
V+ Language
User’s Guide

Version 12.1

V+ Language
User’s Guide

Version 12.1

Part # 00962-01130, Rev. A
September 1997

150 Rose Orchard Way • San Jose, CA 95134 • USA • Phone (408) 432-0888 • Fax (408) 432-8707

Otto-Hahn-Strasse 23 • 44227 Dortmund • Germany • Phone (49) 231.75.89.40 • Fax(49) 231.75.89.450

41, rue du Saule Trapu • 91300 • Massy • France • Phone (33) 1.69.19.16.16 • Fax (33) 1.69.32.04.62

1-2, Aza Nakahara Mitsuya-Cho • Toyohashi, Aichi-Ken • 441-31 • Japan • (81) 532.65.2391 • Fax (81) 532.65.2390

The information contained herein is the property of Adept Technology, Inc., and shall not be repro-
duced in whole or in part without prior written approval of Adept Technology, Inc. The informa-
tion herein is subject to change without notice and should not be construed as a commitment by
Adept Technology, Inc. This manual is periodically reviewed and revised.

Adept Technology, Inc., assumes no responsibility for any errors or omissions in this document.
Critical evaluation of this manual by the user is welcomed. Your comments assist us in preparation
of future documentation. A form is provided at the back of the book for submitting your comments.

Copyright © 1994-1997 by Adept Technology, Inc. All rights reserved.

The Adept logo is a registered trademark of Adept Technology, Inc.

Adept, AdeptOne, AdeptOne-MV, AdeptThree, AdeptThree-XL, AdeptThree-MV, PackOne,
PackOne-MV, HyperDrive, Adept 550, Adept 550 CleanRoom, Adept 1850, Adept 1850XP,

A-Series, S-Series, Adept MC, Adept CC, Adept IC, Adept OC, Adept MV,
AdeptVision, AIM, VisionWare, AdeptMotion, MotionWare, PalletWare, FlexFeedWare,

AdeptNet, AdeptFTP, AdeptNFS, AdeptTCP/IP, AdeptForce, AdeptModules, AdeptWindows,
AdeptWindows PC, AdeptWindows DDE, AdeptWindows Offline Editor,

and V+ are trademarks of Adept Technology, Inc.

Any trademarks from other companies used in this publication
are the property of those respective companies.

Printed in the United States of America

Table of Contents
Introduction . 191
Compatibility . 20
Manual Overview . 21
Related Publications . 22
Notes, Cautions, and Warnings . 23
Safety . 24

Reading and Training for System Users 24
System Safeguards . 25
Computer-Controlled Robots 25
Manually Controlled Robots 25
Other Computer-Controlled Devices 26

Notations and Conventions . 27
Keyboard Keys . 27
Uppercase and Lowercase Letters 28
Numeric Arguments . 29

Output Control Commands . 30
How Can I Get Help? . 32

Within the Continental United States 32
Service Calls . 32
Application Questions 32
Applications Internet E-Mail Address 33
Training Information . 33

Within Europe . 33
France . 33

Outside Continental United States or Europe 33
Adept Fax on Demand . 34
Adept on Demand Web Page 34

Programming V+ . 352
Creating a Program . 37

Program and Variable Name Requirements 37
The Editing Window . 38
Editing Modes . 38
V+ Language User’s Guide, Rev A 5

Table of Contents
Changing Editing Modes 39
The SEE Editor Environments . 40

Using Text Editors Other Than the SEE Editor 40
The SEE Editor Window 42

The Adept Windows Off-line Editor 43
Using the Editor . 43

Entering New Lines of Code 43
Exiting the Editor . 44

Saving a Program . 44
V+ Program Types . 45

Executable Programs . 45
Robot Control Programs 45
Exclusive Control of a Robot 46

General Programs . 47
Format of Programs . 48

Program Lines . 48
Program Organization . 50
Program Variables . 50

Executing Programs . 51
Selecting a Program Task 51

Program Stacks . 53
Stack Requirements . 53

Flow of Program Execution . 55
RUN/HOLD Button . 55

Subroutines . 56
Argument Passing . 56

Mapping the Argument List 56
Argument Passing by Value or Reference 58
Undefined Arguments 59

Program Files . 60
Reentrant Programs . 60

Recursive Programs . 61
Asynchronous Processing 62
Error Trapping . 63

Scheduling of Program Execution Tasks 64
System Timing and Time Slices 64
Specifying Tasks, Time Slices, and Priorities 64
Task Scheduling . 65
Execution Priority Example 69

Default Task Configuration . 71
6 V+ Language User’s Guide, Rev A

Table of Contents
System Task Configuration 71
Description of System Tasks 72

User Task Configuration . 74

The SEE Editor and Debugger 753
Basic SEE Editor Operations . 76

Cursor Movement . 77
Deleting, Copying, and Moving Lines 79

Text Searching and Replacing 80
Switching Programs in the Editor 81

The Internal Program List 83
Special Editing Situations 85
The SEE Editor in Command Mode 87

Command Mode Copy Buffer 91
SEE Editor Extended Commands 91
Edit Macros . 93

Sample Editing Session . 94
The Program Debugger . 97

Entering and Exiting the Debugger 97
The DEBUG Monitor Command 98
Using the Debug Key or the DEBUG Extended Command . . 99
Exiting the Debugger . 99

The Debugger Display . 100
Debugger Operation Modes 102
Debugging Programs . 103

Positioning the Typing Cursor 104
Debugger Key Commands 105
Debug Monitor-Mode Keyboard Commands 106
Using a Pointing Device With the Debugger 109
Control of Program Execution 109

Single-Step Execution 109
PAUSE Instructions . 110
Program Breakpoints 110
Program Watchpoints 111

Data Types and Operators 1134
Introduction . 114

Dynamic Data Typing and Allocation 114
Variable Name Requirements 114
V+ Language User’s Guide, Rev A 7

Table of Contents
String Data Type . 116
ASCII Values . 117
Functions That Operate on String Data 117

Real and Integer Data Types . 118
Numeric Representation 119
Numeric Expressions . 119
Logical Expressions . 120

Logical Constants . 120
Functions That Operate on Numeric Data 120

Location Data Types . 121
Transformations . 121
Precision Points . 121

Arrays . 122
Variable Classes . 123

Global Variables . 123
Local Variables . 123
Automatic Variables . 124
Scope of Variables . 125
Variable Initialization . 127

Operators . 128
Assignment Operator . 128
Mathematical Operators 128
Relational Operators . 129
Logical Operators . 130
Bitwise Logical Operators 131

String Operator . 132
Order of Evaluation . 132

Program Control . 1335
Introduction . 134
Unconditional Branch Instructions 134

GOTO . 134
CALL . 135
CALLS . 136

Program Interrupt Instructions 137
WAIT . 137
WAIT.EVENT . 137
REACT and REACTI . 138
REACTE . 139
HALT, STOP, and PAUSE . 140
8 V+ Language User’s Guide, Rev A

Table of Contents
BRAKE, BREAK, and DELAY 140
Additional Program Interrupt Instructions 140
Program Interrupt Example 141

Logical (Boolean) Expressions 144
Conditional Branching Instructions 145

IF...GOTO . 145
IF...THEN...ELSE . 145
CASE...value OF . 147

Example . 148
Looping Structures . 149

FOR . 149
Examples . 150

DO...UNTIL . 151
WHILE...DO . 152

Summary of Program Control Keywords 154
Controlling Programs in Multiple CPU Systems 157

Functions . 1596
Using Functions . 160

Variable Assignment Using Functions 160
Functions Used in Expressions 160
Functions as Arguments to a Function 160

String-Related Functions . 161
Examples of String Functions 162

Location, Motion, and External Encoder Functions 163
Examples of Location Functions 163

Numeric Value Functions . 164
Examples of Arithmetic Functions 165

Logical Functions . 165
System Control Functions . 166

Example of System Control Functions 167
I/O Functions . 168

Examples of I/O Functions 168

Switches and Parameters 1697
Introduction . 170
Parameters . 171

Viewing Parameters . 171
Setting Parameters . 172
V+ Language User’s Guide, Rev A 9

Table of Contents
Summary of Basic System Parameters 172
 Graphics-based System Terminal Settings 174

Switches . 174
Viewing Switch Settings 174
Setting Switches . 175
Summary of Basic System Switches 175

Motion Control Operations 1798
Introduction . 180
Location Variables . 180

Coordinate Systems . 181
Transformations . 182

Yaw . 183
Pitch . 185
Roll . 187
Special Situations . 188

Creating and Altering Location Variables 189
Creating Location Variables 189

Transformations vs. Precision Points 189
Modifying Location Variables 189

Relative Transformations 190
Examples of Modifying Location Variables 190

Defining a Reference Frame 193
Miscellaneous Location Operations 196

Motion Control Instructions . 197
Basic Motion Operations 197

Joint-Interpolated Motion vs. Straight-Line Motion 197
Safe Approaches and Departures 198
Moving an Individual Joint 198

End-Effector Operation Instructions 199
Continuous-Path Trajectories 199
Breaking Continuous-Path Operation 200
Procedural Motion . 201

Procedural Motion Examples 201
Timing Considerations 202

Robot Speed . 203
Motion Modifiers . 205
Customizing the Calibration Routine 205

Tool Transformations . 206
Defining a Tool Transformation 207
10 V+ Language User’s Guide, Rev A

Table of Contents
Summary of Motion Keywords 209

Input/Output Operations . 2179
Terminal I/O . 219

Terminal Types . 220
Input Processing . 220
Output Processing . 222

Digital I/O . 223
High-Speed Interrupts . 224
Soft Signals . 224
Digital I/O and Third Party Boards 224

Pendant I/O . 225
Analog I/O . 225
Serial and Disk I/O Basics . 227

Logical Units . 227
Error Status . 227
Attaching/Detaching Logical Units 229
Reading . 230
Writing . 231
Input Wait Modes . 231
Output Wait Modes . 232

Disk I/O . 233
Attaching Disk Devices 233
Disk I/O and the Network File System (NFS) 234
Disk Directories . 234
Disk File Operations . 234

Opening a Disk File . 235
Writing to a Disk . 236
Reading From a Disk 237
Detaching . 237
Disk I/O Example . 238

Advanced Disk Operations . 239
Variable-Length Records 239
Fixed-Length Records . 240
Sequential-Access Files 240
Random-Access Files . 240
Buffering and I/O Overlapping 241
Disk Commands . 242
Accessing the Disk Directories 243
AdeptNET . 244
V+ Language User’s Guide, Rev A 11

Table of Contents
Serial Line I/O . 245
I/O Configuration . 245
Attaching/Detaching Serial I/O Lines 246
Input Processing . 246
Output Processing . 247

Serial I/O Examples . 247
DDCMP Communication Protocol 250

General Operation . 250
Attaching/Detaching DDCMP Devices 251
Input Processing . 252
Output Processing . 252
Protocol Parameters . 253

Kermit Communication Protocol 254
Starting a Kermit Session 255
File Access Using Kermit 257

Binary Files . 258
Kermit Line Errors . 259
V+ System Parameters for Kermit 260

Summary of I/O Operations . 261

Graphics Programming . 26510
Creating Windows . 266

ATTACH Instruction . 266
FOPEN Instruction . 267
FCLOSE Instruction . 267
FDELETE Instruction . 267
DETACH Instruction . 268
Custom Window Example 268

Monitoring Events . 269
GETEVENT Instruction . 270
FSET Instruction . 271

Building a Menu Structure . 272
Menu Example . 272
Defining Keyboard Shortcuts 275

Creating Buttons . 276
GPANEL Instruction . 276
Button Example . 276

Creating a Slide Bar . 278
GSLIDE Example . 279

Graphics Programming Considerations 281
12 V+ Language User’s Guide, Rev A

Table of Contents
Using IOSTAT() . 282
Managing Windows . 283

Communicating With the System Windows 284
The Main Window . 284
The Monitor Window . 284
The Vision Window . 285

Additional Graphics Instructions 287

Programming the MCP . 28911
Introduction . 290

ATTACHing and DETACHing the Pendant 290
Writing to the Pendant Display 291

The Pendant Display . 291
Using WRITE With the Pendant 291

Detecting User Input . 292
Using READ With the Pendant 292
Detecting Pendant Button Presses 292

Keyboard Mode . 293
Toggle Mode . 293
Level Mode . 294

Monitoring the MCP Speed Bar 295
Using the STEP Button . 296
Reading the State of the MCP 297

Controlling the Pendant . 298
Control Codes for the LCD Panel 298
The Pendant LEDs . 299
Making Pendant Buttons Repeat Buttons 300

Auto-Starting Programs With the MCP 302
WAIT.START . 303

Programming Example: MCP Menu 304

Conveyor Tracking . 31112
Introduction to Conveyor Tracking 312
Installation . 313
Calibration . 314
Basic Programming Concepts 315

Belt Variables . 315
Nominal Belt Transformation 316
The Belt Encoder . 318
V+ Language User’s Guide, Rev A 13

Table of Contents
The Encoder Scaling Factor 319
The Encoder Offset . 319
The Belt Window . 320

Belt-Relative Motion Instructions 322
Motion Termination . 323
Defining Belt-Relative Locations 323

Moving-Line Programming . 324
Instructions and Functions 324

Belt Variable Definitions 324
Encoder Position and Velocity Information 324
Window Testing . 325
Status Information . 325

System Switch . 325
System Parameters . 325

Sample Programs . 326

MultiProcessor Systems . 32913
Introduction . 330
Requirements for Motion Systems 331

Servo Processing . 331
Allocating Servos per Processor 331
Allocating Servos with an MI3 or MI6 Board 332
Allocating Servos with a VJI or EJI Board 332

Conveyor Belt Encoders 333
Force Sensors . 333

Requirements for Vision Systems 334
Standard AdeptVision . 334
Dual AdeptVision . 334

Installing Processor Boards . 335
Processor Board Locations 335
Slot Ordering of Processor Boards 335
Processor Board Addressing 335
System Controller Functions 336

Customizing Processor Workloads 337
Assigning Workloads with CONFIG_C 338

Using Mutiple V+ Systems . 339
Requirements for Running Multiple V+ Systems 339
Using V+ Commands with Multiple V+ Systems 339

Autostart . 340
Accessing the Command Prompt 340
14 V+ Language User’s Guide, Rev A

Table of Contents
InterSystem Communications 341
Shared Data . 342
IOTAS and Data Integrity 343
Efficiency Considerations 344
Digital I/O . 344

Restrictions With MultiProcessor Systems 345
High-Level Motion Control Tasks 346
Peripheral Drivers . 346

Example V+ Programs . 347A
Introduction . 348
Pick and Place . 349

Features Introduced . 349
Program Listing . 349

Detailed Description 350
Menu Program . 354

Features Introduced . 354
Program Listing . 355

Teaching Locations With the MCP 356
Features Introduced . 356
Program Listing . 356

Defining a Tool Transformation 358

External Encoder Device . 361B
Introduction . 362
Parameters . 363
Device Setup . 364
Reading Device Data . 366

Character Sets . 369C
Index . 383
V+ Language User’s Guide, Rev A 15

16

List of Figures

Figure 1-1. Impacts and Trapping Points 24
Figure 1-2. High Power and Program Running Lights 25
Figure 2-1. The SEE Editor Window 41
Figure 2-2. Argument Mapping . 57
Figure 2-3. Call by Value . 59
Figure 2-4. Task Scheduler . 68
Figure 2-5. Priority Example 1 . 70
Figure 3-1. Example Program Debugger Display 100
Figure 4-1. Variable Scoping . 125
Figure 4-2. Variable Scope Example 126
Figure 5-1. Priority Example 2 . 143
Figure 8-1. Adept Robot Cartesian Space 181
Figure 8-2. XYZ Elements of a Transformation 183
Figure 8-3. Yaw . 184
Figure 8-4. Pitch . 186
Figure 8-5. Roll . 187
Figure 8-6. Relative Transformation 192
Figure 8-7. Relative Locations . 193
Figure 8-8. Recording Locations 206
Figure 8-9. Tool Transformation . 207
Figure 9-1. Analog I/O Board Channels 226
Figure 10-1. Sample Menu . 275
Figure 11-1. MCP Button Map . 296
Figure 11-2. Pendant LCD Display 299
Figure 12-1. Conveyor Terms . 321

List of Tables
Table 1-1. Related Publications 22
Table 2-1. Stack Space Required by a Subroutine 54
Table 2-2. Description of System Tasks 72
Table 2-3. System Task Priorities 73
Table 2-4. Default Task Priorities 74
Table 3-1. Cursor Movement Keys With a graphics-based Keyboard . 77
Table 3-2. Cursor Movement Keys With a nongraphics-based Terminal 78
Table 3-3. Shortcut Keys for Editing Operations 79
Table 3-4. The SEE Editor Function Key Description 81
Table 3-5. Cursor Movement in Command Mode 87
Table 3-6. SEE Editor Command Mode Operations 88
Table 3-7. Function Keys Associated with Macros 93
Table 3-8. Definition of Terms 106
Table 3-9. Debugger Commands 107
Table 4-1. Integer Value Representation 119
Table 4-2. Mathematical Operators 128
Table 4-3. Relational Operators 129
Table 4-4. Logical Operators 130
Table 4-5. Bitwise Logical Operators 131
Table 4-6. Order of Operator Evaluation 132
Table 5-1. Program Control Operations 154
Table 6-1. String-Related Functions 161
Table 6-2. Numeric Value Functions 164
Table 6-3. Logical Functions . 165
Table 6-4. System Control Functions 166
Table 7-1. Basic System Parameters 173
Table 7-2. Basic System Switches 176
Table 8-1. Motion Control Operations 209
Table 9-1. Special Character Codes 220
Table 9-2. Special Character Codes Read by GETC 221
Table 9-3. IOSTAT Return Values 228
Table 9-4. Disk Directory Format 243
Table 9-5. File Attribute Codes 244
Table 9-6. Standard DDCMP NAK Reason Codes 251
Table 9-7. System Input/Output Operations 261
Table 10-1. List of Graphics Instructions 287
Table 11-1. Pendant Control Codes 300
Table 13-1. The Number of Servos Allowed per Processor Board . . . 331
Table 13-2. Number of Servo Channels on a Motion Board 331
17

Table of Contents
Table B-1. Command Parameter Values 364
Table B-2. Select Parameter Values 366
Table C-1. ASCII Control Values 370
Table C-2. Adept Character Set 372
18 V+ Language User Guide, Rev A

Introduction 1
Compatibility . 20

Manual Overview . 21

Related Publications . 22

Notes, Cautions, and Warnings 23

Safety . 24

Reading and Training for System Users 24
System Safeguards . 25
Computer-Controlled Robots 25
Manually Controlled Robots 25
Other Computer-Controlled Devices 26

Notations and Conventions . 27

Keyboard Keys . 27
Uppercase and Lowercase Letters 28
Numeric Arguments . 29

Output Control Commands . 30

How Can I Get Help? . 32

Within the Continental United States 32
Service Calls . 32
Application Questions 32
Applications Internet E-Mail Address 33
Training Information 33

Within Europe . 33
France . 33

Outside Continental United States or Europe 33
Adept Fax on Demand 34

Adept on Demand Web Page 34
19

Chapter 1 Compatibility
V+ is a computer-based control system and programming language designed
specifically for use with Adept Technology industrial robots, vision systems, and
motion-control systems.

As a real-time system, continuous trajectory computation by V+ permits complex
motions to be executed quickly, with efficient use of system memory and
reduction in overall system complexity. The V+ system continuously generates
robot-control commands and can concurrently interact with an operator,
permitting on-line program generation and modification.

V+ provides all the functionality of modern high-level programming languages,
including:

• Callable subroutines

• Control structures

• Multitasking environment

• Recursive, reentrant program execution

Compatibility

This manual is for use with V+ version 12.1 and later. This manual covers the
basic V+ system. If your system is equipped with optional AdeptVision VXL, see
the AdeptVision Reference Guide and the AdeptVision User’s Guide for details on
the vision enhancements to basic V+.
20 V+ Language User Guide, Rev A

Chapter 1 Manual Overview
Manual Overview

The V+ Language User’s Guide details the concepts and strategies of
programming in V+. Material covered includes:

• Functional overview of V+

• A description of the data types used in V+

• A description of the system parameters and switches

• Basic programming of V+ systems

• Editing and debugging V+ programs

• Communication with peripheral devices

• Communication with the manual control pendant

• Conveyor tracking feature

• Example programs

• Using tool transformations

• Requirements for the system terminal

• Accessing external encoders

Many V+ keywords are shown in abbreviated form in this user guide. See the V+

Language Reference Guide for complete details on all V+ keywords.
V+ Language User Guide, Rev A 21

Chapter 1 Related Publications
Related Publications

In addition to this manual, have the following publications handy as you set up
and program your Adept automation system.

Table 1-1. Related Publications

Manual Material Covered

Release Notes for V+ Version 12.x Late-breaking changes not in manuals and
summary of changes.

V+ Language Reference Guide
This link goes to the PDF file
named vlang.pdf.

A complete description of the keywords
used in the basic V+ system.

V+ Operating System User’s Guide A description of the V+ operating system.
Loading, storing, and executing programs
are covered in this manual.

V+ Operating System Reference
Guide

Descriptions of the V+ operating system
commands (known as monitor
commands).

AdeptVision User’s Guide Concepts and strategies for programming
the AdeptVision VXL system.

AdeptVision Reference Guide The keywords available with systems that
include the optional AdeptVision VXL
system.

Instructions for Adept Utility
Programs

Adept provides a series of programs for
configuring and calibrating various
features of your Adept system. The use of
these utility programs is described in this
manual.

Adept MV Controller User’s Guide This manual details the installation,
configuration, and maintenance of your
Adept controller. The controller must be
set up and configured before control
programs will execute properly.

AdeptMotion VME Developer’s
Guide

Installation, configuration, and tuning of
an AdeptMotion VME system.

Manual Control Pendant User’s
Guide

Basic use and programming of the manual
control pendant.
22 V+ Language User Guide, Rev A

Chapter 1 Notes, Cautions, and Warnings
Notes, Cautions, and Warnings

There are three levels of special notation used in this equipment manual. In
descending order of importance, they are:

WARNING: If the actions indicated in a WARNING are not
complied with, injury or major equipment damage could result. A
WARNING will typically describe the potential hazard, its possible
effect, and the measures that must be taken to reduce the hazard.

CAUTION: If the action specified in the CAUTION is not complied
with, damage to your equipment could result.

NOTE: A NOTE provides supplementary information, emphasizes
a point or procedure, or gives a tip for easier operation.
V+ Language User Guide, Rev A 23

Chapter 1 Safety
Safety

The following sections discuss the safety measures you must take while operating
an Adept robot.

Reading and Training for System Users

Adept robot systems include computer-controlled mechanisms that are capable of
moving at high speeds and exerting considerable force. Like all robot systems and
industrial equipment, they must be treated with respect by the system user.

Figure 1-1. Impacts and Trapping Points

Adept recommends that you read the American National Standard for Industrial
Robot Systems−Safety Requirements, published by the Robotic Industries
Association in conjunction with the American National Standards Institute. The
publication, ANSI/RIA R15.06-1986, contains guidelines for robot system
installation, safeguarding, maintenance, testing, startup, and operator training.
The document is available from the American National Standards Institute, 1430
Broadway, New York, NY 10018.

Impact! Trapping (Pinch)
Points
24 V+ Language User Guide, Rev A

Chapter 1 Safety
System Safeguards

Safeguards should be an integral part of robot workcell design, installation,
operator training, and operating procedures. Adept robot systems have various
communication features to aid you in constructing system safeguards. These
include remote emergency stop circuitry and digital input and output lines.

Computer-Controlled Robots

Adept robots are computer controlled, and the program that is running the robot
may cause it to move at times or along paths you may not anticipate. Your system
should be equipped with indicator lights that tell operators when the system is
active. The optional Adept front panel provides these lights. When the amber
HIGH POWER light and the blue PROGRAM RUNNING light on the front panel
are illuminated, do not enter the workcell because the robot may move
unexpectedly.

Figure 1-2. High Power and Program Running Lights

Manually Controlled Robots

Adept robots can also be controlled manually when the amber HIGH POWER
light on the front of the controller is illuminated. When this light is lit, robot
motion can be initiated from the terminal or the manual control pendant (see
Chapter 11 for more information). If you enter the workcell when this light is
illuminated, press the MAN/HALT button on the manual control pendant. This
will prevent anyone else from initiating unexpected robot motions from the
terminal keyboard.

NETWORK

HIGH POWER
ON/OFF

PROGRAM
RUNNING

SYSTEM
POWER

PROGRAM
START

LAMP
TEST

PENDANT

MANUAL AUTO

EMERGENCY STOP

IO

®

LOCAL
V+ Language User Guide, Rev A 25

Chapter 1 Safety
Other Computer-Controlled Devices

In addition, these systems can be programmed to control equipment or devices
other than the robot. As with the robot, the program controlling these devices
may cause them to operate at times not anticipated by personnel. Make sure that
safeguards are in place to prevent personnel from entering the workcell when the
blue PROGRAM RUNNING light on the front of the controller is illuminated.

WARNING: Entering the robot workcell when either the amber
HIGH POWER or the blue PROGRAM RUNNING light is
illuminated can result in severe injury.

Adept Technology recommends the use of additional safety features such as light
curtains, safety gates, or safety floor mats to prevent entry to the workcell while
HIGH POWER is enabled. These devices may be connected using the robot’s
remote emergency stop circuitry (see the controller user’s guide).
26 V+ Language User Guide, Rev A

Chapter 1 Notations and Conventions
Notations and Conventions

This section describes various notations used throughout this manual and
conventions observed by the V+ system.

Keyboard Keys

The system keyboard is the primary input device for controlling the V+ system.
Graphics-based systems use a PC-style keyboard and high-resolution graphics
monitor.

NOTE: The word terminal is used throughout this manual to refer
either to a computer terminal or to the combination of a graphics
monitor and a PC-style keyboard.

Input typed at the terminal must generally be terminated by pressing the Enter or
Return key. (These keys are functionally identical and are often abbreviated with
the symbol ↵.)

S+F9 means to hold down the Shift key while pressing the F9 key.

Ctrl+R means to hold down the Ctrl key while pressing the R key.

The keys in the row across the top of the keyboard are referred to as function keys.
The V+ SEE program editor and the V+ program debugger use some of them for
special functions.

NOTE: The Delete and Backspace keyboard keys can always be
used to erase the last character typed. The Delete options associated
with the F14 key on a Wyse terminal are used only by the SEE editor
and the program debugger.
V+ Language User Guide, Rev A 27

Chapter 1 Notations and Conventions
Uppercase and Lowercase Letters

You will notice that a mixture of uppercase (capital) and lowercase letters is used
throughout this manual when V+ operations are presented. V+ keywords are
shown in uppercase letters. Parameters to keywords are shown in lowercase.
Many V+ keywords have optional parameters and/or elements. Required
keyword elements and parameters are shown in boldface type. Optional keyword
elements and parameters are shown in normal type. If there is a comma following
an optional parameter, the comma must be retained if the parameter is omitted,
unless nothing follows. For example, the BASE operation (command or
instruction) has the form

BASE dx, dy, dz, rotation

where all of the parameters are optional.

To specify only a 300-millimeter change in the Z direction, the operation could be
entered in any of the following ways:

BASE 0,0,300,0
BASE,,300,
BASE,,300

Note that the commas preceding the number 300 must be present to correctly
relate the number with a Z-direction change.
28 V+ Language User Guide, Rev A

Chapter 1 Notations and Conventions
Numeric Arguments

All numbers in this manual are decimal unless otherwise noted. Binary numbers
are shown as ^B, octal numbers as ^O, and hexadecimal numbers as ^H.

Several types of numeric arguments can appear in commands and instructions.
For each type of argument, the value can generally be specified by a numeric
constant, a variable name, or a mathematical expression.

There are some restrictions on the numeric values that are accepted by V+. The
following rules determine how a value will be interpreted in the various
situations described.

1. Distances are used to define locations to which the robot is to move. The unit
of measure for distances is the millimeter, although units are never explicitly
entered for any value. Values entered for distances can be positive or
negative.1

2. Angles in degrees are entered to define and modify orientations the robot is to
assume at named locations, and to describe angular positions of robot joints.
Angle values can be positive or negative, with their magnitudes limited by 180
degrees or 360 degrees depending on the usage.

3. Joint numbers are integers from one up to the number of joints in the robot,
including the hand if a servo-controlled hand is operational. For Adept
SCARA robots, joint numbering starts with the rotation about the base,
referred to as joint 1. For mechanisms controlled by AdeptMotion VME, see
the device module documentation for joint numbering.

4. Signal numbers are used to identify digital (on/off) signals. They are always
considered as integer values with magnitudes in the ranges 1 to 8, 33 to 232,
1001 to 1012, 1022 to 1236, or 2001 to 2512. A negative signal number indicates
an off state.

5. Integer arguments can be satisfied with real values (that is, values with integer
and fractional parts). When an integer is required, a real value may be used
and the fractional part of the value is ignored.

6. Arguments indicated as being scalar variables can be satisfied with a real
value (that is, one with integer and fractional parts) except where noted.
Scalars can range from –9.22*1018 to 9.22*1018 in value (displayed as –9.22E18
and 9.22E18).2

1 See the IPS instruction for a special case of specifying robot speed in inches per second.
2 Numbers specifically declared to be double-precision values can range from 2.2*10–308 to

18*10307.
V+ Language User Guide, Rev A 29

Chapter 1 Output Control Commands
Output Control Commands

The following special commands control output to the system terminal. For all
these commands, which are called control characters, the control (Ctrl) key on the
terminal is held down while a letter key is pressed. The letter key can be typed
with or without the Shift key. Unlike other V+ commands, control characters do
not need to be completed by pressing the Enter or Return key.

Ctrl+C Aborts some commands (for example, DIRECTORY, LISTP, STORE).

If any input has been entered at the keyboard since the current com-
mand was initiated, then the first Ctrl+C cancels that pending input
and the second Ctrl+C aborts the current command.

Ctrl+C cannot be used to abort program execution. Enter the
ABORT or PANIC command at the keyboard to stop the robot pro-
gram or press one of the panic buttons to turn off Robot Power.

Ctrl+S Stops output to the monitor or terminal so it can be reviewed. The
operation producing the output is stopped until output is resumed
by Ctrl+Q.

Ctrl+Q Resumes output to the monitor or terminal after it has been stopped
with a Ctrl+S.

Ctrl+O Suspends output to the ASCII terminal even though the current
operation continues (that is, the output is lost). This is useful for dis-
regarding a portion of a lengthy output. Another Ctrl+O will cause
the output to be displayed again.

The Ctrl+O condition is canceled automatically when the current
operation completes, or if there is an input request from an execut-
ing program.

Ctrl+W Slows output to the monitor or terminal so it can be read more eas-
ily. A second Ctrl+W will terminate this mode and restore normal
display speed.

The Ctrl+W condition will be canceled automatically when the cur-
rent operation completes or if there is an input request from an exe-
cuting program.
30 V+ Language User Guide, Rev A

Chapter 1 Output Control Commands
Ctrl+Z If typed in response to a program prompt, terminates program exe-
cution with the message *Unexpected end of file*. This is sometimes
useful for aborting a program.

Ctrl+U Cancels the current input line. Useful if you notice an error earlier in
the line or you want to ignore the current input line for some other
reason.
V+ Language User Guide, Rev A 31

Chapter 1 How Can I Get Help?
How Can I Get Help?

The following section tells you who to call if you need help.

Within the Continental United States

Adept Technology maintains a Customer Service Center at its headquarters in San
Jose, CA. The phone numbers are:

Service Calls

(800) 232-3378 (24 hours a day, 7 days a week)
(408) 433-9462 FAX

NOTE: When calling with a controller-related question, please have
the serial number of the controller. If your system includes an Adept
robot, also have the serial number of the robot. The serial numbers
can be determined by using the ID command (see the V+ Operating
System User’s Guide) .

Application Questions

If you have an application question, you can contact the Adept Applications
Engineering Support Center for your region:

Adept Office
Phone #,
Hours Region

San Jose, CA Voice (408) 434-5033
Fax (408) 434-6248
8:00 A.M. – 5:00 P.M. PST

Western Region States:
AR, AZ, CA, CO, ID, KS, LA, MO, MT, NE,
NM, NV, OK, OR, TX, UT, WA, WY

Cincinnati, OH Voice (513) 792-0266
Fax (513) 792-0274
8:00 A.M. – 5:00 P.M. EST

Midwestern Region States:
AL, IA, IL, IN, KY, MI, MN, MS, ND, West
NY, OH, West PA, SD, TN, WI

Southbury, CT Voice (203) 264-0564
Fax (203) 264-5114
8:00 A.M. – 5:00 P.M. EST

Eastern Region States:
CT, DE, FL, GA, MD, ME, NC, NH, MA,
NJ, East NY, East PA, RI, SC, VA, VT, WV
32 V+ Language User Guide, Rev A

Chapter 1 How Can I Get Help?
Applications Internet E-Mail Address

If you have access to the Internet, you can send application questions by e-mail to:

adeptinfo@infolab.com

This method also enables you to attach a file, such as a portion of V+ program
code, to your message.

NOTE: Please attach only information that is formatted as text.

Training Information

For information regarding Adept Training Courses in the USA, please call
(408) 474-3246 or fax Adept at 408-474-3226.

Within Europe

Adept Technology maintains a Customer Service Center in Dortmund, Germany.
The phone numbers are:

(49) 231/75 89 40 from within Europe (Monday to Friday, 8:00 A.M. to 5:00 P.M.)
(49) 231/75 89 450 FAX

France

For customers in France, Adept Technology maintains a Customer Service Center
in Massy, France. The phone numbers are:

(33) 1 69 19 16 16 (Monday to Friday, 8:30 A.M. to 5:30 P.M., CET)
(33) 1 69 32 04 62 FAX

Outside Continental United States or Europe

For service calls, application questions, and training information, call the Adept
Customer Service Center in San Jose, California, USA:

1 (408) 434-5000
1 (408) 433-9462 FAX (service requests)
1 (408) 434-6248 FAX (application questions)
V+ Language User Guide, Rev A 33

Chapter 1 How Can I Get Help?
Adept Fax on Demand

Adept maintains a fax back information system for customer use. The phone
numbers are (800) 474-8889 (toll free) and (503)207-4023 (toll call). Application
utility programs, product technical information, customer service information,
and corporate information is available through this automated system. There is
no charge for this service (except for any long-distance toll charges). Simply call
either number and follow the instructions to have information faxed directly to
you.

Adept on Demand Web Page

If you have access to the Internet, you can view Adept’s web page at the following
address:

http://www.adept.com

The web site contains sales, customer service, and technical support information.
34 V+ Language User Guide, Rev A

Programming V+ 2
Creating a Program . 37

Program and Variable Name Requirements 37
The Editing Window 38
Editing Modes . 38

Changing Editing Modes 39
The SEE Editor Environments 40

Using Text Editors Other Than the SEE Editor 40
The SEE Editor Window 42

The Adept Windows Off-line Editor 43

Using the Editor . 43

Entering New Lines of Code 43
Exiting the Editor 44

Saving a Program 44
V+ Program Types . 45

Executable Programs 45
Robot Control Programs 45
Exclusive Control of a Robot 46
General Programs 47

Format of Programs . 48

Program Lines . 48
Program Organization 50
Program Variables 50

Executing Programs . 51

Selecting a Program Task 51

Program Stacks . 53

Stack Requirements 53
Flow of Program Execution 55

RUN/HOLD Button 55

Subroutines . 56
35

Chapter 2
Argument Passing 56
Mapping the Argument List 56
Argument Passing by Value or Reference 58
Undefined Arguments 59

Program Files . 60
Reentrant Programs 60

Recursive Programs 61
Asynchronous Processing 62
Error Trapping . 63

Scheduling of Program Execution Tasks 64

System Timing and Time Slices 64
Specifying Tasks, Time Slices, and Priorities 64
Task Scheduling 65
Execution Priority Example 69

Default Task Configuration 71

System Task Configuration 71
Description of System Tasks 72

User Task Configuration 74
36 V+ Language User Guide, Rev A

Chapter 2 Creating a Program
Creating a Program

V+ programs are created using the SEE editor. This section provides a brief
overview of using the editor. Chapter 3 provides complete details on the SEE
editor and program debugger.

NOTE: See the AdeptWindows User’s Guide for instructions on
using AdeptWindowsPC.

The editor is accessed from the system prompt with the command:

SEE prog_name

If prog_name is already resident in system memory, it will be opened for editing.
If prog_name is not currently resident in system memory, the SEE editor will
open and the bottom line will ask

"prog_name" doesn’t exist. Create it? Y/N.

If you answer Y, the program will be created, the SEE editor cursor will move to
the top of the editing window, and you can begin editing the program. If you
answer N, you will be returned to the system prompt.

If prog_name is omitted, the last program edited will be brought into the editor
for editing.1

Program and Variable Name Requirements

Program and variable names can have up to 15 characters. Names must begin
with a letter and can be followed by any sequence of letters, numbers, periods,
and underline characters. Letters used in program names can be entered in either
lowercase or uppercase. V+ always displays program and variable names in
lowercase.

1 Unless an executing program has failed to complete normally, in which case the failed program
will be opened.
V+ Language User Guide, Rev A 37

Chapter 2 Creating a Program
The Editing Window

When the SEE editor is open, it will cover the entire terminal. When the SEE
editor is open on a graphics-based system, it will occupy the Monitor window on
the monitor. If the Monitor window is not open, click on the adept logo in the
upper left corner of the monitor and select Monitor from the displayed list.

Once the SEE editor is open, it functions nearly uniformly regardless of which
type of Adept system it is used on.

For graphics-based systems, see the V+ Operating System User’s Guide and see
the AdeptWindows User’s Guide for information on using AdeptWindowsPC.

Editing Modes

The SEE editor has three editing modes: command, insert, and replace. The status
line shows the mode the editor is currently in (see Figure 2-1 on page 41).

The editor begins in command mode. In command mode, you do not enter actual
program code but enter the special editor commands listed in Table 3-5 on page
87 and Table 3-6 on page 88.

You enter actual lines of code in insert or replace mode. In insert mode, the
characters you type are placed to the left of the cursor, and existing code is pushed
to the right. In replace mode, the characters you enter replace the character that is
under the cursor.
38 V+ Language User Guide, Rev A

Chapter 2 Creating a Program
Changing Editing Modes

On graphics-based systems, to enter command mode press the Edit (F11) key or
Esc key.

To enter insert mode:

• press the Insert key (the key’s LED must be off)

• press the 0/Ins key (the Num Lock LED must be off)

• press the i key (the editor must be in Command mode)

To enter replace mode:

• press the Replace (F12) key

• press the r key (the editor must be in Command mode)
V+ Language User Guide, Rev A 39

Chapter 2 The SEE Editor Environments
The SEE Editor Environments

The SEE editor appears in two environments: in a window on a graphics-based
system. Regardless of the environment the SEE editor runs under, the majority of
the functions are identical. The differences in the SEE editor running under
AdeptWindowsPC are described in the AdeptWindows User’s Guide.

Using Text Editors Other Than the SEE Editor

Programs can be written using any editor that creates a DOS ASCII text file. These
programs can then be stored on a V+ compatible disk (see the FORMAT
command in the V+ Language Reference Guide), LOADed into system memory,
and opened by the SEE editor. When the program is loaded, a syntax check is
made. Programs that fail the syntax check will be marked as nonexecutable. These
programs can be brought into the SEE editor and any nonconforming lines will be
marked with a question mark. Once these lines have been corrected, the program
can be executed.

In order for program files created outside of the SEE editor to LOAD correctly, the
following requirements must be met:

• Each program must begin with a .PROGRAM() line.

• Each program must end with a .END line (this line is automatically added by
the SEE editor but must be explicitly added by other editors).

• Each program line must be terminated with a carriage-return/line-feed
(ASCII 13/ASCII 10).

• The end of the file (not the end of each program) must be marked with a
Control-Z character (ASCII 27).

• Lines that contain only a line-feed (ASCII 10) are ignored.
40 V+ Language User Guide, Rev A

Chapter 2 The SEE Editor Environments
The features of the SEE editor window are shown in Figure 2-1.

Figure 2-1. The SEE Editor Window

2-1

.PROGRAM see_sample()

-----see_sample----------- Step 2 of 1 ----- Command mode----3a-
Program "SEE.SAMPLE doesn't exist. Create it (Y?N)?

➊

➋

➌

➍ ➎ ➏ ➐

➑

V+ Language User Guide, Rev A 41

Chapter 2 The SEE Editor Environments
The SEE Editor Window

The items in the following numbered list refer to the numbers in Figure 2-1.

➊ On nongraphics-based terminals, this area shows the row and col-
umn of the cursor location.

➋ This line displays the program name and the program’s parameter
list. The program name cannot be edited, but program parameters
can be added between the parentheses (see ”Special Editing Situa-
tions” on page 85 for a description of a special case where you can-
not edit this list).

➌ The typing cursor.

• In insert mode, characters entered at the keyboard will be
entered at the cursor position. Existing characters to the right of
the cursor will be pushed right.

• In replace mode, the character under the cursor will be replaced.

• In command mode, Copy, Paste, and similar commands will take
place at the cursor location.

With a graphics-based system, clicking with the pointer device will
set the typing cursor at the pointer location. (The cursor cannot be
set lower than the last line in a program.) Also, the scroll bars on the
monitor window can be used to scroll through the program.

➍ Shows the name of the program currently being edited. If the pro-
gram is open in read only mode, /R will be appended to the name.1

➎ Shows the program step the cursor is at and the total number of
lines in the program.

➏ Shows the current editor mode.

➐ Shows the number of lines in the copy (attach) buffer. Whenever a
program line is Cut or Copied, it is placed in the copy buffer. When
lines are pasted, they are removed from the copy buffer and pasted
in the reverse order they were copied. The F9 and F10 keys are used
for copying and pasting program lines.

➑ This is the message line. It displays various messages and prompts.

1 Programs are open in read-only mode when /R is appended to the SEE command when the
program is opened or when a currently executing program is open.
42 V+ Language User Guide, Rev A

Chapter 2 The Adept Windows Off-line Editor
The Adept Windows Off-line Editor

The Adept Windows Off-line Editor (AWOL) is a Microsoft Windows95 or NT-
based program that emulates the V+ SEE editor. AWOL performs the same syntax
checking as the SEE editor. Programs created in the SEE editor can be edited by
AWOL, and programs created by AWOL are ready for loading and execution on
an Adept controller. AWOL provides additional program management features
not available to the SEE editor, such as direct access to Adept’s electronic
documentation. For details on using AWOL, see the AdeptWindows User’s Guide.

Using the Editor

The following sections tell you how to use the SEE editor.

Entering New Lines of Code

Once you have opened the editor and moved to insert or replace mode, you can
begin entering lines of code. Each complete line of code needs to be terminated
with a carriage return (↵). If a line of code exceeds the monitor line width, the
editor will wrap the code to the next line and temporarily overwrite the next line.
Do not enter a carriage return until you have typed the complete line of code.

When you press the return (↵) key after completing a line of code, the SEE editor
will automatically check the syntax of the line. Keywords are checked for proper
spelling, instructions are checked for required arguments, parentheses are
checked for proper closing, and in general the line is checked to make sure the V+
system will be able to execute the line of code. (Remember, this check is solely for
syntax, not for program logic.)

If the program line fails the syntax check, the system will place a question mark
(?) at the beginning of the line (and usually display a message indicating the
problem). You do not have to correct the line immediately, and you can exit the
editor with uncorrected program lines. You will not, however, be able to execute
the program.
V+ Language User Guide, Rev A 43

Chapter 2 Using the Editor
Exiting the Editor

To complete an editing session and exit the editor, press the Exit (F4) key on an
graphics-based system.

If your program is executable, you will be returned to the system prompt without
any further messages.

If any lines of code in the program have failed the syntax check, the status line
will display the message:

Program not executable Press RETURN to continue.

Pressing ↵ will return you to the system prompt.

You may also get the message:

Control structure error at step xx

This indicates that a control structure (described in Chapter 5) has not been
properly ended. Pressing ↵ will return you to the system prompt, but the program
you have been editing will not be executable.

You cannot exit the editor with lines in the copy buffer. To discard unwanted
lines:

1. Put the editor in command mode.

2. Enter the number of lines to discard and press Esc and then k.

Saving a Program

When you exit the SEE editor, changes to the program you were working on are
saved only in system memory. To permanently save a program to disk, use one of
the STORE commands described in the V+ Operating System User’s Guide.
44 V+ Language User Guide, Rev A

Chapter 2 V+ Program Types
V+ Program Types

There are two types of V+ programs:

• Executable Programs

• Command Programs

Executable programs are described in this section. Command programs are
similar to MS_DOS batch programs or UNIX scripts. They are described in the V+

Operating System User’s Guide.

Executable Programs

There are two classes of executable programs: robot control programs and general
programs.

Robot Control Programs

A robot control program is a V+ program that directly controls a robot or motion
device. It can contain any of the V+ program instructions.

Robot control programs are usually executed by program task #0, but they can be
executed by any of the program tasks available in the V+ system. Task #0
automatically attaches the robot when program execution begins. If a robot
control program is executed by a task other than #0, however, the program must
explicitly attach the robot (program tasks are described in detail later in this
chapter).

For normal execution of a robot control program, the system switch DRY.RUN
must be disabled and the robot must be attached by the robot control program.
Then, any robot-related error will stop execution of the program (unless an
error-recovery program has been established [see ”REACTE” on page 139]).1

1 If the system is in DRY.RUN mode while a robot control program is executing, robot motion
instructions are ignored. Also, if the robot is detached from the program, robot-related errors do
not affect program execution.
V+ Language User Guide, Rev A 45

Chapter 2 V+ Program Types
Exclusive Control of a Robot

• Whenever a robot is attached by an active task, no other task can attach that
robot or execute instructions that affect it, except for the REACTI and BRAKE
instructions (see pages 138 and 140 respectively for more information about
these instructions).

• When the robot control task stops execution for any reason, the robot is
detached until the task resumes, at which time the task automatically
attempts to reattach the robot. If another task has attached the robot in the
meantime, the first task cannot be resumed.

• Task #0 always attempts to attach robot #1 when program execution begins.
No other tasks can successfully attach any robot unless an explicit ATTACH
instruction is executed.

• Since task #0 attempts to attach robot #1, that task cannot be executed after
another task has attached that robot. If you want another task to control the
robot and you want to execute task #0, you must follow this sequence of
events:

• Start task #0.

• Have task #0 DETACH the robot.

• Start the task that will control the robot. (The program executing as task
#0 can start up another task.)

• Have that task ATTACH the robot.

See page 290 for more information on the ATTACH and DETACH
instructions.

• Note that robots are attached even in DRY.RUN mode. In this case, motion
commands issued by the task are ignored, and no other task can access the
robot.
46 V+ Language User Guide, Rev A

Chapter 2 V+ Program Types
General Programs

A general program is any program that does not control a robot. With a robot
system, there can be one or more programs executing concurrently with the robot
control program. For example, an additional program might monitor and control
external processes via the external digital signal lines and analog signal lines.

General programs can also communicate with the robot control program (and
each other) through global variables and software signals. (General programs can
also have a direct effect on the robot motion with the BRAKE instruction,
although that practice is not recommended.)

With the exception of the BRAKE instruction, a general program cannot execute
any instruction that affects the robot motion. Also, the BASE or TOOL settings
cannot be changed by general programs.

Except for the robot, general-purpose control programs can access all the other
features of the Adept system, including the AdeptVision option (if it is present in
the system), the (internal and external) digital signal lines, the USER serial lines,
the system terminal, the disk drives, and the manual control pendant.

Note that except for the exclusion of certain instructions, general-purpose control
programs are just like robot control programs. Thus, the term program is used in
the remainder of this chapter when the material applies to either type of control
program.
V+ Language User Guide, Rev A 47

Chapter 2 Format of Programs
Format of Programs

This section presents the format V+ programs must follow. The format of the
individual lines is described, followed by the overall organization of programs.
This information applies to all programs regardless of their type or intended use.

Program Lines

Each line or step of a program is interpreted by the V+ system as a program
instruction. The general format of a V+ program step is:

step_number step_label operation ;Comment

Each item is optional and is described in detail below.

Step Number Each step within a program is automatically assigned a step num-
ber. Steps are numbered consecutively, and the numbers are auto-
matically adjusted whenever steps are inserted or deleted. Although
you will never enter step numbers into programs, you will see them
displayed by the V+ system in several situations.

Step Label Because step numbers change as a program evolves, they are not
useful for identifying steps for program-controlled branching.
Therefore, program steps can contain a step label. A step label is a
programmer-specified integer (0 to 65535) that is placed at the start
of a program line to be referenced elsewhere in the program (used
with GOTO statements).

Operation The operation portion of each step must be a valid V+ language key-
word and may contain parameters and additional keywords. The V+

Language Reference Guide gives detailed descriptions of all the key-
words recognized by V+. Other instructions may be recognized if
your system includes optional features such as AdeptVision.
48 V+ Language User Guide, Rev A

Chapter 2 Format of Programs
Comment The semicolon character is used to indicate that the remainder of a
program line is comment information to be ignored by V+.

When all the elements of a program step are omitted, a blank line
results. Blank program lines are acceptable in V+ programs. Blank
lines are often useful to space out program steps to make them eas-
ier to read.

When only the comment element of a program step is present, the
step is called a comment line. Comments are useful to describe
what the program does and how it interacts with other programs.
Use comments to describe and explain the intent of the sections of
the programs. Such internal documentation will make it easier to
modify and debug programs.

The example programs in this manual, and the utility programs provided by
Adept with your system, provide examples of programming format and style.
Notice that Adept programs contain numerous comments and blank lines.

When program lines are entered, extra spaces can be entered between any
elements in the line. The V+ editors add or delete spaces in program lines to make
them conform with the standard spacing. The editors also automatically format
the lines to uppercase for all keywords and lowercase for all user-defined names.

When you complete a program line (by entering a carriage return, moving off a
line, or exiting the editor), the editor checks the syntax of the line. If the line
cannot be executed, an error message is output.

Certain control structure errors are not checked until you exit from the editor (or
change to editing a different program). If an error is detected at that time, an error
message will be output and the program will be marked as not executable. (Error
checking stops at that point in the program. Thus, only one control structure error
at a time can be detected.)
V+ Language User Guide, Rev A 49

Chapter 2 Format of Programs
Program Organization

The first step of every V+ program must be a .PROGRAM instruction. This
instruction names the program, defines any arguments it will receive or return,
and has the format:

.PROGRAM program_name(parameter_list) ;Comment

The program name is required, but the parameter list and comment are optional.

After the .PROGRAM line, there are only two restrictions on the order of other
instructions in a program.

• AUTO, LOCAL, or GLOBAL instructions must precede any executable
program instructions. Only comment lines, blank lines, and other AUTO,
LOCAL, or GLOBAL instructions are permitted between the .PROGRAM
step and an AUTO, LOCAL, or GLOBAL instruction.

• The end of a program is marked by a line beginning with .END. The V+
editors automatically add (but do not display) this line at the end of a
program.1

Program Variables

V+ uses three classes of variables: GLOBAL, LOCAL, and AUTO. These are
described in detail in ”Variable Classes” on page 123.

1 The .PROGRAM and .END lines are automatically entered by the V+ editors. If you use another
text editor for transfer to a V+ system, you MUST enter these two lines. In general, any editor
that produces unformatted ASCII files can be used for programming. See the FORMAT
command for details on creating floppy disks compatible with other operating systems.
50 V+ Language User Guide, Rev A

Chapter 2 Executing Programs
Executing Programs

When V+ is actively following the instructions in a program, it is said to be
executing that program.

The standard V+ system provides for simultaneous execution of up to seven
different programs—for example, a robot control program and up to six
additional programs. The optional V+ extensions software provides for
simultaneous execution of up to 28 programs. Execution of each program is
administered as a separate program task by the system.

The way program execution is started depends upon the program task to be used
and the type of program to be executed. The following sections describe program
execution in detail.

Selecting a Program Task

Task 0 has the highest priority in the (standard) task configuration. Thus, this task
is normally used for the primary application program. For example, with a robot
system, task #0 is normally used to execute the robot control program.

NOTE: As a convenience, when execution of task #0 begins, the
task always automatically selects robot #1 and attaches the robot.

Execution of task #0 is normally started by using the EXECUTE monitor
command, or by priming the program from the manual control pendant and
pressing the PROGRAM START button on the optional front panel. The
RUN/HOLD button on the manual control pendant can be held down to execute
portions of the program executing as task #0.

While task #0 is executing, the V+ monitor will not display its normal dot prompt.
An asterisk (∗) prompt is used instead to remind the user that task #0 is executing.
The asterisk prompt does not appear automatically, however. The prompt is
displayed whenever there is input to the V+ system monitor from the system
terminal.

NOTE: Even though the system prompt is not displayed while
program task #0 is executing, V+ monitor commands can be entered
at any time that a program is not waiting for input from the
terminal.

The ABORT monitor command or program instruction will stop task #0 after the
current robot motion completes. The CYCLE.END monitor command or program
instruction can be used to stop the program at the end of its current execution
cycle.
V+ Language User Guide, Rev A 51

Chapter 2 Executing Programs
If program execution stops because of an error, a PAUSE instruction, an ABORT
command or instruction, or the monitor commands PROCEED or RETRY can be
used to resume execution (see the V+ Operating System Reference Guide for
information on monitor commands). While execution is stopped, the DO monitor
command can be used to execute a single program instruction (entered from the
keyboard) as though it were the next instruction in the program that is stopped.

For debugging purposes, the SSTEP or XSTEP monitor commands can be used to
execute a program one step at a time. Also, the TRACE feature can be used to
follow the flow of program execution. (The program debugger can also be used to
execute a program one instruction at a time. See Chapter 3 for information on the
V+ program debugger.)

Execution of program tasks other than #0 is generally the same as for task #0. The
following points highlight the differences:

• The task number must be explicitly included in all the monitor commands
and program instructions that affect program execution, including
EXECUTE, ABORT, PROCEED, RETRY, SSTEP, and XSTEP. (However, when
the V+ program debugger is being used, the task being accessed by the
debugger becomes the default task for all these commands.)

• If the program is going to control the robot, it must explicitly ATTACH the
robot before executing any instructions that control the robot.

• If task 0 is not executing concurrently, the V+ monitor prompt continues to be
a dot (.). Also, the prompt is displayed after the task-initiating EXECUTE
command is processed.

NOTE: If you want program execution to be delayed briefly to
allow time for the dot prompt to be output (for example, to prevent
it from occurring during output from the program), have your
program execute two WAIT instructions with no parameter.

• The TRACE feature does not apply to tasks other than #0.

NOTE: To use TRACE with a program that is intended to execute
in a task other than #0, execute the program as task #0. (This
consideration does not apply when using the V+ program
debugger, which can access any program task.)

See section ”Scheduling of Program Execution Tasks” on page 64 for details on
task scheduling.
52 V+ Language User Guide, Rev A

Chapter 2 Program Stacks
Program Stacks

When subroutine calls are made, V+ uses an internal storage area called a stack to
save information required by the program that begins executing. This information
includes:

• The name and step number of the calling program.

• Data necessary to access subroutine arguments.

• The values of any automatic variables specified in the called program.

The V+ system allows you to explicitly allocate storage to the stack for each
program task. Thus, the amount of stack space can be tuned for a particular
application to optimize the use of system memory. Stacks can be made arbitrarily
large, limited only by the amount of memory available on your system.

Stack Requirements

When a V+ program is executed in a given task, each program stack is allocated
six kilobytes of memory. This value can be adjusted, once the desired stack
requirements are determined, by using the STACK monitor command (for
example, in a start-up monitor command program). See the V+ Operating System
Reference Guide for information on monitor commands.

One method of determining the stack requirements of a program task is simply to
execute its program. If the program runs out of stack space, it will stop with the
error message

Too many subroutine calls

or

Not enough stack space

If this happens, use the STACK monitor command to increase the stack size and
then issue the RETRY monitor command to continue program execution. In this
case, you do not need to restart the program from the beginning. (The STATUS
command will tell you how much stack space a failed task requested.)

Alternatively, you can start by setting a large stack size before running your
program. Then execute the program. After the program has been run, and all the
execution paths have been followed, use the STATUS monitor command to look
at the stack statistics for the program task. The stack MAX value shows how
much stack space your program task needs to execute. The stack size can then be
set to the maximum shown, with a little extra for safety.
V+ Language User Guide, Rev A 53

Chapter 2 Program Stacks
If it is impossible to invoke all the possible execution paths, the theoretical stack
limits can be calculated using Table 2-1. You can calculate the worst-case stack
size by adding up the overhead for all the program calls that can be active at one
time. Divide the total by 1024 to get the size in kilobytes. Use this number in the
STACK monitor command to set the size.

Table 2-1. Stack Space Required by a Subroutine

Bytes Required For Notes

20 The actual subroutine call

32 Each subroutine argument (plus one of the following):

4 Each real subroutine argument or automatic variable 1

48 Each transformation subroutine argument or automatic variable 1, 2

varies Each precision-point subroutine argument or automatic variable 1, 2, 3

84 Each belt variable argument or automatic variable 1, 2

132 Each string variable argument or automatic variable 1, 2

Notes: 1. If any subroutine argument or automatic variable is an array, the size shown
must be multiplied by the size of the array. (Remember that array indexes
start at zero.)

2. If a subroutine argument is always called by reference, this value can be
omitted for that argument.

3. Requires four bytes for each joint of the robot (on multiple robot systems, use
the robot with the most joints).
54 V+ Language User Guide, Rev A

Chapter 2 Flow of Program Execution
Flow of Program Execution

Program instructions are normally executed sequentially from the beginning of a
program to its end. This sequential flow may be changed when a GOTO or
IF...GOTO instruction, or a control structure, is encountered. The CALL
instruction causes another program to be executed, but it does not change the
sequential flow through the calling program since execution resumes where it left
off when the CALLed program executes a RETURN instruction.

The WAIT instruction suspends execution of the current program until a
condition is satisfied. The WAIT.EVENT instruction suspends execution of the
current program until a specified event occurs or until a specified time elapses.

The PAUSE and HALT instructions both terminate execution of the current
program. After a PAUSE, program execution can be resumed with a PROCEED
monitor command (see the V+ Operating System Reference Guide for information
on monitor commands). Execution cannot be resumed after a HALT.

The STOP instruction may or may not terminate program execution. If there are
more program execution cycles to perform, the STOP instruction causes the main
program to be restarted at its first step (even if the STOP instruction occurs in a
subroutine). If no execution loops remain, STOP terminates the current program.

RUN/HOLD Button

Execution of program task #0 can also be stopped with the RUN/HOLD button
on the manual control pendant (MCP). When a program is executing and the
RUN/HOLD button on the pendant is pressed, program execution is suspended.

If the keyswitch on the optional front panel or on a remote front panel is set to
MANUAL, program execution will resume if the RUN/HOLD button is held
down—but execution will stop again when the button is released. Normal
program execution can be resumed by pressing the PROGRAM START button on
the optional front panel (the system switch RETRY must be enabled). If the
keyswitch on the optional front panel or on a remote front panel is set to AUTO,
program execution can be resumed by entering a PROCEED or RETRY monitor
command at the system terminal.

With Category 1 or 3 systems, there are additional restrictions when using the
MCP. See the robot instruction handbook for your Category 1 or 3 system for
details. Also see ”Using the STEP Button” on page 296.
V+ Language User Guide, Rev A 55

Chapter 2 Subroutines
Subroutines

There are three methods of exchanging information between programs:

• global variables

• soft-signals

• program argument list

When using global variables, simply use the same variable names in the different
programs. Unless used carefully, this method can make program execution
unpredictable and hard to debug. It also makes it difficult to write generalized
subroutines because the variable names in the main program and subroutine
must always be the same.

Soft-signals are internal program signals. These are digital software switches
whose state can be read and set by all tasks and programs (including across CPUs
in multiple CPU systems). See ”Soft Signals” on page 224 for details.

Exchanging information through the program argument list gives you better
control of when variables are changed. It also eliminates the requirement that the
variable names in the calling program be the same as the names in the subroutine.
The following sections describe exchanging data through the program parameter
list.

Argument Passing

There are two important considerations when passing an argument list from a
calling program to a subroutine. The first is making sure the calling program
passes arguments in the way the subroutine expects to receive them (mapping).
The second is determining how you want the subroutine to be able to alter the
variables (passing by value or reference).

Mapping the Argument List

An argument list is a list of variables or values separated by commas. The
argument list passed to a calling program must match the subroutine’s argument
list in number of arguments and data type of each argument (see “Undefined
Arguments” on page 59). The variable names do not have to match.

When a calling program passes an argument list to a subroutine, the subroutine
does not look at the variable names in the list but the position of the arguments in
the list. The argument list in the CALL statement is mapped item for item to the
argument list of the subroutine. It is this mapping feature that allows you to write
generalized subroutines that can be called by any number of different programs,
regardless of the actual values or variable names the calling program uses.
56 V+ Language User Guide, Rev A

Chapter 2 Subroutines
Figure 2-2 shows the mapping of an argument list in a CALL statement to the
argument list in a subroutine. The arrows indicate that each item in the list must
match in position and data type but not necessarily in name. (The CALL
statement argument list can include values and expressions as well as variable
names.)

Figure 2-2. Argument Mapping

In the example in Figure 2-2, when the main program reaches the CALL
instruction shown at the top of the figure, the subroutine a_routine is called and
the argument list is passed as shown.

See the description of the CALL instruction in the V+ Language Reference Guide
for additional details on passing arrays.

CALL a_routine(loc_var_a, real_var_a, 43.654, $string_var_a)

.PROGRAM a_routine(any_loc, any_real_x, any_real_y, $any_string)

instruction in main program:

subroutine
program header

CALL a_routine(loc_var_a, real_var_a, 43.654, $string_var_a)
V+ Language User Guide, Rev A 57

Chapter 2 Subroutines
Argument Passing by Value or Reference

An important principle to grasp in using subroutine calls is the way that the
variables being passed are affected. Variables can be changed by a subroutine, and
the changed value can be passed back to the calling program. If a calling program
passes a variable to a subroutine, and the subroutine can change the variable and
pass back the changed variable to the calling program, the variable is said to be
passed by reference. If a calling program passes a variable to a subroutine but the
subroutine cannot pass back the variable in an altered form, the variable is said to
be passed by value.

Variables you want changed by a subroutine should be passed by reference. All
the variables passed in the CALL statement in Figure 2-2 on page 57 are being
passed by reference. Changes made by the subroutine will be reflected in the state
of the variables in the calling program. Any argument that is to be changed by a
subroutine and passed back to the calling routine must be specified as a variable
(not an expression or value).

In addition to passing variables whose value you want changed, you will also
pass variables that are required for the subroutine to perform its task but whose
value you do not want changed after the subroutine completes execution. Pass
these variables by value. When a variable is passed by value, a copy of the
variable, rather than the actual variable, is passed to the subroutine. The
subroutine can make changes to the variable, but the changes are not returned to
the calling program (the variable in the calling program will have the same value
it had when the subroutine was called).

Figure 2-3 on page 59 shows how to pass the different types of variables by value.
Reals and integers are surrounded by parentheses, :NULL is appended to location
variables, and +"" is appended to string variables (see Chapter 4 for details on the
different variable types).

In Figure 2-3, real_var_b is still being passed by reference, and any changes made
in the subroutine will be reflected in the calling program. The subroutine cannot
change any of the other variables, it can make changes only to the copies of those
variables that have been passed to it. (It is considered poor programming practice
for a subroutine to change any arguments except those that are being passed back
to the calling routine. If an input argument must be changed, Adept suggests you
make an AUTOmatic copy of the argument and work with the copy.)
58 V+ Language User Guide, Rev A

Chapter 2 Subroutines
Figure 2-3. Call by Value

Values, as well as variables, can be passed by a CALL statement. The instruction:

CALL a_routine(loc_1, 17.5, 121, "some string")

is an acceptable call to a_routine.

Undefined Arguments

If the calling program omits an argument, either by leaving a blank in the
argument list (e.g., arg_1, , arg_3) or by omitting arguments at the end of a list
(e.g., arg_1, arg_2), the argument will be passed as undefined. The subroutine
receiving the argument list can test for this value using the DEFINED function
and take appropriate action.

CALL a_routine(loc_var_a:NULL, (real_var_a), real_var_b, $string_var_a+"")

.PROGRAM a_routine(any_loc, any_real_x, any_real_y, $any_string)

subroutine
program header

instruction in main program:
V+ Language User Guide, Rev A 59

Chapter 2 Subroutines
Program Files

Since linking and compiling are not required by V+, main programs and
subroutines always exist as separate programs. The V+ file structure allows you
to keep a main program and all the subroutines it CALLs or EXECUTEs together
in a single file so that when a main program is loaded, all the subroutines it calls
are also loaded. (If a program calls a subroutine that is not resident in system
memory, the error *Undefined program or variable name* will result.)

See the descriptions of the STORE_ commands and the MODULE command in
the V+ Operating System User’s Guide for details. For an example of creating a
program file, see ”Sample Editing Session” on page 94.

Reentrant Programs

The V+ system allows the same program to be executed concurrently by multiple
program tasks. That is, the program can be reentered while it is already executing.

This allows different tasks that are running concurrently to use the same
general-purpose subroutine.

To make a program reentrant, you must observe a few general guidelines when
writing the program:

• Global variables can be read but must not be modified.

• Local variables should not be used.

• Only automatic variables and subroutine arguments can be modified.

In special situations, local variables can be used, and global variables can be
modified, but then the program must explicitly provide program logic to
interlock access to these variables. The TAS real-valued function (defined in Table
6-4 on page 166) may be helpful in these situations. (See the V+ Language
Reference Guide for details.)
60 V+ Language User Guide, Rev A

Chapter 2 Subroutines
Recursive Programs

Recursive programs are subroutines that call themselves, either directly or
indirectly. A direct call occurs when a program actually calls itself, which is useful
for some special programming situations. Indirect calls are more common. They
occur when program A calls program B, which eventually leads to another call to
program A before program B returns. For example, an output routine may detect
an error and call an error-handling routine, which in turn calls the original output
routine to report the error.

If recursive subroutine calls are used, the program must observe the same
guidelines as for reentrant programs (see ”Reentrant Programs” on page 60). In
addition, you must guarantee that the recursive calls do not continue indefinitely.
Otherwise, the program task will run out of stack space.

NOTE: Very strange results may occur if a nonreentrant program is
inadvertently called from different tasks (or recursively from a
single task). Therefore, it is good practice to make programs
reentrant if possible.
V+ Language User Guide, Rev A 61

Chapter 2 Subroutines
Asynchronous Processing

A particularly powerful feature of V+ is the ability to respond to an event (such as
an external signal or error condition) when it occurs, without the programmer’s
having to include instructions to test repeatedly for the event. If event handling is
properly enabled, V+ will react to an event by invoking a specified program just
as if a CALL instruction had been executed. Such a program is said to be called
asynchronously, since its execution is not synchronized with the normal program
flow.

Asynchronous processing is enabled by the REACT, REACTE, and REACTI
program instructions. Each program task can use these instructions to prepare for
independent processing of events. In addition, the optional V+ Extensions
software uses the WINDOW instruction to enable asynchronous processing of
window violations when the robot is tracking a conveyor belt (see Chapter 12).

Sometimes a reaction must be delayed until a critical program section has
completed. Also, since some events are more important than others, a program
should be able to react to some events but not others. V+ allows the relative
importance of a reaction to be specified by a program priority value from 1 to 127.
The higher the program priority setting, the more important is the reaction.

NOTE: Do not confuse program priority (described here) with task
priority (described in ”System Timing and Time Slices” on page
64). Task priority governs the processing of the various system
tasks. Program priority governs the execution of programs within a
program task.

A reaction subroutine is called only if the main program priority is less than that
of the reaction program priority. If the main program priority is greater than or
equal to the reaction program priority, execution of the reaction subroutine is
deferred until the main program priority drops. Since the main program (for
example, the robot control program) normally runs at program priority zero and
the minimum reaction program priority is one, any reaction can normally
interrupt the main program.

The main program priority can be raised or lowered with the LOCK program
instruction, and its current value can be determined with the PRIORITY
real-valued function. When the main program priority is raised to a certain value,
all reactions of equal or lower priority are locked out.
62 V+ Language User Guide, Rev A

Chapter 2 Subroutines
When a reaction subroutine is called, the main program priority is automatically
set to the reaction program priority, thus preventing any reactions of equal or
lower program priority from interrupting it. When a RETURN instruction is
executed in the reaction program, the main program priority is automatically
reset to the level it had before the reaction subroutine was called.

For further information on reactions and program priority, see the following
keywords: LOCK, PRIORITY, REACT, and REACTI in the V+ Language Reference
Guide.

Error Trapping

Normally, when an error occurs during execution of a program, the program is
terminated and an error message is displayed on the system terminal. However, if
the REACTE instruction has been used to enable an error-trapping program, the
V+ system will invoke that program as a subroutine instead of terminating the
program that encountered the error. (Each program task can have its own error
trap enabled.)

Before invoking the error-trapping subroutine, V+ locks out all other reactions by
raising the main program priority to 254 (see ”Asynchronous Processing” on
page 62). See the description of the REACTE instruction in the V+ Language
Reference Guide. for further information on error trapping.
V+ Language User Guide, Rev A 63

Chapter 2 Scheduling of Program Execution Tasks
Scheduling of Program Execution Tasks

The V+ system appears to execute all the program tasks at the same time.
However, this is actually achieved by rapidly switching between the tasks many
times each second, with each task receiving a fraction of the total time available.
This is referred to as concurrent execution. The following sections describe how
execution time is divided among the different tasks.

NOTE: The default task configuration will work for most
applications: You will not have to alter task execution priorities. The
default configuration is optimized for Adept’s AIM software.

System Timing and Time Slices

The amount of time a particular program task receives is determined by two
parameters: its assignment to the various time slices and its priority within the
time slice. A brief description of the system timing will help you to understand
what a time slice is and how one can be selected.

NOTE: Do not confuse task priority (described here) with program
priority (described in ”Asynchronous Processing” on page 62).
Task priority governs the processing of the various system tasks
within a time slice. Program priority governs the execution of
programs within a task.

Each system cycle is divided into 16 time slices of one millisecond each. The time
slices are numbered 0 through 15. A single occurrence of all 16 time slices is
referred to as a major cycle. For a robot or motion system, each of these cycles
corresponds to one output from the V+ trajectory generator to the digital servos.

Specifying Tasks, Time Slices, and Priorities

Tasks 0 through 6 (0 through 27 with optional V+ Extensions software) can be
used, and their configuration can be tailored to suit the needs of specific
applications.

Each program task configured for use requires dedicated system memory, which
is unavailable to user programs. Therefore, the number of tasks available should
be made no larger than necessary, especially if memory space for user programs is
critical.
64 V+ Language User Guide, Rev A

Chapter 2 Scheduling of Program Execution Tasks
When application programs are executed, their program tasks are normally
assigned default time slices and priorities according to the current system
configuration. These defaults can be overridden temporarily for any user
program task. This is done by specifying the desired time-slice and priority
parameters in the EXECUTE, PRIME, or XSTEP command used to initiate
execution. The temporary values remain in effect until the program task is started
again, by a new EXECUTE, PRIME, or XSTEP command. (See the V+ Language
Reference Guide for details on these instructions.)

Task Scheduling

Tasks are scheduled to run with a specified priority in one or more time slices.
Tasks may have priorities from –1 to 64, and the priorities may be different in each
time slice. The priority meanings are:

–1 Do not run in this slice even if no other task is ready to run.

0 Do not run in this slice unless no task from this slice is ready to run.

1 - 64 Run in this slice according to specified priority. Higher priority tasks
may lock out lower ones. Priorities are broken into the following
ranges:

1 - 31 Normal user task priorities.

32-62 Used by V+ device drivers and system tasks.

63 Used by the trajectory generator. Do not use 63 or 64 unless you
have very short task execution times. Use of these priorities may
cause jerks in robot trajectories.

Whenever the current task becomes inactive (e.g., due to an I/O operation, a
WAIT instruction, or completion of the task programs), V+ searches for a new
task to run. The search begins with the highest priority task in the current time
slice and proceeds through that slice in order of descending priority. If multiple
programs are waiting to run in the task, they are run according to the relative
program priorities. If a runnable task is not found, the next higher slice is checked.
All time slices are checked, wrapping around from slice 15 to slice 0 until the
original slice is reached. If no runnable tasks are encountered, the V+ null task
executes.

Whenever a 1ms interval expires, V+ performs a similar search of the next time
slice. If the next time slice does not contain a runnable task, the currently
executing task continues.
V+ Language User Guide, Rev A 65

Chapter 2 Scheduling of Program Execution Tasks
If more than one task in the same time slice have the same priority, they become
part of a round-robin scheduling group. Whenever a member of a round-robin
group is selected by the normal slice searching, the group is scanned to find the
member of the group that ran most recently. The member that follows the most
recent is run instead of the one that was originally selected. If a task is in more
than one round-robin group in different slices, then all such tasks in both slices
appear to be in one big group. This property can cause a task to be run in a slice
you did not expect. For example:

Slice 1: Task A priority 10, Task B priority 10

Slice 5: Task B priority 15, Task C priority 15

All three tasks, A, B, and C, are in the same round-robin group because task B
appears in both. Therefore, task C may run in slice 1 at priority 10, or task A may
run in slice 5 at priority 15, depending on which member of the group ran most
recently.

The RELEASE program instruction may be used to bypass the normal scheduling
process by explicitly passing control to another task. That task then gets to run in
the current time slice until it is rescheduled by the 1ms clock. A task may also
RELEASE to anyone, which means that a normal scan is made of all other tasks to
find one that is ready to run. During this scan, members of the original task’s
round-robin group (if any) are ignored. Therefore, RELEASE to anyone cannot be
used to pass control to a different member of the current group.

AWAIT program instruction with no argument suspends a task until the start of
the next major cycle (slice 0). At that time, the task becomes runnable and will
execute if selected by the normal scheduling process. A WAIT with an expression
performs a release to anyone if the expression is FALSE.

On systems that include the V+ extensions, the V+ task profiler can be used to
determine how the various tasks are interacting. It provides a means of
determining how much time is being used by each task, either on an average basis
or as a snapshot of several consecutive cycles.
66 V+ Language User Guide, Rev A

Chapter 2 Scheduling of Program Execution Tasks
Within each time slice, the task with highest priority can be locked out only by a
servo interrupt. Tasks with lower priority can run only if the higher-priority task
is inactive or waiting. A user task waits whenever any of the following occurs:

• The program issues an input or output request that causes a wait.

• The program executes a robot motion instruction while the robot is still
moving in response to a previous motion instruction.

• The program executes a WAIT or WAIT.EVENT program instruction.

If a program is executing continuously without performing any of the above
operations, it will lock out any lower-priority tasks in its time slice. Thus,
programs that execute in a continuous loop should generally execute a WAIT (or
WAIT.EVENT) instruction occasionally (for example, once each time through the
loop). This should not be done, of course, if timing considerations for the
application preclude such execution delays.

If a program potentially has a lot of critical processing to perform, its task should
be in multiple slices, and the task should have the highest priority in these slices.
This will guarantee the task’s getting all the time needed in the multiple slices,
plus (if needed) additional unused time in the major cycle.

Figure 2-4 on page 68 shows the task scheduler algorithm. This flow chart
assumes that the servo task is configured to run every 1ms and no task issues a
RELEASE instruction. (Actually, at the point marked run servos?, any system
level interrupts are processed—in motion systems the servo task is generally the
most likely to interrupt and is the most time-consuming system task.)
V+ Language User Guide, Rev A 67

Chapter 2 Scheduling of Program Execution Tasks
Figure 2-4. Task Scheduler

time
left in
slice?

slice = 0

yes

no

run
servos?

yes

no

make highest
priority task

in slice or round
robin group the

current task

run highest
priority program

in task until program
completes, waits,
or time slice is up

slice =
slice + 1

slice > 15?

yes

run servos
until complete
or slice is up

runnable
task in
slice?

no

no

yes

no

no

can
current

task
run

run task until
task completes

or time slice
is up

look ahead for
runnable task
in any other
time slice

task
found?

time
left in
slice?

yes

no

yes

yes

run null task
until an

"event" occurs
68 V+ Language User Guide, Rev A

Chapter 2 Scheduling of Program Execution Tasks
Execution Priority Example

The following example shows how the task priority scheme works. The example
makes the following simplifying assumptions:

• Task 0 runs in all time slices at priority 20

• Task 1 runs in all time slices at priority 10

• Task 2 runs in all time slices at priority 20

• All system tasks are ignored (systems tasks are described in the next section)

• All system interrupts are ignored

Figure 2-5 on page 70 shows three tasks executing concurrently. Note that since
no LOCK or REACT_ instructions are issued, the program priority remains 0 for
the entire segment. (See ”Program Interrupt Instructions” on page 137 for
descriptions of the REACT routines, the LOCK instruction, and another program
execution example.)

The illustration shows the timelines of executing programs. A solid line indicates
a program is running and a dotted line indicates a program is waiting. The Y axis
shows the program priority. The X axis is divided into 1-millisecond time slices.

The sequence of events for Priority Example 1 is:

➊ prog_a issues a WAIT.EVENT. This suspends prog_a and passes
execution to the next highest task which is task 2 running prog_c.

➋ prog_c runs until it issues a RELEASE instruction. Since the
RELEASE has no arguments, execution is passed to the next highest
task with a program to run. Since task 0 is waiting on a SET.EVENT,
the next task is task 1.

➌ Task 2 issues a SET.EVENT to task 0 and runs until the end of a time
slice at which time task 0 runs. Tasks 0 and 2 have the same priority
so they swap execution. (If two tasks with equal priority are ready
to run, the least recently run task runs.)

➍ prog_c waits for a disk I/O operation to complete. The next highest
priority task is 2 which runs until the I/O operation completes and
task 0 becomes the least recently run task.

➎ prog_a completes, passing control to task 2.

➏ prog_c completes, passing control to task 1.
V+ Language User Guide, Rev A 69

Chapter 2 Scheduling of Program Execution Tasks

0

5

10

0

5

10

0

5

10

P
ro

gr
am

 P
ri

or
ity
Notice that unless both task 0 and task 2 are waiting or do not have a program to
run, or task 0 or task 2 RELEASEs to task 1, task 1 is effectively blocked from
execution.

Figure 2-5. Priority Example 1

The numbers in this example are referenced in the text on page 69.

= task waiting
= task running

➊ ➎➍

➌➋ ➏

O n e V + M a j o r C y c l e

➟

task 0 running prog_a, task priority = 20

task 1 running prog_b, task priority = 10

task 2 running prog_c, task priority = 20

1 millisecond time slices

➟

70 V+ Language User Guide, Rev A

Chapter 2 Default Task Configuration
Default Task Configuration

System Task Configuration

The Adept V+ system has a number of internal tasks that compete with
application (user) program tasks for time within each time slice:

• On motion systems, the V+ trajectory generator runs (as the highest priority
task) in slice 0 and continues through as many time slices as necessary to
compute the next motion device set point.

• On motion systems, the CPU running servo code will run the servo task (at
interrupt level) every 1 or 2 milliseconds.1

• The V+ system tasks run according to the priorities shown in Table 2-3 on
page 73.

1 The frequency at which the servo tasks interrupts the major cycle is set with the controller
configuration utility, CONFIG_C.
V+ Language User Guide, Rev A 71

Chapter 2 Default Task Configuration
Description of System Tasks

The system tasks and their functions are shown in Table 2-2.

Table 2-2. Description of System Tasks

Task Description

Trajectory Generator Compute the series of set points that make up a
robot motion

Terminal/Graphics Refresh the terminal or graphics monitor display

Monitor Service user requests entered at the monitor
window (monitor commands and responses to
system prompts)

Network/DDCMP Handle implementation of DDCMP protocols for
serial lines configured as DDCMP lines

Kermit Handle implementation of Kermit protocols for
serial lines configured as Kermit lines

Pendant Handle manual control pendant I/O

Disk Driver Handle requests for I/O to the hard and floppy
disk drives

Serial I/O Service serial I/O ports

Pipes Driver Allows a V+ task to service I/O requests like a
standard I/O driver

NFS Driver Allows access of remote files on network file
servers using the Network File Services protocol

TCP Driver Handles the TCP network communications
protocol on Ethernet

Vision Communications Communicate with the VIS board

Vision Analysis Evaluate vision commands

Servo Communications Communicate with the servo interrupt routines or
the VJI or VMI boards

Cat 3 Timer Handles timing and sequencing when robot
power is enabled in systems with the Cat 3 option
enabled
72 V+ Language User Guide, Rev A

Chapter 2 Default Task Configuration

Table 2-3. System Task Priorities
S

ys
te

m
 T

as
k Slice

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Trajectory
Generator 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63 63

Terminal/
Graphics 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 58

Monitor 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 56

Network/
DDCMP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 42

Kermit 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 52

Pendant 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50

Disk
Driver 0 0 0 0 0 0 0 0 0 0 0 0 0 0 39 48

Serial I/O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 44 44

Pipes
Driver 0 0 0 0 0 0 0 0 0 0 0 0 0 0 43 0

NFS
Driver 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 40

TCP
Driver 0 0 0 0 0 0 0 0 0 0 0 0 0 0 42 54

Vision
Communi-
cations

14 14 14 14 14 14 14 14 14 14 14 14 14 0 0 0

Vision
Analysis 13 13 13 13 13 13 13 13 13 13 13 13 13 0 0 0
V+ Language User Guide, Rev A 73

Chapter 2 Default Task Configuration
User Task Configuration

The remaining time is allocated to the user tasks using the controller
configuration utility. (See the description of CONFIG_C in the Instructions for
Adept Utility Programs for details.) For each time slice, you specify which tasks
may run in the slice and what priority each task has in that slice. The default
priority configuration is shown in Table 2-4.

Servo
Communi-
cations

0 0 0 0 0 0 0 0 0 0 0 0 0 0 41 0

Cat 3
Timer 0 45 0 45 0 45 0 45 0 45 0 45 0 45 0 0

Table 2-4. Default Task Priorities

U
se

r
Ta

sk Slice

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 20 20 20 20 20 20 20 20 20 10 10 10 10 0 0 0

1 19 19 21 21 19 19 21 21 19 9 11 11 9 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0

4 15 15 15 15 15 15 15 15 15 5 5 5 5 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 0

7 - 27 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0

Table 2-3. System Task Priorities (Continued)

S
ys

te
m

 T
as

k Slice

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
74 V+ Language User Guide, Rev A

The SEE Editor and Debugger 3
Basic SEE Editor Operations 76

Cursor Movement 77
Deleting, Copying, and Moving Lines 79

Text Searching and Replacing 80
Switching Programs in the Editor 81

The Internal Program List 83
Special Editing Situations 85
The SEE Editor in Command Mode 87

Command Mode Copy Buffer 91
SEE Editor Extended Commands 91
Edit Macros 93

Sample Editing Session 94

The Program Debugger 97

Entering and Exiting the Debugger 97
The DEBUG Monitor Command 98
Using the Debug Key or the DEBUG Extended Command 99
Exiting the Debugger 99

The Debugger Display 100
Debugger Operation Modes 102
Debugging Programs 103

Positioning the Typing Cursor 104
Debugger Key Commands 105
Debug Monitor-Mode Keyboard Commands 106
Using a Pointing Device With the Debugger 109
Control of Program Execution 109

Single-Step Execution 109
PAUSE Instructions 110
Program Breakpoints 110
Program Watchpoints 111
75

Chapter 3 Basic SEE Editor Operations
Basic SEE Editor Operations

The SEE editor was introduced in Chapter 2. It is described in more detail in this
chapter.

The following notation is used in the tables in this section:

• The control key is indicated by Ctrl+, the alternate key is indicated by Alt+,
and the Shift key is indicated by S+. When using the shift, alternate, and
control keys, they should be pressed at the same time as the following key.

Some terminals on nongraphics-based systems will not have an Alt key, and
the Esc key must be used instead. For example, the equivalent of Alt+A is Esc
and then A (the escape key should be pressed and released before the next
key is pressed).

• <n> indicates a number is to be entered as a command prefix (without the
angle brackets). For example, you would enter 10L to move the cursor to line
10.

• <char> indicates a character is to be entered (without the angle brackets). For
example, you would enter Sa to skip to the next a on the line.

• Keys used only with graphics-based systems are marked with an {A}. Keys
used only with nongraphics-based systems are marked with an {S}.
76 V+ Language User Guide, Rev A

Chapter 3 Basic SEE Editor Operations
Cursor Movement

Table 3-1 and Table 3-1 list the keys used for moving around the editor in all
modes. The cursor keys can be either the cursor movement keys above the
trackball or the keys on the numeric keypad when Num lock is not engaged.

Table 3-1. Cursor Movement Keys With a graphics-based Keyboard

Cursor Key Without Ctrl Key With Ctrl Key

↑ Up 1 line Up 1/4 page

↓ Down 1 line Down 1/4 page

→ Right 1 character Right 1 item

← Left 1 character Left 1 item

Home Top of program

Page Up Up 1 screen

Page Down Down 1 screen

End End of program
V+ Language User Guide, Rev A 77

Chapter 3 Basic SEE Editor Operations
The scroll bars will also move through a SEE editor program. (The bottom scroll
bar has an effect only if the editor window has been sized down.) Clicking on the
up/down arrows moves the program up or down a few lines. Clicking the
left/right arrows moves the program left or right. Clicking in a scroll bar displays
the corresponding section of the program (e.g., clicking in the middle of the scroll
bar displays the middle section of the program). Dragging a scroll handle moves
the program up or down, or left or right.

Table 3-2. Cursor Movement Keys With a nongraphics-based Terminal

Key Function Without Shift Key

↑ Up 1 line

↓ Down 1 line

→ Right 1 character

← Left 1 character

Line Feed Up 1 screen

Home Down 1 screen

Start (PF1) Go to start of line

<-- (PF2) Move left 1 item

--> (PF3) Move right 1 item

End (PF4) Go to end of line

Top (F15) Go to top of program

Bottom (F16) Go to end of program
78 V+ Language User Guide, Rev A

Chapter 3 Basic SEE Editor Operations
Deleting, Copying, and Moving Lines

Table 3-3 lists the keys to use for program editing. Unlike many text editors, this
one stores multiple copy operations in a stack. Each copy operation places a
line(s) on top of the stack. Each paste operation removes a line(s) from the top of
the stack and pastes it at the current location. However, once a single line has been
pasted, it is removed from the copy buffer and cannot be pasted again.

Table 3-3. Shortcut Keys for Editing Operations

Key(s) Action

Copy (F9) Copy the current line into the editor’s copy buffer (know as
the attach buffer).

Paste (F10) Paste the most recently copied line above the current line.

You cannot exit SEE with lines in the attach buffer. (Ctrl+K
will remove lines from the copy buffer without pasting them
into a program.)

Lines cannot be pasted in read-only mode.

Paste All (S+F10) Paste the entire copy buffer above the current line.

Cut (S+F9) Cut the current line and place it in the copy buffer.

Del Line {S}

Ctrl+Delete {A}

Delete the current program line and do not place it in the
copy buffer.

(Press Undo (F6) immediately after deleting to restore the
line(s) just deleted.)
V+ Language User Guide, Rev A 79

Chapter 3 Basic SEE Editor Operations
Text Searching and Replacing

The SEE editor can search for specific text strings or change a specified string to
another string. The following keys perform string searches and replacements.

To search for a text string:

1. Press the Find (F7) key (or press F in command mode).

2. Enter a search string and press ↵.

3. The text will be searched for from the cursor location to the bottom of the
program (but not from the top of the program to the cursor location).

4. To repeat the search, press the Repeat (F8) key (or ' in command mode).

To find and replace a line of text:

1. Press the Change (S+F7) key (or press C in command mode).

2. Enter a search string and press ↵.

3. Enter the replace string and press ↵.

4. The text will be searched for from the cursor location to the bottom of the
program. Only one search and replace operation will take place at a time.
Global search and replaces are not performed.

5. To repeat the change, press the Repeat (F8) key (or ' in command mode).

6. To cancel the change, press the Undo (F6) key (before closing the line).

Normally, text searches are not case-sensitive. The EXACT editor toggles the
casesensitivity of the search operation (see “SEE Editor Extended
Commands” on page 91).

NOTE: Press the space bar to abort a search. The latest search and
replacement strings are retained between edit sessions.
80 V+ Language User Guide, Rev A

Chapter 3 Basic SEE Editor Operations
Switching Programs in the Editor

The following function keys switch from editing one program to editing another
program. (The internal program list mentioned below is described in the next
section.)

Table 3-4. The SEE Editor Function Key Description

Key(s) Action

New (F2) The editor prompts for the name of the new program to
edit. The new program will be accessed in read-write mode
unless /R is specified after the program name or the
program is currently executing. The home pointer for the
internal program list is set to the old program.

Go To (F3) If the cursor is on a line containing a CALL instruction, the
program referenced by the CALL is opened in the SEE
editor. If the program is present on the internal program
list, the previous access mode will be used. If the program is
not on the program list, the editor will remain in its current
access mode.

Retrieve (S+F3) This command causes the editor to cycle through the
internal program list, bringing the next program in the list
into the editor. The access mode for the new program will
be the same as the previous time the program was edited.
V+ Language User Guide, Rev A 81

Chapter 3 Basic SEE Editor Operations
Prog_Up {S}

Ctrl+Home {A}

(Home key on
numeric keypad)

Changes to editing a program contained on the task
execution stack being accessed by the editor. When the new
program is opened, its name is added to the internal
program list maintained by the editor.

If the execution stack is being accessed for the first time
during the edit session, the editor accesses the stack for the
task that most recently stopped executing (if the program
debugger is not in use), or the stack for the task being
debugged. The last program on the execution stack is
opened for editing.

If the execution stack has already been accessed, the
program opened is the one that called the previous
program accessed from the stack.

Prog_Down {S}

Ctrl+End {A}

Changes to editing a program contained on the task
execution stack being accessed by the editor. When the new
program is opened, its name is added to the internal
program list maintained by the editor.

If the execution stack is being accessed for the first time
during the edit session, this command acts exactly like
Prog_Up {S} or S+Home {A} (see above).

If the execution stack has already been accessed, the
program opened is the one that was called by the previous
program accessed from the stack.

Table 3-4. The SEE Editor Function Key Description (Continued)

Key(s) Action
82 V+ Language User Guide, Rev A

Chapter 3 Basic SEE Editor Operations
The Internal Program List

To simplify moving from one program to another during an editing session, the
SEE editor maintains an internal list of programs. The program list contains the
following information (for up to 20 programs):

• Program name

• Editor access mode last used

• Number of the step last accessed

• Memorized cursor position (see the M command)

The program list is accessed with the SEE monitor command and program
instruction and with editor commands described in this chapter.1

The editor maintains two pointers into the program list:

1. The top pointer always refers to the program currently displayed in the edit
window.

2. The home pointer refers to the program that was edited most recently.

1 The program list is cleared when the ZERO monitor command is processed.
V+ Language User Guide, Rev A 83

Chapter 3 Basic SEE Editor Operations
The following rules govern the program list and its pointers.

• When a SEE monitor command is entered, one of the following occurs:

• If a program name is specified, the new program name is added at the
top of the program list.

• If no program name is specified and no program task has stopped
executing since the last edit session, the program list is not changed and
the program at the top of the list (the last program edited) is opened.

• If no program name is specified and a program task has stopped
executing since the last edit session, that program is added to the top of
the program list and is displayed for editing.

• When a SEE program instruction is executed, a temporary program list is
created for that editing session. The list initially includes only the current
program name. The list is deleted at the end of the editing session.

• Whenever a program not already on the list is edited during an editing
session (for example, pressing the New (F2) or Go To (F3) key), the new name
is added at the top of the program list and the home pointer is moved to the
entry for the previous program edited.

• Retrieve (S+F3) rotates the program list so the top entry moves to the bottom,
and all the other entries move up one position. Then the top program is
displayed for editing, and the home pointer is positioned at the first entry
below the top of the list.

• The H command advances the home pointer down the list and displays the
name of the program at the new position.

• The Alt+H command switches to editing the program marked by the home
pointer, that program is moved to the top of the list, and the home pointer is
moved to the entry for the previous program edited.

If the home pointer has not been explicitly moved, Alt+H opens the
previously edited program.
84 V+ Language User Guide, Rev A

Chapter 3 Basic SEE Editor Operations
Special Editing Situations

• You cannot modify the .PROGRAM argument list or an AUTO instruction
while the program is present on a task execution stack. (A program is on the
execution stack if it has been executed in that task since the last KILL or ZERO
instruction.) The error message *Invalid when program on stack* will be
displayed. To edit the line, exit the editor and remove the program from (all)
the execution stack(s) in which it appears. (See the STATUS monitor
command in the V+ Operating System Reference Guide for information about
how to examine the execution stacks and the KILL monitor command for
information on how to clear a stack.)

• If you enter a line of code that is longer than 80 characters, the portion of the
line longer than 80 characters will not be displayed until you move the cursor
along the line (or make a change to the line). Then the editor temporarily
wraps the line and overwrites the next line on the screen. The temporarily
overwritten line will be redisplayed as soon as you move off the line that is
wrapping on top of it.

NOTE: You may occasionally encounter lines that are too long for
SEE to process. (Such lines can be created with an editor on another
computer, or they may result from a line becoming further indented
because of new surrounding control structures.)

Any attempt to move the cursor to such a line will result in the
message *Line too long*, and the cursor will automatically move to
the next line. (The { command [and others] can be used to move the
cursor above a long line.)

The best way to use the SEE editor to change such a line is to: (1)
move the cursor to the end of the line just above the long line; (2)
use Insert mode to insert two or more program lines that will have
the same effect as the long line, plus a blank line; (3) with the cursor
at the blank line, issue one command to delete the blank line and
the long line (for example, S+Delete in Command mode).
V+ Language User Guide, Rev A 85

Chapter 3 Basic SEE Editor Operations
• Whenever the cursor is moved off a program line (and when certain
commands are invoked), the editor closes the current line. As part of that
process, the line (and those following it) are displayed in standard V+ format
(for example, abbreviation expansion, letter case, spacing, and line indents).
When a long line is closed, the end of the line is erased from the screen and
the next line is automatically redrawn. Undo (F6) will not undo changes to a
closed line.

Until a line is closed, its effect on the indenting of subsequent lines is not
considered. Thus, for example, Redraw (S+F6) ignores an unclosed line
when redrawing the display.

• In some cases, closing a line will cause its length to be increased because of
abbreviation expansion and line indents. If the expanded line would be
longer that the maximum line length allowed, an error message will be
displayed and you will be prevented from moving off the long line. You will
then have to shorten the line, break it into two or more pieces, or press Undo
(F6) to restore the previous version of the line.

• Syntax is also checked when a line is closing. If an error is detected, the editor
normally marks the line as a bad line by placing a ? in column 1. Programs
containing bad lines cannot be executed. Thus, you will have to eliminate all
the bad lines in a program before you will be able to execute it. (You can use
the editor’s string search feature to search through a program for question
marks indicating bad lines.)

NOTE: The editor provides a command (AUTO.BAD, see ”SEE
Editor Extended Commands” on page 91 for more information)
that can be used to tell the editor you want to be forced to correct
bad lines as soon as they are detected.
86 V+ Language User Guide, Rev A

Chapter 3 Basic SEE Editor Operations
The SEE Editor in Command Mode

In addition to the key lists in Table 3-1 on page 77 and Table 3-1 on page 77, the
key strokes listed in Table 3-5 will move the cursor when the editor is in
command mode.

Table 3-5. Cursor Movement in Command Mode

Key Action

B Bump window down a few lines

Esc B

Ctrl+B

Go to bottom of program

T Bump window up a few lines

Esc T

Ctrl+T

Go to top of program

[Up a line

] Down a line

Alt+[(graphics-based system)

{

Up a few lines

Alt+] (graphics-based system)

}

Down a few lines

(Up to top of window

) Down to bottom of window

<n>L Move to line <n>

Space Right one character

Esc Space

Tab

Right to next item

Back Space Left one character

Esc Back Space

Esc Tab

Left to previous item

Return Go to start of next line
V+ Language User Guide, Rev A 87

Chapter 3 Basic SEE Editor Operations
Table 3-6 lists the actions keystrokes will perform when the editor is in Command
mode. The characters in the column labeled Char. Codes are defined as follows:

M The command changes edit mode from Command mode to either
Insert mode or Replace mode as indicated in the table.

(M) The command changes the mode as indicated only until the next
character is typed, and then the editor returns to Command mode.

R The command can be executed when the program is being viewed
in read-only mode.

Esc Return Close line and go to column 1

, (comma) Go to beginning of line

. (period) Go to end of line

<n>J Jump to column <n>

S<char> Skip to character <char>

; Skip to semicolon

Table 3-6. SEE Editor Command Mode Operations

Keystroke(s) Function
Char.
Codes

Editing A Line Of Text

D Delete a character

I Start character Insert mode M

Esc I Break line and enter Insert mode M

R Start character Replace mode M

Esc Return to Command mode

W Delete up to the next item

Esc W Delete item and start Insert mode M

K<char> Delete (kill) up to character <char>

Table 3-5. Cursor Movement in Command Mode (Continued)

Key Action
88 V+ Language User Guide, Rev A

Chapter 3 Basic SEE Editor Operations
/ Replace a single character (M)

\ Insert a single character (M)

Ctrl+L Convert to lowercase to end of line

Ctrl+U Convert to uppercase to end of line

Esc Ctrl+B Convert tabs to blanks (spaces)

Esc Ctrl+T Convert spaces to tabs

Deleting/Copying/Moving Lines

Esc D

Ctrl+D

Delete a line

–Esc D

–Ctrl+D

Undelete last line deleted

A Copy line to attach buffer R

–A Copy line from attach buffer

Esc A

Ctrl+A

Move line to attach buffer

–Esc A

–Ctrl+A

Move line from attach buffer

E Dump attach buffer to program

Esc K

Ctrl+K

Delete (kill) line in attach buffer R

Text Searching And Replacement

F Find a string in the program R

C Substitute a string in the program

’ Repeat last Find or Change R

0’ Display string being searched for R

Table 3-6. SEE Editor Command Mode Operations (Continued)

Keystroke(s) Function
Char.
Codes
V+ Language User Guide, Rev A 89

Chapter 3 Basic SEE Editor Operations
Program Operations

N Change to editing new program R

H Rotate home list and show top name R

Esc H Change to top program on home list R

Ctrl+R Change to editing program CALLed on the
current line

R

Esc Ctrl+R Change to next program on home list R

Esc S Change to previous program on stack R

–Esc S Change to next program on stack R

Miscellaneous Operations

Esc Ctrl+C Cancel changes to current line R

Esc E Exit the editor (or the debugger) R

Ctrl+E Exit the editor (or the debugger) R

G Repeat the last S, K, Ctrl+L, or Ctrl+U command
(whichever was last)

R

M Memorize current line and column R

–M Return to memorized position R

V Refresh the full display R

X Initiate extended command (see below) R

XDEBUG Change to debugger monitor mode R

Table 3-6. SEE Editor Command Mode Operations (Continued)

Keystroke(s) Function
Char.
Codes
90 V+ Language User Guide, Rev A

Chapter 3 Basic SEE Editor Operations
Command Mode Copy Buffer

In command mode, a special 25-line copy buffer is maintained. This buffer is
completely separate from the copy buffer described in “Deleting, Copying, and
Moving Lines” on page 79 and works only when the editor is in command mode.
Del Line {S} or S+Delete {A} removes lines from the program and places them in
the special buffer. Preceding Del Line {S} or S+Delete {A} by a minus sign (–)
copies the line most recently deleted (and removes it from the buffer). Del Line
{S} and S+Delete {A} can be prefaced with a minus sign and a number to undelete
a number of lines.

These key strokes work as described only in Command mode. The copy buffer is
discarded when you exit the SEE editor (but is maintained as you edit different
programs without leaving the editor).

SEE Editor Extended Commands

Editor extended commands are used for infrequent operations, that do not
warrant allocation to a dedicated keyboard key. The extended commands are
invoked with the X command (in Command mode), which prompts for the name
of the actual command to be performed.

The command name can be abbreviated to the shortest length that uniquely
identifies the command. After the command name (or abbreviation) is entered,
press ↵ to indicate the end of the name.

As indicated below, some commands display a message on the editor command
line. Some of the commands prompt for additional input.

All of the following commands can be used when viewing a program in read-only
mode. Most of the commands close the current line.

AUTO.BAD Toggles between the methods the editor uses to respond to
invalid lines detected while editing.

In the first mode, such lines are flagged as bad lines with a
question mark in column one. Editing of the program can
continue normally, but the program will not be executable
until all the bad lines are either corrected, deleted, or made
into comment lines.

In the second mode, invalid lines must be corrected, deleted,
or commented out before the line can be closed.
V+ Language User Guide, Rev A 91

Chapter 3 Basic SEE Editor Operations
DEBUG Switches from normal program editing to use of the program
debugger in its monitor mode. (The debugger is described in
”The Program Debugger” on page 97.)

DSIZE Sets the size of the debug window used by the program
debugger (described in ”The Debugger Display” on page
100).

EXACT Toggles the case-sensitivity of text searches.

In the first mode, case is ignored when making text searches.
In the second mode, text searches must match upper- and
lowercase letters exactly for a search to be successful.

READONLY Changes the access mode for the current program to
read-only mode. (May be abbreviated RO.)

READWRITE Changes the access mode for the current program to
read-write mode. (May be abbreviated RW).

SEE Switches from debug editor mode to normal (full-screen)
program editing. (Also see the Edit [F7] key.)

TSIZE In response to this command, you will be shown the current
size of the display, and asked how many lines high you want
the display to be. You must specify at least seven lines. (Press
↵ to retain the current setting.)

See DSIZE above for an explanation of how the TSIZE setting
affects the size of the edit and debug windows displayed by
the program debugger.

WHERE Displays the current cursor column number. (The current
cursor line number is always displayed on the information
line at the bottom of the edit window.)

NOTE: The settings controlled by the extended commands are all
retained between editing sessions initiated with the SEE monitor
command.

When the SEE program instruction is used to initiate program
editing, all the settings controlled by the extended commands are
set to the initial settings described below. Settings changed during
the edit session are not retained after the editor is exited.
92 V+ Language User Guide, Rev A

Chapter 3 Basic SEE Editor Operations
Edit Macros

Edit macros allow you to perform the same sequence of editor commands, or
enter the same sequence of text characters, several times during an editing
session.

Two edit macros can be defined at the same time. Either macro can be invoked
from any point in the definition of the other macro, except that such linking is not
permitted to be recursive. (That is, a macro cannot call itself, and a called macro
cannot call the other macro.)

Table 3-7 shows the keys used to define and apply the macros. All these
commands can be used when viewing a program in read-only mode but cannot
perform any actions disallowed in read-only mode.

Press the space bar to abort an executing macro.

NOTE: Macro definitions are retained between editor sessions
initiated with the SEE monitor command (but not between sessions
initiated with the SEE program instruction).

Table 3-7. Function Keys Associated with Macros

Key(s) Action

Esc U Define the U macro. The prompt Macro (Ctrl+Z ends): is displayed on
the editor command line. Press the keys you wish to have recorded in
exactly the sequence they are to be processed to perform the desired
operations. When you have finished entering the macro definition,
enter Ctrl+Z.

NOTE: It may be easier to manually perform the sequence to be
recorded, writing down the keys as you press them. Then you
can read from your notes as you define the equivalent macro.

U Process the U macro.

0U Display the current definition of the U macro.

Esc Y Define the Y macro.

Y Process the Y macro.

0Y Display the current definition of the Y macro.
V+ Language User Guide, Rev A 93

Chapter 3 Sample Editing Session
Sample Editing Session

The following steps will create a sample V+ program and subroutine, give an
example of parameter passing, and create a disk file of the sample programs.

1. With the controller on and running—make sure there are no other programs
in memory by entering the command:1

ZERO

2. The system will ask for verification that you want to delete all programs from
memory. This will delete the programs and data from system memory but will
not delete the disk files.

3. Enter the command:

SEE sample

4. The system will advise you that this program does not exist and ask if you
want to create it. Respond Y ↵.

5. The SEE editor window should now be displayed. Enter insert mode by
pressing the Insert key (Edit [F11] on a Wyse terminal).

6. Enter the following lines exactly as shown:

AUTO $ans

TYPE "Welcome."

CALL get_response($ans)

TYPE $ans, " is now at the keyboard."

7. Create the subroutine get_response:2

a. Move the cursor to the CALL line and press the Goto (F3) key.

b. The message line will indicate that get_response does not exist and ask if
you want to create it. Respond Y ↵.

8. A new program will be opened in the SEE editor window. Enter the parameter
for this subroutine by using the cursor keys to place the typing cursor between
the parentheses on the program line and type $text_param.

1 Memory does not have to be cleared. However, it will make this example simpler.
2 There is no difference between a subroutine and a program.
94 V+ Language User Guide, Rev A

Chapter 3 Sample Editing Session
9. Move the cursor off the program line and enter the lines:

PROMPT "May I have your name please? ", $text_param

RETURN

10. Review your programs. The Retrieve (S+F3) key will toggle you through all
the programs you have edited in the current session.

11. When you are satisfied your programs are correct, exit the SEE editor by
pressing the Exit (F4) key.

12. You will now be at the system prompt. Test your program by entering the
command:

EXECUTE/c sample

13. The program should greet you, ask for your name, and print the response on
the screen. A message will then be displayed indicating the program
completed.

14. If all works correctly, save your programs to a disk file by entering the
command:

STOREP sampfile.v2

A file will be created (using the default path specification) that will contain
the two programs sample, and get_response.

15. To check that the programs were stored successfully, enter the commands:

ZERO

LOAD sampfile.v2

EXECUTE sample

The program should execute as before. See the V+ Operating System User’s
Guide for details on the default path and options to the STORE commands.
V+ Language User Guide, Rev A 95

Chapter 3 Sample Editing Session
When you are creating and modifying programs, keep in mind:

• If you load a file containing programs with the same names as programs
resident in memory, the resident programs will NOT be replaced. You must
delete (from memory) a program before you can load a program with the
same name.

• You cannot overwrite existing disk files. A file must be deleted from disk
(with the FDELETE Instruction) before a file of the same name can be written
to the same sub-directory. If you are making changes to existing files, we
recommend the following procedure:

1. Rename the existing file for backup:

FRENAME filename.bak = file_name.v2

2. Store the modified files:

STOREP filename.v2

3. When you are satisfied with the modified files, delete the backup:

FDELETE filename.bak

• If you have programs from multiple disk files resident in memory, the module
commands will help keep the various files straight. See the descriptions of
MODULE, STOREM, MIDRECTORY, and DELETEM in the V+ Language
Reference Guide.
96 V+ Language User Guide, Rev A

Chapter 3 The Program Debugger
The Program Debugger

V+ systems include a program debugger for interactively executing and
modifying application programs. With the debugger, a program can be executed a
step at a time (or in larger, user-controlled segments) while the program
instructions and the program output are simultaneously displayed in two
separate sections of the monitor window.

NOTE: The program debugger cannot access protected programs.

The debugger has an editor mode that allows editing of programs during the
debugging session. Changes made to the program can be executed immediately
to verify their correctness.

While the program is executing, the values of program variables can easily be
displayed or changed.

The following sections describe the use of the program debugger in detail.

Entering and Exiting the Debugger

 The program debugger can be invoked in two ways:

• From the command line with the DEBUG monitor command (see the V+

Operating System Reference Guide for information on monitor commands).

• From the SEE editor with the Debug (S+F11) key or the DEBUG extended
command. (The function keys and the SEE editor extended commands are
described in ”The SEE Editor in Command Mode” on page 87.)

NOTE: The program debugger cannot be invoked from the SEE
editor when the editor has been initiated with the SEE program
instruction.

When a debugging session is initiated, two aspects of the debugging session need
to be established: the program task that will be accessed for program execution
and the program that will be displayed in the debugger edit window. The
methods for providing this information depend on how you invoke the program
debugger, as described below.

Use the Exit (F4) key (or a keyboard command) to exit the debugger and return to
the V+ system monitor.
V+ Language User Guide, Rev A 97

Chapter 3 The Program Debugger
The DEBUG Monitor Command

The following command formats will invoke the debugger from the system
prompt:

DEBUG t prog, step

t Initiates debugging in task number t. If the task number is not spec-
ified, the task number will be determined as follows:

If any execution task has terminated execution since the start of the
last debugging session, that task will be assumed.

If no task has terminated since the previous debugging session, the
previous task is accessed again.

If neither of the above situations apply, the main control task (num-
ber 0) is accessed.

(Commands affecting other tasks can still be entered, but their task
number will have to be specified explicitly.)

prog The named program is displayed in the debugger edit window in
read-only editor access mode.

If the name is omitted, the program primed for the task or the last
program executed by the task will be selected.

An error will result if the named program does not exist, and the
DEBUG request will be aborted.

When the specified program is opened for (read-only) editing, its
name is added at the top of the SEE editor internal program list.

step An optional parameter that allows you to open a program at the
step number specified.
98 V+ Language User Guide, Rev A

Chapter 3 The Program Debugger
DEBUG without any parameters is useful when:

1. You want to resume the latest debugging session.

In this case, the edit window and the execution pointer (see Figure 3-1 on
page 100) will be restored as they were when the previous debugging session
was ended. That is, debugging can continue as though it had not been
interrupted.

2. A program has terminated execution with an error, and you want to use the
debugger to investigate the cause.

In this case, the program that failed will be displayed in the edit window,
with the execution pointer positioned at the step after the failed step.

Using the Debug Key or the DEBUG Extended Command

While editing a program with the SEE editor, change to the program debugger by
pressing the Debug (S+F11) key or by entering the DEBUG extended command.
When the debugger is invoked from the SEE editor, you are asked which
execution task you want to use. Then the debugger display replaces the normal
SEE editor display, with the same program visible in the edit window and the
specified task selected.

While using the program debugger you may decide you want to change the
default task number. You can use the following steps to make that change:

1. If you are in debug monitor mode, press Edit (F11) to select debug editor
mode. (The debug modes are described later in this chapter.)

2. Enter the SEE editor DEBUG extended command.

3. In response to the prompt, enter the desired new task number.

Exiting the Debugger

Press Exit (F4) to exit the program debugger and return to the system prompt.
This command is accepted in either debug mode.

In addition, in debug editor mode (in Command mode) you can use Alt+E to exit
to the V+ system prompt (or Esc and E if your keyboard does not have an Alt
key).
V+ Language User Guide, Rev A 99

Chapter 3 The Program Debugger
The Debugger Display

Once the program debugger has been invoked, the display will look similar to
that shown in Figure 3-1.

NOTE: The sample shown below represents the display that would
appear on graphics-based monitor. You will see a slightly different
display on a nongraphics-based terminal.

Figure 3-1. Example Program Debugger Display
100 V+ Language User Guide, Rev A

Chapter 3 The Program Debugger
The following numbered list refers to the display shown in Figure 3-1.

➊ The execution pointer—indicates the next step in the program that
will be executed.

➋ The editor information line—provides the same information as dur-
ing a normal editing session (see Figure 2-1 on page 41). Notice that
while the debugger is in monitor mode, the program will be in
read-only mode. The debug window occupies the screen below this
line.

➌ The typing cursor. In monitor mode, the cursor will appear in the
debug window, and debug and monitor commands can be entered.
Responses to program prompts will appear here. Commands will
appear below the debug information line.

➍ Shows which task the debug session is running in.

➎ Shows the debug mode. In monitor mode, debug and other monitor
commands can be entered, and the program can be executed. In edi-
tor mode, the typing cursor will appear in the editor window, and
the program can be edited.

➏ Displays entered commands and the results of various debug opera-
tions. The > character serves as a prompt for user input when you
are entering commands to the debugger. After processing a com-
mand, the debugger displays ok on the command line after the com-
mand. That acknowledges completion of the command, regardless
of whether or not the command was successful. For example, the
command line shown in Figure 3-1 indicates that the debugger has
just processed the command XSTEP place.

NOTE: Under some circumstances the display in the edit window
can be overwritten by program or system output. Press Redraw
(S+F6) key to restore the entire debugger screen.

Since the edit window can be moved to anywhere in the current
program (or even to another program), this pointer may not be
visible in the edit window. The edit window will move to the
section of program containing this pointer whenever program
execution stops for any reason.
V+ Language User Guide, Rev A 101

Chapter 3 The Program Debugger
Debugger Operation Modes

The program debugger has two modes of operation.

• Monitor mode

In this mode the program in the edit window is accessed in read-only mode,
and all keystrokes are interpreted as system monitor commands. System and
program output is displayed in the debug window.

While in monitor mode, the program displayed in the edit window is
accessed in read-only mode. As described in a later section, most of the
keyboard function keys perform the same functions as with the SEE editor.

This is the initial mode when the debugger is invoked. See the section
“Debug Monitor-Mode Keyboard Commands” on page 106 for a description
of how monitor mode is used.

• Editor mode

As its name indicates, this mode enables full editing access to the program in
the editor window. All the features of the SEE editor can be used in this mode.

NOTE: Programs that have been loaded from disk files with the
read-only attribute cannot be accessed in editor read-write mode.

Use the Edit (F11) and Debug (S+F11) keys (or Ctrl+E) to change modes.
102 V+ Language User Guide, Rev A

Chapter 3 The Program Debugger
Debugging Programs

The basic strategy for debugging a program is:

1. Invoke the program debugger with the DEBUG monitor command, the
DEBUG editor extended command, or the Debug (S+F12) key.

2. Initiate execution of the program (usually with the PRIME or XSTEP monitor
commands). (This step can be performed before or after the debugger is
initiated.)

3. Step through the program (executing individual steps, sections of the
program, or complete subroutines) to trace the flow of program execution. (A
later section of this chapter describes control of program execution while
debugging.)

4. Use the Display (F5) and Teach (S+F5) keys to display and redefine the values
of variables.

5. Use edit mode to perform any desired editing operations on the program.

6. Repeat steps 2 through 5 as required.

7. Exit from the debugger.

The following sections describe the debugger commands and other features of the
V+ system that aid program debugging.

When using the debugger, keep in mind:

• Some system monitor commands are not accepted in debug monitor mode.
(For example, the COMMANDS command is not accepted.)

• In some situations the terminal cursor will be in the edit window when you
want it to be in the debug window. In debug monitor mode, the Redraw
(S+F6) or Undo (F6) keys will force the cursor to the bottom line of the debug
window.

• Output to the screen from the program will generally be directed to the debug
window. However, if the output includes control strings to position the cursor
(for example, clear the screen), the program output may appear in the edit
window. The Redraw (S+F6) key will restore the normal debugger display
(except in the situation described by the next item).

• When the program displays a prompt for input in the debug window and
executes a PROMPT instruction, everything you type before pressing ↵ will
be received by the program. Thus, you cannot issue any debugger commands
at such times.
V+ Language User Guide, Rev A 103

Chapter 3 The Program Debugger
Positioning the Typing Cursor

The typing cursor is positioned in the debug window when:

• The program debugger is initiated.

• Task execution is initiated or terminated (in the latter case, the edit window
will be moved as required to include the execution pointer).

• The Redraw (S+F6) or Undo (F6) key is pressed in debug monitor mode.

• The debugger is switched from editor mode to monitor mode.

The typing cursor is positioned in the edit window when:

• Any function key operation—other than Redraw (S+F6) or Undo (F6)—is
performed during debug monitor mode. (Note that this includes all the keys
normally used to move the cursor in the edit window, such as the arrow
keys.)

• The debugger is switched from monitor mode to edit mode.

• With graphics-based systems, the typing cursor is positioned in the edit
window if you click the pointer device anywhere in that window.
104 V+ Language User Guide, Rev A

Chapter 3 The Program Debugger
Debugger Key Commands

Table 3-5 on page 87 and Table 3-6 on page 88 list all the keys interpreted as
commands by the V+ SEE editor. Except for the differences described below, all
the keys listed in those tables have exactly the same effect with the debugger (in
either of its modes) as they do when used with the SEE editor (detailed earlier in
this chapter).

NOTE: While using the debugger, the following keys are
particularly useful for moving to different programs on the
execution stack for the task being debugged: Prog Up and Prog
Down {S}, and Ctrl+Home and Ctrl+End {A}.

The following function keys are interpreted differently by the program debugger
and the SEE editor.

Edit (F11) When the debugger is in monitor mode, this key causes editor mode
to be selected. This key has its normal editor function (selection of
editor Command mode) when in editor mode.

Undo (F6) When the debugger is in monitor mode, this key simply moves the
typing cursor to the bottom of the debug window.

Teach (S+F5) Initiates changing the value of the variable at the cursor position.

NOTE: This command cannot be used while the editor is in
read-write access mode. You can use the READONLY or RO
extended command to select read-only mode (see ”SEE Editor
Extended Commands” on page 91 for details).

As with Display (F5), the typing cursor is used to point to the variable of interest.
Pressing Teach (S+F5) causes the current value of the variable to be displayed in
the debug window and a prompt for a new value to be assigned to the variable.

For real-valued variables, the new value can be input as a constant, a variable
name, or an expression.

For location variables, the new value can be input as a location function (for
example, HERE or TRANS) or a variable name. Also, a compound transformation
can be specified when accessing a transformation variable.

For string variables, the new value can be input as a string constant, variable
name, or expression.
V+ Language User Guide, Rev A 105

Chapter 3 The Program Debugger
Debug Monitor-Mode Keyboard Commands

The V+ program debugger allows you to interactively execute and edit the
program being debugged. The commands described in Table 3-9 can be used to
control execution of the program you are debugging (see “Control of Program
Execution” on page 109 for more information).

The following terms are used in Table 3-9 when showing equivalent monitor
commands:

NOTE: All the commands described below (except Ctrl+E) require
debug monitor mode for their use.

Be careful not to enter Ctrl+O or Ctrl+S while using the debugger.
These control characters disable output to the terminal until a
second Ctrl+O or a Ctrl+Q is input.

Table 3-8. Definition of Terms

Term Used Definition

current_program Refers to the program displayed in the edit window.

current_step Refers to the program step at which the movable cursor is
positioned. (Note that even when the terminal cursor is
visible in the debug window or on the command line, the
position of the movable cursor is still retained by the
debugger.)

debug_task Refers to the task number shown on the information line
of the debug window.
106 V+ Language User Guide, Rev A

Chapter 3 The Program Debugger
Table 3-9. Debugger Commands

Key(s) Action

Ctrl+B Set a breakpoint at the step indicated by the typing cursor (also see
Ctrl+N below). (The use of breakpoints is described in “Program
Breakpoints” on page 110.)

This command is equivalent to the following system monitor command:

BPT @current_program current_step

Ctrl+E Alternate between debug modes. This command is equivalent to the Edit
(F12) and Debug (S+F12) function keys, depending on the current
debugger mode. (Use Ctrl+E with terminals that do not have the
equivalent function keys. Use Esc and then E to exit from the editor to the
V+ system prompt.)

Ctrl+G Perform an XSTEP command for the instruction step indicated by the
typing cursor.

This command is equivalent to the following system monitor command:

XSTEP debug_task,,current_step

Ctrl+N Cancel the breakpoint at the step indicated by the typing cursor (see
Ctrl+B above).

This command is equivalent to the following system monitor command:

BPT @current_program -current_step

Ctrl+P PROCEED execution of the current task from the current position of the
execution pointer.

This command is equivalent to the following system monitor command:

PROCEED debug_task
V+ Language User Guide, Rev A 107

Chapter 3 The Program Debugger
Ctrl+X Perform an XSTEP command for the current task from the current
position of the execution pointer.

This command is equivalent to the following system monitor command:

XSTEP debug_task

Ctrl+Z Perform an SSTEP command for the current task from the current
position of the execution pointer.

This command is equivalent to the following system monitor command:

SSTEP debug_task

Table 3-9. Debugger Commands (Continued)

Key(s) Action
108 V+ Language User Guide, Rev A

Chapter 3 The Program Debugger
Using a Pointing Device With the Debugger

On graphics-based systems, double clicking on a variable or expression will
display the value of the variable or expression. (If program execution has not
progressed to the point where a variable has been assigned a value, double
clicking on the variable may return an undefined value message.)

Control of Program Execution

While debugging programs, you will want to pause execution at various points to
examine the status of the system (e.g., to display the values of program variables).

The following paragraphs describe how to control execution of the program being
debugged.

NOTE: Except for the special debugger commands mentioned
below, all the following techniques can be used even when the
program debugger is not in use.

Single-Step Execution

The debugger Ctrl+X command provides a convenient means for having program
execution stop after each instruction is processed. Each time Ctrl+X is entered, a
V+ XSTEP command is processed for the program being debugged.

The debugger Ctrl+Z command is provided to allow you to step across
subroutine calls. Each time Ctrl+Z is entered, an SSTEP command is processed for
the program being debugged. Thus, when the execution pointer is positioned at a
CALL or CALLS instruction, typing Ctrl+Z will cause the entire subroutine to be
executed, and execution will pause at the step following the subroutine call.
(Ctrl+Z acts exactly like Ctrl+X when the current instruction is not a subroutine
call.)

NOTE: You cannot single-step into a subroutine that was loaded
from a protected disk file. Thus, you must use Ctrl+Z to step across
any CALL of such a routine.

NOTE: The execution pointer (–>) will not be displayed while the
system is executing an instruction. Do not type a Ctrl+X or Ctrl+Z
until the execution pointer reappears.
V+ Language User Guide, Rev A 109

Chapter 3 The Program Debugger
PAUSE Instructions

Debug editor mode can be used to insert PAUSE instructions in the program at
strategic points. Then execution will pause when those points are reached. After
the pause has occurred, and you are ready to have execution resume, you can use
the PROCEED command.

The debugger Ctrl+P command provides a convenient means of issuing a
PROCEED command for the program being debugged.

The disadvantage of using PAUSE instructions, however, is that they must be
explicitly edited into the program and removed when debugging is completed.
The following section describes a more convenient way to achieve the same effect
as a PAUSE instruction.

Program Breakpoints

The V+ BPT command can be used to attach a breakpoint to an instruction. The
BPT allows either or both of the following responses to occur when the breakpoint
is encountered during execution:

• Execution stops at the flagged instruction (before it is executed).

• Values are displayed on the system terminal, showing the current status of
user-specified expressions.

To set breakpoints at various points in the program, enter the appropriate BPT
commands on the debugger command line to place the breakpoints and to specify
expressions to be evaluated when the breakpoints are encountered.

If you do not need to have an expression evaluated at a breakpoint, you can use
the debugger Ctrl+B command to set a pausing breakpoint—that is, one that will
cause execution to stop. To use the Ctrl+B command you must position the typing
cursor in the edit window so it is on the instruction of interest. Once the cursor is
positioned, you can type Ctrl+B to have a breakpoint placed at that instruction.

NOTE: You can use Go To (F3) (and other editor commands) to
change the program in the edit window. Thus, you can move to any
program you want before typing Ctrl+B to set a breakpoint. (You do
not have to explicitly change back to having the edit window show
the program currently stopped. The debugger will automatically
display the appropriate program the next time execution stops for
any reason.)
110 V+ Language User Guide, Rev A

Chapter 3 The Program Debugger
When program execution stops at a breakpoint, you can use the debugger Ctrl+N
command to cancel the breakpoint at the instruction. Or you can leave the
breakpoint set. In either case, you can type Ctrl+P when you are ready to have
program execution resume.

NOTE: A BPT command with no parameters will clear the
breakpoints in all the programs in the system memory (except those
programs that are executing). Entering a BPT command with no
parameters in debug monitor mode will clear breakpoints in the
current program.

Program Watchpoints

The V+ WATCH command attaches a watchpoint to a variable or user-specified
expression. When a watchpoint has been set, the specified variable or expression
is examined before each program instruction is executed by the task associated
with the watchpoint. The value determined is compared with the value recorded
when the watchpoint was originally defined. If the value has changed, the task is
stopped and the old and new values are displayed.

NOTE: Processing watchpoints consumes a lot of execution time
and can significantly slow down program execution. Be sure to
cancel all the watchpoints for an execution task after you are
through using the task for debugging.

There is no shorthand debugger command for setting watchpoints, but WATCH
commands can be entered on the debugger command line.
V+ Language User Guide, Rev A 111

Data Types and Operators 4
Introduction . 114

Dynamic Data Typing and Allocation 114
Variable Name Requirements 114

String Data Type . 116

ASCII Values . 117
Functions That Operate on String Data 117

Real and Integer Data Types 118

Numeric Representation 119
Numeric Expressions 119
Logical Expressions 120

Logical Constants 120
Functions That Operate on Numeric Data 120
Location Data Types 121
Transformations 121
Precision Points 121

Arrays . 122
Variable Classes . 123

Global Variables 123
Local Variables 123
Automatic Variables 124
Scope of Variables 125
Variable Initialization 127

Operators . 128
Assignment Operator 128
Mathematical Operators 128
Relational Operators 129
Logical Operators 130
Bitwise Logical Operators 131

String Operator . 132
Order of Evaluation . 132
113

Chapter 4 Introduction
Introduction

This chapter describes the data types used by V+.

Dynamic Data Typing and Allocation

V+ does not require you to declare variables or their data types. The first use of a
variable will determine its data type and allocate space for that variable. You can
create variables and assign them a type as needed. The program instruction:

real_var = 13.65

will create the variable real_var as a real variable and assign it the value 13.65 (if
the real_var had already been created, the instruction will merely change its
value).

Numeric, string, and transformation arrays up to three dimensions can be
declared dynamically.

Variable Name Requirements

The requirements for a valid variable name are:

1. Adept reserved keywords by cannot be used. Chapter 1 of the V+ Language
Reference Guide lists the basic keywords reserved by Adept. If you have
AdeptVision VXL, Chapter 1 of the AdeptVision Reference Guide lists the
additional reserved words used by the vision system.

2. The first character of a variable name must be a letter.

3. Allowable characters after the first character are letters, numbers, periods, and
the underline character.

4. Only the first 15 characters in a variable name are significant.

The following are all valid variable names:

x
count
dist.to.part.33
ref_frame
114 V+ Language User Guide, Rev A

Chapter 4 Introduction
The following names are invalid for the reasons indicated:

3x (first character not a letter)
one&two (& is an invalid name character)
pi (reserved word)
this_is_a_long_name (too many characters)

All but the last of these invalid names would be rejected by V+ with an error
message. The extra-long name would be truncated (without warning) to
this_is_a_long_.
V+ Language User Guide, Rev A 115

Chapter 4 String Data Type
String Data Type

Variable names are preceded with a dollar ($) sign to indicate that they contain
string data.1 The program instruction:

$string_name = "Adept V+"

allocates the string variable string_name (if it had not previously been allocated)
and assigns it the value Adept V+. Numbers can be used as strings with a
program instruction such as:

$numeric_string = "13.5"

where numeric _string is assigned the value 13.5. The program instruction:

$numeric_string = 13.5

will result in an error since you are attempting to assign a real value to a string
variable.

The following restrictions apply to string constants (e.g., "a string"):

• ASCII values 32 (space) to 126 (~) are acceptable

• ASCII 34 (") cannot be used in a string

Strings can contain from 0 to 128 characters. String variables can contain values
from 0 to 255 (see Appendix C for the interpretation of the full character set).

The following are all valid names for string variables:

$x $process $prototype.names $part_1

The following names are invalid for strings for the reasons indicated:

$3x (first character not a letter)
$one-two (- is an invalid name character)
factor ($ prefix missing)
$this_is_a_long_name (too many characters)

All but the last of these invalid names would be rejected by V+ with an error
message. The extra long name would be truncated (without warning) to
$this_is_a_long_.

1 The dollar sign is not considered in the character count of the variable name.
116 V+ Language User Guide, Rev A

Chapter 4 String Data Type
ASCII Values

An ASCII value is the numeric representation of a single ASCII character. (See
Appendix C for a complete list of the ASCII character set.) An ASCII value is
specified by prefixing a character with an apostrophe ('). Any ASCII character
from the space character (decimal value 32) to the tilde character (~, decimal value
126) can be used as an ASCII constant. Thus, the following are valid ASCII
constants:

'A '1 'v '%

Note that the ASCII value '1 (decimal value 49) is not the same as the integer
value 1 (decimal value 1.0). Also, it is not the same as the string value 1.

Functions That Operate on String Data

Table 6-1, “String-Related Functions,” on page 161 summarizes the V+ functions
that operate on string data.
V+ Language User Guide, Rev A 117

Chapter 4 Real and Integer Data Types
Real and Integer Data Types

Numbers that have a whole number and a fractional part (or mantissa and
exponent if the value is expressed in scientific notation) belong to the data type
real. Numeric values having only a whole number belong to the data type integer.
In general, V+ does not require you to differentiate between these two data types.
If an integer is required and you supply a real, V+ will promote the real to an
integer by rounding (not truncation). Where real values are required, V+
considers an integer a special case of a real that does not have a fractional part.
The default real type is a signed, 32-bit IEEE single-precision number. Real values
can also be stored as 64-bit IEEE double-precision numbers if they are specifically
typed using the DOUBLE instruction (see ”Variable Classes” on page 123 for
details).

The range of integer values is:

–16,777,216 to 16,777,215

The range of single-precision real values is:

±3.4*1038

The range of double-precision real values is:

±1.8*10307
118 V+ Language User Guide, Rev A

Chapter 4 Real and Integer Data Types
Numeric Representation

Numeric values can be represented in the standard decimal notation or in
scientific notation as illustrated above.

Numeric values can also be represented in octal, binary, and hexadecimal form.
Table 4-1 shows the required form for each integer representation.

Numeric Expressions

In almost all situations where a numeric value of a variable can be used, a
numeric expression can also be used. The following examples all result in x
having the same value.

x = 3
x = 6/2
x = SQRT(9)
x = SQR(2) - 1
x = 9 MOD 6

Table 4-1. Integer Value Representation

Prefix Example Representation

none –193 decimal

^B –^B1001 binary (maximum of 8
bits)

^ ^346 octal

^H ^H-23FF hexadecimal
V+ Language User Guide, Rev A 119

Chapter 4 Real and Integer Data Types
Logical Expressions

V+ does not have a specific logical (boolean) data type. Any numeric value,
variable, or expression can be used as a logical data type. V+ considers 0 to be
false and any other value to be true. When a real value is used as a logical data
type, the value is first promoted to an integer.

Logical Constants

There are four logical constants, TRUE and ON that will resolve to –1, and FALSE
and OFF that will resolve to 0. These constants can be used anywhere a boolean
expression is expected.

A logical value, variable, or expression can be used anywhere a decision is
required. In this example, an input signal is tested. If the signal is on (high) the
variable dio.sample is given the value true, and the IF clause executes. Otherwise,
the ELSE clause executes:

dio.sample = SIG(1001)
IF dio.sample THEN

; Steps to take when signal is on (high)

ELSE

; Steps to take when signal is off (low)

END

Since a logical expression can be used in place of a logical variable, the first two
lines of this example could be combined to:

IF SIG(1001) THEN

Functions That Operate on Numeric Data

Table 6-2, “Numeric Value Functions,” on page 164 summarizes the V+
functions that operate on numerical data.
120 V+ Language User Guide, Rev A

Chapter 4 Location Data Types
Location Data Types

This section gives a brief explanation of location data. Chapter 8 covers locations
and their use in detail.

Transformations

A data type particular to V+ is the transformation data type. This data type is a
collection of several values that uniquely identify a location in Cartesian space.

The creation and modification of location variables are discussed in Chapter 8.

Precision Points

Precision points are a second data type particular to V+. A precision point is a
collection of joint angles and translational values that uniquely identify the
position and orientation of a robot. The difference between transformation
variables and precision-point variables will become more apparent when robot
motion instructions are discussed in Chapter 8.
V+ Language User Guide, Rev A 121

Chapter 4 Arrays
Arrays

V+ supports arrays of up to three dimensions. Any V+ data type can be stored in
an array. Like simple variables, array allocation (and typing) is dynamic. Unless
they are declared to be AUTOmatic, array sizes do not have to be declared.

For example:

array.one[2] = 36

allocates space for a one-dimensional array named array.one and places the value
36 in row two of the array. (The numbers inside the brackets ([]) are referred to as
indices. An array index can also be a variable or an expression.)

$array.two[4,5] = "row 4, col 5"

allocates space for a two-dimensional array named array.two and places row 4,
col 5 in row four, column five of the array.

array.three[2,2,4] = 10.5

allocates space for a three-dimensional array named array.three and places the
value 10.5 in row two, column two, range four.

If any of the above instructions were executed and the array had already been
declared, the instruction would merely place the value in the appropriate
location. If a data type different from the one the array was originally created with
is specified, an error will result.

Arrays are allocated in blocks of 16. Thus, the instruction:

any_array[2] = 50

will result in allocation of array elements 0 - 15. The instructions:

any_array[2] = 50
any_array[20] = 75

will result in the allocation of array elements 0 - 31.

Array allocation is most efficient when the highest range index exceeds the
highest column index, and the highest column index exceeds the highest row
index. (Row is the first element, column is the second element, and range is the
third element.)
122 V+ Language User Guide, Rev A

Chapter 4 Variable Classes
Variable Classes

In addition to having a data type, variables belong to one of three classes,
GLOBAL, LOCAL, or AUTOMATIC. These classes determine how a variable can
be altered by different calling instances of a program.

Global Variables

This is the default class. Unless a variable has been specifically declared to be
LOCAL or AUTO, a newly created variable will be considered global. Once a
global variable has been initialized, it is available to any executing program1 until
the variable is deleted or all programs that reference it are removed from system
memory (with a DELETE or ZERO instruction). Global variables can be explicitly
declared with the GLOBAL program instruction.

GLOBAL DOUBLE dbl_real_var

NOTE: For double-precision real variables to be global, they must
be explicitly declared as global in each program they are used in:

Global variables are very powerful and should be used carefully and consciously.
If you cannot think of a good reason to make a variable global, good
programming practice dictates that you declare it to be LOCAL or AUTO.

Local Variables

Local variables are created by a program instruction similar to:

LOCAL the_local_var

where the variable the_local_var is created as a local variable. Local variables can
be changed only by the program they are declared in.

An important difference between local variables in V+ and local variables in most
other high-level languages is that V+ local variables are local to all copies (calling
instances) of a program, not just a particular calling instance of that program.
This distinction is critical if you write recursive programs. In recursive programs
you will generally want to use the next variable class, AUTO.

1 Unless the program has declared a LOCAL or AUTO variable with the same name.
V+ Language User Guide, Rev A 123

Chapter 4 Variable Classes
Automatic Variables

Automatic variables are created by a program instruction similar to:

AUTO the_auto_var

where the_auto_var is created as an automatic variable. Automatic variables can
be changed only by a particular calling instance of a program.

AUTO statements cannot be added or deleted when the program is on the stack.
See ”Special Editing Situations” on page 85.

NOTE: If LOCAL or AUTO variables are to be double precision, the
DOUBLE keyword must be used:

AUTO DOUBLE dbl_auto_var

Automatic variables are more like the local variables of other high-level
languages. If you are writing programs using a recursive algorithm, you will most
likely want to use variables in the automatic class.
124 V+ Language User Guide, Rev A

Chapter 4 Variable Classes
Scope of Variables

The scope of a variable refers to the range of programs that can see that variable.
Figure 4-1 shows the scope of the different variable classes. A variable can be
altered by the program(s) indicated in the shaded area of the box it is in plus any
programs that are in smaller boxes. When a program declares an AUTO or
LOCAL variable, any GLOBAL variables of the same name created in other
programs are not accessible.

Figure 4-1. Variable Scoping

Figure 4-2 on page 126 shows an example of using the various variable classes.
Notice that:

• prog_1 declares a to be GLOBAL. Thus, it is available to all programs not
having an AUTO or LOCAL a.

• prog_2 creates an undeclared variable b. By default, b is GLOBAL and
available to other programs not having a LOCAL or AUTO b.

• prog_3 declares an AUTO a and will not be able to use GLOBAL a. After
prog_3 completes, the value of AUTO a is deleted.

Any Program

Program Declared in

Copy of Program
Declared in

Global
Variables

Local
Variables

Automatic
Variables
V+ Language User Guide, Rev A 125

Chapter 4 Variable Classes
• prog_4 declares a LOCAL a and, therefore, will not be able to use GLOBAL a.
Unlike the AUTO a in prog_3, however, the value of LOCAL a is stored and is
available for any future CALLs to prog_4.

Figure 4-2. Variable Scope Example

.PROGRAM prog_1()
 GLOBAL a
 a = 4
 CALL prog_2()

.PROGRAM prog_2()
 GLOBAL a
 a = 7
 b = 12
 CALL prog_3()

.PROGRAM prog_3()
 AUTO a
 a = 23
 b = 56
 CALL prog_4()

.PROGRAM prog_4()
 LOCAL a
 a = 2
 CALL prog_3()

.PROGRAM prog_3()
 AUTO a
 a = 23
 b = 56
 CALL prog_4()

a (AUTO defined
 for each time
 program is called)

a (LOCAL defined
 once for all calls
 to "prog_4")

b (GLOBAL to
 all programs
 not having AUTO
 or LOCAL b)

a (GLOBAL to
 all programs
 not having AUTO
 or LOCAL a)

.PROGRAM prog_4()
 LOCAL a
 a = 2
 CALL prog_3()

a (AUTO defined
 for each time
 program is called)
126 V+ Language User Guide, Rev A

Chapter 4 Variable Classes
Variable Initialization

Before a variable can be used it must be initialized. String and numeric variables
can be initialized by placing them on the left side of an assignment statement. The
statements:

var_one = 36

$var_two = "two"

will initialize the variables var_one and $var_two.

var_one = var_two

will initialize var_one if var_two has already been initialized. Otherwise, an
undefined value error will be returned. A variable can never be initialized on the
right side of an assignment statement (var_two could never be initialized by the
above statement).

The statement:

var_one = var_one + 10

would be valid only if var_one had been initialized in a previous statement.

Strings, numeric variables, and location variables can be initialized by being
loaded from a disk file.

Strings and numeric variables can be initialized with the PROMPT instruction.

Transformations and precision points can be initialized with the SET or HERE
program instructions. They can also be initialized with the HERE and POINT
monitor commands or with the TEACH monitor command and the manual
control pendant. See the V+ Operating System Reference Guide for information on
monitor commands.
V+ Language User Guide, Rev A 127

Chapter 4 Operators
Operators

The following sections discuss the valid operators.

Assignment Operator

The equal sign (=) is used to assign a value to a numeric or string variable. The
variable being assigned a value must appear by itself on the left side of the equal
sign. The right side of the equal sign can contain any variable or value of the same
data type as the left side, or any expression that resolves to the same data type as
the left side. Any variables used on the right side of an assignment operator must
have been previously initialized.

Location variables require the use of the SET instruction for a valid assignment
statement (see Chapter 8). The instruction:

loc_var1 = loc_var2

is unacceptable for location and precision-point variables.

Mathematical Operators

V+ uses the standard mathematical operators shown in Table 4-2.

Table 4-2. Mathematical Operators

Symbol Function

+ addition

– subtraction or unary minus

∗ multiplication

/ division

MOD modular (remainder) division
128 V+ Language User Guide, Rev A

Chapter 4 Operators
Relational Operators

Relational operators are used in expressions that yield a boolean value. The
resolution of an expression containing a relational operator will always be –1
(true) or 0 (false) and will tell you if the specific relation stated in the expression is
true or false. The most common use of relational expressions is with the control
structures discussed in Chapter 5.

V+ uses the standard relational operators shown in Table 4-3.

If x has a value of 6 and y has a value of 10, the following boolean expressions
would resolve to –1 (true):

x < y

y >= x

y <> x

and these expressions would resolve to 0 (false):

x > y

x <> 6

x == y

Table 4-3. Relational Operators

Symbol Function

== equal to

< less than

> greater than

<= or =< less than or equal to

>= or => greater than or equal to

<> not equal to
V+ Language User Guide, Rev A 129

Chapter 4 Operators
Note the difference between the assignment operator = and the relational
operator ==:

z = x == y

In this example, z will be assigned a value of 0 since the boolean expression x == y
is false and would therefore resolve to 0. A relational operator will never change
the value of the variables on either side of the relational operator.

Logical Operators

Logical operators affect the resolution of a boolean variable or expression, and
combine several boolean expressions so they resolve to a single boolean value.

V+ uses the standard logical operators shown in Table 4-4.

If x = 6 and y = 10, the following expressions will resolve to –1 (true):

NOT(x == 7)

(x > 2) AND (y =< 10)

And these expressions will resolve to 0 (false):

NOT(x == 6)

(x < 2) OR (y > 10)

Table 4-4. Logical Operators

Symbol Effect

NOT Complement the expression or value;
makes a true expression or value false
and vice versa

AND Force two or more expressions to
resolve to true before the entire
expression is true

OR Force at least one expression to resolve
to true before the entire expression is
true

XOR One expression must be true and one
must be false before the entire
expression is true.
130 V+ Language User Guide, Rev A

Chapter 4 Operators
Bitwise Logical Operators

Bitwise logical operators operate on pairs of integers. The corresponding bits of
each integer are compared and the result is stored in the same bit position in a
third binary number. Table 4-5 lists the V+ bitwise logical operators.

Examples:

x = ^B1001001 BAND ^B1110011

results in x having a value of ^B1000001.

x = COM ^B100001

results in x having a value of ^B11110.

Table 4-5. Bitwise Logical Operators

Operator Effect

BAND Each bit is compared using and logic. If both bits are 1, then the
corresponding bit will be set to 1. Otherwise, the bit is set to 0.

BOR Each bit is compared using or logic. If either bit is 1, then the
corresponding bit will be set to 1. If both bits are 0, the
corresponding bit will be set to 0.

BXOR Each bit is compared using exclusive or logic. If both bits are 1 or
both bits are 0, the corresponding bit will be set to 0. When one bit
is 1 and the other is 0, the corresponding bit will be set to 1.

COM This operator works on only one number. Each bit is
complemented: 1s become 0s and 0s become 1s.
V+ Language User Guide, Rev A 131

Chapter 4 String Operator
String Operator

Strings can be concatenated (joined) using the plus sign. For example:

$name = "Adept "

$incorp = ", Inc."

$coname = $name + "Technology" + $incorp

results in the variable $coname having the value Adept Technology, Inc..

Order of Evaluation

Expressions containing more than one operator are not evaluated in a simple left
to right manner. Table 4-6 lists the order in which operators are evaluated. Within
an expression, functions are evaluated first, with expressions within the function
evaluated according to the table.

The order of evaluation can be changed using parentheses. Operators within each
pair of parentheses, starting with the most deeply nested pair, are completely
evaluated according to the rules in Table 4-6 before any operators outside the
parentheses are evaluated.

Operators on the same level in the table are evaluated strictly left to right.

Table 4-6. Order of Operator Evaluation

Operator

NOT, COM

– (Unary minus)

∗, /, MOD, AND, BAND

+, –, OR, BOR, XOR, BXOR

==, <=, >=, <, >, <>
132 V+ Language User Guide, Rev A

Program Control 5
Introduction . 134

Unconditional Branch Instructions 134

GOTO . 134
CALL . 135
CALLS . 136

Program Interrupt Instructions 137

WAIT . 137
WAIT.EVENT . 137
REACT and REACTI 138
REACTE . 139
HALT, STOP, and PAUSE 140
BRAKE, BREAK, and DELAY 140
Additional Program Interrupt Instructions 140
Program Interrupt Example 141

Logical (Boolean) Expressions 144

Conditional Branching Instructions 145

IF...GOTO . 145
IF...THEN...ELSE 145
CASE...value OF 147

Example 148
Looping Structures . 149

FOR . 149
Examples 150

DO...UNTIL . 151
WHILE...DO . 152

Summary of Program Control Keywords 154

Controlling Programs in Multiple CPU Systems 157
133

Chapter 5 Introduction
Introduction

This chapter introduces the structures available in V+ to control program
execution. These structures include the looping and branching instructions
common to most high-level languages as well as some instructions specific to V+.

Unconditional Branch Instructions

There are three unconditional branching instructions in V+:

• GOTO

• CALL

• CALLS

GOTO

The GOTO instruction causes program execution to branch immediately to a
program label instruction somewhere else in the program. The syntax for GOTO
is:

GOTO label

label is an integer entered at the beginning of a line of program code.
label is not the same as the program step numbers: Step numbers
are assigned by the system; labels are entered by the programmer as
the opening to a line of code. In the next code example, the numbers
in the first column are program step numbers (these numbers are
not displayed in the SEE editor). The numbers in the second column
are program labels.

61 .
62 GOTO 100
63 .
64 .
65 100TYPE "The instruction GOTO 100 got me here."
66 .
134 V+ Language User Guide, Rev A

Chapter 5 Unconditional Branch Instructions
A GOTO instruction can branch to a label before or after the GOTO instruction.

GOTO instructions can make program logic difficult to follow and debug,
especially in a long, complicated program with many subroutine calls. Use GOTO
instructions with care. A common use of GOTO is as an EXIT routine or EXIT on
error instruction.

CALL

The CALL and CALLS instructions are used in V+ to implement subroutine calls.
The CALL instruction causes program execution to be suspended and execution
of a new program to begin. When the new program has completed execution,
execution of the original program will resume at the instruction after the CALL
instruction. The details of subroutine creation, execution, and parameter passing
are covered in ”Subroutines” on page 56. The simplified syntax for a CALL
instruction is:

CALL program (arg_list)

program is the name of the program to be called. The program name must be
specified exactly, and the program being CALLed must be resident
in system memory.

arg_list is the list of arguments being passed to the subroutine. These argu-
ments can be passed either by value or by reference and must agree
with the arguments expected by the program being called. Subrou-
tines and argument lists are described in ”Subroutines” on page 56.

The code:

48 .
49 CALL check_data(locx, locy, length)
50 .

will suspend execution of the calling program, pass the arguments locx, locy, and
length to program check_data, execute check_data, and (after check_data has
completed execution) resume execution of the calling program at step 50.
V+ Language User Guide, Rev A 135

Chapter 5 Unconditional Branch Instructions
CALLS

The CALLS instruction is identical to the CALL instruction except for the
specification of program . For a CALLS instruction, program is a string value,
variable, or expression. This allows you to call different subroutines under
different conditions using the same line of code. (These different subroutines
must have the same arg_list .)

The code:

47 .
48 $program_name = $program_list[program_select]
49 CALLS $program_name(length, width)
50 .

will suspend execution of the calling program, pass the parameters length and
width to the program specified by array index program_select from the array
$program_list, execute the specified program, and resume execution of the calling
program at step 50.
136 V+ Language User Guide, Rev A

Chapter 5 Program Interrupt Instructions
Program Interrupt Instructions

V+ provides several ways of suspending or terminating program execution. A
program can be put on hold until a specific condition becomes TRUE using the
WAIT instruction. A program can be put on hold for a specified time period or
until an event is generated in another task by the WAIT.EVENT instruction. A
program can be interrupted based on a state transition of a digital input signal
with the REACT and REACTI instructions. Program errors can be intercepted
and handled with a REACTE instruction. Program execution can be terminated
with the HALT, STOP, and PAUSE commands. These instructions will interrupt
the program they are contained in. Any programs running as other tasks will not
be affected. Robot motion can be controlled with the BRAKE, BREAK, and
DELAY instructions. (The ABORT and PROCEED monitor commands can also be
used to suspend and proceed programs, see the V+ Operating System Reference
Guide for details.)

WAIT

WAIT suspends program execution until a condition (or conditions) becomes
true.

WAIT SIG(1032, −1028)

will delay execution until digital input signal 1032 is on and 1028 is off.

WAIT TIMER(1) > 10

will suspend execution until timer 1 returns a value greater than 10.

WAIT.EVENT

The instruction:

WAIT.EVENT , 3.7

will suspend execution for 3.7 seconds. This wait is more efficient than waiting for
a timer (as in the previous example) since the task does not have to loop
continually checking the timer value.

The instruction:

WAIT.EVENT

will suspend execution until another task issues a SET.EVENT instruction to the
waiting task. If the SET.EVENT does not occur, the task will wait indefinitely.
V+ Language User Guide, Rev A 137

Chapter 5 Program Interrupt Instructions
REACT and REACTI

When a REACT or REACTI instruction is encountered, the program will begin
monitoring a digital input signal specified in the REACT instruction. This signal
is monitored in the background with program execution continuing normally
until the specified signal transitions. When (and if) a transition is detected, the
program will suspend execution at the currently executing step. REACT and
REACTI suspend execution of the current program and call a specified
subroutine. Additionally, REACTI issues a BRAKE instruction to immediately
stop the current robot motion.

Both instructions specify a subroutine to be run when the digital transition is
detected. After the specified subroutine has completed, program execution will
resume at the step executing when the digital transition was detected.

Digital signals 1001 - 1012 and 2001 - 2008 can be used for REACT instructions.

The signal monitoring initiated by REACT/REACTI is in effect until another
REACT/REACTI or IGNORE instruction is encountered. If the specified signal
transition is not detected before an IGNORE or second REACT/REACTI
instruction is encountered, the REACT/REACTI instruction will have no effect on
program execution.

The syntax for a REACT or REACTI instruction is:

REACT signal_number, program , priority

signal_number digital input signal in the range 1001 to 1012 or 2001 to 2008.

program the subroutine (and its argument list) that is to be executed when a
react is initiated.

priority number from 1 to 127 that indicates the relative importance of the
reaction.

The following code implements a REACT routine:

35 ; Look for a change in signal 1001 from "on" to "off".
36 ; Call subroutine "alarm if a change is detected.
37 ; Set priority of "alarm" to 10 (default would be 1).
38 ; The main program has default priority of 0.
39
40 REACT −1001, alarm, 10
41
42 ; REACT will be in effect for the following code
43
44 MOVE a
138 V+ Language User Guide, Rev A

Chapter 5 Program Interrupt Instructions
45 MOVE b
46 LOCK 20;Defer any REACTions to "alarm"
47 MOVE c
48 MOVE d
49 LOCK 0;Allow REACTions
50 MOVE e
51
52 ; Disable monitoring of signal 1001
53
54 IGNORE −1001
55 .

If signal 1001 transitions during execution of step 43, step 43 will complete, the
subroutine alarm will be called, and execution will resume at step 44.

If signal 1001 transitions during execution of step 47, steps 47, 48, and 49 will
complete (since the program had been given a higher priority than REACT), the
subroutine alarm will be called, and execution will resume at step 50.1

REACTE

REACTE enables a reaction program that is run whenever a system error that
would cause program execution to terminate is encountered. This includes all
robot errors, hardware errors, and most system errors (it does NOT include I/O
errors).

Unlike REACT and REACTI, REACTE cannot be deferred based on priority
considerations. The instruction:

REACTE trouble

will enable monitoring of system errors and execute the program trouble
whenever a system error is generated.

1 The LOCK instruction can be used to control execution of a program after a REACT or REACTI
subroutine has completed.
V+ Language User Guide, Rev A 139

Chapter 5 Program Interrupt Instructions
HALT, STOP, and PAUSE

When a HALT instruction is encountered, program execution is terminated, and
any open serial or disk units are DETACHED and FCLOSEd. PROCEED or
RETRY will not resume execution.

When a STOP instruction is encountered, execution of the current program cycle
is terminated and the next execution cycle resumes at the first step of the
program. If the STOP instruction is encountered on the last execution cycle,
program execution is terminated, and any open serial or disk units are
DETACHED and FCLOSEd. PROCEED or RETRY will not resume execution. (See
EXECUTE for details on execution cycles.) When a PAUSE instruction is
encountered, execution will be suspended. After a PAUSE, the system prompt
will appear and Monitor Commands can be executed. This allows you to check
the values of program variables and set system parameters. This is useful during
program debugging. The monitor command PROCEED will resume execution of
a program interrupted with the PAUSE command.

NOTE: The PANIC monitor command halts program execution
and robot motion immediately but leaves HIGH power on.

BRAKE, BREAK, and DELAY

BRAKE aborts the current robot motion. This instruction can be issued from any
task. Program execution is not suspended and the program (executing as task 0)
will continue executing at the next instruction. BREAK suspends program
execution (defeats forward processing) until the current robot motion is
completed. This instruction can be executed only from a robot control program
and is used when completion of the current robot motion must occur before
execution of the next instruction. A DELAY instruction specifies the minimum
delay between robot motions (not program instructions).

Additional Program Interrupt Instructions

You can specify a parameter in the instruction line for the I/O instructions
ATTACH, READ, GETC, and WRITE that causes the program to suspend until the
I/O request has been successfully completed.

Third party boards may also generate system level interrupts. See the descriptions
of CLEAR.EVENT and WAIT.EVENT for details.
140 V+ Language User Guide, Rev A

Chapter 5 Program Interrupt Instructions
Program Interrupt Example

Figure 5-1 on page 143 shows how the task and program priority scheme works.
It also shows how the asynchronous and program interrupt instructions work
within the priority scheme. The example makes the following simplifying
assumptions:

• Task 1 runs in all time slices at priority 30

• Task 2 runs in all time slices at priority 20

• All system tasks are ignored

• All system interrupts are ignored

The illustration shows the time lines of executing programs. A solid line indicates
a program is running, and a dotted line indicates a program is waiting. The Y axis
shows the program priority. The X axis is divided into 16-millisecond major
cycles. The example shows two tasks executing concurrently with REACT
routines enabled for each task. Note how the LOCK instructions and triggering of
the REACT routines change the program priority.

The sequence of events for the example is:

➊ Task 1 is running program prog_a at program priority 0. A reaction
program based on signal 1003 is enabled at priority 5.

➋ Signal 1003 is asserted externally. The signal transition is not
detected until the next major cycle.

➌ The signal 1003 transition is detected. The task 1 reaction program
begins execution, interrupting prog_a.

➍ The task 1 reaction program reenables itself and completes by issu-
ing a RETURN instruction. prog_a resumes execution in task 1.

➎ Task 1 prog_a issues a CLEAR.EVENT instruction followed by a
WAIT.EVENT instruction to wait for its event flag to be set. Task 1 is
suspended, and task 2 resumes execution of prog_b. Task 2 has a
reaction program based on signal 1010 enabled at priority 5.

➏ Task 2 prog_b issues a LOCK 10 instruction to raise its program pri-
ority to level 10.

➐ Signal 1010 is asserted externally. The signal transition is not
detected until the next major cycle.
V+ Language User Guide, Rev A 141

Chapter 5 Program Interrupt Instructions
➑ The signal 1010 transition is detected, and the task 2 reaction is trig-
gered. However, since the reaction is at level 5 and the current pro-
gram priority is 10, the reaction execution is deferred.

➒ Task 2 prog_b issues a LOCK 0 instruction to lower its program pri-
ority to level 0. Since a level 5 reaction program is pending, it begins
execution immediately and sets the program priority to 5.

➓ Signal 1003 is asserted externally. The signal transition is not
detected until the next major cycle.

The signal 1003 transition is detected which triggers the task 1 reac-
tion routine and also sets the task 1 event flag. Since task 1 has a
higher priority (30) than task 2 (20), task 1 begins executing its reac-
tion routine and task 2 is suspended.

The task 1 reaction routine completes by issuing a RETURN instruc-
tion. Control returns to prog_a in task 1.

Task 1 prog_a issues a CLEAR.EVENT instruction followed by a
WAIT.EVENT instruction to wait for its event flag to be set. Task 1 is
suspended and task 2 resumes execution of its reaction routine.

The task 2 reaction routine completes by issuing a RETURN instruc-
tion. Control returns to prog_b in task 2.

Task 2 prog_b issues a SET.EVENT 1 instruction, setting the event
flag for task 1. Task 2 now issues a RELEASE program instruction to
yield control of the CPU.

Since the task 1 event flag is now set, and its priority is higher than
task 2, task 1 resumes execution, and task 2 is suspended.

11

12

13

14

15
142 V+ Language User Guide, Rev A

Chapter 5 Program Interrupt Instructions
Figure 5-1. Priority Example 2

0

5

10

0

5

10

= task waiting
= task running main program
= task running reaction routine

P
ro

gr
am

 P
ri

or
ity

1 6 m s V+ M a j o r C y c l e s ➟

➟

task 1 running prog_a, task priority = 30

➊ ➋ ➌ ➍ ➎

➏ ➐ ➑ ➒ ➓ 11

12 13

14 15

task 2 running prog_b, task priority = 20
V+ Language User Guide, Rev A 143

Chapter 5 Logical (Boolean) Expressions
Logical (Boolean) Expressions

The next two sections discuss program control structures whose execution
depends on an expression or variable that will take on a boolean value (a variable
that is either true or false, or an expression that resolves to true or false). An
expression can take into account any number of variables or digital input signals
as long as the final resolution of the expression is a boolean value. In V+, any
number (real or integer) can satisfy this requirement. 0 is considered false; any
non-zero number is considered true. There are four system constants, TRUE and
ON that resolve to –1, and FALSE and FALSE, that resolve to 0.

Examples of valid boolean expressions:

y > 32

NOT(y > 32)

x == 56

x AND y

(x AND y) OR (var1 < var2)

−1

See the section ”Relational Operators” on page 129 for details on V+ relational
operators.
144 V+ Language User Guide, Rev A

Chapter 5 Conditional Branching Instructions
Conditional Branching Instructions

Conditional branching instructions allow you to execute blocks of code based on
the current values of program variables or expressions. V+ has three conditional
branch instructions:

• IF...GOTO

• IF...THEN...ELSE

• CASE...value OF

IF...GOTO

IF...GOTO behaves similarly to GOTO, but a condition can be attached to the
branch. If the instruction:

IF logical_expression GOTO 100

is encountered, the branch to label 100 will occur only if logical_expression has a
value of true.

IF...THEN...ELSE

The basic conditional instruction is the IF...THEN...ELSE clause. This instruction
has two forms:

IF expression THEN
code block (executed when expression is true)

END

IF expression THEN
code block (executed when expression is true)

ELSE
code block (executed when expression is false)

END

expression is any well-formed boolean expression (described above).
V+ Language User Guide, Rev A 145

Chapter 5 Conditional Branching Instructions
In the following example, if program execution reaches step 59 and num_parts is
greater than 75, step 60 will be executed. Otherwise, execution will resume at step
62.

56 .
57 ;CALL "check_num" if "num_parts" is greater than 75
58
59 IF num_parts > 75 THEN
60 CALL check_num(num_parts)
61 END
62 .

In the following example, if program execution reaches step 37 with input signal
1033 on and need_part true, the program will execute steps 38 to 40 and resume at
step 44. Otherwise, it will execute step 42 and resume at step 44.

32 .
33 ; If I/O signal 1033 is on and Boolean "need_part" is
34 ; true, then pick up the part
35 ; else alert the operator.
36
37 IF SIG(1033) AND need_part THEN
38 MOVE loc1
39 CLOSEI
40 DEPART 50
41 ELSE
42 TYPE "Part not picked up."
43 END
44 .
146 V+ Language User Guide, Rev A

Chapter 5 Conditional Branching Instructions
CASE...value OF

The IF...THEN...ELSE structure allows a program to take one of two different
actions. The CASE structure will allow a program to take one of many different
actions based on the value of a variable. The variable used must be a real or an
integer. The form of the CASE structure is:

CASE target OF

VALUE list_of_values:

code block (executed when target is in list_of_values)

VALUE list_of_values:

code block (executed when target is in list_of_values)

...

ANY

code block (executed when target not in any
list_of_values)

END

target real value to match.

list_of_values list (separated by commas) of real values. If one of the values
in the list equals target , the code following that value statement
will be executed.
V+ Language User Guide, Rev A 147

Chapter 5 Conditional Branching Instructions
Example

65 ; Create a menu structure using a CASE statement
66
67 50 TYPE "1. Execute the program."
68 TYPE "2. Execute the programmer."
69 TYPE "3. Execute the computer."
70 PROMPT "Enter menu selection.", select
71
72 CASE select OF
73 VALUE 1:
74 CALL exec_program()
75 VALUE 2:
76 CALL exec_programmer()
77 VALUE 3:
78 CALL exec_computer()
79 ANY
80 PROMPT "Entry must be from 1 to 3", select
81 GOTO 50
82 END
83 .

If the above code is rewritten without an ANY statement, and a value other than
1, 2, or 3 is entered, the program will continue execution at step 83 without
executing any program.
148 V+ Language User Guide, Rev A

Chapter 5 Looping Structures
Looping Structures

In many cases, you will want the program to execute a block of code more than
once. V+ has three looping structures that allow you to execute blocks of code a
variable number of times. The three instructions are:

• FOR

• DO...UNTIL

• WHILE...DO

FOR

A FOR instruction creates an execution loop that will execute a given block of
code a specified number of times. The basic form of a FOR loop is:

FOR index = start_val TO end_val STEP incr

.

code block

.

END

index is a real variable that will keep track of the number of times the FOR
loop has been executed. This variable is available for use within the
loop.

start_val is a real expression for the starting value of the index .

end_val is a real expression for the ending value of the index . Execution of
the loop will terminate when index reaches this value.

incr is a real expression indicating the amount index is to be incre-
mented after each execution of the loop. The default value is 1.
V+ Language User Guide, Rev A 149

Chapter 5 Looping Structures
Examples

88 .
89 ; Output even elements of array "$names" (up to index
32)
90
91 FOR i = 2 TO 32 STEP 2
92 TYPE $names[i]
93 END
94 .

.
102 .
103 ; Output the values of the 2 dimensional array "values"
in
104 ; column and row form (10 rows by 10 columns)
105
106 FOR i = 1 TO 10
107 FOR j = 1 to 10
108 TYPE values[i,j], /S
109 END
110 TYPE " ", /C1
111 END
112 .

A FOR loop can be made to count backward by entering a negative value for the
step increment.

13 .
14 ; Count backward from 10 to 1
15
16 FOR i = 10 TO 1 STEP −1
17 TYPE i
18 END
19 .

Changing the value of index inside a FOR loop will cause the loop to behave
improperly. To avoid problems with the index , make the index variable an auto
variable and do not change the index from inside the FOR loop. Changes to the
starting and ending variables will not affect the FOR loop once it is executing.
150 V+ Language User Guide, Rev A

Chapter 5 Looping Structures
DO...UNTIL

DO...UNTIL is a looping structure that will execute a given block of code an
indeterminate number of times. Termination of the loop depends on the boolean
expression or variable that controls the loop becoming true. The boolean is tested
after each execution of the code block—if the expression evaluates to true, the
loop is not executed again. Since the expression is not evaluated until after the
code block has been executed, the code block will always execute at least once.
The form for this looping structure is:

DO

.

code block

.

UNTIL expression

expression is any well-formed boolean expression (described above). This
expression must eventually evaluate to true, or the loop will exe-
cute indefinitely (yes, the infamous infinite loop).

20 .
21 ; Output the numbers 1 to 100 to the screen
22
23 x = 1
24 DO
25 TYPE x
26 x = x + 1
27 UNTIL x > 100
28 .

Step 26 insures that x will reach a high enough value so that the expression x > 100
will become true.

43 .
44 ; Echo up to 15 characters to the screen. Stop when 15
45 ; characters or the character "#" have been entered.
46
47 x = 1
48 DO
49 PROMPT "Enter a character: ", $ans
V+ Language User Guide, Rev A 151

Chapter 5 Looping Structures
50 TYPE $ans
51 x = x + 1
52 UNTIL (x > 15) OR ($ans == "#")
53 .

In this code, either x reaching 15 or # being entered at the PROMPT instruction
will terminate the loop. As long as the operator enters enough characters, the loop
will terminate.

WHILE...DO

WHILE...DO is a looping structure similar to DO...UNTIL except the boolean
expression is evaluated at the beginning of the loop instead of at the end. This
means that if the condition indicated by the expression is true when the
WHILE...DO instruction is encountered, the code within the loop will not be
executed at all.

WHILE...DO loops are susceptible to infinite looping just as DO...UNTIL loops
are. The expression controlling the loop must eventually evaluate to true for the
loop to terminate. The form of the WHILE...DO looping structure is:

WHILE expression DO

code block

END

expression is any well-formed boolean expression as described at the beginning
of this section.

The following code shows a WHILE...DO loop being used to validate input. Since
the boolean expression is tested before the loop is executed, the code within the
loop will be executed only when the operator inputs an unacceptable value at step
23.

20 .
21 ; Loop until an operator inputs a value in the range
32-64
22
23 PROMPT "Enter a number in the range 32 to 64.", ans
24 WHILE (ans < 32) OR (ans > 64) DO
25 PROMPT "Number must be in the range 32-64.", ans
26 END
27 .
152 V+ Language User Guide, Rev A

Chapter 5 Looping Structures
In the above code, an operator could enter a nonnumeric value in which case the
program would crash. A more robust strategy would be to use a string variable in
the PROMPT instruction and then use the $DECODE and VAL functions to
evaluate the input.

In the following code, if digital signal 1033 is on when step 69 is reached, the loop
will not execute, and the program will continue at step 73. If digital signal 1032 is
off, the loop will execute continually until the signal comes on.

65 .
66 ; Create a busy loop waiting for signal
67 ; 1033 to turn "on"
68 WHILE NOT SIG(1033) DO
69
70 ;Wait for signal
71
72 END
73 .
V+ Language User Guide, Rev A 153

Chapter 5 Summary of Program Control Keywords
Summary of Program Control Keywords

Table 5-1 summarizes the program control instructions. See the V+ Language
Reference Guide for details on these commands.

Table 5-1. Program Control Operations

Keyword Type Function

ABORT Program
Instruction

Terminate execution of a control program.

CALL Program
Instruction

Suspend execution of the current program and
continue execution with a new program (that is, a
subroutine).

CALLS Program
Instruction

Suspend execution of the current program and
continue execution with a new program (that is, a
subroutine) specified with a string value.

CASE Program
Instruction

Initiate processing of a CASE structure by defining
the value of interest.

CLEAR.EVENT Program
Instruction

Clear an event associated with the specified task.

CYCLE.END Program
Instruction

Terminate the specified control program the next
time it executes a STOP program instruction (or its
equivalent). Suspend processing of an application
program or command program until a program
completes execution.

DO Program
Instruction

Introduce a DO program structure.

EXECUTE Program
Instruction

Begin execution of a control program.

EXECUTE Monitor
Command

Begin execution of a control program.

EXIT Program
Instruction

Exit a FOR, DO, or WHILE control structure.

FOR Program
Instruction

Execute a group of program instructions a certain
number of times.
154 V+ Language User Guide, Rev A

Chapter 5 Summary of Program Control Keywords
GET.EVENT Real-Valued
Function

Return events that are set for the specified task.

GOTO Program
Instruction

Perform an unconditional branch to the program
step identified by the given label.

HALT Program
Instruction

Stop program execution and do not allow the
program to be resumed.

IF...GOTO Program
Instruction

Branch to the specified label if the value of a logical
expression is TRUE (nonzero).

IF...THEN Program
Instruction

Conditionally execute a group of instructions (or one
of two groups) depending on the result of a logical
expression.

INT.EVENT Program
Instruction

Send a SET.EVENT instruction to the current task if
an interrupt occurs on a specified VME bus vector.

LOCK Program
Instruction

Set the program reaction lock-out priority to the
value given.

MCS Program
Instruction

Invoke a monitor command from a control program.

NEXT Program
Instruction

Break a FOR, DO, or WHILE structure and start the
next iteration of the control structure.

PAUSE Program
Instruction

Stop program execution but allow the program to be
resumed.

PRIORITY Real-Valued
Function

Return the current reaction lock-out priority for the
program.

REACT

REACTI

Program
Instruction

Initiate continuous monitoring of a specified digital
signal and automatically trigger a subroutine call if
the signal transitions properly.

REACTE Program
Instruction

Initiate the monitoring of errors that occur during
execution of the current program task.

RELEASE Program
Instruction

Allow the next available program task to run.

RETRY System
Switch

Control whether the PROGRAM START button
causes a program to resume.

Table 5-1. Program Control Operations (Continued)

Keyword Type Function
V+ Language User Guide, Rev A 155

Chapter 5 Summary of Program Control Keywords
RETURN Program
Instruction

Terminate execution of the current subroutine and
resume execution of the last-suspended program at
the step following the CALL or CALLS instruction
that caused the subroutine to be invoked.

RETURNE Program
Instruction

Terminate execution of an error reaction subroutine
and resume execution of the last-suspended
program at the step following the instruction that
caused the subroutine to be invoked.

RUNSIG Program
Instruction

Turn on (or off) the specified digital signal as long as
execution of the invoking program task continues.

SET.EVENT Program
Instruction

Set an event associated with the specified task.

STOP Program
Instruction

Terminate execution of the current program cycle.

WAIT Program
Instruction

Put the program into a wait loop until the condition
is TRUE.

WAIT.EVENT Program
Instruction

Suspend program execution until a specified event
has occurred, or until a specified amount of time has
elapsed.

WHILE Program
Instruction

Initiate processing of a WHILE structure if the
condition is TRUE or skipping of the WHILE
structure if the condition is initially FALSE.

Table 5-1. Program Control Operations (Continued)

Keyword Type Function
156 V+ Language User Guide, Rev A

Chapter 5 Controlling Programs in Multiple CPU Systems
Controlling Programs in Multiple CPU Systems

V+ systems equipped with multiple CPUs and optional V+ Extensions can run
multiple copies of V+ (see Chapter 13 for more information).Keep the following
considerations in mind when running multiple V+ systems:

• A graphics-based system is required.

• The second, third, etc., V+ copies will be displayed in separate windows on
the monitor. These windows are labeled Monitor_2, Monitor_3, etc. The
system switch MONITORS must be enabled before these windows can be
displayed. The CPU number is determined by the board address switch (see
the Adept MV Controller User’s Guide).

• ALL V+ copies share the same digital input, output, and soft signals. Global
variables are not shared.

• The IOGET_ and IOPUT_ instructions can be used to share data between V+
copies via an 8 KB reserved section of shared memory on each board.
Acceptable address values are 0 to hexadecimal value 1FFF (decimal value 0
to 8191). This memory area is used only for communication between V+
application programs, and is not used for any other purpose. (It is not
possible to access the rest of the processor memory map.)

• The IOTAS() function can be used to interlock access to user data structures.

• The addresses are based on single-byte (8-bit) values. For example, if you
write a 32-bit value to an address it will occupy four address spaces (the
address that you specify and the next three addresses).
V+ Language User Guide, Rev A 157

Chapter 5 Controlling Programs in Multiple CPU Systems
• If you read a value from a location using a format different from the format
that was used to write to that location, you will get an invalid value, but you
will not get an error message. (For example, if you write using IOPUTF and
read using IOPUTL, your data will be invalid.)

NOTE: V+ does not enforce any memory protection schemes for
use of the application shared-memory area. It is the user’s
responsibility to keep track of memory usage. If you are using
application or utility programs written by someone else, you should
read the documentation provided with that software to check that it
does not conflict with your usage of the shared area.
In general, robot control and system configuration changes must be
performed from CPU #1. CPUs other than #1 always start up with
the stand-alone control module. No belts or kinematic modules are
loaded.

• Each multiple CPU can execute its own autostart routine. CPU #1 will load
the normal AUTO file and execute the program auto, CPU #2 will load the file
AUTO02.V2 and execute the program auto02, CPU #3 will load AUTO03.V2
and execute the program auto03, etc.
158 V+ Language User Guide, Rev A

Functions 6
Using Functions . 160

Variable Assignment Using Functions 160
Functions Used in Expressions 160
Functions as Arguments to a Function 160

String-Related Functions 161

Examples of String Functions 162
Location, Motion, and External Encoder Functions 163

Examples of Location Functions 163
Numeric Value Functions 164

Examples of Arithmetic Functions 165
Logical Functions . 165

System Control Functions 166

Example of System Control Functions 167
I/O Functions . 168

Examples of I/O Functions 168
159

Chapter 6 Using Functions
Using Functions

V+ provides you with a wide variety of predefined functions for performing
string, mathematical, and general system parameter manipulation. Functions
generally require you to provide them with data, and they return a value based on
a specific operation on that data. Functions can be used anywhere a value or
expression would be used.

Variable Assignment Using Functions

The instruction:

$curr_time = $TIME()

will put the current system time into the variable $curr_time. This is an example
of a function that does not require any input data. The instruction:

var_root = SQRT(x)

will put the square root of the value x into var_root. x will not be changed by the
function.

Functions Used in Expressions

A function can be used wherever an expression can be used (as long as the data
type returned by the function is the correct type). The instruction:

IF LEN($some_string) > 12 THEN

will result in the boolean expression being true if the string $some_string has
more than 12 characters. The instruction:

array_var = some_array[VAL($x)]

will result in array_var having the same value as the array cell $x. (VAL converts a
string to a real.)

Functions as Arguments to a Function

In most cases, the values passed to a function are not changed. This not only
protects the variables you use as arguments to a function, but allows you to use a
function as an argument to a function (so long as the data type returned is the
type expected by the function). The following example will result in i having the
absolute value of x. (i = D(−22) = 2).

i = SQRT(SQR(x))
160 V+ Language User Guide, Rev A

Chapter 6 String-Related Functions

String-Related Functions

The value returned from a string function may be another string or a numeric
value.

Table 6-1. String-Related Functions

Keyword Function

ASC Return a single character value from within a string.

$CHR Return a one-character string having a given value.

DBLB Return the value of eight bytes of a string interpreted as an IEEE
double-precision floating-point number.

$DBLB Return an 8-byte string containing the binary representation of a real
value in double-precision IEEE floating-point format.

$DECODE Extract part of a string as delimited by given break characters.

$ENCODE Return a string created from output specifications. The string produced is
similar to the output of a TYPE instruction.

FLTB Return the value of four bytes of a string interpreted as an IEEE
single-precision floating-point number.

$FLTB Return a 4-byte string containing the binary representation of a real value
in single-precision IEEE floating-point format.

$INTB Return a 2-byte string containing the binary representation of a 16-bit
integer.

LEN Return the number of characters in the given string.

LNGB Return the value of four bytes of a string interpreted as a signed 32-bit
binary integer.

$LNGB Return a 4-byte string containing the binary representation of a 32-bit
integer.

$MID Return a substring of the specified string.

PACK Replace a substring within an array of (128-character) string variables or
within a (nonarray) string variable.

POS Return the starting character position of a substring in a string.
V+ Language User Guide, Rev A 161

Chapter 6 String-Related Functions

Examples of String Functions

The instruction:

TYPE $ERROR(-504)

will output the text *Unexpected end of file* to the screen.

The instructions:

$message = "The length of this line is: "

TYPE $ENCODE($message, /I0, LEN($message)+14), "
characters."

will output the message The length of this line is: 42 characters.

$TRANSB Return a 48-byte string containing the binary representation of a
transformation value.

$TRUNCATE Return all characters in the input string until an ASCII NUL (or the end of
the string) is encountered.

$UNPACK Return a substring from an array of 128-character string variables.

VAL Return the real value represented by the characters in the input string.

Table 6-1. String-Related Functions (Continued)

Keyword Function
162 V+ Language User Guide, Rev A

Chapter 6 Location, Motion, and External Encoder Functions
Location, Motion, and External Encoder Functions

V+ provides numerous functions for manipulating and converting location
variables. See Chapter 8 for details on motion processing and a table that includes
all location related functions. See Appendix B for details on the external encoders.

Examples of Location Functions

The instruction:

rotation = RZ(HERE)

will place the value of the current rotation about the Z axis in the variable
rotation.

The instruction:

dist = DISTANCE(HERE, DEST)

will place the distance between the motion device’s current location and its
destination (the value of the next motion instruction).

The instructions:

IF INRANGE(loc_1) == 0 THEN
IF SPEED(2) > 50 THEN

SPEED 50
END
MOVE(loc_1)

END

will ensure loc_1 is reachable and then move the motion device to that location at
a program speed not exceeding 50.
V+ Language User Guide, Rev A 163

Chapter 6 Numeric Value Functions
Numeric Value Functions

The functions listed in Table 6-2 provide trigonometric, statistical, and data-type
conversion operations. See Chapter 4 for additional details on arithmetic
processing.

Table 6-2. Numeric Value Functions

Keyword Function

ABS Return absolute value.

ATAN2 Return the size of the angle (in degrees) that has its trigonometric
tangent equal to value_1/value_2.

BCD Convert a real value to Binary Coded Decimal (BCD) format.

COS Return the trigonometric cosine of a given angle.

DCB Convert BCD digits into an equivalent integer value.

FRACT Return the fractional part of the argument.

INT Return the integer part of the value.

INTB Return the value of two bytes of a string interpreted as a signed 16-bit
binary integer.

MAX Return the maximum value contained in the list of values.

MIN Return the minimum value contained in the list of values.

OUTSIDE Test a value to see if it is outside a specified range.

PI Return the value of the mathematical constant pi (3.141593).

RANDOM Return a pseudorandom number.

SIGN Return the value 1 with the sign of the value parameter.

SIN Return the trigonometric sine of a given angle.

SQR Return the square of the parameter.

SQRT Return the square root of the parameter.
164 V+ Language User Guide, Rev A

Chapter 6 Logical Functions
Examples of Arithmetic Functions

The instructions:

$a = "16"
x = SQRT(VAL($a))

will result in x having a value of 4.

The instruction:

x = INT(RANDOM*10)

will create a pseudorandom number between 0 and 10.

Logical Functions

The functions listed in Table 6-3 return boolean values. These functions require no
arguments and essentially operate as system constants.

Table 6-3. Logical Functions

Keyword Function

FALSE Return the value used by V+ to represent a logical false result.

OFF Return the value used by V+ to represent a logical false result.

ON Return the value used by V+ to represent a logical true result.

TRUE Return the value used by V+ to represent a logical true result.
V+ Language User Guide, Rev A 165

Chapter 6 System Control Functions
System Control Functions

The functions listed in Table 6-4 return information about the system and system
parameters.

Table 6-4. System Control Functions

Keyword Function

DEFINED Determine whether a variable has been defined.

ERROR Return the error number of a recent error that caused program
execution to stop or caused a REACTE reaction.

$ERROR Return the error message associated with the given error code.

FREE Return the amount of unused free memory storage space.

GET.EVENT Return events that are set for the specified task.

ID Return values that identify the configuration of the current system.

$ID Return the system creation date and edit/revision information.

LAST Return the highest index used for an array (dimension).

PARAMETER Return the current setting of the named system parameter.

PRIORITY Return the current reaction lock-out priority for the program.

SELECT Return the unit number that is currently selected by the current task
for the device named.

STATUS Return status information for an application program.

SWITCH Return an indication of the setting of a system switch.

TAS Return the current value of a real-valued variable and assign it a new
value. The two actions are done indivisibly so no other program task
can modify the variable at the same time.

TASK Return information about a program execution task.

TIME Return an integer value representing either the date or the time
specified in the given string parameter.

$TIME Return a string value containing either the current system date and
time or the specified date and time.
166 V+ Language User Guide, Rev A

Chapter 6 System Control Functions
Example of System Control Functions

The instruction:

IF (TIMER(2) > 100) AND (DEFINED(loc_1)) THEN
MOVE loc_1

END

would execute the MOVE instruction only if timer(2) had a value greater than 100
and the variable loc_1 had been defined.

TIMER Return the current time value (in seconds) of the specified system
timer.

TPS Return the number of ticks of the system clock that occur per second
(Ticks Per Second).

Table 6-4. System Control Functions (Continued)

Keyword Function
V+ Language User Guide, Rev A 167

Chapter 6 I/O Functions
I/O Functions

V+ provides numerous functions for reading and writing data to and from
various I/O devices. See Table 9-5 on page 244 for a list of all I/O functions;
Chapter 9 provides complete details on I/O processing.

Examples of I/O Functions

The instructions:

WHILE IOSTAT(5) > 0 DO
READ(5) $txt
TYPE $txt

END

will output the characters from a disk file open on logical unit 5.
168 V+ Language User Guide, Rev A

Switches and Parameters 7
Introduction . 170

Parameters . 171

Viewing Parameters 171
Setting Parameters 172
Summary of Basic System Parameters 172

Graphics-based System Terminal Settings 174
Switches . 174

Viewing Switch Settings 174
Setting Switches 175
Summary of Basic System Switches 175
169

Chapter 7 Introduction
Introduction

System parameters determine certain operating characteristics of the V+ system.
These parameters have numeric values that can be changed from the command
line or from within a program to suit particular system configurations and needs.
The various parameters are described in this chapter along with the operations for
displaying and changing their values.

System switches are similar to system parameters in that they control the
operating behavior of the V+ system. Switches differ from parameters, however,
in that they do not have numeric values. Switches can be set to either enabled or
disabled, which can be thought of as on and off, respectively.

All the basic system switches are described in this chapter. The monitor
commands and program instructions that can be used to display and change their
settings are also presented.
170 V+ Language User Guide, Rev A

Chapter 7 Parameters
Parameters

See the V+ Language Reference Guide for more detailed descriptions of the
keywords discussed here.

Whenever a system parameter name is used, it can be abbreviated to the
minimum length required to identify the parameter. For example, the
HAND.TIME parameter can be abbreviated to H, since no other parameter name
begins with H.

Viewing Parameters

To see the state of a single parameter, use the PARAMETER monitor command:

PARAMETER parameter_name

If parameter_name is omitted, the value of all parameters is displayed.

To retrieve the value of a parameter from within a program, use the PARAMETER
function. The instruction:

TYPE "HAND.TIME parameter =", PARAMETER(HAND.TIME)

will display the current setting of the hand-delay parameter in the monitor
window.

The PARAMETER function can be used in any expression to include the value of a
parameter. For example, the following program statement will increase the delay
for hand actuation:

PARAMETER HAND.TIME = PARAMETER(HAND.TIME) + 0.15

Note that the left-hand occurrence of PARAMETER is the instruction name and
the right-hand occurrence is the function name.
V+ Language User Guide, Rev A 171

Chapter 7 Parameters
Setting Parameters

To set a parameter from the command line, use the PARAMETER monitor
command. The instruction:

PARAMETER SCREEN.TIMEOUT = 10

sets the screen blanking time to 10 seconds.

To set a parameter in a program, use the PARAMETER program instruction. The
instruction:

PARAMETER NOT.CALIBRATED = 1

asserts the not calibrated state for robot 1.

In systems with AdeptVision VXL, some parameters are organized as arrays and
must be accessed by specifying an array index. (See the AdeptVision Reference
Guide for more information on such parameters.)

Summary of Basic System Parameters

System parameters are set to defaults when the V+ system is initialized. The
default values are indicated with each parameter description below. The settings
of the parameter values are not affected by the ZERO command.

If your robot system includes optional enhancements (such as vision), you will
have other system parameters available. Consult the documentation for the
options for details. The basic system parameters are shown in Table 7-1 on page
173.
172 V+ Language User Guide, Rev A

Chapter 7 Parameters
a The default value for TERMINAL is changed with the utility CONFIG_C.V2 on the Adept Utility
Disk. See the Instructions for Adept Utility Programs.

Table 7-1. Basic System Parameters

Parameter Use
De-
fault Min Max

BELT.MODE Controls the operation of the
conveyor tracking feature of the V+
system.

0 0 14

HAND.TIME Determines the duration of the
motion delay that occurs during
processing of OPENI, CLOSEI, and
RELAXI instructions. The value for
this parameter is interpreted as the
number of seconds to delay. Due to
the way in which V+ generates its
time delays, the HAND.TIME
parameter is internally rounded to
the nearest multiple of 0.016
seconds.

0.05 0 1E18

KERMIT.RETRY Sets the number of times Kermit will
attempt to transfer a data packet
before quitting with an error.

15 1 1000

KERMIT.TIMEOUT Time, in seconds, that Kermit will
wait before retrying the transfer of a
data packet.

 8 1 95

NOT.CALIBRATED Represents the calibration status of
the robot(s) controlled by the V+
system.

7 0 7

SCREEN.TIMEOUT Controls automatic blanking of the
graphics monitor on graphics-based
systems.

0 0 16383

TERMINAL This parameter determines how the
V+ monitor will interact with a
graphics-based system terminal. The
acceptable values are 0 through 4,
and they have the interpretations
shown in the following table.

4 a 0 4
V+ Language User Guide, Rev A 173

Chapter 7 Switches
 Graphics-based System Terminal Settings

Switches

System switches govern various features of the V+ system. The switches are
described below. See the V+ Language Reference Guide and the V+ Operating
System Reference Guide for more detailed descriptions of the keywords discussed
here.

As with system parameters, the names of system switches can be abbreviated to
the minimum length required to identify the switch.

Viewing Switch Settings

The SWITCH monitor command displays the setting of one or more system
switches:

SWITCH switch_name, ..., switch_name

If no switches are specified, the settings of all switches are displayed.

Within programs, the SWITCH real-valued function returns the status of a switch.
The instruction:

SWITCH(switch_name)

returns TRUE (–1.0) if the switch is enabled, FALSE (0.0) if the switch is disabled.

In systems with AdeptVision VXL, some switches are organized as arrays and
may be accessed by specifying the array index. (See the AdeptVision Reference
Guide for more information on such switches.)

Parameter
Value

Terminal
Type

Treatment of
DEL & BS

Cursor-up
Command

0 TTY \<echo>\ None

1 CRT Erase <VT>

2 CRT Erase <SUB>

3 CRT Erase <FF>

4 CRT Erase <ESC>M
174 V+ Language User Guide, Rev A

Chapter 7 Switches
Setting Switches

The ENABLE and DISABLE monitor commands/program instructions control
the setting of system switches. The instruction:

ENABLE BELT

will enable the BELT switch. The instruction:

DISABLE BELT, CP

will disable the CP and BELT switches. Multiple switches can be specified for
either instruction.

Switches can also be set with the SWITCH program instruction. Its syntax is:

SWITCH switch_name = value

This instruction differs from the ENABLE and DISABLE instructions in that the
SWITCH instruction enables or disables a switch depending on the value on the
right-hand side of the equal sign. This allows you to set switches based on a
variable or expression. The switch is enabled if the value is TRUE (nonzero) and
disabled if the value is FALSE (zero). The instruction:

SWITCH CP = SIG(1001)

will enable the continuous path (CP) switch if input signal 1001 is on.

Summary of Basic System Switches

The default switch settings at system power-up are given in Table 7-2 on page
176. (The switch settings are not affected by the ZERO command.)

Optional enhancements to your V+ system may include additional system
switches. If so, they are described in the documentation for the options.
V+ Language User Guide, Rev A 175

Chapter 7 Switches
Table 7-2. Basic System Switches

Switch Use

BELT Used to turn on the conveyor tracking features of V+ (if the option
is installed).

This switch must be enabled before any of the special conveyor
tracking instructions can be executed. When BELT is disabled, the
conveyor tracking software has a minimal impact on the overall
performance of the system.

Default is disabled.

CP Enable/disable continuous-path motion processing (see
”Continuous-Path Trajectories” on page 199).

Default is enabled.

DRY.RUN Enable/disable sending of motion commands to the robot. Enable
this switch to test programs for proper logical flow and correct
external communication without having to worry about the robot
running into something.

(Also see the TRACE switch, which is useful during program
checkout.) The manual control pendant can still be used to move
the robot when DRY.RUN is enabled.

Default is disabled.

FORCE Controls whether the (optional) stop-on-force feature of the V+
system is active.

Default is disabled.

INTERACTIVE Suppresses display of various messages on the system terminal. In
particular, when the INTERACTIVE switch is disabled, V+ does
not ask for confirmation before performing certain operations and
does not output the text of error messages.

This switch is usually disabled when the system is being controlled
by a supervisory computer to relieve the computer from having to
process the text of messages.

Default is enabled.

MCP.MESSAGES Controls how system error messages are handled when the
controller keyswitch is not in the MANUAL position.

Default is disabled.
176 V+ Language User Guide, Rev A

Chapter 7 Switches
MCS.MESSAGES Controls whether monitor commands executed with the MCS
instruction will have their output displayed on the terminal.

Default is disabled.

MESSAGES Controls whether output from TYPE instructions will be displayed
on the terminal.

Default is enabled.

POWER Tracks the status of Robot Power. This switch is automatically
enabled whenever Robot Power is turned on. This switch can be
used to turn Robot Power on or off—enabling the switch turns on
Robot Power and disabling the switch turns off Robot Power.

Default is disabled.

WARNING: ADEPT RECOMMENDS THAT YOU NOT TURN
ON ROBOT POWER FROM WITHIN A PROGRAM since the
robot can be activated without direct operator action. Turning on
Robot Power from the terminal can be hazardous if the operator
does not have a clear view of the robot workspace.

RETRY Controls whether the PROGRAM START button on the front panel
of the system controller causes a program to resume.

Default is disabled.

ROBOT This is an array of switches that control whether or not the system
should access robots normally controlled by the system.

Default is disabled.

SET.SPEED Enable/disable the ability to set the monitor speed from the
manual control pendant.

Default is enabled.

TRACE Enable/disable a special mode of program execution in which each
program step is displayed on the system terminal before it is
executed. This is useful during program development for checking
the logical flow of execution (also see the DRY.RUN switch).

Default is disabled.

Table 7-2. Basic System Switches (Continued)

Switch Use
V+ Language User Guide, Rev A 177

Chapter 7 Switches
UPPER Determines whether comparisons of string values will consider
lowercase letters the same as uppercase letters. When this switch is
enabled, all lowercase letters are considered as though they are
uppercase.

Default is enabled.

Table 7-2. Basic System Switches (Continued)

Switch Use
178 V+ Language User Guide, Rev A

Motion Control Operations 8
Introduction . 180
Location Variables . 180

Coordinate Systems 181
Transformations 182

Yaw . 183
Pitch . 185
Roll . 187
Special Situations 188

Creating and Altering Location Variables 189
Creating Location Variables 189

Transformations vs. Precision Points 189
Modifying Location Variables 189

Relative Transformations 190
Examples of Modifying Location Variables 190

Defining a Reference Frame 193
Miscellaneous Location Operations 196

Motion Control Instructions 197
Basic Motion Operations 197

Joint-Interpolated Motion vs. Straight-Line Motion . . 197
Safe Approaches and Departures 198
Moving an Individual Joint 198

End-Effector Operation Instructions 199
Continuous-Path Trajectories 199
Breaking Continuous-Path Operation 200
Procedural Motion 201

Procedural Motion Examples 201
Timing Considerations 202

Robot Speed . 203
Motion Modifiers 205
Customizing the Calibration Routine 205

Tool Transformations 206
Defining a Tool Transformation 207

Summary of Motion Keywords 209
179

Chapter 8 Introduction
Introduction

A primary focus of the V+ language is to drive motion devices. This chapter
discusses the language elements that generate controller output to move a motion
device from one location to another. Before we introduce the V+ motion
instructions, we should examine the V+ location variables and see how they relate
to the space the motion device operates in.

Location Variables

Locations can be specified in two ways in V+, transformations and precision
points.

A transformation is a set of six components that uniquely identifies a location in
Cartesian space and the orientation of the motion device end-of-arm tooling at
that location. A transformation can also represent the location of an arbitrary local
reference frame.

A precision point includes an element for each joint in the motion device.
Rotational joint values are measured in degrees; translational joint values are
measured in millimeters. These values are absolute with respect to the motion
device’s home sensors and cannot be made relative to other locations or
coordinate frames.
180 V+ Language User Guide, Rev A

Chapter 8 Location Variables
Coordinate Systems

Figure 8-1 shows the world coordinate system for an Adept SCARA robot and an
Adept Cartesian robot. Ultimately, all transformations are based on a world
coordinate system. The V+ language contains several instructions for creating
local reference frames, building relative transformations, and changing the origin
of the base (world) coordinate frame. Therefore, an individual transformation
may be relative to another transformation, a local reference frame, or an altered
base reference frame.

Different robots and motion devices will designate different locations as the
origin of the world coordinate system. See the user’s guide for Adept robots or
the device module documentation for AdeptMotion VME systems to determine
the origin and orientation of the world coordinate frame.

Figure 8-1. Adept Robot Cartesian Space

adept

+Z

+X

+Y
+X

+Y

+Z
V+ Language User Guide, Rev A 181

Chapter 8 Location Variables
Transformations

The first three components of a transformation variable are the values for the
points on the X, Y, and Z axes. In an Adept SCARA robot, the origin of this
Cartesian space is the base of the robot. The Z axis points straight up through the
middle of the robot column. The X axis points straight out, and the Y axis runs left
to right as you face the robot. The first robot in Figure 8-1 on page 181 shows the
orientation of the Cartesian space for an Adept SCARA robot. The location of the
world coordinate system for other robots and motion devices depends on the
kinematic model of the motion device. For example, the second robot in Figure
8-1 shows the world coordinate frame for a robot built on the Cartesian
coordinate model. See the kinematic device module documents for your
particular motion device.

When a transformation is defined, a local reference frame is created at the X, Y, Z
location with all three local frame axes parallel to the world coordinate frame.
Figure 8-2 on page 183 shows the first part of a transformation. This trans-
formation has the value X = 30, Y = 100, Z = 125, yaw = 0, pitch = 0, and roll = 0.
182 V+ Language User Guide, Rev A

Chapter 8 Location Variables
Figure 8-2. XYZ Elements of a Transformation

The second three components of a transformation variable specify the orientation
of the end-of-arm tooling. These three components are yaw, pitch, and roll. These
elements are figured as ZYZ' Euler values. Figures 8-3 through 8-5 demonstrate
how these values are interpreted.

Yaw

Yaw is a rotation about the local reference frame Z axis. This rotation is not about
the primary reference frame Z axis, but is centered at the origin of the local frame
of reference. Figure 8-3 on page 184 shows the yaw axis with a rotation of 30°.
Note that it is parallel to the primary reference frame Z axis but may be centered
at any point in that space. In this example, the yaw value is 30°, resulting in a
transformation with the value (X = 30, Y = 100, Z = 125, yaw = 30, pitch = 0, and
roll = 0).

Z

X
Y

z

x y

y = 100
x = 30

z =
 125
V+ Language User Guide, Rev A 183

Chapter 8 Location Variables
When you are using a robot, the local frame of reference defined by the XYZ
components is located at the end of the robot tool flange. (This local reference
frame is referred to as the tool coordinate system.) In Figure 8-3, the large
Cartesian space represents a world coordinate system. The small Cartesian space
represents a local tool coordinate system (which would be centered at the motion
device tooling flange).

Figure 8-3. Yaw

Z

X

Y

30°

Z

X
Y

184 V+ Language User Guide, Rev A

Chapter 8 Location Variables
Pitch

Pitch is defined as a rotation about the local reference frame Y axis, after yaw has
been applied. Figure 8-4 on page 186 shows the local reference frame with a yaw
of 30° and a pitch of 40°.
V+ Language User Guide, Rev A 185

Chapter 8 Location Variables
For example, deflection of a wrist joint is reflected in the pitch component. The
movement of a fifth axis on a SCARA robot is reflected in the pitch component. In
this example, the motion device end of arm tooling has a pitch of 40°, resulting in
a transformation with the value (X = 30, Y = 100, Z = 125, yaw = 30, pitch = 40, and
roll = 0). This location can be reached only by a mechanism with a fifth axis. Pitch
is represented as ±180°, not as 360° of rotation. Thus, a positive rotation of 190° is
shown as –170°.

Figure 8-4. Pitch

40°

PITCH

Y-axis of local
 reference frame
 (after applying yaw)

Z

X

Y
X

Y

30°

Z

186 V+ Language User Guide, Rev A

Chapter 8 Location Variables
Roll

Roll is defined as a rotation about the Z axis of the local reference frame after yaw
and pitch have been applied. Figure 8-5 shows a local reference frame in the
primary robot Cartesian space and the direction roll would take within that space.
In this example the transformation has a value of X = 30, Y = 100, Z = 125, yaw =
30, pitch = 40, and roll = 20. This location can be reached only by a mechanism
with fifth and sixth axes.

Figure 8-5. Roll

Z

X

Y

20°

ROLL

Z-axis of local
 reference frame
 (after applying
 yaw and pitch)

40°

30°

Z

X

Y

V+ Language User Guide, Rev A 187

Chapter 8 Location Variables
Special Situations

When the Z axes of the local and primary reference frames are parallel, roll and
yaw produce the same motion in the same plane, although the two motions may
be in different directions. This is always the case with a four-axis SCARA robot.
The system automatically reflects rotation of the quill in the roll component of a
transformation variable, and the yaw component is forced to 0°. In a SCARA
robot equipped with a fifth axis, rotation of the quill is reflected in the yaw
component and motion of a rotating end-effector (sixth axis) is reflected in the roll
component.

Notice in Figure 8-2 on page 183 that the local reference frame points straight up.
This corresponds to a situation where the end of arm tooling points straight back
along the third axis. In a mechanism not equipped with a 360° wrist, this is an
impossible position. For a four-axis SCARA, this component must point straight
down (pitch = 180°). For a mechanism with a fifth axis, this component must be
within the range of motion of the fifth axis.

NOTE: When thinking about a transformation, remember that the
rules of ZYZ' Euler angles require that the orientation components
be applied in order after the local reference frame has been defined.
After calculating the Cartesian components and placing a local
reference frame with x, y, and z axes parallel to the primary
reference frame X, Y, and Z axes, the orientation components are
applied in a strict order—yaw is applied first, then pitch, and,
finally, roll.
188 V+ Language User Guide, Rev A

Chapter 8 Creating and Altering Location Variables
Creating and Altering Location Variables

Creating Location Variables

The most straightforward method of creating a location variable is to place the
robot or motion device at a location and enter the monitor command:

HERE loc_name

If you have the optional Adept manual control pendant, you can use the pendant
and the TEACH instruction to create location variables. See the V+ Operating
System User’s Guide for details on using this command.

Transformations vs. Precision Points

A location can be specified using either the six components described in the
previous section, or by specifying the state the robot joints would be in when a
location is reached. The former method results in a transformation variable.
Transformations are the most flexible and efficient location variables.

Precision points record the joint values of each joint in the motion device.
Precision points may be more accurate, and they are the only way of extracting
joint information that will allow you to move an individual joint. Precision points
are identified by a leading pound sign (#). The command:

HERE #pick

will create the precision point #pick equal to the current robot joint values.

Modifying Location Variables

The individual components of an existing transformation or precision point can
be edited with the POINT monitor command:

POINT loc_name

will display the transformation components of loc_name and allow you to edit
them. If loc_name is not defined, a null transformation will be displayed for
editing.
V+ Language User Guide, Rev A 189

Chapter 8 Creating and Altering Location Variables
A location variable can be duplicated using the POINT monitor command or SET
program instruction. The monitor command:

POINT loc_name = loc_value

and the program instruction:

SET loc_name = loc_value

will both result in the variable loc_name being given the value of loc_value. The
POINT monitor command also allows you to edit loc_name after it had been
assigned the value of loc_value.

The following functions return transformation values:

TRANS Create a location by specifying individual components of a transfor-
mation. A value can be specified for each component.

SHIFT Alter the Cartesian components of an existing transformation.

The POINT and SET operations can be used in conjunction with the
transformation functions SHIFT and TRANS to create location variables based on
specific modifications of existing variables.

SET loc_name = SHIFT(loc_value BY 5, 5, 5)

will create the location variable loc_name. The location of loc_name will be
shifted 5 mm in the positive X, Y, and Z directions from loc_value.

Relative Transformations

Relative transformations allow you to make one location relative to another and
to build local reference frames that transformations can be relative to. For
example, you may be building an assembly whose location in the workcell
changes periodically. If all the locations on the assembly are taught relative to the
world coordinate frame, each time the assembly is located differently in the
workcell, all the locations must be retaught. If, however, you create a frame based
on identifiable features of the assembly, you will have to reteach only the points
that define the frame.

Examples of Modifying Location Variables

Figure 8-6 on page 192 shows how relative transformations work. The magnitude
and direction elements (x, y, z), but not the orientation elements (y, p, r), of an
Adept transformation can be represented as a 3-D vector, as shown by the dashed
lines and arrows in Figure 8-6. The following code generates the locations shown
in that figure.
190 V+ Language User Guide, Rev A

Chapter 8 Creating and Altering Location Variables
; Define a simple transformation

SET loc_a = TRANS(300,50,350,0,180,0)

; Move to the location

MOVE loc_a
BREAK

; Move to a location offset −50mm in X, 20mm in Y,
; and 30mm in Z relative to "loc_a"

MOVE loc_a:TRANS(−50, 20, 30)
BREAK

; Define "loc_b" to be the current location relative
; to "loc_a"

HERE loc_a:loc_b;loc_b = −50, 20, 30, 0, 0, 0
BREAK

; Define "loc_c" as the vector sum of "loc_a" and "loc_b"

SET loc_c = loc_a:loc_b;loc_c = 350, 70, 320, 0, 180, 0

Once this code has run, loc_b exists as a transformation that is completely
independent of loc_a. The following instruction will move the robot another
−50mm in the x, 20mm in the y, and 30mm in the z direction (relative to loc_c):

MOVE loc_c:loc_b

Multiple relative transformations can be chained together. If we define loc_d to
have the value 0, 50, 0, 0, 0, 0:

SET loc_d = TRANS(0,50)

 and then issue the following MOVE instruction:

MOVE loc_a:loc_b:loc_d

the robot will move to a position x = –50mm, y =70mm, and z = 30mm relative to
loc_a.

In Figure 8-6 on page 192, the transformation loc_b defines the transformation
needed to get from the local reference frame defined by loc_a to the local reference
frame defined by loc_c.
V+ Language User Guide, Rev A 191

Chapter 8 Creating and Altering Location Variables
The transformation needed to go in the opposite direction (from loc_c to loc_a)
can be calculated by:

INVERSE(loc_b)

Thus, the instruction:

MOVE loc_c:INVERSE(loc_b)

will effectively move the robot back to loc_a.

Figure 8-6. Relative Transformation

Figure 8-6 shows the first three locations from the code examples on page 190.

loc_a =
300, 50, 350, 0, 180, 0

loc_b =
-50, 20, 30, 0, 0, 0

loc_c = loc_a:loc_b =
350, 70, 320, 0, 180, 0

X

Y

Z

192 V+ Language User Guide, Rev A

Chapter 8 Creating and Altering Location Variables
Defining a Reference Frame

In the example shown in Figure 8-7, a pallet is brought into the workcell on a
conveyor. The program that follows will teach three locations that define the
pallet reference frame (pallet.frame) and then remove the parts from the pallet.
The program that follows will run regardless of where the pallet is placed in the
workcell as long as it is within the robot working envelope.

Figure 8-7. Relative Locations

; Get the locations to define the pallet

DETACH () ;Release robot for use by the MCP
PROMPT "Place robot at pallet origin. ", $ans
HERE loc.origin ;Record the frame origin

PROMPT "Place robot at point on the pallet x-axis. ", $ans
HERE loc.x.axis ;Record point on x-axis

PROMPT "Place robot at point in positive y direction. ", $ans
HERE loc.pos.y ;Record positive y direction

+Z

+X

+Y

loc.origin

loc.pos.y

pa
lle

t.fr
am

e

loc.x.axis
V+ Language User Guide, Rev A 193

Chapter 8 Creating and Altering Location Variables
ATTACH () ;Reattach the robot

; Create the local reference frame "pallet.frame"

SET pallet.frame = FRAME(loc.origin, loc.x.axis,loc.pos.y, loc.origin)

cell.space = 50 ;Spacing of cells on pallet

; Remove the palletized items

FOR i = 0 TO 3
FOR J = 0 TO 2
APPRO pallet.frame:TRANS(i*cell.space, j*cell.space), 25
MOVE pallet.frame:TRANS(i*cell.space, j*cell.space)
BREAK ;Settle robot
CLOSEI ;Grab the part
DEPART 25 ;MOVE to the drop off location
END
END

In the above example, the code that teaches the pallet frame will need to be run
only when the pallet location changes.

If you are building an assembly that does not have regularly spaced locations like
the above example, the following code will teach individual locations relative to
the frame:

; Get the locations to define the pallet frame

DETACH ();Release robot for use by the MCP
PROMPT "Place robot at assembly origin. ", $ans
HERE loc.origin;Record the frame origin

PROMPT "Place robot at point on the assm. x-axis. ", $ans
HERE loc.x.axis;Record point on x-axis

PROMPT "Place robot at point in positive y direction. ", $ans
HERE loc.pos.y;Record positive y direction

; Create the local reference frame "assm.frame"

SET assm.frame = FRAME(loc.origin, loc.x.axis, loc.pos.y, loc.origin)

; Teach the locations on the assembly

PROMPT "Place the robot in the first location. ", $ans
HERE assm.frame:loc.1;Record the first location

PROMPT "Place the robot in the second location. ", $ans
HERE assm.frame:loc.2;Record the second location
194 V+ Language User Guide, Rev A

Chapter 8 Creating and Altering Location Variables
; etc.

; Move to the locations on the assembly

ATTACH ();Reattach the robot

APPRO assm.frame:loc.1, 25
MOVE assm.frame:loc.1
;Activate gripper
DEPART 25

APPRO assm.frame:loc.1, 25
MOVE assm.frame:loc.2
;Activate gripper
DEPART 25

; etc.

In the above example, the frame will need to be taught each time the assembly
moves—the locations on the assembly need to be taught only once.

The instruction HERE assm.frame:loc.1 tells the system to record the location loc.1
relative to assm.frame rather than relative to the world coordinate frame. If a
subassembly is being built relative to loc.1, the instruction:

HERE assm.frame:loc.1:sub.loc.1

will create a compound transformation where sub.loc.1 is relative to the
transformation assm.frame:loc.1.
V+ Language User Guide, Rev A 195

Chapter 8 Creating and Altering Location Variables
Miscellaneous Location Operations

The instruction:

DECOMPOSE array_name[] = #loc_name

will place the joint values of #loc_name in the array array_name. DECOMPOSE
works with transformations and precision points.

The command:

WHERE

will display the current robot location.

The BASE operation can be used to realign the world reference frame relative to
the robot.
196 V+ Language User Guide, Rev A

Chapter 8 Motion Control Instructions
Motion Control Instructions

V+ processes robot motion instructions differently from the way you might
expect. With V+, a motion instruction such as MOVE part is interpreted to mean
start moving the robot to location ‘part’. As soon as the robot starts moving to the
specified destination, the V+ program continues without waiting for the robot
motion to complete. The instruction sequence:

MOVE part.1
SIGNAL 1
MOVE part.2
SIGNAL 2

will cause external output signal #1 to be turned on immediately after the robot
begins moving to part.1, rather than waiting for it to arrive at the location. When
the second MOVE instruction is encountered, V+ waits until the motion to part.1
is completed. External output signal #2 is turned on just after the motion to part.2
begins. This is known as forward processing. See “Breaking Continuous-Path
Operation” on page 200 for details on how to defeat forward processing.

This parallel operation of program execution and robot motion makes possible
the procedural motions described later in this chapter.

Basic Motion Operations

Joint-Interpolated Motion vs. Straight-Line Motion

The path a motion device takes when moving from one location to another can be
either a joint-interpolated motion or a straight-line motion. Joint-interpolated
motions move each joint at a constant velocity (except during the
acceleration/deceleration phases—see “Robot Speed” on page 203). Typically,
the robot tool tip moves in a series of arcs that represents the least processing—
intensive path the trajectory generator can formulate. Straight-line motions
ensure that the robot tool tip traces a straight line, useful for cutting a straight line
or laying a bead of sealant. The instruction:

MOVE pick

will cause the robot to move to the location pick using joint-interpolated motion.
The instruction:

MOVES pick

will cause the robot to move the pick using a straight-line motion.
V+ Language User Guide, Rev A 197

Chapter 8 Motion Control Instructions
Safe Approaches and Departures

In many cases you will want to approach a location from distance offset along the
tool Z axis or depart from a location along the tool Z axis before moving to the
next location. For example, if you were inserting components into a crowded
circuit board, you would want the robot arm to approach a location from directly
above the board so nearby parts are not disturbed. Assuming you were using a
four-axis Adept robot, the instructions:

APPRO place, 50
MOVE place
DEPART 50

will cause joint-interpolated motion to a point 50 mm above place, movement
down to place, and movement straight up to 50 mm above place.

If the instructions APPROS, DEPARTS, and MOVES had been used, the motions
would have been straight line instead of joint interpolated.

NOTE: Approaches and departs are based on the tool coordinate
system, not the world coordinate system. Thus, if the location
specifies a pitch of 135°, the robot will approach at a 45° angle
relative to the world coordinate system. See “Yaw” on page 183 for a
description of the tool coordinate system.

Moving an Individual Joint

You can move an individual joint of a robot using the instruction DRIVE. The
instructions:

DRIVE 2,50.0, 100
DRIVE 3,25, 100

will move joint 2 through 50° of motion and then move joint 3 a distance of 25 mm
at SPEED 100x.
198 V+ Language User Guide, Rev A

Chapter 8 Motion Control Instructions
End-Effector Operation Instructions

The instructions described in this section depend on the use of two digital signals.
They are used to open, close, or relax a gripper. The utility program SPEC
specifies which signals control the end effector. See the Instructions for Adept
Utility Programs.

The instruction OPEN will open the gripper during the ensuing motion
instruction. The instruction OPENI will open the gripper before any additional
motion instructions are executed. CLOSE and CLOSEI are the complementary
instructions.

When an OPEN(I) or CLOSE(I) instruction is issued, one solenoid is activated and
the other is released. To completely relax both solenoids, use the instruction
RELAX or RELAXI.

Use the system parameter HAND.TIME to set the duration of the motion delay
that occurs during an OPENI, CLOSEI, or RELAXI instruction.

Use the function HAND to return the current state of the gripper.

Continuous-Path Trajectories

When a single motion instruction is processed, such as the instruction:

MOVE pick

the robot begins moving toward the location by accelerating smoothly to the
commanded speed. Sometime later, when the robot is close to the destination
location pick, the robot will decelerate smoothly to a stop at location pick. This
motion is referred to as a single motion segment, since it is produced by a single
motion instruction.

When a sequence of motion instructions is executed, such as:

MOVE loc.1
MOVE loc.2

the robot begins moving toward loc.1 by accelerating smoothly to the
commanded speed1 just as before. However, the robot will not decelerate to a stop
when it gets close to loc.1. Instead, it will smoothly change its direction and begin
moving toward loc.2. Finally, when the robot is close to loc.2, it will decelerate
smoothly to a stop at loc.2. This motion consists of two motion segments since it is
generated by two motion instructions.

1 See the SPEED monitor command and SPEED program instructions.
V+ Language User Guide, Rev A 199

Chapter 8 Motion Control Instructions
Making smooth transitions between motion segments, without stopping the robot
motion, is called continuous-path operation. That is the normal method V+ uses
to perform robot motions. If desired, continuous-path operation can be disabled
with the CP switch. When the CP switch is disabled, the robot will decelerate and
stop at the end of each motion segment before beginning to move to the next
location.

NOTE: Disabling continuous-path operation does not affect
forward processing (the parallel operation of robot motion and
program execution).

Continuous-path transitions can occur between any combination of straight-line
and joint-interpolated motions. For example, a continuous motion could consist
of a straight-line motion (for example, DEPARTS) followed by a joint-interpolated
motion (for example, APPRO) and a final straight-line motion (for example,
MOVES). Any number of motion segments can be combined this way.

Breaking Continuous-Path Operation

Certain V+ program instructions cause program execution to be suspended until
the current robot motion reaches its destination location and comes to a stop. This
is called breaking continuous path. Such instructions are useful when the robot
must be stopped while some operation is performed (for example, closing the
hand). Consider the instruction sequence:

MOVE loc.1
BREAK
SIGNAL 1

The MOVE instruction starts the robot moving to loc.1. Program execution then
continues and the BREAK instruction is processed. BREAK causes the V+
program to wait until the motion to loc.1 completes. The external signal will not
be turned on until the robot stops. (Recall that without the BREAK instruction the
signal would be turned on immediately after the motion to loc.1 starts.)

The following instructions always cause V+ to suspend program execution until
the robot stops (see V+ Language Reference Guide for detailed information on
these instructions):

BASE BREAK CLOSEI CPOFF DETACH (0)

HALT OPENI PAUSE RELAXI TOOL
200 V+ Language User Guide, Rev A

Chapter 8 Motion Control Instructions
Also, the robot decelerates to a stop when the BRAKE (not to be confused with
BREAK) instruction is executed (by any program task), and when the reaction
associated with a REACTI instruction is triggered. These events could happen at
any point within a motion segment. (Note that these events can be initiated from a
different program task.)

The robot also decelerates and comes to a stop if no new motion instruction is
encountered before the current motion completes. This situation can occur for a
variety of reasons:

• A WAIT or WAIT.EVENT instruction is executed and the wait condition is
not satisfied before the robot motion completes.

• A PROMPT instruction is executed and no response is entered before the
robot motion completes.

• The V+ program instructions between motion instructions take longer to
execute than the robot takes to perform its motion.

Procedural Motion

The ability to move in straight lines and joint-interpolated arcs is built into the
basic operation of V+. The robot tool can also move along a path that is
prerecorded, or described by a mathematical formula. Such motions are
performed by programming the robot trajectory as the robot is moving. Such a
program is said to perform a procedural motion.

A procedural motion is a program loop that computes many short motions and
issues the appropriate motion requests. The parallel execution of robot motions
and non-motion instructions allows each successive motion to be defined without
stopping the robot. The continuous-path feature of V+ automatically smoothes
the transitions between the computed motion segments.

Procedural Motion Examples

Two simple examples of procedural motions are described below. In the first
example, the robot tool is moved along a trajectory described by locations stored
in the array path. (The LAST function is used to determine the size of the array.)

SPEED 0.75 IPS ALWAYS

FOR index = 0 TO LAST(path[])
MOVES path[index]

END
V+ Language User Guide, Rev A 201

Chapter 8 Motion Control Instructions
The robot tool will move at the constant speed of 0.75 inch per second through
each location defined in the array path[]. (One way to create the path array is to
use the V+ TEACH command to move the robot along the desired path and to
press repeatedly the RECORD button on the manual control pendant.)

In the next example, the robot tool is to be moved along a circular arc. However,
the path is not prerecorded—it is described mathematically, based on the radius
and center of the arc to be followed.

The program segment below assumes that a real variable radius has already been
assigned the radius of the desired arc, and x.center and y.center have been
assigned the respective coordinates of the center of curvature. The variables start
and last are assumed to have been defined to describe the portion of the circle to
be traced. Finally, the variable angle.step is assumed to have been defined to
specify the (angular) increment to be traversed in each incremental motion.
(Because the DURATION instruction is used, the program will move the robot
tool angle.step degrees around the arc every 0.5 second.)

When this program segment is executed, the X and Y coordinates of points on the
arc are repeatedly computed. They are then used to create a transformation that
defines the destination for the next robot motion segment.

DURATION 0.5 ALWAYS
FOR angle = start TO last STEP angle.step

x = radius*COS(angle)+x.center
y = radius*SIN(angle)+y.center
MOVE TRANS(x, y, 0, 0, 180, 0)

END

Timing Considerations

Because of the computation time required by V+ to perform the transitions
between motion segments, there is a limit on how closely spaced commanded
locations can be. When locations are too close together, there is not enough time
for V+ to compute and perform the transition from one motion to the next, and
there will be a break in the continuous-path motion. This means that the robot
will stop momentarily at intermediate locations.

The minimum spacing that can be used between locations before this effect occurs
is determined by the time required to complete the motion from one location to
the next. Straight-line motions can be used if the motion segments take more than
about 32 milliseconds each. Joint-interpolated motions can be used with motion
segments as short as about 16 milliseconds each.
202 V+ Language User Guide, Rev A

Chapter 8 Motion Control Instructions
Robot Speed

A robot move has three phases: an acceleration phase where the robot accelerates
to the maximum speed specified for the move, a velocity phase where the robot
moves at a rate not exceeding the specified maximum speed, and a deceleration
phase where the robot decelerates to a stop (or transitions to the next motion).

Robot speed can mean two things: how fast the robot moves between the
acceleration and deceleration phases of a motion (referred to in this manual as
robot speed), or how fast the robot gets from one place to another (referred to in
this manual as robot performance).

The robot speed between the acceleration and deceleration phases is specified as
either a percentage of normal speed or an absolute rate of travel of the robot tool
tip. Speed set as a percentage of normal speed is the default. The speed of a robot
move based on normal speed is determined by the following factors:

• The program speed (set with the SPEED program instruction). This speed is
set to 100 when program execution begins.

• The monitor speed (set with the SPEED monitor command or a SPEED
program instruction that specifies MONITOR). This speed is normally set to
50 at system startup (start-up SPEED can be set with the CONFIG_C utility).
(The effects of the two SPEED operations are slightly different. See the SPEED
program instruction for further details.)

Robot speed is the product of these two speeds. With monitor speed and program
speed set to 100, the robot will move at its normal speed. With monitor speed set
to 50 and program speed set to 50, the robot will move at 25% of its normal speed.

To move the robot tool tip at an absolute rate of speed, a speed rate in inches per
second or millimeters per second is specified in the SPEED program instruction.
The instruction:

SPEED 25, MMPS ALWAYS

specifies an absolute tool tip speed of 25 millimeters per second for all robot
motions until the next SPEED instruction. In order for the tool tip to actually
move at the specified speed:

• The monitor speed must be 100.

• The locations must be far enough apart so that the robot can accelerate to the
desired speed and decelerate to a stop at the end of the motion.
V+ Language User Guide, Rev A 203

Chapter 8 Motion Control Instructions
Robot performance is a function of the SPEED settings and the following factors:

• The robot acceleration profile and ACCEL settings. The default acceleration
profile is based on a normal maximum rate of acceleration and deceleration.
The ACCEL command can scale down these maximum rates so the robot
acceleration and/or deceleration takes more time.

You can also define optional acceleration profiles that alter the maximum rate
of change for acceleration and deceleration (using the SPEC utility).

• The location tolerance settings (COARSE/FINE, NULL/NONULL) for the
move. The more accurately a robot must get to the actual location, the more
time the move will take. (For AdeptMotion VME devices, the meaning of
COARSE/FINE is set with the SPEC utility.)

• Any DURATION setting. DURATION forces a robot move to take a minimum
time to complete regardless of the SPEED settings.

• The maximum allowable velocity. For Adept robots, maximum velocity is
factory set. For AdeptMotion VME devices, this is set with the SPEC utility.

• The inertial loading of the robot and the tuning of the robot.

• Straight-line vs. joint-interpolated motions—for complex geometries,
straight-line and joint-interpolated paths produce different dynamic
responses and, therefore, different motion times.

Robot performance for a given application can be greatly enhanced or severely
degraded by these settings. For example:

• A heavily loaded robot may actually show better performance with slower
SPEED and ACCEL settings, which will lessen overshoot at the end of a move
and allow the robot to settle more quickly.

• Applications such as picking up bags of product with a vacuum gripper do
not require high accuracy and can generally run faster with a COARSE
tolerance.
204 V+ Language User Guide, Rev A

Chapter 8 Motion Control Instructions
Motion Modifiers

The following instructions modify the characteristics of individual motions. These
instructions are summarized in Table 8-1.

The instructions listed above with an asterick (*) can take ALWAYS as an
argument.

Customizing the Calibration Routine

The following information is required only if you need to customize the
calibration sequence. Most AdeptMotion users do not need to do this.

When a CALIBRATE command or instruction is processed, the V+ system loads
the file CAL_UTIL.V2 (see the dictionary page for the CALIBRATE command for
details) and executes a program contained in that file. The main calibration
program then examines the SPEC data for the robot to determine the name of the
disk file that contains the specific calibration program for the current robot, and
the name of that program.

The standard routine used for AdeptMotion devices is stored on the system disk
in \CALIB\STANDARD.CAL (and the routine is named a.standard.cal). That file
is protected and thus cannot be viewed. However, a read-only copy of the file is
provided, in \CALIB\STANDARD.V2, as a basis for developing a custom
calibration routine that can then be substituted for the standard file. (The name of
the robot-specific calibration file and program can be changed using the SPEC
utility program.)

ACCEL BRAKE BREAK COARSE*

FINE* DURATION* SPEED* ABOVE/BELOW

CPON/CPOFF FLIP/NOFLIP LEFTY/RIGHTY/ NULL/NONULL*

SINGLE/MULTIPLE*
V+ Language User Guide, Rev A 205

Chapter 8 Tool Transformations
Tool Transformations

A tool transformation is a special transformation that is used to account for robot
grippers (or parts held in grippers) that are offset from the center of the robot tool
flange. If a location is taught using a part secured by an offset gripper, the actual
location recorded is not the part location, but the center of the tool flange the
offset gripper is attached to (see Figure 8-8). If the same location is taught with a
tool transformation in place, the location recorded will be the center of the
gripper, not the center of the tool flange. This allows you to change grippers and
still have the robot reach the correct location. Figure 8-8 shows the location of the
robot when a location is taught and the actual location that is recorded when no
tool transformation is in effect. If the proper tool transformation is in effect when
the location is taught, the location recorded will be the part location and not the
center of the tool flange.

Figure 8-8. Recording Locations

Robot tool flange

The location that is recorded

The actual assembly location
206 V+ Language User Guide, Rev A

Chapter 8 Tool Transformations
Defining a Tool Transformation

If the dimensions of a robot tool are known, the POINT command can be used to
define a tool transformation to describe the tool. The null tool has its center at the
surface of the tool mounting flange and its coordinate axes parallel to that of the
last joint of the robot. The null tool transformation is equal to [0,0,0,0,0,0].

For example, if your tool has fingers that extend 50 mm below the tool flange and
100 mm in the tool x direction, and you want to change the tool setting to
compensate for the offset, enter the following lines at the system prompt (bold
characters indicate those actually entered):

. POINT hand.tool ↵(create a new transformation)
 X Y Z y p r

 0.00 0.00 0.00 0.000 0.000 0.000
Change? ,100,-50 ↵ (alter it by the grip offset)

 0.00 100.00 -50.00 0.000 0.000 0.000
Change? ↵
. TOOL hand.tool ↵
. LISTL hand.tool ↵

 X.jt1 y/jt2 z/jt3 y/jt4 p/jt5 r/jt6
 0.00 100.00 -50.00 0.000 0.000 0.000

Figure 8-9 shows the TOOL that would result from the above operation.

Figure 8-9. Tool Transformation

TOOL
V+ Language User Guide, Rev A 207

Chapter 8 Tool Transformations
Tool transformations are most important when:

• Grippers are changed frequently

• The robot is vision guided

• Robot locations are loaded directly from CAD data
208 V+ Language User Guide, Rev A

Chapter 8 Summary of Motion Keywords
Summary of Motion Keywords

Table 8-1 summarizes the keywords associated with motion in V+.

These instructions are covered in detail in the V+ Language Reference Guide.
Please see the reference guide for the keyword parameters and their uses.

Table 8-1. Motion Control Operations

Keyword Type Function

ABOVE PI Request a change in the robot configuration during the
next motion so that the elbow is above the line from the
shoulder to the wrist.

ACCEL PI Set acceleration and deceleration for robot motions.

ACCEL RF Return the current robot acceleration or deceleration
setting.

ALIGN PI Align the robot tool Z axis with the nearest world axis.

ALTER PI Specify the magnitude of the real-time path modification
that is to be applied to the robot path during the next
trajectory computation.

ALTOFF PI Terminate real-time path-modification mode (alter mode).

ALTON PI Enable real-time path-modification mode (alter mode), and
specify the way in which ALTER coordinate information
will be interpreted.

AMOVE PI Position an extra robot axis during the next
joint-interpolated or straight-line motion.

APPRO PI Start joint-interpolated robot motion toward a location
defined relative to specified location.

APPROS PI Start straight-line robot motion toward a location defined
relative to specified location.

PI: Program Instruction, RF: Real-Valued Function, TF: Transformation Function, S:
Switch, P: Parameter, PF: Precision-Point Function, SF: String Function, CF: Conversion
Factor
V+ Language User Guide, Rev A 209

Chapter 8 Summary of Motion Keywords
BASE PI Translate and rotate the world reference frame relative to
the robot.

BASE TF Return the transformation value that represents the
translation and rotation set by the last BASE command or
instruction.

BELOW PI Request a change in the robot configuration during the
next motion so that the elbow is below the line from the
shoulder to the wrist.

BRAKE PI Abort the current robot motion.

BREAK PI Suspend program execution until the current motion
completes.

CALIBRATE PI Initialize the robot positioning system.

CLOSE PI Close the robot gripper immediately.

CLOSEI PI Close the robot gripper.

COARSE PI Enable a low-precision feature of the robot hardware servo
(see FINE).

CONFIG RF Return a value that provides information about the robot’s
geometric configuration, or the status of the motion
servo-control features.

CP S Control the continuous-path feature.

CPOFF PI Instruct the V+ system to stop the robot at the completion
of the next motion instruction (for all subsequent motion
instructions) and null position errors.

CPON PI Instruct the V+ system to execute the next motion
instruction (or all subsequent motion instructions) as part
of a continuous path.

DECOMPOSE PI Extract the (real) values of individual components of a
location value.

Table 8-1. Motion Control Operations (Continued)

Keyword Type Function

PI: Program Instruction, RF: Real-Valued Function, TF: Transformation Function, S:
Switch, P: Parameter, PF: Precision-Point Function, SF: String Function, CF: Conversion
Factor
210 V+ Language User Guide, Rev A

Chapter 8 Summary of Motion Keywords
DELAY PI Cause robot motion to stop for the specified period of time.

DEPART PI Start a joint-interpolated robot motion away from the
current location.

DEPARTS PI Start a straight-line robot motion away from the current
location.

DEST TF Return a transformation value representing the planned
destination location for the current robot motion.

DISTANCE RF Determine the distance between the points defined by two
location values.

DRIVE PI Move an individual joint of the robot.

DRY.RUN S Control whether or not V+ communicates with the robot.

DURATION PI Set the minimum execution time for subsequent robot
motions.

DURATION RF Return the current setting of one of the motion
DURATION specifications.

DX RF Return a displacement component of a given
transformation value.

DY RF Return a displacement component of a given
transformation value.

DZ RF Return a displacement component of a given
transformation value.

FINE PI Enable a high-precision feature of the robot hardware
servo (see COARSE).

FLIP PI Request a change in the robot configuration during the
next motion so that the pitch angle of the robot wrist has a
negative value (see NOFLIP).

FORCE S Control whether or not the (optional) stop-on-force feature
of the V+ system is active.

Table 8-1. Motion Control Operations (Continued)

Keyword Type Function

PI: Program Instruction, RF: Real-Valued Function, TF: Transformation Function, S:
Switch, P: Parameter, PF: Precision-Point Function, SF: String Function, CF: Conversion
Factor
V+ Language User Guide, Rev A 211

Chapter 8 Summary of Motion Keywords
FRAME TF Return a transformation value defined by four positions.

HAND RF Return the current hand opening.

HAND.TIME P Establish the duration of the motion delay that occurs
during OPENI, CLOSEI, and RELAXI instructions.

HERE PI Set the value of a transformation or precision-point
variable equal to the current robot location.

HERE TF Return a transformation value that represents the current
location of the robot tool point.

HOUR.METER RF Return the current value of the robot hour meter.

IDENTICAL RF Determine if two location values are exactly the same.

INRANGE RF Return a value that indicates if a location can be reached by
the robot, and if not, why not.

INVERSE TF Return the transformation value that is the mathematical
inverse of the given transformation value.

IPS CF Specify the units for a SPEED instruction as inches per
second.

LATCH TF Return a transformation value representing the location of
the robot at the occurrence of the last external trigger.

LATCHED RF Return the status of the external trigger, and of the
information it causes to be latched.

LEFTY PI Request a change in the robot configuration during the
next motion so that the first two links of a SCARA robot
resemble a human’s left arm (see RIGHTY).

MMPS CF Specify the units for a SPEED instruction as millimeters per
second.

MOVE PI Initiate a joint-interpolated robot motion to the position
and orientation described by the given location.

Table 8-1. Motion Control Operations (Continued)

Keyword Type Function

PI: Program Instruction, RF: Real-Valued Function, TF: Transformation Function, S:
Switch, P: Parameter, PF: Precision-Point Function, SF: String Function, CF: Conversion
Factor
212 V+ Language User Guide, Rev A

Chapter 8 Summary of Motion Keywords
MOVES PI Initiate a straight-line robot motion to the position and
orientation described by the given location.

MOVEF PI Initiate a three-segment pick-and-place joint-interpolated
robot motion to the specified destination, moving the robot
at the fastest allowable speed.

MOVESF PI Initiate a three-segment pick-and-place straight-line robot
motion to the specified destination, moving the robot at the
fastest allowable speed.

MOVET PI Initiate a joint-interpolated robot motion to the position
and orientation described by the given location and
simultaneously operate the hand.

MOVEST PI Initiate a straight-line robot motion to the position and
orientation described by the given location and
simultaneously operate the hand.

MULTIPLE PI Allow full rotations of the robot wrist joints (see SINGLE).

NOFLIP PI Request a change in the robot configuration during the
next motion so that the pitch angle of the robot wrist has a
positive value (see FLIP).

NONULL PI Instruct the V+ system not to wait for position errors to be
nulled at the end of continuous-path motions (see NULL).

NORMAL TF Correct a transformation for any mathematical round-off
errors.

NOT.CALIBRAT
ED

P Indicate (or assert) the calibration status of the robots
connected to the system.

NULL TF Return a null transformation value—one with all zero
components.

NULL PI Enable nulling of joint position errors.

OPEN PI Open the robot gripper.

OPENI PI Open the robot gripper immediately.

Table 8-1. Motion Control Operations (Continued)

Keyword Type Function

PI: Program Instruction, RF: Real-Valued Function, TF: Transformation Function, S:
Switch, P: Parameter, PF: Precision-Point Function, SF: String Function, CF: Conversion
Factor
V+ Language User Guide, Rev A 213

Chapter 8 Summary of Motion Keywords
PAYLOAD PI Set an indication of the current robot payload.

#PDEST PF Return a precision-point value representing the planned
destination location for the current robot motion.

#PLATCH PF Return a precision-point value representing the location of
the robot at the occurrence of the last external trigger.

POWER S Control or monitor the status of Robot Power.

#PPOINT PF Return a precision-point value composed from the given
components.

REACTI PI Initiate continuous monitoring of a specified digital signal.
Automatically stop the current robot motion if the signal
properly transitions and optionally trigger a subroutine
call.

READY PI Move the robot to the READY location above the
workspace, which forces the robot into a standard
configuration.

RELAX PI Limp the pneumatic hand.

RELAXI PI Limp the pneumatic hand immediately.

RIGHTY PI Request a change in the robot configuration during the
next motion so that the first two links of the robot resemble
a human’s right arm (see LEFTY).

ROBOT S Enable or disable one robot or all robots.

RX TF Return a transformation describing a rotation about the x
axis.

RY TF Return a transformation describing a rotation about the y
axis.

RZ TF Return a transformation describing a rotation about the z
axis.

Table 8-1. Motion Control Operations (Continued)

Keyword Type Function

PI: Program Instruction, RF: Real-Valued Function, TF: Transformation Function, S:
Switch, P: Parameter, PF: Precision-Point Function, SF: String Function, CF: Conversion
Factor
214 V+ Language User Guide, Rev A

Chapter 8 Summary of Motion Keywords
SCALE TF Return a transformation value equal to the transformation
parameter with the position scaled by the scale factor.

SELECT PI Select the unit of the named device for access by the
current task.

SET PI Set the value of the location variable on the left equal to the
location value on the right of the equal sign.

SET.SPEED S Control whether or not the monitor speed can be changed
from the manual control pendant. The monitor speed
cannot be changed when the switch is disabled.

SHIFT TF Return a transformation value resulting from shifting the
position of the transformation parameter by the given shift
amounts.

SINGLE PI Limit rotations of the robot wrist joint to the range –180
degrees to +180 degrees (see MULTIPLE).

SOLVE.ANGLES PI Compute the robot joint positions (for the current robot)
that are equivalent to a specified transformation.

SOLVE.FLAGS RF Return bit flags representing the robot configuration
specified by an array of joint positions.

SOLVE.TRANS PI Compute the transformation equivalent to a given set of
joint positions for the current robot.

SPEED PI Set the nominal speed for subsequent robot motions.

SPEED RF Return one of the system motion speed factors.

STATE RF Return a value that provides information about the robot
system state.

TOOL PI Set the internal transformation used to represent the
location and orientation of the tool tip relative to the tool
mounting flange of the robot.

TOOL TF Return the value of the transformation specified in the last
TOOL command or instruction.

Table 8-1. Motion Control Operations (Continued)

Keyword Type Function

PI: Program Instruction, RF: Real-Valued Function, TF: Transformation Function, S:
Switch, P: Parameter, PF: Precision-Point Function, SF: String Function, CF: Conversion
Factor
V+ Language User Guide, Rev A 215

Chapter 8 Summary of Motion Keywords
TRANS TF Return a transformation value computed from the given X,
Y, Z position displacements and y, p, r orientation
rotations.

TRANSB TF Return a transformation value represented by a 48-byte
string.

Table 8-1. Motion Control Operations (Continued)

Keyword Type Function

PI: Program Instruction, RF: Real-Valued Function, TF: Transformation Function, S:
Switch, P: Parameter, PF: Precision-Point Function, SF: String Function, CF: Conversion
Factor
216 V+ Language User Guide, Rev A

Input/Output Operations 9
Terminal I/O . 219

Terminal Types 220
Input Processing 220
Output Processing 222

Digital I/O . 223

High-Speed Interrupts 224
Soft Signals . 224
Digital I/O and Third Party Boards 224

Pendant I/O . 225

Analog I/O . 225

Serial and Disk I/O Basics 227

Logical Units . 227
Error Status . 227
Attaching/Detaching Logical Units 229
Reading . 230
Writing . 231
Input Wait Modes 231
Output Wait Modes 232

Disk I/O . 233

Attaching Disk Devices 233
Disk I/O and the Network File System (NFS) 234
Disk Directories 234
Disk File Operations 234

Opening a Disk File 235
Writing to a Disk 236
Reading From a Disk 237
Detaching 237
Disk I/O Example 238

Advanced Disk Operations 239

Variable-Length Records 239
Fixed-Length Records 240
217

Chapter 9
Sequential-Access Files 240
Random-Access Files 240
Buffering and I/O Overlapping 241
Disk Commands 242
Accessing the Disk Directories 243
AdeptNET . 244

Serial Line I/O . 245

I/O Configuration 245
Attaching/Detaching Serial I/O Lines 246
Input Processing 246
Output Processing 247

Serial I/O Examples 247
DDCMP Communication Protocol 250

General Operation 250
Attaching/Detaching DDCMP Devices 251
Input Processing 252
Output Processing 252
Protocol Parameters 253
Kermit Communication Protocol 254

Kermit Communication Protocol 254

Starting a Kermit Session 255
File Access Using Kermit 257

Binary Files 258
Kermit Line Errors 259
V+ System Parameters for Kermit 260

Summary of I/O Operations 261
218 V+ Language User’s Guide, Rev A

Chapter 9 Terminal I/O
Terminal I/O

The program instruction used to output text to the monitor screen is TYPE. The
program line:

TYPE "This is a terminal output instruction."

will output the text between the quotation marks to the current cursor location. If
a variable x has a value of 27, the instruction:

TYPE "The value of x is ", x, "."

will output The value of x is 27. to the monitor.

The TYPE instruction has qualifiers for entering blank spaces and moving the
cursor. The instruction:

TYPE /C34, /U17, "This is the screen center."

will enter 34 carriage returns (clear the screen), move up 17 lines from the bottom
of the screen, and output the text message. Additional qualifiers are available to
format the output of variables and control terminal behavior.

The program instruction used to retrieve data input from the keyboard is
PROMPT. The program line:

PROMPT "Enter a value for x: ", x

will halt program execution and wait for the operator to enter a value from the
keyboard (in this case a real or integer value). If a value of the proper data type is
entered, the value is assigned to the named variable (if the variable does not exist,
it will be created and assigned the value entered) and program execution will
proceed. If an improper data type is entered, the system will generate an error
message and halt execution. String data is expected if a string variable ($x, for
example) is specified.

All terminal input should be checked for proper data type. The following code
segment will insure that a positive integer is input. (Using the VAL() function also
guarantees that inadvertently entered nonnumeric characters will not cause a
system error.)

DO
PROMPT "Enter a value greater than 0: ", $x
x = VAL($x)

UNTIL x > 0
V+ Language User’s Guide, Rev A 219

Chapter 9 Terminal I/O
Terminal Types

In order for V+ to echo input characters properly and to generate certain displays
on character based terminals, the type of terminal being used must be specified to
the system. The default terminal type (which is recorded on the V+ system disk) is
assumed each time the V+ system is booted from disk.1 After the system is
booted, the TERMINAL system parameter can be set to specify a different
terminal type.

Input Processing

Terminal input is buffered by the system but is not echoed until it is actually read
by the V+ monitor or by a program. A maximum of 80 characters can be received
before V+ begins to reject input. When input is being rejected, V+ beeps the
terminal for each character rejected.

On input, V+ may intercept special characters Ctrl+O, Ctrl+Q, and Ctrl+S, and
use them to control terminal output.2 They cannot be input even by the GETC
function. Their functions are shown in Table 9-1.

When Ctrl+O is used to suppress output, all output instructions behave normally,
except that no output is sent to the terminal. Output suppression is canceled by
typing a second Ctrl+O, by V+ writing a system error message, or by a terminal
read request.

1 The default terminal type and communication characteristics of the serial line are set with the
configuration program in the file CONFIG_C.V2 on the Adept Utility Disk.

2 Terminal behavior is configurable using the /FLUSH and /FLOW arguments to the FSET
instruction. See the V+ Language Reference Guide.

Table 9-1. Special Character Codes

Char. Decimal Function

Ctrl+O 15 Suppress or stop suppressing
output

Ctrl+Q 17 Resume output suspended by
Ctrl+S

Ctrl+S 19 Immediately suspend terminal
output
220 V+ Language User’s Guide, Rev A

Chapter 9 Terminal I/O
Other special characters are recognized by the terminal input handler when
processing a PROMPT or READ instruction, or when reading a monitor
command. However, these characters can be read by the GETC function, in which
case their normal action is suppressed.

During a PROMPT or READ instruction, all control characters are ignored except
those listed above. Tab characters are automatically converted to the appropriate
number of space characters when they are received. (Tab stops are assumed to be
set every eight spaces [at columns 9, 17, 25,...] and cannot be changed.)

The most significant bit of each byte is forced to zero.

Unlike PROMPT, both READ and GETC require that the terminal be ATTACHed.

Normally, READ and GETC echo input characters as they are processed. An
optional mode argument for each of these operations allows echo to be
suppressed.

Table 9-2. Special Character Codes Read by GETC

Char. Decimal Name Action

Ctrl+C 03 Abort the current monitor command

Ctrl+H 08 Backspace Delete the previous input character

Ctrl+I 09 Tab Move to the next tab stop

Ctrl+M 13 Return Complete this input line

Ctrl+R 18 Retype the current input line

Ctrl+U 21 Delete the entire current line

Ctrl+W 23 Start/stop slow output mode

Ctrl+Z 26 Complete this input with an end of file
error

DEL 12
7

Delete Delete the previous input character
V+ Language User’s Guide, Rev A 221

Chapter 9 Terminal I/O
Output Processing

Output to the system terminal can be performed using PROMPT, TYPE, or
WRITE instructions. All eight-bit, binary, byte data is output to the terminal
without any modification.

TYPE and WRITE automatically append a Return character (13 decimal) and Line
Feed character (10 decimal) to each data record, unless the /S format control is
specified. PROMPT does not append any characters.

Unlike all the other I/O devices, the terminal does not have to be attached prior to
output requests. If a different task is attached to the terminal, however, any
output requests are queued until the other task detaches. V+ system error
messages are always displayed immediately, regardless of the status of terminal
attachment.
222 V+ Language User’s Guide, Rev A

Chapter 9 Digital I/O
Digital I/O

Adept controllers can communicate in a digital fashion with external devices
using the Digital I/O capability. Digital input reads the status of a signal
controlled by user-installed equipment. A typical digital input operation would
be to wait for a microswitch on a workcell conveyor to close,indicating that an
assembly is in the proper place. The WAIT instruction and SIG function are used
to halt program execution until a digital input channel signal achieves a specified
state. The program line:

WAIT SIG(1001)

will halt program execution until a switching device attached to digital input
channel 1001 is closed. If signal 1002 is a sensor indicating a part feeder is empty,
the code:

IF SIG(1002) THEN
CALL service.feeder()

END

will check the sensor state and call a routine to service the feeder if the sensor is
on.

The SIGNAL instruction is used for digital output. In the above example, the
conveyor belt may need to be stopped after digital input signal 1001 signals that a
part is in place. The instruction:

SIGNAL(−33)

will turn off digital output signal 33, causing the conveyor belt connected to
signal 33 to stop. When processing on the part is finished and the part needs to be
moved out of the work area, the instruction:

SIGNAL(33)

will turn the conveyor belt back on. The digital I/O channels must be installed
before they can be accessed by the SIG function or SIGNAL instruction. The
SIG.INS function returns an indication of whether a given signal number is
available. The code line:

IF SIG.INS(33) THEN

can be used to insure that a digital signal was available before you attempted to
access it. The monitor command IO will display the status of all digital I/O
channels. See the Adept MV Controller User’s Guide for details on installing
digital I/O hardware.
V+ Language User’s Guide, Rev A 223

Chapter 9 Digital I/O
Digital output channels are numbered from 1 to 232. Input channels are in the
range 1001 to 1236.

High-Speed Interrupts

Normally, the digital I/O system is checked once every V+ major cycle (every
16ms). In some cases, the delay or uncertainty resulting may be unacceptable.
Digital signals 1001 - 1003 can be configured as high-speed interrupts. When a
signal configured as a high-speed interrupt transitions, its state is read at system
interrupt level, resulting in a maximum delay of 1ms. The controller configuration
utility CONFIG_C is used to configure high-speed interrupts.

Soft Signals

Soft signals are used primarily as global flags. The soft signals are in the range
2001 - 2512 and can be used with SIG and SIGNAL. A typical use of soft signals is
for intertask communication. See ”REACT and REACTI” on page 138 and the
REACT_ instructions in the V+ Language Reference Guide.

Soft signals may be used to communicate between different V+ systems running
on multiple system processors.1

Digital I/O and Third Party Boards

When V+ starts, default blocks of system memory are assigned to the digital I/O
system. V+ expects to find the digital I/O image at these locations. If you are
using a third party digital I/O board you will need to remap these memory
locations to correspond to the actual memory location of the digital I/O image on
your board. See the description of DEF.DIO in the V+ Language Reference Guide
for details.

1 If your system is equipped with multiple system processors and the optional V+ Extensions
software, you can run different copies of V+ on each processor. Use the CONFIG_C utility to set
up multiple V+ systems.
224 V+ Language User’s Guide, Rev A

Chapter 9 Pendant I/O
Pendant I/O

Most of the standard V+ I/O operations can be used to read data from the manual
control pendant keypad and to write data to the pendant display. See Chapter 11
for information on accessing the manual control pendant.

Analog I/O

Up to eight analog I/O modules for a total of 32 output and 256 input channels1
can be installed in an Adept MV controller. Figure 9-1 on page 226 shows the I/O
channel numbers for each installed module. Analog I/O modules can be
configured for different input/output ranges. The actual input and output
voltages are determined by setting on the AIO module. Regardless of the
input/output range selected, the AIO.IN function returns a value in the –1.0 to 1.0
range and AIO.OUT instruction expects a value in the range –1.0 to 1.0.
Additionally, modules can be configured for differential input (which reduces the
maximum number of input channels to 128). Contact Adept Applications for
details on installing and configuring analog I/O boards.2 See ”How Can I Get
Help?” on page 32 for phone numbers.

The instruction:

analog.value = AIO.IN(1004)

will read the current state of analog input channel 4.

The instruction:

AIO.OUT 2 = 0.9

will write the value 0.9 to analog output channel 2.

The instruction:

IF AIO.INS (4) THEN
AIO.OUT 4 = 0.56

END

will write to output channel 4 only if output channel 4 is installed.

1 Analog I/O boards can be configured for differential input rather than single-ended input.
Differential input reduces the number of channels on a single board from 32 to 16.

2 The analog I/O board used by the Adept controller is supplied by Xycom, Inc. The model
number is XVME-540. The phone number for Xycom is (800) 289-9266.
V+ Language User’s Guide, Rev A 225

Chapter 9 Analog I/O
Figure 9-1. Analog I/O Board Channels

Board 1

in 1001-1032
(dif 1001-1016)
out 1-4

Board 2

in 1033-1064
(dif 1033-1048)
out 5-8

Board 3

in 1065-1096
(dif 1065-1080)
out 9-12

Board 4

in 1097-1128
(dif 1097-1112)
out 13-16

Board 5

in 1129-1160
(dif 1129-1144)
out 17-20

Board 6

in 1161-1192
(dif 1161-1176)
out 21-24

Board 7

in 1193-1224
(dif 1193-1208)
out 25-28

Board 8

in 1225-1256
(dif 1225-1240)
out 29-32
226 V+ Language User’s Guide, Rev A

Chapter 9 Serial and Disk I/O Basics
Serial and Disk I/O Basics

The following sections describe the basic procedures that are common to both
serial and disk I/O operations. ”Disk I/O” on page 233 covers disk I/O in detail.
”Serial Line I/O” on page 245 covers serial I/O in detail.

Logical Units

All V+ serial and disk I/O operations reference an integer value called a Logical
Unit Number or LUN. The LUN provides a shorthand method of identifying
which device or file is being referenced by an I/O operation. See the ATTACH
command in the V+ Language Reference Guide for the default device LUN
numbers.

Disk devices are different from all the other devices in that they allow files to be
opened. Each program task can have one file open on each disk LUN. That is,
each program task can have multiple files open simultaneously (on the same or
different disk units).

NOTE: No more than 60 disk files can be open by the entire system
at any time. That includes files opened by programs and by the
system monitor (for example, for the FCOPY command). The error
∗Device not ready∗ results if an attempt is made to open a 61st file.

See Chapter 10 for details on accessing the graphics window LUNs.

Error Status

Unlike most other V+ instructions, I/O operations are expected to fail under
certain circumstances. For example, when reading a file, an error status is
returned to the program to indicate when the end of the file is reached. The
program is expected to handle this error and continue execution. Similarly, a
serial line may return an indication of a parity error, which should cause the
program to retry a data transmission sequence.
V+ Language User’s Guide, Rev A 227

Chapter 9 Serial and Disk I/O Basics
For these reasons, V+ I/O instructions normally do not stop program execution
when an error occurs. Instead, the success or failure of the operation is saved
internally for access by the IOSTAT real-valued function. For example, a reference
to IOSTAT(5) will return a value indicating the status of the last I/O operation
performed on LUN 5. The values returned by IOSTAT fall into one of following
three categories:

The error message associated with a negative value from IOSTAT can be found in
the V+ Language Reference Guide. The $ERROR string function can be used in a
program (or with the LISTS monitor command) to generate the text associated
with most I/O errors.

It is good practice to use IOSTAT to check each I/O operation performed, even if
you think it cannot fail (hardware problems can cause unexpected errors).

Note that it is not necessary to use IOSTAT after use of a GETC function, since
errors are returned directly by the GETC function.

Table 9-3. IOSTAT Return Values

Value Explanation

1 The I/O operation completed successfully.

0 The I/O operation has not yet completed. This value appears
only if a pre-read or no-wait I/O is being performed.

<0 The I/O operation completed with an error. The error code
indicates what type of error occurred.
228 V+ Language User’s Guide, Rev A

Chapter 9 Serial and Disk I/O Basics
Attaching/Detaching Logical Units

In general, an I/O device must be attached using the ATTACH instruction before
it can be accessed by a program. Once a specific device (such as the manual
control pendant) is attached by one program task, it cannot be used by another
program task. Most I/O requests fail if the device associated with the referenced
LUN is not attached.

Each program task has its own sets of disk and graphics logical units. Thus, more
than one program task can attach the same logical unit number in those groups at
the same time without interference.

A physical device type can be specified when the logical unit is attached. If a
device type is specified, it supersedes the default, but only for the logical unit
attached. The specified device type remains selected until the logical unit is
detached.

An attach request can optionally specify immediate mode. Normally, an attach
request is queued, and the calling program is suspended if another control
program task is attached to the device. When the device is detached, the next
attachment in the queue will be processed. In immediate mode, the ATTACH
instruction completes immediately—with an error if the requested device is
already attached by another control program task.

With V+ systems, attach requests can also specify no-wait mode. This mode
allows an attach request to be queued without forcing the program to wait for it to
complete. The IOSTAT function must then be used to determine when the attach
has completed.

If a task is already attached to a logical unit, it will get an error immediately if it
attempts to attach again without detaching, regardless of the type of wait mode
specified.

When a program is finished with a device, it should detach the device with the
DETACH program instruction. This allows other programs to process any
pending I/O operations.

When a control program completes execution normally, all I/O devices attached
by it are automatically detached. If a program stops abnormally, however, most
device attachments are preserved. If the control program task is resumed and
attempts to reattach these logical units, it may fail because of the attachments still
in effect. The KILL monitor command forces a program to detach all the devices it
has attached.
V+ Language User’s Guide, Rev A 229

Chapter 9 Serial and Disk I/O Basics
If attached by a program, the terminal and manual control pendant are detached
whenever the program halts or pauses for any reason, including error conditions
and single-step mode. If the program is resumed, the terminal and the manual
control pendant are automatically reattached if they were attached before the
termination.

NOTE: It is possible that another program task could have attached
the terminal or manual control pendant in the meantime. That
would result in an error message when the stopped task is restarted.

Reading

The READ instruction processes input from all devices. The basic READ
instruction issues a request to the device attached on the indicated LUN and waits
until a complete data record is received before program execution continues. (The
length of the last record read can be obtained with the IOSTAT function with its
second argument set to 2.)

The GETC real-valued function returns the next data byte from an I/O device
without waiting for a complete data record. It is commonly used to read data
from the serial lines or the system terminal. It also can be used to read disk files in
a byte-by-byte manner.

Special mode bits to allow reading with no echo are supported for terminal read
operations. Terminal input also can be performed using the PROMPT instruction.

The GETEVENT instruction can be used to read input from the system terminal.
This may be useful in writing programs that operate on both graphics and
nongraphics-based systems.

To read data from a disk device, a file must be open on the corresponding logical
unit. The FOPEN_ instructions open disk files.
230 V+ Language User’s Guide, Rev A

Chapter 9 Serial and Disk I/O Basics
Writing

The WRITE instruction processes output to serial and disk devices and to the
terminal. The basic WRITE instruction issues a request to the device attached on
the indicated LUN, and waits until the complete data record is output before
program execution continues.

WRITE instructions accept format control specifiers that determine how output
data is formatted, and whether or not an end of record mark should be written at
the end of the record.

Terminal output also can be performed using the PROMPT or TYPE instructions.

A file must be open using the FOPENW or FOPENA instructions before data can
be written to a disk device. FOPENW opens a new file. FOPENA opens an
existing file and appends data to that file.

Input Wait Modes

Normally, V+ waits until the data from an input instruction is available before
continuing with program execution. However, the READ instruction and GETC
function accept an optional argument that specifies no-wait mode. In no-wait
mode, these instructions return immediately with the error status –526 (No data
received) if there is no data available. A program can loop and use these
operations repeatedly until a successful read is completed or until some other
error is received.

The disk devices do not recognize no-wait mode on input and treat such requests
as normal input-with-wait requests.
V+ Language User’s Guide, Rev A 231

Chapter 9 Serial and Disk I/O Basics
Output Wait Modes

Normally, V+ waits for each I/O operation to be complete before continuing to
the next program instruction. For example, the instruction:

TYPE /X50

causes V+ to wait for the entire record of 50 spaces to be transmitted (about 50
milliseconds with the terminal set to 9600 baud) before continuing to the next
program instruction.

Similarly, WRITE instructions to serial lines or disk files will wait for any required
physical output to complete before continuing.

This waiting is not performed if the /N (no wait) format control is specified in an
output instruction. Instead, V+ immediately executes the next instruction. The
IOSTAT function will check whether or not the output has completed. It returns a
value of zero if the previous I/O is not complete.

If a second output instruction for a particular LUN is encountered before the first
no-wait operation has completed, the second instruction will automatically wait
until the first is done. This scheme means the no-wait output is effectively
double-buffered. If an error occurs in the first operation, the second operation is
canceled, and the IOSTAT value is correct for the first operation.

With V+, the IOSTAT function can be used with a second argument of 3 to
explicitly check for the completion of a no-wait write.
232 V+ Language User’s Guide, Rev A

Chapter 9 Disk I/O
Disk I/O

The following sections discuss disk I/O.

Attaching Disk Devices

A disk LUN refers to a local disk device, such as a 3-1/2 inch diskette drive or the
optional hard disk. Also, a remote disk may be accessed via the Kermit protocol
or a network.

The type of device to be accessed is determined by the DEFAULT command or the
ATTACH instruction. If the default device type set by the DEFAULT command is
not appropriate at a particular time, the ATTACH instruction can be used to
override the default. The syntax of the ATTACH instruction is:

ATTACH (lun , mode) $device

See the description of ATTACH in the V+ Language Reference Guide for the mode
options and the possible $device names. The instruction:

ATTACH (dlun, 4) "DISK"

will attach to an available disk logical unit and return the number of the logical
unit in the variable dlun, which can then be used in other disk I/O instructions.

If the device name is omitted from the instruction, the default device for the
specified LUN is used. Adept recommends that you always specify a device name
with the ATTACH instruction. (The device SYSTEM refers to the device specified
with the DEFAULT monitor command.)

Once the attachment is made, the device cannot be changed until the logical unit
is detached. However, any of the units available on the device can be specified
when opening a file. For example, the V+ DISK units are A and C. After attaching
a DISK device LUN, a program can open and close files on either of these disk
units before detaching the LUN.
V+ Language User’s Guide, Rev A 233

Chapter 9 Disk I/O
Disk I/O and the Network File System (NFS)

In addition to local disk devices, an Adept system equiped with the optional
ethernet hardware and the TCP/IP and NFS licenses can mount remote disk
drives. Once mounted, these remote disk drives can be accessed in the same
fashion as local disks. The following sections describe accessing a disk drive
regardless of whether it is a local drive or a remotely mounted drive. See the
AdeptNet User’s Guide for details on making an NFS mount.

Disk Directories

The FOPEN_ instructions, which open disk files for reading and writing, use
directory paths in the same fashion as the monitor commands LOAD, STORE, etc.
Files on a disk are grouped in directories. If a disk is thought of as a file cabinet,
then a directory can be thought of as a drawer in that cabinet. Directories allow
files (the file folders in our file cabinet analogy) that have some relationship to
each other to be grouped together and separated from other files. See the chapter
Using Files in the V+ Operating System User’s Guide for more details on the
directory structure.

Disk File Operations

All I/O requests to a disk device are made to a file on that device. A disk file is a
logical collection of data records1 on a disk. Each disk file has a name, and all the
names on a disk are stored in a directory on the disk. The FDIRECTORY monitor
command displays the names of the files on a disk.

A disk file can be accessed either sequentially, where data records are accessed
from the beginning of the file to its end, or randomly, where data records are
accessed in any order. Sequential access is simplest and is assumed in this section.
Random access is described later in this chapter.

1 A variable-length record is a text string terminated by a CR/LF (ASCII 13/ASCII 10).
234 V+ Language User’s Guide, Rev A

Chapter 9 Disk I/O
Opening a Disk File

Before a disk file can be opened, the disk the file is on must be ATTACHed.

The FOPEN_ instructions open disk files (and file directories). These instructions
associate a LUN with a disk file. Once a file is open, the READ, GETC, and WRITE
instructions access the file. These instructions use the assigned LUN to access the
file so multiple files may be open on the same disk and the I/O operations for the
different disk files will not affect each other.1

The simplified syntax for FOPEN_ is:

FOPEN_ (lun) file_spec

where:

lun logical unit number used in the ATTACH instruction

file_spec file specification in the form, unit:path\filename.ext

unit is an optional disk unit name. The standard local disk units are A
and C. If no unit is specified, the colon also must be omitted. Then
the default unit (as determined by the DEFAULT command) is
assumed.

path\ is an optional directory path string. The directory path is defined by
one or more directory names, each followed by a \ character. The
actual directory path is determined by combining any specified path
with the path set by the DEFAULT command. If path is preceded
with a \, the path is absolute. Otherwise, the path is relative and is
added to the current DEFAULT path specification. (If unit is speci-
fied and is different from the default unit, the path is always abso-
lute.)

filename is a name with 1 to 8 characters, which is used as the name of the file
on the disk.

ext is the filename extension—a string with 0 to 3 characters, which is
used to identify the file type.

1 When accessing files on a remote system (for example, when using Kermit), the unit can be any
name string, and the file name and extension can be any arbitrary string of characters.
V+ Language User’s Guide, Rev A 235

Chapter 9 Disk I/O
The four open commands are:

1. Open for read only (FOPENR). If the disk file does not exist, an error is
returned. No write operations are allowed, so data in the file cannot be
modified.

2. Open for write (FOPENW). If the disk file already exists, an error is returned.
Otherwise, a new file is created. Both read and write operations are allowed.

3. Open for append (FOPENA). If the disk file does not exist, a new file is created.
Otherwise, an existing file is opened. No error is returned in either case. A
sequential write or a random write with a zero record number appends data
to the end of the file.

4. Open for directory read (FOPEND). The last directory in the specified
directory path is opened. Only read operations are allowed. Each record read
returns an ASCII string containing directory information. Directories should
be opened using variable-length sequential-access mode.

While a file is open for write or append access, another control program task
cannot access that file. However, multiple control program tasks can access a file
simultaneously in read-only mode.

Writing to a Disk

The instruction:

WRITE (dlun) $in.string

will write the string stored in $in.string to the disk file open on dlun. The
instruction:

error = IOSTAT(dlun)

will return any errors generated during the write operation.
236 V+ Language User’s Guide, Rev A

Chapter 9 Disk I/O
Reading From a Disk

The instruction:

READ (dlun) $in.string

will read (from the open file on dlun) up to the first CR/LF (or end of file if it is
encountered) and store the result in $in.string. When the end of file is reached, V+
error number –504 Unexpected end of file is generated. The IOSTAT() function
must be used to recognize this error and halt reading of the file:

DO
READ (dlun) $in.string
TYPE $in.string

UNTIL IOSTAT(dlun) == -504

The GETC function reads the file byte by byte if you want to examine individual
bytes from the file (or if the file is not delimited by CR/LFs).

Detaching

When a disk logical unit is detached, any disk file that was open on that unit is
automatically closed. However, error conditions detected by the close operation
may not be reported. Therefore, it is good practice to use the FCLOSE instruction
to close files and to check the error status afterwards. FCLOSE ensures that all
buffered data for the file is written to the disk, and updates the disk directory to
reflect any changes made to the file. The DETACH instruction frees up the logical
unit. The following instructions close a file and detach a disk LUN:

FCLOSE (dlun)
IF IOSTAT(dlun) THEN

TYPE $ERROR(IOSTAT(dlun))
END

DETACH (dlun)

When a program completes normally, any open disk files are automatically
closed. If a program stops abnormally and execution will not proceed, the KILL
monitor command will close any files left open by the program.

CAUTION: While a file is open on a floppy disk, do not replace the
floppy disk with another disk: Data may be lost and the new disk
may be corrupted.
V+ Language User’s Guide, Rev A 237

Chapter 9 Disk I/O
Disk I/O Example

The following example creates a disk file, writes to the file, closes the file, reopens
the file, and reads back its contents.
AUTO dlun, i
AUTO $file.name

$file.name = "data.tst"

; Attach to a disk logical unit

ATTACH (dlun, 4) "DISK"
IF IOSTAT(dlun) < 0 GOTO 100

; Open a new file and check status

FOPENW (dlun) $file.name
IF IOSTAT(dlun) < 0 GOTO 100

; Write the text

FOR i = 1 TO 10
WRITE (dlun) "Line "+$ENCODE(i)
IF IOSTAT(dlun) < 0 GOTO 100

END

; Close the file

FCLOSE (dlun)
IF IOSTAT(dlun) < 0 GOTO 100

; Reopen the file and read its contents

FOPENR (dlun) $file.name
IF IOSTAT(dlun) < 0 GOTO 100

READ (dlun) $txt ;Get first line from file
WHILE IOSTAT(dlun) > 0 DO

TYPE $txt
READ (dlun) $txt

END ;End of file or error

IF (IOSTAT(dlun) < 0) AND (IOSTAT(dlun) <> −504) THEN
100 TYPE $ERROR(IOSTAT(dlun)) ;Report any errors

END

FCLOSE (dlun) ;Close the file
IF IOSTAT(dlun) < 0 THEN

TYPE $ERROR(IOSTAT(dlun))
END

DETACH (dlun) ;Detach the LUN
238 V+ Language User’s Guide, Rev A

Chapter 9 Advanced Disk Operations
Advanced Disk Operations

This section introduces additional parameters to the FOPEN_ instructions. See the
descriptions of the FOPEN_ instructions in the V+ Language Reference Guide for
details.

Variable-Length Records

The default disk file access mode is variable-length record mode. In this mode,
records can have any length (up to a maximum of 512 bytes) and can cross the
boundaries of 512-byte sectors. The end of a record is indicated by a Line-Feed
character (ASCII 10). Also, the end of the file is indicated by the presence of a
Ctrl+Z character (26 decimal) in the file. Variable-length records should not
contain any internal Line-Feed or Ctrl+Z characters as data. This format is used
for loading and storing V+ programs, and is compatible with the IBM PC
standard ASCII file format.

Variable-length record mode is selected by setting the record length parameter in
the FOPEN_ instruction to zero, or by omitting the parameter completely. In this
mode, WRITE instructions automatically append Return (ASCII 13) and
Line-Feed characters to the output data—which makes it a complete record. If the
/S format control is specified in an output specification, no Return/Line-Feed is
appended. Then any subsequent WRITE will have its data concatenated to the
current data as part of the same record. If the /Cn format control is specified, n
Return/Line-Feeds are written, creating multiple records with a single WRITE.

When a variable-length record is read using a READ instruction, the
Return/Line-Feed sequence at the end is removed before returning the data to the
V+ program. If the GETC function is used to read from a disk file, all characters
are returned as they appear in the file—including Return, Line-Feed, and Ctrl+Z
characters.
V+ Language User’s Guide, Rev A 239

Chapter 9 Advanced Disk Operations
Fixed-Length Records

In fixed-length record mode, all records in the disk file have the same specific
length. Then there are no special characters embedded in the file to indicate where
records begin or end. Records are contiguous and may freely cross the boundaries
of 512-byte sectors.

Fixed-length record mode is selected by setting the record length parameter in the
FOPEN_ instruction to the size of the record, in bytes. WRITE instructions then
pad data records with zero bytes or truncate records as necessary to make the
record length the size specified. No other data bytes are appended, and the /S
format control has no effect.

In fixed-length mode, READ instructions always return records of the specified
length. If the length of the file is such that it cannot be divided into an even
number of records, a READ of the last record will be padded with zero bytes to
make it the correct length.

Sequential-Access Files

Normally, the records within a disk file are accessed in order from the beginning
to the end without skipping any records. Such files are called sequential files.
Sequential-access files may contain either variable-length or fixed-length records.

Random-Access Files

In some applications, disk files need to be read or written in a nonsequential or
random order. V+ supports random access only for files with fixed-length
records. Records are numbered starting with 1. The position of the first byte in a
random-access record can be computed by:

byte_position = 1 + (record_number −1) * record_length

Random access is selected by setting the random-access bit in the mode parameter
of the FOPEN_ instruction. A nonzero record length must also be specified.

A specific record is accessed by specifying the record number in a READ or
WRITE instruction. If the record number is omitted, or is zero, the record
following the one last accessed is used (see the FOPEN_ description in the V+

Language Reference Guide).
240 V+ Language User’s Guide, Rev A

Chapter 9 Advanced Disk Operations
NOTE: Logically, each disk file appears to be simply a sequence of
bytes. These bytes are interpreted as grouped into records according
to the manner in which the file was opened. Files do not contain
record format information, so any file can be opened in any record
mode. (Thus, it is the programmer’s responsibility to make sure files
are read with the same record format as was used to create the file.)

Buffering and I/O Overlapping

All physical disk I/O occurs as 512-byte sector reads and writes. Records are
unpacked from the sector buffer on input, and additional sectors are read as
needed to complete a record. To speed up read operations, V+ automatically
issues a read request for the next sector while it is processing the current sector.
This request is called a pre-read. Pre-read is selected by default for both
sequential-access and random-access modes. It can be disabled by setting a bit in
the mode parameter of the FOPEN_ instruction. If pre-reads are enabled, opening
a file for read access immediately issues a read for the first sector in the file.

Pre-read operations may actually degrade system performance if records are
accessed in truly random order, since sectors would be read that would never be
used. In this case, pre-reads should be disabled and the FSEEK instruction should
be used to initiate a pre-read of the next record to be used.

The function IOSTAT(lun, 1) returns the completion status for a pending pre-read
or FSEEK operation.

On output, records are packed into sector buffers and written after the buffers are
filled. If no-wait mode is selected for a write operation by using the /N format
control, the WRITE instruction does not wait for a sector to be written before
allowing program execution to continue.

In random-access mode, a sector buffer is not normally written to disk until a
record not contained in that buffer is accessed. The FEMPTY instruction empties
the current sector buffer by immediately writing it to the disk.

A file may be opened in nonbuffered mode, which is MUCH SLOWER than
normal buffered mode, but it guarantees that information that is written will not
be lost due to a system crash or power failure. This mode was intended primarily
for use with log files that are left opened over an extended period of time and
intermittently updated. For these types of files, the additional (significant)
overhead of this mode is not so important as the benefit.
V+ Language User’s Guide, Rev A 241

Chapter 9 Advanced Disk Operations
When a file is being created, information about the file size is not stored in the
disk directory until the file is closed. Closing a file also forces any partial sector
buffers to be written to the disk. Note that aborting a program does not force files
associated with it to be closed. The files are not closed (and the directory is not
updated) until a KILL command is executed or until the aborted program is
executed again.

CAUTION: To preserve newly written data, do not remove a
floppy disk from the drive until you are sure the file has been
closed.

Disk Commands

There are several disk-oriented monitor commands that do not have a
corresponding program instruction. The FCMND instruction must be used to
perform the following actions from within a program:

• Rename a file

• Format a disk

• Create a subdirectory

• Delete a subdirectory

The MCS instruction can be used to issue an FCOPY command from within a
program.

FCMND is similar to other disk I/O instructions in that a logical unit must be
attached and the success or failure of the command is returned via the IOSTAT
real-valued function.

The FCMND instruction is described in detail in V+ Language Reference Guide.
242 V+ Language User’s Guide, Rev A

Chapter 9 Advanced Disk Operations
Accessing the Disk Directories

The V+ directory structure is identical to that used by the IBM PC DOS operating
system (version 2.0 and later). For each file, the directory structure contains the
file name, attributes, creation time and date, and file size. Directory entries may
be read after successfully executing an FOPEND instruction.

Each directory record returned by a READ instruction contains an ASCII string
with the information shown in Table 9-4.

Table 9-4. Disk Directory Format

Byte Size Description

1-8 8 ASCII file name, padded with blanks on right

9 1 ASCII period character (46 decimal)

10-12 3 ASCII file extension, padded with blanks on right

13-20 8 ASCII file size, in sectors, right justified

21 1 ASCII space character (32 decimal)

22-28 7 Attribute codes, padded with blanks on right

29-37 9 File revision date in the format dd-mm-yy

38 1 ASCII space character (32 decimal)

39-46 8 File revision time in the format hh:mm:ss
V+ Language User’s Guide, Rev A 243

Chapter 9 Advanced Disk Operations
The following characters are possible in the file attribute code field of directory
entries:

The attribute field is blank if no special attributes are indicated.

The file revision date and time fields are blank if the system date and time had not
been set when the file was created or last modified. (The system date and time are
set with the TIME monitor command or program instruction.)

AdeptNET

AdeptNET provides the ability to perform TCP/IP communications with other
equipment, perform NFS mounts on remote disks, and perform FTP transfers of
files between local and remote disks. See the AdeptNet User’s Guide for details.

Table 9-5. File Attribute Codes

Character Meaning

D Entry is a subdirectory

L Entry is the volume label (not supported by
V+)

P File is protected and cannot be read or
modified

R File is read-only and cannot be modified

S File is a system file
244 V+ Language User’s Guide, Rev A

Chapter 9 Serial Line I/O
Serial Line I/O

The V+ controller has several serial lines that are available for general use. This
section describes how these lines are used for simple serial communications. To
use a serial line for a special protocol such as DDCMP and Kermit (described later
in this chapter), the line must be configured using the Adept controller
configuration utility program.1

I/O Configuration

In addition to selecting the protocol to be used, the Adept controller configuration
program allows the baud rate and byte format for each serial line to be defined.
Once the serial line configuration is defined on the V+ system boot disk, the serial
lines are set up automatically when the V+ system is loaded and initialized. After
the system is running, the FSET instruction can be used to reconfigure the serial
lines. The following byte formats are available:

• Byte data length of 7 or 8 bits, not including parity

• One or two stop bits

• Parity disabled or enabled

• Odd or even parity (adds 1 bit to byte length)

The following baud rates are available:

110, 300, 600, 1200, 2400, 4800, 7200, 9600, 19200, 38400

In addition, V+ provides automatic buffering with optional flow control for each
serial line. The I/O configuration program can be used to enable output flow
control with which V+ recognizes Ctrl+S (19 decimal) and Ctrl+Q (17 decimal)
and uses them to suspend and resume, respectively, serial line output. The
configuration program can also enable input flow control, with which V+
generates Ctrl+S and Ctrl+Q to suspend and resume, respectively, input from an
external source. With Ctrl+S and Ctrl+Q flow control disabled, all input and
output is totally transparent, and all 8-bit data bytes can be sent and received.

Serial lines may also be configured to use hardware modem control lines for flow
control. (The RTS/CTS lines must be installed in the modem cable—standard
modem cables often leave these lines out.) See the Adept MV Controller User’s
Guide for pin assignments.

1 The controller configuration utility is on the Adept Utility Disk in the file CONFIG_C.V2.
V+ Language User’s Guide, Rev A 245

Chapter 9 Serial Line I/O
Attaching/Detaching Serial I/O Lines

Serial lines must be attached before any I/O operations can take place. Note that
only one control program task can be attached to a single serial line at any one
time. All other attachment requests will queue or fail, depending on the setting of
the mode parameter in the ATTACH instructions.

Attaching or detaching a serial line automatically stops any output in progress
and clears all input buffers. Serial lines are not automatically detached from a
program unless it completes with success, so it is possible to single-step through a
program or proceed from a PAUSE instruction without loss of data.

Input Processing

Input data is received by V+ according to the byte format specified by the I/O
configuration program. The size of the buffer can be set with the CONFIG_C
utility program. Data errors such as parity or framing errors are also buffered and
are returned in the proper order.

The possible data errors from the serial input lines are:

–522 ∗Data error on device∗

A data byte was received with incorrect parity, or the byte generated
a framing error.

–524 ∗Communications overrun∗

Data bytes were received after the input buffer was full, or faster
than V+ could process them.

–526 ∗No data received∗

If data is expected, continue polling the serial line.

–504 ∗Unexpected end of file∗

A BREAK was received from the remote device

Serial line input data is normally read using the GETC function, since it allows the
most flexible response to communications errors. The READ instruction also can
be used provided that input data is terminated by a Line-Feed character (10
decimal).

V+ does not support input echoing or input line editing for the serial lines.
246 V+ Language User’s Guide, Rev A

Chapter 9 Serial Line I/O
Output Processing

All serial line output is performed using the WRITE instruction. All binary data
(including NULL characters) is output without conversion. If the serial line is
configured to support parity, a parity bit is automatically appended to each data
byte.

By default, the WRITE instruction appends a Return character (13 decimal) and a
Line-Feed character (10 decimal) to each data record unless the /S format control
is specified in the instruction parameter list.

If output flow control is enabled and output has been suspended by a Ctrl+S
character from the remote device, a WRITE request may wait indefinitely before
completing.

Serial I/O Examples

The first example attaches to a serial line and performs simple WRITEs and
READs on the line:

.PROGRAM serial.io()

; ABSTRACT: Example program to write and read lines of
; text to and from serial port 1 on the SIO module.

AUTO slun;Logical unit to communicate to serial port
AUTO $text

; Attach to a logical unit(open communications path
; to serial port)

ATTACH(slun, 4) "SERIAL:1"
IF IOSTAT(slun) < 0 GOTO 100

; Write text out to the serial port

WRITE(slun) "Hello there! "
IF IOSTAT(slun) < 0 GOTO 100

; Read a line of text from the serial port. The incoming
; line of text must be terminated by a carriage return and
; line feed. The READ instruction will wait until a line of
; text is received.

READ(slun) $text
IF IOSTAT(slun) < 0 GOTO 100
V+ Language User’s Guide, Rev A 247

Chapter 9 Serial Line I/O
; Display any errors

100 IF(IOSTAT(slun) < 0) THEN
TYPE IOSTAT(slun), " ", $ERROR(IOSTAT(slun))

END

DETACH(slun);Detach from logical unit

.END

The next example reads data from a serial line using the GETC function with
no-wait mode. Records that are received are displayed on the terminal. In this
program, data records on the serial line are assumed to be terminated by an ETX
character, which is not displayed. An empty record terminates the program.

.PROGRAM display()

; ABSTRACT: Monitor a serial line and read data when
; available

AUTO $buffer, char, done, etx, ienod, line

etx = 3 ;ASCII code for ETX character
ienod = −526 ;Error code for no data

ATTACH (line, 4) "SERIAL:1"
IF IOSTAT(line) < 0 GOTO 90;Check for errors

$buffer = "" ;Initialize buffer to empty
done = FALSE ;Assert not done

DO
CLEAR.EVENT
c = GETC(line, 1) ;Read byte from the ser. line
WHILE c == ienod DO ;While there is no data...

WAIT.EVENT 1 ;Wait for an event
CLEAR.EVENT
c = GETC(line, 1) ;Read byte from the ser. line

END

IF c < 0 GOTO 90 ;Check for errors
248 V+ Language User’s Guide, Rev A

Chapter 9 Serial Line I/O
IF c == etx THEN ;If ETX seen...
TYPE $buffer, /N ;Type buffer
done = (LEN($buffer) == 0) ;Done if buffer length is 0
$buffer = "" ;Set buffer to empty

ELSE
$buffer = $buffer+$CHR(c) ;Append next byte

;to buffer
END

UNTIL done ;Loop until empty buffer
;seen

GOTO 100 ;Exit

90 TYPE "SERIAL LINE I/O ERROR: ", $ERROR(IOSTAT(line))
PAUSE

100 DETACH (line)
RETURN

.END
V+ Language User’s Guide, Rev A 249

Chapter 9 DDCMP Communication Protocol
DDCMP Communication Protocol

DDCMP is a rigorous protocol that automatically handles the detection of errors
and the retransmission of messages when an error occurs. (The name stands for
Digital Data Communications Message Protocol.) It is used in Digital Equipment
Corporation’s computer network DECnet. DDCMP is readily available for public
use, and software packages that implement this protocol are available from
Digital Equipment Corporation (DEC).1

DDCMP makes use of one or more of the general-purpose USER serial lines. To
use a serial line for DDCMP, it must be configured using the Adept I/O
configuration program. (The configuration program is on the Adept Utility
Diskette in the file CONFIG_C.V2.)

The Adept implementation of DDCMP does not support maintenance messages
or multidrop lines. In all other respects it is a full implementation of the protocol.

This section is not intended to be a thorough description of DDCMP. Refer to the
DEC DDCMP manual for more details on protocol operation and
implementation.2

General Operation

All messages transmitted by DDCMP are embedded in a packet that includes
sequence information and check codes. Upon receipt, a message packet is checked
to verify that it is received in sequence and without transmission errors.

To initiate communications, a system sends special start-up messages until the
proper acknowledgment is received from the remote system. This handshaking
guarantees that both sides are active and ready to exchange data packets. If a start
request is received after the protocol is active, it means that a system has stopped
and restarted its end of the protocol, and an error is signaled to the local system.

1 For example, for computer systems with the DEC RSX-11M, RSX-11M-PLUS, and RSX-11S
operating systems, DLX-11 is a compatible DDCMP handler available from DEC. This software
can be purchased as RSX DLX-11 V1.0 (reference RSX DLX-11 User’s Guide, DEC order number
AA-K142A-TC).

2 Reference DECnet Digital Network Architecture, Digital Data Communications Message
Protocol (DDCMP) Specification, Version 4.0, March 1, 1978. Digital Equipment Corporation
order number AA-D599A-TC.
250 V+ Language User’s Guide, Rev A

Chapter 9 DDCMP Communication Protocol
Once the protocol is active, each transmitted message is acknowledged by the
remote system, indicating that it was received correctly or requesting
retransmission. If a message is not acknowledged after a certain time, the remote
system is signaled and a retry sequence is initiated. If a message is not sent
correctly after a number of retries, DDCMP stops the protocol and signals an error
to the local system.

Table 9-6 shows the standard DDCMP NAK reason codes generated by the Adept
implementation of DDCMP.

Attaching/Detaching DDCMP Devices

An ATTACH request initiates the DDCMP protocol for the specified logical unit.
The attach will not complete until the remote system also starts up the protocol
and acknowledges the local request. There is no time-out limit for start up, so the
attach request can wait indefinitely. For applications that service multiple lines,
no-wait ATTACH mode can be used, and the logical unit for each line can be
polled with the IOSTAT function to detect when the remote system has started.

A DETACH request stops the protocol, flushes any pending input data, and
deactivates the line. Any data received on the line is ignored.

Table 9-6. Standard DDCMP NAK Reason Codes

Code Description

1 Check code error in data header or control message

2 Check code error in data field

3 REP response with NUM in REP <> R

8 Buffer temporarily unavailable for incoming data

9 Bytes lost due to receiver overrun

16 Message too long for buffer

17 Header format error (but check code was okay)
V+ Language User’s Guide, Rev A 251

Chapter 9 DDCMP Communication Protocol
Input Processing

When the protocol is active, received DDCMP data messages are stored in
internal data buffers and acknowledged immediately. The maximum input
message length is 512 bytes. The total number of data buffers (shared by all the
DDCMP serial lines) is initially 10. The Adept controller configuration program
(CONFIG_C) can be used to change the number of buffers allocated for use by
DDCMP.

Once all the DDCMP buffers are full, additional data messages are rejected with
negative acknowledge (NAK) reason #8 (Buffer temporarily unavailable). It is the
user’s responsibility to limit the input data flow using a higher-level protocol on
the remote system.

Input data is accessed via the V+ READ instruction. Each READ instruction
returns the contents of the next data buffer. If no received data is available, the
read will not complete until a data message is received. No-wait READ mode can
be used for reading; the serial line can be polled using the function IOSTAT(lun, 1)
to detect when the read is completed. Keep in mind that the DDCMP
acknowledge was sent when the data was originally received and buffered, not
when the READ instruction is executed.

Output Processing

Output on a DDCMP line is performed using the V+ WRITE instruction. Each
WRITE instruction sends a single data message with a maximum length of 512
bytes. The write request does not complete until the remote system acknowledges
successful receipt of the message. Retransmission because of errors is handled
automatically without any action required by the V+ program.

If the no-wait format control (/N) is specified in the format list for the WRITE
instruction, V+ processing continues without waiting for the write to complete.
Like other output requests, a second write issued before the first has completed
will force the V+ program to wait for the first write to complete. The
IOSTAT(lun,3) function can be used to determine whether or not a no-wait write
has completed.

NOTE: A WRITE instruction automatically appends a Return
character (13 decimal) and Line-Feed character (10 decimal) to the
data message, unless the /S format control is specified.
252 V+ Language User’s Guide, Rev A

Chapter 9 DDCMP Communication Protocol
Protocol Parameters

Certain parameters can be set to control the operation of DDCMP. These
parameters are set with the V+ FCMND instruction. The following parameters
can be set:

1. Time before message confirmation or retransmission is attempted. An
acknowledge request must have been received before this period of time, or a
time-out occurs. The default value is 3 seconds. It can be set to any value from
1 to 255 seconds.

2. Number of successive time-outs before an unrecoverable error is signaled,
halting the protocol and aborting I/O requests. The default value is 8. It can be
set to any value from 1 to 255.

3. Number of successive negative acknowledge (NAK) packets that can be
received before an unrecoverable error is signaled, halting the protocol and
aborting I/O requests. The default value is 8. It can be set to any value from 1
to 255.

The FCMND instruction to set the parameters is as follows (see V+ Language
Reference Guide for more information on the FCMND instruction):

FCMND(lun, 501)$CHR(time.out)+$CHR(time.retry)+
$CHR(nak.retry)

where

lun is the logical unit number for the serial line

time.ou t is the time-out interval, in seconds

time.retry is the successive time-out maximum

nak.retry is the successive NAK maximum

For example, the instruction

FCMND (lun, 501) $CHR(2)+$CHR(20)+$CHR(8)

specifies a time-out interval of 2 seconds, with a maximum of 20 time-outs and 8
NAK retries.
V+ Language User’s Guide, Rev A 253

Chapter 9 Kermit Communication Protocol
Kermit Communication Protocol

The Kermit protocol is an error-correcting protocol for transferring sequential files
between computers over asynchronous serial communication lines. This protocol
is available as an option to the Adept V+ system.

Kermit is nonproprietary and was originally developed at Columbia University.
Computer users may copy Kermit implementations from one another, or they
may obtain copies from Columbia University for a nominal charge.1

The following information is not intended to be a thorough description of Kermit
and its use. You should refer to the Kermit User Guide and the Reference Kermit
Protocol Manual (both available from Columbia University) for more details on
implementation and operation of the Kermit protocol.

The Adept implementation of Kermit can communicate only with a server (see
the Kermit User Guide for a definition of terms). The following material describes
use of Kermit from the V+ system. In addition to this information, you will need
to know how to perform steps on your computer to initiate the Kermit protocol
and access disk files.

When the V+ implementation of the Kermit protocol is enabled, it makes use of
one of the general-purpose USER serial lines on the Adept system controller. For a
serial line to be used with Kermit, the line must have been configured using the
Adept controller configuration program.2

1 Kermit documentation and software are available from:
Kermit Distribution
Columbia University Center for Computing Activities
612 West 115th Street
New York, NY 10025 (USA)

2 Only one line can be configured at any one time for use with Kermit. The controller
configuration program is on the Adept Utility Diskette in the file CONFIG_C.V2.
254 V+ Language User’s Guide, Rev A

Chapter 9 Kermit Communication Protocol
Starting a Kermit Session

This section will lead you through the steps involved with initiating a Kermit file
transfer session using Kermit with the V+ system. The term remote system is used
in this discussion to refer to the computer system that is to be accessed with
Kermit.

NOTE: The following information should be considered an
example. The specific details may not be correct for the computer
system you are accessing with Kermit.

The first step is to start up a Kermit server on the remote system. One way to do
this is to go into pass-through mode on the V+ system by typing the monitor
command:

PASSTHRU KERMIT

The system terminal is now connected directly to the serial line to the remote
system: Anything you type at the system terminal (except Ctrl+C and Ctrl+P) will
be sent directly to the remote system.

If you cannot get any response from the remote system at this point, there is
probably a problem with the serial line connection. A common problem is a
mismatch of baud rates or other communication characteristics, or a bad serial
line connection. Previous experience is helpful in solving such problems.

Once you are able to communicate with the remote system, you may have to log
onto the remote system. After you have reached the point of being able to enter
commands to the system, the Kermit program may be started simply by typing:

KERMIT

or a similar command appropriate to the operating system of the remote
computer.

The Kermit program should start up in its command mode, with a prompt such
as:

C-Kermit>
V+ Language User’s Guide, Rev A 255

Chapter 9 Kermit Communication Protocol
You may then enter commands directly to the Kermit program. For example, you
might want to enter commands to initialize various parameters in preparation for
communication with the V+ Kermit. For instance, you may type:

SET FILE TYPE TEXT

to initialize the remote file type to ASCII. (The actual syntax needed for these
commands will depend on the remote system. Refer to that system’s user guide.
Most Kermit programs are equipped with help facilities that can be invoked by
typing HELP or a question mark [?].)

After successfully initializing the desired parameters, the Kermit server should be
started by typing:

SERVER

The remote server should start up and type a short message about basic server
usage. This message may not be applicable to use of Kermit communications with
the V+ system. Whenever the instructions for handling and terminating the server
differ from those in this manual, the instructions in this manual should be
followed.

At this point, you should escape back to the (local) V+ system by typing a Ctrl+C
to terminate the PASSTHRU command.

NOTE: A Ctrl+C may be typed at any time while in PASSTHRU
mode to escape back to the local system. This implies that you will
not be able to send a Ctrl+C to the remote system. If the remote
system uses Ctrl+C for special purposes (for example, the DEC
VAX/VMS system uses it to interrupt operations), you will have to
use some other means to achieve those special purposes.

Most Kermit servers cannot be aborted or terminated, except by a special
communication packet. In order to terminate the remote server when
communicating with a V+ system, you must go into PASSTHRU mode as
described earlier. Then, when a Ctrl+P is typed, a special packet of information is
sent to the remote server that causes it to terminate. After this is achieved, the
remote Kermit program should return to command mode and display its
command prompt. You may then exit Kermit and log off the remote system.
256 V+ Language User’s Guide, Rev A

Chapter 9 Kermit Communication Protocol
File Access Using Kermit

After the remote Kermit server has been initiated, you are ready to use the Kermit
line for file access. In general, to access a file via Kermit with the V+ system, all
you have to do is specify the KERMIT> physical device in a normal V+ file-access
command or instruction. For example, the command:

LOAD K>file_spec

will load (from the remote system) the programs or data contained in the
specified file. The file specification may be a simple file name, or it may contain
device and directory information. The actual interpretation of the file specification
depends on the remote Kermit server as well as on the type of remote system
being used.

You may also use the V+ DEFAULT command to define the default disk device to
be the Kermit line. For example, you can enter:

DEFAULT = K>directory/

In this command, K> tells the V+ system it should access the Kermit device (when
the local disk device is not explicitly specified), and directory represents directory
information to be used as the default in subsequent file specifications.

After the above DEFAULT command is entered, the command:

LOAD file_name

would load a program or data file from the Kermit line.

It is also possible for a V+ program to READ and WRITE to remote sequential
files over the Kermit line. To do that, the program has to perform the following
steps:

1. ATTACH a disk logical unit, specifying the physical device KERMIT
(explicitly or via the current default).

NOTE: Only one logical unit in the entire V+ system can be
attached to the KERMIT physical device at any one time. An
attempt to perform a second attachment will result in the error
Device not ready.

2. FOPEN_ the desired file on that logical unit (if the file is open in
fixed-length-record mode as long as the length is less than about 90).
V+ Language User’s Guide, Rev A 257

Chapter 9 Kermit Communication Protocol
3. READ or WRITE variable-length records using that logical unit.

The following V+ commands and instructions can be used to access files with
Kermit:

VLOAD and VSTORE can be used with Kermit only in binary mode.

The specific commands for the remote system will depend on the system you are
using.

Binary Files

Disk files created by the V+ system are called ASCII files because the files contain
only ASCII characters. V+ application programs (and other computers) can create
nonASCII disk files, which contain information that is not interpreted as ASCII
characters. Such files are often called binary files.

When Kermit is transferring normal text (ASCII) files, the file contents are not
adversely affected if the eighth bit of a byte is corrupted. For example, the serial
line hardware would affect the eighth bit if parity checking is enabled, since that
bit is used for the parity information.

However when binary files need to be transferred, the eighth bit of each byte
must be preserved. Thus, the serial line parity must be set to no parity (that is, the
serial ports on both the V+ system and the remote system must be set). Also, the
Kermit file mode must be set to binary.

The parity mode for the V+ serial ports is set with the Adept controller
configuration program (CONFIG_C). You may be able to set the modes on the
remote system by performing the following steps:

1. Go into PASSTHRU mode at the V+ system terminal.

2. Enter a command to the remote system to exit the Kermit program (it may first
be necessary to terminate the server by typing Ctrl+P).

3. Enter a command to the remote system to set the terminal mode to no parity.

4. Enter a command to the remote system to restart the Kermit program.

5. Enter a command to the remote Kermit to set its file mode to binary. For
example

FCOPY FOPEND STORE STORES

FDELETE FOPENR STOREL VLOAD

FLIST FOPENW STOREP VSTORE

FDIRECTORY LOAD STORER
258 V+ Language User’s Guide, Rev A

Chapter 9 Kermit Communication Protocol
SET FILE TYPE BINARY

6. Enter a command to Kermit to start the remote server.

7. Type Ctrl+C to escape back to the (local) V+ system.

When a binary file is accessed over the Kermit line, the file specified to V+ must
have a /B qualifier. For example, the following command will copy the file
REMOTE.DAT from the Kermit line to the local disk drive A:

FCOPY A:local.dat = K>remote.dat/B

NOTE: If the default setting for the remote system’s serial line is
other than no parity, and there is no way you can change that
setting, it will not be possible to successfully transfer binary files
using Kermit. An ASCII file may be accessed as a binary file, but not
vice versa. A file that is transferred back and forth over the Kermit
line must be transferred in the same file mode each time. For
example, if a file is copied in binary mode from the remote system to
the V+ system, then it must be copied back to the remote system in
binary mode in order to preserve the file contents.

Kermit Line Errors

The error *Nonexistent file* is common when using Kermit. This error could
mean any of several things in addition to the inability to find the desired file on
the remote system (the command FDIR K> will verify the contents of a remote
directory). The transactions over the Kermit line are generally considered to be
file transfers. When the V+ system tries to start a file operation, the local Kermit
driver generally tries to open a file on the remote server. If this operation fails, V+
returns the error *Nonexistent file*. Among the things that could possibly cause
this error are: mismatched line settings (like baud rate and parity), unexpected
server state (the server didn’t terminate the previous transaction as expected), the
server was not started correctly, or the file may really not exist.

NOTE: When an error occurs that is associated with the use of
Kermit, it sometimes helps to perform the following steps to make
sure the remote server is in a known state: (1) enter PASSTHRU
mode, (2) stop the remote server by typing Ctrl+P several times, and
(3) restart the remote server. If a Kermit file access is aborted by the
user (for example, Ctrl+C is typed to abort a V+ monitor command),
it may take five seconds for the abort request to be processed.
V+ Language User’s Guide, Rev A 259

Chapter 9 Kermit Communication Protocol
V+ System Parameters for Kermit

Two V+ system parameters are provided for setting communication parameters
for the Kermit protocol.

The parameter KERMIT.TIMEOUT sets the amount of time that the remote server
is to wait for a response from the V+ system before the remote server declares a
time-out error and retransmits its previous message. This parameter should be set
to a high value (less than or equal to 95 seconds) when V+ READ or WRITE
instructions performed on the Kermit line are far apart, that is, when there are
long pauses between disk requests. (This can occur, for example, when the V+
program is being executed in single-step mode with the program debugger.)

The parameter KERMIT.RETRY is the number of errors and retransmissions that
are allowed by the local V+ Kermit. When this number of errors is exceeded, the
error *Too many network errors* will occur. When this parameter is set to a large
value (less than or equal to 1000), the equivalent parameter for the remote server
must be set to the same value. Otherwise, the settings will not be effective.
260 V+ Language User’s Guide, Rev A

Chapter 9 Summary of I/O Operations
Summary of I/O Operations

Table 9-7 summarizes the V+ I/O instructions:

Table 9-7. System Input/Output Operations

Keyword Type Function

AIO.IN RF Read a channel from one of the analog IO boards.

AIO.OUT PI Write to a channel on one of the analog IO boards.

AIO.INS RF Test whether an analog input or output channel is
installed.

ATTACH PI Make a device available for use by the application
program.

BITS PI Set or clear a group of digital signals based on a value.

BITS RF Read multiple digital signals and return the value
corresponding to the binary bit pattern present on the
signals.

$DEFAULT SF Return a string containing the current system default
device, unit, and directory path for disk file access.

DETACH PI Release a specified device from the control of the
application program.

DEVICE PI Send a command or data to an external device and,
optionally, return data back to the program. (The
actual operation performed depends on the device
referenced.)

DEVICE RF Return a real value from a specified device. The value
may be data or status information, depending upon
the device and the parameters.

DEVICES PI Send commands or data to an external device and
optionally return data. The actual operation
performed depends on the device referenced.

FCLOSE PI Close the disk file, graphics window, or graphics icon
currently open on the specified logical unit.

PI: Program Instruction, RF: Real-Valued Function, P: Parameter, SF: String Function
V+ Language User’s Guide, Rev A 261

Chapter 9 Summary of I/O Operations
FCMND PI Generate a device-specific command to the
input/output device specified by the logical unit.

FEMPTY PI Empty any internal buffers in use for a disk file or a
graphics window by writing the buffers to the file or
window if necessary.

FOPENR PI Open a disk file for read-only.

FOPENW PI Open a disk file for read-write.

FOPENA PI Open a disk file for read-write-append.

FOPEND PI Open a disk directory for read.

FSEEK PI Position a file open for random access and initiate a
read operation on the specified record.

GETC RF Return the next character (byte) from a device or input
record on the specified logical unit.

IOGET_ RF Return a value from a device on the VME bus.

$IOGETS SF Return a string value from a device on the VME bus.

IOPUT_ PI Write a value to a device on the VME bus.

IOSTAT RF Return status information for the last input/output
operation for a device associated with a logical unit.

IOTAS RF Control access to shared devices on the VME bus.

KERMIT.RETRY P Establish the maximum number of times the (local)
Kermit driver should retry an operation before
reporting an error.

KERMIT.TIMEOUT P Establish the delay parameter that the V+ driver for
the Kermit protocol will send to the remote server.

KEYMODE PI Set the behavior of a group of keys on the manual
control pendant.

PENDANT RF Return input from the manual control pendant.

Table 9-7. System Input/Output Operations (Continued)

Keyword Type Function

PI: Program Instruction, RF: Real-Valued Function, P: Parameter, SF: String Function
262 V+ Language User’s Guide, Rev A

Chapter 9 Summary of I/O Operations
PROMPT PI Display a string on the system terminal and wait for
operator input.

READ PI Read a record from an open file or from an attached
device that is not file oriented.

RESET PI Turn off all the external output signals.

SETDEVICE PI Initialize a device or set device parameters. (The actual
operation performed depends on the device
referenced.)

SIG RF Return the logical AND of the states of the indicated
digital signals.

SIG.INS RF Return an indication of whether or not a digital I/O
signal is configured for use by the system, or whether
or not a software signal is available in the system.

SIGNAL PI Turn on or off external digital output signals or
internal software signals.

TYPE PI Display the information described by the output
specifications on the system terminal. A blank line is
output if no argument is provided.

WRITE PI Write a record to an open file or to an attached device
that is not file oriented.

Table 9-7. System Input/Output Operations (Continued)

Keyword Type Function

PI: Program Instruction, RF: Real-Valued Function, P: Parameter, SF: String Function
V+ Language User’s Guide, Rev A 263

Graphics Programming 10
Creating Windows . 266

ATTACH Instruction 266
FOPEN Instruction 267
FCLOSE Instruction 267
FDELETE Instruction 267
DETACH Instruction 268
Custom Window Example 268

Monitoring Events . 269

GETEVENT Instruction 270
FSET Instruction 271

Building a Menu Structure 272

Menu Example 272
Defining Keyboard Shortcuts 275

Creating Buttons . 276

GPANEL Instruction 276
Button Example 276

Creating a Slide Bar 278

GSLIDE Example 279
Graphics Programming Considerations 281

Using IOSTAT() 282
Managing Windows 283

Communicating With the System Windows 284

The Main Window 284
The Monitor Window 284
The Vision Window 285

Additional Graphics Instructions 287
265

Chapter 10 Creating Windows
The instructions in this chapter require a graphics-based system.

NOTE: For clarity in presenting the programming principles,
examples in this chapter leave out the calls to IOSTAT() that are
critical to detecting and responding to I/O errors.

Creating Windows

V+ communicates to windows through logical units, with logical unit numbers
(LUNs) 20 to 23 reserved for window use. (Each task has access to its own set of
four LUNs.) The basic strategy for using a window (or any of the graphics
instructions) is:

1. ATTACH to a logical unit

2. FOPEN a window on the logical unit

3. Perform the window’s tasks (or graphics operations)

4. FCLOSE the window

5. FDELETE the window

6. DETACH from the logical unit

ATTACH Instruction

The ATTACH instruction sets up a communications path so a window can be
written to and read from. The syntax for the ATTACH instruction is:

ATTACH (glun, 4) "GRAPHICS"

glun variable that receives the number of the attached graphics logical
unit. (All menus and graphics commands that take place within a
window will also use glun .)
266 V+ Language User Guide, Rev A

Chapter 10 Creating Windows
FOPEN Instruction

FOPEN creates a new window or reselects an existing window for input and
output. When a window is created, its name is placed in the list of available
windows displayed when the adept logo is clicked on. The simplified syntax for
FOPEN is:

FOPEN (glun) "window_name / MAXSIZE width height"

glun The logical unit already ATTACHed to.

window_name The title that will appear at the top of the window. Also used
to close and select the window.

width/height Specify the largest size the window can be opened to.

This instruction will give you a window with all the default attributes. See the
description of FOPEN and FSET in the V+ Language Reference Guide for details
on how to control the attributes of a window for example, background color,
size, and scrolling.

FCLOSE Instruction

FCLOSE closes a window to input and output (but does not erase it or remove it
from memory). The syntax for FCLOSE is:

FCLOSE (glun)

glun The logical unit number specified in the FOPEN instruction
that opened the window.

FDELETE Instruction

FDELETE removes a closed, attached window from the screen and from graphics
memory. The syntax for FDELETE is

FDELETE (glun) "window_name"

glun The same values as specified in the FOPEN instruction that
created the window.
V+ Language User Guide, Rev A 267

Chapter 10 Creating Windows
DETACH Instruction

DETACH frees up a LUN for use by a subsequent ATTACH instruction. The
syntax for DETACH is:

DETACH (glun)

glun The LUN specified in a previous ATTACH instruction.

Custom Window Example

This section of code will create and delete a window:

AUTO glun ;Graphics window LUN

ATTACH (glun, 4) "GRAPHICS"; Attach to a window LUN

; Open the window "Test" with a maximum size of
; 400 x 300 pixels

FOPEN(glun) "Test","/MAXSIZE 400 300"

; Your code for processing within the window
; goes here; e.g:

GTYPE (glun) 10, 10, "Hello!"

; When the window is no longer needed, close and delete the
; windowand detach from the logical unit

FCLOSE (glun)
FDELETE (glun) "Test"
DETACH (glun)
268 V+ Language User Guide, Rev A

Chapter 10 Monitoring Events
Monitoring Events

The key to pointing-device–driven programming is an event loop. In an event
loop, you wait for an event (from the keyboard or pointer device) and when the
correct event occurs in the proper place, your program initiates some appropriate
action. V+ can monitor many different events including button up, button down,
double click, open window, and menu select. The example code in the following
sections will use event 2, button up, and event 14, menu select. See the description
of GETEVENT in the V+ Language Reference Guide for details on the different
events that can be monitored.

The basic strategy for an event loop is:

1. Wait for an event to occur.

2. When an event is detected:

a. If it is the desired event, go to step 3.

b. Otherwise, return to step 1.

3. Check the data from the event array (not necessary for event 14, menu select):

a. If it is appropriate, go to step 4.

b. Otherwise, return to step 1.

4. Initiate appropriate action.

5. Return to step 1.
V+ Language User Guide, Rev A 269

Chapter 10 Monitoring Events
GETEVENT Instruction

The instruction that initiates monitoring of pointer device and keyboard events is
GETEVENT. Its simplified syntax is:

GETEVENT (lun) event[]

lun Logical unit number of the window to be monitored.

event[] Array into which the results of the detected event will be stored. The
value stored in event[0] indicates which event was detected.

If event[0] is 2, a button-up event was detected, in which case:

event[1] indicates the number of the button pressed. (For two-button
devices, 2 = left button, 4 = right button. For three-button devices, 1
= left button, 2 = middle button, 4 = right button.)

event[2] is the X value of the pointer location of the click.

event[3] is the Y value of the pointer location of the click.

If event[0] is 14, a click on a menu bar selection was detected, in which case:

If event[1] is 0, a click has been made to the top-level menu bar. In this case, an
FSET instruction must be executed to display the pull-down options
under the menu bar selection and event[2] is the number (from
left to right) of the menu bar option selected.

If event[1] is 1, then a selection from a pull-down menu has been made and
event[2] is the number of the pull-down option selected.

You cannot use the GETEVENT instruction to specify which events to monitor. It
monitors all the events that are enabled for the window. See descriptions of the
FOPEN and FSET instructions in the V+ Language Reference Guide for details on
using the /EVENT argument for enabling and disabling the monitoring of
various events.
270 V+ Language User Guide, Rev A

Chapter 10 Monitoring Events
FSET Instruction

FSET is used to alter the characteristics of a window opened with an FOPEN
instruction, and to display pull-down menus. We are going to describe only the
use of FSET to create the top-level menu bar, create the pull-down menu
selections below the top-level menu, and initiate monitoring of events. The
instruction for displaying a top-level menu is:

FSET (glun) " /MENU 'item1' 'item2' ... 'item10' "

glun is the logical unit of the window the menu will be displayed
in.

item1-item10 are the menu titles for a top-level bar menu. The items appear
from left to right.

The instruction to display a pull-down menu (called when event[0] = 14 and
event[1] = 0) is:

FSET (glun) "/PULLDOWN", top_level#," ' item1' ... ' itemn '"

top_level# is the number of the top-level selection the pull-down menu
is to appear under.

item1 -itemn are the menu items in the pull-down menu. The items appear
from top to bottom.

The relationship between these two uses of FSET will become clear when we
actually build a menu structure.

The basic FSET instruction for monitoring menu and mouse events is:

FSET (glun) "/EVENT BUTTON MENU"
V+ Language User Guide, Rev A 271

Chapter 10 Building a Menu Structure
Building a Menu Structure

The strategy for implementing a menu is:

1. Declare the top-level bar menu.

2. Start a loop monitoring event 14 (menu selection).

3. When event 14 is detected, check to see if the mouse event was on the top-level
bar menu or on a pull-down option.

4. If the event was a top-level menu selection, then display the proper pull-down
options.

5. If the event was a pull-down selection, use nested CASE structures to take
appropriate action based on the selections made to the top-level menu and its
corresponding pull-down menu.

Menu Example

This code segment will implement a menu structure for a window open on glun:

; Set the top-level menu bar and enable monitoring of events

FSET (glun) "/menu 'Menu 1' 'Menu 2' 'Menu 3'"
FSET (glun) "/event button menu"

; Define the strings for the pull-down menus

$menu[1] = "'Item 1-1' 'Item 1-2'"
$menu[2] = "'Item 2-1' 'Item 2-2' 'Item 2-3’"
$menu[3] = "'Quit'"

; Set variable for event to be monitored

wn.e.menu = 14

; Start the processing loop
272 V+ Language User Guide, Rev A

Chapter 10 Building a Menu Structure
quit = FALSE
DO

GETEVENT (glun) event[]
IF event[0] == wn.e.menu THEN

;The menu event (14) has two components; a button-down component
;corresponding to a click on a menu bar selection, and a
;button-up component corresponding to the pull-down selection
;made when the button is released.
;After the first component (pointer down on the menu bar),
;event[1] will be 0 and event[2] will have the number of the
;menu bar selection.

; Check to see if event[1] is 0, indicating a top-level menu select

IF event[1] == 0 THEN

; Use the value in event[2] to select a pull-down menu

FSET (lun) "/pulldown", event[2], $menu[event[2]]

; Else, execute the appropriate code for each menu selection

ELSE

; If event[1] is not 0, then the button has been released on a

; pull-down selection and:

; event[1] will have the value of the top-level selection (menu)

; event[2] will have the value of the pull-down selection (item)

menu = event[1]

item = event[2]
V+ Language User Guide, Rev A 273

Chapter 10 Building a Menu Structure
; The outer CASE structure checks the top-level menu selection

; The inner CASE structure checks the item selected from the pull-down

CASE menu OF

VALUE 1: ;Menu 1

CASE item OF

VALUE 1:

;code for Item 1-1

VALUE 2:

;code for Item 1-2

END

VALUE 2: ;Menu 2

CASE item OF

VALUE 1:

;code for Item 2-1

VALUE 2:

;code for Item 2-2

VALUE 3:

;code for Item 2-3

END

VALUE 3: ;Menu 3

CASE item OF

VALUE 1:

quit = TRUE;time to quit

END

END ; case menu of
274 V+ Language User Guide, Rev A

Chapter 10 Building a Menu Structure
END ; if event[1]

END ; if event[0]

UNTIL quit

Implementing the above code and then clicking on Menu 2 would result in the
window shown in Figure 10-1.

Figure 10-1. Sample Menu

Defining Keyboard Shortcuts

If you are using AdeptWindows, you can create keyboard shortcuts on menu and
pull-down items by placing an ampersand (&) before the desired letter. For
example:

FSET(lun) "/menu '&File' '&Edit'"

In this example, the letters F and E are used as shortcuts when pressed with the
ALT key. Thus, pressing ALT+F displays the File menu and ALT+E displays the
Edit menu. The letters F and E are underlined on the menu or pull-down item to
indicate the keyboard shortcut.

Test

Menu 1

Item 2-1

Item 2-2

Item 2-3

Menu 2 Menu 3
V+ Language User Guide, Rev A 275

Chapter 10 Creating Buttons
Creating Buttons

Creating a button in a window is a simple matter of placing a graphic
representing your button on the screen, and then looking to see if a mouse event
occurred within the confines of that graphic.

GPANEL Instruction

The GPANEL instruction is useful for creating standard button graphics. The
syntax for GPANEL is:

GPANEL (glun, mode) x, y, dx, dy

glun The logical unit of the window the button is in.

mode Is replaced with:

0 indicating a raised, ungrooved panel

2 indicating a sunken, ungrooved panel

4 indicating a raised, grooved panel

6 indicating a sunken, grooved panel

(Adding 1 to any of the mode values will fill the panel with fore-
ground color.)

x y Coordinates of the upper left corner of the button.

dx dy Width and height of the button.

Button Example

This code segment would place a button on the screen and then monitor a
button-up event at that button (the logical unit the button is accessing must be
ATTACHed and FOPENed):

; Initialize monitoring of button events for a button

FSET (glun) "/event button"

; Draw a 45x45 pixel panel at window coordinates 100,100

GPANEL (glun, 0) 100, 100, 45, 45

; Put a label in the button
276 V+ Language User Guide, Rev A

Chapter 10 Creating Buttons
GTYPE (glun) 102, 122, "Label"

; Declare a variable for pointer event 2 (button up)

btn.up = 2

; Set a variable that will stop the monitoring of button
; events

hit = FALSE

; Start a loop waiting for a button-up event

DO
GETEVENT(glun) event[]

; The status of a button event will be stored in event[0].
; Look to see if that event was a button-up event.

IF event[0] == btn.up THEN

; Check if the button-up event was within the button area
; The x location is in event[1], the y location in event[2]

hit = (event[2] > 99) AND (event[2] < 146)
hit = hit AND (event[3] > 99) AND (event[3] < 146)

END
UNTIL hit

; The code for reacting to a button press is placed here.

This code will work for a single button but will become very unwieldy if several
buttons are used. In the case of several buttons, you should place the button
locations in arrays (or a two-dimensional array) and then pass these locations to a
subroutine that checks whether the mouse event was within the array parameters
passed to it.
V+ Language User Guide, Rev A 277

Chapter 10 Creating a Slide Bar
Creating a Slide Bar

V+ allows you to create a feature similar to the window scroll bars called slide
bars. The syntax for a slide bar is:

GSLIDE (glun, mode) slide_id = x, y, len, max_pos,
arrow.inc, handle

glun The logical unit of the window the slide bar is to be created in.

mode is replaced with:

0 indicating a horizontal slide bar is to be created or updated.

1 indicating a slide bar is to be deleted.

2 indicating a vertical slide bar is to be created or updated.

slide_id A number that will identify the slide bar. This number is
returned to the event queue so you can distinguish which slide
was moved.

x y The coordinates of the top left corner of the slide bar.

len The width or height of the bar.

max_pos Specifies the maximum value the slide bar will return.

arrow_inc Specifies the increment the slide bar should register when the
arrows are clicked. (The slide bar will be created with a scroll
handle and scroll arrows.)

handle Specifies position the scroll handle will be in when the slide bar
is created.
278 V+ Language User Guide, Rev A

Chapter 10 Creating a Slide Bar
GSLIDE Example

We will be interested in two events when monitoring a slide bar, event 8 (slide bar
pointer move) and event 9 (slide bar button up). Additional event monitoring
must be enabled with the FSET instruction. Object must be specified to monitor
slide bars and move_b2 must be specified to monitor the dragging of the middle
button.

The values returned in the GETEVENT array will be:

• event[0]the pointer device event code

• event[1]the ID of the slide bar (as specified by slide_id)

• event[2]the slide bar value

• event[3]the maximum slide bar value

The following code will display and monitor a slide bar:

; The slide bar will be in the window open on glun

AUTO glun

; The slide bar will use events 8 and 9. A double-click event will halt

;monitoring of the slide bar

btn.smov = 8

btn.sup = 9

btn.dclk = 3

; Slide bar position and start-up values

x = 20

y = 60

length = 200
V+ Language User Guide, Rev A 279

Chapter 10 Creating a Slide Bar
max.pos = 100

arrow_inc = 10

handle_pos = 50

; Enable monitoring of slide bars and pointer drags

FSET(glun) "/event object move_b2"

; Display the slide bar

GSLIDE (glun, 0) 1 = x, y, length, max_pos, arrow_inc, handle_pos

; Begin monitoring events and take action when the slide bar is moved. Monitor
;events until a double click is detected, then delete the slide bar

DO

GETEVENT(glun) event[]

IF (event[0] == btn.smov) OR (event[0] == btn.sup) THEN

;Your code to monitor the slide bar value (event[2]) goes here

END

UNTIL event[0] == btn.dclk

; Delete the slide bar

GSLIDE (glun, 1) 1
280 V+ Language User Guide, Rev A

Chapter 10 Graphics Programming Considerations
Graphics Programming Considerations

Buttons and menus can be monitored in the same window. However, the code
will get complicated, and you might consider using different windows when the
button and menu structure becomes complex.

Only one pull-down menu can be active at any time.

Design your windows with the following mechanical and aesthetic
considerations:

• Keep your windows as simple and uncluttered as possible. Use color
carefully and purposefully.

• If you are using multiple windows, use similar graphic elements so the screen
elements become familiar and intuitive.

• Let the operator know what is going on. Never leave the operator in the dark
as to the status of a button push or menu selection.

• Whenever possible, have your windows mimic the real world the operator is
working in.

In the interest of clarity, the examples in this chapter have not been generalized.
When you actually program an application, use generalized subroutine calls for
commonly used code, or your code will quickly become unmanageable.
V+ Language User Guide, Rev A 281

Chapter 10 Graphics Programming Considerations
Using IOSTAT()

The example code in this chapter leaves out critical error detection and recovery
procedures. Effective application code requires these procedures. The IOSTAT
function should be used to build error-handling routines for use with every
ATTACH, FOPEN, FCLOSE, and FSET instruction. The syntax for using IOSTAT
to check the status of I/O requests is:

IOSTAT(lun)

lun The LUN specified in the previous I/O request.

The IOSTAT function will return the following values:

1 if the last operation was successful

0 if the last operation is not yet complete

< 0 if the last operation failed, a negative number corresponding to a
standard Adept error code will be returned.

The following code will check for I/O errors:

; Issue I/O instruction (ATTACH, FOPEN, etc.)

IF IOSTAT(lun) < 0 THEN

;your code to handle the error

END

; The ERROR function can be used to return the text
; of an error number. The code line is:

TYPE $ERROR(IOSTAT(lun))
282 V+ Language User Guide, Rev A

Chapter 10 Graphics Programming Considerations
Managing Windows

Windows can be:

• Hidden (but not deleted)

A hidden window is removed from the screen but not from graphics memory,
and it can be retrieved at any time:

FSET(glun) "/NODISPLAY" ;Hide a window
FSET(glun) "/DISPLAY" ;Redisplay a window

• Deselected (sent behind the parent’s window stack):

FSET(glun) "/STACK −1"

• Selected (brought to the front of the window stack):

FSET(glun) "STACK 1"

If you will not be reading events from a window, open it in write-only mode to
save memory and processing time.

Only the task that opened a window in read/write mode can read from it
(monitor events).

Multiple tasks can write to an open window. A second task can write to an
already open window by executing its own ATTACH and OPEN for the window.
The logical units’ numbers need not match, but the window name must be the
same. If a task has the window Test open, other tasks can write to the window by:

ATTACH(lun_1, 4) "GRAPHICS"
FOPEN(lun_1) "Test /MAXSIZE 200 200 /WRITEONLY"
V+ Language User Guide, Rev A 283

Chapter 10 Communicating With the System Windows
Communicating With the System Windows

The Adept system has three operating system level windows: the main window,
the monitor window, and the vision window (on systems with the AdeptVision
VXL option).

The Main Window

You can place menu options on the top-level menu bar by opening the window
\Screen_1. For example:

ATTACH (glun, 2) "GRAPHICS"
FOPEN (glun) "\Screen_1 /menu 'item1' 'item2' 'item3'"

will open the main window and place three items on the top-level menu bar.
Pull-downs and event monitoring can proceed as described earlier. The
instruction:

FSET (glun) "/menu "

will delete the menu items.

The Monitor Window

The monitor window can be opened in write-only mode to change the
characteristics of the monitor window. For example, the following instruction will
open the monitor window, disable scrolling, and disallow moving of the window:

FOPEN (glun) "Monitor /WRITEONLY /SPECIAL NOPOSITION
NOSIZE"

To prevent a user from accessing the monitor window, use the instruction:

FOPEN (glun) "Monitor /WRITEONLY /NOSELECTABLE

To allow access:

FSET (glun) "/SELECTABLE"
284 V+ Language User Guide, Rev A

Chapter 10 Communicating With the System Windows
The Vision Window

For systems equipped with the Adept Vision VME option, text or graphics can be
output to the vision window, and events can be monitored in the vision window.
To communicate with the vision window, you open it just as you would any other
window. For the window name you must use Vision. For example:

FOPEN (glun) "Vision"

Remember, graphics output to the vision window is displayed only when a
graphics display mode or overlay is selected. When you are done communicating
with the vision window, close and detach from it just as you would any other
window. This will free up the logical unit, but will not delete the vision window.
You can close and detach from the vision window, but you cannot delete it.

To preserve the vision system pull-down menus, open the window in write-only
mode:

FOPEN (glun) "Vision /WRITEONLY"

The following example opens the vision window, writes to the vision window,
and detaches the vision window:

.PROGRAM label.blob()

; ABSTRACT: This program demonstrates how to attach to the
; vision window and how to use the millimeter scaling mode of
; the GTRANS instruction to label a "blob" in the vision
; window.
;

AUTO vlun

cam = 1

; Attach the vision window and get a logical unit number

ATTACH (vlun, 4) "GRAPHICS"
IF IOSTAT(vlun) < 0 GOTO 100

FOPEN (vlun) "Vision";Open the vision window
IF IOSTAT(vlun) < 0 GOTO 100

; Select display mode and graphics mode

VDISPLAY (cam) 1, 1 ;Display grayscale frame and graphics

; Take a picture and locate an object

VPICTURE(cam);Take a processed picture

VLOCATE(cam, 2) "?" ;Attempt to locate an object
V+ Language User Guide, Rev A 285

Chapter 10 Communicating With the System Windows
IF VFEATURE(1) THEN ;If an object was found...

GCOLOR(vlun) 1 ;Select the color black
GTRANS (vlun, 2) ;Select millimeter scaling
GTYPE(vlun) DX(vis.loc), DY(vis.loc), "Blob", 3

ELSE ;Else if object was NOT found...

GCOLOR (vlun) 3 ;Select the color red
GTRANS(vlun, 0) ;Select pixel scaling
GTYPE (vlun) 100, 100,"No object found!", 3

END

; Detach (frees up the communications path)

DETACH (vlun)

100IF (IOSTAT(vlun) < 0) THEN; Check for errors
 TYPE $ERROR(IOSTAT(vlun))
END

.END
286 V+ Language User Guide, Rev A

Chapter 10 Additional Graphics Instructions
Additional Graphics Instructions

Table 10-1 lists the different graphics instructions. See the V+ Language Reference
Guide for complete details on using these instructions.

Table 10-1. List of Graphics Instructions

Command Action

GARC Draw an arc or circle in a graphics window.

GCHAIN Draw a chain of points.

GCLEAR Clear an entire window to the background color.

GCLIP Constrain the area of a window within which graphics are
displayed.

GCOLOR Set the foreground and background colors for subsequent
graphics instructions.

GCOPY Copy one area of a graphics window to another area in the
window.

GFLOOD Flood an area with foreground color.

GICON Allows you to display icons on the screen. You can access the
predefined Adept icons or use your own icons created with the
Icon Editor (see the Instructions for Adept Utility Programs).

GLINE Draw a line.

GLINES Draw multiple lines.

GLOGICAL Set the drawing mode for the next graphics instruction. (Useful
for erasing existing graphics and simulating the dragging of a
graphic across the screen.)

GPOINT Draw a single point.

GRECTANGLE Draw a rectangle.

GSCAN Draw a series of horizontal lines.

GSLIDE Create a slide bar.
V+ Language User Guide, Rev A 287

Chapter 10 Additional Graphics Instructions
GTEXTURE Develop a texture for subsequent graphics. Set subsequent
graphics to transparent or opaque.

GTRANS Define a transformation to apply to all subsequent G instructions.

GTYPE Display a text string.

Table 10-1. List of Graphics Instructions (Continued)

Command Action
288 V+ Language User Guide, Rev A

Programming the MCP 11
Introduction . 290

ATTACHing and DETACHing the Pendant 290
Writing to the Pendant Display 291

The Pendant Display 291
Using WRITE With the Pendant 291

Detecting User Input 292

Using READ With the Pendant 292
Detecting Pendant Button Presses 292

Keyboard Mode 293
Toggle Mode 293
Level Mode 294

Monitoring the MCP Speed Bar 295
Using the STEP Button 296
Reading the State of the MCP 297

Controlling the Pendant 298

Control Codes for the LCD Panel 298
The Pendant LEDs 299
Making Pendant Buttons Repeat Buttons 300

Auto-Starting Programs With the MCP 302

WAIT.START . 303
Programming Example: MCP Menu 304
289

Chapter 11 Introduction
Introduction

This chapter provides an overview of strategies for programming the manual
control pendant. General use of the manual control pendant is covered in the
Manual Control Pendant User’s Guide.

ATTACHing and DETACHing the Pendant

Before an application program can communicate with the MCP, the MCP must
first be ATTACHed using the ATTACH instruction. The logical unit number for
the MCP is 1. The following instruction will ready the MCP for communication:

mcp_lun = 1
ATTACH (mcp_lun)

When the MCP is ATTACHed, the USER LED on the MCP will be lit.

As with all other devices that are ATTACHed by a program, the MCP should be
DETACHed when the program is finished with the MCP. The following
instruction will free up the MCP:

DETACH (mcp_lun)

When the MCP has been ATTACHed by an application program, the user can
interact with the pendant without putting the controller key switch in the
Pendant position.

As with all I/O devices, the IOSTAT function should be used to check for errors
after each I/O operation.
290 V+ Language User’s Guide, Rev A

Chapter 11 Writing to the Pendant Display
Writing to the Pendant Display

The Pendant Display

The MCP display is a 2-line, 80-character LCD display. It is written to using the
WRITE instruction.

Using WRITE With the Pendant

The following instructions will display a welcome message on the two lines of the
pendant display:

 AUTO mcp_lun; Pendant LUN
 AUTO $intro

 $intro = "Welcome to the MCP"
 mcp_lun = 1

; Attach the MCP, check for errors and output message

 ATTACH (mcp_lun)
 IF IOSTAT(mcp_lun) < 1 GOTO 100

 WRITE (mcp_lun) $intro
 WRITE (mcp_lun) "Instructions to follow...", /S

100 IF IOSTAT(mcp_lun) < 1 THEN;Report errors
TYPE IOSTAT(mcp_lun), " ", $ERROR(IOSTAT(MCP_LUN))

 END

 DETACH(mcp_lun)

Notice that the second WRITE instruction uses the /S qualifier. This qualifier
suppresses the carriage return-line feed (<CR-LF>) that is normally sent by the
WRITE instruction. If this qualifier was not specified, the first line displayed
would have been scrolled off the top. In ”Controlling the Pendant” on page 298
we will detail the pendant control codes. These codes control the cursor position,
the lights on the MCP, and the interpretation of MCP button presses. These codes
are sent to the pendant using the WRITE instruction. The /S qualifier must be sent
with these instructions to avoid overwriting the pendant display.
V+ Language User’s Guide, Rev A 291

Chapter 11 Detecting User Input
Detecting User Input

Input from the pendant can be received in two ways:

• A series of button presses from the data entry buttons can be read. The READ
instruction is used for this type of input.

• A single button press from any of the buttons can be detected. These single
button presses can be monitored in three different modes:

• The buttons can be monitored like keys on a normal keyboard.

• The buttons can be monitored in toggle mode (on or off). The state of the
button is changed each time the button is pressed.

• The keys can be monitored in level mode. The state of the button is
considered on only when the button is held down.

The PENDANT() function is used to detect button presses in these
modes. The KEYMODE instruction is used to set the button behavior.

Using READ With the Pendant

The READ instruction accepts input from the pendant Data Entry Buttons (1, 2, 3,
4, 5, 6, 7, 8, 9, 0, ., +, –). A READ instruction expects a <CR-LF> to indicate the end
of data entry. On the MCP, this sequence is sent by the REC/DONE button
(similar to the Enter or Return key on a normal keyboard). The DEL button
behaves like the Backspace key on a normal keyboard. All other pendant buttons
are ignored by the READ instruction. Note that the predefined function buttons
are active and may be used while an attached program is waiting for input.

The instruction line:

READ(1) $response

will pause the program and wait for input from the pendant. The user must signal
the end of input by pressing the REC/DONE button. The input will be stored in
the string variable $response. The input can be stored as a real variable, but the +
and – buttons must not be used for input.

Detecting Pendant Button Presses

Individual MCP button presses are detected with the PENDANT() function. This
function returns the number of the first acceptable button press. The
interpretation of a button press is determined by the KEYMODE instruction. See
the V+ Language Reference Guide for complete details. The basic use of these two
operations is described below.
292 V+ Language User’s Guide, Rev A

Chapter 11 Detecting User Input
Keyboard Mode

The default mode is keyboard. If a PENDANT() instruction requests keyboard
input, the button number of the first keyboard type button pressed will be
returned. See Figure 11-1 on page 296 for the numbers of the buttons on the MCP.
The following code will detect the first soft button pressed:

; Set the soft keys to keyboard mode

KEYMODE 1,5 = 0

; Wait for a button press from buttons 1 - 5

DO
button = PENDANT(0)

UNTIL button < 6

The arguments to the KEYMODE instruction indicate that pendant buttons 1
through 5 are to be configured in keyboard mode. The 0 argument to the
PENDANT() function indicates that the button number of the first keyboard
button pressed is to be returned.

Toggle Mode

To detect the state of a button in toggle mode, the PENDANT() function must
specify the button to be monitored.

When a button is configured as a toggle button, its state is maintained as on (–1)
or off (0). The state is toggled each time the button is pressed. If an LED is
associated with the button, it is also toggled. The following code sets the
REC/DONE button to toggle mode and waits until REC/DONE is pressed:

; Set the REC/DONE button to toggle

KEYMODE 8 = 1

; Wait until the REC/DONE button is pressed

DO
WAIT

UNTIL PENDANT(8)

The arguments to KEYMODE indicate that MCP button number 8 (the
REC/DONE button) is configured as a toggle button. The argument to
PENDANT() indicates that the state of MCP button 8 is to be read.
V+ Language User’s Guide, Rev A 293

Chapter 11 Detecting User Input
Level Mode

To detect the state of a button in level mode, the PENDANT() function must
specify the button to be monitored.

When a button has been configured as a level button, the state of the button is on
as long as the button is pressed. When the button is not pressed, its state is off.
The following code uses the buttons labeled 2, 4, 6, and 8 (button numbers 45, 47,
49, and 57—don’t confuse the button labels with the numbers returned by the
PENDANT function) to move the cursor around the terminal display. The buttons
are configured as level buttons so the cursor moves as long as a button is
depressed.

; Set the REC/DONE button to toggle
KEYMODE 8 = 1

; Set the data entry buttons labeled "2" - "8" to level

KEYMODE 45, 51 = 2

DO
IF PENDANT(49) THEN

TYPE /X1, /S;Cursor right
END
IF PENDANT(47) THEN

TYPE $CHR(8);Cursor left (backspace)
END
IF PENDANT(51) THEN

TYPE /U1, /S;Cursor up
END

IF PENDANT(45) THEN
TYPE $CHR(12) ;Cursor down (line feed)

END
UNTIL PENDANT(8)
294 V+ Language User’s Guide, Rev A

Chapter 11 Detecting User Input
Monitoring the MCP Speed Bar

The speed bar on the MCP returns a value from –128 to 127 depending on where it
is being pressed. An argument of –2 to the PENDANT() function will return the
value of the speed bar. The following code displays the state of the speed bar.

; Set the REC/DONE button to toggle

KEYMODE 8 = 1

; Display speed bar value until the REC/DONE is pressed

DO
WRITE(1) PENDANT(−2)

UNTIL PENDANT(8)

The Slow button is intended to alter the value returned by the speed bar. The
following code compresses the range of values returned by 50% whenever the
Slow button is on.

; Set the REC/DONE button to toggle

KEYMODE 8 = 1

; Do until the REC/DONE button is pressed

DO
IF PENDANT(36) THEN

TYPE PENDANT(−2) * 0.5
ELSE

TYPE PENDANT(−2)
END

UNTIL PENDANT(8)
V+ Language User’s Guide, Rev A 295

Chapter 11 Detecting User Input
Figure 11-1. MCP Button Map

Using the STEP Button

When the VFP keyswitch is set to MANUAL, V+ programs cannot initiate
motions unless you press the STEP button and speed bar on the MCP. To continue
the motion once it has started, you can release the STEP button but must continue
to press the speed bar. Failure to operate the STEP button and the speed bar
properly results in the following error message (with error code –620):

Speed pot or STEP not pressed

Once a motion has started in this mode, releasing the speed bar also terminates
any belt tracking or motion defined by an ALTER program instruction.

Motions started in this mode have their maximum speeds limited to those defined
for manual control mode.

43 55

44 45 46

47 48 49

50 51 52

WORLD TOOL JOINT FREE DEV 2USER

12345

1516171819

8 54 53

25 24 23

11

10

9

36

38

37

34

33

32

31

30

29
22

56
296 V+ Language User’s Guide, Rev A

Chapter 11 Detecting User Input
As an additional safeguard, when high power is enabled and the VFP switch is set
to MANUAL, the MCP is set to OFF mode, not COMP or MANUAL mode.

Reading the State of the MCP

It is good programming practice to check the state of the MCP before ATTACHing
to it. The instruction:

cur.state = PENDANT(−3)

will return a value to be interpreted as follows:

1. Indicates that one of the predefined function buttons has been pressed.

2. Indicates the MCP is in background mode (not ATTACHed to an application
program).

3. Indicates an error is being displayed.

4. Indicates that the MCP is in USER mode (ATTACHed to an application
program).

See ”Programming Example: MCP Menu” on page 304 for a program example
that checks the MCP state.
V+ Language User’s Guide, Rev A 297

Chapter 11 Controlling the Pendant
Controlling the Pendant

The MCP responds to a number of control codes that affect the LCD panel
(whether or not the buttons are repeat buttons) and the LEDs associated with the
pendant buttons. The control codes are listed in Table 11-1 on page 300. The
control codes are sent as ASCII values using the WRITE instruction. The normal
way to send control codes is to use the $CHR() function to convert a control code
to its ASCII value.

Control Codes for the LCD Panel

To clear the display and position the cursor in the middle of the top line, issue the
instruction:

WRITE(mcp_lun) $CHR(12), $CHR(18), $CHR(20), /S

$CHR(12) clears the pendant and places the cursor at position 1 (see Figure 11-2
on page 299). $CHR(18) indicates that the next value received should be
interpreted as a cursor location. $CHR(20) indicates the cursor should be placed
at position 20. /S must be appended to the WRITE instruction or a <CR-LF> will
be sent. Notice that using control code 18 allows you to position the cursor
without disturbing existing text.

The following code will place the text EXIT in the middle of the bottom line and
set the text blinking.

WRITE(mcp_lun) $CHR(18), $CHR(58), "EXIT", /S
WRITE(mcp_lun) $CHR(18), $CHR(58), $CHR(22), $CHR(4), /S

$CHR(22) tells the pendant to start a series of blinking positions starting at the
current cursor location and extending for the number of positions specified by the
next control code ($CHR(4)). This code will cause any text in positions 58 - 62 to
blink until an instruction is sent to cancel the blinking. The following code line
disables the blink positions:

WRITE(mcp_lun) $CHR(18), $CHR(58), $CHR(23), $CHR(4), /S

$CHR(23) tells the pendant to cancel a series of blinking positions starting at the
current cursor location and extending for the number of positions specified by the
next control code ($CHR(4)).

Text can be made to blink as it is written to the display, regardless of the position
the text is in. The following code writes the text EXIT to the middle of the bottom
line, starts the E blinking, and then beeps the MCP:
298 V+ Language User’s Guide, Rev A

Chapter 11 Controlling the Pendant
WRITE(mcp_lun) $CHR(18), $CHR(58), $CHR(2), "E", /S
WRITE(mcp_lun) $CHR(3), "XIT", /S
WRITE(mcp_lun) $CHR(7), /S

$CHR(2) starts blink mode. Any characters sent to the MCP display will blink.
Blink mode is canceled by $CHR(3). $CHR(3) cancels blink mode for subsequent
characters; it does not cancel blinking of previously entered characters. It also
does not cancel blinking of character positions set by control code 22. $CHR(7)
causes the pendant to beep.

Figure 11-2. Pendant LCD Display

The Pendant LEDs

The LEDs on the soft buttons, the F buttons, and the REC/DONE button can be lit
(either continuously or intermittently). The following code places the text CLEAR
and EXIT over the first two soft buttons, lights the LED over the first soft button,
and blinks the light over the second soft button:

WRITE(mcp_lun) $CHR(18), $CHR(41), "CLEAR", /S
WRITE(mcp_lun) $CHR(9), "EXIT", /S
WRITE(mcp_lun) $CHR(31), $CHR(5), /S
WRITE(mcp_lun) $CHR(30), $CHR(4), /S

$CHR(9) tabs the cursor to the next soft button position. $CHR(31) lights an LED.
$CHR(30) starts an LED blinking. The button LED to be lit is specified in the
ensuing control code. In the above example, button 5’s LED is turned on and
button 4’s LED is set blinking. The soft buttons, F buttons, and REC/DONE
button are the only buttons that have programmable LEDs.

1 40

8041
V+ Language User’s Guide, Rev A 299

Chapter 11 Controlling the Pendant
Making Pendant Buttons Repeat Buttons

Pendant buttons that are configured as keyboard buttons are normally repeat
buttons: Button presses are recorded as long as the button is held down. The
repeat function can be disabled, requiring users to press the button once for each
button press they want recorded. The following instruction disables the repeat
option for the period (.) button:

WRITE(mcp_lun) $CHR(25), $CHR(55), /S

The repeat option is enabled with the instruction:

WRITE(mcp_lun) $CHR(24), $CHR(55), /S

Table 11-1 lists all the control codes used with the pendant.

Table 11-1. Pendant Control Codes

Single Byte Control Codes

Code Function

1 (Not Used)

2 Enable blink mode for subsequent characters

3 Disable blink mode for subsequent characters (characters will still
blink if they appear in a blinking position set by code 22)

4 Display cursor (make the cursor visible)

5 Hide cursor (make the cursor invisible)

6 (Not Used)

7 Beep

8 Backspace (ignored if cursor is in character position 1)

9 Tab to next soft button

10 Line feed (move down in same position, scroll if on line 2)

11 Vertical tab (move up in same position, do not scroll)

12 Home cursor and clear screen (cancels any blinking positions, but
does not affect blink mode set by code 2)

13 Carriage return (move to column 1 of current line)

14 Home cursor (move to character position 1)

15 Clear from cursor position to end of line
300 V+ Language User’s Guide, Rev A

Chapter 11 Controlling the Pendant
*For soft buttons, F buttons, and REC/DONE button only.

Double Byte Control Codes

Code Function Second Code

16 (Not Used)

17 (Not Used)

18 Position cursor Cursor position (1-80)

19 (Not Used)

20 (Not Used)

21 (Not Used)

22 Enable blinking positions starting
at current cursor location

Number of blinking positions
(1-80)

23 Disable blinking positions starting
at current cursor location

Number of blinking positions
(1-80)

24 Enable repeat mode for button Button number

25 Disable repeat mode for button Button number

26 (Not Used)

27 (Not Used)

Code Function Second Code

28 Turn off pendant button LED Light number *

29 (Not used)

30 Start pendant button LED
blinking

Light number *

31 Turn on pendant button LED Light number *

Table 11-1. Pendant Control Codes (Continued)
V+ Language User’s Guide, Rev A 301

Chapter 11 Auto-Starting Programs With the MCP
Auto-Starting Programs With the MCP

The CMD predefined function button provides three options for loading and
auto-starting a program from the pendant. These three options are AUTO START,
CMD1, and CMD2. The program file requirements for all three options are the
same:

1. The file being loaded must be on the default disk. The default disk is specified
with the DEFAULT DISK command. The utility CONFIG_C can be used to
specify a default disk at startup.1 See the Instructions for Adept Utility
Programs for details on running this utility.

2. The file name must correspond to the MCP selection. If CMD1 is pressed, the
disk file must be named CMD1.V2. If AUTO START is pressed, the user will be
asked to input one or two digits. These digits will be used to complete the file
name AUTOxx.V2. A corresponding file name must exist on the default drive.

3. A command program with the same name as the file name (minus the
extension) must be one of the programs in the file. If AUTO22.V2 is loaded, the
program auto22 will be COMMANDed. See the V+ Operating System
Reference Guide for details on command programs.

1 The default disk is not the same as the boot drive. The boot drive is set in hardware and is used
during the boot procedure to specify the drive that contains the operating system. Once the
system is loaded, the default disk is the drive and path specification for loading and storing files.
302 V+ Language User’s Guide, Rev A

Chapter 11 Auto-Starting Programs With the MCP
WAIT.START

Starting a robot program while the operator is in the workcell can be extremely
dangerous. Therefore, Adept has installed the following safety procedure to
prevent program startup while an operator is in the workcell. Before a program
auto-started from the MCP will begin execution, the operator will have to leave
the workcell, put the controller key switch in the terminal position, and press the
Program Start button. The WAIT.START instruction implements this safety
feature. This instruction is automatically included in any programs started with
the AUTO START, CMD, CMD1, CMD2, and CALIBRATE buttons on the MCP.
You should include this safety feature in any pendant routines you write that
initiate monitor command programs that include robot motions. The command
WAIT.START in a monitor command program will pause execution of a monitor
command program until the key switch is correctly set and the PROGRAM
START button is pressed. See the V+ Language Reference Guide for other uses of
WAIT.START.

WARNING: For this safety feature to be effective, the optional front
panel must be installed outside the workcell.
V+ Language User’s Guide, Rev A 303

Chapter 11 Programming Example: MCP Menu
Programming Example: MCP Menu

The following code implements a menu structure on the MCP. (Additionally,
”Teaching Locations With the MCP” on page 356 presents a program example
for using the MCP to teach robot locations.)

.PROGRAM mcp.main()

; ABSTRACT: This program creates and monitors a menu structure on the

; MCP.

;

; INPUT PARAMS: None

;

; OUTPUT PARAMS: None

;

; GLOBAL VARS: mcp MCP logical unit

; mcp.clr.scrpendant control code, clear display & home cursor

; mcp.cur.pospendant control code, set cursor position

; mcp.off.ledpendant control code, turn off an LED

; mcp.blink.charpendant control code, start blink position

; mcp.noblink.charpendant control code, disable blink position

; mcp.beeppendant control code, beep the pendant

; mcp.tabpendant control code, tab to next soft button

; mcp.on.ledpendant control code, turn on an LED

AUTO button ;Number of the soft button pressed

AUTO quit ;Boolean indicating menu structure should be exited

mcp = 1

quit = FALSE

mcp.clr.scr = 12

mcp.cur.pos = 18

mcp.off.led = 28

mcp.blink.char = 2

mcp.noblink.char = 3

mcp.beep = 7

mcp.tab = 9
304 V+ Language User’s Guide, Rev A

Chapter 11 Programming Example: MCP Menu
mcp.on.led = 31

; Check to see if the MCP is free

IF PENDANT(−3) <> 2 THEN

 GOTO 100

END

; Attach to the MCP

ATTACH (mcp)

; Verify ATTACH was successful

IF IOSTAT(mcp) <> 1 THEN

GOTO 100

END

DO ;Main processing loop

; Display the top-level menu

CALL mcp.disp.main()

; Get the operator selection (must be between 1 and 5)

DO

button = PENDANT(0)

 UNTIL (button < 6)

; Turn on the LED of the selected button

 WRITE (mcp) $CHR(mcp.on.led), $CHR(button), /S
V+ Language User’s Guide, Rev A 305

Chapter 11 Programming Example: MCP Menu
; Respond to the menu item selected

 CASE button OF

 VALUE 1:; Verify program exit

CALL mcp.main.quit(quit)

 VALUE 2:

CALL mcp.option.2()

 VALUE 3:

CALL mcp.option.3()

 VALUE 4:

CALL mcp.option.4()

 VALUE 5:

CALL mcp.option.5()

 END ;CASE button of

; Turn off LED

WRITE (mcp) $CHR(mcp.off.led), $CHR(button), /S

UNTIL quit

; Detach from the MCP

DETACH (mcp)

100IF NOT quit THEN;Exit on MCP busy

 TYPE /C34, /U17, "The MCP is busy or not connected."

 TYPE "Press the REC/DONE button to clear.", /C5

END

306 V+ Language User’s Guide, Rev A

Chapter 11 Programming Example: MCP Menu
.END

.PROGRAM mcp.disp.main()

; ABSTRACT: This program is called to display a main menu above the five

;soft keys on the MCP. The program assumes the MCP has been attached.

;

; INPUT PARAMS: None

;

; OUTPUT PARAMS: None

;

; GLOBAL VARS: mcpMCP logical unit

mcp.clr.scrpendant control code, clear display & home cursor

mcp.cur.pospendant control code, set cursor position

mcp.beeppendant control code, beep the pendant

mcp.tabpendant control code, tab to next soft button

; Clear the display and write the top line

WRITE (mcp) $CHR(mcp.clr.scr), $CHR(mcp.cur.pos), $CHR(16), "MAIN MENU", /S

; Write the menu options

WRITE (mcp) $CHR(mcp.cur.pos), $CHR(41), /S

WRITE (mcp) "Option5", $CHR(mcp.tab), "Option4", $CHR(mcp.tab), /S

WRITE (mcp) "Option3", $CHR(mcp.tab), "Option2", $CHR(mcp.tab), " QUIT", /S

; Beep the MCP

WRITE (mcp) $CHR(mcp.beep), /S

.END
V+ Language User’s Guide, Rev A 307

Chapter 11 Programming Example: MCP Menu
.PROGRAM mcp.main.quit(quit)

; ABSTRACT: This program responds to a "Quit" selection from the MCP

; main menu. It verifies the selection and passes the result.

;

; INPUT PARAMS: None

;

; OUTPUT PARAM: quitboolean indicating whether a "quit"

; has been verified

;

; GLOBAL VARS: mcpMCP logical unit

; mcp.clr.scrpendant control code, clear display & home cursor

; mcp.off.ledpendant control code, turn off an LED

; mcp.blink.charpendant control code, start blink position

; mcp.noblink.charpendant control code, disable blink position

; mcp.tab - pendantcontrol code, tab to next soft button

;

;

quit = FALSE ;assume quit will not be verified

; Display submenu and start the "NO" option blinking

WRITE (mcp) $CHR(mcp.clr.scr), "Quit. Are you sure?"

WRITE (mcp) $CHR(mcp.tab), $CHR(mcp.tab), $CHR(mcp.tab), " YES", /S

WRITE (mcp) $CHR(mcp.tab), $CHR(mcp.blink.char), " NO",
$CHR(mcp.noblink.char), /S

button = PENDANT(0)
308 V+ Language User’s Guide, Rev A

Chapter 11 Programming Example: MCP Menu
; Set quit to true if verified, else turn off the "NO" soft button LED

IF button == 2 THEN

 quit = TRUE

ELSE

 WRITE (mcp) $CHR(mcp.off.led), $CHR(1), /S

END

.END
V+ Language User’s Guide, Rev A 309

Conveyor Tracking 12
Introduction to Conveyor Tracking 312

Installation . 313

Calibration . 314

Basic Programming Concepts 315

Belt Variables 315
Nominal Belt Transformation 316
The Belt Encoder 318
The Encoder Scaling Factor 319
The Encoder Offset 319
The Belt Window 320

Belt-Relative Motion Instructions 322
Motion Termination 323
Defining Belt-Relative Locations 323

Moving-Line Programming 324

Instructions and Functions 324
Belt Variable Definitions 324
Encoder Position and Velocity Information 324
Window Testing 325
Status Information 325

System Switch 325
System Parameters 325

Sample Programs . 326
311

Chapter 12 Introduction to Conveyor Tracking
Introduction to Conveyor Tracking

This chapter describes the Adept Conveyor Tracking (moving-line) feature. The
moving-line feature allows the programs to specify locations that are
automatically modified to compensate for the instantaneous position of a
conveyor belt. Motion locations that are defined relative to a belt can be taught
and played back while the belt is stationary or moving at arbitrarily varying
speeds. Conveyor tracking is available only for systems that have the optional V+
Extensions software.

For V+ to determine the instantaneous position and speed of a belt, the belt must
be equipped with a device to measure its position and speed. As part of the
moving-line hardware option, Adept provides an encoder and an interface for
instrumenting two separate conveyor belts. Robot motions and locations can be
specified relative to either belt.

There are no restrictions concerning the placement or orientation of a conveyor
belt relative to the robot. In fact, belts that move uphill or downhill (or at an angle
to the reference frame of the robot) can be treated as easily as those that move
parallel to an axis of the robot reference frame. The only restriction regarding a
belt is that its motion must follow a straight-line path in the region where the
robot is to work.

The following sections contain installation and application instructions for using
the moving-line feature. Before using this chapter, you should be familiar with V+
and the basic operation of the robot.
312 V+ Language User’s Guide, Rev A

Chapter 12 Installation
Installation

To set up a conveyor belt for use with a robot controlled by the V+ system.

1. Install all the hardware components and securely fasten them in place. The
conveyor frame and robot base must be mounted rigidly so that no motion
can occur between them.

2. Install the encoder on the conveyor.

3. Since any jitter of the encoder will be reflected as jitter in motions of the robot
while tracking the belt, make sure the mechanical connection between the belt
and the encoder operates smoothly. In particular, eliminate any backlash in
gear-driven systems.

4. Wire the encoder to the robot controller. (See the controller user’s guide for
location of the encoder ports.)

5. Start up the robot system controller in the normal manner.

6. Calibrate the location of the conveyor belt relative to the robot by executing the
Belt Calibration Program. That program is provided in the file BELT_CAL.V2
on the Adept Utility Disk supplied with your robot system.1

When these steps have been completed, the system is ready for use. However,
each time the system is restarted, the belt calibration data must be reloaded (from
the disk file created in the above steps). The next section describes loading belt
calibration.

1 See the Instructions for Adept Utility Programs for details.
V+ Language User’s Guide, Rev A 313

Chapter 12 Calibration
Calibration

The position and orientation of the conveyor belt must be precisely known in
order for the robot to track motion of the belt. The file BELT_CAL.V2 on the
Adept Utility Disk contains a program to calibrate the relationship between the
belt and the robot. The program saves the calibration data in a disk file for later
use by application programs.

The DEFBELT and WINDOW program instructions must be executed before the
associated belt is referenced in a V+ program. See ”Belt Variable Definitions” on
page 324 for details. We suggest you include these instructions in an initialization
section of your application program. Although these instructions need be
executed only once, no harm is done if they are executed subsequently.

The file LOADBELT.V2 on the Adept Utility Disk contains a V+ subroutine that
will load the belt calibration data from a disk file and execute the DEFBELT and
WINDOW instructions. (See the next section.)

While the robot is moving relative to a belt (including motions to and from the
belt), all motions must be of the straight-line type. Thus APPROS, DEPARTS,
MOVES, and MOVEST can be used, but APPRO, DEPART, DRIVE, MOVE,
and MOVET cannot. Motion relative to a belt is terminated when the robot moves
to a location that is not defined relative to the belt variable or when a belt-window
violation occurs.
314 V+ Language User’s Guide, Rev A

Chapter 12 Basic Programming Concepts
Basic Programming Concepts

This section describes the basic concepts of the Conveyor Belt Tracking feature.
First, the data used to describe the relationship of the conveyor belt to the robot is
presented. Then a description is given of how belt-relative motion instructions are
specified. Finally, a description is presented of how belt-relative locations are
taught.

The V+ operations associated with belt tracking are disabled when the BELT
system switch is disabled. Thus, application programs that use those operations
must be sure the BELT switch is enabled.

Belt Variables

The primary mechanism for specifying motions relative to a belt is a V+ data type
called a belt variable. By defining a belt variable, the program specifies the
relationship between a specific belt encoder and the location and speed of a
reference frame that maintains a fixed position and orientation relative to the belt.
Alternatively, a belt variable can be thought of as a transformation (with a
time-varying component) that defines the location of a reference frame fixed to a
moving conveyor. As a convenience, more than one belt variable can be
associated with the same physical belt and belt encoder. In this way, several work
stations can be easily referenced on the same belt.

Like other variable names in V+, the names of belt variables are assigned by the
programmer. Each name must start with a letter and can contain only letters,
numbers, periods, and underline characters. (Letters used in variable names can
be entered in either lowercase or uppercase. V+ always displays variable names in
lowercase.)

To differentiate belt variables from other data types, the name of a belt variable
must be preceded by a percent sign (%). As with all other V+ data types, arrays of
belt variables are permitted. Hence the following are all valid belt-variable names:

%pallet.on.belt %base.plate %belt[1]

The DEFBELT instruction must be used to define belt variables (see the
Moving-Line Programming section of this chapter). Thus, the following are not
valid operations:

SET %new_belt = %old_belt or HERE %belt[1]
V+ Language User’s Guide, Rev A 315

Chapter 12 Basic Programming Concepts
Compared to other V+ data types, the belt variable is rather complex in that it
contains several different types of information. Briefly, a belt variable contains the
following information:

1. The nominal transformation for the belt. This defines the position and
direction of travel of the belt and its approximate center.

2. The number of the encoder used for reading the instantaneous location of the
belt (either 1 or 2).

3. The belt encoder scaling factor, which is used for converting encoder counts to
millimeters of belt travel.

4. An encoder offset, which is used to adjust the origin of the belt frame of
reference.

5. Window parameters, which define the working range of the robot along the
belt.

These components of belt variables are described in detail in the following
sections.

Unlike other V+ data types, belt variables cannot be stored in a disk file for later
loading. However, the location and real-valued data used to define a belt variable
can be stored and loaded in the normal ways. After the data is loaded from disk,
DEFBELT and WINDOW instructions must be executed to define the belt
variable. See ”Belt Variable Definitions” on page 324 for details. (The file
LOADBELT.V2 on the Adept Utility Disk contains a subroutine that will read belt
data from a disk file and execute the appropriate DEFBELT and WINDOW
instructions.)

Nominal Belt Transformation

The position, orientation, and direction of motion of a belt are defined by a
transformation called the nominal belt transformation. This transformation
defines a reference frame aligned with the belt as follows: its X-Y plane coincides
with the plane of the belt, its X axis is parallel to the direction of belt motion, and
its origin is located at a point (fixed in space) chosen by the user.

Since the direction of the X axis of the nominal belt transformation is taken to be
the direction along which the belt moves, this component of the transformation
must be determined with great care. Furthermore, while the point defined by this
transformation (the origin of the frame) can be selected arbitrarily, it normally
should be approximately at the middle of the robot’s working range on the belt.
This transformation will usually be defined using the FRAME location-valued
function with recorded robot locations on the belt. (The easiest way to define
nominal belt transformation is with the conveyor belt calibration program
provided by Adept.)
316 V+ Language User’s Guide, Rev A

Chapter 12 Basic Programming Concepts
The instantaneous location described by the belt variable will almost always be
different from that specified by the nominal transformation. However, since the
belt is constrained to move in a straight line in the working area, the
instantaneous orientation of a belt variable is constant and equal to that defined
by the nominal belt transformation.

To determine the instantaneous location defined by a belt variable, the V+ system
performs a computation that is equivalent to multiplying a unit vector in the X
direction of the nominal transformation by a distance (which is a function of the
belt encoder reading) and adding the result to the position vector of the nominal
belt transformation. Symbolically, this can be represented as

instantaneous_XYZ =
nominal_XYZ + (belt_distance ∗

X_direction_of_nominal_transform)

where

belt_distance =
(encoder_count - encoder_offset) ∗ encoder_scaling_factor

The encoder variables contained in this final equation will be described in later
sections.
V+ Language User’s Guide, Rev A 317

Chapter 12 Basic Programming Concepts
The Belt Encoder

Two belt encoders are supported by the conveyor tracking feature. When
specified as a component of a belt variable, these encoders are referred to as
number 1 and number 2.

Each belt encoder generates pulses that indicate both the distance that the belt has
moved and the direction of travel. The pulses are counted by the belt interface,
and the count is stored as a signed 24-bit number. Therefore, the value of an
encoder counter can range from 223 –1 (8,388,607) to –223 (– 8,388,608). For
example, if a single count of the encoder corresponds to 0.02 millimeters (0.00008
inch) of belt motion, then the full range of the counter would represent motion of
the belt from approximately –167 meters (–550 feet) to +167 meters (+550 feet).

After a counter reaches its maximum positive or negative value, its value will roll
over to the maximum negative or positive value, respectively. This means that if
the encoder value is increasing and a rollover occurs, the sequence of encoder
counter values will be ... ; 8,388,606; 8,388,607; –8,388,608; –8,388,607; ... As long as
the distance between the workspace of the robot and the nominal transformation
of the belt is within the distance that can be represented by the maximum encoder
value, V+ application programs normally do not have to take into account the fact
that the counter will periodically roll over. The belt_distance equation described
above is based upon a relative encoder value:

encoder_count – encoder_offset

and V+ automatically adjusts this calculation for any belt rollover that may occur.

Care must be exercised, however, if an application processes encoder values in
any way. For example, a program may save encoder values associated with
individual parts on the conveyor, and then later use the values to determine
which parts should be processed by the robot. In such situations the application
program may need to consider the possibility of rollover of the encoder value.

NOTE: While the encoder counter value is stored as a 24-bit
number, the rate of change of the belt encoder (the speed of the belt)
is maintained only as a 16-bit number. The belt speed is used
internally by V+ to predict future positions on the belt. Therefore,
the rate of change of the belt encoder should not exceed 32,768
counts per 16 milliseconds. The Adept application program for belt
calibration includes a test for this condition and prints a warning if
this restriction will be violated. This requirement will be a limitation
only for very high-speed conveyors with very high-resolution
encoders.
318 V+ Language User’s Guide, Rev A

Chapter 12 Basic Programming Concepts
The Encoder Scaling Factor

For any given conveyor/encoder installation, the encoder scaling factor is a
constant number that represents the amount the encoder counter changes during
a change in belt position. The units of the scaling factor are millimeters/count.

This factor can be determined either directly from the details of the mechanical
coupling of the encoder to the belt or experimentally by reading the encoder as
the belt is moved. The Adept belt calibration program supports either method of
determining the encoder scaling factor.

If the encoder counter decreases as the belt moves in its normal direction of travel,
the scaling factor will have a negative value.

The Encoder Offset

The last encoder value needed for proper operation of the moving-line system is
the belt encoder offset. The belt encoder offset is used by V+ to establish the
instantaneous location of the belt reference frame relative to its nominal location.

In particular, if the belt offset is set equal to the current belt encoder reading, the
instantaneous belt transformation will be equal to the nominal transformation.
The belt encoder offset can be used, in effect, to zero the encoder reading, or to set
it to a particular value whenever necessary. Unlike the encoder scaling factor,
which is constant for any given conveyor/encoder setup, the value of the belt
encoder offset is variable and will usually be changed often.

Normally, the instantaneous location of the reference frame will be established
using external input from a sensory device such as a photocell or the AdeptVision
system. For example, the VFEATURE function provided by AdeptVision returns
as one of its computed values the belt encoder offset that must be set in order to
grasp an object identified by the vision system. The DEVICE real-valued function
also returns latched or unlatched encoder values for use with SETBELT.

The encoder offset is set with the SETBELT program instruction, described in
”Belt Variable Definitions” on page 324.
V+ Language User’s Guide, Rev A 319

Chapter 12 Basic Programming Concepts
The Belt Window

The belt window controls the region of the belt in which the robot is to work.
Figure 12-1 on page 321 illustrates the terms used here. A window is a segment of
the belt bounded by two planes that are perpendicular to the direction of travel of
the belt. (Note that a window has limits only in the direction along the belt.)

Within V+, a belt window is defined by two transformations with a WINDOW
program instruction. The window boundaries are computed by V+ as planes that
are perpendicular to the direction of travel of the belt and that pass through the
positions defined by the transformations.

If the robot attempts to move to a belt-relative location that has not yet come
within the window (is upstream of the window), the robot can be instructed
either to pause until it can accomplish the motion or immediately generate a
program error. If a destination moves out of the window (is downstream of the
window), it is flagged as an error condition and the application program can
specify what action is to be taken. (See the description of the BELT.MODE system
parameter in V+ Language Reference Guide.)

If the normal error testing options are selected, whenever the V+ system is
planning a robot motion to a belt-relative location and the destination is outside
the belt window but upstream, the system automatically delays motion planning
until the destination is within the window. However, if an application program
attempts to perform a motion to a belt-relative destination that is out of the
window at planning time (or is predicted to be out by the time the destination
would be reached) and this destination is downstream, a window-violation
condition exists. Also, if during the execution of a belt-relative motion or while
the robot is tracking the belt, the destination moves outside the belt window for
any reason, a window violation occurs. Depending upon the details of the
application program, the program either prints an error message and halts
execution or branches to a specified subroutine when a window violation occurs.

In order to provide flexibility with regard to the operation of the window-testing
mechanism, several modifications to the normal algorithms can be selected by
modifying the value of the BELT.MODE system parameter.

To assist in teaching the belt window, the Adept conveyor belt calibration
program contains routines that lead the operator through definition of the
required bounding transformations.
320 V+ Language User’s Guide, Rev A

Chapter 12 Basic Programming Concepts
Figure 12-1. Conveyor Terms

Belt Window

Upstream Downstream

Lower Limit Upper LImit

+X

Nominal Transformation

+Y
V+ Language User’s Guide, Rev A 321

Chapter 12 Basic Programming Concepts
Belt-Relative Motion Instructions

To define a robot motion relative to a conveyor belt, or to define a relative
transformation with respect to the instantaneous location of a moving frame of
reference, a belt variable can be used in place of a regular transformation in a
compound transformation. For example, the instruction

MOVES %belt:loc_1

directs the robot to perform a straight-line motion to location loc_1, which is
specified relative to the location defined by the belt variable %belt. If a belt
variable is specified, it must be the first (that is, leftmost) element in a compound
transformation. Only one belt variable can appear in any compound
transformation.

Motions relative to a belt can be only of the straight-line type. Attempting a
joint-interpolated motion relative to a belt causes an error and halts execution of
the application program. Except for these restrictions, motion statements that are
defined relative to a belt are treated just like any other motion statement. In
particular, continuous-path motions relative to belts are permitted.

Once the robot has been moved to a destination that is defined relative to a belt,
the robot tool will continue to track the belt until it is directed to a location that is
not relative to the belt. For example, the following series of instructions would
move the tool to a location relative to a belt, open the hand, track the belt for two
seconds, close the hand, and finally move off the belt to a fixed location.

MOVES %belt[1]:location3

OPENI

DELAY 2.00

CLOSEI

MOVES fixed.location

If this example did not have the second MOVES statement, the robot would
continue to track the belt until a belt window violation occurred.

As with motions defined relative to a belt, motions that move the tool off a belt
(that is, to a fixed location) must be of the straight-line type.
322 V+ Language User’s Guide, Rev A

Chapter 12 Basic Programming Concepts
Motion Termination

When moving the robot relative to a belt, special attention must be paid to the
conditions used to determine when a motion is completed. At the conclusion of a
continuous-path motion V+ normally waits until all the joints of the manipulator
have achieved their final destinations to within a tight error tolerance before
proceeding to the next instruction. In the case of motions relative to a belt, the
destination is constantly changing and, depending upon the magnitude and
variability of the belt speed, the robot may not always be able to achieve final
positions with the default error tolerance.

Therefore, if a motion does not successfully complete (that is, it is aborted due to a
Time-out nulling error), or if it takes an excessive amount of time to complete, the
error tolerance for the motion should be increased by preceding the motion
instruction with a COARSE instruction. In extreme situations it may even be
necessary to entirely disable checking of the final error tolerance. This can be done
by specifying NONULL before the start of the motion.

Defining Belt-Relative Locations

In order to define locations relative to a belt, belt-relative compound
transformations can be used as parameters to all the standard V+ teaching aids.
For example, all the following commands define a location loc_1 relative to the
current belt location:1

HERE %belt:loc_1

POINT %belt:loc_1

TEACH %belt:loc_1

In each of these cases, the instantaneous location corresponding to %belt would
be determined (based upon the reading of the belt encoder associated with %belt);
loc_1 would be set equal to the difference between the current tool location and
the instantaneous location defined by %belt.

While a belt variable can be used as the first (leftmost) element of a compound
transformation to define a transformation value, a belt variable cannot appear by
itself. For example, LISTL will not display a belt variable directly. To view the
value of a belt variable, enter the command:

LISTL %belt_variable:NULL

1 Before defining a location relative to a belt, you must make sure the belt encoder offset is set
properly. That usually involves issuing a monitor command in the form:

DO SETBELT %belt = BELT(%belt)
V+ Language User’s Guide, Rev A 323

Chapter 12 Moving-Line Programming
Moving-Line Programming

This section describes how to access the moving-line capabilities within V+. A
functional overview is presented that summarizes the extensions to V+ for
Conveyor Tracking. All the V+ moving-line keywords are described in detail in
the V+ Language Reference Guide.

The moving-line extensions to V+ include:

• Instructions and functions (there are no monitor commands)

• System switch

• System parameters

Instructions and Functions

This section summarizes the V+ instructions and functions dedicated to
moving-line processing. The belt-related functions return real values.

Belt Variable Definitions

The following keywords are used to define the parameters of belt variables. Some
parameters are typically set once, based upon information derived from the belt
calibration procedure. Other parameters are changed dynamically as the
application program is executing.

DEFBELT Program instruction that creates a belt variable and defines its static
characteristics: nominal transformation, encoder number, and
encoder scaling factor.

SETBELT Program instruction to set the encoder offset of a belt variable. This
defines the instantaneous belt location relative to that of the nomi-
nal belt transformation.

WINDOW Program instruction for establishing the belt window boundaries
and specifying a window-violation error subroutine.

Encoder Position and Velocity Information

The following function is used to read information concerning the encoder
associated with a belt variable.

BELT Real-valued function that returns the instantaneous encoder counter
value or the rate of change of the encoder counter value.
324 V+ Language User’s Guide, Rev A

Chapter 12 Moving-Line Programming
Window Testing

The following function allows an application program to incorporate its own
specialized working-region strategy, independent of the strategy provided as an
integral part of the V+ conveyor tracking system.

WINDOW Real-valued function that indicates where a belt-relative location is
(or will be at some future time) relative to a belt window.

Status Information

The following function indicates the current operating status of the moving-line
software.

BSTATUS Real-valued function that returns bit flags indicating the status of
the moving-line software.

System Switch

The switch BELT enables/disables the operation of the moving-line software. (See
the description of ENABLE, DISABLE, and SWITCH for details on setting and
displaying the value of BELT.)

BELT This switch must be enabled before any conveyor tracking process-
ing begins.

System Parameters

The following parameter selects alternative modes of operation of the belt
window testing routines. See the description of PARAMETER for details on
setting and displaying the parameter values.

BELT.MODE Bit flags for selecting special belt window testing modes of opera-
tion.
V+ Language User’s Guide, Rev A 325

Chapter 12 Sample Programs
Sample Programs

The following program is an example of a robot task working from a conveyor
belt. The task consists of the following steps:

1. Wait for a signal that a part is present.

2. Pick up the part.

3. Place the part at a new location on the belt.

4. Return to a rest location to wait for the next part.

CAUTION: These programs are meant only to illustrate
programming techniques useful in typical applications. Moving-line
programs are hardware dependent because of the belt parameters,
so care must be exercised if you attempt to use these programs.

; *** PROGRAM TO RELOCATE PART ON CONVEYOR ***
; Set up belt parameters

ENABLE BELT
PARAMETER BELT.MODE = 0
belt.scale = 0.030670 ;Encoder scale factor

; Define belt twice, for two stations

DEFBELT %b1 = belt, 1, 32, belt.scale
WINDOW %b1 = window.1, window.2, window.error
DEFBELT %b2 = belt, 2, 32, belt.scale
WINDOW %b2 = window.1, window.2, window.error

WHILE TRUE DO ;Loop indefinitely
WAIT part.ready ;Wait for signal that part present
bx = BELT(%b1) ;Read present belt position
SETBELT %b1 = bx ;Set encoder offset for pick-up...
SETBELT %b2 = bx ;... and drop-off stations
APPROS %b1:p1, 50.00 ;Move to the part and pick it up
MOVES %b1:p1
CLOSEI
DEPARTS 50.00
APPROS %b2:p2, 50.00 ;Carry part to drop-off location
MOVES %b2:p2
OPENI DEPARTS 50.00
MOVES wait.location ;Return to rest location

END ;Wait for the next part

; *** End of program ***
326 V+ Language User’s Guide, Rev A

Chapter 12 Sample Programs
The WINDOW instruction in the above program indicates that whenever a
window violation occurs, a subroutine named window.error is to be executed.
The following is an example of what such a routine might contain.

; *** WINDOW VIOLATION ROUTINE ***

TYPE /B, /C1, "** WINDOW ERROR OCCURRED **", /C1

; Find out which end of window was violated

IF DISTANCE(HERE, window.1) < DISTANCE(HERE, window.2) THEN

; Error occurred at window.2

TYPE "Part moved downstream out of reach"
;...(Respond to downstream window error) .

ELSE ; Error occurred at window.1

TYPE "Part moved upstream out of reach"
;...(Respond to upstream window error) .

END

MOVES wait.location ;Move robot to rest location

; Use digital output signals to sound alarm and stop belt

SIGNAL alarm, stop.belt

HALT ;Halt program execution
V+ Language User’s Guide, Rev A 327

MultiProcessor Systems 13
Introduction . 330
Requirements for Motion Systems 331

Servo Processing 331
Allocating Servos per Processor 331
Allocating Servos with an MI3 or MI6 Board 332
Allocating Servos with a VJI or EJI Board 332

Conveyor Belt Encoders 333
Force Sensors 333

Requirements for Vision Systems 334
Standard AdeptVision 334
Dual AdeptVision 334

Installing Processor Boards 335
Processor Board Locations 335
Slot Ordering of Processor Boards 335
Processor Board Addressing 335
System Controller Functions 336

Customizing Processor Workloads 337
Assigning Workloads with CONFIG_C 338

Using Mutiple V+ Systems 339
Requirements for Running Multiple V+ Systems 339
Using V+ Commands with Multiple V+ Systems 339

Autostart 340
Accessing the Command Prompt 340

InterSystem Communications 341
Shared Data . 342
IOTAS and Data Integrity 343
Efficiency Considerations 344
Digital I/O . 344

Restrictions With MultiProcessor Systems 345
High-Level Motion Control Tasks 346
Peripheral Drivers 346
329

Chapter 13 Introduction
Introduction

In most cases, your controller has already been preconfigured at the factory with
sufficient processors for your application. Occasionally, however, your
applications may be more demanding and need multiple processors and possibly
multiple V+ systems. This chapter helps you to determine the required number of
processors for a given application.

You can have up to four processor boards installed in an Adept MV controller.
They can be a mix of 68030, 68040, and 68060 modules. To correctly use multiple
processors with your system, you need to consider the following:

• Processor and memory requirements

• Installation of the processor boards

• Assignment of the processor workloads
330 V+ Language User Guide, Rev A

Chapter 13 Requirements for Motion Systems
Requirements for Motion Systems

This section details the processor and memory requirements needed to run
mulitple AdeptMotion VME systems.

Servo Processing

For standard servo code executing at a 1kHz update rate, a 68030 processor has
sufficient execution power to support a maximum of 8 channels. That is, when 7
axes are being servoed by a 68030, no other processing tasks (e.g., V+ user tasks,
trajectory generation, vision) should be assigned to that processor.

In general, servo processing requirements scale linearly with the number of axes
and the servo update rate. For example, 8 axes take approximately twice as long
to service as 4 axes. Also, if the servos execute every 1 ms, they use twice the
processor power as servos executing at a 2 ms update rate.

NOTE: The servo update rate affects all mechanisms controlled by
the system. If you are using an Adept-supplied robot, you should
not change the servo rate.

Allocating Servos per Processor

Table 13-1 shows the number of servo channels available depending on the type
of board and version of V+you are using.

Table 13-1. The Number of Servos Allowed per Processor Board

68030
Processor

68040
Processor

Version 11.1
or Later

9 channels 18 channels

Version 11.0 8 channels 8 channels

Table 13-2. Number of Servo Channels on a Motion Board

Motion Board Channels

MI3 3

MI6 6

VJI or EJI 8
V+ Language User Guide, Rev A 331

Chapter 13 Requirements for Motion Systems
Allocating Servos with an MI3 or MI6 Board

When associating servo processes with a motion interface board, all channels of a
motion interface board must be serviced by the same processor. In addition, when
a motion interface board is assigned to a processor board, it allocates all of the
available servo processes per board even if less than the maximum number of
axes are being servoed.

For example, if you are controlling a 4-axis robot with two MI6 boards, you must
assign all three channels of the first MI6 board to a single processor as a group.
Likewise, you must assign all three channels of the second MI6 to a single
processor (although it need not be the same processor as the first three axes). If
you assign the two MI6s to the same processor, 6 servo processes on that board
are occupied even though only 4 channels are being used. In this situation, the
processor computational load corresponds to that for 4 axes, but no additional
MI6s can be controlled by this processor.

Allocating Servos with a VJI or EJI Board

When associating servo processes with a VJI (VME Joint Interface) or EJI
(Enhanced Joint Interface) board, all channels of the VJI must be serviced by the
same processor board. In addition, when a VJI is assigned to a processor board, it
allocates 8 of the available servo processes per board even if less than 8 axes are
being servoed.

For example, if you are controlling a 4-axis robot with two VJI boards, you must
assign all eight channels of the first VJI board to a single processor as a group.
Likewise, you must assign all eight channels of the second VJI to a single
processor (although it need not be the same processor as the first 8 axes). If you
assign the two VJIs to the same processor, 16 servo processes on that board are
occupied even though only 4 channels are being used. In this situation, the
processor computational load corresponds to that for 4 axes, but no additional
VJIs can be controlled by this processor.
332 V+ Language User Guide, Rev A

Chapter 13 Requirements for Motion Systems
Conveyor Belt Encoders

With a V+Extensions License, you can install a maximum of one encoder device
module. The Encoder Device module supports up to 6 encoders (the default is 2).
Thus, you can interface a maximum of 6 conveyor belt encoders to a controller.
Each belt encoder requires one servo channel, although it adds a negligible
amount of computational load. These encoders are physically connected through
a Motion Interface board (VMI or VJI).

Force Sensors

The AdeptForce VME option allows up to three force sensors per controller. Each
sensor requires one Force Interface Board (VFI). You can assign one or two VFIs to
each processor board. Each of these force sensors requires one element of the
servo axis allocation.

The force sensor loads the processor computationally only when a force-sensing
operation is taking place, and the load is somewhat less than a single servoed
axis.
V+ Language User Guide, Rev A 333

Chapter 13 Requirements for Vision Systems
Requirements for Vision Systems

This section details the processor and memory requirements needed to run
mulitple AdeptVision systems.

Standard AdeptVision

The minimum processor and memory requirements for an AdeptVision system
with one vision board is one processor with 4 MB of memory. Adding memory in
a single-CPU configuration does not affect vision performance. Adding an
auxiliary processor (and assigning the vision processing to that CPU) could
significantly increase vision performance.

Dual AdeptVision

When a system contains two VIS boards, two processors must be present to
execute two copies of the vision system software. However, there are no
restrictions on which processor can execute V+ vision instructions. For example,
in a two-processor/two-VIS board system, either or both processors can issue V+
vision instructions for either vision system. However, in a dual-processor/
dual-vision system with AIM 2.x VisionWare, a separate copy of AIM VisionWare
must be executed on each processor, thus requiring a copy of V+ on each
processor. Note that AIM 3.x VisionWare always executes on processor number
one.
334 V+ Language User Guide, Rev A

Chapter 13 Installing Processor Boards
Installing Processor Boards

This section gives you an overview of considerations to take into account when
installing multiple processor boards, including the following:

• Board locations

• Slot ordering

• Board addressing

• System controller functions

Processor Board Locations

In each controller, the first slot available for processor boards must be occupied by
an 030 or 040 processor. This processor must be addressed as board 1 and it must
have the system controller functions enabled (see ”System Controller Functions”
on page 336). This processor is considered the system processor.

In MV-8 and MV-19 controllers, slot 2 must be occupied by the SIO module; all
other processors may occupy any other available slot.

Slot Ordering of Processor Boards

In general, you should configure the fastest processor with the greatest amount of
memory as processor #1. Order the auxiliary processors (i.e., numbered) first by
speed and then by memory size.

Processor Board Addressing

The system processor must reside in slot 1 and be addressed as board 1. Each of
the auxiliary processors must be addressed uniquely from 2 to 4. It does not
matter which slot an auxiliary processor is in—auxiliary processor 2 can be in slot
6, auxiliary processor 3 in slot 5, etc. See the chapters on 030 and 040 system
processors in the Adept MV Controller User’s Guide for details on setting the
board address.
V+ Language User Guide, Rev A 335

Chapter 13 Installing Processor Boards
System Controller Functions

On the 030 board, jumper JP1 (SCON) designates a processor as the VME system
processor. The system processor controls functions such as interrupt processing
and bus arbitration. You must enable this function in system processor #1 and
disable it in all auxiliary processors. Similarly, jumper JP3 (SCLK) must be
enabled on the system processor and disabled on all other processors. See the
chapter on system processors in the Adept MV Controller User’s Guide for details
on setting the SCON and SCLK jumpers.

On the 040 board, jumper J1 controls both controller and system clock functions. It
should be in for processor 1 and out for all other processors.

In systems shipped from Adept, the processors are correctly configured: You do
not need to make any changes unless you exchange processors (for example,
replacing an 030 system processor with an 040 processor and making the 030 an
auxiliary processor).
336 V+ Language User Guide, Rev A

Chapter 13 Customizing Processor Workloads
Customizing Processor Workloads

Generally, the default assignment of processor workloads is sufficient for most
applications. However, if the default assignments do not suit your application,
you can customize them.

You can assign the following system tasks to different processors:

• Vision processing

You can assign each vision system in the controller to a specific processor.

• Servo processing

You can assign the servo task for each VMI board to a specific processor.

• A copy of the V+command processor

Each processor can run an individual copy of the V+command processor. See
”Using Mutiple V+ Systems” on page 339 for more details on multiple copies
of V+.
V+ Language User Guide, Rev A 337

Chapter 13 Customizing Processor Workloads
Assigning Workloads with CONFIG_C

The assignment of workloads to the different processors is designed to be
automatic in most cases. However, you may examine or override the defaults
using the CONFIG_C configuration utility. The default configuration implements
the following processor workload configurations:

• If only one processor is installed, all tasks run on that processor.

• If a second processor is present, the vision task and servo tasks for the first
two VMI boards are automatically assigned to it; otherwise, to processor 1.

• If a third processor is present, the servo tasks for the third and fourth VMI
boards are assigned to it; otherwise, to processor 1.

NOTE: After two VMI boards are assigned to an 68030 processor,
subsequent VMI or VJI assignments fail. (This is due to the
9-channel limit.) Similarly, after one VJI is assigned to an 68030,
subsequent VMI or VJI assignments fail.

• If a fourth processor is present, the servo tasks for the fifth and sixth VMI
boards are assigned to it; otherwise, to processor 1.

• If the V+ Extensions license is installed, a copy of the V+ command processor
is also available on each installed processor. In most cases, the copies of V+ on
the auxiliary processors will be idle. That is they will not be executing any
user tasks. When idle, V+ uses less than one percent of the processor time.
338 V+ Language User Guide, Rev A

Chapter 13 Using Mutiple V+ Systems
Using Mutiple V+ Systems

For applications demanding extremely intensive V+processing, it is possible to
run a copy of V+ on every processor. This section details the requirements and
considerations needed to run multiple V+ systems.

Requirements for Running Multiple V+ Systems

You must have the following items before you can use multiple processors to run
multiple V+ systems.

• V+ Extensions license

• CONFIG_C utility program

• One processor for every V+ system that you intend to run

• A graphics-based system

If you are using additional processors for vision or servo processing only, you do
not need a V+ Extensions license. Contact your local Adept sales office for more
information on this license.

Using V+ Commands with Multiple V+ Systems

If more than one processor is running a copy of V+ and the MONITORS system
switch is enabled, multiple monitor windows can be displayed. The first monitor
window is the normal monitor window for the system processor (labeled
Monitor). The monitor windows for the other V+ systems are labeled Monitor_2,
Monitor_3, etc. Each of these processors runs its own independent V+ system, and
can perform all of the V+ functions with the exceptions described below.
V+ Language User Guide, Rev A 339

Chapter 13 Using Mutiple V+ Systems
Autostart

When the autostart program is used with processor 1, it acts the same as on
asingle-V+ system and performs the following commands:

LOAD/Q auto
COMM auto

When autostart is used with V+ processors 2, 3, and 4, the program performs the
following commands:

LOAD/Q auto0n
COMM auto0n

where n is the V+ system number, from 2 to 4.

Unless you want access to the V+ command line, you do not have to have the
MONITORS system switch enabled on processor 1 when using autostart to
execute programs on systems 2, 3, or 4.

The autostart function is enabled for all processors using DIP switch 1 (ON
enables autostart) on the front of the SIO module. See the V+ Operating System
User’s Guide for more details.

Accessing the Command Prompt

If you are not using autostart, you must enable the MONITORS system switch
and use the Adept pulldown menu to select the Monitor window for the system
you want to command. You can then enter V+ commands (such as LOAD and
EXECUTE) at the V+ command prompt (.). See the V+ Language Reference Guide
for a description of the MONITORS system switch.

Each time the controller is turned on, the default is that the auxiliary monitor
windows (monitor_2, etc.) are hidden and disabled. To enable them, type the
command ENABLE MONITORS.
340 V+ Language User Guide, Rev A

Chapter 13 Using Mutiple V+ Systems
InterSystem Communications

V+ application programs running on the same processor communicate in the
normal way, using global V+ variables. V+ can execute up to 7 tasks
simultaneously on each processor, or up to 28 tasks if the V+ Extensions software
license is installed.

When multiple V+ systems are running, each operates on its own processor and
functions independently. Programs and global variables for one V+ system are not
accessible to the other V+ systems.

Application programs running on different V+ systems can communicate through
an 8 KB reserved section of shared memory on each board. This memory area is
used only for communication between V+ application programs. It is not used for
any other purpose.

You can access this memory through the following:

• the six IOPUT_ instructions

• IOPUTB
• IOPUTD
• IOPUTF
• IOPUTL
• IOPUTS
• IOPUTW

• the five IOGET_ real-valued functions

• IOGETB
• IOGETD
• IOGETF
• IOGETL
• IOGETW

• the string function $IOGETS

Each of the above keywords has a type parameter. Type 0 (zero), the default, is
used to access memory on other Adept V+ processors. See the V+ Language
Reference Guide for more details.

You can use the real-valued function IOTAS to interlock access to this memory.
V+ Language User Guide, Rev A 341

Chapter 13 Using Mutiple V+ Systems
Shared Data

The IOGET_, $IOGETS, and IOPUT_ keywords allow the following to be written
and read:

• Single bytes

• 16-bit words

• 32-bit longwords

• 32-bit single-precision floating-point values

• 64-bit double-precision floating-point values

• Strings up to 128 bytes

An address parameter indicates the position within the application shared area to
which the value is to be written or from which the value is to be read. Acceptable
address values are 0 to hexadecimal 1FFF (decimal 8191).

Any Adept system processor can access the shared memory areas of all the Adept
system processors (including its own area). The IOGET_, $IOGETS, IOPUT_ and
IOTAS keywords have an optional parameter to specify the processor number.
The default value for the processor parameter is 0, which is the local processor
(that is, the processor on which the instruction is executing). A nonzero value for
the processor parameter causes that processor to be accessed. (Note that a
processor can access itself as either processor 0 or by its real processor number.)

For example, the instruction:

IOPUTS ^HFF, 0, 3 = "Hello"

will write five ASCII bytes to the shared memory area on processor 3 at the
address ^HFF.

Adept MV controllers support up to four processors, numbered 1 to 4. The
processor number is established by the board-address switches on the processor
module. The V+ monitor window indicates the number of the processor with
which it is associated: The monitor window for processor 1 is simply entitled
Monitor, the window for processor 2 is entitled Monitor_2, and so on.

CAUTION: V+ does not enforce any memory-protection schemes
for use of the application shared memory area. It is your
responsibility to keep track of memory usage. If you are using
application or utility programs (for example, Adept AIM
VisionWare or AIM MotionWare) you should read the
documentation provided with that software to check that there is no
342 V+ Language User Guide, Rev A

Chapter 13 Using Mutiple V+ Systems
conflict with your usage of the shared area. AIM users should note
that Adept plans to assign application shared memory starting from
the top (address hexadecimal 1FFF) and working down. Therefore,
you should start at the bottom (address 0) and work up.

If you read a value from a location that has not been previously written to, you
will get an invalid value: You will not get an error message. The system will provide
a value based upon the default memory contents and the manner in which the
memory is being read. (Every byte of the application shared area is initialized to
zero when V+ is initialized.)

The memory addresses are based on single-byte (8-bit) memory locations. For
example, if you write a 32-bit (4-byte) value to an address, the value will occupy
four address spaces (the address that you specify and the next three addresses).

If you read a value from a location using a format different from the format that
was used to write to that location, you will also get an invalid value: You will not
get an error message. The system will provide a value based upon the default
memory contents (For example, if you write using IOPUTF and read using
IOPUTL, the value read will be invalid.)

IOTAS and Data Integrity

Some IOPUT_ and IOGET_ operations involve multiple hardware read or write
cycles. For example, all 64-bit operations will involve at least two 32-bit data
transfers (three transfers if the operation crosses more than one 32-bit boundary).
If a 16-bit or 32-bit operation crosses a 32-bit boundary, it will involve two
transfers.

You can interlock operations that must cross a 32-bit boundary using the IOTAS()
function. The syntax and an example are given in the V+ Language Reference
Guide.

The IOTAS function performs a hardware-level read-modify write (RMW) cycle
on the VMEbus to make a Test And Set operation indivisible in a multiprocessing
environment. If multiple processors all access the same byte by using IOTAS, the
byte can serve as an interlock between the processors.

WARNING: Depending on the application, there is a possibility
that a V+ program running on one processor may update a
shared-memory area while a program on another processor is
reading it. In this case, data that is read across a 32-bit boundary
may be invalid. If the data is being used for safety-critical
operations, including robot motions, be sure to use the IOTAS
function to prevent such conflicts.
V+ Language User Guide, Rev A 343

Chapter 13 Using Mutiple V+ Systems
Efficiency Considerations

You can put your shared data on any processor. However, it is most efficient to
put the data on the processor that will use it most often, or that is performing the
most time-critical operations. (It takes slightly longer to access data on another
processor than to access data on the local processor.) If you wish, you can put
some of your data on one processor and other data on a different processor. You
must be careful to keep track of which data items are stored in which location.

32-bit and 64-bit operations operate slightly faster if the address is an exact
multiple of four. 16-bit operations operate slightly faster if the address is an exact
multiple of two.

Digital I/O

The digital I/O image, including input (1001-1512), output (1-512), and soft
signals (2000-2512), is managed by processor 1. These signals are shared by all
processors. You can use the soft signals to pass control information between
processors.
344 V+ Language User Guide, Rev A

Chapter 13 Restrictions With MultiProcessor Systems
Restrictions With MultiProcessor Systems

You can set up certain tasks to operate on any processor board, including servo
tasks, vision tasks, and in some cases, V+ user tasks. However, there are several
V+ operations that can be performed only from Processor 1:

• Robot control

• System configuration changes

• Certain commands/instructions

• ENABLE/DISABLE of POWER
• ENABLE/DISABLE of ROBOT
• INSTALL

• High-level motion control tasks

• trajectory generation
• kinematic solution program execution
• V+ motion instructions such as MOVE instructions
• V+ force instructions such as FORCE.READ instructions

• Certain peripheral drivers

• disk I/O
• manual control pendant I/O
• graphics I/O
• global serial-line I/O

Processors other than processor 1 always start up with the stand-alone control
module, with no belts or kinematic modules loaded. If attempted on another
processor, the V+ operations listed above will return the error:

−666 *Must use Monitor #1*

With the exception of a V+ force instruction, which will return the following error:

−666 *Device Hardware not Present*
V+ Language User Guide, Rev A 345

Chapter 13 Restrictions With MultiProcessor Systems
High-Level Motion Control Tasks

As more axes are added to the system, the high-level motion control
computational load on processor 1 increases, even if the servo processing is
moved off to other processors.

For any given application, the processing power required to execute the
high-level motion control is a function of which kinematic modules are used. It
must be evaluated on a case-by-case basis.

Peripheral Drivers

There is an impact on processor 1 whenever an auxiliary processor accesses one of
these devices. However, communications between a processor board and its local
serial lines, digital I/O, and analog I/O operate on the processor on which the V+
instruction is executed.
346 V+ Language User Guide, Rev A

Example V+ Programs A
Introduction . 348

Pick and Place . 349

Features Introduced 349
Program Listing 349

Detailed Description 350
Menu Program . 354

Features Introduced 354
Program Listing 355

Teaching Locations With the MCP 356

Features Introduced 356
Program Listing 356

Defining a Tool Transformation 358
347

Appendix A Introduction
Introduction

This appendix contains a sampling of V+ programs. The first program is
presented twice: once in its entirety exactly as it would be displayed by V+ and a
second time with a line-by-line explanation.

The program keywords are detailed in the V+ Language Reference Guide.

NOTE: The programs in this manual are not necessarily complete.
In most cases further refinements could be added to improve the
programs. For example, the programs could be made more tolerant
of unusual events such as error conditions.
348 V+ Language User’s Guide, Rev A

Appendix A Pick and Place
Pick and Place

This program demonstrates a simple pick-and-place application. The robot picks
up parts at one location and places them at another.

Features Introduced

• Program initialization

• Variable assignment

• System parameter modification

• FOR loop

• Motion instructions

• Hand control

• Terminal output

Program Listing

.PROGRAM move.parts()

 ; ABSTRACT: Pick up parts at location pick and put them down at place

 parts = 100 ;Number of parts to be processed

 height1 = 25.4 ;Approach/depart height at "pick"

 height2 = 50.8 ;Approach/depart height at "place"

 PARAMETER HAND.TIME = 0.16 ;Set up for slow hand

 OPEN ;Make sure the hand is open
 RIGHTY ;Make sure configuration is correct
 MOVE start ;Move to safe starting location

 FOR i = 1 TO parts ;Process the parts

 APPRO pick, height1 ;Go toward the pick-up
 MOVES pick ;Move to the part
 CLOSEI ;Close the hand

DEPARTS height1 ;Back away

 APPRO place, height2 ;Go toward the put-down
 MOVES place ;Move to the destination
 OPENI ;Release the part
 DEPARTS height2 ;Back away
V+ Language User’s Guide, Rev A 349

Appendix A Pick and Place

 END ;Loop for next part

 TYPE "All done. ", /I0, parts, " parts processed"

 RETURN ;End of the program
 .END

Detailed Description

This program has five sections: formal introduction, initialization of variables,
initialization of the robot location, performance of the desired motion sequence,
and notice to the operator of completion of the task. Each of these sections is
described in detail below.

The first line of every program must have the form of the line below. It is a good
practice to follow that line with a brief description of the purpose of the program.
If there are any special requirements for use of the program, they should be
included as well.

.PROGRAM move.parts()

This line identifies the program to the V+ system. In this case we see that the
name of the program is move.parts.

; ABSTRACT: Pick up parts at location "pick" and put them down at "place"

This is a very brief description of the operation performed by the program. (Most
programs will require a more extensive summary.)

Use variables to represent constants for two reasons: Using a variable name
throughout a program makes the program easier to understand, and only one
program line needs to be modified if the value of the constant must be changed.

parts = 100

Tell the program how many parts to process during a production run. In this case,
100 parts will be processed.

height1 = 25.4

height1 controls the height of the robot path when approaching and departing
from the location where the parts are to be picked up. Here it is set to 25.4
millimeters (that is, 1 inch).

height2 = 50.8

Similar to height1, height2 sets the height of the robot path when approaching
and departing from the put-down location. It is set to 50.8 millimeters (2 inches).

PARAMETER HAND.TIME 0.16
350 V+ Language User’s Guide, Rev A

Appendix A Pick and Place
Set the system parameter HAND.TIME so sufficient time will be allowed for
actuation of the robot hand.

This setting will cause OPENI and CLOSEI instructions to delay program
execution for 160 milliseconds while the hand is actuated.

Other important initializing functions are to make sure the robot has the desired
hand opening, is at a safe starting location, and that SCARA robots have the
desired configuration.

RIGHTY

Make sure the robot has a right-handed configuration (with the elbow of the robot
to the right side of the workspace). This is important if there are obstructions in
the workspace that must be avoided.

This instruction will cause the robot to assume the requested configuration
during its next motion.

OPEN

Make sure the hand is initially open. This instruction will have its effect during
the next robot motion, rather than delaying program execution as would be done
by the OPENI instruction.

MOVE start

Move to a safe starting location. Due to the preceding two instructions, the robot
will assume a right-handed configuration with the hand open.

The location start must be defined before the program is executed. That can be
done, for example, with the HERE command. The location must be chosen such
that the robot can move from it to the pick-up location for the parts without
hitting anything.

After initialization, the following program section performs the application tasks.

FOR i = 1 TO parts

Start a program loop. The following instructions (down to the END) will be
executed parts times. After the last time the loop is executed, program execution
will continue with the TYPE instruction following the END below.

APPRO pick, height1

Move the robot to a location that is height1 millimeters above the location pick.
V+ Language User’s Guide, Rev A 351

Appendix A Pick and Place
The APPROS instruction is not used here because its straight-line motion would
be slower than the motion commanded by APPRO.

MOVES pick

Move the robot to the pick-up location pick, which must have been defined
previously.

The straight-line motion commanded by MOVES assures that the hand does not
hit the part during the motion. A MOVE instruction could be used here if there is
sufficient clearance between the hand and the part to allow for a nonstraight-line
path.

CLOSEI

Close the hand. To assure that the part is grasped before the robot moves away,
the I form of the CLOSE instruction is used—program execution will be
suspended while the hand is closing.

DEPARTS height1

Now that the robot is grasping the part, we can back away from the part holder.
This instruction will move the hand back height1 millimeters, following a
straight-line path to make sure the part does not hit its holder.

APPRO place, height2
MOVES place
OPENI
DEPARTS height2

Similar to the above motion sequence, these instructions cause the part to be
moved to the put-down location and released.

END

This marks the end of the FOR loop. When this instruction is executed, control is
transferred back to the FOR instruction for the next cycle through the loop (unless
the loop count specified by parts is exceeded).
352 V+ Language User’s Guide, Rev A

Appendix A Pick and Place
The final section of the program simply displays a message on the system
terminal and terminates execution.

TYPE "All done. ", /I3, parts, " pieces processed."

The above instruction will output the message:

All done. 100 pieces processed.

(The /I0 format specification in the instruction causes the value of parts to be
output as an integer value without a decimal point.)

RETURN

Although not absolutely necessary for proper execution of the program, it is good
programming practice to include a RETURN (or STOP) instruction at the end of
every program.

.END

This line is automatically included by the V+ editor to mark the program’s end.
V+ Language User’s Guide, Rev A 353

Appendix A Menu Program
Menu Program

This program displays a menu of operations from which an operator can choose.

Features Introduced

• Subroutines

• Local variables

• Terminal interaction with operator

• String variables

• WHILE and CASE structures
354 V+ Language User’s Guide, Rev A

Appendix A Menu Program
Program Listing

.PROGRAM sub.menu()

 ; ABSTRACT: This program provides the operator with a menu of
 ; operation selections on the system terminal. After accepting
 ; input from the keyboard, the program executes the desired
 ; operation. In this case, the menu items include execution of
 ; the pick and place program, teaching locations for the pick
 ; and place program, and returning to a main menu.
 ;
 ; SIDE EFFECTS: The pick and place program may be executed, and
 ; locations may be defined.

 AUTO choice, quit, $answer

 quit = FALSE

 DO

 TYPE /C2, "PICK AND PLACE OPERATIONAL MENU"
 TYPE /C1, " 1 => Initiate pick and place"
 TYPE /C1, " 2 => Teach locations"
 TYPE /C1, " 3 => Return to previous menu", /C1

 PROMPT "Enter selection and press RETURN: ", $answer

 choice = VAL($answer) ;Convert string to number

 CASE choice OF ;Process menu request...
 VALUE 1: ;...selection 1
 TYPE /C2, "Initiating Operation..."
 CALL move.parts()
 VALUE 2: ;...selection 2
 CALL teach()
 VALUE 3: ;...selection 3
 quit = TRUE
 ANY ;...any other selection
 TYPE /B, /C1, "** Invalid input **"
 END ;End of CASE structure
 UNTIL quit ;End of DO structure

 .END
V+ Language User’s Guide, Rev A 355

Appendix A Teaching Locations With the MCP
Teaching Locations With the MCP

This program demonstrates how an operator can teach locations with the manual
control pendant, thus allowing the controller to operate without a system
terminal. The two-line liquid crystal display (LCD) of the pendant is used to
prompt the operator for the locations to be taught. The operator can then
manually position the robot at a desired location and press a key on the pendant.
The program automatically records the location for later use (in this case, for the
pick-and-place program).

Features Introduced

• Subroutine parameters

• Attachments and detachments

• Manual control pendant interaction

• WAIT instruction

• Location definition within a program

Program Listing

.PROGRAM teach(pick, place, start)

 ; ABSTRACT: This program is used for teaching the locations
 ;"pick", "place", and "start" for the "move.parts" program.
 ;
 ; INPUT PARAM: None
 ;
 ; OUTPUT PARAM: pick, place, and start
 ;
 ; SIDE EFFECTS: Robot is detached while this routine is active

 AUTO $clear.display

 $clear.display = $CHR(12)+$CHR(7)

 ATTACH (1) ;Connect to the pendant
 DETACH (0) ;Release control of the robot

 ; Output prompt to the display on the manual control pendant

 WRITE (1) $clear.display, "Move robot to 'START' & press RECORD"
 WRITE (1) /X17, "RECORD", $CHR(5), /S
 WRITE (1) $CHR(30), $CHR(3), /S ;Blink LED on control pendant

 WAIT PENDANT(3) ;Wait for key to be pressed
356 V+ Language User’s Guide, Rev A

Appendix A Teaching Locations With the MCP

 HERE start ;Record the location "start"

 ; Prompt for second location

 WRITE (1) $clear.display, "Move robot to 'PICK' & press RECORD"
 WRITE (1) /X17, "RECORD", $CHR(5), /S

 WAIT PENDANT(3) ;Wait for key to be pressed

 HERE pick ;Record the location "pick"

 ; Prompt for third location

 WRITE (1) $clear.display, "Move robot to 'PLACE' & press RECORD"
 WRITE (1) /X17, "RECORD", $CHR(5), /S

 WAIT PENDANT(3) ;Wait for key to be pressed

 HERE place ;Record the location "place"

 ATTACH (0) ;Reconnect to the robot
 DETACH (1) ;Release the pendant

 RETURN ;Return to calling program
 .END
V+ Language User’s Guide, Rev A 357

Appendix A Defining a Tool Transformation
Defining a Tool Transformation

The following program establishes a reference point from which tool
transformations can be taught.

.PROGRAM def.tool()

; ABSTRACT: Invoke a new tool transformation based on a predefined reference
; location and, optionally, teach the reference location

AUTO $answer

 TYPE /C1, "PROGRAM TO DEFINE TOOL TRANSFORMATION", /C1

ATTACH (1) ;Attach the pendant

PROMPT "Revising a previously defined tool (Y/N)? ", $answer

IF $answer <> "Y" THEN
 TYPE /C1, "Move the tool tip to the selected reference ", /S
 TYPE "location.", /C1, "Set 'ref.tool' equal to the ", /S
 TYPE "transformation for this location.", /C2, "Press ", /S
 TYPE "the REC/DONE button on the manual control pendant when ", /S
 TYPE "ready to proceed. ", /S

 DETACH (0) ;Release the robot to the user

 WAIT PENDANT(8) ;Wait for user to press REC/DONE button

 ATTACH (0) ;Regain control of the robot
 ;(automatically wait for COMP mode)
 TOOL ref.tool
 HERE ref.loc ;Record the reference location
 TYPE
 END

 TYPE /C1, "Install the new tool. Move its tip to the ", /S
 TYPE "reference location.", /C2, "Press the REC/DONE button ", /S
 TYPE "on the manual control pendant when ready to proceed. ", /S

 DETACH (0) ;Release the robot to the user

 WAIT PENDANT(8) ;Wait for user to press REC/DONE button

 ATTACH (0) ;Regain control of the robot

 ; Compute the new tool transformation, 'new.tool'

 TOOL ref.tool
 SET new.tool = ref.tool:INVERSE(HERE):ref.loc

358 V+ Language User’s Guide, Rev A

Appendix A Defining a Tool Transformation
 TOOL new.tool ;Apply the new tool transformation

 TYPE /C2, "All done. The tool transformation has been set ", /S
 TYPE "equal to 'new.tool' .", /C1

 DETACH (1) ;Detach the pendant

 RETURN ;Return to calling program (or STOP)
 .END

Because of computational errors introduced when compound transformations are
used, the accuracy of the program presented above can be improved by using a
simple tool with no oblique rotations as the reference tool. In fact, you can get the
most accurate results if you can use the mounting flange of the robot without a
tool as the initial pointer. In this case, the reference tool would be the default null
tool. The program above can be simplified by deleting the references to ref.tool in
lines 17, 28, 45, and 46.

The first time the program is executed, respond to the prompt with N. The
reference tool is defined.

After the program executes once, the tool transformation can be updated by
executing the program again. This time, respond to the prompt with Y. The
program directs you to position the new tool at the same reference location as
before. As long as the values of ref.tool and ref.loc have not been altered, a new
tool transformation is automatically computed and asserted. This is a convenient
method for occasionally altering the tool transformation to account for tool wear.
V+ Language User’s Guide, Rev A 359

External Encoder Device B
Introduction . 362

Parameters . 363

Device Setup . 364

Reading Device Data 366
361

Appendix B Introduction
Introduction

The external-encoder inputs on the system controller are normally used for
conveyor belt tracking with a robot. However, these inputs also can be used for
other sensing applications. In such applications, the DEVICE real-valued
function and SETDEVICE program instruction allow the external encoders to be
accessed in a more flexible manner than the belt-oriented instructions and
functions.

This appendix describes the use of the DEVICE real-valued function and the
SETDEVICE program instruction to access the external encoder device.

In general, SETDEVICE allows a scale factor, offset, and limits to be specified for a
specified external encoder unit. The DEVICE real-valued function returns error
status, position, or velocity information for the specified encoder.

Accessing the external encoders via DEVICE and SETDEVICE is independent of
any belt-tracking commands or instructions. Setting belt parameters with
SETBELT and setting encoder parameters with SETDEVICE have no effect on
each other. The only exceptions are the SETDEVICE initialize command and reset
command, which reset all errors for the specified external encoder—including
any belt-related errors.

NOTE: See the V+ Language Reference Guide for complete
information on the DEVICE real-valued function and the
SETDEVICE program instruction.
362 V+ Language User’s Guide, Rev A

Appendix B Parameters
Parameters

The external encoder device type is 0. This means that the type parameter in all
DEVICE or SETDEVICE instructions that reference the external encoders must
have a value of 0.

The standard Adept controller allows two external encoder units. These units are
numbered 0 and 1. All DEVICE functions and SETDEVICE instructions that
reference the external encoders must specify one of these unit numbers for the
unit parameter.
V+ Language User’s Guide, Rev A 363

Appendix B Device Setup
Device Setup

The SETDEVICE program instruction allows the external encoders to be
initialized and various parameters to be set up. The action taken by the
SETDEVICE instruction depends upon the value of the command parameter.

The syntax of the SETDEVICE instruction is

SETDEVICE (0, unit, error, command) p1, p2

Table B-1 describes the valid commands.

Table B-1. Command Parameter Values

Command Description

0 Initialize Device

This command sets all scale factors, offsets, and limits to their default
values, as follows: offset = 0; scale factor = 1; no limit checking. This
command also resets any errors for the specified device.

This command should be issued before any other commands for a
particular unit and before using the DEVICE real-valued function for
the unit.

1 Reset Device

This command clears any errors associated with this encoder unit. It
does not affect the scale factor, offset, or limits.

8 Set Scale Factor

This command sets the position and velocity scale factor for this
encoder unit to the value of parameter p1. The units are millimeters per
encoder count. The scale factor must be set before setting the offset or
limits. If the scale factor is changed, the offset and limit values will need
to be updated.
364 V+ Language User’s Guide, Rev A

Appendix B Device Setup
9 Set Position Offset

This command sets the position offset for this encoder unit to the value
of parameter p1. The units are millimeters. The scale factor must be set
before setting the offset.

10 Set Position Limits

This command sets the position limits for the encoder unit to the values
of optional parameters p1 and p2, which are the lower and upper limits,
respectively. If a parameter is omitted, no checking is performed for that
limit. The units are millimeters. The scale factor must be set before
setting the limits.

Table B-1. Command Parameter Values (Continued)

Command Description
V+ Language User’s Guide, Rev A 365

Appendix B Reading Device Data
Reading Device Data

The DEVICE real-valued function returns information about the encoder error
status, position, and velocity. The scale factor, offset, and limits defined by the
SETDEVICE instruction affect the velocity and position values returned.

The syntax for this function is

DEVICE(0, unit, error, select)

The value returned depends upon the value of the select parameter, as described
in Table B-2.

Table B-2. Select Parameter Values

select Description

0 Read Hardware Status

The error status of the encoder unit is returned as a 24-bit value. The
valid error bits for this device are listed below. The corresponding error
listed is the one V+ would report if the error occurred while tracking a
belt encoder.

Bit # Bit Mask Corresponding Error Message and Code

19 ^H040000 *Lost encoder sync* (–1012)

20 ^H080000 *Encoder quadrature error*(–1013)

21 ^H100000 *No zero index*(–1011)

Only bit #20, for encoder quadrature error, is detected by the error
parameter of the DEVICE function to generate an error.

1 Read Position

The current position of the encoder (in millimeters) is returned, subject
to the scale factor, offset, and limits defined by the SETDEVICE
instruction. The value returned is computed by:

position = scale∗(encoder-offset)

position = MAX(position, lower_limit)

position = MIN(position, upper_limit)
366 V+ Language User’s Guide, Rev A

Appendix B Reading Device Data
2 Read Velocity

The current value of the encoder velocity (in millimeters per second) is
returned, subject to the scale factor defined by the SETDEVICE
instruction. The value returned is computed by:

velocity = scale*encoder_velocity

3 Read Predicted Position

The predicted position of the encoder (in millimeters) is returned. The
position is predicted 32 milliseconds in the future, based upon the
current position and velocity. The value is scaled the same as the
current position described above.

4 Read Latched Position

The position or the encoder (in millimeters) when the last external
trigger occurred is returned. The LATCHED real-valued function may
be used to determined when an external trigger has occurred and a
valid position has been recorded.

Table B-2. Select Parameter Values (Continued)

select Description
V+ Language User’s Guide, Rev A 367

Character Sets C
Table C-1 and Table C-2 list the standard Adept character set. Values 0 to 127
(decimal) are the standard ASCII character set. Characters 1 to 31 are the common
set of special and line-drawing characters. Characters 0 and 127 to 141 are Adept
additions to the standard sets. Characters 32 to 255 (excluding 127 through 141)
are the ISO standard 8859-1 character set. Characters 145 to 159 are overstrike
characters (see the OVERSTRIKE attribute to the /TERMINAL argument for the
FSET instruction in the V+ Language Reference Guide). Values 1 to 31 are also
given special meaning in the extended Adept character set when they are output
to a graphics window with the GTYPE instruction.

NOTE: The full character set is defined for font #1 only. Fonts #2
(medium font), #3 (large font), and #4 (small font) have defined
characters for ASCII values 0 and 32 - 127. Fonts #5 and #6 have
standard English characters for ASCII values 0 and 32 - 135 while
ASCII 136 - 235 are Katakana and Hiragana characters. Font #5 is
standard size and font #6 contains large characters. The last column
in Table C-2 shows the Katakana and Hiragana characters. The
Katakana characters are at ASCII 161 -223. The Hiragana characters
are at ASCII 136 - 159 and 224 - 255.

The character set listed in Table C-1 and Table C-2 are for use with
VGB graphic systems only and does not apply to AdeptWindows.

Characters with values 0 to 31 and 127 (decimal) have the control meanings listed
in Table C-1 when output to a serial line, an ASCII terminal, or the monitor
window (with TYPE, PROMPT, or WRITE instructions). In files exported to other
text editors or transmitted across serial lines, characters 0 to 31 will generally be
interpreted as having the specified control meaning. The symbols shown for
characters 0 to 31 and 127 in Table C-2 can be displayed only with the GTYPE
instruction.
369

Appendix C
Characters in the extended Adept character set can be output using the $CHR
function. For example:

TYPE $CHR(229)

will output the character å to the monitor window. The instruction:

GTYPE (glun) 50, 50, $CHR(229)

will output the same character to the window open on logical unit glun.

Table C-1. ASCII Control Values

Character
Decimal
Value Hex. Value Meaning of Control Character

NUL 000 00 Null

SOH 001 01 Start of heading

STX 002 02 Start of text

ETX 003 03 End of text

EOT 004 04 End of transmission

ENQ 005 05 Enquiry

ACK 006 06 Acknowledgment

BEL 007 07 Bell

BS 008 08 Backspace

HT 009 09 Horizontal tab

LF 010 0A Line feed

VT 011 0B Vertical tab

FF 012 0C Form feed

CR 013 0D Carriage return

SO 014 0E Shift out

SI 015 0F Shift in

DLE 016 10 Data link escape
370 V+ Language User’s Guide, Rev A

Appendix C
DC1 017 11 Direct control 1

DC2 018 12 Direct control 2

DC3 019 13 Direct control 3

DC4 020 14 Direct control 4

NAK 021 15 Negative acknowledge

SYN 022 16 Synchronous idle

ETB 023 17 End of transmission block

CAN 024 18 Cancel

EM 025 19 End of medium

SUB 026 1A Substitute

ESC 027 1B Escape

FS 028 1C File separator

GS 029 1D Group separator

RS 030 1E Record separator

US 031 1F Unit separator

DEL 127 7F Delete

Table C-1. ASCII Control Values (Continued)

Character
Decimal
Value Hex. Value Meaning of Control Character
V+ Language User’s Guide, Rev A 371

Appendix C

Table C-2. Adept Character Set

Dec.
Value

Hex.
Value Description Font 1 Fonts 2, 3, 4, 5, & 6

000 00 cell outline

001 01 diamond u

002 02 checkerboard

003 03 HT (Horizontal Tab) H
T

004 04 FF (Form Feed) F
F

005 05 CR (Carriage Return) C
R

006 06 LF (Line Feed) L
F

007 07 degree symbol °

008 08 plus/minus ±

009 09 NL (New line) N
L

010 0A VT (Vertical Tab) V
T

011 0B lower right corner

012 0C upper right corner

013 0D upper left corner

014 0E lower left corner

015 0F intersection

016 10 scan line 3 –

017 11 scan line 6 –

018 12 scan line 9 –

019 13 scan line 12 –

020 14 scan line 15 –

021 15 left T-bar

022 16 right T-bar

023 17 bottom T-bar
372 V+ Language User’s Guide, Rev A

Appendix C
024 18 top T-bar

025 19 vertical bar |

026 1A less than or equal to

027 1B greater than or equal to

028 1C pi (lowercase) ¼

029 1D not equal to ¦

030 1E sterling £

031 1F centered dot ⋅

032 20 space

033 21 exclaim ! !

034 22 double quote " "

035 23 pound # #

036 24 dollar sign $ $

037 25 percent % %

038 26 ampersand & &

039 27 single quote ' '

040 28 open parens ((

041 29 close parens))

042 2A asterisk * *

043 2B plus + +

044 2C comma , ,

045 2D hyphen - -

046 2E period . .

047 2F slash / /

Table C-2. Adept Character Set (Continued)

Dec.
Value

Hex.
Value Description Font 1 Fonts 2, 3, 4, 5, & 6

≤

≥

V+ Language User’s Guide, Rev A 373

Appendix C
048 30 zero 0 0

049 31 one 1 1

050 32 two 2 2

051 33 three 3 3

052 34 four 4 4

053 35 five 5 5

054 36 six 6 6

055 37 seven 7 7

056 38 eight 8 8

057 39 nine 9 9

058 3A colon : :

059 3B semicolon ; ;

060 3C lessthan < <

061 3D equal to = =

062 3E greater than > >

063 3F question ? ?

064 40 at @ @

065 41 A A A

066 42 B B B

067 43 C C C

068 44 D D D

069 45 E E E

070 46 F F F

071 47 G G G

Table C-2. Adept Character Set (Continued)

Dec.
Value

Hex.
Value Description Font 1 Fonts 2, 3, 4, 5, & 6
374 V+ Language User’s Guide, Rev A

Appendix C
072 48 H H H

073 49 I I I

074 4A J J J

075 4B K K K

076 4C L L L

077 4D M M M

078 4E N N N

079 4F O O O

080 50 P P P

081 51 Q Q Q

082 52 R R R

083 53 S S S

084 54 T T T

085 55 U U U

086 56 V V V

087 57 W W W

088 58 X X X

089 59 Y Y Y

090 5A Z Z Z

091 5B left bracket [[

092 5C back slash \ \

093 5D right bracket]]

094 5E circumflex (carat) ^ ^

095 5F underscore _ _

Table C-2. Adept Character Set (Continued)

Dec.
Value

Hex.
Value Description Font 1 Fonts 2, 3, 4, 5, & 6
V+ Language User’s Guide, Rev A 375

Appendix C
096 60 grave accent ` `

097 61 a a a

098 62 b b b

099 63 c c c

100 64 d d d

101 65 e e e

102 66 f f f

103 67 g g g

104 68 h h h

105 69 i i i

106 6A j j j

107 6B k k k

108 6C l l l

109 6D m m m

110 6E n n n

111 6F o o o

112 70 p p p

113 71 q q q

114 72 r r r

115 73 s s s

116 74 t t t

117 75 u u u

118 76 v v v

119 77 w w w

Table C-2. Adept Character Set (Continued)

Dec.
Value

Hex.
Value Description Font 1 Fonts 2, 3, 4, 5, & 6
376 V+ Language User’s Guide, Rev A

Appendix C
120 78 x x x

121 79 y y y

122 7A z z z

123 7B right brace } {

124 7C bar | |

125 7D left brace { }

126 7E tilde ~ ~

127 7F solid

128 80 copyright © ©

129 81 registered trademark ® ®

130 82 trademark TM TM

131 83 bullet • •

132 84 superscript + + +

133 85 double quote (modified) " "

134 86 checkmark 4 4

135 87 right-pointing triangle

136 88 approximately equal
symbol

Ý o

137 89 OE ligature Œ a

138 8A oe ligature œ i

139 8B beta β u

140 8C Sigma ∑ e

141 8D Omega Ω o

142 8E blank ya

143 8F blank yu

Table C-2. Adept Character Set (Continued)

Dec.
Value

Hex.
Value Description Font 1 Fonts 2, 3, 4, 5, & 6

▼ ▼
V+ Language User’s Guide, Rev A 377

Appendix C
144 90 dotless i i yo

145 91 grave accent ` Dbl next consonant

146 92 acute accent ´ -

147 93 circumflex ^ A

148 94 tilde ~ I

149 95 macron ¯ U

150 96 breve • E

151 97 dot accent • O

152 98 dieresis ¨ KA

153 99 blank KI

154 9A ring ° KU

155 9B cedilla ¸ KE

156 9C blank KO

157 9D hungarumlaut ″ SA

158 9E ogonek • SHI

159 9F caron

ˆ

SU

160 A0 blank Yen symbol

161 A1 inverted exclamation
point

¡ Closed circle

162 A2 cent ¢ Start quote

163 A3 sterling £ End quote

164 A4 currency ¤ Comma

165 A5 yen ¥ End sentence

166 A6 broken bar ¦ o

167 A7 section § a

Table C-2. Adept Character Set (Continued)

Dec.
Value

Hex.
Value Description Font 1 Fonts 2, 3, 4, 5, & 6
378 V+ Language User’s Guide, Rev A

Appendix C
168 A8 dieresis ¨ i

169 A9 copyright © u

170 AA feminine ordinal ª e

171 AB left guillemot « o

172 AC logical not ¬ ya

173 AD en dash – yu

174 AE registered ® yo

175 AF macron ¯ Dbl next consonant

176 B0 degree ° -

177 B1 plus/minus ± A

178 B2 superscript 2 2 I

179 B3 superscript 3 3 U

180 B4 acute accent ´ E

181 B5 mu µ O

182 B6 paragraph ¶ KA

183 B7 centered dot ⋅ KI

184 B8 cedilla ¸ KU

185 B9 superscript 1 1 KE

186 BA masculine ordinal º KO

187 BB right guillemot » SA

188 BC 1/4 1/4 SHI

189 BD 1/2 1/2 SU

190 BE 3/4 3/4 SE

191 BF inverted question mark ¿ SO

Table C-2. Adept Character Set (Continued)

Dec.
Value

Hex.
Value Description Font 1 Fonts 2, 3, 4, 5, & 6
V+ Language User’s Guide, Rev A 379

Appendix C
192 C0 A grave À TA

193 C1 A acute Á CHI

194 C2 A circumflex Â TSU

195 C3 A tilde Ã TE

196 C4 A dieresis Ä TO

197 C5 A ring Å NA

198 C6 AE ligature Æ NI

199 C7 C cedilla Ç NU

200 C8 E grave È NE

201 C9 E acute É NO

202 CA E circumflex Ê HA

203 CB E dieresis Ë HI

204 CC I grave Ì FU

205 CD I acute Í HE

206 CE I circumflex Î HO

207 CF I dieresis Ï MA

208 D0 Eth D MI

209 D1 N tilde Ñ MU

210 D2 O grave Ò ME

211 D3 O acute Ó MO

212 D4 O circumflex Ô YA

213 D5 O tilde Õ YU

214 D6 O dieresis Ö YO

215 D7 multiply × RA

Table C-2. Adept Character Set (Continued)

Dec.
Value

Hex.
Value Description Font 1 Fonts 2, 3, 4, 5, & 6
380 V+ Language User’s Guide, Rev A

Appendix C
216 D8 O slash Ø RI

217 D9 U grave Ù RU

218 DA U acute Ú RE

219 DB U circumflex Û RO

220 DC U dieresis Ü WA

221 DD Y acute Y N

222 DE Thorn Φ Voiced consonant

223 DF German double s ß Voiced
consonant-P

224 E0 a grave à SE

225 E1 a acute á SO

226 E2 a circumflex â TA

227 E3 a tilde ã CHI

228 E4 a dieresis ä TSU

229 E5 a ring å TE

230 E6 ae ligature æ TO

231 E7 c cedilla ç NA

232 E8 e grave è NI

233 E9 e acute é NU

234 EA e circumflex ê NE

235 EB e dieresis ë NO

236 EC i grave ì HA

237 ED i acute í HI

238 EE i circumflex î FU

239 EF i dieresis ï HE

Table C-2. Adept Character Set (Continued)

Dec.
Value

Hex.
Value Description Font 1 Fonts 2, 3, 4, 5, & 6
V+ Language User’s Guide, Rev A 381

Appendix C
240 F0 eth ¹ HO

241 F1 n tilde ñ MA

242 F2 o grave ò MI

243 F3 o acute ó MU

244 F4 o circumflex ô ME

245 F5 o tilde õ MO

246 F6 o dieresis ö YA

247 F7 divide ÷ YU

248 F8 o slash ø YO

249 F9 u grave ù RA

250 FA u acute ú RI

251 FB u circumflex û RU

252 FC u dieresis ü RE

253 FD y acute y RO

254 FE thorn Φ WA

255 FF y dieresis ÿ N

Table C-2. Adept Character Set (Continued)

Dec.
Value

Hex.
Value Description Font 1 Fonts 2, 3, 4, 5, & 6
382 V+ Language User’s Guide, Rev A

Index
Symbols
214
%, to indicate belt variable 315
* (multiplication) 128
∗ system prompt 51
+ (addition) 128
. system prompt 51
/ (division) 128
; (semicolon) 49
< (less than) 129
<= (less than or equal to) 129
<> (not equal to) 129
= (assignment operator) 128
= (subtraction) 128
=< (less than or equal to) 129
== (equal to) 129
=> (greater than or equal to) 129
> (greater than) 129
>= (greater than or equal to) 129
π (pi) 164

A
abbreviation

parameter name 171
switch name 174

ABORT 154
ABOVE 209
ABS 164
ACCEL 204, 205, 209
accessing memory 341
addition operator 128
Adept

address, e-mail 33
Fax on Demand 34
on Demand web page 34

Adept MV Controller User's Guide 22
Adept MV controllers

processor support 342
Adept Vision User’s Guide 22

Adept Windows Off-line Editor 43
AdeptForce

restrictions 345
VFI, assigning 333

AdeptMotion
requirements for multiple

systems 331
AdeptMotion VME User’s Guide 22
AdeptNET 244

and disk files 234
AdeptVision

dual 334
requirements for multiple

systems 334
AdeptVision Reference Guide 22
AIO.IN 225, 261
AIO.INS 225, 261
AIO.OUT 225, 261
ALIGN 209
Alt key

on non-graphics based terminals 76
ALTER 209

program instruction 296
ALTOFF 209
ALTON 209
ALWAYS 205
AMOVE 209
analog I/O 225
AND

logical operator 130
angles 29
apostrophe 117
apostrophe character 117
application questions 32
applications, internet e-mail address 33
APPRO 209
approaching a location 198
APPROS 198, 209
V+ Language User’s Guide, Rev A 383

Index
arguments
numeric 29
passing to a routine 135
program

passing 56
arithmetic functions 164
arrays 122

belt variable 315
efficient allocation 122
multi-dimensional 122
string 122

ASC 161
ASCII

values 117
ASCII control codes 370

ACK 370
BEL 370
BS 370
CAN 371
CR 370
DC1 371
DC2 371
DC3 371
DC4 371
DEL 371
DLE 370
EM 371
ENQ 370
EOT 370
ESC 371
ETB 371
ETX 370
FF 370
FS 371
GS 371
HT 370
LF 370
NAK 371
NUL 370
RS 371
SI 370
SO 370
SOH 370
STX 370
SUB 371
SYN 371
US 371
VT 370

assignment operator 128

asterisk prompt 51
asynchronous processing 62
ATAN2 164
ATTACH 261

graphics window 266
with the MCP 290

attach buffer 79
SEE editor 44

attaching
disk devices 233
I/O devices 229
logical units 229
program lines 79
robot 45
with Copy 79

AUTO 124
automatic variables 124
autostart 340
AWOL (Adept Windows Offline

Editor) 43

B
BAND 131
BASE 210
battery backup module 139
BCD 164
BELOW 210
BELT 176, 324, 315
belt

calibration 314
encoder 318
tracking 312
variable 315
window 320

belt encoder
offset 319
scaling factor 319

belt instructions
BELT 324
BELT.MODE 325
BSTATUS 325
DEFBELT 324
SETBELT 324
WINDOW 324, 325
See also commands, control structures,

debugger commands, functions,
graphic operations, I/O operations,
motion control operations, and
program instructions
384 V+ Language User’s Guide, Rev A

Index
belt tracking 312–326
BELT.MODE 173, 320, 325
BELT_CAL.V2 314
binary operators

BAND 131
BOR 131
BXOR 131
COM 131

binary value
representing 119

BITS 261
blank line 49
boolean expressions 144
boolean values 120
BOR 131
BPT

commands 110
BRAKE 140, 205, 210
branch instructions

conditional 145
BREAK 140, 205
breaking continuous path 200
breakpoint 110
BSTATUS 325
buffer

attach 79
copy 79
pasting to 79

button modes
MCP 292

buttons 276
BXOR 131

C
CALIBRATE 210
calibration

customizing 205
CALL 135, 154

by reference 58
by value 58
passing variables with 59

CALLS 136, 154
calls, service 32
CASE 154

statement 147
case

letter case sensitivity 178
case sensitive text searches 92

character codes 220
read by GETC 221

character set
Adept’s 372
graphics 372

$CHR 161
CLEAR.EVENT 154
CLOSE 199, 210
CLOSEI 199, 210
COARSE 205, 210

tolerance setting 204
codes

ASCII control 370
DDCMP NAK reason 251
file attributes 244
MCP control 300

COM 131
command processor 337
command prompt

accessing with multiple V+
systems 340

commands
BPT 110
DEBUG 98
debugger (see debugger, commands)
restrictions 345
SEE editor

extended commands 91
See also belt instructions, control

structures, debugger commands,
functions, graphic operations, I/O
operations, motion control
operations, and program
instructions

comment
program 49

communications
DDCMP protocol 250
Kermit protocol 254
serial 245
with the MCP 290

concatenation
string 132

conditional branch instructions 145
CONFIG 210
CONFIG_C

assigning workloads 338
configuration

system, restrictions 345
V+ Language User’s Guide, Rev A 385

Index
constants
ASCII 117
logical 120

continuous path
breaking 200
trajectories 199–201

control
characters 30
external device 362
robot 45

control structures 134–156
CASE...VALUE OF 147
DO...UNTIL 151
FOR 149
GOTO 134
IF...GOTO 145
IF...THEN...ELSE 145
looping 149
multibranching 147
WHILE...DO 152
See also belt instructions, commands,

debugger commands, functions,
graphic operations, I/O operations,
motion control operations, and
program instructions

conventions
used in this manual 27

conveyor
belt

encoders 333
operations 312

tracking 312–326
coordinate

sytems 181
tools 207

copy
buffer 79

pasting from 79
SEE editor 44

program lines 79
to attach buffer 79

copying program lines 79
COS 164
CP 176, 210
CPOFF 210
CPON 210
CR-LF

suppressing to the MCP 291
Ctrl key 27

Ctrl+B 107, 110
Ctrl+E 107
Ctrl+G 107
Ctrl+N 107, 111
Ctrl+O 30
Ctrl+P 107, 110
Ctrl+Q 30
Ctrl+S 30
Ctrl+U 31
Ctrl+W 30
Ctrl+X 108, 109
Ctrl+Z 31, 108, 109
cursor movement keys 77
CYCLE.END 154

D
data integrity 343
data types 116–121

integer 118
location 180
real 118
string 116

data typing 114
$DBLB 161
DBLB 161
DCB 164
DDCMP 250–??

attaching 251
communication protocol 250
detaching 251
input 252
NAK reason codes 251
operation 250
output 252
parameters 253

DEBUG 98
debugger 97–111

breakpoints 110
commands

editor mode 102, 105
execution control 106
function key 105
monitor mode 105, 106
See also belt instructions,
commands, control structures,
functions, graphic operations, I/O
operations, motion control
operations, and program
instructions
386 V+ Language User’s Guide, Rev A

Index
debugger (continued)
display 100
exiting 99
invoking 97
modes 102
watchpoints 111
window 100

debugging
programs 97, 103
suppressing robot commands 176

$DECODE 161
DECOMPOSE 196, 210
DEFBELT 314, 324
DEFINED 166
defining

belt variable 315
belt-relative locations 323

DELAY 140, 205, 211
deleting program lines 79
DEPART 198
departing a location 198
DEPARTS 211
DEST 211
DETACH 261

graphics window 268
with the MCP 290

detaching
I/O devices 229
logical units 229

detecting user input from the MCP 292
DEVICE 261

with external encoder 362
device

control 362
disk 233

DEVICES 261
digital I/O 223, 344

system interrupt 224
digital input 223
digital output 223
directories

disk 234
files, opening 236
root 234

disabling event monitoring 271
disk

devices, attaching 233
directories 234

disk (continued)
directory format 243
file name 235

disk driver task 72
disk files

accessing with AdeptNET 234
and NFS 234
opening 236

disk I/O 227–244
DISTANCE 211
distances 29
division operator 128
DO 154
DO...UNTIL 151
dot prompt 51
double precision variables

global 123
DRIVE 198, 211
drivers

peripheral 346
DRY 211
DRY.RUN system switch 176
DUAL VISION 334
DURATION 204, 205, 211
DX 211
DY 211
DZ 211

E
editing

closing a line 85
line expansion 86
long line 85
syntax check 86

editor
commands 88
mode, changing 39
using others 50

e-mail address 33
emergency

backup 139
reaction routines 138

$ENCODE 161
encoder, external 362
end-effector instructions 199
enter key 27
V+ Language User’s Guide, Rev A 387

Index
equal operator
equal to 129
greater than or equal to 129
less than or equal to 129
not equal 129

ERROR 166
error

Kermit communication 259
processing 63
reacting to system 139
recovery routines 138
syntax 49
trapping 63

Esc key
using instead of Alt key 76

Ethernet 244
evaluation

order of operator 132
EXECUTE 154
executing programs 51, 109
execution pointer 101
exiting the SEE editor 44
extended commands, SEE editor 91
external

device control 362
encoder 362

F
FALSE 165
Fax back service 34
FCLOSE 261

graphics window 267
FCMND 262
FDELETE 267

graphics window 267
FEMPTY 262
files

attribute codes 244
naming 235
opening disk file 236
random access 240
sequential access 240
with fixed length records 240
with variable-length records 239

FINE 204, 205, 211
fixed length records 240
FLIP 211
$FLTB 161
FLTB 161

FOPEN 267
FOPENA 262
FOPEND 236, 262
FOPENR 236, 262
FOPENW 236, 262
FOR 149, 154
FORCE 211
force sensors 333
FORCE system switch 176
format

disk directory 243
of program lines 48
of programs 48, 50

FRACT 164
FRAME 212
France, Adept office 33
FREE 166
FSEEK 262
FSET 271
FTP 244
function keys

debugger commands 105
terminal 27

functions 160–168
as arguments to a function 160
I/O 168
location 163
logical 165
numeric value 164
string 161
system control 166
used in expressions 160
See also numeric value functions,

real-valued functions, string
functions, and system control
functions

G
GARC 287
GCHAIN 287
GCLEAR 287
GCLIP 287
GCOLOR 287
GCOPY 287
general-purpose control program 47
GET.EVENT 155, 166
GETC 230, 262

with IOSTAT 228
GETEVENT 270
388 V+ Language User’s Guide, Rev A

Index
GFLOOD 287
GICON 287
GLINE 287
GLINES 287
global variables 123

double-precision 123
GLOGICAL 287
GOTO 134, 155
GPANEL 276
GPOINT 287
graphic instructions

GARC 287
GCHAIN 287
GCLEAR 287
GCLIP 287
GCOLOR 287
GCOPY 287
GFLOOD 287
GICON 287
GLINE 287
GLINES 287
GLOGICAL 287
GPOINT 287
GRECTANGLE 287
GSCAN 287
GSLIDE 287
GTEXTURE 288
GTRANS 288
GTYPE 288
See also belt instructions, commands,

control structures, debugger
commands, functions, I/O
operations, motion control
operations, and program
instructions

graphics
character set 372
instructions 287

greater than operator 129
GRECTANGLE 287
gripper instructions 199
GSCAN 287
GSLIDE 278, 287
GTEXTURE 288
GTYPE 288

H
HALT 140, 155
HAND 212

HAND.TIME 173, 212
HERE 189, 212
hexadecimal value

representing 119
HIGH POWER 25
HOUR 212

I
I/O

buffering 241
errors

checking for 282
status 227

opening multiple files 241
overlapping 241

I/O operations 168, 261
$DEFAULT 261
$IOGETS 262
AIO.IN 261
AIO.INS 261
AIO.OUT 261
ATTACH 261
BITS 261
DETACH 261
DEVICE 261
DEVICES 261
error status 227
FCLOSE 261
FCMND 262
FEMPTY 262
FOPENA 262
FOPEND 262
FOPENR 262
FOPENW 262
FSEEK 262
GETC 262
IOGET_ 262
IOPUT_ 262
IOSTAT 262
IOTAS 262
KERMIT.RETRY 262
KERMIT.TIMEOUT 262
KEYMODE 262
PENDANT 262
PROMPT 263
READ 263
RESET 263
SETDEVICE 263
SIG 263
V+ Language User’s Guide, Rev A 389

Index
I/O operations (continued)
SIG.INS 263
SIGNAL 263
TYPE 263
WRITE 263
See also belt instructions, commands,

control structures, debugger
commands, functions, graphic
operations, motion control
operations, and program
instructions

$ID 166
ID 166
IDENTICAL 212
IF 155
IF...GOTO 145
IF...THEN...ELSE 145
IGNORE

with REACT 138
importing program files 50
information, training 33
initialization of variables 127
input

analog 225
digital 223
manual control pendant 225
serial 227
terminal 219

input processing
terminal interupt characters 220

input signals 344
input wait modes 231
INRANGE 212
insert

SEE editor mode 38
installing

multiple processor boards 335
instructions

format 48
restrictions 345

INT 164
INT.EVENT 155
$INTB 161
INTB 164
integers

data type 118
range 118

INTERACTIVE system switch 176
internal program list 83

internet 33
interrupts 224
inter-system communications 341
interupting a program 137
INVERSE 212
IOGET_ 262, 341
IOPUT_ 262, 341
IOSTAT 262, 282

reporting communication errors 228
return values 228
with GETC 228

IOTAS 262, 341, 342
IPS 212

J
joint

moving an individual 198
number 29

joint-interpolated motion 197
jumpers

SCLK 336
SCON 336
SCON and SCLK 336

K
keeping track of memory usage 342
KERMIT 262
Kermit 254–260

attaching 257
binary files 258
communication protocol 254
errors 259
file access 257, 258

commands 258
input 258
operation 257, 258
output 258
parameters 260
starting session 255
task 72

KERMIT.RETRY parameter 173
KERMIT.TIMEOUT parameter 173, 262
keyboard 27

input 219
mode, MCP 293

KEYMODE 262
390 V+ Language User’s Guide, Rev A

Index
keys
control (Ctrl) 27
enter 27
function 27, 105
return 27
shift 27

L
label

program 134
program step 48

LAST 166
LATCH 212
LATCHED 212
LEFTY 205, 212
LEN 161
less than operator 129
$LNGB 161
LNGB 161
LOADBELT.V2 314
LOCAL 123
local variables 123
location

relative to belt 323
location data

transformations 182
type

precision point 121
transformation 121

location functions 163
location values

modifying 190
location variables 181
locations 180–192
LOCK 62
logical constants 120
logical expressions 120, 144
logical functions 165

FALSE 165
OFF 165
ON 165
TRUE 165

logical operators 130
AND 130
NOT 130
OR 130
XOR 130

logical units
attaching/detaching 229
number 227

for MCP 290
long line, editing 85
looping structures 149
lowercase letters 28, 49
LUN 227

M
macros

defining 93
editing 93

major cycle 64
MAX 164
MCP

button map 296
button modes

keyboard 293
level 294
toggle 293

control codes 298, 300
for LCDs 298

determining state of 297
LCDs

control codes 298
level mode 294
logical unit number 290
potentiometer

programming 295
slow button

programming 295
MCP.MESSAGES system switch 176
MCS 155
MCS.MESSAGES system switch 177
memory

accessing with multiple v+
systems 341

required by a program 53
shared 342
usage 342

menus
creating 272

messages
control of 176, 177

MESSAGES system switch 177
$MID 161
MIN 164
MMPS 212
V+ Language User’s Guide, Rev A 391

Index
MOD 128
modes

program debugger 102
monitor task 72
MONITORS system switch 339
motion

procedural 201
relative to belt 322

motion control
restrictions 345
tasks 346

motion control operations 180–216
#PDEST 214
#PLATCH 214
#PPOINT 214
ABOVE 209
ACCEL 209
ALIGN 209
ALTER 209
ALTOFF 209
ALTON 209
AMOVE 209
APPRO 209
APPROS 209
BASE 210
BELOW 210
BRAKE 210
BREAK 210
CALIBRATE 210
CLOSE 210
CLOSEI 210
COARSE 210
CONFIG 210
CP 210
CPOFF 210
CPON 210
DECOMPOSE 210
DELAY 211
DEPART 211
DEPARTS 211
DEST 211
DISTANCE 211
DRIVE 211
DRY.RUN 211
DURATION 211
DX 211
DY 211
DZ 211
FINE 211

motion control operations (continued)
FLIP 211
FORCE 211
FRAME 212
HAND 212
HAND.TIME 212
HERE 212
HOUR.METER 212
IDENTICAL 212
INRANGE 212
INVERSE 212
IPS 212
LATCH 212
LATCHED 212
LEFTY 212
MMPS 212
MOVE 212
MOVEF 213
MOVES 213
MOVESF 213
MOVEST 213
MOVET 213
MULTIPLE 213
NOFLIP 213
NONULL 213
NORMAL 213
NOT.CALIBRATED 213
NULL 213
OPEN 213
OPENI 213
PAYLOAD 214
POWER 214
REACTI 214
READY 214
RELAX 214
RELAXI 214
RIGHTY 214
ROBOT 214
RX 214
RY 214
RZ 214
SCALE 215
SELECT 215
SET 215
SET.SPEED 215
SHIFT 215
SINGLE 215
SOLVE.ANGLES 215
SOLVE.FLAGS 215
392 V+ Language User’s Guide, Rev A

Index
motion control operations (continued)
SOLVE.TRANS 215
SPEED 215
STATE 215
TOOL 215
TRANS 216
TRANSB 216
See also belt instructions, commands,

control structures, debugger
commands, functions, graphic
operations, I/O operations, and
program instructions

motion instructions
description of coordinate space 181

mouse
events, monitoring 269
using in SEE editor 77

MOVE 198, 212
MOVEF 213
MOVES 213

straight line move 197
with conveyor tracking 314

MOVESF 213
MOVEST 213
MOVET 213
moving an individual joint 198
moving-line feature 312
MULITPLE 205
MULTIPLE 213
multiple processors

customizing workloads 337
requirements for AdeptMotion 331
requirements for AdeptVision 334
using 330

multiple V+ systems 339
multiplication operator 128

N
names

belt variable 315
disk file 235
parameter 171
program 37
switch 174
variable 114

network File System (NFS) 234
network/DDCMP task 72
NFS 244

and disk files 234

NOFLIP 213
NONULL tolerance setting 204, 213
NORMAL 213
normal speed 203
NOT 213

logical operator 130
not equal operator 129
NOT.CALIBRATED 173
notation

used in this manual 27
NULL tolerance setting 204, 205
null tool 359
numeric

argument 29
numeric expressions 119
numeric functions 120
numeric operator 128
numeric representation 119
numeric value functions 164

ABS 164
ATAN2 164
BCD 164
COS 164
DCB 164
FRACT 164
INT 164
INTB 164
MAX 164
MIN 164
OUTSIDE 164
PI 164
RANDOM 164
SIGN 164
SIN 164
SQR 164
SQRT 164
See also functions, real-valued

functions, string functions, and
system control functions

numeric values
representing 119

O
octal value

representing 119
OFF 165
Off-line programming 43
ON 165
OPEN 199, 213
V+ Language User’s Guide, Rev A 393

Index
OPENI 199, 213
operations

system I/O 261
operators 128, 131

– (subtraction) 128
∗ (µυλτιπλιχατιον) 128
+ (addition) 128
/ (division) 128
< (less than) 129
<= (less than or equal to) 129
<> (not equal to) 129
== (equal to) 129
> (greater than) 129
>= (greater than or equal to) 129
AND 130
assignment 128
BAND 131
bitwise 131
BOR 131
BXOR 131
COM 131
logical 130
mathmatical 128
MOD 128
NOT 130
OR 130
order of evaluation 132
relational 129
XOR 130

OR
logical operator 130

Order of evaluation
operators 132

output
analog 225
digital 223
manual control pendant 225
serial 227
signals 344
terminal 219
wait modes 232

OUTSIDE 164

P
PACK 161
PARAMETER 166

parameters 170, 171
BELT.MODE 173, 320, 325
command values 364
HAND.TIME 173
KERMIT.RETRY 173
KERMIT.TIMEOUT 173, 262
NOT.CALIBRATED 173
operations 171
SCREEN.TIMEOUT 173
select values 366
TERMINAL 173
type 341

pasting
program lines 79

pasting program lines 79
PAUSE 140, 155
PAYLOAD 214
PENDANT 262
pendant (see MCP)
pendant I/O 225
pendant task 72
PENDANT() 293

used to determine MCP state 297
with MCP speed potentiometer 295
with toggle buttons 293

performance
robot 203

peripheral drivers
restrictions 345
restrictions with multiple

processors 346
PI (mathematical constant) 164
pitch 185
POINT 189
POS 161
POWER 214
power failures

and REACTE 139
POWER system switch 177
precision points 189

location data type 121
PRIORITY 166
priority

program
task 65

task 64
procedural motion 201
PROCEED

with PAUSE 140
394 V+ Language User’s Guide, Rev A

Index
processing
asynchronous 62
servo 337, 339

processor boards
addressing 335
locations 335
sharing data 344
slot ordering 335

processor number 342
program

blank line 49
comment 49
creating 37
examples 201, 348
executing 51
execution 51
format 48, 50
general purpose 47
interrupts 137
interupt 155
label 48, 134
line format 48
list, internal 83
memory requirements 53
naming requirements 37
pausing 140
priority 65

setting 155
recursive 61
reentrant 60
saving to a disk file 44
spacing 49
stacks 53

requirements 53
size calculation 54

step
format 48
label 48
number 48

tasks 51, 64
scheduling 64

program debugger 97–111
program editor (see SEE editor)
program execution

stopping 140
program files 60
program instructions

ABORT 154
APPROS 198

program instructions (continued)
BRAKE 140
BREAK 140
CALL 135, 154
CALLS 136, 154
CASE 154
CASE...VALUE OF 147
CLEAR.EVENT 154
CLOSE 199
CLOSEI 199
CYCLE.END 154
DECOMPOSE 196
DEFBELT 314, 324
DELAY 140
DEPART 198
DO 154
DO...UNTIL 151
DRIVE 198
EXECUTE 154
EXIT 154
FCLOSE 267
FDELETE 267
FOPEN 267
FOR 149, 154
FSET 271
GET.EVENT 155
GETEVENT 270
GOTO 134, 155
HALT 140, 155
HERE 189
IF...GOTO 145, 155
IF...THEN 155
IF...THEN...ELSE 145
INT.EVENT 155
LOCAL 123
LOCK 62, 155
MCS 155
MOVE 198
MOVES 197
NEXT 155
OPEN 199
OPENI 199
PAUSE 140, 155
POINT 189
PRIORITY 155
PROMPT 219
REACT 138, 155
REACTE 155
REACTI 138, 155
V+ Language User’s Guide, Rev A 395

Index
program instructions (continued)
RELAX 199
RELAXI 199
RELEASE 155
RETRY 155
RETURN 156
RETURNE 156
RUNSIG 156
SET 190
SET.EVENT 156
SIGNAL 223
STOP 140, 156
TEACH 189
TYPE 219
WAIT 137, 156, 223
WAIT.EVENT 137, 156
WHERE 196
WHILE 156
WHILE...DO 152
See also belt instructions, commands,

control structures, debugger
commands, functions, graphic
operations, I/O operations, and
motion control operations

programming, off-line 43
programs

debugging 103
keeping subroutines with 60
robot control 45

PROMPT 219, 263
prompt, system 51

Q
questions, application 32

R
RANDOM 164
random access files 240
REACT 138, 155
REACTE 139, 155
REACTI 138, 214
reaction routines 62
READ 230, 263

with the MCP 292
Reading

from input devices 230
READY 214
real data type 118

real-valued functions
BELT 324
BSTATUS 325
GETC 230
IOSTAT 228
IOTAS 341
See also functions, numeric value

functions, string functions, and
system control functions

records
fixed length 240
variable length 239

recursive programs 61
and variables 124
variable use 123

redraw (S+F6) key 103
reentrant programs 60
relative transformations 190
RELAX 199, 214
RELAXI 199, 214
RELEASE 155
releasing a task 66
remote disk access 234
replace

SEE editor mode 38
replacing text

case sensitive 92
SEE editor 80

RESET 263
restrictions

high-level motion control tasks 346
multiple processors 345
peripheral drivers 346

RETRY 155
system switch 177

RETURN 156
return key 27
RETURNE 156
RIGHTY 205, 214
ROBOT 214
robot

attaching 45
control

restrictions 345
control program 45
motions 197
speed 203

ROBOT system switch 177
roll 187
396 V+ Language User’s Guide, Rev A

Index
root directory 234
round-robin group

task scheduling 66
RUN/HOLD button 55
RUNSIG 156
RX 214
RY 214
RZ 214

S
safety

overview 24
saving programs 44
scalar

variable 29
SCALE 215
scheduling of execution tasks 65
SCLK jumper 336
SCON jumper 336
scope of variables 125
SCREEN.TIMEOUT 173
scroll bars and the SEE editor 78
searching

for text in SEE editor 80
text, case sensitive 92

SEE editor 37–44, 76–111
attach buffer 79
command mode 87
commands 88
copy buffer 79
copying lines 79
exiting 44
extended commands 91
macros 93
modes 38

command 38
insert 38
replace 38

moving the cursor 77
pasting from copy buffer 79
scroll bars 78
selecting program 81
switching program 81
using the mouse in 77

SELECT 166, 215
sequential access files 240
serial I/O 227–232, 245–260

task 72

serial line 245
attaching 246, 251
configuration 245
DDCMP (see DDCMP)
detaching 246, 251
input 246, 252
Kermit (see Kermit)
output 247, 252

service calls 32
servo

allocating 331
MI3 and MI6 boards 332
VJI boards 332

communication task 72
processing 331, 337

vision 339
update rate 331

SET 190, 215
SET.EVENT 156

with WAIT.EVENT 137
SET.SPEED system switch 177
SETBELT 324
SETDEVICE 263

with external encoder 362
settings

DURATION 204
shared data 342
shared memory

keeping track of 342
updating 343

sharing data
processor efficiency 344

SHIFT 190, 215
shift key 27
SIG 223, 263
SIG.INS 223, 263
SIGN 164
SIGNAL 223, 263
signal

number 29
SIN 164
SINGLE 215
single-step execution 109
slide bars

creating 278
soft signals 224, 344
SOLVE 215
spacing 49

program line 49
V+ Language User’s Guide, Rev A 397

Index
SPEC utility program 204
SPEED 205, 215

absolute speed 203
monitor command 203
normal speed 203
program instruction 203

speed
and the MCP 177
vs. performance 203

SQR 164
SQRT 164
stacks

program 53
task execution 53

STATE 215
state of MCP

determining 297
STATUS 166
step

label 48
number 48
program 48

STOP 140, 156
straight line motion 197
string

arrays 122
data 116
operators 132
replacement 80
searching 80

string functions 117, 161
ASC 161
$CHR 161
$DBLB 161
DBLB 161
$DECODE 161
$ENCODE 161
$FLTB 161
FLTB 161
$INTB 161
$IOGETS 341
LEN 161
$LNGB 161
LNGB 161
$MID 161
PACK 161
POS 161
$TRANSB 162

string functions (continued)
$TRUNCATE 162
$UNPACK 162
VAL 162
See also functions, numeric value

functions, real-valued functions,
and system control functions

subdirectories 234
subroutine

argument lists 56
call 135

using a string expression 135
recursive 61
reentrant 60
stack 53

requirements 53
size calculation 54

subtraction operator 128
support

application support 32
internet e-mail address 33
training information 33

suppressing CR-LF
to the MCP 291

SWITCH 166
switch 170, 174
switches

BELT 176
CP 176
DRY.RUN 176
FORCE 176
INTERACTIVE 176
MCP.MESSAGES 176, 177
MCS.MESSAGES 177
MESSAGES 177
operations 175
POWER 177
RETRY 177
ROBOT 177
SET.SPEED 177
TRACE 177
UPPER 178

syntax error 49
system

controller functions 336
parameter 170, 171
prompt 51
switch 170, 174
398 V+ Language User’s Guide, Rev A

Index
system configuration
restrictions 345

system control functions 166
$ERROR 166
$ID 166
$TIME 166
DEFINED 166
ERROR 166
FREE 166
GET.EVENT 166
ID 166
LAST 166
PARAMETER 166
PRIORITY 166
See also functions, numeric value

functions, real-valued functions,
and string functions

SELECT 166
STATUS 166
SWITCH 166
TAS 166
TASK 166
TIME 166
TIMER 167
TPS 167

system interrupt
digital I/O 224

system safeguards
computer controlled devices 25

system switch
MONITORS 339

system tasks 72
priorities 73

T
TAS 166
TASK 166
task

availability 51
number 51
priority 64, 65
program execution 51, 64
releasing 66
running on multiple V+ systems 341
scheduling 65
stack 53

requirements 53
size calculation 54

system 72, 73

task (continued)
time slices 64
timing 64
waiting 66

task scheduling 64, 65–68
overriding 66
round-robin groups 66

TCP/IP 234, 244
TEACH 189
TERMINAL 173
terminal 27

control 30
CRT 174
function keys 27
supressing message to 176

terminal I/O 219, 222
terminal input 219
terminal/graphics tasks 72
$TIME 166
TIME 166
time slice (cycle) 71
TIMER 167
timing considerations (motions) 202
toggle mode

MCP 293
TOOL 215
tool 206

coordinate system 183
coordinates 207
null 359
point 207
transformation 207
transformations 206

TPS 167
TRACE system switch 177
training information 33
trajectory

continuous path 199
generator task 72

TRANS 190, 216
$TRANSB 162
TRANSB 216
transformation component

pitch 185
roll 187
yaw 183, 184

transformations 182–192
belt-relative 323
location data type 121
V+ Language User’s Guide, Rev A 399

Index
transformations (continued)
nominal belt 316
relative 190

TRUE 165
$TRUNCATE 162
TYPE 219, 263
type parameter 341
typing cursor

with the debugger 101

U
unconditional branch instructions 134
undo (F6) key 103
unit number, logical 227
$UNPACK 162
UPPER system switch 178
uppercase letters 28, 49
user input

MCP, detecting 292
user task configuration, default 74

V
V+ Extensions license

running tasks 341
V+ keyword arguments 28
V+ Language Reference Guide 22
V+ Operating System Reference

Guide 22
V+ Operating System User’s Guide 22
V+ system tasks 72
VAL 162
value

ASCII 117
variable allocation 114
variable classes 123–127
variable declarations 50
variable-length records 239
variables

and recursive programs 124
automatic 124
belt 315
global 123
global, double-precision 123
initialization 127
local 123
logical 120
naming requirements 114

variables (continued)
numeric 118
passing by reference 58
passing by value 58
scalar 29
scoping 125
string 116

VFI board 333
vision

analysis task 72
communication task 72
processing 339

VMEbus 343

W
WAIT 66, 137, 156, 223
wait modes

input 231
output 232

WATCH 111
watchpoint 111
WHERE 196
WHILE 156
WHILE...DO 152
WINDOW 324, 325
windows

and multiple tasks 283
creating 266
deselecting 283
hiding 283
selecting 283

workload assignment
CONFIG_C 338

world coordinate system 181
WRITE 263

with the MCP 291
writing

to I/O devices 231

X
XOR 130

Y
yaw 183
400 V+ Language User’s Guide, Rev A

Adept User’s Manual
 Comment Form

We have provided this form to allow you to make comments about this manual, to point out any mis-
takes you may find, or to offer suggestions about information you want to see added to the manual. We
review and revise user’s manuals on a regular basis, and any comments or feedback you send us will be
given serious consideration. Thank you for your input.

NAME DATE_____________________

COMPANY__

ADDRESS ___

PHONE ___

MANUAL TITLE: V+ Language User’s Guide
PART NUMBER: 00962-01130 PUBLICATION DATE: September 1997

COMMENTS __

__

__

__

__

__

__

__

__

__

__

MAIL TO: Adept Technology, Inc.
Technical Publications Dept.
11133 Kenwood Rd.
Cincinnati, OH 45242

00962-01130, Rev. A

	MANUALS MENU
	Chapter 1: Introduction
	Compatibility
	Manual Overview
	Related Publications
	Notes, Cautions, and Warnings
	Safety
	Reading and Training for System Users
	System Safeguards
	Computer-Controlled Robots
	Manually Controlled Robots
	Other Computer-Controlled Devices

	Notations and Conventions
	Keyboard Keys
	Uppercase and Lowercase Letters
	Numeric Arguments

	Output Control Commands
	How Can I Get Help?
	Within the Continental United States
	Service Calls
	Application Questions
	Applications Internet E-Mail Address
	Training Information

	Within Europe
	France

	Outside Continental United States or Europe
	Adept Fax on Demand
	Adept on Demand Web Page

	Chapter 2: Programming V+
	Creating a Program
	Program and Variable Name Requirements
	The Editing Window
	Editing Modes
	Changing Editing Modes

	The SEE Editor Environments
	Using Text Editors Other Than the SEE Editor
	The SEE Editor Window

	The Adept Windows Off-line Editor
	Using the Editor
	Entering New Lines of Code
	Exiting the Editor
	Saving a Program

	V+ Program Types
	Executable Programs
	Robot Control Programs
	Exclusive Control of a Robot

	General Programs

	Format of Programs
	Program Lines
	Program Organization
	Program Variables

	Executing Programs
	Selecting a Program Task

	Program Stacks
	Stack Requirements

	Flow of Program Execution
	RUN/HOLD Button

	Subroutines
	Argument Passing
	Mapping the Argument List
	Argument Passing by Value or Reference
	Undefined Arguments

	Program Files
	Reentrant Programs
	Recursive Programs

	Asynchronous Processing
	Error Trapping

	Scheduling of Program Execution Tasks
	System Timing and Time Slices
	Specifying Tasks, Time Slices, and Priorities
	Task Scheduling
	Execution Priority Example

	Default Task Configuration
	System Task Configuration
	Description of System Tasks

	User Task Configuration

	Chapter 3: The SEE Editor and Debugger
	Basic SEE Editor Operations
	Cursor Movement
	Deleting, Copying, and Moving Lines
	Text Searching and Replacing

	Switching Programs in the Editor
	The Internal Program List

	Special Editing Situations
	The SEE Editor in Command Mode
	Command Mode Copy Buffer
	SEE Editor Extended Commands
	Edit Macros

	Sample Editing Session
	The Program Debugger
	Entering and Exiting the Debugger
	The DEBUG Monitor Command
	Using the Debug Key or the DEBUG Extended Command
	Exiting the Debugger

	The Debugger Display
	Debugger Operation Modes
	Debugging Programs
	Positioning the Typing Cursor

	Debugger Key Commands
	Debug Monitor-Mode Keyboard Commands
	Using a Pointing Device With the Debugger
	Control of Program Execution
	Single-Step Execution
	PAUSE Instructions
	Program Breakpoints
	Program Watchpoints

	Chapter 4: Data Types and Operators
	Introduction
	Dynamic Data Typing and Allocation
	Variable Name Requirements

	String Data Type
	ASCII Values
	Functions That Operate on String Data

	Real and Integer Data Types
	Numeric Representation
	Numeric Expressions
	Logical Expressions
	Logical Constants

	Functions That Operate on Numeric Data

	Location Data Types
	Transformations
	Precision Points

	Arrays
	Variable Classes
	Global Variables
	Local Variables
	Automatic Variables
	Scope of Variables
	Variable Initialization

	Operators
	Assignment Operator
	Mathematical Operators
	Relational Operators
	Logical Operators
	Bitwise Logical Operators

	String Operator
	Order of Evaluation

	Chapter 5: Program Control
	Introduction
	Unconditional Branch Instructions
	GOTO
	CALL
	CALLS

	Program Interrupt Instructions
	WAIT
	WAIT.EVENT
	REACT and REACTI
	REACTE
	HALT, STOP, and PAUSE
	BRAKE, BREAK, and DELAY
	Additional Program Interrupt Instructions
	Program Interrupt Example

	Logical (Boolean) Expressions
	Conditional Branching Instructions
	IF...GOTO
	IF...THEN...ELSE
	CASE...value OF
	Example

	Looping Structures
	FOR
	Examples

	DO...UNTIL
	WHILE...DO

	Summary of Program Control Keywords
	Controlling Programs in Multiple CPU Systems

	Chapter 6: Functions
	Using Functions
	Variable Assignment Using Functions
	Functions Used in Expressions
	Functions as Arguments to a Function

	String-Related Functions
	Examples of String Functions

	Location, Motion, and External Encoder Functions
	Examples of Location Functions

	Numeric Value Functions
	Examples of Arithmetic Functions

	Logical Functions
	System Control Functions
	Example of System Control Functions

	I/O Functions
	Examples of I/O Functions

	Chapter 7: Switches and Parameters
	Introduction
	Parameters
	Viewing Parameters
	Setting Parameters
	Summary of Basic System Parameters
	Graphics-based System Terminal Settings

	Switches
	Viewing Switch Settings
	Setting Switches
	Summary of Basic System Switches

	Chapter 8: Motion Control Operations
	Introduction
	Location Variables
	Coordinate Systems
	Transformations
	Yaw
	Pitch
	Roll
	Special Situations

	Creating and Altering Location Variables
	Creating Location Variables
	Transformations vs. Precision Points

	Modifying Location Variables
	Relative Transformations
	Examples of Modifying Location Variables

	Defining a Reference Frame
	Miscellaneous Location Operations

	Motion Control Instructions
	Basic Motion Operations
	Joint-Interpolated Motion vs. Straight-Line Motion...
	Safe Approaches and Departures
	Moving an Individual Joint

	End-Effector Operation Instructions
	Continuous-Path Trajectories
	Breaking Continuous-Path Operation
	Procedural Motion
	Procedural Motion Examples
	Timing Considerations

	Robot Speed
	Motion Modifiers
	Customizing the Calibration Routine

	Tool Transformations
	Defining a Tool Transformation

	Summary of Motion Keywords

	Chapter 9: Input/Output Operations
	Terminal I/O
	Terminal Types
	Input Processing
	Output Processing

	Digital I/O
	High-Speed Interrupts
	Soft Signals
	Digital I/O and Third Party Boards

	Pendant I/O
	Analog I/O
	Serial and Disk I/O Basics
	Logical Units
	Error Status
	Attaching/Detaching Logical Units
	Reading
	Writing
	Input Wait Modes
	Output Wait Modes

	Disk I/O
	Attaching Disk Devices
	Disk I/O and the Network File System (NFS)
	Disk Directories
	Disk File Operations
	Opening a Disk File
	Writing to a Disk
	Reading From a Disk
	Detaching
	Disk I/O Example

	Advanced Disk Operations
	Variable-Length Records
	Fixed-Length Records
	Sequential-Access Files
	Random-Access Files
	Buffering and I/O Overlapping
	Disk Commands
	Accessing the Disk Directories
	AdeptNET

	Serial Line I/O
	I/O Configuration
	Attaching/Detaching Serial I/O Lines
	Input Processing
	Output Processing
	Serial I/O Examples

	DDCMP Communication Protocol
	General Operation
	Attaching/Detaching DDCMP Devices
	Input Processing
	Output Processing
	Protocol Parameters

	Kermit Communication Protocol
	Starting a Kermit Session
	File Access Using Kermit
	Binary Files

	Kermit Line Errors
	V+ System Parameters for Kermit

	Summary of I/O Operations

	Chapter 10: Graphics Programming
	Creating Windows
	ATTACH Instruction
	FOPEN Instruction
	FCLOSE Instruction
	FDELETE Instruction
	DETACH Instruction
	Custom Window Example

	Monitoring Events
	GETEVENT Instruction
	FSET Instruction

	Building a Menu Structure
	Menu Example
	Defining Keyboard Shortcuts

	Creating Buttons
	GPANEL Instruction
	Button Example

	Creating a Slide Bar
	GSLIDE Example

	Graphics Programming Considerations
	Using IOSTAT()
	Managing Windows

	Communicating With the System Windows
	The Main Window
	The Monitor Window
	The Vision Window

	Additional Graphics Instructions

	Chapter 11: Programming the MCP
	Introduction
	ATTACHing and DETACHing the Pendant

	Writing to the Pendant Display
	The Pendant Display
	Using WRITE With the Pendant

	Detecting User Input
	Using READ With the Pendant
	Detecting Pendant Button Presses
	Keyboard Mode
	Toggle Mode
	Level Mode

	Monitoring the MCP Speed Bar
	Using the STEP Button
	Reading the State of the MCP

	Controlling the Pendant
	Control Codes for the LCD Panel
	The Pendant LEDs
	Making Pendant Buttons Repeat Buttons

	Auto-Starting Programs With the MCP
	WAIT.START

	Programming Example: MCP Menu

	Chapter 12: Conveyor Tracking
	Introduction to Conveyor Tracking
	Installation
	Calibration
	Basic Programming Concepts
	Belt Variables
	Nominal Belt Transformation
	The Belt Encoder
	The Encoder Scaling Factor
	The Encoder Offset
	The Belt Window

	Belt-Relative Motion Instructions
	Motion Termination
	Defining Belt-Relative Locations

	Moving-Line Programming
	Instructions and Functions
	Belt Variable Definitions
	Encoder Position and Velocity Information
	Window Testing
	Status Information

	System Switch
	System Parameters

	Sample Programs

	Chapter 13: MultiProcessor Systems
	Introduction
	Requirements for Motion Systems
	Servo Processing
	Allocating Servos per Processor
	Allocating Servos with an MI3 or MI6 Board
	Allocating Servos with a VJI or EJI Board

	Conveyor Belt Encoders
	Force Sensors

	Requirements for Vision Systems
	Standard AdeptVision
	Dual AdeptVision

	Installing Processor Boards
	Processor Board Locations
	Slot Ordering of Processor Boards
	Processor Board Addressing
	System Controller Functions

	Customizing Processor Workloads
	Assigning Workloads with CONFIG_C

	Using Mutiple V+ Systems
	Requirements for Running Multiple V+ Systems
	Using V+ Commands with Multiple V+ Systems
	Autostart
	Accessing the Command Prompt

	InterSystem Communications
	Shared Data
	IOTAS and Data Integrity
	Efficiency Considerations
	Digital I/O

	Restrictions With MultiProcessor Systems
	High-Level Motion Control Tasks
	Peripheral Drivers

	Appendix A: Example V+ Programs
	Introduction
	Pick and Place
	Features Introduced
	Program Listing
	Detailed Description

	Menu Program
	Features Introduced
	Program Listing

	Teaching Locations With the MCP
	Features Introduced
	Program Listing

	Defining a Tool Transformation

	Appendix B: External Encoder Device
	Introduction
	Parameters
	Device Setup
	Reading Device Data

	Appendix C: Character Sets
	Index

