

Programming in C#: Exam
70-483 (MCSD) Guide

Learn basic to advanced concepts of C#, including C# 8, to
pass Microsoft MCSD 70-483 exam

Simaranjit Singh Bhalla
SrinivasMadhav Gorthi

BIRMINGHAM - MUMBAI

Programming in C#: Exam 70-483 (MCSD)
Guide
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Pavan Ramchandani
Acquisition Editor: Shriram Shekhar
Content Development Editor: Ruvika Rao
Senior Editor: Afshaan Khan
Technical Editor: Ketan Kamble
Copy Editor: Safis Editing
Project Coordinator: Prajakta Naik
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Production Designer: Deepika Naik

First published: October 2019

Production reference: 1311019

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78953-657-7

www.packt.com

http://www.packt.com

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the authors
Simaranjit Singh Bhalla is currently working as a technical architect manager for KPMG.
He previously worked as a solutions architect with SMS Management and Technology in
Sydney, Australia. He also worked with Microsoft Global Services for a period of three and
a half years.

He has around seven years of experience in C#. He has extensive experience in the
development of the Microsoft technology stack. He has performed multiple successful
engagements in C#, .NET, Azure, JavaScript, and CRM. He has completed certifications in
.NET 4.0 Framework, .NET 4.5 MVC, programming in C#, Windows Azure and Web
Services, and others.

SrinivasMadhav Gorthi is a multi-skilled senior consultant with over nine years'
experience in Microsoft Dynamics CRM implementations with the expertise to architect,
design, and implement end-to-end solutions and business outcomes. Madhav has more
than 17 years' experience in Microsoft technologies. He is currently working as a Solutions
Architect in Sydney, Australia. Madhav has worked in Microsoft gold partner companies,
including Velrada and Accenture. He has also delivered many end-to-end Microsoft
applications using C#, ASP.NET MVC, Azure, and JavaScript.

About the reviewers
Aidan Temple is an experienced software engineer with a history of working in the gaming
industry. He holds both a master's of professional practice in games development from
Abertay University, and a Bachelor of Science degree in games software development from
Glasgow Caledonian University. He has over 8 years' experience working with C# and C++.

Jasvinder Singh completed his Bachelor of Technology in IT from IIIT-Allahabad in 2008.
His home town is Unnao, Uttar Pradesh, and he is currently based in Bangalore, India. He
has around 11 years' IT experience in total and is currently working with Flipkart. He
began his career by joining Microsoft as a software development engineer and has an
abundance of experience of working in the product development domain industry.

His expertise lies in problem solving using algorithms and in AI. Apart from playing with
his 3-year-old son, Avraj, he likes to travel and watches sci-fi films and documentaries.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Learning the Basics of C# 9
Technical requirements 10
Comparing C# with C and C++ 11

C# versus C 11
C# versus C++ 12

.NET Framework 14
Languages/applications 16
The class library 17
Common Language Runtime (CLR) 17

.NET Framework release versions 18
Visual Studio for C# 19
Basic structure of C# 20
Creating a basic program in C# 22
Summary 27
Questions 28
Answers 28

Chapter 2: Understanding Classes, Structures, and Interfaces 29
Technical requirements 30
Access modifiers 30
Data types in C# 31

Value type variables 32
Simple types 32
Enum types 32
Struct types 34

Reference type variables 34
Structs versus classes 36
Interfaces and inheritance 40

Inheritance 41
Interfaces in C# 47

Summary 51
Questions 52
Answers 53

Chapter 3: Understanding Object-Oriented Programming 54
Technical requirements 55
Understanding object-oriented programming 55
Understanding encapsulation 57

Table of Contents

[ii]

Code example 58
Understanding abstraction 61
Understanding inheritance 63

Method overriding 63
Abstract classes 66
Abstract versus virtual methods 69
Sealed classes 70

Understanding polymorphism 71
Static/compile-time polymorphism 72
Runtime polymorphism 74

Summary 76
Questions 77
Answers 78

Chapter 4: Implementing Program Flow 79
Technical requirements 79
Understanding operators 80

Unary operators 80
Relational operators 82
Equality operators 83
Shift operators 83
Logical, conditional, and null operators 85

Understanding conditional/selection statements 88
if...else 88
switch..case..default 91
break 92
goto 92
continue 93

Iteration statements 93
do...while 94
for 94

Initializer section 95
Condition section 95
Iteration section 95
Examples of rare usage for statements 96

foreach...in 96
while 97

Summary 97
Questions 98
Answers 99
Further reading 99

Chapter 5: Creating and Implementing Events and Callbacks 100
Technical requirements 100
Understanding delegates 101

Table of Contents

[iii]

Instantiating a delegate 102
Initiating delegates using NamedMethod 102
Initiating a delegate using anonymous functions 104

Lambda expressions 104
Anonymous methods 106

Variance in delegates 108
Built-in delegates 111
Multicast delegates 111

Handling and raising events 112
Summary 116
Questions 117
Answers 118
Further reading 118

Chapter 6: Managing and Implementing Multithreading 119
Technical requirements 119
Understanding threads and the threading process 120

Managing threads 121
Thread properties 123
Parameterized threads 124
Foreground and background threads 125
Thread states 127
Destroying threads 128
Thread pools 128
Thread storage 130

Synchronizing data in multithreading 134
Multithreading 139

Parallel programming 139
TPL 140

Data parallelism 141
Using tasks 141
Using the Parallel class 145

PLINQ 147
Asynchronous programming with async and await 153

Summary 154
Questions 155
Answers 155
Further reading 156

Chapter 7: Implementing Exception Handling 157
Technical requirements 157
Exceptions and handling exceptions in code 158

Using exceptions 158
Exception handling 163

Compiler-generated exceptions 167

Table of Contents

[iv]

Custom exceptions 168
Summary 169
Questions 169
Answers 169
Further reading 170

Chapter 8: Creating and Using Types in C# 171
Technical requirements 172
Creating types 172

Types in C# 172
Unsafe code and the use of pointer types 173

Choosing the type of variable 176
Static variables 179

Static member variables 179
Static methods 181

Constructors 181
Named parameters 182
Optional parameters 183
Generics types 184

Consuming data types in C# 188
Boxing and unboxing 188
Type conversions in C# 189

Implicit conversion 190
Explicit conversion 191

Enforcing encapsulation 195
Manipulating strings 196

StringBuilder 197
StringReader and StringWriter 197
String searching 199

Overview of reflection 202
Summary 203
Questions 204
Answers 205

Chapter 9: Managing the Object Life Cycle 206
Technical requirements 207
Managed code versus unmanaged code 207
Garbage collection 208

Managed heap 210
Generations 211
The mark-compact algorithm 214
Calling garbage collection 215

Managing unmanaged resources 215
The finalization mechanism 217

The IDisposable interface 222

Table of Contents

[v]

The using block 226
Summary 228
Questions 229
Answers 230

Chapter 10: Find, Execute, and Create Types at Runtime Using
Reflection 231

Technical requirements 232
Attributes 232

Using attributes 232
Creating custom attributes 236
Retrieving metadata 238

Reflection 239
Invoking methods and using properties 240

Summary 242
Questions 243
Answers 243

Chapter 11: Validating Application Input 244
Technical requirements 245
The importance of validating input data 245
Data integrity 246
Parsing and converting 249
Regular expressions 254
JSON and XML 256
Summary 261
Questions 261
Answers 261

Chapter 12: Performing Symmetric and Asymmetric Encryption 262
Technical requirements 263
Cryptography 263
Symmetric encryption 265
Asymmetric encryption 268
Digital signatures 270
Hash values 273
Summary 275
Questions 275
Answers 276

Chapter 13: Managing Assemblies and Debugging Applications 277
Technical requirements 278
Assemblies 278

Assembly contents and manifest 279
Target .NET Framework 281

Table of Contents

[vi]

Signing assemblies 283
Versioning assemblies 286

Version number 287
Debugging the C# application 287
Tracing 297
Summary 300
Questions 300
Answers 301

Chapter 14: Performing I/O Operations 302
Technical requirements 302
File I/O operations 303

Working with System.IO helper classes 303
Drives and directories 304

Checking whether the directory exists 306
Creating a directory 307
Looping through the files 308

Working with files 308
Checking whether a file exists 309
Moving a file from one location to another 309
Copying a file from one location to another 310
Deleting a file 310

Stream object 312
FileStream 312

Exception handling 313
Reading data from a network 315

WebRequest and WebResponse 315
Asynchronous I/O operations 317

Async operations on file 318
Using the await statement for parallel asynchronous calls 320

Summary 320
Questions 321
Answers 321

Chapter 15: Using LINQ Queries 322
Technical requirements 323
Introducing LINQ 323

Queries 323
Understanding language features that make LINQ possible 325

Implicitly typed variables 325
Object initialization syntax 327
Lambda expressions 328
Extension methods 329
Anonymous types 330

Understanding LINQ query operators 331
Select and SelectMany 331

Table of Contents

[vii]

The join operator 333
The orderby operator 334
Average 335
GroupBy 335

Understanding LINQ behind the scenes 337
Using LINQ to XML 338

Querying XML 339
Creating XML 342
Updating XML 342

Summary 343
Questions 344
Answers 345

Chapter 16: Serialization, Deserialization, and Collections 346
Technical requirements 347
Serialization and deserialization 347

XmlSerializer 347
Binary serialization 353

Working with collections 359
Arrays 359
Lists 362
Dictionary 364
Queues and stacks 367

Choosing a collection 371
Summary 372
Questions 373
Answers 373

Chapter 17: Mock Test 1 374

Chapter 18: Mock Test 2 386

Chapter 19: Mock Test 3 396

Appendix A: Assessments 404
Chapter 17 – Mock Test 1 404
Chapter 18 – Mock Test 2 405
Chapter 19 – Mock Test 3 406

Other Books You May Enjoy 407

Index 410

Preface
The MCSD 70-483 exam is an entry-level Microsoft certification exam for C# developers that
is widely used to measure their expertise in the field of C# programming. This book is a
certification guide to prepare you for the skills that are evaluated in the certification exam
and also promotes building problem-solving acumen with C#. Every chapter in the book
has been designed as preparation material for the Microsoft MCSD 70-483 exam.

For those who don't have much experience of working in C#, we have added some chapters
at the start of the book that will provide basic knowledge about C# programming. This
knowledge will not only help you to pass the certification but will also help you to become
a better C# developer.

Who this book is for
The book is designed for both experienced developers and people new to C# who are
intending to undertake the 70-483 Programming in C# certification exam in the near future.
The book provides extensive knowledge of all the topics that are evaluated in the exam. To
drive better understanding, each chapter in the book is accompanied by code examples
along with assessment questions.

To make the path of learning C# easier for beginners, we have also tried to address the
basics of C# and .NET Framework in the first three chapters of the book. To get the most
value out of the book, you are expected to have a fair understanding of any programming
language; for example, C, C++, or C#.

What this book covers
Chapter 1, Learning the Basics of C#, focuses on the basics of the C# language. In this
chapter, you will learn about the underlying .NET Framework architecture and how all the
components, such as the garbage collector, common language runtime, base libraries, and
so on, interact with each other. We will analyze the similarities between C# and other
programming languages such as C++ and C. We will also look at features that make C#
different than C++ and C. Finally, using a very basic Hello World program, you will learn
about the different components of a C# program, such as classes, namespaces, assemblies,
and so on.

Preface

[2]

Chapter 2, Understanding Classes, Structures, and Interfaces, expands on the first chapter and
covers some more basics of a C# application. In this chapter, you will learn about the
different access modifiers available in a C# program, and also how they can be used to
achieve code structure and reduced complexity. We will also look at the different primitive
data types available in C#. While looking at the class and struct variables, we will see the
difference between a reference type variable and a data type variable. We will then look at
inheritance, which is an important aspect of C# programming. We will cover how
inheritance is implemented in C# and how it differs from the implementation of an
interface.

Chapter 3, Understanding Object-Oriented Programming, focuses on the four pillars of
Object-Oriented Programming (OOP). Using examples, you will learn how each of those
pillars – encapsulation, polymorphism, abstraction, and inheritance—is implemented.
While looking at inheritance, we will expand on the learning of Chapter 2, Understanding
Classes, Structures, and Interfaces, and look at some other critical aspects, such as method
overriding, virtual methods, and sealed and abstract classes. While looking at
polymorphism, we will learn how we can implement both compile/static and runtime
polymorphism in C# programs.

Chapter 4, Implementing Program Flow, focuses on how a developer can manage program
flow in C#. In other words, this chapter helps you to understand how to control the
program and make decisions using the statements available in C#. We will cover various
Boolean expressions such as if/else and switch, which control the flow of code based
upon conditions. This chapter also provides an overview of various operators, such as the
conditional operator and the equality operator (<, >, and ==), which govern the flow of
code. Apart from operators and decision-making statements, this chapter helps you gain
an understanding of iterating through collections (for loop, while loop, and so on) and
explicit jump statements.

Chapter 5, Creating and Implementing Events and Callbacks, focuses on events and callbacks
in C#, which are important and give more control over the program. You'll learn about the
publish/subscribe model using events and callbacks, and focus on delegates. Then, we will
move on to different ways of initiating delegates and lambda expressions. We will also
spend some time on a new operator called the lambda operator, which is used in Lambda
expressions.

Chapter 6, Managing and Implementing Multithreading, focuses on handling responsiveness
in long-running programs and how we can keep the user notified about their progress.
We'll also look at how we can use the multi-core processing power that comes with every
computer effectively. We will spend time looking at threads, thread properties, and how to
use tasks and perform multithreaded operations.

Preface

[3]

Chapter 7, Implementing Exception Handling, focuses on understanding how to structure
your program in a way that helps it to run in all scenarios; how we can handle unhandled
exceptions; how to use the try, catch, and finally keywords and clean up resources
once execution is completed. After reading this chapter, you will understand exceptions
and how to use them in your program. You'll also be able to create custom exceptions.

Chapter 8, Creating and Using Types in C#, focuses on the different types of variables
available in C#. In Chapter 2, Understanding Classes, Structures, and Interfaces, we introduced
users to the reference and data type variables available in C#. In this chapter, we will
expand on that knowledge and learn how both variable types are maintained in memory.
We will look at the managed heap memory structure, which is used for saving reference
type variables. We will also look at the use of variable types pointer types in C#. Using
pointers, we can implement memory-related operations that are otherwise considered
unsafe in C#. We will also look at some important features in C#, such as properties,
named arguments, and optional arguments, which are available in C# programming. We
will look at how we can convert value-type variables to objects using boxing and similarly
use unboxing to convert the object back to a value-type variable. We will then look at the
different operations that are possible on a string representation in C#. We will also look at
how we can use stringbuilder to optimize the performance of a C# program.

Chapter 9, Managing the Object Life Cycle, focuses on how the garbage collector manages the
allocation and release of memory in .NET Framework. In this chapter, you will learn the
difference between managed and unmanaged code in C#. We will look at mark-compact
algorithms, used by garbage collectors for the allocation and release of memory. We will
look at the possible ways we can manage the memory allocated to unmanaged code. We
will also look at how we can implement finalization in a C# application and the
performance implications of doing so. We will introduce the IDisposable interface and
understand its differences from a finalize block. We will also look at code examples, in
which we will combine both the IDisposable interface and a finalize block to achieve the
best possible memory management for a C# application. Finally, we will look at the use of
the using block in a C# application.

Chapter 10, Find, Execute, and Create Types at Runtime Using Reflection, focuses on
understanding how .NET Framework allows us to read/create metadata and how we can
use reflection to read metadata and process it during runtime. We will focus on using
attributes, creating custom attributes, and how we can retrieve attribute information at
runtime. We'll also cover how we can use reflection to create types, access properties, and
invoke methods.

Preface

[4]

Chapter 11, Validating Application Input, focuses on validating input from the different
kinds of users who'll access your application and how we can avoid the application
crashing based on user input. The purpose of this chapter is to understand the importance
of validating input data in your application, the different validation techniques available in
.NET Framework, and ways to validate JSON data and XML data.

Chapter 12, Performing Symmetric and Asymmetric Encryption, focuses on how to keep
information secure, what measures we can take while transmitting information over the
internet, and understanding cryptography to encrypt and decrypt plain text. After reading
this chapter, you will understand how to encrypt and decrypt text and be familiar with the
different algorithms available in .NET Framework to perform such exercises.

Chapter 13, Managing Assemblies and Debugging Applications, focuses on how to manage
.NET assemblies, debugging applications, and how to use tracing. This chapter covers
validation techniques we have already learned and exception handling for those scenarios,
as well as monitoring code blocks. We'll also look at Visual Studio features or tools for
debugging an application. After that, we'll look at the versioning of assemblies and how we
can have the same assembly side by side, as well as how we can distribute those assemblies
without impacting others.

Chapter 14, Performing I/O Operations, focuses on how I/O operations are performed in a C#
application. In this chapter, we will look at the different operations possible in C# to access
data in I/O files as well as operations coming from external web services. Using code
examples, you will see how we can use the System.IO helper class to read/write data from
a file. We will also look at the helper classes of File and FileInfo provided in C# for
performing I/O operations. We will then look at the WebRequest and WebResponse helper
classes, which help us to interact with data coming from external services/applications.
Finally, we will look at how we can execute these operations asynchronously in an
application.

Chapter 15, Using LINQ Queries, focuses on how LINQ queries are implemented in C#. In
this chapter, you will be introduced to the basics of a LINQ query, gaining an
understanding of the different components and how they are constructed in .NET
Framework. We will then look at the features in C# that help with the implementation of
LINQ queries. Some of those features are necessary while some of them help us to get the
best outcomes from LINQ queries. Using code examples, you will come to understand the
implementation of implicitly typed variables, object initialization syntax, Lambda
expressions, extension methods, and anonymous types. We will then look at the different
operations available in LINQ queries. Using code examples, you will learn about the
different scenarios in which you can use each of these operators. Finally, we will look at
how you can use LINQ queries to perform operations on an XML file.

Preface

[5]

Chapter 16, Serialization, Deserialization, and Collections, focuses on different serialization
and deserialization approaches, such as XML serialization, JSON serialization, and binary
serialization, available in .NET Framework. We will also look at how we can define data
contracts in web services so that data can be exchanged between different applications. We
will then look at different collection objects, such as arrays, lists, dictionary, queues, and
stacks, available in C# and understand how they can be used to store and consume data.

To get the most out of this book
To get the best possible outcome from this book, it's advisable for you to have the
following:

A basic understanding of software development
A basic understanding of any common programming language, such as C, C++,
or C#

For the entirety of this book, we will be going through different code examples in C#
and will be using Visual Studio 2017 Community Edition for the code examples. The
following hardware requirements are essential for Visual Studio:

Operating system:
Windows 10 or higher
Windows Server 2016: Standard and Datacenter
Windows 8.1
Windows Server 2012 R2: Essential, Standard, and Datacenter
Windows 7 SP1

Hardware requirements:
 Minimum 2 GB of RAM
1.8 GHZ or faster processor

Additional requirements:
Administrative rights of the system
.NET Framework 4.5 or higher

Visual Studio: All of the code examples in this book have been compiled on
Visual Studio Community Edition 2017 (you can also use a higher version of
Visual Studio). It's available for installation at https:/ /www. visualstudio. com/
downloads/ .

https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/

Preface

[6]

For better understanding, it's advisable that readers go through all the assessments at the
end of each chapter as well as the mock tests available at the end of the book.

It's also advisable for readers to go through the code examples available for each of the
chapters and do the self-practice after each chapter.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the Support tab.2.
Click on Code Downloads.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Programming- in- C- Sharp- Exam- 70- 483-MCSD- Guide. In case there's an
update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ /static. packt- cdn. com/downloads/
9781789536577_ColorImages. pdf.

http://www.packt.com
https://www.packtpub.com/support
http://www.packt.com
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781789536577_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789536577_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789536577_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789536577_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789536577_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789536577_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789536577_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789536577_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789536577_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789536577_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789536577_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789536577_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789536577_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789536577_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789536577_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789536577_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789536577_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789536577_ColorImages.pdf

Preface

[7]

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "By default, a method by the name of Main will also be added to the class."

A block of code is set as follows:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"To create a new project, click on File | New Project and select Console App (.NET
Framework) as the project type."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Preface

[8]

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and
you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

https://www.packtpub.com/support/errata
http://authors.packtpub.com/
http://www.packt.com/

1
Learning the Basics of C#

In simple terms, programming is the art of writing a set of commands that instruct a
computer to execute a particular task. In the early days, programming capabilities were
limited due to memory and speed restrictions. Due to this, programmers wrote crude and
simple tasks that did elementary jobs. With time and with more enhancements, people
started writing programs in procedural languages such as COBOL.

Although the languages did the work, the programs had some limitations. There was not
much scope for writing reusable components or design patterns that could be used in
different places in the application. Hence, the applications were difficult to maintain and
scalability was a challenge.

As a result, efforts were made to develop high-level programming languages that could
overcome all such challenges faced by procedural languages. With time, many different
programming languages were devised. C was developed between 1972 and 1973. At the
time, it was a low-level procedural language that depended upon the underlying platform,
such as Linux or Windows. C also did not fully utilize the concept of object-oriented
programming (which we will go through in Chapter 3, Understanding Object-Oriented
Programming).

C++ was introduced in 1998, and provided programmers with the ability to effectively use
the concepts of object-oriented programming while still retaining the machine-level
programming features provided by C. In this book, we will go through the different aspects
of programming in C#. While retaining the OOP capabilities of C++, C# allows us to write
programs independent of the underlying hardware implementation.

In this chapter, we will go over the basics of C#. We will review its underlying
fundamentals and dive deep into the .NET Framework architecture. We will learn how
common language runtime works to translate the application code to machine-level code.
We will learn how C# is both different and similar to other languages, such as C and C++.
We will then learn about the different components in a C# program, such as classes,
namespaces, and assemblies. And, as a common tradition for any new language, we will
look at the implementation of a Hello World program.

Learning the Basics of C# Chapter 1

[10]

This chapter consists of the following topics:

Comparing C# with C and C++
.NET Framework
.NET Framework release versions
Visual Studio for C#
Basic structure of C#
Creating a basic program in C#

Technical requirements
For a better understanding of the chapter, you require the following knowledge:

A basic understanding of software development
A basic understanding of common programming languages: C, C++ and C#

For the entirety of this book, we will be going through different code examples in C# and
will be using Visual Studio 2017 Community Edition for the code examples. The following
hardware requirements are essential for Visual Studio:

Operating system:
Windows 10 or higher
Windows Server 2016: Standard and Datacenter
Windows 8.1
Windows Server 2012 R2: Essential, Standard, and Datacenter
Windows 7 SP1

Hardware requirements:
Minimum 2 GB of RAM
1.8 GHz or faster processor

Additional requirements:
Administrative rights of the system
.NET Framework 4.5

Visual Studio: All code examples in this book have been compiled on Visual
Studio Community Edition 2017. It's available for installation at: https:/ /www.
visualstudio. com/ downloads/ .

https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/

Learning the Basics of C# Chapter 1

[11]

Sample code for this chapter can be found on GitHub at https:/ / github. com/
PacktPublishing/Programming- in- C- sharp- Exam- 70- 483-MCSD- Guide/ tree/ master/
Chapter01.

Comparing C# with C and C++
In this section, we will explore how C# compares against other programming
languages, such as C and C++. We will look at aspects that make C# similar, and also areas
in which it differs from these languages.

C# versus C
If you have done some previous development on C# and C , you will realize that they
follow similar code syntax, such as the use of semi-colons, and similar declarations of
methods; the two languages are very different from one another. Just like in C, we can
declare data variables with the same type, such as Char, and Integer. The following
features make C# different from C:

Feature C# C

Object-oriented
programming

Object-oriented programming is the main
essence of any high-level programming
language, and C# allows us to utilize the
capabilities of OOP using the four main pillars
of encapsulation, polymorphism, inheritance,
and abstraction. In Chapter 3, Understanding
Object-Oriented Programming, we will look at
this in detail.

C as a programming
language
 does not support
polymorphism,
encapsulation, and
inheritance.
It does not provide features
such as function
overloading, virtual
functions, and inheritance.

Exception
handling

Exception handling is the process of handling
runtime errors that occur during the execution
of the application. C# provides us with
exception handling features that help us handle
these scenarios in a better way. In Chapter 7,
Implementing Exception Handling, we will look at
this in detail.

C also does not provide any
exception handling features.

https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter01

Learning the Basics of C# Chapter 1

[12]

Type safety

Every variable declared in a program has a
type. In a typical type-safe language during the
program compilation stage itself, the compiler
will validate the values being assigned to
variables and raise a compile time error if an
incorrect type is assigned to it. C# is a type-safe
language. However, in Chapter 8, Creating and
Using of Types in C#, we will learn that it also
allows you to use pointers using a
keyword, UnSafe.

C language implements
type safety, albeit with
some exceptions. There
are certain in-built
functions such as
printf that do not
enforce that only
character strings are
passed to them.

Let's now look at how C# compares against another language, C++. After exploring the
comparison between C# and C++, we will also explore how the .NET Framework makes C#
a platform-independent language compared to C and C++.

C# versus C++
In most programming scenarios, C++ can be classified as an extension of C and can execute
all the code that was written in C. It provides all the features of object-oriented
programming while retaining the functionalities provided by C. There are several features
that are common between C# and C++. Just as in C#, we can implement object-oriented
programming, exception handling, and type safety in C++. However, there are also certain
things that make C# different to C++ and more similar to Java.

Before we look at the differences and similarities between C# and C++, we must understand
some key concepts pertaining to object-oriented programming.

The languages that implement object-oriented programming are classified in two
categories:

Fully object-oriented languages
Pure object-oriented languages

A language is classified as a fully object-oriented programming language if it implements at
least the four core pillars of Abstraction, Encapsulation, Polymorphism, and Inheritance.

On the other hand, a language can be defined as a pure object-oriented programming
language when, apart from being fully object-oriented programming, it only contains
classes and objects. This means that all methods, properties, and attributes declared must
be inside a class and also should not have any predefined data types, such as char and int.

Learning the Basics of C# Chapter 1

[13]

In the case of C#, we can have predefined data types. In Chapter 2, Understanding Classes,
Structures, and Interfaces, we will look into those predefined data types in detail. This makes
C# a fully object-oriented language and not a pure object-oriented language.

On the other hand, in the case of C++, we can define methods that are not part of any class.
This, too, makes it a fully object-oriented language.

Now, let's look at some of the similarities and differences between C# and C++:

Feature C# C++

Object-oriented
programming

As described previously, C# is a fully
object-oriented language.

Similar to C#, C++ is also a
fully object-oriented
language.

Memory
management

C# has got an inbuilt garbage collector
that manages the allocation and
deallocation of memory. In Chapter 9,
Managing the Object Life Cycle, we will
understand memory management in C#
in detail.

C++ does not have a built-in
garbage collector. Due to
this, developers are
responsible for handling the
allocation and deallocation
of memory.

Inheritance

C# does not support multiple inheritance.
In Chapter 2, Understanding Classes,
Structures, and Interfaces, we will learn
what it means; however in simple terms,
it means that a class can only inherit from
one class at a time.

Compared to C# , C++ allows
us to implement multi-level
inheritance.

Use of pointers

Although C# allows us to use pointers in
our code, we need to declare the code
with a snippet of UnSafe. We will look
into this in detail in Chapter 8, Creating
and Using of Types in C#.

C++ allows us to use pointers
anywhere without any
implicit declaration in the
code.

In the previous two sections, we saw how C# compares to both C and C++. However, there
is one important difference that we haven't yet explored. That feature is platform
independence and was one of the main reasons C# was introduced by Microsoft. When
working with C and C++, we need to compile the code in accordance with the underlying
platform features, such as the operating system.

Learning the Basics of C# Chapter 1

[14]

Suppose we write an application in C or C++ and compile it. During the compilation stage,
the compiler translates the code into a native language code that is only compatible with
the underlying platform. This basically implies that an application in C++, developed and
compiled on a Windows machine, will just be compatible with a Windows machine. If the
compiled bits are used on a different system, such as Linux, it will not work there.

This difference is caused due to the varying nature of compilers and their compatibility
with underlying operating systems, such as Linux and Windows. These are some of the
common compilers in Linux and Windows that are available for C and C++:

Linux: GCC, Failsafe C, and SubC
Windows: Microsoft Windows SDK, Turbo C++, and SubC

Before C# was developed, this platform dependence issue was a major disadvantage
compared to some of the other programming languages, such as Java. In Java, when an
application is compiled, it's not directly converted into machine code. Instead, it's converted
into an intermediate language known as ByteCode. The ByteCode is platform-independent
and can be deployed on different platforms.

When Microsoft introduced C#, they inculcated the same principle in the language. When
an application written in C# is compiled, instead of being converted to the native code
compatible with the machine, the application is first translated to an intermediate language
commonly known as IL code.

After the IL code is generated, the Common Language Runtime (CLR) comes into effect.
CLR is a runtime environment that sits in the memory of the underlying machine and
converts the IL code to the native code, which is specific to the machine. This process is
Just-In-Time (JIT) compilation. In the next section, we will look at the underlying platform
of the .NET Framework, which handles all this for a C# application.

.NET Framework

.NET Framework is a software development framework on which we can write a number
of languages such as C#, ASP.NET, C++, Python, Visual Basic, and F#.

Microsoft released the first version of .NET 1.0 in 2002. The current
version of .NET Framework is 4.8. The code written in this book will be
based on this version of .NET Framework 4.7.2.

Learning the Basics of C# Chapter 1

[15]

.NET Framework provides language interoperability across different programming
languages. Applications written in .NET Framework execute in an environment or a virtual
machine component known as CLR.

The following diagram illustrates the different components in .NET Framework:

In the previous diagram, note the following:

At the top of the hierarchy, we have applications or the program code that we
write in .NET. It could be as simple as a Hello World console application
program, which we will create in this chapter, or as complex as writing multi-
threaded applications.
The applications are based upon a set of classes or design templates, which
constitutes a class library.
The code written in these applications is then acted upon by CLR, which makes
use of the Just in Time (JIT) compiler to convert the application code into
machine code.
The machine code is specific to the underlying platform properties. So, for
different systems, such as Linux or Windows, it will be different.

Learning the Basics of C# Chapter 1

[16]

For further information on .NET Framework, please refer to the official
docs from Microsoft: https:/ /docs. microsoft. com/ en- us/dotnet/
framework/ get- started/ overview.

In the next section, we will the .NET Framework in detail learn how interact with each
other.

Languages/applications
Languages indicate the different types of applications that can be built in .NET Framework.
If you are new to .NET Framework, you may not be familiar with some of the applications
listed here:

ADO.NET: In an ADO.NET application, we write programs to access data from
sources such as SQL Server, OLE DB, and XML sources.
ASP.NET: In an ASP.NET application, we write programs to build web apps
such as websites and services using C#, HTML, CSS, and so on.
CORE: In .NET Core applications, we write programs that support cross-
platform functionality. The programs could be web apps, console applications, or
libraries.
Windows Forms: In Windows Forms applications, we write programs that
provide client-side applications for desktops, tablets, and mobile devices.
WPF: In WPF or Windows Presentation Foundation, we write programs that
provide user interfaces in Windows-based applications. It runs only on
Windows-supported platforms, such as Windows 10, Windows Server 2019, and
Windows Vista.
WCF: In WCF or Windows Communication Foundation, we write programs that
provide a set of APIs, or in simpler terms, services, to exchange data between
two distinct systems.
LINQ: In LINQ, we write programs that provide data querying capabilities on
.NET applications.
Parallel FX: In Parallel FX, we write programs that support parallel
programming. It involves writing programs that utilize the CPU's capabilities to
the fullest by executing several threads in parallel to complete a task.

https://docs.microsoft.com/en-us/dotnet/framework/get-started/overview
https://docs.microsoft.com/en-us/dotnet/framework/get-started/overview
https://docs.microsoft.com/en-us/dotnet/framework/get-started/overview
https://docs.microsoft.com/en-us/dotnet/framework/get-started/overview
https://docs.microsoft.com/en-us/dotnet/framework/get-started/overview
https://docs.microsoft.com/en-us/dotnet/framework/get-started/overview
https://docs.microsoft.com/en-us/dotnet/framework/get-started/overview
https://docs.microsoft.com/en-us/dotnet/framework/get-started/overview
https://docs.microsoft.com/en-us/dotnet/framework/get-started/overview
https://docs.microsoft.com/en-us/dotnet/framework/get-started/overview
https://docs.microsoft.com/en-us/dotnet/framework/get-started/overview
https://docs.microsoft.com/en-us/dotnet/framework/get-started/overview
https://docs.microsoft.com/en-us/dotnet/framework/get-started/overview
https://docs.microsoft.com/en-us/dotnet/framework/get-started/overview
https://docs.microsoft.com/en-us/dotnet/framework/get-started/overview
https://docs.microsoft.com/en-us/dotnet/framework/get-started/overview
https://docs.microsoft.com/en-us/dotnet/framework/get-started/overview
https://docs.microsoft.com/en-us/dotnet/framework/get-started/overview
https://docs.microsoft.com/en-us/dotnet/framework/get-started/overview
https://docs.microsoft.com/en-us/dotnet/framework/get-started/overview
https://docs.microsoft.com/en-us/dotnet/framework/get-started/overview
https://docs.microsoft.com/en-us/dotnet/framework/get-started/overview

Learning the Basics of C# Chapter 1

[17]

The class library
The class library in .NET Framework consists of a collection of interfaces, classes, and value
types on which the applications are built.

These collections are organized in different containers known as namespaces. They are a
set of standard class libraries that can be used for different purposes in an application. Here
are some of the namespaces:

Microsoft.Sharp: This contains a type that supports compilation and code
generation for C# source code, and the type that supports conversion between
Dynamic Language Runtime and C#.
Microsoft.Jscript: This contains classes that support compilation and code
generation using JavaScript.
Microsoft.VisualBasic: This contains classes that support compilation and
code generation for Visual Basic.
Microsoft.VisualC: This contains classes that support compilation and code
generation for Visual C++.

Common Language Runtime (CLR)
CLR is a runtime environment that sits in the memory of the underlying machine and
converts the IL code to native code. The native code is specific to the underlying platform in
which the code is running. This provides a platform independence feature in a typical
application made on .NET Framework. Some of the other features provided by CLR are
mentioned here:

Memory management: CLR provides automatic allocation and release of
memory across the application. Due to this, developers do not need to explicitly
write code to manage memory. This eliminates issues that can lead to
degradation of application performance due to memory leaks. CLR manages the
allocation and removal of memory using a garbage collector, which manages the
memory allocation in the following manner:

Allocating memory: When an application is executed in CLR, it
reserves a continuous space of memory for its execution. The
reserved space is known as a managed heap. The heap maintains a
pointer to the memory address where the next object defined in the
process will be allocated.

Learning the Basics of C# Chapter 1

[18]

Releasing memory: During the runtime execution of the program,
the garbage collector runs at scheduled times and examines
whether the memory allocated in heaps are still in scope of
program execution or not.
It determines whether the program is still using the memory on the
basis of roots or the collection of memory objects are still in the
scope of the program. If any memory allocation is not reachable as
per the collection in the root, the garbage collector determines that
the memory allocated in that memory space can be released.
We will look into memory management in detail in Chapter 9,
Manage the Object Life Cycle.

Exception handling: When an application is being executed, it may result in
certain execution paths that could generate some errors in the application. Some
of the common examples are as follows:

When an application tries to access an object such as a file that is
not present in the specified directory path.
When an application tries to execute a query on the database but
the connection between the application and the underlying
database is broken/not open.
We will look into exception handling in detail when we go through
Chapter 7, Implementing Exception Handling.

In the next section, we will look at the release history of .NET Framework and
its compatibility with different versions of CLR and C#.

.NET Framework release versions
The first version of .NET Framework 1.0 was released in 2002. Just like .NET Framework,
there are different versions of CLR and C# as well. The different versions of .NET
Framework are compatible with some particular versions of both CLR and C#. The
following table provides a compatibility mapping between the different .NET Framework
versions and its compatible versions of CLR:

.NET Framework CLR version
1.0 1.0
1.1 1.1
2.0/3.0/3.5 2.0
4.0/4.5/4.5.1/4.5.2/4.6/4.6.1/4.6.2/4.7/4.7.1/4.7.2/4.8 4

Learning the Basics of C# Chapter 1

[19]

The following table matches the different versions of .NET Framework with its compatible
C# version, and lists some of the important programming features that were released in that
version of C#:

Version .NET Framework Important features in C#
C# 1.0/1.1/1.2 .NET Framework 1.0/1.1 First release of C#

C# 2.0 .NET Framework 2.0 Generics anonymous methods, Nullable
types, and Iterators

C# 3.0 .NET Framework 2.0/3.0/3.5/4.0 Query expressions, Lambda expression,
and Extension methods

C# 4.0 .NET Framework 2.0/3.0/3.5/4.0
Dynamic binding, Named/optional
arguments, and Embedded interop
types

C# 5.0 .NET Framework 4.5 Asynchronous members

C# 6.0 .NET Framework
4.6/4.6.2/4.7/4.7.1/4.7.2

Exception filters, String interpolation, nameof
operator, and Dictionary initializer

C# 7.0/7.1/7.2/7.3 .NET Framework
4.6/4.6.2/4.7/4.7.1/4.7.2

Out variables, Pattern matching,
Reference locals and returns, and Local
functions

C# 8 .NET Framework 4.8 Read-only members and Default
interface members

In the next section, we will look at Visual Studio, an IDE tool provided by Microsoft for
building applications with .NET Framework, and some of its built-in features that can help
us during the development phase.

Visual Studio for C#
Microsoft Visual Studio is an Integrated Development Environment (IDE) tool used by
developers worldwide to develop, compile, and execute their .NET Framework
applications. There are several features provided in the tool that help developers not only
improve the quality of the application developed, but also greatly reduce the time of
development.

Learning the Basics of C# Chapter 1

[20]

Some of the key features of Visual Studio are mentioned here:

It uses Microsoft software development platforms such as Windows API, Forms,
WPF, and Silverlight.
While writing code, it provides IntelliSense code-completion features, which help
the developers write code efficiently.
It also provides a forms designer for building GUI applications, a class designer,
and database schema designer.
It provides support for different source control systems, such as GitHub and TFS.

The current version of Visual Studio is 2017. For development purposes, Microsoft provides
a Community Edition of Visual Studio, which is free of cost and can be used for non-
commercial activities.

It's essential that before using the Community Edition, we go through the terms and
conditions of use as well: https:/ /visualstudio. microsoft. com/ license- terms/
mlt553321/.

In the next section, we will do a walk-through on the basic syntax involved in writing a
basic C# application.

Basic structure of C#
In this section, we will go over a basic programming syntax of a C# application, namely:
classes, namespaces, and assemblies.

As C# is an object-oriented language, and at the basic level it contains building blocks
known as classes. The classes interact with one another, and as a result, provide
functionality at runtime. A class consists of two components:

Data attributes: Data attributes refer to the different properties defined in the
class object.
Methods: Methods indicate the different operations that are to be executed in the
class object.

https://visualstudio.microsoft.com/license-terms/mlt553321/
https://visualstudio.microsoft.com/license-terms/mlt553321/
https://visualstudio.microsoft.com/license-terms/mlt553321/
https://visualstudio.microsoft.com/license-terms/mlt553321/
https://visualstudio.microsoft.com/license-terms/mlt553321/
https://visualstudio.microsoft.com/license-terms/mlt553321/
https://visualstudio.microsoft.com/license-terms/mlt553321/
https://visualstudio.microsoft.com/license-terms/mlt553321/
https://visualstudio.microsoft.com/license-terms/mlt553321/
https://visualstudio.microsoft.com/license-terms/mlt553321/
https://visualstudio.microsoft.com/license-terms/mlt553321/
https://visualstudio.microsoft.com/license-terms/mlt553321/
https://visualstudio.microsoft.com/license-terms/mlt553321/
https://visualstudio.microsoft.com/license-terms/mlt553321/
https://visualstudio.microsoft.com/license-terms/mlt553321/

Learning the Basics of C# Chapter 1

[21]

As an example, we will look at the representation of a car as an object in C#. At a very basic
level, a car will have attributes such as the following:

Make: For example Toyota, Ford, or Honda.
Model: For example Mustang, Focus, or Beetle.
Color: Color of the car, such as Red or Black.
Mileage: Distance covered per liter of fuel consumed.

Please note that a car can have more attributes, but as this example is just being used for the
sake of explanation, we have included these basic attributes. While writing a C#
application, all of these will be captured as attributes for the Car class.

Similarly, to make sure the Car class achieves all of the desired features, it will need to
implement the following operations:

StartEngine: This function represents how the car starts moving.
GainSpeed: This function represents how the car accelerates.
ApplyBrake: This function represents how the car applies brakes to slow down.
StopEngine: This function represents how the car stops.

While writing any application in C#, the starting point is always to capture all the
actors/objects that are interacting with each other. Once we identify the actors, we can then
identify the data attributes and methods that each of them must have so that they can
exchange the required information with each other.

For the Car example being discussed, the following would be the definition of the
Car class. For the sake of explanation, we have just assumed that the attributes will be of
type String; however, when we go through Chapter 2, Understanding Classes, Structures,
and Interfaces, we will go over some more data types that can be declared in a class. For the
car example, the following syntax would be a representative program in a C# application:

class Car
{
 string Make;
 string Model;
 string Color;
 float Mileage;
 void StartEngine()
 {
 // Implement Start Engine.
 }

 void GainSpeed()

Learning the Basics of C# Chapter 1

[22]

 {
 // Implement Gain Speed.
 }

 void ApplyBrake()
 {
 // Implement Gain Speed.
 }
 void StopEngine()
 {
 // Implement Gain Speed.
 }
 }

In any application, there can be some classes that are related to one another. They can be
based in terms of similar functionality, or they could be dependent on each other. In C#, we
handle such a segregation of functionality via namespaces. For example, we can have a
namespace for handling all operations related to reading/writing logs in the file directory.
Similarly, we can have namespaces for handling all operations related to capturing user-
specified information from inputs.

When our applications continue to evolve and we have several namespaces, we may have a
need to group related namespaces under one umbrella. This ensures that if any class
changes under any particular namespaces, it will not affect all the classes defined in the
application. This structuring of namespace is done via assemblies in C#. Assemblies are
also known as DLLs, or dynamically linked libraries. Depending upon how we structure
our code, when an application is compiled, it results in multiple DLLs.

Creating a basic program in C#
Now we will look at how to create a basic program in C#. For the sake of explanation, we
will work on the Console Application project:

To create a new project, click on File | New Project and select Console App1.
(.NET Framework) as the project type:

Learning the Basics of C# Chapter 1

[23]

After giving the solution an appropriate name and path, click on OK. Check that
the solution has been created. At this point, you should see the Solution Explorer.
By default, a .cs file, Program.cs, should be added to the solution. By default, a
method by the name of Main will also be added to the class. This method is the
first entry point when this application is executed.

Learning the Basics of C# Chapter 1

[24]

Please note that for a console program, it's not possible to change the
default method, which would be the first entry point for the application.

Let's open Program.cs at this stage. By default, the project will have the2.
following using expressions for the following namespaces:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

A using statement basically signifies that the program can use the classes and
methods defined in those namespaces for any execution. In further chapters, we
will go over namespaces in detail and learn how to use them.

Learning the Basics of C# Chapter 1

[25]

Now, have a look at the program structure. By default, each class needs to be3.
associated with a namespace. The namespace expression present in the
Program.cs class indicates the namespace this class is part of:

Please note that C# is a case-sensitive language. This basically means that
if we change the name of the method from Main to main, CLR will not be
able to execute this method.

Each method in C# consists of two parts:

Input parameters: This is a list of variables that will be passed to the function
when it's executed.
Return type: This is the value that will be returned by the function to the caller
when the function finishes its processing.

In the case of the Program function declared previously, the input variable is a collection of
arguments. The output variable is void; in other words, it does not return anything. In the
forthcoming chapters, we will go over functions in more detail.

Now, let's write a program syntax to execute the famous Hello World output. In a console
application, we can do this using Console.Writeline:

The code implementation for this program is as follows: 1.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace ConsoleApp1
{

Learning the Basics of C# Chapter 1

[26]

 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Hello World");
 }
 }
}

At this stage, we have finished the program and are ready to execute it. Click on2.
Build | Build Solution. Check that there are no compile time errors:

At this stage, internally, Visual Studio should have created an .exe application3.
for the project:

Learning the Basics of C# Chapter 1

[27]

Open Command Prompt and navigate directly to where the .exe file has been4.
created. Execute the .exe file and check that the desired output of Hello
World appears in Command Prompt.

Summary
Before we move to the next chapter, let's summarize what we have learned during this
chapter. We had a brief recap on the building blocks of C#. We had a walk-through of the
.NET Framework architecture and visited the different components in it. We also analyzed
what makes C# different from programming languages such as C and C++. We went over
the functioning of CLR and how it implements garbage collection in C#. We then wrote our
first program, Hello World. By now, you should have a good awareness of what C# is and
the features it contains.

Learning the Basics of C# Chapter 1

[28]

In the next chapter, we will go over some more basic principles of C# programming. We
will analyze the different possible access modifiers in C#. Access modifiers make sure that
the properties and methods present in a class are only exposed to the relevant modules in
an application. We will learn the behavior and implementation of value and reference type
data variables in C# programming. We will go over inheritance and interface, and how they
are implemented in a C# application. We will discuss the differences between inheritance
and interface, and the different scenarios in which we should use one or the other.

Questions
Which of the following statements is correct with regard to C, C++, and C#?1.

C is an object-oriented language.
C++ applications are independent of the underlying system.
C# applications are independent of the underlying system.
C implements all the functionality and features of C++ and C#.

An assembly consists of related namespaces and classes that interact with each2.
other to provide a certain functionality.

True
False

For a console project, we can set any function as the starting point of execution3.
for the application.

True
False

Answers
C is not an object-oriented language. C and C++ are not independent of the1.
underlying platform, unlike C#, which implements the feature using Common
language runtime. C is a subset of the functionality and features provided by C#
and C++.
True. An assembly consists of a number of related namespaces and classes2.
grouped together.
False. For a console application, the point of entry is always the main program.3.

2
Understanding Classes,

Structures, and Interfaces
In Chapter 1, Learning the Basics of C#, we looked at an overview of the very basic
components of a C# application. All classes in a C# application are composed of attributes
and methods. Using namespaces and assemblies, we can bundle related classes together.

To maintain structure and to reduce complexity, it's essential that only the required
classes/functionality are exposed outside the scope of a class. In a C# program, this is
achieved via access modifiers. While defining the attributes present in a class, we also need
to be clear about the different data types of variables available in C#.

Using a code implementation of struct and class, we will look at how data and reference
type variables differ in implementation and behavior during program execution. We will
also be looking at some good practices that we can follow to choose the right data type for
our variables.

We will then look at interfaces and inheritance and how they are implemented in a C#
application. Using examples, we will look at the different scenarios in which we should use
each of them.

The following topics will be covered in this chapter:

Different types of access modifiers in C#
Different types of data types in C#
Understanding the difference between a class and a struct
Understanding inheritance
Understanding interfaces and how they are different from inheritance

Understanding Classes, Structures, and Interfaces Chapter 2

[30]

Technical requirements
As in the previous chapters of this book, the programs explained in this chapter will be
developed in Visual Studio 2017.

Sample code for this chapter can be found on GitHub at https:/ / github. com/
PacktPublishing/Programming- in- C- Exam- 70-483- MCSD- Guide/ tree/ master/
Book70483Samples.

Access modifiers
All classes, along with their respective attributes and functions, have an access modifier
associated with them. An access modifier basically indicates how the respective element
will be accessed in the application, both in its own assembly as well as in other assemblies.
Collectively, attributes and functions in an application are referred to as class members.

In C#, a class and its class members can acquire the following access modifiers:

Public: A class or a class member declared as public can be accessed by all classes
in the same assembly as well as by classes in different assemblies present in the
application.
Private: A class member declared as private can be accessed only in the same class
but not outside it.
Protected: A class or a class member declared as protected can be accessed inside
the class or by classes that inherit from the respective class.
Internal: A class or a class member declared as internal can only be accessed by
classes in the same assembly but not by outside assemblies.
Protected internal: A class or a class member declared as protected internal can
only be accessed by classes in the same assembly or by classes present in the
outside assembly that inherit from the respective class.
Private protected: A class or a class member declared as private protected can only
be accessed in the same class or in classes present in the same assembly that
inherit from the respective class.

Let's look at the following image to summarize this knowledge about access modifiers. In
the following example, we have Assembly A and Assembly B in the application. Assembly
A has Class A, which has different functions, each with a separate access modifier. Please
refer to the comments against each of the functions to understand which classes under
which assemblies can access the respective functions:

https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples

Understanding Classes, Structures, and Interfaces Chapter 2

[31]

Based upon the accessibility level and the security that we wish to embed in the different
class members, we can choose either of the previously mentioned access modifiers. To keep
some structure and avoid introducing undue complexity, it's advisable to only expose class
members to classes that require some information to be shared with the respective class.

In the next section, we will look at the different data types that a class member can acquire.

Data types in C#
In C#, a variable can acquire one of the following types:

A value type
A reference type

C# differentiates between these two types in terms of how these values are saved and
maintained in the Global Assembly Cache (GAC) during the program execution. Value
type variables are saved in the stack, while reference type variables are saved in a managed
heap data structure.

There are other pointer types that allow us to access value in the memory location of a
variable. In Chapter 8, Creating and Using of Types in C#, we will explore those data types in
detail. For now, let's look at these two data types and explore them in detail.

Understanding Classes, Structures, and Interfaces Chapter 2

[32]

Value type variables
In value types, the variables contain the data or the contents of the variable. This implies
that if any change is made to a value type variable in a different scope of the program, the
change will not be reflected back once the control shifts to the calling function.

The following are the different types of value types in C#.

Simple types
Following is the list of simple types:

Int: For example 1, 2, 4, and -100. They can be both signed and unsigned. A
signed int type can be both positive and negative. An unsigned int type cannot
be negative; its minimum value is 0.
Float: For example, 3.14.
Long: Unlike Int, which is 32-bit, Long is a 64-bit integer value. It can also be
both signed and unsigned.
Decimal: Like Float, decimal data types also represent decimal digit numbers
with the main difference being in terms of precision. For Float data members,
the precision is 7; however, in the case of decimal data types, the precision is 28
digits.
Char: Represents a single character sequence. It can acquire values such as C, c,
or white-space, any special characters – such as % and # – and even a digit such
as 1.
bool: It can be used to represent variables that acquire a digital value such as
true or false.

Enum types
Enum types are used to indicate an attribute that can acquire a constant set of values, for
example, enum Day {Sat, Sun, Mon, Tues, Wed, Thurs, Fri}.

Understanding Classes, Structures, and Interfaces Chapter 2

[33]

By default, the value of the first enumerator in the declaration starts from 0. It then
increments the value of the subsequent enumerators by 1. For the preceding example, the
following would be the value of the enumerators:

Sat – 0
Sun – 1
Mon – 2
Tues – 3
Wed – 4
Thurs – 5
Fri - 6

We can also override the default values of the enumerators by explicitly defining the values
in the declaration itself. For example, in the preceding example, if we do not want the
enumerators to start from 0, we can use the following declaration:

enum Day {Sat = 1, Sun, Mon, Tues, Wed, Thurs, Fri}

For the preceding declaration, the enumerators will acquire the following values:

Sat – 1
Sun – 2
Mon – 3
Tues – 4
Wed – 5
Thurs – 6
Fri – 7

Each Enumerator attribute also has an underlying data type that, by default, is of type Int.
If required, we can also change the type of the enumerated values to long or short.
However, it cannot take char as an underlying data type. Refer to the following enum
declaration, in which we are setting the type of Enumerator value to short:

enum Day : short {Sat = 1, Sun, Mon, Tues, Wed, Thurs, Fri}

Understanding Classes, Structures, and Interfaces Chapter 2

[34]

Struct types
Just like classes, structs in C# can be used to group together related data. Like classes, they
can have constructors, fields, and methods. However, there are some differences between
the implementation of structs and classes. The following are some of the key differences:

Feature Struct Class

Type
Structs are managed as value type variables. This
implies that the value assigned in their objects is
not persisted in different scopes of the program.

Classes are managed as reference type
variables. This implies that the value
assigned in their objects is persisted
across different scopes of the program.

Constructor

Unlike classes, no default constructor is managed
by C#. When we go through Chapter 8, Creating
and Using of Types in C#, we will explore default
constructors in detail.

When declaring a class, if no constructor
is specified for the class, C# automatically
creates a default constructor for the class.

Inheritance
A struct cannot inherit from another struct. This
implies that code reuse could become a challenge
if we use structs.

A class can inherit from other classes.

Being value type variables, when a struct object is created, the entire object
– inclusive of attributes, methods, and so on – is saved in a stack.
Therefore, from a performance perspective, it's essential that structs
should only be used for creating lightweight objects with only a few
members.

In the coming section, we will go through a code example to show how struct
implementation is different from a similar implementation in classes.

Reference type variables
In reference type variables, the data member contains the exact address of the variable in
memory. As the variable just contains a reference to the memory address, two separate
reference type variables can point to the same memory address. Therefore, if a change is
made to a reference type variable, the change is directly done at the memory location of the
variable. Due to the change being directly made at the memory location of the variable,
both variables will reflect the updated value.

Understanding Classes, Structures, and Interfaces Chapter 2

[35]

The following are the reference types available in C#:

Class: As discussed in Chapter 1, Learning the Basics of C#, a class represents a
collection of related properties and methods.
Interface: An interface in C# represents a collection of related properties, events,
and methods, with just a declaration and no definition. In this chapter, in
upcoming sections, we will deep dive into interfaces and see how they are
implemented in C#.
Dynamic: A dynamic type variable avoids compile-time type checking. For
example, if we declare a dynamics variable type and assign a variable to it, its
type is defined at runtime when a value is assigned to it.

For example, in the following code snippet, we are creating a dynamics type variable,
assigning different variables to it and evaluating its type at runtime:

 dynamic typeVariable = 100;
 Console.WriteLine(typeVariable + " " +
typeVariable.GetType().ToString());// Output 100 System.Int32
 typeVariable = "Hello";
 Console.WriteLine(typeVariable + " " +
typeVariable.GetType().ToString());// Output Hello System.String
 typeVariable = true;
 Console.WriteLine(typeVariable + " " +
typeVariable.GetType().ToString());// Output True System.Boolean
 Console.ReadLine();

Object: When a new instance of a class is created using the new keyword, an
object for the class is created in the memory.
String: A String object is a sequence of Char objects whose value is immutable
or read-only. This basically implies that, when we modify a variable of type
String, it creates a new object in memory.

In the next section, we will go through a code example to show how a reference type
variable such as Class and a value type variable such as struct are implemented in C# and
how their behavior differs.

Understanding Classes, Structures, and Interfaces Chapter 2

[36]

Structs versus classes
In the first chapter, we created a basic Hello World program. In this topic, we will extend
that program and use it to implement a struct and a class. While doing so, we will analyze
the difference between the implementation and use of reference and value type variables.
As you are already aware by now, a struct is a value type variable and a class is a reference
type variable:

Open the Console project created in Chapter 1, Learning the Basic Structure of1.
C#, and declare a CoordinatePoint class with just two member attributes of x
and y coordinates. Also create two constructors – one without any parameters
and one with two parameters. Please refer to the following code implementation
for this:

class CoordinatePoint
{
 public float xCoordinate;
 public float yCoordinate;
 public CoordinatePoint()
 {
 }
 public CoordinatePoint(float x, float y)
 {
 this.xCoordinate = x;
 this.yCoordinate = y;
 }
}

Please note that, in the preceding code, the use of the this variable is
optional. It is used to refer to the current instance of the class and can be
used to differentiate between class members and method parameters if
they have the same name.

Declare a similar structure. Notice that the compiler gives an error for the default2.
constructor:

struct CoordinatePointStruct
{
 public float xCoordinate;
 public float yCoordinate;
 public CoordinatePointStruct()
 {
 // This default constructor will give an error.
 }
 public CoordinatePointStruct(float x, float y)

Understanding Classes, Structures, and Interfaces Chapter 2

[37]

 {
 this.xCoordinate = x;
 this.yCoordinate = y;
 }
 }

As indicated in the preceding code, we will see a red label on the struct
constructor. This is because, unlike classes, a struct cannot have an
implementation of a default constructor. To remove the error, we need to remove
the default constructor. On doing this, we will see that the compiler error goes
away. The following would be the correct implementation of the struct:

struct CoordinatePointStruct
{
 public float xCoordinate;
 public float yCoordinate;
 public CoordinatePointStruct(float x, float y)
 {
 this.xCoordinate = x;
 this.yCoordinate = y;
 }
 }

In the Main class, we will now declare two functions, one for each class and3.
struct, respectively. In both functions, we will be passing a parameter by the
name of obj, which is an object of type class and struct, respectively. In the same
function, we will change the values of the x and y coordinate variables in both
the struct and the class to a default value of 0.5F. The following is the code
implementation for this:

static void ChangeValuesClass(CoordinatePoint obj)
{
 obj.xCoordinate = .5F;
 obj.yCoordinate = .5F;
}
static void ChangeValuesStruct(CoordinatePointStruct obj)
{
 obj.xCoordinate = .5F;
 obj.yCoordinate = .5F;
}

Understanding Classes, Structures, and Interfaces Chapter 2

[38]

Now, in the main function, declare the objects of both the class and the structure.4.
Notice that, during the declaration of the respective objects, we are specifying the
same values in the xCoordinate and yCoordinate member attributes.

For the sake of explanation, we will write syntax that will output the values in the
respective member attributes to the console. The following is the code
implementation for this:

Console.WriteLine("Hello World");
CoordinatePoint classCoordinate = new CoordinatePoint(.82F, .34F);
CoordinatePointStruct structCoordinate = new
CoordinatePointStruct(.82F, .34F);
Console.WriteLine("Initial Coordinates for Class are :" +
classCoordinate.xCoordinate.ToString() + " " +
classCoordinate.yCoordinate.ToString());
Console.WriteLine("Initial Coordinates for Struct are :" +
structCoordinate.xCoordinate.ToString() + " " +
structCoordinate.yCoordinate.ToString());

Now write syntax to call the respective ChangeValues function for each of5.
structure and class. After the call to the function, have another statement to print
the current values in the attributes of the struct and class objects.

Refer to the following code implementation for this:

ChangeValuesClass(classCoordinate);
ChangeValuesStruct(structCoordinate);
Console.WriteLine("Initial Coordinates for Class are :" +
classCoordinate.xCoordinate.ToString() + " " +
classCoordinate.yCoordinate.ToString());
Console.WriteLine("Initial Coordinates for Struct are :" +
structCoordinate.xCoordinate.ToString() + " " +
structCoordinate.yCoordinate.ToString());

Click on Build | Build Solution and ensure that there are no compile-time6.
errors.
Click on Debug | Start Debugging. Alternatively, the user can also click on the7.
F5 key or the triangular icon next to Start to launch the debugger. Please refer to
the following screenshots:

Understanding Classes, Structures, and Interfaces Chapter 2

[39]

Notice that the console shows the following output:

Notice that, after calling the change function, the value of the class object gets modified.
However, there is no change to the values in the struct.

This is due to the fact that struct is a value type variable. Therefore, any change in the
object, outside the scope of the function, has no impact as the change happens at an entirely
different object in memory.

On the other hand, class being a reference type variable is affected by changes happening
outside the scope of the function as well. For this reason, changes are propagated back to
the main object as well.

Understanding Classes, Structures, and Interfaces Chapter 2

[40]

To summarize, the following table illustrates the main differences between a struct and a
class type variable:

Feature Class Struct

Default
Constructor

If a class does not have a constructor, then
whenever an object is created for the class, the
default constructor triggers and sets default
values against the member variables present
in the class. The default values are set in
accordance with the default values of the type
of those member variables.

In contrast to a class, a struct cannot
have any default constructors. This
means that the application doesn't
assign a default value to the member
variables of the struct.

Memory
Implementation

As illustrated in the previous code example, a
class is implemented as a reference type. This
means that the value of an object of class is
persisted across different scopes of the
program execution.

As illustrated in the previous code
example, a struct is implemented as a
value type. This means that its value is
not persisted across different scopes of
the program.

Inheritance

We will be exploring inheritance in detail both
in this chapter as well as in the next chapter.
However, a class in C# can inherit from other
classes.

In contrast to a class, a struct cannot
inherit from other structs or classes.
This implies that code reuse is slightly
difficult in structs compared to in
classes.

Based upon the preceding differences, depending upon the requirements, a developer can
choose the right data type between a struct and a class.

In the next section, we will look at how an interface is implemented in a C# application.

Interfaces and inheritance
An interface is a collection of properties, methods, and events with just a declaration and no
definition. We use them in programming to group together a set of functionalities that must
be implemented in classes that, theoretically, are of the same basic type.

Let's look at an example of a car. In a real-world scenario, any implementation of the Car
class must implement certain common basic features such as driving, stopping, and
accelerating. Along with those, any object that is classified as a car will also have certain
features specific to the make of the car, such as Honda or Nissan.

In the preceding example, an interface could help to promote code reuse and maintain
structure across all types of Car. What we can do in this case is to declare Car as an
interface that all car derivatives, such as Nissan or Honda must implement.

Understanding Classes, Structures, and Interfaces Chapter 2

[41]

Similar to an interface, we can also implement inheritance in a C# application. In inheritance,
we can define classes with certain methods and properties, which can then be inherited in a
child class. In the next subsections, we will look at how interfaces and inheritance are
implemented in a C# application.

Inheritance is one of the main pillars of OOP programming. In Chapter 3,
Understanding Object-Oriented Programming, we will look into more
advanced features related to inheritance and understand how it works.

Inheritance
Inheritance is one of the main principles of any object-oriented programming. With
inheritance, we can define attributes and functions that can be reused in child classes. In
short, it helps us to reuse code written in the application across multiple modules. Let's go
through an example to understand how inheritance helps us.

Let's consider two cars, CarA and CarB. From a very high-level perspective, we can think
that both these classes will have similar features such as:

A brake function
An accelerator function
A car type; that is, diesel/petrol and so on
Color
Gear type

If we need to implement this in a C# application, one way would be to define them as two
separate classes: CarA and CarB . However, the main concern with this approach is that
both of these classes will need to have their own implementation of the shared features
listed. Please refer the following code for how a possible implementation of CarA would
look in C#:

public class CarA
{
 public DateTime manufacturingDate;
 public string bodyType;
 public float fuelCapacity;
 public void ImplementBrake()
 {
 Console.WriteLine("Inside Base Class Implement Brake");
 }
 public void ImplementAccelerator()

Understanding Classes, Structures, and Interfaces Chapter 2

[42]

 {
 Console.WriteLine("Inside Base Class Implement Accelerator");
 }
 public void FoldableSeat()
 {
 Console.WriteLine("Inside Base Class Implement Accelerator");
 }
 }

Similarly, please refer to the following code for what a possible implementation of CarB
would look like in C#:

public class CarB
{
 public DateTime manufacturingDate;
 public string bodyType;
 public float fuelCapacity;
 public void ImplementBrake()
 {
 Console.WriteLine("Inside Base Class Implement Brake");
 }
 public void ImplementAccelerator()
 {
 Console.WriteLine("Inside Base Class Implement Accelerator");
 }
 public void RoofTopExtendable()
 {
 Console.WriteLine("Inside Car B Foldable Seat");
 }
 }

This kind of implementation could have the following repercussions:

No code reuse: As you will understand from the preceding example, there are
features that both CarA and CarB have in common. However, instead of
maintaining common features separately, we are duplicating the code, which
could cause maintenance issues as well.

Scalability: From a business/implementation perspective, there could be millions
of different types of cars. Thus, for every new Car or a new common feature
added to the Car implementation, we may face some scalability challenges in the
application.

Understanding Classes, Structures, and Interfaces Chapter 2

[43]

As clearly illustrated, change management in such applications would be a nightmare and
would be very difficult to carry out.

Now we will use the concept of inheritance and see how the preceding scenario could be
implemented in a better way. From an implementation perspective, we will be creating a
base class, Car, which will have all of the common member variables across different
implementations of Car. We will then define individual types of Car, which will inherit
from the base class, Car. Let's look at the following code example to understand this better:

Create a base class, Car. The class will have all the member attributes that are1.
common across CarA and CarB:

public class Car
{
 public DateTime manufacturingDate;
 public string bodyType;
 public float fuelCapacity;
 public void ImplementBrake()
 {
 Console.WriteLine("Inside Base Class Implement Brake");
 }
 public void ImplementAccelerator()
 {
 Console.WriteLine("Inside Base Class Implement
Accelerator");
 }
}

Create a class, CarA, which will inherit the base class. In C#, we use the: syntax2.
to define inheritance:

public class CarA : Car
{
 public CarA()
 {
 this.bodyType = string.Empty;
 this.manufacturingDate = DateTime.MinValue;
 this.fuelCapacity = 0.0F;
 }
 public CarA(DateTime manufacturingDate, string bodyType, float
fuelCapacity)
 {
 this.bodyType = bodyType;
 this.manufacturingDate = manufacturingDate;
 this.fuelCapacity = fuelCapacity;
 Console.WriteLine("Inside Car A Constructor");
 }

Understanding Classes, Structures, and Interfaces Chapter 2

[44]

 public void FoldableSeat()
 {
 Console.WriteLine("Inside Car A Foldable Seat");
 }
}

As indicated earlier, the attributes declared inside the parent class are
automatically available in the derived class.

Please note that the attributes from the base class that will be available in the child
class depend upon the access modifiers used against the corresponding attributes
in the base class.

In our example, we have used public access modified in the base class. If it had
been private or protected internal, its accessibility would have differed in
the child class.

Let's consider a scenario wherein, for some reason, we also need to declare an
attribute by the same name, bodyType, in CarA. In C#, we can differentiate
between the attributes present in the base class and in the derived class by using
the base keyword. Refer to the following code for this:

public class CarA : Car
{
 string bodyType;
 public CarA()
 {
 this.bodyType = string.Empty;
 base.bodyType = string.Empty;
 this.manufacturingDate = DateTime.MinValue;
 this.fuelCapacity = 0.0F;
 }

If base is used, it refers to the attribute in the parent class and, if this is used, it
refers to the attribute in the child class.

Understanding Classes, Structures, and Interfaces Chapter 2

[45]

Similarly, declare a class for CarB:3.

class CarB : Car
{
 public CarB()
 {
 this.bodyType = string.Empty;
 this.manufacturingDate = DateTime.MinValue;
 this.fuelCapacity = 0.0F;
 }
 public CarB(DateTime manufacturingDate, string bodyType, float
fuelCapacity)
 {
 this.bodyType = bodyType;
 this.manufacturingDate = manufacturingDate;
 this.fuelCapacity = fuelCapacity;
 Console.WriteLine("Inside Car B Constructor");
 }
 public void RoofTopExtendable()
 {
 Console.WriteLine("Inside Car B Foldable Seat");
 }
}

Please note that, in derived classes, we can also create member variables
independent of the base classes. As indicated in the preceding screenshots, the
CarA class has an implementation of FoldableSeat, which is not present in the
base class.

Similarly, the CarB class has an implementation of RoofTopExtendable, which
is not present in the base class.

In the main method, declare the CarA and CarB objects and call the respective4.
methods:

CarA carA = new CarA();
carA.ImplementAccelerator();
carA.ImplementBrake();
carA.FoldableSeat();

CarB carB = new CarB();
carB.ImplementAccelerator();
carB.ImplementBrake();
carB.RoofTopExtendable();
Console.ReadLine();

Understanding Classes, Structures, and Interfaces Chapter 2

[46]

Click on Build | Build Solution. Notice that there are no compile-time errors.5.
Now click on Debug | Start Debugging. Notice that the following output comes
up in the console window:

The following provides a brief analysis of each of the output line items:

The first method we call is ImplementAccelerator, which is present in the base
class. As expected, it executes the method in the base class.
Similarly, the next method we call is ImplementBrake, which is also present in
the base class. In this case also, the method in the base class is executed.
In the next call, we execute a method just present in CarA. In this case, the control
executes the code present in that function.
The same thing applies to B as well.

Thus, using inheritance, we can promote a greater degree of code reuse, along with making
the maintenance activity quite scalable.

Once we move on to Chapter 3, Understanding Object-Oriented Programming, we will cover
more features in regard to inheritance, such as overriding sealed, abstract classes and so on.
However, for now, we will go over how an interface helps us in C# code development.

Understanding Classes, Structures, and Interfaces Chapter 2

[47]

Interfaces in C#
In the preceding example, we illustrated how we can declare a base class with some
member variables and have them inherited in a derived class. However, there could be
some scenarios when we need to have a class inherited from two different classes.
Moreover, if we are using a struct, we will not be able to inherit from another struct or
class.

Unfortunately, using inheritance, we will not be able to achieve this in a C# application due
to the following reasons:

Multiple inheritance is not allowed in C#.
A struct data type in C# cannot inherit from other structs or class types.

In such scenarios, interfaces come in handy. An interface defines a set of related methods,
attributes which each class implementing the interface must implement. Please note that an
interface must have just declarations.

In reference to interfaces, a declaration refers to the specification of the
methods along with their signatures – that is, input and output
parameters – while a definition refers to the actual implementation of the
logic in the method body. While discussing the following code example,
we will look further into this.

Let's look at the example we used for inheritance and see how we can use an interface in it:

In the preceding example, wherein we created CarA and CarB, we can deduce
that it is bound to have several other properties as well, such as color, weight,
height, brand, logo, manufacturer, and so on.
From a data model perspective, we can classify them as attributes common to
any utility or product rather than just a car.
So, when we are choosing a product, we can say that there are certain actions,
such as ImplementBrand, ImplementColor, and so on that will be common
across all the product implementations and not just for CarA and CarB.
Therefore, it means that the two classes must inherit from both Car and Product
to function correctly.

Understanding Classes, Structures, and Interfaces Chapter 2

[48]

Let's try and create another base class of Product and try to implement multiple
inheritance for CarA. Here's the following code implementation for the Product class:

public class Product
{
 public void ImplementBrand()
 {
 Console.WriteLine("Inside Base Class Implement Brake");
 }
 public void ImplementColor()
 {
 Console.WriteLine("Inside Base Class Implement Accelerator");
 }
}

However, when we try to implement multiple inheritance for the CarA class, the compiler
gives us an error. The following screenshot shows the error we get from the compiler:

Understanding Classes, Structures, and Interfaces Chapter 2

[49]

A solution would be to merge the implementations of Car and Product together; however,
it's clear that from a data model perspective, these two entities are not related to each other.

To overcome the preceding dilemma, we will use an interface. When declaring an interface,
we need to adhere to the following conventions:

To declare an interface, we need to use the interface keyword.
An interface cannot have an access modifier for any function declaration.
An interface must also just have function declarations and no definitions.

The following is the code syntax of the ICar interface, wherein we are declaring the
methods that should be in the interface:

public interface ICar
{
 void ImplementBrake();
 void ImplementAccelerator();
 void ImplementBrand();
 void ImplementColor();
 }

Please note that, in the preceding example, we have only specified the
signature that the methods present in the interface should acquire. This is
referred to as a declaration. The class implementing this interface – in our
case, Car, will be responsible for providing complete implementation for
the methods presents in the interface.

Understanding Classes, Structures, and Interfaces Chapter 2

[50]

To implement an interface, we can use syntax similar to inheritance. The following is the
screenshot for this:

Review the compile-time error. The error indicates that the Car class must implement all
the functions declared in the interface. To overcome the preceding error, we must define all
the functions in the interface. Similar to ICar, we can also create an interface for IProduct,
which each of the CarA and CarB classes can then implement.

Understanding Classes, Structures, and Interfaces Chapter 2

[51]

While inheritance and interfaces can be used in similar scenarios, some of the differences
between them are as follows:

Feature Inheritance Interface
Multiple
derivations A class can only inherit from one class. A class can implement

multiple interfaces.

Data types A class can inherit from another class. However, a
struct cannot inherit from another class or struct.

Both classes and structs
can implement interfaces.

Method
definitions In inheritance, a base class can define methods.

An interface cannot have
any definitions
against methods.

Access modifiers

A base class and its member attributes can assume
different access modifiers, such as public,
private, protected, protected internal,
and private protected.

The access modifier of an
interface is always public.

Based on these differences, a programmer can decide the right approach for their
application and choose between creating an interface or managing through inheritance.

Summary
The topics covered in this chapter are the basics of programming in the C# language. Using
access modifiers, we can control access to different properties and methods in different
modules of an application. While writing the code, a very common mistake that people
make is to declare all the properties and methods as public. This is not the recommended
way of programming in C#. We must logically evaluate the need for different access
modifiers for each of the properties and methods present in a class.

Similarly, we should analyze the data types that we need to associate with each property
used in the class. We must also analyze if we need a reference data type variable, or
whether we are fine with a value type variable as they have a different implementation in
the compiler memory and functionality. We should also utilize inheritance as it helps us to
reuse code and structure our programs in a very precise manner.

In the next chapter , we will go through OOP concepts, which are the main building blocks
of any high-level programming language like C#. We will go over polymorphism,
abstraction, encapsulation, and inheritance and understand each of these concepts in detail,
and will also go over some code examples to see their implementation.

Understanding Classes, Structures, and Interfaces Chapter 2

[52]

Questions
Which of the following attributes declared in the Car class is not a value type1.
variable?

public Decimal fuelCapacity;1.
public Enum carColor;2.
public String registrationNumber;3.
public Int numberOfSeats4.

Which of the following is not a reference type variable?2.
Class1.
String2.
Struct3.
Interface4.

In C#, a child class can inherit from multiple parent classes. Is this statement3.
correct?

Yes1.
No2.

Which of the following statements about interfaces and classes is not correct?4.
A class can implement multiple interfaces.1.
An interface can have both function declarations and definitions.2.
A struct data variable cannot inherit from another struct.3.
In inheritance, if both the base class and the derived class have a4.
function with the same name, we can use the base keyword to
implicitly call the function of the base class.

Which of the following statements about access modifiers is not correct?5.
If a member variable is declared as public, it can be accessed across1.
the entire application.
If a member variable is declared as private, it can only be accessed in2.
the same class.
If a member variable is declared as protected, it can be accessed3.
throughout the namespace.
If a member variable is declared as protected internal, it can be4.
accessed by classes in the name namespace and the classes that derive
from it.

Understanding Classes, Structures, and Interfaces Chapter 2

[53]

Answers
public String registrationNumber;. String is a reference type variable. All1.
others are value type variables.
Struct is a value type variable unlike all others which are reference type2.
variables.
No, in C# we cannot have multiple inheritance. A class can only inherit from one3.
base class.
In C#, an interface must only have function declarations and not definitions. All4.
other statements are correct.
If a member variable is declared as protected, it can only be accessed in the5.
classes that inherit from its base parent class.

3
Understanding Object-Oriented

Programming
When we are writing any program, apart from making sure that it serves the required
purpose, we must make sure that we also take the following aspects into consideration:

Code reuse: We must try to implement the program flow in such a way that
common functionalities can be used across multiple modules.
Code maintenance: We must accept that any program code that's written is
bound to have a few bugs. However, we must ensure that the code that's written
is clear and structured enough that it's understandable and easy to maintain.
Design patterns: Design patterns allow us to write programs in such a manner
that there is a common template/structure/functionality that can be used across
multiple modules. This ensures that the performance of the application is not
compromised, which is a key aspect of any program application.

All of these aspects are difficult to achieve in a procedural language. However, using
object-oriented programming, which is the main essence of any high-level programming
language, we can achieve the aforementioned objectives.

In this chapter, we will cover the following topics:

Understanding object-oriented programming
Understanding encapsulation
Understanding abstraction
Understanding inheritance
Understanding polymorphism

We will also go through code examples to understand how these features are implemented
in a C# application.

Understanding Object-Oriented Programming Chapter 3

[55]

Technical requirements
Like in the previous chapters in this book, the programs that we will cover will be
developed in Visual Studio 2017.

The sample code for this chapter can be found in this book's GitHub repository at https:/ /
github.com/PacktPublishing/ Programming- in- C-Exam- 70- 483-MCSD- Guide/ tree/ master/
Book70483Samples.

Understanding object-oriented programming
Object-oriented programming is a programming concept that is based on objects. An object
is a collection of related data such as fields and procedures, that is, methods. For example,
an object could be anything right from a very simple object such as a pencil to a very
complex type such as a car. Each object will have its own set of attributes, that is, properties
and functions or the methods that are implemented in that object. For example, for a car
object, the possible attributes could be color, registration number, model, and so on. The
possible functions could be start, stop, and accelerate.

Before object-oriented programming came into the picture, we did our programming under
the principles of procedural programming. In a procedural language, an application was
divided into a set of functions. The data that was used in the program was stored in a
bunch of local variables that were used by the functions. It formed the basis of legacy
programming languages such as COBOL and BASIC.

The main disadvantages of this programming concept were as follows:

No code reuse: As the entire application was divided into a set of sequential
functions, there was no code reuse in this programming concept.
Maintenance and scalability: The following diagram is just an indicative flow of
how a typical program written in a procedural language will run. In the
program, the blocks indicate the different code functions, which are interlinked
and interacting with each other to complete a task:

https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples

Understanding Object-Oriented Programming Chapter 3

[56]

Here, as in any typical program written on procedural language, there would be a bunch of
functions, passing around parameters and executing them in a conceptual manner. So, any
change or upgrade that's made to any one of these functions will have a good chance of
causing issues in the execution of another function. Therefore, from both the standpoint of
maintenance and scalability, an application that's written in a procedural language will
have its challenges.

In object-oriented programming, each application can be divided into a bunch of objects
that have their own properties and procedures. For example, let's consider the same car
scenario we explored in the previous chapter. A car can have the following properties and
methods:

Understanding Object-Oriented Programming Chapter 3

[57]

Now, what we can do in an object-oriented programming language is directly declare a car
object, set the values related to the properties, and call the corresponding properties, such
as start.

Since the object is grouped with the corresponding properties, we don't need to pass any
data for the respective properties. Instead, while executing the respective functions such as
start, stop, or accelerate, we can then pass data against these properties as a function
parameter list.

Thus, in this case, if, in the future, we change the start() function of the car class, we
won't need to bother all the other places that it's getting called from.

This is a major upgrade in terms of the maintainability and scalability of the application
compared to the standard way of doing things in a procedural language.

Now, let's deep dive into each of the four pillars of an object-oriented language and
understand how we can use them in our C# applications.

Understanding encapsulation
Encapsulation basically involves grouping all the related properties and methods that
access them in an object. Whenever an application is being designed, we need to decide
how many objects should be defined in it, along with the associated attributes and methods
available in it.

For instance, in the car example, we have the following associated attributes and methods:

car is an object.
The make, model, and color are the different attributes that are present in the
object.
start, stop, and accelerate are the different methods that are present in the
object.

Understanding Object-Oriented Programming Chapter 3

[58]

Encapsulation allows us to achieve the following functionality in any application:

Security: Using encapsulation, we can define our attributes in such a way that
not all of the attributes of an object are exposed to the entire application. In
Chapter 2, Understanding Classes, Structures, and Interfaces, we used access
modifiers to control the security access of any property/method in the class/in the
namespace/in the assembly, as well as in the entire application.
Code maintenance: From a maintenance perspective of a function, it's always
desirable that the function has as few attributes as possible.

Using encapsulation, we can organize the required parameters of a function as an attribute
of the class and thus we are not passing them explicitly in every call.

In the following code example, we will go through a code sample in C# and understand
how this can be achieved.

Code example
Let's consider an example of a banking application. In this banking application, we need to
implement a scenario related to opening an account.

From a class implementation perspective, the following are the possible attributes that
should be in the Account class. Please also note that there will be an additional
class, Customer, to signify the person who is opening the account:

openingDate

customer

float currentBalance

The following are some of the methods that could be present in the Account class:

bool OpenAccount();

bool depositMoney(float deposit);

bool withdrawMoney(float withdrawalAmt);

In regard to the Customer class, we will just go simple now and define the following
attributes:

string name

string customerId

Understanding Object-Oriented Programming Chapter 3

[59]

Please refer to the following code for the declaration of the Customer class in a C#
program. Here, we have created a Customer class and defined two attributes in it, that is,
the name of the customer and a field of CustomerID, which will be a unique field for that
customer.

In the following code, we will declare two variables and use them to showcase examples for
the operators we mentioned previously:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace ConsoleApp1
{
 public class Customer
 {
 public string name;
 public string customerId;
 }
}

Please refer to the following code for the declaration of the Account class in a C# program:

public class Account
{
 public DateTime openingDate;
 public Customer customer;
 private float currentBalance;
 public bool OpenAccount(Customer customer)
 {
 this.openingDate = DateTime.Now.Date;
 this.currentBalance = 0.0f;
 this.customer = customer;
 return true;
 }
 public bool DepositMoney(float deposit)
 {
 if(deposit > 0.0f)
 {
 this.currentBalance = this.currentBalance + deposit;
 return true;
 }
 else
 {
 return false;

Understanding Object-Oriented Programming Chapter 3

[60]

 }
 }
 public bool WithdrawMoney(float withdraw)
 {
 if(this.currentBalance >= withdraw)
 {
 this.currentBalance = this.currentBalance - withdraw;
 return true;
 }
 else
 {
 return false;
 }
 }
}
}

The following are some of the key items in the implementation:

In the Account class, note that currentBalance is marked as private, as a
customer may not want their balance to be exposed to the entire application.
In the Account class, in the methods of OpenAccount, DepositMoney, and
WithdrawMoney, we are not passing all of the attributes related to the customer,
current balance, or opening date. This is because the required attributes are
already grouped together in the Account class.

Now, let's look at how we will invoke these classes:

Customer customer = new Customer();
customer.name = "Sample Customer";
customer.customerId = "12345";

Account newAccount = new Account();
newAccount.OpenAccount(customer);
newAccount.DepositMoney(1000);
newAccount.WithdrawMoney(400);

If you look at the function calling part, you will understand that because the properties are
linked to the Account class, we are not passing them explicitly to the functions. Therefore,
if the implementation of the functions is changed, from a maintenance perspective, there
will be minimal impact.

Therefore, it's always beneficial to use the principles of encapsulation and divide the
application into chunks of classes with the related information.

Understanding Object-Oriented Programming Chapter 3

[61]

Understanding abstraction
Abstraction is also a concept in object-oriented programming and implies that, when we
write code, we should hide the complexity and details of the implementation from the
outside world.

In other words, when we write a program that, on receiving an input, does a bunch of
complex operations and returns an output, we should hide the inner complexity of the
operations that are done inside the program so that the outer applications can just focus on
the input they are sending to the application and the output that they are getting from it.

For example, let's consider the same example of Account that we worked on in the
previous example. If we consider the example of the OpenAccount function, you will
understand that opening an account for the customer will not be that simple. There will be
several subtasks that need to be executed before we can finally open the account for the
customer. For example, some of the steps could be as follows:

Verifying the identification documents of the customer
Linking and opening different bank accounts, which could be Salary, Current,
and Savings
Fetching, that is, counting the initial amount deposit of the customer

Basically, in real life, the function that we have written above will look more similar to the
following code snippet. In OpenAccount, we are passing a Customer object. Before
creating the bank account of the customer, we are doing three distinct tasks:

VerifyCustomerIdentity(): In this function, the idea is to verify the identity1.
of the customer, which is a common practice before an account is opened.
OpenAndLinkRelatedAccounts(): In this function, the idea is to open different2.
accounts for the same customer, that is, Savings, Current, and Salaried.
RetrieveAndCountDeposit(): In this function, the idea is to retrieve the3.
money the customer intends to save, count it, and finally deposit it in the
customer's account:

public bool OpenAccount(Customer customer)
{
 this.openingDate = DateTime.Now.Date;
 this.currentBalance = 0.0f;
 this.customer = customer;
 if(VerifiyCustomerIdentity() && OpenAndLinkRelatedAccounts() &&
RetrieveAndCountDeposit())
 {
 return true;

Understanding Object-Oriented Programming Chapter 3

[62]

 }
 else
 {
 return false;
 }
}
private bool VerifiyCustomerIdentity()
{
 //This function will verify the customer documents.
 return true;
}
private bool OpenAndLinkRelatedAccounts()
{
 //This function will open the related accounts of savings ,
current and salary and link them together.
 return true;
}
private bool RetrieveAndCountDeposit()
{
 //This function will fetch the deposit, count and verify the
amount.
 return true;
}
public bool DepositMoney(float deposit)
{
 this.currentBalance = this.currentBalance + deposit;
 return true;
}

Please note the following:

The three functions, that is, VerifyCustomerIdentity(),
OpenAndLinkRelatedAccounts(), and RetrieveAndCountDeposit(), all of
which have Private as the access modifier. This will ensure that the
complexities in these three functions are not exposed to the outside.
These three functions are being internally called in the OpenAccount function, so
the calling application doesn't need to worry about calling these functions
explicitly.
Let's say we discover some issues in the internal private function. In this case, we
can easily make changes in these internal functions without needing to worry
about the external implementation.

Understanding Object-Oriented Programming Chapter 3

[63]

Understanding inheritance
If you went through Chapter 2, Understanding Classes, Structures, and Interfaces, you will
already know how inheritance helps us in code reuse and reduced maintenance, and that it
gives us more control of the entire application.

We also looked at a few code examples and saw how inheritance works and how it's
implemented in C#. Now, we will look at some advanced features in inheritance, their use,
and how they are implemented in C#.

Method overriding
Method overriding is a technique in C# that we can use to invoke the methods that are
defined in the base class from the classes that are deriving from that base class. In method
overriding, a derived class implements a function that's declared in the base class with the
same signature:

The same name as the function that's declared in the base class
The same number and type of parameters in the function
The same return type as the function declared in the base class

 In C#, method overriding is implemented using the following two methods:

Virtual methods: A virtual method is a method in the base class that can also be
defined or overridden in the derived class as well. Please note that, when a
method is declared as virtual, it's optional to define the implementation of the
method in the base class. In case it's defined, it becomes even more optional for
the derived class to override it further. A method is declared as virtual using
the virtual keyword.
Override: Once a method has been declared as virtual or abstract in the base
class, then by using the override keyword, the derived class can redefine the
implementation of the method for its own use. In this section, we will be looking
at virtual methods. In the next section, Abstract and sealed classes, we will do a deep
dive into abstract methods.

Let's look at a code example to understand how method overriding is implemented in C#.
Let's assume that we have a base class, Car, and two classes, Ferrari and Suzuki, that are
inheriting from the Car class. For the sake of explanation, we will keep things simple by
just specifying a default constructor and a common Accelerate method across the three
classes. The following would be the code implementation for the same:

Understanding Object-Oriented Programming Chapter 3

[64]

public class Car
{
 public Car()
 {
 Console.WriteLine("Inside Car");
 }
 public void Accelerate()
 {
 Console.WriteLine("Inside Acceleration of Car");
 }
}
public class Ferrari : Car
{
 public Ferrari()
 {
 Console.WriteLine("Inside Ferrari");
 }
 public void Accelerate()
 {
 Console.WriteLine("Inside Acceleration of Ferrari");
 }
}
public class Suzuki : Car
{
 public Suzuki()
 {
 Console.WriteLine("Inside Suzuki");
 }
 public void Accelerate()
 {
 Console.WriteLine("Inside Acceleration of Suzuki");
 }
 }

 Now, let's create some objects for these classes by using the following code:

Car ferrari = new Ferrari();
ferrari.Accelerate();
Console.WriteLine("End of Ferrari Implementation");
Car suzuki = new Suzuki();
suzuki.Accelerate();
Console.WriteLine("End of Suzuki Implementation");

Note that in the preceding code, we have created a new object of the Ferrari class and
have assigned it to a variable, ferrari, which is of the Car type. Similarly, we have also
created a new object of the Suzuki class and have assigned it to a variable, suzuki, which
is also of the Car type.

Understanding Object-Oriented Programming Chapter 3

[65]

When we execute the code, we get the following output:

Note that, even though we have the Accelerate method in both the parent Car class and
the derived Ferrari and Suzuki classes, when we are calling the
Accelerate method from the ferrari object, it's calling the Accelerate method that's
present in the parent Car class. This is due to the fact that the type of the variable is
Car and that, even though it's instantiated with the objects of the Ferrari and
Suzuki child classes, the method in the base class has not been overridden.

Now let's make a slight change to the implementation and declare the method in the base
class as virtual and the methods in the classes deriving from this class as override:

public class Car
{
 public Car()
 {
 Console.WriteLine("Inside Car");
 }
 public virtual void Accelerate()
 {
 Console.WriteLine("Inside Acceleration of Car");
 }
}
public class Ferrari : Car
{
 public Ferrari()
 {
 Console.WriteLine("Inside Ferrari");
 }
 public override void Accelerate()
 {
 Console.WriteLine("Inside Acceleration of Ferrari");
 }
}
public class Suzuki : Car
{
 public Suzuki()

Understanding Object-Oriented Programming Chapter 3

[66]

 {
 Console.WriteLine("Inside Suzuki");
 }
 public override void Accelerate()
 {
 Console.WriteLine("Inside Acceleration of Suzuki");
 }
 }

Now, execute the same code again and review that we receive the following output:

Note that now, the Accelerate method executes the code mentioned in the derived classes
of Ferrari and Suzuki and not the code specified in the parent class of Car.

Later in this chapter, we will also do a deep dive into polymorphism. There are two types
of polymorphism: runtime polymorphism and compile-time polymorphism. Runtime
polymorphism is implemented using method overriding.

In the next section, we will look at abstract classes and also explore the use of
virtual methods in abstract classes.

Abstract classes
An abstract class in C# is a class that cannot be instantiated, that is, the program
execution cannot create an object of this class. Instead, these classes can only act as base
classes from which other classes can inherit.

We use the abstract class in scenarios where we specifically want all the deriving classes
to implement the specific implementation of a particular function that's declared in the base
class. The following are some of the properties of an abstract class:

Just like all the other classes, an abstract class can have both functions and
properties.
An abstract class can have both abstract and non-abstract functions.

Understanding Object-Oriented Programming Chapter 3

[67]

Let's take a look at a program to analyze how abstract classes work. We will define
an Animal class using the abstract keyword. Now, let's assume that each animal type,
such as dog, speaks differently, so they must implement the function in their own way. To
implement this, we will declare our base Animal class as abstract and have an abstract
method Speak in it. Review that if we try to implement the Speak method, the compiler
throws an error:

To remove this error, we can simply remove the declaration of the abstract method:

public abstract class Animal
{
 public abstract void Speak();
 public void Walk()
 {
 Console.WriteLine("Base Animal Walk Functionality");
 }
}

Understanding Object-Oriented Programming Chapter 3

[68]

Now, let's create a Dog class that inherits from this base class of Animal. Note that the
compiler will throw an error if the Speak method is not implemented:

We can get over this error by creating an implementation of the Speak function:

public class Dog : Animal
{
 public override void Speak()
 {
 Console.WriteLine("A dog will bark");
 }
}

Please note that we use the override keyword to let the compiler know that we are
overriding the implementation of the abstract function called Speak in the derived class.

In the next section, we will look at the same example and understand how abstract
methods differ from virtual methods.

Understanding Object-Oriented Programming Chapter 3

[69]

Abstract versus virtual methods
In the preceding example, we declared the Speak method as abstract. This forced
our Dog class to provide an implementation of the method because, otherwise, we would
get a compile-time error. Now, what if we don't want to have that particular restriction in
our code?

We can do this by replacing the abstract method with the virtual method. The
following is the changed implementation of the preceding code:

public abstract class Animal
{
 public virtual void Speak()
 {
 }
}

Note that when you compile the code, there are no errors. Also, just for the sake of
experimenting, comment out the Speak method in the Dog class.

Now, compile the program. Note that, unlike the previous case, when we use abstract
methods, no compile-time errors occur:

In the next section, we will look at sealed classes and how they are implemented in C#
applications.

Understanding Object-Oriented Programming Chapter 3

[70]

Sealed classes
A sealed class in C# is a class that we do not want to be inherited by any derived class.
Once we insert the keyword sealed, a compiler will give a compile-time error if a derived
class tries to inherit from the sealed class. The following is the screenshot of the same. For
explanation purposes, we will use the same two classes we used in the preceding example:

Note that abstract and sealed do not go hand in hand. abstract means that the class
must never be instantiated, whereas the sealed class indicates that the class must never be
inherited. Therefore, in hindsight, if we declare a sealed class as abstract, this will not
make any sense. Thus, if we do try to declare an abstract class as sealed, we will get a
compile-time error, as follows:

In the next section, we will look at another pillar of OOP programming, that
is, polymorphism.

Understanding Object-Oriented Programming Chapter 3

[71]

Understanding polymorphism
Polymorphism is a Greek word whose literal translation to English is many-shaped. In
programming terms, it's referred to as one interface with multiple functions. Let's try to
understand polymorphism by looking at the following diagram:

In the preceding diagram, we have some program code that runs on Input 1 and gives
Output 1. Now, let's say we make a mistake and send an incorrect input of Input 2 instead.
In this case, unfortunately, the program code may error out and send an error message. In
such a scenario, we can use polymorphism. With polymorphism, the same example will be
represented as follows:

Understanding Object-Oriented Programming Chapter 3

[72]

As we can see, by using polymorphism, we will maintain three copies of the code in
memory and depending on the type of input received, the appropriate copy of the program
code will be loaded and executed.

There are two types of polymorphism possible in C#:

Static/compile-time polymorphism, that is, method overloading or function
overloading
Execution time polymorphism, that is, method overriding or virtual functions

Let's go through each of these types and use code examples to understand how they work.

Static/compile-time polymorphism
Static polymorphism, also known as function overloading, involves creating functions with
the same name but with different numbers or types of parameters.

The compiler loads the appropriate function based on the input that's passed. Let's go
through the following code example to see how it works. Here, we will create two copies of
a function called ADD that will differ in terms of the number of parameters accepted by the
function:

static int AddNumber (int a, int b)
{
 Console.WriteLine("Accepting two inputs");
 return a + b;
}
static int AddNumber(int a, int b, int c)
{
 Console.WriteLine("Accepting three inputs");
 return a + b + c;
}

Now, when the call is made to the function, based on the number of parameters passed, the
respective function will be loaded:

int result = AddNumber(1, 2);
Console.WriteLine(result);
int result2 = AddNumber(1, 2, 3);
Console.WriteLine(result2);
Console.ReadLine();

Understanding Object-Oriented Programming Chapter 3

[73]

After the program is executed, we will get the following output:

Now, let's consider another example. In the preceding example, we
implemented polymorphism based on the number of parameters. In this example, we will
implement polymorphism based on the type of parameter:

Create two classes, one each for Dog and Cat: 1.

public class Dog
{
}
public class Cat
{
}

Create two functions with the same name but one accepting the input of a Dog2.
object and another accepting the input of a Cat object:

static void AnimalImplementation(Dog dog)
{
 Console.WriteLine("The implementation is for a dog.");
}
static void AnimalImplementation(Cat cat)
{
 Console.WriteLine("The implementation is for a cat.");
}

Now, when a call is made to the function, based on the type of parameter, the appropriate
function will be loaded:

Cat cat = new Cat();
Dog dog = new Dog();
AnimalImplementation(cat);
AnimalImplementation(dog);
Console.ReadLine();

When the program is executed, it will show the following output:

Understanding Object-Oriented Programming Chapter 3

[74]

Runtime polymorphism
Runtime polymorphism in C# is executed via virtual methods. In this type of
polymorphism, the compiler executes the code by identifying its form at runtime.

In the Method overriding section, we learned about virtual methods and saw how they allow
the derived class to override the implementation of a function in the base class. In runtime
polymorphism, the object of the base class holds the reference to objects of the base and
derived classes. Now, based on the object that the base object is pointing to, the appropriate
function will be loaded.

To recap our understanding of this, let's go through another code example. In this example,
we will create a base class called Animal that will be inherited by two classes, Man
and Dog.

The following is the implementation in the Animal class:

public class Animal
{
 public int numOfHands;
 public int numOfLegs;
 public virtual void Speak()
 {
 Console.WriteLine("This is a base implementation in the base
animal class");
 }
}

In the Animal class, we have declared two attributes to represent numOfHands and
numOfLegs of the Animal. We have also declared a function called Speak and have
marked it as Virtual so that any class that inherits from this class can give its own
implementation of the Speak functionality.

We have declared the Speak function as virtual, which means that this
function can be overridden in the derived class.

The following is the implementation in the Dog class:

public class Dog : Animal
{
 public string breed;
 public Dog(string breed, int hands, int legs)
 {

Understanding Object-Oriented Programming Chapter 3

[75]

 this.breed = breed;
 base.numOfHands = hands;
 base.numOfLegs = legs;
 }

 public override void Speak()
 {
 Console.WriteLine("A dog will bark , its breed is " + this.breed +
" and number of legs and hands are " + this.numOfLegs + " " +
this.numOfHands);
 }
}

In this implementation, we have created a Dog class that is inheriting from the Animal
class. The Dog class has an attribute called Breed and a constructor that takes three
parameters of breed, hands, and legs, respectively. We also have a Speak function to
provide an impression of how a dog object will implement the Speak functionality.

The following code is for another class, Human, which will also inherit from the base class of
Animal:

public class Human : Animal
{
 public string countryOfCitizenship;
 public Human(string citizenship, int hands, int legs)
 {
 this.countryOfCitizenship = citizenship;
 base.numOfHands = hands;
 base.numOfLegs = legs;
 }
 public override void Speak()
 {
 Console.WriteLine("A man can speak multiple languages, its
citizenship is " + this.countryOfCitizenship +
" and number of legs and hands are " + this.numOfLegs + " " +
this.numOfHands);
 }
}

In the preceding code, we are doing the following:

We are inheriting the Dog class from the base class of Animal.
We are overriding the Speak function in the derived class.
We are also using the attributes that were declared in the base class.

Understanding Object-Oriented Programming Chapter 3

[76]

Now, let's see how runtime polymorphism works. In the following code, we are declaring
an object of the base Animal class and pointing it to an object of the derived class:

Animal animal = new Animal();
animal.numOfHands = 2;
animal.numOfLegs = 4;
animal.Speak();

animal = new Dog("Labrador", 0, 4);
animal.Speak();

animal = new Human("India", 2, 2);
animal.Speak();
Console.ReadLine();

Once we execute this code, we will notice that, based on the class object reference that the
base object animal is pointing to, the appropriate implementation of the Speak method
will be loaded. This loading is decided at runtime, which is why this is called runtime
polymorphism:

Summary
In this chapter, we learned about object-oriented programming, which is the main essence
of any high-level programming language, including C#. We learned about the four pillars
of OOP, that is, encapsulation, abstraction, polymorphism, and inheritance, and understood
how they help us write applications that are easy to maintain, are scalable, and have a good
amount of reuse.

We learned how encapsulation helps us in keeping our code structured by grouping
together all the related properties and methods in one class. Then, we learned how
abstraction helps us reduce the complexity of a module that is exposed to the entire
application. Using abstraction, we can make sure that all the complexities of a class are not
exposed to outside classes, which also helps us maintain the application better. We also
learned how we can use both runtime and static polymorphism to implement similar
functionalities that can be reused across different inputs, thus helping us reuse our code
throughout the application. Finally, we learned how inheritance helps us have more control
over the application's implementation. Using inheritance, we can make sure that similar
classes implement a set of properties and methods that are common across them.

Understanding Object-Oriented Programming Chapter 3

[77]

While writing any program in C#, it's highly important that we keep these principles in
mind. The biggest mistake that some C# programmers make these days is they don't utilize
these core principles of OOP programming and, instead, the program that's written
resembles more of a procedural language program. From a maintenance perspective, it
helps us a lot as, to some extent, it ensures that the bug fixes in one module do not impact
the complete application.

In the next chapter, we will look at the different operators that are used across C#
programming. We will look at how we can manage program flow using operators and
different conditional selection statements. We will also look at different iteration statements
such as for and while loop, which help us control the program's flow.

Questions
Which of the following best describes a program in which we have multiple1.
functions with the same name but they differ in terms of the number of
parameters and types of parameters accepted by them?

Method overloadinga.

Method overridingb.

Encapsulationc.

Abstractiond.

Which keyword must be used when a derived class is defining the2.
implementation of a function that's present in the base class?

Newa.

Abstractb.

Virtualc.

Overrided.

Understanding Object-Oriented Programming Chapter 3

[78]

Which keyword can we use to prevent the inheritance of a particular class?3.
Abstracta.

Privateb.

Sealedc.

Protectedd.

Answers
Method overloading or function overloading is the concept in which different1.
implementations of a function with same name is made. Depending upon the
number of arguments or type of argument, appropriate implementation of the
function is loaded.
The override keyword allows a derived class to implement the abstract method2.
declared in the base class.
Sealed. If a class is declared as sealed, it will prevent the inheritance of the base3.
class throughout the application.

4
Implementing Program Flow

This chapter focuses on how we can manage program flow in C#. In other words, this
chapter will help you understand how the program controls and validates input and output
arguments and makes decisions using statements that are available in C#. We will cover
various Boolean expressions, such as If/Else and Switch, which control the flow of code
based on certain conditions. We will also evaluate various operators, such as the
conditional operator and the equality operator (<, >, ==), both of which govern the flow of
code. We will focus on how we can iterate across collections (with for loops, while loops,
and so on) and explicit jump statements.

The following topics will be covered in this chapter.

Understanding operators
Understanding conditional/selection statements
Iteration statements

Technical requirements
The exercises in this chapter can be practiced using Visual Studio 2012 or above with .NET
Framework version 2.0 or above. However, any new C# features from version 7.0 and
above require you to have Visual Studio 2017.

If you don't have a license for any of these products, you can download the community
version of Visual Studio 2017 from https:/ /visualstudio. microsoft. com/ downloads/ .

The sample code for this chapter can be found in this book's GitHub repository at https:/ /
github.com/PacktPublishing/ Programming- in- C-sharp- Exam- 70- 483- MCSD- Guide/ tree/
master/Chapter04.

https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter04

Implementing Program Flow Chapter 4

[80]

Understanding operators
Before we dive into this topic, let's understand what operators and operands are. These are
two important terms we will use in this section of this book:

An operator is a programming element that is applied to one or more operands
in an expression or statement.
An operand is an object that can be manipulated.

C# offers different types of operators, such as the Unary operator ([increment
operator] ++, new) which takes one operand, Binary operators of the arithmetic type (+, -
, *, /), relational types (> ,<, <=, >=), equality types (=, !=), and shift types (>>, <<), all of
which are used between two operands. C# also offers a ternary operator that takes three
operands (?:).

Unary operators
An operator that requires only one operand is called a Unary operator. They can perform
operations such as increment, decrement, negation and so on. They can also be applied
before (prefix) or after (postfix) the operand.

The following table lists a few Unary operators. x, in the left-hand column, is an operand
where we apply the operators:

Expression Description

+x
Identity: This operator can be used as a Unary or Binary operator. If it's used on numeric
values, it returns the value. If it's applied on two numeric operands, it returns the sum of
operands. On strings, it concatenates both operands.

-x
Negation: This operator can be used as a Unary or Binary operator. Applying this operator on
numeric types results in the numeric negation of the operand.

!x
Logical negation: This operator negates the operand. It is applied for bool operands and
returns if the operand is false.

~x Bitwise negation: This produces a complement of its operand by reversing each bit.

++x
Pre-increment: This is an increment operator and can appear before or after the operand.
When prefixed, the result is placed after the increment. If postfixed, the result is placed before
the increment.

--x
Pre-decrement: This is a decrement operator and can appear before or after the operand.
When prefixed, the result is placed after decrement. If postfixed, the result is placed before the
decrement.

Implementing Program Flow Chapter 4

[81]

In the following code, we will declare a few variables and use them to showcase examples
of the preceding operators:

int firstvalue = 5;
int secondvalue = 6;
string firststring = "Hello ";
string secondstring = "World";

+ and - can be used with a single operand or multiple operands. When used with multiple
operands of the integer type, they either sum the operands or get the difference. The +
operator can be used with string type operands as well. In this case, it will concatenate both
the strings. A string and an operator is always a Binary operator:

//'+' operator
Console.WriteLine(+firstvalue); // output: 5
Console.WriteLine(firstvalue + secondvalue); // output: 11
Console.WriteLine(firststring + secondstring); // output: Hello World
//'-' operator
Console.WriteLine(-firstvalue); // output: -5
Console.WriteLine(firstvalue - secondvalue); // output = -1

The ! operator works well with Boolean operands where it produces logical negation; that
is, true becomes false, whereas the ~ operator works with bitwise operands. In the
following example, a Binary digit representation and its bitwise negation are displayed. We
are taking an integer value and converting it into a Binary value and then negating it using
the ~ operator and displaying it in base 2 format:

//'!' operator
Console.WriteLine(!true);

//output : false

//'~' operator
Console.WriteLine("'~' operator");
int digit = 60;
Console.WriteLine("Number is : {0} and binary form is {1}:", digit,
IntToBinaryString(digit));
int digit1 = ~digit;
Console.WriteLine("Number is : {0} and binary form is {1}:", digit1,
Convert.ToString(digit1, 2));

//Output:
Number is : 60 and binary form is 111100:
Number is : -61 and binary form is 11111111111111111111111111000011

Implementing Program Flow Chapter 4

[82]

The ++ and -- operators, when applied on integer operands, perform increments or
decrements on the operands, respectively. These can be applied pre or post an operand. The
following example shows both the post and pre increment and decrement operators. Pre
produces results before displaying and post produces results after displaying:

// '++' Operator
Console.WriteLine(++firstvalue); // output: 6
// '--' Operator
Console.WriteLine(--firstvalue); // output: 5
// '++' Operator
Console.WriteLine(firstvalue++); // output: 5
Console.WriteLine(firstvalue--); // output: 6

Relational operators
As the name suggests, relational operators test or define the relationship between two
operands, for example, if the first operand is less than the second one, or greater than or
equal to it. These operators are applied to numeric operands.

The following table lists a few Binary operators:

Expression Description

<
Defined as less than the operator. Used as X < Y. Returns true if the first operand
is less than the second operand.

>
Defined as greater than an operator. Used as X > Y. Returns true if the first
operand is greater than the second operand.

<= Less than Or Equal To operator. Used as X <= Y.
>= Greater than Or Equal To operator. Used as X >= Y.

We will use the same variables we defined in the preceding example to understand these
relational operators. Here, we are trying to find out whether firstvalue is less than
secondvalue or whether firstvalue is greater than secondvalue:

// '<' Operator
Console.WriteLine(firstvalue < secondvalue);
// output = true

// '>' Operator
Console.WriteLine(firstvalue > secondvalue);
// output = false

// '>=' Operator
Console.WriteLine(secondvalue >= firstvalue);
// output = true

Implementing Program Flow Chapter 4

[83]

// '<=' Operator
Console.WriteLine(firstvalue <= secondvalue);
// output = true

Equality operators
Equality operators are a type of Binary operator, where 2 operands are required. Because
they check for the equality of the operands, these can be termed under relational operators
as well.

The following table lists the available equality operators:

Expression Description

==
This works for predefined value types. Defined as the equality operator. Used as X == Y.
Returns true if the first operand is equal to the second operand.

!=
Defined as the inequality operator. Used as X! = Y. Returns true if the operands are not
equal.

We will use the same variables we created in the preceding examples to try and understand
the equality operators. Here, we are trying to check if firstvalue is equal or not equal to
secondvalue:

//using variables created earlier.
// '==' Operator
Console.WriteLine(secondvalue == firstvalue); // output = false
// '!=' Operator
Console.WriteLine(firstvalue != secondvalue); // output = true

Shift operators
Shift operators are another type of Binary operator. They take two integer operands and left
shift or right shift the bits by the number specified.

The following table lists the available shift operators:

Expression Description

<< This is an example of a Binary operator that allows you to shift the first operand left by the
number of bits specified in the second operand. The second operator must be a type of Int.

>> This is an example of a Binary operator that allows you to shift the first operand right by the
number of bits specified in the second operand. The second operator must be a type of Int.

Implementing Program Flow Chapter 4

[84]

In the following example, the program accepts an integer operand and shifts left or right by
1 bit. Shift works on Binary operators, so, for our understanding, I wrote a method that will
convert an integer into Binary format and display it. When we pass an integer number of 9
to the program, i, and use the >> operator, its Binary string is shifted by 1 and the result is
displayed. When 1001 is right-shifted, it becomes 100:

public static string IntToBinaryString(int number)
{
 const int mask = 1;
 var binary = string.Empty;
 while (number > 0)
 {
 // Logical AND the number and prepend it to the result string
 binary = (number & mask) + binary;
 number = number >> 1;
 }
 return binary;
}

// '>>' Operator
Console.WriteLine("'>>' operator");
int number = 9;
Console.WriteLine("Number is : {0} and binary form is {1}:", number,
IntToBinaryString(number));
number = number >> 1;
Console.WriteLine("Number is : {0} and binary form is {1}:", number,
IntToBinaryString(number));

//Output:
//Number is : 9 and binary form is 1001
//Number is : 4 and binary form is 100

// '<<' Operator
Console.WriteLine("'<<' operator");
Console.WriteLine("Number is : {0} and binary form is {1}:", number,
IntToBinaryString(number));
number = number << 1;
Console.WriteLine("Number is : {0} and binary form is {1}:", number,
IntToBinaryString(number));

//Output:
//Number is : 4 and binary form is 100
//Number is : 8 and binary form is 1000

Implementing Program Flow Chapter 4

[85]

Logical, conditional, and null operators
C# allows you to combine the aforementioned operators with OR (||), AND (&&), or XOR (^).
These are applied to both operands in an expression.

The following table lists the logical, conditional, and null operators:

Expression Description and example
Logical OR (|) This operator computes both operands and returns false if both are false.

Logical AND (&)

This operator can be used in two forms: Unary address operator or Binary logical
operator. When used as a Unary address operator, it returns the address of the
operand. If used as a Binary, it evaluates both operands and returns true if both
operands are true; otherwise, it will return false.

Conditional
AND (&&)

This conditional operator is used when two bool operands need to be evaluated.
When applied, both operands are computed and returns true if both operands are
true. If the first operand returns false, the conditional operator doesn't evaluate the
other operator. This is also known as the short-circuiting logical AND operator.

Conditional OR
(||)

This is also known as the short-circuiting logical OR operator. The conditional OR
operator evaluates both bool operands and returns true if either of them is true. If
the first operand returns true, it won't evaluate the second operator.

Logical XOR (^)
This operator is evaluated as a bitwise exclusive OR for integral types and logical
exclusive and OR for bool types. When applied, it computes both operands and
returns true if one of the operands is true; otherwise, it returns false.

Null coalescing
(??)

The null coalescing operator computes both operands and returns the operand that is
not null. It's used like so: int y = x ?? 1;. In this scenario, if x is null, y is
assigned a value of 1; otherwise, y is assigned a value of x.

Ternary operator
(?:)

The conditional operator is also known as the Ternary operator and evaluates a
Boolean expression. The condition is ? true value : false value. If the
condition is true, the operator returns true value, but if the condition is false,
the operator returns false value. Ternary operators support nested expressions or
operators, which is also known as being right-associative.

The following code will allow us to understand each of these statements in detail. Initially,
we will define the required variables and methods and then proceed with each statement.
The following code is available on GitHub. The link is provided in the Technical requirements
section:

int firstvalue = 5;
int secondvalue = 6;
int? nullvalue = null;
private bool SecondOperand(bool result)
{
 Console.WriteLine("SecondOperand computed");

Implementing Program Flow Chapter 4

[86]

 return result;
}
private bool FirstOperand(bool result)
{
 Console.WriteLine("FirstOperand computed");
 return result;
}

In the following code block, logical OR (|) shows usage of the | operator. We have two
Boolean expressions in the following code block that are evaluated at runtime and return
either true or false. This operator always returns true except when both operands
return false:

//LOGICAL OR (|)
Console.WriteLine((firstvalue > secondvalue) | (firstvalue < secondvalue));
// output : true
Console.WriteLine((firstvalue < secondvalue) | (firstvalue < secondvalue));
// output : true
Console.WriteLine((firstvalue < secondvalue) | (firstvalue > secondvalue));
// output : true
Console.WriteLine((firstvalue > secondvalue) | (firstvalue > secondvalue));
// output : false

In the following code block, logical AND shows how the & operator can be used. Logical AND
evaluates both operands and returns true if both operands are evaluated as true;
otherwise, it returns false:

//LOGICAL AND (&)
Console.WriteLine(FirstOperand(true) & SecondOperand(true));
// output : FirstOperand computed, SecondOperand computed, true
Console.WriteLine(FirstOperand(false) & SecondOperand(true));
// output : FirstOperand computed, SecondOperand computed, false
Console.WriteLine(FirstOperand(true) & SecondOperand(false));
// output : FirstOperand computed, SecondOperand computed, false
Console.WriteLine(FirstOperand(false) & SecondOperand(false));
// output : FirstOperand computed, SecondOperand computed, false

In the following code clock, the conditional AND (&&) illustrates the && operator. This
operator evaluates the first operator and, if it is true, it evaluates the second operator.
Otherwise, it returns false:

//CONDITIONAL AND (&&)
Console.WriteLine(FirstOperand(true) && SecondOperand(true));
// output = FirstOperand computed, SecondOperand computed, true
Console.WriteLine(FirstOperand(false) && SecondOperand(true));
// output = FirstOperand computed, false
Console.WriteLine(FirstOperand(true) && SecondOperand(false));

Implementing Program Flow Chapter 4

[87]

// output = FirstOperand computed, false
Console.WriteLine(FirstOperand(false) && SecondOperand(false));
// output = FirstOperand computed, false

In the following code block, the conditional OR (||) illustrates the || operator. This
operator returns true if any of the operands is true; otherwise, it returns false:

//CONDITIONAL OR (||)
Console.WriteLine(FirstOperand(true) || SecondOperand(true));
// output = FirstOperand computed, true
Console.WriteLine(FirstOperand(false) || SecondOperand(true));
// output = FirstOperand computed, SecondOperand computed, true
Console.WriteLine(FirstOperand(true) || SecondOperand(false));
// output = FirstOperand computed, true
Console.WriteLine(FirstOperand(false) || SecondOperand(false));
// output = FirstOperand computed, SecondOperand computed, false

In the following code, the logical XOR (^) explains the ^ operator on bool operands. This
returns true if one of the operands is true. This is similar to the logical OR operator:

//LOGICAL XOR (^)
Console.WriteLine(FirstOperand(true) ^ SecondOperand(true));
// output = FirstOperand computed, SecondOperand computed, false
Console.WriteLine(FirstOperand(false) ^ SecondOperand(true));
// output = FirstOperand computed, SecondOperand computed,true
Console.WriteLine(FirstOperand(true) ^ SecondOperand(false));
// output = FirstOperand computed, SecondOperand computed,true
Console.WriteLine(FirstOperand(false) ^ SecondOperand(false));
// output = FirstOperand computed, SecondOperand computed,false

Here, we will look at null coalescing and the ternary operator. The null coalescing operator,
??, is used to check if an operand is null before returning its value. It returns the value if
the first operand is not null; otherwise, it returns the second operand. This can be used in a
nested form as well.

The ternary operator, (?:), is used to evaluate an expression. If it is true, then it returns
true-value; otherwise, it returns false-value:

//Null Coalescing (??)
Console.WriteLine(nullvalue ?? firstvalue);// output : 5

//Ternary Operator (? :)
Console.WriteLine((firstvalue > secondvalue) ? firstvalue : secondvalue);//
output : 6
Console.WriteLine((firstvalue < secondvalue) ? firstvalue : secondvalue);//
output : 5

Implementing Program Flow Chapter 4

[88]

Understanding conditional/selection
statements
C# offers multiple conditional/selection statements to help us make decisions throughout
our programming. We can use all of the operators we learned about in the previous
sections alongside these statements. These statements help the program take on a specific
flow based on whether the expression is evaluated as true or false. These statements are
the most widely used ones in C#.

The following table lists the available conditional/selection statements:

Expression Description

If..else
If statements evaluate the expression that's provided. If it is true, then
the statements are executed. If it is false, then else statements are
executed.

Switch..case..default Switch statements evaluate a specific expression and execute the switch
section if the pattern matches the match expression.

break
break allows us to terminate a control flow and move on to the next
statement.

goto
goto is used to transfer control to a specific label when the expression
evaluates to true.

In the following subsections, we will cover each of these statements in detail.

if...else
Using the if statement is simple and easy in a scenario where the user wants to execute a
specific code block when a condition is met. C# provides us with widely used if statements
that allow us to achieve the desired functionality.

If (true) then-statements Else (false) else-statements. The following is the general
syntax of the If / Else statement:

If(Boolean expression)
{
 Then statements; //these are executed when Boolean expression is true
}
Else
{
 Else statements; //these are executed when Boolean expression is false
}

Implementing Program Flow Chapter 4

[89]

When the Boolean expression evaluates to true, then-statements are executed, and when
the Boolean expression evaluates to false, else-statements are executed. When the
Boolean expression evaluates to either true or false, the program allows you to execute
single or multiple statements. However, multiple statements need to be enclosed in curly
braces, {}. This will ensure that all the statements are executed in one context and in
sequence. This is also called a code block. For single statements, these braces are optional,
but they are recommended from a code readability point of view. Also, we need to
understand that the scope of the variables is limited to the code block they were defined in.

The else statement is optional. If this is not provided, the program evaluates the Boolean
expression and executes the then-statement. At any given time, either the then-
statements or the else-statements of an if-else statement will be executed.

Let's look at a few examples. In the following code block, we have already set the condition
variable to true, so when the Boolean expression in the if statement is evaluated, it returns
true and the code block (then-statement) is executed. Else-statement is ignored:

bool condition = true;
if (condition)
{
 Console.WriteLine("Then-Statement executed");
}
else
{
 Console.WriteLine("Else-Statement executed");
}
//output: Then-Statement executed

In the following scenario, if the statement doesn't include the else part, when the Boolean
expression is evaluated to true, then-statements is executed by default:

if (condition)
{
 Console.WriteLine("Then-Statement without an Else executed");
}
//output: Then-Statement without an Else executed

C# also allows nested if and nested else statements. In the following code, we will see
how nested if statements can be used in a program.

Implementing Program Flow Chapter 4

[90]

When condition 1 is evaluated to true, by default, the then-statements of condition 1 are
executed. Similarly, when condition 2 is evaluated to true, the then-statements of
condition 2 are executed:

int variable1 = 15;
int variable2 = 10;

if (variable1 > 10)//Condition 1
{
 Console.WriteLine("Then-Statement of condition 1 executed");
 if (variable2 < 15) //Condition 2
 {
 Console.WriteLine("Then-Statement of condition 2 executed");
 }
 else
 {
 Console.WriteLine("Else-Statement of condition 2 executed");
 }
}
else
{
 Console.WriteLine("Then-Statement condition 1 executed");
}
//Output:
Then-Statement of condition 1 executed
Then-Statement of condition 2 executed

We can also define a nested if in an Else statement. For example, the user wants to find out
whether the character that was entered was a vowel and, if so, to print it. The following
code block illustrates how multiple if statements can be used. The program checks if the
entered character is a vowel or not and prints the results:

Console.Write("Enter a character: ");
char ch = (char)Console.Read();
if (ch.Equals('a'))
{
 Console.WriteLine("The character entered is a vowel and it is 'a'.");
}
else if (ch.Equals('e'))
{
 Console.WriteLine("The character entered is a vowel and it is 'e'.");
}
else if (ch.Equals('i'))
{
 Console.WriteLine("The character entered is a vowel and it is 'i'.");
}

Implementing Program Flow Chapter 4

[91]

else if (ch.Equals('o'))
{
 Console.WriteLine("The character entered is a vowel and it is 'o'.");
}
else if (ch.Equals('u'))
{
 Console.WriteLine("The character entered is a vowel and it is 'u'.");
}
else
{
 Console.WriteLine("The character entered is not vowel. It is:" + ch);
}

switch..case..default
The switch statement evaluates an expression against a condition or multiple conditions
and executes a labeled code block. These labeled code blocks are called switch labels. Each
switch label is followed by a break statement which helps the program come out of the loop
and move on to the next statement. In the preceding example, where we checked for vowels
using the if...else statement, we used if...else for each vowel and a default value
for any other character. This can be further simplified using a switch...case...default
statement.

All we want is to have a condition expression check the character. If it matches any of the
matching expressions, that is, a vowel, it prints the vowel; otherwise, it prints that it is not a
vowel:

Console.Write("Enter a character: ");
char ch1 = (char)Console.Read();
switch (ch1)
{
 case 'a' :
 case 'e':
 case 'i' :
 case 'o' :
 case 'u':
 Console.WriteLine("The character entered is a vowel and it is: " +
ch1);
 break;
 default:
 Console.WriteLine("The character entered is not vowel and it is: "
+ ch1);
 break;
}

Implementing Program Flow Chapter 4

[92]

break
In C#, the break; statement allows us to break a loop or a block of statements where it is
enclosed. For example, in a recursive function, you might need to break after n number of
iterations. Alternatively, in an example where you want to print the first 5 numbers in a
loop of 10 iterations, you will want to use the break statement:

for (int i = 1; i <= 10; i++)
{
 if (i == 5)
 {
 break;
 }
 Console.WriteLine(i);
}

//output:
1
2
3
4

goto
Goto statements allow the program to transfer control to a specific section or code block.
This is also called a labeled statement. The classic example is the Switch..case statement,
which we discussed in the previous section. When an expression matches a case, the
labeled criteria statements in that code block are executed:

for (int i = 1; i <= 10; i++)
{
 if (i == 5)
 {
 goto number5;
 }
 Console.WriteLine(i);
}
number5:
 Console.WriteLine("You are here because of Goto Label");
//Output
1
2
3
4
You are here because of Goto Label

Implementing Program Flow Chapter 4

[93]

continue
The continue; statement allows the program to skip the execution of statements until the
end of that code block and continues with the next iteration. For example, in a for loop of
1..10, if the continue statement is placed within an expression, that is, i <= 5, it looks at
all 10 numbers, but the action will only be performed on 6, 7, 8, 9, and 10:

for (int i = 1; i <= 10; i++)
{
 if (i <= 5)
 {
 continue;
 }
 Console.WriteLine(i);
}
//output
6
7
8
9
10

Iteration statements
Iteration statements help execute a loop for a specific number of times or while a
conditional expression is met. All of the statements in a code block are executed in sequence
when a loop initiates. If the program encounters a jump statement or continue
statement, the execution flow is altered for that scenario. In the case of go-to, control
moves to the labeled code block and, in the case of continue statement, the loop ignores
all of the statements after continue.

The following are the keywords that are used in C# when an iteration or a loop is required:

do

for

foreach...in

while

Implementing Program Flow Chapter 4

[94]

do...while
A do statement is always used along with a while statement. The do statement executes a
code block and evaluates the while expression. If the while statement evaluates to true,
the code block is executed again. This continues as long as while evaluates to true.
Because the condition expression is evaluated after the code block is executed, do...while
always executes the code block at least once.

break;, continue;, return, or throw can be used to come out of this loop any time
during execution:

int intvariable = 0;
 do
 {
 Console.WriteLine("Number is :" + intvariable);
 intvariable++;

 } while (intvariable < 5);

//Output
Number is :0
Number is :1
Number is :2
Number is :3
Number is :4

for
Unlike do..while, for evaluates the condition expression first and if true, executes the
code block. The code block will not be executed once unless the condition is true. Similar to
do..while, we can come out of the loop using the return, throw, goto, or continue
statements.

Take a look at the following for statement's structure:

for (initializer; condition; iterator)
{
 body
}

Implementing Program Flow Chapter 4

[95]

The initializer, condition, and iterator are all optional. The body can be one statement or an
entire code block:

for (int i = 0; i <= 5; i++)
{
 Console.WriteLine("Number is :" + i);
}

//output
Number is :0
Number is :1
Number is :2
Number is :3
Number is :4
Number is :5

Initializer section
This section is executed only once. When the program's control encounters a for loop, the
initialization section is triggered. # allows one or more of the following statements in the
initializer section of the for loop, separated by a comma:

Declaration of the local loop variable. This is not available outside of the loop.
An assignment statement.
Method invocation.
Pre/post increment or decrement.
New object creation.
Await expression. We will look at this in more detail in the upcoming chapters.

Condition section
As we mentioned earlier, this is an optional section. If it's not provided, by default, it is
evaluated as true. If it is provided, the condition expression is evaluated before executing
every iteration. If the condition evaluates to false, the loop is terminated.

Iteration section
The iteration section defines what happens to the body of the loop. As detailed in the
Initializer section section, it can contain one or more of the aforementioned statements.

Implementing Program Flow Chapter 4

[96]

Examples of rare usage for statements
Here is an example for your reference:

int k;
int j = 10;
for (k = 0, Console.WriteLine("Start: j={j}"); k < j; k++, j--,
Console.WriteLine("Step: k={k}, j={j}"))
{
 // Body of the loop.
}
for (; ;)
{
 // Body of the loop.
}

foreach...in
Foreach is applicable to instances of the IEnumerable type or Generic collections. This
works similar to the for loop. Foreach is not just limited to these types; it can also be
applied to any instance that implements the GetEnumerator method without parameters
and returns a class, struct, or interface type. Foreach can also be applied to types that are
returned by the Current property of GetEnumerator and parameter less MoveNext
methods, which return a bool value.

From C# 7.3 onward, the Current property returns a reference to the
return value (ref T), where T is of the collection element type.

In the following example, we declare the list of strings and would like to iterate through the
list and display every item on the screen:

List<string> stringlist = new List<string>() { "One", "Two", "Three" };
foreach (string str in stringlist)
{
 Console.WriteLine("Element #"+ str);
}

//Output:
Element #One
Element #Two
Element #Three

Implementing Program Flow Chapter 4

[97]

IEnumerator has a property called Current and a method called MoveNext. As the
foreach loop works to iterate the throw collections that implement these two, it keeps
track of which item in the collection is currently being evaluated and processed. This makes
sure that control is not passed through the end of the collection. Also, the foreach loop
doesn't allow the user to make changes to the initialized loop variable but does allow them
to modify the value in the object that's referred to in the variable.

while
Similar to the for loop, a condition is evaluated before we execute the code block. This
means that the code block is either executed more than once or not executed at all. Just like
any other loop, you can come out of the loop using the break, continue, return, or
throw statements:

int n = 0;
while (n < 5)
{
 Console.WriteLine(n);
 n++;
}
//output
0
1
2
3
4

Summary
In this chapter, we looked at Unary operators, relational operators, shift operators, and
equality, conditional, and logical operators, which can be used with one or two operands
and evaluated as boolean expressions using logical and conditional operators.

We looked at conditional statements and selective statements, which help us make
decisions. Some examples of these are the if condition, then statements, and else statements.
Switch...case...default helps match multiple expressions and execute multiple switch labels.

We also looked at iteration statements, which allow users to loop through a collection.
When they're used with jump statements such as goto, continue, and so on, they can exit
from the loop.

Implementing Program Flow Chapter 4

[98]

In the next chapter, we will look into delegates and events in detail. Delegates and events
play a major role in C# programming. Being able to call back delegates for the base for
events allows us to decouple our program. We will also understand Lambda expressions,
which can be used to create delegates. These are also called anonymous methods.

Questions
You have a scenario where you are evaluating a lot of conditions. In one1.
particular scenario, you want both operands to be evaluated and, if true, execute
the code block. Which one of the following statements would you use?

&&a.
||b.
&c.
^d.

You are using a for loop in your code and want to execute a specific code block2.
if a condition is met. Which one of the following statements would you use?

break;a.
continue;b.
throw;c.
goto;d.

In your program, there is a code block that you want to execute at least once and3.
execute until the condition evaluates to true. Which of the following statements
would you use?

While;a.
Do...while;b.
For;c.
foreach;d.

Implementing Program Flow Chapter 4

[99]

Answers
c1.
d2.
b3.

Further reading
More information on statements, expressions, and operators can be found at https:/ / docs.
microsoft.com/en- us/ dotnet/ csharp/ programming- guide/ statements- expressions-
operators/.

There is a video available on the Packt Publishing site that's helpful as well. It's called
Programming in C# .NET
(https://search.packtpub.com/?query=70-483&refinementList%5Breleased%5D%5B0%5D=
Available).

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/
https://search.packtpub.com/?query=70-483&refinementList%5Breleased%5D%5B0%5D=Available
https://search.packtpub.com/?query=70-483&refinementList%5Breleased%5D%5B0%5D=Available

5
Creating and Implementing

Events and Callbacks
This chapter focuses on events and callbacks in C#. They are important to understand since
they give us more control over programs. An event is a message or notification from an
object when either its property has been changed or a button has been clicked. A callback,
also known as a delegate, holds a reference to a function. C# comes with Lambda
expressions, which can be used to create delegates. These are also called anonymous
methods.

We will also spend some time looking at a new operator, known as a Lambda operator.
These are used in Lambda expressions. They were introduced in version 3.0 of C# so that
developers could instantiate delegates. Lambda expressions replaced the anonymous
methods that were introduced in C# 2.0 and are now widely used.

In this chapter, we will be covering the following topics:

Understanding delegates
Handling and raising events

By the end of this chapter, you will know what delegates are and how you can use them in
events and callbacks.

Technical requirements
The exercises in this chapter can be practiced using Visual Studio 2012 or above with .NET
Framework 2.0 or above. However, any new C# features from 7.0 onward require that you
have Visual Studio 2017 installed.

Creating and Implementing Events and Callbacks Chapter 5

[101]

If you don't have a license for any of the aforementioned products, you can download the
community version of Visual Studio 2017 from https:/ /visualstudio. microsoft. com/
downloads/.

The sample code for this chapter can be found on GitHub at https:/ /github. com/
PacktPublishing/Programming- in- C- Sharp- Exam- 70- 483-MCSD- Guide.

Understanding delegates
A delegate is nothing but a reference to a method, along with some parameters and a
return type. When a delegate is defined, it can be associated with any instance that provides
a compatible signature and a return type of the method. In other terms, delegates can be
defined as function pointers in C and C++. However, delegates are type-safe, secure, and
object-oriented.

A delegate model follows the observer pattern, which allows the subscriber to register with
and receive notifications from the provider. To get a better understanding of the observer
pattern, take a look at the references provided at the end of this chapter, in the Further
reading section.

A classic example of a delegate is event handlers in a Windows application, which are
methods that are invoked by delegates. In the context of events, a delegate is an
intermediary between the event source and the code that handles the event.

Delegates are ideal for callbacks because of their ability to pass methods as parameters.
Delegates are derived from the System.Delegate class.

The general syntax of delegate is as follows:

delegate <return type> <delegate name> <parameter list>

An example of a delegate declaration is as follows:

public delegate string delegateexample (string strVariable);

In the preceding example, the delegate that's been defined can be referenced by any method
that has a single string parameter and returns a string variable.

https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide

Creating and Implementing Events and Callbacks Chapter 5

[102]

Instantiating a delegate
The named method can be used to a when we're using versions of C# prior to 2.0. Version
2.0 introduced a new way to instantiate delegates. We will try to understand these methods
in the upcoming sections. Version 3.0 of C# replaces anonymous methods with Lambda
expressions, which are now widely used.

Initiating delegates using NamedMethod
Let's look at an example of NamedMethod so that we can understand how to initiate a
delegate. This is the method that was used prior to C# 2.0:

delegate void MathDelegate(int i, double j);
public class Chapter5Samples
{
 // Declare a delegate
 public void NamedMethod()
 {
 Chapter5Samples m = new Chapter5Samples();
 // Delegate instantiation using "Multiply"
 MathDelegate d = m.Multiply;
 // Invoke the delegate object.
 Console.WriteLine("Invoking the delegate using 'Multiply':");
 for (int i = 1; i <= 5; i++)
 {
 d(i, 5);
 }
 Console.WriteLine("");

 }
 // Declare the associated method.
 void Multiply(int m, double n)
 {
 System.Console.Write(m * n + " ");
 }
}
//Output:
Invoking the delegate using 'Multiply':
5 10 15 20 25

In the preceding code, first, we defined a delegate called MathDelegate, which accepts 2
parameters, 1 integer and another double type. Then, we defined a class where we wanted
to invoke MathDelegate using a named method known as Multiply.

Creating and Implementing Events and Callbacks Chapter 5

[103]

The MathDelegate d = m.Multiply; line is where we assigned a named method to a
delegate.

Named method delegates can encapsulate a static or instance method with any accessible
class or structure that matches the type of delegate. This allows the developer to extend
these methods.

In the following example, we will see how a delegate can be mapped to static and instance
methods. Add the following method to the Chapter5Samples class we created previously:

public void InvokeDelegate()
{
 HelperClass helper = new HelperClass();

 // Instance method mapped to delegate:
 SampleDelegate d = helper.InstanceMethod;
 d();

 // Map to the static method:
 d = HelperClass.StaticMethod;
 d();
}

//Create a new Helper class to hold two methods
// Delegate declaration
delegate void SampleDelegate();

internal class HelperClass
{
 public void InstanceMethod()
 {
 System.Console.WriteLine("Instance Method Invoked.");
 }

 static public void StaticMethod()
 {
 System.Console.WriteLine("Invoked function Static Method.");
 }
}

//Output:
Invoked function Instance Method.
Invoked function Static Method.

Creating and Implementing Events and Callbacks Chapter 5

[104]

In the preceding code, we defined two methods: the first one is a normal method, while the
second one is a static method. In the case of invoking delegates using a named method, we
can either use the first normal method or the second static method:

SampleDelegate d = helper.InstanceMethod;: This is a normal method.
d = HelperClass.StaticMethod;: This is a static method.

Initiating a delegate using anonymous functions
In a situation where creating new methods can be classed as overhead, C# allows us to
initiate a delegate and specify a code block. The delegate will process this code block when
it is invoked. This is the method that's used in C# 2.0 to invoke delegates. They are also
known as anonymous methods.

An expression or a statement that's defined inline instead of a delegate type is known as an
anonymous function.

There are two types of anonymous function:

Lambda expressions
Anonymous methods

We will look at these two types of functions in the upcoming subsections. However, before
we move on, we should also understand one new operator, called the Lambda operator.
This is used to represent Lambda expressions.

Lambda expressions
With C# 3.0, Lambda expressions were introduced and are widely used in invoking
delegates. Lambda expressions are created using Lambda operators. On the left-hand side
of the operator, we specify the input parameters, while on the left-hand side, we specify the
expression or code block. When a Lambda operator is used in an expression body, it
separates the member's name from the member's implementation.

The Lambda operator is represented as a => token. This operator is right-associative and
has the same precedence as an assignment operator. An assignment operator assigns a
right-hand operand value to a left-hand operand.

Creating and Implementing Events and Callbacks Chapter 5

[105]

In the following code, we are using a Lambda operator to compare a specific word in a
string array and return it. Here, we are applying a Lambda expression to each element of
the words array:

words.Where(w => w.Equals("apple")).FirstOrDefault();

This example also shows how we can use a LINQ query to get the same output.

We are trying to find "apple" from an array of words using a LINQ query. Any enumerable
collection allows us to query using LINQ and returns the desired output:

public void LambdaOperatorExample()
{
 string[] words = { "bottle", "jar", "drum" };
 // apply Lambda expression to each element in the array
 string searchedWord = words.Where(w =>
 w.Equals("drum")).FirstOrDefault();
 Console.WriteLine(searchedWord);
 // Get the length of each word in the array.
 var query = from w in words
 where w.Equals("drum")
 select w;
 string search2 = query.FirstOrDefault();
 Console.WriteLine(search2);
}

//Output:
drum
drum

A Lambda expression is the right-hand side operator of a Lambda operator and is widely
used in expression trees.

More information on expression trees can be on the Microsoft
documentation website.

This Lambda expression must be a valid expression. If the member type is void, it's classed
as a statement expression.

From C# 6 onward, these expressions support method and property get statements, while
from C# 7 onward, these expressions support constructors, finalizers, property set
statements, and indexers.

Creating and Implementing Events and Callbacks Chapter 5

[106]

In the following code, we are using an expression to write the first name and last name of
the variable and we have also used the Trim() function:

public override string ToString() => $"{fname} {lname}".Trim();

With this basic understanding of Lambda expressions and the Lambda operator, we can
move on and look at how we can use Lambda expressions to invoke a delegate.

Recall that a Lambda expression can be represented like so:

Input-Parameters => Expression

In the following example, two extra lines have been added to the existing method to invoke
the delegate using a Lambda expression. X is the input parameter, where the type of X is
identified by the compiler:

delegate void StringDelegate(string strVariable);
public void InvokeDelegatebyAnonymousFunction()
{
 //Named Method
 StringDelegate StringDel = HelperClass.StringMethod;
 StringDel("Chapter 5 - Named Method");

 //Anonymous method
 StringDelegate StringDelB = delegate (string s) { Console.WriteLine(s);
};
 StringDelB("Chapter 5- Anonymous method invocation");

 //LambdaExpression
 StringDelegate StringDelC = (X)=> { Console.WriteLine(X); };
 StringDelB("Chapter 5- Lambda Expression invocation");

}

//Output:
Chapter 5 - Named Method
Chapter 5- Anonymous method invocation
Chapter 5- Lambda Expression invocation

Anonymous methods
C# 2.0 introduced anonymous methods, while C# 3.0 introduced Lambda expressions,
which were later replaced with anonymous methods.

Creating and Implementing Events and Callbacks Chapter 5

[107]

One case where anonymous methods provide functionality that isn't possible when using a
Lambda expression is that they allow us to avoid parameters. These allow anonymous
methods to be converted into delegates with a number of different signatures.

Let's look at an example of how to use anonymous methods to initiate a delegate:

public void InvokeDelegatebyAnonymousFunction()
{
 //Named Method
 StringDelegate StringDel = HelperClass.StringMethod;
 StringDel("Chapter 5");

 //Anonymous method
 StringDelegate StringDelB = delegate (string s) { Console.WriteLine(s);
};
 StringDelB("Chapter 5- Anonymous method invocation");

}
internal class HelperClass
{
 public void InstanceMethod()
 {
 System.Console.WriteLine("Instance method Invoked.");
 }

 public static void StaticMethod()
 {
 System.Console.WriteLine("Invoked function Static Method.");
 }

 public static void StringMethod(string s)
 {
 Console.WriteLine(s);
 }
}

//Output:
Chapter 5
Chapter 5- Anonymous method invocation

In the preceding code, we defined a string delegate and wrote some inline code to invoke it.
The following is the code where we defined the inline delegate, also known as an
anonymous method:

StringDelegate StringDelB = delegate (string s) { Console.WriteLine(s); };

Creating and Implementing Events and Callbacks Chapter 5

[108]

The following code shows how we can create an anonymous method:

// Creating a handler for a click event.
sampleButton.Click += delegate(System.Object o, System.EventArgs e)
 { System.Windows.Forms.MessageBox.Show(
 "Sample Button Clicked!"); };

Here, we created a code block and passed it as a delegate parameter.

An anonymous method will throw an error if the runtime encounters any jump statements,
such as goto, break, or continue, inside the code block and the target is outside the code
block. Also, in a scenario where a jump statement is outside the code block and the target is
in it, with the int anonymous method, an exception will be thrown.

Any local variables that are created outside of the delegate's scope and contained in an
anonymous method declaration are called outer variables of the anonymous method. For
example, in the following code segment, n is an outer variable:

int n = 0;
Del d = delegate() { System.Console.WriteLine("Copy #:{0}", ++n); };

Anonymous methods are not allowed on the left-hand side of the is operator. No unsafe
code can be accessed or used in an anonymous method, including the in, ref, or out
parameters of an outer scope.

Variance in delegates
C# supports variance in delegate types with matching method signatures. This feature was
introduced in .NET Framework 3.5. This means delegates can now be assigned with
matching signatures but also that methods can return derived types.

If a method has a return type derived from the one defined in a delegate, it is defined as
covariance in delegates. Similarly, if a method has fewer derived parameter types than
those defined in a delegate, it is defined as contravariance.

Let's look at an example to understand covariance. For the purpose of this example, we will
create a few classes.

Creating and Implementing Events and Callbacks Chapter 5

[109]

Here, we will create the ParentReturnClass, Child1ReturnClass, and Child2Return
classes. Each of these has a string type property. Both child classes are inherited from
ParentReturnClass:

internal class ParentReturnClass
{
 public string Message { get; set; }
}

internal class Child1ReturnClass : ParentReturnClass
{
 public string ChildMessage1 { get; set; }
}
internal class Child2ReturnClass : ParentReturnClass
{
 public string ChildMessage2 { get; set; }
}

Now, let's add two new methods to the previously defined helper class, each returning the
respective child classes we defined earlier:

public Child1ReturnClass ChildMehod1()
{
 return new Child1ReturnClass
 {
 ChildMessage1 = "ChildMessage1"
 };
}
public Child2ReturnClass ChildMehod2()
{
 return new Child2ReturnClass
 {
 ChildMessage2 = "ChildMessage2"
 };
}

Now, we will define a delegate that returns ParentReturnClass. We'll also define a new
method that will initiate this delegate for each of the child methods. One important point to
observe in the following code is that we have used explicit typecast to convert
ParentReturnClass into ChildReturnClass1 and ChildReturnClass2:

delegate ParentReturnClass covrianceDelegate();
public void CoVarianceSample()
{
 covrianceDelegate cdel;
 cdel = new HelperClass().ChildMehod1;
 Child1ReturnClass CR1 = (Child1ReturnClass)cdel();

Creating and Implementing Events and Callbacks Chapter 5

[110]

 Console.WriteLine(CR1.ChildMessage1);
 cdel = new HelperClass().ChildMehod2;
 Child2ReturnClass CR2 = (Child2ReturnClass)cdel();
Console.WriteLine(CR2.ChildMessage2);
}

//Output:
ChildMessage1
ChildMessage2

In the preceding example, the delegate is returning ParentReturnClass. However, both
ChildMethod1 and ChildMethod2 are returning child classes that were inherited from
ParentReturnClass. This means that methods that return more derived types than those
defined in the delegate are permitted. This is called covariance.

Now, let's look at another example to understand contravariance. Extend the previously
created helper class by adding a new method that accepts ParentReturnClass as a
parameter and returns void:

public void Method1(ParentReturnClass parentVariable1)
{
 Console.WriteLine(((Child1ReturnClass)parentVariable1).ChildMessage1);
}

Define a delegate that accepts Child1ReturnClass as a parameter:

delegate void contravrianceDelegate(Child1ReturnClass variable1);

Now, create a method to initiate the delegate:

public void ContraVarianceSample()
{
 Child1ReturnClass CR1 = new Child1ReturnClass() { ChildMessage1 =
"ChildMessage1" };
 contravrianceDelegate cdel = new HelperClass().Method1;
 cdel(CR1);
}

//Output:
ChildMessage1

Because method one works with the parent class, it will definitely work with the class that
is inherited from the parent class. C# permits fewer derived types as parameters than those
defined in the delegate.

Creating and Implementing Events and Callbacks Chapter 5

[111]

Built-in delegates
So far, we have seen how we can create custom delegates and use them in our program. C#
comes with a couple of built-in delegates, which developers can use instead of having to
create custom delegates. They are as follows:

Func

Action

Func takes zero or more parameters and returns one value as an out parameter, whereas
Action accepts zero or more parameters but returns nothing.

There is no requirement to declare an explicit delegate when working with Func or
Action:

public delegate TResult Func<out TResult>();

Action can be defined as follows:

public delegate void Action();

As we mentioned earlier, both take zero or more parameters. C# supports 16 different
forms of both delegates, all of which can be used in our program.

The general form of Func with two or more parameters is as follows. It takes comma-
separated in and out parameters, where the last parameter is always an out parameter
called TResult:

public delegate TResult Func<in T1,in T2,in T3,in T4,out TResult>(T1 arg1,
T2 arg2, T3 arg3, T4 arg4);

Similar to Func, here is the general form for Action with two or more parameters:

public delegate void Action<in T1,in T2,in T3,in T4>(T1 arg1, T2 arg2, T3
arg3, T4 arg4);

Multicast delegates
Invoking more than one method through a delegate is called multicasting. You can use +, -
, +=, or -+ to add or remove methods from the list of invoking methods. This list is called
the invocation list. It's used in event handling.

Creating and Implementing Events and Callbacks Chapter 5

[112]

The following example shows how we can invoke multiple methods by invoking a
delegate. We have two methods, both of which accept a string parameter and display it on
the screen. In the multicast delegate method, we are associating two methods
with stringdelegate:

delegate void StringDelegate(string strVariable);
public void MulticastDelegate()
{
 StringDelegate StringDel = HelperClass.StringMethod;
 StringDel += HelperClass.StringMethod2;
 StringDel("Chapter 5 - Multicast delegate Method1");
}

//Helper Class Methods
public static void StringMethod(string s)
{
 Console.WriteLine(s);
}

public static void StringMethod2(string s)
{
 Console.WriteLine("Method2 :" + s);
}

/Output:
Chapter 5 - Multicast delegate Method1
Method2 :Chapter 5 - Multicast delegate Method1

Handling and raising events
As we mentioned in the introduction of this chapter, events are any actions, such as a
keypress, mouse movement, or I/O operation, performed by the user. Sometimes, events
can be raised by system-generated operations such as creating/updating a record in a table.

.NET Framework events are based on the delegate model, which follows the observer
pattern. The observer pattern allows a subscriber to register for notifications and a
publisher to register for push notifications. It's like late binding and is a way for an object to
broadcast that something has happened.

A design pattern that allows you to subscribe/unsubscribe to a stream of events coming
from a publisher is called an observer pattern.

Creating and Implementing Events and Callbacks Chapter 5

[113]

For example, in the previous chapter, we worked on a code snippet where the program
finds whether the character that was entered by the user is a vowel or not. Here, the user
pressing a key on the keyboard is the publisher, which notifies the program regarding
which key was pressed. Now, our program, which is a subscriber to the provider, responds
to it by checking whether the character that was entered was a vowel or not and displays it
on the screen.

A message that's sent by an object to notify it that an action has occurred is called an event.
The object that raises this event is called an event sender or publisher. An object that
receives and responds to an event is called a subscriber.

A publisher event can have multiple subscribers, while a subscriber can handle publishing
events. Remember that multicast delegates, which we discussed in the previous sections,
are extensively used in events (publish-subscribe pattern).

By default, if a publisher has multiple subscribers, all are invoked synchronously. C#
supports calling these event methods asynchronously. We will understand this in more
detail in the upcoming chapters.

Before we dive into an example, let's try to understand a few of the terms we are going to
use:

event This is a keyword that's used to define an event in the publisher class in C#.
EventHandler This method is used to handle an event. This may or may not have event data.
EventArgs It represents a base class for the class that contains event data.

Event handlers support two variations: one with no event data and another with event
data. The following code represents a method that handles an event with no event data:

public delegate void EventHandler(object sender, EventArgs e);

The following code represents a method that handles an event with event data:

public delegate void EventHandler<TEventArgs>(object sender, TEventArgs e);

Let's look at an example and try to understand how we can raise events and handle them.

In this scenario, we are going to have a banking application where
customers make transactions such as creating new accounts, looking at
their credit and debit amounts, and making requests for their total
balance. We will raise events whenever such a transaction is made and
notify the customer.

Creating and Implementing Events and Callbacks Chapter 5

[114]

We will start with an Account class (publisher class), along with all the supporting
methods, such as credit(), debit(), showbalance(), and initialdeposit(). These
are the types of transactions a customer can operate their account with. Because the
customer needs to be notified whenever such a transaction happens, we will define an
event and an event handler with event data to handle the event:

public delegate void BankTransHandler(object sender,
BankTransEventArgs e); // Delegate Definition
 class Account
 {
 // Event Definition
 public event BankTransHandler ProcessTransaction;
 public int BALAmount;
 public void SetInitialDeposit(int amount)
 {
 this.BALAmount = amount;
 BankTransEventArgs e = new BankTransEventArgs(amount,
 "InitialBalance");
 // InitialBalance transaction made
 OnProcessTransaction(e);
 }
 public void Debit(int debitAmount)
 {
 if (debitAmount < BALAmount)
 {
 BALAmount = BALAmount - debitAmount;
 BankTransEventArgs e = new BankTransEventArgs(
 debitAmount, "Debited");
 OnProcessTransaction(e); // Debit transaction made
 }
 }
 public void Credit(int creditAmount)
 {
 BALAmount = BALAmount + creditAmount;
 BankTransEventArgs e = new BankTransEventArgs(
 creditAmount, "Credited");
 OnProcessTransaction(e); // Credit transaction made
 }
 public void ShowBalance()
 {
 BankTransEventArgs e = new BankTransEventArgs(
 BALAmount, "Total Balance");
 OnProcessTransaction(e); // Credit transaction made
 }
 protected virtual void OnProcessTransaction(
 BankTransEventArgs e)
 {

Creating and Implementing Events and Callbacks Chapter 5

[115]

 ProcessTransaction?.Invoke(this, e);
 }
 }

You may have observed the new class that we used in the previous example, that
is, TrasactionEventArgs. This class carries event data. We are going to define this class
now, which inherits from the EventArgs base class. We are going to define two variables,
amt and type, to carry variables to the event handler:

public class BankTransEventArgs : EventArgs
 {
 private int _transactionAmount;
 private string _transactionType;
 public BankTransEventArgs(int amt, string type)
 {
 this._transactionAmount = amt;
 this._transactionType = type;
 }
 public int TransactionAmount
 {
 get
 {
 return _transactionAmount;
 }
 }
 public string TranactionType
 {
 get
 {
 return _transactionType;
 }
 }
 }

Now, let's define a subscriber class to test how our event and event handler work. Here, we
will define an AlertCustomer method whose signature matches the delegate that was
declared in the publisher class. Pass a reference of this method to the delegate so that it
reacts to the event:

public class EventSamples
{
 private void AlertCustomer(object sender, BankTransEventArgs e)
 {
 Console.WriteLine("Your Account is {0} for Rs.{1} ",
 e.TranactionType, e.TransactionAmount);
 }
 public void Run()

Creating and Implementing Events and Callbacks Chapter 5

[116]

 {
 Account bankAccount = new Account();
 bankAccount.ProcessTransaction += new
 BankTransHandler(AlertCustomer);
 bankAccount.SetInitialDeposit(5000);
 bankAccount.ShowBalance();
 bankAccount.Credit(500);
 bankAccount.ShowBalance();
 bankAccount.Debit(500);
 bankAccount.ShowBalance();
 }
}

When you execute the preceding program, for each transaction made, a transaction handler
event is raised that invokes the notify-customer method and displays what type of
transactions took place on the screen, as follows:

//Output:
Your Account is InitialBalance for Rs.5000
Your Account is Total Balance for Rs.5000
Your Account is Credited for Rs.500
Your Account is Total Balance for Rs.5500
Your Account is Debited for Rs.500
Your Account is Total Balance for Rs.5000

Summary
In this chapter, we learned about delegates and how we can define, initiate, and use them
in our program. We understood variance in delegates, built-in delegates, and multicast
delegates. Finally, we looked at how delegates form the base for events before
understanding events, event handlers, and EventArgs.

Now, we can say that events encapsulate delegates and that delegates encapsulate
methods.

In the next chapter, we will learn about multithreading and asynchronous processing in C#.
We will understand and use threads in our program, and understand tasks, parallel classes,
async, await, and much more.

Creating and Implementing Events and Callbacks Chapter 5

[117]

Questions
Delegates are ideal for ___ because of their ability to pass a method as a1.
parameter.

Multicast delegates1.
Built-in delegates2.
Callbacks3.
Events4.

What are the different ways to initiate delegates? Choose all that apply.2.
Anonymous methods1.
Lambda expressions2.
Named methods3.
All of the above4.

Which method can have a derived return type than the one defined in the3.
delegate.

Anonymous method1.
Covariance2.
Anonymous function3.
Lambda expression4.

Which built-in delegate accepts zero or more parameters and returns void?4.
Action1.
Func2.
event3.
delegate4.

Which of the following is used in the declaration of a C# event?5.
event1.
delegate2.
EventHandler3.
class4.

A subscriber can notify the publisher about a change that happened to an object.6.
True1.
False2.

Creating and Implementing Events and Callbacks Chapter 5

[118]

Answers
Callbacks1.
All of the above2.
Covariance3.
Action4.
event5.
False6.

Further reading
To get a better understanding of the observer pattern, please take a look at https:/ / docs.
microsoft.com/en- us/ dotnet/ standard/ events/ observer- design- pattern.

The following is a good article that talks about declaring, initiating, and using delegates.
Samples can also be found there: https:/ /docs. microsoft. com/ en- us/dotnet/ csharp/
programming-guide/ delegates/ how- to- declare- instantiate- and- use- a-delegate.

https://docs.microsoft.com/en-us/dotnet/standard/events/observer-design-pattern
https://docs.microsoft.com/en-us/dotnet/standard/events/observer-design-pattern
https://docs.microsoft.com/en-us/dotnet/standard/events/observer-design-pattern
https://docs.microsoft.com/en-us/dotnet/standard/events/observer-design-pattern
https://docs.microsoft.com/en-us/dotnet/standard/events/observer-design-pattern
https://docs.microsoft.com/en-us/dotnet/standard/events/observer-design-pattern
https://docs.microsoft.com/en-us/dotnet/standard/events/observer-design-pattern
https://docs.microsoft.com/en-us/dotnet/standard/events/observer-design-pattern
https://docs.microsoft.com/en-us/dotnet/standard/events/observer-design-pattern
https://docs.microsoft.com/en-us/dotnet/standard/events/observer-design-pattern
https://docs.microsoft.com/en-us/dotnet/standard/events/observer-design-pattern
https://docs.microsoft.com/en-us/dotnet/standard/events/observer-design-pattern
https://docs.microsoft.com/en-us/dotnet/standard/events/observer-design-pattern
https://docs.microsoft.com/en-us/dotnet/standard/events/observer-design-pattern
https://docs.microsoft.com/en-us/dotnet/standard/events/observer-design-pattern
https://docs.microsoft.com/en-us/dotnet/standard/events/observer-design-pattern
https://docs.microsoft.com/en-us/dotnet/standard/events/observer-design-pattern
https://docs.microsoft.com/en-us/dotnet/standard/events/observer-design-pattern
https://docs.microsoft.com/en-us/dotnet/standard/events/observer-design-pattern
https://docs.microsoft.com/en-us/dotnet/standard/events/observer-design-pattern
https://docs.microsoft.com/en-us/dotnet/standard/events/observer-design-pattern
https://docs.microsoft.com/en-us/dotnet/standard/events/observer-design-pattern
https://docs.microsoft.com/en-us/dotnet/standard/events/observer-design-pattern
https://docs.microsoft.com/en-us/dotnet/standard/events/observer-design-pattern
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/how-to-declare-instantiate-and-use-a-delegate
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/how-to-declare-instantiate-and-use-a-delegate
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/how-to-declare-instantiate-and-use-a-delegate
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/how-to-declare-instantiate-and-use-a-delegate
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/how-to-declare-instantiate-and-use-a-delegate
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/how-to-declare-instantiate-and-use-a-delegate
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/how-to-declare-instantiate-and-use-a-delegate
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/how-to-declare-instantiate-and-use-a-delegate
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/how-to-declare-instantiate-and-use-a-delegate
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/how-to-declare-instantiate-and-use-a-delegate
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/how-to-declare-instantiate-and-use-a-delegate
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/how-to-declare-instantiate-and-use-a-delegate
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/how-to-declare-instantiate-and-use-a-delegate
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/how-to-declare-instantiate-and-use-a-delegate
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/how-to-declare-instantiate-and-use-a-delegate
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/how-to-declare-instantiate-and-use-a-delegate
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/how-to-declare-instantiate-and-use-a-delegate
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/how-to-declare-instantiate-and-use-a-delegate
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/how-to-declare-instantiate-and-use-a-delegate
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/how-to-declare-instantiate-and-use-a-delegate
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/how-to-declare-instantiate-and-use-a-delegate
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/how-to-declare-instantiate-and-use-a-delegate
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/how-to-declare-instantiate-and-use-a-delegate
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/how-to-declare-instantiate-and-use-a-delegate
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/how-to-declare-instantiate-and-use-a-delegate
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/how-to-declare-instantiate-and-use-a-delegate
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/how-to-declare-instantiate-and-use-a-delegate
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/how-to-declare-instantiate-and-use-a-delegate
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/how-to-declare-instantiate-and-use-a-delegate
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/how-to-declare-instantiate-and-use-a-delegate
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/how-to-declare-instantiate-and-use-a-delegate
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/how-to-declare-instantiate-and-use-a-delegate
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/how-to-declare-instantiate-and-use-a-delegate
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/how-to-declare-instantiate-and-use-a-delegate
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/how-to-declare-instantiate-and-use-a-delegate
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/how-to-declare-instantiate-and-use-a-delegate
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/how-to-declare-instantiate-and-use-a-delegate
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/how-to-declare-instantiate-and-use-a-delegate

6
Managing and Implementing

Multithreading
What happens when a long-running program starts executing on a client's computer? How
do operating systems handle such long-running processes? Does the operating system
notify the user about their progress? How does the operating system let the user know
when it has finished with these processes? Threading is the way in which the operating
system handles the responsiveness of your program while managing other system
resources. This is achieved using multiple threads of execution, which is one of the most
powerful ways to keep your application responsive while using the processor for other
events.

An operating system organizes each running application as a process. Each process may
contain one or more threads. A thread allows the operating system to allocate processor
time as required. Each thread holds scheduling priority and a set of structures that are used
by the system to pause or execute the thread. This is called thread context. In other words,
the thread context holds all the information that's required by the system to seamlessly
resume execution. As we've already mentioned, a process can contain multiple threads, all
of which share the same virtual address space of the process.

In this chapter, we will focus on creating and managing threads, synchronizing data across
threads, and multithreading. We'll also look at how the operating system uses this concept
to keep the responsiveness of the application.

In this chapter, we will cover the following topics:

Understanding threads and the threading process
Synchronizing data in multithreading
Multithreading

Managing and Implementing Multithreading Chapter 6

[120]

Technical requirements
The exercises in this chapter can be practiced using Visual Studio 2012 or above with .NET
Framework 2.0 or above. However, any new C# features from C# 7.0 and above require that
you have Visual Studio 2017 installed.

If you don't have a license for any of the aforementioned products, you can download the
community version of Visual Studio 2017 from https:/ /visualstudio. microsoft. com/
downloads/.

The sample code for this chapter can be found on GitHub at https:/ /github. com/
PacktPublishing/Programming- in- C- sharp- Exam- 70- 483-MCSD- Guide/ tree/ master/
Chapter06.

Understanding threads and the threading
process
A primary thread is started whenever a .NET program is started. Additional threads are
created by this primary thread to execute the application login either concurrently or in
parallel. These threads are called worker threads. These threads can execute any part of the
program code, which may include parts that are executed by another thread. As these
threads are free to cross application boundaries, .NET Framework provides a way to isolate
these threads within a process using application domains (not available in .NET Core).

If our program can perform multiple operations in parallel, it will drastically decrease the
total execution time. This can be achieved by utilizing multiple threads with
multiprocessors or the multicore environment. The Windows operating system, when used
alongside .NET Framework, ensures that these threads complete their respective tasks.
Managing these tasks does have overhead, however. The OS allocates each thread a certain
period of CPU time so that they can execute. After this period, a thread switch happens,
which is called context switching. This context is saved and restored for each switch. To do
this, Windows uses CPU registers and state data.

In an environment where multiple processors and multicore systems are available, we can
take advantage of these resources and increase the throughput of the application. Consider
a Windows application in which one thread (the primary thread) is handling the user
interface by responding to user actions and other threads (worker threads) perform
operations that require more time and processing. If the primary thread completes all of
these operations, the user interfaces won't be responsive.

https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter06

Managing and Implementing Multithreading Chapter 6

[121]

Because of this overhead, we need to carefully determine when to use multithreading.

In the upcoming sections, we will focus on how we can create and manage threads,
understand different thread properties, how we can create and pass parameters to threads,
the difference between foreground and background threads, how to destroy threads, and
more.

Managing threads
Threads can be created by creating a new instance of the System.Threading thread class
and providing the name of the method that you want to execute on a new thread to the
constructor. Using this class gives us more control and configuration of the program; for
example, you can set the priority of the thread and whether it is a long-running thread,
abort it, put it to sleep, and implement advanced configuration options.
The Thread.Start method is used to create a thread call, while
the Thread.Abort method is used to terminate the execution of a thread. The abort
method raises ThreadAbortException when invoked. Thread.Sleep can be used to
pause the execution of the thread for a certain amount of time. Finally,
the Thread.Interrupt method is used to interrupt a blocked thread.

Let's understand these concepts by looking at a few examples.

In the following code, ThreadSample is the primary thread, which starts the worker
thread. The worker thread loops 10 times and writes to the console, letting the process
know it has completed. After starting the worker thread, the primary thread loops four
times. Note that the output depends on the environment you are running this program on.
Try to change the seconds in the thread.sleep statement and observe the output:

internal class ThreadingSamples
 {
 public static void ThreadSample()
 {
 Console.WriteLine("Primary thread: Starting a new worker
thread.");
 Thread t = new Thread(new ThreadStart(ThreadOne));
 t.Start();
 //Thread.Sleep(1);
 for (int i = 0; i < 4; i++)
 {
 Console.WriteLine("Primary thread: Do something().");
 Thread.Sleep(1);

 }

Managing and Implementing Multithreading Chapter 6

[122]

 Console.WriteLine("Primary thread: Call Join(), to wait until
ThreadOne ends.");
 t.Join();
 Console.WriteLine("Primary thread: ThreadOne.Join has
returned.");
 }

 public static void ThreadOne()
 {
 for (int i = 0; i < 10; i++)
 {
 Console.WriteLine("ThreadOne running: {0}", i);
 Thread.Sleep(0);
 }
 }
 }

Let's check the output of our program. ThreadOne starts its execution first and initiates 10
different worker threads and then the primary thread is executed. If you delay the
execution of ThreadOne by using sleep, you will see the primary thread wait until
ThreadOne returns:

When the program is executed, a foreground thread is created automatically to execute the
code. This primary thread then creates worker threads as required to execute the sections of
the code from the same process. As you can see, the thread takes a delegate in its
constructor.

Managing and Implementing Multithreading Chapter 6

[123]

In the preceding program, we used thread.join, which lets the primary thread wait until
all the worker threads have completed their execution. Also, Thread.Sleep(0) tells
Windows that the current thread has finished its execution so that a context switch can
happen instead of Windows having to wait for the allocated time.

Thread properties
Each thread carries certain properties. The following table details each of them:

IsAlive Returns true if the thread is in a started state.
IsBackground Gets or sets this property to let the system know how to execute the thread.
Name Name of the thread.
Priority Gets or sets thread priority. The default is Normal.
ThreadState Gets the thread's current state.

In the following code sample, we will call a method that will display information about
some thread properties. We will also understand how we can pause a thread and terminate
it:

public static void ThreadProperties()
{
 var th = new Thread(ThreadTwo);
 th.Start();
 Thread.Sleep(1000);
 Console.WriteLine("Primary thread ({0})
exiting...",Thread.CurrentThread.ManagedThreadId);
}

private static void ThreadTwo()
{
 var sw = Stopwatch.StartNew();
 Console.WriteLine("ThreadTwo Id: {0} Threadtwo state: {1}, Threadtwo
Priority: {2}",
 Thread.CurrentThread.ManagedThreadId,
 Thread.CurrentThread.ThreadState,
 Thread.CurrentThread.Priority);
 do
 {
 Console.WriteLine("Threadtwo Id: {0}, Threadtwo elapsed time {1:N2}
seconds",
 Thread.CurrentThread.ManagedThreadId,
 sw.ElapsedMilliseconds / 1000.0);
 Thread.Sleep(500);
 } while (sw.ElapsedMilliseconds <= 3000);

Managing and Implementing Multithreading Chapter 6

[124]

 sw.Stop();
}

When you execute the program, you will see the properties of each thread. You will also
observe that although the primary thread has completed, the worker threads are still
executing:

You might have observed that only one thread is writing to the console at a time. This is
known as synchronization. In this case, it is handled by the console class for us.
Synchronization allows no two threads to execute the same code block at the same time.

Parameterized threads
Here, we will look at how we can pass arguments to the ThreadStart method. To achieve
this, we will be using the ParameterizedThreadStart delegate on the constructor. The
signature of this delegate is as follows:

public delegate void ParameterizedThreadStart(object obj)

When you pass a parameter as an object to the ThreadStart method, it will cast the
parameter to the appropriate type. The following sample program uses the same logic that
we used previously, except that we pass the interval as an argument via the ThreadStart
method:

 public static void ParameterizedThread()
 {
 var th = new Thread(ThreadThree);
 th.Start(3000);
 Thread.Sleep(1000);
 Console.WriteLine("Primary thread ({0}) exiting...",
Thread.CurrentThread.ManagedThreadId);
}

private static void ThreadThree(object obj)

Managing and Implementing Multithreading Chapter 6

[125]

{
 int interval = Convert.ToInt32(obj);
 var sw = Stopwatch.StartNew();
 Console.WriteLine("ThreadTwo Id: {0} ThreadThree state: {1},
ThreadThree Priority: {2}",
 Thread.CurrentThread.ManagedThreadId,
 Thread.CurrentThread.ThreadState,
 Thread.CurrentThread.Priority);
 do
 {
 Console.WriteLine("ThreadThree Id: {0}, ThreadThree elapsed time
{1:N2} seconds",
 Thread.CurrentThread.ManagedThreadId,
 sw.ElapsedMilliseconds / 1000.0);
 Thread.Sleep(500);
 } while (sw.ElapsedMilliseconds <= interval);
 sw.Stop();
}

The following screenshot shows the output of the preceding code:

Now, let's look at foreground and background threads.

Foreground and background threads
By default, when a thread is created, it is created as a foreground thread. You can use the
IsBackground property to make a thread a background thread. The main difference
between foreground and background threads is that a background thread does not run if all
the foreground threads are terminated. The runtime aborts all the background threads
when foreground threads are stopped. If a thread is created using a thread pool, then these
threads are executed as background threads. Note that when an unmanaged thread enters
the managed execution environment, it is executed as a background thread.

Managing and Implementing Multithreading Chapter 6

[126]

Let's jump into an example to understand the difference between foreground and
background threads:

public static void BackgroundThread()
{
 Console.WriteLine("Thread Id: {0}" + Environment.NewLine + "Thread
State: {1}" + Environment.NewLine + "Priority {2}" + Environment.NewLine +
"IsBackground: {3}",
 Thread.CurrentThread.ManagedThreadId,
 Thread.CurrentThread.ThreadState,
 Thread.CurrentThread.Priority,
 Thread.CurrentThread.IsBackground);
 var th = new Thread(ExecuteBackgroundThread);
 th.IsBackground = true;
 th.Start();
 Thread.Sleep(500);
 Console.WriteLine("Main thread ({0})
exiting...",Thread.CurrentThread.ManagedThreadId);
}
private static void ExecuteBackgroundThread()
{
 var sw = Stopwatch.StartNew();
 Console.WriteLine("Thread Id: {0}" + Environment.NewLine + "Thread
State: {1}" + Environment.NewLine + "Priority {2}" +
Environment.NewLine + "IsBackground {3}",
 Thread.CurrentThread.ManagedThreadId,
 Thread.CurrentThread.ThreadState,
 Thread.CurrentThread.Priority,
 Thread.CurrentThread.IsBackground);
 do
 {
 Console.WriteLine("Thread {0}: Elapsed {1:N2} seconds",
 Thread.CurrentThread.ManagedThreadId,
 sw.ElapsedMilliseconds / 1000.0);
 Thread.Sleep(2000);
 } while (sw.ElapsedMilliseconds <= 5000);
 sw.Stop();
}

Managing and Implementing Multithreading Chapter 6

[127]

The following screenshot shows the output of the preceding code:

As you can see, the primary thread was created as a foreground thread while the worker
thread was created as a background thread. When we stopped the primary thread, it
stopped the background thread. This is why the elapsed time statement was not displayed
through the loop, which is running for 5 seconds (while(sw.ElapsedMilliseconds
<=5000)).

Thread states
When a thread is created, it will be in an Unstarted state until the Start method is invoked.
A thread is always in at least one state and sometimes it may be in multiple states at the
same time. In the following diagram, each oval represents a state. The text on each line
represents the action that is performed:

Managing and Implementing Multithreading Chapter 6

[128]

A thread can be in two different states at the same time. For example, if a thread is in a
waiting state and another thread aborts, it can be in both the Wait/Join Sleep and Abort
Requested states. When the thread returns to the wait call, it will receive
a ThreadAbortException.

Destroying threads
The Thread.Abort method is used to stop a thread. Once aborted, it cannot be restarted.
However, when you invoke Thread.Abort, it doesn't terminate the thread immediately
since the Thread.Abort statement throws a ThreadAbortException, which needs to be
caught. Then, the cleanup code should be executed. If you call the Thread.Join method,
this will make sure the thread waits until the other thread's execution is completed. The
join method depends on the timeout interval, so if it's not specified, then the wait is not
guaranteed.

When your own code aborts a thread and you don't want to rethrow it, use
the ResetAbort method. You will learn more about how to rethrow exceptions in Chapter
7, Implementing Exception Handling.

Thread pools
A thread pool provides a pool of threads that can be used as worker threads and are
managed by the system. This allows us to focus on application logic instead of managing
threads. This is an easy way for us to use multiple threads. From .NET Framework 4
onward, it became easy to use thread pools as they allowed us to create tasks and perform
asynchronous tasks. The Task Parallel Library (TPL) and asynchronous method calls are
mainly dependent on the thread pool.

Threads that are created from a thread pool are background threads. Each thread uses
default properties. When a thread completes its task, it is returned to a queue of waiting
threads so that they can be reused. In turn, this reduces the cost of creating new threads for
every task. You can have one thread pool per process.

.NET Framework allows us to set and get MaxThread for a thread pool, though the number
of threads that can be queued is limited by available memory. Once the thread pool threads
are busy, other tasks are queued until the threads are available.

Managing and Implementing Multithreading Chapter 6

[129]

It is important to understand that any unhandled exception in a thread
pool will terminate this process. More information on thread pools can be
found at https:/ /docs. microsoft. com/ en-us/ dotnet/ standard/
threading/ the- managed- thread- pool.

The following example shows how we can create multiple threads using a thread pool:

 public static void PoolOfThreads()
 {
 Console.WriteLine("Primary Thread Id: {0}" + Environment.NewLine +
"Thread State: {1}" + Environment.NewLine + "Priority {2}" ,
 Thread.CurrentThread.ManagedThreadId,
 Thread.CurrentThread.ThreadState,
 Thread.CurrentThread.Priority);
 PoolProcessmethod();
 //Thread.CurrentThread.Join();
 }
private static void PoolProcessmethod()
{
 for (int i = 0; i < 5; i++)
 {
 ThreadPool.QueueUserWorkItem(new WaitCallback(PoolMethod));
 }
}
private static void PoolMethod(object callback)
{
 Thread.Sleep(1000);
 Console.WriteLine("ThreadPool Thread Id: {0}" + Environment.NewLine +
"Thread State: {1}" + Environment.NewLine + "Priority {2}" +
Environment.NewLine + "IsBackground: {3}" +Environment.NewLine +
"IsThreadPoolThread: {4}",
 Thread.CurrentThread.ManagedThreadId,
 Thread.CurrentThread.ThreadState,
 Thread.CurrentThread.Priority,
 Thread.CurrentThread.IsBackground,
 Thread.CurrentThread.IsThreadPoolThread);
}

https://docs.microsoft.com/en-us/dotnet/standard/threading/the-managed-thread-pool
https://docs.microsoft.com/en-us/dotnet/standard/threading/the-managed-thread-pool
https://docs.microsoft.com/en-us/dotnet/standard/threading/the-managed-thread-pool
https://docs.microsoft.com/en-us/dotnet/standard/threading/the-managed-thread-pool
https://docs.microsoft.com/en-us/dotnet/standard/threading/the-managed-thread-pool
https://docs.microsoft.com/en-us/dotnet/standard/threading/the-managed-thread-pool
https://docs.microsoft.com/en-us/dotnet/standard/threading/the-managed-thread-pool
https://docs.microsoft.com/en-us/dotnet/standard/threading/the-managed-thread-pool
https://docs.microsoft.com/en-us/dotnet/standard/threading/the-managed-thread-pool
https://docs.microsoft.com/en-us/dotnet/standard/threading/the-managed-thread-pool
https://docs.microsoft.com/en-us/dotnet/standard/threading/the-managed-thread-pool
https://docs.microsoft.com/en-us/dotnet/standard/threading/the-managed-thread-pool
https://docs.microsoft.com/en-us/dotnet/standard/threading/the-managed-thread-pool
https://docs.microsoft.com/en-us/dotnet/standard/threading/the-managed-thread-pool
https://docs.microsoft.com/en-us/dotnet/standard/threading/the-managed-thread-pool
https://docs.microsoft.com/en-us/dotnet/standard/threading/the-managed-thread-pool
https://docs.microsoft.com/en-us/dotnet/standard/threading/the-managed-thread-pool
https://docs.microsoft.com/en-us/dotnet/standard/threading/the-managed-thread-pool
https://docs.microsoft.com/en-us/dotnet/standard/threading/the-managed-thread-pool
https://docs.microsoft.com/en-us/dotnet/standard/threading/the-managed-thread-pool
https://docs.microsoft.com/en-us/dotnet/standard/threading/the-managed-thread-pool
https://docs.microsoft.com/en-us/dotnet/standard/threading/the-managed-thread-pool
https://docs.microsoft.com/en-us/dotnet/standard/threading/the-managed-thread-pool
https://docs.microsoft.com/en-us/dotnet/standard/threading/the-managed-thread-pool
https://docs.microsoft.com/en-us/dotnet/standard/threading/the-managed-thread-pool
https://docs.microsoft.com/en-us/dotnet/standard/threading/the-managed-thread-pool

Managing and Implementing Multithreading Chapter 6

[130]

The following screenshot shows the output of running the preceding code:

Her, we created five worked threads using the thread pool. If you
uncomment Thread.CurrentThread.Join in the preceding code, the primary thread
won't exit until all of the threads have been processed.

Thread storage
Thread-relative static fields and data slots are the two ways in which we can store data that
is unique to the thread and application domain. Thread-relative static fields are defined at
compile time and provide the best performance. Another benefit is that they do compile-
time type checking. These fields are used when the requirement about what kind of data to
be stored is clear beforehand.

Managing and Implementing Multithreading Chapter 6

[131]

Thread-relative static fields can be created using ThreadStaticAttribute.

There are scenarios where these storage requirements may arise at runtime. In such
scenarios, we can opt for data slots. These are a bit slower than static fields. Since these are
created at runtime, they store information as an object type. It is important for us to convert
these objects into their respective types before using them.

.NET Framework allows us to create two types of data slots: named data slots and
unnamed data slots. Named data slots use the GetNamedDataSlot method so that we can
retrieve it as and when required. However, one disadvantage of NamedDataslot is when
two threads from the same application domain use the same data slot in two different
components of code and execute them at the same time. When this happens, they can
corrupt each other's data.

ThreadLocal<T> can be used to create local data storage.

These two ways of storing data can be referred to as thread-local storage (TLS). A couple of
the benefits of managed TLS are as follows:

Within an application domain, one thread cannot modify data from another
thread, even when both threads use the same field or slot
When a thread accesses the same field or slot from multiple application domains,
a separate value is maintained in each application domain

Now, we will jump into an example and look at how the ThreadStatic attribute can be
used. In the following example, a static variable is being defined and decorated with
the ThreadStatic attribute. This ensures that each thread has its own copy of the variable.
When you execute the following program, you will observe that _intvariable goes up to
6 for each thread:

[ThreadStatic]
public static int _intvariable;
public static void ThreadStaticSample()
{
 //Start three threads
 new Thread(() =>
 {
 for (int i = 0; i <= 5; i++)
 {
 _intvariable++;
 Console.WriteLine($"Thread
Id:{Thread.CurrentThread.ManagedThreadId}, Int field
Value:{_intvariable}");
 }
 }).Start();

Managing and Implementing Multithreading Chapter 6

[132]

 new Thread(() =>
 {
 for (int i = 0; i <= 5; i++)
 {
 _intvariable++;
 Console.WriteLine($"Thread
Id:{Thread.CurrentThread.ManagedThreadId}, Int field
Value:{_intvariable}");
 }
 }).Start();

 new Thread(() =>
 {
 for (int i = 0; i <= 5; i++)
 {
 _intvariable++;
 Console.WriteLine($"Thread
Id:{Thread.CurrentThread.ManagedThreadId}, Int field
Value:{_intvariable}");
 }
 }).Start();
}

The following screenshot shows the output of running the preceding program. Comment
the ThreadStatic attribute and run the program again—you will find that
the _intvariable value goes up to 18 as each thread updates its value:

Managing and Implementing Multithreading Chapter 6

[133]

Let's see how we can use ThreadLocal<T> to create local storage:

 public static ThreadLocal<string> _threadstring = new
ThreadLocal<string>(() => {
 return "Thread " + Thread.CurrentThread.ManagedThreadId; });
public static void ThreadLocalSample()
{
 //Start three threads
 new Thread(() =>
 {
 for (int i = 0; i <= 5; i++)
 {
 Console.WriteLine($"First Thread string :{_threadstring}");
 }
 }).Start();

 new Thread(() =>
 {
 for (int i = 0; i <= 5; i++)
 {
 Console.WriteLine($"Second Thread string :{_threadstring}");
 }
 }).Start();

 new Thread(() =>
 {
 for (int i = 0; i <= 5; i++)
 {
 Console.WriteLine($"Third Thread string :{_threadstring}");
 }
 }).Start();

}

Managing and Implementing Multithreading Chapter 6

[134]

The output of the preceding code is as follows:

Now that we've understood how to manage threads, let's look at how to synchronize data
in multithreading.

Synchronizing data in multithreading
Multiple threads can invoke the methods or properties of an object, which can make the
state of an object invalid. It is possible to make conflicting changes regarding two or more
threads on the same object. This makes it important to synchronize these calls, which will
allow us to avoid such issues. When the members of a class are protected from conflicting
changes, they are known to be thread-safe.

The CLR provides multiple ways in which we can synchronize access to the object instance
and static members:

Synchronize code regions
Manual synchronization
Synchronize context
Thread-safe collection

By default, there is no synchronization for objects, which means any thread can access
methods and properties at any time.

Managing and Implementing Multithreading Chapter 6

[135]

Synchronizing code regions allows us to synchronize blocks of code, methods, and static
methods. However, synchronizing static fields is not supported. Synchronizing is possible
if we use a Monitor class or a keyword. C# supports the lock keyword, which can be used
to mark blocks of code for synchronization.

When applied, the threads attempt to acquire the lock while executing the code. If another
thread has already been acquired by the lock on this block, then the thread blocks until the
lock is available. The lock is released when the thread has executed the code block or exits
in any other way.

MethodImplAttribute and MethodImplOptions.Synchronized give us the same
results as using Monitor or keywords to lock the code block.

Let's look at an example to understand lock statements with tasks. We will learn more
about tasks in the upcoming sections.

For the purpose of this example, we created an Account class that synchronizes its private
field balance amount by locking it to an instance. This ensures that no two threads update
this field at the same time:

 internal class BankAcc
 {
 private readonly object AcountBalLock = new object();
 private decimal balanceamount;
 public BankAcc(decimal iBal)
 {
 balanceamount = iBal;
 }
 public decimal Debit(decimal amt)
 {
 lock (AcountBalLock)
 {
 if (balanceamount >= amt)
 {
 Console.WriteLine($"Balance before debit
:{balanceamount,5}");
 Console.WriteLine($"Amount to debit :{amt,5}");
 balanceamount = balanceamount - amt;
 Console.WriteLine($"Balance after debit
:{balanceamount,5}");
 return amt;
 }
 else
 {
 return 0;
 }

Managing and Implementing Multithreading Chapter 6

[136]

 }
 }
 public void Credit(decimal amt)
 {
 lock (AcountBalLock)
 {
 Console.WriteLine($"Balance before
credit:{balanceamount,5}");
 Console.WriteLine($"Amount to credit :{amt,5}");
 balanceamount = balanceamount + amt;
 Console.WriteLine($"Balance after credit
:{balanceamount,5}");
 }
 }
 }

The TestLockStatements() method looks as follows:

//Create methods to test this Account class
public static void TestLockStatements()
{
 var account = new BankAcc(1000);
 var tasks = new Task[2];
 for (int i = 0; i < tasks.Length; i++)
 {
 tasks[i] = Task.Run(() => UpdateAccount(account));
 }
 Task.WaitAll(tasks);
}
private static void UpdateAccount(BankAcc account)
{
 var rnd = new Random();
 for (int i = 0; i < 10; i++)
 {
 var amount = rnd.Next(1, 1000);
 bool doCredit = rnd.NextDouble() < 0.5;
 if (doCredit)
 {
 account.Credit(amount);
 }
 else
 {
 account.Debit(amount);
 }
 }
}

Managing and Implementing Multithreading Chapter 6

[137]

We are creating two tasks, and each task invokes UpdateMethod. This method loops 10
times and updates the account balance using either credit or debit methods. Because we are
using the lock(obj) field at the instance level, the balance amount field won't be updated
at the same time.

The following code shows the desired output:

Balance before debit : 1000
Amount to debit : 972
Balance after debit : 28
Balance before credit: 28
Amount to credit : 922
Balance after credit : 950
Balance before credit: 950
Amount to credit : 99
Balance after credit : 1049
Balance before debit : 1049
Amount to debit : 719
Balance after debit : 330
Balance before credit: 330
Amount to credit : 865
Balance after credit : 1195
Balance before debit : 1195
Amount to debit : 962
Balance after debit : 233
Balance before credit: 233
Amount to credit : 882
Balance after credit : 1115
Balance before credit: 1115
Amount to credit : 649
Balance after credit : 1764
Balance before credit: 1764
Amount to credit : 594
Balance after credit : 2358
Balance before debit : 2358
Amount to debit : 696
Balance after debit : 1662
Balance before credit: 1662
Amount to credit : 922
Balance after credit : 2584
Balance before credit: 2584
Amount to credit : 99
Balance after credit : 2683
Balance before debit : 2683
Amount to debit : 719
Balance after debit : 1964
Balance before credit: 1964

Managing and Implementing Multithreading Chapter 6

[138]

Amount to credit : 865
Balance after credit : 2829
Balance before debit : 2829
Amount to debit : 962
Balance after debit : 1867
Balance before credit: 1867
Amount to credit : 882
Balance after credit : 2749
Balance before credit: 2749
Amount to credit : 649
Balance after credit : 3398
Balance before credit: 3398
Amount to credit : 594
Balance after credit : 3992
Balance before debit : 3992
Amount to debit : 696
Balance after debit : 3296
Press any key to exit.

Accessing shared variables across multiple threads may cause data integrity issues. Such
issues can be addressed by using a synchronization primitive. These are derived by
the System.Threading.WaitHandle class. While performing manual synchronization, a
primitive can protect access to shared resources. Different synchronization primitive
instances are used to protect access to a resource or some parts of code access, which allows
multiple threads to access a resource concurrently.

You can read more about synchronization primitives at https:/ /docs.
microsoft. com/ en- us/ dotnet/ standard/ threading/ overview- of-
synchronization- primitives.

The System.Collections.Concurrent namespace was introduced by .NET Framework
and can be used without additional synchronization in the user code. This namespace
includes several collection classes that are both thread-safe and scalable. This allows
multiple threads to add or remove items from these collections.

https://docs.microsoft.com/en-us/dotnet/standard/threading/overview-of-synchronization-primitives
https://docs.microsoft.com/en-us/dotnet/standard/threading/overview-of-synchronization-primitives
https://docs.microsoft.com/en-us/dotnet/standard/threading/overview-of-synchronization-primitives
https://docs.microsoft.com/en-us/dotnet/standard/threading/overview-of-synchronization-primitives
https://docs.microsoft.com/en-us/dotnet/standard/threading/overview-of-synchronization-primitives
https://docs.microsoft.com/en-us/dotnet/standard/threading/overview-of-synchronization-primitives
https://docs.microsoft.com/en-us/dotnet/standard/threading/overview-of-synchronization-primitives
https://docs.microsoft.com/en-us/dotnet/standard/threading/overview-of-synchronization-primitives
https://docs.microsoft.com/en-us/dotnet/standard/threading/overview-of-synchronization-primitives
https://docs.microsoft.com/en-us/dotnet/standard/threading/overview-of-synchronization-primitives
https://docs.microsoft.com/en-us/dotnet/standard/threading/overview-of-synchronization-primitives
https://docs.microsoft.com/en-us/dotnet/standard/threading/overview-of-synchronization-primitives
https://docs.microsoft.com/en-us/dotnet/standard/threading/overview-of-synchronization-primitives
https://docs.microsoft.com/en-us/dotnet/standard/threading/overview-of-synchronization-primitives
https://docs.microsoft.com/en-us/dotnet/standard/threading/overview-of-synchronization-primitives
https://docs.microsoft.com/en-us/dotnet/standard/threading/overview-of-synchronization-primitives
https://docs.microsoft.com/en-us/dotnet/standard/threading/overview-of-synchronization-primitives
https://docs.microsoft.com/en-us/dotnet/standard/threading/overview-of-synchronization-primitives
https://docs.microsoft.com/en-us/dotnet/standard/threading/overview-of-synchronization-primitives
https://docs.microsoft.com/en-us/dotnet/standard/threading/overview-of-synchronization-primitives
https://docs.microsoft.com/en-us/dotnet/standard/threading/overview-of-synchronization-primitives
https://docs.microsoft.com/en-us/dotnet/standard/threading/overview-of-synchronization-primitives
https://docs.microsoft.com/en-us/dotnet/standard/threading/overview-of-synchronization-primitives
https://docs.microsoft.com/en-us/dotnet/standard/threading/overview-of-synchronization-primitives
https://docs.microsoft.com/en-us/dotnet/standard/threading/overview-of-synchronization-primitives

Managing and Implementing Multithreading Chapter 6

[139]

More information on these thread-safe collections can be found at https:/
/docs. microsoft. com/ en- us/ dotnet/ standard/ collections/ thread-
safe/ index.

Multithreading
Developers are allowed to create multiple threads within a process and manage them
throughout the program's execution. This allows us to focus on the application logic instead
of managing threads. However, starting with .NET Framework 4, we can create
multithreaded programs using the following methods:

TPL
Parallel Language-Integrated Query(PLINQ)

To understand both of these features, we need to talk about parallel programming.

Parallel programming
Parallel programming helps the developer take advantage of the hardware on
workstations where multiple CPU cores are available. They allow multiple threads to be
executed in parallel.

In previous versions, parallelization required low-level manipulation of threads and locks.
From .NET Framework 4 onward, enhanced support for parallel programming was
provided in the form of the runtime, class library types, and diagnostic tools.

https://docs.microsoft.com/en-us/dotnet/standard/collections/thread-safe/index
https://docs.microsoft.com/en-us/dotnet/standard/collections/thread-safe/index
https://docs.microsoft.com/en-us/dotnet/standard/collections/thread-safe/index
https://docs.microsoft.com/en-us/dotnet/standard/collections/thread-safe/index
https://docs.microsoft.com/en-us/dotnet/standard/collections/thread-safe/index
https://docs.microsoft.com/en-us/dotnet/standard/collections/thread-safe/index
https://docs.microsoft.com/en-us/dotnet/standard/collections/thread-safe/index
https://docs.microsoft.com/en-us/dotnet/standard/collections/thread-safe/index
https://docs.microsoft.com/en-us/dotnet/standard/collections/thread-safe/index
https://docs.microsoft.com/en-us/dotnet/standard/collections/thread-safe/index
https://docs.microsoft.com/en-us/dotnet/standard/collections/thread-safe/index
https://docs.microsoft.com/en-us/dotnet/standard/collections/thread-safe/index
https://docs.microsoft.com/en-us/dotnet/standard/collections/thread-safe/index
https://docs.microsoft.com/en-us/dotnet/standard/collections/thread-safe/index
https://docs.microsoft.com/en-us/dotnet/standard/collections/thread-safe/index
https://docs.microsoft.com/en-us/dotnet/standard/collections/thread-safe/index
https://docs.microsoft.com/en-us/dotnet/standard/collections/thread-safe/index
https://docs.microsoft.com/en-us/dotnet/standard/collections/thread-safe/index
https://docs.microsoft.com/en-us/dotnet/standard/collections/thread-safe/index
https://docs.microsoft.com/en-us/dotnet/standard/collections/thread-safe/index
https://docs.microsoft.com/en-us/dotnet/standard/collections/thread-safe/index
https://docs.microsoft.com/en-us/dotnet/standard/collections/thread-safe/index
https://docs.microsoft.com/en-us/dotnet/standard/collections/thread-safe/index

Managing and Implementing Multithreading Chapter 6

[140]

The following diagram shows the high-level architecture of parallel programming:

In the upcoming sections, we will talk about some of the components listed in the
preceding architecture diagram.

TPL
TPL makes developers more productive by creating parallel and concurrent applications.
These are available as public types in the System.Threading and
System.Threading.Tasks namespaces. TPL allows us to maximize code performance
while focusing on program work. TPL is based on tasks, which represent a thread or thread
pool. When one or more tasks are run concurrently, this is known as task parallelism. A
task has a couple of benefits: being scalable and efficient, and having more programmatic
control than threads.

Because TPL handles the partitioning of the work, scheduling, cancellation, state, and other
low-level details, it can scale the degree of concurrency dynamically and use the system
resources or processors that are available.

Managing and Implementing Multithreading Chapter 6

[141]

It is important to be aware of when to apply parallel programming, otherwise the overhead
of parallelization decreases the speed of code execution. A basic understanding of
threading concepts such as locks and deadlocks is important so that we can use TPL
effectively.

Data parallelism
When an operation can be performed concurrently on source collection elements, it is
referred to as data parallelism. In this process, the source collection is partitioned into
multiple threads and executed in parallel. .NET Framework supports data parallelism via
the System.Threading.Tasks.Parallel class. Methods such
as Parallel.For and Parallel.ForEach are defined in this class. When you use these
methods, the framework manages all the low-level work for us.

A task represents an asynchronous operation and does not return a value. These are
defined in the System.Threading.Tasks class.

Using tasks
A task represents an operation that may or may not return a value and executes
asynchronously. Since they are executed asynchronously, they are executed as worker
threads from the thread pool rather than the primary thread. This allows us to use
the isCanceled and IsCompleted properties to understand the state of the task. You can
also make a task run synchronously, which will be executed on the main or primary thread.

A task can implement the IAsyncResult and IDisposable interfaces like so:

public class Task : IAsyncResult, IDisposable

Let's look at an example so that we can understand how we can create and initiate a task in
different ways. In this example, we will use an action delegate that takes an argument of
the object type:

public static void Run()
{
 Action<object> action = (object obj) =>
 {
 Console.WriteLine("Task={0}, Milliseconds to sleep={1},
Thread={2}",Task.CurrentId, obj,
 Thread.CurrentThread.ManagedThreadId);
 int value = Convert.ToInt32(obj);
 Thread.Sleep(value);
 };

Managing and Implementing Multithreading Chapter 6

[142]

 Task t1 = new Task(action, 1000);
 Task t2 = Task.Factory.StartNew(action, 5000);
 t2.Wait();
 t1.Start();
 Console.WriteLine("t1 has been started. (Main Thread={0})",
 Thread.CurrentThread.ManagedThreadId);
 t1.Wait();

 int taskData = 4000;
 Task t3 = Task.Run(() => {
 Console.WriteLine("Task={0}, Milliseconds to sleep={1},
Thread={2}",
 Task.CurrentId, taskData,
 Thread.CurrentThread.ManagedThreadId);
 });
 t3.Wait();

 Task t4 = new Task(action, 3000);
 t4.RunSynchronously();
 t4.Wait();
}

Here, we create four different tasks. For the first task, we used start methods, while for the
second task, we used a task factory.startnew method. The third task was started using
the run(Action) method, while the fourth task was executed synchronously on the main
thread using the run synchronously method. Here, tasks 1, 2, and 3 are worker threads that
are using a thread pool, while task 4 is executing on the primary thread.

The following screenshot shows the output of running the preceding code:

The Wait method is similar to Thread.Join, which waits until the task completes. This is
useful when synchronizing the execution of calling threads and asynchronous tasks since
we can wait for one or more threads to complete. The Wait method also accepts certain
parameters that allow us to conditionally wait for a task to complete.

Managing and Implementing Multithreading Chapter 6

[143]

The following table shows the different options that are available for a thread when it
comes to waiting:

Wait Waits for the task's execution to complete.

Wait(int32) Makes the tasks wait for a specified number of milliseconds before
executing.

Wait(Timespan) Waits for the task's execution to complete within a specified time
interval.

Wait(CancellationToken)
Waits for the task's execution to complete. The wait is terminated if
cancellationToken is issued before the task's execution is
completed.

Wait(Int32,
CancellationToken)

Waits for the task's execution to complete. The wait terminates on
timeout or when a cancellation token is issued before the task
completes.

WaitAll
Waits for all the provided tasks to complete their execution. Similar to
the Wait method, WaitAll tasks multiple parameters and performs
them accordingly.

WaitAny
Waits for the provided task to complete its execution. Similar to the
Wait method, WaitAll tasks multiple parameters and performs
them accordingly.

Tasks support two other methods: WhenAll and WhenAny. Now, WhenAll is used to create
a task that will complete its execution when all the provided tasks have been completed.
Similarly, WhenAny creates tasks and completes when the provided task completes its
execution.

A task can also return a value. However, reading the result of a task means waiting until its
execution has completed. Without completing its execution, it isn't possible to use the result
object. The following is an example of this:

public static void TaskReturnSample()
{
 Task<int> t = Task.Run(() => { return 30 + 40; });
 Console.WriteLine($"Result of 30+40: {t.Result}");
}

By executing the preceding code, you will see that the main thread waits until the task
returns a value. Then, it displays a Press any key to exit message:

Result of 30+40: 70
Press any key to exit.

Managing and Implementing Multithreading Chapter 6

[144]

It's also possible to add a continuation task. .NET Framework provides a keyword called
ContinueWith, which allows you to create a new task and execute it once the previous
tasks have finished executing. In the following code, we are instructing the task to continue
with the result from the parent task:

public static void TaskContinueWithSample()
{
 Task<int> t = Task.Run(() =>
 {
 return 30 + 40;
 }
).ContinueWith((t1) =>
 {
 return t1.Result * 10;
 });
 Console.WriteLine($"Result of two tasks: {t.Result}");
}

When task t has completed its execution, the result is used in the second task, t1, and the
final result is displayed:

Result of two tasks: 700
Press any key to exit.

ContinueWith has a couple of overload methods that allow us to configure when the
continuation task should execute, such as when a task is canceled or completed
successfully. To make this configuration work, we will use TaskContinuationOptions.
You can find more of the options that are available at https:/ /docs. microsoft. com/ en-
us/dotnet/api/system. threading. tasks. taskcontinuationoptions? view= netframework-
4.7.2.

The following code block shows how we can use continuationOptions:

Task<int> t = Task.Run(() =>
{
 return 30 + 40;
}
).ContinueWith((t1) =>
{
 return t1.Result * 10;
},TaskContinuationOptions.OnlyOnRanToCompletion);

https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskcontinuationoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskcontinuationoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskcontinuationoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskcontinuationoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskcontinuationoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskcontinuationoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskcontinuationoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskcontinuationoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskcontinuationoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskcontinuationoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskcontinuationoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskcontinuationoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskcontinuationoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskcontinuationoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskcontinuationoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskcontinuationoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskcontinuationoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskcontinuationoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskcontinuationoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskcontinuationoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskcontinuationoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskcontinuationoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskcontinuationoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskcontinuationoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskcontinuationoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskcontinuationoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskcontinuationoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskcontinuationoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskcontinuationoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskcontinuationoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskcontinuationoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskcontinuationoptions?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskcontinuationoptions?view=netframework-4.7.2

Managing and Implementing Multithreading Chapter 6

[145]

TaskFactory supports creating and scheduling tasks. It also allows us to do the following:

Create a task and start it immediately using the StartNew method
Create a task that starts when any one of the tasks in an array has completed by
calling the ContinueWhenAny method
Create a task that starts when all the tasks in an array have completed by calling
the ContinueWhenAll method

Further reading on TaskFactory can be found at https:/ / docs.
microsoft. com/ en- us/ dotnet/ api/ system. threading. tasks.
taskfactory? view= netframework- 4. 7.2.

Using the Parallel class
The System.Threading class has another class named Parallel. This class provides
parallel implementations for For and ForEach loops. Their implementation is similar to
the sequential loop. When you use ParallelFor or ParallelForEach, the system
automatically splits the process into multiple tasks and acquires locks if required. All of this
low-level work is handled by TPL.

A sequential loop may look as follows:

foreach (var item in sourceCollection)
{
 Process(item);
}

The same loop can be represented using Parallel as follows:

Parallel.ForEach(sourceCollection, item => Process(item));

TPL manages the data source and creates partitions so that the loop can operate on multiple
parts in parallel. Each task will be partitioned by the task scheduler as per system resources
and workload. Then, if the workload becomes unbalanced, the work will be redistributed
into multiple threads and processes by the task scheduler.

Parallel programming can increase performance when you have a lot of work to be done in
parallel. If this isn't the case, it can become a costly affair.

It is important to understand how parallelism works in a scenario given. In the following
example, we'll look at how we can use Parallel.For and make a time comparison
between sequential and parallel loops.

https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskfactory?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskfactory?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskfactory?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskfactory?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskfactory?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskfactory?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskfactory?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskfactory?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskfactory?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskfactory?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskfactory?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskfactory?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskfactory?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskfactory?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskfactory?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskfactory?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskfactory?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskfactory?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskfactory?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskfactory?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskfactory?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskfactory?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskfactory?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskfactory?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskfactory?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskfactory?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskfactory?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskfactory?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskfactory?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskfactory?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskfactory?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskfactory?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskfactory?view=netframework-4.7.2

Managing and Implementing Multithreading Chapter 6

[146]

Here, we are defining an array of integers and calculating the sum and product of each
element of the array. In the main program, we invoke this method using sequential and
parallel loops and calculate how much time each loop takes to complete the process:

static int[] _values = Enumerable.Range(0, 1000).ToArray();

private static void SumAndProduct(int x)
{
 int sum = 0;
 int product = 1;
 foreach (var element in _values)
 {
 sum += element;
 product *= element;
 }
}

public static void CallSumAndProduct()
{
 const int max = 10;
 const int inner = 100000;
 var s1 = Stopwatch.StartNew();
 for (int i = 0; i < max; i++)
 {
 Parallel.For(0, inner, SumAndProduct);
 }
 s1.Stop();

 Console.WriteLine("Elapsed time in seconds for ParallelLoop: " +
s1.Elapsed.Seconds);

 var s2 = Stopwatch.StartNew();
 for (int i = 0; i < max; i++)
 {
 for (int z = 0; z < inner; z++)
 {
 SumAndProduct(z);
 }
 }
 s2.Stop();
 Console.WriteLine("Elapsed time in seconds for Sequential Loop: " +
s2.Elapsed.Seconds);
}

In the preceding code, we executed two loops: one using a parallel loop and the other using
a sequential loop. The results show the time each operation took:

Managing and Implementing Multithreading Chapter 6

[147]

System.Threading.Tasks.Parallel comes with multiple helper classes, such
as ParallelLoopResult, ParallelLoopState, and ParallelOptions.

ParallelLoopResult provides the completion status of the parallel loop, as shown here:

ParallelLoopResult result = Parallel.For(int i, ParallelLoopState
loopstate) =>{});

ParallelLoopState allows iterations of parallel loops to interact with other iterations.
Finally, LoopState allows you to identify any exceptions in iterations, break from an
iteration, stop an iteration, identify if any iteration has invoked break or stop, and break
long-running iterations.

PLINQ
Language-Integrated Query (LINQ) was introduced in .NET Framework 3.5. It allows us to
query in-memory collections such as List<T>. You will learn more about LINQ in Chapter
15, Using LINQ Queries. However, if you want to find out more sooner, more information
can be found at https:/ /docs. microsoft. com/ en- us/dotnet/ csharp/ programming- guide/
concepts/linq/index.

PLINQ is the parallel implementation of the LINQ pattern. They resemble LINQ queries
and operate on any in-memory collections but differ in terms of execution. PLINQ uses all
the available processors in the system. However, the processors are limited to 64 bits. This
is achieved by partitioning the data source into smaller tasks and executing each task on
separate worker threads on multiple processors.

Most of the standard query operators are implemented in
the System.Linq.ParallelEnumerable class. The following table lists the various
parallel execution-specific methods:

AsParallel
When you want a system to perform parallel execution on an enumerable
collection, the AsParallel instruction can be provided to the system.

AsSequential
Instructing the system to run sequentially can be achieved by using
AsSequential.

AsOrdered To maintain the order on the result set, use AsOrdered.
AsUnordered To not maintain the order on the result set, use AsUnordered.

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/index
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/index

Managing and Implementing Multithreading Chapter 6

[148]

WithCancellation A cancellation token carries the user's request to cancel the execution. This has to be
monitored so that execution can be canceled at any time.

WithDegreeofParallelism Controls the number of processors to be used in a parallel query.
WithMergeOptions Provides options so that we can merge results to the parent task/thread/result set.
WithExecutionMode Forces the runtime to use either parallel or sequential modes.
ForAll Allows results to be processed in parallel by not merging to the parent thread.

Aggregate
A unique PLINQ overload to enable intermediate aggregation over
thread-local partitions. Also allows us to merge the final aggregation to
combine the results of all partitions.

Let's try to use some of these methods so that we can understand them in more detail. The
AsParallel extension method binds query operators such as where and select to the
parallelEnumerable implementation. By simply specifying AsParallel, we tell the
compiler to execute the query in parallel:

public static void PrintEvenNumbers()
{
 var numbers = Enumerable.Range(1, 20);
 var pResult = numbers.AsParallel().Where(i => i % 2 == 0).ToArray();

 foreach (int e in pResult)
 {
 Console.WriteLine(e);
 }

}

When executed, the preceding code block identifies all even numbers and prints them on
the screen:

Managing and Implementing Multithreading Chapter 6

[149]

As you can see, the even numbers weren't printed in order. One thing to remember
regarding parallel processing is that it does not guarantee any particular order. Try
executing the code block multiple times and observe the output. It will differ each time
since it is based on the number of processors that are available at the time of execution.

By using the AsOrdered operator, the code block accepts a range of numbers between 1
and 20. However, using AsOrdered will order the numbers:

public static void PrintEvenNumbersOrdered()
{
 var numbers = Enumerable.Range(1, 20);
 var pResult = numbers.AsParallel().AsOrdered()
 .Where(i => i % 2 == 0).ToArray();

 foreach (int e in pResult)
 {
 Console.WriteLine(e);
 }

}

This example shows how we can maintain the order of the result set when using Parallel:

2
4
6
8
10
12
14
16
18
20
Press any key to exit.

When you execute a code block using PLINQ, the runtime analyzes whether it is safe to
parallelize the query. If it is, it partitions the query into tasks and then runs them
concurrently. If it isn't safe to parallelize the query, it executes the query in a sequential
pattern. In terms of performance, using a sequential algorithm is better than using a parallel
algorithm, so by default, PLINQ selects the sequential algorithm. Using ExecutionMode
will allow us to instruct PLINQ to select the parallel algorithm.

The following code block shows how we can use ExecutionMode:

public static void PrintEvenNumbersExecutionMode()
{
 var numbers = Enumerable.Range(1, 20);

Managing and Implementing Multithreading Chapter 6

[150]

 var pResult =
numbers.AsParallel().WithExecutionMode(ParallelExecutionMode.ForceParalleli
sm)
 .Where(i => i % 2 == 0).ToArray();

 foreach (int e in pResult)
 {
 Console.WriteLine(e);
 }
}

As we mentioned previously, PLINQ uses all the processors by default. However, by using
the WihtDegreeofParallelism method, we can control the number of processors to be
used:

public static void PrintEvenNumbersDegreeOfParallel()
{
 var numbers = Enumerable.Range(1, 20);
 var pResult = numbers.AsParallel().WithDegreeOfParallelism(3)
 .Where(i => i % 2 == 0).ToArray();

 foreach (int e in pResult)
 {
 Console.WriteLine(e);
 }

}

Execute the preceding code block by changing the number of processors and observe the
output. In the first scenario, we left the system to use the available cores/processors, but in
the second one, we instructed the system to use three cores. You will see that the difference
in performance is based on your system's configuration.

PLINQ also comes with a method called AsSequential. This is used to instruct PLINQ to
execute queries sequentially until AsParallel is called.

forEach can be used to iterate through all the results of a PLINQ query and merges the
output from each task to the parent thread. In the preceding examples, we used forEach to
display even numbers.

forEach can be used to preserve the order of the PLINQ query results. So, when order
preservation is not required and we want to achieve faster query execution, we can use
the ForAll method. ForAll does not perform the final merge step; instead, it parallelizes
the processing of results. The following code block is using ForAll to print output to the
screen:

Managing and Implementing Multithreading Chapter 6

[151]

public static void PrintEvenNumbersForAll()
{
 var numbers = Enumerable.Range(1, 20);
 var pResult = numbers.AsParallel().Where(i => i % 2 == 0);

 pResult.ForAll(e => Console.WriteLine(e));
}

In this scenario, the I/O is being used by multiple tasks, so the numbers will appear in a
random order:

When PLINQ executes in multiple threads, as the code runs, the application logic may fail
in one or more threads. PLINQ uses the Aggregate exception to encapsulate all the
exceptions that are thrown by a query and sends them back to the calling thread. When
doing this, you need to have one try..catch block on the calling thread. When you get
the results from the query, the developer can traverse through all the exceptions
encapsulated in AggregatedException:

public static void PrintEvenNumbersExceptions()
{
 var numbers = Enumerable.Range(1, 20);
 try
 {
 var pResult = numbers.AsParallel().Where(i => IsDivisibleBy2(i));

 pResult.ForAll(e => Console.WriteLine(e));
 }
 catch (AggregateException ex)
 {
 Console.WriteLine("There were {0} exceptions",
ex.InnerExceptions.Count);
 foreach (Exception e in ex.InnerExceptions)
 {
 Console.WriteLine("Exception Type: {0} and Exception Message:

Managing and Implementing Multithreading Chapter 6

[152]

{1}", e.GetType().Name,e.Message);
 }
 }
}

private static bool IsDivisibleBy2(int num)
{
 if (num % 3 == 0) throw new ArgumentException(string.Format("The number
{0} is divisible by 3", num));
 return num % 2 == 0;
}

The preceding code block is writing all the details from an exception that was thrown in a
PLINQ. Here, we are traversing and showcasing all six exceptions:

You can loop through the InnerExceptions property and take necessary actions. We will
look at inner exceptions in more detail in Chapter 7, Implementing Exception Handling.
However, in this case, when a PLINQ is executed, instead of terminating the execution on
an exception, it will run through all the iterations and provide the final results.

Managing and Implementing Multithreading Chapter 6

[153]

Asynchronous programming with async and
await
Asynchronous programming can help you enhance the responsiveness and performance of
an application. In a traditional approach, it is difficult to write and maintain asynchronous
code. However, C# 5 introduced two new keywords that simplify asynchronous
programming: async and await. When encountered, the C# compiler does all the difficult
work for you. It resembles synchronous code. Task and Task<T> are at the core of
asynchronous programming.

Any I/O-bound or CPU-bound code can utilize asynchronous programming. In the case of
IO-bound code, when you want to return a task from an async method, we use the await
operation, whereas in CPU-bound code we wait for the operation that started a background
thread using Task.Run.

When the await keyword is used, it returns control to the calling methods, thus allowing
the UI to be responsive.

Internally, when the compiler encounters the async keyword, it splits the method into
tasks, and each task is marked with the await keyword. The await keyword generates
code that will check whether the asynchronous operation has already completed; that is, the
C# compiler transforms the code into a state machine that keeps track of the metadata
related to each task/thread so that it can resume execution when the background task has
finished executing:

private readonly HttpClient _httpClient = new HttpClient();

public async Task<int> GetDotNetCountAsync()
{
 var html = await
_httpClient.GetStringAsync("https://dotnetfoundation.org");
 return Regex.Matches(html, @"\.NET").Count;
}

public void TestAsyncMethods()
{
 Console.WriteLine("Invoking GetDotNetCountAsync method");
 int count = GetDotNetCountAsync().Result;
 Console.WriteLine($"Number of times .NET keyword displayed is
{count}");
}

Managing and Implementing Multithreading Chapter 6

[154]

In the preceding code block, we are trying to find how many times a specific word has been
used on a website. The output of the previous code is as follows:

Invoking GetDotNetCountAsync method
Number of times .NET keyword displayed is 22
Press any key to exit.

Here, we used the async keyword on the GetDotnetCountAsync method. Although the
method is executed synchronously, the await keyword allows us to return to the calling
method and wait until the async method has finished executing, which is when it returns
the result.

It is important to understand that an async method body should always
have an await, otherwise this method will never yield. No error is raised
by the compiler either.

When writing asynchronous methods, you should always use async as the suffix. Note
that async must be used for event handlers. This is the only method that allows async
events handlers to work as events do not have return types.

You can read more about the Task-Based Asynchronous Pattern (TAP) from MSDN
at https://docs.microsoft. com/ en- us/ dotnet/ standard/ asynchronous- programming-
patterns/task-based- asynchronous- pattern- tap.

Summary
In this chapter, we looked at threads, their properties, how we can use parameterized
threads, and the difference between foreground and background threads with detailed
examples. We also learned about thread states and how threads store and share data across
multiple threads. This is where we discussed different synchronization methods. We
focused on parallel programming, tasks and asynchronous programming using tasks, how
to use parallel classes, and PLINQ.

In the next chapter, we will explore exception handling in C#. Exception handling helps us
deal with any unexpected or exceptional situations that occur during program execution.
Exception handling uses the try, catch, and finally blocks. These help developers try
out actions that may or may not succeed, handle failures if they occur, and clean up
unwanted resources, respectively.

https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap

Managing and Implementing Multithreading Chapter 6

[155]

Questions
By default, the main method of your code block runs as which of the following?1.

Worker thread1.
Primary thread2.
Background thread3.
None of the above4.

What action needs to be performed to move a thread to the run state when2.
suspended?

Interrupt1.
Resume2.
Abort3.
Suspended4.

What is the correct keyword to use while working on synchronization code3.
regions?

Lock1.
Release2.
Getlock3.
Unlock4.

A task may or may not return a value.4.
True1.
False2.

 When working with PLINQ, the results are returned in order.5.
True1.
False2.

Answers
Primary thread1.
Resume2.
Lock3.
True4.
False5.

Managing and Implementing Multithreading Chapter 6

[156]

Further reading
In this chapter, we talked about many features that .NET Framework offers that we can use
in our applications. However, we didn't cover this topic in detail. Therefore, it may be
useful for you to go through a couple of MSDN articles so that you can understand more
about these concepts. Take a look at the following links:

More on application domains can be found at https:/ / docs. microsoft. com/en-
us/dotnet/ framework/ app- domains/ application- domains#application-
domains- and- threads.
More on threads and processes can be found at https:/ /docs. microsoft. com/
en-us/ windows/ desktop/ procthread/ processes- and- threads.
The following documentation on parallel programming will help you understand
some of the topics that we didn't cover in this chapter: https:/ /docs. microsoft.
com/en- us/ dotnet/ standard/ parallel- programming/ for-further- reading-
parallel- programming.
One of the concepts that you'll need to understand while working with tasks is
task schedulers: https:/ / docs. microsoft. com/ en- us/dotnet/ api/system.
threading. tasks. taskscheduler? view= netframework- 4.7. 2.
The following article about async provides more information about all the
moving pieces that are used when asynchronous operations are
performed: https:/ /docs. microsoft. com/ en-us/ dotnet/ standard/ async- in-
depth.

https://docs.microsoft.com/en-us/dotnet/framework/app-domains/application-domains#application-domains-and-threads
https://docs.microsoft.com/en-us/dotnet/framework/app-domains/application-domains#application-domains-and-threads
https://docs.microsoft.com/en-us/dotnet/framework/app-domains/application-domains#application-domains-and-threads
https://docs.microsoft.com/en-us/dotnet/framework/app-domains/application-domains#application-domains-and-threads
https://docs.microsoft.com/en-us/dotnet/framework/app-domains/application-domains#application-domains-and-threads
https://docs.microsoft.com/en-us/dotnet/framework/app-domains/application-domains#application-domains-and-threads
https://docs.microsoft.com/en-us/dotnet/framework/app-domains/application-domains#application-domains-and-threads
https://docs.microsoft.com/en-us/dotnet/framework/app-domains/application-domains#application-domains-and-threads
https://docs.microsoft.com/en-us/dotnet/framework/app-domains/application-domains#application-domains-and-threads
https://docs.microsoft.com/en-us/dotnet/framework/app-domains/application-domains#application-domains-and-threads
https://docs.microsoft.com/en-us/dotnet/framework/app-domains/application-domains#application-domains-and-threads
https://docs.microsoft.com/en-us/dotnet/framework/app-domains/application-domains#application-domains-and-threads
https://docs.microsoft.com/en-us/dotnet/framework/app-domains/application-domains#application-domains-and-threads
https://docs.microsoft.com/en-us/dotnet/framework/app-domains/application-domains#application-domains-and-threads
https://docs.microsoft.com/en-us/dotnet/framework/app-domains/application-domains#application-domains-and-threads
https://docs.microsoft.com/en-us/dotnet/framework/app-domains/application-domains#application-domains-and-threads
https://docs.microsoft.com/en-us/dotnet/framework/app-domains/application-domains#application-domains-and-threads
https://docs.microsoft.com/en-us/dotnet/framework/app-domains/application-domains#application-domains-and-threads
https://docs.microsoft.com/en-us/dotnet/framework/app-domains/application-domains#application-domains-and-threads
https://docs.microsoft.com/en-us/dotnet/framework/app-domains/application-domains#application-domains-and-threads
https://docs.microsoft.com/en-us/dotnet/framework/app-domains/application-domains#application-domains-and-threads
https://docs.microsoft.com/en-us/dotnet/framework/app-domains/application-domains#application-domains-and-threads
https://docs.microsoft.com/en-us/dotnet/framework/app-domains/application-domains#application-domains-and-threads
https://docs.microsoft.com/en-us/dotnet/framework/app-domains/application-domains#application-domains-and-threads
https://docs.microsoft.com/en-us/dotnet/framework/app-domains/application-domains#application-domains-and-threads
https://docs.microsoft.com/en-us/dotnet/framework/app-domains/application-domains#application-domains-and-threads
https://docs.microsoft.com/en-us/dotnet/framework/app-domains/application-domains#application-domains-and-threads
https://docs.microsoft.com/en-us/dotnet/framework/app-domains/application-domains#application-domains-and-threads
https://docs.microsoft.com/en-us/dotnet/framework/app-domains/application-domains#application-domains-and-threads
https://docs.microsoft.com/en-us/windows/desktop/procthread/processes-and-threads
https://docs.microsoft.com/en-us/windows/desktop/procthread/processes-and-threads
https://docs.microsoft.com/en-us/windows/desktop/procthread/processes-and-threads
https://docs.microsoft.com/en-us/windows/desktop/procthread/processes-and-threads
https://docs.microsoft.com/en-us/windows/desktop/procthread/processes-and-threads
https://docs.microsoft.com/en-us/windows/desktop/procthread/processes-and-threads
https://docs.microsoft.com/en-us/windows/desktop/procthread/processes-and-threads
https://docs.microsoft.com/en-us/windows/desktop/procthread/processes-and-threads
https://docs.microsoft.com/en-us/windows/desktop/procthread/processes-and-threads
https://docs.microsoft.com/en-us/windows/desktop/procthread/processes-and-threads
https://docs.microsoft.com/en-us/windows/desktop/procthread/processes-and-threads
https://docs.microsoft.com/en-us/windows/desktop/procthread/processes-and-threads
https://docs.microsoft.com/en-us/windows/desktop/procthread/processes-and-threads
https://docs.microsoft.com/en-us/windows/desktop/procthread/processes-and-threads
https://docs.microsoft.com/en-us/windows/desktop/procthread/processes-and-threads
https://docs.microsoft.com/en-us/windows/desktop/procthread/processes-and-threads
https://docs.microsoft.com/en-us/windows/desktop/procthread/processes-and-threads
https://docs.microsoft.com/en-us/windows/desktop/procthread/processes-and-threads
https://docs.microsoft.com/en-us/windows/desktop/procthread/processes-and-threads
https://docs.microsoft.com/en-us/windows/desktop/procthread/processes-and-threads
https://docs.microsoft.com/en-us/windows/desktop/procthread/processes-and-threads
https://docs.microsoft.com/en-us/windows/desktop/procthread/processes-and-threads
https://docs.microsoft.com/en-us/windows/desktop/procthread/processes-and-threads
https://docs.microsoft.com/en-us/windows/desktop/procthread/processes-and-threads
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/for-further-reading-parallel-programming
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/for-further-reading-parallel-programming
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/for-further-reading-parallel-programming
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/for-further-reading-parallel-programming
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/for-further-reading-parallel-programming
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/for-further-reading-parallel-programming
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/for-further-reading-parallel-programming
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/for-further-reading-parallel-programming
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/for-further-reading-parallel-programming
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/for-further-reading-parallel-programming
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/for-further-reading-parallel-programming
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/for-further-reading-parallel-programming
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/for-further-reading-parallel-programming
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/for-further-reading-parallel-programming
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/for-further-reading-parallel-programming
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/for-further-reading-parallel-programming
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/for-further-reading-parallel-programming
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/for-further-reading-parallel-programming
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/for-further-reading-parallel-programming
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/for-further-reading-parallel-programming
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/for-further-reading-parallel-programming
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/for-further-reading-parallel-programming
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/for-further-reading-parallel-programming
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/for-further-reading-parallel-programming
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/for-further-reading-parallel-programming
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/for-further-reading-parallel-programming
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/for-further-reading-parallel-programming
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/for-further-reading-parallel-programming
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/for-further-reading-parallel-programming
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskscheduler?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskscheduler?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskscheduler?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskscheduler?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskscheduler?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskscheduler?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskscheduler?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskscheduler?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskscheduler?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskscheduler?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskscheduler?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskscheduler?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskscheduler?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskscheduler?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskscheduler?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskscheduler?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskscheduler?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskscheduler?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskscheduler?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskscheduler?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskscheduler?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskscheduler?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskscheduler?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskscheduler?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskscheduler?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskscheduler?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskscheduler?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskscheduler?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskscheduler?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskscheduler?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskscheduler?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskscheduler?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskscheduler?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.taskscheduler?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/standard/async-in-depth
https://docs.microsoft.com/en-us/dotnet/standard/async-in-depth
https://docs.microsoft.com/en-us/dotnet/standard/async-in-depth
https://docs.microsoft.com/en-us/dotnet/standard/async-in-depth
https://docs.microsoft.com/en-us/dotnet/standard/async-in-depth
https://docs.microsoft.com/en-us/dotnet/standard/async-in-depth
https://docs.microsoft.com/en-us/dotnet/standard/async-in-depth
https://docs.microsoft.com/en-us/dotnet/standard/async-in-depth
https://docs.microsoft.com/en-us/dotnet/standard/async-in-depth
https://docs.microsoft.com/en-us/dotnet/standard/async-in-depth
https://docs.microsoft.com/en-us/dotnet/standard/async-in-depth
https://docs.microsoft.com/en-us/dotnet/standard/async-in-depth
https://docs.microsoft.com/en-us/dotnet/standard/async-in-depth
https://docs.microsoft.com/en-us/dotnet/standard/async-in-depth
https://docs.microsoft.com/en-us/dotnet/standard/async-in-depth
https://docs.microsoft.com/en-us/dotnet/standard/async-in-depth
https://docs.microsoft.com/en-us/dotnet/standard/async-in-depth
https://docs.microsoft.com/en-us/dotnet/standard/async-in-depth
https://docs.microsoft.com/en-us/dotnet/standard/async-in-depth
https://docs.microsoft.com/en-us/dotnet/standard/async-in-depth
https://docs.microsoft.com/en-us/dotnet/standard/async-in-depth
https://docs.microsoft.com/en-us/dotnet/standard/async-in-depth

7
Implementing Exception

Handling
Exception handling helps developers structure their programs in a way that helps them
handle both expected and unexpected scenarios. Often, application logic may throw some
form of unhandled exception, for example, a code block trying to write to a file on a system
that ends up with a file with a use exception. Such scenarios can be handled if proper
exception handling is in place.

Exception handling uses the try, catch, and finally keywords to allow us to write code
that may not succeed and can be handled when required, as well as to help us clean up
resources once the try block has been executed. These exceptions can be thrown by CLR,
.NET Framework, or by external libraries that are used in your code.

In this chapter, we will try to understand how we can use, create, and throw exceptions by
looking at the following topics:

Exceptions and handling exceptions in code
Compiler-generated exceptions
Custom exceptions

After reading this chapter, you will be able to structure an application program and handle
all sorts of exceptions that may be thrown from your application logic.

Technical requirements
The exercises in this chapter can be practiced using Visual Studio 2012 or above with .NET
Framework 2.0 or newer. However, any new C# features from C# 7.0 and above require that
you have Visual Studio 2017.

Implementing Exception Handling Chapter 7

[158]

If you don't have a license for any of the aforementioned products, you can download the
community version of Visual studio 2017 from https:/ /visualstudio. microsoft. com/
downloads/.

The same code for this chapter can be found on GitHub at https:/ /github. com/
PacktPublishing/Programming- in- C- sharp- Exam- 70- 483-MCSD- Guide/ tree/ master/
Chapter07.

Exceptions and handling exceptions in code
Exceptions are types that are derived from the System.Exception class. We use the try
block around statements that may throw an exception. When an exception occurs, control
jumps to the catch statement, where CLR collects all the required stack trace information
before terminating the program and displaying a message to the user. If exception handling
is not done, the program just terminates with an error. While handling exceptions, it is
important to understand that if we cannot handle an exception, we should not catch it. This
ensures that the application will be in a known state. When you define a catch block, you
define an exception variable that can be used to obtain more information, such as the origin
of the exception, which line in the code threw this exception, the type of exception, and so
on.

A programmer can create and throw exceptions from the application logic using the throw
keyword. Each try block may or may not define the finally block, which will be
executed whether an exception is thrown or not. This block helps us release resources that
have been used in the code block. Alternatively, if you want a piece of code to execute in all
scenarios, it can be placed in the finally block.

In the upcoming sections, we will look at how we can use exceptions, the syntax of the try-
catch-finally block, using the finally block, when we can dispose of unused objects,
different types of system exceptions, and creating our own exceptions.

Using exceptions
As we mentioned previously, errors in C# programs are propagated at runtime using
exceptions. When application code encounters an error, it throws an exception, which is
then caught by another block of code that collects all the information about the exception
and pushes it to the calling method, where the catch block was provided. A dialog box
will be displayed by the system if you're using a generic exception handler for any
uncaught exceptions.

https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter07
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter07

Implementing Exception Handling Chapter 7

[159]

In the following example, we are trying to parse an empty string into an int variable:

public static void ExceptionTest1()
{
 string str = string.Empty;
 int parseInt = int.Parse(str);
}

When executed, the runtime throws a format exception with a message stating Input string
was not in a correct format. As this exception wasn't caught, we can see the generic handler
displaying this error message in a dialog box:

Here are the exception's details:

System.FormatException occurred
 HResult=0x80131537
 Message=Input string was not in a correct format.
 Source=<Cannot evaluate the exception source>
 StackTrace:
 at System.Number.StringToNumber(String str, NumberStyles options,
NumberBuffer& number, NumberFormatInfo info, Boolean parseDecimal)
 at System.Number.ParseInt32(String s, NumberStyles style,
NumberFormatInfo info)
 at System.Int32.Parse(String s)
 at Chapter7.ExceptionSamples.ExceptionTest1() in
C:\Users\srini\source\repos\Programming-in-C-Exam-70-483-MCSD-
Guide2\Book70483Samples\Chapter7\ExceptionSamples.cs:line 14
 at Chapter7.Program.Main(String[] args) in
C:\Users\srini\source\repos\Programming-in-C-Exam-70-483-MCSD-
Guide2\Book70483Samples\Chapter7\Program.cs:line 13

Implementing Exception Handling Chapter 7

[160]

Each catch block defines an exception variable that gives us more information about the
exception that is being thrown. The exception class defines multiple properties, all of
which hold the following extra information:

Property Description
Data Gets custom-defined details about the exception in a key/value pair collection.
HelpLink Gets or sets a help link related to an exception.
HResult Gets or sets HRESULT, a number value that is associated with the exception.
InnerException Gets the instance of the exception that triggered the exception.
Message Gets detailed information from the exception.

Source Gets or sets the application/instance name or the object/variable that caused the
error.

StackTrace Gets a call stack in a string format.
TargetSite Gets the method that triggered the exception.

Now, we will try to handle the format exception and see what each property will provide
us with. In the following example, we have a try block where the string is being parsed
into an integer and a catch block that is being used to catch the format exception. In the
catch block, we are displaying all the properties of the exception that we've caught:

public static void ExceptionTest2()
{
 string str = string.Empty;
 try
 {
 int parseInt = int.Parse(str);
 }
 catch (FormatException e)
 {
 Console.WriteLine($"Exception Data: {e.Data}");
 Console.WriteLine($"Exception HelpLink: {e.HelpLink}");
 Console.WriteLine($"Exception HResult: {e.HResult}");
 Console.WriteLine($"Exception InnerException:
 {e.InnerException}");
 Console.WriteLine($"Exception Message: {e.Message}");
 Console.WriteLine($"Exception Source: {e.Source}");
 Console.WriteLine($"Exception TargetSite: {e.TargetSite}");
 Console.WriteLine($"Exception StackTrace: {e.StackTrace}");
 }
}

Implementing Exception Handling Chapter 7

[161]

We are trying to parse a string into an integer variable. However, this is not allowed, and so
the system throws an exception. When we catch the exception, we are displaying each
property of the exception to observe what it stores:

Each exception is inherited from the System.Exception base case, which defines the type
of exception and details all the properties that provide more information about the
exception. When you need to throw an exception, you need to create an instance of the
exception class, set all or some of these properties, and throw them using the throw
keyword.

You can have more than one catch block for a try block. During execution, when an
exception is thrown, a specific catch statement that handles the exception executes first
and any other generic catch statements are ignored. Therefore, it is important to organize
your catch blocks by placing them in order, that is, from the most specific to the least
specific:

public static void ExceptionTest3()
{
 string str = string.Empty;
 try
 {
 int parseInt = int.Parse(str);
 }
 catch (ArgumentException ex)
 {
 Console.WriteLine("Argument Exception caught");
 }
 catch (FormatException e)
 {
 Console.WriteLine("Format Exception caught");

 }
 catch (Exception ex1)

Implementing Exception Handling Chapter 7

[162]

 {
 Console.WriteLine("Generic Exception caught");
 }
}

When the program executes, although there are multiple catch blocks present, the system
identifies an appropriate catch block and consumes the exception. Due to this, you will see
a Format Exception caught message in the output:

Format Exception caught
Press any key to exit.

The finally block is checked before invoking a catch block. When using resources in a
try-catch block, there is a chance that these resources will move to an ambiguous state
and aren't collected until the framework's garbage collector is invoked. Such resources can
be cleaned up by the programmer via the use of finally blocks:

public static void ExceptionTest4()
{
 string str = string.Empty;
 try
 {
 int parseInt = int.Parse(str);
 }
 catch (ArgumentException ex)
 {
 Console.WriteLine("Argument Exception caught");
 }
 catch (FormatException e)
 {
 Console.WriteLine("Format Exception caught");

 }
 catch (Exception ex1)
 {
 Console.WriteLine("Generic Exception caught");
 }
 finally
 {
 Console.WriteLine("Finally block executed");
 }
}

Implementing Exception Handling Chapter 7

[163]

As you can see, the finally block was executed, but not before an exception was raised
and caught using the respective catch block:

Format Exception caught
Finally block executed
Press any key to exit.

Although we had three different catch blocks, the format exception was executed and
the finally block was executed after.

Exception handling
Programmers partition application logic that may throw exceptions into a try block,
followed by a catch block to handle these exceptions. An optional finally block, if
present, is executed, regardless of whether an exception is thrown by a try block. You
cannot just have a try block—it has to be accompanied by either a catch block or a
finally block.

In this section, we will look at different code blocks in order to understand the usage of the
try-catch statement, the try-finally statement, and the try-catch-finally statement.

You can use a try-catch statement without a finally block like so:

try
{
 //code block which might trigger exceptions
}
catch (SpecificException ex)
{
 //exception handling code block
}

The system also allows you to use a try block with a finally block—there's no need for
the catch exception. This is shown in the following code:

try
{
 // code block which might trigger exceptions
}
finally
{
 // Dispose resources here.
 //Block you want to execute all times irrespective of try block is
executed or not.

Implementing Exception Handling Chapter 7

[164]

}

Last but not least, there's the try-catch-finally block:

try
{
 // Code that you expect to throw exceptions goes here.
}
catch (SpecificException ex)
{
 // exception handling code block
}
finally
{
 // code block that you want to run in all scenarios
}

A compile-time error is thrown if the runtime identifies incorrect syntax in a try block; for
example, a try block without a catch or finally block during the compilation of the
code. When you don't provide a catch or finally block, the compiler puts a red mark
next to the closing bracket of try and an error is thrown, as shown in the error list window
in the following screenshot:

Implementing Exception Handling Chapter 7

[165]

Exception filters are a type of exception that's used to catch in a catch block.
System.Exception is the base class for any exception type class. As this is the base class, it
can hold any exception in the code. We use this when we have code that handles every
exception or when we are throwing an exception while calling method().

We've already discussed that a try block can have multiple catch blocks with different
exception filters. When the runtime evaluates the catch block, it takes a top-to-bottom
approach and executes the most specific catch block that suits the exception that's been
caught. If the exception filter in the catch block matches the exception that's been thrown
or matches the base class of the exception that's been thrown, it's executed. As an exam tip,
always remember to place the most specific catch statements on top and place the generic
ones at the bottom.

Understanding the importance of exception handling helps you write proper code that
handles every possible scenario and executes it without unexpected behavior occurring. For
example, let's say your program is trying to open and write into a file and you receive an
exception such as File not found or File-in-Use. Exception handling allows us to
handle these scenarios. In the first case, the prompt asks the user to provide a correct
filename, while in the second case, the prompt checks whether it is OK to create a new file.

In the following example, a for loop is throwing an index is out of range exception:

public static void ExceptionTest5()
{
 string[] strNumbers = new string[] {"One","Two","Three","Four" };
 try
 {
 for (int i = 0; i <= strNumbers.Length; i++)
 {
 Console.WriteLine(strNumbers[i]);
 }
 }
 catch (System.IndexOutOfRangeException e)
 {
 Console.WriteLine("Index is out of range.");
 throw new System.ArgumentOutOfRangeException(
 "Index is out of range.", e);
 }
 }

Implementing Exception Handling Chapter 7

[166]

The code handles it and displays a message on the screen before throwing it so that the
invoking method can handle it, like so:

However, our main program doesn't handle the exception system. Instead, it uses the
default and displays a dialog box:

The finally block releases any variables or objects that were created in the try block. This
block executes last and always runs if present:

public static void ExceptionTest6()
{
 FileStream inputfile= null;
 FileInfo finfo = new FileInfo("Dummyfile.txt");
 try
 {
 inputfile = finfo .OpenWrite();
 inputfile.WriteByte(0xH);

Implementing Exception Handling Chapter 7

[167]

 }
 finally
 {
 // Check for null because OpenWrite() method might return null.
 if (inputfile!= null)
 {
 inputfile.Close();
 }
 }
}

In the preceding example, we created a file object in a try block and tried to write some
bytes to it. When the runtime completes the execution of the try block, it executes
a finally block and releases the file object that was created in the try block.

Compiler-generated exceptions
Let's go over a few runtime-generated exceptions that .NET Framework supports. The
framework uses these exceptions on valid statements that are being executed. Then, based
on their type, an exception from the following table is thrown. For example, if the compiler
tries to execute a division operation and if the denominator is
zero, DividebyZeroException is thrown:

Exception Description

ArithmeticException
An exception that's triggered while performing
arithmetic operations can be caught.

ArrayTypeMismatchException
When the value and type of the array don't match, this
exception is thrown.

DivideByZeroException
When an attempt to divide an integer value by zero is
made, this exception is thrown.

IndexOutOfRangeException
When an array is accessed with an index outside of its
boundaries, this exception is thrown.

InvalidCastException
Converting a base type into an interface or derived
type will cause this exception at runtime.

NullReferenceException
When you try to access an object that is null, this
exception is thrown.

OutOfMemoryException
When the available memory for CLR is utilized, the
new operator throws such exceptions.

Implementing Exception Handling Chapter 7

[168]

OverflowException
While performing a division operation, for example, if
the output is long and you try to push it to int, this
exception is thrown.

StackOverflowException
Recursive calls usually cause such exceptions and
indicate a very deep or infinite recursion.

TypeInitializationException
If you try to instantiate an abstract class, for example,
this exception is thrown.

Now that we've looked at compiler-generated exceptions, let's take a look at custom
exceptions.

Custom exceptions
All exceptions are derived from the System.Exception class in .NET Framework. So, in a
scenario where these predefined exceptions don't suit our requirements, the framework
allows us to create our own exceptions by deriving our exception class from the Exception
class.

In the following example, we are creating a custom exception and inheriting from
the Exception class. We can use different constructors for this:

public class MyCustomException : Exception
{
 public MyCustomException():base("This is my custom exception")
 {

 }

 public MyCustomException(string message)
 : base($"This is from the method : {message}")
 {

 }

 public MyCustomException(string message, Exception innerException)
 : base($"Message: {message}, InnerException: {innerException}")
 {
 }
}

Implementing Exception Handling Chapter 7

[169]

When you create your own exception class, derive from the System.Exception class, and
implement the base class, you get four constructors; implementing the three mentioned is
the best practice. In the first instance, the base class message property is initialized by
default and a message is displayed. However, in the second and third scenarios, the
method that's throwing this custom exception needs to pass these values.

Summary
In this chapter, we looked at how we can use the exception class in a program, how we can
create custom exceptions to meet our requirements, and different types of exceptions. We
also learned about industry standards regarding how to plan and implement exceptions in
an application.

In the next chapter, we will understand types and how to create and consume types.

Questions
C# supports try blocks withoutcatch and finally blocks.1.

True1.
False2.

catch blocks need to be used in a most-generic-to-least-generic pattern.2.
True1.
False2.

If present, a finally block always executes.3.
True1.
False2.

Answers
False1.
False2.
True3.

Implementing Exception Handling Chapter 7

[170]

Further reading
While implementing exception handling in your application code, it is important to
understand industry standards. Please take a look at the following link to understand these
best practices: https:/ /docs. microsoft. com/ en-us/ dotnet/ standard/ exceptions/ best-
practices-for-exceptions.

https://docs.microsoft.com/en-us/dotnet/standard/exceptions/best-practices-for-exceptions
https://docs.microsoft.com/en-us/dotnet/standard/exceptions/best-practices-for-exceptions
https://docs.microsoft.com/en-us/dotnet/standard/exceptions/best-practices-for-exceptions
https://docs.microsoft.com/en-us/dotnet/standard/exceptions/best-practices-for-exceptions
https://docs.microsoft.com/en-us/dotnet/standard/exceptions/best-practices-for-exceptions
https://docs.microsoft.com/en-us/dotnet/standard/exceptions/best-practices-for-exceptions
https://docs.microsoft.com/en-us/dotnet/standard/exceptions/best-practices-for-exceptions
https://docs.microsoft.com/en-us/dotnet/standard/exceptions/best-practices-for-exceptions
https://docs.microsoft.com/en-us/dotnet/standard/exceptions/best-practices-for-exceptions
https://docs.microsoft.com/en-us/dotnet/standard/exceptions/best-practices-for-exceptions
https://docs.microsoft.com/en-us/dotnet/standard/exceptions/best-practices-for-exceptions
https://docs.microsoft.com/en-us/dotnet/standard/exceptions/best-practices-for-exceptions
https://docs.microsoft.com/en-us/dotnet/standard/exceptions/best-practices-for-exceptions
https://docs.microsoft.com/en-us/dotnet/standard/exceptions/best-practices-for-exceptions
https://docs.microsoft.com/en-us/dotnet/standard/exceptions/best-practices-for-exceptions
https://docs.microsoft.com/en-us/dotnet/standard/exceptions/best-practices-for-exceptions
https://docs.microsoft.com/en-us/dotnet/standard/exceptions/best-practices-for-exceptions
https://docs.microsoft.com/en-us/dotnet/standard/exceptions/best-practices-for-exceptions
https://docs.microsoft.com/en-us/dotnet/standard/exceptions/best-practices-for-exceptions
https://docs.microsoft.com/en-us/dotnet/standard/exceptions/best-practices-for-exceptions
https://docs.microsoft.com/en-us/dotnet/standard/exceptions/best-practices-for-exceptions
https://docs.microsoft.com/en-us/dotnet/standard/exceptions/best-practices-for-exceptions
https://docs.microsoft.com/en-us/dotnet/standard/exceptions/best-practices-for-exceptions
https://docs.microsoft.com/en-us/dotnet/standard/exceptions/best-practices-for-exceptions
https://docs.microsoft.com/en-us/dotnet/standard/exceptions/best-practices-for-exceptions
https://docs.microsoft.com/en-us/dotnet/standard/exceptions/best-practices-for-exceptions

8
Creating and Using Types in C#
Types are the building blocks of a C# program. Even while writing a basic C# program, we
must use the right types while creating our program. In Chapter 2, Understanding Classes,
Structures, and Interfaces, we learned the basics of types in a C# program. We learned about
the value and reference type variables that are present in a C# program.

In addition to awareness of the different types, we should also understand that it's quite
important for us to use each type in the best possible circumstance or situation. We also
should be aware of the best practices regarding the creation and usage of these types. We
will be going through this in this chapter.

We will walk through the following topics in this chapter:

Creating types
Consuming types
How to use properties to enforce encapsulation
Using of optional and named parameters
Creating indexed properties
Different operations related to string manipulation in C#

We will have an overview of reflection and try to understand how it can help us find,
execute, and create types at runtime. In Chapter 10, Find, Execute, and Create Types at
Runtime Using Reflection, we will do a deep dive into reflection.

Creating and Using Types in C# Chapter 8

[172]

Technical requirements
Like in the previous chapters covered in this book, the programs explained in this book will
be developed in Visual Studio 2017.

The sample code for this chapter can be found on GitHub at https:/ /github. com/
PacktPublishing/Programming- in- C- Exam- 70-483- MCSD- Guide/ tree/ master/
Book70483Samples.

Creating types
When we create a variable in C#, it provides us with plenty of options to choose the
appropriate type of the variable. For example, we can choose the following:

We can choose an enum type if we would like the variable to acquire a defined set
of variables. For example, if we define Day as an enum type, it can acquire the
values Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, and
Sunday.
Similarly, if we choose an int type, we tell common language runtime (CLR)
that it cannot have decimal digits.

Hence, while defining types for any variables, we have to analyze the usage of the variable
logically and then declare its type in C#. In the next section, we will just do a brief revision
of the different types that we covered in the Data types in C# section in Chapter
2, Understanding Classes, Structures, and Interfaces.

Types in C#
In Chapter 2, Understanding Classes, Structures, and Interfaces, we learned that a variable can
acquire the following types of values:

Value types: In value types, the variables contain the actual value of the
variable. This basically implies that if any change is made to a value type variable
in a different scope of the program, the change is not reflected back once the
control shifts to the calling function.

https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples

Creating and Using Types in C# Chapter 8

[173]

Reference types: The data member contains the exact address of the variable in
memory. As the variable just contains a reference to a memory address, two
separate reference type variables can point to the same memory
address. Therefore, if a change is made in a reference type variable, the change is
made directly at the memory location of the variable and hence is carried
forward to the different scopes present in the program execution.
Pointer types: Pointers are another type of variable possible in C#. The pointer
type is used to save the memory address of variable allowing us to any operation
involving the memory location of the variable.

In the next section, we will do a deep dive into pointers and understand the implications
and benefits of using them in our application.

Unsafe code and the use of pointer types
In languages such as C or C++, developers have the features to create pointers or *, which is
an object that stores the memory address of another variable. This object allowed very low-
level access of the memory to the application. However, due to the possibility of dangling
pointers, the performance of the application suffers greatly. A dangling pointer is a potential
situation that could exist in C when a pointer object is still pointing to a memory location
that is no longer allocated in the application. Please refer to the following diagram:

Creating and Using Types in C# Chapter 8

[174]

In the diagram, we have an application running in C or C++ that declared Pointer B and
pointed it to the memory address of variable A. The pointer saves the memory address of
the variable. Hence, in other words, Pointer B will not contain the memory address of
variable A. Now, at some point during the program run, memory location A was released
by the application. Even though the memory was released, there could be circumstances
when we do not explicitly clear out the contents of the pointers containing the respective
memory address. Due to this mistake or oversight, Pointer B was not updated to point to a
new block of memory or pointing it to null. As a result, the pointer is still referring to a
memory location that no longer exists in the application. This situation is called dangling
pointers.

C# removes the possibility of dangling pointers because, explicitly, it does not allow the use
of pointers. Instead, it encourages people to use reference types. The memory management of
reference types is managed by a garbage collector.

In Chapter 9, Managing the Object Life Cycle, we will look further at how
the garbage collector works in .NET.

However, there are still some circumstances when developers feel the need to use pointers
in their C# application. This is useful in scenarios where we need to do some operations
with the underlying operating system, such as Windows or Linux, in which the application
is running. In such circumstances, we will need pointers. To cater to such scenarios, C# has
the concept of unsafe code in which it allows developers to use pointers in their code. The
code that uses pointers must be classified clearly with an identifier of unsafe. This
keyword conveys the message to Common Language Runtime (CLR) that the code block is
unmanaged or unsafe—or, in other words, has used pointers. Let's go through a code
example to see how we use pointer types in C#.

Creating and Using Types in C# Chapter 8

[175]

In the code example, we are creating a function block in which we are using a pointer
variable. We will be saving the address of an int type in an int pointer type variable.
Please refer to the following screenshot. Note that the user gets an error when they try to
compile the program:

The reason is that, by default, the C# compiler will not allow any code containing a pointer
or unsafe code block to be executed. We can override this behavior of C# by using
the unsafe keyword in the function block:

class Program
 {
 static void Main(string[] args)
 {
 UnSafeExample();
 }
 unsafe static private void UnSafeExample()
 {
 int i = 23;
 int* pi = &i;
 Console.WriteLine(i);
 Console.WriteLine(*pi);
 Console.ReadLine();
 }
 }

Creating and Using Types in C# Chapter 8

[176]

To allow the compilation of unsafe code, we will need to change the build setting in Visual
Studio. To update the settings, we need to right-click on the Project and click on Properties.
Now, navigate to the Build section. Please refer to the following screenshot, which
highlights the Visual Studio setting that we need to specify to allow compilation of unsafe
code:

Now we have revisited the different types possible in C#. The next section explains the
guiding principles that help us select a particular variable type over another.

Choosing the type of variable
In Chapter 2, Understanding Classes, Structures, and Interfaces, in the Data types in C# section,
we saw the different data types that are possible for both value and reference types. We
also did a code implementation to see the difference in the behavior of Struct, which is a
value type, and Class, which is a reference type. In this section, we will do a deep dive and
see this difference in behavior and how it can help us to choose the correct type for our
variable.

Creating and Using Types in C# Chapter 8

[177]

Let's analyze how the following code statements for value and reference types and see how
they differ in implementation:

// Value Type
int x = 10;
int y = x

// Reference Type
Car c = new Car();
Car c2 = c;

In the preceding code, we have declared the value type variables x and y. While declaring,
the x variable has been assigned a value. In the next step, we are assigning x to y. Similarly,
we have a class named Class and we have created an object of c. In the next statement, we
have declared another object of the same class and have assigned c to c2.

Please refer to the following diagram, which shows how these types are implemented and
managed inside memory:

Creating and Using Types in C# Chapter 8

[178]

In the preceding diagram, we have declared variable x as an int data type and c as an
object of the Car class. Now, we know that int is a value type, while Class is a reference
type. So let's try to analyze why the behavior differs for both of them:

For x, in the first statement, that is, int x = 10, a block of memory is reserved
by the application. The rectangular block below the declaration conveys that.
Now, when we execute the int y = x statement, we are declaring another
variable, y, and it is assigned the value currently in x. What it does internally is it
allocates another block of memory for y in memory. Therefore, as x and y are not
pointing to the same memory location, they will hold different values.
On the other hand, if we look at the Car class, we have just declared two
attributes in it: the registration number and color. Now, when we use the
new statement, what it does is that it creates an object for the class and allocates it
memory. However, as against the value type implementation, it does not save the
value in the object. Instead, in the object, it just saves a reference to the allocated
memory block. In the rectangular shape in the preceding diagram, you will see
that, once the c object is created for the Car class, a pointer is saved in the created
object.
Now, when we execute the Car c2 = c; statement, internally, it creates a new
object, c2, but does not allocate a new memory block for the object. Instead, it
just saves a reference to the memory location shared with the object, c.

As illustrated by the preceding implementation, whenever a new value type variable is
declared, a new block of memory is reserved by the application, which is different from
reference type variables.

Hence, in much simpler terms, the following factors can help us to choose between value
and reference type:

A value type variable is logically immutable: In very simple terms, it means
that on every declaration of the value type, a new block of memory is reserved by
the application. As they are different memory allocations, it implies that if we
execute any operation on one memory location, the change is not transmitted
across to the other memory location.
Whether there are lots of objects: If there lots of objects being created in the
application, it might be better to not create them as value type as it would
exponentially increase the memory requirements of the application.

Creating and Using Types in C# Chapter 8

[179]

Whether the object is small: If the object is small, then it may make sense to have
them as value type variables. However, if we think that the object is bound to
have too many properties, a reference type variable will make more sense.
Memory management: Value type variables are managed on a stack whereas
reference type variables are managed on a heap. When we move to Chapter 9,
Manage the Object Life Cycle, we will look further into memory management and
how the garbage collector works.

Now that we have a fair understanding of how we can create and consume different data
types in a C# application, we will be looking at some of the features of C# that help us to set
correct behavior for the different types we use in the application. In the next section, we
will be looking at static variables and how they are implemented in C#.

Static variables
When we went over the section on value type versus reference type, we understood that all
of the objects created in C# have a definite scope in the program execution. However, there
could be some circumstances when we would like to have a variable acquire a constant
value that is consistent across all instances of the objects. We can do this using the
Static keyword. A Static keyword in a modifier in C# ensures that just one instance of
the variable is created and its scope is throughout the entire run of the program. We can use
a Static variable against a class, its member variable, and its member methods and
constructors.

Let's now look at code examples involving the Static keyword.

Static member variables
In this section, we will look at how we can use the Static keyword against a class and its
member variables. In the following code example, we have created a Static class
called Configuration. Just for the sake of explanation, we will not be using
the Static keyword for a member variable present in it:

internal static class Configuration
{
 public string ConnectionString;
}

Creating and Using Types in C# Chapter 8

[180]

Let's try to compile the program. We get an error stating that
the ConnectionString member variable must be declared static as well:

Once we use the static keyword against the ConnectionString member variable as
well, the error goes away. This is the correct representation of the class:

internal static class Configuration
{
 public static string ConnectionString;
}

If we need to use Set/Get value in the member variable, we can access it directly by using
the name of the class. Here is the code snippet for this:

Configuration.ConnectionString = "Sample Connection String";

In the preceding code example, we had a Static class Configuration in which it was
mandatory to have the static modifier against all of the member variables and properties.
However, there could be some circumstances when we don't want the entire class to be
static but just a particular member variable present inside it.

We can achieve this in C# by using the static modifier not against the class but against
the particular member variable. If we need to use this in the preceding code, the following
would be the updated code:

internal class Configuration
{
 public static string ConnectionString;
}

However, there will be no change in the way we access this property. It can still be done by
using the name of the class.

Creating and Using Types in C# Chapter 8

[181]

Static methods
In C#, a class can have two types of methods: static methods and non-static methods. Static
methods are shared across the different instances of the class objects, whereas non-static
methods are unique for each instance. Just like static member variables, we can declare a
method as static by the use of the static keyword and can access them by directly using
the class name.

The following code example indicates how we create a static method in a class:

internal class Configuration
{
 public static string ConnectionString;
 public static void CreateConnectionString()
 {
 }
}

To execute a static method, we can use the following code snippet:

Configuration.CreateConnectionPath();

In the next section, we will look at constructors and how they are implemented in C#.

Constructors
Constructors are called whenever an object is created for a class or struct type. They can
help us to set some default values against the member variables present in these types.

In Chapter 2, Understanding Classes, Structures, and Interfaces, while understanding the
difference between a class and struct type, we mentioned that, unlike classes, structs do
now have a default constructor. That constructor, in programming terms, is known as a
parameter less constructor. If a programmer does not specify any constructor for the class,
then whenever an object is created for the class the default constructor triggers and sets
default values against the member variables present in the class. The default values are set
in accordance with the default values of the type of those member variables.

In terms of syntax, a constructor is just a method the name of which is the same as that of its
respective type. In the method signature, it has got a parameter list that can be mapped to
the member variables present in the type. It does not have any return type.

Creating and Using Types in C# Chapter 8

[182]

Please note that a class or struct can have multiple constructors each
differing with each other based on the parameter list present in the
method.

Let's look at a code example in which we will implement constructors:

public class Animal
{
 public string Name;
 public string Type;

 public Animal(string Name, string Type)
 {
 this.Name = Name;
 this.Type = Type;
 }
 }

In the preceding code example, we have declared an Animal class with two member
variables, Name and Type. We have also declared a two-parameter constructor in which we
are passing Name and Type as string parameters. Using the this operator, we are then
assigning the values passed to the member variables present in the class.

We can use the following code implementation to call this constructor:

Animal animal = new Animal("Bingo", "Dog");

In the next section, we will look at how named parameters are implemented in C#.

Named parameters
Named parameters were introduced in C# 4.0, and they allow us to pass arguments to a
method/constructor/delegate/indexer using parameter names instead of the sequence in
which the parameters are passed.

Using named parameters, developers no longer need to be concerned about the sequence in
which they need to pass parameters. As long as they associate the values being passed with
the right parameter name, the sequence will not matter. The parameter names are
compared against the names of the parameters in the method definition. Let's look at the
following code example to understand how it works:

internal Double CalculateCompoundInterest(Double principle, Double
interestRate, int noOfYears)

Creating and Using Types in C# Chapter 8

[183]

{
 Double simpleInterest = (principle) * Math.Pow((1 +
 (interestRate)/100), noOfYears);
 return simpleInterest;
}

In the preceding code example, we are calculating compound interest by passing the
principal amount, interest rate, and number of years for which the amount was put in the
bank.

If we call the method without using named parameters, we would use the following code
snippet:

Double interest = CalculateCompoundInterest(500.5F, 10.5F, 1);

If we look closely at the preceding example, while calling the function, the developer will
need to be fully aware of the sequence of the principle and interest rate parameters. That's
because if the developer makes a mistake while calling the function, the resultant output
will be incorrect.

With named parameters, we can call the method using the following syntax:

Double namedInterest = CalculateCompoundInterest(interestRate: 10.5F,
noOfYears: 1, principle: 500.5F);

Note that, in the preceding code, we are not passing values to the parameters in the
sequence there are defined in the method. Instead, we are using parameter names to map
the passing values with the parameters declared in the method. In the next section, we will
look at another feature, optional parameters, which was introduced in C# 4.0 along with
named parameters.

Optional parameters
Optional parameters in C# allow us to define a method in such a way that some of the
parameters are optional. In other words, while defining the function for the optional
parameters, a default value is specified.

If, while calling the method, no value is passed for the optional parameter, it assumes a
default value. Let's look at a code example to understand how optional parameters work in
C#:

static float MultiplyNumbers(int num1, int num2 = 2, float num3 = 0.4f)
{
 return num1 * num2 * num3;

Creating and Using Types in C# Chapter 8

[184]

}

In the preceding code example, we have defined a MultiplyNumbers method with three
parameters, num1, num2, and num3. The num1 parameter is mandatory, while the other two
parameters, num2 and num3, are optional.

Please note that, while defining the function, the optional parameters, if
any, must come after all of the required parameters have been specified in
the sequence.

If we need to execute the preceding method, we can use any of the following code snippets:

float result = MultiplyNumbers(2); // output = 1.6f
float result1 = MultiplyNumbers(2, 5); // output = 4f
float result2 = MultiplyNumbers(2, 4, 5); // output = 40f

Note that there would be no compiler errors and if any optional parameters are not passed,
the default value defined in the function declaration would be used. In the next section, we
will look at how generic types are implemented in C#.

Generics types
Generics allow us to design classes and methods without the notion of data types. In
simpler terms, when we talk about methods, generics allow us to define methods without
specifying the type of the input variables.

Let's go through the following code implementation and see how it can help us. In the
following example, we have created a function that compares the values between two int
variables, A and B. If the value is the same, it returns true; however, if the value is not
same, it returns false:

static private bool IsEqual(int A, int B)
{
 if(A== B)
 {
 return true;
 }
 else
 {
 return false;
 }
 }

Creating and Using Types in C# Chapter 8

[185]

Now, let's say we try to pass a variable with a data type that is not int. In the following
screenshot, we are trying to pass string instead of int, to which the compiler gives us an
error:

As illustrated in the following screenshot, it will give us the following error:

As illustrated by the preceding screenshot, the IsEqual function is accepting inputs of
the int type. However, while calling the function, we are passing variables of
the string type. Due to the type mismatch, the compiler is showing the error.

To correct this error, we need to make the IsEqual function generic. We can do this by
altering the function so that instead of accepting the input variables of the int type, it can
accept the input variables of the object type.

Please note that all of the variables in C# inherit from object.

Creating and Using Types in C# Chapter 8

[186]

In this code example, we are calling the IsEqual function twice and are passing different
input parameters. In the first call, we are passing string; however, in the second call, we
are passing int. Note that when we compile the project, no compile time error is retrieved
and the function compares the passed variables irrespective of type:

static void Main(string[] args)
{
 UnSafeExample();
 IsEqual("string", "string");
 IsEqual(10, 10);
}

static private bool IsEqual(object A, object B)
{
 if (A == B)
 {
 return true;
 }
 else
 {
 return false;
 }
 }

Although the preceding code implementation will be generic for all of the data types, it will
lead to the following issues:

Performance degradation: In the IsEqual function definition, the data types of
variables is object. Due to this, for all calls being made to this function, the
variables will need to be converted from their original type, that is, int or
string, into object. This conversion will be an extra load for the application,
which will lead to performance degradation. In programming terms, this
conversion is known as boxing and unboxing, which we will cover shortly in
this chapter.
Type unsafe: This approach will not be type unsafe. For example, I will call the
function by passing the following variables:

IsEqual(10, "string");

If I do so, the compiler will not give any error, even though we understand that the call
makes no sense. To avoid these issues while still providing us with the capability of making
the calls generic, C# provides us with the tool of using generic types.

Creating and Using Types in C# Chapter 8

[187]

Using generic types, we can avoid specifying any data type to the input variables of the
functions. Hence, the implementation of IsEqual will look like this:

static private bool IsEqual<T>(T A, T B)
{
 if (A.Equals(B))
 {
 return true;
 }
 else
 {
 return false;
 }
 }

In the preceding code example, please note that we are using T to illustrate the data type,
hence making it generic for all data types.

As we are not using object, there will be no boxing and unboxing of variables. If we still
try to pass incorrect data types to this function, as illustrated in the following screenshot,
the compiler will give us an error:

Creating and Using Types in C# Chapter 8

[188]

In the next topic, we will not go through the different concepts C# uses to work on the types
of the data variables. We will go through how we can use boxing and unboxing in C# to
convert one data type into another and the different things we should keep in mind when
we are consuming variables of different types.

Consuming data types in C#
C# is a strongly-typed language. This basically means that, when we declare a variable with
a particular data type, as in the following example, we cannot declare the x variable again:

int x = 5;

In addition to this, we cannot assign to this x variable any value that is not an integer.
Hence, the following statement will give us an error:

x = "Hello";

To overcome this strongly typed feature, C# provides some capabilities when we are
consuming a type. This includes boxing and unboxing of value type variables, use of the
dynamics keyword, and implicit and explicit conversion of a variable of one data type to a
variable of a different data type. Let's go through each of these concepts and understand
how they work in C#.

Boxing and unboxing
In C#, boxing means converting a value type variable into a reference type variable.
Unboxing is the opposite of boxing. It refers to the conversion of a reference type variable
into a value type variable. Boxing and unboxing are detrimental to the performance of the
application as they are an overhead to the compiler. As developers, we should try to avoid
them as much as possible; however, it's not always possible and there are several instances
that we encounter during programming that make us use this concept.

Let's look at the following example to see how boxing and unboxing works:

static private void BoxAndUnBox()
{
 int i = 3;
 // Boxing conversion from value to reference type
 object obj = i;
 // Unboxing conversion from reference type to value type
 i = (int)obj;
 }

Creating and Using Types in C# Chapter 8

[189]

In the code implementation, we can see the following:

We have declared a variable, i, of the int type and have assigned it a value of 3.
Now we know that, being int, this is a value type reference.
Next, we declare an obj variable of the object type and have assigned it the
value in i. We know that object is a reference type variable. Therefore,
internally, the CLR will undergo boxing and convert the value into
the i variable into a reference type variable.
Next, in the third statement, we are doing the reverse. We are trying to assign the
value in a reference type variable, that is, obj, to a value type variable, i. At this
stage, the CLR will do the unboxing of the value.

Please note that, while doing boxing, we do not need to explicitly cast the value type to a
reference type. However, when we are doing the unboxing, we need to explicitly specify
the type into which we are converting the variable. This approach of explicitly specifying
the type into which we are converting a variable is known as casting. To do casting, we can
use the following syntax:

i = (int)obj;

What it basically means is that there are possibilities that this conversion can lead to an
exception of the InvalidCastException type. For example, in the preceding example, we
know that the value in obj is 10. However, if it were to acquire a value that cannot be cast
to an int value, for example, string, the compiler will give us a runtime error.

Now, in the next section, we will look at the different techniques C# provides us with for
converting between data types.

Type conversions in C#
Type conversion in C# basically implies converting a variable from one data type into
another. Now we will look into the different types of conversions available in C#.

Creating and Using Types in C# Chapter 8

[190]

Implicit conversion
Implicit conversion is done by the compiler automatically. It's done by the compiler
without any intervention or command from the developer. The following two conditions
must be fulfilled for a compiler to execute implicit type conversion:

 No data loss: The compiler must determine that if it executes the conversion
implicitly, there will be no data loss. In Chapter 2, Understanding Classes,
Structures, and Interfaces, in the Data Types section, we saw that each data type
acquires a space in memory. Therefore, if we try to assign a variable with the
type as float, which acquires 32 bytes of memory, to double, which acquires 64
bytes of memory, we can be sure that there won't be any data loss in the
conversion.

No chance of cast exception: The compiler must determine that there is no
chance of an exception during the casting of the value from one data type to
another. For example, if we try to set a string value to a float variable, the
compiler will not do the implicit conversion as it would be an invalid cast.

Now, let's look at the following code implementation to see how implicit conversion works
in C#:

 int i = 100;
 float f = i;

In the preceding code example, we have declared a variable, i, of the int type and have
assigned it a value of 100. In the next statement, we have declared a variable, f, of the
float type and have assigned it the value in i.

Now, the compiler would determine that both the required conditions for implicit
conversions are being met, that is, float acquires more memory than int and there is no
chance of an invalid cast exception—an int value is also a valid value in a float variable.
Hence, the compiler gives no error and does the implicit conversion.

Creating and Using Types in C# Chapter 8

[191]

However, if we do the reverse, which is trying to assign a float value in int, the compiler
will determine that the conditions are not being fulfilled and will give us a compile-time
error. Please refer to the following screenshot:

However, in certain circumstances, even if there is a chance of data loss, we would still like
to have those conversions. C# provides us with explicit conversion, which allows us to
explicitly instruct the compiler to let the conversion take place. Let's go through how explicit
conversion takes place.

Explicit conversion
When the compiler is not able to implicitly change the type of variables, but we still want
the conversion to happen, we need to explicitly instruct the compiler to convert the value.
This is referred to as explicit conversion.

There are two ways to do explicit conversion in C#:

Using a type cast operation: In this, we use the base data type to instruct the
compiler to do explicit conversion. For example, for the code implementation
that we were trying in the preceding example, the following would be the syntax:

float k = 100.0F;
int j = (int)k;

Creating and Using Types in C# Chapter 8

[192]

In the preceding code, we are explicitly telling the compiler to do type conversion
by using the int class conversion before the float variable.

Using the Convert class: C# provides us with the Convert class, which we can
use to do type casting between multiple data types. If we were to use the
Convert class instead of the int keyword, the following would be the syntax:

float k = 100.0F;
int j = Convert.ToInt32(k);

Convert class can be used for type casting among different data types. Please refer to
the following screenshot to get an idea of the different options that are available in the
Convert class. Depending on the usage, we can use the appropriate method in the
Convert class:

Hence, the overall implementation of the program will look like this:

float k = 100.67F;
int j = (int)k;
int a = Convert.ToInt32(k);
Console.WriteLine(j);
Console.WriteLine(a);
Console.ReadLine();

Now, let's try to run this program to see the output it gives:

Creating and Using Types in C# Chapter 8

[193]

It implies that when we use the type cast keyword, that is, (int)k, the compiler tried to
extract the integer component from the float variable, k, which turned out to be 100.

On the other hand, when we used the Convert class, that is, Convert.ToInt32(k), it
tried to extract the nearest integer to the float variable, k, which turned out to be 101. This
is one of the key differences that developers need to be aware of while deciding between
using type casting and the Convert class.

While we are looking at explicit type conversions, we need to be aware of two helper
methods that help us do conversions:

Parse

TryParse

Both the Parse and TryParse methods are used to convert string into a different data
type. However, there is a slight difference in the way invalid case exceptions are handled.
Let's look at the following example to see how they work and the difference between them:

string number = "100";
int num = int.Parse(number);

In the preceding example, we have declared a string object and have assigned it a value of
100. Now, we are trying to convert the value into an integer using the Parse method.
When we run the program, we see the following output:

It implies that the parse method converts the string into its integer equivalent and assigns
the value to another variable, num.

Creating and Using Types in C# Chapter 8

[194]

Now, let's suppose the value in the number is 100wer. Now, it's evident that the value in
the number string cannot be converted into int because it has some characters that cannot
be categorized in an integer object. When we run this program, we get the following
exception:

To avoid such situations, we use TryParse. In TryParse, CLR tries to convert the string
object into the specified data type. However, if the conversion returns an error, TryParse
returns false or, in other words, the conversion failed. In other cases, it returns true. Hence,
if we were to write the same implementation with TryParse, we would do the following:

 string number = "100wer";
 int num;
 bool parse = int.TryParse(number, out num);
 if(parse)
 {
 Console.WriteLine(num);
 }
 else
 {
 Console.WriteLine("Some error in doing conversion");
 }
 Console.ReadLine();

In the preceding program, we have declared a variable of the string type and we are
using TryParse to convert this value into a variable of the int type. We are checking
whether the conversion is a success. If it's a success, we print out the number and in other
cases, we print a statement to show that there was an error during the type conversion.
When we run the program, we get the following output:

Creating and Using Types in C# Chapter 8

[195]

As we see from the output, the compiler tells us that there was an error doing the
TryParse; however, it does not throw an exception in the application as opposed to the
Parse method, which threw an invalid case exception in the same scenario.

In the next section, we will do a quick recap of encapsulation, which we covered in Chapter
3, Understanding Object-Oriented Programming, and we'll see how
to implement properties for class member variables objects, allowing us to consume them
without worrying about the hidden complexities.

Enforcing encapsulation
Previously, we went through the following concepts in Chapter 2, Understanding Classes,
Structures, and Interfaces, and Chapter 3, Understanding Object-Oriented Programming:

Accessing modifiers and how they help us to control access to methods and
fields in the same class, in the same assembly, and in the derived classes
Encapsulation and how it helps us to group together related fields and methods
together in the same object

However, there is another concept in encapsulation called properties, which makes sure
that no one can have direct access to the data fields outside the class. This helps us to make
sure that we have control over the modification of the data fields.

A property is very similar to the field of a class. Just like the field of a class, it has a type,
name, and access modifier. However, what makes it different is the presence of accessors.
Accessors are the get and set keywords that allow us to set and retrieve values from a
field.

The following is what the syntax of a property looks like:

class SampleProperty
{
 private string name;
 public string Name
 {
 set { if(value != null)
 {
 this.name = value;
 }
 else
 {
 throw new ArgumentException();
 }

Creating and Using Types in C# Chapter 8

[196]

 }
 get { return this.name; }
 }
 }

In the preceding code, please note the following:

For the SampleProperty class, we have declared a name field and a
Name property.
The name field has been marked private, hence it won't be accessed outside the
SampleProperty class.
The Name property has been marked public and has the get and set accessors.
In the set method, we are checking whether the value passed is null or not. If it's
null, we are raising an argument exception. Therefore, we are putting rules
around the value that can be set on the name field.

In this way, properties help us in consume the fields of a class.

Manipulating strings
Strings are a very important data type in C#. The string data type is used for saving text as
string. In programming terms, it's a sequence of characters. String is a reference type
variable unlike other basic data type variables, such as int, float, and double, which are
value type variables. Also, strings are immutable in nature, that is, the values present in
them cannot change. In this section, we will look at different operations related to this data
type.

So, look at the following code example:

string s = "Hello";
s = "world";

When we are assigning a Test value to the already declared string objects, internally,
CLR allocates a new memory block for the modified string object. Hence, for every
operation that we do on a string, instead of modifying of the same string object, a new
string object is declared in CLR. Due to this, we need to be very careful while doing
operations on string, for example, if we execute the following loop operation on a string
object:

string s = String.Empty;
for(int z = 0; z < 100; z++)
{

Creating and Using Types in C# Chapter 8

[197]

 s = + "a";
}

In the preceding code, we are concatenating the string object, s, with a character, a, in the
loop. This loop will run 100 times. Therefore, the CLR will go on allocating more and more
memory for the string object. Hence, due to memory usage, performance-wise, the
preceding operation is not good.

To help to improve this feature in string, C# provides us with two built-in
classes, Stringbuilder and StringWriter, which we will discuss next. We will also look
at some of the features available with us for executing string searching in C#.

StringBuilder
Stringbuilder is an internal class provided by C# that helps us to improve string
manipulation functions. To explain the idea, we will be executing a for loop from 0 to 100
and will be concatenating the resultant output in each loop with the letter a. Internally, a
string builder uses a buffer to modify the string value instead of allocating memory on
every string manipulation. The following code example shows how we can use string
builder for string manipulation operations:

StringBuilder sb = new StringBuilder(string.Empty);
for (int z = 0; z < 100; z++)
{
 sb.Append("a");
}

In the preceding code, we are declaring a StringBuilder object, sb, and are appending its
value with a in the loop. Internally, instead of allocating memory on every concatenation,
StringBuilder will use an internal buffer to manage these operations.

StringReader and StringWriter
The StringReader and StringWriter classes derive from the TextReader and
TextWriter classes respectively. TextReader and TextWriter are used for dealing with
APIs such as reading from an XML file, generating an XML file, or reading from a file.

We will study the TextReader and TextWriter classes more in Chapter
14, Performing I/O Operations.

Creating and Using Types in C# Chapter 8

[198]

Using the StringReader and StringWriter classes, we can interact with these I/O
operations by manipulating the objects of strings and string builders.

Let's go through the following example in order to understand the methods better. In the
following example, using StringWriter, we are firstly creating an extract of an XML file
and then we will pass the resultant XML representation to StringReader, which will try
to read an element present in it.

In the following code example, we are using XMLWriter to create an XML file with the start
element as Student and an attribute of Name. We are saving the string representation of the
XML file using StringWriter:

static private string CreateXMLFile()
{
 string xmlOutput = string.Empty;
 var stringWriter = new StringWriter();
 using (XmlWriter writer = XmlWriter.Create(stringWriter))
 {
 writer.WriteStartElement("Student");
 writer.WriteElementString("Name", "Rob");
 writer.WriteEndElement();
 writer.Flush();
 }
 xmlOutput = stringWriter.ToString();
 return xmlOutput;
}

 Suppose we print the output of the program; we will get the following result:

Now, in the following code snippet, we will use StringReader to read through this XML
file:

static private void ReadXMLFile(string xml)
{
 var stringReader = new StringReader(xml);
 using (XmlReader reader = XmlReader.Create(stringReader))
 {
 reader.ReadToFollowing("Name");
 string studentName = reader.ReadInnerXml();
 Console.WriteLine(studentName);
 }

Creating and Using Types in C# Chapter 8

[199]

 }

Please note that we are passing a string parameter to the function, which is first converted
into a StringReader object. From that StringBuilder object, we are creating an
XmlReader object.

The ReadToFollowing function reads the XML file until it finds an element with the
respective name, which is passed as a parameter to the function. In the preceding code
example, we are passing a parameter of Name to the XmlReader object. Based upon the
XML file we have passed to it, it will take us to the element Rob. To read the text
representation of the element, we can use the ReadInnerXml function on the reader
object. Hence, in the preceding example, the studentName variable will be assigned the
value of Rob. If we execute the code snippet, we will get the following output:

In the next section, we will go through some functions we can use to search for particular
characters in a string object.

String searching
As the name suggests, string searching involves searching the presence of a particular letter
or string in another string. C# provides several methods for doing this.

Please note that C# is a case-sensitive language. Therefore, searching for a
character, let's suppose C, is not the same as searching for the character
c in the string.

Please refer to the following different types of searching that are possible with
the string object:

Contains: When we want to check whether a particular character exists in the
string, we use the Contains function. The following example checks whether a
character, z, exists in the string object. If it exists, it returns true; otherwise, it
returns false.

Let's take a look at the following example:

string s = "hello australia";
var contains = s.Contains("z");
if(contains)

Creating and Using Types in C# Chapter 8

[200]

{
 Console.WriteLine(" z is present in it.");
}
else
{
 Console.WriteLine(" z is not present");
}

In the preceding code, using the Contains function, we are checking whether
z occurs in the string against which we are calling the function. As we are calling
it for a variable with the value hello australia, it will return the false value
as z does not occur in the string. Hence, we get the following output when the
code is executed:

IndexOf: We use this function if we want to find out the index in the string at
which a particular character is present.

For example, in the following code example, we are finding the first and the last
index of occurrence of the a character in the string hello australia:

 string s = "hello australia";
 var firstIndexOfA = s.IndexOf("a");
 Console.WriteLine(firstIndexOfA);
 var lastIndexOfA = s.LastIndexOf("a");
 Console.WriteLine(lastIndexOfA);

When we execute the program, we will get the first occurrence as 6 and the last
occurrence as 14. The IndexOf function retrieves the index the first appearance of
a character or a string in the string against which we are using the function. Please
also note that it does not ignore spaces. Hence, the whitespace is also counted as a
character. Similarly, the LastIndexOf function retrieves the last index of the
appearance of the respective character or string:

Creating and Using Types in C# Chapter 8

[201]

Please note that in C#, for any array or string, the index of the first
character is zero.

StartsWith/EndsWith: We use this function if we want to check whether a
string starts or ends with a particular character.

The following code example shows a scenario in which we are checking whether
the same string object used previously starts with h and ends with h. In the
following code, in the first statement, we are checking whether the s string
variable starts with h. Based on the evaluation, we print the output in the console
window. Similarly, in the next statement, we are checking whether the same
string variable ends with h. Based on the evaluation, we print the output in the
console window again:

if(s.StartsWith("h"))
{
 Console.WriteLine("It Starts with h.");
}
else
{
 Console.WriteLine("It does not starts with h.");
}

if (s.EndsWith("h"))
{
 Console.WriteLine("It ends with h.");
}
else
{
 Console.WriteLine("It does not ends with h.");
}

Please refer to the following output for the preceding code example:

Substring: We use this function if we want to extract a substring from a
particular string object. There are two variants of substring possible in C#. In one,
we specify just the start index and extract the substring from that particular
index. In another variant, we specify both the start and end index and extract the
characters present in that substring.

Creating and Using Types in C# Chapter 8

[202]

Here is a code example of this:

 string subString = s.Substring(3, 6);
 string subString2 = s.Substring(3);
 Console.WriteLine(subString);
 Console.WriteLine(subString2);

In the preceding code example, we are finding two substrings of a string object, hello
australia.

In the first substring, we have passed the start index as 3 and the end index as 6. Therefore,
the substring will return us the values, lo aus.

In the second substring, we are just passing the start index, 3. Hence, it will return the
entire string from this index. The following is the screenshot of the output from this
execution:

These are the different string manipulation functions available in C#. In the next section, we
will go through an overview of reflection and learn how it helps us to get structure—in
other words, classes and their methods and properties—from an assembly.

Overview of reflection
Reflection in C# means inspecting the contents of an assembly at run time. It returns the
metadata for each class present in the assembly—so, it returns the following:

The name of the class
All of the properties present in the class
All of the methods along with their return types and function parameters
All of the attributes present in the class

In Chapter 10, Find, Execute, and Create Types at Runtime Using Reflection, we will do a deep
dive on reflection; however, in this chapter, we will just go through a code sample of how
we can implement reflection in C# to decode all of the metadata present in the assembly.

Creating and Using Types in C# Chapter 8

[203]

To use reflection, we need to include the System.Reflection namespace, which helps us
to use required classes such as Assembly. Please refer to the following function, which
reads a particular assembly based on its path and reads all of the classes, methods, and
parameters present in the assembly:

static private void ReadAssembly()
{
 string path = @"C:\UCN Code Base\Programming-in-C-Exam-70-483-
 MCSD-Guide\Book70483Samples\Chapter8\bin\Debug\ABC.dll";
 Assembly assembly = Assembly.LoadFile(path);
 Type[] types = assembly.GetTypes();
 foreach(var type in types)
 {
 Console.WriteLine("Class : " + type.Name);
 MethodInfo[] methods = type.GetMethods();
 foreach(var method in methods)
 {
 Console.WriteLine("--Method: " + method.Name);
 ParameterInfo[] parameters = method.GetParameters();
 foreach (var param in parameters)
 {
 Console.WriteLine("--- Parameter: " + param.Name + " :
 " + param.ParameterType);
 }
 }
 }
 Console.ReadLine();
}

In the preceding code base, we have declared a fully qualified path for an assembly in C#.
Next, we have declared an object of the Assembly class and have retrieved an array of all
Types present in the assembly. Then, we are looping through each type and finding out the
methods in each of those types. Once we have a list of methods for each of the types, we
retrieve the list of parameters present in that method and their parameter types.

Summary
In this chapter, we learned how to manage types in C#. We had a recap of the different data
types available in C#. We did a deep dive into value and reference types in C#. We also had
a review of the pointer data type and learned how it works. We had a look at some of the
practices a user can use to choose the type of a variable. We had a look at generic types and
learned how they help us to improve the performance of a system.

Creating and Using Types in C# Chapter 8

[204]

Then, we looked at the different techniques we use to consume a type declared in C#. We
learned how boxing and unboxing work in C#. We then had a look at how to we consume
these data types. We also looked at type conversions, both implicit and explicit, and learned
how they help us to convert one data type into another.

Then, we had a look at Properties and how it helps us to have more control over setting
and retrieving values from the field attributes of a class. Then, we worked on strings and
learned how they work. We looked at the immutable nature of strings. We looked at using
StringBuilder, StringWriter, and StringReader, which help us to improve the
performance aspect of using strings. We then looked at the different functions in C# that
help us to do different manipulation functions on a string. Finally, we did a high-level
review of reflection and, using a code example, we learned how we can retrieve the
metadata present in an assembly.

In the next chapter, we will look at how garbage collection is performed in C#. We will look
at how the CLR manages memory for different data types in C#. We will look at how C#
allows us to manage "unmanaged resources" or the "pointer types" that we saw in this
chapter. We will also look at how we implement the IDisposable interface to manage
unmanaged resources.

Questions
What is the keyword we use in the program function when we are using a1.
pointer declaration?

Sealed1.
Safe2.
Internal protected3.
Unsafe4.

Creating and Using Types in C# Chapter 8

[205]

What would be the output of the following code snippet?2.

 float f = 100.23f;
 int i = f;
 Console.WriteLine(i);

1001.
Compile-time error2.
1013.
Runtime error4.

What would be the output of the following code snippet?3.

string s = "hello australia";
var contains = s.Contains("A");
if(contains)
{
 Console.WriteLine("it's present");
}
else
{
 Console.WriteLine("it's not present");
}

It's present1.
It's not present2.

Answers
Unsafe1.
Compile-time error2.
It's not present3.

9
Managing the Object Life Cycle

C# is a managed language. Unlike other languages, such as C++, where we need to
explicitly manage memory cleanup, in C# we do not need to worry about it. The garbage
collector in the .NET Framework manages the allocation and release of memory for us.

The garbage collector ensures that, as long as we use managed types, that is, value and
reference type variables, then we don't have to explicitly destroy an object in order to free
its memory. However, as we discovered in Chapter 8, Creating and Using Types in C#, C#
also gives us the freedom to utilize the capabilities of pointer object types in it. In C#, we
must declare that code using the unsafe syntax. Apart from that, for variables declared
in unsafe code, we also need to manage the release of memory.

In this chapter, as well as looking into memory management for unsafe code we will delve
into the following topics:

The differences between managed and unmanaged code in C#
How garbage collection works in C#
How a garbage collector uses a managed heap to allocate memory to objects
during application execution
Understanding the mark-compact algorithm used by the garbage collector
How to manage unmanaged resources in C#
Understanding finalization and the performance implications of using the
finalize method
Understanding the IDisposable interface and how it helps overcome the
shortcomings of the finalize method
Understanding how we can combine the Dispose method with
the finalize method to ensure the best performance of our applications
Understanding using the using block for all classes that implement the
IDisposable interface

Managing the Object Life Cycle Chapter 9

[207]

Technical requirements
As with the previous chapters in this book, the programs explained here will be developed
in VS 2017.

The example code for this chapter can be found on GitHub at https:/ /github. com/
PacktPublishing/Programming- in- C- Sharp- Exam- 70- 483-MCSD- Guide/ tree/ master/
Book70483Samples.

Managed code versus unmanaged code
In this section, we will understand the difference between managed and unmanaged code.
Recall that we also studied this in Chapter 1, Learning the Basics of C#. Therefore, for a quick
recap, we will just revise the concepts that we covered there.

These concepts apply not just to the C# language, they are also relevant to all languages
written in the .NET Framework. The following are some of the differences between
managed and unmanaged code:

Managed code is executed by the Common Language Runtime (CLR). Due to
this, the code is independent of the underlying OS. On the other hand,
unmanaged code is code that is executed by the OS directly.
In the case of managed code, the code is independent of the underlying
framework or the OS. CLR compiles the code into an Intermediate Language (IL)
code, which is then compiled to machine code. IL code consists of an underlying
system or the OS on which the program is executing. On the other hand, in the
case of unmanaged code, the code is directly compiled to the underlying machine
code.
As managed code is executed by the CLR, the .NET Framework provides several
built-in capabilities such as garbage collection and type checking exceptions.
However, for unmanaged code, as we will learn in this chapter, a programmer
needs to explicitly manage memory cleanup activities, which are otherwise done
by the garbage collector.

Now, before we learn how a programmer can manage memory for unmanaged code, let's
first understand how garbage collection works in C# and how useful it is.

https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples

Managing the Object Life Cycle Chapter 9

[208]

Garbage collection
Garbage collection is a functionality, provided by CLR in .NET, which helps us to clean up
the memory occupied by managed objects. It is a thread that executes in the .NET
Framework and, at regular intervals, checks whether there is any unused memory in the
application. If it does find memory, then it reclaims that memory and destroys the
underlying object.

Suppose we have implemented a .NET web application in C#. Now, let's assume
that during any interval of time, there are several people who are trying to access this .NET
application. The following is one particular scenario that will give us an idea of why
garbage collection is a very important part of C# or, for that matter, any .NET application:

When a user browses the application, they can execute a number of
functionalities, such as accessing their profile or executing operations (for
example, creating, updating, and deleting information).
This information can be stored in different sources such as SQL, Oracle, or more.
To access this information and to execute these operations, the application will
require the creation of different objects during the application runtime.
Assuming a scenario where memory is just being allocated to different objects
but is not being cleaned up, over the course of time we will end up with a system
that has too much unused memory. Memory cleanup is logical when the object
declared in the memory is no longer required. For example, suppose that a user,
after performing the intended operations in the application, logs out. In this case,
the memory that was allocated for the operations of that particular user is no
longer required. Therefore, that memory can be reclaimed.
A the memory allocated to the application could be limited, this will lead to
performance degradation over time.

Garbage collection in the .NET Framework ensures that such situations never arise for
managed code. This thread runs in the background of the application and, at set intervals,
reclaims the memory.

Please note that garbage collection can only reclaim the unused memory
of managed code. For unmanaged code, which we will learn about later,
we need to explicitly write code to ensure that no memory leaks occur in
the application.

Managing the Object Life Cycle Chapter 9

[209]

The garbage collector in .NET executes the following tasks in an application:

Allocation of memory: Each application running on .NET maintains a memory
block required for its execution in a managed heap. The garbage collection
manages the allocation of memory from this heap structure to the objects used in
the program. In upcoming sections, we will learn more about managed heaps.
Deallocation of memory: The garbage collector runs at set time periods during
the application runtime and looks for objects that are no longer required by the
application. It then destroys those objects and reclaims the memory for future
use.
The garbage collector reclaims the memory when one of the following three
conditions occurs during the execution of a program:

The application has low memory: Each application running in
.NET requires memory for its successful execution. If CLR
determines that the application is getting free low memory from
the OS, it tells the garbage collector to free any unused memory.
The relocation of memory: Garbage collection in C# is based on
generations. Generations are simply divisions in the managed heap
used by the application. In C#, we can have three generations:
generation 0, generation 1, and generation 2. In upcoming sections,
we will learn how generations are classified. The garbage collector
tries to optimize the performance of the system by classifying the
objects used in the application among the three generations of a
managed heap. In generation 0, it keeps the newly created objects
in the application run. In comparison, in successive runs it
identifies the objects that are being used for a longer period in the
application execution. It classifies them as generation 1 and
generation 2 and then loops through these generations less
extensively than it does for generation 0. This, therefore, results in
better performance.
When the Collect method is called: As programmers, we hardly
need to call the garbage collector method explicitly, as .NET is
smart enough to ensure that garbage collection occurs at regular
intervals. However, there could be certain scenarios where we
would need to call this method explicitly. In such cases, we can do
it by calling the GC.Collect method. In this chapter, we will look
at a program implementation in which we do this.

Now, let's go through some of the basic structures that garbage collection works with in C#.
We will start with a managed heap, which we will explore in the next section.

Managing the Object Life Cycle Chapter 9

[210]

Managed heap
When an application is executed in the .NET Framework, the garbage collector allocates a
section of memory to store and manage the objects declared during the application
execution.

This memory is referred to as the managed heap. It's called "managed" because it's used to
save the managed variables. The following diagram illustrates what a typical heap
structure looks like:

The preceding diagram is a typical example of what a heap structure looks like. At the top
of the structure, we have a root node. Each node can have two child nodes. The address of
the child node is saved in the parent node itself.

The garbage collector allocates and deallocates memory on this managed heap. The heap is
referred to as the managed heap. When an object is allocated in the application, the object is
stored in the heap. The object then saves the reference to the next object in the heap.

While allocating the memory, the CLR checks whether any free memory is available in the
heap. If memory is available, it allocates it from the heap. However, every so often, the
garbage collector performs a check on all of the objects present in the managed heap and
checks whether the object is being used in the application. The garbage collector loops
through the heap and finds out which objects are not associated with the application root as
well as those that are not referred to anywhere in the heap. These objects are classified as
dead objects. The garbage collector then removes such dead objects from the heap.

Managing the Object Life Cycle Chapter 9

[211]

Before we can begin to understand the phases in which the garbage collector works, let's
understand how the garbage collector segregates the managed heap into different divisions
called generations.

Generations
The garbage collector segregates the managed heap into three divisions or generations:

Generation 0
Generation 1
Generation 2

The idea behind this is to optimize the application by handling long-lived and short-lived
objects in memory separately. For example, if we have determined that object a is a long-
term object used during the application execution, then, ideally, the garbage collector
would not want to check through this object on every occasion in order to see whether it is
still valid.

Instead, the garbage collector classifies short-term objects in generation 0 and long-term
objects in generation 1 or 2. Only objects present in generation 0 are checked during every
run of the garbage collection.

On the other hand, the objects present in higher generations are not checked as frequently.
Therefore, this avoids unnecessary checks and improves the performance of the overall
application.

Generation 0 is the youngest generation and all new objects are allocated to generation 0.
Generation 1 objects contain objects that live longer. Similarly, generation 2 consists of the
longest living objects in the application execution. Let's go through the following example
to see how generations help in optimizing application performance.

Let's say we have an application, A, which is declaring different objects during execution.
The square brackets indicate the different divisions or generations maintained by the
garbage collector. Each of the following steps indicates a particular stage during the
application execution.

Please note that the following example is just for explanation purposes
only. The garbage collection calls will depend on different factors and are
not necessarily be based upon the scope of the function execution.

Managing the Object Life Cycle Chapter 9

[212]

Let's take a look at the following code example and see how it works. In the code example,
we have declared a private ReturnResult function, which does not have any input
parameter and returns an output parameter of the object type. In this function, just for the
sake of explanation, we have declared some variables and are returning back one
variable, a, to the calling function. Now, let's execute the code as follows:

static void Main(string[] args)
{
 object a = ReturnResult();
}

static private object ReturnResult()
{
 object a = new object();
 object b = new object();
 object c = new object();
 object d = new object();
 object e = new object();
 return a;
}

When the application execution begins, the application calls the ReturnResult function.
Then, in the function, when the execution encounters the new keyword, the garbage
collector gets triggered. As all the variables are newly created variables, these variables will
be added to generation 0:

Now, suppose that in the next statement, we return the execution to the main function and
pass object a. By doing so, the program execution shifts to the main operation. However, as
we are just returning a, all the other b, c, d, and e objects will no longer be required in the
application.

Additionally, we are also declaring new objects, f, g, and h, in the main program.

Managing the Object Life Cycle Chapter 9

[213]

If the garbage collector is called during this time, it will identify that object a is still
required in the program execution but all other objects can be released. Therefore, the
garbage collector will reclaim the memory in the variables b, c, d, and e. The new objects, f,
g, and h, will be added to generation 0. For object a, the garbage collector will assume that
it's a long-lived object and this will be moved to the generation 1 division.

This is what the generations now look like:

Now, let's suppose that, again, the main program calls for another ReturnResultFinal
function passing object a. The newly added program does not return anything back. The
following is the code implementation for this:

static void Main(string[] args)
{
 object a = ReturnResult();
 ReturnResultFinal(a);
}
static private object ReturnResult()
{
 object a = new object();
 object b = new object();
 object c = new object();
 object d = new object();
 object e = new object();
 return a;
}
static private void ReturnResultFinal(object a)
{
}

At this stage, the garbage collector can determine that all the other variables can be
removed from the memory except a. During this time, it can also determine that this object
can be promoted to generation 2. This is what the generations now look like:

Managing the Object Life Cycle Chapter 9

[214]

Before we move on to the next topic, let's briefly go through the mark-compact
algorithm, used by the garbage collector.

The mark-compact algorithm
The mark-compact algorithm is used by the garbage collector to maintain the memory.
Essentially, it can be classified into three phases:

The mark phase: In the mark phase, the garbage collector loops through the
different objects in the heap and identifies the one that is being referenced by a
root item. A root item can be either the starting point of the program execution or
a particular function. If the element is being referenced, it marks the object. All
other objects, which are not referenced, are then classified as dead objects.
The relocating phase: In the relocating phase, the garbage collector moves all the
objects that are being referenced, groups them together, and then updates the
memory address for each of the next objects in the memory heap.
In addition to this, the garbage collector also classifies objects that are being used
in the application to one of the different generations.
The compacting phase: In the compacting phase, the garbage collector destroys
the dead objects classified in the previous phase and reclaims their memory.

The entire process that the garbage collector undertakes can lead to a performance impact
on the application. This is due to the fact that during the program execution, the garbage
collector needs to make sure that the references in the heap are not changed during its run.
This means that all the other threads of the application are paused while the run is in
progress.

Managing the Object Life Cycle Chapter 9

[215]

Fortunately, this situation does not arise often as the garbage collector starts cleaning only
when the memory available for the application execution is low. Therefore, while the
memory is high, the collection algorithm does not kick in. Additionally, as explained while
we were discussing generations, when the garbage collection starts, it first checks the
generation 0 heap objects. If they survive the cleanup, they are promoted to the next
generation. For objects in the higher generations, the garbage collector assumes that the
objects in higher generations will probably be used in the application for a longer period of
time.

In the next section, we will look at how we can explicitly call the garbage collection method
in C#.

Calling garbage collection
Although it's not recommended, and we hardly find any reason or circumstance where we
seldom need to call the garbage collector explicitly during the program execution, we can
use the following syntax to execute the Collect method in garbage collection. The
following is the code implementation for this:

GC.Collect();
GC.WaitForPendingFinalizers();

GC is present in the system namespace. The Collect method executes the mark-compact
algorithm, which we discussed in the previous section. The WaitForPendingFinalizers
method pauses or suspends the current thread until the garbage collector finishes its
execution.

Now that we have a fair understanding of how garbage collection works in C#, we will look
at how we can perform memory management for unmanaged objects or unmanaged code.

Managing unmanaged resources
The garbage collection provided by the .NET Framework is good enough when we are
dealing with managed objects. However, there are several instances in which we need to
use unmanaged resources in our code. Some of these instances include the following:

When we need to access OS memory using pointers
When we are doing I/O operations related to file objects

Managing the Object Life Cycle Chapter 9

[216]

In each of these circumstances, the garbage collector does not explicitly free up the
memory. We need to explicitly manage the release of such resources. If we do not release
such resources, then we may end up with problems related to memory leaks in the
application, locks on OS files, leaks on connection threads to resources such as databases,
and more.

To avoid these situations, C# provides finalization. Finalization allows us to cleanup
unmanaged code in a class before the garbage collector is invoked.

Please note that when using finalization, we cannot control when the code
specified in finalization will be called. It's up to the garbage collector to
determine when the object is no longer required. However, what we are
sure of is that the finalization code will be called before the object gets
cleaned up by the garbage collector.

To declare a finalizer in a class, we use the ~ syntax. The following is the code
implementation we use to declare a finalizer for a particular class in C#:

public class SampleFinalizerClass
{
 ~SampleFinalizerClass()
 {

 }
}

In the preceding code example, we have declared a SampleFinalizerClass syntax. In
order to clean up unmanaged resources in the class, we have declared a finalizer. The name
of the finalizer is the same as that of the class but is appended with a ~.

In Finalizer, we can do things such as destroying pointer objects, releasing connections on
files, releasing connection threads to databases, and more.

Now, although using the Finalizer keyword does clean up unmanaged code before the
object is destroyed by the garbage collector, it does introduce some extra overhead for the
garbage collector. Let's examine the following example in order to understand the reason
behind this overhead.

Managing the Object Life Cycle Chapter 9

[217]

The finalization mechanism
In this section, we will understand how the garbage collector performs finalization in the
.NET Framework. To do finalization, it maintains two queues in the system:

The finalization queue: The finalization queue is a data structure maintained by
the garbage collector, which contains a reference to all the objects in a managed
heap that have implemented the finalize method. Using this queue, the garbage
collector essentially identifies all the objects that it needs to call the finalize
method for in order to clean up the unmanaged code before the object can itself
be destroyed.
The fReachable queue: The fReachable queue is a data structure maintained
by the garbage collector. It contains a reference to all the objects in the managed
heap, which, even though they don't have any reference with the application
root, can be deleted. However, before deleting them, it must call the finalize
method to clean up the unmanaged code.

Let's try and understand this with the following example. Suppose we have an application
wherein we have declared an object class, A, which has the finalize method. All other
objects don't have the finalize method.

Please refer to the following representational diagram of the different structures that could
be in the garbage collector:

Managing the Object Life Cycle Chapter 9

[218]

These structures can be described as follows:

Program Scope: This represents the different objects that may be in the scope of
the application root or, in other words, are being used in the particular block of
the program.
Managed Heap: This represents the heap memory structure maintained by the
garbage collector to allocate memory to the objects present in the program scope.
There are two divisions in the managed heap. One is Generation 0, which is used
for newly created short-lived objects, and another is Generation 1, which is used
to save long-lived objects.
Finalization Queue: As indicated previously, this will contain a reference to all
the objects in a managed heap that have an implementation of the finalize
method.
fReachable Queue: As indicated previously, this will contain a reference to all
the objects in a managed heap for which, although they are not used in the
program scope, the garbage collector needs to call the finalize method before
their memory can be reclaimed.

Take a look at the following steps:

Declare the following two classes: SampleFinalizeClass and1.
SampleNoFinalizeClass. Please note that
the SampleFinalizeClass class has a finalize method:

public class SampleFinalizerClass
{
 ~SampleFinalizerClass()
 {
 }
}
public class SampleNoFinalizeClass
{
}

Create three objects; one for SampleFinalizerClass and two for2.
SampleNoFinalizerClass:

SampleFinalizerClass b = new SampleFinalizerClass();
SampleNoFinalizeClass c = new SampleNoFinalizeClass();
SampleNoFinalizeClass d = new SampleNoFinalizeClass();

Managing the Object Life Cycle Chapter 9

[219]

As objects b, c, and d are newly created objects, they will be added to generation 0
in the managed heap. While doing so, the garbage collector will also recognize
that object b needs to have an additional call of the finalize method before it can
be cleared. It will make this entry in the finalization queue by adding a reference
to object b. The following diagram indicates what this would look like:

Pass the execution to another function by passing it to object c. The following is3.
the code snippet for this:

GarbageCollectorFinalize(c);
// Please note that in the example cs file, these two lines will be
in the different blocks of the program
static private void GarbageCollectorFinalize(SampleNoFinalizeClass
a)
{
}

Now, suppose that, during program execution when the control is at the
GarbageCollectorFinalize function, the garbage collector gets called. The garbage
collector will identify that object d is no longer required and, therefore, its memory can be
reclaimed. However, object c is being still referenced. Therefore, it will make an
assumption that this could be a long-lived object and will thus promote the object to
generation 1.

For object b, it will recognize that it's not referenced now; however, it does have a finalize
method and so cannot be cleaned. Therefore, it keeps object b in memory for now.
However, it removes the entry in the Finalization Queue and adds an entry in
the fReachable Queue so that the variable can be cleared later.

Managing the Object Life Cycle Chapter 9

[220]

Object b, as it cannot be removed from memory in the same way as object c, will also be
promoted to Generation 1. The following shows this:

This illustrates the following:

Even though object b may not still be required, it will be persisted for a longer
period of time in the memory.
As in the previous example, the garbage collector will need to execute another
iteration in order to clear these objects from the memory.
Unused objects that are implementing finalize may be moved to a higher
generation.

Due to these reasons, it's highly advisable that whenever we need to declare an object that
has the finalize method, we must implement the IDisposable interface.

Before we go on to look at the IDisposable interface, let's take a look at the following code
implementation illustrating how the Finalizer function works in C#:

Consider the following code implementation, in which we declare a Finalizer1.
class and then add a Finalizer function to it:

public class Finalizer
{
 public Finalizer()
 {
 Console.WriteLine("Creating object of Finalizer");
 }
 ~Finalizer()
 {
 Console.WriteLine("Inside the finalizer of class
Finalizer");

Managing the Object Life Cycle Chapter 9

[221]

 }
 }

Note that we have added text in both the Finalizer class constructor and in the
Finalizer method.

Use the following code snippet to create an object of this class. Additionally, note2.
that we have set a null value to the object. Setting a null value signifies that the
object is no longer required in the application:

Finalizer f = new Finalizer();
f = null;
Console.ReadLine();

Note that, by using the Console.ReadLine() syntax, we are preventing the
application from terminating. We have done this to analyze the output coming
from the program. When we execute .exe, we get the following output:

In the preceding output, we are only getting the message from the constructor of
the Finalizer class. Even though the object has been set as null, the finalizer of
object f has not been executed yet.

This is due to the fact that we cannot specify when the garbage collector kicks in.
Now, press Enter in the .exe execution. Notice that the program stops the
execution; however, before it terminates, the finalizer is called to reclaim the
memory of object f:

This proves we were right about finalizers, which we discussed earlier in this
section. Even though object f was no longer needed in the application, it was still
kept in the managed heap memory until the garbage collector executed the
Finalizer method.

Managing the Object Life Cycle Chapter 9

[222]

Now, add the following code to implicitly call the garbage collector and note that3.
the finalize method is called immediately:

Finalizer f = new Finalizer();
f = null;
GC.Collect();
Console.ReadLine();

If we execute the program now, we will see the output from the finalizer of the Finalizer
class, illustrating that the garbage collector immediately reclaimed the memory:

When we call the GC.Collect() method, internally, it calls the finalizers for all the objects
that are no longer required. Thus we get the message, Inside the finalizer of class
Finalizer.

In the preceding code example, we discovered that if we use Finalizer, we may have
some performance implications in the program. Although we can use the
GC.Collect() command to implicitly call the garbage collector, even that can cause some
lag in the program. To overcome these issues, C# is capable of using the IDisposable
interface in such circumstances. In the next section, we will understand how we can
implement this interface and how it helps us achieve better performance.

The IDisposable interface
The finalize method, which we examined in the preceding section, has some performance
implications for the system. With the Finalizer method, we are not sure of when the
memory will be reclaimed by the garbage collector even after the object is no longer
required. This implies that there is a possibility that unused memory will be persisted in a
managed heap for longer than the desired amount of time.

With the IDisposable interface, we can assume control over when the memory is
reclaimed for unmanaged resources in the application. The IDisposable interface in C#
only has one method, which is Dispose().

Managing the Object Life Cycle Chapter 9

[223]

In this method, we can perform the same cleanup of unmanaged resources that we did in
the Finalizer method. The following is the code implementation of the IDisposable
interface:

public class DisposeImplementation : IDisposable
{
 public DisposeImplementation()
 {
 Console.WriteLine("Creating object of DisposeImplementation");
 }
 ~DisposeImplementation()
 {
 Console.WriteLine("Inside the finalizer of class
 DisposeImplementation");
 }
 public void Dispose()
 {
 }
 }

Notice that in the preceding example, we have declared a DisposeImplementation
class and have implemented a IDisposable interface in this class.

As we are implementing the IDisposable interface, we have defined a Dispose
function in the same class.

With the Dispose method, we need to clear all the unmanaged resources we are using in
this class. While this approach is reliable in terms of when the resources will be reclaimed,
there are some points we need to understand:

It's the programmer's responsibility is to ensure that the Dispose method is
called to reclaim the memory.
If the programmer misses calling the Dispose method, there is a chance that the
unmanaged resources will not be cleared.

Therefore, as a good programming practice, we should use both the Finalize and
Dispose methods together in any implementation related to unmanaged resources. This
will ensure that if the programmer has missed calling the Dispose method, then
the Finalize method will always be there to reclaim the memory of the unmanaged
resources.

Additionally, in order to ensure that we do not duplicate the work in Finalize and
Dispose, we can use the approach illustrated in the following example.

Managing the Object Life Cycle Chapter 9

[224]

For the same class that we used in the preceding implementation, we will declare
an isDisposed field. The value of this field is set to false. In the Dispose method, we
will reset its value to true to indicate that the cleanup for the unmanaged resources has
occurred.

Now, to make sure that we do not do a cleanup of the resources a second time, we will
check the value of this property in the Finalize method. If the Dispose property is set to
true, indicating that cleanup has already occurred, then nothing will happen. If the
Dispose property is set to false, indicating that cleanup has not occurred, then finalize
will do a cleanup of the resources just as before. The following is the code implementation
for this:

public class DisposeImplementation : IDisposable
{
 private bool isDisposed = false;
 public DisposeImplementation()
 {
 Console.WriteLine("Creating object of DisposeImplementation");
 }
 ~DisposeImplementation()
 {
 if(!isDisposed)
 {
 Console.WriteLine("Inside the finalizer of class
 DisposeImplementation");
 this.Dispose();
 }
 }
 public void Dispose()
 {
 isDisposed = true;
 Console.WriteLine("Inside the dispose of class
 DisposeImplementation");
 /// Reclaim memory of unmanaged resources
 }
 }

Now, let's demonstrate these classes in two ways. First, we will call the Dispose method
before calling the GC.Collect() method.

Managing the Object Life Cycle Chapter 9

[225]

Call the Dispose method as follows:

DisposeImplementation d = new DisposeImplementation();
d.Dispose();
d = null;
GC.Collect();
Console.ReadLine();

In the preceding code, in the Dispose method we are setting the value in the flag to true.
Apart from setting the flag, we will also be reclaiming memory from unmanaged resources.
Therefore, when we call the finalize method, as the value in the flag is already set to true,
the block inside the finalize method does not get executed.

The following is the output:

Now, let's consider another scenario in which the programmer forgets to call the Dispose
method explicitly. The following is the code snippet for this:

DisposeImplementation d = new DisposeImplementation();
//d.Dispose();
d = null;
GC.Collect();
Console.ReadLine();

In the preceding code, we are not calling the Dispose method, so the value in the flag is set
to false. Therefore, when the garbage collector executes the finalize method in object d, it
also executes the code block to explicitly call the Dispose method for the same object.

The following is the output for this:

Managing the Object Life Cycle Chapter 9

[226]

There is also a property that we can use to suppress calling the finalize method in the
Dispose method. We can use this when we are sure that we don't need to verify the
resources in the finalize method. The following is the syntax we can use to suppress calling
the finalize method:

public void Dispose()
{
 isDisposed = true;
 GC.SuppressFinalize(this);
 Console.WriteLine("Inside the dispose of class
 DisposeImplementation");
 /// Reclaim memory of unmanaged resources
}

In the preceding code block, we have used GC.SupressFinalize() for the current object.
This will remove the references from the finalization queue, ensuring that the finalize
method is never triggered for the current object. Therefore, if we execute the same input,
we get the following output:

Using this pattern, we can ensure that unmanaged resources are released from memory
without compromising the performance of the application.

In the next section, we will look at using the using block as a good practice for when we
are dealing with any classes implementing the IDisposable interface.

The using block
Any program is bound to have errors. There could be several unforeseen circumstances
where our written logic will throw exceptions.

If we are using unmanaged resources, then unhandled exceptions can be very harmful.
They can lead to issues related to dangling memory, unclosed connections to file objects,
and more.

For example, consider the preceding example, where we have written a Dispose method to
free up the memory. Let's say we have a scenario in which the application throws an
exception before the Dispose method is called. In this case, the application will never have
a chance to reclaim the memory occupied by the unmanaged resources.

Managing the Object Life Cycle Chapter 9

[227]

To avoid such scenarios, C# lets us use the using block in our code. When we use the
using block, no matter what happens inside the using block, the Dispose method is
always called. Let's understand this with the following code implementation:

using (DisposeImplementation d = new DisposeImplementation())
{

}
Console.ReadLine();
GC.Collect();
Console.ReadLine();

Note that in the preceding code block, we are using the same DisposeImplementation
class but are using it inside the using block. We are not explicitly nullifying the d object, to
indicate to the garbage collector that it's no longer needed. Additionally, we are not
explicitly calling the Dispose method to free up the unmanaged resources. Yet, when we
run the program, we get the following output:

The using block handles it automatically. The using block ensures that as soon as the
control is out of the using block, it will call the Dispose method for the object.

Now, let's consider a scenario in which we get an error in the using block. For the sake of
explanation, we will introduce an error manually by throwing an exception.

The following is the code snippet for this:

using (DisposeImplementation d = new DisposeImplementation())
{
 throw new Exception("in here");
}

Managing the Object Life Cycle Chapter 9

[228]

If we execute the code, we get the following result:

Now, in the code, we have thrown an exception that is not being handled. However, even
then, the Dispose method of the DisposeImplementation object is called before the
application errors out due to the exception. If we don't use the using block, this will not
happen. To illustrate this, remove the using block and throw the same exception in the
application. The following is the code implementation for this:

DisposeImplementation d = new DisposeImplementation();
throw new Exception("in here");

In the preceding block, we have removed the using statement and are throwing an
unhandled exception after the object is created. If we execute the code, we get the following
output:

As you can see in the preceding screenshot, during the program execution the Dispose
method is never called for the DisposeImplementation object. This illustrates that, as a
best practice, we must always use a using block for classes implementing the
IDisposable interface.

Summary
In this chapter, we learned about memory management for unmanaged resources in C#. We
revised the differences between managed code and unmanaged code in C#. We then looked
at garbage collectors and delved into how they work. We learned about the memory
storage structure of a managed heap, which it uses internally to allocate memory to
different objects created during program execution. We learned about the internal divisions
of generations, which the garbage collector uses internally to improve the performance of
the system. We also learned about the mark-compact algorithm, which the garbage
collector uses. We then explored how we can invoke garbage collection implicitly.

Managing the Object Life Cycle Chapter 9

[229]

Following this, we went on to understand concepts about memory management for
unmanaged objects. We learned about the Finalize method and how it facilitates memory
management of an unmanaged object. We learned about the performance implications of
using the Finalize method, and then we went on to understand how the IDisposable
interface helps overcome its shortcomings. We learned about how we implement the
IDisposable interface in a class and how we can combine both the Dispose and
Finalize methods to improve the performance of the system. Finally, we learned about
using the using block for classes that implement the IDisposable interface.

In the next chapter, we will look at how reflection works in C#.

Questions
A garbage collector can reclaim memory for unmanaged resources used in C#1.
code.

Truea.
Falseb.

Which of the following can be used to make sure the Finalize method is not2.
called?

GC.Collect();a.
GC.SupressFinalize(this);b.
GC.WaitForPendingFinalizers();c.
None of thesed.

 3. Which one of the following statements is incorrect?

Finalize can lead to performance implications due to the objecta.
remaining in memory longer than required.
Generation 0 is used to save objects that are short-lived.b.
Even if we use the IDisposable interface, we will not be able toc.
suppress the calls that the garbage collector performs to execute the
code in the Finalize method.
The using block ensures that the Dispose method is called by thed.
garbage collector automatically.

Managing the Object Life Cycle Chapter 9

[230]

Answers
b1.
b2.
c, using SupressFinalize method we will be able to remove the reference from3.
the finalize queue thus the finalize method will not be executed.

10
Find, Execute, and Create

Types at Runtime Using
Reflection

The .NET Framework contains not just code but metadata as well. Metadata is data about
assemblies, types, methods, properties, and so on used in a program. These assemblies,
properties, types, and methods are classes defined within the C# programming language.
These classes, types, and methods are retrieved at runtime to parse a developer's
application logic for execution. Attributes allow us to add extra information to these
programs as well as methods that can be used during runtime while executing application
logic.

The .NET Framework also allows developers to define this metadata information during
development. It can be read during runtime using reflection. Reflection enables us to create
an instance of the type retrieved and to invoke its methods and properties.

In this chapter, we will understand how the .NET Framework allows us to read and create
metadata, and we will also learn how to use reflection to read metadata and process it
during runtime. In the Attributes section, we will focus on using attributes, creating custom
attributes, and learn how to retrieve attribute information at runtime. The Reflection section
supplies an overview of how we can use reflection to create types, access properties, and
invoke methods. Reflection also allows us to retrieve attribute information; for example,
this could be extra information that we provided to .NET Runtime to be processed while
executing the application logic.

In this chapter, we will look at the following topics:

Attributes
Reflection

Find, Execute, and Create Types at Runtime Using Reflection Chapter 10

[232]

Technical requirements
The exercises in this chapter can be performed using Visual Studio 2012 and later with the
.NET Framework 2.0 and later. However, any new C# features from C# 7.0 and later require
you to have Visual Studio 2017.

If you don't have a license for any of these products, then you can download the
Community Version of Visual Studio 2017 from https:/ /visualstudio. microsoft. com/
downloads/.

The sample code for this chapter can be found on GitHub at https:/ /github. com/
PacktPublishing/Programming- in- C- sharp- Exam- 70- 483-MCSD- Guide/ tree/ master/
Chapter10.

Attributes
Metadata or declarative information on types, methods, and properties can be associated
using attributes. Metadata refers to what types are defined in a program. For instance, a
class is a type: each class defines certain properties and methods, each property is of a type,
and each method accepts certain data types and returns certain data types. All this
information is referred to as metadata and can be accessed and retrieved during program
execution.

Like any other method, while you define an attribute, you can define the parameters as
well. You can define one or more attributes on an assembly, class, method, or property.
Based on the program requirements, you can define what types of attribute your
application needs and define them in your program. Once defined, you can read this
information while executing your program and then process it.

In the following section, we will demonstrate how to use attributes and create custom
attributes as per our requirements.

Using attributes
A declarative way of associating information to code can be done via attributes. However,
only a few attributes can be used on every type. Instead, they are used for specific types.
Attributes on any type can be specified by using square brackets, [], on top of the type that
we want to apply.

https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter10
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter10
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter10
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter10
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter10
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter10
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter10
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter10
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter10
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter10
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter10
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter10
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter10
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter10
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter10
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter10
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter10
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter10
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter10
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter10
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter10
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter10
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter10
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter10
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter10
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter10
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter10
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter10
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter10
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter10
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter10

Find, Execute, and Create Types at Runtime Using Reflection Chapter 10

[233]

Let's take a look at the following code. Generally, we see the Serializable attribute when
we want to serialize an object to the binary or XML formats. In real-world applications,
when we need to transfer a large object over the wire, we serialize an object into one of the
aforementioned formats and then send it. The serialize attribute on a class enables runtime
to allow converting the object to binary or XML or any format required by the program:

[Serializable]
public class AttributeTest
{
//object of this class can now be serialized
}

Another common usage of attributes is in unit test projects. Observe the following code:

namespace Chapter10.Test
{
 [TestClass]
 public class UnitTest1
 {
 [TestMethod]
 public void TestMethod1()
 {
 }
 }
}

In the preceding code snippet, we create a new test project where two attributes are added
to each class and method. By adding them in this way, we are letting the framework know
that this class represents a test class and that the method is a test method.

As mentioned earlier, the use of attributes can be restricted to specific types. To achieve
this, we will use attribute targets. By default, an attribute is applied to the preceding type.
However, using a target, we can set whether the attribute applies to a class, method, or an
assembly.

When the target is set to assembly, it means that the attribute is applied to the
entire assembly. Similarly, a target can be set to a module, field, event, method, property, or
type.

For example, an attribute can be set on a field to let the runtime know what type of input is
accepted. Additionally, it can be set on a method to specify whether it is a normal method
or a web method.

Find, Execute, and Create Types at Runtime Using Reflection Chapter 10

[234]

Some common attributes defined by the framework include the following:

Global: Attributes that are applied at the assembly or module level are generally
global attributes, for example, AssemblyVersionAttribute. You might have
seen this in every .NET project that is created using Visual Studio.

Let's take a look at the following example. Here, you can see the assembly.cs
file created when you create any .NET project using Visual Studio. Every
assembly contains the following code, which tells the runtime about the current
assembly that is being executed:

using System.Reflection;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;

[assembly: AssemblyTitle("Chapter10")]
[assembly: AssemblyDescription("")]
[assembly: AssemblyConfiguration("")]
[assembly: AssemblyCompany("")]
[assembly: AssemblyProduct("Chapter10")]
[assembly: AssemblyCopyright("Copyright © 2019")]
[assembly: AssemblyTrademark("")]
[assembly: AssemblyCulture("")]

[assembly: ComVisible(false)]

// The following GUID is for the ID of the typelib if this project
is exposed to COM
[assembly: Guid("f8a2951a-4520-4d0f-ab30-7dd609db84d5")]

[assembly: AssemblyVersion("1.0.0.0")]
[assembly: AssemblyFileVersion("1.0.0.0")]

Obsolete: This attribute allows us to mark an entity or a class that should not be
used. Therefore, when applied, it generates a warning message that is provided
while applying the attribute. This class defines three constructors: the first
without any parameters, the second with one parameter, and the third with two
parameters. From a code-readability perspective, it is recommended that we use
constructors with parameters as they generate warning or error messages based
on usage. Additionally, setting the second parameter to true while applying an
attribute will throw an error, whereas false will generate a warning. In the
following code, we will see how we can use an obsolete attribute.

Find, Execute, and Create Types at Runtime Using Reflection Chapter 10

[235]

In the following code snippet, we defined a class named Firstclass; later, a
new class was created with the name SecondClass. When we want new users
accessing our library to use the second class rather than the first class, then we can
use an Obsolete attribute with a message so that new users will see it and act
accordingly:

[System.Obsolete(Firstclass is not used any more instead use
SecondClass)]
class FirstClass
{
 //Do Firstthing
}

class SecondClass
{
 //Do Secondthing
}

Conditional: When a conditional attribute is applied, the execution of the
preceding code depends on the evaluation of the attribute. In a real-project
scenario, while running a program in a live environment, you don't want to log
information and messages and fill up your storage. Instead, you can have a
conditional attribute on your log methods, which will allow you to write when a
flag in your configuration file is set to true. In this way, you can actually
implement selecting logging.

In the following code, we have a LogMessage method; however, the attribute
above the class will let the runtime application know that, when the LogErrorOn
attribute is set to yes or true, it should execute this method:

using System;
using System.Diagnostics;
Public class Logging
{
 [Conditional(LogErrorON)]
 public static void LogMessage(string message)
 {
 Console.WriteLine(message)
 }
}
public class TestLogging
{
 static void Main()
 {
 Trace.Msg("Main method executing...");
 Console.WriteLine("This is the last statement.");

Find, Execute, and Create Types at Runtime Using Reflection Chapter 10

[236]

 }
}

Caller information: The caller information attribute allows you to retrieve who is
calling the method. They are CallerfilePathAttribute,
CallerLineNumberAttribute, CallerMemberNameAttribute. Each one has
its own purpose, as their names suggest. They allow us to get the line number,
the method name, and the path of the file.

Creating custom attributes
C# allows you to define your own attributes. This is similar to normal C# programming
where you define classes and properties. To define an attribute, the first thing you need to
do is to inherit it from the System.Attribute class. The class and properties you define
are used to store and retrieve data at runtime.

There are four steps that you need to complete in order to complete defining custom
attributes:

Attribute usage
Declaring attribute class
Constructors
Properties

Attribute usage can be defined by using System.AttributeUsageAttribute. We already
mentioned that there are restrictions on certain attributes, which define where they can be
used—for example, in classes, methods, or properties. AttributeUsageAttribte allows
us to define such restrictions. AllowMultiple specifies whether this attribute can be used
more than once on a specific type. Inherited controls defining child classes form the current
attribute class. The following is the general syntax for using the AttributeUsage class:

[AttributeUsage(AttributeTargets.All, Inherited = false, AllowMultiple =
true)]

As you might have observed, you can declare the AttributeUsage attribute using its
constructor on top of the custom attribute you want to define with the three parameters.
With AtributeTargetsAll, you can use CustomAttribute on any type of element that is
a class, property, method, and so on. A full list of allowed values is defined at https:/ /
docs.microsoft.com/ en- us/ dotnet/ api/ system. attributetargets? view= netframework-
4.7.2#System_AttributeTargets_ All.

https://docs.microsoft.com/en-us/dotnet/api/system.attributetargets?view=netframework-4.7.2#System_AttributeTargets_All
https://docs.microsoft.com/en-us/dotnet/api/system.attributetargets?view=netframework-4.7.2#System_AttributeTargets_All
https://docs.microsoft.com/en-us/dotnet/api/system.attributetargets?view=netframework-4.7.2#System_AttributeTargets_All
https://docs.microsoft.com/en-us/dotnet/api/system.attributetargets?view=netframework-4.7.2#System_AttributeTargets_All
https://docs.microsoft.com/en-us/dotnet/api/system.attributetargets?view=netframework-4.7.2#System_AttributeTargets_All
https://docs.microsoft.com/en-us/dotnet/api/system.attributetargets?view=netframework-4.7.2#System_AttributeTargets_All
https://docs.microsoft.com/en-us/dotnet/api/system.attributetargets?view=netframework-4.7.2#System_AttributeTargets_All
https://docs.microsoft.com/en-us/dotnet/api/system.attributetargets?view=netframework-4.7.2#System_AttributeTargets_All
https://docs.microsoft.com/en-us/dotnet/api/system.attributetargets?view=netframework-4.7.2#System_AttributeTargets_All
https://docs.microsoft.com/en-us/dotnet/api/system.attributetargets?view=netframework-4.7.2#System_AttributeTargets_All
https://docs.microsoft.com/en-us/dotnet/api/system.attributetargets?view=netframework-4.7.2#System_AttributeTargets_All
https://docs.microsoft.com/en-us/dotnet/api/system.attributetargets?view=netframework-4.7.2#System_AttributeTargets_All
https://docs.microsoft.com/en-us/dotnet/api/system.attributetargets?view=netframework-4.7.2#System_AttributeTargets_All
https://docs.microsoft.com/en-us/dotnet/api/system.attributetargets?view=netframework-4.7.2#System_AttributeTargets_All
https://docs.microsoft.com/en-us/dotnet/api/system.attributetargets?view=netframework-4.7.2#System_AttributeTargets_All
https://docs.microsoft.com/en-us/dotnet/api/system.attributetargets?view=netframework-4.7.2#System_AttributeTargets_All
https://docs.microsoft.com/en-us/dotnet/api/system.attributetargets?view=netframework-4.7.2#System_AttributeTargets_All
https://docs.microsoft.com/en-us/dotnet/api/system.attributetargets?view=netframework-4.7.2#System_AttributeTargets_All
https://docs.microsoft.com/en-us/dotnet/api/system.attributetargets?view=netframework-4.7.2#System_AttributeTargets_All
https://docs.microsoft.com/en-us/dotnet/api/system.attributetargets?view=netframework-4.7.2#System_AttributeTargets_All
https://docs.microsoft.com/en-us/dotnet/api/system.attributetargets?view=netframework-4.7.2#System_AttributeTargets_All
https://docs.microsoft.com/en-us/dotnet/api/system.attributetargets?view=netframework-4.7.2#System_AttributeTargets_All
https://docs.microsoft.com/en-us/dotnet/api/system.attributetargets?view=netframework-4.7.2#System_AttributeTargets_All
https://docs.microsoft.com/en-us/dotnet/api/system.attributetargets?view=netframework-4.7.2#System_AttributeTargets_All
https://docs.microsoft.com/en-us/dotnet/api/system.attributetargets?view=netframework-4.7.2#System_AttributeTargets_All
https://docs.microsoft.com/en-us/dotnet/api/system.attributetargets?view=netframework-4.7.2#System_AttributeTargets_All
https://docs.microsoft.com/en-us/dotnet/api/system.attributetargets?view=netframework-4.7.2#System_AttributeTargets_All
https://docs.microsoft.com/en-us/dotnet/api/system.attributetargets?view=netframework-4.7.2#System_AttributeTargets_All
https://docs.microsoft.com/en-us/dotnet/api/system.attributetargets?view=netframework-4.7.2#System_AttributeTargets_All
https://docs.microsoft.com/en-us/dotnet/api/system.attributetargets?view=netframework-4.7.2#System_AttributeTargets_All
https://docs.microsoft.com/en-us/dotnet/api/system.attributetargets?view=netframework-4.7.2#System_AttributeTargets_All
https://docs.microsoft.com/en-us/dotnet/api/system.attributetargets?view=netframework-4.7.2#System_AttributeTargets_All
https://docs.microsoft.com/en-us/dotnet/api/system.attributetargets?view=netframework-4.7.2#System_AttributeTargets_All

Find, Execute, and Create Types at Runtime Using Reflection Chapter 10

[237]

Inherited and AllowMultiple are both Boolean properties, which accept true or false.

Once we define AttributeUsage, we can now move on to declare our custom class. This
should be a public class and must inherit from the System.Attribute class.

Now that we have our class declared, we can move on and define our constructors and
properties. The framework allows us to define one or more constructors, covering all
possible scenarios around a different combination of properties. Let's define a custom
attribute. A constructor of these attributes accepts three parameters—AttributeTargets,
AllowMultiple, and Inherited:

using System;

namespace Chapter10
{
 [System.AttributeUsage(System.AttributeTargets.Field |
System.AttributeTargets.Property, Inherited =false,AllowMultiple = false)]
 public class CustomerAttribute : Attribute
 {
 public CustomerType Type { get; set; }

 public CustomerAttribute()
 {
 Type = CustomerType.Customer;
 }
 }

 public enum CustomerType
 {
 Customer,
 Supplier,
 Vendor
 }
}

The preceding code defines a custom attribute named CustomerAttribute. We also
defined a CustomerType enum that we want to use as an Attribute property. By not
defining any parameters in the constructor and assigning the Customer type to a Type
property, we are telling runtime, by default, when its value is a customer. Additionally, this
attribute is set to be used on either a field or property so that it cannot be used at the class
level.

Find, Execute, and Create Types at Runtime Using Reflection Chapter 10

[238]

Now, let's examine how we can use this attribute in our class:

namespace Chapter10
{
 internal class Account
 {
 public string CustomerName { get; set; }

 [Customer]
 public RatingType Rating { get; set; }
 }

 public enum RatingType
 {
 Gold =1,
 Silver =2,
 Bronze=3
 }
}

Here, we defined an Account class where we used our custom attribute. We applied an
attribute without any parameters. This means that, by default, we create an account of the
customer type. In the following section, we will demonstrate how we can retrieve these
attributes and use them in our application logic.

Retrieving metadata
As you are aware of OOP concepts, retrieving attribute information is as simple as creating
an instance of the attribute that we want to retrieve, and then invoking
the GetCustomAttribute method of the System.Attribute class.

In the following example, we define a new attribute called ChapterInfo and define a
constructor to mark two of its properties as required parameters:

[System.AttributeUsage(System.AttributeTargets.Class, Inherited
=false,AllowMultiple = false)]
 public class ChapterInfoAttribute : Attribute
 {
 public string ChapterName{ get; set; }
 public string ChapterAuthor { get; set; }

 public ChapterInfoAttribute(string Name, string Author)
 {
 ChapterName = Name;
 ChapterAuthor = Author;

Find, Execute, and Create Types at Runtime Using Reflection Chapter 10

[239]

 }
 }

ChapterName and ChapterAuthor are the two required parameters that the developer has
to define when using this attribute.

As you can see, in the following code the attribute is being defined over the Program class
with two values: Name and Author. In the main method, GetCustomAttribute is invoked
to read its properties, as you would do for any other class type variable:

namespace Chapter10
{
 [ChapterInfo("SAMPLECHAPTER", "AUTHOR1")]
 class Program
 {
 static void Main(string[] args)
 {
 ChapterInfoAttribute _attribute =
(ChapterInfoAttribute)Attribute.GetCustomAttribute(typeof(Program),
typeof(ChapterInfoAttribute));
 Console.WriteLine($"Chapter Name is: {_attribute.ChapterName}
and Chapter Author is: {_attribute.ChapterAuthor}");
 // Keep the console window open in debug mode.
 System.Console.WriteLine("Press any key to exit.");
 System.Console.ReadKey();
 }
 }
}

Observe the following output:

//Output
Chapter Name is: SAMPLECHAPTER and Chapter Author is: AUTHOR1
Press any key to exit.

As you can see, the ([ChapterInfo("SAMPLECHAPTER", "AUTHOR1")]) values passed in
the attribute definition over the program class were retrieved and displayed.

Reflection
Reflection is a way to query metadata at runtime from the application program. Reflection
supplies type information from the assemblies loaded into memory that you can use to
create an instance of the class and also access properties and methods of the class.

Find, Execute, and Create Types at Runtime Using Reflection Chapter 10

[240]

For example, your application code executes a query and returns a dataset object, but your
frontend accepts a custom class or model, and the model is defined during runtime. Based
on the request received, reflection can be used to create the required model/class at
runtime, access its properties or fields, and set their value by traversing through the
resulting dataset.

Additionally, in previous sections, we learned how we can create custom attributes. So, in a
scenario where you create an attribute to restrict numbers in a specific property, you can
then use reflection to read the attribute, get the preceding property, implement application
logic to restrict numbers, or display a message to users.

We can also use reflection to create a type at runtime and access its methods and properties.
Reflection works with System.Types to query information about assemblies that are
currently loaded into memory and are being executed.

The Common Language Runtime (CLR) manages application domains with boundaries
around objects that are of the same scope. This process includes loading assemblies into
these domains and controlling them as required.

In the .NET world, assemblies contain modules, modules contain types, and types contain
members. An assembly class is used to load assemblies. Modules are used to identify
information about classes in the assembly as well as global and non-global methods.

There are many methods available in the Reflection class, such as MethodInfo,
PropertyInfo, Type, CustomAttribute, and many more. These methods help
developers to retrieve information at runtime. In the previous example, we used
the GetCustomAttribute method to retrieve attribute information and displayed it.

Invoking methods and using properties
In this section, we'll take a look at how we can access the properties and methods of a
custom class at runtime using reflection.

This example serves to give you an idea of how we can access methods and properties
using reflection at runtime. However, based on your requirements, you can dynamically
access properties, their types and methods, and their parameters.

Find, Execute, and Create Types at Runtime Using Reflection Chapter 10

[241]

We created a new custom class where we defined two integer type properties: Number1
and Number2. Then, we defined a public method that accepts a parameter and returns a
number to be added or subtracted:

internal class CustomClass1
 {
 public int Number1 { get; set; }
 public int Number2 { get; set; }

 public int Getresult(string action)
 {
 int result = 0;
 switch (action)
 {
 case "Add":
 result = Number1 + Number2;
 Console.WriteLine($"Sum of numbers {Number1} and
{Number2} is : {result}");
 break;

 case "Subtract":
 result = Number1 - Number2;
 Console.WriteLine($"Difference of numbers {Number1} and
{Number2} is : {result}");
 break;
 }
 return result;
 }
 }

Then, we created a simple method where we could access the properties and methods of
the custom class that we created previously. In the first line, we retrieved the type
information of the custom class. Using this type, we created an instance of the class using
the Activator.CreateInstance method. Now, using the Getproperties method of the
type we retrieved, we accessed all the properties and set a value to each of them based on
the property name.

In the next line, using the Type information of the object, we retrieve MethodInfo using
the GetMethod method. Then, we invoked the public method of the custom class twice
with two different actions called Add and Subtract:

public static void GetResults()
 {
 Type objType = typeof(CustomClass1);
 object obj = Activator.CreateInstance(objType);
 foreach (PropertyInfo prop in objType.GetProperties())

Find, Execute, and Create Types at Runtime Using Reflection Chapter 10

[242]

 {
 if(prop.Name =="Number1")
 prop.SetValue(obj, 100);
 if (prop.Name == "Number2")
 prop.SetValue(obj, 50);
 }

 MethodInfo mInfo = objType.GetMethod("Getresult");
 mInfo.Invoke(obj, new string[] { "Add" });
 mInfo.Invoke(obj, new string[] { "Subtract" });
 }

If you run the program and debug every line, you will see that each property has been
retrieved and values have been set. The following is the output of the program:

Sum of numbers 100 and 50 is : 150
Difference of numbers 100 and 50 is : 50
Press any key to exit.

This sample is a simple one, as we created two properties, both of the integer type.
However, in real time, such simple scenarios may not exist. Therefore, at runtime, you need
to use the GetType method in order to understand the type of property retrieved.

Additionally, in the example we were able to get the type of the Custom class where we
hardcoded it. Using generics, we can even pass the class at runtime and get the info type.

Summary
In this chapter, we learned how we can use system attributes, create custom attributes,
retrieve attributes, and then use them in our application logic. Using reflection to retrieve
attribute information, we also looked at how we can create types, access properties, and
invoke a method.

In the next chapter, we will gain an understanding of why is it important to validate
application input, the type of information that flows into our application, and how can we
handle it.

Find, Execute, and Create Types at Runtime Using Reflection Chapter 10

[243]

Questions
While creating custom attributes, a target can be set to restrict the usage of an1.
attribute?

True1.
False2.

_______ is the method used to retrieve attribute information.2.
GetAttributeValue1.
GetCustomAttribute2.
GetMetadata3.
GetAttributeMetadata4.

The system allows you to retrieve property information from the object?3.
True1.
False2.

Answers
True1.
GetAttributeValue2.
True3.

11
Validating Application Input

When working on real-world projects, there may be scenarios where different kinds of
users access your application and enter information in to it. In the event that any aspect of
the scenario was not handled properly, or any input data was not properly parsed, this can
cause your application to crash or result in the corruption of your application data. Even
though you validate all the input data used and accessed within your application when
deployed in production, input data can interact with other external applications, which can
place your application in jeopardy.

The purpose of this chapter is to understand the importance of validating input data in
your application. Different validation techniques are available in the .NET Framework to
validate JSON data and XML data.

In upcoming sections, we will focus on why it is important to validate input data, how we
can manage data integrity, how to use framework-provided parsing statements and regular
expressions, and how to validate JSON and XML data. After reading this chapter, you will
be able to create application logic to validate incoming data and also handle scenarios
where exceptions might occur.

In this chapter, we will cover the following topics:

The importance of validating input data
Data integrity
Parsing and converting
Regular expressions
JSON and XML

Validating Application Input Chapter 11

[245]

Technical requirements
Exercises in this chapter can be implemented using Visual Studio 2012 or above with .NET
Framework 2.0 or above. However, any new C# features from C# 7.0 and above require you
to have Visual Studio 2017.

If you don't have a license for any of the products, you can download the community
version of Visual Studio 2017 from https:/ /visualstudio. microsoft. com/ downloads/ .

The sample code for this chapter can be found on GitHub at https:/ /github. com/
PacktPublishing/Programming- in- C- Exam- 70-483- MCSD- Guide/ tree/ master/
Book70483Samples/Chapter 11.

The importance of validating input data
Creating and running an application in isolation mode makes your application run without
any issues. However, when working on a real project, your application will be executing in
an environment where many external interfaces may interact. In such scenarios, is your
application capable of handling such communications? Can it handle all kinds of data from
these external applications? There will be many users who will try to use your system;
some may use it properly, and others may try to break your system. Can your application
tolerate such interactions?

There may be problems with both types of user. Those who use your system properly may
make mistakes by entering incorrect data or may forget to provide the requisite data. In the
event your application has logic based on the user's date of birth and the user enters some
text data, your application might throw an exception and crash.

In a scenario where users try to break your application by providing data that doesn't
match any of the types that your application expects, this may crash your application and
a significant amount of time may be devoted to recovering it.

Any of these aforementioned actions can cause temporary damage to your application or
may constitute a major issue. When it corrupts your database, recovering your application
may entail more time and effort.

https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter%2011
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter%2011
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter%2011
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter%2011
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter%2011
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter%2011
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter%2011
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter%2011
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter%2011
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter%2011
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter%2011
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter%2011
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter%2011
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter%2011
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter%2011
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter%2011
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter%2011
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter%2011
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter%2011
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter%2011
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter%2011
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter%2011
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter%2011
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter%2011
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter%2011
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter%2011
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter%2011
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter%2011
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter%2011
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter%2011
https://github.com/PacktPublishing/Programming-in-C-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter%2011

Validating Application Input Chapter 11

[246]

Creating an application using .NET Framework involves the provision of some built-in
features that can be utilized to validate some of the input data, be it from internal or
external users or external applications. Framework allows you to add attributes over each
property that can validate data for you. These are available when you use ASP.NET or the
Entity Framework, and so on. As you learned in previous chapters, you can define custom
attributes and perform validation on the data entered by users.

In the next section, we will see a variety of data integrity scenarios that are important to
understand while working on data validations in your applications.

Data integrity
While working on any application, it is very important to design it in such a way that it
handles all scenarios, or at least provides user-friendly messages to users on what went
wrong. We have already learned about exception handling in Chapter 7, Implementing
Exception Handling, which can be handy in such scenarios.

While working on a database or distributed applications, data integrity plays a vital role.

Data integrity applies differently in different scenarios:

For example, if you are creating an application and storing user information in a
table, one of the principles you may adopt might be to not maintain duplicate
users in the table so that they are uniquely identifiable. This is termed entity
integrity.
In a scenario where you are collecting demographic information, you may allow
certain values, or ranges of values, in specific fields. This is termed domain
integrity. In other words, you are making sure that the data entered in each
record/entity is valid.
There may be a scenario where you have to enter data into multiple tables with a
parent-child relationship. In such cases, your application should maintain these
relationships while saving information to the database. This is called referential
integrity.
Last but not least, in a business scenario, in order to achieve the desired outcome
based on a business process, your application may enforce certain constraints.
This is called user-defined integrity, or business-defined integrity.

Validating Application Input Chapter 11

[247]

There are many real-world examples. These include any eCommerce applications or any
banking applications. How critical is it to validate and control input and program flow? In
a banking application, what would happen in the event of a power outage? In an
eCommerce application, how would a shopping cart be maintained between multiple
sessions, when the user closes their browser, or in the event that a clean-up job kicks in?

Many of these data integrity options are available in the latest databases and frameworks,
which enable us to utilize these options to validate and control the flow of our program.

One of the ways to validate data is to use the data annotations assembly, which is available
in .NET Framework 3.5 and above. Data annotations talk about adding more information
about an attribute or property in a class. You can use data annotations by referring to
the System.ComponentModel.DataAnnotations namespace. These data annotations fall
into three categories:

Validation attributes
Display attributes
Modeling attributes

Each of these attributes is used for a specific purpose: validation attributes enforce the
validation of data; display attributes are used as display labels on the user interface, and
modeling attributes represent the recommended use of the relevant attribute.

In the following class, we will reference System.ComponentModel.DataAnnotations
and use validating attributes, display attributes, and modeling attributes on the three
available properties:

using System;
using System.ComponentModel.DataAnnotations;

namespace Chapter11
{
 public class Student
 {
 [Required(ErrorMessage = "Fullname of the student is
 mandatory")]
 [StringLength(100,MinimumLength =5,ErrorMessage ="Name should
 have minimum of 5 characters")]
 [DataType(DataType.Text)]
 public string FullName { get; set; }

 [DataType(DataType.EmailAddress)]
 [EmailAddress]
 public string EmailAddress { get; set; }

Validating Application Input Chapter 11

[248]

 [DataType(DataType.Date)]
 [Display(Name ="Date of Birth")]
 public DateTime DOB { get; set; }
 }
}

On the name property, we have a required field attribute and string length restrictions as
validation attributes. The data type set to text is a data modeling attribute that tells the
system that the name attribute only accepts text values. On the DOB property, we have a
display attribute. However, display properties can be used in either ASP.NET applications
or WPF applications.

Now, we create an instance of the Student class and try to validate its data. Data
annotations help us to define ValidationContext; when an object is validated,
ValidationResult will be returned, which consists of all properties and their respective
error messages. While defining properties in the Student class, we added attributes with
messages. When ValidationContext returns results, it returns each of these properties
with their respective attributes and messages:

Student st = new Student();
st.FullName = "st1";
st.EmailAddress = "st@st";
st.DOB = DateTime.Now;

ValidationContext context = new ValidationContext(st, null, null);
List<ValidationResult> results = new List<ValidationResult>();
bool valid = Validator.TryValidateObject(st, context, results, true);
if (!valid)
{
 foreach (ValidationResult vr in results)
 {
 Console.Write("Student class Property Name :{0}",
 vr.MemberNames.First());
 Console.Write(" :: {0}{1}", vr.ErrorMessage,
 Environment.NewLine);
 }
}

When you create a ValidationContext instance, we use the constructor that takes three
parameters. These are as follows:

An instance of an object that we want to validate
An object that implements the IServiceProvider interface, which means that
you need to create an instance using the GetService method
A dictionary of a key/value pair to consume

Validating Application Input Chapter 11

[249]

Also, while trying to validate an object, we passed true as the last parameter, which
represents the validation of all properties of the object.

When you execute the program, you should see the following output. The student's name
should have a minimum of five characters and the email address should be in a valid
format:

Student class Property Name :FullName :: Name should have minimum of 5
characters
Student class Property Name :EmailAddress :: The EmailAddress field is not
a valid e-mail address.
Press any key to exit.

In the next section, we will look at the different features available in C# to validate our data.

Parsing and converting
Entity integrity and domain integrity involve allowing valid values into our application for
further processing. Valid values include manipulating or managing input provided by a
user, rendering it as data that is acceptable to the application. This process may including
parsing specific types of data to the type our application accepts, converting data types, and
so on.

Parse and TryParse are two statements available across multiple data types within the
.NET Framework, for example if you are writing a console application and you want to
accept parameters as command-line arguments. In a console application, command-line
parameters are always of the string type. So, how do you parse these arguments from the
string type to another required type?

In the following example, we know that our first parameter is a Boolean value, but is
passed as a string. When we are certain of the value passed, we can use the parse method to
convert the string to a Boolean. Parse compares to with static string values and returns
either true or false. When invalid data is passed, an exception is thrown—Input

string is in an invalid format.

Validating Application Input Chapter 11

[250]

Let's start with an example. Define two methods that each take a parameter of the string
type. We want to parse it into Boolean and integer values. Parsing a Boolean is as simple as
using the parse method of a Boolean type. However, for the integer type, there are two
approaches. One is to use parse, as we did when parsing a Boolean, and the other is
TryParse. When we are not sure if the string parameter provided is an integer or not, then
we can use the TryParse method, which will then give us a bool result on which we can
set up our logic. In the following example, we are showing both ways. This will allow us to
handle exceptions and provide the user with a meaningful message:

internal class ParseSamples
 {
 internal void ProcessBool(string boolValue)
 {
 if (bool.Parse(boolValue))
 {
 Console.WriteLine($"Parsed bool value is :
 {bool.Parse(boolValue)}");
 }
 }

 internal void ProcessInteger(string intValue)
 {
 int processedValue =int.MinValue;
 if (int.TryParse(intValue, out processedValue))
 {
 Console.WriteLine($"Parsed int value is :
 {processedValue}");
 }
 else
 {
 Console.WriteLine("Parsed value is not an integer");
 }
 Console.WriteLine($"Parsed int value is :
 {int.Parse(intValue)}");

Now that our sample class is ready, let's invoke it using our main method. Here, we have a
switch statement to check the length of the arguments passed to the main method. If it is
1, call the processbool method; if it is 2, call both methods, otherwise, a message is
displayed:

 static void Main(string[] args)
 {
 ParseSamples ps = new ParseSamples();
 switch (args.Length)
 {

Validating Application Input Chapter 11

[251]

 case 1:
 ps.ProcessBools(args[0]);
 break;
 case 2:
 ps.ProcessBools(args[0]);
 ps.ProcessIntegers(args[1]);
 break;
 default:
 Console.WriteLine("Please provide one or two
 command line arguments");
 break;
 }

 // Keep the console window open in debug mode.
 System.Console.WriteLine("Press any key to exit.");
 System.Console.ReadKey();
 }

To invoke this method, because we are trying to read command-line arguments in our
program, these need to be passed at runtime or from the Properties window, which will
then be read at runtime. Parameters are passed from the Properties window as follows.
Right-click on Project, select Properties, and then navigate to the Debug tab, where you
can set these parameters:

Validating Application Input Chapter 11

[252]

When you run the program, as you pass 1 or 2 arguments, the respective case statements
get executed and the output will be presented on the screen:

//Command line argument true
Parsed bool value is : True
Press any key to exit.

//Command line argument true 11
Parsed bool value is : True
Parsed int value is : 11
Parsed int value is : 11
Press any key to exit.

//Command line arguments true Madhav
Parsed bool value is : True
Parsed value is not an integer

Here, in the last output, TryParse statements are processed, but Parse will throw an error
as follows. Because Parse expects a proper string to be passed, when a non-string value is
passed, or when your statement doesn't correspond to the value passed, it throws an error.
However, if we handle this statement using try..catch, we won't see any issues.
Otherwise, your program will break and an exception dialog will appear as follows:

Another way to validate your input is to use the conversion method. Convert is a method
defined in .NET Framework that casts a base type to another base type. Unlike Parse,
Convert accepts an object of a type and converts it into another type. Parse accepts only
string input. Also, when a null value is passed, Convert returns the minimum value of
the target type. The Convert class has a few static methods that support conversion to and
from different types in .NET Framework. Types supported by the Convert method
are Boolean, Char, SByte, Byte, Int16, Int32, Int64, UInt16, UInt32, UInt64, Single,
Double, Decimal, DateTime, and String.

Validating Application Input Chapter 11

[253]

When you apply the Convert method, you can expect any of the following output. The
system either successfully converts the source type to the target type or throws one of the
following exceptions: FormatException, InvalidCastException, or ArgumentNull.
Let's look at an example:

internal void ConvertSample()
{
 try
 {
 string svalue =string.Empty;
 Console.WriteLine(Convert.ToInt32(svalue));
 }
 catch (FormatException fx)
 {
 Console.WriteLine("Format Exception : "+fx.Message);
 }
 try
 {
 double dvalue = 1212121212121212.12;
 Console.WriteLine(Convert.ToInt32(dvalue));
 }
 catch (OverflowException ox)
 {
 Console.WriteLine("OverFlow Exception : " + ox.Message);
 }
 try
 {
 DateTime date= DateTime.Now;
 Console.WriteLine(Convert.ToDouble(date));
 }
 catch (InvalidCastException ix)
 {
 Console.WriteLine("Invalid cast Exception : " + ix.Message);
 }
 double dvalue1 = 12.22;
 Console.WriteLine("Converted Value : " + Convert.ToInt32(dvalue1));
}

In the preceding example, we tried to convert different types. The important thing to note is
that you can get any output while converting, and so you have to handle it accordingly in
your application code. Also, while converting decimal or float values to integers, precise
information is lost. However, no exception is thrown.

Validating Application Input Chapter 11

[254]

With same-type conversions, there won't be any exceptions or conversions.
FormatException is thrown when you try to convert a string to any other type. String to
Boolean, String to Char, or String to DateTime may throw this exception.

InvalidCastException occurs when a conversion between specific types is not valid, as
in the following examples:

Conversions from Char to Boolean, Single, Double, Decimal, or DateTime
Conversions from Boolean, Single, Double, Decimal, or DateTime to Char
Conversions from DateTime to any other type except String
Conversions from any other type, except String, to DateTime

OverflowException is thrown in the event of loss of data, for example, when converting a
huge decimal to an integer, as shown in our example. In our example, we are converting a
double value to an int value. The int type variable in C# has a minimum and maximum
value. If the number passed is outside this range, an overflow exception is raised:

Format Exception : Input string was not in a correct format.
OverFlow Exception : Value was either too large or too small for an Int32.
Invalid cast Exception : Invalid cast from 'DateTime' to 'Double'.
Converted Value : 12
Press any key to exit.

Regular expressions
When talking about validating input data, it is important to have an understanding of
regular expressions, which is a powerful way to process text. It employs a pattern-matching
technique to identify a pattern of text in input texts and validates it to the required format.
For example, if our application wants to validate an email, regular expressions can be used
to identify whether the email address provided is in a valid format. it checks for .com, @,
and other patterns and returns if it matches a required pattern.

System.Text.RegularExpressions.Regex acts as a regular expression engine in .NET
Framework. To use this engine, we need to pass two parameters, the first a pattern to match
and the second text where this pattern matching happens.

The regex class comes up with four different methods – IsMatch, Match, Matches, and
Replace. The IsMatch method is used to identify a pattern in the input text. The Match or
Matches methods are used to get all occurrences of text that match a pattern. The Replace
method replaces text that matches a regular expression pattern.

Validating Application Input Chapter 11

[255]

Now, let's jump into some examples to understand regular expressions:

public void ReplacePatternText()
{
 string pattern = "(FIRSTNAME\\.? |LASTNAME\\.?)";

 string[] names = { "FIRSTNAME. MOHAN", "LASTNAME. KARTHIK" };
 foreach(string str in names)
 {
 Console.WriteLine(Regex.Replace(str, pattern, String.Empty));
 }
}

public void MatchPatternText()
{
 string pattern = "(Madhav\\.?)";

 string names = "Srinivas Madhav. and Madhav. Gorthi are same";
 MatchCollection matColl = Regex.Matches(names, pattern);
 foreach (Match m in matColl)
 {
 Console.WriteLine(m);
 }
}

public void IsMatchPattern()
{
 string pattern = @"^c\w+";

 string str = "this sample is done as part of chapter 11";
 string[] items = str.Split(' ');
 foreach (string s in items)
 {
 if (Regex.IsMatch(s, pattern))
 {
 Console.WriteLine("chapter exists in string str");
 }
 }
}

The ReplacePatternTest method identifies FirstName and LastName from an array of
strings and replaces them with an empty string. In the MatchPatternText method, we
identify how many times Madhav exists in the string; in the third method, we use a pattern
to identify a chapter word. The ^c\w+ pattern represents the beginning of the word,
c represents a word starting with c, \w represents any characters, and + represents matches
with the preceding token.

Validating Application Input Chapter 11

[256]

The following output shows the first two lines of the output from
the ReplacePatternTest method, where we replaced Madhav with an empty string. The
second output set identifies a pattern and displays it. The third set is where we identify a
chapter word in the string:

//ReplacePatternText method
MOHAN
 KARTHIK

//MatchPatternText method
Madhav.
Madhav.

//IsMatchPattern method
chapter exists in string str
Press any key to exit.

JSON and XML
With the extensive use of internet and cloud applications, JSON and XML are becoming
more important in terms of data transfer between applications. Using JSON and XML also
increases the number of data-related issues, unless the data is validated.

Schema validation can be used to validate an XML file, which will help us to identify
whether XML is inline with data types defined. However, to validate the actual data, you
may still be using the methods we discussed in this chapter. Visual Studio helps you to
create a schema file. The Xsd.exe <XML file> command will create a schema file. Here is
an example XML file.

This XML file has a Students root element, in which information is held in relation to
multiple students. Each student element has child elements that hold values
including FirstName, LastName, School, and DOB:

<?xml version="1.0" encoding="utf-8" ?>
<Students>
 <student>
 <FirstName>Student1</FirstName>
 <LastName>Slast</LastName>
 <School>School1</School>
 <DOB>23/10/1988</DOB>
 </student>
</Students>

Validating Application Input Chapter 11

[257]

Visual Studio allows us to create a schema for this XML. Open the XML file in Visual
Studio and select the XML menu item. The Create Schema option will become available.
Selecting this will create a .xsd schema:

The content of the Sample.xsd file is as follows:

<?xml version="1.0" encoding="utf-8"?>
<xs:schema attributeFormDefault="unqualified"
elementFormDefault="qualified" xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="Students">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="student">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="FirstName" type="xs:string" />
 <xs:element name="LastName" type="xs:string" />
 <xs:element name="School" type="xs:string" />
 <xs:element name="DOB" type="xs:string" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

Validating Application Input Chapter 11

[258]

As you can see, names are defined as a string, as are dates. So when you access this date
element, we may need to convert it in order to use it in our application.

Now, we will jump to some sample code and observe how to validate an XML file using a
schema:

static void LoadXML()
{
 var path = new Uri(Path.GetDirectoryName(System.
 Reflection.Assembly.
 GetExecutingAssembly().CodeBase)).LocalPath;
 XmlSchemaSet schema = new XmlSchemaSet();
 schema.Add("", path + "\\sample.xsd");
 XmlReader rd = XmlReader.Create(path + "\\sample.xml");
 XDocument doc = XDocument.Load(rd);
 Console.WriteLine("Validating XML");
 doc.Validate(schema, ValidationEventHandler);
 Console.WriteLine("Validating XML Completed");
}
static void ValidationEventHandler(object sender,
 ValidationEventArgs e)
{
 XmlSeverityType type;
 if (Enum.TryParse<XmlSeverityType>(e.Severity.ToString(), out
 type))
 {
 if (type == XmlSeverityType.Error) throw new
 Exception(e.Message);
 }
}

As we passed a valid XML file, we did not encounter any issues validating it. However,
when you try to remove any elements from it, such as removing the school from the XML
file, then you encounter an error message. Try it yourself when you practice this lab so as to
understand validation in greater detail:

Validating XML
Validating XML Completed
Press any key to exit.

When executed, this method either writes a message on the console to the effect that
validation is complete, or it may throw an exception in the event of an error in the XML.

Validating Application Input Chapter 11

[259]

Another format we discussed is JSON. .NET Framework provides us with JSON serializers,
which can be used to validate JSON. This is like creating a C# class, using a JSON serializer
to convert a C# object to JSON, and then deserializing back to the C# object. It is similar to
the .NET Framework serialization concept. However, not every JSON has a schema to
serialize or deserialize. In this case, we will work on validating the JSON format. In the
following example, we create a class serializer to convert a JSON object and then
deserialize it back to an object.

Here, we are creating a class called Authors with three properties: AuthorName, Skills,
and DOB. We will use this object to serialize and deserialize this object:

public class Authors
{
 public string AuthorName { get; set; }
 public string Skills { get; set; }
 public DateTime DOB { get; set; }
}

In the next section, we created a new method where we used
the Newtonsoft.Json namespace to convert the Authors object to JSON. You can get
NewtonSoft.Json using NuGet packages:

static string GetJson()
{
 string result = string.Empty;
 Authors aclass = new Authors() { AuthorName = "Author1", Skills =
 "C#,Java,SQL", DOB = DateTime.Now.Date };
 result = JsonConvert.SerializeObject(aclass);
 Console.WriteLine($"JSON object : {result}");
 return result;
}

Next, we will convert JSON to the Authors object using the JSON.Deserialize method:

static Authors GetObject(string result)
{
 Authors aresult = JsonConvert.DeserializeObject<Authors>(result);
 Console.WriteLine($"Name: {aresult.AuthorName}, Skills =
 {aresult.Skills},
 DOB = {aresult.DOB}");
 return aresult;
}

Validating Application Input Chapter 11

[260]

Following is the program that invokes both these methods. Initially, we invoke the
GetJSON method to get the Json string, and then use this string to convert it to an Authors
object using the GetObject method. In the second line, we modify the string result that we
got in the first line, and try to deserialize it. This operation will throw an exception.

In the following, we are trying to modify the .json results by concatenating text called
Test. This is what happens when you modify the .json object and try to deserialize it to
an Authors object:

string result = GetJson();
Authors a = GetObject(result);
string result1 = string.Concat(result, "Test");
Console.ReadLine();
Authors a1 = GetObject(result1);

The following output shows the JSON object that we converted from the Authors object,
followed by the Author object that we deserialized from the JSON object:

JSON object :
{"AuthorName":"Author1","Skills":"C#,Java,SQL","DOB":"2019-03-31T00:00:00+1
1:00"}
Name: Author1, Skills = C#,Java,SQL, DOB = 3/31/2019 12:00:00 AM
Press any key to exit.

Here is the exception that the program throws when we modify JSON and try to deserialize
it to an Authors object:

This is an example where we try to validate a JSON object. If it gets modified during
transmission, this can be identified during the deserialization process.

Validating Application Input Chapter 11

[261]

Summary
In this chapter, we understood the importance of validating input data; different ways
of validating input data in our application, including the Parse and Convert methods; and
how we can use regular expressions and the data annotations namespace. We also looked
briefly at how we can validate XML and JSON input.

In the next chapter, we will explore ways to secure our data, such as emails, passwords,
and API keys, using encryption techniques available in .NET Framework.

Questions
The Parse method always takes the __ type as input1.

Any valid .NET type1.
Object2.
String3.
None4.

When converting DateTime to Double, which exception is thrown?2.
No exception is thrown; instead, it gets converted successfully.1.
A Format exception is thrown.2.
An Overflow exception is thrown.3.
An Invalid cast exception is thrown.4.

Information about members of an object can be provided using the3.
___________ namespace.

DataContract1.
DataAnnotations2.
System.Reflection3.
System.XML4.

Answers
String1.
An Invalid cast exception is thrown.2.
DataAnnotations3.

12
Performing Symmetric and

Asymmetric Encryption
While working on distributed applications, it is very important to keep information secure,
in particular, in the case of eCommerce applications, where user data, such as your
personal and credit card-related information, is collected and transmitted over the internet.
Cryptography enables us to encrypt and decrypt plain text. To understand it in simple
terms, let's suppose that there is plain text in our application that can be transformed by
adding a static value to each character in the text, thereby rendering it non-readable. This
process is called encryption. Conversely, decryption is the process of transforming this
unreadable text back into readable text.

When you encrypt text, it looks like random bytes, and is called cipher-text.

After reading this chapter, you will be able to understand how to encrypt and decrypt text,
the different algorithms that are available to perform these encrypt and decrypt operations,
and the options that .NET Framework affords us in terms of their application to actual
projects.

The following topics will be covered in this chapter:

Cryptography
Symmetric encryption
Asymmetric encryption
Digital signatures
Hash values

Performing Symmetric and Asymmetric Encryption Chapter 12

[263]

Technical requirements
The exercises in this chapter can be practiced using Visual Studio 2012 or above with .NET
Framework 2.0 or above. However, any new C# features from C# 7.0 and above require
Visual Studio 2017.

If you don't have a license for any of the products, you can download the community
version of Visual Studio 2017 from https:/ /visualstudio. microsoft. com/ downloads/ .

Sample code for this chapter can be found on GitHub at https:/ / github. com/
PacktPublishing/Programming- in- C- sharp- Exam- 70- 483-MCSD- Guide/ tree/ master/
Book70483Samples/Chapter12.

Cryptography
When working with public networks involved with creating and managing web
applications that are accessible over the internet, your application is at high risk of being
intercepted and modified by unauthorized parties. Cryptography allows us to protect data
from such unauthorized parties from being viewed or modified. Cryptography also
provides ways to protect our data and assists in the transfer of data securely over the
network. To perform such operations, we can use encryption algorithms to create cipher
data prior to transmission. When intercepted by unauthorized parties, it will be difficult for
them to decrypt this in order to read or modify this data.

To perform such operations, .NET framework is shipped with
the System.Secure.Cryptography namespace, which comes with many algorithms,
including the following:

Secret key encryption
Public key encryption
Digital signatures
Hash values

Let's jump into an example regarding where cryptography can be used. Suppose, as a
customer, that I am trying to place an order for a laptop over the internet. For this, I am
chatting with the company's representative. Once I am sufficiently satisfied with the quote,
the discount offered, and the terms and conditions to place an order, I then need to provide
personal and credit card information via this channel.

https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter12
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter12
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter12
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter12
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter12
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter12
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter12
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter12
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter12
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter12
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter12
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter12
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter12
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter12
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter12
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter12
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter12
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter12
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter12
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter12
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter12
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter12
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter12
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter12
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter12
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter12
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter12
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter12
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter12
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter12
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter12
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter12
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter12

Performing Symmetric and Asymmetric Encryption Chapter 12

[264]

So, how can we ensure the following in this regard?

That this information is unclear for anyone listening in on our conversation
That there was no unauthorized access to the information transferred
That the information received is from the company's representative

All of this can be achieved with the implementation of cryptographic algorithms. These
algorithms facilitate confidentiality, data integrity, authentication, and non-repudiation.

Confidentiality protects the identity of users, data integrity protects data from being
changed, authentication ensures that data is from an authenticated party, and non-
repudiation prevents any party from denying that a message was sent.

.NET Framework provides different algorithms, as mentioned earlier. Although these are
numerous, we will limit our discussion to four major ones in this chapter.

Secret-key encryption, which is also referred to as symmetric encryption, uses a single
shared key to encrypt and decrypt data. In this regard, however, it is important to keep the
secret information safe from unauthorized access because anyone in possession of this key
can then access the data and misuse it. Because it uses the same key for both encryption and
decryption, this works faster and is suitable for large amounts of data. There are different
types of algorithm available, such as DES (short for Data Encryption Standard), triple DES,
and AES (short for Advanced Encryption Standard). These algorithms encrypt blocks of
data simultaneously, so they are also referred to as block ciphers. DES and Triple DES use 8
bytes as a block, while AES uses 16 bytes as a block, but also supports 24 and 32 bytes.

Public-key encryption, also referred to as asymmetric encryption, uses public/private keys
to encrypt and decrypt data. Of these two keys, the private key must be kept secret from
unauthorized access, as anyone with the private key can access your data. Public and
private keys in this encryption technique are mathematically linked and use a fixed buffer
size. These are slow compared to secret key encryption, and are useful for encrypting small
amounts of data. Any data encrypted using a public key can only be decrypted using a
private key. Also, if you sign data using a private key, it can only be verified using a public
key.

Digital signing uses digital signatures that are unique to that party. As mentioned in public
key encryption, a party can sign the data using a private key and, when the other party
receives information and when the public key of the sending party is trusted, you can
identify who sent the message and, in turn, maintain the integrity of the data.

Since the public key of the sending party is public, anyone in possession of the public key
can process the message, meaning that your message is not secret. To keep it secret, you
also need to encrypt the message.

Performing Symmetric and Asymmetric Encryption Chapter 12

[265]

Hash values map data of any length to a fixed-length byte sequence. When you have a
block of text and change it prior to rehashing, it will produce a new hash. This way, we can
maintain data integrity during transfer.

However, as has been discussed in relation to other cryptographic methods, this method
does not authenticate the sender of the message.

Symmetric encryption
Symmetric encryption uses a single key and works on blocks of text. This method works
quicker than others. While using this method, it is important to maintain the confidentiality
of the secret key, and both the sender and receiver should use the same key, which is a
disadvantage of this method.

Let's look at an example and understand how we can encrypt a message or block of text:

Here, we use the encrypt method, where we read a block of text from a file,1.
encrypt it using a symmetric algorithm, and write the encrypted content to a
different file.
The encrypt method accepts an instance of SymmetricAlgorithm, which is used2.
to create an instance of ICryptoTransform by passing a key and initial vector.
The system allows you to generate your own key or use the one it generates.
Then, we create a memory stream to store the buffer at runtime:3.

public static void EncryptSymmetric(SymmetricAlgorithm sem)
{
 //Read content from file
 string filecontent = File.ReadAllText("..\\..\\inputfile.txt");
 //Create encryptor using key and vector
 ICryptoTransform encryptor = sem.CreateEncryptor(sem.Key,
sem.IV);
 //create memory stream used at runtime to store data
 using (MemoryStream outputstream = new MemoryStream())
 {
 //Create crypto stream in write mode
 using (CryptoStream encStream = new
CryptoStream(outputstream, encryptor, CryptoStreamMode.Write))
 {
 //use streamwrite
 using (StreamWriter writer = new
StreamWriter(encStream))
 {
 // Write the text in the stream writer

Performing Symmetric and Asymmetric Encryption Chapter 12

[266]

 writer.Write(filecontent);
 }
 }
 // Get the result as a byte array from the memory stream
 byte[] encryptedDataFromMemory = outputstream.ToArray();
 // Write the data to a file
 File.WriteAllBytes("..\\..\\Outputfile.txt",
encryptedDataFromMemory);
 }
}

A cryptostream is created using the memory stream, ICryptoTransform, along
with the write mode. A cryptostream is used to write to memory, which can then
be converted into an array and written to an output file.

Once you execute the encrypt method, you can now open the output file from the4.
solution and check the results.
Now, we will read the data from the output file and decrypt it to plain text:5.

public static string DecryptSymmetric(SymmetricAlgorithm sem)
{
 string result = string.Empty;
 //Create decryptor
 ICryptoTransform decryptor = sem.CreateDecryptor(sem.Key,
sem.IV);
 //read file content
 byte[] filecontent =
File.ReadAllBytes("..\\..\\Outputfile.txt");
 //read file content to memory stream
 using (MemoryStream outputstream = new
MemoryStream(filecontent))
 {
 //create decrypt stream
 using (CryptoStream decryptStream = new
CryptoStream(outputstream, decryptor, CryptoStreamMode.Read))
 {
 using (StreamReader reader = new
StreamReader(decryptStream))
 {
 //read content of stream till end
 result = reader.ReadToEnd();
 }
 }
 }
 return result;
}

Performing Symmetric and Asymmetric Encryption Chapter 12

[267]

The decrypt method uses the same signature as the encrypt method. However, instead of
creating an encryptor class, we create a decryptor class, which implements
the ICryptoTransform interface.

The following is the main program, where we create SymmetricAlgorithm of the
AESManaged instance type, and then pass it to the encrypt and decrypt methods:

 static void Main(string[] args)
 {
 Console.WriteLine("Using AES symmetric Algorithm");
 SymmetricAlgorithm sem = new AesManaged();
 Console.WriteLine("Encrypting data from inputfile");
 EncryptDecryptHelper.EncryptSymmetric(sem);
 Console.WriteLine("Data Encrypted. You can check in outputfile. Press
any key to decrypt message");
 System.Console.ReadKey();
 Console.WriteLine("Decrypting content form outputfile");
 string message = EncryptDecryptHelper.DecryptSymmetric(sem);
 Console.WriteLine($"Decrypted data : {message}");
 // Keep the console window open in debug mode.
 System.Console.WriteLine("Press any key to exit.");
 System.Console.ReadKey();
 }

Before executing the program, check the input file in the solution where you can change the
content and execute it. Following encryption, the output file in the solution can be verified
for the encrypted content:

When you practice this example, make sure that you have all the helper methods in one
class, and the main method in another class, as specified in the sample code on GitHub.
Now that you have all the methods, when you execute them, you see the preceding output.

Your encryption method uses the AES algorithm. It reads data from the input file, encrypts
data using the AES algorithm, and then writes a message on the screen. Once you press any
key, your decrypt method is initiated, decrypts the message, and writes to the output file.
The same message is displayed on screen.

Performing Symmetric and Asymmetric Encryption Chapter 12

[268]

In a real-time scenario, when you want to perform secure transactions using file transfers,
this is one way to do so. Because you will be using symmetric algorithms, it will be easy to
encrypt or decrypt the content.

A sender encrypts the content of the file and sends it to the receiver. The receiver decrypts
the file content and processes it. In this method, both the sender and receiver should be
aware of the key used.

Asymmetric encryption
Asymmetric encryption uses two keys—a public key and a private key. Because of this, it
runs bit slowly. Also, it is necessary to keep the private key safe at all times. Unless you
have the private key, you cannot decrypt the message.

Now, let's jump into an example and try to understand how this is done. In this scenario,
we will be using RSACryptoServiceProvider. This algorithm provides us with public
and private keys that can be used to encrypt and decrypt messages. The encrypt method
accepts a public key and text to encrypt, and we then convert the text to a byte array since
the encrypt method accepts byte arrays. Then, we set the public key for the algorithm and
invoke the encrypt method:

public static byte[] EncryptAsymmetric(string publicKey, string
texttoEncrypt)
{
 byte[] result;
 UnicodeEncoding uc = new UnicodeEncoding();
 byte[] databytes = uc.GetBytes(texttoEncrypt);
 using (RSACryptoServiceProvider rsa = new RSACryptoServiceProvider())
 {
 rsa.FromXmlString(publicKey);
 result = rsa.Encrypt(databytes, true);
 }
 return result;
}

In the decrypt method, we pass the byte array that needs to be decrypted along with a
private key. Once a message is encrypted using a public key, it can only be decrypted using
its corresponding private key:

public static string DecryptAsymmetric(string privateKey, byte[]
bytestoDecrypt)
{
 byte[] result;
 using (RSACryptoServiceProvider rsa = new RSACryptoServiceProvider())

Performing Symmetric and Asymmetric Encryption Chapter 12

[269]

 {
 rsa.FromXmlString(privateKey);
 result = rsa.Decrypt(bytestoDecrypt, true);
 }
 UnicodeEncoding uc = new UnicodeEncoding();
 string resultText = uc.GetString(result);
 return resultText;
}

The following is the main method, where we create the RSACryptoproviderservice class
to get public and private keys. rsa.ToXmlString(false) provides a public key, and
setting it to true will give us a private key. We will use these keys to encrypt and decrypt
messages:

static void Main(string[] args)
{
 #region asymmetric Encryption
 Console.WriteLine("Using asymmetric Algorithm");
 RSACryptoServiceProvider rsa = new RSACryptoServiceProvider();
 string publicKey = rsa.ToXmlString(false);
 string privateKey = rsa.ToXmlString(true);
 Console.WriteLine("Encrypting data ");
 byte[] resultbytes =
EncryptDecryptHelper.EncryptAsymmetric(publicKey,"This is a dummy text to
encrypt");
 Console.WriteLine("Data Encrypted. Press any key to decrypt message");
 System.Console.ReadKey();
 Console.WriteLine("Decrypting content");
 string resultText = EncryptDecryptHelper.DecryptAsymmetric(pricateKey,
resultbytes);
 Console.WriteLine($"Decrypted data : {resultText}");
 #endregion

 // Keep the console window open in debug mode.
 System.Console.WriteLine("Press any key to exit.");
 System.Console.ReadKey();
}

Execute the program by changing the input text, or you can try changing the algorithm.
However, when you change the algorithm, you may need to apply any syntactical changes
that are required in order for the program to run and work:

Performing Symmetric and Asymmetric Encryption Chapter 12

[270]

When you execute the program, you see the preceding output. In the sample, you are using
an asymmetric algorithm to encrypt content. As the control flows through the code, it
display messages. Once the message is encrypted, it will ask you to press any key. Upon
pressing any key, the program decrypts the message and displays it on screen.

In the scenario that we discussed under symmetric algorithms, where you want to perform
secure transactions between two parties, you can use public-private key combinations.

A receiver performs encryption using a private key and sends the file or block of text to the
receiver, where a public key is used to decrypt the content. In the event the public-private
keys do not match, you cannot read or validate the data. This is one way to validate input
data.

Digital signatures
Digital signatures can be used to sign the message that will authenticate the sender.
However, signing a message doesn't prevent a third party from reading the message. To
achieve this, we need to encrypt the message and sign it.

In the following example, we are using a public key and a private key (asymmetric
algorithm). We use the sender's private key to sign the message and the receiver's public
key to encrypt the message. If you observe the code, we also use hash computing in this
example. After encrypting the message, we hash the message.

We are going to use RSACryptoServiceProvider, along
with RSAPKCS1SignatureFormatter, which will be used to create a signature.

In the following program, we convert text to a byte array using UnicodeEncoding classes,
encrypt the message using the receiver's public key and the symmetric or asymmetric
algorithms we learned in previous sections, compute the hash of the content, and then
digitally sign the message. Once all of these processes have been implemented, we transmit
the data across, where we recompute the hash, verify the signature, and then decrypt the
message using the keys.

Performing Symmetric and Asymmetric Encryption Chapter 12

[271]

In the following example, we are using public-private keys to perform encryption. As
mentioned previously, simply signing the message doesn't secure the content of the
message. Instead, it will allow you to authenticate the sender:

public static void DigitalSignatureSample(string senderPrivatekey, string
receiverspublickey, string texttoEncrypt)
{
 UnicodeEncoding uc = new UnicodeEncoding();
 Console.WriteLine("Converting to bytes from text");
 //get bytearray from the message
 byte[] databytes = uc.GetBytes(texttoEncrypt);
 Console.WriteLine("Creating cryptoclass instance");
 //Creating instance for RSACryptoservice provider as we are using for
sender and receiver
 RSACryptoServiceProvider rsasender = new RSACryptoServiceProvider();
 RSACryptoServiceProvider rsareceiver = new RSACryptoServiceProvider();
 //getting private and public key
 rsasender.FromXmlString(senderPrivatekey);
 rsareceiver.FromXmlString(receiverspublickey);
 Console.WriteLine("Creating signature formatter instance");
 //GEt signature from RSA
 RSAPKCS1SignatureFormatter signatureFormatter = new
RSAPKCS1SignatureFormatter(rsasender);
 //set hashalgorithm
 signatureFormatter.SetHashAlgorithm("SHA1");
 //encrypt message
 Console.WriteLine("encrypting message");
 byte[] encryptedBytes = rsareceiver.Encrypt(databytes, false);
 //compute hash
 byte[] computedhash = new SHA1Managed().ComputeHash(encryptedBytes);
 Console.WriteLine("Creating signature");
 //create signature for the message
 byte[] signature = signatureFormatter.CreateSignature(computedhash);
 Console.WriteLine("Signature: " + Convert.ToBase64String(signature));
 Console.WriteLine("Press any key to continue...");
 Console.ReadKey();
 //receive message then recompute hash
 Console.WriteLine("recomputing hash");
 byte[] recomputedHash = new SHA1Managed().ComputeHash(encryptedBytes);
 //signature deformatter
 Console.WriteLine("Creating signature dformatter instance");
 RSAPKCS1SignatureDeformatter signatureDFormatter = new
RSAPKCS1SignatureDeformatter(rsareceiver);
 signatureDFormatter.SetHashAlgorithm("SHA1");
 //verify signature
 Console.WriteLine("verifying signature");
 if (!signatureDFormatter.VerifySignature(recomputedHash, signature))
 {

Performing Symmetric and Asymmetric Encryption Chapter 12

[272]

 Console.WriteLine("Signature did not match from sender");
 }
 Console.WriteLine("decrypting message");
 //decrypt message
 byte[] decryptedText = rsasender.Decrypt(encryptedBytes, false);
 Console.WriteLine(Encoding.UTF8.GetString(decryptedText));
}

The following is the main program, where we create an instance of
the RSACryptoServiceProvider class and collect public and private keys. However, as
we are encrypting and decrypting the message in the same method, a single set of public
and private keys was used.

As part of this example, we perform both encryption and decryption. We can create
multiple RSA providers and use their public-private keys for senders and receivers. You
can create different console applications, one as a sender and the other as a receiver, and
simulate a real-world scenario. For simplicity's sake, I have used one pair of public-private
keys to perform operations:

static void Main(string[] args)
{
 #region Digital Signatures
 RSACryptoServiceProvider rsa = new RSACryptoServiceProvider();
 string publicKey = rsa.ToXmlString(false);
 string pricateKey = rsa.ToXmlString(true);
 EncryptDecryptHelper.DigitalSignatureSample(pricateKey, publicKey,"This
is a sample text for Digital signatures");
 #endregion

 // Keep the console window open in debug mode.
 System.Console.WriteLine("Press any key to exit.");
 System.Console.ReadKey();
}

Performing Symmetric and Asymmetric Encryption Chapter 12

[273]

Check the output by changing the input message and algorithms. However, as said earlier,
you may need to take care of any syntactical changes before executing:

In a real-world scenario, suppose two entities are communicating via web services where
such digital signatures are implemented. The sender will have a set of public and private
keys, and the receiver will have public and private keys. Both parties should exchange their
respective public keys to facilitate application communication.

Hash values
Computing a hash creates a fixed-length numeric value from a byte array. A hash maps a
variable-length binary string to a fixed-length binary string. A hash cannot be used for two-
way conversion. When you apply a hash algorithm, each character gets hashed into a
different binary string.

In the following example, we use the SHA1Managed algorithm to compute the hash. We
compute the hash twice to check whether the result is the same. As mentioned earlier, this
method is used to maintain data integrity.

In the following code, we are using the UnicodeEncoding class to convert the text to a byte
array, and the SHA1Managed algorithm to compute the hash for the byte array. Once
converted, we display each and every hashed byte on the screen. To validate the hash, we
recompute the hash on the string and compare the hash values. This is one way to validate
input data:

public static void HashvalueSample(string texttoEncrypt)
{
 UnicodeEncoding uc = new UnicodeEncoding();
 Console.WriteLine("Converting to bytes from text");
 byte[] databytes = uc.GetBytes(texttoEncrypt);
 byte[] computedhash = new SHA1Managed().ComputeHash(databytes);

Performing Symmetric and Asymmetric Encryption Chapter 12

[274]

 foreach (byte b in computedhash)
 {
 Console.Write("{0} ", b);
 }
 Console.WriteLine("Press any key to continue...");
 byte[] reComputedhash = new SHA1Managed().ComputeHash(databytes);
 bool result = true;
 for (int x = 0; x < computedhash.Length; x++)
 {
 if (computedhash[x] != reComputedhash[x])
 {
 result = false;
 }
 else
 {
 result = true;
 }
 }

 if (result)
 {
 Console.WriteLine("Hash value is same");
 }
 else
 {
 Console.WriteLine("Hash value is not same");
 }
}

The main method for invoking the hash value example is as follows. Here, we just call the
helper method that performs the hash compute on the text provided:

static void Main(string[] args)
{
 #region Hashvalue
 EncryptDecryptHelper.HashvalueSample("This a sample text for hashvalue
sample");
 #endregion

 // Keep the console window open in debug mode.
 System.Console.WriteLine("Press any key to exit.");
 System.Console.ReadKey();
}

Performing Symmetric and Asymmetric Encryption Chapter 12

[275]

When we compute the hash, we display the result and then we undertake a comparison to
see whether the result from both calls is the same:

The preceding screenshot shows the program where you compute the hash and display the
hashed array. Also, when the program recomputes the hash and effects a comparison, you
see the same hash value message.

Summary
In this chapter, we focused on understanding cryptography and how we can use symmetric
and asymmetric algorithms. We also focused on how we can use these to validate senders,
receivers, and the content of messages. We can use the techniques learned in the chapter to
validate input data and perform similar operations when working with secure transactions.
We also looked at how we can sign messages using digital signatures, and how can we
maintain data integrity using hash values.

In the next chapter, we will focus on .NET assemblies, how we can manage them, and how
we can debug C# applications.

Questions
Out of the four methods discussed in this chapter, which two can be used to1.
authenticate the sender?

Symmetric algorithm1.
Asymmetric algorithm2.
Hash values3.
Digital signatures4.

Performing Symmetric and Asymmetric Encryption Chapter 12

[276]

When two parties need to communicate using an asymmetric algorithm, which2.
key do they need to share?

Private key1.
Public key2.
Both3.
None 4.

Which type of algorithm is used to encrypt large amounts of data?3.
Symmetric1.
Asymmetric2.
Both3.
None4.

Answers
Digital signatures1.
Public key2.
Symmetric3.

13
Managing Assemblies and

Debugging Applications
In the last chapter, we learned about cryptography and how we can encrypt and decrypt
using different techniques available in C#. In this chapter, we will focus on how we can
manage .NET assemblies, debugging applications, and how to do tracing. Writing a .NET
application appears to be relatively simple; however, it is important to make sure your
program serves its purpose, maintains quality standards, doesn't crash on exceptions, and
behaves properly in all circumstances. To achieve such a quality output, it is important to
test your application and check the input source and values generated at runtime, which
are used in the application logic for further processing and so on.

Assemblies are the fundamental units of .NET application deployment. They maintain the
version, type, resources required, scope, and security details. We will discuss this in more
detail in the upcoming sections.

Debugging is the process of stepping through each and every line of code that seems to be
problematic or code that you believe will throw errors. During this process, we can observe
the values in the variables and parameters and whether the program is running as
expected.

It is also important to understand whether we are creating a library or an independent
application to distribute to clients. Based on this, we can decide what type (.exe or .dll)
of application needs to be created.

Tracing allows you to track through each and every line of code while it is executing.

Managing Assemblies and Debugging Applications Chapter 13

[278]

After reading this chapter, you will be able to understand assemblies in .NET and how we
can manage them, as well as versioning and signing. We will also look at a number of ways
to debug an application and how to write trace messages when an exception occurs. In this
chapter, we will cover the following topics:

Assemblies
Debugging a C# application
Tracing

Technical requirements
You can practice the exercises from this chapter using Visual Studio 2012 or later with .NET
Framework 2.0 or later. However, any new C# features from C# 7.0 and later require you to
have Visual Studio 2017.

If you don't have a license for any of these products, you can download the Community
version of Visual Studio 2017 from https:/ /visualstudio. microsoft. com/ downloads/ .

The sample code for this chapter can be found on GitHub at https:/ /github. com/
PacktPublishing/Programming- in- C- sharp- Exam- 70- 483-MCSD- Guide/ tree/ master/
Chapter13.

Assemblies
Assemblies in the .NET Framework can be of two types, .exe or .dll, and are termed as
the building blocks of a .NET application.

These assemblies form the basic units of an application and allow a programmer to
maintain versions, security, scope of usage, and reuse. Since an assembly contains all the
information required to execute your application, it provides the runtime with information
about what .NET types are used and what features of runtime are required to execute the
application.

https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter13
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter13
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter13
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter13
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter13
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter13
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter13
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter13
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter13
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter13
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter13
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter13
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter13
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter13
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter13
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter13
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter13
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter13
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter13
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter13
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter13
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter13
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter13
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter13
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter13
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter13
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter13
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter13
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter13
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter13
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter13
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples/Chapter13

Managing Assemblies and Debugging Applications Chapter 13

[279]

When you create an application in .NET using Visual Studio, it creates source code files
(.cs files), properties of an assembly (AssemblyInfo.cs):

These projects allow programmers to associate other assemblies, which, in turn, allows
them to create and maintain larger projects for multiple users to work on each project.
When work on individual projects is completed, these projects can be created as one
assembly unit to release for the customer.

When an assembly is created, each assembly creates a manifest file that details information
about the following:

Each file that has been used in creating this assembly
If there are any references that have been used
The version of the assembly with a unique name

Assembly contents and manifest
An assembly in the .NET Framework contains the following four elements:

Assembly manifest
Metadata
MSIL code
Resources

Managing Assemblies and Debugging Applications Chapter 13

[280]

These elements can be grouped into one assembly, as shown in the following screenshot.
Here, the runtime requires manifest information in order to get the type information, the
dependent assembly information, the version, and the unique name of the assembly in
order to execute:

The .NET Framework also allows us to group the four elements of the assemblies into
multiple modules and create an assembly to refer them while executing the program block.
When you refer such modules in an assembly, it is the manifest file that maintains all the
links required to refer to these resources:

An assembly manifest contains the name of the assembly, the version of the assembly,
which culture is used to build the assembly, the strong name information (that is, public
key), the type information, a list of files and how they are associated with each other and
the assembly, and, finally, a list of referenced assemblies and their versions. We can add
more information by updating the AssemblyInfo.cs file.

A manifest file can be part of the portable executable (PE) file along with MSIL or a
standalone PE file. Each assembly file contains all the files that are required for an
assembly; it governs how the mapping between these files, resources, and assemblies are
maintained, and it also contains referenced assemblies.

Managing Assemblies and Debugging Applications Chapter 13

[281]

Target .NET Framework
When you create a C# application, you can specify which .NET Framework you want to
target your application to. In a real-world scenario, not every customer updates their
servers with the latest versions when new versions of the Framework are released.
Additionally, when a new version is released, some of the old features might be deprecated
and newer versions of the existing features are added. In these situations, your application
should not fail. So, the .NET Framework allows you to target your application to a specific
version of the .NET Framework.

You can target the .NET Framework version while creating a new project using Visual
Studio, or change the target framework using the property pages of the project:

Managing Assemblies and Debugging Applications Chapter 13

[282]

Alternatively, to change the target framework version using the property pages, select an
existing project, right-click on it, and then navigate to Properties:

Managing Assemblies and Debugging Applications Chapter 13

[283]

In the Target framework drop-down menu, select your required version:

Signing assemblies
Creating a unique identity for an assembly is referred to as signing or strong-naming an
assembly. Providing a unique identity for an assembly avoids assembly conflicts. Each
assembly maintains hashes of the modules, resources, and file information in its manifest.
When you sign an assembly, the following is captured:

The name of the assembly
The version number of the assembly
If available, the culture (also called locale for code development) of the assembly
The public key that is used to sign the assembly to the assembly manifest

Managing Assemblies and Debugging Applications Chapter 13

[284]

Signing an assembly provides the following benefits:

It allows us to give a friend access to other signed assemblies.1.
It allows us to run different versions of the same assembly side by side.2.
It allows us to deploy our assembly into the GAC. This allows other applications3.
to use our assembly as well.

You can sign an assembly in two ways: the first is by using Visual Studio, and the second is
by using the command-line tool. Visual Studio makes it simple to sign the assembly.

Here, we will demonstrate how to sign an assembly using Visual Studio:

Navigate to Project Properties.1.
Navigate to the Signing* tab on the left side:2.

Managing Assemblies and Debugging Applications Chapter 13

[285]

Select the Sign the assembly checkbox.3.
Choose <New...> in the drop-down menu, and then choose a strong key filename:4.

Give a key filename in the pop-up window.5.
Visual Studio allows you to choose an algorithm and provide a password for the6.
key file.
The password is optional; an algorithm can be changed as per your requirements7.
from the available list.

Alternatively, we can sign an assembly using Command Prompt and Visual Studio tools
that come with the following installation steps:

Click the Windows button on your system.1.
Navigate through the installed programs.2.
Find the Visual Studio 20xx installation folder.3.
Select Developer Command Prompt for Visual Studio 20xx.4.

Managing Assemblies and Debugging Applications Chapter 13

[286]

Use sn.exe to generate a strong name pair into a .snk file:5.

sn -k keyPair.snk

Once the key file is created, you can now use Visual Studio to sign the assembly6.
or use the al.exe tool.
Use al.exe to link the assembly and key pair generated in the preceding steps:7.

al /out:chapter12.dll MyModule.netmodule /keyfile:keyPair.snk

More information about these commands is available on MSDN (https:/ /docs.
microsoft.com/en- us/ dotnet/ framework/ tools/ sn-exe- strong- name- tool).

Versioning assemblies
When you are ready with an assembly and have signed it, you can version it. When you
version an assembly, the current assembly and all the dependent assembly versions are
maintained in the assembly manifest. When a versioned assembly is deployed into an
environment, then that becomes the default version of your application and the system
throws an assembly manifest mismatch error when either the current assembly or
dependent assemblies do not match the default version. There is a way to override this
using a configuration file, which tells the runtime to use a specific version instead of the
default version.

When an assembly is executed at runtime, it performs multiple steps to resolve assembly
binding:

It checks the current assembly for the version information and a unique name.1.
It checks for configuration files to see whether any version override policies are2.
defined.
In the case of any policy changes, the runtime identifies and loads the redirected3.
assembly as per the policy.
It checks the GAC, or the path specified in configuration files, then the4.
application directory, subdirectories, and serves the assembly binding request.

https://docs.microsoft.com/en-us/dotnet/framework/tools/sn-exe-strong-name-tool
https://docs.microsoft.com/en-us/dotnet/framework/tools/sn-exe-strong-name-tool
https://docs.microsoft.com/en-us/dotnet/framework/tools/sn-exe-strong-name-tool
https://docs.microsoft.com/en-us/dotnet/framework/tools/sn-exe-strong-name-tool
https://docs.microsoft.com/en-us/dotnet/framework/tools/sn-exe-strong-name-tool
https://docs.microsoft.com/en-us/dotnet/framework/tools/sn-exe-strong-name-tool
https://docs.microsoft.com/en-us/dotnet/framework/tools/sn-exe-strong-name-tool
https://docs.microsoft.com/en-us/dotnet/framework/tools/sn-exe-strong-name-tool
https://docs.microsoft.com/en-us/dotnet/framework/tools/sn-exe-strong-name-tool
https://docs.microsoft.com/en-us/dotnet/framework/tools/sn-exe-strong-name-tool
https://docs.microsoft.com/en-us/dotnet/framework/tools/sn-exe-strong-name-tool
https://docs.microsoft.com/en-us/dotnet/framework/tools/sn-exe-strong-name-tool
https://docs.microsoft.com/en-us/dotnet/framework/tools/sn-exe-strong-name-tool
https://docs.microsoft.com/en-us/dotnet/framework/tools/sn-exe-strong-name-tool
https://docs.microsoft.com/en-us/dotnet/framework/tools/sn-exe-strong-name-tool
https://docs.microsoft.com/en-us/dotnet/framework/tools/sn-exe-strong-name-tool
https://docs.microsoft.com/en-us/dotnet/framework/tools/sn-exe-strong-name-tool
https://docs.microsoft.com/en-us/dotnet/framework/tools/sn-exe-strong-name-tool
https://docs.microsoft.com/en-us/dotnet/framework/tools/sn-exe-strong-name-tool
https://docs.microsoft.com/en-us/dotnet/framework/tools/sn-exe-strong-name-tool
https://docs.microsoft.com/en-us/dotnet/framework/tools/sn-exe-strong-name-tool
https://docs.microsoft.com/en-us/dotnet/framework/tools/sn-exe-strong-name-tool
https://docs.microsoft.com/en-us/dotnet/framework/tools/sn-exe-strong-name-tool
https://docs.microsoft.com/en-us/dotnet/framework/tools/sn-exe-strong-name-tool
https://docs.microsoft.com/en-us/dotnet/framework/tools/sn-exe-strong-name-tool
https://docs.microsoft.com/en-us/dotnet/framework/tools/sn-exe-strong-name-tool
https://docs.microsoft.com/en-us/dotnet/framework/tools/sn-exe-strong-name-tool
https://docs.microsoft.com/en-us/dotnet/framework/tools/sn-exe-strong-name-tool

Managing Assemblies and Debugging Applications Chapter 13

[287]

Version number
Every assembly maintains version information in two forms, identity and informational.
The version number, name, and culture of the assembly form the identity of the assembly
and the informational version is provided in a string format specified in the assembly info
file and is for informational purposes.

The version number of an assembly is represented as a four-part string:

<Major version>.<Minor Version>.<Build number>.<revision>

For example, if an assembly version is set to 2.1.1234.2, this indicates that the major version
of the assembly is 2, the minor version is 1, the build number is 1234, and the revision
number is 2. When this version is created or updated, it is maintained in the manifest file
along with a snapshot of all resources and dependent assembly files and their versions. In
addition to this, versioning checks are applicable only when the assembly is signed.

One important thing to understand from a real-world scenario is that, when you build a
product and release your assemblies for customers and later upgrade your assembly, then
you have to maintain the previous versions. So, when a new version of an assembly is
released, clients can still use the old version as long as it is supported.

Debugging the C# application
When you build a C# application, you will have two options, debug mode and release
mode. Debug mode helps you to step through each and every line of your code to check for
errors and fix them if required. Release mode doesn't allow us to step into code. Visual
Studio makes it easy for developers by providing more tools, which allows us to Step-in,
Step-Over, and Step-Out when a debug point is hit by the runtime. These tools are
highlighted in a blue box in the following screenshot:

Managing Assemblies and Debugging Applications Chapter 13

[288]

Apart from these tools, Visual Studio also allows us to view stack trace, inspect variables,
and much more. Let's explore this further in order to understand more about debugging.

Let's start with the basics. To place a breakpoint, just click on the left margin next to the line
of code you want to debug or place your cursor on the line and press the F9 key on the
keyboard. Another way to place a breakpoint is to select the Debug menu option and select
a new breakpoint.

When you set a breakpoint, the entire line of code is highlighted in the color brown. When
the program starts the execution with breakpoints, the control halts at the breakpoint and
highlights the line in yellow, which means the highlighted line is set to execute next:

Observe the preceding screenshot; we have a breakpoint at line 13. When you start the
program, the control halted at line 13 where the breakpoint is placed. When we step-over,
the output is printed on the screen but the control stays at line 14 as shown in the following
screenshot:

Managing Assemblies and Debugging Applications Chapter 13

[289]

When a breakpoint is hit, though the application execution is halted, all the variables,
functions, and objects remain in memory, allowing us to validate the values. When you
want to debug an application, you build it in debug mode, which generates a .pdb file; this
file is key for debugging. The .pdb file contains symbols (or source) that get loaded into
memory to allow us to debug. If these symbols were not loaded, then you might see an
error message stating that the symbols were not found. It is also important to maintain the
versions of these pdb files, as any version mismatch between your assembly and the .pdb
file will result in an assembly version mismatch error.

Let's jump into an example code and examine the different actions we can perform while
debugging, as well as the features that Visual Studio provides us with.

The following is an example program that accepts two numbers and calculates the addition
and subtraction of those numbers, and then invokes another method where 10 is added to
the result. Let's debug this application by placing a couple of breakpoints in the code block:

internal void Method2()
{
 Console.WriteLine("Enter a numeric value");
 int number1 = Convert.ToInt32(Console.ReadLine());

 Console.WriteLine("Enter another numeric value");
 int number2 = Convert.ToInt32(Console.ReadLine());

 int number3 = number1 + number2;
 int number4 = number1 - number2;
 int number5 = Method3(number4);

}

internal int Method3(int number4)
{
 return number4+10;
}

Managing Assemblies and Debugging Applications Chapter 13

[290]

Here, two breakpoints were placed on lines 18 and 21. When the program starts executing,
it stops at line 18 for user input and when you select continue program execution, the
control stops at line 21. One of the important things to observe in the following screenshot
is that when the control stops at line 21, you can view the value of the number1 variable by
just hovering the cursor over it. You can see that the number1 variable has a value of 23:

Managing Assemblies and Debugging Applications Chapter 13

[291]

Visual Studio debugging tools allow us to watch a variable while the program is being
executed in debug mode. You can right-click on a variable and select Add Watch to add the
variable to the watch window. As you see can see at the bottom of the screen, there is a
watch window where variable number3 has been added, and we can see the value of 43,
which is the output of the sum of number1 and number2. The watch window allows you to
view the values after the line of code executes. This comes in really handy when your
application logic is performing complex calculations:

Managing Assemblies and Debugging Applications Chapter 13

[292]

Another window that comes in handy with debugging is Immediate Window (Ctrl + Alt +
I), which can be opened by using the keyboard shortcut or the Debug menu. In contrast to
the watch window, this window helps you to perform operations before executing the line
of code. As you can see in the following screenshot, the control is at line 25 where the
breakpoint was hit; however, if you look down, the Immediate Window was open where
we performed the number1 - number2 operation to check the value before executing the
line:

Managing Assemblies and Debugging Applications Chapter 13

[293]

When you place a breakpoint and hover your cursor over the breakpoint in the left margin,
the system displays a cogwheel, which allows you to add conditions to your breakpoint; for
example, your program has a for loop, but you want your breakpoint to hit when the loop
variable is, say, 5:

When you click on the cogwheel, you will be presented with the condition wizard where
you can configure the condition of when the breakpoint should hit. By default, the
condition is set to true, which can be changed by the developer. In the following screenshot,
we selected number4=3, which means that this breakpoint will be hit when the number 4
value is equal to 3:

Managing Assemblies and Debugging Applications Chapter 13

[294]

Another important feature to understand while debugging is that certain types of projects
in Visual Studio allow you to change the variable values at runtime while debugging the
application. When the following program was executed, we entered 60 as a numeric value
to variable number2. You can see the value of variable 2 as follows:

Now, when you select the displayed value, the system allows you to change it (we changed
it to 40), and then continue the execution of the block with the modified value. Please
remember that not every project type will allow you to change values at runtime:

Managing Assemblies and Debugging Applications Chapter 13

[295]

As discussed earlier, there are many tools available while debugging a C# application using
Visual Studio and some of them are highlighted in the following screenshot. The Continue
and Stop Debugging buttons enable the developer to continue executing once a breakpoint
is hit, or to stop the execution.

There are buttons to Step Into, Step Out, and Step Over. These buttons allow you to step
into each and every line of code once a breakpoint is hit, or skip the execution of a method
and continue the execution in the same context, or step into an external method.

Once you debug your program block and fix all the issues you found, you can disable or
delete all the breakpoints at once by using the Delete All Breakpoints or Disable All
Breakpoints option in the Debug menu:

Managing Assemblies and Debugging Applications Chapter 13

[296]

A few more options are highlighted in the following screenshot, such as Attach to Process,
QuickWatch..., Save Dump As..., Parallel Stacks, Immediate, and Watch windows, Call
Stack, and many more:

We structure our project in such a way that multiple assemblies are created, be it a helper
or a dependent assembly. While debugging, it is important to load the symbols by attaching
the process running those assemblies to the current debugging process using the Attach to
Process... command. Otherwise, the system prompts that the source code is not available,
so control cannot step into the code block.

In a real-project scenario, sometimes your application crashes suddenly; in such scenarios,
you can save the memory dump and analyze the memory registers on what's happening.
This might require you to have special skills to read and understand such dumps.

Managing Assemblies and Debugging Applications Chapter 13

[297]

We read about parallel tasks and multithreading in previous chapters; when your code
block is running a multithreaded application of parallel tasks, the Debug menu can help
you understand the parallel stack and tasks.

Tracing
Tracing enables us to monitor an application while it is executing. When a program is
executed, the runtime allows us to write messages to monitor the control flow of the
program. This will enable us to identify any incorrect behavior of the application logic. In
the case of exceptions, we can identify where exactly the code failed and what variable
values caused issues in smooth execution. These messages can be created by the
System.Diagnostics.Debug class. When such messages are created, by default, these
messages are displayed in the output window of Visual Studio.

Apart from creating these messages, you can redirect these messages to a file or database
using the System.Diagnostics.Trace class. You can register listeners using the trace
class, which allows you to redirect your messages. Here, your debug class or trace class acts
as the publisher and the listener class acts as a subscriber. We hope you remember Chapter
5, Creating and Implementing Events and Callbacks, where we learned about the publisher and
subscriber model.

Let's take a look at an example to understand how we can use debug messages. In the
following program, we are trying to accept two input parameters and perform actions such
as addition and subtraction on those numbers. However, we added a few extra lines to
monitor messages that record what's happening:

internal void Method4()
{
 Console.WriteLine("Enter a numeric value");
 int number1 = Convert.ToInt32(Console.ReadLine());
 Debug.WriteLine($"Entered number 1 is: {number1}");

 Console.WriteLine("Enter another numeric value");
 int number2 = Convert.ToInt32(Console.ReadLine());
 Debug.WriteLine($"Entered number 2 is: {number2}");

 int number3 = number1 + number2;
 Debug.WriteLineIf(number3>10, $"Sum of number1 & number 2 is :
{number3}");
 int number4 = number1 - number2;
 Debug.WriteLineIf(number4 < 10, $"Difference of number1 & number 2 is :
{number4}");
}

Managing Assemblies and Debugging Applications Chapter 13

[298]

Because we used Debug.WriteLine to record the messages, these values are written in the
output window. Observe the following output window where all Debug.WriteLine
messages are written:

In the preceding code block, you can see the last two Debug.WriteLine statements in the
program block, where Debug.WriteLineIf is used. The system checks the condition that
we provided, and, if it returns true, the system writes the message to the output window.

Now, let's go a step further and see how we can use tracing listeners to redirect your
message to different channels.

Managing Assemblies and Debugging Applications Chapter 13

[299]

We are going to use the same program with five extra lines, where we add Console.Out
and a logfile.txt file as two different trace listeners, and then attach these two listeners
to the debug object. The last line is Debug.Flush, which pushes all messages from the
object to the log file:

internal void Method5()
{
 TextWriterTraceListener listener1 = new
TextWriterTraceListener(Console.Out);
 Debug.Listeners.Add(listener1);

 TextWriterTraceListener listener2 = new
TextWriterTraceListener(File.CreateText("logfile.txt"));
 Debug.Listeners.Add(listener2);

 Console.WriteLine("Enter a numeric value");
 int number1 = Convert.ToInt32(Console.ReadLine());
 Debug.WriteLine($"Entered number 1 is: {number1}");

 Console.WriteLine("Enter another numeric value");
 int number2 = Convert.ToInt32(Console.ReadLine());
 Debug.WriteLine($"Entered number 2 is: {number2}");

 int number3 = number1 + number2;
 Debug.WriteLineIf(number3 > 10, $"Sum of number1 & number 2 is :
{number3}");
 int number4 = number1 - number2;
 Debug.WriteLineIf(number4 < 10, $"Difference of number1 & number 2 is :
{number4}");
 Debug.Flush();
}

Because we added Console.Out as one of the listeners, Debug.WriteLine messages are
now written on the screen when we execute the program:

Managing Assemblies and Debugging Applications Chapter 13

[300]

Additionally, as we added logfile.txt as one of the listeners, a new text file gets created
in the program executing folder where Debug.WriteLine messages are written:

These listeners are not limited to text files and console. Based on the project requirement,
you can add XML, database listeners, which might require some extra coding.

Summary
In this chapter, we learned how a C# assembly can be managed, how to debug an assembly
or a program block, what features Visual Studio gives us in performing these actions, and
how to use tracing.

In the next chapter, we will look at the different functionalities provided in C# to access and
utilize the data present in file objects and external web services, focusing on performing I/O
operations on file objects and the different helper classes available in the System.Net
namespace, which helps us with I/O operations.

Questions
What does the version number of an assembly represent?1.

Major version, minor version, build number, and revision.1.
Major build, major version, assembly number, and date.2.
Major build, major version, assembly number, and revision.3.
All of the above.4.

Managing Assemblies and Debugging Applications Chapter 13

[301]

What is the important benefit of strong naming an assembly?2.
It allows you to share your assembly.1.
It allows you to run more than two assemblies at the same time.2.
It allows you to get it installed in GAC.3.
All of the above.4.

What is the easiest way to log debug messages in a text file?3.
Create a file and use a text stream object to write messages.1.
Create a trace listener and attached it to the debug object.2.
Use a third-party logging assembly.3.
All of the above.4.

Answers
Major version, minor version, build number, and revision1.
All of the above2.
Create a trace listener and attached it to the debug object3.

14
Performing I/O Operations

In any programming language, all applications are dependent upon some sort of data.
These applications interact with one another, passing data present in different sources such
as file objects and external web services.

In this chapter, we will look at the different functionalities provided in C# to access and
utilize data in file objects and external web services.

In this chapter, we will cover the following topics:

Performing I/O operations on file objects
Different helper classes available in the System.Net namespace that help us
with I/O operations

Technical requirements
Like in the previous chapters covered in this book, the programs explained in this chapter
will be developed in Visual Studio 2017.

Sample code for this chapter can be found on GitHub at https:/ / github. com/
PacktPublishing/Programming- in- C- sharp- Exam- 70- 483-MCSD- Guide/ tree/ master/
Chapter14.

https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter14
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter14
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter14
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter14
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter14
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter14
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter14
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter14
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter14
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter14
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter14
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter14
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter14
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter14
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter14
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter14
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter14
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter14
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter14
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter14
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter14
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter14
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter14
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter14
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter14
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter14
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter14
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter14
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter14
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter14
https://github.com/PacktPublishing/Programming-in-C-sharp-Exam-70-483-MCSD-Guide/tree/master/Chapter14

Performing I/O Operations Chapter 14

[303]

File I/O operations
File is a very crude term representing a collection of data stored on a disk at a particular
directory path. While writing C# applications, there are several occasions when we will
need to use file objects:

To store data in an application or pass it across to another application
To access configuration settings that are necessary for application execution
To access files that are present in a directory path

These operations are called I/O operations. C# provides a namespace, System.IO, that has
some helper classes. These helper classes help us execute I/O operations on file objects. In
this section, we will look at those helper classes in C#.

Working with System.IO helper classes
The System.IO namespace contains a collection of classes that allow us to do file
manipulation in C#. It includes classes that allow us to do operations such as the following:

Read data from a file
Write data to a file
Create/delete new files

At different points during this chapter, through code examples, we will look at all of these
I/O operations that we can perform on a file. However, before we start looking at those
examples, we need to understand a very important concept, Stream, on which I/O
operations are based.

A stream signifies a sequence of bytes exchanged between applications during an I/O
operation. In C#, it's represented by an abstract class called System.IO.Stream. It
provides a wrapper class to transfer bytes, and all classes that need to read/write bytes from
any source must inherit from this particular class.

Before we move on to learn more about streams and how we deal with it them in C#, let's
first look at how we deal with drives, directories, and some other basic operations with
files.

Performing I/O Operations Chapter 14

[304]

Drives and directories
A drive represents a storage medium for the filesystem. It can be a hard drive, a CD, or any
other storage type. In .NET Framework, we have a DriveInfo class in the
System.IO namespace, which helps us access the filesystem information that is available
on the drive. It provides methods that can help us access information such as name, size,
and the free space available on the drive. Please refer to the following code implementation,
in which we are looping through all the files available on the drive:

DriveInfo[] allDrives = DriveInfo.GetDrives();
foreach (DriveInfo d in allDrives)
{
 Console.WriteLine("Drive Name" + d.Name);
 Console.WriteLine(" Drive type " + d.DriveType);
 if (d.IsReady == true)
 {
 Console.WriteLine("Available space ", d.AvailableFreeSpace);
 Console.WriteLine("Total size in bytes ", d.TotalSize);
 }
}
Console.ReadLine();

In the preceding piece of code, we are browsing through all the drives (that is, C, D, E, and
so on) available on the filesystem and are publishing information related to the following:

The name of the drive
The type of drive, that is, fixed, RAM, CD ROM, removable, and so on
The total available memory size on the drive
The total free memory available on the drive

If we execute the code, the execution will loop through all the drives that are present in the
filesystem. Once a drive is retrieved, the execution will retrieve certain properties about the
drive, such as free space, total size, and drive type. Thus, when we execute the program, we
will get the following output. Please note that we may not get all the information as it also
depends upon the security permissions on the directory:

Performing I/O Operations Chapter 14

[305]

In the system in which we are executing this program, we just have a C drive. Thus, while
the program is executing, we are showing the properties of the C drive.

There are other properties on the driveinfo object as well. If we click on Go to
Definition on the DriveInfo class, we can see the attributes of the class. Please visit the
following link for more information: https:/ /docs. microsoft. com/ en-us/ dotnet/ api/
system.io.driveinfo? view= netframework- 4.7. 2.

Each drive in a filesystem comprises directories and files. A directory in itself can comprise
multiple sub-directories and files. If we need to do an operation on a particular directory,
we do it using the DirectoryInfo class in C#. In the following code snippet, we are
creating an object of the DirectoryInfo class, passing the location of a particular directory
path:

DirectoryInfo directoryInfo = new DirectoryInfo("C:\\UCN Code
Base\\Programming-in-C-Exam-70-483-MCSD-Guide\\Book70483Samples");
foreach (DirectoryInfo f in directoryInfo.GetDirectories())
{
 Console.WriteLine("Directory Name is" + f.Name);
 Console.WriteLine("Directory created time is " + f.CreationTime);
 Console.WriteLine("Directory last modified time is " +
f.LastAccessTime);
}

For the directoryInfo object, we are then looping through all the child directories and
are showing the information related to the following:

Name of the directory
Time the directory was created
Time the directory was last modified

When we execute the preceding program, we do so on the C:\\UCN Code
Base\\Programming-in-C-Exam-70-483-MCSD-Guide\\Book70483Samples file
path. Please note that this is where we have been placing the codebase for the chapters
we've got through in this book. Thus, when we execute this program, it will loop through
the sub-folders of all those chapters and will fetch information such as Directory Name,
Directory created time, and Directory last modified time. The following is
the output that we will get for the program:

https://docs.microsoft.com/en-us/dotnet/api/system.io.driveinfo?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.driveinfo?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.driveinfo?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.driveinfo?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.driveinfo?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.driveinfo?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.driveinfo?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.driveinfo?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.driveinfo?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.driveinfo?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.driveinfo?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.driveinfo?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.driveinfo?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.driveinfo?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.driveinfo?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.driveinfo?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.driveinfo?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.driveinfo?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.driveinfo?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.driveinfo?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.driveinfo?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.driveinfo?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.driveinfo?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.driveinfo?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.driveinfo?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.driveinfo?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.driveinfo?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.driveinfo?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.driveinfo?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.driveinfo?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.driveinfo?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.driveinfo?view=netframework-4.7.2

Performing I/O Operations Chapter 14

[306]

There are additional operations available with the DirectoryInfo object.

Checking whether the directory exists
Using a particular directory path, we can identify if any directory with that path exists in
the filesystem or not. In the code implementation, we are creating a DirectoryInfo object
and then using the Exists property to check whether the directory exists in the filesystem:

DirectoryInfo directoryInfoExists = new DirectoryInfo("C:\\UCN Code
Base\\Programming-in-C-Exam-70-483-MCSD-Guide\\Book70483Samples\\Chapter
20");
if (directoryInfoExists.Exists)
{
 Console.WriteLine("It exists");
}
else
{
 Directory.CreateDirectory("Does not exist");
}

Performing I/O Operations Chapter 14

[307]

If we execute the code using the path mentioned during the creation of
the DirectoryInfo object, the program execution will determine whether there is a
directory in the filesystem in the specified path. Thus, when the program is executed, as we
do not currently have a sub-folder called Chapter 20 in the Book70483Samples base
folder we will see Does not exists in the console output window. The following is globally
the relevant output on the console window:

In the next section, we will look at how to create a directory in a filesystem using C#.

Creating a directory
Using the DirectoryInfo class, we can also create new directories in the filesystem. The
following code illustrates how we create a new directory in the system:

Directory.CreateDirectory("C:\\UCN Code Base\\Programming-in-C-Exam-70-483-
MCSD-Guide\\Book70483Samples\\Chapter 20");

If the preceding code is executed, it will create a subdirectory called Chapter 20 in the
root folder.

In the preceding code, we are passing an absolute path to create the directory. However, if
we need to create a subdirectory in a particular directory, we can just execute the following
code:

DirectoryInfo subDirectory =
parentDirectory.CreateSubdirectory("NameChildDirectory");

In the preceding code, parentDirectory is the parent directory in which we want to
create the subdirectory. NameChildDirectory is the name that we want to give to the
child directory.

Performing I/O Operations Chapter 14

[308]

Looping through the files
Using the DirectoryInfo class, we can also loop through the files present in the directory.
The following code shows how we can loop through the files and access their properties:

DirectoryInfo chapter20 = new DirectoryInfo("C:\\UCN Code
Base\\Programming-in-C-Exam-70-483-MCSD-Guide\\Book70483Samples\\Chapter
20");
foreach (FileInfo f in chapter20.GetFiles())
{
 Console.WriteLine("File Name is " + f.FullName);
 Console.WriteLine("Directory created time is " + f.CreationTime);
 Console.WriteLine("Directory last modified time is " +
f.LastAccessTime);
}

In the preceding code snippet, we are looping through the files present in the Chapter
20 directory and showing the information present in it. In the Chapter 20 folder, we have
only one file: dynamics365eula.txt. Thus, when the program is executed, it will pick up
the file and will read the file information present in it. To illustrate this, we are displaying
the filename, the time the file was created, and the time the file was last accessed. So when
the code is executed, we will get the following output:

Now that we have some knowledge about drives and DirectoryInfo, we will explore
some helper classes that allow us to do operations on files.

Working with files
In this section, we will go through the helper classes that allow us to do operations on the
files present in a directory. C# provides the File and FileInfo helper classes to do
operations on files. While going through the following code snippets, we will be looking at
some of the typical operations that we can do with file objects.

Performing I/O Operations Chapter 14

[309]

Checking whether a file exists
This basically involves checking whether a file with the given path exists or not. This can
help us write fail-safe code in such a way that we read a file only after establishing that it
exists in the given path:

string file = "C:\\UCN Code Base\\Programming-in-C-Exam-70-483-MCSD-
Guide\\Book70483Samples\\Chapter 20\\IO Operations.txt";
if(File.Exists(file))
{
 Console.WriteLine("File Exists in the mentioned path");
}
else
{
 Console.WriteLine("File does not exists in the mentioned path");
}

File is a static class available in the System.IO namespace. This class provides operations
that we can use to execute functionalities related to file access. In the preceding code, we
have declared a file path and, using the static File class, we are checking whether the file
indeed exists in the given path.

Moving a file from one location to another
In this operation, we basically cut the file from one location and paste it into another. The
following code snippet shows how this can be done:

string sourceFileLocation = "C:\\UCN Code Base\\Programming-in-C-
Exam-70-483-MCSD-Guide\\Book70483Samples\\Chapter 20\\IO Operations.txt";
 string targetFileLocation = "C:\\UCN Code Base\\Programming-in-C-
Exam-70-483-MCSD-Guide\\Book70483Samples\\Chapter 21\\New File.txt";
if (File.Exists(sourceFileLocation))
{
 File.Move(sourceFileLocation, targetFileLocation);
}
else
{
 Console.WriteLine("File does not exists in the mentioned path");
}

In the preceding code snippet, we are first checking whether the file exists in a particular
location. If the file is present in the location, we are copying it into another location.

Once the code is executed, we will notice that the file is cut from the source location and is
pasted in to the target location.

Performing I/O Operations Chapter 14

[310]

Copying a file from one location to another
In this operation, we basically copy the file from one location and paste it into another.
Please note the Move operation will delete the file present in the source folder. However,
the Copy operation will copy the file present in the source folder to the destination folder.
The following code snippet shows how this can be done:

if (File.Exists(targetFileLocation))
{
 File.Copy(targetFileLocation, sourceFileLocation);
}
else
{
 Console.WriteLine("File does not exists in the mentioned path");
}

When the code is executed, we will see that the file is copied from the source file location
and pasted in to the target file location path.

Deleting a file
In this operation, we delete a file present in the specified location:

File.Delete(sourceFileLocation);

When the code is executed, we will see that the file is deleted from the source file location.
Once the code is executed, we will see that the file specified in the
sourceFileLocation path has been deleted.

Please note that operations that work with the File class work the same
way with the FileInfo class. The same implementations that we have
done with the File class can be done via the FileInfo class as well.

In all the preceding examples, we have been hard-coding the path property of the file. This
is not a recommended practice as it is error-prone. For example, if you look at the actual
path of any file and compare it to what we need to supply in the program, you will notice a
difference:

Actual path: C:\File Location\Chapter 20\Sample.txt
Path which we need to specify in the program: C:\\File Location\\Chapter
20\\Sample.txt

Performing I/O Operations Chapter 14

[311]

We need to provide some extra slashes in the path. Also, when we are combining the folder
path with the file path, we need to concatenate them with an extra \ as well. For these
reasons, hardcoding the path is not a recommended practice. A better approach is to use
the Path helper class. The following code shows how to use it:

string sourceFileLocation = @"C:\UCN Code Base\Programming-in-C-
Exam-70-483-MCSD-Guide\Book70483Samples\Chapter 20";
string fileName = @"IO Operations.txt";
string properFilePath = Path.Combine(sourceFileLocation, fileName);
Console.WriteLine(Path.GetDirectoryName(properFilePath));
Console.WriteLine(Path.GetExtension(properFilePath));
Console.WriteLine(Path.GetFileName(properFilePath));
Console.WriteLine(Path.GetPathRoot(properFilePath));

In the preceding code implementation, we have declared a folder path. Please also note the
use of & before the filename. This is an escape character that allows us to not specify an
extra \ in the folder path structure. We have also declared a filename and are now
combining the two together using the helper static class: Path. Once we have combined
them, we retrieve the properties in the resulting file path. If the code is executed, we get the
following output:

Let's examine the output:

Path.GetDirectoryName: This returns the directory name of the combined
path file. Note that it has the complete absolute directory path.
Path.GetExtension: This returns the file extension of the combined path file.
In this case, it's a .txt file.
Path.GetFileName: This returns the name of the file.
Path.GetPathRoot: This returns the root of the filepath. In this case, it's C:,
hence it's mentioned in the output.

Now that we are aware of basic operations on files, we will look at how to access and
modify the contents of a file. For this, we will look at the operations available in
FileStream.

Performing I/O Operations Chapter 14

[312]

Stream object
The main operations with files are related to reading, writing, retrieving, and updating text
present in file. In .NET, these operations are performed using an exchange of bytes in I/O
operations. This sequence of bytes is a stream, and in .NET, it's represented using the
abstract Stream class. This class forms the basis of all I/O operations in .NET such as
FileStream and MemoryStream.

With stream we can perform the following operations in .NET:

Reading data in the stream object
Writing data into the stream object
Searching for or finding relevant information from the stream object

Let's take a look at the different operations that are implemented using stream objects. In
the next section, we will go through the FileStream object, which aids operations on the
file object.

FileStream
Using the FileStream object, we can read and write information back to the file in the
directory. It's done using the File and FileInfo object we discussed in the previous
section in this chapter.

Lets go through the following code example, in which we are writing information to a file:

string sourceFileLocation = @"C:\UCN Code Base\Programming-in-C-
Exam-70-483-MCSD-Guide\Book70483Samples\Chapter 20\Sample.txt";
using (FileStream fileStream = File.Create(sourceFileLocation))
{
 string myValue = "MyValue";
 byte[] data = Encoding.UTF8.GetBytes(myValue);
 fileStream.Write(data, 0, data.Length);
}

 In the preceding code implementation, we are doing the following:

Opening the Sample.txt file that's present in the specified location
Creating a File object from it and then converting the data present in the file to a
FileStream object
Writing data to the file using the Write operation available in the
FileStream object

Performing I/O Operations Chapter 14

[313]

Please note that we are using the using block for the FileStream object.
Due to this, the Dispose method will be automatically called for the
FileStream object. Therefore, the memory from unmanaged resources
will be reclaimed automatically.

Please note that in the preceding implementation, we are encoding the string value before
we are writing that data to the FileStream object.

Another way of handling the same functionality is to use the StreamWriter helper class.
The following code implementation shows how it can be handled using the
StreamWriter helper class:

string sourceFileLocation = @"C:\UCN Code Base\Programming-in-C-
Exam-70-483-MCSD-Guide\Book70483Samples\Chapter 20\Sample.txt";
using (StreamWriter streamWriter = File.CreateText(sourceFileLocation))
{
 string myValue = "MyValue";
 streamWriter.Write(myValue);
}

While choosing between the two helper classes, we need to consider the data we are
dealing with. A FileStream object deals with an array of bytes. However,
the StreamWriter class implements TextWriter. It only deals with string data and
automatically encodes it into bytes so that we don't have to explicitly do it. However, in
cases when we use the FileStream class, we must encode and decode the bytes to data
into the string representation.

In the next section, we will look at some best practices relating to exception handling while
dealing with file I/O operations.

Exception handling
In any real-world scenario, multiple people might be working with the same file
concurrently. Using threading in C#, we can lock objects while a particular operation is
happening on a resource. However, such locking is not available on files present in the
filesystem.

Performing I/O Operations Chapter 14

[314]

So, it's quite possible that files that are being accessed in the program have been moved or
even deleted altogether by a different application or user. C# provides some exceptions
with which we can handle such scenarios in a better way. Please refer to the following code
implementation, where we are handling an exception:

private static string ReadFileText()
{
 string path =@"C:\UCN Code Base\Programming-in-C-Exam-70-483-MCSD-
Guide\Book70483Samples\Chapter 20\Sample.txt";
 if (File.Exists(path))
 {
 try
 {
 return File.ReadAllText(path);
 }
 catch (DirectoryNotFoundException)
 {
 return string.Empty;
 }
 catch (FileNotFoundException)
 {
 return string.Empty;
 }
 }
 return string.Empty;
}

From a functionality perspective, in the preceding code we are reading file present in the
given location. We are retrieving all the text present in the file and then passing it back to
the calling function. Please also note the following best practices that we are using in the
code implementation:

In the code, we are first checking whether the file exists in the directory location
using the Exists method. If the file exists, we proceed to extract data from the
file.
Even though we have checked that the file exists before we proceed, there are
still some circumstances in which the file is removed, deleted, or becomes
inaccessible after the code moves to the next block. To handle such scenarios, we
are catching the DirectoryNotFoundException and
FileNotFoundException exceptions. DirectoryNotFoundException is
thrown when the directory specified in the path no longer exists.
FileNotFoundException is thrown when the file specified in the path no
longer exists.

Performing I/O Operations Chapter 14

[315]

Now that we have a fair understanding of how to execute I/O operations on a file, we will
look at examples of calling external web services to get a response from them.

Reading data from a network
While developing applications in .NET Framework, we will encounter several scenarios
where we need to call external APIs to get the required data. .NET Framework provides a
System.Net namespace that provides a large number of helper classes that allow us to
execute these operations.

In this section, we will go through an example in which we will use the WebRequest and
WebResponse classes to call the external APIs and process their responses. We will be
calling an external page, and we also process the response that we will get from the call. We
will also be looking at code examples in which we will learn how to make asynchronous
calls to an external web server.

WebRequest and WebResponse
WebRequest is an abstract base class provided by .NET Framework for accessing data from
the internet. Using this class, we send a request to a particular URL, such as
www.google.com.

On the other hand, WebResponse is an abstract class that provides a response from the
URL called by the WebRequest class.

The WebRequest object is created by calling the static Create method. In the method, we
pass the address URL that we want to call in the request. The request inspects the address
we are passing to it and selects a protocol implementation, for example, HTTP or FTP.
Based upon the web address passed, an appropriate instance of the derived class, such
as HttpWebRequest for HTTP or FtpWebRequest for FTP, is returned when the
WebRequest object is created. The WebRequest class also allows us to specify some other
properties, such as the authentication and content type. Let's go through the following code
implementation, which will help us learn more about this class:

WebRequest request = null;
HttpWebResponse response = null;
Stream dataStream = null;
StreamReader reader = null;
try
{
 request = WebRequest.Create("http://www.google.com/search?q=c#");

Performing I/O Operations Chapter 14

[316]

 request.Method = "GET";
 response = (HttpWebResponse)request.GetResponse();
 dataStream = response.GetResponseStream();
 reader = new StreamReader(dataStream);
 Console.WriteLine(reader.ReadToEnd());
}
catch(Exception ex)
{
 Console.WriteLine(ex.ToString());
}
finally
{
 reader.Close();
 dataStream.Close();
 response.Close();
}

In the preceding code implementation, we are creating a WebRequest object for
http://google.com. We are using a GET method in the HTTP request and passing
parameters embedded in the URL itself. As the protocol is HTTP, we are converting the
WebResponse object to httpWebResponse.

Once we have captured the response, we are retrieving the stream of bytes into a
Stream object and are then using a StreamReader object to retrieve the response from
google.com.

A very important thing to note here is that in the finally block, we are closing all the
response, stream, and reader objects that have been created in the try...catch block. This is
essential: as we are dealing with unmanaged resources, it's important to reclaim the
memory for better performance.

For further reading, please refer to the following blog from Microsoft,
which discusses the different parameters that we can set in the
WebRequest object when we are making a call: https:/ /docs. microsoft.
com/en- us/ dotnet/ api/ system. net. webrequest? view= netframework- 4.
7.2.

In the preceding code, we were making synchronous calls to the external web service and
waiting for a response. However, in a real-world scenario, this may not be the ideal
implementation.

https://docs.microsoft.com/en-us/dotnet/api/system.net.webrequest?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.net.webrequest?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.net.webrequest?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.net.webrequest?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.net.webrequest?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.net.webrequest?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.net.webrequest?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.net.webrequest?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.net.webrequest?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.net.webrequest?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.net.webrequest?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.net.webrequest?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.net.webrequest?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.net.webrequest?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.net.webrequest?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.net.webrequest?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.net.webrequest?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.net.webrequest?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.net.webrequest?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.net.webrequest?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.net.webrequest?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.net.webrequest?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.net.webrequest?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.net.webrequest?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.net.webrequest?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.net.webrequest?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.net.webrequest?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.net.webrequest?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.net.webrequest?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.net.webrequest?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.net.webrequest?view=netframework-4.7.2

Performing I/O Operations Chapter 14

[317]

The external server to which we are making a call may take some time to send us the
response. Therefore, if our application continues to wait for a response during this time, the
responsiveness of the application will be challenged. To avoid such scenarios, we can make
I/O calls asynchronous. In the next section, we will learn why we need to look at making
asynchronous I/O calls and how they're implemented in code.

Asynchronous I/O operations
When we were going through the WebRequest and WebResponse section, we wrote a
program in which we made a call to google.com. In very crude terms, when the request is
made, it's picked up by the Google server, which then assigns a thread to cater to this
request. The thread then sends the response to the calling machine.

Theoretically, however, there is always a possibility that fewer free threads are available on
the server. Also, there is the possibility that the server may take a long time to complete the
request and send the response to the caller.

The challenge here is that we must design communication between the caller and the server
is such a way that the performance and responsiveness of the application are not
compromised. We do that by making the calls asynchronous.

If we make these operations asynchronous, we can rest assured that, while the server is
processing the request and sending us the response, our application remains responsive
and users can continue using the application. We do this using the async/await
keywords.

Any method that is written asynchronously in C# must have the following characteristics:

The method definition must have the async keyword to indicate that the method
is executed asynchronously.
The method must have one of the following return types:

Task: If the function has no return statements
Task<TResult>: If the function has a return statement in which
the object being returned is of type TResult
Void: If the function is an event handler

In the function, we execute an asynchronous call to an external web server.
The function may have an await statement. The await statement basically tells
the compiler that the application must wait at that statement for the
asynchronous process executed by the external web server to finish.

Performing I/O Operations Chapter 14

[318]

Let's go through all these points in the following code implementation:

async Task<int> ExecuteOperationAsync()
{
 using (HttpClient client = new HttpClient())
 {
 Task<string> getStringTask =
client.GetStringAsync("http://google.com");
 ExecuteParallelWork();
 string urlContents = await getStringTask;
 return urlContents.Length;
 }
}

Please refer to the following in the preceding code:

We have defined a function called ExecuteOperationAsync. To indicate the
asynchronous behavior of the function, we have used the async keyword in the
function definition.
We have declared the return type of the function as Task<int>, which indicates
that the function will return an object of type int.
We have declared an object of the HttpClient helper class and are making a call
to http://google.com. We are making the request call asynchronously.
To ensure that the application carries on doing other work, we are calling the
ExecuteParallelWork function so that, until the response arrives, the
application does not stop processing.
We have used an await statement so that the compiler stops at that point and
waits for the response for a asynchronous request call. Once the response is
received, it checks the length of the response string and returns the result to the
calling function.

Now that we have a fair understanding of how asynchronous calls work in I/O operations,
we will look at how to use them in I/O operations.

In the next section, we will look at how different I/O operations can be made asynchronous
using this keyword.

Async operations on file
In this section, we will learn how to perform I/O operations on a file asynchronously. This
can be helpful in scenarios when the data that we are writing to the file is large.

Performing I/O Operations Chapter 14

[319]

The following code implementation shows how to write data to a file asynchronously.
Please note that we must use the FileStream object to execute file I/O operations
asynchronously:

public async Task CreateFile()
{
 string path =@"C:\UCN Code Base\Programming-in-C-Exam-70-483-MCSD-
Guide\Book70483Samples\Chapter 20\New.txt";
 using (FileStream stream = new FileStream(path,FileMode.Create,
 FileAccess.Write, FileShare.None, 4096, true))
 {
 byte[] data = new byte[100000];
 new Random().NextBytes(data);
 await stream.WriteAsync(data, 0, data.Length);
 }
}

In the preceding code implementation, we are creating a new file in a given directory
location. The calling function does not require a value to be returned, so we have just set
the return type as Task. To create the file and write data to it, we have used a
FileStream object. For a detailed analysis of the properties passed in the constructor of the
class, please refer to the following link: https:/ /docs. microsoft. com/ en- us/dotnet/ api/
system.io.filestream? view= netframework- 4.7. 2.

After creating the object, we are generating a random sequence of bytes and are then
writing it asynchronously to the FileStream object.

For a code implementation related to calling web requests asynchronously, we can refer to
the implementation in the previous example where we created an object
called HttpClient and made a call asynchronously.

In the next section, we will learn how to execute multiple I/O operations asynchronously
and in a parallel manner.

This is quite useful in scenarios where the application must wait for the completion of
different functions that are executing in parallel.

https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.io.filestream?view=netframework-4.7.2

Performing I/O Operations Chapter 14

[320]

Using the await statement for parallel asynchronous
calls
While writing programs, we often come across situations in which we must wait for results
from different asynchronous calls. This is required when the processing is dependent upon
multiple responses from an external medium, such as web services. Let's look at the
following code example:

public async Task ExecuteMultipleRequestsInParallel()
{
 HttpClient client = new HttpClient();
 Task google = client.GetStringAsync("http://www.google.com");
 Task bing = client.GetStringAsync("http://www.bing.com");
 Task yahoo = client.GetStringAsync("http://yahoo.com/");
 await Task.WhenAll(google, bing, yahoo);
}

In the preceding code, we are executing asynchronous calls to different servers. Suppose we
have to wait for the output from all of them before we can proceed; we can use the
WhenAll statement. The WhenAll statement will ensure that the execution waits for
responses from all three asynchronous calls before the processing can move ahead.

Summary
In this chapter, we learned how to execute I/O operations related to files and networks in
C#. We went over namespaces that provide helper classes for executing I/O operations. We
started with the basic operations that we can perform on drives and directories. We looked
at code that we can use to loop through files in directories.

Then we looked at the helper classes that help us with I/O operations on files. We looked at
the File and FileInfo classes, which help us create, copy, move, and delete files. We
looked at best practices for dealing with directory and file paths. We then looked at streams,
or sequences of bytes, which allow us to edit information present in files. We then looked at
best practices for exception handling in files.

After that, we looked at helper classes for dealing with I/O operations over networks. We
looked at a code example in which we made HTTP calls over the internet. We then looked
at a code implementation in which we made asynchronous I/O calls. Whenever possible, it's
always beneficial to use asynchronous operations because it's better for the overall
performance of the application. We went over code examples for executing asynchronous
operations on both I/O and over the internet.

Performing I/O Operations Chapter 14

[321]

In the next chapter, we will look at how LINQ queries can we used in C# to work efficiently
when we are querying different data sources, such as XML and SQL. Working with code
examples, we will explore the different components of LINQ, along with the different
operators that we can use while working with LINQ queries.

Questions
Which syntax should we use to append text to a file?1.

File.CreateText1.
FileInfo.Create2.
File.Create3.
File.AppendText4.

Which syntax should we use if the application needs to wait for asynchronous2.
calls from multiple sources?

async1.
await2.
Task3.
Task.WhenAll4.

Which one of the following statements is incorrect?3.
StreamWriter only works with text; however, FileStream works1.
with bytes.
We can lock files in .NET.2.
If we have an asynchronous function, it can have one of three return3.
types: Task, Task<TResult>, and Void.
DirectoryNotFoundException is thrown when the directory in the4.
file path is no longer available.

Answers
File.AppendText.1.
Task.WhenAll.2.
Except "B" that is we can lock files, all other statements are true.3.

15
Using LINQ Queries

In .NET, we often need to query data from different sources, such as XML, SQL, and web
services. In earlier versions of .NET, we performed these operations using simple strings.
The main issue with this approach is that it lacks any IntelliSense and is quite cumbersome
in implementation. These queries also differ from one another as to the source from which
we are querying the data, thereby increasing the code complexity.

To overcome these issues, LINQ was firstly introduced in .NET 3.5. Compared to
conventional data access methods, LINQ introduces an easy and consistent approach for
the querying and modification of data across different types of data sources such as XML
and even in-memory data structures such as arrays. In LINQ, we query data using a query
expression. The query expression enables us to perform filtering, ordering, and grouping of
operations on the data using minimal code.

In this chapter, we will look at the following topics:

Introducing LINQ
Understanding the language features that make LINQ possible
Understanding LINQ query operators
Understanding LINQ behind the scenes
Using LINQ to XML

By the end of this chapter, we will have learned how we can use LINQ queries while
performing operations on an XML file. We will look at how LINQ queries can help us write,
query, and modify XML files.

Using LINQ Queries Chapter 15

[323]

Technical requirements
Like in the previous chapters covered in this book, the programs explained in this book will
be developed in Visual Studio 2017.

The sample code for this chapter can be found on GitHub in Chapter 15 (https:/ /
github.com/PacktPublishing/ Programming- in- C-Sharp- Exam- 70- 483- MCSD- Guide/ tree/
master/Book70483Samples).

Introducing LINQ
In this section, we will learn the basics of LINQ. We can use LINQ queries against any
collection of objects, with the only condition being that the object must support the
IEnumerable or generic IEnumerable<T> interface.

Along with that, the target framework of the project in which we are planning to use LINQ
must be version 3.5 or more recent.

In the next section, we will look at queries, which form the basis of LINQ operations. We
will be looking at the different components of a query and understand how they are
constructed in .NET.

Queries
A query is a string expression that retrieves data from a data source. The expression is
usually related to a particular data source such as SQL or XML and will generally be
expressed in that respective data source language. However, with LINQ, we can develop a
reusable coding pattern that works on different data sources. The pattern is divided into
three parts:

Obtaining the data source
Creating the query
Executing the query

https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples

Using LINQ Queries Chapter 15

[324]

The following code that illustrates the three operations in their simplest forms:

// 1. Obtaining the data source.
 int[] numbers = new int[3] { 0, 1, 2};
// 2. Query creation.
var numQuery =
from num in numbers
where (num % 2) == 0
select num;
// 3. Query execution.
foreach (int num in numQuery)
{
 Console.Write("{0,1} ", num);
}

In the preceding code example, we created an array of integers whose size is 3. As it
implements the IEnumerable<int> interface, we will be able to implement LINQ on the
array. In the next step, we created a query in which we are filtering even numbers present
in the array. Finally, in the third step, we are looping through the results of the query
execution and printing it.

In the preceding example, we used an array as the source of data. The array already
supports the IEnumerable or IEnumerable <T> interface. However, in some cases, that
may not always be the case. For example, when we read the data source from sources such
as XML files, we need LINQ to load the data in memory as a queryable type. In this case,
we can use the XElement type. The following is the syntax for this:

// Create a data source from an XML document. //
using System.Xml.Linq;
XElement students = XElement.Load(@"c:\students.xml");

In the preceding code example, we have loaded the data from the XML file in the XElement
object, which implements an IQuerable interface. Now, on this, we can easily write LINQ
queries to execute any operation.

Before we move ahead and understand more around LINQ, we must understand the built-
in features of C# that help us implement LINQ queries. In the next section, we will discuss
some of these features.

Using LINQ Queries Chapter 15

[325]

Understanding language features that make
LINQ possible
There are several features available in C# that are either necessary for the implementation
of LINQ or that help us effectively use LINQ queries. These are some of the topics that we
will be going through in this chapter:

Implicitly typed variables
Object initialization syntax
Lambda expressions
Extension methods
Anonymous types

Implicitly typed variables
In C#, we generally use statically typed variables. This implies that the compiler knows the
type of variable at compile time. Due to this, if it finds any operation that may result in an
error, it will highlight it at compile time. For example, refer to the following code:

 int i = 1;
 FileStream f = new FileStream("test.txt", FileMode.Open);
 string s = i + f; // This line gives a compile error

We will observe that the compiler will give us a compile-time error. The following is the
screenshot this:

Using LINQ Queries Chapter 15

[326]

As illustrated by the error description, the compiler identifies that the operation is not
supported in terms of the type of the two variables, hence, it throws this error. This is
referred to as explicit typing.

Implicit typing was added to C# in version 3.0. In implicit typing, the compiler
automatically identifies the variable type at compile time. The compiler does this based on
the value that is assigned to the variable during declaration. The compiler then strongly
types the variable to that particular type.

In C#, we use implicit typing by using the var keyword. The following shows the same
code written earlier, albeit with implicit typing:

var i = 1;
FileStream f = new FileStream("test.txt", FileMode.Open);
string s = i + f; // This line gives a compile error

Please note that even though we have not implicitly specified the type of the variable as
int, based upon the value 1 assigned to it, the compiler will infer that the type of the
variable must be int. In this case, it will give us the same compile-time error. The following
is the screenshot for this:

Implicit Type helps in the LINQ query in circumstances when the return type is determined
at compile time. In addition to being a mandatory declaration, implicit typing also
improves code readability. To illustrate this example, refer to the following declaration in
the code.

Using LINQ Queries Chapter 15

[327]

Note that, instead of declaring the actual type, we have used the Type variable in the
declaration, hence improving code readability:

Dictionary<string, IEnumerable<Tuple<Type, int>>> implicitData = new
Dictionary<string, IEnumerable<Tuple<Type, int>>>();
var implicitData = new Dictionary<string, IEnumerable<Tuple<Type, int>>>();

In the next section, we will look at initializers and how they can improve code readability.

Object initialization syntax
Initializers in C# help us combine the creation of objects and set their properties. Let's refer
to the following code example. Let's assume we have a Student class that has the
following declaration:

public class Student
{
 public int rollNum { get; set; }
 public string Name { get; set; }
}

Now, suppose we need to declare an object for this class. In a conventional way, without
the use of object initializers, we can do it in the following manner:

Student p = new Student();
p.rollNum = 1;
p.Name = "James";
Student p2 = new Student();
p2.rollNum = 2;
p2.Name = "Donohoe";

Note that in the preceding code, we have to specify the creation of the p and p2 objects and
set up their respective properties separately.

Using object initialization syntax, we will be able to combine the creation of the object and
the setting up of its properties in one statement. As an example, if we use object
initialization to execute the same functionality that we did earlier, we can use the following
syntax:

// Creating and initializing a new object in a single step
Person p = new Person
{
 FirstName ="James",
 LastName = "Doe"
};

Using LINQ Queries Chapter 15

[328]

Please note that even though usage of object initialization is not necessary and doesn't
provide any additional capability or feature to us, it can improve the readability of our
code. The code can also be enhanced if there is a requirement for creating a collection of the
same objects. The following is the syntax for this:

var students = new List<Student>
{
 new Student
 {
 rollNum = 1,
 Name = "James"
 },
 new Student
 {
 rollNum = 2,
 Name = "Donohoe"
 }
};

Note that object initialization syntax makes the code much more readable and, in cases
where we are working with anonymous types, it is actually required. In the next section, we
will look at lambda expressions.

Lambda expressions
Lambda expressions were introduced to C# in 3.0 version. Lambda expressions are based
upon anonymous functions and a lambda expression is a shorter way to represent an
anonymous method.

In Chapter 5, Creating and Implementing Events and Callbacks, in the Initiate delegate using
anonymous functions section, we looked at how we can create anonymous functions in C#
using the delegate keyword. In a nutshell, just to recap, using anonymous methods, we
can create an inline method in some code, assign it to a variable, and pass it around.

Using LINQ Queries Chapter 15

[329]

In Chapter 5, Creating and Implementing Events and Callbacks, in the Lambda
expressions section, we looked at how we can convert an anonymous function into its
equivalent lambda expression. However, just to recap, let's go through the following code
example, in which we will first create an anonymous function and then create a lambda
expression for the same:

Func<int, int> anonymousFunc = delegate (int y)
{
 return y * 5;
};
Console.WriteLine(anonymousFunc(1));'.

In the preceding code, we declared a delegate function of the Func<T,T> format. This
implies that this function takes an input of int and returns an integer output. Hence, the
output for the preceding operation would be 1 * 5, that is, 5.

Now, if we need to write the same code using a lambda expression, we can use the
following code syntax:

Func<int, int> anonymousFuncLambda = y => y * 5;
Console.WriteLine(anonymousFuncLambda(1));

Please also note the usage of the => notation in a lambda expression. This notation
translates into becomes or for which.

If we execute the two code blocks, we will notice that the results of the operations are the
same. However, with lambda expressions, we end up with much cleaner code and avoid a
lot of code typing. In the next section, we will look at extension methods.

Extension methods
Extension methods in C# allow us to add methods to an existing type without altering them
or using inheritance. The extension methods are defined in
the System.Linq.Enumerables namespace.

An extension method is always defined in a static class and as a static method. Along with
that, it also uses the this keyword to qualify itself as an extension method. The following
is a code example in which we have declared an extension method multiple on
the int type. To identify the calling object as the first parameter being passed to the
function, we have used the this keyword:

public static class IntExtensions
{

Using LINQ Queries Chapter 15

[330]

 public static int MultiplyExtension(this int x, int y)
 {
 return x * y;
 }
}
int z = 6;
Console.WriteLine(z.MultiplyExtension(5));
Console.ReadLine();

Once the preceding code is executed, we get the output of 30, which is the output when the
calling object, 6, is multiplied by 5, which is declared in the extension method. In the next
section, we will look at anonymous types.

Anonymous types
An anonymous type is a combination of both object initializers and implicit typing.
An anonymous type is a type that doesn't have a name. Using anonymous types, using the
var and new keyword, we create an object without defining its type or class. The type of
anonymous type variable is inferred based on the value with which it's initialized. Along
with that, the properties of an anonymous variable are read-only, which means we cannot
change their values after the variable has been initialized.

The following is some sample code syntax where we have declared an object of an
anonymous type. In the object, we have specified three properties, PropertyNum1,
PropertyNum2, and PropertyNum3:

var anonymousType = new
{
 PropertyNum1 = "One",
 PropertyNum2 = 2,
 PropertyNum3 = true
};
Console.WriteLine(anonymousType.GetType().ToString());

Once the code is executed, we get the following output:

Using LINQ Queries Chapter 15

[331]

Note that, as we are displaying the type of the anonymous type, for each of its respective
properties, the execution is displaying the type based upon the value that is assigned to the
property. Hence, the output that we see is String, Int32, and Boolean.

In the next section, we will look at some standard LINQ operators that we use often while
writing LINQ queries.

Understanding LINQ query operators
As described in the Queries section, each LINQ operation is divided into three parts. In the
first part, we obtain data from a data source. In the second part, we do operations on the
data and finally, in the last part, we extract the data.

While doing the second part, that is, performing operations on the data, there are some
standard operators that we can use. These operators help us to achieve a consistent
experience and a code base that can be easily adapted to different data sources.

Some of the standard query operators are Select, SelectMany, Join, OrderBy, Average,
GroupBy, Max, Min, and Where. In the following sections, let's see some code and learn how
some of these operators work.

Select and SelectMany
We use Select in LINQ when we need to select some values from a collection. For
example, in the following code syntax, we have declared an array of integers and are
selecting all of the numbers present in the array:

int[] numbers = new int[3] { 0, 1, 2 };
var numQuery =
from num in numbers
select num;

foreach(var n in numQuery)
{
 Console.Write(n);
}

Using LINQ Queries Chapter 15

[332]

Therefore, if the preceding code is executed, it will print all of the numbers present in the
array. The following is the output of the preceding code snippet:

We use Select when we need to select a value from a collection. However, in scenarios
where we need to select values from nested collections, that is, a collection of collections,
we use the SelectMany operator. Refer to the following code example, in which we are
using the SelectMany operator to retrieve individual characters from string objects present
in a string array:

string[] array =
{
 "Introduction",
 "In",
 "C#"
};
var result = array.SelectMany(element => element.ToCharArray());
foreach (char letter in result)
{
 Console.Write(letter);
}

 The following would be the output of the program:

In the preceding program, the source of data is an array of strings. Now, strings are again
an array of characters. Using SelectMany, we have directly looped through the characters
present in the Introduction, In, and C# strings. Hence, using SelectMany, we can
perform actions using fewer statements than it would take otherwise.

In the next section, we will look at the Join operator, which helps us join two collections.

Using LINQ Queries Chapter 15

[333]

The join operator
The join operators in LINQ help us join two collections that could be linked to each other
by a common attribute. Refer to the following code example, which will provide a better
explanation of this. Consider that we have two class objects, one representing
ClassDetail and another representing Students that are studying in the class:

public class Student
{
 public int rollNum { get; set; }
 public string Name { get; set; }
 public string classID { get; set; }
}
public class ClassDetail
{
 public string classID { get; set; }
 public string className { get; set; }
}

Please note that in the ClassDetail class, we have details specific to the class in itself such
as ClassID and ClassName. In the Student class, we have details specific to the student
such as rollNum, Name, and ClassID. In the Student class, ClassID attribute refers to the
class in which the student is currently studying. We will use this attribute to link the
collections of ClassDetail and Student.

The following code indicates how we make a join between the two collection items of
Student and Class:

 List<ClassDetail> classNames = new List<ClassDetail>();
 classNames.Add(new ClassDetail { classID = "1", className = "First
Standard" });
 classNames.Add(new ClassDetail { classID = "2", className = "Second
Standard" });
 classNames.Add(new ClassDetail { classID = "3", className = "Third
Standard" });
 List<Student> students = new List<Student>();
 students.Add(new Student { rollNum = 1, classID = "1", Name = "Sia Bhalla"
});
 students.Add(new Student { rollNum = 2, classID = "2", Name = "James
Donohoe" });
 students.Add(new Student { rollNum = 3, classID = "1", Name = "Myra
Thareja" });
 var list = (from s in students
 join d in classNames on s.classID equals d.classID
 select new
 {

Using LINQ Queries Chapter 15

[334]

 StudentName = s.Name,
 ClassName = d.className
 });
 foreach (var e in list)
 {
 Console.WriteLine("Student Name = {0} , Class Name = {1}",
e.StudentName, e.ClassName);
 }

In the preceding code, we have created two collections lists, one each of Student and
ClassDetail. Then, using a join operator, we are combining the two lists based on a
common attribute, ClassID. In the resultant items, we are then saving the name of the
student and the name of the class. If the code is executed, we will get the following output:

In the next section, we will look at the orderby operator.

The orderby operator
The orderby operator is used to sort your data in ascending or descending order. The
following code shows how to sort the data in descending order:

int[] dataElements = { 8, 11, 6, 3, 9 };
var resultOrder = from dataElement in dataElements
 where dataElement > 5
 orderby dataElement descending
 select dataElement;
Console.WriteLine(string.Join(", ", resultOrder));

In the preceding code, we have declared an array of integers. Now, from this array, we
select all numbers that are greater than 5. After selecting them, we sort them in descending
order using the orderby clause. Finally, we print them. The following is the output of the
program when it's executed:

Note that, in the preceding output, the numbers are in descending order and all are greater
than 5. In the next section, we will look at the Average operator in LINQ.

Using LINQ Queries Chapter 15

[335]

Average
In LINQ, we sometimes need to calculate the Average value of any numeric item present in
the collection. To execute this operation, we can use the Average operator. Let's go through
the following code example to see how it works. Let's assume we have the following class:

 public class Student
 {
 public int rollNum { get; set; }
 public string Name { get; set; }
 public string classID { get; set; }
 public int age { get; set; }
 }

Now, we have created the following objects for the student class:

List<Student> students = new List<Student>();
students.Add(new Student { rollNum = 1, classID = "1", Name = "Sia Bhalla",
age = 1 });
students.Add(new Student { rollNum = 2, classID = "2", Name = "James
Donohoe", age = 35 });
students.Add(new Student { rollNum = 3, classID = "1", Name = "Myra
Thareja", age = 8 });

To calculate the average age of the students, we can use the following code statement:

var avg = students.Average(s => s.age);

If we execute the code, we get the following output:

In the next section, we will look at the GroupBy operator.

GroupBy
We use the GroupBy clause in LINQ when we need to group elements based upon some
key value. Each group is represented by a respective key and a collection of grouped
elements.

To explain this operator, we will consider the same Class and Student example we have
been discussing throughout this chapter. Let's consider a scenario wherein we need to
group students based upon the classes they are currently enrolled in.

Using LINQ Queries Chapter 15

[336]

To recap, the following is the structure of the Student class:

public class Student
{
 public int rollNum { get; set; }
 public string Name { get; set; }
 public string classID { get; set; }
 public int age { get; set; }
}

Let's assume that we have the following objects in the Student class:

List<Student> students = new List<Student>();
students.Add(new Student { rollNum = 1, classID = "1", Name = "Sia Bhalla",
age = 1 });
students.Add(new Student { rollNum = 2, classID = "2", Name = "James
Donohoe", age = 35 });
students.Add(new Student { rollNum = 3, classID = "1", Name = "Myra
Thareja", age = 8 });
students.Add(new Student { rollNum = 4, classID = "3", Name = "Simaranjit
Bhalla", age = 33 });
students.Add(new Student { rollNum = 5, classID = "3", Name = "Jimmy
Bhalla", age = 33 });
students.Add(new Student { rollNum = 6, classID = "2", Name = "Misha
Thareja", age = 35 });

To group the students in terms of class ID, we use the following code:

 List<Student> students = new List<Student>();
 students.Add(new Student { rollNum = 1, classID = "1", Name = "Sia
Bhalla", age = 1 });
 students.Add(new Student { rollNum = 2, classID = "2", Name = "James
Donohoe", age = 35 });
 students.Add(new Student { rollNum = 3, classID = "1", Name = "Myra
Thareja", age = 8 });
 students.Add(new Student { rollNum = 4, classID = "3", Name = "Simaranjit
Bhalla", age = 33 });
 students.Add(new Student { rollNum = 5, classID = "3", Name = "Jimmy
Bhalla", age = 33 });
 students.Add(new Student { rollNum = 6, classID = "2", Name = "Misha
Thareja", age = 35 });
 var groupedResult = from s in students
 group s by s.classID;
 //iterate each group
 foreach (var classGroup in groupedResult)
 {
 Console.WriteLine("Class Group: {0}", classGroup.Key);
 foreach (Student s in classGroup)

Using LINQ Queries Chapter 15

[337]

 Console.WriteLine("Student Name: {0}", s.Name);
 }

In the preceding code, we have created six objects of student class and are then trying to
group them by ClassID. After the grouping is complete, we are looping through the
groups that have been created. We are printing Key, which is, in this case, the class ID and
the name of the student.

If we execute the code, we get the following output:

In the preceding code, the students are grouped with different classes. It shows the
different students present in each class.

With this, we have seen how operators work in LINQ. In the next section, we will look at
the behind-the-scenes interfaces that make LINQ queries possible.

Understanding LINQ behind the scenes
Now that we have a fair understanding of LINQ queries, let's consider a scenario in which
we need to alter the way LINQ works. For the sake of explanation, let's consider a scenario
in which we need to change the built-in implementation of the Where clause in the query.

To do that, we first need to understand how the Where clause works in LINQ queries. We
can do this by looking at the definition of the Where clause in Visual Studio. The
following is how the definition of the Where clause would appear:

public static IEnumerable<TSource> Where(
 this IEnumerable<TSource> source,
 Func<TSource, bool> predicate)

Now, to create our own implementation of the Where clause, we will need to create an
extension method with the same signature.

Using LINQ Queries Chapter 15

[338]

Once this is done, we can remove the using statement for System.Linq in the respective
class and, instead, use our own method. The following is the complete code in which we
have altered the built-in implementation of the Where clause without its own custom
implementation:

public static class LinqExtensions
{
 public static IEnumerable<TSource> Where<TSource>(
 this IEnumerable<TSource> source,
 Func<TSource, bool> predicate)
 {
 foreach (TSource item in source)
 {
 if (predicate(item))
 {
 yield return item;
 }
 }
 }
}

Please note that in the preceding example, we have used the Yield keyword. The
Yield keyword was introduced in C# in 2.0. Using this keyword, the execution will
basically remember the item that was returned from the previous execution of the Where
function and will return the next item in the iteration.

This is particularly important when we working using LINQ queries on data providers
such as SQL. Due to the usage of Yield, the query won't be sent to the database until the
result is iterated over. However, this would also mean if we execute the query multiple
times, each time it will hit the database and hence have a negative effect on the
performance of the system.

In the next section, we will look at how LINQ queries are used on an XML data source.

Using LINQ to XML
While working with XML files, we generally use the XmlWriter, XmlReader, and
XmlDocument classes. Apart from these classes, we can also LINQ to execute operations on
the XML file. One of the main advantages of using LINQ to execute XML operations is that
we can use a consistent query experience that LINQ provides with other data providers.

Using LINQ Queries Chapter 15

[339]

Using LINQ, we can create, edit, and parse XML files. Apart from providing a consistent
query experience, LINQ also helps us in writing much more powerful queries that are more
compact than other XML classes. Let's look at the operations that we can perform on XML
and understand how we can execute them via LINQ.

Querying XML
While using LINQ on an XML file, we use the XDocument class to load the XML as a string
in the memory.

Until LINQ was introduced in .NET, developers used to work with the
XmlDocument helper class to do operations on the XML file. XDocument is a similar helper
class that we use in LINQ for doing operations on the XML file. Using LINQ for such xml
operations not only helps to provide a consistent query experience but also increases the
overall performance of the application. The XDocument class contains the following
elements:

XDeclaration: This component signifies information in regards to
XmlDeclaration and contains information such as XML version and the
encoding used.
XElement: This component signifies the root node or object present in the XML
class.
XProcessingInstruction: This component contains relevant information for
the application that will ultimately be consuming the XML file.
XComments: This component contains any additional information apart from the
XElement component that we want to add in the XML class.

All of the preceding components derive from a common abstract class, XNode, and
any operation executed using XDocument is based upon this XNode class. While working
with XDocument, we can use XNode in several ways. For example,
using the XDocument.Nodes syntax, we can loop through all of the nodes present in the
XML file.

Similarly, if we have a scenario to search for a specific element or node, we can also use
the XDocument.Descendants or XDocument.Elements syntax. Using XNode, we can also
directly reach a particular element or a node that's present in the XML file. This can greatly
enhance the performance of the application as we no longer need to loop through the entire
XML file rather than just straightway jumping to the required node.

Using LINQ Queries Chapter 15

[340]

Please note that in an XML file, attributes are not considered nodes;
instead, they are key-value pairs that belong to a node.

The following code sample shows a sample XML containing a set of students who all have
the attributes of Name, rollNum, and contact information:

String xml = @"<?xml version=""1.0"" encoding=""utf-8"" ?>
 <Students>
 <Student Name=""Simaranjit"" rollNum=""1"">
 <contactdetails>
 <emailaddress>sbhalla@gmail.com</emailaddress>
 <phoneNumber>0416274824</phoneNumber>
 </contactdetails>
 </Student>
 <Student Name=""James"" rollNum=""2"">
 <contactdetails>
<emailaddress>jamesdonohoe@gmail.com</emailaddress>
 </contactdetails>
 </Student>
 </Students>";

Suppose we need to loop through all of the student records that are present in this XML
file. Using LINQ, we can execute queries that would load all of the names of the students
present in the XML file as a string. To use LINQ on an XML file, we first need to add a
reference to the System.Xml.Linq namespace. The following code syntax shows how we
can use the Descendants method and the Attribute method to load this data:

XDocument doc = XDocument.Parse(xml);
IEnumerable<string> studentNames = from p in doc.Descendants("Student")
 select (string)p.Attribute("Name")
 + " " + (string)p.Attribute("rollNum");
foreach (string s in studentNames)
{
 Console.WriteLine(s);
}

The following is the output of the preceding code:

Using LINQ Queries Chapter 15

[341]

In the preceding program, using a LINQ query, we are retrieving all of the child nodes
present in the Student descendant in the XML file. Once we have retrieved all of the
nodes, we are selecting the values in the attribute nodes, Name and rollNum. To select the
respective element present in the node, we are using the .Attribute syntax. The method
returns an instance of an XAttribute object. Even though XAttribute has a Value
property of the string type, we can always use explicit operators to cast the value to other
data types in C#.

While using LINQ on XML files, we can also use operators such as Where and OrderBy in
the queries. The following code syntax shows how we can filter all students to only those
with a phone number:

XDocument docFil = XDocument.Parse(xml);
IEnumerable<string> studentNamesFilter = from p in
docFil.Descendants("Student")
 where
p.Descendants("phoneNumber").Any()
 select (string)p.Attribute("Name")
 + " " +
(string)p.Attribute("rollNum");
foreach (string s in studentNamesFilter)
{
 Console.WriteLine(s);
}

In the preceding code, we have added a where clause, in which we have added a condition
on the phone number. Note that, in the XML string, only one child node has a phone
number. When the preceding code is executed, we get the following output:

In the preceding XML file, only one student record has a phone number, hence it's filtering
out that particular record. In the next section, we will look at how we can create an XML
file using LINQ.

Using LINQ Queries Chapter 15

[342]

Creating XML
Apart from querying XML, we can also use LINQ to create XML files. To do this, we can
use the XElement class. There is an ADD method available in the class that we can use to
construct an XML file. The following code syntax shows how we can create some XML:

XElement root = new XElement("Student",
new List<XElement>
{
 new XElement("Marks"),
 new XElement("Attendance")
},
new XAttribute("Roll Number", 1));
root.Save("StudentTestResults.xml");

In the preceding code, we have defined an element by the name Student. In the root
element, we have added a child node of Marks to represent the marks the student has
earned. We have also added a child node of Attendance to represent the attendance of
Student. Finally, we have added a "Roll Number" attribute to represent the unique
identifier of Student.

Once the code is executed, we will observe that it has created an XML file with the
following structure:

<?xml version="1.0" encoding="utf-8"?>
 <Student RollNumber="1">
 <Marks />
 <Attendance />
 </Student>

In the next section, we will look at how we can use LINQ to update XML.

Updating XML
In this section, we will look at how we can modify an XML file using LINQ. With LINQ, we
can modify the XML file by doing the following:

Removing existing nodes in the XML file
Inserting new nodes in the XML file
Changing the content of existing nodes
Saving the XML file back once the operation finishes

Using LINQ Queries Chapter 15

[343]

For the sake of explanation, we will work on the same XML file that we created in the
previous section. We will be writing a code that would add a mobile number element for all
of the students. We will add this element in the node element of ContactDetails:

XElement rootUpd = XElement.Parse(xml);
foreach (XElement p in rootUpd.Descendants("Student"))
{
 XElement contactDetails = p.Element("contactdetails");
 contactDetails.Add(new XElement("MobileNumber", "12345678"));
}
rootUpd.Save("testupd.xml");

In the preceding code, we are looping through all Students present in the XML and are
then looping through the child element of ChildDetails. In that node, we are adding the
element of MobileNumber. Once the code is executed, we will get the following output in
the XML file:

<?xml version="1.0" encoding="utf-8"?>
<Students>
 <Student Name="Simaranjit" rollNum="1">
 <contactdetails>
 <emailaddress>sbhalla@gmail.com</emailaddress>
 <phoneNumber>0416274824</phoneNumber>
 <MobileNumber>12345678</MobileNumber>
 </contactdetails>
 </Student>
 <Student Name="James" rollNum="2">
 <contactdetails>
 <emailaddress>jamesdonohoe@gmail.com</emailaddress>
 <MobileNumber>12345678</MobileNumber>
 </contactdetails>
 </Student>
</Students>

In the preceding XML, we have added a MobileNumber element in the ContactDetails
node of Student.

Summary
In this chapter, we learned how we can use LINQ to write consistent queries against
multiple data sources. We learned about the different components of a LINQ query and
understood how we can construct them in a query. We then looked at the features in a C#
language that allows us to work with LINQ such as implicit typing, object initialization
syntax, lambda expressions, extension methods, and anonymous types.

Using LINQ Queries Chapter 15

[344]

We then looked at the different operators available in LINQ such as Select, SelectMany,
Where, join, and Average. Using code scenarios, we looked at different situations in
which we should use each of them.

We then looked at the different interfaces that LINQ queries are based on. Finally, we
looked at how we can use LINQ queries to perform an operation on XML files. Using code
examples, we looked at how we perform, create, update, and query operations on LINQ.

In the next chapter, we will look at the serialization and deserialization of data. We will
look at the different collection items, such as arrays, lists, and dictionaries, which are
available in C#.

Questions
Which LINQ code can be used to extract customers that have made sales of over1.
5,000 dollars and whose name starts with A?

FROM p IN db.Purchasesa.
WHERE p.Customer.Name.StartsWith("A")
WHERE p.PurchaseItems.Sum (pi => pi.SaleAmount) = 5000
SELECT p

FROM p IN db.Purchasesb.
WHERE p.Customer.Name.StartsWith("A")
WHERE p.PurchaseItems.Sum (pi => pi.SaleAmount) > 5000
SELECT p

FROM p IN db.Purchasesc.
WHERE p.Customer.Name.EndsWith("A")
WHERE p.PurchaseItems.Sum (pi => pi.SaleAmount) < 1000
SELECT p

FROM p IN db.Purchasesd.
WHERE p.Customer.Name.StartsWith("A")
WHERE p.PurchaseItems.Sum (pi => pi.SaleAmount) >= 1000
SELECT p

Which of the following statements in regards to LINQ is incorrect?2.
Compared to languages such as SQL, LINQ is more complex to code.a.
LINQ supports Join.b.
LINQ can be used to do operations on XML files.c.
All of the above.d.

Using LINQ Queries Chapter 15

[345]

Which of the following supports LINQ queries?3.
Object Collectiona.
Entity Frameworkb.
XML Documentc.
All of the aboved.

Answers
b1.
a2.
d3.

16
Serialization, Deserialization,

and Collections
When a .NET application interacts with an external network, the data being exchanged
must be transformed into a flat or binary format. Similarly, when the data is retrieved from
external applications, binary data needs to be formatted to objects on which they can then
be worked upon. This is done via the serialization and deserialization of data using
different approaches. The process of changing objects into binary format is referred to as
serialization. Deserialization is the reverse of serialization. In involves transforming binary
data into its object representation so that it can be used in the application.

In this chapter, we will work on different serialization and deserialization approaches
available in the .NET Framework. We will look into XML serialization, JSON serialization,
and binary serialization. We will also look at how we define data contracts in web services
to inform the consuming application of the format of the data that is to be exchanged
between different applications.

We will then look at how we can use different collections objects such as arrays, lists,
dictionary, queues, and stacks and we'll learn how they can be used for storing and
consuming data. Finally, we will look at different things that help us choose collection
objects while working with .NET applications.

We will cover the following topics in this chapter:

Serialization and deserialization
Working with collections
Choosing a collection

Serialization, Deserialization, and Collections Chapter 16

[347]

Technical requirements
The programs explained in this book will be developed in Visual Studio 2017. The
sample code for this chapter can be found at GitHub at https:/ /github. com/
PacktPublishing/Programming- in- C- Sharp- Exam- 70- 483-MCSD- Guide/ tree/ master/
Book70483Samples.

Serialization and deserialization
While working with objects, we often find a need to either save them in different mediums
such as a database or file or, in some cases, transfer them to other applications over a
network. To do this, we must first convert the object into a stream of bytes—this process is
known as serialization.

Deserialization is the process of converting bytes received from the external application
into objects that can be then used inside the application. With serialization, we can
transform an object into bytes and save information related to its state, attributes, assembly
version, and so on in external mediums such as databases, or we can exchange them on a
network to external applications. An important thing to note here is that we can only apply
serialization to objects and their attributes but not to their methods.

.NET Framework provides us with the System.Runtime.Serialization
namespace, which has got helper classes that help us serialize and deserialize the data.
.NET provides us with three mechanisms for achieving this: XML serialization, JSON
serialization, and data contract serialization.

In the next section, we will learn how we do serialization using XMLSerializer.

XmlSerializer
In XMLSerialization, we convert the data into the format of an XML document, which
can then be transferred easily across the network.

During deserialization, we can render an object from the same XML document format.
XMLSerializer is based upon Simple Object Access Protocol (SOAP), a protocol for
exchanging information with web services.

https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples
https://github.com/PacktPublishing/Programming-in-C-Sharp-Exam-70-483-MCSD-Guide/tree/master/Book70483Samples

Serialization, Deserialization, and Collections Chapter 16

[348]

While working with XmLSerlializer, we must mark our classes with the Serializable
tag to inform the compiler that this class is serializable. Please refer to the following code
implementation wherein we are using this tag against our class to inform the compiler that
the class is Serializable:

[Serializable]
public class Student
{
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public int ID { get; set; }
 public Student()
 {
 }
 public Student(string firstName, string lastName, int Id)
 {
 this.FirstName = firstName;
 this.LastName = lastName;
 this.ID = Id;
 }
}

In the preceding code implementation, we declared a Student class and specified it with
the FirstName, LastName, and ID attributes. To inform the compiler that the class is
serializable, we have used the Serializable tag on the class.

Sometimes, we need to pick and choose the attributes that we would like to be serialized. In
these cases, we can use the NonSerialized tag on the attribute and convey to the compiler
that the attribute will not be serializable. Following is the code implementation for this:

[Serializable]
public class Student
{
 public string FirstName { get; set; }
 public string LastName { get; set; }
 [NonSerialized()]
 public int ID;
}

We used the Serializable tag on the class name but used the NonSerialized tag to
indicate that the ID attribute cannot be serialized.

Serialization, Deserialization, and Collections Chapter 16

[349]

Let's go through a code implementation scenario where we will look at a code base in
which we will serialize a class object using XmlSerializer and will save the file on the
filesystem. This file can then be transferred across the network:

XmlSerializer serializer = new XmlSerializer(typeof(Student));
string fileName = "StudentData";
using (TextWriter writer = new StreamWriter(fileName))
{
 Student stu = new Student("Jacob", "Almeida", 78);
 serializer.Serialize(writer, stu);
}

In the preceding code example, we are using the same Student class we used in the
previous example. We have created a dummy Student object and are then serializing the
object into bytes. The bytes are then converted into a file using the TextWriter object.

Once the preceding code gets executed, a file with the name StudentData gets created in
the system:

If we open the file in Internet Explorer, we will see the student data in XML format:

In the preceding code example, there was no hierarchy in the data. All of the data is
represented as an element in the XML file. However, in most situations, we will need to
represent data that is following some sort of hierarchy. Using the preceding example, let's
try to represent the course scores for each of the students as well. Let's say there are five
courses: English, Maths, Physics, Chemistry, and Computers. Now, let's try to represent the
scores for each of the courses for the student using the following code implementation:

[Serializable]
public class Student

Serialization, Deserialization, and Collections Chapter 16

[350]

{
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public int ID;
 [XmlIgnore]
 public string Feedback { get; set; }
 [XmlArray("CourseScores")]
 [XmlArrayItem("Course")]
 public List<CourseScore> CoursePerformance { get; set; }
 public void CreateCoursePerformance()
 {
 Course phy = new Course { Name = "Physics", Description =
 "Physics Subject" };
 CourseScore phyScore = new CourseScore { Course = phy,
 Score = 80 };
 List<CourseScore> scores = new List<CourseScore>();
 scores.Add(phyScore);
 this.CoursePerformance = scores;
 }
}
[Serializable]
public class CourseScore
{
 [XmlElement("Course")]
 public Course Course;
 [XmlAttribute]
 public int Score;
}
[Serializable]
public class Course
{
 [XmlAttribute]
 public string Name;
 public string Description;
}

The preceding complete code can be found in the GitHub repository for
this chapter.

In the preceding code implementation, we declared three classes:

Course: To represent the subject along with the description
CourseScore: To represent the score that a student is getting in that particular
course

Serialization, Deserialization, and Collections Chapter 16

[351]

Student: Has a list of CourseScore to represent the score the student gets in
each subject

Please note the following tags we used in the classes:

XmlIgnore: We use this tag against attributes that we don't
want to be saved in the generated XML class. In the preceding
class example, we have used XmlIgnore against the Feedback
class. This will ensure that the Feedback attribute will not be
present in the generated XML file.
XmlElement: We can use this tag if we want to represent an
element in the generated XML. The element can then have
attributes. In the preceding example, we used the
XmlElement tag for the Course attribute. This will then enable
us to add attributes of Course Name and Course
Description in the generated XML file.
XMLArray: We use this tag when there can be multiple child
records in this element. In the preceding example, we used the
XMLArray tag for the CourseScores attribute to indicate that
this is an element in the XML that can have multiple child
records.
XMLArrayItem: We use this tag to represent the individual
child records in the XMLArray record. In the preceding
example, we used the XMLArrayItem tag to represent
individual records in the list collection
variable, CourseScores.

If we need to serialize the data using XMLSerialization, we can use the following code.
Once the code is executed, it will generate an XML file based on the data structure and tags
used in the preceding declaration of the class:

XmlSerializer serializer = new XmlSerializer(typeof(Student));
string fileName = "StudentDataWithScores";
using (TextWriter writer = new StreamWriter(fileName))
{
 Student stu = new Student("Jacob", "Almeida", 78, "Passed");
 stu.CreateCoursePerformance();
 serializer.Serialize(writer, stu);
 writer.Close();
 }

Serialization, Deserialization, and Collections Chapter 16

[352]

Once the program is generated, note that an XML file, StudentDataWithScores, is
generated. Now, open the XML file and review the following:

Please note the following points in the structure of the XML file that is generated:

In the XML file, there is no node for Feedback as it has been marked with
the XmlIgnore tag in the Student class file.
In the Student node, there is a CourseScores element node in line with the
XmlArray tag that we used in the CourseScore list collection.
In the element node, CourseScores, we have an individual node item
element, Course, in line with XmlArrayItem, which we declared for each
element in the CourseScores collection.

Each of the child item nodes has a Score attribute. It is in line with the
tag—XmlElement—that we used for CoursePerformance; note that the XML also shows
the name and description of the course.

Serialization, Deserialization, and Collections Chapter 16

[353]

Even though we're using XMLSerialization, we can produce data that we can easily
read, but there are certain issues with regard to XmlSerialization:

It consumes more space. If we are sharing XML files, they will ultimately end up
saving space on the filesystem, which might not be ideal.
In addition to that, if we declare an attribute with the access modifier of
private, it will not be picked during the XML serialization. For example, if we
set the access modifier of the LastName attribute in the preceding example, we
will see that the generated XML file will not have the attribute.

The following code is the updated set of access modifiers for the attributes in the Student
class:

public string FirstName { get; set; }
private string LastName { get; set; }
public int ID;
[XmlIgnore]
public string Feedback { get; set; }
[XmlArray("CourseScores")]
[XmlArrayItem("Course")]
public List<CourseScore> CoursePerformance { get; set; }

The access modifier for the LastName attribute has been changed from public to private.
If we execute the project and open the XML file, we will observe that the
LastName attribute no longer exists in the generated XML file:

In the next section, we will go through the binary serialization approach in C#.

Binary serialization
In XmlSerialization, the output of the serialization is an XML file that can be easily
opened by Notepad. However, as explained previously, creating a file adds to the overall
storage space required by the application, which may not be desirable in all circumstances.

Serialization, Deserialization, and Collections Chapter 16

[354]

We also observed that if we marked any attribute with the access modifier of private, it
was not copied across to the generated XML file. This may also be an issue in many cases.

In this section, we will look at an alternative approach in which we will serialize the data to
a stream of bytes. This data will not be viewable like the XML file but will save us space
and will deal with private attributes in a much better way.

.NET Framework provides us with the System.Runtime.Serialization and
System.Runtime.Serialization.Formatters.Binary namespaces, which provide us
with helper classes for dealing with binary serialization.

To understand how binary serialization works, let's look at the following example. We will
work with Student, a similar class to what we created while we were working on XML
serialization:

[Serializable]
public class StudentBinary
{
 public string FirstName;
 public string LastName;
 public int ID;
 public string Feedback;

 public StudentBinary(string firstName, string lastName, int Id, string
feedback)
 {
 this.FirstName = firstName;
 this.LastName = lastName;
 this.ID = Id;
 this.Feedback = feedback;
 }
 }

Please note that in the class declaration, just like in XmlSerialization, we used a
Serializable tag in the declaration of the StudentBinary class. This indicates to the
compiler that the StudentBinary class can be serialized.

We can use the following code to serialize and deserialize an object of this class:

StudentBinary stu = new StudentBinary("Jacob", "Almeida", 78, "Passed");
IFormatter formatter = new BinaryFormatter();
using (Stream stream = new FileStream("StudentBinaryData.bin",
FileMode.Create))
{
 formatter.Serialize(stream, stu);
}

Serialization, Deserialization, and Collections Chapter 16

[355]

using (Stream stream = new FileStream("StudentBinaryData.bin",
FileMode.Open))
{
 StudentBinary studeseria =
(StudentBinary)formatter.Deserialize(stream);
}

In the code example, we created an object of the StudentBinary class and then used a
helper class, BinaryFormatter, to serialize the data into binary data. Once the data is
serialized, using the FileStream helper class, we saved this binary data in a binary
file, StudentBinaryData.bin.

In the next step, we open the file we created in the previous step and deserialize it back to
the StudentBinary class. If we try to debug the application and do a quick watch on the
studeseria variable, we will see the following output:

Now let's make one change to the preceding class: let's mark the LastName attribute as
private. When we used XmlSerialization, we saw that any attribute marked with
the private access modifier was excluded from the attribute. Let's do the same with binary
serialization and observe the difference:

[Serializable]
public class StudentBinary
{
 public string FirstName;
 private string LastName;
 public int ID;
 public string Feedback;
 public StudentBinary(string firstName, string lastName, int Id, string
feedback)

Serialization, Deserialization, and Collections Chapter 16

[356]

 {
 this.FirstName = firstName;
 this.LastName = lastName;
 this.ID = Id;
 this.Feedback = feedback;
 }
 }

If we now try to debug an application and do a QuickWatch on the studeseria variable,
we will get the following output:

Note that even though we made LastName as private, it has no impact on the output.
This illustrates the advantage binary serialization has on XmlSerialization.

Just with XmlSerialization, we can also set tags on an attribute that would ensure that
that attribute is ignored during the serialization. We can do it with the NonSerialized tag.
In the following code implementation, we are using this tag for the Feedback attribute:

[Serializable]
public class StudentBinary
{
 public string FirstName;
 private string LastName;
 public int ID;
 [NonSerialized]
 public string Feedback;

 public StudentBinary(string firstName, string lastName, int Id, string
feedback)
 {

Serialization, Deserialization, and Collections Chapter 16

[357]

 this.FirstName = firstName;
 this.LastName = lastName;
 this.ID = Id;
 this.Feedback = feedback;
 }
}

Even though binary serialization allows us to overcome the restriction around any attribute
that is marked with the private access modifier, there are still some scenarios when we
would deliberately want to restrict the exchange of certain data, especially those attributes
that are sensitive and that we would like to restrict anyhow. We can do this by using
the ISerializable interface.

In the following implemented code, we used a similar class, StudentBinaryInterface,
and have implemented an ISerializable interface in it. As part of this interface, we must
implement a GetObjectData method in this class. This method is classed when the class
gets serialized. In this method, we will do encapsulation and not add any sensitive
attributes to the serialized stream. Let's have a look at how to do this:

[Serializable]
public class StudentBinary:ISerializable
{
 public string FirstName;
 private string LastName;
 public int ID;
 public string Feedback;
 protected StudentBinary(SerializationInfo info,
 StreamingContext context)
 {
 FirstName = info.GetString("Value1");
 Feedback = info.GetString("Value2");
 ID = info.GetInt32("Value3");
 }
 public StudentBinary(string firstName, string lastName,
 int Id, string feedback)
 {
 this.FirstName = firstName;
 this.LastName = lastName;
 this.ID = Id;
 this.Feedback = feedback;
 }
 [System.Security.Permissions.SecurityPermission(
 SecurityAction.Demand, SerializationFormatter = true)]
 public void GetObjectData(SerializationInfo info,
 StreamingContext context)
 {
 info.AddValue("Value1", FirstName);

Serialization, Deserialization, and Collections Chapter 16

[358]

 info.AddValue("Value2", Feedback);
 info.AddValue("Value3", ID);
 }
 }

In the preceding code example, we declared the LastName attribute as private. Through
this code, we will try to exclude this attribute from being serialized.

There are two important functions in this class:

GetObjectData: As illustrated previously, this function is called when the class
gets serialized. In this method, we will serialize the data present in Firstname,
Feedback, and ID. Note that LastName is not present in this. This has been to
make sure that the data in the LastName attribute will not be added to the
stream.
Constructor: As the class implements the ISerializable interface, it must
implement the following constructor with the parameters of
SerializationInfo and StreamingContext:

StudentBinary(SerializationInfo info, StreamingContext context)

This constructor will be called when the data will be deserialized into this class object. Note
that in the constructor, we are accessing the values in the Value1, Value2, and Value3
attributes and converting them into their respective mapped attributes:

StudentBinary stu = new StudentBinary("Jacob", "Almeida", 78, "Passed");
IFormatter formatter = new BinaryFormatter();
using (Stream stream = new FileStream("StudentBinaryData.bin",
FileMode.Create))
{
 formatter.Serialize(stream, stu);
}
using (Stream stream = new FileStream("StudentBinaryData.bin",
FileMode.Open))
{
 StudentBinary studeseria =
(StudentBinary)formatter.Deserialize(stream);
}

Serialization, Deserialization, and Collections Chapter 16

[359]

If we debug this code and do a QuickWatch on the studeseria variable, we get the
following output:

Note that no value is present in the LastName attribute. In the next section, we will learn
how to work with collections.

Working with collections
A collection in .NET defines a group of related data or elements. Elements can be variables
of simple data types such as int, float, or String or can be complex data variables such
as a class or structure. While working with .NET applications, we often need to work with
such collections. We can execute operations such as these:

Creating a collection
Adding an element to a collection
Reading elements present in the collection
Removing elements present in the collection

In this section, we will understand what the different types of collections available in .NET
are and how programmers can execute operations on them.

Arrays
Arrays are the most basic collection variable available in .NET Framework. Arrays are used
to store a group of data variables that are of the same type as int, String, and many
more.

Serialization, Deserialization, and Collections Chapter 16

[360]

Let's go through a code implementation in which we will create an array collection of int
variables and then loop through them:

public static void CollectionOperations()
{
 int[] arrayOfInt = new int[10];
 for (int x = 0; x < arrayOfInt.Length; x++)
 {
 arrayOfInt[x] = x;
 }
 foreach (int i in arrayOfInt)
 {
 Console.Write(i);
 }
 }

Please note the following in the code implementation:

An array is declared by the [] syntax after the data type. In the implemented
code, we are declaring an array of the int type.
While declaring the array collection, we must define the length of the array
collection. In the code, we are declaring that the length of the array is 10. This
basically implies that the array can contain 10 elements of the int type.
The index of the array starts at 0. This implies that, in the preceding case, the first
element will start at index 0 and will end at index 9. If we need to refer to the
elements present in the ith index in the array, we can use the array[i]
declaration.
Each array has a length property. This attribute indicates the maximum number
of elements that can be present in the array. In the code, we are doing a for loop
from 0 to 9 that is of the length -1 and are setting the value in each element
present in that index.
Array implements the IEnumerable interface. Due to this, we can loop through
the array using the foreach loop.

On executing the preceding code, we get the following output:

Serialization, Deserialization, and Collections Chapter 16

[361]

In the code, we are setting values in each index of the array—the same value as the index in
itself. Before we move ahead and start looking at the code examples, we need to
understand two important concepts regarding arrays:

Multidimensional arrays: These are arrays in which we store elements in a matrix
structure that has both rows and columns. For example, we can use the following
code for declaring a multidimensional array:

int[,] arrayInt = new int[3,2] { { 1, 2 }, { 3, 4 }, { 5, 6 } };

The use of a single , mark during the array declaration indicates that this is a
two-dimensional array. In the case of a two-dimensional array, the first
dimension indicates the number of rows, while the second indicates the number
of columns present in the array. Also, note that by using 3,2, we are basically
indicating that the number of rows in the array should be 3 while the number of
columns should be 2.

Just like in a normal array, in a multidimensional array, the index for both
dimensions starts at 0. Therefore, the first element will be present at index {0,0},
while the last element will be present at index {2,1}.

Let's look at the following code implementation, in which we will look at the code
to loop through this multidimensional array and read each number present in the
array:

int[,] arrayInt = new int[3,2] { { 1, 2 }, { 3, 4 }, { 5, 6 } };
for (int i=0; i < 3; i++)
{
 for (int j = 0; j < 2; j++)
 {
 Console.WriteLine(arrayInt[i, j]);
 }
}

In the preceding code implementation, we are doing two nested loops. In the first loop, we
are looping through the number of rows present in the multidimensional array. In the
second loop, we are looping through the number of columns present in the
multidimensional array. Using the arrayInt[i, j] syntax, we are printing the element
present in that combination of rows and columns in the array.

Serialization, Deserialization, and Collections Chapter 16

[362]

When we execute the code, we get the following result. As we have to loop through the
two-dimensional array using a nested loop, at each step, we will access elements present at
position {i, j}. For each iteration of the i variable, the j variable will iterate from 0 to 1.
Hence, it will start at {0,0}, which will be 1 and will end at {2,1}, which will be 6, hence
generating the following output:

In the next section, we will look at another collection type: lists.

Lists
While working on arrays, we learned that the length of an array must be specified when the
array is declared. Also, we cannot increase the length of an array collection.

To overcome these issues, we can use the list collection. Lists provide us with several helper
methods that help us to add and remove items in a list, sort a list, search in a list, and more.
A list collection is declared by the following index:

 List<int> vs = new List<int>();

If we go to the definition of a list, we will realize that, internally, it implements many
interfaces, such as IEnumerable, ICollection, and IList. Due to these different
interfaces, list collections are extremely powerful and provide different operations. The
following screenshot shows what the definition of a list collection looks like in .NET:

Serialization, Deserialization, and Collections Chapter 16

[363]

The IEnumerable interface allows us to loop through the list collection using the foreach
loop just as we did for arrays. The ICollection interface allows us to do operations such
as count length, add a new element, and remove an element.

Let's look at the following code implementation, in which we will execute all of these
operations on the list:

public static void ListCollectionOperations()
{
 List<int> vs = new List<int> { 1, 2, 3, 4, 5, 6 };
 for (int x = 0; x < vs.Count; x++)
 Console.Write(vs[x]);
 vs.Remove(1);
 Console.WriteLine(vs[0]);
 vs.Add(7);
 Console.WriteLine(vs.Count);
 bool doesExist = vs.Contains(4);
 Console.WriteLine(doesExist);
}

Let's look at what we did in the preceding code:

We have created a list of int and added the elements 1-6.
We are looping across the list using a for loop and we are printing the values
present in it. To find the length or the number of elements present in a list, we are
using the Count property.
To remove an element from a particular index, we can use the Remove method.
In the preceding code implementation, we are removing the element present at
index 1.
To add a new element in the list, we use the Add method. In the preceding code
implementation, we are adding an element, 7, to the list.
To check whether an element is present in the list, we use the Contains method.
In the preceding code implementation, we are checking whether a 4 element is
present in the list.

If we execute this, we get the following output:

Serialization, Deserialization, and Collections Chapter 16

[364]

One potential issue with a list collection is that we can have duplicate values in the list. For
example, in the preceding example, it's possible to have two elements with the same value
as 1 in the list.

Due to this issue, we cannot use list collection in scenarios where we must ensure the
uniqueness of values. In the next section, we will look at another collection dictionary that
overcomes this issue with a list object.

Dictionary
The dictionary collection can be used in scenarios when we need to maintain uniqueness in
values that are being saved. A dictionary collection is comprised of two parts: a key and a
value. Together, they are referred to as a key-value pair in .NET. When a dictionary
collection is created, it ensures that the key-value is unique and no duplicate keys are
present in the collection. Retrieval is also based upon the key, making the operation
extremely fast. A dictionary collection is declared by the following index:

Dictionary<int, int> vs = new Dictionary<int, int>();

In the preceding code implementation, we are declaring a dictionary collection where both
key and value are of the int format.

Let's right-click on the Dictionary class and click on Go to Definition. On doing this, we
will be taken to the definition of the dictionary. Upon doing so, we will realize that it
implements several interfaces such as IEnumerable, ICollection<KeyValuePair<Tkey,
and TValue>>. Please refer to the following definition of the Dictionary class:

Due to the implementation of the ICollection interface based on KeyValuePair, it
ensures that the uniqueness is maintained based on the key.

In the code implementation, we will look at a code example wherein we will implement
operations on the Dictionary object:

public static void DictionaryCollectionOperations()
{
 Dictionary<int, int> vs = new Dictionary<int, int>();

Serialization, Deserialization, and Collections Chapter 16

[365]

 for (int x = 0; x < 5; x++)
 {
 KeyValuePair<int, int> pair = new KeyValuePair<int, int>(x, x *
100);
 }
 foreach(KeyValuePair<int, int> keyValue in vs)
 {
 Console.WriteLine(keyValue.Key + " " + keyValue.Value);
 }
 vs.Remove(1);
 Console.WriteLine(vs[0]);
 vs.Add(5, 500);
 Console.WriteLine(vs.Count);
 bool hasKey = vs.ContainsKey(4);
 bool hasValue = vs.ContainsValue(900);
 Console.WriteLine(hasKey);
 Console.WriteLine(hasValue);
 }

Please note the following in the preceding code implementation:

We have declared a dictionary collection variable. We have implemented a for
loop that runs five times. In the loop, we are creating KeyValuePair and adding
it to the dictionary object.
After we have added elements to the dictionary object, we are looping through
the dictionary. We are doing it via a foreach loop on KeyValuePair present in
the dictionary.
To remove a particular element from the dictionary, we can use the Remove
method. The method takes the input of a key and, based on a key, deletes the
respective KeyValuePair present in the dictionary.
To add a particular element in the dictionary, we can use the Add method. The
method has two parameters, one of the key and another of the value.
To check whether a particular key is present in the dictionary, we can use the
ContainsKey method. The method returns whether the given key exists in the
dictionary. If the key exists, it returns true and, in other cases, it returns false.
To check whether a particular value is present in the dictionary, we can use the
ContainsValue method. The method returns whether the given value exists in
the dictionary. If the value exists, it returns true and, in other cases, it returns
false.

Serialization, Deserialization, and Collections Chapter 16

[366]

If the preceding code is executed, we get the following output:

Please note the following points in the output of the code:

The values (0, 0), (1, 100), (2, 200), (3, 300), and (4, 400) indicate the key-value
pairs that are added in the dictionary.
5 indicates the length or number of elements present in the dictionary.
True indicates that the dictionary contains KeyValuePair with the key 4.
False indicates that the dictionary does not contain KeyValuePair with the
value 900.

Before we move to the next section, let's try what would happen if we try to
add KeyValuePair in the same dictionary in which the key already exists in the dictionary.
For the sake of an example, we will add KeyValue of (1, 1000). Please note that the key
1 is already present in the dictionary. When the code is executed, we get the following
exception. The exception indicates that if we try to add a value with the same key in the
dictionary, it will throw an error:

In the next section, we will go over another set of collection objects: queues and stacks.

Serialization, Deserialization, and Collections Chapter 16

[367]

Queues and stacks
Queues and stacks are collection items that allow us to save data temporarily during the
execution of the program. These collections are very similar to the other collections, such as
lists, with the major difference being how elements are added and removed from the
collection.

A queue is a first-in, first-out type of collection. It basically implies that elements are
accessed from the queue in the same order they are added to the collection. When the items
are accessed, they can also be removed in the same operation. A queue has three main
operations:

Adding a new element to the queue: It's executed by the Enqueue method.
Removing an existing element from the queue: It's executed by
the Dequeue method.
Peeking or retrieving the value of an element in the queue: It's executed by
the Peek method.

This diagram shows how the queue works:

In the preceding diagram, the block indicates a queue collection. In the collection, we have
added five elements: element A, element B, element C, element D, and element E. Element
E was the first element added to the queue and it's at the front of the queue. Element A was
the last element added to the queue and it's at the back of the queue.

Serialization, Deserialization, and Collections Chapter 16

[368]

The green arrows indicate the indexes in the queue at which the different operations will
take place. The addition of a new element will always take place at the back of the queue.
Removal of an element will take place at the front of the queue.

Let's look at a code implementation to show how it's done programmatically. In the
following code, we have created a queue collection object. We will then add elements to the
object and execute different operations on it:

public static void QueueOperations()
{
 Queue<string> que = new Queue<string>();
 que.Enqueue("E");
 que.Enqueue("D");
 que.Enqueue("C");
 que.Enqueue("B");
 que.Enqueue("A");
 int index = 0;
 foreach(string s in que)
 {
 Console.WriteLine("Queue Element at index " + index + " is " + s);
 index++;
 }
 Console.WriteLine("Queue Element at top of the queue is "
 + que.Peek());
 que.Dequeue();
 index = 0;
 foreach (string s in que)
 {
 Console.WriteLine("Queue Element at index " + index + " is " + s);
 index++;
 }
 }

When the preceding code is executed, we get the following output:

Serialization, Deserialization, and Collections Chapter 16

[369]

As illustrated by the queue diagram, when we add elements to the queue, they are always
added to the end. Therefore, when we add the E, D, C, B, and A elements in the same order,
A will always be at the back of the queue and E will be at the front of the queue. The indexes
in the preceding output indicate the position in the queue where each respective element is
present.

A peek operation in a queue is always done on the front index, that is, the 0 index of the
queue. A removal operation in a queue is always done on the front index, that is, the 0
index of the queue. Therefore in the preceding output, both of these operations are
executed on the element E.

Once these operations are done and we reiterate through the queue, we find that, owing to
the remove operation, element E is no longer present in the queue. Now that we have an
understanding of the queue, let's look at how a stack works in .NET Framework.

Just like a queue, the stack also provides temporary storage with the only difference being
in terms of how the operations are executed on a stack. Stack follows the LIFO model,
which implies that the last element added to the stack will be the first one to be removed.
The following are the three main operations that we can do on a stack:

Add a new element to the stack. It's executed by the Push method.
Remove an existing element from the stack. It's executed by the Pop method.
Peek or retrieve the value of an element in the stack. It's executed by
the Peek method.

The following diagram shows how the stack works:

Serialization, Deserialization, and Collections Chapter 16

[370]

In the diagram, the block indicates a stack collection. In the collection, we have added five
elements: element A, element B, element C, element D, and element E. Element E was the
first element added to the stack and it's at the front of the stack. Element A was the last
element added to the stack and it's at the back of the stack.

The green arrows indicate the indexes in the stack at which the different operations will
take place. The addition of a new element will always take place at the bottom of the stack.
The removal of an element will take place at the top of the stack.

Let's look at a code implementation to show how it's done programmatically. In the
following code, we have created a stack collection object. We will then add elements in the
object and execute different operations on it:

public static void StackOperations()
{
 Stack<string> sta = new Stack<string>();
 sta.Push("E");
 sta.Push("D");
 sta.Push("C");
 sta.Push("B");
 sta.Push("A");
 int index = 0;
 foreach (string s in sta)
 {
 Console.WriteLine("Stack Element at index " + index + " is " + s);
 index++;
 }
 Console.WriteLine("Stack Element at top of the stack is "
 + sta.Peek());
 sta.Pop();
 index = 0;
 foreach (string s in sta)
 {
 Console.WriteLine("Stack Element at index " + index + " is " + s);
 index++;
 }
 }

Serialization, Deserialization, and Collections Chapter 16

[371]

When the preceding code is executed, we get the following output:

A Peek operation on a stack is always done on the last element added on the stack. Element
A was the last element to be added to the stack. Therefore, when a Peek operation is done
on the stack, it gives an output of A. Similarly, when a Pop operation is executed on the
stack, it removes the element A.

With this, we have gone through the different collections that are available in .NET. Each of
these collection items has some properties that make them usable in some scenarios and not
in others. These criteria need to be evaluated when we are trying to select a collection item
to use.

In the next section, we will look at some of the criteria that help us to select the right
collection item for each scenario.

Choosing a collection
While choosing a collection type, we have to analyze the scenarios in the application in
which we want to use them. The primary difference between these collection types is the
way we access elements in them:

The array collection needs to have a definite size or length while declaring itself.
On the other hand, all other collection types can have their sizes increased
dynamically. Also, arrays support random access to the data. This basically
implies that as long as the element exists at the specified index in the array, we
can access that element without needing to loop through the entire array.
Queues and stacks allow us access the elements in a definite manner. While the
queue works in a FIFO manner, the stack works in a LIFO manner.

Serialization, Deserialization, and Collections Chapter 16

[372]

On the other hand, the list and dictionary collection types allow us to configure
random access to the elements. Please note that, conceptually, the list does not
support random access; however, in C#, the list is maintained as an array. Due to
this, it supports random access.
One important difference between a list and dictionary is the way they save data
as well as the performance. In the dictionary collection, we save data in
KeyValuePair. This allows us to maintain the uniqueness of the keys that are
present in the dictionary. On the other hand, a list does not provide us with that
feature.

Summary
In this chapter, we learned about how we serialize and deserialize data while exchanging it
over a network. We looked at the different techniques available for serialization and
deserialization. We started with XmlSerialization and saw how we serialize the data to
XML files. We also looked at different attribute tags, such as XmlArray, XmlArrayItem,
and XmlIgnore, which we can place in the class object when it's being converted into an
XML file. We then looked at binary serialization and learned the advantages it has
compared to XmlSerialization. We also looked at the ISerializable interface and
learned how it provides security while exchanging data over the network.

We then looked at different collection types available in C# and the scenarios in which we
should use each of them. We looked at arrays and their restrictions in terms of the length or
size of the array, which we must declare during the declaration of the array. We then
looked at some other complex collection types, such as list and dictionary. Both of these
collection items allow us to increase the collection size during execution but differ in the
way they access data. A dictionary saves the data in KeyValuePair and enforces the
uniqueness of the keys that are present in the collection type.

Then, we looked at queues and stack collection types. As opposed to lists and dictionaries,
which allow random access to the data, stacks and queues allow us to access to data in a
particular order. Queues follow the FIFO model, while stacks follow the FILO model.

Serialization, Deserialization, and Collections Chapter 16

[373]

Questions
Which of the following statements are true?1.

During serialization, XmlSerialization automatically includesa.
private attributes in the generated XML class.
In XmlSerialization, the XmlIgnore tag can be used to exclude anyb.
attribute that we don't want to include in the generated XML class.
In binary serialization, private marked attributes are not serialized.c.
Using the ISerializable interface, we can select the attributes andd.
their tags that we want to be present in serialization.

Which of the following statements are true?2.
We can increase the size of an array collection type during programa.
execution.
Queues follow the LIFO model for accessing elements.b.
A dictionary saves data in KeyValuePair, ensuring the uniqueness ofc.
key-value pairs present in the collection item.
Both a list and dictionary allow random access to the data elements.d.

You are working with a large group of student objects. You need to remove all3.
duplicates and then group them by studentid. Which collections should we
use?

Lista.
Stackb.
Dictionaryc.
Queued.

Answers
b and d1.
c and d2.
c3.

17
Mock Test 1

We have a class called LogException. The class implements a1.
CaptureException method using the following code segment: public static
void CaptureException(Exception ex). Pick one of the following syntaxes
to make sure all exceptions in the class are captured and rethrow the original
exception, including the stack:

catch (Exception ex)a.
{
 LogException.CaptureException(ex);
 throw;
}

catch (Exception ex)b.
{
 LogException.CaptureException(ex);
 throw ex;
}

catchc.
{
 LogException(new Exception());
}

catchd.
{
 var ex = new Exception();
 throw ex;
}

Mock Test 1 Chapter 17

[375]

You are creating a class named Store, which should have a Store Type2.
member that meets the following requirements:

The member must be accessible publicly.
The member must only acquire a restricted set of values.
While setting the value, the member must ensure that it validates the
input set in the member.

In which form should you implement the score member?

public string storeType;a.
protected String StoreTypeb.
{
 get{}
 set{}
}

private enum StoreType { Department, Store, Warehouse}c.
public StoreType StoreTypeProperty
{
 get{}
 set{}
}

private enum StoreType { Department, Store, Warehouse}d.
private StoreType StoreTypeProperty
{
 get{}
 set{}
}

Mock Test 1 Chapter 17

[376]

Write an extension method for a string; it should have an IsEmail method . The3.
method should check whether the string is a valid email. Select the syntax and
map it to the places where it should be placed:

----------------------/*Line which needs to be filled*/
{
 ------------------/*Line which needs to be filled*/
 {
 Regex regex = new Regex(@"^([\w\.\-]+)@([\w\-
]+)((\.(\w){2,3})+)$");
 return regex.IsMatch(str);
 }
}

protected static class StringExtensionsa.
public static class StringExtensionsb.
public static bool IsEmail(this String str)c.
public static bool IsEmail(String str)d.
public class StringExtensionse.

You need to write an application in which we ensure that the garbage collector4.
does not release an object's resources until the process completes. Which of the
following syntaxes would you use?

WaitForFullGCComplete()a.
RemoveMemoryPressure()b.
SuppressFinalize()c.
collect()d.

For a list collection, someone has written the following code:5.

static void Main(string[] args)
{
 List<string> states = new List<string>()
 {
 "Delhi", "Haryana", "Assam", "Punjab", "Madhya Pradesh"
 };
}

private bool GetMatchingStates(List<string> states, string
stateName)
{
 var findState = states.Exists(delegate(
 string stateNameToSearch)
 {

Mock Test 1 Chapter 17

[377]

 return states.Equals(stateNameToSearch);
 });
 return findState;
}

Which of the following code segments is the correct representation of the
corresponding Lambda expression?

var findState = states.First(x => x == stateName);a.
var findState = states.Where(x => x == stateName);b.
var findState = states.Exists(x =>c.
x.Equals(stateName));

var findState = states.Where(x => x.Equals(stateName));d.

Which of the following collection objects would fulfill the following6.
requirements?

It must internally store a key and value pair for each item.
It must allow us to iterate over the collection in order of the key.
It allows us to access the objects using the key.

The collection objects are as follows:

Dictionarya.
Stackb.
Listc.
SortedListd.

You are creating an application that has a Student class. The application must7.
have a Save method that should satisfy the following:

It must be strongly typed.
The method must only accept types inherited from the Animal class
that use a constructor that accepts no parameters.

Mock Test 1 Chapter 17

[378]

The options are as follows:

public static void Save(Student target)a.
{
}

public static void Save<T>(T target) where T : Studentb.
, new()
{
}

public static void Save<T>(T target) where T : new(),c.
Student
{
}

public static void Save<T>(T target) where T : Studentd.
{
}

We are writing an application that is receives a JSON input from another8.
application in the following format:

{
 "StudentFirstName" : "James",
 "StudentLastName" : "Donohoe",
 "StudentScores" : [45, 80, 68]
}

We have written the following code in our application to process the input. What
would be the correct syntax in the ConvertFromJSON method to ensure that we
convert the input to its equivalent student format?

public class Student
{
 public string StudentFirstName {get; set;}
 public string StudentLastName {get; set;}
 public int[] StudentScores {get; set;}
}

public static Student ConvertFromJSON(string json)
{
 var ser = new JavaScriptSerializer();
 ----------------/*Insert a line here*/
}

Mock Test 1 Chapter 17

[379]

The options are as follows:

Return ser.Desenalize (json, typeof(Student));a.
Return ser.ConvertToType<Student>(json);b.
Return ser.Deserialize<Student>(json);c.
Return ser.ConvertToType (json, typeof (Student));d.

You have an array of integers with studentId values in them. Which code logic9.
would you use to do the following?

Only select the unique studentID
Remove a particular studentID from the array
Sort the result in descending order into another array

Your options are as follows:

int[] filteredStudentIDs =a.
studentIDs.Distinct().Where(value => value !=
studentIDToRemove).OrderByDescending(x => x).ToArray();

int[] filteredStudentIDs = studentIDs.Where(value =>b.
value != studentIDToRemove).OrderBy(x => x).ToArray();

int[] filteredStudentIDs = studentIDs.Where(value =>c.
value != studentIDToRemove).OrderByDescending(x =>
x).ToArray();

int[] filteredStudentIDs =d.
studentIDs.Distinct().OrderByDescending(x =>
x).ToArray();

Identify the missing line in the following line of code:10.

private static IEnumerable<Country> ReadCountriesFromDB(string
sqlConnectionString)
{
 List countries = new List<Country>();
 SqlConnection conn = new SqlConnection();
 using (sqlConnectionString)
 {
 SqlCommand sqlCmd = new SqlCommand("Select name, continent
 from Counties", sqlConnectionString);
 conn.Open();
 using (SqlDataReader reader = sqlCmd.ExecuteReader())
 {
 // Insert the Line Here

Mock Test 1 Chapter 17

[380]

 {
 Country con = new Country();
 con.CountryName = (String)reader["name"];
 con.ContinentName = (String)reader["continent"];
 counties.Add(con);
 }
 }
 }
 return countries;
}

while (reader.Read())a.
while (reader.NextResult())b.
while (reader.Being())c.
while (reader.Exists())d.

Write the following StudentCollection class in such a way that you can11.
process each object in the collection using a foreach loop:

public class StudentCollection //Insert Code Here
{
 private Student[] students;
 public StudentCollection(Student[] student)
 {
 students = new Student[student.Length];

 for (int i=0; i< student.Length; i++)
 {
 students[i] = student[i];
 }
 }
 //Insert Code Here
 {
 //Insert Code Here
 }
}

: IComparablea.
: IEnumerableb.
: IDisposablec.
public void Dispose()d.
return students.GetEnumerator();e.
return obj == null ? 1: students.Length;f.
public IEnumerator GetEnumerator()g.

Mock Test 1 Chapter 17

[381]

Which of the following lines of code would you use if you are writing code to12.
open a file in line with the following conditions?

No changes should be made to the file.
The application should throw an error if the file does not exist.
No other processes should be allowed to update this file while the
operation is in progress.
var fs = File.Open(Filename, FileMode.OpenOrCreate,a.
FileAccess.Read, FileShare.ReadWrite);

var fs = File.Open(Filename, FileMode.Open,b.
FileAccess.Read, FileShare.ReadWrite);

var fs = File.Open(Filename, FileMode.Open,c.
FileAccess.Read, FileShare.Read);

var fs = File.Open(Filename, FileMode.Open,d.
FileAccess.ReadWrite, FileShare.Read);

Which of the following lines of code would you use while converting a float to an13.
int? You need to ensure that the conversion will not throw the Float
floatPercentage; exception:

int roundPercentage = (int)floatPercentage;a.
int roundPercentage = (int)(double)floatPercentage;b.
int roundPercentage = floatPercentage;c.
int roundPercentage = (int)(float)floatPercentage;d.

Which of the following lines of code would you use while converting a float to an14.
int? You need to ensure that the conversion will not throw the Float
floatPercentage; exception:

int roundPercentage = (int)floatPercentage;a.
int roundPercentage = (int)(double)floatPercentage;b.
int roundPercentage = floatPercentage;c.
int roundPercentage = (int)(float)floatPercentage;d.

We are creating a Student class with a StudentType attribute. We need to15.
ensure that the StudentType property can only be accessed within the
Student class or by a class inheriting from the the Student class. Which of the
following implementations would you use?

public class Studenta.
{
 protected string StudentType
 {
 get;

Mock Test 1 Chapter 17

[382]

 set;
 }
}

public class Studentb.
{
 internal string StudentType
 {
 get;
 set;
 }
}

public class Studentc.
{
 private string StudentType
 {
 get;
 set;
 }
}

public class Studentd.
{
 public string StudentType
 {
 get;
 set;
 }
}

We are writing an application in which we have declared a Car class that has two16.
attributes, CarCategory and CarName. In the execution, we need to convert the
class to its JSON string representation. Refer to the following code snippet:

public enum CarCategory
{
 Luxury,
 Sports,
 Family,
 CountryDrive
}

[DataContract]
public class Car
{
 [DataMember]

Mock Test 1 Chapter 17

[383]

 public string CarName { get; set; }
 [DataMember]
 public enum CarCategory { get; set; }
}

void ShareCareDetails()
{
 var car = new Car { CarName = "Mazda", CarCategory =
CarCategory.Family };
 var serializedCar = /// Insert the code here
}

Which of the following lines of code would you use to get the correct structure for
the JSON representation?

new DataContractSerializer(typeof(Car))a.
new XmlSerializer(typeof(Car))b.
new NetDataContractSerializer()c.
new DataContractJsonSerializer(typeof(Car))d.

We are writing an application for a bank in which we use the following code to17.
find out the interest amount for a specified number of months, and the initial
amount deposited in the bank:

1 private static decimal CalculateBankAccountInterest(decimal
initialAmount, int numberOfMonths)
2 {
3 decimal interestAmount;
4 decimal interest;
5 if(numberOfMonths > 0 && numberOfMonths < 6 &&
initialAmount < 5000)
6 {
7 interest = 0.05m;
8 }
9 else if(numberOfMonths > 6 && initialAmount > 5000)
10 {
11 interest = 0.065m;
12 }
13 else
14 {
15 interest = 0.06m;
16 }
17
18 interestAmount = interest * initialAmount * numberOfMonths
/ 12;
19 return interestAmount;

Mock Test 1 Chapter 17

[384]

20 }

We've learned that the application is calculating incorrect interest amounts if the
number of months is 6. If the number of months is 6, the interest rate should be
6.2%. Which of the lines of code would you change?

Replace line 7 with interest = 0.062ma.
Replace line 11 with interest = 0.06mb.
Replace line 4 with decimal interest = 0.062mc.
Replace line 15 with interest = 0.062md.

We are writing an application in which we are making asynchronous calls to18.
three different services, as described in the following example:

public async Task ExecuteMultipleRequestsInParallel()
{
 HttpClient client = new HttpClient();
 Task task1 = client.GetStringAsync("ServiceUrlA");
 Task task2 = client.GetStringAsync("ServiceUrlB");
 Task task3 = client.GetStringAsync("ServiceUrlC");
 // Insert the call here
}

Which of the following lines would you insert if you need to wait for the results
from all three preceding services before control can be transferred back to the
calling function?

await Task.Yield();a.
await Task.WhenAll(task1, task2, task3);b.
await Task.WaitForCompletion(task1, task2, task3);c.
await Task.WaitAll();d.

We are writing an application in which we are executing multiple operations,19.
such as assigning, modifying, and replacing on string variables. Which of the
following keywords would you use to make sure the operations consume as little
memory as possible?

String.Concata.
+ operatorb.
StringBuilderc.
String.Addd.

Mock Test 1 Chapter 17

[385]

We are writing an application in which we are maintaining students scores in a20.
list, as shown in the following code block. We need to write a statement to filter
out scores greater that 75. Which of the statements would you use?

List<int> scores = new List<int>()
{
 90,
 55,
 80,
 65
};

var filteredScores = scores.Skip(75);a.
var filteredScores = scores.Where(i => i > 75);b.
var filteredScores = scores.Take(75);c.
var filteredScores = from i in scoresd.
groupby i into tempList
where tempList.Key > 75
select i;

18
Mock Test 2

You need to write an application in which you create a class that establishes a1.
connection with SQL Server and reads records in a certain table. We need to
ensure the following in the class:

The class should automatically release all the connections after the
operation is complete.
The class should support iteration.

Which of the following interfaces would you implement in the class?

IEnumeratora.
IEquatableb.
IComparablec.
IDisposabled.

If you need to write a function that could be called with a varying number of2.
parameters, what would you use?

Interfacea.
Method overridingb.
Method overloadingc.
Lamda expressionsd.

Mock Test 2 Chapter 18

[387]

You are writing an application in which you need to reverse a string. Which of3.
the following code snippets would you use?

char[] characters = str.ToCharArray();a.
for (int start = 0, end = str.Length - 1; start < end;
start++, end--)
{
 characters[end] = str[start];
 characters[start] = str[end];
}
string reversedstring = new string(characters);
Console.WriteLine(reversedstring);

char[] characters = str.ToCharArray();b.
for (int start = 0, end = str.Length - 1; start < end;
start++, end--)
{
 characters[start] = str[end];
 characters[end] = str[start];
}
string reversedstring = new string(characters);
Console.WriteLine(reversedstring);

char[] characters = str.ToCharArray();c.
for (int start = 0, end = str.Length; start < end;
start++, end--)
{
 characters[start] = str[end];
 characters[end] = str[start];
}
string reversedstring = new string(characters);
Console.WriteLine(reversedstring);

char[] characters = str.ToCharArray();d.
for (int start = 0, end = str.Length; start < end;
++start, end--)
{
 characters[start] = str[end];
 characters[end] = str[start];
}
string reversedstring = new string(characters);
Console.WriteLine(reversedstring);

Mock Test 2 Chapter 18

[388]

Which of the following features of Visual Studio would you use if you needed to4.
compare the memory usage of different builds of the application?

IntelliSensea.
Use the CPU usage from the performance profilerb.
Use the memory usage from the performance profilerc.
Use UI analysis from the performance profilerd.

Which of the following regex expressions would you use to ensure that the input5.
being validated is a non-negative decimal number?

^(?!\D+$)\+?\d*?(?:\.\d*)?$a.
^(?:[1-9]\d*|0)?(?:\.\d+)?$b.
^\d+(\.\d\d)?$c.
^(-)?\d+(\.\d\d)?$d.

We are developing an application in which we are using an assembly called X. If6.
we need to debug the code in the assembly, which of the following should we
do?

For the application, in Project Build Properties, set the Allow unsafea.
code property.
For the application, in the Debug pane, in Debugging, set Enableb.
native code and Continue.
For the application, in the Debug pane, in Debugging, uncheckc.
Enable Just My Code.
For the application, in Project Debug Properties, select the Startd.
external program radio button and select assembly X.

We are creating an application with a Student class. We also have a variable7.
called students declared in the application. Which of the following statements
would you use to check whether the students variable is of a List of objects of
type Student?

if(students.GetType() is List<Student>[])a.
if(students.GetType() is List<Student>)b.
if(students is List<Student>[])c.
if(students is List<Student>)d.

Mock Test 2 Chapter 18

[389]

Which of the following code segments will not result in any loss of data?8.
public void AddDeposit(float deposit)a.
{
 AddToActBalance(Convert.ToDouble(deposit));
}
public void AddToActBalance(Double deposit)
{
}

public void AddDeposit(float deposit)b.
{
 AddToActBalance(Convert.ToDecimal(deposit));
}
public void AddToActBalance(Decimal deposit)
{
}

public void AddDeposit(float deposit)c.
{
 AddToActBalance(Convert.ToInt32(deposit));
}
public void AddToActBalance(int deposit)
{
}

public void AddDeposit(float deposit)d.
{
 AddToActBalance((Decimal)(deposit));
}
public void AddToActBalance(Decimal deposit)
{
}

We are writing an application in which we need to write some text to a file. The9.
code syntax for this is as follows:

public async void PerformFileWriteOperation()
{
 string path = @"InputFile.txt";
 string text = "Text to read\r\n"
 await PerformFileUpdateAsync(path, text);
}
private async Task PerformFileUpdateAsync(string path, string
textToUpdate)
{
 byte[] encodedBits = Encoding.Unicode.GetBytes(textToUpdate);
 using(FileStream stream = new FileStream(

Mock Test 2 Chapter 18

[390]

 path, FileMode.Append, FileAccess.Write, FileShare.None,
bufferSize: 4096, useAsync: true))
 {
 /// Insert the code here
 }
}

Which of the following lines would you insert in the preceding code to ensure the
execution is not stopped until the file operation is in progress?

async stream.Write(encodedBits, 0, encodedBits.Length);a.
await stream.Write(encodedBits,0, encodedBits.Length);b.
async stream.WriteAsync(encodedBits,0,c.
encodedBits.Length);

await stream.WriteAsync(encodedBits,0,d.
encodedBits.Length);

We are writing an application in which we have written the following code:10.

public class Car
{
 public Car()
 {
 Console.WriteLine("Inside Car");
 }
 public void Accelerate()
 {
 Console.WriteLine("Inside Acceleration of Car");
 }
 }
 public class Ferrari : Car
 {
 public Ferrari()
 {
 Console.WriteLine("Inside Ferrari");
 }
 public void Accelerate()
 {
 Console.WriteLine("Inside Acceleration of Ferrari");
 }
 }

class Program
{
 static void Main(string[] args)
 {

Mock Test 2 Chapter 18

[391]

 Car b = new Ferrari();
 b.Accelerate();
 }
}

What would be the output of the program?

Compile-time errora.
Runtime errorb.
Inside Acceleration of Ferraric.
Inside Acceleration of Card.

We have an application in which we have written the following logic in a while11.
loop:

int i = 1;
while(i < 10)
{
 Console.WriteLine(i);
 ++i;
}

What would you do to convert it into the equivalent of a for loop?

for (int i = 0; i < 10 ; i++)a.
{
 Console.WriteLine(i);
}

for (int i = 1; i < 10 ; i++)b.
{
 Console.WriteLine(i);
}

for (int i = 1; i < 10 ; ++i)c.
{
 Console.WriteLine(i);
}

for (int i = 1; i <= 10 ; i++)d.
{
 Console.WriteLine(i);
}

Mock Test 2 Chapter 18

[392]

What would be the output of the following program?12.

try
{
 int[] input = new int[5] { 0, 1, 2, 3, 4 };
 for (int i = 1; i <= 5; i++)
 {
 Console.Write(input[i]);
 }
}
catch (System.IndexOutOfRangeException e)
{
 System.Console.WriteLine("An error has occured in collection
operation");
 throw;
}
catch (System.NullReferenceException e)
{
 System.Console.WriteLine("An error has occured in null
reference operation");
 throw;
}
catch (Exception e)
{
 System.Console.WriteLine("Error logged for the application");
}

01234a.
1234b.
An error has occurred in collection operation

1234c.
An error has occurred in collection operation
Error logged for the application

1234d.
An error has occurred in collection operation
An error has occurred in null reference operation
Error logged for the application

Delegates can be instantiated by:13.
Anonymous methodsa.
Lambda expressionsb.
Named methodsc.
All of the aboved.

Mock Test 2 Chapter 18

[393]

What action needs to be performed to move a thread to the run state when14.
suspended?

Resumea.
Interruptb.
Abortc.
Suspendedd.

What would be the output of the following program?15.

public class DisposeImplementation : IDisposable
{
 private bool isDisposed = false;
 public DisposeImplementation()
 {
 Console.WriteLine("Creating object of
DisposeImplementation");
 }
 ~DisposeImplementation()
 {
 if(!isDisposed)
 {
 Console.WriteLine("Inside the finalizer of class
DisposeImplementation");
 this.Dispose();
 }
 }
 public void Dispose()
 {
 isDisposed = true;
 Console.WriteLine("Inside the dispose of class
DisposeImplementation");
 }
 }

DisposeImplementation d = new DisposeImplementation();
d.Dispose();
d = null;
GC.Collect();
Console.ReadLine();

Mock Test 2 Chapter 18

[394]

Creating object of DisposeImplementationa.
Inside the dispose of class DisposeImplementation
Inside the finalizer of class DisposeImplementation

Creating object of DisposeImplementationb.
Inside the dispose of class DisposeImplementation

Runtime error in the applicationc.
Creating object of DisposeImplementationd.
Inside the finalizer of class DisposeImplementation
Inside the dispose of class DisposeImplementation

Look at the following program:16.

static int CalculateResult(int parameterA, int parameterB, int
parameterC, int parameterD = 0)
{
 int result = ((parameterA + parameterB) / (parameterC -
parameterD));
 return result;
}

What would be the output when it is called using the following syntax?

CalculateResult(parameterA: 20, 15, 5)

-7a.
1b.
7c.
Run time errord.

Which of these can be used to authenticate user input?17.
Symmetric algorithma.
Asymmetric algorithmb.
Hash valuesc.
Digital signaturesd.

Mock Test 2 Chapter 18

[395]

We are working with a large group of student objects. You need to use a data17.
structure that allows access to elements in any order and also allows duplicate
values without needing to group them under a particular key. What would you
choose?

Lista.
Stackb.
Dictionaryc.
Queued.

Your application is running multiple worker threads. How do you make sure18.
your application waits for all threads to complete their execution?

Thread.Sleep()a.
Thread.WaitAll()b.
Thread.Join()c.
Noned.

In an application, we are writing a method in a class that should be accessible to19.
classes in the same class and in classes that are present in the same assembly that
inherit from the class. What do you need?

Private protecteda.
Protected internalb.
Protectedc.
Internald.

19
Mock Test 3

In your application, you have implemented the LogException(string1.
message) method to log exceptions. When an exception is thrown from your
application, you want to log and rethrow the original exception. How do you
achieve this?

catch(Exception ex){LogException(ex.Message); throw;}a.

catch(Exception ex){LogException(ex.Message); throwb.
ex;}

catch{LogException(ex.Message); throw new Exception();}c.

catch{LogException(ex.Message); rethrow;}d.

You have created an application where you have implemented custom exception2.
types and have also implemented multiple log methods, as follows:

public class CustomException1 : System.Exception{}
public class CustomException2 : CustomException1 {}
public class CustomException3 : CustomException1{}

void Log(Exception ex){}
void Log(CustomException2 ex) {}
void Log(CustomException3 ex) {}

Mock Test 3 Chapter 19

[397]

You have a method that can throw one of the preceding exceptions. You need to
make sure that, when the exception is caught, a log exception message by the log
method accepts the exception; when CustomException2 is caught, a log message
by the log method accepts CustomException2; and the same for
CustomException3. How do you want to achieve this? Please specify the order
of catch statements:

catch(CustomException1 ex){...}a.
catch(CustomExceotion2 ex){...}
catch(CustomException3 ex){...}

catch(Exception ex){...}b.
catch(CustomExceotion2 ex){...}
catch(CustomException3 ex){...}

catch(Exception ex){...}c.
catch(CustomExceotion1 ex){...}

catch(CustomException3 ex){...}d.
catch(CustomExceotion2 ex){...}
catch(Exception ex){...}

Your application is running multiple tasks using a task factory. However, a3.
customer has requested you to run a specific task when its parent task throws an
exception. How do you achieve this?

task.when()a.
task.whenany()b.
task.continuewhenany()c.
None of the aboved.

Your application is running multiple worker threads. How do you make sure4.
that your application waits for all the threads to complete their execution?

Thread.Sleep()a.
Thread.WiatALL()b.
Thread.Join()c.
None of the aboved.

Secret key encryption is also known as asymmetric encryption.5.
Truea.
Falseb.

Mock Test 3 Chapter 19

[398]

In public-key encryption, anyone with the public key can process the message.6.
Truea.
Falseb.

When using RSACryptoServiceProvider in your sample application, how7.
would you get your public and private keys?

RSACryptoServiceProvider rsa = newa.
RSACryptoServiceProvider();
string publicKey = rsa.ToXmlString(false);
string pricateKey = rsa.ToXmlString(true);

RSACryptoServiceProvider rsa = newb.
RSACryptoServiceProvider();
string publicKey = rsa.ToXmlString(true);
string pricateKey = rsa.ToXmlString(false);

RSACryptoServiceProvider rsa = newc.
RSACryptoServiceProvider();
string publicKey = rsa.ToXmlString(public);
string pricateKey = rsa.ToXmlString(private);

RSACryptoServiceProvider rsa = newd.
RSACryptoServiceProvider();
string publicKey = rsa.ToXmlString("public");
string pricateKey = rsa.ToXmlString("private");

What is the best way to authenticate a sender?8.
Encrypt your message.a.
Sign your message.b.
Use digital signatures.c.
All of the above.d.

When you apply the hash algorithm on a string, what will the output be?9.
The string gets encrypted.a.
Each character gets hashed into a different binary string.b.
The string gets hashed as a whole.c.
None of the above.d.

Mock Test 3 Chapter 19

[399]

You are adding new features to an existing application for your customers. When10.
you deploy them, you get an assembly manifest mismatch error. What is the best
possible solution to resolve this issue?

Update all major and minor assembly versions of the current anda.
dependent assemblies, then rebuild and deploy.
Check all assembly versions of the current and dependent assembliesb.
and make sure the configurations or policies are updated to reflect the
change in assembly versions, then rebuild and deploy.
Update the machine.config file to ignore such errors.c.
Update web.config and set the custom error mode to off.d.

You create a release package and deploy your application into a production11.
environment. When users start using the application, they receive an error. You
are unable to reproduce it in any lower-level environments, so you decide to
debug your application in the production environment. However, the application
never stops at the breakpoint. Why is this?

You don't have local admin permissions on the system.a.
Visual Studio's debugging module is not loaded.b.
The release version doesn't allow us to debug.c.
All of the above.d.

You create an application and you want to monitor it while it is executing. So,12.
you decide to implement tracing. How do you trace your application so that you
can see your trace messages in the output window?

Use Console.WriteLine().a.
Use tracelistener to add the output window and useb.
trace.write.
Debug.WriteLine().c.
Output.WriteLine().d.

You are creating an application where you have an if statement and an else13.
statement. In the if statement, you have two conditions. You want both of these
conditions to be validated before executing the code block. How do you achieve
this?

Use the && operator.a.
Use the & operator.b.
Use the | operator.c.
User the || operator.d.

Mock Test 3 Chapter 19

[400]

How do you return a default value into a variable when your expression returns14.
a null value?

Use the ternary operator.a.
Use the binary operator.b.
Use the conditional OR.c.
Use the null coalescing operator.d.

You have multiple versions of the same method in your code. Your customer has15.
requested you to make sure that all dependent applications use a specific version
of the method. How do you make sure that no one invokes any other
methods which may cause other exceptions?

Change the access modifiers for all other methods.a.
Throw an exception from these methods.b.
Use the Obsolete attribute to let users know the correct method toc.
use.
All of the above.d.

You are creating a C# application where you need to output multiple lines with a16.
line break between them. How do you achieve this?

var sb = new StringBuilder();sb.AppendLine(Line1);a.
sb.AppendLine(Environment.NewLine);

var sb = new StringBuilder();foreach(string line inb.
strList){sb.AppendLine(Line1);
sb.AppendLine(Environment.NewLine); }

var sb = new StringBuilder();sb.Append(Line1);c.
sb.Append('\t');

All of the aboved.
How would you make sure a parent class method is not accessible in inherited17.
classes? Which access modifier would you use?

Privatea.
Internalb.
Protectedc.
Abstract d.

Specify the code to load an assembly at runtime:18.
Assembly.Load()a.
Assembly.Create("A1.dll");Assembly.Load();b.
Assembly.Load("a.dll");c.
Assembly.GetType().Load();d.

Mock Test 3 Chapter 19

[401]

When you create a C# console application, which files do you see in the solution19.
explorer?

Project, App.Config, Program.cs, Solution, Properties, anda.
References
App.Config, Program.csb.
Project, App.Config, Program.cs, Solution, Propertiesc.
App.Config, Program.cs, Propertiesd.

When you create a console application and change the static Main(string[]20.
args) to static main(string[] args), what will happen?

A compile-time error is raised.a.
A runtime error is raised.b.
Both a and b.c.
None of the above.d.

A class or a class member that is declared as internal can only be accessed by21.
classes in the same assembly but not by outside assemblies.

Truea.
Falseb.

Consider the following statements. Statement 1: A value type maintains the22.
address of the variable. Statement 2: Two reference type variables pointing at
address 1 reflect the updated value.

Both are true.a.
Statement 1 is true, statement 2 is false.b.
Statement 1 is false, statement 2 is true.c.
Both are false.d.

While defining an interface, it is good practice to have access modifiers for the23.
methods.

Truea.
Falseb.

How do you define an optional parameter?24.
void AddNumbers(int a=1, int b)a.
void AddNumbers(int a, int b optional)b.
void AddNumbers(int a, int b=4)c.
void Add numbers(int a, optional int b)d.

Mock Test 3 Chapter 19

[402]

What is the keyword that you use in a program function where you are using a25.
pointer declaration?

Sealeda.
Safeb.
Internal c.
Unsafed.

What syntax do we use to append text to a file?26.
File.CreateTexta.
FileInfo.Createb.
File.Createc.
File.AppendTextd.

Which collection type can be used to create a strongly typed, zero-based index to27.
process objects in a FIFO manner?

Queue<T>a.
 List<T>b.
 Arrayc.
 Dictionaryd.

You are creating an application that manages information. You define a save28.
method in the class and you want to ensure that only this class and any inherited
classes can invoke the method. You want to define the save method as a strongly
typed method. How do you achieve this?

public static void Save<T>(T target) where T : new(),a.
ParentClass {}

public static void Save<T>(T target) where T :b.
ParentClass,new() {}

public static void Save<T>(T target) where T :c.
ParentClass {}

public static void Save(ParentClass target) {}d.
You are developing an assembly that will be used by multiple applications. You29.
need to install it in GAC. Which actions would you perform to achieve this?

 Sign the assembly and use the Gacutil tool to install the assembly ina.
GAC.
 Version assembly and use the Regsvr32 tool to install the assembly inb.
GAC.
 Drag and drop to the Windows assembly folder.c.
 All of the above.d.

Mock Test 3 Chapter 19

[403]

When two parties need to communicate using the asymmetric algorithm, which30.
key do they need to share?

Private keya.
Public keyb.
Bothc.
None d.

Assessments

Chapter 17 – Mock Test 1
b1.
c2.
b in the first line , c in the second line3.
c4.
c5.
d6.
c7.
c8.
a9.
a10.
b, g, e11.
c12.
d13.
a14.
a15.
a16.
d17.
b18.
c19.
b20.

Assessments

[405]

Chapter 18 – Mock Test 2
a, d1.
c2.
b3.
c4.
a5.
d6.
b7.
a8.
d9.
c10.
b11.
c12.
d13.
a14.
b15.
c16.
b, d17.
a18.
b19.
a20.

Assessments

[406]

Chapter 19 – Mock Test 3
a1.
d2.
d3.
b4.
a5.
b6.
a7.
c8.
b9.
a10.
c11.
c12.
b13.
d14.
c15.
b16.
a17.
c18.
a19.
a20.
a21.
c22.
b23.
c24.
d25.
d26.
a27.
b28.
a29.
c30.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Hands-On Design Patterns with C# and .NET Core
Gaurav Aroraa, Jeffrey Chilberto

ISBN: 978-1-78913-364-6

Make your code more flexible by applying SOLID principles
Follow the test-driven development (TDD) approach in your .NET Core projects
Get to grips with efficient database migration, data persistence, and testing
techniques
Convert a console application to a web application using the right MVP
Write asynchronous, multithreaded, and parallel code
Implement MVVM and work with RxJS and AngularJS to deal with changes in
databases
Explore the features of microservices, serverless programming, and cloud
computing

https://www.packtpub.com/application-development/hands-design-patterns-c-and-net-core

Other Books You May Enjoy

[408]

Hands-On Network Programming with C# and .NET Core
Sean Burns

ISBN: 978-1-78934-076-1

Understand the breadth of C#'s network programming utility classes
Utilize network-layer architecture and organizational strategies
Implement various communication and transport protocols within C#
Discover hands-on examples of distributed application development
Gain hands-on experience with asynchronous socket programming and streams
Learn how C# and the .NET Core runtime interact with a hosting network
Understand a full suite of network programming tools and features

https://www.packtpub.com/application-development/hands-network-programming-c-and-net-core

Other Books You May Enjoy

[409]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

.

.NET Core applications 16

.NET Framework
 about 14, 15
 applications 16
 class library 17
 Common Language Runtime (CLR) 17, 18
 languages 16
 release versions 18, 19

A
Abort Requested state 128
abstract classes
 about 66, 67, 68
 properties 66
abstract method
 versus virtual method 69
abstraction 61
access modifiers
 about 30
 internal 30
 private 30
 private protected 30
 protected 30
 protected internal 30
 public 30
ADO.NET application 16
Advanced Encryption Standard (AES) 264
anonymous functions
 used, for initiating delegate 104
anonymous methods 100, 106, 107, 108
applications, .NET Framework
 .NET Core applications 16
 ADO.NET application 16
 ASP.NET application 16
 Language-Integrated Query (LINQ) 16

 Parallel FX 16
 Windows Communication Foundation 16
 Windows Forms applications 16
 Windows Presentation Foundation 16
array 359, 360, 361, 362
ASP.NET application 16
assemblies
 .NET Framework, targeting 281, 282, 283
 about 22, 278, 279
 assembly contents 279, 280
 assembly manifest 279, 280
 signing 283
 signing, with Visual Studio 284, 285, 286
 version number 287
 versioning 286
asymmetric encryption
 about 268, 270
 private key 268
 public key 268
asynchronous I/O operations
 about 317
 on file 318, 319
asynchronous programming
 about 153
 with async 153, 154
 with await 153, 154
attributes, by framework
 caller information attribute 236
 conditional attribute 235
 global attribute 234
 obsolete attribute 234, 235
attributes
 about 232
 custom attributes, creating 236, 237, 238
 metadata, retrieving 238
 using 232, 233, 234, 236
Average operator 335

[411]

await statement
 used, for parallel asynchronous calls 320

B
background threads 125, 126, 127
binary serialization 353, 354, 359
block ciphers 264
boxing 186, 188, 189
break statement 92
built-in delegates 111
business-defined integrity 246
ByteCode 14

C
C# application
 debugging 287, 288, 289, 290, 291, 292, 293,

294, 295, 296, 297
C#
 basic program, creating 25, 27
 boxing 188, 189
 data types 31
 data types, consuming 188
 features 11, 13
 input parameters 25
 interface 47, 48, 49, 50, 51
 Microsoft Visual Studio 19
 program, creating 22, 24, 25
 programming syntax 20, 21, 22
 return type 25
 type conversions 189
 unboxing 188, 189
 versus C 11
 versus C++ 11, 12, 14
C++, compilers
 Linux 14
 Windows 14
C++
 features 13
 versus C# 11, 12, 14
C, compilers
 Linux 14
 Windows 14
C
 features 11
 versus C# 11

caller information attribute 236
ChapterInfo attribute 238
cipher-text 262
class functions
 constructor 358
 GetObjectData 358
class library 17
class, components
 data attributes 20
 methods 20
class
 feature 40
 versus struct 34, 36, 38, 39, 40
classes 20
code block 89
collection, types
 array 359, 360, 361, 362
 dictionary 364, 366
 list 362, 363, 364
 queue 367, 368, 369, 370, 371
 stack 367, 368, 369, 370, 371
collection
 selecting 371, 372
 working with 359
Common Language Runtime (CLR) 14, 17, 18,

172, 174, 207, 240
Common Language Runtime (CLR), features
 exception handling 18
 memory management 17
compile-time polymorphism 72, 73
compiler-generated exceptions 167
condition section 95
conditional AND (&&) operator 85
conditional attribute 235
conditional operator
 about 85, 86
 conditional AND (&&) operator 85
 conditional OR (||) operator 85
conditional OR (||) operator 85
conditional/selection statements
 about 88
 break statement 92
 continue statement 93
 goto statement 92
 if...else statement 88, 89, 90

[412]

 switch..case..default statement 91
constructor 181, 182, 358
continue statement 93
converting 249, 250, 252, 253, 254
cryptography 263, 264, 265
Current property 97
custom attributes
 creating 236, 237, 238
 defining 236
custom exceptions 168, 169

D
dangling pointers 174
Data Encryption Standard (DES) 264
data integrity
 about 246, 248, 249
 scenarios 246
data parallelism, Task Parallel Library (TPL)
 Parallel class, using 145
 tasks, using 141, 143, 144, 145
data types
 consuming, in C# 188
 in C# 31
 reference type variable 34
 value type variable 32
data
 reading, from network 315
 synchronizing, in multithreading 134, 135, 138
dead objects 214
delegate
 about 101
 built-in delegates 111
 example 101
 initiating, anonymous functions used 104
 initiating, NamedMethod used 102, 104
 instantiating 102
 multicast delegates 111, 112
 syntax 101
 types 108, 109
deserialization 347
dictionary 364, 366
digital signatures 270, 272, 273
directories
 about 304, 305, 306
 creating 307

 DirectoryInfo class, used for looping through files
308

 existence, checking 306, 307
do...while statement 94
domain integrity 246
DriveInfo Class
 reference link 305
drives 304, 305

E
encapsulation
 about 57, 58
 banking application, code example 58, 59
 enforcing 195, 196
encryption 262
entity integrity 246
enum types 32, 33
equality operator
 about 83, 84
 expression 83
events
 handling 112, 113, 115
 raising 112, 113, 115
exception handling
 about 18, 163, 165, 166, 313, 314, 315
 in code 158
exceptions
 about 158
 properties 160
 using 158, 159, 160, 161, 163
explicit conversion
 about 191, 192, 193, 194, 195
 Convert class, using 192
 type cast operation, using 191

F
file I/O operations
 about 303
 directories 304, 305, 306
 drives 304, 305, 306
 exception handling 313, 314
 stream object 312
 System.IO helper classes, working with 303
file
 asynchronous I/O operations, performing on

[413]

318, 319
 copying, from one location to another 310
 deleting 310
 existence, checking 309
 moving, from one location to another 309
 working with 308
files
 deleting 311
FileStream Class
 reference link 319
finalization mechanism 217, 218, 219, 220, 222
Finalization Queue 219
for statement
 about 94, 95
 condition section 95
 example 96
 initializer section 95
 iteration section 95
foreach...in statement 96, 97
foreground threads 125, 126, 127
fReachable Queue 219
functionality, encapsulation
 code maintenance 58
 security 58

G
garbage collection, in .NET
 memory allocation 209
 memory deallocation 209
garbage collection, structure
 Finalization Queue 218
 fReachable queue 218
 Managed Heap 218
 Program Scope 218
garbage collection
 about 208, 209
 calling 215
 generations 211, 212, 213, 214
 managed heap 210, 211
 mark-compact algorithm 214, 215
generations 211, 212, 213, 214
generics types
 about 184, 185, 186, 187, 188
 issues 186
getfile I/O operations

 exception handling 315
GetObjectData 358
Global Assembly Cache (GAC) 31
global attribute 234
goto statement 92
GroupBy operator 335, 337

H
hash values 273, 275

I
IDisposable interface
 about 222, 223, 224, 225, 226
 using block 226, 227, 228
if...else statement 88, 89, 90
IL Code 14
implicit conversion
 about 190, 191
 conditions 190
inheritance
 about 40, 41, 44, 45, 46, 63
 abstract classes 66, 67, 68
 abstract method, versus virtual method 69
 disadvantages 42
 example 47
 feature 51
 method overriding 63, 66
 sealed classes 70
initializer section 95
input data
 validation, significance 245, 246
Integrated Development Environment (IDE) 19
interface
 about 40, 41
 example 47
 feature 51
 in C# 47, 48, 49, 50, 51
 versus inheritance 51
Intermediate Language (IL) 207
iteration section 95
iteration statement
 about 93
 do...while statement 94
 for statement 94, 95
 foreach...in statement 96, 97

[414]

 while statement 97

J
join operator 333
JSON 256, 257, 258, 259, 260
Just in Time (JIT) 14, 15

L
Lambda expressions 104, 105, 106
Lambda operator 104
language features, LINQ
 about 325
 anonymous type 330, 331
 extension methods 329
 implicitly typed variables 325, 326, 327
 Lambda expressions 328, 329
 object initialization syntax 327, 328
Language-Integrated Query (LINQ)
 about 16, 147, 323
 queries 323, 324
 reference link 147
 used, for working with XML 338, 339
 working 337, 338
LINQ query operators
 about 331
 Average operator 335
 GroupBy operator 335, 337
 join operator 333
 orderby operator 334
 Select operator 331, 332
 SelectMany operator 331, 332
list 362, 363, 364
logical AND (&) operator 85
logical operator
 about 85, 86
 logical AND (&) operator 85
 logical OR (|) 85
 logical XOR (^) operator 85
logical OR (|) operator 85
logical XOR (^) operator 85

M
managed code
 versus unmanaged code 207
managed heap 210, 211

mark-compact algorithm
 about 214, 215
 compacting phase 214
 mark phase 214
 relocating phase 214
memory management
 about 17
 memory, allocating 17
 memory, releasing 18
metadata
 retrieving 238
method overriding
 about 63, 66
 override keyword 63
 virtual method 63
Microsoft Visual Studio
 features 20
 for C# 19
 URL 20
MoveNext method 97
multicast delegates 111, 112
multicasting 111
multithreading
 about 139
 asynchronous programming, with async 153,

154

 asynchronous programming, with await 153, 154
 data, synchronizing 134, 135, 138
 Parallel Language-Integrated Query (PLINQ)

147

 parallel programming 139, 140
 Task Parallel Library (TPL) 140, 141

N
named parameters 182
NamedMethod
 used, for initiating delegate 102, 104
namespaces 17, 22
network
 data, reading from 315
null coalescing (??) operator 85
null operator
 about 85, 86
 null coalescing (??) operator 85
 ternary operator (?) 85

[415]

O
object-oriented programming
 about 55, 57
 categories 12
 disadvantages 55
obsolete attribute 234, 235
operand 80
operator
 about 80
 conditional operator 85, 86
 equality operator 83, 84
 logical operator 85, 86
 null operator 85, 86
 relational operator 82
 shift operator 83
 unary operator 80, 81, 82
optional parameters 183
orderby operator 334
override keyword 63

P
parallel asynchronous calls
 await statement, using 320
Parallel FX 16
Parallel Language-Integrated Query (PLINQ) 139,

147

parallel programming 139, 140
parameterized threads 124
parameterless constructor 181
parsing 249, 250, 252, 253, 254
pointer type
 about 31
 usage 173, 174, 175, 176
polymorphism
 about 71, 72
 compile-time polymorphism 72, 73
 runtime polymorphism 74, 76
 static polymorphism 72, 73
portable executable (PE) 280
public-key encryption (asymmetric encryption) 264

Q
queue
 about 367, 368, 369, 370, 371

 operations 367
 working 367
queues, finalization mechanism
 finalization queue 217
 fReachable queue 217

R
reference type 173
reference type variable
 about 34
 class 35
 dynamic 35
 interface 35
 object 35
 string 35
referential integrity 246
reflection
 about 171, 239, 240
 methods, invoking 240, 241
 overview 202, 203
 properties, using 240, 241
regular expressions 254, 255, 256
relational operator
 about 82
 expression 82
runtime polymorphism 74, 76

S
scalability 42
sealed classes 70
Select operator 331, 332
SelectMany operator 331, 332
serialization
 about 347
 binary serialization 353, 354, 359
 XmlSerializer, using 347, 348, 349, 351, 352,

353

shift operator
 about 83
 expression 83
Simple Object Access Protocol (SOAP) 347
simple types 32
stack
 about 367, 368, 369, 370, 371
 working 369

[416]

Start method 127
static member variables 179, 180
static methods 181
static polymorphism 72, 73
static variable 179
stream object
 about 312
 FileStream object 312, 313
StringBuilder 197
StringReader 197, 198
strings
 manipulating 196
 searching 199, 201, 202
StringWriter 197, 198
Strong Name tool (Sn.exe)
 reference link 286
struct types 34
struct
 feature 40
 versus class 34, 36, 38, 39, 40
switch..case..default statement 91
symmetric encryption
 about 265, 267, 268
 example 265
synchronization 124
synchronization primitives
 reference link 138
System.IO helper classes
 working with 303
System.IO.Stream 303

T
tags, classes
 XMLArray 351
 XMLArrayItem 351
 XmlElement 351
 XmlIgnore 351
Task Parallel Library (TPL), data parallelism
 Parallel class, using 147
Task Parallel Library (TPL)
 about 128, 140, 141
 data parallelism 141
Task-Based Asynchronous Pattern (TAP)
 about 154
 reference link 154

TaskContinuationOptions
 reference link 144
TaskFactory
 reference link 145
ternary operator (?) operator 85
thread context 119
thread pool
 about 128, 129, 130
 reference link 129
thread state 127, 128
thread-local storage (TLS) 131
thread-safe
 about 134
 reference link 138
Thread.Abort method
 using 128
threading process 120, 121
threads
 about 120, 121
 background threads 125, 126, 127
 foreground threads 125, 126, 127
 managing 121, 123
 parameterized threads 124
 properties 123, 124
 state 128
 storage 130, 131, 133, 134
 thread pool 128, 129, 130
 thread state 127
 Thread.Abort method, using 128
tracing 297, 298, 299, 300
TResult parameter 111
type conversions
 explicit conversion 191, 192, 193, 194, 195
 implicit conversion 190, 191
 in C# 189

U
unary operator
 about 80, 81, 82
 bitwise negation 80
 identity 80
 negation 80
 pre-decrement 80
 pre-increment 80
unboxing 186, 188, 189

unmanaged code
 versus managed code 207
unmanaged resources
 finalization mechanism 217, 218, 219, 220, 222
 managing 215, 216
unsafe code 173, 174, 175
 about 176
Unstarted state 127
user-defined integrity 246
using block 226, 227, 228

V
value type 172
value type variable
 about 32
 enum types 32, 33
 simple types 32
 struct types 34
variable type
 creating 172
 in C# 172
 pointer type 173
 reference type 173
 selecting 176, 177, 178, 179
 value type 172
virtual method 63
Visual Studio

 used, for signing assemblies 284, 285, 286

W
Wait/Join Sleep state 128
WebRequest 315, 316, 317
WebResponse 315, 316, 317
while statement 97
Windows Communication Foundation 16
Windows Forms applications 16
Windows Presentation Foundation 16
worker threads 120

X
XDeclaration
 XComments 339
XDocument class
 XDeclaration 339
 XElement 339
 XProcessingInstruction 339
XML
 about 256, 257, 258, 259, 260
 creating 342
 querying 339, 340, 341
 updating 342, 343
 working with, LINQ 338, 339
XmlSerializer
 using 347, 348, 349, 351, 352, 353

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Learning the Basics of C#
	Technical requirements
	Comparing C# with C and C++
	C# versus C
	C# versus C++

	.NET Framework
	Languages/applications
	The class library
	Common Language Runtime (CLR)

	.NET Framework release versions
	Visual Studio for C#
	Basic structure of C#
	Creating a basic program in C#
	Summary
	Questions
	Answers

	Chapter 2: Understanding Classes, Structures, and Interfaces
	Technical requirements
	Access modifiers
	Data types in C#
	Value type variables
	Simple types
	Enum types
	Struct types

	Reference type variables

	Structs versus classes
	Interfaces and inheritance
	Inheritance
	Interfaces in C#

	Summary
	Questions
	Answers

	Chapter 3: Understanding Object-Oriented Programming
	Technical requirements
	Understanding object-oriented programming
	Understanding encapsulation
	Code example

	Understanding abstraction
	Understanding inheritance
	Method overriding
	Abstract classes
	Abstract versus virtual methods
	Sealed classes

	Understanding polymorphism
	Static/compile-time polymorphism
	Runtime polymorphism

	Summary
	Questions
	Answers

	Chapter 4: Implementing Program Flow
	Technical requirements
	Understanding operators
	Unary operators
	Relational operators
	Equality operators
	Shift operators
	Logical, conditional, and null operators

	Understanding conditional/selection statements
	if...else
	switch..case..default
	break
	goto
	continue

	Iteration statements
	do...while
	for
	Initializer section
	Condition section
	Iteration section
	Examples of rare usage for statements

	foreach...in
	while

	Summary
	Questions
	Answers
	Further reading

	Chapter 5: Creating and Implementing Events and Callbacks
	Technical requirements
	Understanding delegates
	Instantiating a delegate
	Initiating delegates using NamedMethod
	Initiating a delegate using anonymous functions
	Lambda expressions
	Anonymous methods

	Variance in delegates
	Built-in delegates
	Multicast delegates

	Handling and raising events
	Summary
	Questions
	Answers
	Further reading

	Chapter 6: Managing and Implementing Multithreading
	Technical requirements
	Understanding threads and the threading process
	Managing threads
	Thread properties
	Parameterized threads
	Foreground and background threads
	Thread states
	Destroying threads
	Thread pools
	Thread storage

	Synchronizing data in multithreading
	Multithreading
	Parallel programming
	TPL
	Data parallelism
	Using tasks
	Using the Parallel class

	PLINQ
	Asynchronous programming with async and await

	Summary
	Questions
	Answers
	Further reading

	Chapter 7: Implementing Exception Handling
	Technical requirements
	Exceptions and handling exceptions in code
	Using exceptions
	Exception handling

	Compiler-generated exceptions
	Custom exceptions
	Summary
	Questions
	Answers
	Further reading

	Chapter 8: Creating and Using Types in C#
	Technical requirements
	Creating types
	Types in C#
	Unsafe code and the use of pointer types

	Choosing the type of variable
	Static variables
	Static member variables
	Static methods

	Constructors
	Named parameters
	Optional parameters
	Generics types

	Consuming data types in C#
	Boxing and unboxing
	Type conversions in C#
	Implicit conversion
	Explicit conversion

	Enforcing encapsulation
	Manipulating strings
	StringBuilder
	StringReader and StringWriter
	String searching

	Overview of reflection
	Summary
	Questions
	Answers

	Chapter 9: Managing the Object Life Cycle
	Technical requirements
	Managed code versus unmanaged code
	Garbage collection
	Managed heap
	Generations
	The mark-compact algorithm
	Calling garbage collection

	Managing unmanaged resources
	The finalization mechanism

	The IDisposable interface
	The using block

	Summary
	Questions
	Answers

	Chapter 10: Find, Execute, and Create Types at Runtime Using Reflection
	Technical requirements
	Attributes
	Using attributes
	Creating custom attributes
	Retrieving metadata

	Reflection
	Invoking methods and using properties

	Summary
	Questions
	Answers

	Chapter 11: Validating Application Input
	Technical requirements
	The importance of validating input data
	Data integrity
	Parsing and converting
	Regular expressions
	JSON and XML
	Summary
	Questions
	Answers

	Chapter 12: Performing Symmetric and Asymmetric Encryption
	Technical requirements
	Cryptography
	Symmetric encryption
	Asymmetric encryption
	Digital signatures
	Hash values
	Summary
	Questions
	Answers

	Chapter 13: Managing Assemblies and Debugging Applications
	Technical requirements
	Assemblies
	Assembly contents and manifest
	Target .NET Framework
	Signing assemblies
	Versioning assemblies
	Version number

	Debugging the C# application
	Tracing
	Summary
	Questions
	Answers

	Chapter 14: Performing I/O Operations
	Technical requirements
	File I/O operations
	Working with System.IO helper classes
	Drives and directories
	Checking whether the directory exists
	Creating a directory
	Looping through the files

	Working with files
	Checking whether a file exists
	Moving a file from one location to another
	Copying a file from one location to another
	Deleting a file

	Stream object
	FileStream

	Exception handling

	Reading data from a network
	WebRequest and WebResponse
	Asynchronous I/O operations
	Async operations on file
	Using the await statement for parallel asynchronous calls

	Summary
	Questions
	Answers

	Chapter 15: Using LINQ Queries
	Technical requirements
	Introducing LINQ
	Queries

	Understanding language features that make LINQ possible
	Implicitly typed variables
	Object initialization syntax
	Lambda expressions
	Extension methods
	Anonymous types

	Understanding LINQ query operators
	Select and SelectMany
	The join operator
	The orderby operator
	Average
	GroupBy

	Understanding LINQ behind the scenes
	Using LINQ to XML
	Querying XML
	Creating XML
	Updating XML

	Summary
	Questions
	Answers

	Chapter 16: Serialization, Deserialization, and Collections
	Technical requirements
	Serialization and deserialization
	XmlSerializer
	Binary serialization

	Working with collections
	Arrays
	Lists
	Dictionary
	Queues and stacks

	Choosing a collection
	Summary
	Questions
	Answers

	Chapter 17: Mock Test 1
	Chapter 18: Mock Test 2
	Chapter 19: Mock Test 3
	Assessments
	Chapter 17 – Mock Test 1
	Chapter 18 – Mock Test 2
	Chapter 19 – Mock Test 3

	Other Books You May Enjoy
	Index

