SMP has been the subject of numerous operating systems and com-
puter architecture research. Outcomes of the research have varied from 
simply “don’t do this” to “proceed with caution.” We will not attempt to 
review all of the research, but will prescribe some simple guidelines to help.

First, it is always safe to use SMP on any best-effort system. By defi -
nition, we have no deadlines. An SMP RTOS or OS can migrate a task, 
thread, and process at any time from one CPU core to another, thus causing 
an unexpected preemption from the RM viewpoint. Furthermore, much 
like we saw that swapping or page faults in a general OS could cause sig-
nifi cant harm to real-time services, this migration of tasks from one pro-
cessor core to another will add signifi cant interference to the progress of 
any service that is disrupted as such between release and completion. In a 
best-effort system, the migration should not cause a problem, but will delay 
responses on occasion. The SMP system migrates tasks because it needs to 
balance the load on the processor cores it manages over time. The migra-
tion is triggered by noted imbalances as demands for CPU vary on each 
core over time. One of the simplest algorithms is periodic migration and 
balancing. If a service starts on core-1, for example, and runs concurrently 
with two other services, we can do RMA on the three services for that core, 
but what happens when it migrates? Reduced loading on core-1 is not an 
issue, but what about increased loading on core-2? In theory, we could 
apply dynamic admission policies during migration, but that also requires 
signifi cant resources. However, the OS itself may or may not migrate kernel 
tasks (recall that in VxWorks, in early editions, all tasks were kernel tasks). 
Rather than solve what is still a potentially unresolved research challenge, a 
simpler solution is to use processor core affi nity. 

9.5 Processor Core Affinity

Even on a non-real-time OS that is SMP, it is sometimes inconvenient 
to have threads, tasks, or processes migrate. One simple reason is that re-
sources like clocks and timers are sometimes tied to a specifi c core. What 
happens if a service reads a clock on core-1 with the purpose of timing an 
event, the dynamic SMP load balancer migrates tasks on a periodic basis, 
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and the service then wakes up but now on core-2 and reads the clock again? 
Maybe nothing fails, as long as the two clocks are synchronized and do not 
have rollovers, and both have the same base date, but often an interval 
timer will not meet all of these conditions. So, even in best-effort systems, 
to ensure determinism, it is a standard feature to set affi nity for a task so 
that it always runs on one and only one processor core.

Let’s look at how process core affi nity is done in Linux with POSIX 
threads (similar to a VxWorks kernel task). For this example, we will con-
sider some simple threaded code that can be compiled and run on any 
Linux SMP system (also available on the DVD).

#define _GNU_SOURCE
#include <pthread.h>
#include <stdlib.h>
#include <stdio.h>

#define NUM_THREADS 64

typedef struct
{
    int threadIdx;
} threadParams_t;

// POSIX thread declarations and scheduling attributes
pthread_t threads[NUM_THREADS];
threadParams_t threadParams[NUM_THREADS];

void *counterThread(void *threadp)
{
    int sum=0, i, rc;
    threadParams_t *threadParams = (threadParams_t *)threadp;

    for(i=1; i < (threadParams->threadIdx)+1; i++)
        sum=sum+i;

    printf(“\nThread idx=%d, sum[0...%d]=%d, running on CPU=%d”,
           threadParams->threadIdx,
           threadParams->threadIdx, sum, sched_getcpu());
}

ON THE DVD
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int main (int argc, char *argv[])
{
   int rc;
   int i;
   cpu_set_t cpuset;
   pthread_t mythread;

   mythread = pthread_self();

   rc = pthread_getaffinity_np(mythread, sizeof(cpu_set_t),
                               &cpuset);
   if (rc != 0)
       perror(“pthread_getaffinity_np”);

   printf(“CPU mask includes:”);
   for (i = 0; i < CPU_SETSIZE; i++)
       if (CPU_ISSET(i, &cpuset))
           printf(“ %d”, i);
   printf(“\n”);

   for(i=0; i < NUM_THREADS; i++)
   {
       threadParams[i].threadIdx=i;

       pthread_create(&threads[i],   // pointer to thread 
                                        descriptor
                      (void *)0,     // use default attributes
                      counterThread, // thread function entry 
                                        point
                     (void *)&(threadParams[i]) // parameters 
                                                   to pass
                     );

   }

   for(i=0;i<NUM_THREADS;i++)
       pthread_join(threads[i], NULL);

   printf(“\nTEST COMPLETE\n”);
}
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If you run “make” on this code on a Linux system and run it, it will 
simply compute a sum of the digits based on the thread number it has been 
assigned. Generally, this runs in expected order other than differences due 
to interrupts, interference, and thread migrations if the system has a high 
background load that interferes and competes for resources. If you run it on 
your system with a high background load, you will occasionally see ordering 
differences, but in general, with SMP load balancing, the Linux OS chooses 
the least-loaded CPU core for each thread and the simple threads in this 
example run to completion, with best effort, on the CPU core that Linux 
assigns. For example, when running on a general-purpose Linux system 
shared with numerous students, here’s what one of the authors observed 
for 64 threads that could be scheduled to one of eight CPU cores—that is, 
four actual, eight when including VCPUs (Virtual CPUs) provided by Intel 
hyperthreading:

%make
gcc -O0 -g   -c pthread.c
gcc  -O0 -g   -o pthread pthread.o -lpthread
%./pthread
CPU mask includes: 0 1 2 3 4 5 6 7

Thread idx=0, sum[0...0]=0, running on CPU=5
Thread idx=1, sum[0...1]=1, running on CPU=2
Thread idx=2, sum[0...2]=3, running on CPU=6
Thread idx=3, sum[0...3]=6, running on CPU=2
Thread idx=4, sum[0...4]=10, running on CPU=5
Thread idx=5, sum[0...5]=15, running on CPU=5
Thread idx=6, sum[0...6]=21, running on CPU=6
Thread idx=7, sum[0...7]=28, running on CPU=5
Thread idx=8, sum[0...8]=36, running on CPU=6
Thread idx=9, sum[0...9]=45, running on CPU=5
Thread idx=10, sum[0...10]=55, running on CPU=6
Thread idx=11, sum[0...11]=66, running on CPU=5
Thread idx=12, sum[0...12]=78, running on CPU=5
Thread idx=13, sum[0...13]=91, running on CPU=2
Thread idx=14, sum[0...14]=105, running on CPU=5
Thread idx=15, sum[0...15]=120, running on CPU=2
Thread idx=16, sum[0...16]=136, running on CPU=2
Thread idx=17, sum[0...17]=153, running on CPU=5
Thread idx=18, sum[0...18]=171, running on CPU=2
Thread idx=19, sum[0...19]=190, running on CPU=5
Thread idx=20, sum[0...20]=210, running on CPU=2
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Thread idx=21, sum[0...21]=231, running on CPU=5
Thread idx=22, sum[0...22]=253, running on CPU=2
Thread idx=23, sum[0...23]=276, running on CPU=5
Thread idx=24, sum[0...24]=300, running on CPU=2
Thread idx=25, sum[0...25]=325, running on CPU=5
Thread idx=26, sum[0...26]=351, running on CPU=2
Thread idx=27, sum[0...27]=378, running on CPU=5
Thread idx=28, sum[0...28]=406, running on CPU=6
Thread idx=29, sum[0...29]=435, running on CPU=5
Thread idx=30, sum[0...30]=465, running on CPU=5
Thread idx=31, sum[0...31]=496, running on CPU=6
Thread idx=32, sum[0...32]=528, running on CPU=5
Thread idx=33, sum[0...33]=561, running on CPU=6
Thread idx=34, sum[0...34]=595, running on CPU=5
Thread idx=35, sum[0...35]=630, running on CPU=6
Thread idx=36, sum[0...36]=666, running on CPU=5
Thread idx=37, sum[0...37]=703, running on CPU=5
Thread idx=38, sum[0...38]=741, running on CPU=2
Thread idx=39, sum[0...39]=780, running on CPU=5
Thread idx=40, sum[0...40]=820, running on CPU=5
Thread idx=41, sum[0...41]=861, running on CPU=2
Thread idx=42, sum[0...42]=903, running on CPU=5
Thread idx=43, sum[0...43]=946, running on CPU=2
Thread idx=44, sum[0...44]=990, running on CPU=5
Thread idx=45, sum[0...45]=1035, running on CPU=2
Thread idx=46, sum[0...46]=1081, running on CPU=5
Thread idx=47, sum[0...47]=1128, running on CPU=6
Thread idx=48, sum[0...48]=1176, running on CPU=5
Thread idx=49, sum[0...49]=1225, running on CPU=6
Thread idx=50, sum[0...50]=1275, running on CPU=5
Thread idx=51, sum[0...51]=1326, running on CPU=2
Thread idx=52, sum[0...52]=1378, running on CPU=5
Thread idx=53, sum[0...53]=1431, running on CPU=2
Thread idx=54, sum[0...54]=1485, running on CPU=5
Thread idx=55, sum[0...55]=1540, running on CPU=2
Thread idx=56, sum[0...56]=1596, running on CPU=5
Thread idx=57, sum[0...57]=1653, running on CPU=5
Thread idx=58, sum[0...58]=1711, running on CPU=2
Thread idx=59, sum[0...59]=1770, running on CPU=5
Thread idx=60, sum[0...60]=1830, running on CPU=2
Thread idx=61, sum[0...61]=1891, running on CPU=6
Thread idx=62, sum[0...62]=1953, running on CPU=5
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Thread idx=63, sum[0...63]=2016, running on CPU=5
TEST COMPLETE

%

Examining the foregoing output, we see that all of the threads are allo-
cated to CPU 2, 5, or 6, with none allocated to CPU 0, 1, 3, 4, or 7. The sys-
tem in this case just selected the least-loaded CPU cores to handle the new 
processing requested as it is made. This makes it diffi cult to predict where 
a thread will be allocated, and each run will produce a new and different 
mapping. The mapping is not deterministic or repeatable for the purpose of 
verifi cation. Without special confi guration of Linux for real-time extensions 
and careful use of POSIX extensions for real-time (discussed in Chapter 
11), this varying allocation of threads to CPU cores is to be expected. We 
do not really care when using a best-effort non-RT OS how the work gets 
done exactly, but rather that it all gets done as fast as possible on average 
and that a new load is distributed to the least busy CPU core. Note that 
Linux provides a nice utility “lscpu” or “cat /proc/cpuinfo,” which allows 
users to interactively examine the number of SMP CPU cores managed. 
On the author’s system there are four cores on a single CPU, each with hy-
perthread support, which Linux presents as eight VCPUs. Hyperthreading 
is a form of sub-core-level parallelism within the ALU that allows for the 
issue of instructions at the same time (multiple issue of instructions at the 
same time is often referred to as “superscalar”) as well as providing support 
at this level for thread concurrency and context management. This type of 
system in an ideal scenario is as good as having eight cores, but pipeline 
hazards and resource contention can cause it to degrade to the equivalent 
of four cores. Hyperthreading likewise introduces non-determinism to the 
system, but does increase average throughput for thread pools waiting for 
CPU core resources.

If we want thread-to-CPU-core-mapping determinism, we can provide 
this on most SMP systems by using affi nity specifi cation, which tells the 
SMP operating system to dispatch a thread to a specifi c core or set of cores. 
Although this is likely to reduce throughput on average and defeat the load 
balancing, it essentially creates services that are mapped to cores much like 
AMP would provide. If we run the foregoing code, now modifi ed for CPU 
core affi nity on the same system, here is the result: 

%./pthread
running on CPU=5, CPUs = 0 1 2 3 4 5 6 7
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Thread idx=0, sum[0...0]=0, running on CPU=0, CPUs = 0
Thread idx=2, sum[0...2]=3, running on CPU=2, CPUs = 2
Thread idx=1, sum[0...1]=1, running on CPU=1, CPUs = 1
Thread idx=3, sum[0...3]=6, running on CPU=3, CPUs = 3
Thread idx=4, sum[0...4]=10, running on CPU=4, CPUs = 4
Thread idx=6, sum[0...6]=21, running on CPU=6, CPUs = 6
Thread idx=7, sum[0...7]=28, running on CPU=7, CPUs = 7
Thread idx=8, sum[0...8]=36, running on CPU=0, CPUs = 0
Thread idx=9, sum[0...9]=45, running on CPU=1, CPUs = 1
Thread idx=10, sum[0...10]=55, running on CPU=2, CPUs = 2
Thread idx=11, sum[0...11]=66, running on CPU=3, CPUs = 3
Thread idx=12, sum[0...12]=78, running on CPU=4, CPUs = 4
Thread idx=5, sum[0...5]=15, running on CPU=5, CPUs = 5
Thread idx=13, sum[0...13]=91, running on CPU=5, CPUs = 5
Thread idx=15, sum[0...15]=120, running on CPU=7, CPUs = 7
Thread idx=16, sum[0...16]=136, running on CPU=0, CPUs = 0
Thread idx=17, sum[0...17]=153, running on CPU=1, CPUs = 1
Thread idx=18, sum[0...18]=171, running on CPU=2, CPUs = 2
Thread idx=19, sum[0...19]=190, running on CPU=3, CPUs = 3
Thread idx=14, sum[0...14]=105, running on CPU=6, CPUs = 6
Thread idx=20, sum[0...20]=210, running on CPU=4, CPUs = 4
Thread idx=22, sum[0...22]=253, running on CPU=6, CPUs = 6
Thread idx=23, sum[0...23]=276, running on CPU=7, CPUs = 7
Thread idx=24, sum[0...24]=300, running on CPU=0, CPUs = 0
Thread idx=25, sum[0...25]=325, running on CPU=1, CPUs = 1
Thread idx=26, sum[0...26]=351, running on CPU=2, CPUs = 2
Thread idx=27, sum[0...27]=378, running on CPU=3, CPUs = 3
Thread idx=28, sum[0...28]=406, running on CPU=4, CPUs = 4
Thread idx=30, sum[0...30]=465, running on CPU=6, CPUs = 6
Thread idx=31, sum[0...31]=496, running on CPU=7, CPUs = 7
Thread idx=21, sum[0...21]=231, running on CPU=5, CPUs = 5
Thread idx=29, sum[0...29]=435, running on CPU=5, CPUs = 5
Thread idx=33, sum[0...33]=561, running on CPU=1, CPUs = 1
Thread idx=34, sum[0...34]=595, running on CPU=2, CPUs = 2
Thread idx=32, sum[0...32]=528, running on CPU=0, CPUs = 0
Thread idx=35, sum[0...35]=630, running on CPU=3, CPUs = 3
Thread idx=37, sum[0...37]=703, running on CPU=5, CPUs = 5
Thread idx=38, sum[0...38]=741, running on CPU=6, CPUs = 6
Thread idx=39, sum[0...39]=780, running on CPU=7, CPUs = 7
Thread idx=36, sum[0...36]=666, running on CPU=4, CPUs = 4
Thread idx=40, sum[0...40]=820, running on CPU=0, CPUs = 0
Thread idx=41, sum[0...41]=861, running on CPU=1, CPUs = 1
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Thread idx=42, sum[0...42]=903, running on CPU=2, CPUs = 2
Thread idx=43, sum[0...43]=946, running on CPU=3, CPUs = 3
Thread idx=44, sum[0...44]=990, running on CPU=4, CPUs = 4
Thread idx=46, sum[0...46]=1081, running on CPU=6, CPUs = 6
Thread idx=47, sum[0...47]=1128, running on CPU=7, CPUs = 7
Thread idx=48, sum[0...48]=1176, running on CPU=0, CPUs = 0
Thread idx=49, sum[0...49]=1225, running on CPU=1, CPUs = 1
Thread idx=50, sum[0...50]=1275, running on CPU=2, CPUs = 2
Thread idx=45, sum[0...45]=1035, running on CPU=5, CPUs = 5
Thread idx=51, sum[0...51]=1326, running on CPU=3, CPUs = 3
Thread idx=53, sum[0...53]=1431, running on CPU=5, CPUs = 5
Thread idx=54, sum[0...54]=1485, running on CPU=6, CPUs = 6
Thread idx=52, sum[0...52]=1378, running on CPU=4, CPUs = 4
Thread idx=55, sum[0...55]=1540, running on CPU=7, CPUs = 7
Thread idx=56, sum[0...56]=1596, running on CPU=0, CPUs = 0
Thread idx=57, sum[0...57]=1653, running on CPU=1, CPUs = 1
Thread idx=58, sum[0...58]=1711, running on CPU=2, CPUs = 2
Thread idx=59, sum[0...59]=1770, running on CPU=3, CPUs = 3
Thread idx=60, sum[0...60]=1830, running on CPU=4, CPUs = 4
Thread idx=62, sum[0...62]=1953, running on CPU=6, CPUs = 6
Thread idx=63, sum[0...63]=2016, running on CPU=7, CPUs = 7
Thread idx=61, sum[0...61]=1891, running on CPU=5, CPUs = 5
TEST COMPLETE

%

The fact that thread ordering of 0,2,1,3,4,6 … up to 11,12,5,13 was 
out of expected order is annoying, but the results are still correct since we 
have no deadline or ordering required for the computations. We could use 
semaphores or other standard synchronization methods if the printed order 
bothers us or causes an issue with expected results. The author ran this 
code on a loaded four-CPU core Linux SMP system, and on an SMP system 
with background load (student processes). When we map to specifi c cores, 
they may already be pretty busy with unknown arbitrary workload. On the 
other hand, the mapping is deterministic. So, how would we fi x this issue of 
unknown interference? The answer is to also make the threads map onto a 
Linux real-time scheduling class to preempt threads run by the CFS (Com-
pletely Fair Scheduler) and therefore ensure that real-time threads always 
win this competition for specifi c cores. Updating the code to use both af-
fi nity and the POSIX FIFO (First In, First Out) scheduling class (which we 
must run with root privilege in Linux), which preempts all CFQ mapped 
threads from user space, we get deterministic core mapping and much less 
interference in this real-time class. Here is the updated code:
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#define _GNU_SOURCE
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sched.h>

#define NUM_THREADS 64
#define NUM_CPUS 8

typedef struct
{
    int threadIdx;
} threadParams_t;

// POSIX thread declarations and scheduling attributes
//
pthread_t threads[NUM_THREADS];
pthread_t mainthread;
pthread_t startthread;
threadParams_t threadParams[NUM_THREADS];

pthread_attr_t fifo_sched_attr;
pthread_attr_t orig_sched_attr;
struct sched_param fifo_param;

#define SCHED_POLICY SCHED_FIFO
#define MAX_ITERATIONS (1000000)

void print_scheduler(void)
{
    int schedType = sched_getscheduler(getpid());

    switch(schedType)
    {
        case SCHED_FIFO:
            printf(“Pthread policy is SCHED_FIFO\n”);
            break;
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        case SCHED_OTHER:
            printf(“Pthread policy is SCHED_OTHER\n”);
            break;
        case SCHED_RR:
            printf(“Pthread policy is SCHED_RR\n”);
            break;
        default:
            printf(“Pthread policy is UNKNOWN\n”);
    }
}

void set_scheduler(void)
{
    int max_prio, scope, rc, cpuidx;
    cpu_set_t cpuset;

    printf(“INITIAL “); print_scheduler();

    pthread_attr_init(&fifo_sched_attr);
    pthread_attr_setinheritsched(&fifo_sched_attr, 
                                 PTHREAD_EXPLICIT_SCHED);
    pthread_attr_setschedpolicy(&fifo_sched_attr, 
                                SCHED_POLICY);
    CPU_ZERO(&cpuset);
    cpuidx=(3);
    CPU_SET(cpuidx, &cpuset);
    pthread_attr_setaffinity_np(&fifo_sched_attr, 
                                 sizeof(cpu_set_t), &cpuset);

    max_prio=sched_get_priority_max(SCHED_POLICY);
    fifo_param.sched_priority=max_prio;    

    if((rc=sched_setscheduler(getpid(), SCHED_POLICY, 
                                        &fifo_param)) < 0)
        perror(“sched_setscheduler”);

    pthread_attr_setschedparam(&fifo_sched_attr, &fifo_param);

    printf(“ADJUSTED “); print_scheduler();
}
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void *counterThread(void *threadp)
{
    int sum=0, i, rc, iterations;
    threadParams_t *threadParams = (threadParams_t *)threadp;
    pthread_t mythread;
    double start=0.0, stop=0.0;
    struct timeval startTime, stopTime;

    gettimeofday(&startTime, 0);
    start = ((startTime.tv_sec * 1000000.0) + 
              startTime.tv_usec)/1000000.0;

    for(iterations=0; iterations < MAX_ITERATIONS; iterations++)
    {
        sum=0;
        for(i=1; i < (threadParams->threadIdx)+1; i++)
            sum=sum+i;
    }

    gettimeofday(&stopTime, 0);
    stop = ((stopTime.tv_sec * 1000000.0) + 
             stopTime.tv_usec)/1000000.0;

    printf(“\nThread idx=%d, sum[0...%d]=%d, running on CPU=%d, 
                             start=%lf, stop=%lf”, 
           threadParams->threadIdx,
           threadParams->threadIdx, sum, sched_getcpu(),
           start, stop);
}

void *starterThread(void *threadp)
{
   int i, rc;

   printf(“starter thread running on CPU=%d\n”, sched_getcpu());

   for(i=0; i < NUM_THREADS; i++)
   {
       threadParams[i].threadIdx=i;
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       pthread_create(&threads[i],   // pointer to thread 
                                        descriptor
                      &fifo_sched_attr,  // use FIFO RT max 
                                          priority attributes
                      counterThread, // thread function entry 
                                        point
                      (void *)&(threadParams[i]) // parameters 
                                                    to pass in
                     );

   }

   for(i=0;i<NUM_THREADS;i++)
       pthread_join(threads[i], NULL);

}

int main (int argc, char *argv[])
{
   int rc;
   int i, j;
   cpu_set_t cpuset;

   set_scheduler();

   CPU_ZERO(&cpuset);

   // get affinity set for main thread
   mainthread = pthread_self();

   // Check the affinity mask assigned to the thread 
   rc = pthread_getaffinity_np(mainthread, sizeof(cpu_set_t), 
                                &cpuset);
   if (rc != 0)
       perror(“pthread_getaffinity_np”);
   else
   {
       printf(“main thread running on CPU=%d, CPUs =”, 
               sched_getcpu());

       for (j = 0; j < CPU_SETSIZE; j++)
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           if (CPU_ISSET(j, &cpuset))
               printf(“ %d”, j);

       printf(“\n”);
   }

   pthread_create(&startthread,   // pointer to thread descriptor
                  &fifo_sched_attr,     // use FIFO RT max 
                                           priority attributes
                  starterThread, // thread function entry point
                  (void *)0 // parameters to pass in
                 );

   pthread_join(startthread, NULL);

   printf(“\nTEST COMPLETE\n”);
}

Here are the deterministically mapped and much better ordered re-
sults (without resorting to semaphores). The demonstration simply shows 
that both deterministic mapping of each thread to a single core (or specifi c 
set of cores) and priority-preemptive run-to-completion scheduling are 
needed in conjunction for predictable response.  

siewerts@asgard:~/se300/simplethread-affinity$ sudo ./pthread
INITIAL Pthread policy is SCHED_OTHER
ADJUSTED Pthread policy is SCHED_FIFO
main thread running on CPU=5, CPUs = 0 1 2 3 4 5 6 7
starter thread running on CPU=3

Thread idx=0, sum[0...0]=0, running on CPU=3, 
start=1421223584.501278, stop=1421223584.507752
Thread idx=1, sum[0...1]=1, running on CPU=3, 
start=1421223584.507829, stop=1421223584.513027
Thread idx=2, sum[0...2]=3, running on CPU=3, 
start=1421223584.513228, stop=1421223584.518455
Thread idx=3, sum[0...3]=6, running on CPU=3, 
start=1421223584.518468, stop=1421223584.525631
Thread idx=4, sum[0...4]=10, running on CPU=3, 
start=1421223584.525645, stop=1421223584.534846
Thread idx=5, sum[0...5]=15, running on CPU=3, 
start=1421223584.534862, stop=1421223584.545885
Thread idx=6, sum[0...6]=21, running on CPU=3, 
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start=1421223584.545901, stop=1421223584.558476
Thread idx=7, sum[0...7]=28, running on CPU=3, 
start=1421223584.558489, stop=1421223584.572696
Thread idx=8, sum[0...8]=36, running on CPU=3, 
start=1421223584.572712, stop=1421223584.588384
Thread idx=9, sum[0...9]=45, running on CPU=3, 
start=1421223584.588395, stop=1421223584.605403
Thread idx=10, sum[0...10]=55, running on CPU=3, 
start=1421223584.605414, stop=1421223584.623617
Thread idx=11, sum[0...11]=66, running on CPU=3, 
start=1421223584.623627, stop=1421223584.642985
Thread idx=12, sum[0...12]=78, running on CPU=3, 
start=1421223584.642996, stop=1421223584.663554
Thread idx=13, sum[0...13]=91, running on CPU=3, 
start=1421223584.663563, stop=1421223584.685920
Thread idx=14, sum[0...14]=105, running on CPU=3, 
start=1421223584.685929, stop=1421223584.710600
Thread idx=15, sum[0...15]=120, running on CPU=3, 
start=1421223584.710610, stop=1421223584.737067
Thread idx=16, sum[0...16]=136, running on CPU=3, 
start=1421223584.737077, stop=1421223584.764973
Thread idx=17, sum[0...17]=153, running on CPU=3, 
start=1421223584.764984, stop=1421223584.795950
Thread idx=18, sum[0...18]=171, running on CPU=3, 
start=1421223584.795959, stop=1421223584.828314
Thread idx=19, sum[0...19]=190, running on CPU=3, 
start=1421223584.828324, stop=1421223584.862941
Thread idx=20, sum[0...20]=210, running on CPU=3, 
start=1421223584.862950, stop=1421223584.899920
Thread idx=21, sum[0...21]=231, running on CPU=3, 
start=1421223584.899929, stop=1421223584.938815
Thread idx=22, sum[0...22]=253, running on CPU=3, 
start=1421223584.938823, stop=1421223584.979676
Thread idx=23, sum[0...23]=276, running on CPU=3, 
start=1421223584.979685, stop=1421223585.023486
Thread idx=24, sum[0...24]=300, running on CPU=3, 
start=1421223585.023496, stop=1421223585.068794
Thread idx=25, sum[0...25]=325, running on CPU=3, 
start=1421223585.068804, stop=1421223585.116124
Thread idx=26, sum[0...26]=351, running on CPU=3, 
start=1421223585.116154, stop=1421223585.164839
Thread idx=27, sum[0...27]=378, running on CPU=3, 
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start=1421223585.164849, stop=1421223585.216194
Thread idx=28, sum[0...28]=406, running on CPU=3, 
start=1421223585.216204, stop=1421223585.269694
Thread idx=29, sum[0...29]=435, running on CPU=3, 
start=1421223585.269705, stop=1421223585.325550
Thread idx=30, sum[0...30]=465, running on CPU=3, 
start=1421223585.325559, stop=1421223585.383871
Thread idx=31, sum[0...31]=496, running on CPU=3, 
start=1421223585.383880, stop=1421223585.444075
Thread idx=32, sum[0...32]=528, running on CPU=3, 
start=1421223585.444084, stop=1421223585.506471
Thread idx=33, sum[0...33]=561, running on CPU=3, 
start=1421223585.506480, stop=1421223585.584472
Thread idx=34, sum[0...34]=595, running on CPU=3, 
start=1421223585.584484, stop=1421223585.651034
Thread idx=35, sum[0...35]=630, running on CPU=3, 
start=1421223585.651045, stop=1421223585.719421
Thread idx=36, sum[0...36]=666, running on CPU=3, 
start=1421223585.719433, stop=1421223585.791845
Thread idx=37, sum[0...37]=703, running on CPU=3, 
start=1421223585.791855, stop=1421223585.866582
Thread idx=38, sum[0...38]=741, running on CPU=3, 
start=1421223585.866591, stop=1421223585.956924
Thread idx=39, sum[0...39]=780, running on CPU=3, 
start=1421223585.956933, stop=1421223586.051432
Thread idx=40, sum[0...40]=820, running on CPU=3, 
start=1421223586.051442, stop=1421223586.147357
Thread idx=41, sum[0...41]=861, running on CPU=3, 
start=1421223586.147366, stop=1421223586.243549
Thread idx=42, sum[0...42]=903, running on CPU=3, 
start=1421223586.243558, stop=1421223586.342285
Thread idx=43, sum[0...43]=946, running on CPU=3, 
start=1421223586.342295, stop=1421223586.443378
Thread idx=44, sum[0...44]=990, running on CPU=3, 
start=1421223586.443389, stop=1421223586.544770
Thread idx=45, sum[0...45]=1035, running on CPU=3, 
start=1421223586.544779, stop=1421223586.646062
Thread idx=46, sum[0...46]=1081, running on CPU=3, 
start=1421223586.646071, stop=1421223586.752033
Thread idx=47, sum[0...47]=1128, running on CPU=3, 
start=1421223586.752043, stop=1421223586.859080
Thread idx=48, sum[0...48]=1176, running on CPU=3, 
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start=1421223586.859089, stop=1421223586.967936
Thread idx=49, sum[0...49]=1225, running on CPU=3, 
start=1421223586.967947, stop=1421223587.079380
Thread idx=50, sum[0...50]=1275, running on CPU=3, 
start=1421223587.079392, stop=1421223587.194301
Thread idx=51, sum[0...51]=1326, running on CPU=3, 
start=1421223587.194311, stop=1421223587.309774
Thread idx=52, sum[0...52]=1378, running on CPU=3, 
start=1421223587.309785, stop=1421223587.427783
Thread idx=53, sum[0...53]=1431, running on CPU=3, 
start=1421223587.427792, stop=1421223587.545300
Thread idx=54, sum[0...54]=1485, running on CPU=3, 
start=1421223587.545310, stop=1421223587.665436
Thread idx=55, sum[0...55]=1540, running on CPU=3, 
start=1421223587.665446, stop=1421223587.789663
Thread idx=56, sum[0...56]=1596, running on CPU=3, 
start=1421223587.789673, stop=1421223587.914456
Thread idx=57, sum[0...57]=1653, running on CPU=3, 
start=1421223587.914465, stop=1421223588.041989
Thread idx=58, sum[0...58]=1711, running on CPU=3, 
start=1421223588.041998, stop=1421223588.171214
Thread idx=59, sum[0...59]=1770, running on CPU=3, 
start=1421223588.171224, stop=1421223588.302179
Thread idx=60, sum[0...60]=1830, running on CPU=3, 
start=1421223588.302189, stop=1421223588.436144
Thread idx=61, sum[0...61]=1891, running on CPU=3, 
start=1421223588.436153, stop=1421223588.570589
Thread idx=62, sum[0...62]=1953, running on CPU=3, 
start=1421223588.570599, stop=1421223588.708680
Thread idx=63, sum[0...63]=2016, running on CPU=3, 
start=1421223588.708691, stop=1421223588.848359
TEST COMPLETE

In Chapter 11, we further attempt to get a predictable response out of 
mainline Linux (offi cial Linux Foundation releases of the kernel found on 
kernel.org) and investigate the time jitter of service requests for the FIFO 
scheduling class mapped to specifi c processor resources. The remaining 
issues we have to deal with in the mainline Linux SMP system include: (a) 
sections of the Linux kernel that are not preemptible by the FIFO real-time 
threads, (b) interference from interrupt servicing, (c) issues with NUMA 
asymmetry in memory access, and (d) blocking of threads needing resourc-
es other than the CPU. Linux has recently had signifi cant kernel upgrades 
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to make the kernel itself, kernel tasks, ISR kernel support, and the system 
in general more preemptible by user threads. More detailed discussion on 
how to confi gure Linux for the best real-time response is covered in Chap-
ter 11. In Chapter 11, we also look at more interesting and compelling ex-
amples using computer vision applications that produce signifi cant CPU 
loading on multi-core systems, like the NVIDIA Jetson multi-core ARM 
and Intel multi-core x86.

9.6 Future Directions for RTOS

Hard real-time SMP is an open research project; however, two trends 
are developing. First, as we will discuss more in Chapter 11, extensions 
to and variations on the mainline Linux kernel are supporting both SMP 
and real-time scheduling [RedHawk], [ARTiS], [RTAI]. The position of the 
Linux Foundation, the ultimate gatekeepers of the offi cial Linux kernel, 
is that Linux supports soft real-time, which fi ts with both authors’ experi-
ence as well, based on numerous comparisons of RTOS and Linux with or 
without various patches [FoundRTI]. The viability of Linux for soft real-
time service implementation, of course, has changed over time since Linux 
has undergone signifi cant kernel-level changes, including the scheduler 
and to support SMP. At the same time, while Linux is being improved by 
both the Linux Foundation and third-party distributors of Linux tailored 
for real-time systems, RTOS vendors have started to integrate and sup-
port SMP [VxWorksSMP], [RTEMS]. Either way, the authors recommend 
that developers carefully verify ability to meet deadlines with predictable 
response for soft real-time and deterministic response for hard real-time. 
It should likewise be noted that RMA is complicated by task migration for 
load balancing, ISR mapping, and general resource asymmetry, especially 
in NUMA SMP confi gurations. Whether patches and confi gurations are 
made to increase the predictability of Linux for real-time services or an 
RTOS is confi gured to support SMP, the developer should exercise cau-
tion to ensure that deadlines are met. Often, this means leveraging features 
such as processor core affi nity for a subset of real-time services such that 
the result is really a mixed real-time and non-real-time system where the 
true benefi ts of SMP are really only used for the non-real-time services. 
Support for mixed real-time and non-real-time is a signifi cant future direc-
tion for both RTOS and extensions to Linux.

Another approach to mixing both real-time and non-real-time services 
on one system is to make use of a hypervisor. Again, the authors caution 
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the reader to carefully verify ability to meet deadlines with predictable or 
deterministic response as required in this type of confi guration since the 
hypervisor can add overhead and complexity to scheduling and resource al-
location analysis. Two types of hypervisors exist: Type 1 runs directly on the 
CPU and supports multiple OS instances; Type 2 runs on a base OS that, in 
turn, can run any number of guest operating systems. A well-known exam-
ple of a Type 2 hypervisor is Oracle’s Virtual Box [VB]. A Type 2 hypervisor 
multiplexes resource use for each guest OS, and, while very convenient for 
testing and supporting multiple operating systems on one platform, would 
not work at all for predictable response. Therefore, RTOS vendors who 
suggest the use of a hypervisor are suggesting use of a Type 1 hypervi-
sor, where an RTOS runs side-by-side with a traditional OS like Linux [Vx-
WorksHV]. In this model, the mapping of each guest OS to resources on a 
multi-core system is perhaps not much different than AMP where one core 
runs the RTOS and another core runs the non-real-time OS, like Linux. 
However, the hypervisor provides some fl exibility in this mapping, which is 
done at runtime rather than one time by design.

9.7 SMP Support Models

To summarize, SMP involves active runtime mapping of processor 
resources (CPU cores, memory extents, device interfaces, interrupt han-
dling), which has the advantage of dynamically balancing over time as well 
as eliminating the overhead from multiple instances of the OS itself. If an 
application has no real-time requirements, SMP is clearly advantageous. 
If an application has mixed requirements for best-effort (non-real-time) 
services alongside soft real-time (predictable response) and hard real-
time (deterministic response), then it may still be possible to confi gure an 
SMP system to support all three classes of service. The safe alternative, 
proven over time, is AMP, where a subset of CPU nodes are dedicated 
to real-time service and run a traditional RTOS. Another subset of CPU 
nodes on the same system could then run an OS like Linux and support 
soft real-time and best-effort services. Message passing can be used if a 
real-time service needs to communicate with soft or best-effort services on 
the other AMP node. This is a safe approach where RMA can be used to 
verify the AMP RTOS node(s). The ideal solution has one SMP kernel that 
can support all three classes of service. Such an SMP system must support 
RMA for hard real-time services and provide real-time synchronization fea-
tures, such as priority inversion protection for priority-preemptive run-to-
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completion tasks. Therefore an SMP system that supports real-time must 
essentially provide control, such as the processor affi nity settings reviewed 
in this chapter, ISR mapping (available in Linux), and memory access man-
agement for NUMA. In theory, if suffi cient control and features are pro-
vided in an SMP system, it could support multiple classes of service, but 
the authors recommend caution and rigorous verifi cation (as was true for 
AMP hard real-time) to ensure that RM policy is upheld in the SMP system 
for the hard real-time services. Generally, RTOS solutions are adding sup-
port for SMP, and traditional SMP solutions, like Linux, are starting to add 
support for predictable-response service levels, which is explored in more 
depth in Chapter 11.

9.8 RTOS Hypervisors

The RTOS hypervisor concept makes use of a Type 1 hypervisor that 
runs directly on the multi-core SoC hardware and, in turn, hosts an RTOS, 
such as VxWorks, alongside best-effort operating systems, such as Linux, as 
shown in Figure 9.6.

Run-Time Platform

GPL/Control GUI Real-Time

Linux Windows VxWorks

Wind River Hypervisor

Multi-core Processor (4, 8, 16+ Cores)

Core 0 Core 1 Core 2 Core n

FIGURE 9.6 Wind River RTOS with Hypervisor - http://www.windriver.com/products/hypervisor/ 

In some sense, this confi guration is similar to AMP where different 
operating systems are run on each core, but the hypervisor does a virtual 
mapping to cores and resources such that Linux, for example, can span 
multiple cores in an SMP confi guration and VxWorks can be mapped to a 
single core for determinism. Communication between the VxWorks guest 
RTOS and the Linux best-effort guest OS could again be TIPC or TCP/
IP or perhaps could use a hypervisor mechanism. This approach appears 
simpler than running VxWorks as an SMP kernel, but the authors have not 
tested this confi guration. It appears well worth testing.
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Summary

A good mantra in embedded systems is to keep things simple always. 
As such, if the complexity of SMP or virtual machine RTOS is not required 
and does not offer signifi cant benefi ts that far outweigh the added complex-
ity, additional verifi cation, and potential risk, then the best option is to stick 
with AMP. Multiple CPU cores and message passing are reasonably com-
plex and can lead to serious issues, like deadlock, discussed earlier in this 
text, along with other forms of unbounded blocking. It does not make sense 
to incorporate new architectural features just because they are new. SMP 
used in scalable Linux systems has signifi cant payoff for high-performance 
computing, but most embedded systems do not share the same need to 
scale to the same degree. As we will see in Chapter 11, if an embedded 
system is not hard real-time, but rather best-effort, and embedded Linux 
provides a favorable approach for reasons we will discuss more in Chapter 
11, then SMP might be a good choice, but beware of “feature creep” and 
simply adding SMP to a design because it is new.

Exercises

1. Download, build, and run the Linux pthread example.

2. Read white papers and documentation you can find on the Internet for 
“VxWorks AMP.” Describe how, when, and why Wind River recom-
mends using the AMP configuration of their RTOS.

3. Read white papers and documentation you can find on the Internet 
for “VxWorks SMP”. Describe how, when and why Wind River recom-
mends using the SMP configuration of its RTOS.

4. Read white papers and documentation you can find on the Internet 
for “VxWorks hypervisor.” Describe how, when, and why Wind River 
recommends using its hypervisor with VxWorks and other real-time or 
non-real-time operating systems.

5. Download, build and explain code found at http://mercury.pr.erau.
edu/~siewerts/cec450/code/rt_simplethread/
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OPEN SOURCE REAL-TIME 
OPERATING SYSTEMS

10
In this chapter

 ● FreeRTOS Alternative to Proprietary RTOS
 ● FreeRTOS Platform and Tools
 ● FreeRTOS Real-Time Service Programming Fundamentals

10.1 FreeRTOS Alternative to Proprietary RTOS

This chapter explores the use of an open source RTOS and includes 
analysis of trade-offs between use of open source and proprietary RTOS 
such as VxWorks. The chapter looks at cost, debug, features and extensions 
for open source. Methods of evaluating RTOS platforms are discussed in-
cluding activity level, code quality, platform alternatives, features and prim-
itives and fi nally real-time scheduling performance. A multitask experiment 
used to evaluate VxWorks has been ported to FreeRTOS and results are 
compared to provide insight into how well an open source RTOS can com-
pare to proprietary. The code tested can be found on the DVD included 
with the text.

There are a number of options available for a real-time operating sys-
tem. Up to this point, the focus has been on one of the best proprietary op-
tions, VxWorks. This chapter explores the trade-offs associated with using 
an open source RTOS and provides some guidelines for evaluating open 
source RTOS platforms. This includes an in-depth analysis of one of the 
most promising choices available, the FreeRTOS offering. 

ON THE DVD
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When trying to select a platform, there are a number of factors to con-
sider. The fi rst consideration is generally cost. Typical proprietary licenses 
include an up-front license cost, a per-unit cost, or a mix of the two. This 
cost pays for the engineering that goes into developing the OS and support 
associated with issues or requests encountered while developing the ap-
plication. In some cases, the vendor also provides training to help get the 
project started.

When using an open source operating system, these costs can be re-
placed by engineering time from the group or individual developing the ap-
plication. Essentially, the costs can be transferred from direct (out-of-pock-
et) costs to indirect costs in time from developers to understand, support, 
and troubleshoot operating system issues. This can make it very important 
to assess the initial quality of the code and operating system before select-
ing it and allocating extra developer time for debugging. It is also important 
to explore whether external support options are available as contract ser-
vices. This opens the possibility of relying on developers familiar with the 
platform later if the tasks get larger than expected.

There are some distinct advantages associated with open source plat-
forms, particularly once a development team has built up experience with 
the code base. The ability to see into the OS functions and scheduler can 
uncover a number of issues and simplify debugging. With visibility into the 
kernel and OS functions, the developer can set breakpoints or trace the 
interactions between the application and OS. It is also a good approach to 
completely understand the behavior of an API, particularly when called 
within a real-time task.

New or custom features pose especially tough challenges with pro-
prietary operating systems and may increase the interest in using an open 
source platform. Most operating system vendors are willing to discuss new 
features or custom APIs for a particular application. The company support-
ing the OS may include the development costs in the license or require an 
additional fee. In some cases—for example, low-volume applications re-
questing custom changes that are not useful in other contexts—the vendor 
may choose not to implement the functionality at all or request a higher fee. 
In these cases, an open source platform provides additional options where 
the development team can implement the required extensions. 

When deciding to pursue an open source implementation of an RTOS, 
it is important to understand the overall quality and capabilities. There are 
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some general topics that apply to any open source project and others that 
are specifi c to a quality RTOS implementation. Both aspects are important 
and need to be considered since changes anywhere in the RTOS may cause 
deadline or timing issues. 

To understand the quality of an open source software project, the 
strongest test is how actively changes are being made and what the quality 
controls are on those changes. This is started simply enough with a code re-
view and inspection of the overall quality of the project. This extends to un-
derstand the project’s environment and community. If a project has a good 
deal of active development, it is more likely to support the features desired 
for the application. When problems are encountered or the development 
team has questions, it is much more likely that an active community will 
provide help and respond to questions. There are likely to be more embed-
ded platforms supported, and the process of adding new targets is usually 
better understood and documented. 

The level of activity needs to be balanced with tight controls if true 
support for real-time behavior is to be maintained. While a wide variety of 
developers is benefi cial from a support and features perspective, uncon-
trolled submissions or changes could very easily break the real-time nature 
of the system. Many common software engineering concepts lead to non-
deterministic execution time. All changes need to be carefully evaluated for 
where these mechanisms are introduced and how critical sections or inter-
rupt locks are employed. In the best arrangements, any changes go through 
a code review process to ensure these protections are not violated and run 
through a regression suite to validate the changes.

The most important evaluation of an RTOS quality is the scheduling 
methodology and the actions taken when OS primitives are invoked. This 
aspect of the inspection can start with the documentation or project wiki 
pages; an advantage of the open source nature is that the developers can 
inspect the functions directly. Starting with the scheduler, there are several 
red fl ags to look for in the code. Any “fairness” mechanisms that do not in-
volve tasks at the same priority are a defi nite problem, though these are less 
likely to be present in anything described as an RTOS.

There are many other aspects that require closer investigation. One 
critical aspect to explore is how often and how interrupt locks are used 
in the code. Locking interrupts prevents the scheduler from running on 
almost all platforms. This creates important issues if interrupts are ever 
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locked during a nondeterministic operation, such as linked lists, sorting, or 
other variable length operations. These are not necessarily unbounded op-
erations; even O(n) or O(log(n)) traversals can create substantial variability 
in scheduling. These can occur anywhere since the scheduler is generally 
triggered in an interrupt; any accesses of shared data structures in the ker-
nel generally require interrupt locks. Tracking down all examples of inter-
rupt locks may require some time and effort, but any data structures in the 
kernel that are shared with the scheduler are a very good place to start.

The evaluation of the FreeRTOS implementation encompasses all of 
these aspects. The scheduling methodology is a strict priority-preemptive 
algorithm. To save space in the implementation, the priorities of the ready 
tasks are set in a mask with the highest bit set for the highest-priority task. 
The list of ready tasks is kept in an array indexed by priority. Since each pri-
ority level may have multiple ready tasks, the tasks at each level are added to 
a FIFO. This also creates a round-robin behavior among tasks at the same 
level. Each time slice, the scheduler selects the ready task with the highest 
priority. If more than one task is ready at a given priority, the next task at 
that priority is selected and the current task returns to its ready queue.

All of the operations used for task management and status are imple-
mented so that the operations require a deterministic time. Using the mask 
gives a fast lookup of the next priority level. In some instruction sets, this is 
even accomplished with a single instruction using a “count leading zeros” op-
eration. With the priority level selected, the task is selected by grabbing the 
task at the head of the FIFO. Similarly, adding a new task to the ready list re-
quires only setting the appropriate bit and adding that task’s TCB to the end 
of the FIFO. It is important to understand both sides of the operation, since 
the act of setting a new task to be ready will require access to the scheduler’s 
core data structures and will be performed with interrupts disabled.

An empirical validation of the RTOS scheduling performance can also 
serve as a regression test for any changes. This requires a simple application 
that starts with a fi xed duration function. This fi xed processing increment 
is run in different tasks on periodic timers with the correct rate-monoton-
ic priorities assigned. If any task fi nds its timer-released semaphore fi lled 
when it completes the processing, it has exceeded its deadline. This frame-
work should even include several different primitives supported by the OS. 

Several mixes of the task periodicities and processing durations can be 
run. Each combination should have extremely limited margin available, 
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however, to create the strictest test possible. Once the task set runs to com-
pletion for the least common multiple of the task periods, it should be able 
to continue indefi nitely. By running the task set over a very long duration 
relative to the task periods, it will uncover any variability that accumulates 
over time or is introduced by asynchronous operations. This makes it very 
well-suited to run in conjunction with a coverage test or other mechanisms 
that exercise the RTOS code.

Based on one of the author’s analysis of the FreeRTOS platform, in this 
author’s opinion, FreeRTOS shows that all of the key criteria for a quality 
RTOS are met in this platform and provides comparable capability of pro-
prietary RTOS’s, but the reader is invited to compare for themselves and 
draw their own conclusions. The FreeRTOS code uses a different style and 
model than many other projects, which can be slightly diffi cult to follow at 
fi rst. The code clearly adheres to this style, however, and has tight controls 
on the coding standard and how application code is incorporated. Part of 
this comes from the submission mechanism used, where any updates must 
be published by a dedicated team that maintains the FreeRTOS code. This 
does limit the opportunities for additional functionality to be added but 
provides a clear safeguard to code quality and preservation of real-time 
performance. Based upon preliminary empirical validation using FreeR-
TOS examples found on the included DVD, FreeRTOS appears to provide 
a predictable response scheduler with a variety of programming primitives 
available to applications. 

10.2 FreeRTOS Platform and Tools

This section covers the following topics as outlined here:

Supported Boards

 ● How does compilation work with FreeRTOS?

 Comparison of separately loading applications vs. “Giant Blob”

 ● Finding supported boards, ordering

 ● Recognizing differences between boards

 ● Configuring FreeRTOS

 ● Windows Simulator

ON THE DVD
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Built-In Functionality 

 ● Debug tools

 Trace

 Debug environments

 ● Networking and connectivity

 LWIP

 Serial 

FreeRTOS+ and Extension Capabilities

 ● Nabto, UDP, TCP, CLI, Trace, SSL, IO

The fi rst step in understanding the FreeRTOS platform is to explore 
the code organization. Any application that uses FreeRTOS should be seg-
mented into three parts, two from the OS and one from the application. 
Figure 10.1 shows this hierarchy, with the RTOS implementation above the 
device-specifi c porting layer. The application code interacts with the RTOS 
layer and is completely independent of the specifi cs of the device porting. 
The device porting layer is specifi c to both the board and compiler used 
since some of the required functionality is generally implemented in assem-
bly code and/or compiler-specifi c mechanisms. This layering is important to 
understand since FreeRTOS does not support dynamic application loading. 
Instead all of the code is compiled in a single project and the application, 
RTOS, and device layers are all statically linked. 

Application Code

RTOS Code

Device-Specific Implementtion
“Porting” code

Figure 10.1 FreeRTOS Layers

This layering is also important for confi guring the build environment 
and interpreting the FreeRTOS code as it is downloaded. The distribution 
of FreeRTOS includes all of the current device- and compiler-specifi c code 
required for all of the supported boards. This code can be found in the por-
table directory of the download. The RTOS code itself is in the root of the 
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Source directory, with all of the headers needed for the application in the 
include directory [FreeRTOS Organization].

The primary means for selecting a board and loading applications is 
through the compiler project settings. Include the code for the correct plat-
form with the general OS implementation code in the build project, along 
with the application source to create a FreeRTOS application. Depending 
on the board and the tools required, this may take on a number of different 
forms. Each board-specifi c wiki includes details on which compilers are 
supported and how the project is confi gured. The wiki for each supported 
board also includes ordering information for development boards used with 
the example application. When ordering the development board, take care 
to ensure the selected toolchain matches the tools used with the port of 
FreeRTOS.

When evaluating a candidate board it is important to understand the 
functionality available in the port for that board. The offi cial ports include 
the base functionality of the OS primitives and confi gurations. There are a 
number of additional capabilities that may or may not be present for any 
particular board. There are some power-saving features discussed later in 
the chapter, for example, that have varying levels of support in the different 
boards. Some of this variation is driven by the hardware functions provided 
by the processors or development boards. There are some limitations, such 
as code size, imposed by the tools selected for the ports. Carefully review 
the descriptions provided in the port and example application to under-
stand the capabilities and limitations of each board [FreeRTOS Ports].

Once a board is selected, FreeRTOS provides several confi guration op-
tions that should be explored and set to the behavior required by the appli-
cation. The settings are included in the FreeRTOSConfi g.h provided with 
the port to the board selected. This will require some understanding of the 
board and the software design of the application, so there may be changes 
later in the process if the design has not fully stabilized. Some of the more 
important settings to consider are listed here.

 ● configUSE_PREEMPTION: This flag should be set and will be re-
quired for the majority of real-time applications. This enables task 
preemption once a higher-priority task is ready to run. The alternative is 
cooperative multitasking.



228 • REAL-TIME EMBEDDED COMPONENTS AND SYSTEMS WITH LINUX AND RTOS

 ● configUSE_IDLE_HOOK and configUSE_TICK_HOOK: These are 
settings that enable application tailoring for the use of slack time (idle) 
and software clocks.

 ● confi gTICK_RATE_HZ: This determines how often the timer that trig-
gers the scheduler will run.

 ● confi gMAX_PRIORITIES: Determines how many unique priorities can 
be allocated to the tasks in the application.

 ● confi gUSE_TRACE_FACILIY and confi gCHECK_FOR_STACK_
OVERFLOW: These enable the debug and protection functionality. 

 ● confi gUSE_MUTEXES, confi gUSE_RECURSIVE_MUTEXES, and 
confi gUSE_COUNTING_SEMAPHORES: These enable the different 
OS primitives. 

 ● There are several APIs that can be used within the application confi gu-
rable to save space. If these are not required and space is an issue, these 
can be used to disable the APIs. Many of them are enabled by default.

10.3 FreeRTOS Real-Time Service Programming Fundamentals

This section covers the following FreeRTOS core features as outlined 
here: 

Tasks

 ● Ignore the co-routines

OS Primitives

 ● FromISR versions and what they do different

 ● Types of Control/protection and when to use them

 Binary semaphores, Counting semaphores, Mutex

Important aspects to consider for task and operating system primi-
tives in any RTOS include: using a timeout on the give can cause a number 
of side effects. Certainly the task will have some additional delay for the 
timeout. Failing to give (from a full queue or a set semaphore) will cause 
the task to go into more critical sections, trying over and over again to set 
the semaphore. This will also cause the scheduler to suspend and resume, 
potentially adding a small amount of additional overhead on the scheduler. 
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Since the resume checks if tasks were readied, it is only the duration of the 
check for empty. 

Similarly, using binary semaphores will cause the additional checks and 
behaviors if the semaphore is already full. For semaphores that may be set 
more than once before servicing, the implementation is much cleaner using 
a counting semaphore.

Additional features of FreeRTOS considered include:

Timers

 ● Effects of timer wake-up compared to delays

Memory

Advanced topics

 ● Idle hook

 ● Low power modes

 ● Deferred interrupts

 ● Memory and stack protections

 Malloc fail hook

 Stack overflow hook

 MPU and restricted tasks

In every operating system, there is a difference between code that is 
well written for the resources available and code that is less tailored and 
has unintended effects. This section provides some guidelines for how to 
use the primitives provided by FreeRTOS. If there is any ambiguity or new 
technique required for a particular application, the best advice is always to 
thoroughly understand the inner workings of the functions available in the 
API. The following analyses can serve as examples for problems and pitfalls 
to evaluate when selecting the appropriate resource for any particular ap-
plication. 

There are two mechanisms that can be used in FreeRTOS to create 
contexts for processing, tasks, and co-routines. The concepts related to pre-
emptive multitasking discussed in this text apply to the tasks. Since the 
co-routines do not follow the same rules as tasks and are primarily designed 
to allow for incredibly limited memory footprints, they are not recommend-



230 • REAL-TIME EMBEDDED COMPONENTS AND SYSTEMS WITH LINUX AND RTOS

ed for use. This is also refl ected by the developers supporting FreeRTOS 
who are no longer adding new functionality to co-routines. Ignoring the 
co-routines simplifi es the application as well as the API investigation since 
different OS structures are required for co-routines and tasks [FreeRTOS 
Tasks].

FreeRTOS offers a number of different OS primitives that can be used 
to signal tasks, synchronize processing activities, and distribute processing 
load between tasks. These primitives include:

 ● Queues

 ● Binary Semaphores

 ● Counting Semaphores

 ● Mutexes

 ● Recursive Mutexes

Each primitive has a function that it performs well and may have un-
intended consequences when used improperly. Think of these as the tools 
provided by the OS to build a new application. Selecting the correct tool is 
an important part of building a stable and reliable application.

The fi rst and most important distinction between types of primitives is 
the calling context. Each mechanism provided by the operating system has 
two variations, the one called by a task and one from interrupt context. It is 
important to use these appropriately since the assumptions made by each 
are very different. The source of the differences comes from the different 
requirements for interactions from an ISR and from a traditional task. The 
execution of an ISR will block other interrupts in a pending state until it 
completes, so a critical section is not needed. Another key difference is or-
dering of the context switch if one is required. When called from within a 
task, the context switch is triggered through a yield if a higher-priority task 
was activated by the transaction. From an ISR, there is a slight different 
mechanism where an asynchronous scheduler interrupt is triggered after 
the current ISR returns. The net effect is the same in either case, but the 
code required to achieve the result is very different. 

The other general variation of the primitives used by tasks is the Alter-
native API. The distinction between the common versions and the Alterna-
tive API is the approach to critical sections. Within the Alt defi nitions of the 
functions, the entire function is encapsulated within the critical section. In 
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the regular implementation, more limited portions of the function are in-
cluded in the critical section. The trade-off between these two mechanisms 
is runtime versus interrupt variability. While the net increase in the time 
spent in critical sections can be small, the Alternative API versions of the 
functions are not typically recommended. The potential exception would 
be the highest-priority task in the system since in that case execution time 
is likely the driving factor. As a general approach, increasing the variability 
of the interrupt and scheduler timing creates a system with which it is much 
more diffi cult to guarantee that deadlines are met. 

The core structure of all of the OS primitives is the queue implementa-
tion. The binary and counting semaphores directly use a queue with pre-
defi ned settings. These each use a queue with elements of size 0. The bi-
nary semaphore further reduces the size of the queue to a single element. 
Otherwise, all of the descriptions of the queue operations and behaviors 
directly apply. There is some difference in how mutexes behave and utilize 
the queue structures, so those are addressed after the queue itself is ex-
plored in more detail. 

Creating and deleting queues dynamically allocates and frees the mem-
ory required for the queue. This includes the variables that track the queue 
state, such as number of entries currently in the queue and the tasks that 
are blocked on reading. The allocation provides space for the number of 
elements specifi ed times the size of each element. Given the potential for 
heap fragmentation and long latency calls, it is highly recommended that 
queues, semaphores, and mutexes are statically confi gured on boot or dur-
ing major state transitions. The queues themselves do not support dynamic 
re-sizing, making the accesses to them much more deterministic.

The limited size of the queue also creates some additional effects when 
it is accessed to send a message or give a semaphore. Since the number 
of entries in the queue is confi gured at creation, it is possible for a task 
attempting to send something on the queue to encounter a full queue. It 
should be immediately obvious to a programmer what happens when a task 
attempts to read from an empty queue—the task will go into the pending 
state for up to the duration specifi ed during the call to the read function. 
The same approach is used for a send attempt on a full queue. If a timeout 
is specifi ed on the send call, the sending task may be placed in the pending 
state for up to that duration. Binary semaphores do not include a delay val-
ue in the wrapped calls to the queue APIs, so any attempt to set an already 
set semaphore will result in a failure return code. This does ensure that 
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the give for the semaphore does not incur additional delays [FreeRTOS 
Queues].

When task is delayed on an access to a queue, the list of tasks waiting to 
either send or receive is included in a priority-sorted list. These queues and 
semaphores are expected to be used as synchronization or signaling mecha-
nisms, and the highest-priority task should be activated to either send or 
receive when the queue is available. It is also possible for a task to “peek” at 
the contents of the queue without removing the item from the queue. This 
can be useful in some situations and is supported by the API provided by 
the queue implementation. 

The base queue implementation is extended to provide a mutex or 
recursive mutex capability. Similar to the counting semaphore, the mutex 
uses the queue structures to provide the base capability. The mutex adds 
another dimension not present in the normal queue or semaphore interac-
tions. Where the queues and semaphores are sorted by the priority of the 
pending tasks, the mutex implementations allow for priority inheritance of 
the highest pending task to the current holder [FreeRTOS Mutexes].

Recursive mutexes add a simple extension to the normal mutexes where 
the same task can hold the mutex multiple times. The mutex is not released 
until the last lock is released by that task. This is an especially useful feature 
in mutexes where the calling task may invoke multiple functions on the 
same data set. After each operation completes, the one instance of the lock 
can be released until all activities have fi nished and the fi nal unlock occurs. 
These mutexes are created and treated slightly differently, so it is important 
to use the GiveRecursive or TakeRecursive variations of the APIs when ac-
cessing recursive mutexes.

Beyond the communication and protection mechanisms, FreeRTOS 
provides two mechanisms for time-based activities. These are the delay 
API function calls and the software timers. Both of these mechanisms have 
similar resolutions but different trade-offs. 

The TaskDelay function relies on the scheduler to create the timing 
on the delay. When a task calls the delay API, it is added to a list task with 
a number of ticks to count down before expiring. This is a static time that 
relies on only the scheduler, and the task is released directly in the schedule 
tick when the requested duration expires. 
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The software timers are handled by a separate task. The timer function 
calls send messages to the task on its command queue. The software timer 
task is released by a hardware timer that is scheduled based on the delay 
times that other tasks have requested. This fl exibility allows times to be re-
set or changed. This mechanism also allows for auto-reloading of the timers. 
These features make the software timers especially well-suited for periodic 
actions or events that may have their execution time varied by outside signals. 
Since the timer expiration event handler is called in the context of the timer 
task, it is important to limit the operations in that callback. Long callbacks 
may compromise the timing of other software timers [FreeRTOS Timers].

FreeRTOS is primarily designed for embedded systems with limited 
resources. The OS allows the developer to confi gure the stack sizes of tasks 
and can dramatically limit the overall memory footprint. This is a big advan-
tage in most cases as the overall device cost is tied to the resources—includ-
ing memory—used by the platform. It does open additional opportunities 
for issues to arise, so FreeRTOS also provides mechanisms to help address 
those problems.

The fi rst potential issue that could happen when stack sizes are left to 
the defaults or improperly set is a stack overfl ow. This results in the stack 
spilling over into other memory that is likely used for other purposes. The 
issue’s cause can be diffi cult to debug since the effect of this contention 
may vary with time or loading or may appear in an unrelated area differ-
ent than the source of the problem. The authors recommend enabling the 
memory stack check protections to combat this. It does have implications 
for stack size and some accesses but is a proactive approach that prevents 
these issues before they happen.

Another memory problem that may arise stems from the dynamic al-
locations from the heap using malloc. There are a number of ways that 
dynamic allocations could fail either from heap fragmentation or from lack 
of available resources. It is especially important for portable code where 
the memory sizes could change between platforms to include some protec-
tion. Within FreeRTOS there is an option for a global hook invoked when 
a malloc attempt fails. This is much more reliable than expecting all of the 
code allocating dynamic memory to properly check the return values and 
instigate a local error handling mechanism. Even with the protection, it is 
not recommended to use dynamic memory for any operation other than 
start-up or state transitions. The calls are still variable, and the potential for 
fragmentation could cause the application to fail. 
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The best protection available is the hardware-based memory manage-
ment systems. They are not available on many platforms that support Fre-
eRTOS as of version 8.2 since the targets used tend to be lower-cost and 
lower-complexity devices. Where it is available, the use of the restricted 
tasks and memory protections is highly recommended. The restricted tasks 
do require additional software engineering since they do not have a com-
mon memory space, but it results in good practice, better debug ability, and 
better security. To ensure that any effects of the protection do not cause 
deadline issues, it is also a good idea to start and develop with restricted 
tasks. Adding memory protection late in development creates a collection 
of issues, and the last ones to be tracked are the ones affecting real-time 
reliability and behavior.

Since many embedded systems are also sensitive to power consump-
tion, FreeRTOS provides a way for the developer to enable a low power 
state when the system is idle. This tool is known as the Idle task hook and 
can change the behavior of the system. In its normal mode, FreeRTOS in-
cludes a lowest-priority task that does no processing but checks for new task 
switching. This ensures the lowest possible response time when nothing is 
running but continues to use processor cycles and power even when there 
is no work to do [FreeRTOS Idle Power].

From that description, it sounds like enabling a low power mode dur-
ing idle periods would be a highly attractive concept. In practice it adds a 
layer of complexity that must be understood, accounted for, and debugged 
using special test scenarios. It still may be highly advisable since the power 
consumed may be an important factor. It is especially tricky for real-time 
systems since the low power modes also include a wake-up delay for the 
system. When an event occurs in a low power mode, the processor typically 
has to re-enable some of the hardware functionality. This results in some 
amount of delay that needs to be included in any timeline that may be sub-
ject to a low power state. This requires additional analysis and testing in the 
low power mode to ensure the system is still able to meet all of its deadlines. 

Exercises

1. Create a user-defined interrupt handler for the timer ISR and a task for 
processing. The timer should be scheduled on a regular basis, and the 
interrupt handler should signal the processing task. To ensure that the 
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timer is being triggered with the correct periodicity, pass the interrupt 
timing to the processing task.

2. Create a pair of tasks that signal each other. The first task performs 
some computation, signals the other task, and waits for a signal from that 
task. The second task repeats the same pattern so that they alternate. 
Each task should complete a defined amount of work, such as comput-
ing a specified number of Fibonacci values. Profile each task so that one 
task is executing for 10 ms and the other for 40 ms. 

3. Modify the timer ISR to signal two tasks with different frequencies: 
one task every 30 ms and the other every 80 ms. Use your processing 
load from #2 to run 10 ms of processing on the 30-ms task and 40 ms of 
processing on the 80-ms task.
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C H A P T E R

INTEGRATING EMBEDDED LINUX 
INTO REAL-TIME SYSTEMS

11
In this chapter

 ● Introduction
 ● Embedding Mainline Linux: Interactive and Best-Effort
 ● Linux as a Non-Real-Time Management and User Interface Layer
 ● Methods to Patch and Improve Linux for Predictable Response 
 ● Linux for Soft Real-Time Systems
 ● Tools for Linux Soft Real-Time Systems

“Controlling a laser with Linux is crazy, but everyone in this 
room is crazy in his own way. So if you want to use Linux to con-
trol an industrial welding laser, I have no problem with your using 
PREEMPT_RT.” 

—Linus Torvalds as documented by yquotes.com 

11.1 Introduction

The Real-Time Linux initiative was kicked off in 1999 at the fi rst RT 
Linux workshop and is now supported through OASDL (Open Source Au-
tomation Development Lab). As indicated by Linus Torvalds and the Linux 
Foundation, the use of Linux for real-time systems does not fi t the original 
vision for Linux, but with care, Linux can be confi gured to provide pre-
dictable response in embedded systems. The question of whether it makes 
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sense to adapt Linux for mission-critical hard real-time systems remains 
open. So, RT Linux is most often used for soft real-time for predictable 
response and in enterprise solutions where the Linux kernel most often 
acts as an interface to lower-level mission-critical fi rmware and hardware 
services. The challenge for RT Linux to gain broader use in real-time sys-
tems is to gain acceptance and provide a competitive solution to the RTOS, 
but at the same time, preserve all of the features of Linux that make it a 
great alternative to the RTOS. Linux can be confi gured for a wide range 
of systems, from high-performance computing, to interactive desktop or 
laptop systems, to datacenter servers. The goal for an RTOS, cyclic execu-
tive, or any embedded mission-critical system has always been to keep the 
design and confi guration simple, to simplify verifi cation, and to minimize 
the resources required in terms of space, mass, and power. Many of the 
early features of the Linux kernel simply made it unacceptable for real-
time systems (e.g., the early BKL [Big Kernel Lock], making the kernel 
non-preemptible), but many of these limiting features have also now been 
removed or improved [BKL]. In this chapter, we review best-effort, soft, 
and hard real-time requirements, how to adapt Linux for more predictable 
response, and how to integrate Linux into a range of hard and soft real-time 
architectures as a component. Further, it should be noted that embedding 
Linux is not synonymous with real-time Linux—not all real-time systems 
are embedded and not all embedded systems require real-time response.

11.2 Embedding Mainline Linux: Interactive and Best-Effort

Back in 1994 when one of the authors fi rst thought about embedding 
Linux for a NASA Space Shuttle demonstration project, this concept was 
not so straightforward. The requirements called for a range of services, 
from best-effort to soft real-time, in one embedded system to demonstrate 
instrument operations and automated planning and re-planning of obser-
vations from the payload bay of the Space Shuttle. The RTEMS RTOS 
was ultimately selected to run on a Motorola 68K processor board based 
on its small memory footprint and clear real-time features, but we did run 
Linux on the ground at Goddard Space Flight Center (the payload opera-
tions ground entry point for telemetry and commanding) and a mixture of 
Sun (Oracle) Solaris workstations in our POCC (Payload Operations Con-
trol Center) at the University of Colorado Boulder [Shepperd98]. RTEMS 
was an excellent selection as was Linux as an alternative to another Solaris 
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Unix workstation; both saved cost on the project compared to proprietary 
operating systems and speeded up the project by providing non-proprie-
tary full-source options compared to VxWorks and Solaris Unix [RTEMS]. 
The overall DATA (Distributed Automation Technology Advancement) 
system with embedded segment on the Hitchhiker class payload (running 
RTEMS), the ground entry point (running Linux), and the POCC running 
Solaris is shown in Figure 11.1. The system was fl own on STS-85 in the 
summer of 1997 and was one of the fi rst university-operated Shuttle pay-
loads (Hitchhiker class) to be fully operated remotely from a campus out-
side of a NASA facility. At that time, this author had the thought, “Wouldn’t 
it be great if we could just run Linux on the embedded segment, the near 
real-time ground entry point and POCC systems, and on the engineering 
analysis workstations?” Today, almost 20 years later, this is much more fea-
sible, given improvements made to the Linux kernel and the advancement 
in microprocessor capability with embedded SoCs.
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FIGURE 11.1 The University of Colorado Distributed Automation Technology Advancement Mission 
Operations System

Many systems are in fact not HRT (Hard Real-Time), which by defi ni-
tion means that failure to meet a deadline results in loss of life or property, 
but are rather soft real-time with requirements for near real-time interac-
tion with users and the environment in which they operate. The DATA-
CHASER (Colorado Hitchhiker and Student Experiment of solar Radiation) 
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system was just such a system. Students interacted with the payload through 
a NASA communication link for telemetry and commanding of three recycle 
instruments that had fl own on previous missions borrowed from Colorado’s 
LASP (Laboratory for Atmospheric and Space Physics). The fundamental 
engineering goal of the mission was to demonstrate a shared-control archi-
tecture where advanced planning, re-planning, and rule-based automation 
worked cooperatively with ground operators. This type of system needs to 
be interactive and meet soft real-time requirements where latency is on 
average within acceptable bounds.

Today, building the embedded segment with an embedded Linux sys-
tem as well as ground segment Linux systems would be far simpler based on 
excellent and growing support for Linux in commercial embedded systems. 
Fueled by commercial applications like Android tablets and mobile smart 
phones, today one can simply purchase a development kit that comes pre-
loaded with embedded Linux. For example, as shown in Figure 11.2, Texas 
Instruments ships an ARM-based SoC called OMAP (Open Multimedia 
Applications Platform) that runs a Debian/Ubuntu Linux distribution or 
Angstrom Linux (a more minimal distribution of Linux maintained by Tex-
as Instruments). These types of systems can be powered from off-the-shelf 
lithium polymer batteries for many hours (up to 12 in the authors’ experi-
ence with 5,000 mAh or more) in embedded applications.

FIGURE 11.2 TI-OMAP Beagle xM Running Debian/Ubuntu or Angstrom Linux

The available SoCs that boot embedded Linux (typically either Debian/
Ubuntu Linux or Yocto Linux) are growing rapidly and now include many 
multi-core SoCs with vector coprocessors or options to interface custom 
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hardware for IO using FPGAs. The NVIDIA Jetson is a quad-core system 
with a 192-core GPU, as shown in Figure 11.3, that comes pre-loaded with 
Debian/Ubuntu Linux and OpenCV (Open Computer Vision), which is 
readily used in instrumentation and machine vision applications—for exam-
ple, on UAVs (Unmanned Aerial Vehicles) or robotics applications where 
MV/CV (Machine Vision/Computer Vision) is useful for the application.

FIGURE 11.3 NVIDIA Jetson ARM SoC Ubuntu Linux Platform

The authors have been experimenting with both the NVIDIA Jetson 
and a semi-custom-built FPGA interface board for MV/CV using the Al-
tera DE0 (Development and Education—Model 0) FPGA board, as shown 
in Figure 11.4. The point of this work is to compare the many-core vec-
tor coprocessing provided by a GPU for MV/CV to purpose-built FPGA 
state machines for image transformation in terms of power effi ciency and 
processing capability. Either way, the availability of Linux on embedded 
systems is revolutionizing interactive, soft real-time, and best-effort em-
bedded systems. Whether it will also overtake the RTOS for mission-critical 
systems remains to be seen. The authors caution that mission-critical HRT 
systems are best constructed using proven, verifi able RMA methods and 
AMP RTOS. This may never change since the market-driven aspects of em-
bedding Linux (interactive Android systems, game consoles, set-top boxes, 
smart televisions) do not exist for HRT mission-critical systems. As such, it 
is not so likely that the Linux Foundation or Linux developers in general 
will be highly motivated to make changes to Linux to support HRT.

One option for system designers who want to use embedded Linux but 
have a mixture of HRT, SRT, and best-effort requirements for services is 
to use a coprocessor for the HRT services that either runs an AMP RTOS 
or a coprocessor that provides hardware-based processing with an FPGA or 
purpose-built ASIC.  In general, the AMP RTOS solution hosts the HRT 



242 • REAL-TIME EMBEDDED COMPONENTS AND SYSTEMS WITH LINUX AND RTOS

services with the SRT and best-effort services coordinated on a separate 
node through message-passing interfaces where Linux runs concurrently 
with the AMP RTOS.

Many more options for turn-key embedded Linux exist, such as the 
Wandboard shown in Figure 11.5, and the list continues to grow. Today the 
fun of Linux bring-up, development of the LSP (Linux Support Package), 
which is equivalent in function to an RTOS BSP (Board Support Package), 
is almost no longer an issue for the systems and applications developer who 
is happy using one of the many off-the-shelf embedded solutions.

FIGURE 11.5 Freescale Wandboard (Photo: http://www.wandboard.org/)

FIGURE 11.4 FPGA Coprocessor Board for Use with 
TI-OMAP Linux Systems for MV/CV
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However, as the Linux Foundation has noted, the ability to tailor Linux 
confi gurations, the Linux kernel, and the LSP is still critical for many em-
bedded products and projects. So, the Linux Foundation has supported the 
Yocto project, which provides an approach to create simpler custom Linux 
confi gurations and kernel builds to assist the integration of Linux with new 
hardware and for more effi cient smaller-size kernel images. Figure 11.6 
shows the Intel Galileo Board, which can run either a Yocto-built Linux 
kernel or a more turn-key Debian/Ubuntu Linux kernel.

FIGURE 11.6 Intel Atom Galileo Board Running Ubuntu Linux 
(Photo: http://www.intel.com/content/www/us/en/do-it-yourself/galileo-maker-quark-board.html)

Many of the Yocto-supported systems are designed for scaling of em-
bedded systems and include advanced coprocessing solutions with FPGAs 
and PCI Express (Peripheral Component Interconnect), such as the DE2i 
board that boots a reference Yocto Linux image out of the box. Yocto is 
well supported by the Linux Foundation [Yocto]. One of the author’s has 
used all of the example off-the-shelf boards with Linux as described in this 
chapter for teaching and research. These systems likely make good evalua-
tion and reference design starting points for practitioners developing new 
Internet of Things appliances and devices, as well as practicing engineers 
working on Android mobile systems, game consoles, set-top boxes, and 
other commercial and consumer devices. The Intel DE2i shown in Figure 
11.7 is the largest, most scalable and confi gurable embedded Linux system 
this author has worked with. Along with smaller-scale TI-OMAP, NVID-
IA Jetson, the DE2i provides an excellent embedded Linux platform for 
research, teaching, and evaluation for applications that require signifi cant 
digital media or image processing capability for SRT and interactive best-
effort applications.
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FIGURE 11.7 Intel Quad-Core Atom with Altera Cyclone IV FPGA Running Yocto Linux (Photo: http://
www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/de2i-150-fpga-dev-kit.pdf )

11.3  Linux as a Non-Real-Time Management and 
User Interface Layer

Many industries and systems vendors provide support for HRT and 
SRT with interactive interfaces for users provided by Linux or Windows 
by segmenting the HRT/SRT services and supporting them in an embed-
ded cyclic executive or RTOS subsystems or FPGA/ASIC hardware solu-
tion on-chip, with an interface to a best-effort operating system to provide 
interfaces for users. The idea is that the user interface is primarily for con-
fi guration and control of the HRT processing done by the CE, RTOS, or 
ASIC subsystem. This is a well-proven approach. For example, National 
Instruments often uses this approach for laboratory automation and data 
acquisition solutions so that use of its solutions provides well-known and 
friendly interfaces for scientifi c and engineering users, but at the same time 
provides predictable or deterministic responses for mission-critical digital 
control and data acquisition processes.

At the time of publication, the DE1 SoC, which incorporates a Cyclone-
V SoC with FGPA fabric and multi-core ARM processors, has been made 
available through Altera’s University Program. Altera provides a FreeRTOS 
port, as described on its support page [Altera RTOS].

Many embedded Linux systems run a Debian distribution kernel and 
often provide a full Ubuntu distribution as well, such that the embedded 
system includes native build tools and a graphical user interface just like 
Ubuntu installed on a Virtual Box VM.
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The DE1 SoC and SoCs like it with hard processor cores integrated 
with an FPGA fabric provide an excellent option for running Linux best-
effort or for soft real-time predictable-response applications with all hard 
real-time services implemented as FGPA state machines, providing deter-
ministic response with coprocessing. This is an excellent alternative to an 
RTOS AMP approach for systems that must mix hard real-time services 
with the convenience of a general-purpose operating system, such as Linux.

11.4  Methods to Patch and Improve Linux for 
Predictable Response 

The primary issue with trying to use Linux in HRT systems is the ap-
proach used for kernel data and preemption. In this section, we evaluate a 
number of the factors that make the default confi guration of Linux prob-
lematic for deterministic scheduling and how the developers are attempt-
ing to address them. These changes are available from a variety of sources, 
and while they do not completely provide guaranteed scheduling perfor-
mance, they greatly improve the situation. 

Any operating system must face a number of challenges around pro-
tecting kernel and scheduler data that may be accessed by both threads and 
interrupts. This may come from different threads in the kernel performing 
operations, or it may be through API calls by user threads. Similarly, the 
interrupts may be signaling some activity to wake up a thread or a timer that 
releases a thread that was previously sleeping. 

FIGURE 11.8 Altera DE1-SoC FreeRTOS or Embedded Linux System 
(Photo: https://www.altera.com/support/training/university/de1-soc.html)
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When Linux solely supported single-core processors, protecting these 
resources was relatively straightforward—use calls to disable interrupts. 
This ensures that the kernel data that may be updated when a task unblocks 
another task is not also accessed by an API that is called when an interrupt 
triggers a similar event. Disabling interrupts also prevents the scheduler 
from running and potentially replacing the kernel thread that was accessing 
the data structures. 

As Linux began to support multiple processor cores, this situation be-
came more complex. The initial approach was to include a single shared 
mutex that protects all the kernel data. This mechanism, called the Big 
Kernel Lock (BKL), was introduced shortly after the support for multiple 
processors. This allowed a couple of advantages, most importantly protect-
ing kernel resources from simultaneous accesses on different processors. It 
also strongly mimics the original behavior of locking interrupts, making it 
very easy to overlay on the existing code. 

There are a number of inherent diffi culties with this type of approach. 
Using a large granularity (like “any kernel structures”) leads to ineffi cient 
protection. The use of the BKL presented other issues. While it did allow 
recursive locks to simplify nested calls, it could not be called within inter-
rupt context. It is also possible to sleep a thread while holding the BKL, and 
it is automatically released when the thread sleeps. This makes coding espe-
cially tricky since there is the potential to release the lock and compromise 
the benefi ts of the kernel lock. 

So what are the alternatives? Clearly, the Linux kernel benefi ts from 
more fi ne-grained locking compared to the earlier BKL. How else can 
Linux create a mechanism to lock data structures and protect access with-
out also creating issues with interrupt context accesses? The answer for 
multiprocessor systems is an approach known as spin locks. The spin lock 
performs the same function as a binary semaphore used as a mutex, but it 
does it without sleeping the thread that attempts to take the lock. This idea 
is a very different approach from the BKL. It allows much fi ner-grain lock-
ing since spin locks allow each data structure or hardware resource to be 
protected individually. By preventing sleeping when the lock is currently 
held, it can even be used in interrupt context, creating a complete solution 
to the problem of protecting kernel resources.

So how does it work? To take the spin lock the processor continual-
ly polls on a lock, using an atomic check-and-set operation to attempt to 
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capture the lock. If the lock is captured, the code continues processing and 
completes whatever actions are needed in the critical section. Once the 
critical section exits, the code releases the spin lock and continues normal 
thread operation. This all works since in a multiprocessor system, there is 
another hardware context that is running the thread that currently holds 
the spin lock. This allows the critical section that currently holds the lock to 
complete and prevents the spinning from continuing indefi nitely.

This implementation brings several limitations with it, creating con-
straints on the code that is using spin locks and changing the overall be-
havior of the scheduler. The fi rst important restriction is that code that is 
currently holding a spin lock must not sleep. Similar to not sleeping when 
interrupts are disabled, it is very important that code that holds a spin lock 
completes the critical section as quickly as possible. Any thread or interrupt 
that is attempting to access the spin lock will tie up hardware resources 
and limit the number of cores available for other activities. Another obvi-
ous limitation is that spin locks cannot be used recursively. Once the lock 
is held, all future attempts to claim it will fail, even from the same thread. 

The other effects are more subtle. While an effective mechanism for 
protecting data and ensuring that even interrupts have coherent access, 
the timing of this synchronization is nearly impossible to predict. Multiple 
kernel threads and interrupts all interacting to hold data structures with 
open-ended durations can prevent the scheduler and other key threads 
from running. Each thread that accesses a spin lock is—by necessity—
un-preemptible within those critical sections. Making this problem more 
extreme, many architectures will prevent additional interrupts from fi ring 
while one is currently active. The consequence is that the spinning done in 
interrupt contexts further increases the variability of interrupt timing. With 
the scheduler tick driven off a timer interrupt, this directly translated into 
addition variability in the task scheduling.

The approach taken by the PREEMPT_RT patch looks to address 
these issues. The primary approach is to convert the spin locks into sema-
phores that allow the blocked process to sleep so that any kernel process 
that is holding a spin lock can sleep and allow the scheduler to run. This also 
requires that interrupts be run in high-priority threads instead of directly in 
interrupt contexts. With the interrupts in a process context, they can sleep 
as well while still preserving the protection of data between interrupts and 
kernel threads.
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The only remaining sections that cannot be preempted are the areas 
that deal directly with scheduler resources. These sections get a new desig-
nation function call, and the number of these new non-preemptible sections 
is kept to a minimum. The more fl exible approach reduces the complexity 
since there are fewer areas that require great care to not sleep the thread. 

This does come with an impact from increased overhead. If a section 
holding a spin lock is brief—as it is expected to be—the window of time 
that the thread is sleeping is small. Especially when the overhead cost of 
saving and restoring contexts is large, this can slow down the response in 
many cases. The benefi t is that the worst-case time is more tightly bounded, 
providing much more reliable scheduling. 

To help mitigate some of the additional overhead, there is a version of 
the spin locks called “sleeping spin locks”—these poll briefl y and then sleep 
if the lock is still not available. 

For real-time services, an RTOS normally provides a binary sema-
phore, a mutual exclusion semaphore (MUTEX), and counting semaphores 
for producer and consumer threads. As has been well documented and 
discussed by the Linux community, a fair scheduling system, such as the 
default in Linux, does not suffer from priority inversion. This was hotly de-
bated and discussed when Linux was fi rst used in soft real-time system so-
lutions. The reason a fair scheduler like Completely Fair Scheduler (CFS) 
in Linux eliminates priority inversion is because it is in fact fair. In the 
unbounded inversion scenario, the middle-priority thread (or task) must 
be able to interfere with the low-priority indefi nitely as is the case with 
priority-preemptive run-to-completion schedulers in an RTOS. In a fair 
scheduler, the low-priority thread will continue to get some CPU time and 
will therefore not block the high-priority task waiting on the MUTEX indef-
initely. However, Linux does provide the FIFO scheduling class with real-
time priorities, which, unlike the default, is not fair. So, for FIFO threads in 
Linux, unbounded priority inversion can still be an issue. For this scenario 
when FIFO threads are used, the Linux kernel can be patched with the 
MUTEX / FUTEX patch for inversion-safe semaphores for use with prior-
ity-preemptive run-to-completion threads used with the FIFO scheduling 
option (compared to CFS time-sliced threads or round-robin).
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11.5 Linux for Soft Real-Time Systems

Soft Real-Time Linux requires methods of analysis and tools to ensure 
that response times for SRT services are within acceptable bounds on av-
erage. This is true for a range of SRT applications run on Linux, includ-
ing game consoles, set-top boxes, smart televisions, scientifi c laboratory 
data acquisition systems, and many other applications where predictable 
response is needed, but occasional variation in the latency and response is 
acceptable. Generally speaking, not only should the Linux kernel be con-
fi gured and patched as described in the previous section, but also the ser-
vice applications should be written with care using the POSIX real-time ex-
tensions presented in Chapter 9. The POSIX real-time extensions include 
many operating system features to improve predictable response for real-
time services and applications. One of the best starting points to learn these 
extensions is still Bill Gallmeister’s summary of the standards [Gallmeis-
ter95], but the reader should also carefully review the extensions to POSIX 
[POSIX1003.1] themselves, with emphasis on the real-time index [POSIX 
RT], and read the corresponding manual pages for Linux (or RTOS) being 
used to make sure that the standards are, in fact, supported. As of the time 
of the publication, it is possible to download an entire POSIX 1003.1 2013 
Edition from the Open Group as a set of HTML fi les that can be browsed. 
Once this is done, the T101 directory will contain a Realtime Index [POSIX 
RT].

11.6 Tools for Linux for Soft Real-Time Systems

Many tools are available for Linux to profi le and trace systems, includ-
ing Wireshark, Kernelshark, system logs, the GNU profi ler, Intel’s VTune, 
and simple instrumentation with time stamps in application code as pro-
vided by example in this text. Generally speaking, profi ling is useful to de-
termine where the majority of time is spent in an application or by an oper-
ating system kernel. Tracing, which is often more useful for soft real-time 
verifi cation, analysis, and debug, provides instrumentation showing events 
related to code execution with time stamps. Both profi ling and tracing tools 
are valuable for Linux soft real-time systems, but tracing is invaluable.
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Summary

Not everyone agrees that RT Linux is a great idea; however, it is gain-
ing support, and is certainly feasible and useful for systems and applica-
tions that mix soft real-time with best-effort services. For example, Linux 
is already used in digital cable and digital media set-top boxes where video 
is decoded and presented in real time, but with relatively soft deadlines 
and with signifi cant hardware acceleration provided by decoder coproces-
sors. Very few applications are truly hard real-time, where missing an oc-
casional deadline by milliseconds or tens of milliseconds will really cause 
loss of life or property. So, even if RT Linux only supports soft real-time 
better than it does today, this is still signifi cant and will broaden the use of 
Linux and threaten the RTOS market share. The cyclic executive has the 
key advantage of a very small resource footprint in addition to determinism, 
so it’s unlikely that RT Linux will compete with it, but RT Linux is likely 
to be a formidable challenge to the traditional RTOS for all applications 
except HRT. So, HRT applications such as commercial aircraft fl ight con-
trol, digital control in general, and process control are likely to continue to 
use the RTOS for some time. The hypervisor RTOS running with a Linux 
confi guration on the same platform is noteworthy and could compete with 
real-time Unix (e.g., LynxOS and RedHawk Linux). Based on a history of 
patching Linux to support predictable-response applications and real-time 
versions of Unix, it is unlikely that a modifi ed version of VxWorks, for ex-
ample, will replace Linux or slow down the erosion of RTOS market share 
for soft real-time systems. The fact that Wind River supports its own Linux 
distribution is an interesting indication that perhaps it feels the same way. 

Exercises

1. Install Oracle Virtual Box on a Windows or Macintosh OS-X personal 
computer, download and install the Ubuntu LTS (Long-Term Support) 
version of Linux, and install it on a VM (Virtual Machine). Configure 
and boot Linux on the VM, download Linux examples from the DVD, 
and run and test the “simplethread” code.

2. Download, build, and run the Linux threaded image processing example 
from the DVD, and analyze, describe, and characterize timing for the 
thread grid used for both best-effort SCHED_OTHER and priority-
preemptive run-to-completion SCHED_FIFO.

ON THE DVD

ON THE DVD
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3. Apply Linux RT patches to the Linux kernel installed on Virtual Box 
from #1 or on any embedded Linux system, and run jitter and latency 
build-up tests before and after patching, similar to the analysis found on 
the DVD.

4. On a Virtual Box Linux installation from #1 or any embedded Linux 
system, download the DVD posix_mq.c code, build it, and show that you 
can send messages between pmq_send and pmq_receive. Describe 
where the messages are buffered.

5. On a Virtual Box Linux installation from #1 or any embedded Linux 
system, download the “twoprocs” code, build it, run it, and compare it 
to “simplethread”. Which approach provides the simplest method to 
make use of multi-core systems and provide concurrency? Describe two 
or more advantages and disadvantages of Linux processes compared to 
threads in general.

6. On a Virtual Box Linux installation from #1 or any embedded Linux 
system, download the “blocking-examples” code, build it, run it, 
and describe what happens in deadlock.c as well as pthread3.c and 
pthread3ok.c.
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 ● Trace Ports
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12.1 Introduction

Debug ideally includes hardware and software support in the form of 
monitoring and control so that errant conditions can be reproduced and 
analyzed and corrective action taken to eliminate bugs. Corrections can be 
made with software or hardware modifi cation in order to eliminate the er-
rant behavior detected by a debug monitor. A debug monitor is any code or 
hardware state machine or interface that allows the user to observe errant, 
unexpected deviations from designed behavior. To detect and defi ne a bug, 
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the system designer must fi rst have a clear concept of correct behavior from 
a design specifi cation. In this chapter common debug software and hard-
ware mechanisms, both built into the system and external, are reviewed. It 
would be impossible to include a comprehensive review in one chapter, so 
the goal of this chapter is to arm the reader with knowledge so that at the 
very least, the reader will know what questions to ask and how to further 
research debug methods.

Since the fi rst edition of this book, both Linux and Wind River’s Vx-
Works tools have dramatically improved, and the FreeRTOS project also 
became available and an option in addition to RTEMs and other open 
source RTOS (Real-Time Operating System). Overall, single-step debug, 
profi le, and trace tools used for software verifi cation have advanced signifi -
cantly in terms of ease of use and capability, but the fundamental uses and 
skills remain the same. The Wind River tools are integrated into the Work-
bench IDE (Integrated Development Environment) [WRS06], which 
serves the same function as Tornado, but provides tighter integration of 
edit, build, debug, and verifi cation tools, even more so than Tornado did. 
The IDE has always been an advantage of the RTOS along with small-
footprint confi gurable kernels, low-latency context switches, and interrupt 
handling, but today, Linux now has all the same tools available. The differ-
ence is that it’s up to developers to create their own IDE, using a wide 
range of editors, build methods, debuggers, tracing tools, and profi lers. To 
stay completely up to date, it is likely that this chapter would have to be 
rewritten every six months, so here, the focus is the methods and value 
rather than specifi cs of how to run the tools. For those new to Linux, the 
DVD provides a number of quick-start how-to guides that demonstrate 
current use of Linux development, debug, profi le tools, and trace tools.

12.2 Exceptions

Code is often developed as a set of functions to be called by other code 
modules or applications in a larger system. When code is designed for use 
by others, it’s important to program defensively so that a function does not 
assume that it will be passed only expected arguments. Likewise, for ap-
plications calling library functions that are perhaps linked in as object code 
and not verifi ed at the source level, it’s possible that this code might per-
form an illegal instruction, attempt to decode a bad address, overfl ow its 
stack, or any number of other errant behaviors. In general, mature code 

ON THE DVD
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bases will not suffer from such shortcomings, but during development, in-
tegration, and test, it may be useful to use exception handling and program 
asserts to isolate errant functions and code blocks.

One of the simplest and most common mistakes that can cause almost 
every microprocessor to generate an exception is to divide by zero. Division 
by zero causes an overfl ow and an undefi ned arithmetic result. In VxWorks, 
the kernel includes default exception handling, which suspends the task 
that caused the exception and prints out debug information to assist with 
locating the cause of the exception.

For example, the following code will cause the divide-by-zero excep-
tion on the VxWorks simulator and if compiled and run on Linux. Nobody 
would ever write code this obviously wrong; however, if the denominator 
is computed and data-driven, division by zero might not be so obvious. For 
the purpose of understanding how exceptions work, it’s also one of the easi-
est to force on all processors.

#include “stdio.h”

int diverror(void)
{
 return 1/0;
}

Run on the VxWorks simulator, the output to the windshell indicates 
that the task just spawned caused an exception and the suspended task ID 
noted along with the program counter and the target status register. 

-> sp diverror
task spawned: id = 10f0f60, name = s1u1
value = 17764192 = 0x10f0f60
-> 
Exception number 0: Task: 0x10f0f60 (s1u1)

Divide Error
Program Counter:            0x00f45368
Status Register:            0x00010246

408a0b   _vxTaskEntry   +47 : _diverror (0, 0, 0, 0, 0, 0, 0, 
                                         0, 0, 0)
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Probing a little deeper with the Tornado tools, dumping the task states 
in the windshell reveals that the created task from the sp command has 
been put into the suspended state by the VxWorks scheduler:

-> i
  NAME        ENTRY       TID    PRI   STATUS      PC       SP    
---------- ------------ -------- --- ---------- -------- -------- 
tExcTask   _excTask      1108de0   0 PEND         408358  1108ce0 
tLogTask   _logTask      11032b0   0 PEND         408358  11031b0 
tWdbTask   _wdbTask      10fe668   3 READY        408358  10fe518 
s1u1       _diverror     10f0f60 100 SUSPEND      f45368  10f0ed8 
value = 0 = 0x0

Dumping exception debug information to the windshell or console 
along with suspension of the offending task is the default handling of a 
microprocessor exception for VxWorks. This is often suffi cient during de-
velopment; however, an application might want to supply specifi c exception 
handling. The VxWorks kernel therefore includes a callback that can be 
registered with the kernel so that the application can provide custom han-
dling or recovery from exceptions. The divide-by-zero code is now modifi ed 
to include an exception hook:

#include “stdio.h”
#include “excLib.h”

void myExcHook(int taskID, int excVec, void *excStackFrame)
{
 logMsg(“Exception Trap for task 0x%x, excVec=0x%x\n”, 
taskID, excVec);
}
int diverror(void)
{
    excHookAdd(myExcHook);
    return 1/0;
}

With the added application-specifi c handler the application-specifi c 
handler is called in addition to the default handling.  The setout utility is 
used to ensure that the handler logMsg is output to the windshell.

-> setout
Original setup: sin=3, sout=3, serr=3

All being remapped to your virtual terminal...
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You should see this message now!!!
0x10f92b8 (t1): You should also see this logMsg
value = 32 = 0x20 = ‘ ‘ = __major_os_version__ + 0x1c
-> testExc
choose and exception [b=bus error, d=divide by zero]:
Generating divide by zero exception

Exception number 0: Task: 0x10f92b8 (t2)

Divide Error
Program Counter:            0x00f4510e
Status Register:            0x00010206

408a0b   _vxTaskEntry   +47 : 423df8 (110e450, 0, 0, 0, 0, 0, 0, 
                                      0, 0, 0)
423e51   _wdbFuncCallLibInit+ad : _testExc (0, 0, 0, 0, 0, 0, 0, 
                                            0, 0, 0)
f452eb   _testExc       +f3 : _diverror (0)
0x10f92b8 (t2): Trapped an Exception for task 0x10f92b8
value = 0 = 0x0

-> i
  NAME        ENTRY       TID    PRI   STATUS      PC       SP    
---------- ------------ -------- --- ---------- -------- --------
tExcTask   _excTask      1108de0   0 PEND         408358  1108ce0    
tLogTask   _logTask      11032b0   0 PEND         408358  11031b0     
tWdbTask   _wdbTask      10fe668   3 READY        408358  10fe518    
t2         0x423df8      10f92b8   4 SUSPEND      f4510e  10f91c0    
value = 0 = 0x0

Similarly in Linux, if the same code with divide by zero is executed, the 
process is terminated and a core is dumped to the fi le system for debug. 
Before looking into Linux, fi rst run the same example code and now gener-
ate a bus error. After this second run, the task listing using the “i” command 
shows that the task for the divide-by-zero run and the task for the bus error 
are now both suspended.

-> testExc
choose and exception [b=bus error, d=divide by zero]:
Generating bus error segfault exception

Exception number 0: Task: 0x10f0f60 (t3)
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General Protection Fault
Program Counter:            0x00f4512d
Status Register:            0x00010206

408a0b   _vxTaskEntry   +47 : 423df8 (110d948, 0, 0, 0, 0, 0, 0, 
                                      0, 0, 0)
423e51   _wdbFuncCallLibInit+ad : _testExc (0, 0, 0, 0, 0, 0, 0, 
                                            0, 0, 0)
f452cf   _testExc       +d7 : _buserror (ffffffff)
0x10f0f60 (t3): Trapped an Exception for task 0x10f0f60
value = 0 = 0x0
-> i
  NAME        ENTRY       TID    PRI   STATUS      PC       SP   
---------- ------------ -------- --- ---------- -------- --------
tExcTask   _excTask      1108de0   0 PEND         408358  1108ce0     
tLogTask   _logTask      11032b0   0 PEND         408358  11031b0    
tWdbTask   _wdbTask      10fe668   3 READY        408358  10fe518    
t2         0x423df8      10f92b8   4 SUSPEND      f4510e  10f91c0     
t3         0x423df8      10f0f60   4 SUSPEND      f4512d  10f0e88     
value = 0 = 0x0

The default handling in Linux or VxWorks is essentially the same if 
an exception is raised by errant code executing in a task or Linux process 
context. The default exception handling is much more drastic for code ex-
ecuting in VxWorks kernel or ISR context. In VxWorks, the default han-
dling reboots the target. Looking now at output on the simulator console, 
the default VxWorks exception handler also provides indication of the 
exception here.

                VxWorks

Copyright 1984-2002  Wind River Systems, Inc.

            CPU: VxSim for Windows
   Runtime Name: VxWorks
Runtime Version: 5.5
    BSP version: 1.2/1
        Created: Jul 20 2002, 19:23:59
  WDB Comm Type: WDB_COMM_PIPE
            WDB: Ready.
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Exception !
 Vector 0 : Divide Error
    Program Counter : 0x00f4510e
 Status Register : 0x00010206
Exception !
 Vector 13 : General Protection Fault
    Program Counter : 0x00f4512d
 Status Register : 0x00010206

On Linux, the same code causes a core dump when the shell is confi g-
ured to allow this.

To ensure that core dumps are allowed, use the built-in shell command 
called “unlimit” after compiling the example exception-generating code 
provided on the DVD.

[siewerts@localhost ex]$ tcsh
[siewerts@localhost ~/ex]$ gcc -g gen_exception.c -o genexc
[siewerts@localhost ~/ex]$ unlimit

Now, run the genexc executable to generate a segmentation fault by 
de-referencing a bad pointer.

[siewerts@localhost ~/ex]$ ./genexc
choose and exception [b=bus error, d=divide by zero]:b
Generating bus error segfault exception
Segmentation fault (core dumped)

On a Linux system, the core fi le dumped can be loaded and debugged 
with gdb. This allows for examination of the stack trace and identifi es the 
offending line of C code.

[siewerts@localhost ~/ex]$ gdb genexc core.13472
GNU gdb Red Hat Linux (5.2.1-4)
Copyright 2002 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, 
and you are welcome to change it and/or distribute copies of it 
under certain conditions.
Type “show copying” to see the conditions.
There is absolutely no warranty for GDB.  Type “show warranty” 
for details.
This GDB was configured as “i386-redhat-linux”...
Core was generated by `./genexc’.
Program terminated with signal 11, Segmentation fault.

ON THE DVD
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Reading symbols from /lib/i686/libc.so.6...done.
Loaded symbols for /lib/i686/libc.so.6
Reading symbols from /lib/ld-linux.so.2...done.
Loaded symbols for /lib/ld-linux.so.2
#0  0x0804837f in buserror (badPtr=0xffffffff) at 
                                               gen_exception.c:38
38          someData = *badPtr;
(gdb) bt
#0  0x0804837f in buserror (badPtr=0xffffffff) at 
                                               gen_exception.c:38
#1  0x080483d8 in main () at gen_exception.c:56
#2  0x420158d4 in __libc_start_main () from /lib/i686/libc.so.6
(gdb)

Run the code again and generate the divide-by-zero exception. Now 
load the core fi le dumped for the divide-by-zero exception generator, and, 
once again, the stack trace and offending line of code can be examined with 
gdb.

[siewerts@localhost ~/ex]$ ./genexc
choose and exception [b=bus error, d=divide by zero]:d
Generating divide by zero exception
Floating exception (core dumped)
[siewerts@localhost ~/ex]$

siewerts@localhost ~/ex]$ gdb genexc core.13473
GNU gdb Red Hat Linux (5.2.1-4)
Copyright 2002 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, 
and you are welcome to change it and/or distribute copies of it 
under certain conditions.
Type “show copying” to see the conditions.
There is absolutely no warranty for GDB.  Type “show warranty” 
for details.
This GDB was configured as “i386-redhat-linux”...
Core was generated by `./genexc’.
Program terminated with signal 8, Arithmetic exception.
Reading symbols from /lib/i686/libc.so.6...done.
Loaded symbols for /lib/i686/libc.so.6
Reading symbols from /lib/ld-linux.so.2...done.
Loaded symbols for /lib/ld-linux.so.2
#0  0x08048368 in diverror (arg=0) at gen_exception.c:31
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31          someNum = 1/arg;
(gdb)

So, both Linux and VxWorks provide stack trace information and the 
location in code where the exception is raised. When an exception occurs, 
it’s easiest to single-step debug the code to determine why the code is caus-
ing the exception. In the Tornado environment, this is most easily done us-
ing the Cross Wind debug tool, as shown in Figure 12.1. The “Single-Step 
Debugging” section of this chapter will cover exactly how to start and use 
the single-step debugger in Tornado (or Workbench for readers using the 
latest IDE from Wind River).

FIGURE 12.1 Using KDE Development Kdbg to Analyze and Exception

Likewise, in Linux, a graphical single-step debugger will make it easier 
to determine why code is raising an exception. Numerous graphical debug-
gers are available for Linux, and most run on top of the gdb command-line 
debugger. Figure 12.2 shows usage of the KDE environment Kdbg graphi-
cal debugger.

Again, the “Single-Step Debugging” section of this chapter covers 
exactly how to start and use the single-step debugger in the Linux KDE 
environment.
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FIGURE 12.2 Using Tornado Cross Wind to Analyze Exception

12.3 Assert

Preventing exceptions rather than handling them is more proactive. 
Certainly code can check for conditions that would cause an exception and 
verify arguments to avoid the possibility of task suspension or target reboot. 
The standard method for this type of defensive programming is to include 
assert checks in code to isolate errant conditions for debug. In C code, 
pointers are often passed to functions for effi ciency. A caller of a function 
might not pass a valid pointer, and this can cause an exception or errant 
behavior in the called function that can be diffi cult to trace back to the bad 
pointer. The following code demonstrates this with a very simple example 
that fi rst passes printAddr a valid pointer and then passes a NULL pointer:

#include “stdio.h”
#include “stdlib.h”
#include “assert.h”

char validPtr[] = “some string”;
char *invalidPtr = (char *)0;
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void printAddr(void *ptr)
{
 /* will assert and exit program here if pointer is NULL */
 assert((int)ptr);

 printf(“ptr = 0x%08x\n”, ptr);
}

int main(void)
{
 printAddr(validPtr);
 printAddr(invalidPtr);

 return OK;
}

Running the preceding code on a VxWorks target or VxSim pro-
duces the following output:
ptr = 0x00f453ac
Assertion failed: (int)ptr, file C:/Home/Sam/Book/CDROM/Exam-
ple-Code/assert.c, line 11

Use of assert checking in code makes the error in the calling arguments 
obvious and avoids confusion. Without the assert check on the pointer pa-
rameter, it might seem that there is an error in the function called when it 
fi nally attempts to de-reference or otherwise use the pointer, which would 
most likely cause an exception. The assert check is also supported in Linux.

12.4 Checking Return Codes

Any RTOS like VxWorks provides a signifi cant API with mechanisms 
for task control, inter-task communication, synchronization, memory man-
agement, and device interfacing. Calls into the API can fail for numerous 
reasons, including the following:

 ● Failure to meet preconditions by the application (e.g., semTake when 
semaphore has not been created).

 ● Kernel resources have been exhausted.

 ● A bad pointer or argument is passed by the application.

 ● A timeout occurs on a blocking call.
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For this reason, application code should always check return codes 
and handle failures with warnings logged or sent to console or assert. Not 
checking return codes often leads to diffi cult-to-fi gure-out failures beyond 
the initial obvious API call failure.

In VxWorks the task variable errno always indicates the last error en-
countered during an API call. A call to perror() in VxWorks will also print 
more useful debug information when an API call returns a bad code.

12.5 Single-Step Debugging

Single-step debugging is often the most powerful way to analyze and 
understand both software algorithmic errors, hardware/software interfaces 
errors, and sometimes even hardware design fl aws. Single-step debugging 
can be done at three different levels in most embedded systems:

 ● Task- or process-level debugging

 ● System- or kernel-level debugging

 ● Processor-level debugging

Most application developers are accustomed to task- or process-level 
debugging. In this case, a process or task is started in VxWorks or Linux, 
and most often a break point is set for the entry point of the task or process. 
This method allows the user to debug only one thread of execution at a 
time. Often, this is suffi cient control because either the application being 
debugged is signally threaded, or if multithreaded, then other threads in 
the overall application will most often block awaiting synchronizing events 
(e.g., a semaphore or message) before proceeding. Debugging asynchro-
nous multithreaded applications is much more diffi cult and requires either 
system- or kernel-level debugging or processor-level using TAP (Test Ac-
cess Port) hardware tools.

Task-level debugging in VxWorks is simple. Command-line debugging 
can be performed directly within the windshell. Graphical debugging can 
be performed using the Tornado tool known as Cross Wind, accessed and 
controlled through a source viewer that displays C code, assembly, or a 
mixed mode. For embedded systems, debugging is described as cross-de-
bugging because the host system on which the debug interface runs does 
not have to be the same architecture as the target system being debugged. 
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On the other hand, it certainly can be the same, which might be the case 
for an embedded Linux system or an embedded VxWorks system running 
on Intel architecture. Furthermore, the embedded system may not have 
suffi cient IO interfaces for effective debug. A cross-debugging system runs 
a debug agent on the embedded target, and debug source viewing and com-
mand and control are done on a host system. For Tornado, the host tool is 
Cross Wind and the debug agent is WDB (Wind Debug). The debug agent 
accepts commands and replies with current target state information when 
requested.  

One of the most basic features of any debugger is the ability to set break 
points and to run or single-step between them. There are two ways that 
break points are most often implemented:

 ● Hardware break points 

 ● Software break points

Hardware break points require that the processor include a break point 
address register, a comparator that determines whether the IP (Instruction 
Pointer) or PC (Program Counter) matches the requested break address, 
and a mechanism to raise a debug exception. The debug exception causes 
a halt in the normal thread of execution, and the debug agent installs a 
handler so that the user can examine the state of the target at the point of 
this exception. One important and notable characteristic of hardware break 
points is that the number is limited to the number of comparator registers 
provided by the specifi c processor architecture. Often the limit is only two 
or at most a half dozen, but it’s defi nitely limited by hardware supporting 
resources. A signifi cant advantage of hardware breakpoints is that they do 
not modify the code being debugged at all and are reliable even if memory 
is modifi ed or errantly corrupted.

A processor reset or power cycle is most often the only way they can be 
cleared. Software break points are unlimited in number. They are imple-
mented by inserting an instruction into the code segment of the thread of 
execution being debugged. They modify the code, but only by inserting a 
single instruction to raise a debug exception at each requested break point. 
After the debug exception is raised, the debug agent handling of the excep-
tion is identical. When the debug agent steps beyond the current break 
point, it must restore the original code it replaced with the debug exception 
instruction. Software break points have the disadvantage that they can and 
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mostly likely will be lost every time code is reloaded, if memory is errantly 
corrupted, and when a processor is reset.

Most software debug agents, such as WDB and the GNU debug agent, 
use software break points due to their fl exibility and unlimited number. 
For task-level debug, the host Cross Wind debug tool requests the WDB 
debug agent to set a break point in a code segment for a specifi c task. This 
allows the debug agent to handle the debug exception, to compare the cur-
rent task context to the task being debugged, and to suspend that task. Run 
the example code sequencer that creates two tasks that run and can be 
calibrated to run for 10 to 20 milliseconds on any target system, and the 
sequencer releases serviceF10 ever 20 milliseconds and serviceF20 every 
50 milliseconds. This uses 90% of the processor cycles while it runs. After 
the two tasks are running, their state can be observed with the “i” command 
to dump all task control blocks.

-> i
  NAME        ENTRY       TID    PRI   STATUS      PC       SP     ERRNO 
---------- ------------ -------- --- ---------- -------- -------- -------
tExcTask   _excTask      1158de0   0 PEND         408358  1158ce0       0
tLogTask   _logTask      11532b0   0 PEND         408358  11531b0       0
tWdbTask   _wdbTask      114e668   3 READY        408358  114e518       0
t1         0x423df8      11492b8   4 DELAY        408358  11491d8       0
serviceF10 _fib10        1140f60  21 PEND         408358  1140e74       0
serviceF20 _fib20        113bc08  22 PEND         408358  113bb1c       0
value = 0 = 0x0

The t1 task is the sequencer and most often will be observed in delay 
between releases of serviceF10 and serviceF20. The two services will most 
often be observed as pending while they wait for release. The i command 
is implemented by a request to the tWdbTask (the target agent), so it will 
be observed as ready (running in VxWorks) because it has to be running 
to make the observation. Now, start the Cross Wind debugger (usually by 
clicking on a bug icon), select Attach, and then select serviceF10 and use 
the i command to dump the TCBs (Task Control Blocks) again.

Figure 12.3 shows the Cross Wind debugger now attached to 
serviceF10.
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FIGURE 12.3 Cross Wind Debugger Attached Asynchronously to Running Task

-> i
  NAME        ENTRY       TID    PRI   STATUS      PC       SP     ERRNO
---------- ------------ -------- --- ---------- -------- -------- -------
tExcTask   _excTask      1158de0   0 PEND         408358  1158ce0       0
tLogTask   _logTask      11532b0   0 PEND         408358  11531b0       0
tWdbTask   _wdbTask      114e668   3 READY        408358  114e518       0
t1         0x423df8      11492b8   4 DELAY        408358  11491d8       0
serviceF10 _fib10        1140f60  21 SUSPEND      408358  1140e74       0
serviceF20 _fib20        113bc08  22 PEND         408358  113bb1c       0
value = 0 = 0x0

The serviceF10 task has been suspended by the WDB debug agent. 
Now the debug agent can be queried for any information on the state of this 
task and code executing in the context of this task that the user wants to see. 
It can be single-stepped from this point as well. When this is done, most 
often the running task is caught by the attach somewhere in kernel code, 
and if the user does not have full kernel source, a disassembly is displayed 
along with a single-step prompt.

Asynchronously attaching and single-stepping a running task are often 
not helpful to the user debugging the code being scheduled by the kernel 
and that calls into the kernel API. Instead of attaching to a running task, 
now start the same sequencer from the debugger (fi rst stop the debugger 
and restart the target or simulator to shut down the running tasks). Now, 
restart the debugger after the target or simulator is running again, and from 
the Debug menu, select Run. Start Sequencer from the Run dialog box, 
and select Break at Entry. Note that arguments to the function entry point 
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can also be passed in from the debugger tool if needed. At the windshell, 
output will indicate that the task has been started and that it has hit a break 
point immediately on entry.

-> 
Break at 0x00f940e7: _Sequencer + 0x3        Task: 0x11492b8 (tDbgTask)

-> i
  NAME        ENTRY       TID    PRI   STATUS      PC       SP     ERRNO
---------- ------------ -------- --- ---------- -------- -------- -------
tExcTask   _excTask      1158de0   0 PEND         408358  1158ce0       0
tLogTask   _logTask      11532b0   0 PEND         408358  11531b0       0
tWdbTask   _wdbTask      114e668   3 READY        408358  114e518       0
tDbgTask   _Sequencer    11492b8 100 SUSPEND      f940e7  1149244       0
value = 0 = 0x0

Note the debug agent wrapper task tDbgTask with the entry point 
started from the debugger is in the suspend state. At the same time, a view-
er window with a source-level debug prompt appears in Tornado, as shown 
in Figure 12.4.

FIGURE 12.4 Cross Wind Source-Level Debugging
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In general, a C compiler generates numerous machine code instruc-
tions for each line of C code, and the source-level debugger can view the 
current IP (Instruction Pointer) location in a mixed C source and disas-
sembled view, as shown in Figure 12.5. This view can be very useful if the 
C compiler is generating bad code (not likely, but possible) or if it’s generat-
ing ineffi cient code (more likely).

FIGURE 12.5 Cross Wind Mixed C and Assembly-Level Debugging

Process-level debug in Linux is often the equivalent of task-level debug 
in VxWorks. A Linux process can be multithreaded with POSIX threads, for 
example, in which case the pthread is the equivalent of the VxWorks task. 
One advantage of embedding Linux is that many of the application algo-
rithms can be developed and debugged on the host Linux system without 
cross-debugging. Cross-debugging is required only when the bug is related 
to how the code specifi cally executes on the target system. Figure 12.6 
shows the use of Kdbg to debug the multithreaded priority inversion demo 
code found on the DVD.

ON THE DVD
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FIGURE 12.6 Kdbg Mixed C and Assembly Source-Level Debugging

The example pthread code can be built using gcc linking in the pthread 
library and using the -g option to include debug symbols.

[siewerts@localhost ~/ex]$ gcc -g pthread.c -lpthread -o pthread

The Kdbg application can load the pthread executable and will fi nd the 
C source based upon the ELF (Executable and Linking Format) informa-
tion, which includes all symbols as well as the source code path.

If an embedded Linux application needs to be debugged, it can be re-
motely debugged with gdb by connecting to gdb remotely over a serial or 
TCP connection over Ethernet. To use gdb remotely, you must link debug-
ging stubs with your embedded application and then use gdb target remote 
/dev/ttyS0, for example, to connect over serial to the embedded application 
for debug.

System- or kernel-level debugging rather than attaching to a single task 
or process is tricky because both the Linux and the VxWorks systems rely 
upon basic services (or daemons in Linux) to maintain communication with 
the user. For example, in VxWorks, the WDB and shell tasks must run along 
with the net task to maintain communication between the Tornado host tools 
and the target. Similarly, Linux communicates through shells or a windowing 
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system. In VxWorks, system-level debug requires a special kernel build and 
the use of a polling driver interface for communication. Likewise, Linux re-
quires use of kdb the kernel debugger. The advantage of system-level debug 
is that it allows for single-stepping of the entire kernel and all applications 
scheduled by it. System- or kernel-level debugging is most often used by 
Linux driver, kernel module, and kernel feature developers.

Instead of system-level debug, a hardware debug method can be used 
to single-step the entire processor rather than using the system-debug soft-
ware method. This has an advantage in that no services are needed from 
the software because communication is provided by hardware. The JTAG 
(Joint Test Application Group) IEEE standard has evolved to include de-
bug functionality through the TAP (Test Access Port). A JTAG is a device 
that interfaces to a host via parallel port, USB, or Ethernet to command 
and control the TAP hardware that allows for processor single-stepping, 
register loads and dumps, memory loads and dumps, and even download 
of programs for services such as fl ashing images into nonvolatile memory.

Figure 12.7 shows the Wind River VisionCLICK JTAG debugger run-
ning on a laptop connected to a PowerPC evaluation board with a parallel 
port host interface and a JTAG BDM (Background Debug Mode) connec-
tion to the PowerPC TAP.  

FIGURE 12.7 Typical JTAG Debugger Setup

The JTAG standard includes external clocking of the device under test 
(most often the processor for debug), the capability to clock test data in 
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or out of the TAP, and reset control. The TAP provides basic decoding 
of address, data, and control so that any addressable memory within the 
processor can be read or written. A JTAG debugger can be used, includ-
ing extended versions of gdb, so that code segments loaded via JTAG into 
memory of nonvolatile memory can be single-stepped. Although JTAG de-
bugging requires additional hardware tools, it has powerful capability. For 
example, code can be boot-strapped onto a system that has no current boot 
code. Bringing up new hardware and downloading, testing, and fl ashing 
initial boot code that runs from a system reset vector is a fi rmware develop-
ment task. By defi nition, fi rmware is software that runs out of nonvolatile 
memory, most often to boot a device and make it useable by higher-level 
software, often loaded by the fi rmware. The JTAG requires no target soft-
ware support and provides an interface so that initial boot-strap code can 
be loaded, debugged, and eventually programmed into a nonvolatile boot 
memory device. After the platform has been boot-strapped with JTAG, a 
more traditional debug agent, such as WDB, can be used instead for sys-
tem-level or task-level debug.

Since publication of the fi rst edition of this book, many systems now have 
a USB-to-JTAG bridge chip (or module on an SoC) so that a simple USB 
cable from your laptop is all that you need for JTAG debugging (e.g., the 
DE1-SoC featured in Chapter 11 and with resources found on the DVD). 
The fundamentals of JTAG and TAP, however, have remained the same. 

Ability to develop code on embedded systems with native development 
tools has also grown tremendously. For example, the Beagle boards and 
the Jetson featured as examples in this book come pre-loaded with boot 
images for Linux. The DE1-SoC (System on a Chip) with FPGA (Field 
Programmable Gate Array) for reconfi gurable computing has readily found 
pre-built Linux images that can be written to a fl ash device (micro-SD card) 
using open source utilities to create an embedded Linux boot and root fi le 
system. So, the days of laboring over board bring-up are long gone; how-
ever, any work on custom hardware will still require the use of a JTAG for 
BSP (Board Support Package) or LSP (Linux Support Package) develop-
ment. The BSP or LSP is the fi rmware that is board-specifi c and enables 
an RTOS or Linux to boot (start execution out of a power-on reset) and 
manage basic interfaces, like serial, USB, and Ethernet. In some ways these 
reference boot images and kernels are similar to the old PROM monitors 
(plug-in EEPROMs that had basic pre-built shells that ran over serial), but 
of course much more capable. Another reason that JTAG still has signifi cant 

ON THE DVD
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value is that developers may want to build a simpler cyclic executive or 
their own custom operating environment. This is a fair amount of work, but 
for more purpose-built systems, this can lead to much less overhead and 
a more effi cient set of real-time services and features. Finally, the JTAG 
is most often used for reconfi gurable SoC systems, like the DE1-SoC, to 
download FPGA bit-streams, the state machine and combinational logic 
designs used to defi ne coprocessors. So, JTAG will continue to be an invalu-
able development and debug tool; USB-to-JTAG bridges on-chip and at 
lower cost have made this critical fi rmware tool more accessible than ever. 

12.6 Kernel Scheduler Traces

Kernel scheduler tracing is a critical debug method for real-time systems. 
Real-time services run either as ISRs or as priority-preemptive scheduled 
tasks. In VxWorks, this is the default scheduling mechanism for all tasks. In 
Linux, the POSIX thread FIFO scheduling policy must be used for system 
scope threads. Process scope POSIX threads are run only when the process 
that owns them is run. System scope POSIX threads, such as VxWorks tasks, 
are run according to preemptive priorities by the kernel. The kernel itself 
must also be preemptible for predictable-response real-time scheduling. The 
Linux kernel can be confi gured and patched to make it more preemptible, 
like the VxWorks Wind kernel. Given a preemptible priority-driven multi-
service system as just described, RM theory and policy can be used to as-
sign priorities to services and to determine whether the system is feasible. A 
system is feasible if none of the services will miss their required deadlines. 
Theory is an excellent starting point, but the theoretical feasibility of a system 
should be verifi ed and any deadline misses observed must be debugged.

The Tornado/VxWorks development framework (now called Work-
bench) includes a tool called WindView (now called System Viewer) that 
provides an event trace of all tasks (services) and ISRs (services) in the 
system along with synchronous and asynchronous events. A semaphore give 
and take is shown as a synchronous event on the context trace along with 
asynchronous events, such as interrupts, exceptions, and timeouts. Figure 
12.8 shows a WindView trace for an NTSC video capture driver, which 
transports frames to an external viewing application over TCP. System 
Viewer adds some new post-capture (after the trace is downloaded from a 
target) analysis features, but largely is the same otherwise. Often the sim-
plest level of even collection showing task execution and context switches 
along with interrupts is in fact the most useful view.
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FIGURE 12.8 WindView Trace for Video Capture and Transport

In Figure 12.8, the 1-millisecond interval timer interrupt can be seen 
as INT0.

Exactly 33 of these occur between the two starts of the tBtvid task re-
leases. The video encoder frame rate for this trace was 30 fps. The INT10 
interrupt is associated with the tNetTask and is the Network Interface Card 
(NIC) DMA-completion interrupt. The bulk of the service activity between 
frame acquisitions is releases of the streaming task and the TCP/IP network 
task. Idle time indicates that the processor is not fully utilized, and in a 
WindView trace, this is time that the Wind kernel dispatcher was spinning 
and waiting for something to dispatch from the ready queue by priority. 
Figure 12.9 shows two synthetic load services (each service computes the 
Fibonacci sequence): S1 runs for 10 milliseconds every 20 milliseconds, and 
S2 runs for 20 milliseconds every 50 milliseconds.  

FIGURE 12.9 WindView Trace for Synthetic Service Loading
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On this trace, the semaphores used to sequence and release the two 
services, fi b10 and fi b20, can be seen along with two sequencers, sem10 and 
sem20, which simply delay and give semaphores to release fi b10 and fi b20. 
The task delays are indicated by the right-pointing arrows and the hashed 
trace. The solid traces for fi b10 and fi b20 are processor execution time, 
and the dotted trace indicates time where some other task or interrupt is 
running, or idle time. This particular two-service scenario uses 90% of the 
available processor cycles over a 100-millisecond period. The 100-milli-
second period is the LCM (Least Common Multiple) of the two release 
periods T1=20 and T2=50 milliseconds. The expected execution times are 
C1=10 milliseconds and C2=20 milliseconds for S1 and S2. From this trace, 
it’s clear that the releases of the services are well synchronized, and the 
execution times are accurate and as expected. Time-stamping on the trace 
is done using architecture-specifi c hardware timers, such as the interval 
timer, or on the Intel x86, the TSC (Time Stamp Counter), which is as ac-
curate as the processor cycle rate. In general, time-stamping is accurate to 
a microsecond or less when supported by a hardware time stamp driver.

Scheduler traces of tasks and kernel events, such as WindView, are 
clearly very illuminating when debugging real-time systems. Situations like 
services overrunning deadlines are made obvious and allow the debugger 
to zero in on problematic sequences and perhaps better synchronize ser-
vices. WindView can also be very helpful when services simply run too long 
and must be tuned to improve effi ciency. The runtime of each release can 
be clearly observed. Using a function call, wvEvent, in application code, 
the trace can be further annotated with the chevron indicators and counts 
shown previously in Figure 12.8. These application event indicators can be 
used for events such as frame counts or anything that is useful for tracing 
application-level events. Although WindView is clearly useful, a frequent 
concern is how intrusive all this tracing is to the execution of application 
services.

WindView (System Viewer) is a tracing mechanism that involves soft-
ware in-circuit rather than hardware in-circuit to collect the trace data. 
SWIC (SoftWare In-Circuit) methods are advantageous because they don’t 
require electrical probing like logic analyzers (LAs) or built-in logic on pro-
cessor chips, and can be added to systems in the fi eld and even remotely ac-
cessed. One of the authors worked on a project where operators of a space 
telescope have the option of turning on WindView collection and dumping 
a trace back to Earth over the NASA Deep Space Network—hopefully this 
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will never be needed. To understand how intrusive SWIC methods such 
as WindView are, you need to understand the event instrumentation and 
the trace output. The least intrusive way to collect trace data is to buffer 
the trace records in memory (typically bit-encoded 32-bit words or cache-
line-sized records). Most processors have posted write-buffer interfaces to 
memory that have signifi cant throughput bandwidth. Looking more closely 
at the traces in Figures 12.8 and 12.9 earlier in the chapter, it’s clear that 
events occur at the rate of milliseconds on the 200 MHz processor the trac-
es were taken on. In general, because there are trace events every 1 mil-
lion or more nanosecond scale processor cycles for event rates measured in 
milliseconds and the trace writes to memory take one write-back cycle, the 
trace output loading on the processor is very low. The instrumentation to 
detect events in the Wind kernel requires built-in logic in the kernel itself. 
The instrumentation requires logical tests. Overall, each event trace point 
might take 10 to 100 processor cycles every 1 million cycles—a very low 
additional loading to the processor for tracing. For low-load tracing, it’s 
critical that the trace be buffered to memory. After collecting trace data, 
the full trace should be dumped only after all collection is done and dur-
ing non-real-time operation or slowly during slack time. Dumping a trace 
buffer can be very intrusive, and signifi cant care should be taken regarding 
how and when this is done. In all traces shown in this chapter, dumping was 
done after collection by request using the WindView host tools.

Building trace instrumentation into the Wind kernel is simple. The 
Workbench (or Tornado) confi guration tool can be used to specify how the 
WindView instrumentation is built into the VxWorks kernel, where and how 
much trace data is buffered, and how time-stamping is done. Figure 12.10 
shows usage of the Tornado (now Workbench) kernel confi guration tool 
and specifi cally WindView instrumentation, download, and time-stamping 
options for the VxWorks build. The latest versions of Wind River Work-
bench with System Viewer work essentially the same way as Tornado and 
WindView, but of course the graphical user interface has an updated look 
and is perhaps more user-friendly.

Linux can be traced using a tool called the Linux Trace Toolkit, which 
is very similar to WindView. The operation is a bit different, but the end 
result is the same: a SWIC trace of kernel and system events, including ap-
plication services. Like VxWorks, to use LTT, you must patch and build a 
custom Linux kernel with LTT instrumentation. The details of LTT usage 
are well covered by the maintainers of LTT and by Linux Device Drivers 
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[Corbet05] and Building Embedded Linux Systems [Yaghmour03]. Note 
that SWIC tracing can be easily built into most any system by placing mem-
ory writes with effi cient encoded trace records into the kernel scheduler. 
Much of the work is related to dumping the trace buffer and post-process-
ing it for analysis. Often placing the instrumentation in the kernel is very 
straightforward.

Since the fi rst edition of this book was written, a number of additional 
system tracing tools have become available for Linux, including “Ftrace” 
[Ftrace], Kernelshark [Kernelshark], and Systemtap [Stap]. At the time of 
the fi rst edition, LTT was really the only option for event trace verifi cation 
and debug similar to the Wind River System Viewer, but today, there are 
numerous options for tracing Linux kernel events and function calls and 
viewing a graphical trace. The online documentation for all three tools is ex-
cellent. Likewise the installation of LTT next-generation [LTTng] is much 
simpler than the previous versions, which required kernel patches. With a 
few apt-get installations you can be running LTTng and looking at babel-
trace output listings pretty quickly. Systemtap is also simple, but requires 

FIGURE 12.10 Adding WindView Kernel Instrumentation
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writing scripts, although a large library of existing scripts exists that can be 
used as is or adapted. Finally ftrace and Kernelshark are perhaps most like 
WindView (System Viewer) for VxWorks. None of the Linux tracing tools 
seem as simple as System Viewer, but keep in mind that the Linux kernel 
is much more complex than the Wind kernel and has many more events.

12.7 Test Access Ports

The IEEE 1149.1 standard for JTAG was originally designed for bound-
ary scan to ensure that devices on a digital electronic board assembly were 
all properly connected. Designed primarily for factory verifi cation, the in-
terface includes test data in and test data out signals so that bit sequences 
can be shifted into and out of a chain of devices under test. An expected test 
data output sequence can be verifi ed for a test data input sequence. The 
interface also includes a clock input and reset. Eventually, microprocessor 
and fi rmware developers determined that JTAG could be extended with 
the TAP interface. The TAP allows a JTAG to send bit patterns through the 
scan chain and also allows the JTAG user to command a processor, single-
step it, load registers and memory, download code, and dump registers and 
memory out so that commands and data can be sent to the device under 
test. A processor with a TAP can be fully clocked and controlled by a JTAG 
device, which allows the user to boot-strap it into operation right out of the 
hardware reset logic.

From the basic JTAG functionality, external control of microprocessors 
for fi rmware development has continued to evolve. Multiprocessor systems 
on a single chip can also be controlled by a single JTAG when they are 
placed on a common boundary scan chain. The TAP allows for selection 
of one of the processors with bypass logic in the chain so that processors 
not under JTAG control can forward commands and data. More on-chip 
features to support JTAG have evolved and are often referred to as on-chip 
debug, yet the basic command and control of these additional features are 
still through the basic JTAG signal interface. Before JTAG, fi rmware was 
developed for new hardware systems with a “burn and learn” approach, 
where EEPROM devices were externally programmed and socketed into 
the new system to provide nonvolatile boot code to execute from the pro-
cessor reset vector. Typically, the EEPROM was programmed to fi rst ini-
tialize a serial port to write out some confi rming “hello world” data, blink an 
LED, and initialize basic components, such as memory. If the EEPROM 
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program didn’t work, the fi rmware programmer would try again, repeating 
the process until progress was made.

After a PROM program was developed for a new processor board, most 
often the program was provided as a PROM monitor to make things easier 
for software developers. PROM monitors would provide basic code down-
load features, memory dumps, disassembly of code segments, and diagnos-
tic tests for hardware components on the system board. The PROM moni-
tor was a common starting point for developing more sophisticated boot 
code and fi rmware to provide platform services for software.

Today, most systems are boot-strapped with JTAG rather than “burn 
and learn” or PROM monitors. The capability of JTAG and on-chip debug 
has progressed so much that, for example, the entire Tornado/VxWorks tool 
system (Workbench/VxWorks) can be run over JTAG, including WindView 
(System Viewer). This allows fi rmware and software developers to bring 
up new hardware systems rapidly, most often the same day that hardware 
arrives back from fabrication. The history of this evolution from burn and 
learn to PROM monitors to use of JTAG and more advanced on-chip debug 
is summarized well by Craig A. Haller of Macraigor Systems [Zen]:

First there was the “crash and burn” method of debugging. . . . Af-
ter some time, the idea of a hardware single step was implemented. 
. . . At some point in history, someone (and after reading this I will 
get lots of email claiming credit) had the idea of a debugger monitor 
(aka ROM monitor). . . . Similar in concept to the ROM emulator, the 
next major breakthrough in debugging was the user friendly in-circuit 
emulator (ICE). . . . The latest addition to the debugger arsenal is on-
chip debugging (OCD). . . . Some processors enhance their OCD with 
other resources truly creating complete on-chip debuggers. IBM’s 4xx 
PowerPC family of embedded processors have a seven wire interface 
(“RISCTrace”) in addition to the OCD (“RISCWatch”) that allow for a 
complete trace of the processor’s execution.

The OCD that Craig Haller describes is a combination of JTAG with a 
trace port, which approximates the capability of an ICE. The ICE tradition-
ally included a chip bond-out interface so that the ICE could monitor all 
pin IO signals to the DUT (Device Under Test). This was more valuable 
when most processors interfaced to memory to fetch code and update data 
without cache, on-chip memory, on-chip buses, and in the case of SoC, 
even multiple processor cores on-chip. Monitoring external signals when 
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all of the action is on-chip does not make sense. So, the ICE has become 
less widely used and methods of OCD (On-Chip Debug) are expanding 
to include not only JTAG and trace but also on-chip ILAs (Internal Logic 
Analyzers) and signal probe multiplexors, such as the Xilinx Chip Scope 
monitor. Given the trends with larger and larger levels of integration on 
a single chip with SoC designs, OCD will continue to expand. Along with 
simplifi cation of the cabling (typically only a USB cable needed today since 
the USB-to-JTAG bridge is often on-chip now too) the capabilities of OCD 
continue to improve. Likewise, many embedded systems today ship with 
pre-built Linux images or RTOS images (almost serving the same purpose 
as a PROM monitor, but with much more sophistication). However, JTAG 
and OCD will always have values since someone must always write bring-
up fi rmware for new printed circuit boards and new SoCs.

12.8 Trace Ports

Simpler microcontrollers and older microprocessors often were inte-
grated into a system using an ICE (In-Circuit Emulator). An ICE includes 
an interface that is interposed between a processor and the system board 
and can monitor and control all input and output signals to and from the de-
vice. The ICE can therefore track the state of the device under test as long 
as no internal memory devices other than registers are loaded and stored to 
an externally visible memory. When on-chip cache emerged as a processor 
feature, this made a true ICE diffi cult to implement.

Then the ICE had no idea what was being loaded from cache and writ-
ten back to cache on-chip and could easily lose track of the internal state of 
the processor being emulated. The emulation provided not only all the fea-
tures of JTAG TAP but also full-speed state tracing so that bugs that were 
observable only running at full speed, and not seen when single-stepping, 
could be understood. This type of hardware or software bug, often due 
to timing issues or race conditions in code that is not well synchronized, 
is known as a Heisenbug. The name indicates that, like the Heisenburg 
Uncertainty Principle, where a particle’s position and momentum can’t 
be simultaneously observed, a Heisenbug can’t be single-stepped and the 
faulty logic observed simultaneously. This type of bug is observable only 
under full-speed conditions and is diffi cult to isolate and reproduce in a 
single-step debug mode. An ICE can be invaluable for understanding and 
correcting a Heisenbug.
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Trace ports have emerged as a solution for the cost and complexity of 
ICE implementation and the ability to debug full-speed execution of soft-
ware with no intrusion at the software level. WindView (System Viewer) 
is also an approach, but does involve intrusion at the software level. Trace 
ports use internal hardware monitors to output internal state information 
on a limited number of dedicated IO pins from a processor to an external 
trace acquisition device. For example, the IP can be output from the pro-
cessor core onto 32 output pins every cycle so that the thread of execution 
can be traced while a system runs full-speed. The trace analysis is done 
off-line after the fact, but collection must occur at the same speed as the 
execution, and therefore external trace acquisition requires test equipment 
such as a logic analyzer or specialized digital signal capture device. For a 
full picture of what code is doing in a full-speed trace, the IP must be cap-
tured along with data address and data value vectors on the interface unit 
between the processor core and the memory system, including cache. This 
is a signifi cant number of output pins. Most often, trace ports abbreviate 
information to reduce trace port pin count. For example, a trace port might 
include the IP only (no data or address information) and furthermore com-
press the IP output to 8 bits. The 32-bit IP can be compressed down to 8 
bits by including built-in trace logic that outputs only relative offsets from 
an initial four-cycle output of the IP at the start of the trace. Most often, 
code branches locally in loops or in decision logic rather than making abso-
lute 32-bit address branches. If the code does take a 32-bit address branch, 
then the internal logic can indicate this so that the external trace capture 
system can obtain the new IP over fi ve or more core cycles.

Trace ports can be invaluable for diffi cult software defects (bugs) ob-
servable only at full-speed operation. However, a trace port is expensive, 
complicated, and not easy to decode and use because it requires external 
logic analysis equipment. As a result, internal trace buffers are being de-
signed into most processor cores today. The internal trace buffer stores a 
limited number of internal state vectors, including IP, address, and data 
vectors, by a hardware collection state machine into a buffer that can be 
dumped. Trace buffers or trace registers (often the buffer is seen as a single 
register that can be read repeatedly to dump the full contents) are typically 
set up to continuously trace and stop trace on exception or on a software as-
sert. This allows the debugger to capture data up to a crash point for a bug 
that is observable only during extended runtimes at full speed. This post-
mortem debug tool allows a system that crashed to be analyzed to determine 
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what led to the crash. For extensive debug, some trace buffers are essen-
tially built-in LAs that allow software to program them to collect a range of 
internally traceable data, including: (a) bus cycle data, (b) the instruction 
pointer, (c) address, (d) data vector, and (e) register data. The point of full-
state capture is to emulate the capability that hardware/software debuggers 
had when all these signals could be externally probed with an LA.

12.9 Power-On Self-Test and Diagnostics

An important part of the boot fi rmware is the ability to test all hardware 
interfaces to the processor. Boot code can implement a series of diagnostic 
tests after a power-on reset based on a nonvolatile confi guration and indi-
cate how far it has advanced in the testing since reset through LEDs, tones, 
or a record in nonvolatile memory. This process is called POST (Power-
On Self Tests) and provides a method for debugging boot failures. If the 
POST codes are well-known, then a hardware failure can be diagnosed and 
fi xed easily. For example, if the POST code indicates that all interfaces are 
okay, but that memory tests failed, then replacing memory is likely to fi x the 
problem. POST codes are also often output on a bus to memory or an ex-
ternal device, so probing an external bus allows you to capture POST codes 
and diagnose problems even when the external devices on that bus are not 
operating correctly. The x86 PC BIOS (Basic Input Output System) has 
a rich history of POST and POST code output to well-known devices and 
interfaces so that confi guration and external device failures can be readily 
diagnosed and fi xed [POST]. A career can be made writing and understand-
ing BIOS fi rmware and, for that matter, fi rmware on any system. A signifi -
cant part of a fi rmware engineer’s job is simply getting a processor up and 
cycling monitor and diagnostic code safely so that the system can be more 
easily used by application programmers. 

Describing how diagnostics can be written in general is diffi cult be-
cause the range of peripheral devices a processor might interface to is end-
less. However, all processors interface to memory, either internal on-chip 
or external off-chip memory. So, every fi rmware engineer should be famil-
iar with memory testing. Memory tests include the following:

 ● Walking 1s test to verify processor to memory data bus interface

 ● Memory address bus verification
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 ● ECC (Error Correction Circuitry) initialization and test

 ● Device pattern testing

The walking 1s test ensures that memory devices have been properly 
wired to the processor bus interface. Byte lanes for wide memory buses 
could be swapped, and shorts, open circuits, noise, or signal skew could all 
cause data to be corrupted on the memory interface. A walking 1s test 
should simply write data to memory with words or arrays of words that 
match the width of the memory data bus. A memory bus is often 128 bits or 
wider. Most architectures support load/store multiple or load/store string 
instructions that allow multiple registers to be written to the bus or read 
from the bus for aligned data structures. On the PowerPC G4, load/store 
string instructions can be used to write 128 bits to memory on a 128-bit 
memory bus with walking 1s to ensure that the interface is fully functional. 
Memory data buses wider than a single 32 bit will have a bus interface that 
may coalesce multiple writes to adjacent word addresses, but using the 
multi-word instructions helps ensure that the test uses the full bus width. 
Since the publication of the fi rst edition, most all modern processors and 
SoCs now include vector instructions that can modify, read, and write mul-
tiple words at a time, known generally as SIMD (Single Instruction, Mul-
tiple Data)—for example, the SSE (Streaming SIMD) instructions for x86, 
Altivec for PowerPC, ARM Advanced SIMD known as “NEON,” and 
MIPS-3D for the MIPS instruction set architecture.

The following code included on the DVD uses structure assignment in 
C to coax the compiler into generating load/store string instructions with 
the proper gcc C compiler directives.

#include “stdio.h”
#include “assert.h”

/* 4 x 32-bit unsigned words = 128-bit */
typedef struct multiword_s
{
    unsigned int word[4];
} multiword_t;

/* these declarations should be aligned on 128-bit boundary */
const multiword_t test_zero = {{0x0,0x0,0x0,0x0}};
volatile multiword_t test_pattern = {{0x0,0x0,0x0,0x0}};
volatile multiword_t test_location = {{0x0,0x0,0x0,0x0}};

ON THE DVD
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void assign_multi(void)
{
    test_location = test_pattern;
}

void test_multi(void)
{
   register int i, j;

   for(i=0;i<4;i++)
   {
       test_pattern = test_zero;

       for(j=0;j<32;j++)
       {
           /* walk the 1 up the bits in 128-bit aligned structure 
*/
           test_pattern.word[i] = (0x1 << j);
 
           /* structure assignment */
           assign_multi();

           /* assert if stored data does not have a bit set */
           assert(test_location.word[i]);

       }
   }
}

int main(void)
{
    test_multi();
}

Compiling this code on a Darwin OS PowerPC G4 Macintosh with no 
particular compiler directives, the assign_multi function code does not use 
load/store string instructions.  

Sam-Siewerts-Computer:~ samsiewert$ gcc mw.c -o mw
Sam-Siewerts-Computer:~ samsiewert$ otool -v -t mw > mw.out
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The otool is a binary utility for Darwin OS that will disassemble object 
code. The disassembled code for mw.c reveals that the compiler does not 
normally generate load/store string instructions. The load/store multiple in-
structions (stmw and lmw) are used to push and pop the stack. The 128-bit 
structure assignment load/store instructions are indicated in bold type.

_assign_multi:
00002a70 stmw r30,0xfff8(r1)
00002a74 stwu r1,0xffd0(r1)
00002a78 or r30,r1,r1
00002a7c mfspr r0,lr
00002a80 bcl 20,31,0x2a84
00002a84 mfspr r8,lr
00002a88 mtspr lr,r0
00002a8c addis r9,r8,0x0
00002a90 addi r9,r9,0x5ac
00002a94 addis r2,r8,0x0
00002a98 addi r2,r2,0x59c
00002a9c lwz r0,0x0(r2)
00002aa0 lwz r11,0x4(r2)
00002aa4 lwz r10,0x8(r2)
00002aa8 lwz r2,0xc(r2)
00002aac stw r0,0x0(r9)
00002ab0 stw r11,0x4(r9)
00002ab4 stw r10,0x8(r9)
00002ab8 stw r2,0xc(r9)
00002abc lwz r1,0x0(r1)
00002ac0 lmw r30,0xfff8(r1)
00002ac4 blr

Modifying the compile line a bit to request level 2 optimization and to 
allow load/store string code generation and disassembling again the same 
structure assignment in C now is done with one lswi and one stswi in place 
of the four lwz (load word and zero) and four stw (store word) instructions 
above.

Sam-Siewerts-Computer:~ samsiewert$ gcc -O2 -mstring mw.c -o 
mw
Sam-Siewerts-Computer:~ samsiewert$ otool -v -t mw > mw.out

_assign_multi:
00002b24 mfspr r0,lr
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00002b28 bcl 20,31,0x2b2c
00002b2c mfspr r10,lr
00002b30 mtspr lr,r0
00002b34 addis r9,r10,0x0
00002b38 addis r2,r10,0x0
00002b3c addi r9,r9,0x504
00002b40 addi r2,r2,0x4f4
00002b44 lswi r5,r2,16
00002b48 stswi r5,r9,16
00002b4c blr

Instead of coaxing the compiler into the load/store string instructions, 
the assembly could be written and called from the C. The most important 
point, however, is that the memory test should test the full bus width and 
not just one word at a time. The mw.c code has debug output that can be 
turned on by passing –DDEBUG on the compile line so that the walk-
ing 1s test patterns can be observed and so that the 128-bit alignment of 
the multi-word structures can be verifi ed. Note that the addresses of the 
structures are all multiples of 0x10, 16 bytes, or 128 bits. By default most 
compilers will align structures unless specifi cally directed not to do so, but 
it is still a good idea to verify this. Some of the walking 1s output has been 
abbreviated here.

addr(test_zero) = 0x00002ff0
addr(test_pattern) = 0x00003020
addr(test_location) = 0x00003030

i=0, j=0  mword = 0x00000000000000000000000000000001
i=0, j=1  mword = 0x00000000000000000000000000000002
i=0, j=2  mword = 0x00000000000000000000000000000004
i=0, j=3  mword = 0x00000000000000000000000000000008
…
i=0, j=31 mword = 0x00000000000000000000000080000000

i=1, j=0  mword = 0x00000000000000000000000100000000
i=1, j=1  mword = 0x00000000000000000000000200000000
i=1, j=2  mword = 0x00000000000000000000000400000000
i=1, j=3  mword = 0x00000000000000000000000800000000
…
i=1, j=31 mword = 0x00000000000000008000000000000000
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i=2, j=0  mword = 0x00000000000000010000000000000000
i=2, j=1  mword = 0x00000000000000020000000000000000
i=2, j=2  mword = 0x00000000000000040000000000000000
i=2, j=3  mword = 0x00000000000000080000000000000000
…
i=2, j=31 mword = 0x00000000800000000000000000000000

i=3, j=0  mword = 0x00000001000000000000000000000000
i=3, j=1  mword = 0x00000002000000000000000000000000
i=3, j=2  mword = 0x00000004000000000000000000000000
i=3, j=3  mword = 0x00000008000000000000000000000000
…
i=3, j=31 mword = 0x80000000000000000000000000000000

The memory address bus can be tested by storing and retrieving pat-
terns to addresses that are powers of two [Barr99]. By addressing with pow-
ers of two, the address tested walks 1s on the address lines. Furthermore, 
addresses might be aliased either due to a mistake or on purpose if not fully 
decoded. For example, the same 32-MB memory can be addressed in the 
range from 0x00000000 to 0x001FFFFFF (0x002000000 bytes) and then 
again from 0x002000000 to 0x003FFFFFF, and so on. This could be an ad-
dress decoding error if it’s intended that the memory be mapped only once 
in the fi rst 32 MB of the address space and not aliased at other multiples 
of 0x002000000. This would happen if the address decoding included only 
26 bits rather than 32 bits. Most often a pattern of alternating 1s and 0s is 
used (0xAA or 0x55) for each byte to ensure that bits can be set to 0 and 
1 at all locations. The pattern and anti-patterns are operated on bitwise 
and combined to quickly verify data written and read back. This pattern 
and anti-pattern test can be written and read back over the entire memory 
range for a full device test.

12.10 External Test Equipment

Use of external test equipment for debug can be expensive, but also 
can save countless hours localizing a hardware/software interface bug that 
might be very diffi cult to isolate otherwise. Historically, the most common 
external test equipment used for verifying hardware/software systems in-
cluded an oscilloscope and a logic analyzer. The oscilloscope is used mostly 
to isolate signaling issues with the hardware, to verify signals, and to tune 
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output signals. The oscilloscope is most useful to the hardware engineer, 
but from a systems viewpoint, it’s valuable in embedded systems for verify-
ing the outermost extents of the system from sensor inputs (analog) to actu-
ator outputs (analog or PWM signals). Figure 12.11 shows the interface be-
tween a VxWorks embedded processor system, which captures frames from 
an NTSC camera, runs an image-processing service that determines where 
a visual target is in the camera’s FOV (Field of View), and then commands 
tilt/pan servos to center the object in the camera’s FOV. The MSO (Mixed 
Signal Oscilloscope) shown can probe 2 analog and 16 digital sources. Here 
the MSO is used to examine an NTSC output and verify the 30 fps output 
rate of the camera.

FIGURE 12.11 System Interfaces for an Embedded System

Examining the NTSC Signal for Thumbnail Camera

(Analog/Digital Interface between Processor and Sensor/Actuator Sub-
system)

Likewise, a relatively inexpensive MSO can be used for low-speed lim-
ited-width digital logic analysis as well. Logic analyzers have an advantage 
over oscilloscopes in that they can observe 16, 32, or more signals at the 
same time, but only at well-defi ned logic levels like TTL (Vthreshold = 1.4V) 
and CMOS (Vthreshold = 2.5V). The oscilloscope can be used to look at the 
same channels and to see their analog nature, including noise, rise time, fall 
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time, and overshoot. The MSO has an advantage in that it can display logic 
analyzer output and one or more oscilloscope changes on the same view, al-
lowing for logic analysis with probing of the same signals to examine analog 
signal issues that might be affecting digital logic.

Using the MSO to analyze an NTSC signal at milliseconds of resolution, 
the odd and even line raster periods can be seen at half the frame period 
(frame rate is 30 fps). Figure 12.12 shows the odd and even raster output 
signals measured with the MSO from a composite output CCTV (Closed 
Circuit Television) camera. NTSC is interlaced 2:1 so the fi eld rate is 60 fps. 
The composite signal output from the NTSC camera combines luminance 
and chrominance. The signal changes based upon the scene that the cam-
era views, but the basic period does not.

FIGURE 12.12 NTSC Composite Signal Odd and Even Scan Lines

If we use the MSO to go to a microsecond resolution, now the individu-
al scan lines within an odd/even raster can be detected. The CCTV cameras 
have 510 horizontal pixels and 492 vertical pixels, so 246 odd lines are digi-
tized and then 246 even lines. Each line therefore has a period of 67.75 mi-
croseconds in theory based upon the frame rate. Figure 12.13 shows each 
scan line as having a period of 61.7 microseconds. However, the simple 
calculation does not take into account vertical blank lines (where closed 
caption is inserted into the NTSC signal) or the latency between the odd 
and even scans. The measured period for a single scan line is less than the 
theoretical upper bound on the scan line period and therefore makes sense.

The MSO can also be used to analyze the tilt/pan servo control chan-
nels. A hobby servo is not rigorously standardized, but in general the servo 
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circuit and gearing are designed to be controlled by a PWM output with a 
separation between peaks of 20 to 80 milliseconds and a pulse width that 
varies between 2 milliseconds and 1 millisecond with servo center near 
1.5 milliseconds. Servo characteristics can vary, so each new hobby servo 
should be individually characterized and the PWM output signal tuned to 
it for the best results. The spacing between the pulses allows hobby radios 
to multiplex multiple servo signals into one PWM output, so the receiver 
can de-multiplex to allow for four or more channels on a single RC (Radio 
Control) frequency. For the applications of hobby servos presented in this 
book, only one signal is carried on each PWM signal, so the spacing be-
tween pulses can vary signifi cantly and has no effect. The pulse width sets 
the servo position. Figure 12.14 shows an MSO measurement of the PWM 
signal generated by the NCD 209 two-channel servo control chip.

FIGURE 12.14 NCD 209 Servo Controller Default PWM Output

FIGURE 12.13 NTSC Composite Signal Individual Scan Lines
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Note that the pulse width for the servo centering (the default output) 
is 1.5 milliseconds as expected and that the spacing between pulses is 63 
milliseconds.

For the most part, oscilloscopes are used to verify signals, to tune gen-
erated output signals, and to look for noise issues, cross talk, or other signal 
integrity problems in embedded system interfaces to sensors and actuators. 
Logic analyzers, on the other hand, are most often used in the digital do-
main depicted earlier in Figure 12.11. An LA (Logic Analyzer) can be used 
to debug logic after analog signals have been digitized or before digital sig-
nals are output to drive DACs or PWM actuators like servos. Likewise, an 
LA can be used to debug internal digital logic on a processor board or even 
to trace events on digital software/hardware interfaces, such as buses or 
GPIO (General Purpose IO) where the signal level is a common logic level. 
Probing high-speed logic signals such as those found on a DDR memory 
bus can be diffi cult due to speed, skew issues, and complexity in decoding 
the logic. Probing low-speed logic, such as GPIO, or simpler memory inter-
faces, such as SRAM, is much simpler. High-speed specialized buses, such 
as PCI, are often most easily traced using a bus analyzer that is specifi cally 
designed to capture and analyze logic signals only on one bus interface. Be-
cause the trend in embedded systems is to move external memory on-chip, 
the most useful probing is GPIO or using external bus analyzers, such as a 
PCI analyzer.

With a bus analyzer or LA used to capture GPIO output, software can 
be instrumented to emit trace information to the external bus or GPIO pins 
for analysis. However, given enough memory for a software trace buffer, it’s 
not clear how this is more advantageous than the SWIC WindView (System 
Viewer) style of tracing. In fact, Wind River often describes WindView as 
a “software logic analyzer.” A write to an external bus or GPIO memory-
mapped address can be more intrusive than posting a write to on-chip or 
external memory. However, oscilloscopes and LAs continue to be useful in 
general for diagnosing hardware problems and for tracing software that is 
not instrumented and software/hardware interactions.

12.11 Application-Level Debugging

Application-level debugging can be done by single-stepping a thread 
or using WindView (System Viewer). However, for multithread applica-
tions, single-stepping is sometimes not as useful when the interaction 
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between threads is the problem being examined. WindView is helpful, but 
shows only kernel events unless it’s further instrumented by the addition 
of wvEvent() calls in the application being debugged. However, wvEvent() 
has only limited information associated with it, so often programmers resort 
to printf calls so they can output state information to a console in string for-
mat. This can sometimes work okay, but often causes new bugs and can be 
misleading because printf calls signifi cantly change execution timing. This 
occurs mostly because printf requires a large amount of code from the C 
library to execute and also requires potential blocking while data is output 
to console devices. In VxWorks, printf should also not be called from ISR 
or kernel context. The better way to debug with output to a console is us-
ing logMsg. Logging simply causes a message to be queued that points to a 
message buffer. The actual string output is completed by a logging service 
rather than in the calling context. This allows the console IO to be decou-
pled from the calling thread of execution, and the caller is slowed down 
only for the duration of an in-memory write and message enqueue. Fur-
thermore, the priority of the logging service (task) can be controlled and 
therefore interference to real-time services by logMsg debug output is also 
controlled better than inline printf calls. Similarly, in Linux, syslog can and 
should be used. However, for Linux, the printf is fairly effi cient and highly 
buffered, so it’s not quite as intrusive as it is in VxWorks and many RTOS, 
which have simpler IO libraries. Likewise, for Linux kernel development, 
the printk (kernel print) is logged to a kernel log buffer that can be accessed 
in user space through the “dmesg” command.

Summary

Debugging the software/hardware interface, applications, and complex 
multi-service interactions can be diffi cult. Poorly synchronized services can 
suffer from race conditions. Likewise, poorly designed hardware/software 
interfaces that do not include synchronizing mechanisms can also have race 
conditions. In general, separate services should synchronize through sema-
phores or message queues if they need to interact, and likewise software 
should synchronize with hardware through interrupts, polling status regis-
ters, or control interfaces. Simple functional software errors can be easily 
caught through the use of parameter checking and assert calls. Hardware 
diagnostics and POST run by boot fi rmware can make hardware failures 
easier to isolate. Good practices can prevent many bugs before they be-
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come diffi cult to diagnose. However, many bugs related to software/hard-
ware integration will still arise; when they do, knowledge of debug moni-
tors, trace, and external test equipment is invaluable.

Exercises

1. Use an oscilloscope to characterize a common sensor or actuator inter-
face. Specifically, use a hobby servo controller like the NCD 209 and 
characterize the PWM for a given hobby servo and its limits of operation.

2. Use WindView to analyze the synthetic loading example included on the 
DVD. By default it includes two services that use 90% of the processor 
cycles. Modify this example to create and overload by increasing S2 run 
time to 30 milliseconds. Use a WindView trace to prove that this over-
loads the processor.

3. Download and use Kernelshark on a Linux system for system tracing 
(as documented by http://elinux.org/images/6/64/Elc2011_rostedt.pdf, 
http://man7.org/linux/man-pages/man1/kernelshark.1.html, http://linux.
die.net/man/1/trace-cmd ). Take a trace and explain what you observe.
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C H A P T E R

PERFORMANCE TUNING

13
In this chapter

 ● Introduction
 ● Basic Concepts of Drill-Down Tuning
 ● Hardware-Supported Profiling and Tracing
 ● Building Performance Monitoring into Software
 ● Path Length, Efficiency, and Calling Frequency
 ● Fundamental Optimizations

13.1 Introduction

The art of performance tuning a system or application is a huge topic 
that can’t be covered completely in this chapter. The chapter covers basic 
methods and provides enough knowledge for you to pursue a more in-depth 
understanding of performance tuning on your own with further study. Per-
formance tuning is critical to real-time embedded systems when services are 
missing deadlines. Otherwise, effi cient, high-performance execution of ser-
vices is not necessary, although it can help the designer to save cost, reduce 
power, and simplify thermal cooling for systems. Fundamentally, a real-time 
system is operating correctly when it produces the required output (func-
tions) and produces it by a specifi c deadline relative to request. Early in a 
project, system designers must size processing based upon understanding of 
the complexity of service algorithms. After algorithms are implemented and 
the system is running, services may take longer to run than expected and 
overrun deadlines. When this happens, there are several options:
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 ● Reduce the complexity of the algorithm

 ● Reduce the frequency of services

 ● Increase the execution efficiency of the algorithms with tuning

 ● Increase the processor throughput by upgrading hardware to run with a 
faster clock, more bandwidth, more memory, and less latency

From the standpoint of real-time correctness, any of these options is ac-
ceptable. Reducing the complexity of the algorithms for services may be an 
option, but might degrade the overall system quality. For example, software 
codecs (compression and decompression protocol for a data stream) can pro-
vide high rates of compression at the cost of higher algorithmic complexity. If 
the compression or decompression can’t keep up with the desired frame rate, 
the options include a lower-performance codec that is simpler and can be 
executed at the desired frame rate, or a lower frame rate. The simpler codec 
that provides less compression will require transport with higher bandwidth.

Often the options of reducing performance (e.g., lower frame rate) or 
of obtaining more resources (e.g., more bandwidth or increasing proces-
sor cycle rate) are not feasible or will not meet the system requirements. 
An alternative to more resources or performance reduction is performance 
tuning to optimize the effi ciency of service execution. This is easily said 
and hard to do. Ideally, a system design should not count heavily upon 
performance tuning to make it feasible, but tuning can save a project that 
would otherwise not work. From an RM perspective, tuning is just reduc-
ing WCET for a software service. Another option is to offl oad a service or 
specifi c functions that the service performs to hardware state machines. 
Offl oading functions can increase overall system concurrency and provide 
signifi cant speedup. (“Big Iron Lessons, Part 3: Performance Monitoring 
and Tuning” by Sam Siewert. First published by IBM at IBM developer-
Works Rational. (www.ibm.com/developerWorks/rational). All rights re-
tained by IBM and the author(s).)  

13.2 Basic Concepts of Drill-Down Tuning

The performance of fi rmware and software must be tuned to a work-
load. A workload is a sequence of service requests, commands, IOs, or other 
quantifi able transactions that exercise the software. Workloads most often 
are produced by workload generators rather than real-world service provi-
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sion. Good workloads capture the essential features of real-world workloads 
and allow for replay or generation of the service requests at a maximum rate 
so that bottlenecks can be identifi ed in systems. Most workload-generation 
tools are application- or service domain-specifi c—for example, compiler 
benchmarks or IO subsystem workloads generated by IOmeter, a com-
monly used disk IO workload generator.

Characteristics of code segments that most affect performance include 
the following:

 ● Segment path length (instruction count) 

 ● Segment execution efficiency (cycle count for a given path) 

 ● Segment calling frequency (in Hertz) 

 ● Execution context (critical path, or error path) 

The critical path includes code executed at high frequency for perfor-
mance evaluation workloads and benchmarks. It is often a small portion of 
the overall code implemented and can also often fi t into Level 1 instruction 
or L2 unifi ed cache.

Interrupt-based profi ling is the best place to start analysis of software 
services and deadline overruns. Interrupt profi ling requires that the system 
be run with a well-defi ned test workload, ideally a workload that stress-
es the services and is causing deadline overruns. The interrupt profi ler 
samples the IP (Instruction Pointer) or LR (Link Register) to determine 
location in code on a periodic basis. The LR is widely used in processor 
architectures because it contains a return from interrupt address and the 
samples of where the code was in execution are taken by interrupt. Observ-
ing the IP in the sample interrupt routine is of little use for profi ling. Often 
a 1-millisecond sample rate is used. The workload should be repetitive at 
some frequency—for example, a video frame rate of a specifi c resolution, 
a data request rate for a specifi c transfer size, a digital control loop sensor 
sample and control law output rate, or any workload that generates uni-
form periodic service requests. Multiple workloads can be analyzed, but 
while profi ling, one workload should be run at a time. Mixed workloads are 
much harder to profi le and understand. While a uniform workload is being 
run, the profi ler will sample the execution locations and with asynchronous 
sampling relative to the workload period (this is important) the profi le will 
begin to stabilize and show where in the code most of the time is spent for 
the given workload.
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Where time is spent, which service and function the IP or LR is ob-
served in most often are a function of three characteristics of the services:

1. Frequency of service execution (or function execution)

2. Instruction count or path length for each service release (or function)

3. Efficiency of code execution in each service release (or function)

Note that the profi ling can be mapped to services (tasks), to functions, 
to lines of C code, or even to individual machine code instructions. Figure 
13.1 depicts how a profi le collected at the level of hits observed at a 32-bit 
code address can be mined to understand where time is being spent from a 
very high level down to a machine code instruction.

Drill Down

Mapping to
Functions

Module or Function
Profile

CPU
Performance

Counters

PMAPI Profile Start
Command

Counts at
Addresses

Count Histogram

Line of C or ASM: /src/f00.C:332

Mapping to Line of Code
addr2line- foo.elf-functions 0x0007_a65e

0x0000_0000

0x0000_0004

>0x0010_0000

f003

f002

f004

f001

f0011
f0010f009

f008

f007

f006

f005

FIGURE 13.1 Performance Profile Data Mining (Hot Spot Drill-Down) Concept

As mentioned in the introduction, frequency and instruction count 
reduction can solve the performance problem, but at the cost of overall 
system performance. Ideally the goal is to identify ineffi cient code, or hot 
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spots as they are often called, and to make modifi cations to make those 
code blocks execute more effi ciently. A profi le that is cycle-based, where 
periodic sampling of the IP or LR is used, however, does identify hot spots 
in general and sets up more detailed analysis for why those code blocks are 
hot—frequency of execution, number of instructions in the block, or poor 
execution effi ciency. Poor execution effi ciency can be the result of stall-
ing a processor pipeline, missing cache, blocking reads from slow devices, 
misaligned data structures, non-optimal code generation from a compiler, 
bad coding practices, ineffi cient bus usage, and unnecessary computation.

One approach to tuning is to go through code from start to fi nish and to 
look for effi ciency issues, correct them, and try running again. This is tedious. 
It can work, but the time required, the slow payoff, and the large number 
of code changes required all contribute to risk with this approach. A better 
approach is to identify the hot spots, narrowing the scope of code changes 
signifi cantly, and then examine this subset of the code for potential optimiza-
tion. Combined with profi ling and hot spot identifi cation, optimization now 
has a feedback loop so that the value of optimizations can be measured as 
code is modifi ed. The feedback approach reduces risk (modifying any work-
ing code always runs the risk of introducing a bug or destabilizing the code 
base) and provides focus for the effort. For any tedious effort it is also affi rm-
ing to be able to measure progress, and rerunning the profi le and observing 
that less time is spent in a routine after an optimization are welcome feed-
back. It should be noted that high-level performance measures often show 
not apparent improvement for localized optimizations. An optimization may 
lead to a hurry-up-and-wait scenario for that particular function or service, 
where a bottleneck elsewhere in the system masks the improvement.

The overall process being proposed is called drill-down. First, hot spots 
are identifi ed without regard to why they are hot, and then closer analysis 
is used to determine why specifi c sections of service code or the system are 
rate-limiting. This initial level of analysis is important since it can help drive 
focus on the truly rate-limiting software blocks. If the software is not the 
rate-limiting bottleneck in the system, then profi ling will still help, but will 
result in arriving at blocking locations more quickly. If the bottlenecks are 
related to IO latencies, this will still show up as a hot spot, but the optimiza-
tion required may require code redesign or system redesign. For example, 
status registers that are read and respond slowly to the read request will 
stall execution if the read data is used right away. Reading hardware status 
into a cached state long before the data must be processed will reduce stall 



300 • REAL-TIME EMBEDDED COMPONENTS AND SYSTEMS WITH LINUX AND RTOS

time. Ideally the hardware/software interface would be modifi ed to reduce 
the read latency in addition. Many system-level design improvements can 
be made to avoid IO bottlenecks—for example, the use of fast access tightly 
coupled memory so that the impact of cache misses (the miss penalty) is 
minimized or, in some cases, for single-cycle access memory, eliminated.

Adjusting hardware resources may often be impossible, especially dur-
ing the hardware/software integration phase of a project. If you need more 
single-cycle on-chip memory, a huge cost and time investment is necessary 
to adjust this resource. Instead, if you can modify fi rmware and software to 
minimize the loss of performance through a bottleneck, you might reach 
improvement without hardware changes. System architects should ideally 
determine what their bottleneck will be and then plan for scalability. Firm-
ware and software engineers with tuning tools and some hardware support 
built into their systems can ensure that maximum performance is achieved 
for any given set of hardware resource constraints. The rest of this chapter 
discusses common built-in CPU performance measurement hardware fea-
tures and how you can use them to tune fi rmware and software for optimal 
performance. Simple interrupt-based profi ling will help, but the ability to 
separate hot spots out based upon frequency, instruction count, and execu-
tion effi ciency requires some built-in hardware assist. The good news is 
that almost all modern processor cores now include PMUs (Performance-
Monitoring Units) or performance counters that can provide even better 
vision into performance issues than interrupt-based profi les.

Ideally, after a workload set is identifi ed and performance optimizations 
are being considered for inclusion into a code base, ongoing performance 
regression testing should be in place. Performance regression testing should 
provide simple high-level metrics to evaluate current performance in terms 
of transactions or IOs per second. Also, some level of profi ling should ide-
ally be included, perhaps supported by performance counters. The genera-
tion of this data should be automatic and should be able to be correlated to 
specifi c code changes over time. In the worst case, this can allow for back-
ing out code optimizations that did not work and for quick identifi cation of 
code changes or features added that adversely affect performance.

13.3 Hardware-Supported Profiling and Tracing

Some basic methods for building performance-monitoring capability 
into the hardware include the following:
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 ● Performance event counters (PMU)

 ● Execution trace port (branch-encoded) 

 ● Trace register buffer (branch-encoded) 

 ● Cycle and interval counters for time-stamping 

This chapter section focuses on built-in event counters and how they 
can be used to profi le fi rmware and software to isolate execution-effi ciency 
hot spots. Tracing is advised once hot spots are located. In general, trac-
ing provides shorter-duration visibility into the function of the CPU and 
fi rmware, but can be cycle-accurate and provide a view of the exact order 
of events within a CPU pipeline. Trace is often invaluable for dealing with 
esoteric timing issues and hardware or software interaction bugs, and you 
can also use it to better understand performance bottlenecks. A profi le pro-
vides information that is much like an initial medical diagnosis. The profi le 
answers the question, where does it hurt? By comparison, while a profi le 
can’t tell the tuner anything about latency, a trace will provide a precise 
measure of latency. Profi ling supported by performance counters can in-
dicate not only where time is spent but also hot spots where cache is most 
often missed or code locations where the processor pipeline is most often 
stalled. A trace is needed to determine stall duration and to analyze the tim-
ing at a stall hot spot.

Understanding latency for IO and memory access can enable better 
overlap of processing with IO. One of the most common optimizations is to 
queue work and start IO early so that the CPU is kept as busy as possible. 
So, while profi ling is the most popular approach to tuning, tracing features 
should still be designed into the hardware for debug and performance tun-
ing as well.

Many (though not all) common CPU architectures include trace ports 
or the option to include a trace port. The IBM and AMCC PowerPC 4xx 
CPUs, Xilinx Virtex-II Pro, ARM Embedded Trace Macrocell, and Ten-
silica are among the chips that fall into this category. The 4xx series of 
processors has included a branch-encoded trace port for many years. The 
branch-encoded trace port makes a nice compromise between visibility 
into the core and pin-count coming off-chip to enable tracing. Because the 
trace is encoded, it is not cycle-accurate, but is accurate enough for hard-
ware or software debugging and for performance optimization. Given mod-
ern EDA (Electronic Design Automation) tools, ASIC design verifi cation 
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has advanced to the point where all signifi cant hardware issues can be dis-
covered during simulation and synthesis. SoC (System on Chip) designs 
make post-silicon verifi cation diffi cult if not impossible, since buses and 
CPU cores may have few or no signals routed off-chip. For hardware issues 
that might arise with internal on-chip interfaces, the only option is to use 
built-in logic analyzer functions, such as those provided by the Virtex-II Pro 
ChipScope. This type of cycle-accurate trace is most often far more accu-
rate than is necessary for tuning the performance of fi rmware or software.

Encoded-branch trace, such as that provided by the IBM and AMCC 
PowerPC 4xx, typically requires only eight IO pins per traceable core. The 
encoding is based upon trace output that on a core-cycle basis provides in-
formation on interrupt vectors, relative branches taken, and the occasional 
absolute branch taken. Most branches and vectors that the PC (Program 
Counter) follows are easily encoded into 8 bits. Typical processors might 
have at most 16 interrupt vectors, requiring only 4 bits to encode the inter-
rupt source. Furthermore, relative branches for loops, C switch blocks, and 
if blocks typically span short address ranges that might require 1 or 2 bytes 
to encode. Finally, the occasional long-branch to an absolute 32-bit address 
will require 4 bytes. So, overall, encoded output is typically 1 to 5 bytes for 
each branch point in code. Given that most code has a branch density of 
1 in 10 instructions or less, the encoded output, which can take up to fi ve 
cycles to output an absolute branch, is still very accurate from a software 
execution order and timing perspective.

The program counter is assumed to linearly progress between branch 
points. So, the branch trace is easily correlated to C or assembly source 
code after it is acquired through a logic analyzer or acquisition tool such as 
RISCTrace (see references for more information on this tool). Due to the 
high rate of acquisition, which is nearly the cycle rate of the CPU, the trace 
window for a trace port will be limited. For example, even a 64MB trace 
buffer would capture approximately 16 million branch points, or about 200 
million instructions. At a clock rate of 1 GHz, that’s only one fi fth of a 
second of code execution. This information is invaluable for hardware and 
software debugging and timing issues, as well as direct measurement of 
latencies. However, most applications and services provide a large number 
of software operations per second over long periods of time. For visibility 
into higher-level software performance, profi ling provides information that 
is much easier to use than the information tracing provides. After a profi le 
is understood, trace can provide an invaluable level of drill-down to under-
stand poorly performing sections of code.



PERFORMANCE TUNING • 303

Performance counters fi rst appeared in the IBM PowerPC architec-
ture in a patent approved in 1994. Since then, the manufacturers of almost 
all other processor architecture have licensed or invented similar features. 
The Intel PMU (Performance-Monitoring Unit) is a well-known example in 
wide use, perhaps most often used by PC game developers. The basic idea 
is simple. Instead of directly tracing code execution on a CPU, a built-in 
state machine is programmed to assert an interrupt periodically so that an 
ISR (Interrupt Service Routine) can sample the state of the CPU, including 
the current address of the PC (Program Counter). Sampling the PC address 
is the simplest form of performance monitoring and produces a histogram 
of the addresses where the PC was found when sampled. This histogram 
can be mapped to C functions and therefore provides a profi le indicating 
the functions in which the PC is found most often.

What does this really tell you? It’s an indication of calling frequency, of 
the size of a function (larger functions have larger address bins), and of the 
number of cycles that are spent in each function. With 32-bit-word-sized 
address bins, the profi le can provide this information down to the instruc-
tion level and therefore by line of C code. Most performance counter state 
machines also include event detection for CPU core events, including cache 
misses, data dependency pipeline stalls, branch mispredictions, write-back 
queue stalls, and instruction and cycle counts.

These events, like periodic cycle-based sampling, can also be pro-
grammed to assert an interrupt for ISR sampling of current PC and re-
lated event counts. This event profi le can indicate address ranges (modules, 
functions, lines of code) that have hot spots. A hot spot is a code location 
where signifi cant time is spent or where code is executing poorly. For ex-
ample, if a particular function causes a cache miss counter to fi re the sam-
pling interrupt frequently, this indicates that the function should be exam-
ined for data and instruction cache ineffi ciencies. Finally, from these same 
event counts it is also possible to compute metrics, such as CPI (Clocks 
Per Instruction), for each function with simple instrumentation added to 
entry and exit points. This use of counters with inline code to sample those 
counters (instrumentation) is a hybrid approach between tracing and profi l-
ing, often referred to as event tracing. The performance counters require a 
hardware cell built into the CPU core, but also require some fi rmware and 
software support to produce a profi le or event trace. If the cost, complex-
ity, or schedule prevents inclusion of hardware support for performance 
monitoring, pure software methods can be used instead, as you’ll see next.
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 13.4 Building Performance Monitoring into Software

Most of the basic methods for building performance-monitoring capa-
bility into a system require fi rmware and software support:

 ● Performance counter API (hardware-supported) 

 ● Direct code instrumentation to sample cycle and event counters for 
trace (hardware-supported) 

 ● Steady-state asynchronous sampling of counters through interrupts 
(hardware-supported) 

 ● Software event logging to memory buffer (software only, but hardware 
time stamp improves quality) 

 ● Function or block entry/exit tracing to a memory buffer (software only, 
with post-build modification of binary executables) 

Software event logging is a pure software in-circuit approach for perfor-
mance monitoring that requires no special hardware support. Most embed-
ded operating system kernels provide an event logging method and analysis 
tools, such as the WindView and Linux Trace Toolkit event analyzers. At 
fi rst, this approach might seem really intrusive compared to the hardware-
supported methods. However, modern architectures, such as the PowerPC, 
provide features that make event logging traces very effi cient. Architectures 
such as the PowerPC include posted-write buffers for memory writes, so 
that occasional trace instructions writing bit-encoded event codes and time 
stamps to a memory buffer take no more than a single instruction. Given 
that most functions are on the order of hundreds to thousands of instruc-
tions in length (typically a line of C code generates multiple assembly in-
structions), a couple of additional instructions added at function entry and 
exit will contribute little overhead to normal operation.

Event trace logs are invaluable for understanding operating system ker-
nel and application code event timing. While almost no hardware support 
is needed, an accurate time stamp clock will make the trace timing more 
useful. Without a hardware clock, it is still possible to provide an event 
trace showing only the order of events, but the inclusion of microsecond 
or better accuracy timestamps vastly improves the trace. System architects 
should carefully consider hardware support for these well-known and well-
tested tracing and profi ling methods, as well as scheduling time for software 
development.
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When you implement performance-monitoring hardware and soft-
ware on an embedded system, the ability to collect huge amounts of data 
is almost overwhelming. Effort put into data collection is of questionable 
value in the absence of a plan to analyze that data. Trace information is 
typically the easiest to analyze and is taken as needed for sequences of 
interest and mapped to code or to a timeline of operating system events. 
When traces are mapped to code, engineers can replay and step through 
code as it runs at full speed, noting branches taken and overall execu-
tion fl ow. For event traces mapped to operating system events, engineers 
can analyze multithread context switches made by the scheduler, thread 
synchronizing events, such as semaphore takes and gives, and application-
specifi c events.

Profi les that collect event data and PC location down to the level of a 
32-bit address take more analysis than simple mapping to be useful. Per-
formance tuning effort can be focused well through the process of drilling 
down from the code module level, to the function level, and fi nally to the 
level of a specifi c line of code. Drilling down provides the engineer ana-
lyst with hot spots where more detailed information, such as traces, should 
be acquired. The drill-down process ensures that you won’t spend time 
optimizing code that will have little impact on bottom-line performance 
improvement.

13.5 Path Length, Efficiency, and Calling Frequency

Armed with nothing but hardware support to time stamp events, it is 
still possible to determine code segment path length and execution effi -
ciency. Ideally, performance counters would be used to automate the ac-
quisition of these metrics. However, when performance counters aren’t 
available, you can measure path length by hand in two different ways. First, 
by having the C compiler generate assembly code, you can then count the 
instructions by hand or by a word count utility. Second, if a single-step 
debugger is available (e.g., a cross-debug agent or JTAG, Joint Test Appli-
cations Group), then you can count instructions by stepping through assem-
bly by hand. Though this is laborious, it is possible, as you’ll see by looking 
at some example code.

The code in Listing 13.1 generates numbers in the Fibonacci sequence.
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 LISTING 13.1 Simple C Code to Compute the Fibonacci Sequence

typedef unsigned int UINT32;
#define FIB_LIMIT_FOR_32_BIT 47

UINT32 idx = 0, jdx = 1;
UINT32 seqCnt = FIB_LIMIT_FOR_32_BIT, iterCnt = 1;
UINT32 fib = 0, fib0 = 0, fib1 = 1;

void fib_wrapper(void)
{
   for(idx=0; idx < iterCnt; idx++)
   {
      fib = fib0 + fib1;
      while(jdx %lt; seqCnt)
      {
         fib0 = fib1; fib1 = fib; fib = fib0 + fib1;
         jdx++;
      }
   }
}

The easiest way to get an instruction count for a block of code such as 
the Fibonacci sequence generating function in Listing 13.1 is to compile 
the C code into assembly. With the GCC C compiler, this is easily done 
with the following command line:

$ gcc fib.c -S -o fib.s

The resulting assembly is illustrated in Listing 13.2. Even with the au-
tomatic generation of the assembly from C, it’s still no easy task to count 
instructions by hand. For a simple code block such as this example, hand 
counting can work, but the approach becomes time-consuming for real-
world code blocks.

If you’re looking for a less tedious approach than counting instructions 
by hand from assembly source, you can use a single-step debugger and walk 
through a code segment in disassembled format. An interesting side effect 
of this approach for counting instructions is that the counter often learns 
quite a bit about the fl ow of the code in the process. Many single-step de-
bugging tools, including JTAG (Joint Test Applications Group) hardware 
debuggers, can be extended or automated so that they can automatically 
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step from one address to another, keeping count of instructions in between. 
Watching the debugger auto-step and count instructions between an entry 
point and exit point for code can even be an instructive experience that may 
spark ideas for path optimization.

 LISTING 13.2 GCC-Generated ASM for Fibonacci C Code

 .globl _fib_wrapper
.section __TEXT,__text,regular,pure_instructions
 .align 2
_fib_wrapper:
 stmw r30,-8(r1)
 stwu r1,-48(r1)
 mr r30,r1
 mflr r0
 bcl 20,31,"L00000000001$pb"
"L00000000001$pb":
 mflr r10
 mtlr r0
 addis r2,r10,ha16(_idx-"L00000000001$pb")
 la r2,lo16(_idx-"L00000000001$pb")(r2)
 li r0,0
 stw r0,0(r2)
L2:
 addis r9,r10,ha16(_idx-"L00000000001$pb")
 la r9,lo16(_idx-"L00000000001$pb")(r9)
 addis r2,r10,ha16(_Iterations-"L00000000001$pb")
 la r2,lo16(_Iterations-"L00000000001$pb")(r2)
 lwz r9,0(r9)
 lwz r0,0(r2)
 cmplw cr7,r9,r0
 blt cr7,L5
 b L1
L5:
 addis r11,r10,ha16(_fib-"L00000000001$pb")
 la r11,lo16(_fib-"L00000000001$pb")(r11)
 addis r9,r10,ha16(_fib0-"L00000000001$pb")
 la r9,lo16(_fib0-"L00000000001$pb")(r9)
 addis r2,r10,ha16(_fib1-"L00000000001$pb")
 la r2,lo16(_fib1-"L00000000001$pb")(r2)
 lwz r9,0(r9)
 lwz r0,0(r2)
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 add r0,r9,r0
 stw r0,0(r11)
L6:
 addis r9,r10,ha16(_jdx-"L00000000001$pb")
 la r9,lo16(_jdx-"L00000000001$pb")(r9)
 addis r2,r10,ha16(_seqIterations-"L00000000001$pb")
 la r2,lo16(_seqIterations-"L00000000001$pb")(r2)
 lwz r9,0(r9)
 lwz r0,0(r2)
 cmplw cr7,r9,r0
 blt cr7,L8
 b L4
L8:
 addis r9,r10,ha16(_fib0-"L00000000001$pb")
 la r9,lo16(_fib0-"L00000000001$pb")(r9)
 addis r2,r10,ha16(_fib1-"L00000000001$pb")
 la r2,lo16(_fib1-"L00000000001$pb")(r2)
 lwz r0,0(r2)
 stw r0,0(r9)
 addis r9,r10,ha16(_fib1-"L00000000001$pb")
 la r9,lo16(_fib1-"L00000000001$pb")(r9)
 addis r2,r10,ha16(_fib-"L00000000001$pb")
 la r2,lo16(_fib-"L00000000001$pb")(r2)
 lwz r0,0(r2)
 stw r0,0(r9)
 addis r11,r10,ha16(_fib-"L00000000001$pb")
 la r11,lo16(_fib-"L00000000001$pb")(r11)
 addis r9,r10,ha16(_fib0-"L00000000001$pb")
 la r9,lo16(_fib0-"L00000000001$pb")(r9)
 addis r2,r10,ha16(_fib1-"L00000000001$pb")
 la r2,lo16(_fib1-"L00000000001$pb")(r2)
 lwz r9,0(r9)
 lwz r0,0(r2)
 add r0,r9,r0
 stw r0,0(r11)
 addis r9,r10,ha16(_jdx-"L00000000001$pb")
 la r9,lo16(_jdx-"L00000000001$pb")(r9)
 addis r2,r10,ha16(_jdx-"L00000000001$pb")
 la r2,lo16(_jdx-"L00000000001$pb")(r2)
 lwz r2,0(r2)
 addi r0,r2,1
 stw r0,0(r9)
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 b L6
L4:
 addis r9,r10,ha16(_idx-"L00000000001$pb")
 la r9,lo16(_idx-"L00000000001$pb")(r9)
 addis r2,r10,ha16(_idx-"L00000000001$pb")
 la r2,lo16(_idx-"L00000000001$pb")(r2)
 lwz r2,0(r2)
 addi r0,r2,1
 stw r0,0(r9)
 b L2
L1:
 lwz r1,0(r1)
 lmw r30,-8(r1)
 blr

Listing 13.3 provides a main program that can be compiled for G4- or 
G5-based Macintosh computers running Mac OS X. You can download the 
CHUD toolset for the Mac and use it with the MONster instrumentation 
included in Listing 13.3 to measure the cycle and instruction counts us-
ing the hardware performance counters. The example code in Listing 13.3 
takes the Fibonacci code from Listing 13.1 and adds sampling of the Pow-
erPC G4 performance counters through the CHUD interface to the MON-
ster analysis tool. The same types of cycle and event counters are found in 
the PowerPC performance counters in embedded IBM PowerPC cores. 

 LISTING 13.3: Simple C Code for PowerPC to Compute CPI for Fibonacci 
Code Block

#include "stdio.h"
#include "unistd.h"
// This code will work on the Macintosh G4 PowerPC with the Mon-
ster 
// PowerPC Performance Counter acquisition and analysis tool.
// Simply pass in -DMONSTER_ANALYSIS when compiling the example.
// MONSTER provides a fully featured set of PMAPI counters and
// analysis along with the full suite of CHUD tools for the Macintosh
// G series of PowerPC processors.
//
// Alternatively on x86 Pentium machines that implement the Time Stamp
// Counter in the x86 version of Performance Counters called the PMU,
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// pass in -DPMU_ANALYSIS. For the Pentium, only CPU cycles will be
// measured and CPI estimated based upon known instruction count.
//
// For the Macintosh G4, simply launch the main program from a Mac OS
// shell with the MONSTER analyzer set up for remote monitoring
// to follow along with the examples in the article.
//
// Leave the #define LONG_LONG_OK if your compiler and architecture
// support 64-bit unsigned integers, declared as unsigned long long in
// ANSI C.

//
// If not, please remove the #define below for 32-bit unsigned
// long declarations.
//

#define LONG_LONG_OK
#define FIB_LIMIT_FOR_32_BIT 47

typedef unsigned int UINT32;

#ifdef MONSTER_ANALYSIS
#include "CHUD/chud.h"
#include "mach/boolean.h"

#else

#ifdef LONG_LONG_OK
typedef unsigned long long int UINT64;

UINT64 startTSC = 0;
UINT64 stopTSC = 0;
UINT64 cycleCnt = 0;

UINT64 readTSC(void)
{
   UINT64 ts;

   __asm__ volatile(".byte 0x0f,0x31" : "=A" (ts));
   return ts;
}
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UINT64 cyclesElapsed(UINT64 stopTS, UINT64 startTS)
{
   return (stopTS - startTS);
}

#else
typedef struct
{
   UINT32 low;
   UINT32 high;
} TS64;

TS64 startTSC = {0, 0};
TS64 stopTSC = {0, 0};
TS64 cycleCnt = 0;

TS64 readTSC(void)
{
   TS64 ts;
   __asm__ volatile(".byte 0x0f,0x31" : "=a" (ts.low), "=d" (ts.high));
   return ts;
}

TS64 cyclesElapsed(TS64 stopTS, TS64 startTS)
{
   UINT32 overFlowCnt;
   UINT32 cycleCnt;
   TS64 elapsedT;

   overFlowCnt = (stopTSC.high - startTSC.high);

   if(overFlowCnt && (stopTSC.low < startTSC.low))
   {
      overFlowCnt--;
      cycleCnt = (0xffffffff - startTSC.low) + stopTSC.low;
   }
   else
   {
      cycleCnt = stopTSC.low - startTSC.low;
   }

   elapsedT.low = cycleCnt;
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   elapsedT.high = overFlowCnt;

   return elapsedT;
}
#endif
#endif

UINT32 idx = 0, jdx = 1;
UINT32 seqIterations = FIB_LIMIT_FOR_32_BIT;
UINT32 reqIterations = 1, Iterations = 1;
UINT32 fib = 0, fib0 = 0, fib1 = 1;

#define FIB_TEST(seqCnt, iterCnt) \
   for(idx=0; idx $lt; iterCnt; idx++) \
   { \
      fib = fib0 + fib1; \
      while(jdx < seqCnt) \
      { \
         fib0 = fib1; \
         fib1 = fib; \
         fib = fib0 + fib1; \
         jdx++; \
      } \
   } \

void fib_wrapper(void)
{
   FIB_TEST(seqIterations, Iterations);
}

#ifdef MONSTER_ANALYSIS
char label[]="Fibonacci Series";

int main( int argc, char *argv[])
{
   double tbegin, telapse;

   if(argc == 2)
   {
      sscanf(argv[1], "%ld", &reqIterations);

      seqIterations = reqIterations % FIB_LIMIT_FOR_32_BIT;
      Iterations = reqIterations / seqIterations;
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   }
   else if(argc == 1)
      printf("Using defaults\n");
   else
      printf("Usage: fibtest [Num iterations]\n");

   chudInitialize();
   chudUmarkPID(getpid(), TRUE);
   chudAcquireRemoteAccess();
   tbegin=chudReadTimeBase(chudMicroSeconds);

   chudStartRemotePerfMonitor(label);
   FIB_TEST(seqIterations, Iterations);
   chudStopRemotePerfMonitor();

   telapse=chudReadTimeBase(chudMicroSeconds);

   printf("\nFibonacci(%lu)=%lu (0x%08lx) for %f usec\n",
          seqIterations, fib, fib, (telapse-tbegin));

   chudReleaseRemoteAccess();
   return 0;
}

#else
#define INST_CNT_FIB_INNER 15
#define INST_CNT_FIB_OUTTER 6

int main( int argc, char *argv[] )
{
   double clkRate = 0.0, fibCPI = 0.0;
   UINT32 instCnt = 0;

   if(argc == 2)
   {
      sscanf(argv[1], "%ld", &reqIterations);

      seqIterations = reqIterations % FIB_LIMIT_FOR_32_BIT;
      Iterations = reqIterations / seqIterations;
   }
   else if(argc == 1)
      printf("Using defaults\n");
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   else
      printf("Usage: fibtest [Num iterations]\n");

   instCnt = (INST_CNT_FIB_INNER * seqIterations) +
             (INST_CNT_FIB_OUTTER * Iterations) + 1;

   // Estimate CPU clock rate
   startTSC = readTSC();
   usleep(1000000);
   stopTSC = readTSC();
   cycleCnt = cyclesElapsed(stopTSC, startTSC);

#ifdef LONG_LONG_OK
   printf("Cycle Count=%llu\n", cycleCnt);
   clkRate = ((double)cycleCnt)/1000000.0;
   printf("Based on usleep accuracy, CPU clk rate = %lu clks/
sec,",
          cycleCnt);
   printf(" %7.1f Mhz\n", clkRate);
#else
   printf("Cycle Count=%lu\n", cycleCnt.low);
   printf("OverFlow Count=%lu\n", cycleCnt.high);
   clkRate = ((double)cycleCnt.low)/1000000.0;
   printf("Based on usleep accuracy, CPU clk rate = %lu clks/
sec,",
          cycleCnt.low);
   printf(" %7.1f Mhz\n", clkRate);
#endif

   printf("\nRunning Fibonacci(%d) Test for %ld iterations\n",
          seqIterations, Iterations);

   // START Timed Fibonacci Test
   startTSC = readTSC();
   FIB_TEST(seqIterations, Iterations);
   stopTSC = readTSC();
   // END Timed Fibonacci Test

#ifdef LONG_LONG_OK
   printf("startTSC =0x%016x\n", startTSC);
   printf("stopTSC =0x%016x\n", stopTSC);
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   cycleCnt = cyclesElapsed(stopTSC, startTSC);
   printf("\nFibonacci(%lu)=%lu (0x%08lx)\n", seqIterations, fib, 
fib);
   printf("\nCycle Count=%llu\n", cycleCnt);
   printf("\nInst Count=%lu\n", instCnt);
   fibCPI = ((double)cycleCnt) / ((double)instCnt);
   printf("\nCPI=%4.2f\n", fibCPI);

#else
   printf("startTSC high=0x%08x, startTSC low=0x%08x\n", startT-
SC.high, startTSC.low);
   printf("stopTSC high=0x%08x, stopTSC low=0x%08x\n", stopTSC.
high, stopTSC.low);

   cycleCnt = cyclesElapsed(stopTSC, startTSC);
   printf("\nFibonacci(%lu)=%lu (0x%08lx)\n", seqIterations, fib, 
fib);
   printf("\nCycle Count=%lu\n", cycleCnt.low);
   printf("OverFlow Count=%lu\n", cycleCnt.high);
   fibCPI = ((double)cycleCnt.low) / ((double)instCnt);
   printf("\nCPI=%4.2f\n", fibCPI);
#endif

}
#endif

Running the code from Listing 13.3 built for the Macintosh G4, the 
MONster analysis tool determines the path length and execution effi ciency 
for the Fibonacci sequence code block, as summarized in Listing 13.4. 

The example analysis in Listing 13.4 was collected using the MONster 
confi guration and source code easily compiled with GCC and download-
able from the DVD.

 LISTING 13.4 Sample Macintosh G4 MONster Analysis for Example Code

Processor 1: 1250 MHz PPC 7447A, 166 MHz CPU Bus, Branch Folding: 
enabled, Threshold:
0, Multiplier: 2x
(tb1) P1 - Timebase results
(p1c1) PMC 1:   1 - CPU Cycles 
(p1c2) PMC 2:   2 - Instr Completed 

ON THE DVD
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Config: 5 - CPI-simple
  1 - CPI (completed)
P1 Timebase (cpu cycles)  P1 pmc 1              P1 pmc 2                 SC res 1 

Tb1: (cpu cycles)        (P1)  1-CPU Cycles:   (P1)  2-Instr Completed:  CPI (completed)

8445302.308861008         8413160               1618307                  5.19874164790735

Tb1: (cpu cycles)        (P1)  1-CPU Cycles:   (P1)  2-Instr Completed:  CPI (completed)

7374481.710107035         7346540               1360873                  5.398402349080333

Tb1: (cpu cycles)        (P1)  1-CPU Cycles:   (P1)  2-Instr Completed:  CPI (completed)

7207497.309806291         7180243               1668938                  4.302282649205663

Tb1: (cpu cycles)        (P1)  1-CPU Cycles:   (P1)  2-Instr Completed:  CPI (completed)

44985850.44768739         44808388              38595522                 1.160973752343601

Tb1: (cpu cycles)        (P1)  1-CPU Cycles:   (P1)  2-Instr Completed:  CPI (completed)

472475463.2072901         470597098             458561558                1.026246290797887

Tb1: (cpu cycles)        (P1)  1-CPU Cycles:   (P1)  2-Instr Completed:  CPI (completed)

2149357027.379779         2140806560            2108619999               1.015264277591631

Sam-Siewerts-Computer:~/TSC samsiewert$ ./perfmon 100          
Fibonacci(6)=13 (0x0000000d) for 7545.213589 usec
Sam-Siewerts-Computer:~/TSC samsiewert$ ./perfmon 10000
Fibonacci(36)=24157817 (0x01709e79) for 5883.610250 usec
Sam-Siewerts-Computer:~/TSC samsiewert$ ./perfmon 1000000
Fibonacci(28)=514229 (0x0007d8b5) for 6008.113638 usec
Sam-Siewerts-Computer:~/TSC samsiewert$ ./perfmon 100000000
Fibonacci(27)=317811 (0x0004d973) for 36554.381943 usec
Sam-Siewerts-Computer:~/TSC samsiewert$ ./perfmon 10000000000
Fibonacci(31)=2178309 (0x00213d05) for 378554.531618 usec
Sam-Siewerts-Computer:~/TSC samsiewert$ ./perfmon 1000000000000
Fibonacci(17)=2584 (0x00000a18) for 1720178.701376 usec
Sam-Siewerts-Computer:~/TSC samsiewert$

Note that in the example runs, for larger numbers of iterations, the Fi-
bonacci sequence code becomes cached and the CPI drops dramatically. If 
the Fibonacci code were considered to be critical-path code for perfor-
mance, you might want to consider locking this code block into Level 1 in-
struction cache.

If you don’t have access to a PowerPC platform, an alternative Pentium 
TSC (time stamp counter) build, which counts CPU core cycles and uses 
a hand-counted instruction count to derive CPI, is included on the DVD. 
You can download and analyze this code on any Macintosh Mac OS X PC 
or Windows PC running Cygwin tools. On the Macintosh, using MONster 
with the “Remote” feature, the application will automatically upload coun-
ter data to the MONster analysis tool, including the cycle and instruction 
counts for the Fibonacci code block. 

ON THE DVD
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13.6 Fundamental Optimizations

Given analysis of code such as the example Fibonacci sequence code 
block, how do you take the information and start optimizing the code? The 
best approach is to make gains by following the “low-hanging fruit” mod-
el of optimization—apply optimizations that require the least effort and 
change to the code, but provide the biggest improvements fi rst. Most often 
this means simply ensuring that compiler optimizations that can be used 
are being used. After compiler optimizations are exhausted, then simple 
code restructuring might be considered to eliminate cache miss hot spots. 
The optimization process is often architecture-specifi c. Most instruction set 
architectures include application programming notes with ideas for code 
optimization. While the methods for optimizing go beyond the scope of 
this introductory chapter, some of the most common are summarized here.

Here are some basic methods for optimizing code segments:

 ● Use compiler basic block optimizations (inline, loop unrolling, and so on).

 ● Simplify algorithm complexity and unnecessary instructions in code. 

 ● Compute commonly used expressions up front. 

 ● Lock critical-path code into L1 instruction cache. 

 ● Lock critical-path, high-frequency reference data into L1 data cache. 

 ● Take advantage of memory prefetch—prefetch data to be read and 
modified into L1 or L2 cache. 

 ● Use MMIO prefetch—start IO for data used in algorithms early to avoid 
data dependency pipeline stalls. 

After you’ve exhausted some of these optimization methods using pro-
fi ling to support identifi cation of the blocks most in need of optimization, 
you need to consider more complex optimization methods for additional 
improvement. Good functional regression testing should be included in the 
optimization process to ensure that functionality is not broken by optimiz-
ing code changes. This is especially true for more complex architecture-
specifi c optimizations. It should also be noted that architecture-specifi c 
optimizations make code much less portable.

Here are some more advanced methods for optimizing code segments:

 ● Use compiler feedback optimization—profile provided as input to compiler. 

 ● Hand-tune assembly to exploit features such as conditional execution.
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Summary

After the current marriage of software, fi rmware, and hardware is op-
timized, how does the architect improve the performance of the next gen-
eration of the system? At some point, for every product, the cost of fur-
ther code optimization will outweigh the gain of improved performance 
and marketability of the product. However, you can still use performance 
analysis features, such as performance counters, to characterize potential 
modifi cations that should go into next-generation products. For example, if 
a function is highly optimized, but remains as a high consumer of CPU re-
sources, and the system is CPU-bound such that the CPU is the bottleneck, 
then hardware re-architecting to address this would be benefi cial. That 
particular function might be considered for implementation in a hardware-
accelerating state machine. Or perhaps a second processor core could be 
dedicated to that one function. The point is that performance counters are 
useful not only for coaxing maximum performance out of an existing hard-
ware design but also for guiding future hardware design.

Exercises

1. Use the Pentium TSC code to count the cycles for a given code block. 
Then, in the single-step debugger, count the number of instructions for 
the same code block to compute the CPI for this code on your system. 
Provide evidence that your CPI calculation is accurate, and explain why 
it is as high or low as you find it to be.

2. Compare the accuracy for timing the execution of a common code 
block, first using the DVD time_stamp.c code and then using the 
Pentium TSC. Is there a significant difference? Why?

3. Download the Brink and Abyss Pentium-4 PMU profiling tools, and 
profile the Fibonacci code running on a Linux system. Explain your 
results.
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14.1 Introduction

High availability and high reliability (HA/HR) are measured differ-
ently, but both provide some indication of system robustness and quality 
expectations. Furthermore, because system failures can be dangerous, both 
also relate to system safety. Increasing availability and reliability of a sys-
tem requires time and monetary investment, increasing cost, and increasing 
time-to-market for products. The worst thing that can come of engineer-
ing efforts to increase system availability and reliability is an unintentional 
decrease in overall availability and reliability. When design for HA/HR is 
not well tested or adds complexity, this unintentional reduction in HA/HR 
can often be the result. In this chapter, design methods for increasing HA/
HR are introduced along with a review of exactly what HA and HR really 
mean. (“title” by <author’s name>. First published by IBM at IBM devel-
operWorks Rational. (www.ibm.com/developerWorks/rational). All rights 
retained by IBM and the author(s).)  
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14.2 Reliability and Availability Similarities and Differences

Availability is simply defi ned as the percentage of time over a well-de-
fi ned period that a system or service is available for users. So, for example, if 
a system is said to have 99.999%, or fi ve nines, availability, this system must 
not be unavailable more than fi ve minutes over the course of a year. Quick 
recovery and restoration of service after a fault greatly increase availability. 
The quicker the recovery, the more often the system or service can go down 
and still meet the fi ve nines criteria. Five nines is a high availability or HA 
metric.

In contrast, high reliability (HR) is perhaps best described by the old 
adage that a chain is only as strong as its weakest link. A system built from 
components that have very low probability of failure leads to high system 
reliability. The overall expected system reliability is simply the product of 
all subsystem reliabilities, and the subsystem reliability is a product of all 
component reliabilities. Based upon this mathematical fact, components 
are required to have very low probability of failure if the subsystems and 
system are to also have reasonably low probability of failure. For example, 
a system composed of 10 components, each with 99.999% reliability, is 
(0.99999)10, or 99.99%, reliable. Any decrease in the reliability of a single 
component in this type of single-string design can greatly reduce overall 
reliability. For example adding just one 95% reliable component in the pre-
vious example that was 99.99% reliable would drop the overall reliability 
to 94.99%. Highly reliable components are often constructed of higher-
quality raw materials, subjected to more rigorous testing, and often have 
more complex fabrication processes, all increasing component cost. There 
may be notable exceptions and advancements where lower-cost compo-
nents also have higher reliability, making component choice obvious, but 
this is not typical.

Once simple mathematical relationship between HA and HR is:

Availability = MTBF / (MTBF + MTTR)

MTBF = Mean Time Between Failures, and MTBF ≈ MTTF

MTTR = Mean Time to Recovery

MTTF =  Mean Time to Failure (How long the system is expected to 
run without failure)
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Alternately, if MTTR is large such that MTBF is signifi cantly larger 
than MTTF, then the mathematical relationship should be:

Availability = MTTF / (MTTF + MTTR)

So, while an HR system has large MTTF, it can tolerate a longer MTTR 
and still yield decent availability when MTBF ≈ MTTF. Likewise a system 
with low reliability can provide decent availability if it has very fast recovery 
times. From this relation we can see that one system with fi ve nines’ HA 
might have low reliability and a very fast recovery (say 1 second) and there-
fore go down and recover 3,000 or more times in a year (10 times a day!). 
A highly reliable system might go down once every two years and wait for 
operator intervention to safely and carefully recover operational state, tak-
ing on average 10 minutes every two years for the exact same HA metric of 
fi ve nines. Clearly these systems would not be considered to have the same 
quality by most operators.

As noted in Chapter 7, “Soft Real-Time Services,” it is more accurate 
to use MTTF instead of MTBF. The MTBF may be confused with MTTF 
on occasion, and for small MTTR, MTBF and MTTF differ only by MTTR. 
For many systems the MTTR is seconds or at most minutes and the MTTF 
is often hundreds of thousands or millions of hours, so in practice, MTBF 
≈ MTTF as long as MTTR is << MTBF. Often to compute fi ve nines’ avail-
ability MTBF can be used when MTTR is small for quick system recovery 
[Siewert05], and in these cases, MTTF can be approximated as MTBF.
Care should be taken to ensure that the failure rates and time between fail-
ures provided by manufacturers of components are well understood. Either 
way, the key to fi ve nines’ high availability is short MTTR and infrequent 
failures over time.

14.3 Reliability

It is theoretically possible to build a system with low-quality, not-so-
reliable components and subsystems, and still achieve HA. This type of 
system would have to include massive redundancy and complex switching 
logic to isolate frequently failing components and to bring spares online 
very quickly in place of those components that failed to prevent interrup-
tion to service. Most often, it is better to strike a balance and invest in 
more reliable components to minimize the interconnection and switching 
requirements. If you take a very simple example of a system designed with 
redundant components that can be isolated or activated, it becomes clear 
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that the interconnection and switching logic does not scale well to high 
levels of redundancy and sparing. Consider the simple, single-spare dual-
string system shown in Figure 14.1.

C1 C1

C2 C3

C3 C3

SW1 SW2

SW3 SW4

A B

FIGURE 14.1 Dual-String, Cross-Strapped Subsystem Interconnection

The example system shown in Figure 14.1 has eight possible confi gura-
tions that can be formed by activating and isolating components C1, C2, 
or C3 from side A or side B. The system must be able to positively detect 
failed components and track these failures to reconfi gure with an operable 
switch state and new interconnection of activated components. Table 14.1 
describes the eight possible confi gurations for this small-scale HA system 
example.

TABLE 14.1 Enumeration of Configurations for Three-Subsystem Dual-String Cross-Strapped System

Configuration Component C1 Component C2 Component C3 

1 A A A

2 A A B

3 A B A

4 A B B

5 B A A

6 B A B

7 B B A

8 B B B

From the simple example described by Figure 14.1, it is evident that a 
trade-off can be made between the complexity of interconnecting compo-
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nents and redundancy management with the cost of including highly reli-
able components. The cost of hardware components with high reliability 
is fairly well known and can be estimated based upon component testing, 
expected failure rates, MTBF (mean time between failures), operational 
characteristics, packaging, and the overall physical features of the compo-
nent.

System architects should also consider three simple parameters before 
investing heavily in HA or HR for a system component or subsystem:

1. Likelihood of unit failure 

2. Impact of failure on the system 

3. Cost of recovery versus cost of fail-safe isolation

Conceptually, architects should consider how levels of recovery are 
handled with varying degrees of automation, as depicted in Figure 14.2.

Exception-based
maintenance
and Servicing

Computing System

Sub-System Error
Detection and Correction

Detection 

System Autonomy
and Automatic Recovery

Correction

Diagnosis Re-configuration

FIGURE 14.2 Supporting Multiple Levels of Recovery Autonomy

14.4 Reliable Software

Perhaps much harder to estimate is the cost of highly reliable software. 
Clearly, reliable hardware running unreliable software will result in failure 
modes that are likely to cause service interruption. It is well accepted that 
complex software is often less reliable, and that the best way to increase 



324 • REAL-TIME EMBEDDED COMPONENTS AND SYSTEMS WITH LINUX AND RTOS

reliability is with testing. Testing takes time and ultimately adds to cost and 
time to market.

System architects have traditionally focused on designing HA and HR 
hardware with fi rmware to manage redundancy and to automate recovery. 
So, for example, fi rmware would reconfi gure the components in the ex-
ample in Table 14.1 to recover from a component failure. Traditionally, 
rigorous testing and verifi cation have ensured that fi rmware has no fl aws, 
but history has shown that defects can still wind up in the fi eld and emerge 
due to subtle differences in timing or execution of data-driven algorithms.

Designing fi rmware and software for HR can be costly. The FAA re-
quires rigorous documentation and testing to ensure that fl ight software 
on commercial aircraft is highly reliable. The DO-178B class A standard 
(now replaced by DO-178C) requires software developers to maintain co-
pious design, test, and process documentation. The updated DO-178C is 
just as rigorous and in fact adds more objectives to levels A, B, and C. The 
new standard also includes clarity updates. The point of the standards is 
to ensure that design, test, and process used in software development for 
aviation meet minimum criteria. Furthermore, testing must include formal 
proof that code has been well tested with criteria such as multiple condi-
tion decision coverage (MCDC). This criterion ensures that all paths and 
all statements in the code have been exercised and shown to work. It is very 
laborious and therefore greatly increases the cost of software components.

14.5 Design Trade-Offs

Designing for HR alone can be cost-prohibitive, so most often a bal-
ance of design for HA and HR is better. HA at the hardware level is most 
often achieved through redundancy (sparing) and switching. A trade-off 
can be made between the cost of duplication and simply engineering higher 
reliability into components to reduce the MTBF. Over time, designers have 
found a balance between HR and HA features to optimize cost and avail-
ability. Fundamental to duplication schemes is the recovery latency. When 
considering component or subsystem duplication for HA, architects must 
carefully consider the complexity and latency of the recovery scheme and 
how this will affect fi rmware and software layers. Trade-offs between work-
ing to simply increase reliability instead of increasing availability through 
sparing should be analyzed. A simple well-proven methodology that is often 
employed by systems engineers is to consider the trade-off of probability of 
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failure, impact of failure, and cost to mitigate impact or reduce likelihood 
of failure. This method is most often referred to as FMEA (Failure Modes 
and Effects Analysis).

Another, less formal process that system engineers often use is referred 
to as the “low-hanging fruit” process. This process simply involves rank-
ing system design features under consideration by cost to implement, reli-
ability improvement, availability improvement, and complexity. The point 
of low-hanging fruit analysis is to pick features that improve HA/HR the 
most for least cost and with least risk. Without existing products and fi eld-
testing, the hardest part of FMEA or low-hanging fruit analysis is estimat-
ing the probability of failure for components and estimating improvement 
to HA/HR for specifi c features. For hardware, the tried and true method 
for estimating reliability is based upon component testing, system testing, 
environmental testing, accelerated testing, and fi eld-testing. The trade-offs 
between engineering reliability and availability into hardware are fairly ob-
vious, but how does this work with fi rmware and software?

Designing and implementing HR fi rmware and software can be very 
costly. The main approach for ensuring that fi rmware/software is highly 
reliable is verifi cation with formal coverage criteria, along with unit tests, 
integration tests, system tests, and regression testing. Test coverage criteria 
include feature points; but for HR systems, much more rigorous criteria 
are necessary, including statement, path, and multiple condition decision 
coverage (MCDC).

One might wonder why simply designing test cases for path and state-
ment coverage is not suffi cient for HR software. The simple snippet of C 
code in Listing 14-1 shows why MCDC is required. The if test in main() has 
two expressions logically ordered together. Most C compilers will generate 
code such that the second expression is short-circuited if the fi rst evaluates 
to true. As a result, both paths in main() for the if blocks can be driven by a 
test without ever executing (testing) the OutsideLimits code. So, a test driv-
er must drive the same path with the condition where recoveryRequired is 
false and where recoveryRequired is true and OutsideLimits is either true 
or false in combination with this. So, for simple path coverage in main there 
are only two paths noted by coverage of code on the line numbers: Path-A) 
28, 30, 32 and Path-B) 28, 30, 13, 20, 36. However, by MCDC you must 
ensure that main Path-A is covered in combination with the paths of the 
function OutsideLimits, which defi nes Path-C) 28, 30, 13, 15, 16, 32.
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L ISTING 14.1 Simple C Code with Two Paths and MCDC Testing Require-
ments

01: #define UPPER_LIMIT 100
02: #define TRUE 1
03: #define FALSE 0
04:
05: extern void logMessage(char *msg);
06: extern unsigned int MMIORead(unsigned int addr);
07: extern void StartRecovery(void);
08: extern void ContinueOperation(void);
09: extern int RecoveryRequired;
10:
11: int LimitTest(unsigned int val)
12: {
13:     if(val > UPPER_LIMIT)
14:     {
15:         logMessage(“Limit Exceeded\n”);
16:         return TRUE;
17:     }
18:     else
19:     {
20:         return FALSE;
21:     }
22: }
23:
24: main()
25: {
26:     unsigned int IOValue = 0;
27:
28:     IOValue = MMIORead(0xF0000100);
29:
30:     if(RecoveryRequired || OutsideLimits(IOValue))
31:     {
32:         StartRecovery();
33:     }
34:     else
35:     {
36:         ContinueOperation();
37:     }
38: }
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14.6 Hierarchical Approaches for Fail-Safe Design

Ideally, all system, subsystem, and component errors can be detected 
and corrected in a hierarchy so that component errors are detected and 
corrected without any action required by the containing subsystem. This hi-
erarchical approach for fault detection and fault protection/correction can 
greatly simplify verifi cation of an RAS design. An ECC memory component 
provides for single-bit error detection and automatic correction. The incor-
poration of ECC memory provides a component level of RAS, which can 
increase RAS performance and reduce the complexity of supporting RAS 
at higher levels. HR systems often include design elements that ensure that 
non-recoverable failures result in the system going out of service, along 
with safi ng to reduce risk of losing the asset, damaging property, or causing 
loss of life. 

Summary

Systems designed for high availability may not necessarily be designed 
for high reliability. Highly reliable systems tend to be highly available, al-
though they often fail-safe and wait for human intervention for recovery 
rather than risking automatic recovery. So, there is no clear correlation be-
tween the HA and HR other than the equation for availability in terms of 
MTBF and MTTR. As discussed, given that high MTBF and long MTTR 
compared to low MTBF and rapid MTTR could yield the same availability, 
it appears that availability alone does not characterize the safeness or qual-
ity of a system very well.

Exercises

1. How many configurations must a fault recovery system attempt for a 
dual string fully cross-strapped system with four subsystems?

2. Describe what you think a good fail-safe mode would be for an earth 
orbiting satellite that encounters a non-recoverable multi-bit error when 
it passes through the high radiation zone known as the South Atlantic 
Anomaly. What should the satellite do? How should it eventually be 
recovered for continued operation?
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3. If it takes 30 seconds for Windows to boot, how many times can this OS 
fail due to deadlock or loss of software sanity in a year for five nines HA, 
ignoring detection time for each failure?

4. If the launch vehicle for satellites has an overall system reliability of 
99.5% and has over 2,000 components, what is the average reliability of 
each component?

5. Research the CodeTest software coverage analysis tool, and describe 
how it provides test coverage criteria. Can it provide proof of MCDC 
coverage?
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15.1 Introduction

Real-time embedded systems include at the very least mechanical, 
electrical, and software engineering to build a working and deliverable sys-
tem. Some real-time embedded systems may involve chemical, biological, 
cryogenic, optical, or many other specialized subsystems and components 
as well that must be integrated and tested in addition to the more common 
mechanical, electrical, and software subsystems. For example, blood analy-
sis machines provide real-time analysis of human blood samples using a ro-
botic platform that can automate the biological testing of a large number of 
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samples in much less time than manual laboratory testing. The NASA great 
observatory series of space telescopes all include spacecraft and instrumen-
tation real-time embedded systems that include visible, X-ray, infrared, 
and ultra-violet detectors. The infrared instrumentation requires cryogenic 
cooling. Likewise, real-time embedded systems are often found in process 
control applications at chemical, nuclear, or biological production plants. 
Given the wide range and complexity of disciplines, types of components, 
and types of subsystems that must be integrated to fi eld a successful real-
time embedded system, it’s imperative that a well-defi ned and disciplined 
process be followed during all stages of development. This chapter provides 
a framework for real-time embedded systems life cycle planning, tips on 
tools that can help, and examples of methods used.

In this chapter, we’ll walk through selected elements of a design for a 
stereo computer vision real-time tracking system. Completion of a project 
like this can be accomplished in 15 weeks if you want to engage in home-
study practice to better understand the process of engineering a real-time 
embedded system.

15.2 Life Cycle Overview

Having a good understanding of critical steps in the system-engineering 
process for real-time embedded systems long before a project is started 
can make projects go much more smoothly. Many in-depth texts describe 
the life cycle phases and steps in much more detail than this book, but of-
ten don’t provide the full context of engineering hardware, fi rmware, and 
software components and subsystems. Furthermore, we must learn how to 
ensure that all components and subsystems are integrated, debugged, and 
optimized to realize a quality system rather than just one aspect, such as 
software or hardware alone. Often trade-offs between hardware and soft-
ware can be made with signifi cant cost, risk, schedule, or quality impact 
if the process promotes periodic critical examination of the system as it 
evolves.

The spiral model for systems engineering (often presented as a software 
engineering process) is well suited for following a rigorous process, yet also 
ensuring that the system evolution is adaptive to ensure that optimizations 
can be made as lessons are learned during the process. Figure 15.1 shows 
a two phase spiral model for implementing a system starting from concept 
and resulting in delivery of the fi rst functional system.
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FIGURE 15.1 Spiral Process for Systems Engineering

Figure 15.1 shows the process used by students at the University of 
Colorado to build computer vision, robotics, and real-time media applica-
tions in a 15-week time period. This may seem very short, but often in in-
dustry, a new product concept must be quickly demonstrated and an early 
version put in a customer’s hands to generate demand and to defi ne the 
market, sometimes in less than 15 weeks as well. The beauty of the spiral 
model is that it can include many phases (turns through analysis, design, 
development and unit testing, and regression testing) for more complex 
systems and fi t a wide range of systems development schedules. The main 
concept behind the spiral is to mitigate risk by analyzing the system re-
quirements and design every turn through the spiral. The theory behind 
this is that a better risk assessment can be made with some implementation 
and testing experience completed and that implementation and test can be 
developed through an evolutionary process. Furthermore, the spiral model 
should include increased time and monetary investment with each succes-
sive turn as risk is better understood and managed with better insight from 
previous phases of the spiral.

In theory, spirals can be as short or long as the participants choose, 
from one day to one year, but ideally they are short phases initially so that 
pitfalls in requirements, design, implementation, or testing can be discov-
ered sooner rather than later. Experience at the University of Colorado 
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has shown that this process works well for students developing complicated 
systems with imperfect information, limited budgets, and very limited time. 
You can use the process in Figure 15.1 to guide development of a home or 
an academic system and can expand the process for use with an industrial 
project.

The starting point is a reference design. This reference design should 
be a system that is the closest known system to the one proposed. The ref-
erence system can be a resource for design, code, subsystem, component, 
and test reuse. In the fi rst analysis phase, the new system can be defi ned in 
terms of functional, performance, and feature-level requirements (perhaps 
leveraging the reference system), along with an analysis of risk, often associ-
ated with new features, functions, or new levels of performance required. 
This fi rst analysis phase involves writing requirements, reviewing them, and 
estimating risks and cost. The second phase, design, involves using design 
tools and methods to defi ne the high-level system design, clearly identifying 
the subsystems and interfaces between them, but not yet defi ning all com-
ponents. The third phase, development and unit test, involves implement-
ing software stubs (basic interface and simplifi ed behavior) and hardware 
prototypes (emulators) to discover how well high-level design concepts will 
work and to better estimate risk and cost. The fourth phase, regression, 
involves a preliminary integration (or practice integration) of subsystem 
emulators and stubs, and the establishment of software nightly builds and 
testing. This practice integration also allows for better defi nition of not only 
unit tests but also how integrated subsystems and the system will be tested 
as the system is assembled.

The second turn of the spiral model repeats the same four phases, with 
the second analysis phase involving refi nement of requirements and more 
accurate re-estimation of risk and cost. For short development projects, 
such as a demonstration or academic development project, the second turn 
may be the fi nal turn through the spiral process to deliver a working system. 
If this is the case, then detailed design must be completed down to the 
component level, with implementation and unit test at the same level, and a 
regression phase that concludes with full system integration and prerelease 
product testing. For a longer-term project, the second turn may not com-
plete design and implementation. The evolutionary spiral can be designed 
so that a subset of features are implemented in the second turn and a third, 
fourth, or more turns are used to complete the features and to achieve 
desired performance and quality.
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For the purpose of a class or self-study project, Figure 15.2 shows the 
same spiral development process fi t to 15 weeks.

The time spent in each phase of the spiral is doubled or tripled in the 
second turn. This schedule also works well in an academic setting or for 
a rapid prototype development project where status must be provided by 
engineers (students) to management (teachers) for quick feedback during 
the fi rst turn.
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FIGURE 15.2 Fifteen-Week Spiral Process for Systems Engineering

15.3 Requirements

Defi ning requirements for a system during analysis is most often done 
by listing or enumerating functions, features, and performance metrics for 
the ultimate system. In the fi rst turn of the spiral, requirements are defi ned 
in terms of subsystems and features with a few high-level performance met-
rics that will be evident to any user of the system. These are then refi ned 
to component level during subsequent turns through the spiral. One ap-
proach to defi ne requirements and design with agility and quickness is to 
include the high-level requirements and design in one design document, 
making the tracing of requirements to design simple. This can also be done 
for detailed requirements defi nition and design, once again making trace 
simple. For large-scale projects, often an engineer will work only on 
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requirements, and a design engineer will iterate with the requirements en-
gineer to achieve a design that maps to all the requirements. For the pur-
pose of the 15-week development project, some subset of system require-
ments might be developed by a team, and then subsystem requirements 
and design developed by each engineer.

15.4 Risk Analysis

As requirements are defi ned, the risk of each requirement should be 
reviewed. Risk can be analyzed by the following:

 ● Probability of occurrence of a failure or process problem

 ● The impact of the same failure or process problem

 ● The cost of mitigating the risk item

This makes risk analysis simple. Risk can be reduced most signifi cantly 
for the overall system design and development process by focusing on the 
most probable and highest-impact risk items fi rst. These risks can then 
be further analyzed and mitigations proposed along with the cost of those 
mitigations to determine what goals are for the fi rst or next spiral turn. For 
example, if development of a new driver for a new video encoder is prop-
erly realized as high risk for a 15-week project, this risk can be mitigated 
by investigating existing drivers and several off-the-shelf options for video 
encoder chips. This could be done quickly in the fi rst spiral, and a recovery 
plan can be defi ned for the second turn. This is an example of a process 
risk. Likewise, a system risk can be handled in a similar way. For example, 
servos have limits in actuation quickness and accuracy. Characterization of 
a number of servos during the fi rst turn of the spiral to determine limits for 
candidate servo components can help signifi cantly reduce risk of not meet-
ing performance requirements for a tilt/pan tracker in the end. Risk analysis 
should always accompany requirements analysis and should always follow 
each spiral turn.

15.5 High-Level Design

High-level design involves the enumeration and defi nition of all hard-
ware and software interfaces and their characteristics as well as decomposi-
tion of the system into subsystems. If components can be identifi ed during 
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this phase, this is ideal. High-level design methods should involve unifi ed 
hardware/software design as well as individual design. A system design 
showing all system major elements should be agreed upon by the develop-
ment team and be defi ned at a high enough level that it can fi t on one page 
as shown in Figure 15.3.
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FIGURE 15.3 Stereo-Vision Example System Design

Although the single-page suggestion may be diffi cult and may lead to a 
busy block diagram, it provides a chance for the team or individual to look 
at all the major elements at once. The design can always be subdivided 
and cleaned up after this exercise, but the single-page view is often valu-
able throughout the project. A system view should show both hardware and 
software elements and the data fl ow between them with a high level of ab-
straction. The key for this design artifact is completeness and agreement by 
all involved that it is complete. To immediately clean up this busy view, the 
same diagram can be decomposed into a hardware-only view or software-
only view. Figure 15.4 shows the hardware-only view for the Figure 15.3 
system view.
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FIGURE 15.4 Stereo-Vision Example Hardware System View

Note that Figure 15.4 shows not only the electrical but also the me-
chanical hardware view. Once again, this can be broken down to show only 
mechanical views. In this way, subsystems are identifi ed in a consistent 
manner and with a keystone (the system views) that allow a team to con-
tinually reevaluate the effi cacy of the overall design.

In high-level design the fundamental concept is completeness rather 
than accuracy.  For example, mechanical drawings might not include di-
mensions, software module and service sequence diagrams might not de-
fi ne all calling parameters or message attributed, and electrical schematics 
might not have all resistor values.  The point is to fully defi ne subsystems 
and their interfaces to set the stage for early testing and for detailed design 
in the next spiral.  Methods used for design are specifi c to disciplines below 
the subsystem level (detailed design level), so the high-level design is the 
opportunity to ensure that the system can be integrated to meet system re-
quirements and a good system-level design mitigates risk considerably.  Of-
ten it is advisable to design to a level lower than subsystems to ensure that 
the subsystem high-level design can be advanced with more confi dence.  
This also allows for early identifi cation of components and can support ear-
ly component characterization and testing for systems which will be built 
from off-the-shelf components and subsystems.
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Numerous methodologies support system-level design, including the 
following:

 ● UML – Universal Modeling Language

 ● SDL – Specification and Description Language

 ● Structured Analysis

 ● Block diagrams

 ● Data flows

The DVD included with the text contains the start for a high-level sys-
tem design for the stereo vision project using UML with the Visio UML 
template.

This start on a system design can be completed to practice use of the 
UML methodology.  Both UML and SDL are well suited formalisms for 
system design.  Structured analysis methods and block diagramming are 
less formal, but these methods can be used successfully if applied with 
rigor to ensure completeness as described in this chapter.  Mostly, success-
ful projects choose a methodology and stick to it, using the methodology 
framework to communicate design and to allow for team reviews and as-
sessment of completeness.

15.6 Component Detailed Design

Detailed design must go down to the component level and divide the 
system into design elements specifi c to hardware and software. Specifi c de-
sign methods are more appropriate for mechanical, electrical, or software 
components and subsystems. Figure 15.5 shows a dimensioned cut-away 
mechanical design for a two-servo tilt/pan camera tracking subsystem. The 
fi gure shows only the mechanical design for this subsystem, and during 
detailed design review, the electrical and software detailed design for this 
subsystem should likewise show similar detail.

Figure 15.5 should show suffi cient detail so that the mechanical sub-
system can be assembled from the design drawings and information. Clear-
ly, even more detail would be needed, including all dimensions, material 
types, fasteners, adhesives, servo part numbers, and perhaps even assembly 
instructions. The less detail included, the more chance that some unspeci-
fi ed aspect of the subsystem design will lead to a design fl aw. For example, 

ON THE DVD
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not specifying the servo part number could cause a problem in the end 
with positioning accuracy requirements. Details such as multiple views, 
cut-away views, dimensions, and material specifi cation are expected in a 
mechanical detailed design.

Figure 15.6 shows a similar level of detail for an electrical subsystem for 
the stereo-vision system.

Part numbers are shown along with all resistor values, voltage levels, 
and a schematic that is not yet laid out for a PCB (Printed Circuit Board), 
but which could be entered into a schematic capture tool.  All signal inter-
faces should be clearly labeled and described such as the NTSC (National 
Television Standards Council) signal from the camera to the video en-
coder chip (Bt878).  Parts should be specifi ed well enough that they can 
be entered into a BOM (Bill of Material) data base for order and assembly 
during implementation and test phases.  Any simulation models of circuits 
completed, for example using SPICE (Simulation Program with Integrat-
ed Circuits Emphasis), should be included with this design as well.

Electrical design also should include not only circuit design but 
also logic design, which may often be captured in a mixed-signal circuit 
design, but logic elements often require additional explanation. Logic 
design should include all combinational and clocked state machine com-
ponents and subsystems with schematic models or HDL (Hardware De-
sign Language) models. Figure 15.7 shows logic diagram for a register 
component (JK fl ip-fl op) and for an ALU (Arithmetic Logic Unit) for 
integer division.
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Most often, an HDL such as Verilog, VHDL, or SystemC, is used to 
implement logic designs and schematics to verify and simplify logic and to 
ensure that dynamic behavior is as required. This HDL design can be simu-
lated for verifi cation and built from discrete logic components, downloaded 
as a synthesized bit stream into an FPGA (Field Programmable Gate Ar-
ray), or fabricated as an ASIC (Application Specifi c IC) for implementa-
tion. Detailed electrical logic design is aided by an EDA (Electronic Design 
Automation) tool chain that provides schematic capture, logic design us-
ing an HDL, simulation-based verifi cation, synthesis, layout, and physical 
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realization. For example, the following is a SystemC HDL specifi cation for 
the integer divide logic design depicted in Figure 15.7:

// Division algorithm based upon “Computer Organization and Design:
// The Hardware/Software Interface, but D. Patterson and J. Hennessy
//
// SystemC implementation

#define MASK32 0x00000000FFFFFFFF

SC_MODULE(divide)
{
   sc_in_clk         CLOCK;
   sc_in&lt;bool&gt;       RESET;
   sc_in&lt;unsigned&gt;   DIV, NUM;
   sc_out&lt;unsigned&gt;  Q, REM;
   sc_out&lt;bool&gt;      ERROR;
   sc_out&lt;bool&gt;      READY;

   void compute();
   SC_CTOR(divide)
   {
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FIGURE 15.7 Detailed Logic Design Block Examples
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      SC_THREAD(compute, CLOCK.pos());
      watching(RESET.delayed() == true);
   }
};

void divide::compute()
{
   // reset section
   signed lhr, rhr;
   unsigned i, q, r, d, n;
   long long signed ir, save_ir;
   bool err;

   while(true)
   {

      // IO cycle for completion with or without ERROR
      Q.write(q);
      REM.write(r);
      ERROR.write(err);
      READY.write(true);
      wait();

      // IO cycle for divide request
      d = DIV.read();
      n = NUM.read();
      READY.write(fales); // set busy state
      wait();

      // The divide computation
      if(d == 0)
         { q=0; r=0; err=true; }
      else if(n == 0)
         { q=0; r=0; err=false; }
      else
      {
          ir = n; q = 0; i = 0;

          while (i &lt; 32)
          {
             ir = ir &lt;&lt; 1;
             save_ir = ir;
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             lhr = ((ir &gt;&gt; 32) &amp; MASK32);
             rhr = (ir &amp; MASK32);
             lhr = lhr - d;
             ir = (lrh &lt;&lt; 32) | ((long long unsigned)rhr 
                                        &amp; MASK32);

             if(ir &lt; 0)
             {
                ir = save_ir;
                q = q &lt;&lt; 1;
             }
             else
             {
                q = (q &lt;&lt; 1) + 1;
             }
             i++;
          }
      }
   }
}

This SystemC code can be executed on the SystemC simulator for veri-
fi cation.

One very important opportunity for early system-level design verifi ca-
tion involves integrating software components with simulated or emulated 
hardware component and subsystem design. For example, boot code can be 
tested and run using an EDA co-simulation tool that provides an instruction 
set simulator that can run code on simulated hardware. The main issue with 
this is the immense processing power required to execute a cycle-accurate 
co-simulation model. Another option is to test software and hardware on 
an FPGA emulation platform that provides some level of the hardware/
software interface defi ned in the system design, but may not implement the 
fi nal physical form factor and may not implement all the required hardware 
interfaces. Likewise, some early testing between mechanical and electri-
cal components may be possible. For example, the stereo-vision tracker 
servo subsystem could be tested with an FPGA-based servo controller in-
terface to determine whether the hardware state machine for commanding 
the servo to set points using PWM is properly designed. Initial integrated 
testing of the servo subsystem might include a simplifi ed single camera 
mono-vision test and simple command-line interface test software. The 
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stereo servo mechanical subsystem would, of course, require a two-camera 
tilt/pan mounting system as shown in Figure 15.8.
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FIGURE 15.8 Two-Camera Stereo-Vision Mechanical Design

Part of the fi nal stages of detailed design should involve planning and 
status checks to ensure that the integration plans are on track as they were 
defi ned during the analysis stage of the second turn in the spiral.  If not, the 
plans should be adjusted so that the second integration and regression phase 
goes smoothly.  Numerous detailed design reviews should be held, often 
with much more limited audiences than high-level design so that hardware 
experts are reviewing hardware designs and likewise for mechanical and 
software detailed designs.  Design trade-offs, interface checks, and overall 
system effi cacy should be determined during high-level design.  High-level 
design reviews should include much more cross-discipline design review 
than detailed design.  For real-time embedded systems, deciding which 
real-time services are implemented with hardware state machines versus 
software is a key decision.  Analyzing exactly what software services are 
required and how they will interact is a signifi cant aspect of software high-
level and detailed design.

Real-time embedded system designs can benefi t from design methods 
that specifi cally show software timing, service releases, and processing pipe-
lines. Figure 15.9 shows a method for diagramming the services in a data pro-
cessing pipeline where each pipeline stage must execute within a deadline.

Design methods that can be directly compared to measurement or de-
bug tools can vastly simplify verifi cation. Figure 15.9 can fairly easily be com-
pared to a WindView (System Viewer) trace for a sequence of synchronously 
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released services in a pipeline. Software and the interfaces and deployment 
of software on hardware can be well described within the UML framework. 
Figure 15.10 shows the overall deployment of software modules on hard-
ware for the stereo-vision system.
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FIGURE 15.9 Stereo-Vision Processing Pipeline Sequence
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The deployment diagram in Figure 15.10 clearly shows the major soft-
ware modules that must be developed. A given software component, for ex-
ample the video driver, can now be designed with a class model that speci-
fi es functions, data, and a decomposition of a module into a class hierarchy. 
Figure 15.11 shows a possible class hierarchy for the video driver.
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FIGURE 15.11 Stereo-Vision Video Driver Class

The classes (and objects that instantiate them) can then be used in se-
quence or collaboration diagrams to show which modules call which class 
functions in each component and in what order. Figure 15.12 shows a se-
quence diagram for components in the stereo-vision system.
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find-center()
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FIGURE 15.12 Stereo-Vision Sequence Diagram



348 • REAL-TIME EMBEDDED COMPONENTS AND SYSTEMS WITH LINUX AND RTOS

Finally, to specify the design for the class functions (sometimes called 
methods), state machine design notation can be used to specify the function 
behavior now that it has been fully defi ned statically (class model) and in 
terms of the dynamic behavior at an interface level. Figure 15.13 shows a 
state machine design for the stereo-vision frame sequencing in the process-
ing pipeline by the tBtvid driver.

Waiting-for-Frame -Rdy

Do-Frame-Processing Transporting

Frame-Driver-Initializing

when: if(FrameCnt  > LastFrameCnt) 

when: if(FrameCnt % FrameProcRate = = 0) 

when: if(FrameCnt % FrameTransportRate  = = 0) 

FIGURE 15.13 Stereo-Vision Sequencer State Machine

15.7 Component Unit Testing

Component testing can be divided into a number of test types, includ-
ing the following:

 ● Functional and interface tests

 ● Stress testing

 ● Soak testing

 ● Performance testing

Testing exit criteria should be defi ned for each one of these types of 
tests ideally.  Both at the unit level and for system-level regression testing.
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Functional tests verify that subsystems and components meet their 
interface and behavior requirements for those interfaces as specifi ed by 
analysis phase requirements defi nition.  Often it is impossible to fully test 
a functional interface due to the massive number of input/output combina-
tions that might be required even for a simple software or hardware com-
ponent.  For example, a 64-switch interface has enough switch permuta-
tions that there is no way it can be fully tested.  In this regard, functional 
tests should focus on input patterns and sequences that are expected and 
desired as well as those specifi cally not-desired and for which the system is 
expected to reject and handle and prevent.

Because not all input combinations, timing-patterns, and communica-
tion sequences can be tested between components and subsystems, stress 
testing provides important verifi cation for unexpected inputs and timing. 
Stress testing is most often done with random input generation and with 
test harnesses that drive components harder than they are ever expected to 
be driven. For stress testing, the electrical subsystems are tested at higher 
voltage, higher temperatures, and higher speeds than the requirements. 
For example, a PCB layout designed for 100-MHz signal buses might be 
designed for gigahertz signaling and tested with signal rates at twice the fre-
quency of normal operation. Likewise, a software module might be tested 
with random inputs at higher-than-expected calling frequencies, and driven 
by service request workloads more demanding than those expected in ac-
tual operation.

Soak testing provides confi dence in subsystem and component stabil-
ity and life-time estimates. For example, a software subsystem might be 
run for more than 48 hours with continuous workload to ensure that the 
software does not lose track of resources over time (a memory leak for a 
dynamic memory management service). Furthermore, soak time tests will 
uncover issues that are rare, such as unlikely combinations of events that 
might lead to timing problems, for example, a cache miss that causes very 
occasional software service deadline overruns. Similarly, for hardware, soak 
tests involve continuous runtime to verify component durability and life-
time expectations.

Finally, performance tests with units provide critical information for 
bottleneck analysis. If the performance of each unit can be tested in isola-
tion, then the upper limits on the throughput, fi delity, or reliability of that 
unit can be determined apart from the system as a whole. Performance unit 
testing is fundamental to overall system risk analysis. The slowest and least 
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reliable components can be identifi ed from these unit tests and factored 
into a system-level performance and reliability analysis.

Software includes several types of unit tests that are specifi c to the na-
ture of software modules:

 ● Black box test

 ● Glass box test

A black box test is a functional test or stress, stability, performance test 
that is run without any knowledge of exactly what code is being exercised in-
side a software module.  The danger of black box testing is that while rigorous 
functional, stress, stability, and performance tests might be defi ned, they may 
still exercise only a small percentage of the software in a module.  A measure 
of the coverage of the software module for a given suite of tests indicates 
whether suffi cient testing is being completed—this is a glass box test. A glass 
box test involves defi nition of test criteria that includes the following:

 ● Number of execution paths driven out of total number in a module

 ● Number of statements or instructions covered out of total

 ● Number of decisions fully evaluated in a module

The foregoing conditions provide metrics for how complete the func-
tional, stress, stability, or performance tests are in terms of fully exercising 
the software unit under test.  More importantly, quantifying coverage al-
lows the tester to know when they are done.  Path coverage is simply all of 
the instruction sequences that may be executed from every single branch 
point in code.  Statement coverage is simply how many statements have 
been executed out of the sum of all unique instruction addresses.  Less 
obvious is the decision coverage.

Criteria called MCDC (Multiple Condition, Decision Coverage) 
evolved due to compiler and instruction set optimizations that allow for ex-
pressions or individual instructions to executed conditionally.  For example 
the following C code includes two expressions with a logical or test and two 
paths, one for a true outcome and another for the false outcome.

void control_update(void)
{
    if(inactive || (within_centroid_tolerance() && 
                    within_servo_deadbands()))
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    {
        monitor_and_wait();
    }
    else
    {
        update_servo_control();
    }
}

In this code fragment, there are clearly only two paths.  Both paths 
can be driven by evaluating inactive and the function within_centroid_
tolerance().  For example, the monitor_and_wait() path is driven by an 
inactive=TRUE.  The update_servo_control() path can be driven by ei-
ther inactive=FALSE and either one of the within_centroid_tolerance() 
or within_servo_deadbands() functions returning FALSE.  Likewise the 
monitor_and_wait() path could also be driven by inactive=FALSE and 
both within_centroid_tolerance() or within_servo_deadbands() returning 
TRUE.   So, there is a case where both paths are driven, but within_ser-
vo_deadbands() is never called and evaluated.  So, while path coverage for 
the function control_update() would indicate full coverage, code in with-
in_servo_deadbands() could execute and cause a failure in the fi eld.  If full 
path coverage criteria is measured on all functions, this might be caught, 
but if within_servo_deadbands() is also called from another context, the 
function may appear covered, but was in fact never tested in the context 
of control_update().  The MCDC coverage criteria require that all logical 
sub-expressions be evaluated for full coverage.

The GNU (GNU’s Not Unix!) open source compilers known as gcc, the 
GNU C compiler, provides profi ling and path coverage analysis that can 
help with Glass box analysis.  With gcc path coverage, the paths tested (cov-
ered) by unit test cases can be monitored in terms of execution statistics 
(number of times each path was executed).  This is easily done by simply 
compiling a software module with path coverage instrumentation directives 
as the following example shows.  First the code is built with the “make” 
command and specifi c path coverage instrumentation directives:

%make
cc -Wall -O0 -fprofile-arcs -ftest-coverage -g    sclogic.c 
   -o sclogic
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Second, the code is run as normal and might include some Black box 
tracing output using system logging or simple print statements as shown:

%./sclogic
function_A
function_B
do function_C
do function_D
function_A
do function_D
…
do function_C
function_A
do function_D
function_A
function_B
do function_D

Third, the source code is analyzed using the gcov tool so that the origi-
nal source can be annotated with execution statistics as follows:

%gcov sclogic.c
File ‘sclogic.c’
Lines executed:100.00% of 29
sclogic.c:creating ‘sclogic.c.gcov’
%gcov sclogic
File ‘sclogic.c’
Lines executed:100.00% of 29
sclogic.c:creating ‘sclogic.c.gcov’

The result is a new gcov fi le with execution statistics annotated for each 
line of original source code:

%cat sclogic.c.gcov
        -:    0:Source:sclogic.c
        -:    0:Graph:sclogic.gcno
        -:    0:Data:sclogic.gcda
        -:    0:Runs:1
        -:    0:Programs:1
        -:    1:#include <stdio.h>
…
        1:   41:int main(void)
        -:   42:{
…
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        -:   52:    // Test Case #2, Test use in logic
       11:   53:    for(testIdx=0; testIdx < 10; testIdx++)
        -:   54:    {
       10:   55:       if((rc=(function_A() && function_B())))
        2:   56:           function_C();
        -:   57:       else
        8:   58:           function_D();
        -:   59:
        -:   60:    }
        -:   61:
        1:   62:    return(1);
        -:   63:}

The annotated fi le shows counts for each line of code that can be ex-
ecuted.  For example, in the gcov output above for the sclogic.c C source 
code, we see that line 53 (for loop) was executed eleven times, but the loop 
body composed of an if statement was executed only ten times.  This is well 
known to C programmers because for loops must execute one more time 
than the for loop body to test the exit condition.  The sclogic.c code includes 
a C code short-circuit logic if expression, which makes the coverage analysis 
interesting.  To make the coverage easier to read and understand, Linux 
includes a tool known as “lcov” that can produce an HTML (Hyper Text 
Markup Language) version of the instrumented code as follows:

LCOV - code coverage report

Current view: top level - MCDC2 - 
sclogic.c (source / 
functions)

Hit Total Coverage

Test: sclogic.info Lines: 29 29 100.0 %

Date: 2014-10-13 
23:27:32

Functions: 5 5 100.0 %

          Line data    Source code
1             : #include <stdio.h>
2             : 
3             : 
4          11 : int function_A(void)
5             : {
6             :     static int toggle_A=0;
7             : 
8          11 :     printf(“function_A\n”);
9          11 :     if(toggle_A == 0)
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10           6 :         toggle_A=1;
11             :     else
12           5 :         toggle_A=0;
13             : 
14          11 :     return toggle_A;
15             : }
16             : 
17           6 : int function_B(void)
18             : {
19             :     static int toggle_B=0;
20             : 
21           6 :     printf(“function_B\n”);
22           6 :     if(toggle_B == 0)
23           3 :         toggle_B=1;
24             :     else
25           3 :         toggle_B=0;
26             : 
27           6 :     return toggle_B;
28             : }
29             : 
30           3 : void function_C(void)
31             : {
32           3 :     printf(“do function_C\n”);
33           3 : }
34             : 
35           9 : void function_D(void)
36             : {
37           9 :     printf(“do function_D\n”);
38           9 : }
39             : 
40             : 
41           1 : int main(void)
42             : {
43             :     int rc;
44           1 :     int testIdx=0;
45             : 
46             :     // Test Case #1 - Call all functions
47           1 :     rc=function_A();
48           1 :     rc=function_B();
49           1 :     function_C();
50           1 :     function_D();
51             : 
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      52             :     // Test Case #2, Test use in logic
      53          11 :     for(testIdx=0; testIdx < 10; testIdx++)
      54             :     {
55          10 :         if((rc=(function_A() && function_B())))
56           2 :             function_C();
57             :         else
58           8 :             function_D();
59             : 
60             :     }
61             : 
62           1 :     return(1);
63             : }

The goal of Glass box testing and path coverage analysis is to verify 
that all paths have been well tested by unit test cases.  Unit test cases are 
often designed as Black box tests, unit test drivers written to simply pro-
duce expected results, sometimes for negative testing (to drive unexpected 
inputs into a function), but the path coverage provides source-level analysis 
to verify that the tests are complete.  The coverage analysis ensures that the 
tests meet quantifi able criteria such as executing all lines of code at least 
once (or more).  The statistics in the coverage analysis also help make obvi-
ous the behavior of C short-circuit logic.

Another Glass box verifi cation that is useful is profi ling code.  This 
means producing statistics to measure how much of the overall execution 
time is spent in each code module, each function and even each line of C 
code.  This allows for optimization of key functions and lines of code to 
improve effi ciency.  As shown in Chapter 13, “Performance Tuning”, spe-
cialized tools can be used that make use of hardware support such as the 
MONster example showed.  However, simple software instrumentation is 
also possible using the GNU gprof—GNU profi ler.  

The software RAID (Redundant Array of Inexpensive Disk) example 
included on the DVD which uses XOR (exclusive OR logic) to encode data 
so that loss of a data segment can be recovered, can be run for thousands of 
iterations and profi led as follows:

%make
cc -O3 -Wall -pg -msse3 -malign-double -g   -c raidtest.c
cc -O3 -Wall -pg -msse3 -malign-double -g   -c raidlib.c
cc  -O3 -Wall -pg -msse3 -malign-double -g   -o raidtest 

ON THE DVD
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raidtest.o raidlib.o
%./raidtest
Will default to 1000 iterations
Architecture validation:
sizeof(unsigned long long)=8
RAID Operations Performance Test
Test Done in 453 microsecs for 1000 iterations
2207505.518764 RAID ops computed per second

The statistics for the profi le test shows that overall more than two mil-
lion RAID encoding operations were completed per second, but this is just 
a Black box measure of performance.  We still have no idea how much of 
that time was spent on XOR computation compared to the overhead of 
managing the data, looping, and just running the test.  In the “make” we 
note that the “-pg” option was used to add GNU gprof profi ling, which 
means that a gmon.out fi le will be generated by the instrumentation.  We 
can then create a profi le report as follows:

%ls
Makefile    gmon.out   raidlib.h  raidlib64.c  raidtest    
raidtest.o
Makefile64  raidlib.c  raidlib.o  raidlib64.h  raidtest.c  raid-
test64
%gprof raidtest gmon.out > raidtest_analysis.txt

Looking at the generated report summary, we see that in fact only 
15.47% of the time is spent computing XOR for each LBA (Logical Block 
Address, a collection of 512 bytes to be written to a disk drive).

Flat profile:
Each sample counts as 0.01 seconds.
  %   cumulative   self              self     total
 time   seconds   seconds    calls  ns/call  ns/call  name
 82.13      1.54     1.54                             main
 15.47      1.83     0.29  2000001   145.38   145.38  xorLBA
  2.67      1.88     0.05  2000001    25.07    25.07  rebuildLBA

The results provided by gprof are similar to the MONster results we saw 
in Chapter 13, but this is done using only software instrumentation without 
any hardware support and with a simple compile directive.  While SWIC 
(SoftWare In Circuit) instrumentation for path coverage and profi ling can 
be more intrusive than HWIC (Hardware In Circuit), it is convenient and 
often accurate enough to provide good Glass box testing and verifi cation of 
software unit correctness and effi ciency.
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15.8 System Integration and Test

As unit tests are completed, units can be assembled, including both 
hardware and software for integrated testing. Most often, it’s best to take a 
building approach where components are integrated to form a single sub-
system, which is tested. If the subsystem tests well, then two such subsys-
tems are integrated into a partial system, and again tested. This is repeated 
until the whole system is integrated and meets expectations. Invariably, 
some unanticipated subsystem interaction results in two subsystems test-
ing good, but when combined, the partial system does not test as expected. 
At this point, rerunning each subsystem test, a regression test, provides 
validation that the two subsystems still are functional on their own. More 
complex still is a situation where two subsystems are integrated and meet 
test expectations, but when a third subsystem is added, the partial system 
does not meet expectations. The ability to quickly isolate the problem is 
accelerated by quick unit regression test capability. Often a subsystem may 
fail when integrated due to integration error, a systemic interaction causing 
failure, or just random bad luck. Either way, the ability to test partial sys-
tems and regression test components and subsystem units is fundamental 
to the integration-by-steps approach.

15.9 Configuration Management and Version Control

Ideally hardware and software will be developed on projects concur-
rently with integration tests using ISS (Instruction Set Simulation), TLM 
(Transaction-Level Modes) for hardware, and with early testing of software 
on hardware emulation platforms.  During this concurrent development 
here are some tips on how to keep features and modules on track:

 ● Identify hardware and firmware module owners to take responsibility 
through entire life cycle. 

 ● Require tests to be developed in parallel with module development. 

 ● Require early adoption of nightly testing using TLM simulation and/or 
RTL simulation. 

 ● Adopt configuration management version control (CMVC) tools that 
allow for feature addition branches and version tagging.

Although these recommendations are followed in most projects, they of-
ten aren’t implemented until the end of the process shown in Figure 15.14.  



358 • REAL-TIME EMBEDDED COMPONENTS AND SYSTEMS WITH LINUX AND RTOS

HW Test FW

HW Design
Transactiion Level Model

(System C, C)

FW Design
C prototypes

HW HDL

HW System

HW Board/ASIC FW base

FW base

HW boot and
diagnostic FW

TLM    Sim

RTL    Sim

TLM    Sim

Phase 1

Phase 2

Phase 3

Phase 4

FW

ISS

ISS

FW
HW

FIGURE 15.14 Concurrent HW and SW Development Timeline

Starting early and automating tests for nightly regression is now possible 
with EDA and co-simulation tools available for hardware and software devel-
opment. In the days before early verifi cation tools were available, hardware 
and fi rmware development proceeded much more independently than they 
can now. A typical process included independent development of fi rmware 
on an emulator while hardware was designed and developed, with most of 
the concurrent testing done during the fi nal post-silicon verifi cation. Despite 
advances in verifi cation tools, many developers still work along lines estab-
lished in those days, and thus don’t adopt testing and regression processes, or 
confi guration and version control, to the extent that they should.

Because EDA and HDLs for hardware design make the hardware 
development process similar in nature to fi rmware development, both 
hardware and fi rmware can and should use confi guration management 
tools—the same ones, if at all possible! This almost seems blasphemous to 
organizations that have grown accustomed to a silo model for hardware and 
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software development, where a quick hand-off is made post-silicon, and 
interaction is otherwise minimal.

One diffi culty when testing changing fi rmware on changing hardware 
is that stability often suffers: this can greatly impede the progress of both 
hardware and fi rmware development teams. This problem can be solved by 
having the hardware team make releases of simulators to the fi rmware team. 
Likewise, the fi rmware team should make releases of boot code and diagnos-
tic code to the hardware team. Both teams need well-disciplined processes 
for maintaining versions and releases. One way to do this is to maintain a 
main line of C code or HDL that is guaranteed to be stable. As hardware or 
fi rmware developers add code, they can do this on branches from the stable 
main line, and merge new features and bug fi xes made on code branches back 
to the line. Figure 15.15 depicts this basic disciplined practice.

Figure 15.15 shows how a developer can take a stable baseline of C 
code or HDL, branch it for modifi cation, add new features and test them 
on the branch, and then merge them with other potential changes on the 
main line. After the merge is completed, the new result must once again be 
tested, and then it can be put back on the main line, advancing the overall 
system and maintaining stability. The only place unstable code should be 
found with this process is on a branch. After a CVS repository has been set 
up and code checked into it, developers can create a working sandbox for 

Stable
System

Branch
System

Merged
System

Stable
System

Branch end

branch_feature_date 1.1.1.1

1.2.1.2

1.1.1.3

1.7
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1.5

1.4

1.3

1.2
1.1

updates

FIGURE 15.15 Example of CVS Module Branching
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their code; the sandbox is their own private copy from the repository. For 
simple modifi cations to the code base, a fi le can be modifi ed and, after test-
ing, put back into the base with a simple command:

cvs commit filename 
Branching is a more advanced method, which is useful when sets of 

fi les need to be modifi ed, tested, and shared with other developers. A CVS 
branch has a tag, and therefore other developers can check out copies of a 
branch to their own branch sandbox, as Figure 15.15 shows. In Listing 15.1, 
the fi rst set of commands does a checkout of the current code and then tags 
this revision of the code with a branch tag. Tags are simply sets of revisions 
of all fi les from the repository. The branch tag is a special tag that not only 
defi nes a set of fi le revisions but also allows for modifi cation to those fi les 
with a new revision that remains separate from the main repository revi-
sions. This is shown in Figure 15.15 as the branch line that includes a main 
line revision and branch revision. The developer or developers working on 
the branch can share updates and test the branch revisions without affect-
ing the main line of code.

The middle set of commands in Listing 15.1 provides an example of 
updates to the branch revision. When the developers are happy with the 
branch, the branched code set can be merged back to the main line of code 
with the fi nal set of commands in Listing 15.1.

LISTING 15.1 CVS Commands for Branching

cd stable_directory
cvs checkout system
make system; test system
cvs tag -b -c branch_feature_date

cd branch_directory
cvs checkout -r branch_feature_date
modify files
make system; test system
cvs commit
modify files
make system; test system
cvs commit

cd merge_directory
cvs checkout system
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cvs update -j branch_feature_date -kk system
make system; test system
cvs commit

Branches can be useful for almost any modifi cation to a design main-
tained as a fi le set, but most often they are used for the following:

 ● Complicated multi-file bug fixes 

 ● Addition of new features 

 ● Performance optimization and tuning 

 ● Special releases to external customers or internal users

Optimization is a great example of an area where branches combined 
with regression testing can allow for signifi cant and aggressive performance 
improvements while minimizing risk to system stability. You may very well 
have optimized a system to improve performance, only to fi nd after subse-
quent development of more sophisticated regression tests that the optimi-
zation has destabilized the system. Or, in some cases, it may take some soak 
time before the destabilization is noticed. For example, if the optimization 
introduces a new race condition, then that condition might not be hit for 
many days or weeks, long after the optimization has been initially tested 
and integrated back into the system. At this point, the optimization might 
be harder to back out.

Optimizations performed on branches can be tested and maintained on 
the branch and merged with a very clear change set. You can more readily 
back out of merging a destabilizing optimization back into the main line if 
you use tags on the branch.

The CVS (Code Versioning System) is used less than it was when the 
fi rst edition of this text was published and has been mostly replaced by use 
of CMVC (Confi guration Management and Version Control) tools that not 
only provide source code version control but also manage the confi guration 
of fi les and directory structure for larger software systems.  Many of the 
principles of the main line of code, branches, and merges remain the same, 
but commands and concepts are somewhat different.  Two of the most pop-
ular CMVC tools are Subversion and the GNU Git tools.  Many of these 
tools can now be used on Cloud web sites where code can be hosted and 
managed either publically or with private repositories (e.g., https://github.
com/, https://bitbucket.org).  The DVD includes example instructions on 
how to use these newer CMVC tools. ON THE DVD
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15.10 Regression Testing

Regression testing is critical not only for integration steps but also for 
ensuring that a system confi guration that worked yesterday still works to-
day after incremental changes.  If the system is broken due to incremental 
changes, this should be detected before such changes are made permanent 
to the working system.  For example, a code change is suggested to a mod-
ule to improve performance, but this change might break the functional 
specifi cation.  This should be caught by a nightly run system regression test.

Summary

A good understanding of system life cycle and planning for spiral turns 
and phases can help minimize surprises, delays, and costly errors during 
development of a project.  The spiral life-cycle approach can also assist 
developers with risk maintenance and mitigation.  More frequent reporting 
of progress to management also allows for better overall planning within an 
organization.

Exercises

1. Set up CVS or the Subversion configuration management and version 
control tool for your work on a real-time project to be completed using 
this book.

2. Complete the example stereo vision UML Visio template design pro-
vided on the DVD.

3. Write a SystemC model for a PWM generator state machine to control a 
hobby servo.  Verify this design using the SystemC simulator and finally 
implement it on an FPGA ASIC such as the Virtex-II or Spartan.

4. Describe whether CVS is better than subversion or vice versa and why.

5. Describe whether Subversion is better than GNU Git or vice versa and 
why.

6. Place some of the example code under CMVC management using 
GitHub or Bitbucket.

ON THE DVD
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C H A P T E R

CONTINUOUS MEDIA APPLICATIONS

16
In this chapter

 ● Introduction
 ● Video
 ● Uncompressed Video Frame Formats
 ● Video Codecs
 ● Video Streaming
 ● Video Stream Analysis and Debug
 ● Audio Codecs and Streaming
 ● Audio Stream Analysis and Debug
 ● Voice-Over Internet Protocol (VoIP)

16.1 Introduction

Digital video processing is an excellent way to explore and learn more 
about real-time embedded systems. The camera or video stream frame rate 
provides a fundamental service frequency, typically at 30 Hz for NTSC 
(National Television Systems Committee), from which other services may 
run at the same frequency or a sub-period of this basic rate. Video process-
ing services for a wide range of system projects include the following:

 ● Video stream compression and decompression (codec)
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 ● Video stream transport over a network

 ● Image processing to detect edges of a target object and to determine its 
center in XY plane

 ● Tracking a target object with tilt and pan servo control loop to keep 
object center in FOV center

 ● Two-camera stereo ranging to determine distance to a target object be-
ing tracked

 ● Digital video recording and playback

 ● Motion detection with video stream storage, motion stream playback

 ● Multiple video stream server (Video on Demand)

 ● Line-following mobile robot with forward-looking obstacle detection

 ● Embedded camera in robotic arm for object and target recognition pick 
and place

 ● Fixed overhead camera–based navigation of a robotic arm for pick and 
place

The basic requirement is a video-capture card and driver for it. The 
Video for Linux project maintains a number of drivers for Linux that can be 
used in an embedded Linux project, and, likewise, Linux drivers can be 
ported to VxWorks.  

The DVD includes a VxWorks driver for the Bt878 NTSC capture chip, 
which provides rudimentary 320x240 RGB frame capture at 30 fps. This ex-
ample driver was loosely based upon the original bttv Linux driver, but does 
not implement all of the capture modes that the bttv driver does. This ex-
ample driver was originally built from the chipset manuals, but when prob-
lems with documentation were encountered, the Linux bttv driver source 
helped immensely. One of the best ways to really learn about the video 
hardware/software interface is to port a driver to VxWorks from Linux or 
start with the chipset manuals and build one from the ground up.

From the basic capture driver codec and/or image processing services 
can be run at the same 30Hz rate or a sub-rate, such as 15, 10, 6, 5, 3, 2, 
or 1 Hz, easily derived from the basic 30Hz interrupt rate from the frame 
encoder.

ON THE DVD
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16.2 Video

The predominant video analog signal formats are NTSC (National 
Television Systems Committee) used in North America, Japan, and Korea; 
PAL (Phase Alteration by Line), used in South America, Africa, and Asia; 
and SECAM (Sequential Color with Memory), used in France and north-
ern Asia. The NTSC standard used in North America was fi rst defi ned in 
1941 for black-and-white transmission and further refi ned in 1953 to in-
clude a color standard. The NTSC standard is used for television broadcast 
(HDTV, or High-Defi nition Television, is the emerging replacement with 
much higher resolution), for CCTV (Closed-Circuit Television), and for nu-
merous digital video-capture and video-editing devices. An NTSC camera 
input to a video encoder, such as the Bt878 hosted on an x86 PC, provides 
real-time digital video capture and can be used as a basic platform for real-
time video projects.

The basic NTSC signal will raster a television CRT with odd and even 
lines (interlacing) so that there is a retrace between the odd and even ras-
ter traces from the lower-right corner back to the upper-left corner of the 
screen. The interlacing was designed into NTSC to control fl icker between 
frames for early television systems. The odd and even lines are updated 
at 59.94 Hz, with 486 lines out of a total of 525 used to display the image, 
and the remaining lines used for signal sync, vertical retrace, and the verti-
cal blank lines that used to carry closed-caption data. This basic signal was 
modifi ed to carry color with two chrominance signals at 3.57955 MHz that 
are 90 degrees out of phase. A luminance signal took the place of the black-
and-white signal in color NTSC. Video-capture chips, such as the Bt878, 
encode this color NTSC signal into luminance and chrominance digital data 
by sampling the signal and using ADCs (Analog-to-Digital Converters) to 
generate a digital measurement of the luminance and chrominance signals. 
The video-capture chip must maintain PLL (Phase Locked Loop) with the 
NTSC signal to properly sample the NTSC signal at the right points in time. 
The NTSC signal lock is obtained during sync and retrace periods where 
the signal has a fl at output known as the front and back porch [Luther99].

The digitized NTSC data is initially in the form of luminance and chro-
minance samples that can be converted to RGB data. For digital process-
ing, RGB data is the most easily processed and the most common standard 
for display using a computer graphics adapter. Figure 16.1 shows the con-
ceptual color cube representation of RGB, where the basic Red, Green, 
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and Blue outputs can be additively combined to derive all other common 
colors as a 24-bit pixel composite of the 8-bit R, G, and B values.

Blue

Red

GreenBlack  

White  

Yellow

Cyan

Magenta

FIGURE 16.1 RGB Color Cube

A standard digital conversion among luminance, chrominance, and 
RGB defi nes a method for deriving RGB from NTSC sampling:

 ● YUV (Where Y is luminance, and U, V are the chrominance) to 
RGB Conversion

– B = 1.164(Y - 16) + 2.018(U - 128) 

– G = 1.164(Y - 16) - 0.813(V - 128) - 0.391(U - 128) 

– R = 1.164(Y - 16) + 1.596(V - 128)

To convert back from RGB to YUV, the following is used:

 ● RGB to YUV Conversion (For Computers with RGB [0-255])

– Y = (0.257 * R) + (0.504 * G) + (0.098 * B) + 16 

– Cr = V = (0.439 * R) - (0.368 * G) - (0.071 * B) + 128 

– Cb = U = -(0.148 * R) - (0.291 * G) + (0.439 * B) + 128 

In both cases all computed outputs should be clamped to a range of 0 
to 255. The Bt878 video encoder performs this digital conversion with a 
hardware state machine so that RGB data can be captured from NTSC and 
pushed by DMA (Direct Memory Access) into the host PC memory.
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Often grayscale or monochrome digital video is suffi cient for basic 
computer vision applications or video monitoring applications, like motion 
detection security camera systems. Acquisition of NTSC into RGB digital 
data provides a very fl exible approach since monochrome can be derived 
from it and since the RGB data can be displayed locally in full 24-bit color, 
but stored in a grayscale or in a compressed 16-bit luminance chrominance 
format. Grayscale monochrome frames can be derived from RGB by two 
methods:

 ● Selection of one color band from the three

 ● Conversion of the three to grayscale with a summing linear relationship

Figure 16.2 compares both methods showing grayscale derived by se-
lection of R, G, or B bands alone and comparing this to the standard mixing 
conversion (based upon characteristics of human vision), which is defi ned 
as:

Y = 0.3R + 0.59G + 0.11B 

In Figure 16.2, the balance does appear most pleasing to the eye; how-
ever, for computer vision, it’s not clear that a balance provides better image 
processing for functions such as segmenting a scene with edge detection.

FIGURE 16.2 Grayscale Monochrome Derived from RGB by Three Methods

Color is one dimension of streaming video that also can be thought of 
as having a time and space dimension. Codec engines can take advantage 
of color, time, and space dimensions to compress a stream of video frames 
for storage or transport over a network to reduce required capacity and 
bandwidth. Conversion from color RGB to grayscale is a 3 to 1 compres-
sion, converting each pixel (picture element) into an 8-bit data value from 
24 bits. Similarly, a 24-bit pixel RGB frame can be converted into a small-
er luminance/chrominance (YCrCb) 16-bit pixel frame, providing a 3 to 2 
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compression with some color loss. The most commonly used YCrCb format 
is YCrCb 4:2:2, where four luminance samples are stored for every two Cr 
and Cb chrominance samples, as depicted in Figure 16.3.

…  
0 319

…  
76,480 76,799

…  

= Y, Cr, and Cb = Y sample 
FIGURE 16.3 YCrCb 4:2:2 Format

Figure 16.3 shows YCrCb samples for a 320 × 240 frame size. The 
Bt878 encoder actually encodes RGB as RGB, where an 8-bit alpha lu-
minance is combined with the 24-bit RGB values for a 32-bit pixel. The 
alpha can be used as the Y sample, and the Cr and Cb can be derived from 
RGB using the YUV to RGB conversion. If alpha is not available, Y can be 
computed from RGB as well [Jack07]. In YCrCb 4:2:2, each Y, Cr, and Cb 
sample is 8 bits. The 2 RGB pixels require 48 bits, whereas 2 YCrCb pixels 
require 32 bits total (or 16 bits per pixel compared to 24 bits per pixel for 
RGB), yielding a one-third smaller frame size overall. The sample to pixel 
map format for YCrCb is:

 ● Pixel-0 = Y7:Y00, Cb7:Cb00; Pixel-1 = Y7:Y01, Cr7:Cr00

 ● Pixel-2 = Y7:Y02, Cb7:Cb01; Pixel-3 = Y7:Y03, Cr7:Cr01

So, for YCrCb, for every four Y samples, there are two Cr and two Cb 
samples packed into 4 total pixels. The frame size of 76,800 total pixels in 
a 320x240 frame is divisible by four, so YCrCb works for any NxM frame 
where N and M are divisible by two.

16.3 Uncompressed Video Frame Formats

Before diving into how to compress, transport, and decompress a video 
stream, it is useful to understand basic uncompressed video formats that 
can be used for debug and early testing. The two simplest single-frame for-
mats are PPM (Portable PixMap) and PGM (Portable Gray Map). These 
two single-frame formats can be displayed by tools included with the DVD 
and commonly available viewers like the Irfan viewer. Both simply require ON THE DVD
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a header describing the data pixel and frame format along with the raw bi-
nary data in the format specifi ed. For example, a PPM fi le might have the 
following header:

P6

#test

320 240

255

The header is followed by 76,800 24-bit RGB pixels arranged into 320 
columns and 240 rows, with each color band ranging from 0 to 255 in value. 
The PPM and PGM headers are always in plain ASCII text, and the data is 
in binary form. The # character is used to add comment lines in the header. 
The P6 indicates this is a PPM fi le and not some other Netpbm format, 
such as PGM. The PGM header is almost identical—for example:

P5

# grayscale

320 240

255

This header indicates PGM with the “P5” and again specifi es that 
76,800 8-bit monochrome pixels will follow the header, with a value range 
from 0 to 255.

Several example PPM and PGM fi les are included on the DVD.

16.4 Video Codecs

The compression from RGB to YCrCb is a lossy compression in the 
color dimension. Codecs (compression/decompression) can provide com-
pression of video streams in three dimensions:

● Color space

● X, Y frame space

● Time

Compression in X, Y frame space can be lossless or lossy with varying 
degrees of compression performance. Methods typically applied to strings 
of information such as RLE (Run Length Encoding) or Huffman encoding 

ON THE DVD
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can be used on frame data within a single frame. Pixels, like any string of 
symbols, can be compressed by encoding repeating patterns. The RLE en-
coding simply replaces all repeating symbol (pixel) sequences with a count 
and value. A simple approach like this can provide lossless compression 
in images. Huffman encoding can likewise provide string compression for 
repeating pixel sequences. Often the compression provided by string-ori-
ented lossless compression is not signifi cant because video data, unlike text, 
often has random variations, even in mostly fl at backgrounds. For signifi -
cant compression within a frame, lossy methods must be applied that use 
transforms or pixel averaging to combine neighboring pixels. The neighbor-
ing pixels can be regenerated during decompression with an inverse trans-
form or interpolation. Information is lost, but compression can be 4 to 1 or 
higher compared to RLE or Huffman, which might provide a 10% smaller 
frame size reduction.

Compression over multiple frames can be signifi cant. The most basic 
method is to transmit change-only data. Change-only data is computed by 
computing a difference frame for every stream frame pair. Pixel differences 
above a threshold (zero threshold for lossless) are transmitted as pixel ad-
dress and pixel change, and all other pixels are considered unchanged. This 
leads to high compression rates for streams where the scene is not chang-
ing quickly. The use of a threshold helps eliminate changes due to small 
background noise in lighting, the detector itself, the atmosphere, and other 
perturbations to an otherwise static scene. In the extreme cases a totally 
static scene yields infi nite compression and a totally changing scene actu-
ally infl ates the frame size. For each change-only pixel the address plus the 
change must be encoded. For an 8-bit grayscale pixel this would require 
8 bits for the change pixel and 17 bits for the pixel address for a 320x240 
frame size. Most often, change-only compression includes evaluation of the 
number of changes, and if there are so many that the change-only frame 
provides no compression (or worse yet infl ation), then the raw data frame is 
sent instead. This is an adaptive form of compression.

Optimal codecs apply a series of lossless and lossy compression 
schemes for maximum performance. For example, a stream could fi rst be 
compressed in the color space by transforming RGB to YCrCb (a 33% de-
crease in frame size), followed by difference imaging with a threshold, and 
fi nally compressed further by a lossless method, such as RLE. Lossy meth-
ods followed by lossless can vastly improve the performance of the loss-
less compression; in cases where change-only compression won’t help, the 
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color space and lossless compression will still decrease frame size. Adaptive 
change-only compression requires a compression header describing the 
compression applied so that the decompression can correctly treat each 
frame as a difference frame or not and so the decompression can be applied 
in the reverse order of compression.

Codec standards, such as M-JPEG (Motion-Joint Photographic Experts 
Group), MPEG (Moving Picture Experts Group), DivX, and Theora can be 
used, but building your own codec is the best way to learn about and appre-
ciate how codecs work. The MPEG standard uses lossy image transforms, 
including frequency space and entropy encoding [Solari97]. The most cur-
rent extensions, such as MPEG-4, also include prediction and difference-
image encoding over time. In contrast, M-JPEG uses wavelet transform 
within frames rather than the DCT (Discrete Cosine Transform) used in 
MPEG and also does not employ compression over time (multiple frames), 
which has the advantage of being independent of motion in the video 
stream and allowing video editing to include cuts on any frame boundary. 
The DivX codec is a proprietary codec that uses MPEG-4, and Theora is an 
open source codec designed to be competitive with MPEG-4. Aside from 
building your own codec, integrating an open source codec, such as Theora, 
is the next best way to learn about video codec technology. The codec can 
be combined with a transport protocol for streaming, such as RTP (Real-
Time Transport Protocol) built on top of UDP (User Datagram

Protocol) and most often used in conjunction with RTSP (Real-Time 
Streaming Protocol) and RTCP (Real-Time Control Protocol). Since publi-
cation of the fi rst edition of this text, the examples for computer vision and 
digital media have been expanded on the included DVD to include OpenCV 
examples of the DCT encoding used in MPEG.

16.5 Video Streaming

RTSP such as RTP avoid the overhead of reliable connection-oriented 
transport methods, such as TCP (Transmission Control Protocol), and the 
complication of retransmission because video and audio streams can and do 
allow occasional data dropouts. For a real-time isochronal stream of video 
or audio, retransmission not only adds overhead but also can be detrimental 
to QoS. A frame or audio sound bite dropout is preferable to guaranteed 
delivery of data long after the deadline for continuous decompression and 
playback of a media bit-stream. In general, the smaller the buffering of 

ON THE DVD
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playback data, the better for streaming protocols because buffering and 
holding data add latency. For example, in audio, data buffer-induced la-
tency makes a two-way conversation feel like you’re talking on a satellite 
link. Likewise, buffering video streams makes stream control diffi cult and 
inaccurate. The ideal transport would provide constant bit rate with mini-
mal buffering and latency. Streaming protocols such as RTP provide this 
type of performance on top of simple datagram transport with the added 
features of packet reordering, time-stamping, and delivery monitoring, but 
without any form of retransmission [Topic02].

16.6 Video Stream Analysis and Debug

The VxWorks Bt878 video encoder driver included on the DVD can be 
used to capture video streams for compression, transport, decompression, 
image processing, and computer vision. The Linux Video for Linux project 
version of this driver and the UVC (Universal Video Class) driver can like-
wise be used to build similar applications on Linux or Real-Time Linux.

With either frame capture driver, basic debug methods include the 
following:

 ● Dumping single frames for analysis

 ● Streaming frames to a viewer for observation

 ● Frame metadata derived from stream or image processing

Dumping a single frame with the VxWorks driver can be done by call-
ing a function, write_save_buffer(), to dump the current frame over the 
Tornado TSFS (Target-Server File System). Care should be taken to en-
sure that the byte ordering is correct between the target and host if they are 
different architectures (e.g., an x86 target and a Sun Solaris host) and if the 
pixel size is larger than a single byte. Figure 16.4 shows an image dumped 
by TSFS and viewed with the freely available Irfan viewer for Windows.

Frame dumps provide basic analysis of lighting, focus, fi eld of view, 
truth data for edge detection and object centroid calculation, and rudimen-
tary debug to ensure that NTSC encoding is properly confi gured so that 
frames are being captured. The Irfan viewer provides point-and-click pixel 
address information. So a dumped image can be analyzed to determine the 
centroid of the target, the red circle in Figure 16.4, by reading the pixel ad-
dress and comparing to the address calculated by target-based image pro-

ON THE DVD
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cessing. Lighting can be adjusted in the room or by setting ADC sensitivity 
using the function set_brightness(). The impact of calling set_brightness() 
can be observed with frame dumps. You can focus a camera using frame 
dumps, but it’s diffi cult and slow, given the latency in feedback. Debug-
ging can be greatly enhanced by providing an uncompressed debug stream 
and by using analog equipment, such as a television, to ensure that camera 
hardware is functional and focused well.

Debug streaming should be done with a simple uncompressed frame 
stream unless a reliable and lossless codec is available. The point of frame 
dumps and debug streaming is to view the raw data or to introduce image 
processing or compression after the raw data stream has been verifi ed. 

The DVD includes a basic PPM (Portable PixMap) stream viewer, 
which can be used to view uncompressed video streams at low frame rates. 
This viewer was built using the Python high-level programming language 
so that it is easy to modify and portable to almost any platform (any plat-
form that runs Python). Figure 16.5 shows the vpipe_display.py Python 
application displaying the host-based stream that can be generated with 
frametx_test.py.

ON THE DVD

FIGURE 16.4 Bt878 Driver Frame Dump Example (see DVD for color image)
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FIGURE 16.5 Vpipe Display Test Stream

The point of this test stream generator is to ensure that the vpipe display 
tool is working and the frametx_test.py provides an example of a TCP/IP 
frame source client that can connect to the vpipe display server for stream-
ing debug. The streaming rainbow pattern provides a quick and easy way to 
make sure there are no bugs in the debug tool itself.

The following VxWorks target code can be spawned as a task (debug 
streaming service) and will connect to the vpipe display server and send 
PPM format frames once a second, based upon a semaphore given in the 
driver main loop:

void stream_client(void)
{
  /* opens client socket and connects to server */
  init_frametx();

  enable_streaming=1;

  while(!streamShutdown)
  {
      semTake(streamRdy, WAIT_FOREVER);
      frame_to_net(rgb_buffer);
  }
}
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The init_frametx() function requires that the vpipe display server is al-
ready up and running and in the listen state for a TCP/IP socket. This utility 
is included with the video driver source code for VxWorks. The VxWorks 
video driver main loop is released by the encoder end of frame interrupt, 
and this loop in turn gives the semaphore streamRdy so that a frame is 
written out over TCP to the vpipe display server once every 30th frame, or 
once a second. This results in streaming to the vpipe display tool, as shown 
in Figure 16.6.

FIGURE 16.6 Vpipe Display Debug Video Stream

The debug streaming rate can be increased by simply increasing the 
frequency of the semaphore give in the driver main loop up to a maximum 
of 30 frames per second. However, care should be taken that the target 
has suffi cient processing capability and that the Ethernet link has suffi cient 
bandwidth to keep up with this rate.

Image processing on the video-capture target can compute frame 
metadata that can be very useful for debug—for example, parameters such 
as frame difference sums, target centroid pixel address, or current frame 
compression ratio achieved. This data derived during image processing, 
compression, and decompression can assist immensely with performance 
analysis as well as debugging. The data can be dumped on command with 
a VxWorks function call made in the windshell or can be sent for remote 
monitoring over a TCP/IP connection.

Since the publication of the fi rst edition, many more examples for Linux 
that make use of the UVC driver have been added to the DVD, along with ON THE DVD
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OpenCV computer vision application examples. The Linux example code 
can be used with the Jetson board quite readily as it has been designed to 
run OpenCV and in fact provides GP-GPU hardware acceleration for many 
of the OpenCV functionalities.

16.7 Audio Codecs and Streaming

Most any sound card can be used to encode audio data into a digital 
format suitable for compression, transport, and decompression. The Linux 
ALSA (Advanced Linux Sound Architecture) provides drivers for numer-
ous audio cards, including the Cirrus Crystal 4281. This driver was adapted 
for VxWorks and can be found on the DVD.  

The Crystal 4281 includes the Cirrus 4297 codec, which can encode an 
analog audio source into 8-bit mono or 16-bit stereo digital data and can 
play back data in the same format. The 4281 also includes a controller that 
is used to coordinate data transfer from the codec FIFOs (First In First 
Out hardware buffer) to processor memory and vice versa. Recorded data is 
pushed into the host processor’s memory by the 4281 DMA. Likewise, the 
4281 DMA pulls data for playback from the host processor’s memory. The 
4281 encodes the incoming audio signal with ADC sampling at a selectable 
rate and DMA buffering that can be specifi ed. The example driver code 
programs 11,025 samples per second and sets up DMA for recorded data 
to a 512-byte buffer so that a DMA completion interrupt is raised approxi-
mately 21 times every second (11,025/512 times a second) for 8-bit mono 
encoding. Likewise, the playback is interrupt-driven by the 4281 DMA so 
that at the same rate as record, an interrupt indicates that new data should 
be moved into the playback buffer. The driver uses double buffers so that 
one half of the record buffer is being written into by the DMA, while the 
other half is being copied out for audio transport, and one half of the play-
back buffer is being read by DMA into the DAC playback channel, while 
the other half is being written by software with data to be played back.

The Cirrus 4297/4281 does no compression, but does provide digital 
encoding suitable for software compression or encryption. The DMA inter-
rupt-based synchronization with software also allows for easy coordination 
of audio stream transport from record to playback services. Some of the 
more tricky aspects of this driver are the 4297 gain and attenuation settings, 
properly tuning the timing to avoid playback and record data dropouts, and 
selecting the proper 4297 PCM channels for playback.

ON THE DVD
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16.8 Audio Stream Analysis and Debug

One of the simplest ways to debug an audio driver is to examine the re-
cord and playback buffer data with memory dumps. The data in each should 
be a PCM waveform. Zero data in the record or playback buffer is indicative 
of a codec or DMA misconfi guration and will cause noisy pops and clicks in 
the playback audio. Most often the Crystal 4281 is used to implement two-
way voice transport over Internet (VoIP). To make initial debugging simpler, 
it is useful to use headphones and a constant audio stream source like a CD 
or MP3 play to pipe in music. Initially the record function can be tested and 
record DMA buffer update verifi ed with record buffer memory dumps. This 
can be done in VxWorks using the windshell “d” command, which will dump 
data from any address. The record data can be looped back through trans-
port for local playback and verifi cation. Again, the playback buffer should 
be dumped to verify that the data is being updated. The audio cards often 
include analog loop-back features, so it is important to verify that data in the 
playback buffer is truly being updated to avoid being fooled by analog loop-
back and mistaking this as a working digital transport loop-back.

16.9 Voice-Over Internet Protocol (VoIP)

After a basic record and playback audio driver has been debugged and 
is working, this can be combined with session and transport services along 
with a codec or encryption engine for VoIP. Figure 16.7 shows one end of 
a VoIP digital terminal.
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FIGURE 16.7 Voice-Over Internet Protocol Data Flow for One End
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Each terminal must have record and playback services interfacing to 
streaming and transport services. The basic sound-bite record, transport, 
and playback rates are driven by the sampling rate, the audio format, and 
the buffer size for a sound bite. Ideally this process should emulate a con-
stant bit rate encoding, transport, and decoding between the record and 
playback channels. Figure 16.8 shows how two of these digital terminals 
can be combined to provide full-duplex VoIP.
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The basic full-duplex VoIP implementation still does not defi ne how 
calls are initiated or any common voice services, such as voice mail, call 
waiting, conference calling, and hold. These features, however, can be add-
ed fairly easily once the basic full-duplex capability is implemented and 
debugged.

Summary

Continuous media applications include any media source and usage 
where periodic frames must be processed and transported in real time. This 
could be a broad range of media and multimedia applications, including 
video, audio, digital teleconferencing, virtual reality, video monitoring, vid-
eo editing, video-on-demand streaming servers, and many more emergent 
soft real-time media applications. In the future, the complexity of emergent 
TV standards, such as HDTV (High-Defi nition TV) and DLP (Digital Light 
Projection), will require signifi cantly more real-time embedded control 
[Poynton03]. Since publication of the fi rst edition of this text, this applica-
tion domain for real-time embedded systems has grown tremendously and 
1080p (and even 4K) smart televisions that connect to the Internet have 
become commodity devices in homes as well as much expanded use of vir-
tual reality and emergence of augmented reality, whereby graphics are 
overlaid on views provided to users by camera systems. Because a whole 
new book could be written on this application area alone, the authors have 
instead decided to simply provide more resources for the reader on the 
DVD in the form of code examples and reference materials.

Exercises

1. Use the Bt878 btvid.c driver included on the DVD or the Linux equiva-
lent bttv driver to capture NTSC frames using a Hauppauge WinTV
frame grabber. Prove that you got the driver working by streaming
output to the Python vpipe_display.py viewing tool.

2. Use the image processing sharpen.c program on the DVD to provide
edge enhancement to a PPM 320x240 image of your choice.

3. Write a program to detect the edges of the example target-0.ppm image
and to produce an output that shows only red lines outlining the edges
of the target object with an otherwise white background.

ON THE DVD

ON THE DVD

ON THE DVD
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4. Download the ALSA (Advanced Linux Sound Architecture) driver for 
the Cirrus 4281 or a similar audio card, and write a Linux application to 
record analog audio input into files for later playback through the same 
driver.
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ROBOTIC APPLICATIONS

17
In this chapter
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● Actuation
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● Sensing
● Tasking
● Automation and Autonomy

17.1 Introduction

Robotic applications are great examples of real-time embedded systems 
because they clearly use sensing and actuators to affect objects in the real 
world within the real-time physical constraints of environments that hu-
mans often operate in as well. Figure 17.1 shows the Toyota Robot, which is 
intended to have real-time coordination similar to a human trumpet player. 
Real-time applications also might have deadlines that are beyond human 
ability. A real-time system must simply operate within an environment to 
monitor and/or control a physical process at a rate required by the phys-
ics of the process. In the case of robotics, this is a distinct advantage that 
robotics have over human labor, the capability to keep up with a process 
that requires faster response and more accuracy than are humanly possible. 
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Furthermore, robots can perform repetitive tasks for long hours without 
tiring. Figure 17.2 shows an industrial robotic assembly line.

FIGURE 17.1 Toyota Robot FIGURE 17.2 Industrial Robots on an Assembly Line

Robots are often deployed in controlled environments, such as assem-
bly lines, rather than in uncontrolled environments, where humans often 
operate better, at least presently.

This chapter reviews basic concepts that are important to the design 
and implementation of basic real-time robotic systems.

17.2 Robotic Arm

The robotic arm approximates the dexterity of the human arm with a 
minimum of fi ve degrees of rotational freedom, including base rotation, 
shoulder, elbow, wrist, and a gripper. The gripper can be a simple claw 
or approximate the dexterity of a human hand with individual fi ngers. In 
general, the gripper is often called an end effector to describe the broad 
range of devices that might be used to manipulate objects or tools. These 
basic arms are available as low-cost hobby kits and can be fi t with custom 
controllers and sensors for fairly advanced robotics projects. The main limi-
tations of low-cost hobby arms are that they are unable to grip and move 
any signifi cant mass, offer less accurate and repeatable positioning, and are 
less dexterous than industrial or research robotic arms. Most industrial or 
research robotic arms have six or more degrees of freedom (additional wrist 
motion and complex end effectors) and can manipulate masses from one to 
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hundreds of kilograms. Robotic arms are often combined with computer vi-
sion with cameras either fi xed in the arm or with views of the arm from fi xed 
locations. A basic fi ve-degree-of-freedom arm with end effector vision can 
be used to implement interesting tasks, including search, target recogni-
tion, grappling, and target relocation. Figure 17.3 shows the OWI-7 robotic 
trainer arm with a reference coordinate system.

FIGURE 17.3 Robotic Arm Coordinates and Home Position

With a reference coordinate system with an origin at the fi xed base for 
the arm, the reach capability of an arm can be defi ned based upon the arm 
mechanical design and kinematics. Figure 17.4 shows the OWI arm with el-
bow rotation so that the forearm is held parallel to the base surface. In this 
position, the base can be rotated to move the end effector over a circular 
trace around the arm base.

FIGURE 17.4 Robotic Elbow Rotation Only

The fi ve-degree-of-freedom arm is capable of tracing out reachable 
circles around its base between an inner and outer ring. Figure 17.5 shows 
the innermost ring of reach capability for the OWI arm.
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FIGURE 17.5 Innermost Surface Ring Reach Ability

Combined rotation of the shoulder and elbow allows the OWI arm end 
effector to reach locations on circular arcs around the base at various radii 
from the innermost ring. Figure 17.6 shows an intermediate ring of reach 
capability.

FIGURE 17.6 Intermediate Surface Ring Reach Ability

Finally, the outermost ring of reach capability for the OWI arm is de-
fi ned by arm length with no elbow rotation and shoulder rotation so that the 
end effector reaches the surface. Figure 17.7 shows the limit of outermost 
reach capability.

 
FIGURE 17.7 Outermost Surface Ring Reach Ability
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This basic analysis considers only the surface reach capability of the 
OWI arm on its X-Y base plane. More sophisticated tasks might require 
three-dimensional reach capability analysis. After the kinematics and reach 
capability analysis has been completed so that the joint rotations are known 
for moving the end effector to and from desired target locations, an actua-
tion and control interface must be designed.

17.3 Actuation

Actuation and end effector control is greatly simplifi ed when the target 
object masses that the end effector must work with are negligible. Signifi -
cant target mass requires more complex active joint motor torque control. 
Moving signifi cant mass requires geared motor controllers with torque con-
trolling DAC output. Another option for actuation is the use of stepper mo-
tors with active feedback control channels for each degree of freedom. For 
the OWI arm and negligible payload mass, the actuation can be designed 
using relays or simple H-bridge motor controllers. The motors must be 
reversible. The simplest circuit for reversing a motor can be implemented 
with switches to change the polarity across the motor leads, as shown in 
Figure 17.8.

+6V +3V

Switch A

Switch B

Switch C

DC Motor

FIGURE 17.8 Three-Switch Reversible Motor

The possible switch states are enumerated in Table 17.1 along with the 
motor actuation provided.



388 • REAL-TIME EMBEDDED COMPONENTS AND SYSTEMS WITH LINUX AND RTOS

TABLE 17.1 Three-Switch Reversible Motor Controls

SW-A SW-B SW-C MOTOR

Off X Off Off

Off On On Forward

On Off On Reverse

Setting three switches is not very practical because this requires three 
relays and therefore 15 total positions for a fi ve-degree-of-freedom arm. 
Figure 17.9 shows how two relays can be used to implement the three-
switch reversible motor circuit by using relays that include normally open 
and normally closed poles.

DC Motor+6V +3V

Relay A

NO

NC

Relay B

NO

NO = Normally Open
NC = Normally Closed

NC

FIGURE 17.9 Two-Relay Reversible Motor

This simplifi es the relay reversible motor actuation to 10 relays required 
for a fi ve-degree-of-freedom arm. Table 17.2 summarizes the motor actua-
tion as a function of the relay setting for this design.

TABLE 17.2 Two-Relay Reversible Motor Controls

RLY-A RLY-B MOTOR

Off Off Off

Off On Forward

On Off Off

On On Reverse
This is scaled to actuate a fi ve-degree-of-freedom arm using 10 relays, 

as shown in Figure 17.10.



ROBOTIC APPLICATIONS • 389

Base

+6V +3V

Base Direction

Gripper On/Off

Shoulder

Elbow

Wrist

Gripper

Base On/Off

Shoulder Direction

Shoulder On/Off

Elbow Direction

Wrist On/Off

Wrist Direction

Elbow On/Off

Gripper Direction

FIGURE 17.10 Five-Degree-of-Freedom Robotic Arm Relay Circuit

Actuation of a robotic arm can lead to mechanical arm failure if the mo-
tors are allowed to overdrive the joint rotations beyond mechanical limits 
of rotation for each joint. To avoid gear damage, a mechanical clutch or 
slip system can be employed, which is a feature of the OWI arm; however, 
reliance upon a clutch or slip system is still not ideal. Joints designed with 
mechanical slip or clutches can slip under the weight of the arm and cause 
positioning errors if they are too loose, and if they are too tight, overdriving 
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a joint will still cause gear damage. A better approach is to integrate hard- 
and soft-limit switches so that electrical and software protection mecha-
nisms prevent overrotation of joints. Figure 17.11 shows a circuit design for 
hard-limit switches.

DC Motor

+6V +3V

Relay A

NO

NC

Relay B

NO

NO = Normally Open
NC = Normally Closed

NC

Pushbutton Break
Limit Disable Switch

Pushbutton Make
Limit Over-ride Switch

FIGURE 17.11 Use of Hard-Limit Switches for Arm Joint Motor Control

The limit switches shown in Figure 17.11 must be mounted on the arm 
so that the joints cause the switch to be activated at each limit of mechani-
cal motion. The downside to this circuit is that the arm joint that hits a limit 
remains inoperable until it is manually reset.

A better approach is to use soft-limits monitoring with a software service 
that periodically, or on an interrupt basis, samples the output of a switched 
circuit through an ADC so that software can disable motors that hit a limit. 
This design is shown in Figure 17.12.
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FIGURE 17.12 Use of Soft-Limit Switches for Motor Control Safing
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Each of the soft-limit switches can be mechanically integrated so it will 
trigger before the hard-limit switches, allowing software to safe (disable) a 
potentially overrotated joint, decide whether a limit override for recovery 
is feasible, and then recover by commanding rotation back to the operable 
range. If software-limits monitoring fails or the software controller is not 
sane, the hardware limits will continue to protect the arm from damage. 
The relay actuation design with hard- and soft-limit switches provides basic 
arm actuation, but only with binary on/off motor control.

The concept of reversible motor poles can be generalized using relays 
in an H-bridge, providing more motor control states than the two-relay de-
sign. The H-bridge relay circuit is shown in Figure 17.13.
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Relay A Relay A

Relay A Relay A

+3V
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B D
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FIGURE 17.13 Relay H-Bridge Motor Control

Inspection of the relay H-bridge states shows that the H-bridge also 
provides additional control features, as listed in Table 17.3.

The braking features of an H-bridge can provide the basis for torque 
and overshoot control so that the motor controller can ramp up torque 
and ramp it down while positioning. The ramp-up can be provided by a 
DAC, and the ramp-down braking can be provided by the H-bridge braking 
states. The short-circuit states of the H-bridge, fuse tests, must specifi cally 
be avoided by H-bridge controller logic.
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Relay actuation provides only on and off motor control and requires the 
use of electromechanical relay coils, which create noise, dissipate signifi cant 
power, and take up signifi cant space, even for compact reed relays. Figure 
17.14 shows the same H-bridge controller design as Figure 17.13, but us-
ing solid state MOSFETs (Metal Oxide Substrate Field Effect Transistors).

DC Motor

+3V

A C

B D

FIGURE 17.14 MOSFET H-Bridge Motor Control

The MOSFET design provides the same states and control as the four-
relay H-bridge, but much more effi ciently with less power required com-
pared to electromagnetic coil actuation.

TABLE 17.3 Relay H-Bridge Motor Control States

A B C D MOTOR

0 0 0 0 Off

0 0 1 1 Brake

0 1 0 1 FuseTest

0 1 1 0 Reverse

1 0 0 1 Forward

1 0 1 0 FuseTest

1 1 0 0 Brake
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Since publication of the fi rst edition, the real-time embedded systems 
course at the University of Colorado incorporated a number of off-the-shelf 
servo-controller fi ve- and six-degree-of-freedom arms from CrustCrawler 
and Lynxmotion. The advantage of this is that students spend less time in-
tegrating cabling, switches, and relay systems with the DC motor version of 
the arm previously used and can focus on a multi-channel PWM controller 
as well as kinematics and kinetics for real-time control. The downside is that 
the experience with basic DC motor circuits did lead to some interesting 
exercises in hardware/software integration. The servo-controller arms have 
become much more affordable and have torque control (extra torque) output 
servos and a number of features that enable better control of end effectors 
and more emphasis on other aspects of computer vision–guided robotics.

17.4 End Effector Path

The ability to actuate an arm still does not provide the ability to navigate 
the arm’s end effector to and from specifi c reachable locations. This must be 
done by path planning software and by end effector guidance. The simplest 
path planning and end effector guidance function implements arm motion 
dead reckoning and single-joint rotation sequences. Dead reckoning turns on 
a joint motor for a period of time based upon a rotation rate that is assumed 
constant, perhaps calibrated during an arm initialization sequence between 
joint limits. Using a dead reckoning estimation for joint rotation leads to sig-
nifi cant positioning error, but can work for positioning tasks where signifi -
cant error is tolerable. Moving one joint at a time is also tolerable for paths 
that do not need to optimize the time, energy, or distance for the motion 
between two targets. Many more optimal paths between two targets can be 
implemented using position feedback and multiple concurrent joint rotation 
tasking. Concurrent joint rotation is simple to do with a relay or H-bridge 
controller, although the kinematics describing the path taken is more com-
plex. Motion feedback requires active sensing during joint rotation.

17.5 Sensing

Joint rotation sensing can be provided by joint position encoders and/or 
computer vision feedback. Position encoders include the following:

 ● Electrical (multi-turn potentiometer)

 ● Optical (LED and photodiode with light-path occlusion and counting)

 ● Mechanical switch (with a momentary switch counter)
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Position encoders provide direct feedback during arm positioning. This 
feedback can be used to drive the feedback in a control loop when the arm 
is moved to a desired target position. This assumes the desired target is 
known, either pre-programmed or known through additional sensing, such 
as computer vision. Figure 17.15 shows the basic feedback control design 
for a position-encoded controlled process to move an arm from one target 
position to another.
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FIGURE 17.15 Basic Feedback Control Arm Positioning

Figure 17.15 can be further refi ned to specifi cally show an actuation 
with feedback design using relays and a potentiometer position encoder 
feedback channel. The main disturbance to constant rotation will come 
from stick/slip friction in the joint rotation and motor ramp-up and ramp-
down characteristics in the motor/arm plant. Figure 17.16 shows this 
specifi c feedback control design.
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FIGURE 17.16 Relay Control with Position Encoder Feedback through an A/D Converter

Closer inspection of the design in Figure 17.16 reveals that the control 
loop has an analog and a digital domain, as shown in Figure 17.17.

This mixed-signal control loop design requires sampling of the feed-
back sensors and a digital control law. The control law can be implemented 
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for each joint on an individual basis as a basic PID (Proportional, Integral, 
and Differential) process control problem. For the PID approach, a pro-
portional gain, an integral gain, and a differential gain are used in the con-
trol transfer function in Equation 17.1:
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FIGURE 17.17 Arm Positioning with Feedback Digital and Analog Domains

The transfer function defi ned by a Laplace transform is depicted as a 
control loop block diagram in Figure 17.18.
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FIGURE 17.18 PID Control Loop

The Laplace transform for the PID control law makes traditional stabil-
ity analysis simple; however, to implement a PID control law on a digital 
computer, a state space or time domain formulation for the PID control law 
must be understood. Furthermore, a relationship between the measured 
error and the control function output must be known in terms of discrete 
samples. This time domain relationship is shown in Equation 17.2.
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This equation can then be used to design the control loop as shown in 
Figure 17.19.
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FIGURE 17.19 PID Digital Control Loop

The numerical integration can be done using an algorithm such as for-
ward integration, trapezoidal, or Runge-Kutta over a series of time samples. 
Likewise, differentiation over time samples can be approximated as a simple 
difference. The proportional, integral, and differential gains must then be 
applied to the integrated and differentiated functions and summed with the 
proportional for the next control output. Applying these three components of 
the digital control law with appropriately tuned gains leads to quick rise time, 
minimum overshoot, and quick settling time, as shown in Figure 17.20.
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Figure 17.20 shows proportional control alone, proportional with inte-
gral, and fi nally the full PID. Tuning the gains for a PID control law can be 
accomplished as summarized by Table 17.4.

TABLE 17.4 PID Gain Tuning Rules

Parameter Rise time Overshoot Settling time

Kp gain
increase 

Decreases Increases Small change

Ki gain
increase

Decreases Increases Increases

Kd gain
increase

Small change Decreases Decreases

The PID controller provides a framework for basic single-input, single-
output control law development. More advanced control can be designed 
using the modern control state space methods for multiple inputs and out-
puts. State space control provides a generalized method to analyze and de-
sign a control function for a set of differential equations based upon the 
kinematics and mechanics of a robotic system, as shown in Equation 17.3. 
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Figure 17.21 shows the feedback control block diagram for the general-
ized set of state space control system of differential equations.
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Figure 17.21 State Space Feedback Control

A detailed coverage of state space control analysis and design methods 
is beyond the scope of this book, but many excellent resources are available 
for further study [Nise03].
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17.6 Tasking

The robotic arm must be commanded and controlled at a higher level 
than actuation and feedback control to provide these basic capabilities:

 ● Searching, identifying, and acquiring a visual target for pickup

 ● Path planning and execution to pick up a target

 ● Object grappling and grapple feedback

 ● Carry path planning and execution to relocate the object to a new target 
location

These three tasks compose the larger task of pick and place. The OWI 
arm command and control software and hardware actuation and feedback 
control system can be designed so that a single high-level command can 
initiate pick and place tasks within the arm reach ability space. The target 
search, identifi cation, and acquisition task is a fundamental computer vision 
task. It requires an overhead, side, or front/back fi xed camera system or a 
simpler embedded camera in the end effector. With an embedded camera, 
the arm can start a search sequence to sweep the camera fi eld of view over 
the concentric reach ability rings in Figures 17.5, 17.6, and 17.7. While the 
camera is being swept over the rings, frame acquisition of NTSC frames at 
30 fps or less can format the digital camera data into a digital frame stream. 
The digital frame stream images can be processed so that each frame is 
enhanced to better defi ne edges and to segment objects for comparison 
matching with a target object description. The target object description can 
include target geometry and color (invariants) as well as target size (vari-
ant). Once the target is seen (matched with a segmented object in the fi eld 
of view), then the arm can start to track and close in on the target.

Closing in on a visual target in the reach capability space of the OWI 
requires constant video to visual object centering based upon computation 
of the object’s centroid in the FOV. The arm can use the centroid visual 
feedback to rotate the base to control XY plane errors to keep the object 
centered as the arm is lowered toward the XY plane. The kinematics re-
quires that the arm shoulder and elbow be lowered to approach a target 
on the XY plane and to control the X translation of the end effector and 
embedded camera. Simultaneously the base rotation can be controlled to 
coordinate the target Y translation to keep the target centered as the arm is 
lowered. This basic task requires actuation and control of three degrees of 
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freedom at a minimum. The OWI wrist has only a single degree of freedom, 
which rotates about the forearm. More sophisticated robotic arms also in-
clude rotation about the other two axes of the wrist joint. So, a fi xed camera 
embedded in the OWI arm may need independent tilt/pan control so that 
the camera angle can be maintained perpendicular to the XY plane as the 
arm is lowered. More sophisticated wrist degrees of freedom to allow for 
articulation with high accuracy (e.g., tenths of a degree) would also provide 
fi ne camera pointing.

Target pickup requires the arm to use position and limits feedback so 
that the arm knows when it has intersected the XY plane and acquired the 
XY plane–located target object. Furthermore, the grappler should be in 
the fully open position at this time. Once this ready-to-grapple position has 
been achieved with feedback computer vision and positioning, the grappler 
can be closed around the target object. Positive indication of successful 
target grappling can be provided by sensing switches built into the end ef-
fector fi ngers. Most often brass contacts separated by semiconducting foam 
(IC packing foam) or micro-switches with interface plates on each fi nger 
provide good feedback for grappling.

Once the target has been successfully grappled, the arm can now switch 
to a carry path planning task to guide it to the drop-off target location. This 
drop-off path planning might once again involve search or a pre-determined 
target position at a relative offset from the target acquisition location. Ei-
ther way this is essentially identical to the acquire path planning and execu-
tion except that the arm is raised to a carry height at a desired reach ability 
ring, and then carried with base translation. The raise and carry sequence 
can be concurrent for a more optimal path in terms of time and distance 
traveled. The arm is again lowered to the drop-off target, and the target 
object is released, using the grappler feedback to ensure that the fi ngers no 
longer sense a grip on the object.

This overall sequence is a high-level automation using tasking. It is still 
commanded by the operator, but the robotic arm performs the sub-tasks 
composing the overall task autonomously. Two major architectural con-
cepts in the fi eld of robotics have emerged that provide a framework for 
robot tasking and planning interfaced to lower-level controls and with or 
without human interaction. Two of the most important concepts are shared 
control and the degree of autonomy that a robotic system has along with 
Rodney Brooks’s subsumption architecture. In the next section these archi-
tectural concepts are briefl y introduced.
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17.7 Automation and Autonomy

Figure 17.22 shows command and control loops for a robotic system 
that ranges from fully autonomous to telerobotic. Telerobotic operation is 
commonly known as “joystick” operation, where all robotic motion mimics 
operator inputs.
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Error
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Figure 17.22 Teleoperated and Fully Autonomous Robotic Task Control Loops

An intermediate level of control between fully autonomous and telero-
botic is called shared control. In shared control, some aspects of robotic 
tasking are autonomous, some are telerobotic, and others are automated 
but require operator concurrence to approve the action or initiate the ac-
tion. The concept of shared control is shown in Figure 17.23.

Telerobotic systems may still have closed-loop digital control, but all 
tasking and decision making come from the operator; in the extreme case, 
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literally every movement of the robot is an extension of the user’s move-
ments, and no actuation is initiated autonomously. After the robotic action 
is commanded by the user, controlled motion may be maintained by closed-
loop digital control. This is similar to concepts in virtual reality, where a 
user’s input is directly replicated in the virtual model, and the concept of 
remotely piloting aircraft. For example, you could set up an OWI interface 
so that the OWI arm attempts to match the movement and position of the 
human arm based upon operator arm acceleration and fl exure measure-
ments.
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Sub-System Digital Control
Error

System Autonomy Tasks

Control Output

Task Status Task Management

Figure 17.23 Shared Control of a Robotic System

Summary

Robotics requires a hierarchy of automation, the subsumption archi-
tecture, where low-level component actuation and sensing are interfaced 
to higher-level subsystem control. Subsystems in turn are tasked with goals 
and confi gured with behaviors. For example, a rolling robot may be tasked 
with exploring and mapping a room, but is also confi gured to have a colli-
sion avoidance behavior. This control, behavior, and tasking must be coor-
dinated by an intelligent human operator or by artifi cially intelligent goal-
based planning. This chapter introduced robotic system architecture and 
design from a bottom-up viewpoint, providing practical examples for how 
to control and task a fi ve-degree-of-freedom robotic arm.
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Exercises

1. Develop a kinematics model for the reach ability of the OWI five-de-
gree-of-freedom robotic arm using a C program or MATLAB model.

2. Build a simple single-change relay or MOSFET H-bridge reversible mo-
tor controller, and design a serial or parallel port command interface for it.

3. Implement a PID control C function with tunable gains that can be 
used to control a robotic arm joint rotation or similar actuator.
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Chapter Web References

 ● The OWI-7 five-degree-of-freedom arm comes from OWI Robotics and 
offers a great way to learn about basic robotics: http://owirobots.com/.

 ● Lynxmotion offers the Lynx 5 and 6 servo controlled robotic arm kits with good 
repeatability and precision: http://www.lynxmotion.com/.

 ● The CrustCrawler robotic arms with torque controlled servos: http://www.
crustcrawler.com/products/AX-18F%20Smart%20Robotic%20Arm/.

 ● Garage Technologies Inc. also offers a six-degree-of-freedom arm: http://www.
garage-technologies.com/index.html.

 ● Robotics Research manufactures seven-degree-of-freedom highly dexterous 
arms with torque control: http://www.robotics-research.com/.

 ● Honda’s ASIMO robot: http://world.honda.com/ASIMO/.

 ● RobotWorx industrial robotics integration: http://www.robots.com/.

 ● Motoman industrial robotics: http://motoman.com/.

 ● ABB industrial robotics: http://www.abb.com/robotics.

 ● NASA Johnson Space Center Robonaut: http://vesuvius.jsc.nasa.gov/er_er/
html/robonaut/robonaut.html.
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COMPUTER VISION APPLICATIONS

18
In this chapter

 ● Introduction
 ● Object Tracking
 ● Image Processing for Object Recognition
 ● Characterizing Cameras
 ● Pixel and Servo Coordinates
 ● Stereo-Vision

18.1 Introduction

Computer vision requires video frame acquisition, digital video pro-
cessing, and the use of information extracted from the image stream to con-
trol a process or provide information. For example, a stereo mapping vision 
system can move a laser pointer to positions and measure distance to the 
refl ected spot over and over to create a three-dimensional model of a room. 
Or, computer vision might be used by a robotic platform to navigate a vehi-
cle or end effector to a visual target. Processing video streams is inherently 
a real-time process because the processing must keep pace with a periodic 
video frame rate. Furthermore, when video processing is embedded in a 
digital control loop where the digital video is used as feedback sensing, the 
overall digital control loop must meet real-time requirements for control 
stability. Computer vision is an excellent application for studying real-time 
concepts due to clear and obvious real-time processing requirements.  
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Since publication of the fi rst edition of this volume, OpenCV examples 
have been added to the DVD for scene segmentation, stereo correspon-
dence, and numerous other examples that complement the original mate-
rial. A nice approach for designing real-time computer vision applications is 
to prototype image processing using MATLAB, GIMP or Octave (interac-
tive image processing environments), and then to move to desktop OpenCV, 
and fi nally to embedded OpenCV.

18.2 Object Tracking

Object tracking with computer vision is a basic vision feedback control 
problem used in many automation and instrumentation applications. For 
example, telescopes automatically track celestial targets and can scan the 
sky to fi nd them initially and to center objects of interest in the telescope 
fi eld of view (FOV). Assembly-line robotics that spot weld structures can 
use position feedback for coarse alignment, but often use computer vision 
for fi ne positioning and position verifi cation before applying a weld. Space 
probes often use optical navigation in deep space where radio tracking and 
navigation may be diffi cult due to light time latencies at great distances. 
A basic bright object or shape/color target tracking camera system can be 
constructed from two servos and a camera. Figure 18.1 shows a front and 
side view of a tilt/pan camera tracking subsystem.
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FIGURE 18.1 Tilt/Pan Computer Vision Tracking Subsystem

In this design, the camera FOV is moved to track an object in mo-
tion or is moved to scan a larger FOV to fi nd an object. Alternatively, a 
fi xed camera with a large FOV might observe a target illuminator, such as 
a laser pointer, which is tilted and panned instead of the camera. This can 
be useful for stereo ranging or simply tracking the motion of an object. 

ON THE DVD
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An observer can judge how well the fi xed camera is able to locate a given 
object by seeing how well the laser spot is able to track the object, providing 
a tracker debug method.

Figure 18.2 shows a stereo-vision tracking subsystem. This subsystem 
can be used to track not only the XY location of an object in a FOV but also 
the distance to it from the camera baseline.
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Pan 
Rotation

Tilt 
Rotation

FIGURE 18.2  Stereo Tilt/Pan Computer Vision Tracking Subsystem

The tracking problem can be handled in almost the same fashion as the 
mono-vision tracker; however, either one camera can drive the tilt/pan con-
trol to keep the target centered, or a scheme to use information from both 
can be used. If just one camera is used, right or left side, then the parallax 
of the object as seen by one camera will not be the same as the other. For 
more accurate stereo-vision systems, each camera, separated by a common 
baseline, can be independently tilted and panned on the baseline to keep 
the object centered as human vision systems do. Most stereo tracking and 
ranging systems simply tilt and pan the entire baseline and either favor one 
camera or take an average from the two to split the difference on centering 
the object in each camera’s FOV.

The tracking performance for a tilt/pan subsystem is based on the 
following:

 ● Vision frame rate

 ● Servo actuation limits

 ● Digital control processing latency
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Ideally the frame rate is high enough and the processing latency low 
enough such that the system is servo-limited. The processing must be com-
pleted before the next observation frame is available (deadline is the same 
as service request period). As discussed in Chapter 14, a PID control loop 
can be designed to optimize tracking control for quick rise time, minimal 
overshoot, and quick settling. With a mono-vision tracker it is easy to ob-
serve tracking control issues since tracking latency, overshoot, and settling 
can be observed easily with system testing. Tracking requires not only that 
the image processing recognize the object to be tracked, but also that the 
edges can be detected and the geometrical center of the object computed. 
With this information from image processing, the tilt/pan error can be cal-
culated in terms of pixel distances between the center of the image and 
the center of the object to be tracked. The center of an object is called the 
centroid. In the next section methods for fi nding a centroid are presented.

18.3 Image Processing for Object Recognition

Visual objects can be recognized based upon shape, size, and color. 
Color is the most invariant property because it changes only with changes 
in lighting. If lighting can be controlled or if the system can provide illumi-
nation, this is a huge advantage for a computer vision system. Shape is also 
mostly invariant, changing only when an object orientation is changed for 
non-symmetric objects. Symmetric objects, such as spheres, are always eas-
ier to detect and track. A highly focused last spot is also fairly easy to track, 
but any defocusing or beam spread can create problems. Finally, size is the 
most variant because it changes with distance to the object in the Z plane. 
Size can be ignored, or if the actual size of an object is known, it can actually 
be used to judge distance even with mono-vision. Tracking color and shape 
is most often used. Colors can be detected based upon luminance and chro-
minance levels or RGB levels for each pixel. Shape is best determined by 
enhancing and detecting object edges in a scene.

A simple PSF (Point Spread Function) can be applied to a digital lu-
minance (grayscale) or RGB image to enhance object edges. For example, 
Table 18.1 provides a commonly used PSF for edge enhancement:

TABLE 18.1 Edge Enhancement Kernel

-k/8 -k/8 -k/8

-k/8 k+1 -k/8

-k/8 -k/8 -k/8
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This matrix is applied to an image array such that each pixel is replaced 
by the sum of –k/8 times each neighboring pixel and k+1 times itself.

The DVD contains C functions and examples for applying this kernel 
to 320x240 RGB and grayscale images. To apply the kernel to a 320x240 
pixel image it is applied to pixel address {1, 1} through {1, 318} for the fi rst 
row, likewise for each row, and through pixel address 238,318 for the last 
row. Figure 18.3 shows the standard convention for image pixel addressing, 
starting with {0, 0} in the upper-left corner down to {319, 239] in the lower-
left corner.
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FIGURE 18.3  Image Coordinates for a 320x240 Pixel Frame

Applying this kernel as described previously along with a threshold fi l-
ter yields the image enhancement for a red circular target as shown in Fig-
ure 18.4 in both color and grayscale (color available on the DVD).

Edge enhancement alone fi nds edges that are not necessarily of inter-
est. The threshold fi lter eliminates background edges based on color thresh-
olds so that only edges matching color criteria remain in the fi nal enhanced 
and fi ltered image. Now that the target image has been segmented from 
other objects in the scene, the centroid of the target can be found by walk-
ing through each row of the image and recording the X and Y location of 

ON THE DVD

ON THE DVD
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object entry and exit based upon color or intensity threshold. The X, Y loca-
tions defi ne the object boundary, and the centroid can be computed by 
fi nding the center of the greatest X extent and the center of the greatest Y 
extent for a symmetrical object, such as a circle. Example code for centroid 
location is included with the DVD. Figure 18.5 shows the centroid found 
by rastering with the location indicated by adding green lines to the image 
array.

FIGURE 18.4  Edge Enhancement and Filtering for Common Color and Grayscale Image

FIGURE 18.5  Centroid Found by Rastering Enhanced Target Image

This basic process must be tuned for the lighting conditions, the target 
shape and color, and the camera characteristics. It’s often simpler to seg-
ment scenes, detect objects, and fi nd extents and centroids in grayscale or 
one-color band rather than RGB color space. To better understand how to 

ON THE DVD
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tune target recognition and analysis, it’s best to start with camera character-
ization and to control lighting.

18.4 Characterizing Cameras

Cameras have FOVs (extents that can be seen through the camera lens 
at a given distance) that are determined by the camera optics. Further-
more, optical-electrical cameras, such as NTSC CCTV cameras, have de-
tectors with arrays of charge-sensitive devices, most often a CCD (Charge 
Coupled Device). The pixel detectors most often charge up when exposed 
to light. The charge voltage can be read out from the array of pixel detec-
tor devices through an ADC interface to digitize data. An NTSC camera 
actually produces an analog signal (described more fully in Chapter 16, 
“Continuous Media Applications”) from the CCD readout, which in turn 
is sampled and digitized by a frame grabber. Given the overall system, the 
images can be affected by camera optics, detector physics, and video signal 
sampling and digital conversion in the frame grabber. Lighting can saturate 
pixel detectors or ADC in the frame acquisition interface. Controlled light-
ing and well-matched ADC sensitivity should be used to ensure that an 
image is not washed out or dark. Washed-out images have average intensity 
that is way above the mid-level output of 128 for an 8-bit pixel. Dark im-
ages, of course, have average intensity that is way below a low-level output 
of, say, 10, for example. Robotic systems often employ target illumination. 
They carry their own lighting and calibrate the illumination to ensure that 
images are neither washed out or dark.

Basic characterization of the camera optics and NTSC output can be 
achieved by interfacing the camera up to a television and taking FOV mea-
surements. A tape measure can be placed in the FOV, and the camera dis-
tance can be varied to determine the physical extents observable by the 
camera optics and detector as a function of distance. Figure 18.6 shows this 
relationship for a CCTV NTSC camera for X extents measured with optical 
observations of a rule.

For this camera, the relationship is very linear; however, optical affects 
often cause nonlinear variation in extents. For example, many lower-cost 
optical systems cause optical aberrations, such as fi sh-eye, where the ex-
tents of an object are exaggerated in the center of the FOV. So, a square 
object appears to bulge in the middle. The camera should be carefully char-
acterized so that any nonlinear effects can be corrected by curve fi tting if 
they are signifi cant.
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CCTV FOV analysis
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FIGURE 18.6  Physical Extents Visible in Camera FOV as a Function of Distance

For the same CCTV NTSC camera, the detector is larger than the 
NTSC sampled digital output. The number of detector pixels in the C-
Cam8 NTSC thumbnail camera is 510 × 492; however, the Bt878 frame 
grabber can convert this into a 320 × 240 pixel image. The FOV can be 
characterized further in this sample space by calculating the sample pixels 
per physical inch as a function of camera distance from target. Figure 18.7 
shows that this is a nonlinear relationship for the same CCTV NTSC cam-
era optical/NTSC characteristics shown in Figure 18.6. The nonlinearity is 
therefore introduced in the NTSC sampling and digitization by the Bt878 
encoder for the 320 × 240 RGB format.
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It’s important that the camera and overall image acquisition system be 
characterized to identify and model the mapping from physical space to 
sample pixel coordinates because all image processing will be done with 
the sample pixels.

18.5 Pixel and Servo Coordinates

As shown earlier in Figure 18.3, pixel coordinates are addresses ranging 
from {0, 0} to {n, m} for an n by m image. Servo coordinates are defi ned by 
the X extent traversed at a distance by the smallest unit of pan rotation the 
servo can provide. The Y extents are likewise defi ned in servo coordinates 
for a given distance. This is easy to see if a laser pointer is attached to the 
tilt/pan platform so that the smallest tilt/pan servo motions can be charted 
on a wall by noting locations of the laser spot and physically measuring 
the distance between spots. Knowing the relationship between one unit of 
servo tilt or pan in terms of overall camera system FOV pixel translation 
can be very helpful for calibration of a tilt/pan system. Figure 18.8 shows an 
automatable process for determining the servo to pixel coordinate function 
on the x- and y-axis for a given distance.
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This information can be used to compute the servo rotation required 
to center an object in the FOV. So, for an optical tracker set up where a 
single servo increment causes a 2-pixel FOV change, then when a target is 
10 pixels right of the center, the servo must be panned 5 servo increments 
right. This relationship is linear near the center of the camera tilt/pan and 
becomes increasingly nonlinear at maximum tilt/pan. So be sure to charac-
terize the relationship over target range extents observable at maximum tilt/
pan corners of the effective tilt/pan FOV.

18.6 Stereo-Vision

Stereo-vision is based upon the phenomena of parallax, where an ob-
servation at two locations along a baseline of a common object appears to 
cause an offset of the object. This can be observed by holding one fi nger 
out, closing the right eye and observing, and then closing the left and open-
ing the right, causing the fi nger to apparently change position. In fact, the 
observation is due to the change in eye observation angle for the object. 
The apparent shift of the object therefore is based upon its distance from 
the observation baseline. Distances to stars are measured using parallax by 
observing a star one half-year apart as the earth orbits the sun and defi nes 
the unit in distance called a parsec. Likewise, two cameras on a common 
baseline can be used to observe a common object, and the apparent shift 
of the object in the right camera’s FOV compared to the left camera can 
be used to compute the distance from the baseline to the target. The ge-
ometry for a stereo observation is illustrated in Figure 18.9. It is important 
to note that the diagram is valid only for a simple coplanar camera mount 
with identical left/right cameras and ignores the challenges of accounting 
for inaccuracies in the external camera mounts (extrinsic errors) as well as 
internal camera characteristics like fi sh-eye (intrinsic errors).

Note that the triangle formed by the target, left lens, and baseline cen-
ter is similar to the triangle formed by the left lens, detector center, and the 
image offset dl. The triangle on the right side formed by the target, right 
lens, and baseline center is similar to the triangle formed by the right lens, 
detector center, and the image offset dr. By the property of similar trian-
gles, (dl + dr)/f = b/d. The baseline b is known, the focal length f is known 
for a given camera (or can be found by characterization of the camera), and 
dl and dr can be computed from the offsets of the target centroid from each 
camera FOV center. This leaves d, the distance to the target, as the only 
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unknown. New examples developed in OpenCV have been included on the 
DVD in this new edition, but a full exploration of computer vision, OpenCV, 
and general issues of continuous image processing goes beyond the scope 
of this book. The reader should refer to the references provided.

Summary

Stereo-vision systems emulate human vision systems and can track and 
judge distances in real-time much like we can. Many tasks that we intui-
tively would call real-time are tasks that we complete using vision, audio, 
body kinematics, and kinetics, and that are governed by real-world phys-
ics. Many real-time embedded tasks are also similar to human real-time 
tasks. This is one reason that studying robotics, vision systems, video/audio 
recording, transport, playback, and digital control is an excellent applica-
tion for understanding real-time theory. Note, however, that a real-time 
system is not fast, slow, or necessarily constrained by the same physics or 
timescales that humans are. Real-time systems must simply complete re-
quests for service prior to a deadline relative to the service request time. 
Furthermore, embedding places real-time computing into specifi c service 
requirements and requires observation and response for process control. 
Often the most useful real-time embedded systems operate in dangerous 
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environments and must complete tasks much faster, more accurately, and 
with less fatigue than a human ever could. An industrial welding robot on 
an automobile assembly line provides exactly this type of invaluable real-
time service. Similarly, an earthquake fault-line monitoring system might 
need to detect land mass movement only over very long periods of time 
with slow yet highly accurate measurements completed within a deadline. 
So, while the intuitive real-time tasks are very helpful for understanding 
real-time embedded systems and applications, the fundamental theory and 
broader applications should also be studied and appreciated.

Exercises

1. Implement a C function with tunable gains for a PID control law that 
can be used for a tilt/pan tracking subsystem. Build a tilt/pan subsystem, 
integrate the btvid.c or Linux bttv driver, and track a moving object us-
ing image processing to follow the object centroid.

2. Implement a stereo range finder for a known target, and show that it can 
correctly read the distance.

3. Implement a stereo range finder that can also tilt/pan track a moving 
object.

4. Implement a stereo imaging system that uses a laser pointer to paint a 
three-dimensional scene, and create a three-dimensional map of the 
area.

5. Install OpenCV on the Jetson board running embedded Linux, and 
download, build, and test some of the OpenCV examples found on the 
DVD.
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TERMINOLOGY GLOSSARY

A
 ● Actuator:  Electromechanical device that converts analog or digital 

electrical inputs into mechanical energy interacting with the physical 
world.

 ● ADC:  Analog to digital converter; encodes analog signals into digital 
values.

 ● Amdahl’s Law:  If F is the sequential portion of a calculation, and 
((1 – F) is the portion that can be executed concurrently (in parallel), 
then the maximum speedup that can be achieved by using N proces-
sors is 1/(F + ((1 – F)/N)). So, for example, if F = 0, then with N = 4, 
speedup is linear and equal to 4, but if F = 50%, then speedup is only 
1.6 times faster for 4 times as many processors.

 ● API:  Application programmer’s interface; provides function call inter-
face to lower-level software and/or hardware functionality.

 ● Application executive:  Also known as a cyclic executive, a main loop 
program that calls functions on a periodic sub-rate of the main loop 
period.

 ● Asynchronous:  An event or stimulus that occurs at any point in time 
rather than at known predictable points in time—for example, an ex-
ternal interrupt may occur at any time and will immediately change the 
thread of execution on a CPU.

 ● Asynchronous logic:  Digital logic that is not globally clocked, but 
rather changes state based on edge triggering in a combinational logic 
circuit or edge triggered by multiple independent clocks.
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 ● Atomic operation:  A non-interruptable CPU instruction—that is, any 
instruction that can be fetched and completed before the CPU can be 
interrupted.

 ● Bandwidth:  Data transfer per unit time—for example, bytes/second.

 ● BDM:  Background debug mode; a variant of JTAG that allows data 
and instructions to be clocked into and out of a 10-pin interface to a 
processor.

 ● Best effort:  Scheduling policy that does not guarantee any particular 
response time for a service request, but attempts to make progress on all 
such requests and maximize total throughput.

 ● Binary semaphore:  A semaphore that has only two states:  full and 
empty. A take on an empty binary semaphore will block the calling 
thread, and a take on a full binary semaphore will change the state to 
empty. A give on an empty binary semaphore will change the state to 
full, and a give on a full semaphore has no effect.

 ● Black-box test:  A set of test vectors and driver that operate only on 
the functional interface of a subsystem or system with no knowledge of 
the internal workings or execution paths in the case of software.

 ● Block-oriented driver:  A software IO device interface that enables 
memory blocks to be transferred to and from the IO device, rather than 
one memory word at a time.

 ● Block transfer:  Transfer of data (typically contiguous, but may be a 
scatter/gather list) that includes multiple memory words/bytes on a bus 
with automatic addressing of each element in the block, rather than ad-
dressing and performing a full bus cycle to transfer each word.

 ● Blocking:  When a thread of execution has been dispatched on the 
CPU for execution, but it needs some other resource, such as memory 
access, an IO interface, or some other external condition, to be true, 
such that it must give up the CPU and wait, the thread is said to be 
blocked.

 ● Boot code:  Software that is the very first to execute after a processor is 
reset and hardware sets the PC (program counter) to an initial address for 
execution; boot normally completes after initializing fundamental resourc-
es, such as memory, cache, and memory-mapped devices, installing inter-
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rupt vector handlers, initializing basic critical IO devices, and disabling 
others, finally loading a higher-level program or RTOS kernel image and 
then jumping to its entry point.

 ● Bottom half (device interface):  Software interfacing to IO device 
hardware that services interrupts related to the device, provides basic 
configuration and control, monitors status, and buffers IO data; the top 
half makes a bottom half usable for application software.

 ● BSP:  Board support package; the boot code and basic IO interface 
initialization code needed by an RTOS to boot and cycle on an embed-
ded system board.

 ● BSS:  Uninitialized global C program data; because the data is not 
initialized, this data need not take up space in nonvolatile memory, but 
must be allocated a data segment in working main memory.

 ● Bt878:  Brooktree video/audio encoder that can digitize an NTSC 
input.

 ● Burst transfer:  A bus transaction that involves an initial address cycle 
followed by many data read/write cycles terminated by the bus master 
(similar to block transfer, but of unlimited length).

 ● Bus:  A parallel interface for reading/writing data words from/to ad-
dresses and includes digital data lines, address lines, and control lines; 
note that address and data lines may be multiplexed rather than separate 
lines. 

 ● Bus analyzer:  A passive device that snoops on a bus to capture a 
record of all bus cycles; typically acts like a specialized logic analyzer 
and can be set up to trigger and start collecting a bus cycle trace when a 
particular address, data, or control bit pattern is active on the bus.

 ● Bus master:  A device that can initiate bus cycles to address a target 
device and then read/write data to the target device, which supplies data 
or receives data.

 ● Byte-oriented driver:  A device interface that provides the ability to 
read/write single words/bytes to and from the IO device one at a time.

 ● C (in RMA):  The execution time required by a service to provide a re-
sponse not including any time spent blocking (only time where the CPU 
was, in fact, being used to compute a response output).
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 ● Cache:  High-speed access memory that typically can be read or 
written in a single CPU cycle, but, due to high cost per storable word, 
is used as an efficient copy of a much larger main memory device; 
hardware functionality is typically included to aid with cache memory 
management, including maintenance of cache/memory coherency, 
mapping of main memory addresses to cache lines (direct-mapped, set-
associative, fully associative), and loading/write-back of data between 
cache and main memory.

 ● Cache coherency:  A cached copy of data at a given address will 
be different than the data at the same address in main memory after 
a cached write to this address; when this happens the cache control 
hardware/software must restore agreement between the data in cache 
and main memory sometime before data would otherwise be corrupted. 
Two main policies are used to maintain coherency:  write-back and 
write-through; however, when memory addresses are cached and also 
used for DMA or other types of IO, special care must also be taken by 
application code to ensure that data is not corrupted by intelligently 
performing write-backs and reloads of cache lines as needed.

 ● Cache hit:  When a read or write is performed by an application on 
data cached at the address accessed/updated, then this is said to be a 
cache hit.

 ● Cache line eviction:  A system event where data is written back to 
memory, freeing up a cache line.

 ● Cache line invalidation:  A system event where a cache line is 
marked, typically with a status bit called “dirty,” which indicates that the 
cache line must be reloaded from memory before data is read from it.

 ● Cache line locking:  Many caches have control features allowing a 
program to lock a particular address into a line of cache, preventing this 
line from being replaced when other addresses are loaded (makes most 
sense for set-associative caches rather than direct-mapped); cache line 
size varies, but is often 16–64 bytes.

 ● Cache line pre-fetch:  Many caches have a feature allowing a pro-
gram to request the cache to load a cache line despite the fact that the 
associated address has not been accessed yet; the idea is that this ad-
dress will eventually be accessed in the future, and rather than stalling 
the CPU pipeline at the time it is accessed, intelligent applications can 
plan ahead.
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 ● Cache miss:  When a read or write is performed by an application 
on data that is not presently in cache and therefore the CPU must first 
load the data at the address being accessed/modified, this is said to be a 
cache miss.

 ● Cache miss penalty:  The number of CPU core cycles that the CPU 
pipeline must be stalled when a cache line must be loaded after a cache 
miss in order for a thread of execution to continue.

 ● Call-back:  A programming technique where a pointer to a function is 
passed to a different function (registered) so that the function that ob-
tains this pointer can call the function passed to it by reference later on, 
a technique commonly used in user interfaces so that an event such as a 
mouse click can be handled generically by code that, however, will call 
any number of user application call-backs when the mouse click event is 
detected.

 ● Canonical service:  A coding style template used for a real-time 
service provided by an RTOS task or thread. This style may vary, but at 
a minimum includes a main loop that executes as long as the service is 
“in service” and has a code section that either polls for input or synchro-
nously or asynchronously waits for a service request.

 ● CCTV:  Closed circuit television; a common term used to describe a 
camera that outputs an NTSC signal.

 ● Ceiling:  The ceiling is a mathematical operation that can be per-
formed on a real number (floating point); the ceiling(n) is the closest 
integer whole number greater than or equal to n—for example, ceil-
ing(1.1) = 2 (note that floor(1.0) = ceiling(1.0) assuming that the sig-
nificance is 1, which is the typical definition of floor and ceiling unless 
otherwise noted).

 ● CFD:  Control flow diagram; a diagram used in structured analysis/de-
sign that indicates where control signals in the system originate, where 
they terminate and how they change the flow of data and/or the process-
ing of data in a DFD (note that a CFD is typically a subset of a DFD 
that shows both data flow and control flow).

 ● Chaining interrupt service routine:  A chaining ISR is an ISR that 
calls more than one handler for the very same interrupt source and pri-
ority, a technique often used in software when a hardware interrupt line 
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is shared by multiple devices (note that most chaining ISRs also perform 
ISR polling). 

 ● Check-stop:  When an error condition on a CPU that cannot be 
handled and further execution by the CPU is considered either danger-
ous or impossible, then the CPU hardware may enter a state known as 
check-stop, where it ceases to fetch and execute instructions and can 
leave this state only via a reset—for example, a detectable memory error 
that cannot be corrected normally causes the CPU to enter check-stop.

 ● Circuit switched IO:  An IO channel that is dedicated to one and only 
one data source and sink; often the channel may be point-to-point, but 
may be switched before the circuit is established. 

 ● Cirrus crystal 4281:  An audio encoder/decoder used in ECEN 
4623/5623.

 ● CLI:  Command line interface, a simple ASCII terminal type interface 
that can operate over serial or any other byte-stream IO interface to 
provide the ability to command a device and obtain basic status informa-
tion. 

 ● Codec:  Compression and decompression protocol, such as MPEG-4, 
which is used in streaming to compress video frames prior to transport 
and to decompress them after transport to be displayed. Video and 
audio codecs are often implemented in hardware or software and inher-
ently operate on continuous media streams rather than files.

 ● Completion test:  This necessary and sufficient scheduling feasibility 
test is based upon the Lehoczky, Sha, and Ding theorem, documented 
in this book.

 ● Computational complexity:  The mathematical magnitude of opera-
tions required to successfully execute a given algorithm—for example, 
searching a data set can take N operations for N items linearly searched 
or log(N) operations for a balanced tree search of N items, or even con-
stant C operations for N items with a perfect hashing function. 

 ● Context switch:  When a CPU is multiplexed (shared) by more than 
one thread of execution and the scheduler provides preemption, when 
the scheduler does preempt a thread in order to dispatch another, it 
must save state information associated with the currently executing 
thread (e.g., register values, including PC) so that this thread can later 
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be dispatched again to restore its thread of execution without a state 
error.

 ● Context switch overhead:  The number of machine code instructions 
(and clock cycles) that an RTOS scheduler must execute to perform a 
context switch.

 ● Continuous media:  IO stream that requires isochronal deliver of data 
between a source and sink—for example, video stream, audio stream, 
and possibly a telemetry stream.

 ● Control flow:  A control flow is a CFD unidirectional association be-
tween two processes and/or external entities that indicates an asynchro-
nous mechanism used to control a process or data source/sink.

 ● Coverage criteria:  When unit tests and/or system tests are completed 
on software, coverage criteria define the completeness of the testing by 
specifying the percentage of execution paths, statements, conditions, 
and decisions that must be covered.

 ● CPI:  Clocks per instruction, a measure of CPU efficiency with the 
ideal that a CPU pipeline should have a CPI of 1.0 or less if the pipeline 
can retire an instruction every clock; if the pipeline is also superscalar 
such that multiple instruction pipelines may execute, then this type of 
micro-parallelism can theoretically yield a CPI less than 1.0.

 ● CPU:  Central processing unit, a processor core providing arithmetic 
and logic operations, possibly floating point arithmetic, and basic regis-
ter and memory operations.

 ● CPU bound:  When an application program is unable to execute any 
faster due to the clock rate of the CPU and the CPI.

 ● CPU pipeline:  The use of micro-parallelism in the CPU core to 
provide a stage of instruction processing every clock such that once 
the parallel pipeline is started, an instruction is completed every clock; 
stages typically include:  fetch, decode, execution, and write-back as 
a minimum. The key to pipelining is that it is possible for the pipeline 
to fetch, decode, execute, and write back all at the same time for four 
instructions at various stages; each instruction will actually take multiple 
cycles to complete, but in the aggregate one instruction is completed 
every clock (note that pipelines may also be superscalar such that whole 
pipelines may be run in parallel as well).
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 ● Critical instant:  This assumption made by Liu and Layland when 
they formalized fixed-priority RM describes a worst-case scenario where 
all services in a system would be released simultaneously.

 ● Critical section:  When two independent threads of execution share 
a resource, such as a shared memory location, the section of code that 
accesses and possibly updates this shared resource in each thread is 
called a critical section; to ensure correctness, both threads will employ 
a synchronization mechanism, such as a mutex semaphore, to protect the 
critical section.

 ● Cross compiler:  A compiler that can generate code for a target pro-
cessor that may be different than the host system that it runs on.

 ● Cross debugger:  A debugger that can single-step through code ex-
ecuting on a target processor different than the host system the debug-
ger interface is running on; most often this works with a host debugger 
that communicates with and controls a target agent debugger.

 ● CSMA/CD:  Carrier sense multi-access / collision detection; a protocol 
used in Ethernet to detect when a node is already transmitting on the 
shared link and to back off and attempt to use the network later.

 ● Cycle-based profiling:  Profiling code executing on a processor by pe-
riodically saving off the current PC in a trace buffer, most often imple-
mented by an interrupt-generating counter that counts cycles and can 
be programmed to raise an interrupt every N cycles; the ISR associated 
can then service the interrupt and save off the PC each time into a trace 
buffer.

 ● Cyclic executive:  An embedded software architecture that is com-
posed of one or more main loop application(s) and interrupt service 
routines; the main loop(s) execute on a periodic basis. In some cases 
the cyclic executive may be an extension of Main+ISR such that several 
loops run concurrently or are multiplexed on a single CPU and provide 
different rates of execution—for example, a high-, medium-, and low-
frequency executive.

 ● D (in RMA):  The deadline for a service that is relative to a request for 
the service.

 ● DAC:  Digital to analog conversion; most often used to provide analog 
output to an actuator from a digital IO interface—for example, a motor 
or speaker. 
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 ● Data flow diagram:  A diagram used in structured analysis/design that 
indicates where data in the system originates, where terminates, and 
how it is processed in between (note that a DFD typically includes a 
CFD and therefore shows both data flow and control flow).

 ● Data segment:  A memory region reserved for global variables and 
constants in a C program thread; most often each thread has its own 
data segment (note that most programs include a Stack, Data, and Text 
segment as a minimum).

 ● Datagram transport:  Transmission of packets on a link such that er-
rors in transmission can be detected, but are not automatically corrected 
nor is there automatic retransmission of lost data; furthermore, there is 
no concept of a connection (real or virtual) such that multiple messages 
are unrelated and if fragmented will not be reordered or reassembled 
automatically.

 ● DDR:  Double data rate; a bus data encoding technique where read or 
write data is transferred on both edges of a reference clock rather than 
just one (rising edge and falling edge); this doubles the data rate. 

 ● Dead reckoning:  A technique used in robotics and vehicle naviga-
tion whereby a direction or motion or rotation is selected and executed 
at a constant rate for a calculated period of time in order to produce a 
desired amount of translation or rotation to reach a target—for example, 
a vehicle might be pointed north and drive at 5 feet per second for 1 
hour in order to get to a target city due north of a starting point south of 
this target. The major disadvantage of dead reckoning is that there is no 
mid-course correction possible and overshoot and undershoot are also 
likely.

 ● Deadline:  A time relative to a request for service when the service 
must be completed to realize full utility of the service.

 ● Deadline-monotonic:  A real-time theory directly related to RM, but 
with a policy such that shortest deadline receives highest priority (rather 
than shortest period) and a feasibility test based on deadlines rather 
than periods.

 ● Deadlock:  A multithread condition where two or more threads of 
execution are waiting on resources held by another and the graph of 
wait-for associations is circular—for example, if A is waiting on resource 
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R1 to produce resource R2, and B is waiting on resource R2 to produce 
resource R1, this is a deadlock. 

 ● Decoder:  A digital device that takes a bit-encoded input and produces 
an analog actuator output—for example, audio playback decoder that 
drives a speaker.

 ● Delayed task:  The state of a VxWorks task that has been programmed 
arbitrarily to yield the CPU for a period of time before replacing itself 
back on the ready queue—for example, taskDelay is called.

 ● DFD:  Data flow diagram; a diagram used in structured analysis/design 
that indicates where data in the system originates, how it is processed, 
and where it terminates (from data source to data sink).

 ● Digital control:  Feedback control where the control law is driven by 
discrete periodic sensor samples and based upon a Z-transform (rather 
than a Laplace transform in analog control).

 ● Direct-mapped cache:  A cache memory that has cache lines directly 
mapped to main memory locations such that a given main memory ad-
dress can be loaded into one and only one cache line, yet a set/range of 
main memory locations may be loaded into that particular line. 

 ● Dispatch:  When an RTOS scheduler selects a thread ready to run, 
restores state associated with the thread, and transfers execution control 
back to the thread’s last PC if it was preempted earlier (or to its entry 
point if the thread is ready to run for the first time).

 ● DMA:  Direct memory access; a hardware state machine independent 
of the CPU core that is able to transfer data in or out of memory without 
directly executing core instructions, thus allowing the core to continue 
execution while regions of memory are copied, updated by an IO device, 
or read out to an IO device.

 ● DOF:  Degree of freedom; a rotational or translational dimension that 
a mechanical device can move in—for example, a typical robotic arm has 
five rotating joints:  base, shoulder, elbow, wrist, and gripper; the robot 
is therefore said to have five degrees of freedom. 

 ● Double-buffering:  A technique often used in continuous media ap-
plications to allow for data acquisition into one buffer while another is 
being read out and processed; when the acquisition buffer is full, the 
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buffer pointers are swapped such that the newly acquired data is pro-
cessed and the already processed buffer can now be used for acquisition.

 ● Driver:  A driver is software composed of code that interfaces to a 
hardware device and provides buffering, control, and status and that also 
interfaces to RTOS threads/applications and provides controlled access 
to the hardware device for IO.

 ● DSP:  Digital signal processing; a specialized embedded processor core 
that includes parallel mixed analog and digital processing for typical 
signal processing functions—for example, for a Fourier transform.

 ● Dynamic linking:  A technique where PIC software compiled into an 
object file format, such as ELF, can be loaded and linked into existing 
software on an RTOS platform on the fly after the RTOS has already 
been booted and is up and running.

 ● Dynamic-priority:  When thread or interrupt processing priorities are 
changed during runtime by code, they are said to be dynamic.

 ● Earliest deadline first:  A dynamic-priority scheme for scheduling 
where services are assigned priority dynamically every time the ready 
queue is updated, with highest priority given to the service with the ear-
liest impending deadline; the scheme requires not only dynamic-priority 
but also preemption to work.

 ● ECC:  Error correction code; a digital logic circuit that automatically 
corrects an SBE using an error detection and correction encoding, such 
as the Hamming code; normally the data readout of memory is correct-
ed before the final value is placed in the read buffer, but not necessarily 
also corrected in main memory. A write-back may be required to correct 
the actual memory location.

 ● EDAC:  Error detection and correction; an information encoding 
scheme that allows for not only detection of errors but also correction of 
those errors—for example, the Hamming code.

 ● EDTV:  Enhanced definition television.

 ● EEPROM:  Electrically erasable programmable read-only memory; a 
nonvolatile memory device that can be erased and rewritten in circuit if 
so desired.
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 ● EFSM:  Extended finite state machine; a formal method based upon 
state machines that extends the basic state transition on IO to include 
side effects on transitions, such as global data update and data process-
ing.

 ● ELF:  Executable and linking format; an object file format that in-
cludes significant annotation and is PIC such that these files can be 
dynamically loaded and linked and such that they can serve for support-
ing debug and trace analysis to map addresses back to source code.

 ● Embedded system:  A digital and analog computer system that pro-
vides a specific set of services, driven by sensor inputs, and producing 
sensor outputs to provide services—for example, digital control in an 
antilock braking system or call switching and billing management for 
a telecommunications main trunk (note that the scale of the services 
provided and of the hardware itself does not matter).

 ● Encoder:  A circuit that takes analog signal inputs and, using an ADC, 
converts them to digital and bit-encodes them—for example, an audio 
recorder that takes analog microphone input and encodes the input 
signal into 255 different tones.

 ● Entry point:  An address in a text segment that is the first instruction in 
a function and serves as the starting point for a thread such that a sched-
uler can simply set the PC to this address in order to start execution of 
this thread.

 ● EPROM:  Erasable programmable read-only memory; a nonvolatile 
memory device that typically can be erased by a UV light source and 
electrically reprogrammed, but not in circuit, rather by pulling the de-
vice from a socket, exposing it to UV, and then placing it in an external 
programmer.

 ● Event-based profiling:  A profiling technique where the PC is saved 
into a trace buffer whenever events of a specific type exceed a thresh-
old—for example, when data cache misses exceed N misses, the PC is 
saved into a trace buffer.

 ● Exception (NMI):  An exception is normally a non-maskable interrupt 
because it signifies a serious error condition that must be handled be-
fore any program should continue execution—for example, a bus error.
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 ● Execution jitter:  When a service is dispatched and the number of 
cycles and/or instructions required to complete the service varies on 
each release, this service is said to have execution jitter.

 ● Extended finite state machine:  An FSM (finite state machine) with 
more features than just states and IO transitions so that the Von Neu-
mann architecture and general programs may be modeled formally—for 
example, on a state transition a procedural function may be called and or 
global memory updated.

 ● External fragmentation:  When blocks of a resource, such as mem-
ory, are allowed to be arbitrarily sized, small sections of the resource 
between used sections may evolve from successive allocations and frees 
such that significant resource exists, but is unusable unless allocations 
are moved to provide larger contiguous free spaces from small many 
non-contiguous spaces (fragmentation outside of blocks).

 ● FCFS:  First come, first served; the policy often used by an RTOS 
when services/threads are at the same priority level—that is, the first 
service ready is the first one dispatched.

 ● Feasibility test:  An algorithmic or formulaic operation that takes a set 
of services and their RM characteristics and will provide a binary output 
indicating whether this service set can be scheduled given resources 
available and resources required by the service set.

 ● FEC:  Forward error correction; an EDAC method provided in-line 
such that bit errors are handled at the link layer—for example, Reed 
Solomon encoding (in contrast to EDAC memory).

 ● Feedback:  A signal used in control systems that provides sensor inputs 
to compute the difference between desired and actual plant state such 
that a control law can drive the plant to a desired target control point.

 ● FIFO:  First in, first out; a policy for queues (e.g., a dispatch queue) 
where the first element queued is always the first element de-queued.

 ● Firmware:  The first code to execute on a processor and therefore 
must initially execute out of an NV-RAM device, although it may load 
itself into memory and continue execution to complete a boot process 
before an RTOS is initialized and run. Less specifically, firmware is 
usually thought of as any software that directly interfaces to hardware to 
make the hardware usable by higher levels of software.
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 ● Fixed-priority scheduling:  A scheduling policy whereby threads on 
the ready queue are dispatched in priority order and the priority of any 
given thread is not modified over time (except by the application itself).

 ● Flash memory:  A nonvolatile memory technology that can be erased 
and reprogrammed in circuit like EEPROM, but has much higher den-
sity for a given cost.

 ● Floor:  The floor is a mathematical operation that can be performed on 
a real number (floating point); the floor(n) is the closest integer whole 
number less than or equal to n—for example, floor(1.1) = 1 (note that 
floor(1.0) = ceiling(1.0) assuming that the significance is 1, which is the 
typical definition of floor and ceiling unless otherwise noted).

 ● Flow control:  Signals between a data transmitter and receiver used 
to indicate buffer capabilities on each side so that a transmitter does not 
overdrive a receiver, resulting in data loss when the receiver is unable to 
buffer incoming data.

 ● Form factor:  The physical dimensions of an electronic device that 
may be independent of the electrical characteristics—for example, the 
PCI bus electrical specification and protocol is implemented as compact 
PCI, stackable PC/104+, and PMC (PCI Mezzanine).

 ● FPGA:  Field programmable gate array; an array of generic transistors 
that can be programmed once or on power-up to provide combinational 
logic and state machines for digital processing.

 ● Fully associative cache:  A cache that allows main memory addresses 
to be loaded to any cache line; this is the ideal cache since replacement 
is not constrained at all, but associative memory is complex and expen-
sive. By comparison a direct-mapped cache is completely constrained 
and a set-associative is a compromise.

 ● Gather read list:  A list of not necessarily contiguous addresses in 
memory that are to be read into a contiguous buffer—for example, a 
host memory may have multiple blocks in memory scattered through 
memory space that are to be read by an IO device that will gather all 
these blocks into a single contiguous buffer before an IO operation.

 ● GPIO:  General-purpose IO; digital inputs and outputs at TTL logic 
levels that can be used as a generic interface to digital devices, such as 
LEDs.
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 ● Hamming code:  A bit encoding used to detect and correct SBEs 
(single bit errors) and to detect MBEs (multi-bit errors) for memory 
devices that may be subject to SEUs.

 ● Hard real-time:  A service or set of services that are required to meet 
their deadlines relative to request frequency; if such deadlines are 
missed, there is not only no utility in continuing the service, but in fact 
the consequences to the system are considered fatal or critical.

 ● Harmonic:  When the relative periods of services are all common mul-
tiples of each other; this characteristic can yield cases where the CPU 
resource can be deterministically scheduled to full utility.

 ● Harvard architecture:  A core CPU architecture that splits the 
memory hierarchy into separate instruction and data streams, typically 
including an L1 instruction cache that is independent of an L1 data 
cache.

 ● HDTV:  High-definition television.

 ● Heap:  A memory space used for dynamic buffer management and/
or dynamic allocation of memory as requested by an application; heap 
space is memory outside the data, text, and stack segments and is most 
often reserved by the boot or RTOS during initialization.

 ● High availability:  A system that guarantees that it will be ready to 
provide services with a quantifiable reliability—for example, a system 
is said to provide five nines availability if it is ready to provide service 
upon request 99.999% of a given year (i.e., is unavailable only for a total 
of about 5 minutes per year). Note that HA systems can crash, but they 
can’t be out of service very long if they do.

 ● High reliability:  A system that has been designed to have a very low 
probability of failure to provide services; typically measures such as re-
dundancy, cross strapping, and fail-safe modes are designed in to ensure 
that critical services have an extremely low likelihood of failure.

 ● Highest locker protocol:  See priority ceiling emulation; this is the 
same basic mechanism to avoid unbounded or lengthy priority inver-
sions possible with mutual exclusion.

 ● Host:  Desktop development computing system used in IDE for cross 
compilation, cross debugging, connection to the target agent, trace 
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tools, and any number of other tools that connect to a target server on 
the host to communicate with target agent software resident on the 
embedded system.

 ● H-reset:  Hardware reset; either from a power-on reset state transition 
or from assertion of an external signal to drive a hardware reset.

 ● HSTL:  High-speed transceiver logic; a 0.0-1.5v logic level standard 
used for high-speed single-ended digital IO, most often for memory IO 
(speeds of 180 MhZ and greater).

 ● HWIC:  Hardware in circuit; a concept whereby debug and trace tools 
have hardware probes in circuit with a CPU by interfacing to signals 
coming from the CPU/SoC ASIC to the rest of the system board for the 
purpose of snoop tracing and/or control—for example, JTAG debug 
emulator, Vision ICE Event Trace, RISCWatch trace port probe, and 
CodeTEST Universal trace probe.

 ● ICE:  In-circuit emulator; a debug and trace device that monitors all 
IO pins on a CPU/SoC ASIC, provides memory trace, external interrupt 
trace, JTAG, and IO pin trace, and emulates the state of the system, 
including all registers, cache, and addressing, to aid in firmware devel-
opment and board verification. 

 ● IDE:  Integrated development environment; a software development 
system that for an embedded system includes a cross and native compil-
er, cross and native debugger, and many target tools interfaced through 
a host-based target server and a target-based target agent.

 ● Importance:  In real-time systems theory services with low priority 
based upon RM policy may still be critical to system operation; they are 
important despite being low-priority.

 ● Interference:  When a higher-priority thread preempts a lower one in 
a fixed-priority preemptive system the time that the CPU is unavailable 
to lower-priority threads is referred to as interference time.

 ● Internal fragmentation:  When a resource such as memory is made 
available in minimum-sized blocks, this can help reduce external frag-
mentation, but when a user of the resource requires less than a full 
block, this causes internal fragmentation.
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 ● Interrupt handler:  During the normal CPU pipeline processing 
(fetch, decode, execute, write-back) an external device may assert an 
signal input or an internal sub-block may also assert a signal input to the 
CPU core that causes it to asynchronously branch to an interrupt vector 
(a memory location) where basic code called the handler acknowledges 
and services the hardware and then calls application ISRs.

 ● Interrupt latency:  The delay between assertion of an interrupt signal 
by a device and the time at which the PC is vectored to an interrupt 
handler is known as the interrupt latency.

 ● Interrupt vector:  An address in memory where the CPU sets the PC 
after an interrupt signal is asserted, causing the CPU to asynchronously 
branch to this location and to execute the instruction there; normally 
a CPU will have a number of interrupt inputs (e.g., x86 IRQ0-15), and 
each signal asserted causes the CPU to vector to a different address such 
that different handlers can be associated with each interrupt signal.

 ● Interval timer:  A double-buffered state machine in a CPU core that 
allows software to set a value in a register that is loaded into a separate 
countdown register that asserts an interrupt at zero (or perhaps all Fs 
if it counts up) and automatically is reloaded with the interval register 
value to repeat the process over and over; this hardware can therefore 
be used for basic timer services in an RTOS.

 ● IO bound:  A condition where an application does not have sufficient 
IO bandwidth to meet throughput goals or real-time deadlines.

 ● ISA legacy interrupt:  Industry standard architecture legacy inter-
rupt; specifically refers to x86 architecture IRQ0-15, which has been 
part of the x86 architecture from the beginning (8086) and support a 
number of well-known PC devices and services, such as booting from a 
hard drive.

 ● Isochronal:  Literally the same in time, which in real-time systems 
means that a service is required to produce a response at a precise time 
relative to a service request—not too early and not too late. This is 
important to continuous media applications and digital control that are 
sensitive to jitter. Most often isochronal services hold a response com-
puted ahead of deadline that is delivered to an interface within a narrow 
band around the optimal time.
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 ● ISR:  Interrupt service routine; the application level of an interrupt 
handler that is often a call-back function registered with an RTOS that 
installs the interrupt handler at an interrupt vector.

 ● Jiffy:  A Linux term for the tick of an interval timer, the smallest unit 
of time that the OS can track—for example, on x86 architecture the 
standard interval timer ticks about every 0.45 microseconds, but the 
Linux OS typically loads an interval timer count such that it can control 
processes on a 10-millisecond software tick.

 ● Jitter:  When latency and/or timing of an operation or process changes 
with each iteration, this is jitter—that is, when latency/timing is not 
constant. Jitter as a term can be used to describe many different types of 
operations or processes—for example, execution jitter, period jitter, and 
response jitter.

 ● JTAG:  Joint Test Applications Group; an IEEE committee that 
standardized the concept of boundary scan and the TAP (test access 
port), which is used to verify integration of ASICS in a system (boundary 
scan), but is now also typically used in firmware development to control 
and single-step a CPU by loading data and commands through the TAP 
with JTAG. JTAG includes the following signals:  TDI (Test Data In), 
TDO (Test Data Out), TRST (Test Reset), Clock, and Test Mode Set.

 ● Keep-alive:  An indication from a thread/process/task on a system that 
it is functioning normally or perhaps similar indication from a subsystem 
in a larger system; the keep-alive is most often a simple ID and count 
indicating that the subsystem/thread/process/task is advancing through 
its service loop, often referred to as a heartbeat as well.

 ● Kernel:  The software in an RTOS that directly controls all critical 
resources, such as CPU, memory, and device IO; the kernel is typically 
interfaced to by applications through an API or device driver.

 ● Kernel image:  The binary machine code text segment, data segment, 
stack, and BSS used for the RTOS kernel software.

 ● Kernel instrumentation:  Tools like WindView and CodeTest, which 
provide active tracing of C code and/or RTOS events require that code, 
often specifically kernel code, be instrumented with trace instructions 
that provide efficient update of a trace buffer with a trace token to track 
progress of the code and to mark events for later timeline analysis.
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 ● L1 cache:  Level-1 cache; a high-speed memory integrated on-chip 
with a CPU core, on the same ASIC for data access that can most often 
be completed in a single clock.

 ● L2 cache:  Level-2 cache; a high-speed memory off-chip that can be 
accessed in several clocks.

 ● Latch-up:  A non-recoverable bit error due to permanent transistor 
logic damage to a memory device or register.

 ● Latency:  Delay in an operation or process due to physical limitations, 
such as electronic propagation delay, the speed of light, the number of 
clock cycles required to execute instructions, or time to modify a physi-
cal memory device.

 ● Laxity:  Laxity = (Time_to_Deadline – Time_to_Completion), but the 
time to the completion of a service can be difficult to determine, so most 
often an estimate of the Time_to_Completion is used, which is derived 
from (WCET – Computation_Time_So_far). 

 ● Layered driver:  A layered driver includes a top half and bottom half; 
the top half provides an interface to application code wishing to use a 
hardware resource, and the bottom half provides an interface to a hard-
ware device.

 ● LCM:  Least common multiple; the LCM is the smallest number that 
is also multiple of two different numbers—for example, given x = 3, y 
= 5, the LCM(x,y) = 15. This concept is key to periodic service analysis 
in real-time theory because it is necessary to diagram service times over 
the LCM of all periods in order to fully analyze timing demands upon a 
resource. 

 ● Least laxity first (LLF):  A dynamic-priority policy where services 
on the ready queue are assigned higher priority if their laxity is the 
least (where laxity is the time difference between their deadline and 
remaining computation time); this requires the scheduler to know all 
outstanding service request times, their deadlines, the current time, and 
remaining computation time for all services, and to re-assign priorities 
to all services on every preemption. Estimating remaining computation 
time for each service can be difficult and typically requires a worst-case 
approximation.



436 • REAL-TIME EMBEDDED COMPONENTS AND SYSTEMS WITH LINUX AND RTOS

 ● LED:  Light emitting diode; a device typically used to provide visual IO 
and status for an embedded system.

 ● Lehoczky, Sha, and Ding theorem:  If a set of services can be sched-
uled over the period of the longest period service after a critical instant, 
then the system is feasible (i.e., is guaranteed not to miss a deadline in 
the future).

 ● Limit sensor:  A sensor that detects when hardware has reached 
a physical limit—for example, when a robotic arm has driven a joint 
through full rotation after which continued motor drive will break the 
joint.

 ● Linking (dynamic or static):  Linking is the process by which an 
executable image is assigned addresses for all function entry points, all 
global variables, and all constants that may be referenced by other soft-
ware modules; these addresses can be statically assigned once and for all 
at a pre-determined offset in physical memory (static linking) or may be 
position-independent such that only relative addresses are assigned until 
the module is loaded, at which time physical addresses are derived from 
the relative (dynamic linking). 

 ● Livelock:  Related to deadlock, this situation arises when a circular 
wait for resources evolves and an attempt to break the deadlock is made 
by having each requester drop their requests and then re-request them; 
if the requests are well synchronized, then the system may cycle be-
tween deadlock and dropping requests over and over. 

 ● Logic analyzer:  A hardware, firmware, and software analysis tool that 
provides generic acquisition of digitally clocked signals (or arbitrary digi-
tal signals that are clocked by the analyzer internally).

 ● LSP:  Linux support package; an embedded Linux term, much like a 
BSP, that refers to code required to boot Linux on a given architecture 
and platform—for example, the PowerPC 750 LSP.

 ● LVDS:  Low-voltage differential serial; an electrical standard for trans-
mission of high-rate serial signals on wire pairs that carry differential 
signals to encode data.

 ● Main+ISR:  This is essentially the same software architecture as a 
cyclic executive; however, Main+ISR may be much simpler in that it 
normally has just one main loop and a small number of ISRs compared 
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to a cyclic executive, which may have multiple loops operating at differ-
ent frequencies.

 ● MBE:  Multi-bit error; a condition when more than one bit in a word is 
in error. Typically this cannot be corrected.

 ● Memory hierarchy:  The whole memory system design from the 
fastest and typically smallest devices to the slowest and typically largest 
devices—for example, L1/L2 cache, main memory, and flash.

 ● Memory-mapped IO:  IO devices that can be read or written can be 
mapped into the address space of a processor, allowing software to sim-
ply update an address in order to write to the device or read an address 
to read from the device; the device must respond to the addressing by 
the CPU—that is, decode it and then read/write data on a bus that both 
the device and CPU interface with. 

 ● Memory protection:  An MMU feature that allows address ranges 
on page boundaries (a minimum-size memory block) to be specified as 
read-only; if an update to such a range is attempted, the MMU will as-
sert an NMI exception.

 ● Message queue:  An RTOS software mechanism that abstracts shared 
memory data into atomic enqueue and de-queue operations on a buffer 
controlled by the RTOS and known only to applications by an ID, ac-
cessible to them only through RTOS message queue operations. Opera-
tions are atomic with respect to threads only (not interrupts), and so 
most often only a message queue send is allowed in interrupt context, 
never a message queue receive.

 ● Message sequence chart:  A diagramming method used in the Speci-
fication and Design Language (SDL) as well as UML (Universal Mod-
eling Language) that shows threads of execution and all messages (or 
function call interfaces) that associate the threads in a protocol. 

 ● Microcode:  Machine code that executes on a state machine internal 
to a processor or on a simple state machine device that is independent 
of the main execution pipeline—for example, the Bt878 RISC processor 
executes code fetched from the x86 processor’s memory over the PCI 
bus; this code is microcode from the viewpoint of the x86 system.

 ● Micro-parallelism:  Parallel processing inside the CPU core.
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 ● MMU:  Memory management unit; a block in most CPU cores that 
provides virtual to physical address mapping and address range check-
ing, and can protect read-only address ranges from unintentional 
update.

 ● Module loading:  When an ELF module is transferred to an embed-
ded target and dynamically linked into the kernel and other application 
code on the fly. 

 ● MTD:  Mapping to device; a term used to describe bottom half code 
used in a flash file system driver.

 ● Multi-access network:  A network such as Ethernet where more 
than one device can use the physical and link layer of the network, thus 
requiring a CSMA/CD protocol for shared use.

 ● Multitasking:  When a CPU is shared and multiplexed by a scheduler 
in order that multiple threads with state information may execute on a 
single CPU or may be mapped onto a set of CPUs dynamically. Tasks 
include state information that goes beyond the minimal requirements of 
register state, stack, and PC for a thread—for example, task variables, a 
task error indicator, name, and many other elements of a VxWorks TCB.

 ● Multithreaded:  When a CPU is shared and multiplexed by a sched-
uler with the minimal management of execution state for each thread of 
execution (register state, stack, and PC).

 ● Mutex semaphore:  A specialized semaphore (compared to a binary 
semaphore) that is specifically used to protect critical sections of code 
for multithread safety; this semaphore is used to guarantee mutually 
exclusive access to a shared resource such that only one thread may ac-
cess a common resource at a time. With shared memory this prevents 
data corruption that could be caused by multiple readers/writers—for 
example, if a writer has partially updated a shared data structure, is pre-
empted/interrupted, and then a reader accessed the partially updated 
data, the data may be completely inconsistent. 

 ● Nand flash:  A flash memory device that is normally erased to all Fs 
and writes are bitwise masked in with an and operation.

 ● NCD SCAM chip:  A pre-burned microchip PIC that includes code 
to generate PWM signals for hobby servos (2 channels) based upon an 
RS-232 command.
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 ● Necessary and sufficient:  A feasibility test in real-time theory that 
will pass all service sets that can be scheduled and will never fail a set 
that can be scheduled (more precise than a sufficient test that may 
falsely reject some service sets, but will never falsely okay a service set 
than cannot be safely scheduled). 

 ● Nesting:  When a construct is used inside the same sort of construct, 
one inside the other—for example, if a critical section encloses another 
critical section, the critical sections are said to be nested.

 ● Non-blocking:  When a request for a resource cannot be met imme-
diately, the RTOS can either block the calling thread until it is available 
or return it an error code, indicating why the request cannot be met and 
letting the thread go on; the latter is non-blocking.

 ● Nor flash:  A flash memory device that is normally erased to all zeroes 
and writes are bitwise masked in with an or operation.

 ● NTSC:  National Television Systems Council; the standard for analog 
color television transmission with 640x480 pixels. The standard defines 
up to 525 scan lines, but only 480 are used for an NTSC display frame, 
with the remaining used for sync, vertical retrace, and closed caption 
data (sometimes referred to as vertical blanking lines). Most NTSC 
cameras produce 492 scan lines. The NTSC signal interlaces scan lines, 
drawing odd-numbered scan lines in odd-numbered fields and even-
numbered scan lines in even-numbered fields to produce a non-flicker-
ing image at approximately 60 Hz refresh frequency (the frequency was 
adjusted for color to 59.94 Hz). This yields approximately 30 interlaced 
video frames per second. For color, NTSC carries luminance and chro-
minance signals where luminance carries the normal monochromatic 
NTSC signal. The luminance and chrominance can be combined on a 
composite cable or carried separately as they are with S-video cables. 
The chrominance signal is carried at 3.579545 MHz and can either be 
ignored or recovered, using a color burst reference signal that is output 
on the back porch of each horizontal scan line. Separating luminance 
and chrominance from a composite output (most often found on CCTV 
cameras) into S-video requires a filtering/splitting cable. Passive splitters 
can work, but sometimes the chrominance signal can be lost, depend-
ing upon the quality of the camera’s composite output. Due to some of 
the quality issues with the color subcarrier scheme, NTSC is sometimes 
referred to as “Never Twice the Same Color.” Newer 
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higher-definition standards for television have since emerged including 
EDTV and HDTV, but for embedded computer vision projects, NTSC 
is still an affordable and readily available camera and frame capture 
standard that is in wide usage.

 ● NV-RAM:  Nonvolatile random access memory; memory that persis-
tently holds data regardless of whether a system is powered—for ex-
ample, a battery backed-up DRAM, a Flash memory device, EEPROM, 
or EPROM.

 ● Object code:  Machine code annotated with symbol information (vari-
able and function names and addresses) and information to support 
debugging (source file names and locations).

 ● OCD:  On-chip debugging; a type of JTAG front end that allows a typi-
cal line debugger to single-step code through the JTAG protocol.

 ● Offloading:  The concept of taking a software service and re-allocating 
it to a hardware implementation on a parallel processing unit in order 
to free the main CPU of loading—for example, a network interface card 
may perform functions basic to TCP/IP, such as checksums, in order to 
offload those operations from the host CPU.

 ● OnCE:  On-chip emulation; a type of JTAG front end that allows for 
not only debug through JTAG but also additional control, such as regis-
ter viewing and setting.

 ● Online admission:  When a system can run a feasibility test while 
currently providing other services in order to determine whether new 
services can safely be added to the current safe set.

 ● On-off control:  The use of relays to turn on and off motors to control 
a mechanical device.

 ● Optical navigation:  Using computer vision images of a scene to de-
termine ranges to targets and to plan paths to navigate to a target using 
only video data.

 ● Optimal policy:  A fixed-priority assignment policy that will success-
fully schedule any set of services that can be scheduled by any other 
fixed-priority policy.

 ● Overrun policy:  How a system handles a service that attempts to 
continue execution beyond its advertised deadline—for example, the 
scheduler could terminate the service.
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 ● Packet switched:  A network protocol that allows links to be shared by 
multiple datagram or virtual circuit protocols and routes packets be-
tween end points based upon their header information.

 ● PC:  The program counter is normally a register used by a CPU to track 
the current or next address of main memory that contains a machine 
instruction to execute (note that a trace of the PC over time provides the 
definition of the thread of execution until a context switch occurs, if it 
does at all).

 ● PCI:  Peripheral component interconnect; see Shanley, p. 771.

 ● PCI bus probing:  A process that allows a BIOS or OS software to find 
all PCI devices and functions on a given PCI bus using configuration 
space registers.

 ● PCI configuration space:  A well-known port address on x86 archi-
tecture where a PCI bus master can read/write registers in order to 
find other PCI devices and their functions and configure them as far as 
memory mapping and interrupts as a minimum.

 ● PCI Express:  Previously known as 3GIO, this standard is a scalable 
differential serial bus architecture for 2.5 Gbps mainboard interconnec-
tion and peripheral connection. 

 ● PCI interrupt routing:  PCI interrupts A-D can be routed onto x86 
legacy interrupts IRQ0-15 in order to allow PCI devices to interrupt an 
x86 core.

 ● Peak-up:  A computer vision algorithm that finds a bright spot or the 
center of an object by segmenting an image and finding the centroid of a 
target within the image.

 ● Pending task:  A VxWorks task state that indicates the task is blocking 
on a resource not presently available.

 ● Period jitter:  When the period of a service request is not constant.

 ● Period transform:  A real-time theory adjustment to a services charac-
teristics to simplify analysis or to elevate importance of a service where-
by the services period is assumed to be shorter than it really is.

 ● Pessimistic assumption:  RM is full of assumptions that are worst-
case and therefore make it a very safe form of analysis, but also may 



442 • REAL-TIME EMBEDDED COMPONENTS AND SYSTEMS WITH LINUX AND RTOS

lead to excessive resource margin in order to guarantee deadlines—for 
example, WCET.

 ● PID controller:  Proportional integral differential controller, a con-
troller that sets outputs proportional to error, integrates sensor inputs to 
find, for example, velocity from acceleration, and also uses derivatives, 
such as velocity from position measurements, in order to control a sys-
tem and obtain a target operational state—for example, a cruise control 
provides acceleration proportional to the difference between current 
and target speed and integrates to determine when the target will be 
achieved and when to decelerate.

 ● Pipeline hazard:  A condition in a CPU pipeline that forces it to 
stall—for example, a cache miss.

 ● Pipeline stall:  When a CPU pipeline must stop until a resource is 
made available.

 ● Pixel:  A picture element; an array of picture elements forms an NxM 
image where each pixel encodes the XY position, brightness, and RGB 
color mix for the picture element in the image.

 ● Point-to-point:  A network topology that connects nodes one-to-one.

 ● Polling:  When status is checked periodically (synchronously) by a 
looping construct. 

 ● Polling interrupt service routine:  An ISR that must determine 
the source of an interrupt by reading status registers when a hardware 
interrupt is shared by multiple devices (note that most polling ISRs also 
provide ISR chaining).

 ● Position-independent code:  Code that is base address–independent 
such that it can be mapped in at any base address and all other entry 
points, jumps, and memory locations are set relative to the dynamically 
determined base address.

 ● POSIX:  Portable operating systems interface; a standard for operating 
system mechanisms and APIs. POSIX includes a number of substan-
dards, such as 1003.1b, which covers basic real-time mechanisms.

 ● Power-on reset:  A CPU state after initial power-on, which most often 
causes the CPU to branch to a known address and perform basic opera-
tions, like resetting the memory controller, bus, and other basic interfaces.
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 ● Preemption:  When the current thread executing on a CPU is placed 
back on the ready queue by the scheduler and state information saved so 
that a different thread can be allocated the CPU.

 ● Priority:  An encoding that controls the order of dispatch for threads 
by a scheduler when more than one is ready to use the CPU resource.

 ● Priority ceiling and priority ceiling emulation:  A priority is 
defined that is the highest priority a thread can have that may lock a 
resource; this priority level is stored as the resource’s priority ceiling. 
A thread that has locked the resource is given priority as high as the 
highest-priority thread blocking on the resource up to the ceiling value 
for the ideal priority ceiling, but for priority ceiling emulation it will 
be set to a ceiling value specified by the programmer at time of critical 
section construction—that is, the thread holding the resource always 
has a priority higher than or equal to all threads waiting to obtain the 
resource, but amplification is limited to the ceiling value.

 ● Priority inheritance:  See [Briand99], p. 66; if a thread is holding a 
resource and another thread of higher priority is blocking on the same 
resource, the thread holding the resource inherits the blocked threads 
priority for the duration of the critical section. There is no limit on the 
priority level that may be inherited.

 ● Priority inversion (unbounded):  Whenever a thread is unable to 
obtain the CPU and a thread of lower priority is holding it, this is called 
priority inversion. The condition is most often caused by a secondary re-
source needed by a thread, such as a shared memory critical section; in a 
simple two-thread case, if a lower-priority thread is in a critical section, 
then a higher-priority thread experiences priority inversion for the dura-
tion of the critical section; however, if the low-priority thread suffers 
interference from a medium-priority thread, the high-priority thread 
could potentially be blocked for an indeterminate amount of time, an 
unbounded priority inversion.

 ● Priority-preemptive run-to-completion:  A scheduling mechanism 
that dispatches any thread ready to run based on priority as soon as the 
set of ready threads is updated (preemptive) and allows a dispatched 
thread to run indefinitely unless another higher-priority thread is added 
to the ready set (via an interrupt or a call to the RTOS by the currently 
running thread). One danger of this type of system is that a high-priority 
non-terminating thread will take over the CPU resource completely. 
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 ● Priority queue:  A mechanism for implementing a first-in-first-out 
policy, but with N levels of priority such that all items at the highest 
priority level are de-queued first-in-first-out before all items at the next 
lower priority level. 

 ● Process:  A thread of execution with stack, register state, and PC 
state along with significant additional software state, such as copies of 
all IO descriptors (much more than a task TCB for example), includ-
ing a protected memory data segment (protected from writes by other 
processes).

 ● Programmed IO:  A technique where software reads and writes each 
word to and from a device interface involving the CPU in each and 
every transfer.

 ● Protocol stack:  A layered driver that includes data processing be-
tween the bottom half and top half layers; each layer can be separated 
and has a distinct interface—for example, TCP/IP.

 ● PWM:  Pulse width modulation; a technique to control a motor or 
other normally analog device by creating a pulse train of digital TTL 
output to simulate an analog output. 

 ● Quality of service:  Definition of service levels based upon guarantees 
of resource availability for each service—for example, processor capacity 
can be reserved for each service in advance (say, 10%) and the system 
guarantees that this capacity will be available within in a worst-case 
period of time, however may not guarantee all services will meet their 
deadlines.

 ● Rate-monotonic:  A hard real-time theory for fixed priority-preemp-
tive run-to-completion systems where priority is assigned according to 
service request period (higher priority for shorter period) and where 
feasibility of a set of services can be determined by the RM least upper 
bound or an iterative test, such as the completion test.

 ● Reachability space:  The points in space where a robotic device can 
place and end effector—for example, places in space where a robotic 
arm can grapple an object.

 ● Ready:  The VxWorks task state where a task is ready to running and 
waiting only on the CPU to be granted by the scheduler.
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 ● Real-time (system):  A system driven by external events (typically sen-
sors that provide input through ADCs) for which services provide com-
putation to produce a response (typically actuators that are interfaced to 
DACs) before a deadline relative to the event-driven request for service; 
a hard real-time system must never miss a deadline, but a soft or best-
effort system may. 

 ● Real-time clock:  A hardware clock circuit that maintains an abso-
lute date and time (e.g., Gregorian or Julian date), often employing a 
battery-backed clock circuit and/or a method to synchronize with an 
external time source, such as Universal Coordinated Time.

 ● Real-time correctness:  A real-time service must produce function-
ally correct outputs and also provide the outputs prior to a relative 
deadline to be real-time correct.

 ● Reboot:  When a system is commanded or as a part of a recovery mode 
reenters the boot code entry point causing re-initialization of memory, 
IO interfaces, and restart of all services. 

 ● Recovery:  A key feature of a high-availability system, this is the 
mechanism by which a system that is experiencing system failures re-
starts those services. A system may need to start a recovery process for a 
number of reasons—for example, deadlock, priority inversion, livelock, 
and resource exhaustion. Often recovery is achieved by the hardware 
watchdog that reboots the system. 

 ● Regression test:  Rerunning a test to verify that features previously 
verified still work after bug fixes or feature addition, intended to prevent 
unintentional interactions between software modifications that might 
introduce new problems.

 ● Relay:  A mechanical or solid state device that provides a simple 
switch—for example, double pole double throw or single pole single 
throw.

 ● Reliable transport:  A data transport protocol on a network that 
includes error detection/correction and retransmission and supports 
diverse routing such that overall data is delivered if at all possible.

 ● Resource arbiter:  A subsystem that implements a resource grant pol-
icy—for example, a bus arbiter coordinates bus grants for bus requests 
from multiple masters and targets.
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 ● Response time:  The latency between a request for service (typically 
by an ISR) and the generation of a response output.

 ● Ring buffer:  A data structure that provides multiple serially reusable 
buffers, most often used to buffer incoming data from a device interface 
before it can be processed, likewise for output data before it can be 
transmitted.

 ● RISC:  Reduced instruction set computer.

 ● RM:  Rate-monotonic; the basic theory formulated by Liu and Layland 
for fixed-priority multiplexing of a single CPU that is intended to pro-
vide multiple services over time.

 ● RM least upper bound:  
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 ● RM policy:  Services with shorter period are assigned higher priority.

 ● RMA:  Rate-monotonic analysis; the process of analyzing the C, T, and 
D characteristics of a set of services to be executed on a CPU and deter-
mination of priorities according to RM policy and feasibility according 
to a sufficient or, better yet, necessary and sufficient test.

 ● ROM based:  A boot or kernel image that is PIC and initially runs out 
of a nonvolatile device, but tests and initializes memory and then copies 
itself to working memory and continues execution there.

 ● ROM resident:  A boot or kernel image that executes out of nonvola-
tile memory and sets up a data and stack segment in working memory, 
but the text segment remains always in the nonvolatile memory.

 ● Round robin:  A best-effort scheme with preemptive time-slicing 
where the scheduler assigns threads a slice in a fair fashion where all 
ready threads are given a slice of CPU and put back on the end of the 
queue if needed.

 ● Sanity monitor (software):  A service that periodically resets the 
hardware watchdog timer and also monitors keep-alive messages from 
other critical services in the system; if a critical service fails to post a 
keep-alive, then the sanity monitor provides error handling and at-
tempts to recover that service. If the sanity monitor itself fails to 
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function, then the hardware watchdog timer will time out and the whole 
system will reboot and start a system-level recovery process.

 ● SBE:  Single bit error; when an SEU causes a bit flip or other form of 
unintended bit flip occurs in a memory word.

 ● Scatter write list:  A list of not necessarily contiguous addresses in 
memory that are to be written from a contiguous buffer—for example, 
a host memory may have multiple blocks in memory scattered through 
memory space that are updated by an IO device that contains all of the 
data to be updated in a single contiguous buffer.

 ● Scheduling point:  A necessary and sufficient test based upon the Sha, 
Lehoczky, and Ding theorem that determines whether all services can 
be scheduled within the longest period.

 ● SDRAM:  Synchronous dynamic random access memory.

 ● Semaphore:  An RTOS mechanism that can be used for synchroniza-
tion of otherwise asynchronous tasks in order to coordinate resource 
usage, such as shared memory, or to simply indicate a condition, such as 
data is available on an interface.

 ● Semaphore give:  A semaphore operation that allows a thread to 
indicate that a resource is available; if another thread is blocking on this 
resource, then this will unblock that thread.

 ● Semaphore take:  A semaphore operation that allows a thread to 
check if a resource is available; if not, the RTOS can either block the 
calling thread until it is, or simply return an error code.

 ● Sensor:  A transducer device that indicates physical status of a system 
or the environment in which it operates with an electrical signal to en-
code the system/environment characteristic it is designed to measure—
for example, a thermistor, a position encoder, limit switch, stress/strain 
gauge, and pressure transducer.

 ● Service:  A specific computation provided based on inputs that pro-
duces a required output in order to meet a system requirement. 

 ● Service release:  When an external event sensed by an embedded sys-
tem indicates a request for service, the thread that provides the service 
is released—for example, an ISR can do a semaphore give to indicate 
sensor data is available for processing.
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 ● Set-associative cache:  A cache that allows main memory addresses to 
be loaded in N different cache lines; a set-associative cache is said to be 
N ways, where each way is a different cache line that the same address 
data may be loaded—for example, 32-way set-associative cache.

 ● SEU:  Single event upset; a phenomena where a memory bit is flipped 
due to an environmental influence, such as electromagnetic radiation. 
The bit’s original value may be restored if the SEU can be detected and 
corrected by a system monitoring technique.

 ● Shared interrupt:  When an interrupt can be asserted by multiple 
devices, it is shared and requires the interrupt handler to poll status—
that is, the handler must read the status of every device that may have 
asserted the interrupt to figure out which device in fact did.

 ● Shared memory:  When more than one thread on a single CPU or 
on multiple CPUs can access the same memory locations, this memory 
is shared, and shared memory must be protected by a synchronization 
mechanism if reads and writes are allowed.

 ● Signal (software):  A software signal is often also called a software 
interrupt and in fact functions much like a hardware interrupt does but 
at the scheduler/thread level; when a signal is thrown by one thread 
to another, the throw call causes the RTOS to potentially dispatch the 
catching thread’s handler instead of the code it is currently executing 
after the catch kernel code is executed. So, a signal can be used to asyn-
chronously interrupt a running thread.

 ● Signal block diagram:  A systems design method used in SDL 
(Specification and Description Language) where hardware and software 
elements can be modeled as blocks with signal list inputs and outputs; 
inside the blocks at a lower level, all signals are ultimately consumed or 
generated by EFSMs.

 ● Signal catch:  When a signal is received by a thread by the RTOS 
scheduler on behalf of the thread; the catch modifies the catching 
thread’s state such that the PC, registers, and stack are saved, and when 
the thread is dispatched next, the scheduler dispatches the threads reg-
istered signal handler rather than where it was last preempted.

 ● Signal throw:  When a thread wants to asynchronously interrupt the 
normal flow of execution of another thread, it can call an RTOS 
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mechanism to throw a signal to the other thread, instructing the RTOS 
to dispatch the other thread’s signal handler rather than its last context.

 ● Slack time:  On a real-time system, when no real-time services are 
requesting CPU time (i.e., waiting on the ready queue or actively run-
ning), this unused CPU time is called slack time and often can be used 
for non-real-time best-effort processing. Slack time is often created by 
service releases where the actual execution time taken is much shorter 
than WCET due to execution jitter.

 ● SoC:  System-on-chip; an ASIC that includes one or more CPU cores, 
a bus, and IO interfaces such that it essentially places devices previously 
on a board in earlier products on a single ASIC.

 ● Soft real-time:  When a service can occasionally miss a deadline and 
overrun it or terminate and drop a service release without system fail-
ure, these services are considered soft—for example, a video encoder 
compression and transport service might occasionally drop a frame 
when compression takes too long; as long as the video stream is not criti-
cal and an occasional dropout is acceptable regarding system require-
ments, this service can be considered a soft real-time service. 

 ● Software profiling:  Periodically tracing the cycle count and the cur-
rent PC or actively tracing it by instrumenting all function entry and exit 
points to save cycle count to a trace buffer allows for determination of 
where most of the execution time is spent and how many cycles basic 
blocks of code such as functions require; this type of tracing provides 
a profile of the software. Profiles can be at a function level, basic code 
block level (bounded by branches), or a C statement level; overhead is 
higher for lower-level profiling.

 ● Software sanity:  Software is said to be sane when embedded ser-
vices check in with a sanity monitor by posting a keep-alive; the sanity 
monitor itself is known to be sane (functioning correctly) if it resets the 
hardware watchdog timer. 

 ● SRAM:  Static random access memory.

 ● S-reset:  Soft reset; a reset state for a CPU that can be commanded by 
an application program.

 ● Stack segment:  A segment of memory allocated for a thread that 
provides buffer space for function arguments and local variables; each 
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application thread, the kernel thread, ISRs, and signal handlers typically 
all have their own stack space for the purpose of parameter passing and 
local variable instantiation.

 ● State machine:  A formal design notation that includes a start state, 
state transitions driven by inputs made while in a specific state, and 
outputs on transitions.

 ● Static priority stereo vision:  The use of two cameras separated by a 
known constant distance to judge distances to objects of unknown physi-
cal dimensions through the use of triangulation.

 ● Stress testing:  Test vectors that are designed to stress the system 
by going beyond the requirements-based specification for limits—for 
example, commanding at high rate, exposure to high voltage ESD, shock 
testing, and thermal cycling.

 ● Superscalar:  A CPU pipeline feature that employs parallel hardware 
within a single CPU core to allow for two or more instructions to be 
fetched, executed, and retired concurrently. Note that this feature of a 
CPU pipeline can yield a CPI less than 1.0 for the CPU core.

 ● Suspended task:  A VxWorks task state entered when an exception 
(NMI) is generated by a task; the RTOS handles the exception and sus-
pends the task to protect the system.

 ● SWIC:  Software in circuit; a technique where software instrumenta-
tion is used to trace execution—for example, logging messages to a file 
from an application.

 ● Switch-hook:  A VxWorks call-back mechanism where the kernel calls 
a user function on each and every context switch.

 ● Symbol table:  An array of function and global variable names and 
addresses where they are stored in their text and data segments respec-
tively.

 ● Synchronous:  An event or stimulus that occurs at a specific point in 
time relative to other events in the system rather than at any time—for 
example, a thread of execution can perform a semaphore take to syn-
chronize with an ISR; the ISR will execute asynchronously, but the 
processing provided by the thread performing the semaphore take will 
be synchronous since it is known that this processing will be provided 
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only after the semaphore take AND the semaphore give performed by 
the ISR.

 ● Synchronous bus:  A bus that has clocked address, data, and control 
cycles.

 ● Syndrome:  The encoded bits in an error detection and correction 
scheme that indicate SBE or MBE and contain the code for correction 
of SBEs.

 ● System life cycle:  The process of turning an embedded system con-
cept into a working maintained system. The steps potentially include:  
concept, requirements, high-level design, detailed design, implementa-
tion of units and subsystems, unit/subsystem test, integration, system 
test, acceptance testing, fielding, maintenance, and unit/system regres-
sion testing.

 ● System test:  End-to-end and feature tests performed after the units 
and subsystems in a larger system have been unit tested and are inte-
grated for the first time.

 ● T (in RMA):  The period of a service request type. In many cases this 
will be based upon the worst-case frequency of the event(s) that cause a 
service to be released.

 ● Target:  The embedded computing system, including the processor 
complex and all IO devices.

 ● Target agent:  An embedded service that provides development, de-
bug, and performance analysis features, such as cross debugging, code 
loading and linking, and RTOS event traces.

 ● Target server:  A service on the host development system that pro-
vides an interface to host tools and translates user inputs into target 
agent commands and target agent responses into application data.

 ● Task:  A thread with normal thread state, including stack, registers, 
PC, but also including signal handlers, task variables, task ID and name, 
priority, entry point, and a number of state and inter-task communica-
tion data contained in a TCB. 

 ● Task spinning:  When a task loops where it is expected to block and 
wait for a resource before proceeding.
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 ● Task wedging:  When a task blocks on a resource indefinitely or is 
suspended or fails to loop and post a keep-alive periodically.

 ● TCB:  Task control block; the data structure associated with a VxWorks 
task that contains all task data in addition to task stack and context.

 ● Text segment (code segment):  A segment of memory used for stor-
ing the machine code associated with an application, kernel image, or 
boot image.

 ● TFTP:  Trivial file transfer protocol; a simplified FTP (File Transfer 
Protocol) that allows a client to download files from one known direc-
tory in a file system.

 ● Thread (of execution):  A thread is simply the trace of a CPU’s PC 
over time not including context switch code execution by an RTOS. 
State information may or may not be associated with a thread of execu-
tion, but the value of the PC before a context switch is the minimum 
state that must be maintained on a system that includes preemption.

 ● Throughput:  An aggregate measure of speed and efficiency for a 
device—for example, for a processor the measure is MIPS (millions of 
instructions per second) and for an IO device the measure would be 
Mbps or Gbps (megabits/sec or gigabits/sec).

 ● Tick:  A counter that counts interval timer interrupts and is used by an 
RTOS for basic timer services—for example, to provide the minimum 
resolution for timeouts on blocking calls (the RTOS will unblock a call 
made with a timeout specified within tick accuracy).

 ● Time slice:  A unit of CPU called a quantum that can be allocated to a 
thread in a preemptible best-effort system; in these systems timer ser-
vices often makes a call into the scheduler on each system tick in order 
to provide quantum preemption. So, the tick, a quantum, and timeout 
resolution are typically all the same—for example, Linux/Unix schedul-
ing.

 ● Timeout:  When making a blocking call, in order to avoid “wedging,” 
where a thread is blocked indefinitely, it is most often advisable to 
specify a timeout for any blocking call, at which time the thread will be 
asynchronously awoken and will continue execution; this can be done by 
setting a timer that is set up to throw a signal to a timeout handler prior 
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to making a blocking call if the API does not directly support a timeout 
option.

 ● Timer services:  An interrupt handler set up by the RTOS that counts 
ticks on each interval timer interrupt and signals any threads that have 
reached a timeout threshold.

 ● Top half (application interface):  The interface presented to calling 
threads/tasks/processes by a driver. The top half includes thread control 
features, such as blocking (using a semTake most often), and policy, 
such as how many threads it will allow to read/write a device at once.

 ● Trace:  A linear buffer with records that include time (cycle count) and 
state information for a processor core and/or application code. 

 ● TTL:  Transistor to transistor logic; traditional 5v digital logic levels. 
Also, time-to-live:  counter in a datagram that is decremented on each 
node-to-node hop such that the packet is discarded when TTL=0; this 
prevents a packet from hopping around the network indefinitely and 
creating a problem.

 ● Unbounded:  When a condition can persist for a nondeterministic 
amount of time—for example, unbounded priority inversion where the 
set of middle-level priority interference tasks may cause the inversion to 
persist for an arbitrary time.

 ● Unit test:  A test designed to validate and verify a software and/or hard-
ware unit that is a building block for a larger system in isolation.

 ● Utility curve:  An XY graph that shows time on the x-axis between a 
service release and relative deadline and shows utility or damage caused 
to the system caused by service response generation.

 ● Virtual timer:  A timer that is not directly supported by a hardware 
interval timer, but rather is a software tick counter that can generate a 
signal after the passing of N software ticks.

 ● VoIP:  Voice-over IP; a protocol for transporting voice duplex audio 
over the Internet protocol. 

 ● Watchdog timer:  A hardware-based interval timer that counts down 
(or up) and when it reaches zero (or all F’s) it generates an H-reset sig-
nal causing the system to reboot; critical software services are expected 
to post keep-alives to a system sanity monitor that normally in turn 
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resets the watchdog timer before it expires. If the software loses san-
ity—that is, the sanity monitor fails to reset the watchdog timer (e.g., if a 
deadlock were to occur), then the idea is that the system will be able to 
recover by rebooting.

 ● WCET:  Worst-case execution time; the longest number of CPU cycles 
required by a service release ever observed and/or theoretically possible, 
given the hardware architecture and algorithm for data processing used 
in the service.

 ● Wear leveling:  A flash file system method to ensure that maximum 
capacity and operational longevity are maintained in a flash device that 
hosts a file system; since flash is divided into sectors, with each sector 
having a maximum expected number of erase/write cycles, this method 
attempts to keep erase counts for all sectors approximately the same so 
no one sector wears out early.

 ● White-box test:  A set of test vectors that drive specific execution 
paths in a software unit by design so that the software unit test meets 
specific path, statement, condition, and/or decision coverage criteria; 
such tests require intimate knowledge of the software unit, such as API 
return codes, error conditions, and IO ranges.

 ● Write-back:  When a processor updates memory from registers or 
cache.

 ● Write-through:  When a processor maintains cache/memory coher-
ency by always writing cache and the corresponding memory location on 
all writes to locations that are cached.
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ABOUT THE DVD

B
This DVD has all of the RTECS original content and adds new FreeRTOS 
examples, expanded Linux examples, and up-to-date resources for real-
time embedded systems development with RTOS and Linux, including the 
following:

 ● Index: The index has a browsing page for contents of the DVD to allow 
readers to self-instruct and explore contents. 

 ● VxWorks-Examples: VxWorks example C code demonstrating RTOS 
features and mechanisms including the POSIX 1003.1b real-time API 
extensions

 ● VxWorks-Drivers: Bt878 video frame grabber driver and Cirrus 4281 
example driver C code for VxWorks RTOS

 ● Material-and-Examples (original content): From CD content of RTECS 
book by author Sam Siewert. Folders include:

 ● Image-Processing: Image processing C code examples that can be 
built as applications for Linux or VxWorks

 ● PMAPI: Performance monitoring API code for PowerPC Darwin OS 
and for x86 PCs

 ● Contributed: Contributed code implementing projects in computer 
vision, Voice/IP, and robotics

 ● FreeRTOS Example Code: Examples from the FreeRTOS community 
as well as co-author John Pratt.
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 ● Linux Examples: Linux example application code for embedded and 
desktop systems. These examples have been tested on the Beagle xM 
and the NVIDIA Jetson embedded Linux systems. The 2006-Examples 
includes basic Linux examples to test memory, profile, assert on error 
and basic threading. The 2015-Examples extend these basic examples 
in categories that provide mixed C and Assembly code, computer-vision 
(using OpenCV), digital media (MPEG), and operating systems includ-
ing both application and kernel code examples.

 ● Linux Getting Started Documents: For anyone brand new to Linux, 
this is what the author provides for students new to Linux to get them a 
rapid start using Virtual Box and Ubuntu Linux.

 ● Utilities: Includes a copy of Win32DiskImager, open source utility for 
Windows 7 (and earlier versions of Windows) to create a boot and root 
Micro-SD card.

 ● Documents to Assist with Recommended Linux and FreeRTOS Em-
bedded Systems: Including the Jetson TK1, Altera DE1-SoC, and the 
Beagle xM. Readers should refer to the websites noted for the latest 
document, but this is a good starting point.

 ● HTML: Images used in the index.html file.

 ● IBM In Print Links to DeveloperWorks: Articles related to RTECS with 
Linux and RTOS published by Sam Siewert with IBM are available on 
DeveloperWorks.

 ● IBM Out of Print: Access to IBM articles related to the book that are no 
longer in print by IBM on  DeveloperWorks.

The DVD also has these resources:

 ● Figures: All figures contained in the book.

 ● Visio-Design examples: A partially completed Visio UML design tem-
plate for a stereo-vision system designed for an x86 VxWorks platform.

 ● Photos and Videos: JPEG, MPEG, and AVI photos and streaming video 
of example project demonstrations completed at the University of Colo-
rado.

All VxWorks C code has been tested using Workbench 3.2 and VxWorks 
6.8. Much newer versions of Workbench and VxWorks are available, and 
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the code is expected to compile and work on these new revisions, but has 
not been tested for them. VxWorks C code should be imported into a Work-
bench workspace and project that is a “loadable project” and built within 
the Workbench build framework.

All Linux C code has been tested using Linux 3.13.x with the Ubuntu 
14.04 LTS (Long Term Support) distribution [Linux sam-ubuntu-Virtual-
Box 3.13.0-24-generic #46-Ubuntu SMP Thu Apr 10 19:11:08 UTC 2014 
x86_64 x86_64 x86_64 GNU/Linux]. Make fi les are included with the Linux 
code.

All Linux C code using the OpenCV library has also been tested on the 
Jetson TK1 embedded system, a recommended embedded Linux board for 
the book.

All Linux C code, excluding the OpenCV library-based examples, have 
been tested on both the Beagle xM using the included reference bootable 
image and instructions to create a boot/root image and the Altera DE1-SoC 
embedded system running the recommended Linux distribution by Altera.

B.1 Minimum System Requirements

VxWorks 5.4 or newer running on a Pentium, Pentium II, III, or IV x86 
microprocessor, a host development system running Windows 2000 or XP, 
and Ethernet network to interconnect the host and target system.

For Linux, an x86 Pentium or better system running a 2.4.x or newer 
kernel and Red Hat 9 or newer Linux distribution.
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WIND RIVER SYSTEMS UNIVERSITY 
PROGRAM FOR WORKBENCH/
VXWORKS

C
Wind River provides an RT Linux distribution as well as Workbench/Vx-
Works, which can be licensed free of charge for academic teaching and 
research programs. This was done for the University of Colorado’s course 
ECEN 5623, Real-Time Embedded Systems, taught since fall 2000 at the 
Boulder campus.

Information on the program can be found at:

http://www.windriver.com/universities/

The FAQ page is very useful as well:

http://www.windriver.com/universities/faq

The program has worked very well at the University of Colorado at Boul-
der. The tools have been used in an x86, PowerPC, and Xscale mixed plat-
form lab to implement all of the example projects included with Real-Time 
Embedded Components and Systems.
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REAL-TIME AND EMBEDDED LINUX 
DISTRIBUTIONS AND RESOURCES

D
Featured in Real-Time Embedded Components and Systems with Linux 
and RTOS, 2nd edition:

 ● Ubuntu Linux distributions, http://www.ubuntu.com/

 ● Debian Linux distributions, https://www.debian.org/ 

 ● Yocto Linux distributions, https://www.yoctoproject.org/ 

Widely used Linux distributions for soft real-time and embedded systems 
not featured:

 ● The Linux Foundation, http://www.linuxfoundation.org, http://www.
linux.com/, http://events.linuxfoundation.org/events/embedded-linux-
conference 

 ● Concurrent Computer, https://www.ccur.com/linux/ 

 ● Wind River Linux, http://www.windriver.com/linux

 ● Monta Vista Linux, http://www.mvista.com/

 ● TimeSys Linux, http://www.timesys.com/

 ● Robot Operating System, http://www.ros.org/ 

 ● Embedded Linux Wiki, http://elinux.org 

 ● Real-Time Linux Wiki, https://rt.wiki.kernel.org 

 ● Open Source Automation Development Lab, https://www.osadl.org/ 

 ● Wikipedia Linux distributions, https://en.wikipedia.org/wiki/Linux_
distribution 
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