

OceanofPDF.com

https://oceanofpdf.com/

Neural Network Computer
Vision with OpenCV 5

Build computer vision solutions using
Python and DNN module

Gopi Krishna Nuti

www.bpbonline.com

OceanofPDF.com

https://www.bpbonline.com/
https://oceanofpdf.com/

Copyright © 2024 BPB Online

All rights reserved. No part of this book may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, without the
prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the
accuracy of the information presented. However, the information contained
in this book is sold without warranty, either express or implied. Neither the
author, nor BPB Online or its dealers and distributors, will be held liable for
any damages caused or alleged to have been caused directly or indirectly by
this book.

BPB Online has endeavored to provide trademark information about all of
the companies and products mentioned in this book by the appropriate use
of capitals. However, BPB Online cannot guarantee the accuracy of this
information.

First published: 2024

Published by BPB Online
WeWork
119 Marylebone Road
London NW1 5PU

UK | UAE | INDIA | SINGAPORE

ISBN 978-93-55516-961

www.bpbonline.com

https://www.bpbonline.com/

OceanofPDF.com

https://oceanofpdf.com/

Dedicated to
India, that is, Bharat

OceanofPDF.com

https://oceanofpdf.com/

About the Authors

Gopi Krishna Nuti is an experienced professional with 21 years of
experience in IT industry. He has done his B. Tech in Computer Science
from Andhra University, M.S in Business Analytics from State University
of New York at Buffalo and an Executive MBA from Amrita University,
Bengaluru. He has worked extensively in analytics and software
development projects and has delivered award winning products and
solutions. He has authored a book about Machine Learning and has multiple
patents and research papers against his name. He is a faculty at various
training events and a guest faculty at various Engineering Colleges in AP
and Telangana. He is a member of the board of studies for Geetanjali
Institute of Science and Technology. He is currently working as a Data
Science Manager at Autodesk, Bengaluru. He also volunteers for MUST
Research and is committed to democratizing AI for al. An incorrigible
foodie, he is a passionate teacher and is obsessed with demystifying AI for
the next generation of Software developers.

OceanofPDF.com

https://oceanofpdf.com/

About the Reviewer

Charan is a product manager at Microsoft, where he works on developing
innovative solutions for various domains. He has a keen interest in
computer vision, natural language processing, and large language models,
and how they can be applied to solve real-world problems.

Before joining Microsoft, Charan was a product manager at two different
startups, where he led the development of products that dealt with
intelligent document recognition and data extraction, and with using
computer vision for grading agricultural produce. He has a rich experience
in managing cross-functional teams, conducting user research, and
launching products in different markets.

Charan enjoys astrophotography, bike riding and cooking in his spare time.

OceanofPDF.com

https://oceanofpdf.com/

Acknowledgement

First and foremost, I express my heartfelt gratitude to mother
Gnanaprasunamba.

Next, I express my sincere thanks to my wife Padma Latha and my son
Dheeraj for sacrificing their share of my time and encouraging me to keep
writing this book. I owe them a lot and hope to be worthy of their affection
for me.

I also thank my extended family for their planned and inadvertent influence
on my growth.

I would also like to acknowledge the valuable contributions of my
colleagues and coworkers in these past two decades who have graciously
taught me much.

I am also thankful to the team of BPB Publications for their guidance and
patience in dealing with my eccentricities.

Finally, I would like to thank you, my readers, for your support and
feedback.

OceanofPDF.com

https://oceanofpdf.com/

Preface

Welcome to your essential guide to unraveling the complexities of image
processing. Whether you are a seasoned developer or a beginner exploring
the world of Computer Vision, this book offers a comprehensive journey
from the roots of Computer Vision to practical implementation. It goes
beyond theory, offering professionals a practical roadmap for integrating
Computer Vision into their projects. With detailed discussions, hands-on
code examples, and a focus on applications such as face detection and
object recognition, this guide is tailored for those aiming to excel in the
dynamic landscape of computer vision applications.

Whether you are in machine learning, automation, or image analysis, this
book equips you with the skills to revolutionize your approach to visual
data. Each chapter provides practical insights and examples, fostering
innovation and excellence in your endeavors. Stay ahead of the curve with
"Computer Vision using OpenCV DNN".

Chapter 1: Introduction to Computer Vision - traces the historical roots
and the fundamental concepts that underpin Computer Vision.

Chapter 2: Basics of Imaging - dives into the essentials of imaging, laying
the foundation for understanding image processing techniques.

Chapter 3: Challenges in Computer Vision - Explores the challenges and
complexities encountered in real-world Computer Vision applications.

Chapter 4: Classical Solutions - delves into classical solutions, gaining
insights into traditional approaches to image processing.

Chapter 5: Deep Learning and CNNs - Uncovers the power of deep
learning and Convolutional Neural Networks (CNNs) in the context of
Computer Vision.

Chapter 6: OpenCV DNN Module - Navigates the OpenCV DNN
module, mastering its functionalities for efficient deep learning-based
image processing.

Chapter 7: Modern Solutions for Image Classification - Elevates your
skills by implementing modern solutions for image classification using
Python and OpenCV.

Chapter 8: Modern Solutions for Object Detection - Discusses cutting-
edge techniques for object detection, enhancing your ability to identify and
locate objects in images.

Chapter 9: Faces and Text - Delves into the fascinating realms of face
detection and recognition, along with optical character recognition.

Chapter 10: Running the Code – Gives detailed instructions on how to
setup the runtime environments needed to run the code provided in the
book.

Chapter 11: End-to-end Demo - Concludes your journey with an end-to-
end demonstration, bringing together the concepts learned throughout the
book.

OceanofPDF.com

https://oceanofpdf.com/

Code Bundle and Coloured Images
Please follow the link to download the

Code Bundle and the Coloured Images of the book:

https://rebrand.ly/ehreg50
The code bundle for the book is also hosted on GitHub at
https://github.com/bpbpublications/Neural-Network-Computer-Vision-
with-OpenCV-5.

In case there’s an update to the code, it will be updated on the existing
GitHub repository.

We have code bundles from our rich catalogue of books and videos
available at https://github.com/bpbpublications. Check them out!

Errata
We take immense pride in our work at BPB Publications and follow best
practices to ensure the accuracy of our content to provide with an indulging
reading experience to our subscribers. Our readers are our mirrors, and we
use their inputs to reflect and improve upon human errors, if any, that may
have occurred during the publishing processes involved. To let us maintain
the quality and help us reach out to any readers who might be having
difficulties due to any unforeseen errors, please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB
Publications’ Family.

Did you know that BPB offers eBook versions of every book
published, with PDF and ePub files available? You can upgrade to
the eBook version at www.bpbonline.com and as a print book

https://rebrand.ly/ehreg50
https://github.com/bpbpublications/Neural-Network-Computer-Vision-with-OpenCV-5
https://github.com/bpbpublications
mailto:errata@bpbonline.com
https://www.bpbonline.com/

customer, you are entitled to a discount on the eBook copy. Get in
touch with us at :

business@bpbonline.com for more details.

At www.bpbonline.com, you can also read a collection of free
technical articles, sign up for a range of free newsletters, and
receive exclusive discounts and offers on BPB books and eBooks.

Piracy
If you come across any illegal copies of our works in any form on
the internet, we would be grateful if you would provide us with the
location address or website name. Please contact us at
business@bpbonline.com with a link to the material.

If you are interested in becoming an
author

If there is a topic that you have expertise in, and you are interested in
either writing or contributing to a book, please visit
www.bpbonline.com. We have worked with thousands of
developers and tech professionals, just like you, to help them share
their insights with the global tech community. You can make a
general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Reviews
Please leave a review. Once you have read and used this book, why
not leave a review on the site that you purchased it from? Potential
readers can then see and use your unbiased opinion to make
purchase decisions. We at BPB can understand what you think about

mailto:business@bpbonline.com
https://www.bpbonline.com/
mailto:business@bpbonline.com
https://www.bpbonline.com/

our products, and our authors can see your feedback on their book.
Thank you!

For more information about BPB, please visit www.bpbonline.com.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

OceanofPDF.com

https://www.bpbonline.com/
https://discord.bpbonline.com/
https://oceanofpdf.com/

Table of Contents

1. Introduction to Computer Vision
Introduction
Structure
Objectives
History of computer imaging
Retrieving information from images
Image processing
Representation
Manipulation
Flexibility
Reproducibility
Digital image processing
Conclusion
Exercises

2. Basics of Imaging
Introduction
Structure
Objectives
Pixels and image representation

Pixels
Color spaces

Primary colors
Additive colors
Subtractive colors
Grayscale
Other color spaces
Pixels and color spaces
Examples

Image filetypes
Video files

Images and videos
Programming for image data

A brief history of computer image programming
OpenCV: History and overview
Image processing code samples

Opening, viewing and closing image files
CPP code
Python code
Videos and frames

Programming with color spaces
Grayscale
RGB image

Conclusion
Exercises

3. Challenges in Computer Vision
Introduction
Structure
Objectives

Topics in computer vision
Complexity in image processing
Image classification
Object localization
Image segmentation
Character recognition
Conclusion
Exercises
Key terms

4. Classical Solutions
Introduction
Structure
Objectives
Solutions for challenges in computer vision

Classical solutions
Modern solutions

Algorithm families
Morphological operations

Erosion and dilation of images
Closing and opening images

Thresholding
Detecting edges and corners
Image transformations
Region growing
Clustering
Template matching
Watershed algorithm

Foreground and background detection
Superpixels
Image pyramids
Convolution

Conclusion
Exercises
Key terms

5. Deep Learning and CNNs
Introduction
Structure

Objectives
History of deep learning
Perceptron
Shallow learning networks
Deep learning networks
Weights, biases, and activation functions

Weight
Bias
Activation function
Optimization function

Convolutional neural networks
CNNs versus fully connected networks

Deep learning process
Training
Techniques in training
Inference process
Techniques/tricks in inference

Conclusion
Key terms
Exercises

6. OpenCV DNN Module
Introduction
Structure
Objectives
Deep learning frameworks

TensorFlow
PyTorch
Keras

Inference for computer vision
Local inferencing

Local CPUs
Local GPUs

Cloud
Edge computing

OpenCV DNN module
History
Features and limitations

Capabilities
Limitations
Considerations

Supported layers
Unsupported layers and operations

Important classes
Conclusion

Exercises

7. Modern Solutions for Image Classification
Introduction
Structure
Objectives
CNNS for classification
Inception-v3

Keras
OpenCV DNN module

ResNet
Keras implementation
OpenCV DNN implementation

MobileNetV2
Keras implementation
OpenCV DNN implementation

Comparison of models
Parameters for blobFromImage()
Conclusion
Exercises

8. Modern Solutions for Object Detection
Introduction
Structure
Convolutional neural networks architecture for object detection
Faster region convolutional neural network
Single shot multibox detector
You only look once

YOLOv3

Overview of NMSBoxes() API
YOLOv5
Differences between YOLOv3 and v5

Obtaining v5 model ONNX file
Working with v6, v7 and v8
Conclusion
Exercises

9. Faces and Text
Introduction
Structure
Objectives
Face detection

Haar cascades
Deep learning approaches: YuNet

Face recognition
Face detection versus recognition
Face recognition using landmarks
Face recognizer module
Labeled Faces in the Wild dataset

FaceRecognizerSF class
Comparing faces

Text recognition
Text detection
Text recognition

OpenCV Model Zoo
Conclusion
Exercises

Key terms

10. Running the Code
Introduction
Structure
Objectives
Sequence of steps
Setting up Anaconda

Installing Anaconda on Windows
Installing Anaconda on Ubuntu Linux

Installing Git
Installing Git on Windows
Installing Git on Ubuntu

Setting up Python environment
Fetching the code

Downloading the code
Fetch the weights

Installing the libraries
Running the code
Conclusion
Exercises

11. End-to-end Demo
Introduction
Structure
Objectives
Code

main_app.py
video_app_ui.py

image_processor.py
numberplate_recognizor.py
object_detector.py

Running the code
Application design
Notes about codes
Conclusion
Exercises

Index

OceanofPDF.com

https://oceanofpdf.com/

Chapter 1
Introduction to Computer

Vision

Introduction
In a world where computers and cameras communicate seamlessly, the
discipline of computer vision emerges as a profound domain. Envision a
scenario where your computer assumes the role of an astute companion
with the remarkable ability to comprehend visual data, much akin to your
comprehension of textual content. Computer vision, in essence, imparts the
capacity to perceive and comprehend the world through the lens of images
and videos. It is akin to the endowment of sight and cognitive faculties to
your computing machine.

Imagine presenting your computer with an image portraying an endearing
feline creature. The computer, although lacking the faculty of perception
akin to a human, possesses the competence to process the pixel-level data
and decipher patterns and structures. It can discern, for instance, that the
presence of pointed ears, fine whiskers, and a luxuriant tail coalesce to form
the distinctive visage of a cat. The mechanism underpinning this
comprehension is none other than image processing.

Image processing embodies the arsenal of tools with which the computer
perfects and enhances the visual information at its disposal. It can effectuate
alterations such as color correction, noise reduction, or the refinement of

edges, endowing the depicted cat with even greater clarity and visual
appeal.

Computer vision extends its capabilities beyond the identification of cats. It
engenders awe-inspiring feats, including enabling autonomous vehicles to
navigate roads and evade obstacles. It is proficient at tallying the human
presence in a crowd and deciphering handwritten textual content.
Furthermore, it furnishes invaluable assistance to medical practitioners in
the identification of ailments from radiographic imagery, such as X-rays.

A noteworthy aspect of computer vision is its capacity for continuous
learning and adaptation. Analogous to how human cognition improves with
exposure and experience, computer vision is enhanced by accumulating
additional data and knowledge. This dynamic field, steeped in innovation,
imparts augmented intelligence and utility to technology across diverse
domains, be it in the realms of healthcare, security, entertainment, or myriad
other spheres. Computer vision, in its essence, bestows upon computers the
precious gift of vision and comprehension, ushering in a realm brimming
with possibilities.

Structure
The chapter will cover the following topics:

History of computer imaging

Retrieving information from images

Image processing

Representation

Manipulation

Flexibility

Reproducibility

Digital image processing

Objectives
The objective of this chapter is to introduce the contents discussed in later
chapters. This chapter starts with a history of computer imaging and walks

through image representation, processing, and manipulation. The chapter
also introduces digital image processing and briefly explains the differences
between digital and analog image processing.

History of computer imaging
The history of computer imaging is a fascinating journey that spans several
decades. It has evolved from humble beginnings to become an integral part
of our daily lives. Let us familiarize ourselves in detail with the history of
computer imaging.

The roots of computer imaging can be traced back to the 1950s when
computers were in their infancy. Researchers began exploring the idea of
using computers to process and generate images. One of the earliest
milestones was the development of the Whirlwind computer at
Massachusetts Institute of Technology (MIT), which could display
simple graphics on a screen. In the 1960s, efforts to digitize images started
to gain momentum. Researchers devised methods to convert photographs
and other analog images into digital form. NASA played a significant role
in advancing computer imaging technology by using digital images in space
exploration and remote sensing. The 1970s saw the emergence of early
computer graphics. The development of devices like the framebuffer
allowed computers to display images directly on screens. Companies like
Xerox PARC and Atari contributed to the growth of computer graphics,
leading to the development of the first video games and interactive
graphical user interfaces (GUIs). In the medical field, computer imaging
found applications in areas like Computed Tomography (CT) and
Magnetic Resonance Imaging (MRI), revolutionizing diagnostics. These
technologies enabled doctors to visualize the human body's internal
structures in previously impossible ways.

The advent of personal computers in the 1980s brought about desktop
publishing. Applications like Adobe Photoshop and Adobe Illustrator
revolutionized image editing and design. The field of computer vision
gained momentum during this period. Researchers focused on teaching
computers to interpret and understand images, laying the groundwork for
facial recognition, object detection, and more. The 1990s saw the rise of
digital photography with the introduction of consumer digital cameras. This
technology made it easier for individuals to capture and share digital

images. Advances in image sensors, image compression, and storage
technologies played a pivotal role in the popularity of digital photography.

The entertainment industry embraced computer imaging for special effects
in movies and the development of 3D animation in films like Toy Story by
Pixar. Video games also evolved with increasingly realistic computer-
generated imagery (CGI).

In recent years, deep learning and artificial intelligence have fueled
significant advancements in computer imaging. convolutional neural
networks (CNNs) have revolutionized image recognition and processing.
Applications include self-driving cars, facial recognition, medical image
analysis, and more.

Today, computer imaging is an integral part of numerous industries, from
healthcare to entertainment, and it continues to evolve rapidly. With the
growing influence of AI and machine learning, we can expect even more
exciting developments in computer imaging in the years to come.

Retrieving information from images
The notion of data being stored in and extracted from images is a significant
aspect of computer vision and image processing. Images have been used as
carriers of hidden data for various purposes, a technique known as
steganography. This process involves embedding information within an
image so that it is imperceptible to the human eye. This hidden data could
be text, files, or other forms of information. Several methods and
algorithms like LSB substitution, Discrete Fourier Transform, Discrete
Cosine Transform and so on, are used for hiding and retrieving data in
images.

However, the field of computer vision is different from steganography.
Steganography is used in the field of security and for maintaining secrets.
Computer vision is for far more mundane and complex tasks like looking at
an image and understanding it. For example, looking at Figure 1.1, humans
can easily say it is the image of a flag. But how can a computer conclude
that? That is the challenge addressed by computer vision. Techniques like
statistical analysis, frequency domain analysis, and the like are used for
this. Please refer to the following figure:

Figure 1.1: A flag on a beach

Image processing
Image processing is a field of study and practice that involves manipulating
and analyzing images to improve their quality, extract information, or make
them suitable for various applications. It can be broadly divided into two
domains: Analog and digital, each with its own set of techniques and signal
processing algorithms.

Analog image processing primarily deals with continuous representations of
images, typically in photographs, films, or other analog media. Digital
image processing deals with images represented as discrete sets of numbers
(pixels) and is the most common form of image processing in the digital
age. It involves the use of algorithms to manipulate and analyze images. Let
us explore the key differences between digital image processing and analog
image processing with simple examples:

Representation
Digital images are represented as a grid of discrete pixels, with each pixel
having a specific color or intensity value. These values are quantized,
typically in 8-bit (0-255) for each color channel (red, green, blue). For

example, in a digital image, the color of a pixel may be represented as (128,
64, 255), where each number represents the intensity of a color channel.
This topic is discussed thoroughly in Chapter 2.

Analog images are continuous representations of the scene, like
photographs or film. There are no discrete pixels, and the image
information is carried by continuous variations in properties like light
intensity or color. For example, in an analog photograph, the color is
captured by the varying chemical properties of the film emulsion.

Manipulation
In digital image processing, algorithms are applied to the discrete pixel
values to enhance, modify, or analyze the image. For instance, you can use
a digital filter to blur or sharpen an image, change its brightness, or remove
noise. Analog image manipulation involves physical processes. For
example, you can place a physical filter in front of a camera lens to change
the color balance or use a darkroom technique to control exposure during
photo development.

Flexibility
Digital images offer high flexibility because you can easily undo and redo
processing steps. If you do not like the result, you can try a different
algorithm or adjust parameters without harming the original image. Analog
processes are less flexible. Once you apply a physical process to an analog
image, it is challenging to revert to the original state. This lack of flexibility
can be a limitation.

Reproducibility
Results are highly reproducible in digital processing because algorithms
work with precise numerical values. If you apply the same algorithm to the
same image multiple times, you will get identical results. However, in
analog processing, results may vary due to factors like variations in
chemicals or physical conditions. Reproducing the same analog image
manipulation can be challenging.

Digital image processing

Digital image processing deals with images represented as discrete sets of
numbers (pixels) and is the most common form of image processing in the
digital age. It involves the use of algorithms to manipulate and analyze
images. Here are some key aspects of digital image processing:

Pixel manipulation: Digital images are composed of pixels, each
with a specific color or intensity value. Algorithms can manipulate
these values to enhance or modify the image, such as adjusting
brightness and contrast.

Filtering: Convolution-based filters are commonly used in digital
image processing to perform operations like blurring, sharpening,
edge detection, and noise reduction.

Transformations: Techniques like the Fourier Transform and
Discrete Cosine Transform are used to analyze the frequency
components of an image, which is valuable for tasks like
compression and feature extraction.

Image enhancement: Histogram equalization, gamma correction,
and contrast stretching are methods to improve the visual quality of
an image.

Image restoration: Digital techniques can be applied to restore
degraded images by removing noise, deblurring, and correcting
distortions.

Image compression: Compression algorithms like JPEG and PNG
are used to reduce the size of images for storage and transmission
while maintaining acceptable image quality.

Digital image processing is a fundamental component of computer vision,
where algorithms are used to interpret and understand images. Tasks
include object recognition, face detection, and image segmentation. We
shall discuss these in detail in Chapter 3.

Signal processing algorithms are the core of digital image processing. They
involve mathematical operations on image data to achieve various goals.
Some common signal processing algorithms used in image processing
include:

Convolution: Used for filtering and feature extraction by applying a
convolution kernel to an image.

Fourier transform: Decomposes an image into its frequency
components, useful for tasks like image compression and analysis.

Wavelet transform: Provides a multi-resolution representation of an
image, which is valuable for image compression and denoising.

Histogram equalization: Adjusts the distribution of pixel values to
enhance contrast and improve image visibility.

Morphological operations: Used for image analysis and processing
tasks involving shape and structure.

Edge detection: Algorithms like the Sobel and Canny operators
identify edges and contours in images.

Hough transform: Used for detecting lines and other geometric
shapes in images.

Fast Fourier Transform: A variant of the Fourier Transform
optimized for efficiency in computing frequency components.

Conclusion
Digital image processing, with its discrete representation and algorithmic
flexibility, has propelled us into a digital age where images can be
effortlessly manipulated, shared, and analyzed. Its precision,
reproducibility, and ease of storage make it the preferred choice for a wide
range of applications, from medical imaging to computer vision. In the next
chapter, we shall discuss imaging starting with the very basics and see some
sample code for simple image processing algorithms.

Exercises
1. Open any of your favorite photographs in an image editor like MS

Paint, Gimpel or Adobe Photoshop. Zoom into any part of the image
to the maximum extent the software allows you. See if you can
observe the individual pixels that make up the image. The effect will
be more pronounced if you use a low-resolution image.

2. Start any image editing software on your machine and open your
favorite photograph. Take a close look at the different image
manipulation options provided in the software. Imagine how a
computer program can be written to achieve that effect.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

OceanofPDF.com

https://discord.bpbonline.com/
https://oceanofpdf.com/

Chapter 2
Basics of Imaging

Introduction
Computer imaging involves the manipulation and analysis of digital images
using computer algorithms and software. It encompasses various fields such
as computer vision, image processing, and computer graphics. It enables
tasks such as image filtering, restoration, enhancement, segmentation, and
feature extraction. Image processing algorithms are used to extract
information from images, detect objects, and recognize patterns. Computer
imaging plays a crucial role in fields as diverse as medical imaging,
surveillance, robotics, and entertainment. For instance, surveillance systems
utilize computer imaging for object detection, tracking, and behavior
analysis. Augmented reality and virtual reality heavily rely on computer
imaging to create immersive visual experiences. Facial recognition systems
use computer imaging to identify individuals based on facial features. It is
utilized in autonomous vehicles for tasks like object detection, lane
tracking, and traffic sign recognition. From cultural heritage preservation,
remote sensing, manufacturing quality control to entertainment industry,
new computer vision plays a crucial role.

Consequently, it becomes vitally important for AI developers to understand
how computer imaging techniques can be used. Any such discussion will be
incomplete without discussing OpenCV. OpenCV has played an enormous
role in making image processing accessible to hobbyist developers. Owing

to its popularity, compatibility with a wide range of languages, and
simplicity, OpenCV is becoming a go to approach, even for specialized
applications.

Any developer wishing to work with computer images should understand
the basic aspects of computer images and how it provides a foundation for
working with and manipulating images using various software and
programming tools.

Structure
The chapter contains the following topics:

Pixels and image representation

Pixels

Color spaces

Primary colors

Additive colors

Subtractive colors

Grayscale

Other color spaces

Pixels and color spaces

Examples

Image filetypes

Video files

Images and videos

Programming for image data

A brief history of computer image programming

OpenCV: History and overview

Image processing code samples

Opening, viewing, and closing image files

Programming with color spaces

Grayscale

RGB image

Objectives
The objective of this chapter is to provide a brief preliminary introduction
to the basics of computer imaging. The chapter discusses topics like pixels,
color spaces, imaging formats, and image processing at a shallow level.
Many of these topics are vast and stand-alone, in their regard.

Note: Computer vision is different from computer graphics and image
management. Computer vision focuses on developing algorithms and
systems that enable computers to understand and interpret visual
information. Computer graphics deals with the creation, rendering,
and manipulation of images and visual content for display or
simulation. Image compression techniques are employed to reduce the
file size of images for storage and transmission.

Pixels and image representation
In this section, we will start with the basics of image processing. How is an
image represented on a computer? How does a computer even manage a
display screen? How are the different shapes and colors on a screen made
possible? How can the different images move smoothly and leave the
impression of live movements in the movies? We will discuss this briefly
here. The domain of computer monitors is quite vast. However, we will
touch upon the specific topics relevant to the scope of this book.

Pixels
Pixels are the smallest units in an image. It is a stylish union of the words
picture and element. A pixel is a fundamental building block representing a
single point of color and brightness. When combined with other pixels, it
creates an image. A pixel is typically represented as a square or rectangular
area on a display or image sensor. It holds information about the color and
intensity of light that should be displayed or captured at that specific
location. In the digital representation of an image, pixels are arranged in a

grid-like pattern, forming rows and columns. Each pixel in this grid has a
specific location or coordinates, such as (x, y), which allows for its unique
identification and manipulation.

Here is how pixels are used for representing images:

Color information: Each pixel in a digital image stores color
information. In the most common case of the RGB color model, a
pixel is represented by three color channels: Red, green, and blue.
The intensity or brightness of each channel is often represented by a
numerical value ranging from 0 to 255 (in an 8-bit system) or a
higher bit depth, determining the color of that pixel. By combining
the color values of neighboring pixels, a complete image is formed.

Spatial arrangement: Pixels are arranged in a regular grid pattern.
The resolution of an image is determined by the number of pixels in
the horizontal and vertical dimensions, such as 1920x1080 pixels for
Full HD resolution. Higher resolutions generally mean more pixels,
resulting in finer detail and sharper images.

Image formation: When pixels are displayed on a screen or printed
on paper, they collectively form the image that we perceive. Each
pixel emits or reflects light according to its color and intensity
values. When viewed together, they create the visual representation
of the image.

Image manipulation: Pixels are the basis for various image
processing and manipulation techniques. Operations like resizing,
cropping, rotating, adjusting brightness and contrast, applying filters,
and more are performed on individual pixels or groups of pixels to
modify the appearance or content of an image.

Image storage: Digital images are stored as files, and the most
common image file formats, such as JPEG, PNG, or BMP, store
pixel information along with additional metadata and compression
methods. These files store the color values of each pixel, allowing
for the reconstruction of the image during display or further
processing.

Understanding the concept of pixels is crucial for working with digital
images, whether it is capturing, displaying, or manipulating them. Pixels

serve as the elemental units that collectively form the rich visual
information we perceive in digital images.

Color spaces
Color spaces in image processing refer to different models or
representations that define how colors are represented and encoded in an
image. Each color space has its own set of rules and parameters for
representing colors. These parameters are used to accurately capture,
manipulate, and display colors in various applications, including
photography, computer graphics, and image analysis.

Primary colors
We all studied in school that white light can be broken into seven
components. These components are remembered using the acronym
VIBGYOR (violet-indigo-blue-green-yellow-orange-red). Lord Isaac
Newton identified these components and named the colors. However, even
during Newton’s time, there were questions regarding indigo and whether it
was distinct enough to be recognized as a primary component. In later days,
the theory of basic components of colors evolved into the trichromatic
theory of vision. This theory states that the human eye has three types of
color receptors (cones) responsible for color perception. These three types
are sensitive to different wavelengths of light, and the combination of their
responses allows us to perceive a wide array of colors.

In physics, primary colors refer to the set of colors from which all other
colors can be derived through additive color mixing. In the physical world,
the primary colors are red, green, and blue. All colors in nature can be
achieved by mixing these three colors in various proportions. For example,
when we see a lemon, we perceive it as yellow not because the lemon itself
is yellow in color. The lemon absorbs all wavelengths of light except red
and green. This reflected red and green light falls on our eyes and a
combination of red and green receptors is stimulated. This combination
makes our brain process the colors as yellow. Similarly, perceiving magenta
involves the stimulation of both red and blue receptors. Given ahead is a
brief physical description of the primary colors:

Red: Red light has the longest wavelength among visible light and is
associated with the lowest energy. It corresponds to wavelengths
around 620-750 nanometers. When red light is perceived by our
eyes, it stimulates the red-sensitive cones in the retina, leading to the
perception of red color.

Green: Green light has an intermediate wavelength and energy level,
falling between red and blue. It corresponds to wavelengths around
495-570 nanometers. Green light stimulates the green-sensitive
cones in the retina, resulting in the perception of green color.

Blue: Blue light has the shortest wavelength and highest energy
among visible light. It corresponds to wavelengths around 450-495
nanometers. Blue light stimulates the blue-sensitive cones in the
retina, leading to the perception of blue color.

It is important to note that the primary colors in physics differ from the
subtractive primary colors used in printing, as well as other color models
used in different contexts. The primary colors in physics are specifically
related to the trichromatic theory of vision and are used to explain the
physiological basis of color perception. By understanding the properties of
primary colors and how they combine to form other colors, physicists,
optical scientists, and vision researchers can better comprehend the
principles of color vision, light absorption, and the behavior of light in
various material and systems.

Additive colors
The additive colors (RGB color space) is one of the most widely used color
models in image processing, computer graphics, and display technologies.
It represents colors by combining three primary colors: Red (R), green (G),
and blue (B). In the RGB color space, each pixel in an image is represented
by three color channels: Red, green, and blue. The intensity or brightness of
each color channel is typically represented by an 8-bit value ranging from 0
to 255, where 0 represents no intensity (dark) and 255 represents maximum
intensity (full brightness). By varying the intensities of these three channels,
any color can be created. This color space is based on the additive color
mixing principle which we will discuss shortly.

The RGB color space has a few important characteristics described as
follows:

Additive color mixing: In the RGB model, colors are created by
adding different intensities of red, green, and blue light. When all
three primary colors are set to their maximum intensity (255, 255,
255), the resulting color is white. Conversely, when all three primary
colors are set to their minimum intensity (0, 0, 0), the resulting color
is black.

Gamut: The RGB color space defines a specific range of colors that
can be represented. This range of colors is often referred to as the
gamut of the color space. The gamut of the RGB color space
depends on the color reproduction capabilities of the specific device
or medium used, such as a display or printer.

Color mixing: By combining different intensities of red, green, and
blue, it is possible to create various secondary and tertiary colors.
For example, equal intensities of red and green produce yellow,
while equal intensities of red and blue produce magenta. Different
combinations of intensities allow for a wide range of colors to be
represented.

Color depth: Color depth is the number of bits used to represent
each color channel. For example, an 8-bit color depth allows 256
intensity levels per channel, resulting in a total of 16.7 million
possible colors (256^3). Higher color depths, such as 16-bit or 24-
bit, provide more precision and a larger number of available colors.

The RGB color space is used in a variety of applications, including digital
photography, computer graphics, video processing, and display
technologies. It serves as the basis for color representation in many image
file formats, such as JPEG, PNG, and BMP, where pixel values are stored as
RGB values.

Note that there are variations of the RGB color space, such as Adobe
RGB and sRGB, which have slightly different gamut and color
characteristics. These variations are designed to accommodate
specific needs, such as accurate color reproduction for printing or
standardized color spaces for web and digital content.

Subtractive colors
The CMYK color space, also known as the process color model, is
primarily used in printing and color reproduction. CMYK stands for cyan
(C), magenta (M), yellow (Y), and key (K), where key represents black.
Unlike the RGB color model, which uses additive color mixing, the CMYK
color model uses subtractive color mixing to achieve a wide range of colors.

In the CMYK color space, one starts with white background and creates the
target color by subtracting different amounts of cyan, magenta, yellow, and
black pigments. The presence of all four inks at full strength results in a
dark, almost black color, while the absence of all inks produces white. By
varying the percentages of these four ink colors, a wide range of colors can
be reproduced for printing.

Here are some key points about the CMYK color space:

Subtractive color mixing: Unlike the RGB model, where colors are
created by adding light, the CMYK model starts with a white
background (such as the color of the paper) and subtracts or absorbs
certain wavelengths of light to create colors. When all four inks are
applied at full strength, they absorb almost all light, resulting in a
dark color.

Color gamut: The CMYK color space has a smaller color gamut
compared to the RGB color space. This is because the combination
of subtractive inks cannot produce the same range of colors as
additive light mixing. Consequently, some vibrant and highly
saturated colors that can be represented in RGB may not be
accurately reproduced in CMYK.

Black ink: The K in CMYK represents black ink. It is added to the
color model because the combination of cyan, magenta, and yellow
inks does not produce a true black. Using black ink reduces the need
for large amounts of ink to create a deep black color and helps to
improve printing efficiency.

Color separation: In the printing process, the CMYK color model is
used to separate an image into four different color plates, one for
each ink color. Each plate represents the intensity of the respective
ink color for that particular area of the image. These plates are used

in combination during the printing process to recreate the original
full-color image.

Conversion from RGB to CMYK: When preparing images for
printing, it is often necessary to convert RGB images to the CMYK
color space. This conversion ensures that the colors in the image are
properly adjusted to match the color capabilities of the printing
process and the specific CMYK color profile used by the printer.

It is important to note that when converting from RGB to CMYK, there
may be some loss of color accuracy or vibrancy due to the differences in
color gamut between the two color spaces. Therefore, it is advisable to
preview and make any necessary adjustments to the image before final
printing.

The CMYK color space is widely used in various printing applications,
including magazines, brochures, packaging, and other printed materials. By
accurately representing colors, the CMYK model ensures that the intended
colors are reproduced as closely as possible in the final printed output.

Grayscale
Grayscale images, also known as black-and-white images, consist of
shades of gray ranging from black to white, with no colors in between.
Unlike color images that have multiple color channels (such as RGB with
red, green, and blue channels), grayscale images have only a single channel
representing the brightness or intensity of each pixel. Here are some key
points about grayscale images:

Single channel: Grayscale images have a single channel, often
referred to as the grayscale channel or luminance channel. Each
pixel in the image is represented by a single value, which
corresponds to the intensity of light at that particular point. This
value typically ranges from 0 (black) to 255 (white) in an 8-bit
grayscale image, with intermediate values representing different
shades of gray.

Absence of color: Grayscale images lack color information. Instead,
they rely solely on the brightness levels to represent the image
content. The absence of color simplifies the representation and

interpretation of the image, focusing primarily on the light and dark
areas.

Simplicity and clarity: Grayscale images often possess a sense of
simplicity and clarity. Without the distraction of colors, they
emphasize visual elements such as shapes, textures, and contrast.
Grayscale images can be particularly effective in showcasing tonal
variations, shadows, and highlights in a scene.

Conversion: Grayscale images can be derived from color images
through a process called a color-to-grayscale conversion. Various
algorithms and techniques can be used to convert color images to
grayscale. One common approach is to calculate the luminance of
each pixel by considering the weighted average of the red, green,
and blue color channels, as human perception is more sensitive to
green light.

Storage and processing: Grayscale images require less storage
space and computational resources compared to color images. With
only a single channel of intensity values, grayscale images occupy
less memory and are generally faster to process. This can be
advantageous in applications where color information is not
necessary, or where storage and processing efficiency are important
considerations.

Grayscale images have diverse applications in fields such as photography,
printing, medical imaging, computer vision, and more. They can be used to
represent depth maps, enhance image contrast, simplify image analysis
algorithms, or create a classic black-and-white aesthetic in visual media.

It is worth noting that some grayscale images may also contain additional
channels for auxiliary information, such as an alpha channel for
transparency or a grayscale mask for image segmentation. However, the
core characteristic of grayscale images is the representation of intensity
values without color.

Other color spaces
In addition to the color spaces discussed above, there are other color spaces
used in computer applications. We shall discuss them briefly here:

HSL: Hue, saturation, lightness (HSL) color space defines colors
based on three parameters: Hue, saturation, and lightness. Hue
represents the color's position on the color wheel, saturation
represents the intensity or purity of the color, and lightness
represents the perceived brightness.

HSV: Hue, saturation, value (HSV) is similar to HSL but replaces
lightness with value. The value parameter represents the perceived
brightness of the color, making it more suitable for certain image
processing operations like adjusting brightness and contrast.

LAB: CIE Lab* (LAB) is a device-independent color space that
separates color information from brightness information. It consists
of three channels: L* for lightness, and a* and b* for color
information. LAB color space is often used for color transformations
and image analysis tasks.

These are just a few examples of color spaces used in image processing.
Each color space has its advantages and applications. Choosing the
appropriate color space depends on the specific requirements of the image
processing task at hand.

Pixels and color spaces
Pixels and color spaces work together to define the color representation of
digital images. Color spaces define the range of colors that can be
represented, while pixels store the color information for each specific point
in an image. By combining the concepts of pixels and color spaces, it
becomes possible to accurately represent, manipulate, and reproduce colors
in digital images. Pixels store the color values based on the chosen color
space, while the color space defines the available colors and their
relationship within the image. Together, they form the foundation for color
representation in digital imaging systems. Here is how pixels and color
spaces work together:

Color representation: Pixels store color information based on the
color space used. In an RGB color space, each pixel holds color
values for the red, green, and blue channels. These values determine
the intensity or brightness of each primary color, and their
combination creates the overall color appearance of the pixel.

Similarly, in a CMYK color space, pixels store color values for the
cyan, magenta, yellow, and black channels.

Gamut: Color spaces define the gamut, which represents the range
of colors that can be represented within that specific color space.
Gamut refers to the set of all possible colors that can be displayed or
reproduced. Each pixel's color values are limited to the gamut of the
chosen color space, meaning they can only represent colors within
that defined range. The gamut is influenced by the properties and
limitations of the device or medium used, such as a display, printer,
or color profile.

Conversion: When working with images, it may be necessary to
convert between different color spaces. Conversion between color
spaces involves mapping the color values of pixels from one color
space to another while preserving the perceived color appearance as
accurately as possible. This conversion ensures that colors are
correctly represented when transferring images between devices or
systems that use different color spaces.

Image processing: Pixels and color spaces are also important in
image processing tasks. When performing operations like color
correction, adjusting brightness or contrast, applying filters, or any
other image manipulation, the calculations are often performed on
the color values of individual pixels within the specified color space.
This allows for precise control and modification of the image's
appearance based on the color space's characteristics.

Examples
Let us see an example of how pixels and color spaces together can be used
to create images, refer to Figure 2.1:

Figure 2.1: 2-Dimensional matrix of numbers representing the alphabet A of size 26x26 matrix

As shown in Figures 2.1 and Figure 2.2, the 2D integer matrix of 26x26 can
be rendered as the alphabet A:

Figure 2.2: The matrix in Figure 2.1 will be rendered above

Each element in this matrix is a single number and hence the image will be
a black and white image also called a grayscale image. Replacing the values
of 255 with a vector of (255,0,0) will result in a red color A, (0,255,0) in
green A, and (0,0,255) in blue A. In such a case, all 0 elements shall be
[0,0,0] and 255 value elements shall be as mentioned in Table 2.1:

Red Green Blue

(255,0,0) (0,255,0) (0,0,255)

Table 2.1: White pixels replaced with color channels in the RGB color space

Image filetypes
So far, we have discussed how pixels and color spaces are used to represent
images. Now let us briefly see how this information is stored. The imaging
formats and filetypes available are extensive and it is out of scope for this
book to discuss them all. Instead, we will only discuss the most popular
formats used by regular ordinary computer users and limit ourselves to
image processing on those file types.

There are several common file types used for storing image data. Each file
type has its characteristics, compression methods, and supported features.
The following are some of the most popular image file formats:

Joint Photographic Experts Group: Joint Photographic Experts
Group (JPEG) is a widely used lossy compression format suitable
for storing photographs and natural images. It achieves high
compression ratios by discarding some image details that are less
perceptually significant. JPEG supports millions of colors and is
used commonly for web images and digital photography. However,
repeated editing or re-saving in JPEG format can result in quality
degradation due to the lossy compression.

Portable Network Graphics: Portable Network Graphics (PNG)
is a lossless compression format that supports both full-color and
indexed images. It is well suited for images with sharp edges, solid
areas of color, or transparency. PNG files maintain a high level of
detail and quality without the lossy compression artifacts found in
JPEG files. They are commonly used for web graphics, logos, and
images with transparency.

Graphics Interchange Format: Graphics Interchange Format
(GIF) is a lossless compression format that supports animated
images and indexed color. It uses a limited color palette of up to 256
colors, making it suitable for simple graphics, icons, and animations.

GIF also supports transparency, allowing pixels to be fully
transparent or fully opaque. However, GIF has a relatively low color
depth, making it less suitable for complex or photographic images.

Tagged Image File Format: Tagged Image File Format (TIFF) is
a versatile file format that can support both lossless and lossy
compression. It offers options for storing images with high color
depth, multiple layers, and metadata. TIFF is commonly used in
professional photography, graphic design, and printing industries. It
provides flexibility and maintains image quality. However, it
typically results in larger file sizes compared to formats like JPEG or
PNG.

Bitmap: Bitmap (BMP) is a simple and uncompressed file format
that stores raw pixel data. It supports various color depths and can
preserve high-quality images without compression artifacts. BMP
files are typically larger in size, making them less suitable for web
usage but often used in specific applications, such as some computer
graphics software or as an intermediate format for image editing.

RAW: RAW formats are proprietary file formats used by digital
cameras to store minimally processed image data captured by the
camera's sensor. RAW files retain the most information and allow for
extensive post-processing adjustments. However, they tend to have
larger file sizes and require specialized software for viewing and
editing.

These are just a few examples of image file formats commonly used today.
Each format has its strengths, considerations for compression, color
support, and compatibility with different software applications and devices.
The choice of file format depends on factors such as the intended use,
desired image quality, level of compression, transparency needs, and
compatibility requirements.

Video files
There are several common file types used for storing video data. Each file
type has its characteristics, compression methods, and supported features.
Here are some of the most popular video file formats:

MPEG-4: MPEG-4 (MP4) is a widely used video file format that
employs the MPEG-4 video compression standard. It supports a
variety of audio and video codecs, allowing for efficient
compression and good video quality. MP4 files are compatible with
most media players and devices, making them suitable for streaming,
sharing, and storing videos. MP4 files can also include subtitles and
metadata.

Audio Video Interleave: Audio Video Interleave (AVI) is a video
container format developed by Microsoft. It can store both audio and
video data in a single file. AVI files can support various codecs,
making them versatile, but they tend to be large in size and may not
have as efficient compression as some newer formats. AVI files are
commonly used in older video editing software and for local
playback on Windows systems.

Matroska Video: Matroska Video (MKV) is an open-source
multimedia container format that can store multiple audios, videos,
and subtitle streams in a single file. It supports a wide range of video
codecs and can preserve high-quality video and audio. MKV files are
often used for storing High-Definition (HD) and Ultra-High-
Definition (UHD) video content. They are popular amongst video
enthusiasts and media playback applications.

QuickTime Movie: QuickTime Movie (MOV) is a file format
developed by Apple for storing video, audio, and other media data.
MOV files are commonly associated with QuickTime. They support
various codecs and multiple tracks. MOV files are widely used in
Apple's ecosystem, including macOS and iOS devices. They can
contain high-quality video and audio and are suitable for
professional applications, video editing, and multimedia content
distribution.

Windows Media Video: Windows Media Video (WMV) is a video
file format from Microsoft. It is primarily used for streaming and
playback on Windows platforms. WMV files can support various
codecs and provide good compression for efficient streaming and
storage. While WMV files are well-suited for Windows-based

systems, they may have limited compatibility with other platforms
and devices.

Flash Video: Flash Video (FLV) is a video file format primarily
associated with Adobe Flash Player. It supports streaming and
playback of video content over the internet. FLV files use the
Sorenson Spark or VP6 codec and can provide efficient video
delivery. However, due to declining support for Flash technology,
FLV has become less common and is being replaced by other
formats like MP4 for web video playback.

These are just a few examples of video file formats commonly used today.
Each format has its strengths, considerations for compression,
compatibility, and features. The choice of file format depends on factors
such as intended use, video quality requirements, target platforms,
streaming capabilities, and compatibility with playback devices or editing
software.

Images and videos
Video files and images are closely related, as videos are essentially a
sequence of images played in rapid succession. Videos are a collection of
frames or still images presented one after another to create the illusion of
motion. Here are some noteworthy points about video files and images:

Frame-by-frame structure: A video is composed of a series of
frames, with each frame representing a single image. Each frame
captures a snapshot of the scene at a specific moment in time. These
frames are played back in sequence at a rapid rate (usually 24 to 30
frames per second) to create the perception of continuous motion.

Image compression: Video files use various compression techniques
to efficiently store and transmit the sequence of frames.
Compression reduces the file size by encoding the differences
between frames, removing redundancies, and optimizing the storage
of pixel data. Different video file formats employ different
compression algorithms to balance file size and video quality.

Keyframes: In video compression, keyframes (also called I-frames)
are complete and self-contained frames that can be decoded

independently. Keyframes serve as reference points in the video
sequence, and subsequent frames (known as P-frames or B-frames)
store only the changes or differences from the previous frames. This
compression technique significantly reduces the file size by avoiding
the need to store every pixel per frame.

Playback: Video files can be played back on various devices and
platforms. Media players, whether software or hardware-based,
decode the frames of the video file and display them in rapid
succession. The frames are reconstructed, and the illusion of motion
is created by displaying the frames at the intended frame rate.

Editing and processing: Video editing software allows the
manipulation and processing of individual frames within a video file.
Editors can extract frames from a video, apply filters or effects to
specific frames, rearrange the order of frames, or even replace
frames with different images. This flexibility enables precise control
over the visual content of the video.

Exporting still images: Video files can also be exported or saved as
individual image files. By extracting frames from a video file, one
can obtain still images at specific points in the video. This feature is
useful for creating thumbnails, generating promotional material,
capturing key moments, or analyzing individual frames for visual
analysis or computer vision applications.

Programming for image data
Now that we are familiar with pixels, images, color spaces, and image files,
let us understand how to programmatically work with images. In this
section, we shall discuss how to open, close and view images using
programming. After a brief introduction to the history of programming
approaches for manipulating images, we shall start a conversation about
OpenCV, the most popular programming library for image processing.

A brief history of computer image programming
Many developers initially tend to think that manipulating images is a unique
software problem. This is not true. The necessity to manipulate image data
predates computers by a long shot. Movies, having emerged as a

phenomenon in the late 19th and early 20th centuries, predated computers by
a long shot. And with movies came the need to edit the images and frames
for providing a better experience to the audience. Consequently, several
image processing techniques were developed for manipulating parameters
like brightness, contrast, and so on. All these techniques treated image data
as an analog signal and performed signal manipulation using mathematical
functions.

The notable difference with computerized image processing is that
computer images are digital in nature. While it is certainly possible to
convert this digital data into analog mode and perform the same image
manipulations, it is far more desirable to manipulate data in the digital
domain. Especially when the changes needed are detailed and precise,
digital algorithms often outscore the analog algorithms.

Note: If you ever came across an old model television set, you will
notice that it has knobs for changing brightness, contrast, sharpness,
color and so on. Rotating the knobs adjusts the settings. But there is
no computer or GPU sitting behind those knobs. The image is
manipulated using analog algorithms to achieve the desired effect.

So, how are images manipulated programmatically? In the 1960s,
researchers began exploring digital image processing techniques. Early
efforts involved developing algorithms for basic image operations like
filtering, edge detection, and noise reduction. However, computer resources
were limited, and processing power was low. During the 1970s, advances in
computer graphics led to the development of raster graphics systems. These
systems used a grid of pixels to represent and display images. Early
programming languages like FORTRAN and assembly language were used
to write code for image manipulation, but the focus was primarily on
graphics rendering rather than image processing. In the 1980s, computer
vision and image analysis gained attention as subfields of computer science.
Researchers began exploring techniques for understanding and interpreting
images. Algorithms for feature extraction, object recognition, and image
understanding were developed. Programming languages like C and C++
started gaining popularity for image processing tasks due to their efficiency
and low-level control. In the 1990s, image processing libraries and APIs
started emerging, providing developers with pre-built functions and

algorithms for image manipulation. Examples include Intel's image
processing library (IPL), the vision interface library (VIL), and libraries
like ImageMagick. These libraries provided developers with tools for
performing image operations, such as filtering, transformations, and color
space conversions. However, the explosion of libraries also brought many
challenges to the developers. The libraries were often incompatible with
one another, too expensive for hobbyist programmers and were feature
incomplete. These problems were addressed by OpenCV.

OpenCV: History and overview
Open-Source Computer Vision Library (OpenCV) is an open-source
computer vision and image processing library that provides a wide range of
functions and algorithms. It is designed to offer a comprehensive set of
tools for developing real-time computer vision applications. OpenCV was
initially developed by Intel in 2000 and later released as an open-source
project. It is written in C and C++ and has interfaces for various
programming languages, including Python, Java, and MATLAB/Octave.
OpenCV is cross-platform and runs on Windows, macOS, Linux, Android,
and iOS.

OpenCV offers a vast collection of functions and algorithms that cover
various areas of computer vision and image processing. Some key features
and functionalities provided by OpenCV include:

Image and video I/O: OpenCV allows developers to read, write,
and process images and video frames from files, cameras, and video
streams.

Image processing: OpenCV provides functions for common image
processing operations like filtering, blurring, resizing, thresholding,
morphological operations, and color space conversions.

Feature detection and description: OpenCV supports feature
detection algorithms such as Harris corner detection, FAST, SURF,
ORB, and SIFT. It also provides methods for feature description and
matching.

Object detection and tracking: OpenCV includes pre-trained
models and functions for object detection and tracking, such as Haar

cascades, Histogram of Oriented Gradients (HOG), and deep
learning-based approaches.

Camera calibration: OpenCV supports camera calibration to
correct lens distortions and obtain accurate camera parameters for
3D reconstruction and augmented reality applications.

Machine learning: OpenCV has a great integration with popular
machine learning frameworks like TensorFlow and PyTorch. It
provides tools for training and deploying machine learning models
for tasks such as image classification, object recognition, and
semantic segmentation.

Deep neural networks: OpenCV has a module called dnn that
enables working with pre-trained deep learning models, including
popular architectures like AlexNet, VGG, ResNet, and YOLO.

GUI and visualization: OpenCV includes functions for creating
graphical user interfaces (GUI) and visualizing images, videos,
and results using drawing tools, annotations, and overlays.

Robotics and embedded systems: OpenCV is widely used in
robotics and embedded systems, providing support for tasks like
motion detection, gesture recognition, and autonomous navigation.

OpenCV has a vibrant and active community of developers and researchers.
The community provides extensive documentation, tutorials, sample code,
and a dedicated forum for discussing OpenCV-related topics. The library is
continuously updated and improved, incorporating new algorithms and
optimizations. OpenCV can also be integrated with other popular libraries
and frameworks, such as NumPy, SciPy, Matplotlib, and Robot
Operating System (ROS). This allows developers to leverage the
capabilities of OpenCV alongside other tools and libraries for advanced
image processing and analysis tasks.

OpenCV finds applications in various fields, including robotics,
surveillance, augmented reality, medical imaging, video analysis, and more.
It is used in both research and commercial projects due to its versatility,
performance, and extensive feature set. Whether you are a beginner or an
experienced computer vision developer, OpenCV provides a powerful and
flexible toolkit for working with images and videos, enabling you to

implement a wide range of computer vision algorithms and build
sophisticated applications with ease.

Image processing code samples
Having established a thorough theoretical base, it is now time to get into
programming. In this chapter, we shall see some programs written in
multiple programming languages to achieve some simple image operations.
We will also explore basic activities like opening and showing images and
so on, in C, C++ and Python using OpenCV. The remainder of the book
shall use only Python for developing OpenCV based programs.

Opening, viewing and closing image files
Let us see some sample programs for opening and closing images using
OpenCV.

CPP code
To compile and run the program, make sure you have OpenCV properly
installed and configured. Explanation on installing OpenCV for C++
programming is out of scope for this book. Follow the given steps after the
configuration. Compile the program using the following command:
g++ display_image.cpp -o display_image `pkg-config --cflags --libs opencv4`

Run the compiled program, providing the image path as a command-line
argument:
./display_image ../BigBuckBunny_Frames/frame_0.jpg

When you run the program, it will open the specified JPG image file and
display it in a window using OpenCV. The following program will wait for
a key press before closing the window:

1. #include <stdio.h>

2. #include <opencv2/opencv.hpp>

3.

4. int main(int argc, char** argv) {

5. if (argc != 2) {

6. printf("Usage: ./display_image <image_path>\n");

7. return 1;

8. }

9.

10. // Read the image file

11. cv::Mat image = cv::imread(argv[1]);

12.

13. // Check if the image was read successfully

14. if (image.empty()) {

15. printf("Error opening image file: %s\n", argv[1]);

16. return 1;

17. }

18.

19. // Create a window to display the image

20. cv::namedWindow("Image", cv::WINDOW_AUTOSIZE);

21.

22. // Display the image

23. cv::imshow("Image", image);

24. cv::waitKey(0);

25. cv::destroyAllWindows();

26.

27. return 0;

28. }

We shall not discuss CPP any further in this book. We will confine our
discussions to programming in Python.

Python code
This program defines a function display_image that takes the path of a JPG
image file as input. It uses OpenCV's imread to read the image file and
imshow to display it. When you run the program, it will open the specified
JPG image file and display it in a window using OpenCV. The below
Python program will wait for a key press before closing the window with
cv2.waitKey(0).

Note: The Python environment and required libraries need to be
installed on the computer before running this code. The procedure to
do that has been explained in Chapter 10 Running the Code. Readers
unfamiliar with Python programming are advised to refer to that
chapter before executing the following code:

1. import cv2

2.

3. def display_image(image_path):

4. # Read the image file

5. image = cv2.imread(image_path)

6.

7. # Check if the image was read successfully

8. if image is None:

9. print(f"Error opening image file: {image_path}")

10. return

11.

12. # Display the image

13. cv2.imshow("Image", image)

14. cv2.waitKey(0)

15. cv2.destroyAllWindows()

16.

17. # Example usage:

18. image_path = " ../BigBuckBunny_Frames/frame_0.jpg"

19.

20. display_image(image_path)

Videos and frames
As discussed earlier, a video is a collection of individual images called
frames. Let us see programmatically how each individual frames can be
extracted from video files. This program defines a function
save_frames_as_jpg that takes the input video path and an output directory
as arguments. It uses OpenCV's VideoCapture to read the video file and
imwrite to save each frame as a JPG file. When you run the program, it will
read the video file, extract each frame, and save them as individual JPG
files in the specified output directory. The program will print the number of
frames saved once the process is complete.

1. import cv2

2.

3. def save_frames_as_jpg(video_path, output_directory):

4. # Open the video file

5. video = cv2.VideoCapture(video_path)

6.

7. # Check if the video file was opened successfully

8. if not video.isOpened():

9. print(f"Error opening video file: {video_path}")

10. return

11.

12. # Read and save each frame as a JPG file

13. frame_count = 0

14. while True:

15. # Read the next frame

16. success, frame = video.read()

17.

18. # Check if the frame was read successfully

19. if not success:

20. break

21.

22. # Save the frame as a JPG file

23. output_path = f"{output_directory}/frame_{frame_count}.jpg"

24. cv2.imwrite(output_path, frame)

25.

26. # Increment the frame count

27. frame_count += 1

28.

29. # Release the video file

30. video.release()

31.

32. print(f"Frames saved: {frame_count}")

33.

34. # Example usage:

35. video_path = "../BigBuckBunny.mp4"

36. output_directory = "../BigBuckBunny_Frames"

37.

38. save_frames_as_jpg(video_path, output_directory)

How about viewing the video? Well, that is achieved by displaying each
frame for a brief time. Let us see the code for that as well. Try playing with
the input value to the cv2.waitKey() function on line 19. It is the number of
milliseconds for showing each frame on the screen. Increasing this value
will make the video viewing experience choppy.

1. import cv2

2.

3. def play_video(filename):

4. # Open the video file

5. video = cv2.VideoCapture(filename)

6.

7. while True:

8. # Read a frame from the video

9. ret, frame = video.read()

10.

11. # If the frame was not read successfully, exit the loop

12. if not ret:

13. break

14.

15. # Display the frame

16. cv2.imshow(‹Video›, frame)

17.

18. # Exit the loop if the 'q' key is pressed

19. if cv2.waitKey(1) & 0xFF == ord('q'):

20. break

21.

22. # Release the video capture object and close the OpenCV windows

23. video.release()

24. cv2.destroyAllWindows()

25. if __name__=="__main__":

26. # Provide the path to your MP4 file

27. video_file = ‹../BigBuckBunny.mp4›

28.

29. # Call the function to play the video

30. play_video(video_file)

Programming with color spaces
Now let us look at color spaces and code for playing with them. Here we
shall write the code for achieving the effect explained in Figure 2.1 and
Table 2.1.

Grayscale
In this example, we create a sample list_of_lists with pixel intensity values
ranging from 0 to 255. The display_image function is then called with this
list as an argument. The resulting grayscale image is displayed using
cv2.imshow, and the program waits for a key press before closing the
window with cv2.waitKey(0).

1. import cv2

2. import numpy as np

3.

4. def display_image(list_of_lists):

5. # Convert the list of lists to a NumPy array

6. array = np.array(list_of_lists, dtype=np.uint8)

7.

8. # Create a grayscale image from the array

9. image = cv2.cvtColor(array, cv2.COLOR_GRAY2BGR)

10.

11. # Display the image

12. cv2.imshow("Grayscale Image", image)

13. cv2.waitKey(0)

14. cv2.destroyAllWindows()

15.

16. list_of_lists = [

17. [0,0,0,0,0,0,0,0,0,0,0,255,0,0,0,0,0,0,0,0,0,0,0,0,0,0],

18. [0,0,0,0,0,0,0,0,0,255,255,0,255,255,0,0,0,0,0,0,0,0,0,0,0,0],

19. [0,0,0,0,0,0,0,0,255,255,0,0,0,255,255,0,0,0,0,0,0,0,0,0,0,0],

20. [0,0,0,0,0,0,0,255,255,0,0,0,0,0,255,255,0,0,0,0,0,0,0,0,0,0],

21. [0,0,0,0,0,0,255,255,0,0,0,0,0,0,0,255,255,0,0,0,0,0,0,0,0,0],

22. [0,0,0,0,0,255,255,0,0,0,0,0,0,0,0,0,255,255,0,0,0,0,0,0,0,0],

23. [0,0,0,0,0,255,0,0,0,0,0,0,0,0,0,0,0,255,255,0,0,0,0,0,0,0],

24. [0,0,0,0,255,255,0,0,0,0,0,0,0,0,0,0,0,0,255,255,255,0,0,0,0,0],

25. [0,0,0,0,255,255,0,0,0,0,0,0,0,0,0,0,0,0,0,255,255,255,0,0,0,0],

26. [0,0,0,0,255,255,0,0,0,0,0,0,0,0,0,0,0,0,0,0,255,255,0,0,0,0],

27. [0,0,0,0,255,255,0,0,0,0,0,0,0,0,0,0,0,0,0,0,255,255,0,0,0,0],

28. [0,0,0,0,255,255,0,0,0,0,0,0,0,0,0,0,0,0,0,0,255,255,0,0,0,0],

29. [0,0,0,0,255,255,0,0,0,0,0,0,0,0,0,0,0,0,0,0,255,255,0,0,0,0],

30. [0,0,0,0,255,255,0,0,0,0,0,0,0,0,0,0,0,0,0,0,255,255,0,0,0,0],

31. [0,0,0,0,255,255,0,0,0,0,0,0,0,0,0,0,0,0,0,0,255,255,0,0,0,0],

32. [0,0,0,0,255,255,0,0,0,0,0,0,0,0,0,0,0,0,0,0,255,255,0,0,0,0],

33. [0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,25
5
,255,255,255,255,0,0,0,0],

34. [0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,25
5
,255,255,255,255,0,0,0,0],

35. [0,0,0,0,255,255,0,0,0,0,0,0,0,0,0,0,0,0,0,0,255,255,0,0,0,0],

36. [0,0,0,0,255,255,0,0,0,0,0,0,0,0,0,0,0,0,0,0,255,255,0,0,0,0],

37. [0,0,0,0,255,255,0,0,0,0,0,0,0,0,0,0,0,0,0,0,255,255,0,0,0,0],

38. [0,0,0,0,255,255,0,0,0,0,0,0,0,0,0,0,0,0,0,0,255,255,0,0,0,0],

39. [0,0,0,0,255,255,0,0,0,0,0,0,0,0,0,0,0,0,0,0,255,255,0,0,0,0],

40. [0,0,0,0,255,255,0,0,0,0,0,0,0,0,0,0,0,0,0,0,255,255,0,0,0,0],

41. [0,0],

42. [0,0],

43.]

44.

45. display_image(list_of_lists)

RGB image
This program defines a function display_image that takes a list_of_lists as
input and displays it as an RGB image using OpenCV. In the example, we
create a sample list_of_lists with RGB pixel values for a 26x26 image.

Each inner list represents the RGB values of a pixel. The display_image
function is then called with this list as an argument. The resulting RGB
image is displayed using cv2.imshow, and the program waits for a key
press before closing the window with cv2.waitKey(0). The following code
is for creating a red image seen in the left most cell for Table 2.1.

1. import cv2

2. import numpy as np

3.

4. def display_image(list_of_lists):

5. # Convert the list of lists to a NumPy array

6. array = np.array(list_of_lists, dtype=np.uint8)

7.

8. # Create a RGB image from the array

9. image = cv2.cvtColor(array, cv2.COLOR_RGB2BGR)

10.

11. # Display the image

12. cv2.imshow("RGB Image", image)

13. cv2.waitKey(0)

14. cv2.destroyAllWindows()

15.

16. list_of_lists = [

17. [[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0, 0],[0,0,0],
[0,0,0],[0,0,0],[255,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],
[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0]],

18. [[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],
[255,0,0],[255,0,0],[0,0,0],[255,0,0],[255,0,0],[0,0,0],[0,0,0],[0,0,0],
[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0, 0],[0,0,0],[0,0,0]],

19. [[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],
[255,0,0],[255,0,0],[0,0,0],[0,0,0],[0,0,0],[255,0,0],[255,0,0],[0,0,0],
[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0, 0],[0,0,0],
[0,0,0]],

20. [[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[255,0,0],
[255,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[255,0,0],[255,0,0],
[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],
[0,0,0]],

21. [[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[255,0,0],[255,0,0],
[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[255,0,0],
[255,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],
[0,0,0]],

22. [[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[255,0,0],[255,0,0],[0,0,0],
[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[255,0,0],
[255,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0, 0,0],[0,0,0],[0,0,0]],

23. [[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[255,0,0],[0,0,0],[0,0,0],
[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],
[255,0,0],[255,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0, 0],[0,0,0],
[0,0,0]],

24. [[0,0,0],[0,0,0],[0,0,0],[0,0,0],[255,0,0],[255,0,0],[0,0,0],[0,0,0],
[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],
[0,0,0],[255,0,0],[255,0,0],[255,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],
[0,0,0]],

25. [[0,0,0],[0,0,0],[0,0,0],[0,0,0],[255,0,0],[255,0,0],[0,0,0],[0,0,0],
[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],
[0,0,0],[0,0,0],[255,0,0],[255,0,0],[255,0,0],[0,0,0],[0,0,0],[0,0,0],
[0,0,0]],

26. [[0,0,0],[0,0,0],[0,0,0],[0,0,0],[255,0,0],[255,0,0],[0,0,0],[0,0,0],
[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],
[0,0,0],[0,0,0],[0,0,0],[255,0,0],[255,0,0],[0,0,0],[0,0,0],[0,0,0],
[0,0,0]],

27. [[0,0,0],[0,0,0],[0,0,0],[0,0,0],[255,0,0],[255,0,0],[0,0,0],[0,0,0],
[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],
[0,0,0],[0,0,0],[0,0,0],[255,0,0],[255,0,0],[0,0,0],[0,0,0],[0,0,0],
[0,0,0]],

28. [[0,0,0],[0,0,0],[0,0,0],[0,0,0],[255,0,0],[255,0,0],[0,0,0],[0,0,0],
[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],
[0,0,0],[0,0,0],[0,0,0],[255,0,0],[255,0,0],[0,0,0],[0, 0,0],[0,0,0],
[0,0,0]],

29. [[0,0,0],[0,0,0],[0,0,0],[0,0,0],[255,0,0],[255,0,0],[0,0,0],[0,0,0],
[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],
[0,0,0],[0,0,0],[0,0,0],[255,0,0],[255,0,0],[0,0,0],[0,0,0],[0,0,0],
[0,0,0]],

30. [[0,0,0],[0,0,0],[0,0,0],[0,0,0],[255,0,0],[255,0,0],[0,0,0],[0,0,0],
[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],
[0,0,0],[0,0,0],[0,0,0],[255,0,0],[255,0,0],[0,0,0],[0,0,0],[0,0,0],
[0,0,0]],

31. [[0,0,0],[0,0,0],[0,0,0],[0,0,0],[255,0,0],[255,0,0],[0,0,0],[0,0,0],
[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],
[0,0,0],[0,0,0],[0,0,0],[255,0,0],[255,0,0],[0,0,0],[0,0,0],[0,0,0],
[0,0,0]],

32. [[0,0,0],[0,0,0],[0,0,0],[0,0,0],[255,0,0],[255,0,0],[0,0,0],[0,0,0],
[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],
[0,0,0],[0,0,0],[0,0,0],[255,0,0],[255,0,0],[0,0,0],[0,0,0],[0,0,0],
[0,0,0]],

33. [[0,0,0],[0,0,0],[0,0,0],[0,0,0],[255,0,0],[255,0,0],[255,0,0],
[255,0,0],[255,0,0],[255,0,0],[255,0,0],[255,0,0],[255,0,0],[255,0,0],

[255,0,0],[255,0,0],[255,0,0],[255,0,0],[255,0,0],[255,0,0],[255,0,0],
[255,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0]],

34. [[0,0,0],[0,0,0],[0,0,0],[0,0,0],[255,0,0],[255,0,0],[255,0,0],
[255,0,0],[255,0,0],[255,0,0],[255,0,0],[255,0,0],[255,0,0],[255,0,0],
[255,0,0],[255,0,0],[255,0,0],[255,0,0],[255,0,0],[255,0,0],[255,0,0],
[255,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0]],

35. [[0,0,0],[0,0,0],[0,0,0],[0,0,0],[255,0,0],[255,0,0],[0,0,0],[0,0,0],
[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],
[0,0,0],[0,0,0],[0,0,0],[255,0,0],[255,0,0],[0,0,0],[0,0,0],[0,0,0],
[0,0,0]],

36. [[0,0,0],[0,0,0],[0,0,0],[0,0,0],[255,0,0],[255,0,0],[0,0,0],[0,0,0],
[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],
[0,0,0],[0,0,0],[0,0,0],[255,0,0],[255,0,0],[0,0,0],[0,0,0],[0,0,0],
[0,0,0]],

37. [[0,0,0],[0,0,0],[0,0,0],[0,0,0],[255,0,0],[255,0,0],[0,0,0],[0,0,0],
[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],
[0,0,0],[0,0,0],[0,0,0],[255,0,0],[255,0,0],[0,0,0],[0,0,0],[0,0,0],
[0,0,0]],

38. [[0,0,0],[0,0,0],[0,0,0],[0,0,0],[255,0,0],[255,0,0],[0,0,0],[0,0,0],
[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],
[0,0,0],[0,0,0],[0,0,0],[255,0,0],[255,0,0],[0,0,0],[0,0,0],[0,0,0],
[0,0,0]],

39. [[0,0,0],[0,0,0],[0,0,0],[0,0,0],[255,0,0],[255,0,0],[0,0,0],[0,0,0],
[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],
[0,0,0],[0,0,0],[0,0,0],[255,0,0],[255,0,0],[0,0,0],[0,0,0],[0,0,0],
[0,0,0]],

40. [[0,0,0],[0,0,0],[0,0,0],[0,0,0],[255,0,0],[255,0,0],[0,0,0],[0,0,0],
[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],
[0,0,0],[0,0,0],[0,0,0],[255,0,0],[255,0,0],[0,0,0],[0,0,0],[0,0,0],
[0,0,0]],

41. [[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],
[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],
[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0]],

42. [[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],
[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],
[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0],[0,0,0]],

43.]

44.

45. display_image(list_of_lists)

46.

47.

48.

Conclusion
In this chapter, we discussed the topics of pixels, color spaces, how images
are rendered on a computer using pixels and color spaces, relationship
between images, video frames and videos. We discussed OpenCV’s history
and how it came about to be the de facto platform for programming with
images. We have also seen coding examples for basic image operations.

Exercises
1. In the file for creating grayscale and colored images, change the

values of the individual pixels and rerun the programs. Observe how
your changes are rendered visually.

2. In the program for opening an image, open different images like the
photos of your friends and family. Observe how the image
dimensions like tall, wide, portrait, landscape, and so on, can be
understood from the matrix dimensions.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

OceanofPDF.com

https://discord.bpbonline.com/
https://oceanofpdf.com/

Chapter 3
Challenges in Computer Vision

Introduction
Computer vision is an interdisciplinary field at the intersection of computer
science and artificial intelligence. The objective of practitioners in this field
is to enable machines to perceive and interpret visual information like
humans. This vibrant field confronts programmers with a diverse range of
challenges, including the complexity of visual data, variability, occlusion,
semantic understanding, image classification, object detection, semantic
segmentation, 3D reconstruction, depth estimation, and video
understanding. Machine learning algorithms, particularly deep learning
approaches like Convolutional Neural Networks (CNNs), have become
indispensable tools for addressing these challenges and enabling machines
to comprehend and interpret visual information. As computer vision
continues to advance, tackling these challenges will pave the way for
groundbreaking applications in diverse domains such as autonomous
vehicles, robotics, healthcare, and augmented reality. In this chapter, we
will explore the challenges inherent in computer vision and delve into
various categories of challenges that programmers encounter in this exciting
field.

Structure
The chapter discusses the following topics:

Topics in computer vision

Complexity in image processing

Image classification

Object localization

Image segmentation

Character recognition

Objectives
This chapter aims to introduce the various topics in computer vision. By
end of the chapter, you should be able to explain the most common
challenges in computer vision, their similarities, and differences. You
should also be able to identify the appropriate algorithm to be chosen when
you encounter a computer vision use case. The chapter will discuss in a
considerable detail about the topics and sub-topics of computer vision along
with their relationships, similarities, and differences. We will also discuss
various terminologies which are of relevance to this context.

Topics in computer vision
As described earlier, computer vision focuses on enabling machines to
understand and interpret visual information from images or videos. It
involves analyzing and extracting meaningful insights from visual data,
mimicking human visual perception. Several key topics and algorithms
form the foundation of computer vision. Some of the most popular topics
are listed here.

Image classification: As the name suggests, image classification
classifies as an image based on its content. A label name is assigned
to the image based on its content. Popular deep learning models for
image classification include based models like CNNS, AlexNet,
VGG, GoogLeNet (Inception), ResNet, and EfficientNet. Transfer
learning leverages pre-trained CNN models like ImageNet and fine-
tunes the models for specific tasks.

Object detection: Object detection focuses on locating and
identifying multiple objects within an image. Well-known algorithms

and models for object detection are region-based convolutional
neural networks (R-CNNs), Fast R-CNN, and Faster R-CNN,
single-shot multibox detectors (SSD) and you only look once
(YOLO).

Object localization: Object localization involves determining the
precise location or bounding box coordinates of objects within an
image. It is often an integral component of object detection
algorithms.

Semantic segmentation: Semantic segmentation aims to label each
pixel in an image with a corresponding class label, allowing for fine-
grained understanding of object boundaries. Prominent models for
semantic segmentation include fully convolutional networks
(FCN), U-Net and DeepLab.

Instance segmentation: Instance segmentation combines object
detection and semantic segmentation by identifying and delineating
individual instances of objects within an image. Notable algorithms
include Mask R-CNN and Panoptic Segmentation.

Optical character recognition: Optical character recognition
(OCR) focuses on extracting text from images or documents.
Tesseract is a widely used open-source OCR engine. Additionally,
deep learning models, including recurrent neural networks
(RNNs) and attention-based models, have achieved impressive
results in OCR tasks.

Pose estimation: Pose estimation estimates the position and
orientation of human beings. Notable algorithms include OpenPose,
AlphaPose and Mask R-CNN with key points estimation.

Video analysis: Video analysis encompasses tasks such as action
recognition, object tracking, and activity detection. Various deep
learning models can be used for video analysis, including 3D
convolutional neural networks (3D CNNs) and RNNs.

Other topics: Additional topics in computer vision include image
registration, depth estimation, image super-resolution, image
denoising, and more. The list mentioned here does not include

anything from Generative AI (Gen AI) which is a complete topic
itself.

It is useful to introduce the terms things and stuff at this point. In the
context of computer vision, things and stuff are terms used to differentiate
between different types of visual entities or regions within an image or a
scene. things typically refer to objects or entities that are distinct and
recognizable, such as specific objects, people, animals, or vehicles. Things
are typically defined by their individual identities and have well-defined
boundaries. On the other hand, stuff refers to regions or areas in an image
that do not necessarily have well-defined boundaries or individual
identities. Stuff refers to the overall appearance or texture of a scene and
represents more amorphous and context-dependent regions.

The task of object detection and recognition in computer vision focuses on
identifying and categorizing these things within an image or a video frame.
For example, detecting and classifying different types of cars in a traffic
scene or recognizing specific objects like a chair, a dog, or a cup in an
image. Examples of stuff can include the sky, grass, water, road, walls, and
other background elements that do not correspond to specific objects but
contribute to the overall visual understanding of a scene.

Note: The distinction between things and stuff is not always rigid.
There can be overlaps or ambiguous regions that fall into both
categories.

Differentiation between things and stuff helps in understanding and
modeling the visual content of images and scenes, enabling a more
comprehensive analysis and interpretation of visual data.

Complexity in image processing
In the field of machine learning, images are considered unstructured data.
This is because, there is no defined structure that can be assigned to image
data. It is impossible to say that a pixel in the top-left corner or a pixel in
22nd row and 34th column shall uniquely identify the contents of the image.
This inherent unstructured nature of the data makes image processing an
extremely difficult task. Images contain a wealth of data which can be
processed by humans quite intuitively. Humans have achieved this ability

over the millions of years of evolution. It is a humungous challenge to
impart that same level of knowledge to a computer program.

The unstructured nature of image data gives raise to certain challenges
unique to the domain of computer vision. Let us discuss them as follows:

Variability in image appearance: One of the primary challenges in
image classification arises from the immense variability in image
appearance. Images can exhibit variations in lighting conditions,
viewpoints, scales, rotations, occlusions, and background clutter.
These variations make it difficult for algorithms to generalize
effectively from limited training data and accurately classify unseen
images.

High-dimensional data: Images are represented by high-
dimensional data, with each pixel contributing to the overall feature
space. This high dimensionality poses a challenge for image
classification algorithms, as it increases the computational
complexity and demands substantial computational resources.
Efficient feature extraction and dimensionality reduction techniques
are crucial to handle this challenge effectively.

Overfitting and generalization: Overfitting occurs when a model
learns the training data very well but performs poorly on unseen
data. Due to the complexity of image datasets, overfitting is a
significant concern in image classification. Deep neural networks,
with their large number of parameters, are particularly prone to
overfitting. Robust regularization techniques, such as dropout and
weight decay, are necessary to mitigate overfitting and enable better
generalization.

Limited training data: The availability of labeled training data
plays a pivotal role in image classification. However, collecting and
annotating a diverse and extensive dataset can be expensive and
time-consuming. Limited training data poses challenges in capturing
the full spectrum of variations in real-world images, leading to poor
performance on novel examples. Techniques like data augmentation,
transfer learning, and domain adaptation can help alleviate the
impact of limited training data.

Class imbalance: Class imbalance occurs when certain classes in
the dataset have significantly fewer instances than others. This issue
hampers the learning process as models tend to be biased towards
the majority classes, leading to poor classification performance on
minority classes. Strategies such as oversampling, undersampling,
and class weighting are employed to address class imbalance and
ensure fair representation of all classes during training.

Computational resources: Deep learning-based image classification
models often require substantial computational resources, including
high-performance GPUs and large memory capacities. Training and
fine-tuning complex models can be computationally expensive and
time-consuming, limiting the accessibility of advanced image
classification techniques to researchers and organizations with
adequate resources.

Adversarial attacks: Adversarial attacks aim to fool image
classification models by introducing imperceptible perturbations to
input images. These perturbations are carefully crafted to deceive the
model into misclassifying the image. Adversarial attacks highlight
the vulnerability of image classification models and raise concerns
about their robustness in real-world scenarios. Developing models
that are resilient to adversarial attacks is an ongoing research area in
image classification.

Now that we know what image processing and computer vision is about, let
us start discussing the specific topics and tasks in the field of computer
vision. We shall discuss the most common challenges in computer vision
without getting into the field of Generative AI.

Image classification
Image classification is a fundamental task in computer vision that involves
categorizing images into different predefined classes or labels based on
their content. It aims to teach machines to recognize and differentiate
between various objects, scenes, or concepts depicted in images. To use the
terms discussed earlier, image classification aims to identify the most
prominent thing in the given image. No matter how much area is occupied

by stuff, image classification aims to focus and identify the thing in the
image.

Image classification has witnessed tremendous advancements with the rise
of deep learning. However, despite the impressive progress, it remains a
challenging problem that researchers continue to tackle. A simple example
is, if the image has two different things, then how should the image be
classified? Also, how to determine what is thing and what is stuff?

As an example, refer to Figures 3.1 and 3.2. Truck is present in both
images, but it is more a stuff in Figure 3.1. A layman explanation is saying
that truck is far away from our point of view in Figure 3.1. While this is
obvious to humans, how can the computer identify this difference from a
2D matrix of pixels? Please refer to the following figure:

Figure 3.1: Truck, dog and human where truck is in the background “stuff”

While in Figure 3.1, the human and the dog are things, it is not so obvious
in Figure 3.2:

Figure 3.2: Truck, dog and human where all objects are in the foreground “things”

Object localization
Object detection is the task of identifying and localizing multiple objects
within an image or a video frame. It goes beyond image classification,
which focuses on assigning a single label to an entire image. Object
detection involves precisely delineating the boundaries of objects and
providing information about their positions in the image. Object detection
algorithms aim to answer two primary questions: What objects are present
in the image? Where are these objects located? Object detection plays a
crucial role in numerous applications, including autonomous driving,
surveillance systems, object tracking, augmented reality, and robotics,
where the ability to recognize and locate objects accurately is essential for
making informed decisions and taking appropriate actions. To accomplish
this, object detection algorithms typically follow a multi-step process:

1. Region proposal: Initially, potential regions in the image that might
contain objects are identified. Various methods, such as selective
search, edge boxes, or region proposal networks (RPNs), are
employed to generate these region proposals.

2. Feature extraction: For each proposed region, a set of features is
extracted to capture the discriminative characteristics of the
underlying objects. Common approaches involve using pre-trained
CNNs like VGG, ResNet, or EfficientNet to extract rich feature
representations from the region.

3. Classification: The extracted features are then utilized to classify
each proposed region into specific object categories. This step
employs classification algorithms, such as support vector machines
(SVMs), logistic regression, or more commonly, softmax-based
classifiers, to assign a class label to each region.

4. Localization: Along with classification, object detection also
involves accurately localizing the objects within the proposed
regions. This typically entails predicting the coordinates of bounding
boxes that tightly enclose the objects. These bounding boxes provide
information about the object's position, size, and orientation.

5. Non-maximum suppression: Since multiple region proposals may
overlap or cover the same object, a technique called non-maximum
suppression (NMS) is applied to filter out redundant or overlapping
detections. NMS ensures that only the most confident and non-
overlapping bounding boxes are retained, resulting in a more
accurate and compact set of object detections.

Object detection algorithms differ from image classification in the aspects
of localization, ability to handle multiple objects in the image and in their
fine-grained analysis. The differences between the two can be tabulated as
follows in Table 3.1:

Object detection Image classification

Localization Identifies the presen
ce of objects and pr
ovides precise locali
zation information b
y specifying boundi
ng boxes around eac
h object.

Focuses solely on as
signing a single labe
l to the entire image
without localizing s
pecific objects.

Object detection Image classification

Handling multiple
objects

Handles scenarios
where multiple obje
cts of different class
es may be present w
ithin a single image.
Algorithms aim to d
etect and classify ea
ch individual object
separately.

Deals with classifyi
ng the entire image i
nto a single categor
y.

Level of analysis Fine-grained analysi
s is made possible b
y providing detailed
information about t
he location, size, an
d shape of objects w
ithin an image. This
level of granularity
enables subsequent
tasks like tracking,
counting, or interact
ion analysis.

Algorithms provide
only a coarse-graine
d understanding of t
he image content wi
thout precise object-
level details.

Table 3.1: Comparison of image classification and object detection algorithms

As an example, refer to Figures 3.3 and Figure 3.4:

Figure 3.3: Classification algorithm (InceptionV3) classifies this as a cat

Image classification algorithms would classify Figure 3.3 as the cat, but
they will fail to give a satisfactory classification for Figure 3.4. Neither the
dog nor cat will provide an accurate classification.

Figure 3.4: Classification algorithm does not work well. Neither cat nor dog is complete description

The same images when fed to an object detection algorithm reveal much
more detailed information. See Figures 3.5 and Figure 3.6 for the additional

information that is revealed when object detection algorithms are run on
them. Please refer to the following figure:

Figure 3.5: Bounding box information for single object

Note the bounding boxes which provide the precise location of the aero
plane, truck, dog and person. Please refer to the following figure:

Figure 3.6: Bounding box information for multiple objects

Object detection is crucial in applications that require identifying and
localizing specific objects within an image, such as autonomous driving,
surveillance systems, object tracking, and augmented reality. It enables

tasks like counting objects, monitoring, and making informed decisions
based on the detected objects.

Image segmentation
Image segmentation is the task of partitioning an image into meaningful and
semantically coherent regions or segments. It involves assigning a label or
category to each pixel in the image, allowing for a fine-grained
understanding of object boundaries and their context within the image. It
allows for precise delineation of objects, accurate understanding of their
spatial relationships, and enables subsequent analysis and decision-making
based on the segmented regions.

Although image segmentation and object detection are related and share
some similarities, they are two distinct tasks in computer vision. Image
segmentation focuses on dividing an image into meaningful regions at the
pixel level, while object detection aims to detect and localize specific
objects with bounding boxes. Both tasks have distinct goals and
applications, with segmentation providing detailed object boundaries and
object detection offering object localization and class information. The task
of semantic segmentation focuses on labeling and delineating the stuff
regions within an image.

The key differences between image segmentation and object detection are
listed in Table 3.2:

Image segmentation Object detection

Goal Partition an image i
nto semantically me
aningful regions or
segments, where ea
ch pixel is assigned
a label or category.
The focus is on und
erstanding the inter
nal structure and bo
undaries of objects
within the image.

Identify and locate s
pecific objects withi
n an image. It invol
ves recognizing the
presence of objects
and providing boun
ding box coordinate
s around each detect
ed object. The emph
asis is on both objec

t classification and
precise localization.

Output A pixel-level mask
or labeling, where e
ach pixel is assigne
d a specific class or
label. The result is a
detailed understandi
ng of the object bou
ndaries and the relat
ionships between di
fferent regions withi
n the image.

A set of bounding b
oxes that tightly enc
lose each detected o
bject along with the
class label associate
d with each object.

Granularity Fine-grained unders
tanding of object bo
undaries and region
s within an image.

Relatively coarser u
nderstanding of the
objects in an image.

Table 3.2: Comparison of image classification and object detection algorithms

There are several methods and approaches for image segmentation, each
with its own characteristics and trade-offs. Here, we will cover some of the
commonly used techniques.

Thresholding: Thresholding is a simple and intuitive segmentation
technique that separates objects from the background based on pixel
intensity values. A threshold value is selected, and pixels with
intensity values above or below the threshold are classified as things
or stuff, respectively.

Region-based segmentation: Region-based techniques group pixels
into regions based on certain criteria such as similarity in color,
texture, or intensity. Popular algorithms in this category include
Watershed Transform, Mean-Shift clustering, Graph cuts, Edge-
based segmentation, Contour-based segmentation, and deep
learning-based segmentation. We shall discuss these in detail in the
upcoming chapters.

As an example, refer to Figure 3.7. Image classification algorithms would
classify Figure 3.3 as dog but they will fail to give a satisfactory
classification for Figure 3.7. Neither dog nor cat will provide an accurate
classification.

Figure 3.7: Segmentation provides exact masks

Image segmentation is useful in applications that require a detailed
understanding of objects and their boundaries, such as medical image
analysis, semantic image editing, and scene understanding. It enables
precise analysis of object shapes, segmentation-based tracking, and content-
aware image manipulation.

It is apt here to briefly discuss the two sub-topics of image segmentation
viz. semantic segmentation and panoptic segmentation.

Semantic segmentation: Semantic segmentation is the task of
labeling each pixel in an image with a corresponding class or
category label. It aims to partition the image into semantically
meaningful regions based on object categories. Unlike traditional
image segmentation methods that may assign different labels to
different instances of the same object class, semantic segmentation
treats all instances of a particular class equally. Semantic
segmentation provides a pixel-level understanding of an image,
allowing for a detailed analysis of object boundaries and their spatial
relationships. It enables applications such as scene understanding,
autonomous driving, and image-based reasoning.

Panoptic segmentation: Panoptic segmentation aims to combine
both instance-level and semantic segmentation into a unified
framework. It provides a comprehensive understanding of an image
by simultaneously detecting and segmenting objects at the instance
level while also assigning semantic labels to regions that contain
groups of objects. In panoptic segmentation, each pixel is assigned a
class label for the semantic segmentation aspect, and unique object
instances are identified and labeled separately. This means that in
addition to providing detailed segmentation masks for individual
objects, panoptic segmentation also labels regions where multiple
objects are present. The output of panoptic segmentation consists of
two components: instance masks for individual objects and semantic
labels for groups of objects. These components together provide a
complete understanding of the scene, including precise object
boundaries and semantic category information. As can be imagined,
panoptic segmentation is significantly more challenging compared to
semantic segmentation.

Character recognition
Character recognition, also known as optical character recognition
(OCR), is a branch of computer vision that focuses on the automatic
extraction and recognition of text characters from images or scanned
documents. The goal is to convert visual representations of characters into
machine-readable text.

OCR systems typically follow a series of steps to perform character
recognition:

1. Preprocessing: The input image or document is preprocessed to
enhance the quality and clarity of the text. This may involve
operations such as noise removal, image normalization, and
binarization (converting the image to black and white).

2. Text localization: The regions containing text are identified and
localized within the image. This step helps isolate the text from the
rest of the image content, improving the efficiency of subsequent
recognition processes.

3. Text segmentation: The individual characters are separated from
each other, segmenting the text into its constituent parts. This step is
crucial for recognizing each character independently.

4. Feature extraction: Relevant features of the segmented characters
are extracted to create a representation suitable for recognition.
These features can include aspects like shape, stroke width, contour,
or texture.

5. Classification: Machine learning algorithms, particularly pattern
recognition techniques, are employed to classify each character
based on its extracted features. Commonly used algorithms include
support vector machines (SVMs), k-nearest neighbors (k-NNs),
and neural networks.

6. Post-processing: The recognized characters are further refined and
processed to improve accuracy. Techniques such as language
modeling, dictionary matching, and error correction algorithms are
applied to enhance the accuracy of the recognized text.

As an example, refer to Figure 3.8. Both are alphabets. One is hand-written
and the other is printed. The purpose of object recognition is to identify the
characters that are represented in this figure:

Figure 3.8: Printed and hand-written characters

It would be tempting to think of OCR as an application of image
classification or object detection. But the processing is much more
complicated than that. Image classification aims to classify entire images
into predefined categories, whereas character recognition focuses on
recognizing and extracting individual characters or textual elements. Image
classification operates at a higher level and considers the overall content or
context of an image, while character recognition deals with finer details by
recognizing and analyzing individual characters. Unlike image

classification, character recognition provides a sequence of recognized
characters or text.

Conclusion
In this chapter, we have discussed various topics in computer vision. We
start with a discussion on the common challenges in computer vision and
why they are challenging. We discussed the importance of things and stuff
and how various algorithm families aim to identify them in a given image.
We discussed the algorithm families for classifying images, detecting and
locating objects in an image, getting granular information contained in an
image by using segmentation techniques and finally discussed optical
character recognition.

Exercises
1. Take any two images. Using traditional programming techniques

(like logical statements, loops and so on) see if you can perform the
jobs like detecting foreground, background, identifying the
characters in the image, locating the objects in the image etc. Do not
panic if you do not achieve good results.

Key terms
Image classification: The task of assigning a label or category to an
image based on its visual content.

Instance segmentation: Process of not only identifying and
categorizing objects in an image but also distinguishing and
segmenting each individual instance of an object with pixel-level
accuracy.

Object detection: Process of identifying and localizing multiple
objects within an image by drawing bounding boxes around them.

Object localization: Another name for object detection.

OCR: The process of extracting text from images or documents and
converting it into machine-readable text.

Panoptic segmentation: Combination of instance segmentation and
semantic segmentation.

Pose estimation: The task of estimating the 3D position and
orientation of an object or a person in an image or video.

Semantic segmentation: The task of assigning pixel-level labels to
an image, classifying each pixel into specific categories to create a
detailed understanding of the scene.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

OceanofPDF.com

https://discord.bpbonline.com/
https://oceanofpdf.com/

Chapter 4
Classical Solutions

Introduction
As discussed in earlier chapters, computer vision is a multidisciplinary field
that aims to enable machines to understand and interpret visual information
from images and videos. This chapter serves as an overview of the
fundamental classical algorithms used in computer vision. These algorithms
have stood the test of time and continue to be relevant, even with the advent
of deep learning techniques. They provide valuable insights into image
analysis, feature extraction, segmentation, motion estimation, and object
detection.

While these classical algorithms have been extensively utilized in computer
vision, it is important to note that recent advancements in deep learning,
particularly convolutional neural networks (CNNs), have significantly
improved the state-of-the-art performance across various vision tasks.

Structure
The following topics are covered in the chapter:

Solutions for challenges in computer vision

Classical solutions

Modern solutions

Algorithm families

Morphological operations

Thresholding

Detecting edges and corners

Image transformations

Region growing

Clustering

Template matching

Watershed algorithm

Foreground and background detection

Superpixels

Image pyramids

Convolution

Objectives
The objective of this chapter is to provide a comprehensive survey of
classical computer vision algorithms. We shall highlight their key
principles, applications, strengths, and limitations. We will also present a
comparative analysis of different algorithms within specific domains. The
chapter will demonstrate the practical applications of classical algorithms in
real-world scenarios. We will present examples where these algorithms
have been successfully applied, discuss the challenges, methodologies, and
the outcomes.

Solutions for challenges in computer vision
Before we go into the details, let us quickly recapitulate the major
challenges in computer vision. The challenges include image classification,
object detection and localization, segmentation, character recognition, face
detection, face recognition, depth perception and the like. Let us see the
classical algorithms that we used to solve these problems.

Classical solutions
Classical computer vision algorithms are based on traditional techniques
and heuristics, with a focus on explicit handcrafted features and rule-based
methods. They offer well-defined steps and interpretability, making them
suitable for tasks like edge detection, corner detection, and image filtering.
However, these algorithms face challenges when dealing with complex and
large-scale datasets, requiring extensive parameter tuning and lacking
generalization capability. Their reliance on handcrafted features and explicit
rule-based methods limits their adaptability to variations and different
datasets. While classical algorithms provide a solid foundation and insights
into computer vision tasks, they may fall short when confronted with
complex real-world scenarios.

Modern solutions
Modern computer vision algorithms possess the ability to automatically
learn features from data, leveraging the power of deep learning and neural
networks. Algorithms like CNNs excel in tasks such as image classification,
object detection, semantic segmentation, and image synthesis. By learning
hierarchical representations from data, they can effectively handle complex
patterns and achieve state-of-the-art performance. However, these
algorithms demand large amounts of labeled data for training, involve
computationally intensive training and inference processes, and can be
challenging to interpret due to their black-box nature. Their capability to
learn intricate and abstract features allows them to handle diverse data and
generalize well to unseen examples. The deep learning capabilities of
modern algorithms have revolutionized computer vision, yielding superior
performance across various tasks, albeit with challenges related to data
requirements and computational resources.

Algorithm families
In this section, we shall discuss some of the popular classical algorithm
families and how they help in addressing some foundational tasks of
computer vision. We shall use the image shown in Figure 4.1 for most of
our discussions in this chapter. It is the scan of an elementary school
question paper. As can be seen from the image, the scan copy contains

varying color shades and some noise information as well. For example, the
text printed on the obverse of this paper was dark enough to be captured
while scanning the front of the paper.

Figure 4.1: Noise and color shades are visible in the scanned image

Morphological operations

Morphological operations are a set of image processing techniques used to
analyze and manipulate the shape and structure of objects within an image.
They are based on the principles of mathematical morphology and primarily
operate on binary or grayscale images.

The two fundamental morphological operations are dilation and erosion.
Dilation expands the shape of objects by adding pixels to their boundaries,
resulting in larger and more connected regions. Erosion, on the other hand,
shrinks the objects by removing pixels from their boundaries, causing
objects to become smaller and disconnected. These basic operations can be
combined to form more advanced morphological operations. Opening is the
process of applying erosion followed by dilation, which can remove small
objects and smooth boundaries. Closing, conversely, involves dilation
followed by erosion and can fill in gaps and close small holes in objects.

Structuring elements play a crucial role in morphological operations. A
structuring element is a small shape or kernel that defines the behavior of
the operation. It determines the size, shape, and orientation of the
neighborhood considered during the operation. By selecting different
structuring elements, the effects of the morphological operations can be
tailored to specific image features and objectives.

One important concept in morphological operations is the notion of
connectivity. Connectivity defines how pixels or regions are considered
connected or neighboring each other. It influences the behavior and
outcome of morphological operations, especially when dealing with
complex or irregular-shaped objects. Advanced morphological operations
include morphological gradients, top-hat, and bottom-hat transformations.
Morphological gradients highlight the boundaries of objects, while top-hat
and bottom-hat transformations emphasize bright and dark regions,
respectively, in relation to the background.

Erosion and dilation of images
Here, we show the code for performing erosion operation on Figure 4.1:

1. import cv2

2. import numpy as np

3.

4. # Read the input image

5. image = cv2.imread("input_images/4_ThresholdingImage.jpg")

6.

7. # Check if the image was successfully loaded

8. if image is None:

9. print("Unable to load the image.")

10. exit()

11.

12. # Define the structuring element for erosion

13. kernel_size = 5

14. structuring_element = cv2.getStructuringElement(cv2.MORPH_REC
T, (kernel_size, kernel_size))

15.

16. # Perform image erosion

17. eroded_image = cv2.erode(image, structuring_element)

18.

19. stacked_results = np.hstack((image, eroded_image))

20. # Display the original image and the eroded image

21. cv2.imshow('Erosion', stacked_results)

22.

23. # Wait for key press and then close all windows

24. cv2.waitKey(0)

25. cv2.destroyAllWindows()

26. cv2.imwrite("output_images/erosion.jpg", stacked_results)

The program reads the input image in grayscale and defines a structuring
element for erosion. In this example, a rectangular structuring element of
size 5x5 is used, but you can adjust the kernel_size variable to change the
size and shape of the structuring element. The program then applies the
erosion operation using the erode() function from OpenCV, passing the
input image and the structuring element as parameters. Finally, the program
displays the original image and the eroded image using OpenCV's
imshow() function. When you run the program, you will see the original
image and the eroded image displayed side by side.

Note: Erosion removes pixels from the boundaries of objects, causing
objects to become smaller and disconnected.

The success of erosion depends on the structuring element’s size, shape and
its relationship to the objects in the image. This code produces the below
output as shown in Figure 4.2:

Figure 4.2: Left is original image and right is eroded image

Let us now see the code for performing dilation operation on the same
image:

1. import cv2

2. import numpy as np

3.

4. # Read the input image

5. image = cv2.imread("input_images/4_ThresholdingImage.jpg")

6.

7. # Check if the image was successfully loaded

8. if image is None:

9. print("Unable to load the image.")

10. exit()

11.

12. # Define the structuring element for dilation

13. kernel_size = 5

14. structuring_element = cv2.getStructuringElement(cv2.MORPH_REC
T, (kernel_size, kernel_size))

15.

16. # Perform image dilation

17. dilated_image = cv2.dilate(image, structuring_element)

18.

19. stacked_results = np.hstack((image, dilated_image))

20. # Display the original image and the dilated image

21. cv2.imshow('Dilation', stacked_results)

22.

23. # Wait for key press and then close all windows

24. cv2.waitKey(0)

25. cv2.destroyAllWindows()

26. cv2.imwrite("output_images/dilation.jpg", stacked_results)

The program reads the input image in grayscale and defines a structuring
element for dilation. In this example, a rectangular structuring element of
size 5x5 is used, but you can adjust the kernel_size variable to change the
size and shape of the structuring element. The program then applies the
dilation operation using the dilate() function from OpenCV, passing the
input image and the structuring element as parameters. Finally, the program
displays the original image and the dilated image using OpenCV's

imshow() function. When you run the program, you will see the original
image and the dilated image displayed side by side.

Note: Dilation adds pixels to the boundaries of objects, causing
objects to become larger and more connected.

The effectiveness of dilation depends on the size and shape of the
structuring element and its relationship to the objects in the image. This
code produces the below output as shown in Figure 4.3:

Figure 4.3: Left is original image and right is dilated image

Closing and opening images
Opening operation happens when the erosion, dilation operations are
performed in that sequence. This helps in eliminating the noise in the
image. Please see the below code for opening an image:

1. import cv2

2. import numpy as np

3.

4. # Read the input image

5. image = cv2.imread("input_images/4_ThresholdingImage.jpg")

6.

7. # Check if the image was successfully loaded

8. if image is None:

9. print("Unable to load the image.")

10. exit()

11.

12. # Define the structuring element for erosion

13. kernel_size = 5

14. structuring_element = cv2.getStructuringElement(cv2.MORPH_REC
T, (kernel_size, kernel_size))

15.

16. # Perform image erosion

17. eroded_image = cv2.erode(image, structuring_element)

18.

19. # Perform image dilation

20. opened_image = cv2.dilate(eroded_image, structuring_element)

21.

22. # Display the original image and the opened image

23. stacked_results = np.hstack((image, opened_image))

24. cv2.imshow('Opened Image', stacked_results)

25.

26. # Wait for key press and then close all windows

27. cv2.waitKey(0)

28. cv2.destroyAllWindows()

29. cv2.imwrite("output_images/opened.jpg", stacked_results)

The program reads the input image in grayscale and defines a structuring
element for the closing operation. In this example, a rectangular structuring
element of size 5x5 is used, but you can adjust the kernel_size variable to
change the size and shape of the structuring element. The program then
applies the closing operation by first eroding and the image and then
dilating the eroded image. Finally, the program displays the original image
and the closed image using OpenCV's imshow() function. When you run
the program, you will see the original image and the closed image displayed
side by side.

Note: The opening operation performs erosion and dilation to
eliminate minor protrusions in the image.

It is useful for smoothing object boundaries and removing small, isolated
regions in the image. The effectiveness of closing depends on the size and
shape of the structuring element and its relationship to the objects in the
image. This code produces the below output as shown in Figure 4.4.

Figure 4.4: Left is original image and the right one is opened image

Closing is the reverse of opening operation. Here dilation happens before
erosion. It can eliminate small holes in the foreground objects of the image.
The code for closing is as follows:

The program reads the input image in grayscale and defines a structuring
element for the closing operation. In this example, a rectangular structuring
element of size 5x5 is used, but you can adjust the kernel_size variable to
change the size and shape of the structuring element. The program then
applies the dilation operation on the image and then erodes the resulting
image. Finally, the program displays the original image and the closed
image using OpenCV's imshow() function. When you run the program, you
will see the original image and the closed image displayed side by side.

Note: The closing operation combines dilation and erosion to fill in
gaps and close small holes in images.

It is useful for smoothing object boundaries and removing small, isolated
regions in the image. The effectiveness of closing depends on the size and
shape of the structuring element and its relationship to the objects in the
image. This code produces the output as shown in Figure 4.5:

Figure 4.5: Left is original image and right is closed image

Morphological operations are relatively simple, yet powerful, tools for
shape analysis and manipulation in computer vision. Their versatility,
ability to preserve object boundaries, and straightforward implementation
make them essential in various image processing tasks, aiding in the
extraction of meaningful information and enhancing the analysis and
understanding of images.

1. import cv2

2. import numpy as np

3.

4. # Read the input image

5. image = cv2.imread("input_images/4_ThresholdingImage.jpg")

6.

7. # Check if the image was successfully loaded

8. if image is None:

9. print("Unable to load the image.")

10. exit()

11.

12. # Define the structuring element for erosion

13. kernel_size = 5

14. structuring_element = cv2.getStructuringElement(cv2.MORPH_REC
T, (kernel_size, kernel_size))

15.

16. # Perform image dilation

17. dilated_image = cv2.dilate(image, structuring_element)

18.

19. # Perform image erosion

20. closed_image = cv2.erode(dilated_image, structuring_element)

21.

22.

23.

24. # Display the original image and the closed image

25. stacked_results = np.hstack((image, closed_image))

26. cv2.imshow('Closed Image', stacked_results)

27.

28. # Wait for key press and then close all windows

29. cv2.waitKey(0)

30. cv2.destroyAllWindows()

31. cv2.imwrite("output_images/closed.jpg", stacked_results)

Thresholding
Thresholding is a fundamental technique in computer vision used to
separate objects or regions of interest from an image based on their pixel
intensities. It is a simple yet powerful method that relies on a specified
threshold value to determine whether a pixel belongs to the foreground or
background. In thresholding, each pixel in the image is compared to the
threshold value. If the pixel intensity is above the threshold, it is assigned to
the foreground; otherwise, it is assigned to the background. This process
effectively creates a binary image where the foreground pixels represent the
objects or regions of interest. Thresholding finds various applications in
image processing tasks such as image segmentation, object detection, and
feature extraction. It is particularly useful when the desired objects have
distinct intensity characteristics compared to the background.

Choosing an appropriate threshold value is crucial for accurate results.
Different thresholding techniques exist, including global thresholding,
adaptive thresholding, and Otsu's thresholding. These methods
automatically determine the threshold based on local or global image
characteristics, improving the accuracy of segmentation. While thresholding
is a simple technique, it has limitations. It assumes that the intensity
distribution of foreground and background pixels is well-separated, which
may not always be the case in complex images. Variations in illumination,
noise, and uneven backgrounds can affect the thresholding process, leading
to inaccurate results. To overcome these limitations, advanced techniques,
such as multi-level thresholding and thresholding with multiple color
channels, can be employed. These approaches leverage additional
information to refine the segmentation results and handle more complex
scenarios.

Let us see this in action with a simple code. Applying different thresholding
algorithms on the image in Figure 4.1 will have different results. The
following code performs the thresholding on this image:

1. import cv2

2. import numpy as np

3. import sys

4.

5. # Read the input image

6. image = cv2.imread("input_images/4_ThresholdingImage.jpg", 0)

7.

8. # Check if the image was successfully loaded

9. if image is None:

10. print("Unable to load the image.")

11. sys.exit()

12.

13. # Get the thresholding level from command line argument

14. threshold_level = int(sys.argv[1])

15.

16. # Apply different thresholding algorithms

17. ret, thresh_binary = cv2.threshold(image, threshold_level, 255, cv2.T
HRESH_BINARY)

18. ret, thresh_binary_inv = cv2.threshold(image, threshold_level, 255, c
v2.THRESH_BINARY_INV)

19. ret, thresh_trunc = cv2.threshold(image, threshold_level, 255, cv2.TH
RESH_TRUNC)

20. ret, thresh_tozero = cv2.threshold(image, threshold_level, 255, cv2.T
HRESH_TOZERO)

21. ret, thresh_tozero_inv = cv2.threshold(image, threshold_level, 255, c
v2.THRESH_TOZERO_INV)

22. ret, thresh_otsu = cv2.threshold(image, 0, 255, cv2.THRESH_BINAR
Y + cv2.THRESH_OTSU)

23.

24. stacked_results = np.hstack((thresh_binary, thresh_binary_inv, thresh
_trunc, thresh_tozero, thresh_tozero_inv, thresh_otsu))

25. # Create a window to display the thresholded images

26. cv2.namedWindow('Thresholding', cv2.WINDOW_NORMAL)

27. cv2.imshow('Thresholding', stacked_results)

28.

29. # Wait for a key press and then close the window

30. cv2.waitKey(0)

31. cv2.destroyAllWindows()

32.

33. cv2.imwrite("output_images/thresholding.jpg", stacked_results)

Let us see the results of the above code on various thresholding levels. The
program applies different thresholding algorithms (binary, binary inverse,
truncation, to zero, to zero inverse, and Otsu) on the input image with the
specified threshold level. It then creates a composite image by stacking all
the threshold images horizontally. See Figure 4.6 for the thresholding
results with 127 as the thresholding limit. The algorithms used are binary,
inverse binary, truncated, threshold to zero, inverted threshold to zero and
Otsu from left to right. Please refer to the following figure:

Figure 4.6: Results of thresholding with limit as 127

See Figure 4.7 for the thresholding results with 64 as the thresholding limit.
The algorithms used are binary, inverse binary, truncated, threshold to zero,
inverted threshold to zero and Otsu from left to right. Please refer to the
following figure:

Figure 4.7: Results of thresholding with limit as 64

Thresholding is a basic yet powerful technique in computer vision used to
separate objects or regions of interest from an image based on their pixel
intensities. It is widely applied in various image processing tasks and serves
as a foundation for more advanced segmentation algorithms. However, it is
important to consider the limitations of thresholding and explore advanced
techniques when dealing with complex images or challenging conditions.

Detecting edges and corners
Edge and corner detection are the next fundamental techniques that we shall
discuss. These techniques are used to identify and locate important features
in an image. These features play a crucial role in various image processing
tasks, such as object recognition, image stitching, and 3D reconstruction.

Edge detection aims to identify sudden changes in pixel intensity, which
often correspond to object boundaries or significant image structures. It
helps to extract the outline or silhouette of objects present in an image.
Popular edge detection algorithms include the Canny edge detector, Sobel
operator, and Laplacian of Gaussian (LoG) operator.

Corner detection, on the other hand, focuses on identifying sharp changes in
image gradients, representing the intersection of edges or corners of objects.
Corners are distinctive features that can be used for image registration,
tracking, and matching. Well-known corner detection algorithms include the
Harris corner detector, Shi-Tomasi corner detector, and Features from
Accelerated Segment Test (FAST) corner detector.

While edge detection is more focused on capturing continuous boundaries,
corner detection is designed to identify discrete, localized features. As a
result, edge detection algorithms are often more sensitive to noise and may
produce thicker edges, whereas corner detection algorithms are more robust
to noise and can provide precise corner locations.

Both edge and corner detection algorithms rely on the analysis of image
gradients and local image properties. They typically involve the
computation of derivatives, convolutions, and thresholding operations to
identify the desired features. They provide essential cues for subsequent
processing steps, such as segmentation, object recognition, and tracking.
However, they may struggle with complex scenes, occlusions, and varying
lighting conditions. Additionally, parameter selection and tuning can
significantly affect the detection results.

The below code employs Canny edge detection, Sobel edge detection and
Laplacian edge detection algorithms on the image shown in Figure 4.1:

1. import cv2

2. import numpy as np

3. import sys

4.

5. # Read the input image

6. image = cv2.imread("input_images/4_ThresholdingImage.jpg")

7.

8. # Check if the image was successfully loaded

9. if image is None:

10. print("Unable to load the image.")

11. sys.exit()

12.

13. # Convert the image to grayscale

14. gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

15.

16. # Apply different edge detection algorithms

17. canny_edges = cv2.Canny(gray, 100, 200)

18. sobel_x = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=3)

19. sobel_y = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=3)

20. laplacian_edges = cv2.Laplacian(gray, cv2.CV_64F, ksize=3)

21.

22. # Create a window to display the images

23. cv2.namedWindow('Edge Detection', cv2.WINDOW_NORMAL)

24.

25. # Display the original image and edge detection results side by side

26. stacked_results = np.hstack((canny_edges, sobel_x, sobel_y, laplacian
_edges))

27. cv2.imshow('Edge Detection', stacked_results)

28.

29. # Wait for a key press and then close the window

30. cv2.waitKey(0)

31. cv2.destroyAllWindows()

32.

33. cv2.imwrite("output_images/edge_detect.jpg", stacked_results)

The program reads the input image, converts it to grayscale, and applies
different edge detection algorithms such as Canny, Sobel (x and y
gradients), and Laplacian. The detected edges are then overlaid on the
original image using addWeighted() to combine the images. Finally, the
result, showing the original image with overlaid edges, is displayed using
OpenCV's imshow() function. Figure 4.8 shows the results of this code. As
noticed in the figure, the algorithms have different results on edge
detection. The algorithms used are Canny, Sobel with derivatives in x-axis,
Sobel with derivatives in y-axis, and Laplacian from left to right. Please
refer to the following figure:

Figure 4.8: Results of edge detection

Edge and corner detection are important techniques in computer vision for
identifying significant image features. They form the foundation for
numerous image processing applications and enable subsequent analysis
and interpretation of images. Understanding these techniques and their
strengths and limitations is essential for effectively working with images in
computer vision tasks.

Image transformations

Image transformations are fundamental operations in computer vision and
image processing that involve modifying the appearance or geometric
properties of an image. These transformations can be applied to achieve
various objectives, such as correcting distortions, changing the perspective,
enhancing or manipulating the image content, and preparing images for
further analysis.

Geometric transformations are commonly used to modify the spatial
arrangement of pixels in an image. Some common geometric
transformations include scaling (resizing), rotation, translation (shifting),
and shearing. These transformations can be applied to modify the size,
orientation, position, and shape of objects within an image. Affine
transformations are a type of geometric transformation that preserve parallel
lines and ratios of distances. They include translation, rotation, scaling, and
shearing. Affine transformations are widely used in tasks like image
alignment, registration, and perspective correction. Non-affine
transformations, such as projective transformations, introduce perspective
distortion and allow for more complex modifications of the image
geometry. Projective transformations are particularly useful for tasks like
image warping, 3D reconstruction, and virtual reality applications. Besides
geometric transformations, there are various image enhancement and
manipulation techniques, such as contrast adjustment, brightness correction,
color manipulation, and filtering. These transformations can be used to
improve the visual quality, enhance specific image features, or extract
relevant information from the image.

Image transformations are implemented using mathematical operations and
algorithms that manipulate the pixel values of the image. OpenCV provides
built-in functions and methods to perform these transformations efficiently.

Region growing
Region growing is a technique used to segment an image based on pixel
similarity. It aims to group adjacent pixels that exhibit similar
characteristics, such as color or intensity, into meaningful regions or
objects. The region growing algorithm starts with an initial seed pixel or set
of seeds and iteratively adds neighboring pixels to the region based on a
predefined similarity criterion. This process continues until no more pixels
meet the similarity criteria or a stopping condition is reached. The algorithm

exploits the spatial connectivity of pixels to form coherent regions. It takes
advantage of the fact that objects in an image often exhibit spatial
continuity, where neighboring pixels tend to have similar properties.

Region growing can be used in various applications, including image
segmentation, object extraction, and boundary detection. It enables the
extraction of meaningful structures from images by grouping pixels with
similar characteristics. The success of region growing depends on the
choice of seed pixels and the definition of similarity criteria. Careful
selection of seeds and appropriate similarity measures are crucial to achieve
accurate and reliable results. Region growing algorithms can be adapted to
handle different types of images, such as grayscale or color images. They
can also incorporate additional constraints, such as gradient information or
texture features, to enhance the segmentation process.

However, region growing algorithms may face challenges when dealing
with complex scenes, noise, or weak boundaries. Selecting inappropriate
seeds or similarity criteria can lead to under or over-segmentation. Their
performance is influenced by various factors, including image resolution,
object size, and the presence of occlusions, or overlapping objects. To
improve the effectiveness of region growing, techniques like adaptive
region growing and hybrid approaches combining multiple segmentation
methods can be employed.

There are no built-in algorithms in OpenCV to support region growing.
However, statistical approaches like k-means can be used to identify
clusters of pixels which are part of a region.

Clustering
Clustering is a fundamental technique which groups similar data points
together. It aims to discover patterns or structures within a dataset by
partitioning it into distinct clusters based on their similarity. Clustering
algorithms assign data points to clusters based on their proximity in a
feature space. The choice of features, such as color, texture, or shape,
depends on the specific application and the characteristics of the data.
Clustering is an iterative process that aims to optimize a certain objective
function, such as minimizing the intra-cluster distance or maximizing inter-

cluster dissimilarity. The convergence and stability of the clustering results
are important considerations.

Popular clustering algorithms include k-means clustering, hierarchical
clustering, and spectral clustering. These algorithms employ different
approaches to define cluster similarity and assign data points accordingly.
They can be unsupervised, meaning they do not rely on prior knowledge or
labeled data, or they can be semi-supervised, leveraging a small amount of
labeled data to guide the clustering process. The effectiveness of clustering
algorithms depends on several factors, including the quality and
representativeness of the features used, the choice of distance or similarity
metrics, and the algorithm's parameters.

The number of clusters to be determined is a critical aspect of clustering. It
can be predefined based on prior knowledge or determined automatically
using techniques such as silhouette analysis or the elbow method.

The given code performs a k-means clustering on the image and shows the
clusters as a color next to the original image:

1. import cv2

2. import numpy as np

3. import matplotlib.pyplot as plt

4. import sys

5.

6. # Read the input image

7. image = cv2.imread("input_images/4_Clustering.jpg")

8.

9. # Check if the image was successfully loaded

10. if image is None:

11. print("Unable to load the image.")

12. sys.exit()

13.

14. # Reshape the image to a 2D array of pixels

15. pixels = image.reshape((-1, 3))

16.

17. # Convert the pixel values to float

18. pixels = np.float32(pixels)

19.

20. # Define the parameters for k-means clustering

21. num_clusters = 5

22. criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_M
AX_ITER, 10, 1.0)

23. flags = cv2.KMEANS_RANDOM_CENTERS

24.

25. # Apply k-means clustering

26. _, labels, centers = cv2.kmeans(pixels, num_clusters, None, criteria, 1
0, flags)

27.

28. # Convert the centers to 8-bit values

29. centers = np.uint8(centers)

30.

31. # Map each pixel to its corresponding cluster center

32. segmented_image = centers[labels.flatten()]

33. segmented_image = segmented_image.reshape(image.shape)

34.

35. # Convert the segmented image to RGB for visualization

36. segmented_image_rgb = cv2.cvtColor(segmented_image, cv2.COLO
R_BGR2RGB)

37.

38. # Display the original image and segmented image side by side

39. stacked_results = np.hstack((image, segmented_image_rgb))

40. cv2.imshow('Clustering', stacked_results)

41.

42. # Wait for a key press and then close the window

43. cv2.waitKey(0)

44. cv2.destroyAllWindows()

45.

46. cv2.imwrite("output_images/clustering.jpg", stacked_results)

The program reads the input image and reshapes it to a 2D array of pixels.
It then applies the algorithms k-means. For each algorithm, the resultant
labels or centers are used to create an image with the clustered regions
overlaid on the original image. Finally, the original image and clustering
results are displayed side by side using OpenCV's imshow() function.
Figure 4.9 shows an original image and clustering performed on it with 3
clusters. Please refer to the following figure:

Figure 4.9: K-means clustering performed on the left image with 3 clusters has segmented the image
as shown on the right

Clustering is a powerful technique in computer vision for grouping similar
data points and discovering meaningful patterns. It aids in tasks such as
image segmentation and object recognition, allowing for effective analysis
and interpretation of visual data. Clustering algorithms can handle a wide
range of image data, but they may face challenges when dealing with noisy
or ambiguous data, overlapping clusters, or non-convex shapes.

Template matching
Template matching is a technique in computer vision that involves finding a
template image within a larger search image. It is commonly used to locate
instances of a specific object or pattern in an image.

The template matching process involves comparing a template image, also
known as a pattern or reference image, with different regions of the search
image. The goal is to find the best match or similarity between the template

and the corresponding region in the search image. The matching process is
typically based on measuring the similarity between the template and the
image regions using various metrics, such as correlation, sum of squared
differences, or normalized cross-correlation. These metrics provide a
numerical score that represents the similarity between the template and each
region in the search image. Template matching can be performed at
different scales and orientations by rescaling or rotating the template image.
This allows for the detection of objects that may vary in size or orientation
within the search image. Template matching has several applications,
including object recognition, object tracking, and image registration. It is
widely used in tasks such as face recognition, character recognition, and
document analysis.

Consider Figure 4.10, if we are to count the number of circles present here,
we should use template matching algorithms:

Figure 4.10: A search image having often repeating similar of same shapes or patterns

This might look like a trivial scenario. However, it is often the case
especially in manufacturing assembly lines. Imagine a scenario where a
factory wants to monitor petty theft of shopping cart units between
downloading and warehouse. It is extremely difficult to count the same
items over and over. Pattern matching technique can be used here.

Let us see how we can use OpenCV for this purpose. By considering the
image in Figure 4.11 as the template, we will code the template matching
program as below:

Figure 4.11: Pattern or template to be counted

1. import cv2

2. import numpy as np

3.

4. # Read the search image and the template image

5. search_image = cv2.imread('input_images/4_SearchImage.jpg', cv2.I
MREAD_COLOR)

6. template_image = cv2.imread('input_images/4_Template.jpg', cv2.IM
READ_COLOR)

7.

8. # Check if the images were successfully loaded

9. if search_image is None or template_image is None:

10. print("Unable to load the images.")

11. exit()

12.

13. # Convert the images to grayscale

14. search_gray = cv2.cvtColor(search_image, cv2.COLOR_BGR2GRA
Y)

15. template_gray = cv2.cvtColor(template_image, cv2.COLOR_BGR2G
RAY)

16.

17. # Perform template matching

18. result = cv2.matchTemplate(search_gray, template_gray, cv2.TM_CC
OEFF_NORMED)

19.

20. # Set a threshold for the match score

21. threshold = 0.6

22.

23. # Find the locations where the match score is above the threshold

24. locations = np.where(result >= threshold)

25.

26. # Draw rectangles around the matched regions

27. for pt in zip(*locations[::-1]):

28. bottom_right = (pt[0] + template_gray.shape[1], pt[1] + template_g
ray.shape[0])

29. cv2.rectangle(search_image, pt, bottom_right, (0, 255, 0), 2)

30.

31. # Display the search image with the matched regions

32. cv2.imshow('Template Matching Result', search_image)

33.

34. # Wait for key press and then close the window

35. cv2.waitKey(0)

36. cv2.destroyAllWindows()

37. cv2.imwrite("output_images/template_matching.jpg", search_image)

The program reads the search image and the template image using
cv2.imread(). It then converts the images to grayscale using
cv2.cvtColor(). Next, the program performs template matching using
cv2.matchTemplate(), passing the grayscale search image and template
image as parameters. The result is a correlation map that represents the
similarity between the template and different regions of the search image. A
threshold is set to determine the matches based on the match score. In this
example, a threshold of 0.6 is used, but you can adjust it according to your
needs. The program finds the locations where the match score is above the
threshold using np.where(). It then draws rectangles around the matched
regions on the search image using cv2.rectangle(). Finally, the program
displays the search image with the matched regions using cv2.imshow().

When you run the program, you will see the search image with rectangles
drawn around the matched regions. This code produces the result as shown
in Figure 4.12. There are certainly some false negatives where the pattern
was not spotted. This can be improved by modifying the threshold
parameter in line 21. Please refer to the following figure:

Figure 4.12: Results of template matching

One limitation of template matching is that it is sensitive to variations in
lighting conditions, noise, and occlusions. In complex scenes or with
cluttered backgrounds, false positives or inaccurate matches can occur. To
address these challenges, advanced techniques, such as multi-scale template
matching, feature-based methods, and machine learning approaches, are
often employed. These techniques aim to improve robustness, accuracy, and
efficiency in template matching tasks.

Watershed algorithm
The watershed algorithm is a well-known technique for image segmentation
that is based on the concept of watershed lines or boundaries. It mimics the
behavior of water flowing in a topographic map, where the basins represent
different regions or objects in the image.

The watershed algorithm starts by treating the grayscale or gradient image
as a topographic map, where the intensity values represent the elevations.
The algorithm then identifies the local minima in the image, which serves
as the initial markers or seeds for the regions. Next, the algorithm performs
a flooding process, where the basins are filled with water starting from the
markers. As the water fills the basins, it naturally separates the adjacent

regions based on the watershed lines. These watershed lines represent the
boundaries between different objects or regions in the image. It can be
implemented using various approaches, including the flooding-based
algorithm and the marker-controlled algorithm. The marker-controlled
algorithm provides more control over the segmentation process by allowing
manual or automatic placement of markers.

One advantage of the watershed algorithm is its ability to handle complex
image structures, including objects with irregular shapes and overlapping
boundaries. It is particularly useful in scenarios where the boundaries
between objects are not well-defined or there are strong intensity gradients.
However, the watershed algorithm can produce over-segmentation, where
the boundaries are overly fragmented. To address this, post-processing steps
such as merging or region merging techniques can be applied. Please see
the below code for an implementation of the watershed algorithm:

1. import numpy as np

2. import cv2

3. from matplotlib import pyplot as plt

4.

5. image = cv2.imread("input_images/4_SearchImage.jpg")

6.

7. gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)

8. _, thresh = cv2.threshold(gray,0,255,cv2.THRESH_BINARY_INV+c
v2.THRESH_OTSU)

9.

10. kernel_size = 5

11. kernel = np.ones((kernel_size,kernel_size),np.uint8)

12.

13. # Find area which is surely background

14. sure_bg = cv2.dilate(thresh,kernel,iterations=1)

15.

16. # Find area which is surely foreground

17. dist_transform = cv2.distanceTransform(sure_bg,cv2.DIST_L2,3)

18. _, sure_fg = cv2.threshold(dist_transform,0.05*dist_transform.max(),
255,0)

19. sure_fg = np.uint8(sure_fg)

20.

21. # Find the region which is neither surely foreground nor surely backgr
ound

22. unknown = cv2.subtract(sure_bg,sure_fg)

23.

24. # Marker labelling

25. _, markers = cv2.connectedComponents(sure_fg)

26.

27. # Add 1 to all labels to mark sure background

28. markers = markers+1

29.

30. # Now, mark the region of unknown with zero

31. markers[unknown==255] = 0

32.

33. markers = cv2.watershed(image,markers)

34. image[markers == -1] = [0,0,0]

35.

36.

37.

38. # The next 3 steps are needed only for better visibilty in publishing.

39. structuring_element = cv2.getStructuringElement(cv2.MORPH_REC
T, (kernel_size, kernel_size))

40. image = cv2.erode(image, structuring_element)

41. image = cv2.erode(image, structuring_element)

42.

43. cv2.imshow('watershed', image)

44. cv2.waitKey(0)

45. cv2.destroyAllWindows()

46. cv2.imwrite("output_images/watershed.jpg",image)

The program reads an input image, using cv2.imread(). It converts the
image to grayscale using cv2.cvtColor(). It applies Otsu's thresholding to
the grayscale image using cv2.threshold(). It then applies dilation to the
thresholded image using cv2.dilate() with the defined kernel. This
operation helps identify the background area. It applies distance transform
to background image using cv2.distanceTransform(). Using the distance
transform, the program applies thresholding to identify the foreground area
using cv2.threshold(). The threshold value is set to 0.05 times the
maximum distance transform value. This is interpreted as foreground. It
subtracts foreground from background using cv2.subtract() to identify the
region that is unknown. Marker labelling is performed on foreground using

cv2.connectedComponents() to assign labels to the connected components.
After performing some mathematical operations to clearly differentiate
foreground from background and unknown regions, the program applies the
watershed algorithm to the input image using cv2.watershed(), passing the
image and markers as parameters. The result is stored in markers. In the
watershed result, regions labeled as -1 indicate the boundary regions. The
program sets the corresponding pixels in the input image to black [0,0,0]
using boolean indexing (markers == -1) and assigns it to image.

For better visibility in publishing, the program performs erosion on the
image twice using cv2.erode() and a structuring element defined by
cv2.getStructuringElement(). This step is optional and can be modified or
removed based on specific requirements. The program displays the resulting
image using cv2.imshow(). Finally, the program saves the watershed result
image as watershed.jpg using cv2.imwrite(). This code produces the result
as shown in Figure 4.13:

Figure 4.13: Results of watershed algorithm

Note: It is common to pre-process the image to enhance the
boundaries or gradients using techniques such as morphological
operations or gradient operators. This is done in order to obtain

accurate segmentation results. However, there is no guarantee that the
same operations provide a similar performance on a different image.

Foreground and background detection
The task of separating the foreground and background of an image is a
fundamental problem in computer vision. It involves segmenting an image
to distinguish the objects or regions of interest (foreground) from the
surrounding environment (background).

OpenCV provides an effective algorithm called GrabCut that allows for
automatic foreground/background segmentation. GrabCut combines image
data and user-provided guidance to iteratively refine the segmentation
result. The GrabCut algorithm starts with an initial estimate of the
foreground and background regions. This estimate can be provided by the
user through a bounding box or a set of markers indicating the foreground
and background regions. Based on this initial estimate, GrabCut models the
image as a Markov random field and uses an energy minimization approach
to iteratively update the foreground and background estimates. The
algorithm adjusts the estimates based on color similarity, spatial proximity,
and pixel connectivity within the image. Through multiple iterations,
GrabCut refines the segmentation result by optimizing the energy function
and adapting the segmentation boundaries. The algorithm converges when
the segmentation result stabilizes, indicating a satisfactory separation
between the foreground and background.

GrabCut offers several advantages for foreground/background
segmentation. It can handle complex image structures, including objects
with intricate boundaries and varying appearances. The algorithm is also
able to adapt to different images and is relatively robust to variations in
lighting conditions, colors, and textures. However, GrabCut's performance
heavily relies on the initial estimates provided by the user. Accurate
initialization of the foreground and background regions is crucial for
obtaining satisfactory results. Incorrect initial estimates can lead to over-
segmentation or under-segmentation, where parts of the foreground may be
misclassified as background or vice versa.

Let us look at the implementation of Grabcut:

1. import cv2

2. import numpy as np

3.

4. # Read the image

5. image = cv2.imread('input_images/test_image1.jpeg')

6.

7. # Check if the image was successfully loaded

8. if image is None:

9. print("Unable to load the image.")

10. exit()

11.

12. # Create a mask to indicate the areas of the image to be
classified (foreground, background, etc.)

13. mask = np.zeros(image.shape[:2], np.uint8)

14.

15. # Define the rectangle enclosing the foreground
object (top left and bottom right coordinates)

16. rect = (225, 225, 850, 850) # Adjust the
coordinates based on the region of interest

17.

18. # Perform the GrabCut algorithm

19. bgd_model = np.zeros((1, 65), np.float64)

20. fgd_model = np.zeros((1, 65), np.float64)

21. cv2.grabCut(image, mask, rect, bgd_model, fgd_model, 5, cv2.GC_I
NIT_WITH_RECT)

22.

23. # Create a mask where all probable foreground and foreground
pixels are set to 1

24. foreground_mask = np.where((mask == 2) | (mask == 0), 0, 1).astype(
'uint8')

25.

26. # Apply the mask to the original image

27. segmented_image = image * foreground_mask[:, :, np.newaxis]

28.

29. # Display the original image and the segmented image side by side

30. image = cv2.rectangle(image, (rect[0],rect[1]), (rect[2],rect[3]), (0,0,0
), 3)

31. combined_image = np.hstack((image, segmented_image))

32. cv2.imshow('Original vs Segmented', combined_image)

33. cv2.waitKey(0)

34. cv2.destroyAllWindows()

35. cv2.imwrite("output_images/grabcut.jpg", combined_image)

The program starts by reading the image using cv2.imread(). It then creates
an initial mask, that will be used to indicate the areas of the image to be
classified as foreground, background, and so on. Next, a rectangle is
defined to enclose the foreground object. You can adjust the coordinates of
rect in line 16 based on the region of interest in the image. The GrabCut

algorithm is performed using cv2.grabCut(). It takes the image, mask,
rectangle, background model, foreground model, number of iterations, and
the initialization mode as parameters. The algorithm updates the mask to
classify the pixels as probable foreground, probable background, and so on.
A binary mask, foreground_mask, is created based on the updated mask. It
sets the probable foreground and foreground pixels to 1, while the probable
background and background pixels are set to 0. Finally, the mask is applied
to the original image using element-wise multiplication, resulting in the
segmented image. The original image and the segmented image are then
displayed side by side using cv2.imshow().

When you run the program, you will see the original image on the left and
the segmented figure on the right, where the foreground object is
highlighted. Also, in the left figure, a black rectangle is drawn to show the
seed region mentioned in the line 16.

The results of this code are shown in Figure 4.14. Left is the original image
with a rectangle showing the region of interest. Right side is the foreground
detected by the algorithm:

Figure 4.14: Grabcut algorithm

Superpixels
Superpixels are used to group pixels into meaningful atomic regions. They
aim to reduce the complexity of image processing tasks by providing a

higher-level representation of an image. They are formed by grouping
pixels based on their spatial proximity and color similarity. This grouping
process allows for the creation of compact and homogeneous regions that
preserve important boundaries and structures in the image. By grouping
pixels into super pixels, the number of images primitives to analyze is
significantly reduced, making subsequent algorithms more robust and less
sensitive to noise and small variations. Superpixels encapsulate contextual
information and spatial relationships between pixels. They reduce the
complexity of image processing tasks, preserve boundaries, and provide a
higher-level representation of an image. This gives considerable advantages
over traditional pixel-based approaches.

Superpixels can be generated using different algorithms, such as Simple
Linear Iterative Clustering (SLIC), QuickShift, and Watershed. These
algorithms employ various criteria, such as color, spatial proximity, and
image gradient, to define superpixel boundaries. The size and shape of
superpixels can be adjusted to strike a balance between capturing fine
details and preserving the overall structure of the image. This flexibility
allows for adaptability to different tasks and image characteristics. The
choice of superpixel algorithm depends on the specific requirements of the
task and the characteristics of the image with each algorithm having its own
strengths and weaknesses.

Superpixels serve as building blocks for higher-level computer vision tasks.
They can be used as input for feature extraction, region-based object
detection, and image classification algorithms, providing more meaningful
and informative representations. They are particularly useful in various
applications, such as image segmentation, object tracking, and image
enhancement. By providing a more efficient representation of an image,
they enable faster processing and reduce computational costs.

Image pyramids
Image pyramids are a technique widely used in computer vision to create a
series of images at different scales. They provide a multi-resolution
representation of an image, allowing for efficient processing and analysis at
different levels of detail. In an image pyramid, the original image is
repeatedly downsampled or upsampled to create a series of images with
decreasing or increasing resolutions, respectively. This is done by applying

a predefined scaling factor or using specific interpolation techniques. The
pyramid structure allows algorithms to handle image variations caused by
factors like scale changes, viewpoint changes, and occlusions. It provides a
robust framework for matching and comparing features across different
levels of detail. Pyramid levels can be accessed individually, allowing for
selective processing based on the desired level of detail. This flexibility
makes image pyramids suitable for adaptive algorithms that adapt their
behavior to the available image resolution.

Image pyramids can be constructed using various algorithms, including
hierarchical approaches and wavelet transforms. Pyramid-based techniques,
such as Laplacian pyramids and Gaussian pyramids, are commonly used for
image representation and processing. Laplacian pyramids decompose an
image into a series of band-pass filtered layers, while Gaussian pyramids
create a series of smoothed and downsampled images. The choice of
pyramid size, scaling factors, and interpolation methods depends on the
specific application and the characteristics of the input images. These
parameters can be adjusted to strike a balance between preserving important
image features and reducing computational overhead.

The code below creates a mock-up of an image pyramid. The code reads the
input image and displays it as the original image. It then generates a
pyramid by repeatedly downsampling the image using the pyrDown()
function from OpenCV. Each level of the pyramid is stored in the
pyramid_images list. The program iterates over the pyramid images and
displays them with window titles indicating the pyramid level. The
condition in the while loop controls the size of the pyramid. When you run
the program, you will see the original image displayed along with a series
of images representing different levels of the image pyramid. This code
offers a simplified view of how image pyramids are built.

1. import cv2

2. import sys

3.

4. # Read the input image

5. image = cv2.imread("input_images/4_Clustering.jpg")

6.

7. # Check if the image was successfully loaded

8. if image is None:

9. print("Unable to load the image.")

10. sys.exit()

11.

12. # Display the original image

13. cv2.imshow('Original Image', image)

14.

15. # Generate and display the image pyramid

16. pyramid_image = image.copy()

17. pyramid_images = [pyramid_image]

18.

19. while pyramid_image.shape[0] > 100 and pyramid_image.shape[1] >
100: # Adjust the condition to control the pyramid size

20. pyramid_image = cv2.pyrDown(pyramid_image)

21. pyramid_images.append(pyramid_image)

22.

23. for i, image_level in enumerate(pyramid_images):

24. cv2.imshow(f'Pyramid Level {i}', image_level)

25.

26. # Wait for key press and then close all windows

27. cv2.waitKey(0)

28. cv2.destroyAllWindows()

The program reads the input image and displays it as the original image. It
then generates a pyramid by repeatedly downsampling the image using the
pyrDown() function from OpenCV. Each level of the pyramid is stored in
the pyramid_images list. The program iterates over the pyramid images
and displays them with window titles indicating the pyramid level. The
condition in the while loop controls the size of the pyramid, and you can
adjust it as per your requirements. The program waits for a key press before
closing all the windows.

When you run the program, you will see the original image displayed along
with a series of images representing different levels of the image pyramid.
This code generates the output shown in Figure 4.15:

Figure 4.15: A mock image pyramid

Image pyramids offer several benefits in computer vision tasks. They
enable efficient object detection, recognition, and tracking by performing
operations at different scales and capturing objects of varying sizes. They
are particularly useful in applications such as image blending, image
compression, and feature extraction. They facilitate seamless blending of
images at different resolutions and enable efficient storage and transmission
of large images.

Convolution
Remember we were talking about how older generation television sets were
performing image processing without a processor? That was achieved using
a simple, yet powerful technique called convolution. Convolution is a
fundamental operation used to combine two analog signals into a new
output signal. It involves a mathematical operation that measures the
overlap between a fixed-sized window (kernel) and a segment of the input
signal. The kernel is shifted across the input signal, and at each position, the
corresponding values are multiplied and summed to produce an output
value. It allows for the extraction of specific patterns or characteristics from
signals, enabling analysis, enhancement, and manipulation of the original
signal.

Convolution is so powerful that when images were digitized the process of
convolution was also digitized. It involves a mathematical operation that
combines a small matrix called a kernel or filter with an image to produce a
new output image. The kernel is typically a small square or rectangular
matrix with numerical values. The convolution operation is performed by
sliding the kernel across the image, calculating the weighted sum of the
pixel values in the kernel's neighborhood at each position. This weighted
sum is then assigned to the corresponding pixel in the output image.
Convolution allows for various image processing tasks such as smoothing,
sharpening, edge detection, and feature extraction. By selecting different
types of kernels, different image enhancements and transformations can be
achieved. The process of convolution applies local operations to each pixel
in the image, allowing for the extraction of local image features and the
preservation of spatial relationships.

OpenCV has a built-in function for performing convolutions. We
demonstrate a sample code as follows for performing a de-noising of image
using convolution:

1. import cv2

2. import numpy as np

3.

4. # Read the input image

5. image = cv2.imread("input_images/4_ThresholdingImage.jpg")

6.

7. # Check if the image was successfully loaded

8. if image is None:

9. print("Unable to load the image.")

10. exit()

11.

12. # Define the kernel for de-noising convolution

13. kernel = np.array([[1, 1, 1],

14. [1, -8, 1],

15. [1, 1, 1]])

16.

17. # Perform image convolution

18. convolved_image = cv2.filter2D(image, -1, kernel)

19.

20.

21. stacked_results = np.hstack((image, convolved_image))

22. # Display the original image and the convolved output image

23. cv2.imshow('Convolution', stacked_results)

24.

25. # Wait for key press and then close all windows

26. cv2.waitKey(0)

27. cv2.destroyAllWindows()

28. cv2.imwrite("output_images/convolution.jpg", stacked_results)

The program reads the noisy input image and defines a denoising kernel for
convolution. In this example, a kernel that enhances edges and suppresses
noise is used. You can adjust the kernel values or use a different kernel to
experiment with different denoising effects. The program then applies the
denoising convolution operation using the filter2D() function from
OpenCV. Finally, the program displays the noisy input image and the
denoised output image using OpenCV's imshow() function. When you run
the program, you will see the noisy input image and the denoised output
image displayed side by side. Please note that the effectiveness of denoising
depends on the characteristics of the noise and the specific kernel used. You
may need to experiment with different kernels or denoising techniques to
achieve optimal results for your particular noisy image. The previous code
produces the results seen in Figure 4.16. As you can see, it looks similar to
thresholding. But we have not used any thresholding formulae here. Please
refer to the following figure:

Figure 4.16: Convolution demonstration

Convolution is a fundamental operation in deep learning-based image
processing. Its abilities to extract features while preserving spatial
relationships and providing translation invariance make it a key component
for building powerful and effective deep learning models. It is not an
exaggeration to say that the deep learning vision neural networks that we
know today might not have been possible without convolution. We shall
discuss this more in the next chapter.

Conclusion
Classical algorithms have played a pivotal role in shaping the field of
computer vision. They provide a solid foundation for understanding and
analyzing visual data, enabling machines to interpret and extract
meaningful information from images and videos. These algorithms continue
to be relevant and serve as important benchmarks for comparison as new
techniques emerge.

Exercises
1. Implement an image filtering algorithm, such as a Gaussian blur or a

median filter, from scratch using only basic image processing
operations.

2. Create a program that applies image morphological operations, such
as erosion and dilation, to enhance or modify specific features in an
image. Experiment with different structuring elements and explore
their effects.

3. Implement a program to perform image stitching, where multiple
overlapping images are combined to create a panoramic view.
Experiment with different algorithms, such as SIFT or SURF, for
feature detection and matching.

4. Develop a program that performs image segmentation using a
GraphCut algorithm. Experiment with different energy functions and
explore their impact on the segmentation results.

5. Implement a program to track the motion of objects in a video
sequence using optical flow algorithms, such as Lucas-Kanade or

Horn-Schunck. Test the program on different videos with varying
object motions.

6. Create a program that performs image registration, aligning two or
more images to a common coordinate system. Explore different
registration techniques, such as feature-based or intensity-based
registration.

7. Implement a program that performs image inpainting, filling in
missing or damaged parts of an image using surrounding
information. Experiment with different inpainting algorithms, such
as exemplar-based or patch-based methods.

8. Create a program that performs image super-resolution, enhancing
the resolution and quality of low-resolution images. Explore
different super-resolution techniques, such as single-image or multi-
image super-resolution.

Key terms
Binarization :A process by which an image is modified to consist of
exactly two colours. Usually, the colours chosen are black and white.

Canny algorithm: Algorithm for detecting edges of objects in an
image.

Closing: A morphological operation to fill in gaps and close small
holes in images.

Clustering: A machine learning technique for grouping the pixels of
an object together.

Convolution: A mathematical operation where the shape of one
function is modified by another function.

Convolutional neural network: A deep learning neural network
processing arrays of data. Very popular for image processing.

Denoising: An image processing technique for reducing spots and
discoloration with minimal loss of quality.

Dilation: One of two fundamental morphological image processing.

Erosion: One of two fundamental morphological image processing.

Image pyramids: A type of image representation where in the
original image repeatedly smoothened and subsampled.

K-means: A statistical algorithm for achieving clustering.

Laplacian algorithm: Algorithm for detecting edges of objects in an
image.

Opening: A morphological operation to eliminate minor protrusions
in the image.

Otsu algorithm: Algorithm for image binarization.

Region growing: Algorithm for segmenting images.

Scale invariance: An algorithm property where algorithms do not
lose their effectiveness with changes to scale of image.

Search image: The image in which we want to locate an object of
interest.

Sobel algorithm: Algorithm for detecting edges.

Super pixels: A local grouping of pixels in an image which carry
more semantic meaning than individual pixels.

Supervised learning: A machine learning paradigm where the data
consists of features and have a label associated to them.

Template: The object of interest which we want to locate in a given
image.

Thresholding: The simplest algorithm for image segmentation.

Unsupervised learning: A machine learning paradigm where the
data consists of features but do not have a label associated to them.

Watershed algorithm: An algorithm for image segmentation.

Join our book's Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

OceanofPDF.com

https://discord.bpbonline.com/
https://oceanofpdf.com/

Chapter 5
Deep Learning and CNNs

Introduction
Deep learning has revolutionized the field of artificial intelligence, enabling
remarkable progress in areas such as computer vision, natural language
processing, and machine translation. This chapter explores the multifaceted
landscape of deep learning. Moreover, it investigates various architectural
approaches, such as convolutional neural networks (CNNs), elucidating
their mathematical foundations, strengths, and applications. Furthermore,
the chapter introduces training and inference processes in deep learning,
focusing on techniques for efficient and accurate predictions. It highlights
the significance of optimization functions, activation functions, and model
compression techniques in enhancing inference speed, reducing
computational requirements, and ensuring robustness. This chapter aims to
comprehensively examine these topics and introduce deep learning
architectures and techniques that propel this rapidly evolving field.

Structure
The chapter discusses the following topics:

History of deep learning

Perceptron

Shallow learning networks

Deep learning networks

Weights, biases, and activation functions

Convolutional neural networks

Deep learning process

Objectives
This chapter aims to familiarize the readers with the fundamental and
relevant concepts of deep learning. By the end of the chapter, you should be
able to understand the most commonly used terms in deep learning and
write Python code for implementing deep learning programs. The dedicated
libraries for deep learning, like Tensorflow, Keras, PyTorch, and so on, are
not covered in this chapter.

History of deep learning
The history of deep learning and perceptrons dates back several decades.
Let us take a journey through their key milestones:

Perceptrons and the perceptron rule (1950s-1960s): The concept
of perceptrons was introduced by Frank Rosenblatt in the late 1950s.
Rosenblatt's work was influenced by the idea of simulating neural
networks to mimic human cognition. The perceptron, a single-layer
neural network, was designed to perform binary classification tasks.
Rosenblatt developed the perceptron learning algorithm, also known
as the Perceptron rule, which adjusted the weights and bias of the
perceptron to learn from training examples.

Limitations and the Perceptron controversy (1960s): In 1969,
Marvin Minsky and Seymour Papert published the book Perceptrons,
highlighting the limitations of single-layer perceptrons. They
demonstrated that perceptrons could not learn certain logical
functions, such as the XOR function, which required more complex
decision boundaries. This led to a decline in interest and funding for
neural networks and perceptrons during this period.

Backpropagation and multilayer perceptrons (1970s-1980s): In
the 1970s, the backpropagation algorithm was independently
rediscovered by multiple researchers, including Paul Werbos, David

Rumelhart, and Ronald Williams. Backpropagation enabled the
training of multilayer perceptrons (MLPs) with multiple hidden
layers. MLPs could learn non-linear decision boundaries and
overcome the limitations of single-layer perceptrons. This sparked
renewed interest in neural networks and marked an important
milestone in deep learning.

Neural network winter (1990s-early 2000s): Despite the advances
in backpropagation and MLPs, neural networks faced challenges
during this period. The complexity of training deep networks, the
limited availability of computational resources, and the emergence of
other machine learning algorithms, such as support vector
machines (SVMs), led to a decline in interest and research in neural
networks. This period became known as the neural network winter.

Resurgence of deep learning (mid-2000s onwards): Deep learning
experienced a resurgence in the mid-2000s, driven by several factors.
These included the availability of large-scale datasets, more
powerful computational resources (for example, GPUs), and
advances in optimization algorithms. Researchers began developing
novel architectures, such as CNNs for image recognition and
recurrent neural networks (RNNs) for sequential data processing.
These deep learning architectures achieved breakthroughs in various
domains, including computer vision, natural language processing,
and speech recognition.

Deep learning revolution (2010s onwards): The 2010s witnessed
an explosion of research and applications in deep learning. This
period was marked by advancements in architecture design (for
example, deep residual networks, generative adversarial networks),
the development of frameworks and libraries (for example,
TensorFlow, PyTorch), and the use of deep learning in numerous
fields, including healthcare, finance, autonomous vehicles, and more.
Deep learning models consistently achieved state-of-the-art
performance on various complex tasks, cementing their position as a
powerful tool in artificial intelligence.

Throughout this history, the perceptron remained an influential concept,
serving as the foundation for more advanced neural network architectures.

The perceptron rule and the insights gained from studying its limitations
paved the way for developing powerful deep learning techniques that we
rely on today.

Perceptron
A perceptron is a fundamental building block of artificial neural networks
inspired by the structure and functioning of biological neurons. It is a
simple mathematical model used for binary classification tasks, meaning it
can determine whether an input belongs to one class or another. A
perceptron is a mathematical function that takes multiple inputs, applies
weights to each input, sums them up, and then passes the sum through an
activation function to produce an output. The activation function helps
introduce non-linearity into the perceptron, allowing it to learn complex
decision boundaries.

Mathematically, let us consider a perceptron with n inputs. Each input is
associated with a weight, denoted by w, and a bias term, denoted by b. The
bias term is an additional input with a fixed value of 1, allowing the
perceptron to adjust the decision boundary independently of the input
values. The weights and bias are learnable parameters that the perceptron
adjusts during training. Given the input vector x = [x₁, x₂, ..., x], the
weighted sum of the inputs is calculated as:

z = w1 x1 + w2 x2 + … + wn xn + b

The activation function, typically a step function or a sigmoid function,
takes the weighted sum (z) as input and produces the output of the
perceptron, denoted by y. In the case of a step function, the output is binary:

y = step(z) = {1 if z ≥ 0,0 if z < 0}

In the case of a sigmoid function, the output is a continuous value between
0 and 1:

During training, the perceptron adjusts its weights and bias to minimize the
error between its predicted output and the true output. This process is often

accomplished using gradient descent and backpropagation algorithms,
where the error is propagated backward through the network to update the
parameters. See Figure 5.1 for how perceptron works.

Figure 5.1: Perceptron

The perceptron is the basis for more complex neural network architectures,
such as MLPs, which stack multiple perceptron layers together to enable
learning non-linear decision boundaries for more complex tasks. Please see
the code as follows for creating a perceptron for performing data
classification:

1. from sklearn.datasets import make_classification

2. from sklearn.linear_model import Perceptron

3. from sklearn.model_selection import train_test_split

4. from sklearn.metrics import accuracy_score

5.

6. # Generate a random binary classification dataset

7. X, y = make_classification(n_samples=100, n_features=20, n_inform
ative=10, n_redundant=10, random_state=42)

8.

9. # Split the dataset into training and testing sets

10. X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, r
andom_state=42)

11.

12. # Create a perceptron classifier

13. perceptron = Perceptron()

14.

15. # Train the perceptron on the training data

16. perceptron.fit(X_train, y_train)

17.

18. # Make predictions on the test data

19. y_pred = perceptron.predict(X_test)

20.

21. # Calculate the accuracy of the perceptron

22. accuracy = accuracy_score(y_test, y_pred)

23. print("Accuracy:", accuracy)

Shallow learning networks
Shallow learning, traditional machine learning or shallow neural networks,
refers to algorithms with only a few or no hidden layers in their
architecture. These algorithms typically involve linear models, such as
logistic regression, support vector machines (SVMs), or decision trees.

From a mathematical perspective, shallow learning algorithms aim to find a
linear or non-linear function that maps input features (denoted as x) to
output labels or predictions (denoted as y). The goal is to learn a set of

parameters (weights and biases) that minimize an objective function, such
as the sum of squared errors or the hinge loss.

For example, in logistic regression, the model learns the weights (w) that
minimize the logistic loss function, defined as the negative log-likelihood of
the observed labels given the predicted probabilities. This optimization is
typically achieved using techniques like gradient descent, where the
gradients of the loss function with respect to the parameters are computed
and used to update the weights iteratively.

Deep learning networks
Deep learning, on the other hand, refers to the class of algorithms that
utilize deep neural networks with multiple hidden layers to learn intricate
representations and hierarchical patterns in the data. Deep learning models
consist of interconnected layers of artificial neurons (perceptrons) that
progressively transform the input data to generate predictions.

Mathematically, deep learning involves composing multiple functions to
form a complex computation graph. Each layer of the neural network
applies linear transformations (matrix multiplications) to the inputs and
passes the result through a non-linear activation function (for example,
sigmoid, ReLU) to introduce non-linearity. This allows the network to learn
complex, non-linear relationships between the input and output.

The training process in deep learning typically involves minimizing a loss
function through backpropagation. This technique computes the gradients
of the loss function with respect to the model parameters using the chain
rule of calculus, allowing for efficient optimization of the weights and
biases in each layer. Techniques like stochastic gradient descent (SGD) or
its variants are commonly used to update the parameters iteratively.

One of the key advantages of deep learning is its ability to automatically
learn hierarchical representations of the data, extracting meaningful features
at different levels of abstraction. This hierarchical representation allows
deep learning models to excel in tasks such as image recognition, natural
language processing, and speech recognition, where the underlying data has
intricate structures.

Shallow learning algorithms rely on simpler models with fewer or no
hidden layers, whereas deep learning algorithms employ deep neural
networks with multiple hidden layers. The mathematical foundations of
shallow learning involve optimizing a simpler objective function using
linear or non-linear models. In contrast, deep learning involves composing
multiple layers of non-linear transformations to learn intricate
representations.

Weights, biases, and activation functions
We have been discussing terms like weights, biases, and activation
functions. But what exactly are they? Let us understand the intuition and
math behind them. These are essential components of neural networks,
including both shallow and deep learning models.

Weight
In a neural network, weights (often denoted by w) are parameters associated
with the connections between neurons. Each connection between two
neurons has an associated weight that determines the strength and impact of
the input from one neuron on the other. Mathematically, the weighted sum
of inputs is calculated by multiplying each input by its corresponding
weight and summing them up.

Let us consider a neuron with n inputs. The inputs are represented as a
vector x = [x₁, x₂, ..., xn], and the weights are represented as a vector w =
[w₁, w₂, ..., wn]. The weighted sum of inputs, denoted as z, is computed as
follows:

z = w₁x₁ + w₂x₂ + ... + wnxn

The weights in a neural network are learnable parameters, adjusted during
the training process. The learning algorithm, such as gradient descent,
optimizes these weights to minimize errors between the network's
predictions and the true values.

Bias
Biases (often denoted by b) are additional parameters associated with each
neuron in a neural network. Biases provide additional freedom and allow

the network to adjust the decision boundary independently of the input
values. Mathematically, biases are conceptually similar to weights but are
associated with the neuron rather than the connections.

In a neuron with a bias term, the weighted sum of inputs z is adjusted by
adding the bias term:

z = w₁x₁ + w₂x₂ + ... + wnxn + b

Biases allow the neural network to learn offset values and capture
information that cannot be represented solely through the input features.
Like weights, biases are also learnable parameters that are optimized during
training.

Activation function
Activation functions introduce non-linearity to the output of a neuron or a
layer in a neural network. They determine whether a neuron should be
activated (fired), based on the input it receives. Activation functions help
neural networks learn and represent complex, non-linear relationships in the
data. There are various types of activation functions, but let us focus on two
commonly used ones:

Step function: The step function is a simple binary activation
function that outputs either 0 or 1 based on a threshold. It can be
represented mathematically as follows:

y = step(z) = {1 if z ≥ 0, 0 if z < 0}

The step function is typically used in perceptrons and early neural
networks.

Sigmoid function: Sigmoid function was discussed earlier.

Activation functions serve as the thresholding mechanism of a neuron,
determining whether the neuron should be activated based on the weighted
sum of inputs. They introduce non-linearities to the neural network,
enabling it to learn and represent complex relationships in the data.

Note: Intuitively, these concepts can be understood as below. Weights
determine the strength and impact of inputs in a neural network,
biases provide an additional level of freedom to adjust decision

boundaries, and activation functions introduce non-linearities to the
output of neurons, allowing neural networks to learn complex
patterns and relationships in the data.

Optimization function
What is an optimization function? Is it another name for the activation
function? What is its purpose? It is common for beginners to need
clarification on the objectives of the activation function and the
optimization functions' objectives.

An optimization function, also known as a loss function or objective
function, is a mathematical measure that quantifies how well a machine
learning model performs on a given task. The purpose of an optimization
function is to guide the learning process by providing a measure of the
model's performance, allowing the model's parameters to be adjusted to
minimize the defined objective.

The choice of an optimization function depends on the specific task and the
nature of the problem being solved. The objective may vary, such as
minimizing the error between predicted and true values (in regression
tasks), maximizing the likelihood of observing the true labels (in
classification tasks) or minimizing a combination of various factors (in
multi-objective optimization).

Mathematically, let us denote the optimization function as j, which takes the
model's predicted outputs ŷ and the true outputs y as inputs. The
optimization function computes a scalar value that represents the model's
performance. The target is to find the combination of model parameters that
minimize this function.

J(ŷ, y)

The optimization process typically involves an iterative algorithm, such as
gradient descent, that updates the model's parameters in the direction that
reduces the value of the optimization function. The gradients of the
optimization function with respect to the model's parameters indicate the
direction of steepest descent, allowing the parameters to be adjusted
accordingly. However, optimization functions have certain limitations and
challenges, mentioned as follows:

Local minima: The optimization landscape can be complex, and
there may be multiple local minima where the optimization
algorithm can get stuck. This implies the algorithm may converge to
a suboptimal solution instead of the global minimum.

Plateaus: In some cases, the optimization function can have flat
regions called plateaus, where the gradients become very small. This
can significantly slow down the learning process, as the parameter
updates become negligible.

Computational complexity: Depending on the complexity of the
optimization function and the size of the dataset, the optimization
process can be computationally expensive and time-consuming.
Deep learning models with millions of parameters can require
substantial computational resources.

Sensitivity to hyperparameters: The choice of hyperparameters,
such as learning rate or regularization strength, can significantly
affect the optimization process. Selecting appropriate
hyperparameters often requires experimentation and tuning.

Overfitting: Optimization functions typically consider the
performance of the training data. However, the model's goal is to
generalize well to unseen data. Over-optimizing the training data can
lead to overfitting, where the model performs poorly on new data.

Addressing these limitations often requires careful algorithmic design and
regularization techniques to avoid getting trapped in poor solutions or
overfitting the training data. Researchers continually develop new
optimization algorithms and techniques to improve the efficiency and
effectiveness of training deep learning models.

An optimization function is a mathematical measure used to guide the
learning process in machine learning models. It quantifies the model's
performance, and the goal is to minimize this function by adjusting the
model's parameters. However, optimization functions have limitations,
including the possibility of local minima, plateaus, computational
complexity, sensitivity to hyperparameters, and the risk of overfitting.

Here are some code samples to implement deep learning. The below code
implements a multi-layer perceptron, that is, deep learning neural network,

for performing data classification:

1. from sklearn.datasets import make_classification

2. from sklearn.neural_network import MLPClassifier

3. from sklearn.model_selection import train_test_split

4. from sklearn.metrics import accuracy_score

5.

6. # Generate a random binary classification dataset

7. X, y = make_classification(n_samples=1000, n_features=20, n_infor
mative=10, n_redundant=10, random_state=42)

8.

9. # Split the dataset into training and testing sets

10. X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, r
andom_state=42)

11.

12. # Create an MLP classifier

13. mlp = MLPClassifier(hidden_layer_sizes=
(5,), activation='relu', solver='adam', random_state=42)

14.

15. # Train the MLP on the training data

16. mlp.fit(X_train, y_train)

17.

18. # Make predictions on the test data

19. y_pred = mlp.predict(X_test)

20.

21. # Calculate the accuracy of the MLP

22. accuracy = accuracy_score(y_test, y_pred)

23. print("Accuracy:", accuracy)

Now let us see some code that performs regression on some real-world data.
Following is the code for predicting a continuous variable on the tips
dataset:

1. import pandas as pd

2. from sklearn.preprocessing import StandardScaler

3. from sklearn.neural_network import MLPRegressor

4. from sklearn.model_selection import train_test_split

5. from sklearn.metrics import mean_squared_error

6.

7. # Load the tips dataset from Seaborn

8. tips_df = pd.read_csv('https://raw.githubusercontent.com/mwaskom/s
eaborn-data/master/tips.csv')

9.

10. # Preprocess the data

11. X = tips_df[['total_bill', 'size']]

12. y = tips_df['tip']

13.

14. # Standardize the input features

15. scaler = StandardScaler()

16. X_scaled = scaler.fit_transform(X)

17.

18. # Split the dataset into training and testing sets

19. X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_siz
e=0.2, random_state=42)

20.

21. # Create an MLP regressor

22. mlp = MLPRegressor(hidden_layer_sizes=
(10,), activation='relu', solver='adam', random_state=42)

23.

24. # Train the MLP on the training data

25. mlp.fit(X_train, y_train)

26.

27. # Make predictions on the test data

28. y_pred = mlp.predict(X_test)

29.

30. # Calculate the root mean squared error (RMSE) of the MLP

31. rmse = mean_squared_error(y_test, y_pred, squared=False)

32. print("RMSE:", rmse)

Convolutional neural networks

A convolutional neural network (CNN) is a specialized type of deep
neural network commonly used for analyzing visual data, such as images.
CNNs are designed to effectively capture and process spatial relationships
within the data using convolutional layers. Let us explore the mathematical
details of CNNs.

The fundamental building block of a CNN is the convolutional layer. This
layer applies a set of learnable filters, also known as convolutional kernels
or filters, to the input data. Each filter is a small matrix of weights. We
discussed convolution on Chapter 4.

Mathematically, let us consider an input feature map (also known as an
activation map) denoted as X. A single filter of size f × f is convolved
(element-wise multiplication and summation) with a corresponding local
receptive field in the input map. The output of this operation is a feature
map, denoted as Y, which represents the presence or activation of certain
patterns or features in the input. The convolution operation can be
represented mathematically as follows:

Y(i, j) = f(X * W(i, j) + b(i, j))

Y(i, j) represents the element at position (i, j) in the output feature map. X is
the input feature map, W(i, j) is the filter at position (i, j) with its
corresponding weights, and b(i, j) is the bias term associated with that filter.

Activation function: Following the convolution operation, an
activation function is applied element-wise to the output feature map
to introduce non-linearity. Commonly used activation functions in
CNNs include rectified linear unit (ReLU) and its variants. ReLU
is defined mathematically as:

f(x) = max(0, x)

The activation function helps the CNN model to capture non-linear
relationships and introduces sparsity by zeroing out negative
values.

Pooling layer: In CNNs, pooling layers are typically used to
downsample the spatial dimensions of the feature maps, reducing the
computational complexity and extracting higher-level features. Max
pooling is a commonly used pooling operation where the maximum

value within a local neighborhood is selected. Mathematically, max
pooling can be represented as follows:

Y(i, j) = max(X(i×s : (i+1)×s, j×s : (j+1)×s))

Here, Y(i, j) represents the element at position (i, j) in the
downsampled feature map, and X(i×s : (i+1)×s, j×s : (j+1)×s)
refers to the local neighborhood of size s × s in the input feature
map.

Fully connected layers: After the convolutional and pooling layers,
the feature maps are typically flattened into a vector and passed
through one or more fully connected layers, similar to those in
traditional neural networks. Fully connected layers connect each
neuron in one layer to every neuron in the following layer, allowing
the model to learn complex combinations of features.
Mathematically, the fully connected layers involve matrix
multiplications and activation functions similar to those in shallow
neural networks.

By combining multiple convolutional layers, pooling layers, and fully
connected layers, CNNs can learn hierarchical representations of the input
data, capturing low-level features in the earlier layers and higher-level
abstractions in the deeper layers. The training of CNNs often involves
gradient-based optimization techniques, such as backpropagation and
stochastic gradient descent, to adjust the weights and biases throughout the
network.

Figure 5.2: Image processing in a deeply connected CNN

CNN uses convolutional layers to perform local receptive field operations
on the input data, followed by activation functions and pooling layers to
extract features and down sample the spatial dimensions. Fully connected
layers are then used to learn high-level representations. CNNs excel in
analyzing visual data because they can effectively capture spatial
relationships within the data. Refer to 5.2 for a visual depiction of how
CNNs process an image for classification.

CNNs versus fully connected networks
The key differences between a CNN and a fully connected network lie in
their architectural design and the operations performed on the data. Let us
tabulate some of them here for better understanding here in Table 5.1:

CNNs Fully connected
networks

Convolutional laye
rs

Convolutional layer
s play a crucial role.
These layers apply l
earnable filters to s
mall local regions o
f the input data. The
filters capture spatia
l patterns by perfor
ming convolutions,
which involve elem
ent-wise multiplicat
ion and summation.
The output of a con
volutional layer is a
feature map that rep
resents the activatio
n or presence of spe
cific patterns in the i
nput.

Do not have specifi
c layers dedicated to
spatial operations. I
nstead, every neuro
n in one layer is con
nected to every neur
on in the next layer,
without considering
the spatial structure
of the input.

Weight sharing This is a notable asp
ect of CNNs. In con
volutional layers, th
e same set of filters
is applied across the
entire input, regardl
ess of location. This
weight sharing allo
ws the network to ef
ficiently learn spatia
l hierarchies of feat
ures and significantl
y reduces the numb
er of parameters in t
he model. By sharin
g weights, CNNs ca
n learn to recognize
certain patterns rega
rdless of their locati
on in the input.

Weight sharing does
not exist in these net
works. Each neuron
in one layer has its
own unique set of w
eights connecting it
to every neuron in t
he subsequent layer.
This lack of weight
sharing results in a
higher number of pa
rameters compared t
o CNNs, making ful
ly connected networ
ks more computatio
nally expensive and
prone to overfitting,
especially when dea
ling with high-dime
nsional inputs like i
mages.

Pooling layers Pooling layers are c
ommonly used in C
NNs to downsample
the spatial dimensio
ns of the feature ma
ps, reducing comput
ational complexity a
nd extracting higher
-level features. Max
pooling is a widely
used pooling operati
on, which selects th
e maximum value w
ithin a local neighbo
rhood.

Fully connected net
works do not incorp
orate pooling layers.
They typically oper
ate on the full-resol
ution feature maps
without downsampli
ng.

Table 5.1: Differences between CNNs and fully connected networks

Here is some code for implementing a convolutional neural network-based
deep learning in Python:

1. import numpy as np

2. from sklearn.datasets import load_digits

3. from sklearn.model_selection import train_test_split

4. from sklearn.pipeline import Pipeline

5. from sklearn.preprocessing import StandardScaler

6. from sklearn.svm import SVC

7. from sklearn.metrics import accuracy_score

8.

9. # Load the digits dataset from scikit-learn

10. digits = load_digits()

11.

12. # Split the dataset into training and testing sets

13. X_train, X_test, y_train, y_test = train_test_split(digits.data, digits.tar
get, test_size=0.2, random_state=42)

14.

15. # Preprocessing - Scale the input features

16. scaler = StandardScaler()

17. X_train_scaled = scaler.fit_transform(X_train)

18. X_test_scaled = scaler.transform(X_test)

19.

20. # Create a pipeline for feature extraction and classification

21. pipeline = Pipeline([

22. (‹classifier›, SVC()) # You can replace SVC with any
other scikit-learn classifier

23.])

24.

25. # Train the model on the training data

26. pipeline.fit(X_train_scaled, y_train)

27.

28. # Make predictions on the test data

29. y_pred = pipeline.predict(X_test_scaled)

30.

31. # Calculate the accuracy of the model

32. accuracy = accuracy_score(y_test, y_pred)

33. print("Accuracy:", accuracy)

In this program, we use the load_digits function from scikit-learn to load
the digits dataset, which consists of images of handwritten digits. We split
the dataset into training and testing sets using train_test_split, allocating
20% of the data for testing. Next, we preprocess the data by scaling the
input features using StandardScaler. We create a pipeline using pipeline,
which allows us to chain multiple steps together. In this case, we only have
one step, which is the classifier (SVC in this example, but you can replace it
with any other scikit-learn classifier). We train the model on the training
data using the fit method of the pipeline. After training, we use the model to

make predictions on the test data with the predict method of the pipeline
and store the predictions in y_pred. Finally, we calculate the accuracy of
the model by comparing the predicted labels (y_pred) with the true labels
(y_test) using the accuracy_score function from scikit-learn.

Please keep in mind that this approach using scikit-learn is a simple feature-
based approach rather than a true CNN-based approach. For more complex
image classification tasks, it is recommended to use dedicated deep learning
libraries such as TensorFlow or PyTorch, which provide specialized tools
and architectures for convolutional neural networks. We will discuss these
libraries in the next chapter.

Deep learning process
Training and inference are two fundamental processes in deep learning.
While they share certain similarities, they also have distinct characteristics.
Let us explore each process in detail, along with their similarities,
differences, and techniques/tricks commonly used:

Training
The training process involves training a deep learning model using labeled
data to learn the underlying patterns and relationships within the data. It
typically consists of the following steps:

1. Forward pass: During the forward pass, the input data is fed
through the layers of the model, and the output or predictions are
generated. The model's parameters (weights and biases) are used to
transform the input data and produce the output.

2. Loss calculation: The loss function is used to quantify the
discrepancy between the model's predictions and the true labels. It is
a measure of how well the model is performing on the training data.
The goal is to minimize this loss during training.

3. Backward pass: The backward (backpropagation) pass involves
computing the gradients of the loss with respect to the model's
parameters. This is done using the chain rule of calculus, allowing
the gradients to flow backward through the layers of the model. The

gradients indicate the direction and magnitude of the parameter
updates required to minimize the loss.

4. Parameter update: The model's parameters are updated using an
optimization algorithm, such as gradient descent or variants. The
updates are determined by multiplying the gradients with a learning
rate, which controls the step size taken in the parameter space.

5. Repetition or iteration: Steps 1 to 4 are repeated for multiple
iterations or epochs to refine the model's parameters and improve its
performance. The model is exposed to the training data multiple
times to gradually learn and adjust its internal representations.

Techniques in training
The purpose of techniques and tricks in training deep learning models is to
improve their performance, address common challenges, and enhance their
generalization capabilities. These techniques aim to overcome limitations
such as overfitting, vanishing/exploding gradients, slow convergence, and
poor optimization. By applying these techniques and tricks, deep learning
models can achieve better performance, faster convergence, improved
generalization, and enhanced efficiency. These techniques are crucial for
addressing common challenges in training deep learning models and
ensuring their effectiveness in real-world applications. The techniques are
as follows:

Activation functions: Choosing appropriate activation functions can
affect the model's capacity to learn complex relationships.

Regularization: Techniques like L1 or L2 regularization help
prevent overfitting by adding penalty terms to the loss function.

Dropout: Randomly dropping units during training helps to
regularize the model and prevent co-adaptation of neurons.

Batch normalization: Normalizing the input data within each mini-
batch helps stabilize and speed up training.

Learning rate scheduling: Adjusting the learning rate during
training can help find a balance between convergence and avoiding
overshooting.

Inference process
The inference process involves making predictions or generating outputs
from the trained model on unseen or test data. It typically consists of the
following steps:

1. Forward pass: Similar to the training process, the input data is fed
through the layers of the model, and predictions or outputs are
generated.

2. Output generation: The model's predictions or outputs are
generated based on the forward pass. The specific output depends on
the task, such as class probabilities for classification or continuous
values for regression.

Techniques/tricks in inference
The purpose of techniques and tricks in inference for deep learning models
is to optimize their performance, improve efficiency, and address specific
challenges that arise during the deployment or utilization of the models.
These techniques enhance the model's prediction accuracy, reduce
computational requirements, increase speed, and ensure robustness. Some
of the techniques used in inference are listed as follows:

Dropout inference: During inference, dropout is typically turned off
or modified to retain all units for more stable predictions.

Ensemble methods: Combining predictions from multiple models,
such as using model averaging or bagging, can improve
performance.

Quantization: Reducing the precision of the model's parameters can
reduce memory requirements and increase inference speed.

Pruning: Removing unnecessary connections or parameters in the
model to reduce its size and improve inference efficiency.

Knowledge distillation: Transferring knowledge from a larger, more
complex model (teacher) to a smaller model (student) to improve its
performance.

Training and inference in deep learning involve similar steps of forward
pass and output generation but differ in terms of backpropagation, loss
calculation, and parameter updates. Various techniques and tricks are
employed during each process to improve performance, optimize model
parameters, and manage computational resources effectively. Refer to Table
5.2 for a quick view of differences:

Training Inference

Forward pass Y Y

Model architecture Y Y

Backward pass Y N

Loss calculation Y N

Parameter update Y N

Data usage Y N

Table 5.2: Comparison of sub-steps in training and inference

Conclusion
In conclusion, this chapter has explored deep learning architectural
approaches and essential techniques. The discussion has encompassed the
architectural approaches of CNN. Training techniques for model
optimization and inference strategies for efficient predictions have also
been addressed. In the next chapter we shall discuss the inferencing
architectures for computer vision and shall introduce the OpenCV DNN
module.

Key terms
Perceptron: A simple machine learning algorithm that can be used
to classify data into two categories.

Deep learning: A machine learning technique that uses artificial
neural networks to learn from data.

Shallow learning: A machine learning technique that uses simple
algorithms to learn from data.

Weights: Coefficients that determine how much each input feature
contributes to the final output.

Biases: A constant offset that is added to the weighted sum of the
input features before it is passed to the activation function.

Activation functions: Mathematical functions used to introduce
non-linearity into artificial neural networks.

Optimization function: Algorithms used to update the weights and
biases of the network with the objective to minimize the loss.

Convolutional neural network (CNN): A type of neural network
that is specifically designed for processing and analysing visual
imagery.

Tensorflow: It is a deep learning library.

PyTorch: It is a deep learning library.

Exercises
1. Implement a classification using perceptron on the iris dataset.

2. After training the deep learning model, store the model weights to
disk. Then read them from a separate python program and perform
inference on data.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/

OceanofPDF.com

https://oceanofpdf.com/

Chapter 6
OpenCV DNN Module

Introduction
In this chapter, we will delve into the OpenCV deep neural networks
(DNNs) module. It is a powerful tool that combines the best aspects of both
computer vision and deep learning. Over the years, this module has seen
significant development, expanding its support for multiple deep learning
frameworks, pre-trained models, and hardware acceleration. With a rich
history of integration and enhancement, the DNN module has become an
indispensable asset for building cutting-edge computer vision applications.

With a comprehensive overview of the OpenCV DNN module's key
aspects, including its history, supported and unsupported layers, and
essential classes, this chapter shall explore the depths of the OpenCV DNN
module and explain the building blocks to powerful computer vision
solutions.

Structure
This chapter discusses the following topics:

Deep learning frameworks

TensorFlow

PyTorch

Keras

Inference for computer vision

Local inferencing

Local CPUs

Local GPUs

Cloud

Edge computing

OpenCV DNN module

History

Features and limitations

Capabilities

Limitations

Considerations

Supported layers

Unsupported layers and operations

Important classes

Objectives
This chapter aims to explain the OpenCV DNN module without resorting to
software coding. We will start with a cursory view of deep learning
frameworks, and solution architectures for computer vision. We will then
introduce the OpenCV DNN module. We will discuss its features,
capabilities, and discuss deep learning layers and operations supported by
DNN module. We shall also be aware of the limitations inherent in the
module.

Deep learning frameworks
We begin by discussing about the deep learning frameworks available for
programmers. As explained earlier, building large and complex neural
networks using vanilla Python libraries like sklearn can be complex and

ineffective. Deep learning training and inference have specialized needs that
cannot be addressed by libraries like scikit. The two popular deep learning
frameworks are TensorFlow and PyTorch. Any detailed discussion of these
libraries is beyond the scope of this book. We will only discuss them in a
perfunctory way.

TensorFlow
TensorFlow is an open-source deep learning framework developed by
Google Brain. It offers a comprehensive ecosystem for building and
deploying machine learning models. TensorFlow provides a flexible and
efficient way to define and train neural networks on various hardware
platforms, including CPUs, GPUs, and even specialized accelerators like
TPUs. Its computational graph abstraction allows for efficient execution
and distributed computing. TensorFlow also offers tools for visualization,
model deployment, and serving in production environments. With its wide
adoption and extensive community support, TensorFlow is widely used in
research and industrial applications.

PyTorch
PyTorch is another popular deep learning framework widely embraced by
researchers and practitioners. Developed by Facebook's AI research lab,
PyTorch is known for its dynamic computational graph, which provides a
more intuitive and flexible approach to model development. It allows you to
build neural networks using Pythonic syntax and provides automatic
differentiation for efficient gradient computation during training. PyTorch's
eager execution mode enables interactive experimentation and debugging.
Additionally, PyTorch's seamless integration with the Python scientific
computing ecosystem makes it easy to leverage powerful libraries like
NumPy and SciPy. PyTorch has gained significant popularity in the deep
learning community due to its user-friendly interface and strong support for
research workflows.

Keras
Keras is an open-source high-level neural network API written in Python. It
serves as a user-friendly and intuitive interface to build and experiment with
deep learning models. One of the key strengths of Keras lies in its

simplicity and ease of use, making it a popular choice for beginners and
researchers alike. Keras was a standalone library, but it became part of
TensorFlow starting from TensorFlow version 2.0. As a result, it now works
seamlessly with TensorFlow as its high-level API. However, one notable
difference between Keras and TensorFlow is their level of abstraction.
Keras abstracts away many of the low-level details of TensorFlow,
providing a more streamlined development experience, whereas
TensorFlow gives more control and flexibility, enabling developers to
customize models and algorithms at a lower level. This distinction often
makes Keras a preferred option for quick prototyping and building models
efficiently, while TensorFlow caters to developers who require fine-grained
control over their deep learning workflows.

Both TensorFlow and PyTorch offer rich libraries and APIs for common
deep learning tasks such as image classification, object detection, natural
language processing, and more. They provide extensive documentation,
tutorials, and pre-trained models to accelerate the development process.
Moreover, these frameworks support advanced features like distributed
training, model quantization, and deployment on various platforms,
ensuring scalability and efficiency.

Whether it is for academic research, prototyping models, or deploying
large-scale production systems, these frameworks provide the tools and
resources developers need to bring their ideas to life.

Inference for computer vision
Once you have trained a model for your use case, how will it run in
production? Certainly not the way we have seen in code examples in
Chapter 5. Those are simplistic cases meant to show how deep learning
models are built. Solutioning a computer vision is more than simply calling
model.predict(). There are several approaches to architecting solutions,
each with a particular cost versus performance trade-off. These options
include running on a PC and deciding between CPU and GPU utilization.
Another approach involves centralizing video stream processing using a
dedicated server or utilizing Cloud CPUs, Cloud GPUs, and Cloud VPUs,
as well as exploring off-the-shelf solutions. Additionally, edge computing
options like Intel® OpenVino and Qualcomm® SNPE present alternative

avenues for consideration. Choose the solution that best aligns with your
specific requirements and objectives.

Consider the inference needs for image data processing. There are two main
approaches: Offline image processing, where photos are uploaded to a
cloud drive and processed later, and real-time processing, where video
frames from a camera are continuously analyzed. Depending on your
business requirements, it is essential to evaluate the cost implications to
ensure a successful product delivery.

Deep learning techniques offer superior accuracy for models, but they can
be slow, CPU-intensive, and memory-intensive. To address these
challenges, various approaches have been adopted in the industry.

Local inferencing
In this scenario, the camera is directly connected to a machine where the
code is executed. This setup offers great flexibility in controlling hardware
and software. However, it is limited by the host machine's hardware
capabilities, and practical constraints dictate that the camera cannot be
placed too far from the host computer. For instance, running a camera wire
for 200/300 meters to perform face recognition on passengers would be
impractical. While streaming video frames over the internet can address this
issue, it introduces additional complexities and does not scale efficiently
when multiple camera feeds need analysis. The computational limits of the
CPU are often reached relatively quickly in this setup.

Local CPUs
Running deep learning models on the same machine as the camera is
suitable for scenarios where the image cannot leave the computer for legal
or privacy reasons. However, scaling becomes a challenge. Adding more
cameras can significantly increase costs due to CPU-heavy computations.

Local GPUs
GPUs are beneficial in reducing computational time for deep learning
models and improving runtime performance. While they do not impact the
algorithm's effectiveness, they enhance processing speed.

Cloud
The cloud provides a simplified alternative compared to local machines.
However, it is important to remember that the cloud is not free; though it
can be affordable, it might not always be cheap. To ensure optimal response
times, careful design of lambda functions and other components is
necessary. Programming a cloud-based CPU and GPU is similar to
programming a local CPU or GPU. However, network latencies must be
considered, especially for applications like driverless cars, where cameras
are remote from the cloud server.

Edge computing
Special purpose devices like Intel Movidius (Neural Computing Sticks) and
Qualcomm Snapdragon provide an alternative solution. Offloading
inference processing to these devices frees up the CPU and offers edge
computing capabilities. This approach is cost-effective, efficient, and
suitable for sending only inference results to the main server instead of
processing entire video frames.

While edge devices have limitations in supporting predefined neural
networks like Inception or YOLO, transfer learning allows developers to
train them for specific projects. Despite some compromises in creating
custom networks, this field is rapidly evolving, with competition driving
companies to innovate and progress in the computer vision domain.

When deciding between local inferencing and cloud-based solutions, it is
crucial to weigh the advantages, limitations, and cost factors associated
with each approach, ultimately aligning with your project's specific
requirements and budget considerations.

OpenCV DNN module
Why did we discuss the concepts of cloud computing inference in the
previous section? It was done to drive home a point.

OpenCV's deep neural networks (DNNs) module is a powerful tool for
deploying pre-trained deep learning models and building custom deep
learning models for various computer vision tasks. OpenCV's DNN module
is a versatile tool for integrating deep learning models into computer vision

projects. Developers can effectively leverage this module to build powerful
computer vision applications.

History
The OpenCV DNN module has undergone significant development and
evolution over the years. The module was first introduced in OpenCV 3.1.0
in 2016. This initial version allowed users to deploy deep learning models
from the Caffe framework. Caffe was one of the popular deep learning
frameworks at the time and provided a wide range of pre-trained models for
tasks like image classification and object detection. In subsequent releases,
OpenCV's DNN module started supporting more deep learning frameworks,
such as TensorFlow and Torch/PyTorch. This allowed users to utilize
models trained in these frameworks and benefit from their respective
architectures and performance optimizations. The integration of multiple
frameworks expanded the range of tasks that the DNN module could
handle. OpenCV's DNN module saw significant improvements in terms of
performance and optimization. In OpenCV 3.4.0 (late 2017) and later
versions, hardware acceleration through OpenCL and Intel's Inference
Engine (IE) was introduced. This enabled users to leverage compatible
hardware, such as GPUs and specialized accelerators, to accelerate the
inference process, especially for computationally-intensive tasks. OpenCV
continued to expand its collection of pre-trained models in the DNN
module. More models were added for tasks like face recognition, pose
estimation, semantic segmentation, and more. This allowed developers to
easily access state-of-the-art models and deploy them in their computer
vision applications. As deep learning continues to evolve, the OpenCV
DNN module will likely integrate with new and emerging deep learning
frameworks, allowing users to deploy the latest models and architectures in
their computer vision projects.

The DNN module has been continuously improved and refined with each
subsequent release of OpenCV. Developers have worked on enhancing the
compatibility with different frameworks, improving model loading,
optimizing performance, and addressing bugs reported by the community.

It is worth noting that OpenCV is an open-source project with an active
community of developers, and the DNN module's history is closely tied to
advancements in deep learning and the availability of new frameworks and

models. The module's continued growth and improvement reflect the
ongoing efforts to provide a robust and flexible platform for deploying deep
learning models in computer vision applications.

Features and limitations
Here is a detailed explanation of its features, capabilities, limitations, and
aspects to consider before using this module for your project:

Capabilities
Here are some of the capabilities of the DNN module:

Deep learning framework integration: OpenCV's DNN module
supports several popular deep learning frameworks, including
TensorFlow, Caffe, PyTorch, and Open Neural Network Exchange
(ONNX). This enables seamless integration and direct use of models
trained in these frameworks within OpenCV.

Pre-trained models: The DNN module comes with a collection of
pre-trained models, ranging from image classification to object
detection, face recognition, pose estimation, semantic segmentation,
and more. These models are trained on large datasets and offer state-
of-the-art performance for specific tasks.

Custom model deployment: Developers can deploy their own
trained deep learning models by importing them from supported
frameworks. This allows you to leverage the strengths of your
custom architectures and trained weights directly within OpenCV.

Hardware acceleration: OpenCV's DNN module supports hardware
acceleration through OpenCL and Intel's IE. This enables faster
inference on devices with compatible hardware.

Model optimization: The module provides options for model
optimization, such as model quantization, to reduce model size and
improve inference speed on resource-constrained devices.

Multiple backends: OpenCV DNN offers different backends for
optimized inference, including CPU and GPU (via OpenCL and
CUDA). This allows developers to choose the most suitable backend
based on hardware availability and performance requirements.

Limitations
Here are some limitations of the DNN module:

Limited training support: While OpenCV's DNN module allows
deployment of custom-trained models, it does not offer training
capabilities. Training deep learning models should be done using
dedicated deep learning frameworks like TensorFlow, PyTorch, or
Caffe.

Model compatibility: Not all layers or architectures supported by
deep learning frameworks are fully compatible with OpenCV's DNN
module. Some complex layers or custom operations may not be
supported, requiring model adjustments or custom implementations.

Memory consumption: Deep learning models, especially those with
many layers, can be memory-intensive. Running complex models on
resource-limited devices might lead to out-of-memory issues.

Performance variability: Inference performance can vary based on
the backend, hardware, and model architecture. Benchmarking and
testing on target devices are necessary to optimize performance.

Considerations
So, what should developers consider before choosing to work with OpenCV
DNN? Here is a list of items you should consider before working with
OpenCV DNN:

Task requirements: Assess your project's computer vision
requirements and select pre-trained models or frameworks that align
with your specific task. Determine if you need to deploy pre-trained
models or if custom model creation is necessary.

Hardware constraints: Consider the hardware available for
inference, as it will impact the choice of backend and overall
performance. Hardware acceleration (for example, GPUs) may
significantly speed up inference, but it might not be available on all
devices.

Model size and complexity: For resource-constrained devices,
consider model size and complexity. Optimize the model through

techniques like quantization to achieve a balance between accuracy
and memory usage.

Runtime environment: If your project requires real-time or near
real-time performance, choose the backend and model architecture
that can meet those performance requirements.

Model compatibility: Ensure that the models you plan to use are
supported by OpenCV's DNN module and that any custom layers or
operations are compatible or can be replaced with supported
alternatives.

Benchmarking and optimization: Thoroughly benchmark the
chosen models and backends on target hardware to identify
bottlenecks and optimize performance.

Supported layers
OpenCV's DNN module supports a wide range of deep learning layers and
operations. However, not all layers or operations available in various deep
learning frameworks are fully supported. The support status may change
with newer versions of OpenCV as the module continues to evolve. Here is
an overview of the commonly supported and unsupported deep learning
layers and operations in OpenCV DNN:

Convolutional layers: Standard convolutional layers, including 2D
and 3D convolutions, depth-wise separable convolutions, dilated
convolutions, and so on, are supported.

Pooling layers: Max pooling and average pooling are typically
supported.

Fully connected layers: Also known as dense layers, these are
widely supported.

Activation functions: Common activation functions like Rectified
Linear Unit (ReLU), Sigmoid, Tanh, and Leaky ReLU are
supported.

Normalization layers: Batch Normalization and Layer
Normalization are often supported.

Concatenation and element-wise operations: Operations like
concatenation, element-wise addition, subtraction, multiplication,
and division are usually supported.

Reduction layers: Operations like Global Average Pooling (GAP)
and Global Max Pooling are commonly supported.

Upsampling and interpolation: Layers that perform upsampling or
interpolation, such as bilinear or nearest-neighbor upsampling, are
supported.

Detection and region proposal layers: Operations like Non-
Maximum Suppression (NMS) and region proposal layers are
supported for object detection tasks.

Unsupported layers and operations
Here are some of the layers and operations unsupported by DNN module:

Custom layers: Layers that are specific to a particular model or not
commonly used in standard architectures may not be supported in
OpenCV DNN. These custom layers may need to be replaced or re-
implemented for compatibility.

Recurrent layers: Recurrent layers like Long Short-Term Memory
(LSTM) and Gated Recurrent Unit (GRU) were not fully
supported. This means models with recurrent layers might not work
as expected in OpenCV DNN.

Complex embeddings and transformations: Some complex
embedding layers or non-linear transformations may not be
supported, depending on the specific framework and version of
OpenCV.

Dynamic shapes: Layers that require dynamic input shapes during
inference may not be fully supported in OpenCV DNN. This
limitation can affect models with variable input sizes.

Complex attention mechanisms: Some advanced attention
mechanisms, such as transformers, may not be fully supported in
older versions of OpenCV.

It is essential to check the latest OpenCV documentation and release notes
to get the most up-to-date information on supported and unsupported layers
and operations in the DNN module. If your model contains unsupported
layers, you might need to consider re-implementing them using supported
operations or frameworks, or explore using other deep learning frameworks
that provide full compatibility with your model's architecture. Additionally,
newer versions of OpenCV may bring improvements and expanded support
for various layers and operations, so keeping your OpenCV version up-to-
date is advisable.

Important classes
OpenCV DNN module provides several important classes for building and
working with deep learning models. These classes provide functionality for
model loading, inference, and optimization. We will discuss the most
common and most important classes here. A detailed discussion of each
class is out of scope for the purpose of this book. Interested readers are
advised to visit the official documentation from OpenCV at the given URL:
https://docs.opencv.org/4.x/d6/d0f/group__dnn.html.

Here is an overview of some of the key classes in the OpenCV DNN
module:

cv::dnn::Net

The Net class represents a deep learning model. It allows you to
load pre-trained models from various deep learning frameworks
(such as Caffe, TensorFlow, PyTorch, ONNX, and so on) or create
custom models by stacking layers programmatically. You can use
the Net class to load models from model files (for example,
.caffemodel, .pb, .t7, .onnx, and so on) and configure the backend
for inference (for example, CPU, GPU, OpenCL, and so on). The
class provides methods for forwarding input data through the
network to obtain output predictions.

cv::dnn::Layer

The Layer class is the base class for all layers in the OpenCV DNN
module. It provides methods for setting layer parameters,

clbr://internal.invalid/book/OEBPS/chap06.xhtml

connecting layers together, and performing forward propagation
during inference.

cv::dnn::LayerParams

LayerParams is a structure that holds parameters for a specific
layer when constructing a custom network using the Net class. It
includes properties like the layer type, input and output blob names,
activation function, kernel size, stride, and so on.

cv::dnn::Blob

The Blob class represents a tensor or multi-dimensional array used
as input or output in the deep learning model. It allows you to
access and manipulate the data stored in the blob during inference.

cv::dnn::BackendNode

The BackendNode class provides backend-specific information
about nodes in the network, such as memory allocation, storage
formats, and optimized computation.

cv::dnn::NMSBoxes

NMSBoxes is a utility class for performing Non-Maximum
Suppression (NMS) on bounding box detections to filter out
overlapping detections and retain only the most relevant ones.

cv::dnn::DetectionModel

DetectionModel is a specialized class for object detection tasks. It
provides methods to perform detection on input images and retrieve
bounding boxes, confidence scores, and class labels for detected
objects.

cv::dnn::TextDetectionModel

TextDetectionModel is a specific class for text detection tasks,
enabling the detection of text regions in images.

These are some of the essential classes in the OpenCV DNN module. Using
these classes effectively, you can load pre-trained models, create custom
architectures, perform inference on images or videos, and work with
different types of deep learning models for various computer vision tasks,

such as image classification, object detection, semantic segmentation, and
more.

Conclusion
OpenCV DNN module offers a powerful and flexible platform for
integrating deep learning models into computer vision projects. With its
support for various frameworks, pre-trained models, and hardware
acceleration, developers can tackle a wide range of tasks with ease. While
being aware of the module's limitations, the understanding of supported
layers and essential classes equips us to make informed decisions and
optimize performance. Armed with this knowledge, we are well-positioned
to harness the potential of deep learning and computer vision, paving the
way for innovative and impactful applications in the field.

Exercises
1. Please visit the official OpenCV documentation and gain an

understanding of the classes and terms described in this chapter.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

OceanofPDF.com

https://discord.bpbonline.com/
https://oceanofpdf.com/

Chapter 7
Modern Solutions for Image

Classification

Introduction
This chapter delves into the realm of computer vision and deep learning,
focusing on the powerful technique of image classification. Image
classification involves the categorization of images into distinct classes
using advanced machine learning models. Throughout this chapter, we will
explore renowned image classification architectures, including ResNet,
InceptionV3, MobileNetV2, and more. By understanding these
architectures and their implementation, we will equip ourselves with the
tools to analyze, preprocess, and classify images, showcasing the
intersection of cutting-edge technology and visual understanding.

Structure
The chapter discusses the following topics:

CNNS for classification

Inception V3

ResNet

MobileNetV2

Comparison of models

Parameters for blobFromImage()

Objectives
The objective of this chapter is to evaluate the deep learning solutions for
image classification. This chapter aims to explain image classification using
the Keras framework and OpenCV’s DNN module. We will also learn about
the architecture and salient points of the major classification models. This
chapter does not attempt to explain the training or transfer learning
processes of deep learning.

CNNS for classification
As discussed in Chapter 5, Deep Learning and CNNs are a class of deep
learning models widely used for image classification tasks. They are
designed to learn spatial hierarchies of features automatically and
adaptively from input images. The general CNN architecture for image
classification consists of the following key components:

Input layer: The first layer of the CNN takes the raw input image as
a multi-dimensional array of pixel values. Typically, images are
represented as 3D arrays with dimensions (height, width, channels).
The number of channels corresponds to the color channels in the
image (for example, RGB images have 3 channels, grayscale images
have 1 channel).

Convolutional layers: These layers are the core building blocks of a
CNN. Each convolutional layer applies a set of learnable filters (also
known as kernels) to the input image. These filters slide over the
image in small strides and perform element-wise multiplications and
summations to produce feature maps. Each feature map represents a
particular feature learned by the filter, such as edges, textures, or
higher-level patterns.

Activation function: After the convolution operation, an activation
function (for example, ReLU - Rectified Linear Unit) is applied
element-wise to introduce non-linearity into the network. This allows

CNN to learn complex relationships and improve its ability to
represent more intricate features in the data.

Pooling layers: These layers help reduce the spatial dimensions of
the feature maps while retaining important information. Pooling is
typically done using operations like MaxPooling, where the
maximum value within a local window is taken, or AveragePooling,
where the average value is computed. Pooling helps reduce the
computational complexity of the network and makes it more robust
to spatial translations.

Fully connected layers: After several convolutional and pooling
layers, the final output is usually flattened into a 1D vector. This
vector is then passed through one or more fully connected layers
(also known as dense layers) to perform high-level reasoning and
decision-making based on the extracted features. These layers
contain a large number of neurons, and each neuron is connected to
every output of the previous layer.

Output layer: The last fully connected layer typically consists of
neurons equal to the number of classes in the classification task. It
provides the final classification scores or probabilities using an
appropriate activation function (for example, softmax for multi-class
classification).

Loss function: During training, CNN computes a loss or cost
function based on the difference between its predictions and the true
labels of the training data. The goal of training is to minimize this
loss function, typically achieved using optimization algorithms like
stochastic gradient descent (SGD) or its variants.

The overall process of training a CNN involves passing the input image
through the layers, computing the loss, and then using backpropagation to
update the weights of the network to improve its performance. Once
trained, the CNN can be used to make predictions on new, unseen images
for image classification tasks.

We shall test the different deep learning models using the Keras framework
and OpenCV’s DNN module using the image shown in Figure 7.1:

Figure 7.1: Image used for testing the classification models

Inception-v3
Inception-v3 is a deep learning architecture developed by Google's research
team as part of the Inception series of models. It is designed for image
classification and other computer vision tasks. Inception-v3 is an evolution
of the earlier Inception-v1 and Inception-v2 models. It introduces several
improvements to achieve higher accuracy and efficiency. The key
innovation of Inception-v3 is the use of Inception modules, which are
designed to capture multi-scale patterns and hierarchies of features. These
modules use a combination of different-sized convolutional filters in
parallel to capture information at different scales. The main idea is to create
a network that can effectively learn both local and global features, allowing
it to recognize patterns at various levels of abstraction.

Here is an overview of the Inception-v3 architecture:

Input layer: The input to the network is an image represented as a
3D array with dimensions (height, width, channels). Images are
typically resized to a fixed size before feeding them into the
network.

Initial convolution and pooling layers: The input image passes
through an initial set of convolutional layers, which perform feature
extraction. This is followed by max-pooling layers to reduce spatial
dimensions and control the computation.

Inception modules: These are the core building blocks of Inception-
v3. Each Inception module consists of multiple parallel
convolutional layers with different filter sizes and a pooling layer.
Specifically, each Inception module includes:

1x1 convolution: This captures linear combinations of
features from the previous layer.

3x3 convolution: This captures more spatial information and
detects mid-level patterns.

5x5 convolution: This captures larger spatial patterns and
detects higher-level features.

3x3 max pooling: This captures dominant features in
different regions.

The outputs of all these operations are then concatenated along the
depth dimension to form the output of the Inception module. The
use of different filter sizes in parallel allows the network to learn
features at multiple scales and helps prevent overfitting.

Auxiliary classifiers: Inception-v3 includes auxiliary classifiers at
intermediate stages of the network. These classifiers are added to
provide additional gradient flow during training and act as
regularization. They encourage the network to learn more useful and
discriminative features.

Global average pooling: Inception-v3 uses global average pooling
to reduce spatial dimensions to 1x1 before the final classification.

Output layer: The final fully connected layer or softmax layer is
used to produce the final classification scores or probabilities.

See Figure 7.2 for the diagrammatic representation of inception
architecture. This image has been taken from the inception-v3 paper at
https://paperswithcode.com/method/inception-v3. Please refer to the
following figure:

Figure 7.2: Inception-v3 architecture

Inception-v3 achieved significant improvements in accuracy over its
predecessors and has been widely used for various computer vision tasks,
such as image classification, object detection, and image segmentation. It
has been a popular choice for transfer learning and is available in many
deep learning frameworks, making it accessible to developers for various
applications.

Note: Keras provides functionality to print a detailed view of the
model’s nodes and their connectivity. It can be used to visualize and
debug the model architecture. The plot_model() function in
tensorflow.keras.utils does this. However, as the model becomes more
complex, it becomes difficult to fit the output into a book publishing
scenario. Figure 7.3 intentionally presents a distorted image to
accommodate publishing challenges. Throughout the remainder of the
book, we will refrain from utilizing this particular output.
Nevertheless, the readers can refer to the code bundle for the image in
its true resolution. The accompanying code for achieving this
visualization is provided below.

1. import tensorflow as tf

2. from tensorflow.keras.applications.inception_v3 import InceptionV3

3. from tensorflow.keras.utils import plot_model

4.

5.

6. model = InceptionV3(weights='imagenet')

7. plot_model(model, to_file="inveptionv3.png", show_shapes=True)

Figure 7.3: Tensorflow output of plotmodel() function for Inception-v3

Let us now see the code for using Inception-v3 model. We shall use the
model in two different ways. One is by using the Keras framework and the
second is by using the DNN module of OpenCV.

Keras
Below is the code implementation to use Inception-v3 with Keras library:

1. import os

2. import numpy as np

3. from keras.applications import InceptionV3

4. from keras.applications.inception_v3 import preprocess_input, decod
e_predictions

5. from keras.preprocessing import image as image_utils

6. from keras import utils

7.

8.

9. def preprocess_image(im):

10. # Load the image and resize it to the target size of (299, 299).

11. img = utils.load_img(im, target_size=(299, 299))

12.

13. # Convert the loaded image to a NumPy array.

14. img = utils.img_to_array(img)

15.

16. # Add an additional dimension to the array to represent batch size (
1).

17. img = np.expand_dims(img, axis=0)

18.

19. # Preprocess the image data for the specific deep learning model.

20. img = preprocess_input(img)

21.

22. # Return the preprocessed image.

23. return img

24.

25.

26.

27. def classify_image_using_tensorflow(imagepath):

28. # Create an empty list to store the predicted labels.

29. predicted_labels = []

30.

31. # Load the pre-trained InceptionV3
model with weights from the ImageNet dataset.

32. model = InceptionV3(include_top=True, weights='imagenet')

33.

34. # Preprocess the input image using the preprocess_image function
(not shown here).

35. preprocessed_image = preprocess_image(imagepath)

36.

37. # Make a prediction using the pre-
trained model on the preprocessed image.

38. pred = model.predict(preprocessed_image)

39.

40. # Decode and process the prediction to get the top predicted
labels.

41. for prediction in decode_predictions(pred, top=7)[0]:

42. predicted_labels.append(prediction)

43.

44. # Return the list of predicted labels.

45. return predicted_labels

46.

47.

48. if __name__ == "__main__":

49. # This block of code will be executed only if this script is run directl
y as the main program.

50.

51. # Call the classify_image_using_tensorflow function with the specif
ied image file path.

52. labels = classify_image_using_tensorflow("../input_images/aeropla
ne.jpg")

53.

54. # Iterate over the list of predicted labels and print each
label.

55. for l in labels:

56. print(l)

57.

The preprocess_image function takes an image file path, loads and resizes
the image, converts it to a NumPy array with an added batch dimension.
Additionally, it preprocesses the image according to the requirements of a
specific deep learning model and returns the preprocessed image ready for
use with the model. classify_image_using_tensorflow function takes an
image file path, uses a pre-trained InceptionV3 model to classify the
image, and returns a list of the top predicted labels along with their
associated probabilities. The function utilizes TensorFlow's capabilities for
model loading, prediction, and label decoding to achieve this classification
task. When this script is run directly, it loads the image of an airplane, uses
the classify_image_using_tensorflow function to predict its labels, and
then prints out the top predicted labels along with their associated
probabilities. This can be useful for quickly testing and verifying the
classification performance of the model on a specific image.

Executing this code produces the given output:

1. D:\bpb\995\7>python classify_inception_keras.py

2. 2023-08-
11 17:44:11.904259: I tensorflow/core/platform/cpu_feature_guard.cc
:193] This TensorFlow binary is optimized with oneAPI Deep Neural
Network Library (oneDNN) to use the following CPU instructions in
performance-critical operations: AVX AVX2

3. To enable them in other operations, rebuild TensorFlow
with the appropriate compiler flags.

4. 1/1 [==============================] - 1s 1s/step

5. ('n02690373', 'airliner', 0.92636836)

6. ('n04592741', 'wing', 0.018255161)

7. ('n04552348', 'warplane', 0.0010660181)

8. ('n02423022', 'gazelle', 0.00072263)

9. ('n04266014', 'space_shuttle', 0.0006761261)

10. ('n02483362', 'gibbon', 0.0006553345)

11. ('n02641379', 'gar', 0.00035934924)

As you can see, an airliner is the class with the highest confidence value of
92.63%. In fact, the class with the second highest confidence value is the
wing with a mere 1.8%. So, we can very confidently conclude that the
given image is that of an airplane.

OpenCV DNN module
Now let us run the same model in OpenCV using DNN module. This script
demonstrates using OpenCV's DNN module to load a pre-trained Inception-
v3 model, preprocess an image, classify it, and print the top predicted labels
with their confidences. The script is structured to be run as a standalone
program:

1. import os

2. import numpy as np

3. import cv2

4. # File paths to the InceptionV3 model weights and class names

5. imagenet_classes_filepath = "../weights/7/ILSVRC2012.txt"

6. inceptionv3_weights_filepath = "../weights/7/inceptionv3/inceptionv3
.pb"

7.

8. # Shape of the input image expected by the InceptionV3 model

9. inceptionv3_shape = (299, 299)

10.

11. # Function to decode and format the predicted labels

12. def decode_predictions(predictions, class_names, top=5):

13. results = []

14. top_indices = predictions[0].argsort()[-top:][::-1]

15. for i in top_indices:

16. result = class_names[i] + ": " + str(predictions[0][i])

17. results.append(result)

18. return results

19.

20. # Function to classify an image using OpenCV's dnn module and
InceptionV3

21. def classify_image_using_opencvdnn(imagepath):

22. # Read the class names from the provided file

23. imagenet_class_names = None

24. with open(imagenet_classes_filepath, 'rt') as f:

25. imagenet_class_names = f.read().rstrip('\n').split('\n')

26.

27. # Load the InceptionV3 model from disk

28. model = cv2.dnn.readNet(inceptionv3_weights_filepath)

29.

30. # Read and preprocess the input image

31. im = cv2.imread(imagepath)

32. resized_image = cv2.resize(im, inceptionv3_shape)

33. image_blob = cv2.dnn.blobFromImage(resized_image, 1/127.5, inc
eptionv3_shape, [127.5, 127.5, 127.5])

34.

35. # Set the input blob for the model and perform forward pass

36. model.setInput(image_blob)

37. predictions = model.forward()

38.

39. # Return the decoded predictions using the decode_predictions fun
ction

40. return decode_predictions(predictions, imagenet_class_names, 7)

41.

42. # Main script execution

43. if __name__ == "__main__":

44. # Call the classify_image_using_opencvdnn function with the speci
fied image file path

45. labels_and_confidences = classify_image_using_opencvdnn("../inp
ut_images/aeroplane.jpg")

46.

47. # Iterate over the list of labels and confidences and print each label
 with confidence

48. for label in labels_and_confidences:

49. print(label)

The code defines file paths for the Inception-v3 model's class names and
weights, as well as the expected shape of the input image. The
decode_predictions function takes the model's predictions, class names,
and a top parameter, and returns a formatted list of the top predicted labels
along with their associated confidences. The
classify_image_using_opencvdnn function uses OpenCV's DNN module
to classify an image. It reads the class names from a file, loads the
Inception-v3 model, preprocesses the input image, performs a forward pass
through the model, and returns the decoded predictions.

Executing this script gives the below output:

1. D:\bpb\995\7>python classify_inception_dnn.py

2. airliner: 0.9326485

3. wing: 0.015929082

4. warplane, military plane: 0.00069996953

5. gazelle: 0.00067140284

6. space shuttle: 0.0005667596

7. gibbon, Hylobates lar: 0.00053297967

8. screen, CRT screen: 0.0003772492

As you can see the DNN module also gave airliner as its most confident
prediction. The most often asked question at this point is – how to interpret
the inputs given to cv2.dnn.blobFromImage() function. Readers are
requested to refer to Chapter 6 for the details of this function. An
explanation of the values is provided at the end of this chapter after
covering ResNet and MobileNetV2.

ResNet
Residual Network (ResNet) is a deep learning architecture introduced by
Kaiming He et al. in their 2015 paper, Deep Residual Learning for Image
Recognition. It addresses the vanishing gradient problem that can occur in
very deep neural networks by introducing skip connections or shortcuts.

The key idea behind ResNet is the introduction of residual blocks, which
allow the network to learn residual functions instead of attempting to learn
the actual mapping. This is done by reformulating the learning process to
learn the difference (residual) between the input and output rather than
learning the output directly. These residual blocks make it easier to train
deep neural networks and have been instrumental in enabling the
construction of deeper CNNs.

The general architecture of a ResNet can be summarized as follows:

Input layer: The input to the network is an image or a feature map
from a previous layer.

Convolutional and pooling layers: The initial layers may consist of
traditional convolutional and pooling layers that help in feature
extraction and dimensionality reduction.

Residual blocks: The main building blocks of ResNet are the
residual blocks. Each residual block contains multiple convolutional
layers and shortcut connections. A typical residual block has the
following components:

Convolutional layer: Applies a set of filters to the input
feature map to extract new features.

Batch normalization: Normalizes the output of the
convolutional layer to accelerate training and improve
generalization.

Activation function: Typically, a ReLU activation function is
applied to introduce non-linearity.

Convolutional layer: Another set of filters is applied to the
previous output.

Batch normalization: Normalizes the output again.

Shortcut connection: A skip connection, which adds the
original input of the residual block to the output of the second
convolutional layer. If the shapes of the inputs do not match, a
1x1 convolution may be used to adjust the dimensions
accordingly.

Global average pooling: Instead of fully connected layers, ResNet
employs global average pooling. This reduces the spatial dimensions
of the feature maps to 1x1 and helps reduce the number of
parameters in the network.

Output layer: A final fully connected layer or softmax layer is used
to produce the final classification scores or probabilities based on the
learned features.

The main advantage of ResNet is that it allows the creation of much deeper
networks (for example, ResNet-50, ResNet-101, ResNet-152) without
sacrificing performance. By introducing shortcut connections, gradients can
flow more easily during training, enabling the successful training of very
deep networks. ResNet has become a foundational architecture for various
computer vision tasks and has been widely adopted and adapted for many
state-of-the-art applications.

For the discussion in this chapter, we shall use ResNet152. This is one of
the most advanced models in the ResNet family. Refer to Figure 7.4 for a
diagrammatic representation of ResNet models:

Figure 7.4: Diagrammatic representation of ResNet architecture1

Keras implementation
The following code uses Keras library for image classification using
MobileNet architecture:

1. import numpy as np

2. from keras import utils

3. from keras.applications.resnet import ResNet152, preprocess_input

4. from keras.applications.imagenet_utils import decode_predictions

5.

6. def preprocess_image(im):

7. # Load the image and resize it to the target size of (224, 224).

8. img = utils.load_img(im, target_size=(224, 224))

9.

10. # Convert the loaded image to a NumPy array.

11. img = utils.img_to_array(img)

12.

13. # Add an additional dimension to the array to represent batch size (
1).

14. img = np.expand_dims(img, axis=0)

15.

16. # Preprocess the image data for the specific deep learning model.

17. img = preprocess_input(img)

18.

19. # Return the preprocessed image.

20. return img

21.

22.

23.

24. def classify_image_using_tensorflow(imagepath):

25. # Create an empty list to store the predicted labels.

26. predicted_labels = []

27.

28. # Load the pre-trained ResNet-152 model with weights from the
 ImageNet dataset.

29. model = ResNet152(include_top=True, weights='imagenet')

30.

31. # Preprocess the input image using the preprocess_image function
(not shown here).

32. preprocessed_image = preprocess_image(imagepath)

33.

34. # Make a prediction using the pre-
trained model on the preprocessed image.

35. pred = model.predict(preprocessed_image)

36.

37. # Decode and process the prediction to get the top predicted labels.

38. for prediction in decode_predictions(pred)[0]:

39. predicted_labels.append(prediction)

40.

41. # Return the list of predicted labels.

42. return predicted_labels

43.

44. if __name__ == "__main__":

45. # This block of code will be executed only if this script is run directl
y as the main program.

46.

47. # Call the classify_image_using_tensorflow function with the specif
ied image file path.

48. labels = classify_image_using_tensorflow("../input_images/aeropla
ne.jpg")

49.

50. # Iterate over the list of predicted labels and print each
label.

51. for l in labels:

52. print(l)

The classify_image_using_tensorflow function takes an image file path,
uses a pre-trained ResNet-152 model to classify the image, and returns a list
of the top predicted labels and their associated probabilities. The function
utilizes TensorFlow's capabilities for model loading, prediction, and label
decoding to achieve this classification task. When this script is run directly,
it uses the classify_image_using_tensorflow function to classify an input
image of an airplane, then iterates over the predicted labels and prints them
out. This script provides a convenient way to quickly see the top predicted
labels for a specific image using the classification function. When executed,
this script provides the following output:

1. D:\bpb\995\7>python classify_resnet_keras.py

2. 2023-08-
11 18:47:43.499226: I tensorflow/core/platform/cpu_feature_guard.cc
:193] This TensorFlow binary is optimized with oneAPI Deep Neural
Network Library (oneDNN) to use the following CPU instructions in
performance-critical operations: AVX AVX2

3. To enable them in other operations, rebuild TensorFlow
with the appropriate compiler flags.

4. 1/1 [==============================] - 2s 2s/step

5. ('n02690373', 'airliner', 0.7484503)

6. ('n04592741', 'wing', 0.14459641)

7. ('n04552348', 'warplane', 0.09993937)

8. ('n04266014', 'space_shuttle', 0.0051170834)

9. ('n02687172', 'aircraft_carrier', 0.0017884057)

OpenCV DNN implementation
The below script demonstrates how to use OpenCV's DNN module to load
a pre-trained ResNet-152 model, preprocess an image, classify it, and print
the top predicted labels with their confidences. The script is structured to be
run as a standalone program:

1. # Import necessary libraries

2. import os

3. import numpy as np

4. import cv2

5.

6. # File paths to the ResNet-152 model weights and class names

7. imagenet_classes_filepath = "../weights/7/ILSVRC2012.txt"

8. resnet152_weights_filepath = "../weights/7/resnet/resnet152.pb"

9.

10. # Shape of the input image expected by the ResNet-152 model

11. resnet152_shape = (224, 224)

12.

13. # Function to decode and format the predicted labels

14. def decode_predictions(predictions, class_names, top=5):

15. results = []

16. top_indices = predictions[0].argsort()[-top:][::-1]

17. for i in top_indices:

18. result = class_names[i] + ": " + str(predictions[0][i])

19. results.append(result)

20. return results

21.

22. # Function to classify an image using OpenCV's dnn module and Res
Net-152

23. def classify_image_using_opencvdnn(imagepath):

24. # Read the class names from the provided file

25. imagenet_class_names = None

26. with open(imagenet_classes_filepath, 'rt') as f:

27. imagenet_class_names = f.read().rstrip('\n').split('\n')

28.

29. # Load the ResNet-152 model from disk

30. model = cv2.dnn.readNet(resnet152_weights_filepath)

31.

32. # Read and preprocess the input image

33. im = cv2.imread(imagepath)

34. resized_image = cv2.resize(im, resnet152_shape)

35. image_blob = cv2.dnn.blobFromImage(resized_image, 1.0, resnet1
52_shape, [103.939, 116.779, 123.68])

36.

37. # Set the input blob for the model and perform forward pass

38. model.setInput(image_blob)

39. predictions = model.forward()

40.

41. # Return the decoded predictions using the decode_predictions fun
ction

42. return decode_predictions(predictions, imagenet_class_names, 7)

43.

44. # Main script execution

45. if __name__ == "__main__":

46. # Call the classify_image_using_opencvdnn function with the speci
fied image file path

47. labels_and_confidences = classify_image_using_opencvdnn("../inp
ut_images/aeroplane.jpg")

48.

49. # Iterate over the list of labels and
confidences and print each label with confidence

50. for label in labels_and_confidences:

51. print(label)

Executing this script provides the following output:

1. D:\bpb\995\7>python classify_resnet_dnn.py

2. airliner: 0.78563213

3. wing: 0.15230058

4. warplane, military plane: 0.05804099

5. space shuttle: 0.0029098869

6. aircraft carrier, carrier, flattop, attack aircraft
carrier: 0.0010048238

7. missile: 2.588793e-05

8. projectile, missile: 2.4692781e-05

MobileNetV2
MobileNetV2 is a deep learning architecture designed for efficient on-
device inference, particularly for mobile and embedded devices. It is an
evolution of the original MobileNetV1, developed by Google's research
team. MobileNetV2 achieves a good balance between model size and
accuracy, making it well-suited for applications where computational
resources and memory are limited. The key features of MobileNetV2
include the use of depth-wise separable convolutions and linear bottlenecks,
which significantly reduce the number of parameters and operations
required while maintaining good performance.

Here is an overview of the MobileNetV2 architecture:

Input layer: The input to the network is an image represented as a
3D array with dimensions (height, width, channels). Images are
typically resized to a fixed size before being fed into the network.

Initial convolution and bottleneck layers: The input image passes
through an initial convolutional layer with a larger number of filters,

followed by batch normalization and ReLU activation. This is
referred to as the stem of the network. It is worth noting that
MobileNetV2 uses 3x3 depth-wise separable convolutions for most
of its convolutions, which involves applying a depth-wise
convolution followed by a point-wise convolution (1x1 convolution).

Inverted residual blocks: The core building blocks of MobileNetV2
are the inverted residual blocks, which consist of three main
operations:

Depth-wise convolution: A depth-wise convolution with a
small filter size (for example, 3x3) is applied to the input
feature map, reducing the number of parameters.

Point-wise Convolution (Expansion): A 1x1 point-wise
convolution is applied to expand the number of channels,
allowing the network to learn more complex representations.

Point-wise convolution (Projection): Another 1x1 point-
wise convolution is applied to project the expanded feature
map back to a lower-dimensional space.

The use of point-wise convolutions after depth-wise convolutions
helps maintain representational power while keeping the
computational cost low.

Bottleneck width multiplier: MobileNetV2 introduces a
hyperparameter called the bottleneck width multiplier, denoted as α.
This multiplier scales the number of channels in each layer,
effectively reducing or increasing the network's width. A smaller α
reduces the number of parameters and operations, making the model
more lightweight.

Final layers: MobileNetV2 often includes a few additional
convolutional layers and global average pooling to reduce spatial
dimensions before the final fully connected layer or softmax layer,
which produces the classification scores or probabilities.

MobileNetV2 has been widely used in mobile and embedded applications,
such as real-time object detection and image classification on mobile
devices. Its efficient design allows it to run with low memory and
computational requirements while achieving respectable accuracy. It serves

as an excellent choice when resource constraints are a significant
consideration for the deployment of deep learning models. Refer to Figure
7.5 for the diagrammatic representation of MobileNet V2’s architecture:

Figure 7.5: MobileNetV2 architecture2

Keras implementation

The below script demonstrates how to use Keras to load a pre-trained
MobileNetV2 model, preprocess an image, classify it, and print the top
predicted labels. The script is structured to be run as a standalone program:

1. # Import necessary libraries

2. import os

3. import numpy as np

4. from keras.applications.mobilenet_v2 import MobileNetV2, preproce
ss_input, decode_predictions

5. from keras.preprocessing import image as image_utils

6. from keras import utils

7.

8. # Function to preprocess an image for MobileNetV2

9. def preprocess_image(im):

10. img = utils.load_img(im, target_size=(224, 224))

11. img = utils.img_to_array(img)

12. img = np.expand_dims(img, axis=0)

13. img = preprocess_input(img)

14. return img

15.

16. # Function to classify an image using MobileNetV2

17. def classify_image_using_tensorflow(imagepath):

18. predicted_labels = []

19.

20. # Load the pre-trained MobileNetV2
model with weights from the ImageNet dataset

21. model = MobileNetV2(include_top=True, weights='imagenet')

22.

23. # Preprocess the input image using the preprocess_image function

24. preprocessed_image = preprocess_image(imagepath)

25.

26. # Make a prediction using the pre-
trained model on the preprocessed image

27. pred = model.predict(preprocessed_image)

28.

29. # Decode and process the prediction to get the top predicted
labels

30. for prediction in decode_predictions(pred, top=7)[0]:

31. predicted_labels.append(prediction)

32.

33. # Return the list of predicted labels

34. return predicted_labels

35.

36. # Main script execution

37. if __name__ == "__main__":

38. # Call the classify_image_using_tensorflow function with the specif
ied image file path

39. labels = classify_image_using_tensorflow("../input_images/aeropla
ne.jpg")

40.

41. # Iterate over the list of predicted labels and print each label

42. for l in labels:

43. print(l)

The preprocess_image function takes an image file path, loads and
preprocesses the image using Keras utilities, and returns the preprocessed
image in a format suitable for MobileNetV2. The
classify_image_using_tensorflow function uses Keras to classify an
image. It loads a pre-trained MobileNetV2 model, preprocesses the input
image using the preprocess_image function, makes a prediction using the
model, and decodes the predictions to get the top predicted labels. It calls
the classify_image_using_tensorflow function to classify an input image
of an airplane, then iterates over the predicted labels and prints them.

Executing this scripts generates the following output:

1. D:\bpb\995\7>python classify_mobilenet_keras.py

2. 2023-08-
12 09:55:53.770728: I tensorflow/core/platform/cpu_feature_guard.cc
:193] This TensorFlow binary is optimized with oneAPI Deep Neural
Network Library (oneDNN) to use the following CPU instructions in
performance-critical operations: AVX AVX2

3. To enable them in other operations, rebuild TensorFlow
with the appropriate compiler flags.

4. 1/1 [==============================] - 1s 961ms/step

5. ('n02690373', 'airliner', 0.7056889)

6. ('n04552348', 'warplane', 0.16613244)

7. ('n04592741', 'wing', 0.034881666)

8. ('n02687172', 'aircraft_carrier', 0.016458299)

9. ('n04266014', 'space_shuttle', 0.0023486638)

10. ('n03126707', 'crane', 0.0014191336)

11. ('n03355925', 'flagpole', 0.0012728848)

OpenCV DNN implementation
Below code uses OpenCV DNN for image classification using MobileNet
architecture:

1. # Import necessary libraries

2. import os

3. import numpy as np

4. import cv2

5.

6. # File paths to the MobileNetV2 model weights and class names

7. imagenet_classes_filepath = "../weights/7/ILSVRC2012.txt"

8. mobilenetv2_weights_filepath = "../weights/7/mobilenet/mobilenetv2.
pb"

9.

10. # Shape of the input image expected by the MobileNetV2 model

11. mobilenetv2_shape = (224, 224)

12.

13. # Function to decode and format the predicted labels

14. def decode_predictions(predictions, class_names, top=5):

15. results = []

16. top_indices = predictions[0].argsort()[-top:][::-1]

17. for i in top_indices:

18. result = class_names[i] + ": " + str(predictions[0][i])

19. results.append(result)

20. return results

21.

22. # Function to classify an image using OpenCV's dnn module and Mo
bileNetV2

23. def classify_image_using_opencvdnn(imagepath):

24. # Read the class names from the provided file

25. imagenet_class_names = None

26. with open(imagenet_classes_filepath, 'rt') as f:

27. imagenet_class_names = f.read().rstrip('\n').split('\n')

28.

29. # Load the MobileNetV2 model from disk

30. model = cv2.dnn.readNet(mobilenetv2_weights_filepath)

31.

32. # Read and preprocess the input image

33. im = cv2.imread(imagepath)

34. resized_image = cv2.resize(im, mobilenetv2_shape)

35. image_blob = cv2.dnn.blobFromImage(resized_image, 1/127.5, mo
bilenetv2_shape, [127.5, 127.5, 127.5])

36.

37. # Set the input blob for the model and perform forward pass

38. model.setInput(image_blob)

39. predictions = model.forward()

40.

41. # Return the decoded predictions using the decode_predictions fun
ction

42. return decode_predictions(predictions, imagenet_class_names, 7)

43.

44. # Main script execution

45. if __name__ == "__main__":

46. # Call the classify_image_using_opencvdnn function with the speci
fied image file path

47. labels_and_confidences = classify_image_using_opencvdnn("../inp
ut_images/aeroplane.jpg")

48.

49. # Iterate over the list of labels and confidences and print each label
with confidence

50. for label in labels_and_confidences:

51. print(label)

The decode_predictions function is similar to the previous examples and
decodes the model's predictions into human-readable labels. The
classify_image_using_opencvdnn function uses OpenCV's DNN module
to classify an image. It reads the class names from a file, loads the
MobileNetV2 model, preprocesses the input image, performs a forward
pass through the model, and returns the decoded predictions. It calls the
classify_image_using_opencvdnn function to classify an input image of an
airplane, then iterates over the predicted labels and prints them. This code
generates the following output:

1. D:\bpb\995\7>python classify_mobilenet_dnn.py

2. airliner: 0.8213743

3. warplane, military plane: 0.048832133

4. wing: 0.03108493

5. aircraft carrier, carrier, flattop, attack aircraft carrier: 0.0054382924

6. space shuttle: 0.0034200125

7. projectile, missile: 0.003020886

8. reel: 0.0024129024

Comparison of models
Let us compare and contrast the three models: ResNet, Inception-v3, and
MobileNetV2, based on several key aspects. Refer to Table 7.1:

Basis ResNet Inception-v3 MobileNetV2

Processing im
age size

224 x 224 pix
els

299 x 299 pix
els

224 x 224 pix
els

Architecture a
nd building bl

ResNet uses r
esidual blocks

Inception-v3
uses inception

MobileNetV2
employs inver

Basis ResNet Inception-v3 MobileNetV2
ocks with shortcut

connections t
o address the
vanishing gra
dient problem
and enable tra
ining of deep
networks.

modules with
multiple paral
lel convolutio
nal layers of d
ifferent sizes t
o capture mul
ti-scale patter
ns and hierarc
hies of featur
es.

ted residual bl
ocks with dep
th-wise separ
able convoluti
ons and linear
bottlenecks to
reduce the nu
mber of para
meters and op
erations for ef
ficient on-dev
ice inference.

Model size an
d complexity

ResNet is dee
per compared
to the other t
wo models an
d has a higher
number of par
ameters, maki
ng it relativel
y more compl
ex.

Inception-v3 i
s deeper than
MobileNetV2
but generally
lighter than R
esNet in term
s of model siz
e and comple
xity.

MobileNetV2
is designed to
be lightweigh
t and has the s
mallest numb
er of paramet
ers among the
three models,
making it hig
hly efficient f
or on-device i
nference.

Accuracy ResNet is kno
wn for its exc
ellent accurac
y and has achi
eved state-of-
the-art results
in many imag
e classificatio
n benchmark
s.

Inception-v3
also achieves
high accuracy
and performs
well in image
classification
tasks, though
it may be slig
htly outperfor
med by more

MobileNetV2
provides good
accuracy cons
idering its sm
all size, but it
might not mat
ch the top-tier
performance
of larger and
more comple

Basis ResNet Inception-v3 MobileNetV2
recent model
s.

x models like
ResNet and I
nception-v3.

Computationa
l efficiency

While ResNet
achieves high
accuracy, it re
quires more c
omputational
resources and
memory due t
o its depth an
d parameter c
ount.

Inception-v3 i
s more compu
tationally effi
cient compare
d to ResNet,
but it still de
mands more r
esources than
MobileNetV
2.

MobileNetV2
is specifically
designed for e
fficiency, mak
ing it highly s
uitable for on
-device infere
nce, particula
rly on mobile
and embedde
d devices.

Use cases ResNet is wel
l-suited for ap
plications wh
ere high accur
acy is the pri
mary concern
and computati
onal resource
s are not a lim
iting factor.

Inception-v3 i
s a good choi
ce when accu
racy is crucia
l, and there is
a moderate av
ailability of c
omputational
resources.

MobileNetV2
is ideal for res
ource-constra
ined environ
ments, such a
s mobile phon
es and embed
ded devices,
where efficie
nt inference is
essential.

Table 7.1: Comparison of models for image classification

ResNet, Inception-v3, and MobileNetV2 are all powerful deep learning
models, each with its unique strengths and use cases. ResNet excels in
accuracy but may be computationally expensive for resource-limited
environments. Inception-v3 achieves high accuracy and provides a good
balance between accuracy and computational efficiency. MobileNetV2
prioritizes efficiency and is specifically designed for on-device inference,
making it an excellent choice for mobile and embedded applications where

resource constraints are a significant consideration. The choice of model
depends on the specific requirements and constraints of the application at
hand.

Parameters for blobFromImage()
Discerning readers might have noticed that the parameters used in the call
to cv2.dnn.blobFromImage() are different for the three models. It
naturally follows that there should be some significance to them. We shall
discuss the parameters here briefly.

cv2.dnn.blobFromImage(image, scalefactor=1.0, size, mean, swap
RB=True)

image: This parameter represents the input image that we intend to
preprocess before feeding it into our deep neural network for
classification.

scalefactor: After applying mean subtraction, we have the option to
scale our images by a certain factor. The default value is 1.0,
indicating no scaling. It is note worthy that the scale factor should be
1 / σ.

size: Here, we provide the spatial dimensions that the convolutional
neural network expects. Most modern state-of-the-art neural
networks commonly use sizes like 224x224, 227x227, or 299x299.

mean: This parameter corresponds to the values we subtract during
mean subtraction. It can be a 3-tuple representing the RGB means, or
a single value that is subtracted from every channel of the image.
When performing mean subtraction, it is crucial to provide the 3-
tuple in the order (R, G, B), especially if the swapRB parameter is
set to True (which is its default behavior).

swapRB: OpenCV assumes that images are in the BGR channel
order, while the mean parameter assumes RGB order. To reconcile
this difference, we can swap the R and B channels in the image by
setting this parameter to true. By default, OpenCV handles this
channel swapping for us.

Conclusion

This chapter has illuminated the captivating world of image classification,
demonstrating the application of state-of-the-art deep learning models to
categorize images with remarkable accuracy. We unraveled the intricacies
of prominent architectures like ResNet, Inception-v3, and MobileNetV2,
uncovering their respective strengths and trade-offs. Armed with this
knowledge, we can confidently navigate image classification tasks, from
preprocessing and model selection to decoding predictions and interpreting
results.

Exercises
1. Try running the models on other images provided in the code base.

2. Calculate the time taken by the DNN module to process the image
and compare it with the time taken by Keras to process the same
image.

3. Try playing with the parameter values to the inputs of
blobFromImage() and analyze the effects on the result.

1 https://www.researchgate.net/figure/Network-structures-of-ResNet10
1-top-and-ResNet152-bottom_fig11_343137490

2 https://www.researchgate.net/figure/The-architecture-of-MobileNetV
2-DNN_fig1_361260658

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/

OceanofPDF.com

https://oceanofpdf.com/

Chapter 8
Modern Solutions for Object

Detection

Introduction
In this chapter, we delve into object detection, a fundamental task in
computer vision that involves identifying and localizing objects within
images. We explore key object detection architectures and techniques, from
foundational methods like R-CNN and YOLO to advanced models like SSD
and Faster R-CNN. By understanding the principles behind these
architectures, you will gain insights into how modern computer vision
systems can efficiently and accurately detect objects in real-world
scenarios. Moreover, we unravel the intricacies of object detection and its
evolution in deep learning.

Structure
The chapter discusses the following topics:

Convolutional neural networks architecture for object detection

Faster region convolutional neural network

Single shot multibox detector

You only look once

Convolutional neural networks architecture for
object detection
Convolutional Neural Networks (CNNs) are a type of deep learning
architecture widely used for object detection tasks in computer vision.
Object detection involves identifying and localizing objects within an
image. CNNs are particularly effective for this task due to their ability to
learn hierarchical features from images automatically. The general
architecture of a CNN for object detection consists of several key
components:

Convolutional layers: These layers perform convolutional
operations on the input image. Convolutional operations involve
sliding a small filter (also known as a kernel) over the image and
computing element-wise multiplications and summations to extract
features. These layers capture low-level features like edges, textures,
and patterns.

Activation functions: Activation functions, such as rectified linear
activation (ReLU), are applied after convolutional layers to
introduce non-linearity into the network. This enables the network to
capture complex relationships between features.

Pooling layers: Pooling layers (for example, max pooling)
downsample the spatial dimensions of the feature maps, reducing the
computational load and increasing the network's ability to capture
larger-scale patterns and features.

Convolutional blocks: These blocks often consist of a combination
of convolutional layers, activation functions, and pooling layers.
They help capture increasingly abstract features as the network goes
deeper.

Fully connected (FC) layers: After several convolutional blocks,
fully connected layers are added to the network. These layers
combine features from different image regions and are used for
classification and localization tasks.

Localization and classification heads: Object detection CNNs
typically have two main branches at the end: One for object

localization and another for object classification. The localization
branch predicts bounding boxes that enclose the objects along with
associated confidence scores. The classification branch assigns class
labels to these detected objects.

Anchor boxes: Many modern object detection architectures use
anchor boxes or default boxes to predict bounding boxes of various
sizes and aspect ratios. These anchor boxes serve as reference
templates for the network to predict the final bounding box
coordinates.

Loss functions: The network is trained using loss functions that
measure the difference between predicted bounding boxes and
ground truth boxes, as well as the difference in predicted class
probabilities and actual class labels. Common loss functions include
the Smooth L1 loss for bounding box regression and the Cross-
Entropy loss for classification.

Backpropagation and optimization: During training, the network's
weights are adjusted using optimization algorithms such as
stochastic gradient descent (SGD) or Adam, and backpropagation
is used to compute gradients and update the weights.

Post-processing: After inference, a post-processing step is
performed to filter and refine the detected bounding boxes based on
confidence scores and non-maximum suppression (NMS) to
eliminate duplicate detections.

Notable CNN architectures for object detection include Faster R-CNN, you
only look once (YOLO), single shot multibox detector (SSD), and
RetinaNet, each with its own variations and improvements to handle
different aspects of object detection efficiently. These architectures have
significantly advanced the field of object detection in computer vision.

Faster region convolutional neural network
Faster region convolutional neural network (R-CNN) is a widely used
and influential object detection architecture that significantly improved the
efficiency of region proposal generation compared to its predecessors like
R-CNN. It combines a region proposal network (RPN) with a Fast R-

CNN detection framework to create a unified and end-to-end trainable
object detection system. Here is an overview of the Faster R-CNN
architecture and its object detection capabilities:

Region Proposal Network: The key innovation of Faster R-CNN is
the introduction of the region proposal network, which learns to
generate region proposals directly from the convolutional feature
maps of the input image. The RPN operates on sliding windows of
different sizes, termed anchors, which serve as potential object
bounding box candidates. For each anchor, the RPN predicts two
outputs: Objectness score (probability of containing an object) and
bounding box regression parameters (adjustments to the anchor to fit
the object). The RPN uses these predictions to rank and select high-
quality region proposals, filtering out redundant and irrelevant
proposals.

Feature Pyramid Network: Many Faster R-CNN implementations
use a feature pyramid network (FPN) as a backbone architecture.
FPN enhances feature extraction by aggregating features from
different scales and levels of abstraction, enabling the network to
detect objects of varying sizes.

RoI align and RoI pooling: After region proposals are generated by
the RPN, they are passed to the Fast R-CNN detection framework
for further processing. region of interest (RoI) Align or RoI pooling
is used to extract fixed-size feature maps from the convolutional
feature maps for each proposed region. RoI align, in particular,
overcomes the quantization issues of RoI pooling by introducing a
more accurate sampling technique.

Classification and regression head: The Fast R-CNN part of Faster
R-CNN consists of a classification head and a bounding box
regression head. The classification head predicts class probabilities
for the proposed objects, and the regression head predicts
adjustments to the bounding box coordinates.

Loss functions and training: Faster R-CNN is trained using a
combination of classification and regression loss functions, similar
to other object detection architectures. The RPN is trained to
minimize the objectness classification loss and bounding box

regression loss. The Fast R-CNN detection head is trained using the
Smooth L1 loss for bounding box regression and the Cross-Entropy
loss for classification.

Inference and post-processing: During inference, the final set of
bounding boxes is obtained by applying NMS to the proposed
regions based on their scores and overlap thresholds.

Faster R-CNN's integration of the RPN for efficient region proposal
generation, combined with the Fast R-CNN detection framework, resulted
in significant speed improvements and better accuracy than previous
methods. It became a foundational architecture for modern object detection
models and paved the way for subsequent developments in the field.

Faster R-CNN can be used in OpenCV DNN module for object detection as
per the code shown below:

1. import cv2

2.

3. def detect_coco80objects_using_opencvdnn(image_path, confidence
_threshold):

4. ssd_size=(300, 300)

5.

6. image = cv2.imread(image_path)

7. height, width, channels = image.shape

8.

9. # Load Faster R-CNN model

10. net = cv2.dnn.readNetFromTensorflow("../weights/8/faster_rcnn/fa
ster_rcnn_resnet50_coco_2018_01_28.pb", "../weights/8/faster_rcnn/f
aster_rcnn_resnet50_coco_2018_01_28.pbtxt")

11.

12. # Read the COCO class names

13. with open("../weights/8/faster_rcnn/coco.names", 'r') as file:

14. lines = file.readlines()

15. classes = [line.strip() for line in lines]

16.

17.

18. blob = cv2.dnn.blobFromImage(image, size=ssd_size, swapRB=Tr
ue, crop=False)

19. net.setInput(blob)

20. results = net.forward()

21. # print(results.shape)

22.

23.

24. objects_and_locations = []

25. for one_detection in results[0,0,:,:]:

26. # Each detection is a 1d array. The contents are as explained be
low

27. # 2nd position (index 1 for Python) - classid of the object. In cas
e of this program, it is the COCO80 dataset

28. # 3rd position (index 2 for Python) - Confidence
level for detected class.

29. # 4th position 3 - Left most point of the bounding box

30. # 5th position 4 - Top most point of the bounding box

31. # 6th position 5 - Right most point of the bounding b
ox

32. # 7th position 6 - Bottom most point of the bounding
box

33.

34. confidence_score = float(one_detection[2])

35. if confidence_score <= confidence_threshold:

36. continue

37.

38. left = int(one_detection[3] * width)

39. top = int(one_detection[4] * height)

40. right = int(one_detection[5] * width)

41. bottom = int(one_detection[6] * height)

42.

43. class_ids = int(one_detection[1])

44. class_label = classes[class_ids]

45. one_object = {}

46. one_object["class"] = class_label

47. one_object["top_left"] = (left, top)

48. one_object["bottom_right"] = (right, bottom)

49. one_object["confidence"] = confidence_score

50. objects_and_locations.append(one_object)

51.

52. return objects_and_locations

53.

54. def draw_outlines_around_detections(impath, objects_and_locations):

55. image = cv2.imread(impath)

56. for one_object in objects_and_locations:

57. cv2.rectangle(image, one_object["top_left"], one_object["bottom
_right"], (255,255,255), 3)

58. cv2.putText(image, one_object["class"], one_object["top_left"],
cv2.FONT_HERSHEY_SIMPLEX, 1, (255,255,255), 3)

59.

60. return image

61.

62. # Main script execution

63. if __name__ == "__main__":

64. image_path = "../input_images/aeroplane.jpg"

65. confidence_threshold=0.5

66.

67. objects_and_locations = detect_coco80objects_using_opencvdnn(i
mage_path, confidence_threshold)

68.

69.

70. image = draw_outlines_around_detections(image_path, objects_an
d_locations)

71. cv2.namedWindow("object detections", cv2.WINDOW_FULLSCR
EEN)

72. cv2.imshow("object detections", image)

73. cv2.waitKey(0)

This code demonstrates how to perform object detection using the Faster R-
CNN model with OpenCV's deep neural network (DNN) module. The
code detects objects in an image using the COCO80 dataset classes and
overlays bounding box outlines and class labels on the detected objects.
This is a complete pipeline for object detection. It loads a pre-trained
model, detects objects in an image, and visualizes the results by overlaying
bounding boxes and class labels on the original image.

Here is a breakdown of the code:

Define a function named detect_coco80objects_using_opencvdnn
that takes an image path and a confidence threshold as arguments
and returns a list of detected objects and their locations:

Set the desired size for the input image (ssd_size) of
(300,300) pixels.

Read the input image and get its dimensions.

Load the pre-trained Faster R-CNN model using
cv2.dnn.readNetFromTensorflow with the paths to the
model's .pb file and .pbtxt configuration file.

Read the class names from the COCO80 dataset.

Preprocess the input image by creating a blob and setting it as
the input to the network.

Forward pass through the network to obtain detection results.

Process the detection results, filter out low-confidence
detections, and store the detected object details in a list.

Return the list of detected objects and their locations.

Define a function named draw_outlines_around_detections that
takes an image path and the list of detected objects and their
locations as arguments and returns the input image with bounding
box outlines and class labels drawn around the detected objects:

Read the input image.

Iterate through each detected object and draw a bounding box
around it using cv2.rectangle.

Draw the class label on the image using cv2.putText.

In the main script execution:

Set the input image path and confidence threshold.

Call the detect_coco80objects_using_opencvdnn function to
detect objects and store the results in objects_and_locations.

Call the draw_outlines_around_detections function to draw
bounding box outlines and class labels on the input image.

Display the modified image using cv2.imshow and wait for a
key press using cv2.waitKey.

Executing this program generates the Figure 8.1:

1. D:\bpb\995\8>python detect_fasterrcnn_dnn.py

Figure 8.1: Object detection with Faster R-CNN

Single shot multibox detector
Single Shot Multibox Detector (SSD) is another popular object detection
architecture in computer vision. SSD is known for its speed and accuracy in
detecting objects of various sizes within an image. It is designed to perform
real-time object detection by predicting object bounding boxes and class
probabilities directly from a single pass through the network. Here is an
overview of the SSD architecture and its object detection capabilities:

Base convolutional layers: Similar to other convolutional neural
networks, SSD begins with a base network (often VGG or a similar
architecture) that extracts features from the input image. These
features are used for object detection.

Multi-scale feature maps: One of the key features of SSD is its use
of multiple convolutional layers to capture features at different
scales. These layers have varying receptive field sizes, allowing the
network to detect objects of different sizes. Each of these layers
generates a set of feature maps representing different scales of the
input image.

Convolutional predictors: On top of each feature map, SSD
attaches a set of convolutional layers for making predictions. These
prediction layers are responsible for detecting objects within specific
size ranges. They predict bounding box coordinates (offsets from
default boxes) and class scores for each position in the feature map.

Default boxes: SSD employs a set of default boxes, also known as
anchor boxes, at each position in the feature map. These default
boxes have different aspect ratios and scales, enabling the model to
handle a wide range of object sizes and shapes. The network then
predicts adjustments to these default boxes to accurately localize
objects.

Multi-scale predictions: By having multiple prediction layers
attached to feature maps of different scales, SSD generates
predictions for objects of various sizes simultaneously. This is
crucial for detecting small and large objects in the same pass.

Loss function: SSD uses a combination of localization loss (often
the Smooth L1 loss) and classification loss (typically the Softmax
Cross-Entropy loss) to train the network. The localization loss
measures the accuracy of bounding box predictions, while the
classification loss evaluates the correctness of predicted class
probabilities.

Hard negative mining: To handle class imbalance (where
background class is dominant), SSD often employs hard negative
mining. This involves selecting a subset of background predictions
with high confidence scores for training, helping the model focus on
challenging examples.

Non-Maximum Suppression: During inference, SSD applies NMS
to filter out redundant and overlapping bounding boxes based on
confidence scores and overlap thresholds.

The key strengths of SSD lie in its real-time detection capabilities, efficient
single-pass inference, and ability to handle objects of various scales within
a single network architecture. Over the years, SSD has inspired various
improvements and variations, such as SSD with MobileNet, SSD with

ResNet, and more, to enhance its performance and adaptability to different
applications.

The architecture diagram of SSD is shown in Figure 8.2. This image has
been taken from https://pytorch.org/assets/images/ssd_diagram.png.

Figure 8.2: Architecture diagram of SSD

The code for implementing object detection using SSD300 network can be
seen as follows:

1. import cv2

2.

3. def detect_coco80objects_using_opencvdnn(image_path, confidence
_threshold):

4. ssd_size=(300, 300)

5.

6. image = cv2.imread(image_path)

7. height, width, channels = image.shape

8.

9. # Load SSD300

10. net = cv2.dnn.readNetFromTensorflow("../weights/8/ssd300/ssd_m
obilenet_v2_coco_2018_03_29.pb", "../weights/8/ssd300/ssd_mobile
net_v2_coco_2018_03_29.pbtxt")

11.

12. # Read the COCO class names

13. with open("../weights/8/ssd300/coco.names", 'r') as file:

14. lines = file.readlines()

15. classes = [line.strip() for line in lines]

16.

17.

18. blob = cv2.dnn.blobFromImage(image, size=ssd_size, swapRB=Tr
ue, crop=False)

19. net.setInput(blob)

20. results = net.forward()

21. # print(results.shape)

22.

23.

24. objects_and_locations = []

25. for one_detection in results[0,0,:,:]:

26. # Each detection is a 1d array. The contents are as
explained below

27. # 2nd position (index 1 for Python) - classid of the
object. In case of this program, it is the COCO80 dataset

28. # 3rd position (index 2 for Python) - Confidence
level for detected class.

29. # 4th position 3 - Left most point of the bounding box

30. # 5th position 4 - Top most point of the bounding box

31. # 6th position 5 - Right most point of the bounding b
ox

32. # 7th position 6 - Bottom most point of the bounding
box

33.

34. confidence_score = float(one_detection[2])

35. if confidence_score <= confidence_threshold:

36. continue

37.

38. left = int(one_detection[3] * width)

39. top = int(one_detection[4] * height)

40. right = int(one_detection[5] * width)

41. bottom = int(one_detection[6] * height)

42.

43. class_ids = int(one_detection[1])

44. class_label = classes[class_ids]

45. one_object = {}

46. one_object["class"] = class_label

47. one_object["top_left"] = (left, top)

48. one_object["bottom_right"] = (right, bottom)

49. one_object["confidence"] = confidence_score

50. objects_and_locations.append(one_object)

51.

52. return objects_and_locations

53.

54. def draw_outlines_around_detections(impath, objects_and_locations):

55. image = cv2.imread(impath)

56. for one_object in objects_and_locations:

57. cv2.rectangle(image, one_object["top_left"], one_object["bottom
_right"], (255,255,255), 3)

58. cv2.putText(image, one_object["class"], one_object["top_left"],
cv2.FONT_HERSHEY_SIMPLEX, 1, (255,255,255), 3)

59.

60. return image

61.

62. # Main script execution

63. if __name__ == "__main__":

64. image_path = "../input_images/aeroplane.jpg"

65. confidence_threshold=0.5

66.

67. objects_and_locations = detect_coco80objects_using_opencvdnn(i
mage_path, confidence_threshold)

68.

69.

70. image = draw_outlines_around_detections(image_path, objects_an
d_locations)

71. cv2.namedWindow("object detections", cv2.WINDOW_FULLSCR
EEN)

72. cv2.imshow("object detections", image)

73. cv2.waitKey(0)

This code demonstrates how to perform object detection using the
MobileNetV2-based SSD model with OpenCV's DNN module. The code
detects objects in an image using the COCO80 dataset classes and overlays
bounding box outlines and class labels on the detected objects. Here is a
breakdown of the code:

1. Define a function named detect_coco80objects_using_opencvdnn
that takes an image path and a confidence threshold as arguments
and returns a list of detected objects and their locations:

a. Set the desired size for the input image (ssd_size).

b. Read the input image and get its dimensions.

c. Load the pre-trained SSD300 model based on MobileNetV2
using cv2.dnn.readNetFromTensorflow with the paths to the
model's .pb file and .pbtxt configuration file.

d. Read the class names from the COCO80 dataset.

e. Preprocess the input image by creating a blob and setting it as
the input to the network.

f. Forward pass through the network to obtain detection results.

g. Process the detection results, filter out low-confidence
detections, and store the detected object details in a list.

h. Return the list of detected objects and their locations.

2. Define a function named draw_outlines_around_detections that
takes an image path and the list of detected objects and their
locations as arguments and returns the input image with bounding
box outlines and class labels drawn around the detected objects:

a. Read the input image.

b. Iterate through each detected object and draw a bounding box
around it using cv2.rectangle.

c. Draw the class label on the image using cv2.putText.

3. In the main script execution:

a. Set the input image path and confidence threshold.

b. Call the detect_coco80objects_using_opencvdnn function to
detect objects and store the results in objects_and_locations.

c. Call the draw_outlines_around_detections function to draw
bounding box outlines and class labels on the input image.

d. Display the modified image using cv2.imshow and wait for a
key press using cv2.waitKey.

Executing this code generates the output shown in Figure 8.3:

1. D:\bpb\995\8>python detect_ssd_dnn.py

Figure 8.3: Object detection with SSD300 with MobilenetV2

Note: Discerning reader will observe that the code for using SSD and
Faster R-CNN networks is exactly the same. The two programs are
identical except for using different model networks, weights, and
location of coco.names file. This, however, is the most crucial
difference. SSD300 contains an additional class called None compared
to Faster R-CNN. Comparing the coco.names files will make this
difference much more obvious. The coco.names file, pb and pbtxt file
should always remain in sync. Mismatches in this will throw off the
detection. OpenCV expects the developers to be responsible for
keeping these files in synch.

You only look once
You Only Look Once (YOLO) is a revolutionary object detection
framework in computer vision that has greatly influenced the field of deep
learning and image understanding. YOLO's unique approach to object
detection, focusing on real-time speed and accuracy, has made it one of the
most popular and impactful object detection architectures. YOLO aims to
simultaneously predict object bounding boxes and class probabilities within

a single forward pass of a neural network. Unlike traditional object
detection methods that involve multiple stages and complex pipelines,
YOLO approaches object detection as a regression problem, directly
predicting object attributes from raw image data.

The original YOLO model was introduced by Joseph Redmon et al. in the
paper You Only Look Once: Unified, Real-Time Object Detection. It
presented a groundbreaking approach to real-time object detection. YOLO
divided the input image into a grid and made predictions for bounding
boxes and class probabilities at each grid cell, allowing for rapid inference.
YOLOv2, also known as YOLO9000, brought improvements in accuracy
and versatility. It introduced anchor boxes and a multi-scale approach for
predicting objects of different sizes. YOLOv2 also expanded its detection
capability to a wide range of object categories, extending beyond the initial
20 classes of the COCO dataset.

YOLOv3, released in 2018, enhanced detection accuracy and introduced a
feature pyramid network (FPN) to capture multi-scale information. It
utilized multiple scales of anchor boxes and introduced the concept of
darknet-53, a deeper neural network backbone, to improve feature
extraction. Although not an official release, YOLOv4 gained significant
attention as an unofficial continuation of the YOLO series. YOLOv4
introduced numerous optimizations, architectural enhancements, and
advanced training techniques, resulting in remarkable accuracy
improvements and competitive performance.

YOLOv5 was developed as an independent project by the Ultralytics team
in 2020. It aimed to simplify the YOLO architecture while maintaining or
even improving accuracy. YOLOv5 introduced variants (s, m, l, and x) to
provide a balance between speed and accuracy, along with efficient training
and deployment. We will discuss YOLOv5 later in the chapter.

YOLOv3
YOLOv3 is a popular and powerful object detection architecture that can
detect and localize objects in an image with high speed and accuracy. It
builds upon the YOLO concept of treating object detection as a regression
problem, predicting bounding box coordinates and class probabilities
directly from a single pass through the network.

Here is an overview of the YOLOv3 architecture:

Input processing: YOLOv3 takes an input image and divides it into
a grid. Each grid cell is responsible for detecting objects that fall
within its region.

Darknet-53 backbone: The architecture starts with a backbone
network called Darknet-53, which is a deep convolutional neural
network with 53 layers. It extracts hierarchical features from the
input image and provides a rich representation that captures both
low-level and high-level features.

Detection at different scales: YOLOv3 performs detection at three
different scales using feature maps from different layers of the
Darknet-53 backbone. Each scale is associated with anchor boxes of
different sizes to handle objects of various scales and aspect ratios.

Detection head: The detection head consists of convolutional layers
that predict bounding box coordinates (center x, center y, width,
height) and class probabilities for each anchor box. This is done for
all grid cells and anchor boxes at each scale.

Anchors and predictions: YOLOv3 employs a set of predefined
anchor boxes at each scale. The predicted bounding box coordinates
are adjusted relative to these anchor boxes. For each grid cell,
multiple anchor boxes are used, and the detection head predicts
offsets to adjust the anchor box dimensions.

Multi-scale detection: To capture objects of varying sizes, YOLOv3
uses feature maps from different layers of the Darknet-53 backbone.
The detection head at each scale predicts object detections, and these
predictions are then consolidated into a final set of detections.

Non-Maximum Suppression: After predictions are made, a post-
processing step involves applying NMS to remove redundant and
overlapping bounding boxes based on their confidence scores and
the degree of overlap.

Output: The final output of YOLOv3 is a set of bounding boxes,
each associated with a class label and a confidence score.

Architecture variants: YOLOv3 has different configurations:
YOLOv3-tiny (a smaller and faster version), and YOLOv3-SPP
(spatial pyramid pooling) which incorporates spatial pyramid
pooling to capture context information.

Training: YOLOv3 is trained using labeled training data, optimizing
for a combination of localization loss (often using the Smooth L1
loss) and classification loss (typically using the cross-entropy loss).
The network is trained end-to-end using backpropagation and
optimization algorithms like SGD or Adam.

The key strengths of YOLOv3 are its real-time inference speed and ability
to detect objects of different scales and aspect ratios. It is widely used in
various applications, including autonomous vehicles, surveillance, and
robotics, where fast and accurate object detection is crucial. Please see
Figure 8.4 for YOLOv3 architecture. This image is taken from
https://viso.ai/deep-learning/yolov3-overview/.

Figure 8.4: Architecture of YOLOv3

Here we shall see code for using YOLOv3 from OpenCV DNN module:

1. import cv2

2. import numpy as np

3.

4. def process_detection(image, detection):

5. # YOLO returns values between 0 and 1. This value has to be scale
d to suit the image size.

6. # This is the reverse of standardizing the data.

7. height, width, channels = image.shape

8. center_x = int(detection[0] * width)

9. center_y = int(detection[1] * height)

10. object_width = int(detection[2] * width)

11. object_height = int(detection[3] * height)

12.

13. # Rectangle coordinates

14. topleft_x = int(center_x - object_width/2)

15. topleft_y = int(center_y - object_height/2)

16.

17. return (topleft_x, topleft_y, object_width, object_height)

18.

19.

20.

21. def detect_coco80objects_using_opencvdnn(impath, confidence_thres
hold = 0.5):

22.

23. scaling_factor = 1/255

24. yolo_shape = (416,416)

25.

26. # Load Yolo

27. model = cv2.dnn.readNet("../weights/8/yolo/yolov3.weights", "../w
eights/8/yolo/yolov3.cfg")

28.

29. # Read the COCO class names

30. with open("../weights/8/yolo/coco.names", 'r') as file:

31. lines = file.readlines()

32. classes = [line.strip() for line in lines]

33.

34. image = cv2.imread(impath)

35. blob = cv2.dnn.blobFromImage(image, scaling_factor, yolo_shape,
 (0, 0, 0))

36.

37.

38. # get all the layer names of the model

39. layer_names = model.getLayerNames()

40. # filter and choose only the output layers

41. output_layers = [layer_names[i - 1] for i in model.getUnconnected
OutLayers()]

42.

43. # Detecting objects

44. model.setInput(blob)

45. results = model.forward(output_layers)

46.

47. # results is a tuple. It›s length is equal to the number of output layer
s in the model.

48. object_classes = []

49. object_confidences = []

50. object_coordinates = []

51.

52.

53. for one_layer in results:

54. # each layer can have multiple detections. Cycle through them al
l.

55. for one_detection in one_layer:

56. # Each detection is a 1d array. The contents are as explained
below

57. # 1st position (index 0 for Python) - x-
coordinate of the bounding box›s centroid of the detected object

58. # 2nd position (index 1 for Python) - y-
coordinate of the bounding box›s centroid of the detected object

59. # 3rd position - width of the bounding box

60. # 4th position - height of the bounding box

61. # 5th till end - Confidence level for each class of
detected object. In case of this program,

62. # it is the COCO80 dataset

63. confidence_scores_for_classes = one_detection[5:]

64. classid_with_highest_confidence = np.argmax(confidence_sco
res_for_classes)

65. class_confidence = confidence_scores_for_classes[classid_wit
h_highest_confidence]

66.

67. if class_confidence > confidence_threshold:

68. object_location = process_detection(image, one_detection)

69. object_coordinates.append(object_location)

70. object_confidences.append(float(class_confidence))

71. object_classes.append(classes[classid_with_highest_confid
ence])

72.

73.

74. # Now we are left with only objects that meet the confidence thresh
old. However, there can still be multiple detections

75. # for the same object with overlapping areas.

76. # So, we need to de-duplicate them. We shall do so
using the Non Maximum Suppression algorithm.

77. indexes = cv2.dnn.NMSBoxes(object_coordinates, object_confiden
ces, 0.4, 0.3)

78.

79.

80. # indexes contains the objects which are of
interest to us. Cycle through the indexes and calculate the coordinates
 in a way

81. # that OpenCV can understand them.

82. objects_and_locations = []

83. for inx in indexes:

84. class_label = object_classes[inx]

85. (x,y,width,height) = object_coordinates[inx]

86. top_left_coordinate = (x, y)

87. bottom_right_coordinate = (x + width, y + height)

88.

89. one_object = {}

90. one_object["class"] = class_label

91. one_object["top_left"] = top_left_coordinate

92. one_object["bottom_right"] = bottom_right_coordinate

93. objects_and_locations.append(one_object)

94.

95.

96. return objects_and_locations

97.

98.

99.

100. def draw_outlines_around_detections(impath, objects_and_locations):

101. image = cv2.imread(impath)

102. for one_object in objects_and_locations:

103. cv2.rectangle(image, one_object["top_left"], one_object["bottom
_right"], (255,255,255), 3)

104. cv2.putText(image, one_object["class"], one_object["top_left"],
cv2.FONT_HERSHEY_SIMPLEX, 1, (255,255,255), 3)

105.

106. return image

107.

108. # Main script execution

109. if __name__ == "__main__":

110. image_path = "../input_images/test_image1.jpeg"

111.

112. objects_and_locations = detect_coco80objects_using_opencvdnn(i
mage_path)

113.

114. image = draw_outlines_around_detections(image_path, objects_an
d_locations)

115. cv2.namedWindow("object detections", cv2.WINDOW_FULLSCR
EEN)

116. cv2.imshow("object detections", image)

117. cv2.waitKey(0)

118.

119.

We will understand the function detect_coco80objects_using_opencvdnn
here. This function differs significantly from the implementations we have
seen for SSD and Faster R-CNN and bears a more elaborate explanation.
Let us go through the function step by step:

1. Set scaling and shape parameters:

a. scaling_factor = 1/255: This variable scales the pixel values of
the input image to the range [0, 1].

b. yolo_shape = (416, 416): This specifies the desired shape of the
input image that YOLO expects (416x416 pixels).

2. Load YOLO model:

a. model = cv2.dnn.readNet(...): Loads the YOLO model using
its configuration file (yolov3.cfg) and pre-trained weights
(yolov3.weights).

3. Read COCO class names:

a. The COCO class names are read from the file coco.names and
stored in the classes list. Note that this coco.names matches the
coco80 dataset.

4. Load and preprocess the input image:

a. image = cv2.imread(impath): Reads the input image.

b. blob = cv2.dnn.blobFromImage(...): Preprocesses the image
by converting it into a blob that the YOLO model can process. It
applies scaling, resizing, and normalization to the image.

5. Get output layer names:

a. layer_names = model.getLayerNames(): Gets the names of all
layers in the YOLO model.

b. output_layers = [...]: Filters and selects the output layers from
the YOLO model using model.getUnconnectedOutLayers().

6. Detect objects:

a. model.setInput(blob): Sets the preprocessed image as input to
the model.

b. results = model.forward(output_layers): Performs a forward
pass through the YOLO model and obtains detection results.

7. Process detection results:

a. Iterates through each layer's detection results.

b. For each detection in a layer, it extracts the x, y, width, and
height of the bounding box, along with confidence scores for
each class.

c. Selects the class with the highest confidence score for the
detection.

d. If the class confidence is above the given
confidence_threshold, it processes the detection to obtain the
bounding box coordinates using the process_detection
function.

e. The processed detection information (class label, coordinates,
and confidence) is added to respective lists (object_classes,
object_coordinates, and object_confidences).

8. Non-maximum suppression:

a. After processing all detections, NMS is applied to remove
redundant and overlapping detections.

b. cv2.dnn.NMSBoxes(...) returns indexes of the selected
detections that pass NMS.

9. Finalize objects and locations: The selected detections are used to
populate the objects_and_locations list, containing dictionaries with
class labels, top-left, and bottom-right coordinates of the bounding
boxes.

10. Return detected objects and locations.

The biggest difference here is the use of OpenCV DNN module’s
NMSBoxes() function. This activity is performed by SSD and Faster R-
CNN automatically. For YOLOv3, the developers need to call it explicitly.
Executing this program generates the output shown in Figure 8.5:

1. D:\bpb\995\8>python detect_yolov3_dnn.py

Figure 8.5: Object detection with YOLOv3

Overview of NMSBoxes() API
The NMSBoxes function in OpenCV's DNN module is used for applying
NMS to a list of bounding box detections. NMS is a post-processing step
commonly used in object detection tasks to eliminate duplicate and
overlapping detections, ensuring that each object is detected only once.
NMS helps to improve the quality and reliability of the final detection
results.

The input parameters are listed here:

bboxes: A list of bounding boxes, each represented as a tuple of (x,
y, width, height).

scores: A list of confidence scores associated with the bounding
boxes.

score_threshold: A threshold value for confidence scores. Bounding
boxes with scores below this threshold will be discarded.

nms_threshold: A threshold value for NMS. Bounding boxes with
an intersection-over-union (IoU) overlap greater than or equal this
threshold will be suppressed.

NMS is applied to the bounding boxes with confidence scores higher than
the score_threshold. It involves comparing pairs of bounding boxes and
suppressing the one with lower confidence if their intersection over union is
above the nms_threshold. This prevents redundant and overlapping
detections from being included in the final result.

The function returns a list of indexes that correspond to the selected
bounding boxes after NMS. These indexes can retrieve the final set of
detected objects that have passed both the confidence threshold and NMS.

YOLOv5
YOLOv5 is an evolution of the YOLO series of object detection models.
YOLOv5 aims to improve upon its predecessors with a focus on simplicity,
efficiency, and performance. It was developed by the Ultralytics team and
has gained popularity for its ease of use, speed, and strong detection
capabilities. Here is an overview of the YOLOv5 architecture:

Backbone: YOLOv5 uses a CSPDarknet53 backbone, which is a
modified version of the Darknet backbone used in YOLOv3.
CSPDarknet53 employs a cross-stage hierarchy, allowing for better
feature reuse across different scales.

Neck: YOLOv5 introduces PANet (path aggregation network) as a
neck architecture. PANet helps to aggregate features from different
scales and enhances the representation capabilities of the network.

Detection head: The detection head consists of a series of
convolutional and upsampling layers. This head predicts bounding
box coordinates, class probabilities, and objectness scores for each
anchor box at multiple scales.

Anchor boxes: YOLOv5 employs anchor boxes of different sizes
and aspect ratios, similar to previous YOLO versions. The network
predicts offsets and scales to adjust these anchor boxes for accurate
object localization.

Feature pyramid: YOLOv5 uses a feature pyramid approach to
capture multi-scale information. Features from different scales are
fused to provide a more comprehensive representation of the input
image.

Multi-scale training: YOLOv5 introduces a multi-scale training
strategy, where the network is trained on images of varying
resolutions during different stages of training. This improves the
model's robustness to different object scales.

Loss function: The loss function used in YOLOv5 combines
objectness loss, localization loss (usually Smooth L1 loss), and
classification loss (Cross-Entropy loss). It also employs techniques
like focal loss to prioritize challenging samples and improve
convergence.

Data augmentation: YOLOv5 uses extensive data augmentation
during training, including random scaling, cropping, rotation, and
color adjustments. This helps the model generalize better to different
scenarios.

Inference: During inference, YOLOv5 employs an NMS post-
processing step to remove redundant and overlapping bounding
boxes based on their confidence scores and overlap thresholds.

Model variants: YOLOv5 comes in different sizes, labeled as
YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x, with varying
numbers of layers and parameters. These variants provide a trade-off
between speed and accuracy, allowing users to choose the model that
best suits their needs.

Efficiency and portability: YOLOv5 is designed for efficiency and
can be easily deployed on various platforms, including edge devices
and embedded systems.

Overall, YOLOv5 builds upon the YOLO concept of single-pass object
detection while introducing improvements in terms of backbone

architecture, feature aggregation, and training strategies. It has become a
popular choice for real-time object detection tasks due to its performance
and user-friendly design.

YOLOv5 comes in different model variants, each with varying numbers of
layers and parameters. These variants allow you to choose a trade-off
between speed and accuracy based on your specific application
requirements.

YOLOv5s (Small): YOLOv5s is the smallest variant in the
YOLOv5 series. It has fewer layers and parameters, making it the
fastest but least accurate option among the variants. YOLOv5s is
suitable for scenarios where real-time or near-real-time inference
speed is crucial, and a moderate level of accuracy is sufficient.

YOLOv5m (Medium): YOLOv5m is a medium-sized variant that
balances speed and accuracy. It offers better detection performance
compared to YOLOv5s while still maintaining relatively fast
inference times. YOLOv5m is a good choice when you need a trade-
off between speed and accuracy and want a versatile model for
various applications.

YOLOv5l (Large): YOLOv5l is a larger variant with more layers
and parameters, providing improved accuracy at the cost of slightly
slower inference speed compared to the smaller variants. It is
suitable for applications where accuracy is a higher priority and real-
time performance is not as critical.

YOLOv5x (Extra large): YOLOv5x is the largest and most
powerful variant in the YOLOv5 series. It has the most layers and
parameters, resulting in the highest accuracy but slower inference
times. YOLOv5x is ideal for tasks where achieving the highest
possible accuracy is crucial and real-time performance can be
sacrificed to some extent.

Overall, the choice between YOLOv5s, YOLOv5m, YOLOv5l, and
YOLOv5x depends on your specific project requirements, including the
balance between accuracy and speed that you need to achieve. It is
recommended to consider factors such as the available hardware, the

desired level of accuracy, and the real-time constraints of your application
when selecting the appropriate YOLOv5 variant.

Differences between YOLOv3 and v5
YOLOv3 and YOLOv5 are members of the YOLO family of object
detection models. While they share some similarities, they also have
significant differences in architecture, design philosophy, and performance.
YOLOv5 introduces several architectural and training improvements aimed
at simplifying the training process, enhancing feature aggregation, and
providing a range of model variants for different applications. Refer Table
8.1 for a comparison of YOLOv3 and YOLOv5:

YOLOv3 YOLOv5

Backbone architec
ture

Uses a Darknet-53 b
ackbone with 53 co
nvolutional layers t
o extract features fr
om the input image.
It focuses on capturi
ng both low-level a
nd high-level featur
es to improve detect
ion accuracy.

Uses a CSPDarknet
53 backbone, which
is a modified versio
n of Darknet-53. It i
ncorporates a cross-
stage hierarchy to e
nhance feature reuse
across different scal
es and improve repr
esentation capabiliti
es.

Neck architecture Does not have a ded
icated neck architect
ure for feature aggre
gation between diffe
rent scales.

Introduces Path Ag
gregation Network
as a neck architectur
e. PANet helps aggr
egate features from
multiple scales, enh
ancing the networ
k's ability to detect
objects of varying si
zes.

YOLOv3 YOLOv5

Detection head Has a detection hea
d that predicts boun
ding box coordinate
s, class probabilitie
s, and object scores
for anchor boxes at t
hree different scale
s.

Has a similar detecti
on head but introdu
ces some improvem
ents.

Multi-scale trainin
g

Uses a fixed input i
mage size during tra
ining.

Employs a multi-sca
le training strategy
where the model is t
rained on images of
varying resolutions.
This helps improve
the model's robustn
ess to different obje
ct scales.

Model variants Comes in a single f
ull variant with a sp
ecific backbone arc
hitecture and detecti
on head design.

Offers multiple vari
ants (s, m, l, and x)
with varying numbe
rs of layers and para
meters, allowing us
ers to choose a trade
-off between speed
and accuracy.

Training Techniqu
es

Uses focal loss and
binary cross-entrop
y loss for classificat
ion and object predi
ction. It also incorp
orates anchor box d
esign and other tech

Uses similar loss fu
nctions but introduc
es some additional t
raining strategies an
d data augmentation
techniques to impro
ve performance.

YOLOv3 YOLOv5
niques for better det
ection.

Ease of use and de
ployment

Widely known and
used, but its configu
ration and training p
rocess can be moder
ately complex.

Designed with a foc
us on simplicity, eas
e of use, and efficie
nt deployment. It pr
ovides a more strea
mlined training proc
ess and offers pre-tr
ained models for qu
ick implementation.

Table 8.1: Comparison of YOLO v3 and v5

There have been subsequent releases to YOLO by Ultralytics team. As of
the time of writing this book, the latest model is YOLOv8. However, from
an OpenCV programmer’s perspective, code for using v5 and v8 is almost
similar.

The YOLOv5 model is provided as a Pytorch file. OpenCV DNN requires
models to be written in ONNX format. The Pytorch model should be
converted to ONNX and can then be used in the following code. Steps for
this have been provided later in the chapter.

1. import cv2

2. import numpy as np

3.

4.

5. def process_detection(image, yolo_shape, detection):

6. height, width, channels = image.shape

7. x_scaling = width/yolo_shape[0]

8. y_scaling = height/yolo_shape[1]

9.

10. center_x = detection[0]

11. center_y = detection[1]

12. object_width = detection[2]

13. object_height = detection[3]

14.

15. # Rectangle coordinates

16. topleft_x = int(x_scaling * (center_x - object_width/2))

17. topleft_y = int(y_scaling * (center_y - object_height/2))

18.

19. object_width = int(x_scaling * object_width)

20. object_height = int(y_scaling * object_height)

21.

22. return (topleft_x, topleft_y, object_width, object_height)

23.

24.

25.

26. def detect_coco80objects_using_opencvdnn(impath, confidence_thres
hold = 0.5):

27.

28. scaling_factor = 1/255

29. nms_threshold = 0.1

30. yolo_shape = (640,640)

31.

32. # Load Yolo

33. model = cv2.dnn.readNet("../weights/8/yolo/YOLOv5s.onnx")

34.

35. # Read the COCO class names

36. with open("../weights/8/yolo/coco.names", 'r') as file:

37. lines = file.readlines()

38. classes = [line.strip() for line in lines]

39.

40. image = cv2.imread(impath)

41. blob = cv2.dnn.blobFromImage(image, scaling_factor, yolo_shape,
 (0, 0, 0), 1,crop=False)

42.

43.

44. # get all the layer names of the model

45. layer_names = model.getLayerNames()

46. # filter and choose only the output layers

47. output_layers = [layer_names[i - 1] for i in model.getUnconnected
OutLayers()]

48.

49. # Detecting objects

50. model.setInput(blob)

51. results = model.forward(output_layers)

52.

53. # results is a tuple. It›s length is equal to the number of output layer
s in the model.

54. object_classes = []

55. object_confidences = []

56. object_coordinates = []

57.

58.

59. number_of_detections = results[0].shape[1]

60. for inx in range(number_of_detections):

61. one_detection = results[0][0][inx]

62.

63. # Each detection is a 1d array. The contents are as explained bel
ow

64. # 1st position (index 0 for Python) - x-
coordinate of the bounding box's centroid of the detected object

65. # 2nd position (index 1 for Python) - y-
coordinate of the bounding box's centroid of the detected object

66. # 3rd position - width of the bounding box

67. # 4th position - height of the bounding box

68. # 5th till end - Confidence level for each class of de
tected object. In case of this program,

69. # it is the COCO80 dataset

70.

71. confidence_scores_for_classes = one_detection[5:]

72. classid_with_highest_confidence = np.argmax(confidence_score
s_for_classes)

73. class_confidence = confidence_scores_for_classes[classid_with_
highest_confidence]

74.

75. if class_confidence > confidence_threshold:

76. object_location = process_detection(image, yolo_shape, one_
detection)

77. object_coordinates.append(object_location)

78. object_confidences.append(float(class_confidence))

79. object_classes.append(classes[classid_with_highest_confidenc
e])

80.

81.

82.

83. # Now we are left with only objects that meet the confidence thresh
old. However, there can still be multiple detections

84. # for the same object with overlapping areas.

85. # So, we need to de-
duplicate them. We shall do so using the Non Maximum Suppression a
lgorithm.

86. indexes = cv2.dnn.NMSBoxes(object_coordinates, object_confiden
ces, confidence_threshold, nms_threshold)

87.

88.

89. # indexes contains the objects which are of interest to us. Cycle thr
ough the indexes and calculate the coordinates in a way

90. # that OpenCV can understand them.

91. objects_and_locations = []

92. for inx in indexes:

93. class_label = object_classes[inx]

94. (x,y,width,height) = object_coordinates[inx]

95. top_left_coordinate = (x, y)

96. bottom_right_coordinate = (x + width, y + height)

97.

98. one_object = {}

99. one_object["class"] = class_label

100. one_object["top_left"] = top_left_coordinate

101. one_object["bottom_right"] = bottom_right_coordinate

102. one_object["confidence"] = object_confidences[inx]

103. objects_and_locations.append(one_object)

104.

105.

106. return objects_and_locations

107.

108.

109. def draw_outlines_around_detections(impath, objects_and_locations):

110. image = cv2.imread(impath)

111. for one_object in objects_and_locations:

112. cv2.rectangle(image, one_object["top_left"], one_object["bottom
_right"], (255,255,255), 3)

113. cv2.putText(image, one_object["class"], one_object["top_left"],
cv2.FONT_HERSHEY_SIMPLEX, 1, (255,255,255), 3)

114.

115. return image

116.

117. # Main script execution

118. if __name__ == "__main__":

119. image_path = "../input_images/aeroplane.jpg"

120. confidence_threshold=0.99

121.

122. objects_and_locations = detect_coco80objects_using_opencvdnn(i
mage_path, confidence_threshold)

123.

124. image = draw_outlines_around_detections(image_path, objects_an
d_locations)

125. cv2.namedWindow("object detections", cv2.WINDOW_FULLSCR
EEN)

126. cv2.imshow("object detections", image)

127. cv2.waitKey(0)

We will focus here only on the differences in the code for v3 and v5 models
inference.

process_detection() function

YOLOv3 works with fixed size images. So, there is no need
to apply scaling on the coordinates returned by the model.
Whereas v5 can work with images of multiple sizes
depending on the model chosen. So, a scaling factor has to be
applied for the v5 code.

The size of the image is dependent on the Yolo model you
choose. The P5 series models v5n (nano), v5s (small), v5m
(medium), v5l (large), v5x (extra large) use image size of
640*640 pixels. P6 series models YOLOv5n6, YOLOv5s6,
YOLOv5m6, YOLOv5l6, YOLOv5x6 use images of size
(1280,1280). This value is represented by yolo_size
parameter in this function.

detect_coco80objects_using_opencvdnn() function

v3 code has loaded darknet compatible CFG and weights file.

v5 code has loaded the YOLOv5s model in ONNX format.

The return value of model processing differs in the object and
data formatting. These have been addressed in the for loop.

V3 model needs a nested for loop. V5 model does not.

Executing the above code generates the below output shown in Figure 8.6:

1. D:\bpb\995\8>python detect_yolov5_dnn.py

Figure 8.6: Object detection using YOLOv5

Obtaining v5 model ONNX file
In the code GitHub repository for this book, all the models and weights
have been provided. However, the YOLOv5 and later models have slightly
different licensing. So, the weights are not being provided with this book’s
repository. Detailed steps are provided here to download the weights.
Readers are encouraged to analyze the licensing terms and download the
models per the steps mentioned here. It is recommended to run these steps
in a separate Python virtual environment created using either venv or
Anaconda. The below script uses Anaconda:

1. conda create --name pyt2onnx

2. git clone https://github.com/ultralytics/YOLOv5

3. cd YOLOv5

4. pip install -r requirements.txt

5. pip install onnx

6. wget https://github.com/ultralytics/YOLOv5/releases/download/v6.1/
YOLOv5s.pt

7. python export.py --weights YOLOv5s.pt --include onnx

This sequence of commands shall result in a YOLOv5s.onnx file getting
created in the local folder. You can move it to the desired location and use it
for the code shown earlier.

Working with v6, v7 and v8
The code for using YOLO v6, v7, and v8 is by-and-large the same as the
one shown for using v5. The difference is in the model weights and
coco.names file. You can download them from Ultralytics official Github
repository at https://github.com/ultralytics/ultralytics. Alternatively, the
files for v7 can be downloaded from
https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-
tiny.pt. The files for v8 can be downloaded from
https://github.com/JustasBart/yolov8_CPP_Inference_OpenCV_ONNX
/blob/minimalistic/source/models/yolov8s.onnx and
https://github.com/lagadic/visp/blob/master/tutorial/detection/dnn/coco
_classes.txt.

Conclusion
Object detection stands as a cornerstone in the landscape of computer
vision, enabling machines to perceive and understand the visual world.
From the pioneering days of R-CNN to the real-time capabilities of YOLO
and the versatility of SSD, we have witnessed a remarkable evolution in
object detection methodologies. As technology advances, the boundaries of
detection accuracy and speed continue to expand, fostering innovations in
fields ranging from autonomous vehicles to surveillance and beyond. This
chapter has offered a glimpse into the foundations and advancements of
object detection, serving as a starting point for further exploration and
application in the ever-evolving field of computer vision. The next chapter

shall deep dive into another exciting computer vision use case which is
recognizing text and faces.

Exercises
1. Perform object detection on input images of varying sizes for each

model. Observe the behavior differences.

2. Perform object detection of the same image with various models.
Observe the differences in results.

3. Calculate the time taken to perform detection for each model.
Observe the accuracy versus speed trade-off.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

OceanofPDF.com

https://discord.bpbonline.com/
https://oceanofpdf.com/

Chapter 9
Faces and Text

Introduction
In the realm of computer vision, few tasks are as captivating and essential
as face and text recognition. In this chapter, we embark on an exploration of
the fascinating world of deciphering human faces and text scripts through
the lens of technology. We will uncover the intricacies of locating faces and
text within images, distinguishing their features, and, ultimately, identifying
the individuals they belong to. From fundamental principles to cutting-edge
techniques, let us understand how machines perceive faces and alphabets.

Structure
The chapter covers the following topics:

Face detection

Face recognition

Text recognition

OpenCV Model Zoo

Objectives
The objective of this chapter is to understand how to perform face
recognition and text recognition, which is also called optical character

recognition. We shall also explore the OpenCV Model Zoo and understand
how to use the models made available for users.

Face detection
The history of face detection in computer vision spans several decades and
has seen significant advancements. Here is a brief overview:

Early approaches (1960s-1990s): The earliest efforts in face
detection involved rule-based methods that relied on simple
heuristics and geometric features. These methods often struggled
with variations in lighting, pose, and expression. In the 1980s and
1990s, researchers started using techniques like template matching
and correlation filters for face detection.

Viola-Jones algorithm (2001): One of the most significant
breakthroughs came with the Viola-Jones algorithm in 2001. Paul
Viola and Michael Jones introduced a real-time face detection
algorithm that used Haar-like features and a boosted cascade of
simple classifiers. This method was highly efficient and helped pave
the way for practical face-detection applications.

Feature-based approaches (2000s): As computational power
increased, researchers began to explore more sophisticated feature-
based approaches, such as using local binary patterns (LBP) and
Histogram of Oriented Gradients (HOG) for detecting faces.
These methods improved accuracy and robustness in various
conditions.

Deep learning revolution (2010s): The introduction of deep
learning, particularly convolutional neural networks (CNNs),
revolutionized face detection. Convolutional neural networks
demonstrated exceptional performance in various computer vision
tasks, including face detection. The availability of large labeled
datasets like FDDB and WIDER FACE facilitated the training of
deep learning models.

Region proposal networks and Faster R-CNN (2015): The Faster
R-CNN architecture, introduced by Shaoqing Ren, Kaiming He, et
al., combined region proposal networks (RPNs) with CNNs,

allowing for accurate and efficient object detection, including faces.
This architecture marked a shift from single-shot detectors to more
accurate region-based methods.

Single shot multibox detector and you inly look once (2016): SSD
and YOLO are two popular single-shot object detection methods that
can be applied to face detection. These approaches are known for
their speed and ability to detect faces in real-time applications.

Cascade CNNs and two-stage detectors (2017-present):
Researchers continued to refine face detection models, introducing
cascaded CNN architectures that improved accuracy while
maintaining real-time performance. Two-stage detectors like
RetinaNet and Mask R-CNN also found applications in face
detection, allowing for better localization and segmentation.

The field of face detection in computer vision continues to evolve, driven
by advancements in deep learning, hardware, and real-world applications.
Researchers are increasingly focused on creating models that are not only
accurate but also ethical and respectful of privacy considerations. Ongoing
research aims to improve the robustness of face detection algorithms to
variations in pose, lighting, occlusion, and facial expressions. Techniques
such as data augmentation, domain adaptation, and adversarial training
contribute to making face detection systems more reliable in diverse real-
world scenarios. With the proliferation of face detection technology,
concerns about privacy, surveillance, and bias have emerged. Researchers
and practitioners are actively to address these issues by developing fair and
privacy-aware face detection methods.

Haar cascades
The Haar cascades algorithm is an integral component of the Viola-Jones
face detection method. It is a machine learning-based approach that uses a
cascade of simple classifiers to efficiently detect objects, particularly faces,
in images. This algorithm significantly speeds up the detection process by
focusing on potential positive regions while quickly rejecting non-object
regions. Here is how the Haar cascades algorithm works within the context
of the Viola-Jones algorithm:

Haar-like features: Haar-like features are simple rectangular filters
that compute the difference between the sum of pixel intensities in
the white and black regions of the filter. These features capture basic
patterns of light and dark areas in an image. Examples of Haar-like
features include edge features, line features, and corner features.

Integral image: To efficiently compute the Haar-like features over
regions of an image, the concept of an integral image is used. The
integral image is a transformed representation of the original image
where each pixel stores the sum of all pixels above and to the left of
it. This pre-computed information allows for rapid computation of
Haar-like features in constant time, regardless of the feature size.

Adaptive Boosting (AdaBoost): The Viola-Jones algorithm
employs AdaBoost, a machine learning technique, to select a small
set of highly discriminative Haar-like features. AdaBoost focuses on
the most informative features that best separate positive and negative
training samples (that is, regions with faces and regions without
faces).

Cascade of classifiers: The cascade structure consists of multiple
stages, each containing a set of weak classifiers. A weak classifier is
a simple decision rule based on the evaluation of a single Haar-like
feature. During training, AdaBoost assigns weights to the training
samples and iteratively trains weak classifiers. The cascade structure
helps reject non-face regions early in the detection process, reducing
the number of regions that need to be evaluated by more complex
classifiers.

Stage-wise classification: In each stage, the weak classifiers are
organized into a cascade, where each classifier produces a decision
regarding the presence of a face in the region. The cascade structure
allows for rapid rejection of negative regions and focuses
computational effort on regions that have a higher likelihood of
containing a face.

Final decision: If a region passes through all stages without
rejection, it is classified as a face region. The combination of
multiple stages and the AdaBoost-trained weak classifiers
contributes to accuracy and efficiency in detecting faces.

The Haar cascades algorithm is particularly well-suited for real-time
applications due to its ability to quickly eliminate non-object regions and
focus computational resources on potential object regions. While it was
initially developed for face detection, this approach has also been adapted
for detecting other objects in computer vision tasks.

OpenCV provides an excellent implementation to process Haar cascades for
detecting objects. It even provides built-in Haar implementations for faces,
eyes, lips, and so on. The below code demonstrates how to use these
implementation.

1. import cv2

2.

3. def detect_face_using_haar(img):

4.

5. face_cascade = cv2.CascadeClassifier(‘haarcascade_frontalface_de
fault.xml’)

6.

7. # convert to gray scale of each frames

8. im_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

9.

10. # Detects faces of different sizes in the input image

11. front_faces = face_cascade.detectMultiScale(im_gray, 1.3, 5)

12.

13. # To draw a rectangle in a face

14. for (x,y,w,h) in front_faces:

15. cv2.rectangle(img,(x,y),(x+w,y+h),(255,255,255),5)

16.

17. return img

18.

19.

20.

21. # Main script execution

22. if __name__ == "__main__":

23. image_path = "../input_images/crowd.pxhere.com.jpg"

24.

25. img = cv2.imread(image_path)

26. detected_faces = detect_face_using_haar(img)

27. cv2.namedWindow("face detections", cv2.WINDOW_NORMAL)

28. cv2.imshow("face detections", detected_faces)

29. cv2.waitKey(0)

The key ingredient here is in the haarcascade_frontalface_default.xml
file. This file is available as opensource implementation and is installed
when OpenCV libraries are installed on the machine. It is located in the
Python venv location where the opencv libraries are installed. A number of
other Haar based classifiers are also available in the same location for
different uses. This code gives the below output as shown in Figure 9.1:

Figure 9.1: Frontal face detection using Haar cascades

As can be seen in the image, not all faces were detected. This is because of
the limitations of the Haar cascades. Better solutioning requires deep
learning approaches, which we shall see next.

Deep learning approaches: YuNet
YuNet is a tiny, millisecond-level face detector that is based on the
MobileNetV2 architecture. It is designed to be fast and efficient while still
maintaining a high accuracy. The YuNet face detector has been shown to be
more accurate than other state-of-the-art face detectors, such as the
YOLOv4 detector.

Here are some of the key features of YuNet:

It is a tiny model with only 75,856 parameters.

It is fast and efficient, with an inference speed of 1.6 milliseconds
per frame on an Intel i7-12700K CPU. It is accurate, with a mAP of
81.1% on the WIDER FACE validation hard set.

It is versatile and can be used on a variety of devices, including
mobile phones, embedded systems, and edge devices.

YuNet is a powerful tool for face detection. It is ideal for applications such
as real-time face recognition, video surveillance, and augmented reality,
where speed and accuracy are important. It can be used for applications
such as access control, attendance tracking, video surveillance, crowd
monitoring, and law enforcement. It can also be used for applications such
as virtual try-ons and face filters. YuNet is a good option for a fast,
accurate, versatile face detector. Let us see some code for face detection
using YuNet:

1. import numpy as np

2. import cv2

3.

4. def visualize(input, faces):

5. if faces is None:

6. return

7.

8. if faces[1] is None:

9. return

10.

11. thickness = 5

12. facebox_color = (255, 255, 255)

13. eyeline_color = (255, 0, 0)

14. nosetip_color = (0, 255, 0)

15. mouthline_color = (0, 0, 255)

16.

17. # Cycle through the faces and landmarks

18. for _, face in enumerate(faces[1]):

19. # Convert the returned coordinates to integers

20. coordinates = face[:-1].astype(np.int32)

21.

22. face_box_topleft_x = coordinates[0]

23. face_box_topleft_y = coordinates[1]

24. face_box_width = coordinates[2]

25. foce_box_height = coordinates[3]

26. face_box_bottomright_x = coordinates[0] + face_box_width

27. face_box_bottomright_y = coordinates[1] + foce_box_height

28.

29. righteye_x = coordinates[4]

30. righteye_y = coordinates[5]

31.

32. lefteye_x = coordinates[6]

33. lefteye_y = coordinates[7]

34.

35. nosetip_x = coordinates[8]

36. nosetip_y = coordinates[9]

37.

38. mouth_rightcorner_x = coordinates[10]

39. mouth_rightcorner_y = coordinates[11]

40.

41. mouth_leftcorner_x = coordinates[12]

42. mouth_leftcorner_y = coordinates[13]

43.

44. # Draw rectangles, lines, and circles on the input image

45. cv2.rectangle(input, (face_box_topleft_x, face_box_topleft_y), (f
ace_box_bottomright_x, face_box_bottomright_y), facebox_color, thi
ckness)

46. cv2.line(input, (righteye_x, righteye_y), (lefteye_x, lefteye_y), e
yeline_color, thickness, lineType=cv2.FILLED) # Eye line

47. cv2.line(input, (mouth_leftcorner_x, mouth_leftcorner_y), (mout
h_rightcorner_x, mouth_rightcorner_y), mouthline_color, thickness,
lineType=cv2.LINE_4) # Mouth line

48. cv2.circle(input, (nosetip_x, nosetip_y), 1, nosetip_color, thickne
ss) # Nosetip

49.

50. if __name__ == '__main__':

51. imgpath = "../input_images/crowd.pxhere.com.jpg"

52.

53. # Initialize FaceDetectorYN with parameters

54. nms_threshold = 0.3

55. score_threshold = 0.5

56. yunet_shape = (320, 320)

57. topk = 500

58.

59. detector = cv2.FaceDetectorYN.create("../weights/9/face_detection
_yunet_2023mar.onnx", "", yunet_shape, score_threshold, nms_thres
hold, topk)

60.

61. img = cv2.imread(imgpath)

62. detector.setInputSize((img.shape[1], img.shape[0]))

63. faces_and_landmarks = detector.detect(img)

64.

65. # Call the visualize function to draw on the image

66. visualize(img, faces_and_landmarks)

67.

68. cv2.namedWindow("face detections", cv2.WINDOW_NORMAL)

69. cv2.imshow("face detections", img)

70. cv2.waitKey(0)

Let us execute this code on the same image used to test Haar cascades-
based detector. This code gives the output as shown in Figure 9.2:

Figure 9.2: Face detection using YuNet

As can be seen here, YuNet is considerably more successful in detecting
faces compared Haar cascades. The anti-aliased line and filled lines seen in
the image are additional information that YuNet can detect. They are the eye
and lips detected in the face. These features are called landmarks and are
crucial in the next challenge which is face recognition.

Face recognition
Face detection and face recognition are two distinct tasks in the field of
computer vision, and serve different purposes. Face detection is about
finding and localizing faces within an image, while face recognition goes a
step further by determining the identity of the detected faces. Face detection
is typically the first step in many face recognition systems because you
need to locate the faces before you can recognize them. Understanding
these distinctions is important when working on applications that involve
faces, whether it is for security, entertainment, or other purposes.

Face detection versus recognition

Refer to Table 9.1 to understand the differences between face detection and
face recognition:

Face detection Face recognition

Task The process of ident
ifying the presence
of faces within an i
mage.

The process of ident
ifying or verifying a
person's identity bas
ed on their facial fea
tures.

Objective Determine whether t
here is a face in the
input data and, if so,
provide the coordin
ates or bounding bo
x around the detecte
d face(s).

Determine who the
person is by compar
ing their facial featu
res to a database of
known individuals.

Output A bounding box that
surrounds the detect
ed face(s).

The identity of the d
etected face(s) or a
determination of wh
ether the detected fa
ce matches a known
person.

Use cases Used in various app
lications like autofo
cus in digital camer
as, counting the nu
mber of people in a
crowd, tracking face
s in video for securi
ty purposes, and mo
re.

Used in applications
like unlocking smart
phones with facial r
ecognition, identity
verification at airpor
ts, surveillance syst
ems for identifying
persons of interest,
and more.

Complexity It is a relatively sim
pler task compared t
o face recognition.

More complex task
as it involves creati
ng a feature represe

ntation of the face a
nd then comparing i
t to a database of kn
own faces to make a
n identification.

Table 9.1: Difference between face detection and face recognition

Face recognition using landmarks
Landmarks, also referred to as facial landmarks or facial keypoints, are
specific points on a person's face that correspond to distinct anatomical
features. These landmarks are often used as key reference points for various
computer vision tasks, including face recognition. Here is how landmarks
are used in the context of face recognition:

Localization and alignment: Landmarks help locate and align faces
within images. By identifying key points such as the corners of the
eyes, nose, mouth, and chin, the face can be accurately positioned
and oriented. This is particularly useful in scenarios where faces may
be tilted, rotated, or vary in scale.

Feature extraction: Once the landmarks are detected, they can be
used to define specific regions of interest (ROIs) on the face. These
regions can encompass important facial components like the eyes,
nose, and mouth. Extracting features from these ROIs can improve
the robustness of face recognition algorithms by focusing on the
most informative parts of the face.

Normalization: Facial landmarks enable the normalization of faces
across different images. By aligning faces based on landmarks,
variations in pose, scale, and rotation can be minimized, creating a
more consistent representation for recognition.

Data augmentation: Landmarks facilitate data augmentation
techniques. By perturbing the positions of landmarks while keeping
the overall facial structure intact, new training examples can be
generated. This helps prevent overfitting and improves the
generalization of face recognition models.

Verification and alignment: In face verification tasks (determining
if two images belong to the same person), landmarks are crucial in
aligning faces before comparison. Aligning faces based on
landmarks ensures that corresponding facial features are consistently
positioned, making the comparison more accurate.

Pose estimation: Facial landmarks can also aid in estimating the
pose of a face, such as the yaw, pitch, and roll angles. This
information can help adapt face recognition algorithms to different
poses and viewpoints.

Expression analysis: Landmarks can provide insights into facial
expressions. Changes in the positions of landmarks can be indicative
of different facial expressions, which may be considered when
recognizing faces under varying emotional states.

3D reconstruction: Some face recognition systems use 3D facial
landmarks to assist in creating accurate 3D reconstructions of faces.
This can enhance recognition accuracy by considering depth
information.

Landmarks are typically detected using techniques such as facial landmark
detection models, shape regression methods, or deep learning approaches.
They offer a structured and informative representation of facial geometry
that can significantly improve the performance and robustness of face
recognition systems, especially in challenging and unconstrained scenarios.

OpenCV supports a wide variety of face recognition algorithms. In fact,
OpenCV has provided an abstract class named FaceRecognizer from which
all FaceRecognizer classes are inherited. This provides tremendous
flexibility to support a wide variety of face recognizer algorithms. We shall
briefly cover the FaceRecogizer module in the next section.

Face recognizer module
All face recognition models in OpenCV are derived from the abstract base
class FaceRecognizer. Each FaceRecognizer is treated as an algorithm,
allowing access to its internal workings through easy get/set operations if
permitted by the implementation. Algorithm, a relatively new concept

introduced in OpenCV since the 2.4 release, offers the following features
for all derived classes:

A virtual constructor, enabling each Algorithm derivative to be
registered at the program start. This registration allows you to obtain
a list of registered algorithms and create instances of specific
algorithms by name (refer to Algorithm::create). For those
considering adding custom algorithms, it is advisable to use unique
prefixes to distinguish them from other algorithms.

Parameter management through name-based setting/retrieval. This
approach resembles the SetCaptureProperty and
GetCaptureProperty functions used in OpenCV's video capturing
functionality. The algorithm provides similar methods where
parameter names are specified as text strings instead of integer IDs.

Serialization of parameters to and from XML or YAML files. Every
algorithm derivative can store its parameters and retrieve them later,
eliminating the need for reimplementing this functionality each time.

Additionally, every FaceRecognizer supports the following:

Training with FaceRecognizer::train on a set of images, typically a
face database.

Prediction of a given sample image, usually a face, provided as a
Mat.

Loading/saving the model state to/from XML or YAML files.

Setting/getting label information stored as a string. String labels are
useful for associating names with recognized individuals.

Here is the class inheritence information of FaceRecognizer shown in
Figure 9.3:

Figure 9.3: Inheritance diagram of FaceRecognier class1

It is worth noting that when using the FaceRecognizer interface in
conjunction with Python, it is advisable to use Python 2 as some underlying
scripts like create_csv may not work with other versions, such as Python 3.

The FaceRecognizer module is a deep learning-based face recognition
module that uses a pre-trained ONNX model to detect and recognize faces
in images and videos. The module is available in OpenCV 3.3 and later
versions. The FaceRecognizer module consists of two parts:

A face detector: This part uses the pre-trained Caffe model to detect
faces in an image or video.

A face recognizer: This part uses the detected faces to train a face
recognition model.

The face detector is a Single Shot Multibox Detector (SSD) model that is
based on the ResNet-10 architecture. The face recognizer is a linear
Support Vector Machine (SVM) model. To use the DNN FaceRecognizer
module, developers must first download the pre-trained Caffe model from
the OpenCV Model Zoo site. Details of downloading this model are
available at the end of this chapter. If a high-accuracy face recognition
system is needed, then the DNN FaceRecognizer module is a good option.
It comes with distinct advantages like accuracy and ease of use. However, it
is more computationally expensive as well.

For the rest of this chapter, we shall extensively use the FaceRecognizerSF
module and the Labeled Faces in the Wild (LFW) dataset. Let us briefly
look at both of these modules here.

Labeled Faces in the Wild dataset
The LFW dataset is a widely used benchmark dataset in the field of face
recognition. It was created to evaluate and compare the performance of
various face recognition algorithms in unconstrained, real-world scenarios.
The dataset was compiled by researchers at the University of
Massachusetts, Amherst. It has been a crucial resource for advancing the
state of the art in face recognition. The dataset contains more than 13,000
images of faces of 5000 unique individuals collected from the internet.
These images cover a wide range of identities, poses, lighting conditions,
and facial expressions with variations in ethnicity, age, and gender. They
reflect the diversity of real-world scenarios, making it more challenging for
algorithms to recognize faces accurately.

The LFW dataset has been instrumental in advancing the field of face
recognition by providing a realistic and challenging testbed for evaluating
algorithms' ability to handle unconstrained real-world scenarios.
Researchers often use this dataset to showcase advancements and
improvements in face recognition algorithms and to understand their
limitations. It is important to note that while the LFW dataset has played a
significant role, there are now larger and more diverse datasets available to
further challenge face recognition algorithms in even more complex
scenarios.

The dataset can be downloaded freely from https://vis-
www.cs.umass.edu/lfw/. Readers are encouraged to visit this site and
download the images from here.

FaceRecognizerSF class
The FaceRecognizerSF module is a deep learning-based face recognition
module that uses a pre-trained ONNX model to detect and recognize faces
in images and videos. The class implements the Sigmoid-Constrained
Hypersphere Loss for Robust Face Recognition algorithm, commonly
called SFace. SFace is a loss function that is designed to improve the
robustness of face recognition models. It does this by minimizing the
similarity distance between images of the same person and maximizing it
between images of different people.

The SFace loss function has been shown to be effective in improving the
robustness of face recognition models to factors such as illumination
variations, pose variations, and occlusions. It has been shown to outperform
other loss functions, such as the cross-entropy loss function, on various face
recognition benchmarks. However, it is also more computationally
expensive than other loss functions and requires more training data.

Comparing faces
Let us now use this knowledge to recognize faces. This chapter uses two
different photographs of the great Hollywood actor Clint Eastwood. Both
these photographs are taken from LFW dataset.

1. import numpy as np

2. import cv2

3.

4. if __name__ == '__main__':

5. # Paths to the input images

6. img1path = "../lfw/Clint_Eastwood/Clint_Eastwood_0001.jpg"

7. img2path = "../lfw/Clint_Eastwood/Clint_Eastwood_0005.jpg"

8.

9. # Initialize FaceDetectorYN with parameters

10. nms_threshold = 0.3

11. score_threshold = 0.5

12. yunet_shape = (320, 320)

13. topk = 500

14.

15. detector = cv2.FaceDetectorYN.create("../weights/9/face_detection
_yunet_2023mar.onnx", "", yunet_shape, score_threshold, nms_thres
hold, topk)

16.

17. # Load and detect faces in the first image

18. img1 = cv2.imread(img1path)

19. detector.setInputSize((img1.shape[1], img1.shape[0]))

20. faces_and_landmarks1 = detector.detect(img1)

21.

22. # Load and detect faces in the second image

23. img2 = cv2.imread(img2path)

24. detector.setInputSize((img2.shape[1], img2.shape[0]))

25. faces_and_landmarks2 = detector.detect(img2)

26.

27. # Initialize FaceRecognizerSF

28. recognizer = cv2.FaceRecognizerSF.create("../weights/9/face_reco
gnition_sface_2021dec.onnx", "")

29.

30. # Align and crop faces from the images

31. face1_align = recognizer.alignCrop(img1, faces_and_landmarks1[1
][0])

32. face2_align = recognizer.alignCrop(img2, faces_and_landmarks2[1
][0])

33.

34. # Extract features from the aligned faces

35. facial_features1 = recognizer.feature(face1_align)

36. facial_features2 = recognizer.feature(face2_align)

37.

38. # Set similarity score thresholds

39. cosine_similarity_threshold = 0.363

40. l2_similarity_threshold = 1.128

41.

42. # Calculate cosine and L2 similarity scores

43. cosine_score = recognizer.match(facial_features1, facial_features2,
 cv2.FaceRecognizerSF_FR_COSINE)

44. l2_score = recognizer.match(facial_features1, facial_features2, cv2.
FaceRecognizerSF_FR_NORM_L2)

45.

46. # Determine if the images belong to the same person based on simil
arity scores

47. if (cosine_score >= cosine_similarity_threshold) or (l2_score <= l2
_similarity_threshold):

48. print("Images are of the same person")

49. else:

50. print("Images do not belong to the same person")

Figure 9.4 shows the two figures used. As can be imagined, the above
program identifies the two images to belong to the same person.

Figure 9.4: Images of Clint Eastwood from LFW dataset

What is interesting is, the algorithm is just as capable of detecting the faces
of people who are not celebrities. For example, Figure 9.5 are images of a
person captured nearly two years apart. However, the algorithm still
identifies them to belong to the same person. This is incredibly useful for
automated face recognition for security and identification uses.

Figure 9.5: Images detected to belong to the same person

Text recognition
Text detection and recognition are essential components of computer vision
with various applications, including document analysis, scene
understanding, and augmented reality. Text detection involves locating and
identifying textual content within images or scenes. The primary goal is to
pinpoint the regions or bounding boxes where text is present. Text detection
is a crucial preprocessing step for text recognition. Text detection methods
range from traditional computer vision algorithms like edge detection and
connected component analysis to more advanced deep learning-based
approaches using CNNs and RPNs. Challenges in text detection include
handling multi-oriented text, detecting text in complex backgrounds, and
differentiating between text and non-text regions. Text detection is used in
document scanning, license plate recognition, augmented reality, and more.

Text recognition, also known as Optical Character Recognition (OCR), is
the process of converting detected text within an image into machine-
readable and editable text. The objective is to understand and transcribe the
textual content accurately. OCR can be performed using traditional
techniques, such as template matching and pattern recognition, but modern
OCR systems often rely on deep learning models, including recurrent
neural networks (RNNs) and convolutional-recurrent neural networks
(CRNNs). Challenges in text recognition include handling variations in
fonts, sizes, languages, and distortions due to perspective, lighting, or noise.
Text recognition finds applications in digitizing printed documents,
extracting information from images, enabling text-to-speech synthesis, and
automating data entry.

Combining text detection and recognition allows computer vision systems
to locate and decipher text within images, making textual information
accessible for further processing and analysis. These technologies are
crucial in many industries, from finance and healthcare to automotive and
robotics, where understanding and extracting information from visual
content is essential.

Text detection
Let us now see some code for detecting text from an image:

1. import numpy as np

2. import cv2

3.

4.

5. def visualize(image, results):

6. box_color=(255, 255, 255)

7. isClosed=True

8. thickness=10

9. pts = np.array(results[0])

10. return cv2.polylines(image, pts, isClosed, box_color, thickness)

11.

12.

13. def initialize_model(model_shape):

14. backend_id = cv2.dnn.DNN_BACKEND_OPENCV

15. target_id = cv2.dnn.DNN_TARGET_CPU

16.

17. binary_threshold = 0.3

18. polygon_threshold = 0.5

19. max_candidates = 200

20. unclip_ratio = 2.0

21.

22. model_path = "../weights/9/text_detection_DB_TD500_resnet18_2
021sep.onnx"

23. model = cv2.dnn_TextDetectionModel_DB(cv2.dnn.readNet(mode
l_path))

24.

25. model.setPreferableBackend(backend_id)

26. model.setPreferableTarget(target_id)

27.

28. model.setBinaryThreshold(binary_threshold)

29. model.setPolygonThreshold(polygon_threshold)

30. model.setUnclipRatio(unclip_ratio)

31. model.setMaxCandidates(max_candidates)

32.

33. model.setInputParams(1.0/255.0, model_shape, (122.67891434, 11
6.66876762, 104.00698793))

34. return model

35.

36. if __name__ == '__main__':

37.

38. image_path = "../input_images/4_EdgesCorners.jpg"

39. model_shape = (736, 736) # w, h

40.

41. model = initialize_model(model_shape)

42.

43. original_image = cv2.imread(image_path)

44. original_h, original_w, _ = original_image.shape

45. scaleHeight = original_h / model_shape[1]

46. scaleWidth = original_w / model_shape[0]

47. image = cv2.resize(original_image, model_shape)

48.

49. # Inference

50. results = model.detect(image)

51.

52. # Scale the results bounding box

53. for i in range(len(results[0])):

54. for j in range(4):

55. box = results[0][i][j]

56. results[0][i][j][0] = box[0] * scaleWidth

57. results[0][i][j][1] = box[1] * scaleHeight

58.

59. # Draw results on the input image

60. original_image = visualize(original_image, results)

61.

62. cv2.namedWindow("input", cv2.WINDOW_NORMAL)

63. cv2.imshow("input", original_image)

64. cv2.waitKey(0)

65.

This code generates the following output:

Figure 9.6: Detected text is highlighted in white rectangle

Text recognition
Let us now go one step further and try identifying the text in the image. We
start exactly where we left. We take the specific locations in the image
which have been identified as text and then detect them.

However, we now need to pre-determine the language of the text. This is a
tricky requirement for situations like driverless cars. Other than this
constraint, the implementation works reasonably well. In this chapter, we
are limiting ourselves to English language. So, we shall use the
text_recognition_CRNN_EN_2021sep.onnx model from OpenCV Model
Zoo in the following code:

1. import numpy as np

2. import cv2

3.

4. backend_id = cv2.dnn.DNN_BACKEND_OPENCV

5. target_id = cv2.dnn.DNN_TARGET_CPU

6.

7.

8. def initialize_textdetector_model(model_shape):

9. binary_threshold = 0.3

10. polygon_threshold = 0.5

11. max_candidates = 200

12. unclip_ratio = 2.0

13.

14. model_path = "../weights/9/text_detection_DB_TD500_resnet18_2
021sep.onnx"

15. model = cv2.dnn_TextDetectionModel_DB(cv2.dnn.readNet(mode
l_path))

16.

17. model.setPreferableBackend(backend_id)

18. model.setPreferableTarget(target_id)

19.

20. model.setBinaryThreshold(binary_threshold)

21. model.setPolygonThreshold(polygon_threshold)

22. model.setUnclipRatio(unclip_ratio)

23. model.setMaxCandidates(max_candidates)

24.

25. model.setInputParams(1.0/255.0, model_shape, (122.67891434, 11
6.66876762, 104.00698793))

26. return model

27.

28. def initialize_english_textrecognition_model():

29. model_path = "../weights/9/text_recognition_CRNN_EN_2021sep.
onnx"

30. model = cv2.dnn.readNet(model_path)

31. model.setPreferableBackend(backend_id)

32. model.setPreferableTarget(target_id)

33. character_set = '0123456789abcdefghijklmnopqrstuvwxyz'

34. character_size = (100, 32) # This must not be changed and must be
 in sync with next line

35. vertex_coordinates = np.array([

36. [0, 31],

37. [0, 0],

38. [99, 0],

39. [99, 31]

40.],

41. dtype=np.float32)

42. return model, character_set, character_size, vertex_coordinates

43.

44. def visualize(image, boxes, texts, color=
(0, 255, 0), isClosed=True, thickness=2):

45. pts = np.array(boxes[0])

46. output = cv2.polylines(image, pts, isClosed, color, thickness)

47. for box, text in zip(boxes[0], texts):

48. print(text)

49. cv2.putText(output, text, (box[1].astype(np.int32)), cv2.FONT_
HERSHEY_SIMPLEX, 0.5, (255, 255, 255))

50. return output

51.

52. def recognize_text(model, character_set, character_size, vertex_coord
inates, image, boxshape):

53. # Preprocess the image

54.

55. # Remove conf, reshape and ensure all is np.float32

56. vertices = boxshape.reshape((4, 2)).astype(np.float32)

57. rotationMatrix = cv2.getPerspectiveTransform(vertices, vertex_coo
rdinates)

58. cropped_image = cv2.warpPerspective(image, rotationMatrix, char
acter_size)

59. cropped_image = cv2.cvtColor(cropped_image, cv2.COLOR_BGR
2GRAY)

60. text_blob = cv2.dnn.blobFromImage(cropped_image, size=charact
er_size, mean=127.5, scalefactor=1 / 127.5)

61.

62.

63.

64. # Forward

65. model.setInput(text_blob)

66. output_blob = model.forward()

67.

68. # Postprocess

69. text = ''

70. for i in range(output_blob.shape[0]):

71. c = np.argmax(output_blob[i][0])

72. if c != 0:

73. text += character_set[c - 1]

74. else:

75. text += '-'

76.

77. # return text

78. # adjacent same letters as well as background text must be removed
 to get the final output

79. char_list = []

80. for i in range(len(text)):

81. if text[i] != '-' and (not (i > 0 and text[i] == text[i - 1])):

82. char_list.append(text[i])

83.

84. return ''.join(char_list)

85.

86. if __name__ == '__main__':

87. image_path = "../input_images/4_EdgesCorners.jpg"

88. model_shape = (736, 736) # w, h

89.

90. # initialize text detection model

91. detector = initialize_textdetector_model(model_shape)

92.

93.

94.

95. # initialize CRNN for text recognition

96. recognizer, character_set, character_size, vertex_coordinates = initi
alize_english_textrecognition_model()

97.

98. original_image = cv2.imread(image_path)

99. original_h, original_w, _ = original_image.shape

100. scaleHeight = original_h / model_shape[1]

101. scaleWidth = original_w / model_shape[0]

102. image = cv2.resize(original_image, model_shape)

103.

104. # Detect the locations of text

105. results = detector.detect(image)

106.

107.

108. # Recognize text in the detected locations

109. texts = []

110. for box, score in zip(results[0], results[1]):

111. text = recognize_text(recognizer, character_set, character_size, v
ertex_coordinates, image, box.reshape(8))

112. texts.append(text)

113.

114. # Scale the results bounding box

115. for i in range(len(results[0])):

116. for j in range(4):

117. box = results[0][i][j]

118. results[0][i][j][0] = box[0] * scaleWidth

119. results[0][i][j][1] = box[1] * scaleHeight

120.

121. # Draw results on the input image

122. original_image = visualize(original_image, results, texts)

123.

124. # Visualize results in a new window

125. cv2.namedWindow("input", cv2.WINDOW_NORMAL)

126. cv2.imshow("input", original_image)

127. cv2.waitKey(0)

128.

Executing this code generates the following output:

1. D:\bpb\995\9>python text_recognition.py

2. python

3. letus

4. pgcrihiaialls

5. leampythonguickly

6. ciomistimibinectisd

7. adityakanetkar

8. washanvantcanetar

9. 22

10. 3rdedition

As can be seen, the output is reasonably good, although not perfect.
Obtaining a perfect output requires tweaking the model parameters to suit
the individual usecases.

OpenCV Model Zoo
The OpenCV Model Zoo is a valuable resource for computer vision
practitioners and researchers. It is a collection of pre-trained models and
model weights that can be used with OpenCV. Model Zoo contains a wide
range of models designed for different computer vision tasks, including
object detection, image classification, face recognition, text detection, and
more. These models are trained on large datasets and are often state-of-the-
art in terms of accuracy and performance. Many of the models in the
OpenCV Model Zoo are compatible with popular deep learning frameworks
like TensorFlow, PyTorch, and Caffe.

Using pre-trained models from the Model Zoo is straightforward. OpenCV
provides convenient APIs for loading these models and applying them to
images or videos. Model Zoo is a collaborative effort, and contributions
from the computer vision community are welcome. Developers can find
models trained on various datasets and for specific use cases, which can be
incredibly valuable for their projects. By leveraging pre-trained models
from the Model Zoo, developers can significantly reduce the time and
computational resources required for training deep learning models from
scratch. Researchers and developers often use these pre-trained models as a
starting point for their own experiments or projects. It allows for rapid
prototyping and experimentation before committing to training custom
models. Whether object recognition, image segmentation, or any other
vision-related task, the Model Zoo likely has a pre-trained model that can
jumpstart the work.

All the models used in this chapter have been downloaded from Model Zoo.
Readers are encouraged to visit the Model Zoo at
https://github.com/opencv/opencv_zoo and download the models from

there. Being opensource contributions, the models are likely to be upgraded
to state-of-the-art implementations frequently.

Conclusion
In this chapter we have visited the foundational concepts of face detection
to the intricacies of face recognition. We explored the mechanisms that
underpin these essential computer vision tasks. We have also seen the
techniques for detecting text from images. In a world increasingly reliant on
facial biometrics and human-machine interaction, the knowledge gained
here serves as a vital foundation for unlocking countless applications in
security, entertainment, and beyond.

Exercises
1. Visit the OpenCV Model Zoo at

https://github.com/opencv/opencv_zoo/tree/main and try using the
other ONNX models provided for face recognition and character
recognition.

Key terms
Face detection: A computer vision use case to determine presence of
human faces in an image.

Haar cascades: An algorithm for rapid detection of objects in an
image.

Viola Jones algorithm: Algorithm that uses Haar cascades for face
detection.

YuNet: A deep learning algorithm built using Mobilenet for face
detection.

Facial Landmarks: Key points of a human face used for various
computer vision tasks.

LFW dataset: Labeled Faces in the Wild dataset containing famces
of celebrities under various lighting conditions.

Text detection: A computer vision use case to determine presence of
text in an image.

Text recognition: A computer vision use case to identify the text
alphabets, numbers, special symbols in the image.

OCR: Optical Character Recognition. Another name for text
recognition.

OpenCV Model Zoo: An opensource repository of popular models
for solving computer vision usecases.

1 Source: OpenCV’s official documentation page

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

OceanofPDF.com

https://discord.bpbonline.com/
https://oceanofpdf.com/

Chapter 10
Running the Code

Introduction
So far, all the chapters have referred extensively to code. All the provided
code has multiple dependencies. This chapter aims to help the readers run
this code on their machines. All the code given in this book so far have
certain dependencies and need some setup to be done. For example, Python
runtime environment is a prerequisite. Libraries like OpenCV, numpy and
the like are required to run the program. Moreover, there is a question of
fetching the code itself. All these are explained in a complete detail in this
chapter.

Structure
The chapter includes the following topics:

Sequence of steps

Setting up Anaconda

Installing Git

Setting up Python environment

Fetching the code

Installing the libraries

Running the code

Objectives
This chapter aims to enable the readers to set up the Python environment,
fetch the code mentioned in the book, and execute it on their machines.
Step-by-step instructions are provided for each activity, along with an
explanation for the same. The instructions are applicable for both Windows
and Linux environments. They have been tested on Windows 10 and on
Ubuntu Linux 18.04. If the steps involved have to differ based on OS, then
such distinctions have been clearly stated.

Sequence of steps
This guide is provided for people who are not familiar with Python and the
options available for installing Python. There are multiple ways to do so.
Experienced developers can skip the initial steps and proceed to Fetching
the code step. Inexperienced developers are recommended to follow the
below sequence of steps. An internet connection is required for executing
all these steps:

1. Install Anaconda

2. Install Git

3. Install Python virtual environment

4. Fetch the code

5. Installing the libraries

6. Running the code

Among the above, steps 1-5 are a one-time activity on any given machine.
Only steps 1 and 2 vary between Windows and Linux.

Setting up Anaconda
Anaconda is a popular open-source platform that is widely used in the fields
of data science, machine learning, and scientific computing. It comes with a
powerful package manager called Conda, which makes it easy to install,
update, and manage libraries and dependencies. Conda handles not only
Python packages but also packages for other programming languages,

making it versatile. Anaconda is available for Windows, macOS, and Linux,
ensuring that data scientists and developers can work seamlessly across
different operating systems. It includes a Python distribution that is
optimized for data science and scientific computing. It comes with many
pre-installed packages commonly used in these fields.

A big advantage of Anaconda is that it allows developers to create isolated
Python environments, making it easy to manage different project
dependencies and avoid conflicts between packages. This is crucial when
working on multiple projects with different requirements. Anaconda also
integrates seamlessly with Jupyter Notebook, a popular web-based
interactive computing environment. Jupyter Notebooks are widely used for
data exploration, analysis, and visualization. Additionally, Anaconda
supports various IDEs, including Anaconda Navigator (a graphical interface
for managing environments and packages), JupyterLab, and integration
with popular text editors like Visual Studio Code.

Anaconda makes it easier to share and reproduce data science projects.
Developers can export environment configurations to ensure that
collaborators or others can recreate their environment precisely. This is the
main reason for choosing Anaconda for this book.

Installing Anaconda on Windows
Administrator access is required for these steps. Please follow the
instructions in the same sequence:

1. Download Anaconda: Visit the Anaconda website.
(https://www.anaconda.com/products/distribution) and download
the Anaconda Distribution for Windows. Choose the version that
matches your system architecture (32-bit or 64-bit).

2. Run the installer: Locate the downloaded Anaconda installer
executable (usually named something like Anaconda3-<version>-
Windows-x86_64.exe) and double-click it to run the installer.

3. Read and accept the license agreement: Carefully read the license
agreement and click I Agree if you accept the terms.

4. Select installation type: Choose Just Me (recommended) or All
Users to specify who can use Anaconda.

5. Choose installation location: Select the directory where you want
Anaconda to be installed. By default, it is installed in your user
profile directory.

6. Add Anaconda to PATH: To make Anaconda's Python and other
utilities accessible from the Command Prompt, check the box that
says Add Anaconda to my PATH environment variable.

7. Install Anaconda: Click the Install button to start the installation
process. This may take a few minutes.

8. Installation complete: Once the installation is finished, you will see
a Successful Installation message. Click Next.

9. Start Anaconda Navigator: To launch Anaconda Navigator, a
graphical interface for managing packages and environments, select
the Anaconda Navigator option and click Finish.

10. Test your installation: Open a Command Prompt and type the
following command. If Anaconda is installed correctly, it will
display the version number:

conda --version

Installing Anaconda on Ubuntu Linux
Administrator access is required for these steps. Please follow the
instructions in the same sequence:

1. Download Anaconda: Open your web browser and visit the
Anaconda website
(https://www.anaconda.com/products/distribution). Download the
Anaconda Distribution for Linux. Choose the version that matches
your system architecture (usually 64-bit).

2. Open Terminal: Open a Terminal window on your Linux machine.
You can usually do this by pressing Ctrl + Alt + T or searching for
Terminal in your application launcher.

3. Navigate to the Downloads directory: Use the cd command to
navigate to the directory where you downloaded the Anaconda

installer. For example, if it is in the Downloads directory, you can
use cd ~/Downloads.

4. Run the installer script: Use the following command to make the
Anaconda installer script executable. Replace <version> with the
version number you downloaded.

chmod +x Anaconda3-<version>-Linux-x86_64.sh

Execute the installer script using the following command:

./Anaconda3-<version>-Linux-x86_64.sh

5. Follow the installation prompts: Read the license agreement, type
yes to accept, and follow the on-screen prompts to choose the
installation location (usually in your Home directory) and whether to
add Anaconda to your PATH. It is highly recommended to add
Anaconda to PATH variable.

6. Initialize Anaconda: After installation, you may need to initialize
Anaconda by running:

 source ~/.bashrc

7. Test your installation: In the Terminal, type conda --version. If
Anaconda is installed correctly, it will display the version number.

Installing Git
GitHub is a web-based platform for version control and collaborative
software development. It allows individuals and teams to manage and track
changes to their code repositories. Git, on the other hand, is a distributed
version control system that GitHub is built upon. Git enables developers to
track changes, collaborate on projects, and maintain a history of their
codebase. Users can commit changes to their local Git repositories, create
branches for parallel development, and merge changes seamlessly. GitHub
extends Git's functionality by providing hosting services for Git
repositories, issue tracking, code review, and project management tools. It
is widely used for open-source and private software development, making it
a fundamental platform for collaborative coding and version control. All the
code provided in this book is available in the official BPB GitHub

repository https://github.com/username/repository.git. Git software can
be used to download this code. If Git is not installed on your computer,
developers need to install it.

Installing Git on Windows
Here are step-by-step instructions to install Git on a Windows 10 computer:

1. Download Git for Windows: Open your web browser and go to the
official Git website: https://git-scm.com/download/win.

This link will automatically detect your system and provide the
appropriate download option for Windows.

2. Download the installer: Click on the Download button to start
downloading the Git for Windows installer. The installer should be
named something like Git-2.x.x-64-bit.exe, where x.x represents the
version number.

3. Run the installer: Locate the downloaded installer file and double-
click it to run it.

4. Welcome screen: You will see a welcome screen. Click the Next
button to proceed.

5. Select destination location: Choose the destination where Git will
be installed. The default location is usually fine for most users. Click
Next to continue.

6. Select components: On this screen, you can choose additional
components to install. The default selections are typically sufficient.
Click Next to proceed.

7. Choosing an editor (Optional): You may be asked to choose a
default text editor for Git (for example, Notepad or Visual Studio
Code). You can leave the default editor selected or choose a different
one. Click Next.

8. Adjusting PATH environment: On this screen, select the option
Use Git from the Windows Command Prompt to make Git
accessible from the Command Prompt and PowerShell. This is
recommended for ease of use. Click Next.

9. Choosing HTTPS transport backend: Select the option Use the
OpenSSL library (the default choice) for secure HTTPS
connections. Click Next.

10. Configuring line endings: Choose how you want Git to handle line
endings. The default option, Checkout Windows-style, commit
Unix-style line endings, is suitable for most projects. Click Next.

11. Configuring the terminal emulator: Choose your preferred
terminal emulator. The default option, Use the Windows' default
console window, is recommended. Click Next.

12. Installing Git: Click the Install button to start the installation
process. Git will be installed on your system.

13. Completing the Git: Setup After the installation is complete, you
will see a Completing the Git Setup screen. Ensure the Launch Git
Bash option is selected and click Finish.

14. Verify Git installation: Open the Git Bash application from your
Start menu or by searching for Git Bash in the Windows search bar.
In the Git Bash terminal, you can verify that Git is installed by
running the following command:

git --version

You should see the installed Git version displayed.

Installing Git on Ubuntu
Here are step-by-step instructions to install Git on an Ubuntu-based Linux
distribution:

1. Open Terminal: Open a Terminal window on your Ubuntu system.
You can do this by pressing Ctrl + Alt + T or searching for Terminal
in your application launcher.

2. Update package lists: Before installing Git, it is a good practice to
update your system's package lists to ensure you are installing the
latest available version of Git. Run the following command:

sudo apt update

3. Install Git: To install Git, use the following command:

sudo apt install git

4. Confirm installation: After entering the installation command, the
terminal will ask for your confirmation. Type Y and press Enter to
proceed with the installation.

5. Verify Git installation: To verify that Git has been successfully
installed, you can run the following command to check the installed
version:

git --version

This should display the installed Git version.

Setting up Python environment
Here is a step-by-step guide to creating a conda environment with Python
3.8.16. These steps are same for both Windows and Ubuntu:

1. Open Terminal or Command Prompt: Open your Terminal or
Command Prompt on your computer.

2. Create a new conda environment: Use the following command to
create a new conda environment and specify Python 3.8.16 as the
version:

conda create -n bpb995 python=3.8.16

This will create a virtual environment with the name bpb995 on
your machine.

3. Activate the new environment: To use the newly created
environment, activate it using the following command:

conda activate bpb995

4. Verify Python version: To ensure that Python 3.8.16 is installed in
the activated environment, you can check the Python version using:

python --version

It should display Python 3.8.16.

Now, you have a conda environment with Python 3.8.16 installed. You can
use this environment for all the Python code in this book.

Fetching the code
Fetching the code in this book is a two step process. First step is to
download the programming code and the second step is to download the
model weights files used.

Downloading the code
To fetch code from a GitHub repository, you need to clone it to your local
machine. Run the below commands at the terminal. Use the git clone
command followed by the repository's URL. Replace the text <githuburl>
with the Github URL of the code mentioned earlier in the book.

1. conda activate bpb995

2. git clone <githuburl>

A progress bar is displayed to indicate the download in progress. At the end,
a folder named githuburl is created in the folder where the command was
executed.

Fetch the weights
To fetch the model weights file, please visit the Google drive URL
mentioned earlier in the book and download the zip file to your local
machine. Please unzip the file and move the contents along with the
subdirectories to the weights folder created in the code fetched in the step
above. This will set up the code ready for execution.

Installing the libraries
Use the cd command to navigate into the directory created when you cloned
the repository. You can install the Python library dependencies listed in the
requirements.txt file using the pip package manager:

1. cd repository

2. pip install -r requirements.txt

This command instructs pip to read the requirements.txt file and install the
specified libraries and their versions into your virtual environment. You can
verify that the dependencies were installed successfully by running:

pip list

This will display a list of installed packages, including the ones from the
requirements.txt file.

Running the code
This step has to be executed every time the code has to be run. The virtual
environment has to be activated every time a new terminal window is
launched to run the code. IDEs like Visual Code have some additional help
for launching the virtual environment automatically. However, discussing
the IDE functionalities is beyond the scope of this book:

1. conda activate bpb995

2. cd repository

Now, the code can be executed at the terminal. As an example, the file
pixels_and_colour_images.py from Chapter 2 is executed here.

1. conda activate bpb995

2. cd repository

3. python 2\pixels_and_colour_images.py

If you can see the output as described in Chapter 2 then your setup
procedure is successful.

Notes:

It is recommended to run the code either from code editors like
PyCharm, VS Code, Spyder and the like. The code should be
run from a terminal command prompt as shown in the book or
by appropriate configuration of the above-mentioned code
editors.

Configuring the code editors for running the code is beyond the
scope of this book.

It is not recommended to the run the code in Jupyter
Notebooks as-is. Code statements like cv2.imshow() do not
perform satisfactorily in Jupyter Notebooks and can result in
system freeze and similar other problems.

Conclusion
In this chapter, we have seen how to install the software required for
running the Python code provided in this book. We have seen step-by-step
instructions on installing the software and running the code. Following
these steps in the exact sequence is highly recommended for novice
developers. Experienced developers can follow different approaches which
they are familiar and comfortable. Being able to run the code in this chapter
is vitally important to achieve the objectives outlined in the beginning of
the book. In the next chapter, we shall see an end-to-end code
implementation for a computer vision use case. Starting from a simplified
UI to using a combination of computer vision models, we will peruse code
for performing automatic number plate recognition.

Exercises
1. Move the model weights files to a different folder. Try modifying the

code in the book to read the models from the new locations.

2. Try the code with different images and see how the results change.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/

OceanofPDF.com

https://oceanofpdf.com/

Chapter 11
End-to-end Demo

Introduction
So far, we discussed different use cases in computer vision and the modern
deep learning and AI-based solutions for addressing them. In this chapter,
we will combine them and build a single end-to-end use case. The different
models discussed in the book so far will all be combined into a program to
address one business requirement, which is recognizing number plates of
vehicles.

Structure
The chapter covers the following topics:

Code

Running the code

Application design

Notes about codes

Objectives
This chapter provides code for running the usecase. The objective is to
show how different computer vision models can be harnessed together to
achieve a business goal using OpenCV DNN. The code in this chapter

provides a simple user interface that captures the video frames from a
camera attached to the computer and executes the models. The program can
detect COCO objects and also detects text and number plates in the video
frame.

Code
The code is split into multiple files. The files are written in a pythonic
manner with complete documentation and can be executed from the
command line. The screenshots of the UI are provided as a reference.

main_app.py
The below code is for the main entry point to the code:

1. import tkinter as tk

2. import video_app_ui as mainui

3. import image_processor as mainproc

4.

5. def main():

6. # Create a Tkinter root window

7. root = tk.Tk()

8.

9. # Initialize the ImageProcessor object with required filenames and
parameters

10. mainprocessor = mainproc.ImageProcessor(

11. "weights/8/yolo/YOLOv5s.onnx", # Object detection model file

12. "weights/8/yolo/coco.names", # Object detection class labels

13. "weights/9/text_detection_DB_TD500_resnet18_2021sep.onnx",
 # Text detection model file

14. "weights/9/text_recognition_CRNN_EN_2021sep.onnx", #
Text recognition model file

15. confidence_threshold=0.8 # Confidence threshold for object det
ection

16.)

17.

18. # Create the VideoAppUI using the Tkinter root and ImageProcesso
r instance

19. app = mainui.VideoAppUI(root, mainprocessor)

20.

21. # Start the Tkinter main event loop

22. root.mainloop()

23.

24. if __name__ == "__main__":

25. main()

video_app_ui.py
Below code contains the Tkinter based GUI components:

1. import tkinter as tk

2. from tkinter import messagebox

3. import tkinter.font as tkFont

4. import cv2

5. import numpy as np

6. import threading

7. import time

8.

9. class VideoAppUI:

10. def __init__(self, root, improcessor):

11. self.__initialize_processing_widgets(root)

12. self.__initialize_processing_variables(improcessor)

13.

14. def __initialize_processing_widgets(self, root):

15. self.__root = root

16.

17. # Setting title

18. root.title("OpenCV DNN End-to-end Demo")

19.

20. # Setting window size

21. width = 320

22. height = 240

23. screenwidth = root.winfo_screenwidth()

24. screenheight = root.winfo_screenheight()

25. alignstr = '%dx%d+%d+%d' % (width, height,
(screenwidth - width) / 2, (screenheight - height) / 2)

26. root.geometry(alignstr)

27. root.resizable(width=False, height=False)

28.

29. # Create Start Video button

30. self.__btn_start_video = tk.Button(root)

31. self.__btn_start_video["anchor"] = "w"

32. self.__btn_start_video["bg"] = "#f0f0f0"

33. ft = tkFont.Font(family='Times', size=10)

34. self.__btn_start_video["font"] = ft

35. self.__btn_start_video["fg"] = "#000000"

36. self.__btn_start_video["justify"] = "center"

37. self.__btn_start_video["text"] = "Start Video"

38. self.__btn_start_video.place(x=30, y=50, width=70, height=25)

39. self.__btn_start_video["command"] = self.__start_video

40.

41. # Create Stop Video button

42. self.__btn_stop_video = tk.Button(root)

43. self.__btn_stop_video["bg"] = "#f0f0f0"

44. ft = tkFont.Font(family='Times', size=10)

45. self.__btn_stop_video["font"] = ft

46. self.__btn_stop_video["fg"] = "#000000"

47. self.__btn_stop_video["justify"] = "center"

48. self.__btn_stop_video["text"] = "Stop Video"

49. self.__btn_stop_video.place(x=30, y=100, width=70, height=25)

50. self.__btn_stop_video["command"] = self.__stop_video

51. self.__btn_stop_video["state"] = tk.DISABLED

52.

53. # Create Process Video checkbox

54. self.__process_video_var = tk.BooleanVar()

55. self.__chk_process_video = tk.Checkbutton(root, variable=self._
_process_video_var)

56. self.__chk_process_video["anchor"] = "w"

57. ft = tkFont.Font(family='Times', size=10)

58. self.__chk_process_video["font"] = ft

59. self.__chk_process_video["fg"] = "#333333"

60. self.__chk_process_video["justify"] = "center"

61. self.__chk_process_video["text"] = "Process video"

62. self.__chk_process_video.place(x=0, y=170, width=150, height=
30)

63. self.__chk_process_video["offvalue"] = False

64. self.__chk_process_video["onvalue"] = True

65. self.__chk_process_video["command"] = self.__chk_process_vi
deo_command

66.

67. # Create Detect Objects checkbox

68. self.__detect_objects_var = tk.BooleanVar()

69. self.__chk_detect_objects = tk.Checkbutton(root, variable=self._
_detect_objects_var)

70. ft = tkFont.Font(family='Times', size=10)

71. self.__chk_detect_objects["font"] = ft

72. self.__chk_detect_objects["fg"] = "#333333"

73. self.__chk_detect_objects["justify"] = "center"

74. self.__chk_detect_objects["text"] = "Detect objects"

75. self.__chk_detect_objects.place(x=10, y=210, width=135, height
=30)

76. self.__chk_detect_objects["offvalue"] = False

77. self.__chk_detect_objects["onvalue"] = True

78. self.__chk_detect_objects["state"] = tk.DISABLED

79.

80. # Create Detect Number Plate checkbox

81. self.__detect_number_plates_var = tk.BooleanVar()

82. self.__chk_detect_numberplate = tk.Checkbutton(root, variable=
self.__detect_number_plates_var)

83. ft = tkFont.Font(family='Times', size=10)

84. self.__chk_detect_numberplate["font"] = ft

85. self.__chk_detect_numberplate["fg"] = "#333333"

86. self.__chk_detect_numberplate["justify"] = "center"

87. self.__chk_detect_numberplate["text"] = "Detect Number Plate"

88. self.__chk_detect_numberplate.place(x=10, y=250, width=175,
height=30)

89. self.__chk_detect_numberplate["offvalue"] = False

90. self.__chk_detect_numberplate["onvalue"] = True

91. self.__chk_detect_numberplate["state"] = tk.DISABLED

92.

93. self.__btn_start_video.pack(pady=5)

94. self.__btn_stop_video.pack(pady=5)

95. self.__chk_process_video.pack(pady=5)

96. self.__chk_detect_objects.pack()

97. self.__chk_detect_numberplate.pack()

98.

99. def __initialize_processing_variables(self, improcessor):

100. self.__improcessor = improcessor

101. self.__number_of_skipframes = None

102. self.__video_capture = None

103. self.__video_thread = None

104.

105. def __start_video(self):

106. self.__video_capture = cv2.VideoCapture(0)

107. self.__btn_stop_video["state"] = tk.NORMAL

108. self.__btn_start_video["state"] = tk.DISABLED

109. self.__video_thread = threading.Thread(target=self.__process_vi
deo)

110. self.__video_thread.daemon = True

111. self.__video_thread.start()

112.

113. def __stop_video(self):

114. if self.__video_capture:

115. self.__video_capture.release()

116. self.__video_capture = None # This will break the infinite loo
p in __process_video

117. self.__video_thread.join()

118. self.__btn_stop_video["state"] = tk.DISABLED

119. self.__btn_start_video["state"] = tk.NORMAL

120.

121. def __chk_process_video_command(self):

122. process_video = self.__process_video_var.get()

123.

124. if process_video:

125. self.__chk_detect_objects["state"] = tk.NORMAL

126. self.__chk_detect_numberplate["state"] = tk.NORMAL

127. else:

128. self.__chk_detect_objects["state"] = tk.DISABLED

129. self.__chk_detect_numberplate["state"] = tk.DISABLED

130.

131. def __process_video(self):

132. if not self.__video_capture:

133. messagebox.showerror("Error", "Video is not running. Start th
e video first.")

134. return

135.

136. cv2.namedWindow("Video", cv2.WINDOW_FULLSCREEN)

137. while True:

138. process_video = self.__process_video_var.get()

139. detect_objects = self.__detect_objects_var.get()

140. detect_number_plates = self.__detect_number_plates_var.get(
)

141.

142. if self.__video_capture:

143. ret, frame = self.__video_capture.read()

144. else:

145. ret = False

146.

147. if not ret:

148. break

149.

150. if process_video:

151. if detect_objects:

152. processed_frame = self.__detect_objects(frame)

153. else:

154. processed_frame = frame

155.

156. if detect_number_plates:

157. processed_frame = self.__detect_number_plate(processe
d_frame)

158. else:

159. processed_frame = frame

160.

161. # Display the processed frame

162. cv2.imshow("Video", processed_frame)

163. cv2.waitKey(1)

164.

165. cv2.destroyAllWindows()

166.

167. def __detect_objects(self, frame):

168. # Implement YOLOv5 object detection here and mark
objects in the frame

169. # You'll need to use YOLOv5 and its weights for this part

170. # Example code for YOLOv5 detection:

171. # result_frame = yolov5_detection(frame)

172.

173. result_frame = self.__improcessor.detect_objects(frame)

174. return result_frame

175.

176. def __detect_number_plate(self, frame):

177. result_frame = self.__improcessor.detect_numberplate(frame)

178. return result_frame

179.

180. def run(self):

181. self.__root.mainloop()

182.

image_processor.py

The below code processes the image processing logic for the images. This
code relies on the individual model processing files and does not handle the
models by itself:

1. import cv2

2. import object_detector as detector

3. import numberplate_recognizor as numplaterecog

4.

5. class ImageProcessor:

6. def __init__(self, object_detection_model_file, labels_file,

7. textdetection_model_file, textrecognition_model_file,

8. confidence_threshold):

9. """

10. Initialize the ImageProcessor object.

11.

12. Args:

13. object_detection_model_file (str): File path to the object detec
tion model.

14. labels_file (str): File path to the labels file.

15. textdetection_model_file (str): File path to the text detection
model.

16. textrecognition_model_file (str): File path to the text recogniti
on model.

17. confidence_threshold (float): Confidence threshold for object
detection.

18.

19. Raises:

20. FileNotFoundError: If any of the provided file paths do not ex
ist.

21. """

22. # Initialize member objects, e.g., load models or configure settin
gs

23.

24. # Create an ObjectDetector instance for object detection

25. self.__object_detection_model = detector.ObjectDetector(

26. object_detection_model_file=object_detection_model_file,

27. class_labels_file=labels_file,

28. confidence_threshold=confidence_threshold

29.)

30.

31. # Create a NumberPlateRecognizor instance for
number plate recognition

32. self.__numberplate_detection_model = numplaterecog.NumberP
lateRecognizor(

33. textdetection_model_file, textrecognition_model_file

34.)

35.

36. def detect_objects(self, image):

37. """

38. Detect objects in an input image.

39.

40. Args:

41. image (numpy.ndarray): An OpenCV image object.

42.

43. Returns:

44. numpy.ndarray: An image with objects marked.

45.

46. Raises:

47. Exception: If an error occurs during object detection.

48. """

49. try:

50. # Perform object detection using self.__object_detection_mod
el

51. retimage = self.__object_detection_model.detect_objects(ima
ge)

52.

53. except Exception as e:

54. print(f"Error in detect_objects: {str(e)}")

55. retimage = image # Return the original
image in case of an error

56.

57. return retimage

58.

59. def detect_numberplate(self, image):

60. """

61. Detect number plates in an input image.

62.

63. Args:

64. image (numpy.ndarray): An OpenCV image object.

65.

66. Returns:

67. str: Recognized number plate text.

68.

69. Raises:

70. Exception: If an error occurs during number plate detection.

71. """

72. try:

73. # Perform number plate detection using self.__numberplate_d
etection_model

74. return self.__numberplate_detection_model.detect_numberpla
te(image)

75.

76. except Exception as e:

77. print(f"Error in detect_numberplate: {str(e)}")

78. return None # Return None in case of an error

numberplate_recognizor.py
This code deals with the text recognition model. The responsibilities of
working with different technical requirements of the model are abstracted
by this file:

1. import cv2

2. import numpy as np

3.

4. class NumberPlateRecognizor:

5.

6. # Constants for the model and image processing

7. __MODEL_SHAPE = (736, 736) # Model input shape (width, hei
ght)

8. __BACKEND_ID = cv2.dnn.DNN_BACKEND_OPENCV

9. __TARGET_ID = cv2.dnn.DNN_TARGET_CPU

10.

11. def __init__(self, textdetection_model_file, textrecognition_model
_file):

12. """

13. Initialize the NumberPlateRecognizor object.

14.

15. Args:

16. textdetection_model_file (str): File path to the text detection
model.

17. textrecognition_model_file (str): File path to the text recogniti
on model.

18.

19. Raises:

20. FileNotFoundError: If any of the provided file paths do
not exist.

21. """

22.

23. # Initialize member objects, e.g., load models or
configure settings

24.

25. # Initialize the text detection model

26. self.__detector_model = self.__initialize_textdetector_model(tex
tdetection_model_file)

27.

28. # Initialize CRNN for text recognition

29. self.__recognizer, self.__character_set, self.__character_size, sel
f.__vertex_coordinates = self.__initialize_english_textrecognition_m
odel(textrecognition_model_file)

30.

31. def __initialize_textdetector_model(self, model_path):

32. # Constants for text detection parameters

33. binary_threshold = 0.3

34. polygon_threshold = 0.5

35. max_candidates = 200

36. unclip_ratio = 2.0

37.

38. # Create a text detection model

39. model = cv2.dnn_TextDetectionModel_DB(cv2.dnn.readNet(mo
del_path))

40.

41. model.setPreferableBackend(self.__BACKEND_ID)

42. model.setPreferableTarget(self.__TARGET_ID)

43.

44. model.setBinaryThreshold(binary_threshold)

45. model.setPolygonThreshold(polygon_threshold)

46. model.setUnclipRatio(unclip_ratio)

47. model.setMaxCandidates(max_candidates)

48.

49. model.setInputParams(1.0/255.0, self.__MODEL_SHAPE, (122.
67891434, 116.66876762, 104.00698793))

50. return model

51.

52. def __initialize_english_textrecognition_model(self, model_path):

53. # Create a text recognition model

54. model = cv2.dnn.readNet(model_path)

55. model.setPreferableBackend(self.__BACKEND_ID)

56. model.setPreferableTarget(self.__TARGET_ID)

57.

58. # Define character set and size

59. character_set = '0123456789abcdefghijklmnopqrstuvwxyz'

60. character_size = (100, 32) # This must not be changed and must
be in sync with next line

61. vertex_coordinates = np.array([

62. [0, 31],

63. [0, 0],

64. [99, 0],

65. [99, 31]

66.],

67. dtype=np.float32)

68.

69. return model, character_set, character_size, vertex_coordinates

70.

71. def __recognize_text(self, image, boxshape):

72. # Preprocess the image

73. vertices = boxshape.reshape((4, 2)).astype(np.float32)

74. rotationMatrix = cv2.getPerspectiveTransform(vertices, self.__v
ertex_coordinates)

75. cropped_image = cv2.warpPerspective(image, rotationMatrix, se
lf.__character_size)

76. cropped_image = cv2.cvtColor(cropped_image, cv2.COLOR_B
GR2GRAY)

77. text_blob = cv2.dnn.blobFromImage(cropped_image, size=self._
_character_size, mean=127.5, scalefactor=1 / 127.5)

78.

79. # Forward pass

80. self.__recognizer.setInput(text_blob)

81. output_blob = self.__recognizer.forward()

82.

83. # Postprocess the recognized text

84. text = ''

85. for i in range(output_blob.shape[0]):

86. c = np.argmax(output_blob[i][0])

87. if c != 0:

88. text += self.__character_set[c - 1]

89. else:

90. text += '-'

91.

92. # Return processed text

93. char_list = []

94. for i in range(len(text)):

95. if text[i] != '-' and (not (i > 0 and text[i] == text[i - 1])):

96. char_list.append(text[i])

97.

98. return ''.join(char_list)

99.

100. def __visualize(self, image, boxes, texts):

101. # Visualize the recognized text on the image

102. color = (255, 255, 255)

103. isClosed = True

104. thickness = 2

105. pts = np.array(boxes[0])

106. output = cv2.polylines(image, pts, isClosed, color, thickness)

107. for box, text in zip(boxes[0], texts):

108. cv2.putText(output, text, (box[1].astype(np.int32)), cv2.FONT
_HERSHEY_SIMPLEX, 0.5, (255, 255, 255))

109. return output

110.

111. def detect_numberplate(self, original_image):

112. """

113. Detect number plates in an input image.

114.

115. Args:

116. original_image (numpy.ndarray): An OpenCV image object.

117.

118. Returns:

119. numpy.ndarray: An image with number plates marked.

120.

121. Raises:

122. ValueError: If the provided image is not a valid numpy.ndarra
y.

123. """

124. try:

125. # Ensure the image is a valid numpy.ndarray

126. if not isinstance(original_image, np.ndarray):

127. raise ValueError("Input image is not a
valid numpy.ndarray.")

128.

129. # Get the original image dimensions

130. original_h, original_w, _ = original_image.shape

131. scaleHeight = original_h / self.__MODEL_SHAPE[1]

132. scaleWidth = original_w / self.__MODEL_SHAPE[0]

133.

134. # Resize the image to the model's input shape

135. image = cv2.resize(original_image, self.__MODEL_SHAPE)

136.

137. # Detect the locations of text in the resized image

138. results = self.__detector_model.detect(image)

139.

140. # Recognize text in the detected locations

141. texts = []

142. for box, score in zip(results[0], results[1]):

143. text = self.__recognize_text(image, box.reshape(8))

144. texts.append(text)

145.

146. # Scale the results bounding box back to the
original image dimensions

147. for i in range(len(results[0])):

148. for j in range(4):

149. box = results[0][i][j]

150. results[0][i][j][0] = box[0] * scaleWidth

151. results[0][i][j][1] = box[1] * scaleHeight

152.

153. # Draw results on the original input image

154. original_image = self.__visualize(original_image, results, text
s)

155. return original_image

156.

157. except Exception as e:

158. print(f"Error in detect_numberplate: {str(e)}")

object_detector.py
This code deals with the object detection model. The responsibilities of
working with different technical requirements of the model are abstracted
by this class:

1. import cv2

2. import time

3. import numpy as np

4.

5. class ObjectDetector:

6. def __init__(self, object_detection_model_file, class_labels_file, co
nfidence_threshold):

7. """

8. Initialize the ObjectDetector object.

9.

10. Args:

11. object_detection_model_file (str): File path to the object detec
tion model.

12. class_labels_file (str): File path to the class labels file.

13. confidence_threshold (float): Confidence threshold for object
detection.

14.

15. Raises:

16. FileNotFoundError: If the provided file paths do not exist.

17. """

18. # Check if the provided files exist

19. if not all(map(lambda f: cv2.os.path.exists(f), [object_detection_
model_file, class_labels_file])):

20. raise FileNotFoundError("One or more provided file paths do
not exist for object detection model.")

21.

22. # Initialize member objects. This should happen once per progra
m execution to avoid repeated disk reads

23. self.__model = cv2.dnn.readNet(object_detection_model_file)

24. self.__classes = self.__load_labels(class_labels_file)

25. self.__confidence_threshold = confidence_threshold

26.

27. # Get all the layer names of the model

28. self.__layer_names = self.__model.getLayerNames()

29. # Filter and choose only the output layers

30. self.__output_layers = [self.__layer_names[i - 1] for i in self.__
model.getUnconnectedOutLayers()]

31.

32. def __load_labels(self, labels_file):

33. try:

34. # Check if the labels file exists

35. if not cv2.os.path.exists(labels_file):

36. raise FileNotFoundError(f"Labels file '{labels_file}' does n
ot exist.")

37.

38. # Read the COCO class names

39. with open(labels_file, 'r') as file:

40. lines = file.readlines()

41. classes = [line.strip() for line in lines]

42.

43. return classes

44.

45. except Exception as e:

46. print(f"Error in load_labels: {str(e)}")

47.

48. def __process_detection(self, image, yolo_shape, detection):

49. height, width, channels = image.shape

50. x_scaling = width / yolo_shape[0]

51. y_scaling = height / yolo_shape[1]

52.

53. center_x = detection[0]

54. center_y = detection[1]

55. object_width = detection[2]

56. object_height = detection[3]

57.

58. # Rectangle coordinates

59. topleft_x = int(x_scaling * (center_x - object_width / 2))

60. topleft_y = int(y_scaling * (center_y - object_height / 2))

61.

62. object_width = int(x_scaling * object_width)

63. object_height = int(y_scaling * object_height)

64.

65. return (topleft_x, topleft_y, object_width, object_height)

66.

67. def detect_objects(self, original_image):

68. """

69. Detect objects in an input image.

70.

71. Args:

72. original_image (numpy.ndarray): An OpenCV image object.

73.

74. Returns:

75. numpy.ndarray: An image with objects marked.

76.

77. Raises:

78. ValueError: If the provided image is not a valid numpy.ndarra
y.

79. """

80. scaling_factor = 1 / 255

81. nms_threshold = 0.1

82. yolo_shape = (640, 640)

83.

84. try:

85. # Ensure the image is a valid numpy.ndarray

86. if not isinstance(original_image, np.ndarray):

87. raise ValueError("Input image is not a valid numpy.ndarray.
")

88.

89. image = np.copy(original_image)

90.

91. # Perform object detection

92. blob = cv2.dnn.blobFromImage(image, scaling_factor, yolo_s
hape, (0, 0, 0), 1, crop=False)

93.

94. # Detecting objects

95. self.__model.setInput(blob)

96. results = self.__model.forward(self.__output_layers)

97.

98. # Initialize lists to store object information

99. object_classes = []

100. object_confidences = []

101. object_coordinates = []

102.

103. number_of_detections = results[0].shape[1]

104. for inx in range(number_of_detections):

105. one_detection = results[0][0][inx]

106.

107. # Each detection is a 1D array with the
following format:

108. # [x, y, width, height, confidence_score_for_class_0, confid
ence_score_for_class_1, ...]

109. # We extract the class with the highest
confidence score.

110. confidence_scores_for_classes = one_detection[5:]

111. classid_with_highest_confidence = np.argmax(confidence_
scores_for_classes)

112. class_confidence = confidence_scores_for_classes[classid_
with_highest_confidence]

113.

114. if class_confidence > self.__confidence_threshold:

115. object_location = self.__process_detection(image, yolo_s
hape, one_detection)

116. object_coordinates.append(object_location)

117. object_confidences.append(float(class_confidence))

118. object_classes.append(self.__classes[classid_with_highes
t_confidence])

119.

120. # Apply Non-Maximum Suppression (NMS) to
remove overlapping bounding boxes

121. indexes = cv2.dnn.NMSBoxes(object_coordinates, object_con
fidences, self.__confidence_threshold, nms_threshold)

122.

123. # Prepare the final list of objects and their
coordinates

124. objects_and_locations = []

125. for inx in indexes:

126. class_label = object_classes[inx]

127. (x, y, width, height) = object_coordinates[inx]

128. top_left_coordinate = (x, y)

129. bottom_right_coordinate = (x + width, y + height)

130.

131. one_object = {}

132. one_object["class"] = class_label

133. one_object["top_left"] = top_left_coordinate

134. one_object["bottom_right"] = bottom_right_coordinate

135. one_object["confidence"] = object_confidences[inx]

136. objects_and_locations.append(one_object)

137.

138. # Draw bounding boxes and class
labels on the original image

139. for one_object in objects_and_locations:

140. cv2.rectangle(original_image, one_object["top_left"], one_
object["bottom_right"], (255, 255, 255), 3)

141. cv2.putText(original_image, one_object["class"], one_objec
t["top_left"], cv2.FONT_HERSHEY_SIMPLEX, 1,

142. (255, 255, 255), 3)

143.

144. result_image = original_image

145.

146. except Exception as e:

147. print(f"Error in detect_objects: {str(e)}")

148. result_image = None

149.

150. return result_image

Running the code
This code can be run by using the below command:

python main_app.py

This will show the window as shown in Figure 11.1:

Figure 11.1: UI of the demo application

Application design
This application is created using object-oriented approach in Python. The
classes in this application and their purpose are explained in the below
table.

File Class Purpose

numberplate_recognizor.p
y

NumberPlate Recognizor This class loads the
models for detecting
and recognizing tex
t. This class is the sa
me code as shown i
n Chapter 9. The co
de in Chapter 9 is re
factored to an object
-oriented design.
This class is implem
ented specifically fo
r the models discuss
ed in Chapter 11. T
he paths of the mod
el files are accepted
as input arguments.

object_detector.py ObjectDetector This class loads the
models for objects u
sing YOLOv5. This
class is the same co
de as shown in Cha
pter 8. The code in
Chapter 8 is refacto
red to an object-orie
nted design.
This class is implem
ented specifically fo
r the YOLOv5 ONN
X model discussed i

n Chapter 8. The pa
ths of the model file
and class labels file
are accepted as inpu
t arguments.

image_processor.py ImageProcessor This class encapsula
tes the NumberPlat
eRecognizor and O
bjectDetector objec
ts and initializes the
m. Any additional b
usiness logic proces
sing can be included
here. This class is u
nconcerned with the
complexities of proc
essing the individua
l models. This helps
in isolating business
logic from the mode
l specific complexiti
es. This simplifies f
uture enhancements
for the application.

video_app_ui.py VideoAppUI This is the main the
user interface class.
It creates and mana
ges the different UI
widgets and user int
eractions.

main_app.py - Main entry point to
the application.

Notes about codes
Please note the below points about the code provided in this chapter.

Clicking the Start Video button shall start camera feed processing
and shows the feed in a separate window.

Stop Video button can be clicked to stop the feed.

Checking the Process Video checkbox shall enable Detect Objects
and Detect Numberplate check boxes.

Detect Objects shall make use of the YOLOv5 object detection
model. Detect Numberplate shall use the text detection and
recognition models. These two check boxes can be individually
selected or can be combined.

Application occasionally freezes upon clicking Stop Video button.
This is because of the sub-optimal thread synchronization code in the
UI. This was a deliberate choice to keep the code simple and
understandable for early learners.

Conclusion
In this chapter, we embarked on a journey into the world of computer vision
by building an end-to-end application that showcases the power and
versatility of this field. We explored the intricacies of image and video
processing using the OpenCV library, and we integrated deep learning
models to detect objects and recognize text within these visual data streams.

Our exploration began with the initialization of the fundamental building
blocks of our application. Through the Tkinter library, we created an
intuitive interface that allows users to interact with the application
seamlessly. We used the YOLOv5 model for detecting objects within the
camera feed. We extended our application's capabilities using CRNN for
text detection and recognition. We showcased how computer vision can be
used for tasks such as license plate recognition or text extraction from
images.

Throughout our journey, we emphasized the importance of clean code and
best practices in software development. Our application adheres to these
principles, ensuring readability, and maintainability. By combining the
power of GUIs, deep learning, and real-time video processing, we have
opened the door to countless possibilities in areas such as surveillance,
image analysis, and automation. As you continue your exploration of

computer vision, remember that this chapter is just the beginning of your
exciting journey into the world of visual perception and intelligence.

Exercises
1. Try using different models in the code instead of the one provided

for you. For example, try using YOLOv7 instead of v5.

2. Try using other use cases and models. For example, use ResNet
model for image classification and classify each frame.

3. If you have an NVIDIA GPU on your machine, try modifying the
compute flags in the code and make the inference run on the GPU.
Observe the performance difference between running on CPU versus
GPU.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech
happenings around the world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

OceanofPDF.com

https://discord.bpbonline.com/
https://oceanofpdf.com/

Index

Symbols
3D convolutional neural networks (3D CNNs)

A
activation function

Sigmoid function

step function

activation map
Adaptive Boosting (AdaBoost)
adaptive thresholding
algorithm families

clustering

convolution

edge and corner detection

foreground and background detection

image pyramids

image transformations

morphological operations

region growing

superpixels

template matching

thresholding

watershed algorithm

Anaconda

installing, on Ubuntu Linux

installing, on Windows

setting up

application design
Audio Video Interleave (AVI)

B
Bitmap (BMP)
black-and-white images
blobFromImage()

parameters

C
Canny edge detection
character recognition
clustering algorithms
CMYK color space

black ink

color gamut

color separation

conversion from RGB to CMYK

subtractive color mixing

CNN, for object detection

activation functions

anchor boxes

architecture

backpropagation and optimization

convolutional blocks

convolutional layers

fully connected (FC) layers

localization and classification heads

loss functions

pooling layers

post-processing

CNNs, for classification

activation function

convolutional layers

fully connected layers

input layer

loss function

output layers

pooling layers

code

downloading

fetching

image_processor.py

main_app.py

notes

numberplate_recognizor.py

object_detector.py

running

video_app_ui.py

color spaces

additive colors

CIE Lab* (LAB)

CMYK color space

grayscale

Hue, saturation, lightness (HSL)

Hue, saturation, value (HSV)

pixels and color spaces

primary colors

RGB color space

subtractive colors

Computed Tomography (CT)
computer-generated imagery (CGI)
computer imaging

history

information, retrieving from images

computer vision

additional topics

image classification

instance segmentation

object detection

object localization

optical character recognition (OCR)

pose estimation

semantic segmentation

solutions, for challenges

video analysis

convolution
convolutional kernels
convolutional neural networks (CNNs)

activation function

fully connected layers

pooling layers

versus, fully connected networks

corner detection

D
deep learning

code samples

history

inference process

inference techniques

training process

training techniques

deep learning frameworks

Keras

PyTorch

TensorFlow

deep learning networks

detect_coco80objects_using_opencvdnn() function
digital image processing

filtering

image compression

image enhancement

image restoration

pixel manipulation

transformations

dilation
DNN FaceRecognizer module

E
edge and corner detection
edge detection
erosion

F
face detection

Haar cascades

history

overview

versus face recognition

face recognition

landmarks, using

face recognizer module
FaceRecognizer module
FaceRecognizerSF class
facial landmark

faster region convolutional neural network (R-CNN)

capabilities

implementing

feature pyramid network (FPN)
Features from Accelerated Segment Test (FAST) corner detector
Flash Video (FLV)
foreground and background detection
fully convolutional networks (FCN)

G
Gated Recurrent Unit (GRU)
Generative AI (Gen AI)
Git

installing, on Ubuntu

installing, on Windows

GitHub
Global Average Pooling (GAP)
global thresholding
GrabCut

implementation

graphical user interfaces (GUIs)
Graphics Interchange Format (GIF)
grayscale images

key points

H
Haar cascades algorithm

cascade of classifiers

final decision

stage-wise classification

Haar-like features
High-Definition (HD) and Ultra-High-Definition (UHD) video content
Histogram of Oriented Gradients (HOG)

I
image classification
image filetypes

Bitmap (BMP)

GIF

JPEG

PNG

RAW formats

Tagged Image File Format (TIFF)

image processing

complexity

flexibility

manipulation

representations

reproducibility

image processing code samples

CPP code

Python code

videos and frames

image processing library (IPL)
image programming

history

image pyramid
image segmentation

region-based segmentation

thresholding

image transformations
Inception-v3

architecture

auxiliary classifiers

code implementation, with Keras

global average pooling

inception modules

initial convolution and pooling layers

input layer

OpenCV DNN module implementation

output layer

Inference Engine (IE)
inference, for computer vision

cloud

edge computing

local inferencing

inference process, DL

forward pass

output generation

techniques

integral image

J

Joint Photographic Experts Group (JPEG)

K
Keras
k-nearest neighbors (k-NNs)

L
Labeled Faces in the Wild (LFW) dataset

FaceRecognizerSF class

faces, comparing

landmarks

using, in face recognition

Laplacian of Gaussian (LoG) operator
libraries

installing

local binary patterns (LBP)
local inferencing

local CPUs

local GPUs

Long Short-Term Memory (LSTM)

M
Magnetic Resonance Imaging (MRI)
Massachusetts Institute of Technology (MIT)
Matplotlib
Matroska Video (MKV)
MobileNetV2

architecture

Keras implementation

OpenCV DNN implementation

model weights

fetching

morphological operations

dilation operation

erosion operation

images, closing and opening

MPEG-4 (MP4)

N
neural networks

activation function

bias

optimization function

weights

NMSBoxes() API

overview

Non-Maximum Suppression (NMS)
NumPy

O
object localization
OpenCV DNN module

capabilities

classes

considerations

history

limitations

supported layers

unsupported layers and operations

OpenCV Model Zoo
Open-Source Computer Vision Library (OpenCV)

features

Optical Character Recognition (OCR)
optimization function

limitations

P
panoptic segmentation
perceptron
pixels
pixels and color spaces

examples

pixels and image representation
Portable Network Graphics (PNG)
process_detection() function
programming, with color spaces

grayscale

RGB image

Python environment

setting up

PyTorch

Q
QuickShift
QuickTime Movie (MOV)

R
Rectified Linear Unit (ReLU)
recurrent neural networks (RNNs)
region-based convolutional neural networks (R-CNNs)
region-based segmentation
region growing algorithm
Region Proposal Network
region proposal networks (RPNs)
Residual Network (ResNet)

advantages

Keras implementation

OpenCV DNN module implementation

RGB color space

additive color mixing

color depth

color mixing

gamut

Robot Operating System (ROS)
RoI align
RoI pooling

S
SciPy
semantic segmentation
shallow learning networks
Sigmoid function
signal processing algorithms

convolution

edge detection

Fast Fourier Transform

fourier transform

histogram equalization

hough transform

morphological operations

wavelet transform

Simple Linear Iterative Clustering (SLIC)
Single Shot Multibox Detector (SSD)

architecture

base convolutional layers

convolutional predictors

default box

hard negative mining

loss functions

multi-scale feature maps

multi-scale predictions

Non-Maximum Suppression

object detection, implementing with

single-shot multibox detectors (SSD)
solutions, for computer vision challenges

classical solutions

modern solutions

Sorenson Spark
steganography
step function
stochastic gradient descent (SGD)

superpixels
Support Vector Machine (SVM)

T
Tagged Image File Format (TIFF)
template matching algorithms
TensorFlow
text detection
text recognition
thresholding
thresholding mechanism
training process, DL

backward pass

forward pass

loss calculation

parameter update

repetition or iteration

U
Ubuntu

Git, installing

V
v5 model ONNX file

obtaining

video file formats

Audio Video Interleave (AVI)

Flash Video (FLV)

Matroska Video (MKV)

MPEG-4 (MP4)

QuickTime Movie (MOV)

Windows Media Video (WMV)

video files and images
vision interface library (VIL)
VP6 codec

W
watershed algorithm
Windows

Git, installing

Windows Media Video (WMV)

Y
YOLOv3

anchors and predictions

architecture overview

architecture variants

Darknet-53 backbone

detection at different scales

detection head

for code implementation

input processing

multi-scale detection

Non-Maximum Suppression

output

training

versus YOLOv5

YOLOv5

anchor boxes

application requirements

backbone

data augmentation

detection head

efficiency and portability

feature pyramid

inference

loss function

model variants

multi-scale training

neck

YOLO v6

working with

YOLO v7

working with

YOLO v8

working with

You Only Look Once (YOLO)
YuNet

features

OceanofPDF.com

https://oceanofpdf.com/

	Cover Page
	Title Page
	Copyright Page
	Dedication
	About the Author
	About the Reviewer
	Acknowledgement
	Preface
	Table of Contents
	1. Introduction to Computer Vision
	Introduction
	Structure
	Objectives
	History of computer imaging
	Retrieving information from images
	Image processing
	Representation
	Manipulation
	Flexibility
	Reproducibility
	Digital image processing
	Conclusion
	Exercises

	2. Basics of Imaging
	Introduction
	Structure
	Objectives
	Pixels and image representation
	Pixels

	Color spaces
	Primary colors
	Additive colors
	Subtractive colors
	Grayscale
	Other color spaces
	Pixels and color spaces
	Examples

	Image filetypes
	Video files
	Images and videos

	Programming for image data
	A brief history of computer image programming

	OpenCV: History and overview
	Image processing code samples
	Opening, viewing and closing image files
	CPP code
	Python code
	Videos and frames

	Programming with color spaces
	Grayscale
	RGB image

	Conclusion
	Exercises

	3. Challenges in Computer Vision
	Introduction
	Structure
	Objectives
	Topics in computer vision
	Complexity in image processing
	Image classification
	Object localization
	Image segmentation
	Character recognition
	Conclusion
	Exercises
	Key terms

	4. Classical Solutions
	Introduction
	Structure
	Objectives
	Solutions for challenges in computer vision
	Classical solutions
	Modern solutions

	Algorithm families
	Morphological operations
	Erosion and dilation of images
	Closing and opening images

	Thresholding
	Detecting edges and corners
	Image transformations
	Region growing
	Clustering
	Template matching
	Watershed algorithm
	Foreground and background detection
	Superpixels
	Image pyramids
	Convolution

	Conclusion
	Exercises
	Key terms

	5. Deep Learning and CNNs
	Introduction
	Structure
	Objectives

	History of deep learning
	Perceptron
	Shallow learning networks
	Deep learning networks
	Weights, biases, and activation functions
	Weight
	Bias
	Activation function
	Optimization function

	Convolutional neural networks
	CNNs versus fully connected networks

	Deep learning process
	Training
	Techniques in training
	Inference process
	Techniques/tricks in inference

	Conclusion
	Key terms
	Exercises

	6. OpenCV DNN Module
	Introduction
	Structure
	Objectives
	Deep learning frameworks
	TensorFlow
	PyTorch
	Keras

	Inference for computer vision
	Local inferencing
	Local CPUs
	Local GPUs

	Cloud
	Edge computing

	OpenCV DNN module
	History
	Features and limitations
	Capabilities
	Limitations
	Considerations

	Supported layers
	Unsupported layers and operations

	Important classes
	Conclusion
	Exercises

	7. Modern Solutions for Image Classification
	Introduction
	Structure
	Objectives
	CNNS for classification
	Inception-v3
	Keras
	OpenCV DNN module

	ResNet
	Keras implementation
	OpenCV DNN implementation

	MobileNetV2
	Keras implementation
	OpenCV DNN implementation

	Comparison of models
	Parameters for blobFromImage()
	Conclusion
	Exercises

	8. Modern Solutions for Object Detection
	Introduction
	Structure
	Convolutional neural networks architecture for object detection
	Faster region convolutional neural network
	Single shot multibox detector
	You only look once
	YOLOv3

	Overview of NMSBoxes() API
	YOLOv5
	Differences between YOLOv3 and v5

	Obtaining v5 model ONNX file
	Working with v6, v7 and v8
	Conclusion
	Exercises

	9. Faces and Text
	Introduction
	Structure
	Objectives
	Face detection
	Haar cascades
	Deep learning approaches: YuNet

	Face recognition
	Face detection versus recognition
	Face recognition using landmarks
	Face recognizer module
	Labeled Faces in the Wild dataset
	FaceRecognizerSF class
	Comparing faces

	Text recognition
	Text detection
	Text recognition

	OpenCV Model Zoo
	Conclusion
	Exercises
	Key terms

	10. Running the Code
	Introduction
	Structure
	Objectives
	Sequence of steps
	Setting up Anaconda
	Installing Anaconda on Windows
	Installing Anaconda on Ubuntu Linux

	Installing Git
	Installing Git on Windows
	Installing Git on Ubuntu

	Setting up Python environment
	Fetching the code
	Downloading the code
	Fetch the weights

	Installing the libraries
	Running the code
	Conclusion
	Exercises

	11. End-to-end Demo
	Introduction
	Structure
	Objectives
	Code
	main_app.py
	video_app_ui.py
	image_processor.py
	numberplate_recognizor.py
	object_detector.py

	Running the code
	Application design
	Notes about codes
	Conclusion
	Exercises

	Index

