

Hands-On Software
Architecture with C# 8 and
.NET Core 3

Architecting software solutions using microservices, DevOps,
and design patterns for Azure Cloud

Gabriel Baptista
Francesco Abbruzzese

BIRMINGHAM - MUMBAI

Hands-On Software Architecture with C# 8
and .NET Core 3
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Kunal Chaudhari
Acquisition Editor: Alok Dhuri
Content Development Editor: Ruvika Rao
Senior Editor: Afshaan Khan
Technical Editor: Ketan Kamble
Copy Editor: Safis Editing
Project Coordinator: Francy Puthiry
Proofreader: Safis Editing
Indexer: Rekha Nair
Production Designer: Jyoti Chauhan

First published: November 2019

Production reference: 1291119

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78980-093-7

www.packt.com

http://www.packt.com

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the authors
Gabriel Baptista is a software architect who technically leads a team in the most diverse
projects for retail and industry, using a dozen varieties of Microsoft products. He has
become a specialist in Azure Platform-as-a-Service (PaaS) solutions since designing a
Software-as-a-Service (SaaS) platform in partnership with Microsoft. Besides all that, he is
also a college computing professor who has published many papers and teaches different
subjects related to software engineering, development, and architecture. He is also a
speaker on Channel 9, one of the most prestigious and active community websites for the
.NET stack. As well as that, he is a cofounder of a start-up for developing mobile
applications, where Scrum, design thinking, and DevOps philosophy are the keys to
delivering user needs.

To my incredible kids, Murilo and Heitor, and my dear wife, Denise, who have always
allowed me to move forward.

Francesco Abbruzzese is the author of the book MVC Controls Toolkit. He has also
contributed to the diffusion and evangelization of the Microsoft web stack since the first
version of ASP.NET MVC through tutorials, articles, and tools. He writes about .NET and
client-side technologies on his blog, Dot Net Programming, and in various online magazines.
His company, Mvcct Team, implements and offers web applications, AI software, SAS
products, tools, and services for web technologies associated with the Microsoft stack. He
has moved from AI systems, where he implemented one of the first decision support
systems for banks and financial institutions, to the video games arena, with top-10 titles
such as Puma Street Soccer.

To my beloved parents, to whom I owe everything.

About the reviewers
Efraim Kyriakidis has almost 20 years of experience in software development. He got his
diploma as an electrical and software engineer from Aristotle University of Thessaloniki in
Greece. He has used .NET since its beginnings with version 1.0. In his career, he has mainly
focused on Microsoft technologies. He is currently employed by Siemens AG in Germany
as a senior software engineer.

Fabio Claudio Ferracchiati is a senior consultant and a senior analyst/developer who uses
Microsoft technologies. He works for React Consulting. He is a Microsoft Certified Solution
Developer for .NET, Microsoft Certified Application Developer for .NET, and Microsoft
Certified Professional. He is also a prolific author and technical reviewer. Over the last 10
years, he's written articles for Italian and international magazines and has co-authored
more than 10 books on a variety of computer topics.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Section 1: Transforming Customer Needs in Real-World
Applications
Chapter 1: Understanding the Importance of Software Architecture 9

Technical requirements 10
What is software architecture? 10

Creating an Azure account 12
Software development process models 14

Reviewing traditional software development process models 14
Understanding the waterfall model principles 14
Analyzing the incremental model 15

Understanding agile software development process models 16
Getting into the Scrum model 17

Enabling aspects to be gathered to design high-quality software 18
Understanding the requirements gathering process 18

Practicing the elicitation of user needs 19
Analyzing requirements 20
Writing the specifications 21
Reviewing the specification 21

Using design thinking as a helpful tool 22
Understanding the principles of scalability, robustness, security, and
performance 23

Some cases where the requirements gathering process impacted
system results 24

Case 1 – my website is too slow to open that page! 24
Understanding caching 25
Applying asynchronous programming 25
Dealing with object allocation 25
Getting better database access 26

Case 2 – the user's needs are not properly implemented 27
Case 3 – the usability of the system does not meet user needs 28

Case study – detecting user needs 28
Book case study – introducing World Wild Travel Club 29
Book case study – understanding user needs and system requirements 30

Summary 32
Questions 32
Further reading 33

Chapter 2: Functional and Nonfunctional Requirements 34

Table of Contents

[ii]

Technical requirements 35
How does scalability interact with Azure and .NET Core? 35

Creating a scalable web app in Azure 36
Vertical scaling (Scale up) 39
Horizontal scaling (Scale out) 41

Creating a scalable web app with .NET Core 42
Performance issues that need to be considered when programming
in C# 46

String concatenation 47
Exceptions 48

Multithreading environments for better results – do's and don'ts 49
Usability – why inserting data takes too much time 52

Designing fast selection logic 53
Selecting from a huge amount of items 57

The fantastic world of interoperability with .NET Core 58
Creating a service in Linux 60

Book use case – understanding the main types of .NET Core
projects 61
Summary 63
Questions 63
Further reading 64

Chapter 3: Documenting Requirements with Azure DevOps 65
Technical requirements 65
Introducing Azure DevOps 65
Organizing your work using Azure DevOps 70

Azure DevOps repository 71
Package feeds 73
Test plans 75
Pipelines 76

Managing system requirements in Azure DevOps 77
Epics work items 78
Features work items 78
Product Backlog items/User Story work items 79

Book use case – presenting use cases in Azure DevOps 80
Summary 84
Questions 85
Further reading 85

Section 2: Architecting Software Solutions in a
Cloud-Based Environment
Chapter 4: Deciding the Best Cloud-Based Solution 88

Technical requirements 88
Different software deployment models 89

Table of Contents

[iii]

Infrastructure as a service and Azure opportunities 89
Security responsibility in IaaS 91

PaaS – a world of opportunities for developers 92
Web apps 93
Azure SQL Server 94
Azure Cognitive Services 96

SaaS – just sign in and get started! 100
Understanding what serverless means 100
Why are hybrid applications so useful in many cases? 101
Use case – a hybrid application 102

Book use case – which is the best cloud platform for this use case? 103
Summary 104
Questions 104
Further reading 105

Chapter 5: Applying a Microservice Architecture to Your Enterprise
Application 106

Technical requirements 107
What are microservices? 107

Microservices and the evolution of the concept of modules 109
Microservice design principles 110
Containers and Docker 114

When do microservices help? 116
Layered architectures and microservices 116
When is it worth considering microservice architectures? 119

How does .NET Core deal with microservices? 120
.NET Core communication facilities 121
Resilient task execution 123
Using generic hosts 125
Visual Studio support for Docker 129
Azure and Visual Studio support for microservice orchestration 134

Which tools are needed to manage microservices? 137
Defining your private Docker registry in Azure 137
Azure Service Fabric 139

Step 1: Basic information 140
Step 2: Cluster configuration 141
Step 3: Security configuration 143

Azure Kubernetes Service (AKS) 146
Use case – logging microservices 150

Ensuring message idempotency 154
The Interaction library 157
Implementing the receiving side of communication 159
Implementing service logic 162
Defining the microservice's host 168
Communicating with the service 169

Table of Contents

[iv]

Testing the application 171
Summary 171
Questions 172
Further reading 172

Chapter 6: Interacting with Data in C# - Entity Framework Core 174
Technical requirements 175
Understanding ORM basics 175
Configuring Entity Framework Core 178

Defining DB entities 179
Defining the mapped collections 182
Completing the mapping configuration 183

Entity Framework Core migrations 184
Understanding stored procedures and direct SQL commands 188

Querying and updating data with Entity Framework Core 189
Returning data to the presentation layer 192
Issuing direct SQL commands 193
Handling transactions 195

Deploying your data layer 195
Understanding Entity Framework Core advanced feature – global
filters 196
Summary 197
Questions 198
Further reading 198

Chapter 7: How to Choose Your Data Storage in the Cloud 199
Technical requirements 200
Understanding the different repositories for different purposes 200

Relational databases 201
NoSQL databases 203
Redis 204
Disk memory 206

Choosing between structured or NoSQL storage 206
Azure Cosmos DB – an opportunity to manage a multi-continental
database 208

Cosmos DB client 215
Cosmos DB Entity Framework Core provider 216

Use case – storing data 217
Implementing the destinations/packages database with Cosmos DB 218

Summary 223
Questions 223
Further reading 224

Chapter 8: Working with Azure Functions 225
Technical requirements 225

Table of Contents

[v]

Understanding the Azure Functions App 226
Consumption Plan 227
App Service Plan 227

Programming Azure Functions using C# 228
Listing Azure Functions templates 232

Maintaining Azure Functions 233
Use case – implementing Azure Functions to send emails 235

First Step – creating Azure Queue Storage 237
Summary 243
Questions 243
Further reading 244

Section 3: Applying Design Principles for Software
Delivered in the 21st Century
Chapter 9: Design Patterns and .NET Core Implementation 247

Technical requirements 247
Understanding design patterns and their purpose 248

Builder pattern 249
Factory pattern 251
Singleton pattern 252
Proxy pattern 255
Command pattern 257
Publisher/Subscriber pattern 259
Dependency Injection pattern 260

Understanding the available design patterns in .NET Core 262
Summary 263
Questions 263
Further reading 264

Chapter 10: Understanding the Different Domains in Software
Solutions 265

Technical requirements 266
What are software domains? 266
Understanding domain-driven design 269

Entities and value objects 273
Using SOLID principles to map your domains 277

Aggregates 279
The repository and Unit of Work patterns 280
DDD entities and Entity Framework Core 282
Command Query Responsibility Segregation (CQRS) pattern 283
Command handlers and domain events 286
Event sourcing 289

Use case – understanding the domains of the use case 290
Summary 293

Table of Contents

[vi]

Questions 294
Further reading 294

Chapter 11: Implementing Code Reusability in C# 8 295
Technical requirements 295
Understanding the principles of code reusability 296

What is not code reuse? 296
What is code reuse? 298
Inserting reusability into your development cycle 299

Using .NET Standard for code reuse 300
Creating a .NET Standard library 300

How does C# deal with code reuse? 302
Object-oriented analysis 302
Generics 304

Use case – reusing code as a fast track to deliver good and safe
software 305
Summary 306
Questions 307
Further reading 307

Chapter 12: Applying Service-Oriented Architectures with .NET Core 308
Technical requirements 309
Understanding the principles of the SOA approach 309

SOAP web services 313
REST web services 315

The OpenAPI standard 321
REST services authorization and authentication 321

How does .NET Core deal with SOA? 324
A short introduction to ASP.NET Core 326
Implementing REST services with ASP.NET Core 330
ASP.NET Core service authorization 334
ASP.NET Core support for OpenAPI 337
.Net Core HTTP clients 341

Use case – exposing WWTravelClub packages 344
Summary 350
Questions 350
Further reading 351

Chapter 13: Presenting ASP.NET Core MVC 352
Technical requirements 353
Understanding the presentation layers of web applications 353
Understanding the ASP.NET Core MVC structure 354

How ASP.NET Core pipeline works 354
Loading configuration data and using it with the options framework 358
Defining the ASP.NET Core MVC pipeline 363

Table of Contents

[vii]

Defining controllers and ViewModels 368
Understanding Razor Views 373

Learning Razor flow of control statements 374
Understanding Razor View properties 376
Using Razor tag helpers 377
Reusing view code 381

What is new in .NET Core 3.0 for ASP.NET Core? 385
Understanding the connection between ASP.NET Core MVC and
design principles 387

Advantages of the ASP.NET Core pipeline 388
Server-side and client-side validation 388
ASP.NET Core globalization 389
The MVC pattern 394

Use case – implementing a web app in ASP.NET Core MVC 395
Defining application specifications 395
Defining the application architecture 396
Defining the domain layer 399
Defining the data layer 402
Defining the application layer 407
Controllers and views 412

Summary 418
Questions 418
Further reading 419

Section 4: Programming Solutions for an
Unavoidable Future Evolution
Chapter 14: Best Practices in Coding C# 8 421

Technical requirements 421
The more complex your code is, the worse a programmer you are 422

Maintainability index 423
Cyclomatic complexity 423
Depth of inheritance 427
Class coupling 428
Lines of code 430

Using a version control system 430
Dealing with version control systems in teams 431

Writing safe code in C# 431
try-catch 431
try-finally and using 432
The IDisposable interface 434

.NET Core tips and tricks for coding 434
WWTravelClub – dos and don'ts in writing code 436
Summary 437
Questions 437

Table of Contents

[viii]

Further reading 437

Chapter 15: Testing Your Code with Unit Test Cases and TDD 439
Technical requirements 440
Understanding automated tests 440

Writing automated (unit and integration) tests 442
Writing acceptance and performance tests 444

Understanding test-driven development (TDD) 445
Defining C# test projects 448

Using the xUnit test framework 449
Advanced test preparation and tear-down scenarios 451
Mocking interfaces with Moq 453

Use case – automating unit tests in DevOps Azure 455
Summary 463
Questions 464
Further reading 464

Chapter 16: Using Tools to Write Better Code 465
Technical requirements 466
Identifying a well-written code 466
Understanding and applying tools that can evaluate C# code 468

Applying extension tools to analyze code 472
Using Microsoft Code Analysis 2019 472
Applying SonarLint for Visual Studio 2019 474
Getting Code Cracker for Visual Studio 2017 as a helper to write better code 475
Checking the final code after analysis 475

Use case – evaluating the C# code before publishing the
application 477
Summary 479
Questions 479
Further reading 480

Section 5: Delivering Software Continuously and at a
High Quality Level
Chapter 17: Deploying Your Application with Azure DevOps 483

Technical requirements 484
Understanding SaaS 484

Adapting your organization to a service scenario 484
Developing software in a service scenario 485
Technical implications of a service scenario 485
Adopting a SaaS solution 486

Preparing a solution for a service scenario 487
Use case – deploying our package-management application with
Azure Pipelines 490

Table of Contents

[ix]

Creating the Azure Web App and the Azure database 490
Configuring your Visual Studio solution 492
Configuring Azure Pipelines 493
Adding a manual approval for the release 496
Creating a release 498

Summary 500
Questions 501
Further reading 501

Chapter 18: Understanding DevOps Principles 502
Technical requirements 503
Describing DevOps 503
Understanding DevOps principles 504

Defining continuous integration 504
Understanding continuous delivery and multistage environment with Azure
DevOps 505
Defining continuous feedback and the related DevOps tools 508

Monitoring you software with Application Insights 509
Using the Test and Feedback tool to enable feedback 515

The WWTravelClub project approach 520
Summary 521
Questions 521
Further Reading 522

Chapter 19: Challenges of Applying CI Scenarios in DevOps 523
Technical requirements 524
Understanding CI 524
Understanding the risks and challenges when using CI 525

Disabling continuous production deployment 526
Incomplete features 527
Unstable solution for testing 530

Understanding the WWTravelClub project approach 534
Summary 534
Questions 535
Further reading 535

Chapter 20: Automation for Software Testing 536
Technical requirements 536
Understanding the purpose of functional tests 537
Using unit testing tools to automate functional tests in C# 539

Testing the staging application 540
Testing a controlled application 541

Use case – automating functional tests 543
Summary 547
Questions 547

Table of Contents

[x]

Further reading 547

Appendix A: Assessments 548
Chapter 1 548
Chapter 2 548
Chapter 3 549
Chapter 4 549
Chapter 5 550
Chapter 6 550
Chapter 7 551
Chapter 8 551
Chapter 9 552
Chapter 10 553
Chapter 11 553
Chapter 12 554
Chapter 13 554
Chapter 14 555
Chapter 15 555
Chapter 16 556
Chapter 17 556
Chapter 18 557
Chapter 19 557
Chapter 20 558

Other Books You May Enjoy 559

Index 562

Preface
This book covers the most common design patterns and frameworks involved in software
architecture. It discusses when and how to use each pattern by providing you with practical
real-world scenarios. This book also presents techniques and processes such as DevOps,
microservices, continuous integration, and cloud computing so that you can have a best-in-
class software solution developed and delivered for your customers.

This book will help you to understand the product that your customer wants from you. It
will guide you to deliver and solve the biggest problems you could face during
development. It also covers the do's and don'ts that you need to follow when you manage
your application in a cloud-based environment. You will learn about different architectural
approaches, such as layered architectures, service-oriented architecture, microservices, and
cloud architecture, and understand how to apply them to specific business requirements.
Finally, you will deploy code in remote environments or on the cloud using Azure.

All the concepts in this book will be explained with the help of real-world practical use
cases where design principles make the difference when creating safe and robust
applications. By the end of the book, you will be able to develop and deliver highly scalable
enterprise-ready applications that meet the end customers' business needs.

It is worth mentioning that this book will not only cover the best practices that a software
architect should follow for developing C# and .NET Core solutions, but it will also discuss
all the environments that we need to master in order to develop a software product
according to the latest trends.

Who this book is for
This book is for engineers and senior developers who are aspiring to become architects or
wish to build enterprise applications with the .NET stack. Experience with C# and .NET is
required.

What this book covers
Chapter 1, Understanding the Importance of Software Architecture, explains the basics of
software architecture. This chapter will give you the right mindset to face customer
requirements, and then select the right tools, patterns, and frameworks.

Preface

[2]

Chapter 2, Functional and Nonfunctional Requirements, guides you in the first stage of
application development, that is, collecting user requirements and accounting for all other
constraints and goals that the application must fulfill.

Chapter 3, Documenting Requirements with Azure DevOps, describes techniques for
documenting requirements, bugs, and other information about your applications. While
most of the concepts are general, the chapter focuses on the usage of Azure DevOps.

Chapter 4, Deciding the Best Cloud-Based Solution, gives you a wide overview of the tools
and resources available in the cloud, and in particular on Microsoft Azure. Here, you will
learn how to search for the right tools and resources and how to configure them to fulfill
your needs.

Chapter 5, Applying a Microservice Architecture to Your Enterprise Application, offers a broad
overview of microservices and Docker containers. Here, you will learn how the
microservices-based architecture takes advantage of all the opportunities offered by the
cloud and you will see how to use microservices to achieve flexibility, high throughput,
and reliability in the cloud. You will learn how to use containers and Docker to mix
different technologies in your architecture as well as make your software platform-
independent.

Chapter 6, Interacting with Data in C# - Entity Framework Core, explains in detail how your
application can interact with various storage engines with the help of Object-Relational
Mappings (ORMs) and Entity Framework Core 3.0.

Chapter 7, How to Choose Your Data Storage in the Cloud, describes the main storage engines
available in the cloud and, in particular, in Microsoft Azure. Here, you will learn how to
choose the best storage engines to achieve the read/write parallelism you need and how to
configure them.

Chapter 8, Working with Azure Functions, describes the serverless model of computation
and how to use it in the Azure cloud. Here, you will learn how to allocate cloud resources
just when they are needed to run some computation, thus paying only for the actual
computation time.

Chapter 9, Design Patterns and .NET Core Implementation, describes common software
patterns with .NET Core 3 examples. Here, you will learn the importance of patterns and
best practices for using them.

Chapter 10, Understanding the Different Domains in a Software Solution, describes the modern
domain-driven design software production methodology, how to use it to face complex
applications that require several knowledge domains, and how to use it to take advantage
of cloud- and microservices-based architectures.

Preface

[3]

Chapter 11, Implementing Code Reusability in C# 8, describes patterns and best practices to
maximize code reusability in your C# .NET Core applications.

Chapter 12, Applying Service-Oriented Architectures with .NET Core, describes service-
oriented architecture, which enables you to expose the functionalities of your applications
as endpoints on the web or on a private network so that users can interact with them
through various types of clients. Here, you will learn how to implement service-oriented
architecture endpoints with ASP.NET Core, and how to self-document them with existing
OpenAPI packages.

Chapter 13, Presenting ASP.NET Core MVC, describes in detail the ASP.NET Core
framework. Here, you will learn how to implement web applications based on the Model-
View-Controller (MVC) pattern and how to organize them according to the prescriptions of
domain-driven design, described in Chapter 10, Understanding the Different Domains in a
Software Solution.

Chapter 14, Best Practices in Coding C# 8, describes best practices to be followed when
developing .NET Core applications with C# 8.

Chapter 15, Testing Your Code with Unit Test Cases and TDD, describes how to test your
applications. Here, you will learn how to test .NET Core applications with xUnit, and see
how easily you can develop and maintain code that satisfies your specifications with the
help of test-driven design.

Chapter 16, Using Tools to Write Better Code, describe metrics that evaluate the quality of
your software and how to measure them with the help of all the tools included in Visual
Studio.

Chapter 17, Deploying Your Application with Azure DevOps, describes how to automate the
whole deployment process, from the creation of a new release in your source repository,
through various testing and approval steps, to the final deployment of the application in
the actual production environment. Here, you will learn how to use Azure Pipelines to
automate the whole deployment process.

Chapter 18, Understanding DevOps Principles, describes the basics of the DevOps software
development and maintenance methodology. Here, you will learn how to organize your
application's continuous integration/continuous delivery cycle.

Chapter 19, Challenges of Applying CI Scenarios in DevOps, complements the description of
DevOps with continuous integration scenarios.

Preface

[4]

Chapter 20, Automation for Software Testing, is dedicated to automatic acceptance tests – that
is, tests that verify automatically whether a version of a whole application conforms with
the agreed specifications. Here, you will learn how to simulate user operations with
automation tools and how to use these tools together with xUnit to write your acceptance
tests.

To get the most out of this book
Do not forget to have Visual Studio Community 2019 or higher installed.

Be sure that you understand C# .NET principles.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the Support tab.2.
Click on Code Downloads.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​Hands- ​On- ​Software- ​Architecture- ​with- ​CSharp- ​8. In case there's an
update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

http://www.packt.com
https://www.packtpub.com/support
http://www.packt.com
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[5]

Code in Action
You can see the code in action videos at http:/ ​/​bit. ​ly/​2Old2IG.

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ ​/​static. ​packt- ​cdn. ​com/​downloads/
9781789800937_​ColorImages. ​pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "They are copied in the final string just once, when you call sb.ToString() to
get the final result."

A block of code is set as follows:

[Fact]
public void Test1()
{
 var myInstanceToTest = new ClassToTest();
 Assert.Equal(5, myInstanceToTest.MethodToTest(1));
}

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"In the Solution Explorer, you have the option to Publish... by right-clicking."

Warnings or important notes appear like this.

Tips and tricks appear like this.

http://bit.ly/2Old2IG
http://bit.ly/2Old2IG
http://bit.ly/2Old2IG
http://bit.ly/2Old2IG
http://bit.ly/2Old2IG
http://bit.ly/2Old2IG
http://bit.ly/2Old2IG
http://bit.ly/2Old2IG
http://bit.ly/2Old2IG
https://static.packt-cdn.com/downloads/9781789800937_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789800937_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789800937_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789800937_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789800937_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789800937_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789800937_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789800937_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789800937_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789800937_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789800937_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789800937_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789800937_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789800937_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789800937_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789800937_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789800937_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789800937_ColorImages.pdf

Preface

[6]

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

https://www.packtpub.com/support/errata
http://authors.packtpub.com/
http://www.packt.com/

1
Section 1: Transforming

Customer Needs in Real-World
Applications

This section includes the first three chapters of the book. The idea is to make sure you
understand how to transform user requirements into the actual architectural needs that are
essential for project success, using the various architectural aspects and design
considerations involved in developing enterprise applications with C# and .NET Core.

In Chapter 1, Understanding the Importance of Software Architecture, we will discuss the
importance of software architecture and aspects related to .NET Core and C#. The chapter
will also discuss the importance of analyzing software requirements and designing for
principles such as scalability and robustness. No matter what software development cycle
you decide to have in your project, analyzing requirements will help you adhere to the goal
of the project. Without this, the success of your project is at risk. This chapter will present
some use cases where a lack of understanding of the requirements gathered led to project
failures. Besides this, in each case, we will provide practical advice that could help to
protect your software from the scenarios presented.

Once you have understood the process of gathering system requirements, in Chapter
2, Functional and Nonfunctional Requirements, we will prompt you to think about the impacts
that the requirements have on the architectural design. Scalability, performance,
multithreading, interoperability, and other subjects will be discussed, both their theory and
their practice.

Section 1: Transforming Customer Needs in Real-World Applications Chapter 1

[8]

To finish the first section, in Chapter 3, Documenting Requirements with Azure DevOps, we
will present Azure DevOps, which is the tool currently being provided by Microsoft to
enable an application development life cycle that follows the principles of the DevOps
philosophy. There are a variety of good features that can help you document and organize
your software, and the purpose of the chapter is to present an overview of those features.

This section includes the following chapters:

Chapter 1, Understanding the Importance of Software Architecture
Chapter 2, Functional and Nonfunctional Requirements
Chapter 3, Documenting Requirements with Azure DevOps

1
Understanding the Importance

of Software Architecture
Nowadays, software architecture is one of the most discussed topics in the software
industry, and for sure, its importance will grow more in the future. The more we build
complex and fantastic solutions, the more we need great software architectures to maintain
them. That is the reason why you decided to read this book. That is the reason why we
decided to write it.

For sure, it is not an easy task to write about this important topic, which offers so many
alternative techniques and solutions. The main objective of this book is not just to build an
exhaustive and never-ending list of available techniques and solutions, but also to show
how various families of techniques are related and how they impact, in practice, the
construction of a maintainable and sustainable solution.

The attention on how to create actual efficacious enterprise solutions increases as
users always need more new features in their applications. Moreover, the need to
deliver frequent application versions (due to a quickly changing market) increases the
obligation to have sophisticated software architecture and development techniques.

The following topics will be covered in this chapter:

The history of software development and the definition of software architecture
Software processes currently used by success enterprises
The process for gathering requirements

Understanding the Importance of Software Architecture Chapter 1

[10]

By the end of this chapter, you will be able to understand exactly what the mission of a
software architecture is. You will also learn what Azure is and how to create your account
in the platform. Besides considering this is an introductory chapter, you will get an
overview of software processes, models, and other techniques that will enable you to
conduct your team.

Technical requirements
This chapter will guide you on how to create an account in Azure, hence no code will be
provided.

What is software architecture?
If you are reading this book today, you should thank the computer scientists who decided
to consider software development as an engineering area. This happened in the last century
and, more specifically, at the end of the sixties, when they proposed that the way we
develop software is quite similar to the way we construct buildings. That is why we have
the name software architecture. Like in the design of a building, the main goal of a
software architect is to ensure that the software application is implemented well. But a
good implementation requires the design of a great solution. Hence, in a professional
development project, you have to do the following things:

Define the customer requirements for the solution.
Design a great solution to meet those requirements.
Implement the designed solution.
Validate the solution with your customer.
Deliver the solution in the working environment.

Software engineering defines these activities as the software development life cycle. All of
the theoretical software development process models (waterfall, spiral, incremental, agile,
and so on) are somehow related to this cycle. No matter which model you use, if you do not
work with the essential tasks presented earlier during your project, you will not deliver
acceptable software as a solution.

Understanding the Importance of Software Architecture Chapter 1

[11]

The main point about designing great solutions is totally connected to the purpose of this
book. You have to understand that great real-world solutions bring with them a few
fundamental constraints:

The solution needs to meet user requirements.
The solution needs to be delivered on time.
The solution needs to adhere to the project budget.
The solution needs to deliver good quality.
The solution needs to guarantee a safe and efficacious future evolution.

Great solutions need to be sustainable and you have to understand that there is no
sustainable software without great software architecture. Nowadays, great software
architectures depend on both tools and environments to perfectly fit users' requirements.
To explain this, this book will use some great tools provided by Microsoft:

Azure: This is the cloud platform from Microsoft, where you will find all of the
components it provides to build advanced software architecture solutions.
Azure DevOps: This is the application life cycle management environment
where you can build solutions using the latest approach for developing software,
that is, DevOps.
C#: This is one of the most used programming languages in the world. C# runs
on small devices up to huge servers in different operating systems and
environments.
.NET Core: This is an open source development platform that is maintained by
the Microsoft and .NET community on GitHub.
ASP.NET Core: This is an open source multi-platform environment developed
using .NET Core to build web applications and is hosted in the cloud or even on
standard servers (on-premises).

Being a software architect means understanding the aforementioned and a lot of other
technologies. This book will guide you on a journey where you, as a software architect
working in a team, will provide optimal solutions with the tools listed. Let's start this
journey by creating your Azure account.

Understanding the Importance of Software Architecture Chapter 1

[12]

Creating an Azure account
Microsoft Azure is one of the best cloud solutions currently available on the market. It is
important to know that, inside Azure, we will find a bunch of components that can help us
in the architecture of twenty-first century solutions.

This subsection will guide you in creating an Azure account. If you already have one, you
can skip this part:

You can access the Azure portal using this URL: https:/ ​/​azure. ​microsoft. ​com.1.
Here, you will find a website, as follows. The translation to your native language
will probably be set automatically:

Once you have accessed this portal, it is possible to sign up. If you have never2.
done this before, it is possible to sign up for free, so you will be able to use some
Azure features without spending any money.

https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com
https://azure.microsoft.com

Understanding the Importance of Software Architecture Chapter 1

[13]

Once you finish the form, you will be able to access the Azure panel. As you can3.
see in the following screenshot, the panel shows a dashboard that you can
customize, and a menu on the left, where you can set up the Azure components
you are going to use in your solution. Throughout this book, we will come back
to this screenshot to set up the components that create great opportunities for
modern software architecture:

Understanding the Importance of Software Architecture Chapter 1

[14]

Once you have your Azure account created, you are ready to understand how a software
architect can conduct a team to develop software taking advantage of all of the
opportunities offered by Azure. However, it is important to keep in mind that a software
architect needs to understand something more than specific technologies because,
nowadays, this role is played by people who are expected to define how the software will
be delivered. A software architect not only architects the base of software, but they also
determine how the whole software development and deployment process is conducted.

Software development process models
As a software architect, it is really important for you to understand some of the common
development processes that are currently used in most enterprises. A software
development process defines how people in a team produce and deliver software. In
general, this process is connected with a software engineering theory, called software
development process models. From the time software development was defined as an
engineering process, many process models for developing software have been proposed.
Let's take a look at the ones that are currently common.

Reviewing traditional software development
process models
Some of the models introduced in the software engineering theory are already considered
traditional and quite obsolete. This book does not aim to cover all of them, but here, we will
give a brief explanation of the ones that are still used in some companies.

Understanding the waterfall model principles
This topic may appear strange in a software architecture book of 2019, but yes, you may
still find companies where the most traditional software process model still remains the
guideline for software development. This process executes all fundamental tasks in
sequence. Any software development project consists of the following steps:

Requirements specification
Software design
Programming
Tests and delivery

Understanding the Importance of Software Architecture Chapter 1

[15]

Let's look at a diagrammatic representation of this:

The waterfall development cycle (https://en.wikipedia.org/wiki/Waterfall_model)

Often, the use of waterfall models causes problems related to delays in the delivery of a
functional version of the software and user dissatisfaction due to the poor quality of the
final product.

Analyzing the incremental model
Incremental development is an approach that tries to overcome the biggest problem of the
waterfall model: the user can test the solution only at the end of the project. The idea of this
model is to give the users opportunities to interact with the solution as early as possible so
that they can give useful feedback, which will help during the development of the software.

Understanding the Importance of Software Architecture Chapter 1

[16]

However, also in this model, the limited number of increments and the
project's bureaucracy can causes problems in the interaction between developers and
customers:

The incremental development cycle (https://en.wikipedia.org/wiki/Incremental_build_model)

The incremental model was introduced as an alternative to the waterfall approach and it
mitigated the problems related to the lack of communication with the customer. For big
projects, fewer increments is still a problem. Besides, at the time the incremental approach
was used on a large scale, mainly at the end of the last century, many problems related to
project bureaucracy were reported, due to the large amount of documentation required.
This scenario caused the rise of a very important movement in the software development
industry—agile.

Understanding agile software development
process models
At the beginning of this century, developing software was considered one of the most
chaotic activities in engineering. The number of software projects that failed was incredibly
high and this fact proved the need for a different approach to deal with the flexibility
required by software development projects. So, in 2001, the Agile Manifesto was introduced
to the world and, from that time, various agile process models were proposed. Some of
them have survived up till now and are still very common.

Understanding the Importance of Software Architecture Chapter 1

[17]

Please check out this link for the Agile Manifesto: https:/ ​/
agilemanifesto. ​org/ ​.

One of the biggest differences between agile models and traditional models is the way
developers interact with the customer. The message that all agile models transmit is that
the faster you deliver software to the user, the better. This idea is sometimes confusing for
software developers who understand this as—let's try coding and that's all folks! However,
there is an important observation of the Agile Manifesto that many people do not read
when they start working with agile:

"That is, while there is value in the items on the right, we value the items on the left
more."

– Agile Manifesto, 2001

A software architect always needs to remember this. Agile processes do not mean a lack of
discipline. Moreover, when you use the agile process, you understand that there is no way
to have good software developed without discipline. On the other hand, as a software
architect, you need to understand that soft means flexibility. A software project that does
not deal with flexibility tends to get ruined over time.

Getting into the Scrum model
Scrum is an agile model for the management of software development projects. The model
comes from lean principles and is definitely one of the widely used approaches for
developing software nowadays.

Please check this link for more information about the Scrum
framework: https:/ ​/​docplayer. ​net/​78853722- ​Scrum- ​insights- ​for-
practitioners. ​html.

The basis of Scrum is that you have a flexible backlog of user needs that needs to be
discussed in each agile cycle, called a Sprint. The Sprint Goal is determined by the Scrum
Team, composed by the Product Owner, the Scrum Master, and the Development
Team. The Product Owner is responsible for prioritizing what will be delivered in that
sprint. During the sprint, this person will help the team to develop the required features.
The person who leads the team in the Scrum process is called Scrum Master. All of the
meetings and processes are conducted by this person.

https://agilemanifesto.org/
https://agilemanifesto.org/
https://agilemanifesto.org/
https://agilemanifesto.org/
https://agilemanifesto.org/
https://agilemanifesto.org/
https://agilemanifesto.org/
https://docplayer.net/78853722-Scrum-insights-for-practitioners.html
https://docplayer.net/78853722-Scrum-insights-for-practitioners.html
https://docplayer.net/78853722-Scrum-insights-for-practitioners.html
https://docplayer.net/78853722-Scrum-insights-for-practitioners.html
https://docplayer.net/78853722-Scrum-insights-for-practitioners.html
https://docplayer.net/78853722-Scrum-insights-for-practitioners.html
https://docplayer.net/78853722-Scrum-insights-for-practitioners.html
https://docplayer.net/78853722-Scrum-insights-for-practitioners.html
https://docplayer.net/78853722-Scrum-insights-for-practitioners.html
https://docplayer.net/78853722-Scrum-insights-for-practitioners.html
https://docplayer.net/78853722-Scrum-insights-for-practitioners.html
https://docplayer.net/78853722-Scrum-insights-for-practitioners.html
https://docplayer.net/78853722-Scrum-insights-for-practitioners.html
https://docplayer.net/78853722-Scrum-insights-for-practitioners.html
https://docplayer.net/78853722-Scrum-insights-for-practitioners.html
https://docplayer.net/78853722-Scrum-insights-for-practitioners.html
https://docplayer.net/78853722-Scrum-insights-for-practitioners.html
https://docplayer.net/78853722-Scrum-insights-for-practitioners.html

Understanding the Importance of Software Architecture Chapter 1

[18]

It is important to notice that the Scrum process does not discuss how the software needs to
be implemented and which activities will be done. So, again, you have to remember the
software development basis, discussed at the beginning of this chapter. That means Scrum
needs to be implemented together with a process model. DevOps is one of the approaches
that may help you with the use of a software development process model together with
Scrum. We will discuss this later in this book, in Chapter 18, Understanding DevOps
Principles.

Enabling aspects to be gathered to design
high-quality software
Fantastic! You just started a software development project. Now, it is time to use all of your
knowledge to deliver the best software you can. Probably, your next question is—how do I
start? Well, as a software architect, you are going to be the one to answer it. And be sure
your answer is going to evolve in each software project you lead:

Defining a software development process is obviously the first thing to do. This1.
is generally done during the project planning process.
Besides, another very important thing to do is to gather the software2.
requirements. No matter which software development process you decide to use,
collecting real user needs is a part of a very difficult and continuous job. Of
course, there are techniques to help you with this. And be sure that gathering
requirements will help you to detect important aspects of software architecture.

These two activities are considered by most experts in software development as the key to
having success at the end of the development project journey. As a software architect, you
need to enable them to happen so that you will not have problems while guiding your
team.

Understanding the requirements gathering
process
There are different ways to represent the requirements. The most traditional approach
consists of you having to write a perfect specification before the beginning of the analysis.
Agile methods suggest that you need to write stories as soon as you are ready to start a
development cycle.

Understanding the Importance of Software Architecture Chapter 1

[19]

Remember: you do not write requirements for the user, you write them
for you and your team. The user just needs the job done!

The truth is that no matter the approach you decide to adopt in your projects, you will have
to follow some steps to gather requirements. This is what we call requirements
engineering.

Please check out this image of the requirements engineering process for more
information: https:/ ​/​www. ​slideshare. ​net/ ​MohammedRomi/ ​ian-
sommerville- ​software- ​engineering- ​9th- ​edition- ​ch- ​4.

During this process, you need to be sure that the solution is feasible. In some cases, the
feasibility analysis is a part of the project planning process too, and by the time you start
the requirements elicitation, you will have the feasibility report already done. So, let's check
the other parts of this process, which will give you a lot of important information for the
software architecture.

Practicing the elicitation of user needs
There are a lot of ways to detect what exactly the user needs for a specific scenario. In
general, this can be done using techniques that will help you to understand what we call
user requirements. Here, you have a list of common techniques:

The power of imagination: If you are an expert in the area where you are
providing solutions, you may use your own imagination to find new user
requirements. Brainstorming can be conducted together so that a group of
experts can define user needs.
Questionnaires: This tool is useful for detecting common and important
requirements such as the number and kind of users, peak system usage, and the
commonly-used operating system (OS) and web browser.
Interviews: Interviewing the users helps you as an architect to detect user
requirements that perhaps questionnaires and your imagination will not cover.
Observation: There is no better way to understand the daily routine of a user
than being with them for a day.

As soon as you apply one or more of these techniques, you will have great and valuable
information, that is, the user's needs. At that moment, you will be able to analyze them and
detect the user and system requirements.

https://www.slideshare.net/MohammedRomi/ian-sommerville-software-engineering-9th-edition-ch-4
https://www.slideshare.net/MohammedRomi/ian-sommerville-software-engineering-9th-edition-ch-4
https://www.slideshare.net/MohammedRomi/ian-sommerville-software-engineering-9th-edition-ch-4
https://www.slideshare.net/MohammedRomi/ian-sommerville-software-engineering-9th-edition-ch-4
https://www.slideshare.net/MohammedRomi/ian-sommerville-software-engineering-9th-edition-ch-4
https://www.slideshare.net/MohammedRomi/ian-sommerville-software-engineering-9th-edition-ch-4
https://www.slideshare.net/MohammedRomi/ian-sommerville-software-engineering-9th-edition-ch-4
https://www.slideshare.net/MohammedRomi/ian-sommerville-software-engineering-9th-edition-ch-4
https://www.slideshare.net/MohammedRomi/ian-sommerville-software-engineering-9th-edition-ch-4
https://www.slideshare.net/MohammedRomi/ian-sommerville-software-engineering-9th-edition-ch-4
https://www.slideshare.net/MohammedRomi/ian-sommerville-software-engineering-9th-edition-ch-4
https://www.slideshare.net/MohammedRomi/ian-sommerville-software-engineering-9th-edition-ch-4
https://www.slideshare.net/MohammedRomi/ian-sommerville-software-engineering-9th-edition-ch-4
https://www.slideshare.net/MohammedRomi/ian-sommerville-software-engineering-9th-edition-ch-4
https://www.slideshare.net/MohammedRomi/ian-sommerville-software-engineering-9th-edition-ch-4
https://www.slideshare.net/MohammedRomi/ian-sommerville-software-engineering-9th-edition-ch-4
https://www.slideshare.net/MohammedRomi/ian-sommerville-software-engineering-9th-edition-ch-4
https://www.slideshare.net/MohammedRomi/ian-sommerville-software-engineering-9th-edition-ch-4
https://www.slideshare.net/MohammedRomi/ian-sommerville-software-engineering-9th-edition-ch-4
https://www.slideshare.net/MohammedRomi/ian-sommerville-software-engineering-9th-edition-ch-4
https://www.slideshare.net/MohammedRomi/ian-sommerville-software-engineering-9th-edition-ch-4
https://www.slideshare.net/MohammedRomi/ian-sommerville-software-engineering-9th-edition-ch-4
https://www.slideshare.net/MohammedRomi/ian-sommerville-software-engineering-9th-edition-ch-4
https://www.slideshare.net/MohammedRomi/ian-sommerville-software-engineering-9th-edition-ch-4
https://www.slideshare.net/MohammedRomi/ian-sommerville-software-engineering-9th-edition-ch-4
https://www.slideshare.net/MohammedRomi/ian-sommerville-software-engineering-9th-edition-ch-4

Understanding the Importance of Software Architecture Chapter 1

[20]

Remember: You can use these techniques in any situation where the real
need is to gather requirements, no matter if it is for the whole system or
for a single story.

Analyzing requirements
As soon as you detect user needs, it is time to begin the analysis of the requirements. At
that time, you can use techniques such as the following:

Prototyping: Prototypes are really good to clarify and to materialize the system
requirements. Today, we have many tools that can help you to mock interfaces.
A really nice open source tool is the Pencil Project. You will find further
information about it at https:/ ​/​pencil. ​evolus. ​vn/ ​.
Use cases: The Unified Modeling Language (UML) use case model is an option
if you need detailed documentation. The model is composed of a detailed
specification and a diagram. Argo UML is another open source tool that can help
you out with this:

While you are analyzing the requirements of the system, you will be able to clarify exactly
what the users' needs are. This is really helpful when you are not sure about the real
problem you will solve and is pretty much better than just starting to program the
system. It is time that you will invest in having better code in the near future.

https://pencil.evolus.vn/
https://pencil.evolus.vn/
https://pencil.evolus.vn/
https://pencil.evolus.vn/
https://pencil.evolus.vn/
https://pencil.evolus.vn/
https://pencil.evolus.vn/
https://pencil.evolus.vn/
https://pencil.evolus.vn/
https://pencil.evolus.vn/

Understanding the Importance of Software Architecture Chapter 1

[21]

Writing the specifications
After you finish the analysis, it is important to register it as a specification. This document
can be written using traditional requirements or user stories, which are commonly used in
agile projects.

Requirements specification represents the technical contract between the user and the team.
There are some basic rules that this document needs to follow:

All stakeholders need to understand exactly what is written in the technical
contract, even if they are not technicians.
The document needs to be clear.
You need to classify each requirement.
Use a simple feature to represent each requirement.
Ambiguity and controversy need to be avoided.

Besides, some information can help the team to understand the context of the project they
are going to work on. Here, you have some tips about it:

Write an introductory chapter to give a full idea of the solution.
Create a glossary to make understanding easier.
Describe the kind of user the solution will cover.
Write functional and non-functional requirements.
Attach documents that can help the user to understand rules.

If you decide to write user stories, a good tip to follow is to write short sentences
representing each moment in the system with each user, as follows:

As <user>, I want <feature>, so that <reason>

This approach will explain exactly the reason why that feature will be implemented.
Besides that, you will have a good tool to later analyze the stories that are more critical and
prioritize the success of the project.

Reviewing the specification
Once you have the specification written, it is time to confirm with the stakeholders whether
they agree with it. This can be conducted in a review meeting or can be done online using
collaboration tools.

Understanding the Importance of Software Architecture Chapter 1

[22]

This is when you present all of the prototypes, documents, and information you have
gathered. As soon as everybody agrees with the specification, you are ready to start
studying the best way to implement this part of your project.

Using design thinking as a helpful tool
During your career as a software architect, you will find many projects where your
customer will bring you a solution ready for development. This is quite complicated once you
consider that as the correct solution and, most of the time, there will be architectural and
functional mistakes that will cause problems in the solution in the future. There are some
cases where the problem is worse—when the customer does not know the best solution for
the problem. Design thinking can help us with this.

Design thinking is a process that allows you to collect data directly from the users,
focusing on achieving the best results to solve a problem. During this process, the team will
have the opportunity to discover all personas that will interact with the system. This will
have a wonderful impact on the solution since you can develop the software by focusing on
the user experience, which can have a fantastic impact on the results.

The process is based on the following steps:

Empathize: In this step, you have to execute field research to discover the user's
concerns. This is where you find out about the users of the system. The process is
good for making you understand why and for whom you are developing
this software.
Define: Once you have the users' concerns, it is time to define their needs to
solve them.
Ideate: The needs will provide an opportunity to brainstorm some possible
solutions.
Prototype: These solutions can be developed as prototypes to confirm whether
they are good ones.
Test: Testing the prototypes will help you to understand the prototype that is
most connected to the real needs of the users.

What you have to understand is that design thinking can be a fantastic option to discover
real requirements. As a software architect, you are committed to helping your team to use
the correct tools at the correct time.

Understanding the Importance of Software Architecture Chapter 1

[23]

Understanding the principles of scalability,
robustness, security, and performance
Detecting requirements is a task that will let you understand the software you are going to
develop. However, as a software architect, you don't have to only pay attention to the
functional requirements for that system. Understanding the non-functional requirements is
really important and one of the primordial activities for a software architect.

We are going to discuss this more in Chapter 2, Functional and Nonfunctional Requirements,
but at this point, it is good to know that the principles of scalability, robustness, security,
and performance need to be applied for the requirements gathering process. Let's take a
look at each concept:

Scalability: As a software developer, globalization gives you the opportunity to
have your solution running all over the world. This is fantastic, but you, as a
software architect, need to design a solution that provides that possibility.
Scalability is the possibility for an application to increase its processing power as
soon as it is necessary, due to the number of resources that are being consumed.
Robustness: No matter how scalable your application is, if it is not able to
guarantee a stable and always-on solution, you are not going to get any peace.
Robustness is really important for critical solutions, where you do not have the
opportunity for maintenance at any time, due to the kind of problem that the
application solves. In many industries, the software cannot stop and lots of
routines run when nobody is available (overnight, holidays, and so on).
Designing a robust solution will give you the freedom to live while your
software is running well.
Security: This is another really important area that needs to be discussed after
the requirements stage. Everybody is worried about security and laws dealing
with it are being proposed in different parts of the world. You, as a software
architect, have to understand that security needs to be provided by design. This
is the only way to cope with all of the needs that the security community is
discussing right now.
Performance: The process of understanding the system you are going to develop
will probably give you a good idea of what your efforts will need to be to get the
desired performance from the system. This topic needs to be discussed with the
user to identify most of the bottlenecks you will face during the development
stage.

It is worth mentioning that all these concepts are requirements for this new generation of
solutions that the world needs. What will differentiate good software for incredible
software surely is the amount of work done to meet the project requirements.

Understanding the Importance of Software Architecture Chapter 1

[24]

Some cases where the requirements
gathering process impacted system results
All of the information discussed up to this point in the chapter is useful if you want to
design software following the principles of good engineering. This discussion is not related
to developing by using traditional or agile methods but focuses on building software
professionally or as an amateur.

Besides, it is good to know about some cases where the lack of activities you read about
caused some trouble for the software project. The following cases intend to describe what
went wrong and how the preceding techniques could have helped the development team to
solve the problems. In most cases, simple action could guarantee better communication
between the team and the customer and this easy communication flow could transform a
big problem into a real solution.

Case 1 – my website is too slow to open that
page!
Performance is one of the biggest problems that you as a software architect will live
through during your career. The reason why this aspect of any software is so problematic is
that we do not have infinite computational resources to solve problems. Besides, the cost of
computation is still high, especially if you are talking about software with a high number of
simultaneous users.

You cannot solve performance problems by writing requirements. However, you won't end
up in trouble if you write them correctly. The idea here is that requirements have to present
the desired performance of a system. A simple sentence, describing this, can help the entire
team that works on the project:

Non-functional requirement: Performance – any web page of this software will respond in
at least 2 seconds.

The preceding sentence just makes everybody (users, testers, developers, architects,
managers, and so on) sure that any web page has a target to achieve. This is a good start,
but it is not enough. With this, a great environment to both develop and deploy your
application is important. This is where .NET Core can help you a lot. Especially if you are
talking about web apps, ASP.NET Core is considered one of the fastest options to deliver
solutions today.

Understanding the Importance of Software Architecture Chapter 1

[25]

If you talk about performance, you, as a software architect, should consider the use of the
techniques listed in the following sections. It is good to mention that ASP.NET Core will
help you to use them easily, together with some Platform as a Service (PaaS) solutions
delivered by Microsoft Azure.

Understanding caching
Caching is a great technique to avoid queries that can consume time and, in general, give
the same result. For instance, if you are fetching the available car models in a database, the
number of cars in the database can increase but they will not change. Once you have an
application that constantly accesses car models, a good practice is to cache that information.

It is important to understand that a cache is stored in the backend and that cache is shared
by the whole application (in-memory caching). A single point of attention here is when you
are working on a scalable solution, you can configure a distributed cache to solve it using the
Azure platform. In fact, ASP.NET Core provides both of them, so you can decide on the one
that bests fits your needs.

Applying asynchronous programming
When you develop ASP.NET Core applications, you need to keep in mind that this app
needs to be designed for simultaneous access by many users. Asynchronous programming
lets you do this simply, giving you the keywords async and await.

The basic concept behind these keywords is that async enables any method to run in a
different thread from the one that calls it. On the other hand, await lets you synchronize
the call of an asynchronous method without blocking the thread that is calling it. This easy-
to-develop pattern will make your application run without performance bottlenecks and
better responsiveness. This book will cover more about this subject in Chapter 2, Functional
and Nonfunctional Requirements.

Dealing with object allocation
One very good tip to avoid a lack of performance is to understand how the Garbage
Collector works. The Garbage Collector is the engine that will free memory automatically
when you finish using it. There are some very important aspects of this topic, due to the
complexity that the GC has.

Understanding the Importance of Software Architecture Chapter 1

[26]

Some types of objects are not collected by the GC. The list includes any object that interacts
with I/O, such as files and streaming. If you do not correctly use the C# syntax to create and
destroy this kind of object, you will have memory leaks, which will deteriorate your
application performance.

The incorrect way of working with I/O objects:

System.IO.StreamWriter file = new System.IO.StreamWriter(@"C:\sample.txt");
file.WriteLine("Just writing a simple line");

The correct way of working with I/O objects:

using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"C:\sample.txt"))
{
 file.WriteLine("Just writing a simple line");
}

Even though the preceding practice is mandatory for I/O objects, it is totally recommended
that you keep doing this in all disposable objects. This will help the GC and will keep your
application running with the right amount of memory.

Another important aspect that you need to know about is that the time spent by the GC to
collect objects that will interfere with the performance of your app. Because of this, avoid
allocating large objects. This can cause you trouble waiting for the GC to finish its task.

Getting better database access
One of the most common performance Achilles' heel is database access. The reason why
this is still a big problem is the lack of attention while writing queries or lambda
expressions to get information from the database. This book will cover Entity Framework
Core in Chapter 6, Interacting with Data in C# – Entity Framework Core, but it is important to
know what to choose, the correct data information to read from a database, and filtering
columns and lines is imperative for an application that wants to deliver performance.

The good thing is that best practices related to caching, asynchronous programming, and
object allocation fit completely in the environment of databases. It is only a matter of
choosing the correct pattern to get better-performance software.

Understanding the Importance of Software Architecture Chapter 1

[27]

Case 2 – the user's needs are not properly
implemented
The more technology is used in a wide variety of areas, the more difficult it is to deliver
exactly what the user needs. Maybe this sentence sounds weird to you, but you have to
understand that developers, in general, study to develop software, but they rarely study to
deliver the needs of a specific area. Of course, it is not easy to learn how to develop
software, but it is even more difficult to understand a need in a particular area. Software
development nowadays delivers software to all possible types of industries. The question
here is how can a developer, being a software architect or not, evolve enough to deliver software in
the area they are responsible for?

Gathering software requirements definitely will help you in this tough task. Moreover,
writing them will make you understand and organize the architecture of the system. There
are several ways to minimize the risks of implementing something different from what the
user really needs:

Prototyping the interface to achieve the understanding of the user interface faster
Designing the data flow to detect gaps between the system and the user
operation
Frequent meetings to be updated on the current needs and aligned to the
incremental deliveries

Again, as a software architect, you will have to define how the software will be
implemented. Most of the time, you are not going to be the one who programs it, but you
will always be the one responsible for this. For this reason, some techniques can be useful to
avoid the wrong implementation:

Requirements are reviewed with the developers to guarantee that they
understand what they need to develop
Code inspection to validate a predefined code standard
Meetings to eliminate impediments

Understanding the Importance of Software Architecture Chapter 1

[28]

Case 3 – the usability of the system does not
meet user needs
Usability is a key point for the success of a software project. The way the software is
presented and how it solves a problem can help the user to decide whether they want to
use it or not. As a software architect, you have to keep in mind that delivering software
with good usability is mandatory nowadays.

There are basic concepts of usability that this book does not intend to cover. But a good way
to meet the correct user needs when it comes to usability is by understanding who is going
to use the software. Design thinking can help you a lot with that, as was discussed earlier in
this chapter.

Understanding the user will help you to decide whether the software is going to run on a
web page, or a cell phone, or even in the background. This understanding is very important
to a software architect because the elements of a system will be better presented if
you correctly map who will use them.

On the other hand, if you do not care about that, you will just deliver software that works.
This can be good for a short time, but it will not exactly meet the real needs that made a
person ask you to architect software. You have to keep in mind the options and understand
that good software is designed to run on many platforms and devices.

You will be happy to know that C# is an incredible cross-platform option for that. So, you
can develop solutions to run your apps in Linux, Windows, Android, and iOS. You can run
your applications on big screens, tablets, cell phones, and even drones! You can embed
apps on boards for automation or in HoloLens for mixed reality. Software architects have to
be open-minded to design exactly what their users need.

Case study – detecting user needs
The case study of this book will take you on a journey of creating the software architecture
for a travel agency called World Wild Travel Club (WWTravelClub). The purpose of this
case study is to make you understand the theory explained in each chapter, plus to provide
the during the process of reading this book to develop an enterprise application with
Azure, Azure DevOps, C#, .NET Core, ASP.NET Core, and other technologies that will be
introduced in this book.

Understanding the Importance of Software Architecture Chapter 1

[29]

Book case study – introducing World Wild Travel
Club
World Wild Travel Club (WWTravelClub) is a travel agency that was created to change
the way people make decisions about their vacations and other trips around the world. To
do so, they are developing an online service where every detail of a trip experience will be
assisted by a club of experts specifically selected for each destination.

The concept of this platform is that you can be both a visitor and a destination expert at the
same time. The more you participate as an expert in a destination, the higher the points you
will score. These points can be exchanged for tickets that people buy online using the
platform.

The customer came with the following requirements for the platform. It is important to
know that, in general, customers do not bring the requirements ready for development.
That is why the requirements gathering process is so important:

Common user view:
Promotional packages on the home page
Search for packages
Details for each package:

Buy a package
Buy a package with a club of experts included:

Comment on your experience
Ask an expert
Evaluate an expert

Register as a common user
Destination expert view:

The same view as the common user view
Answer the questions asking for your destination expertise
Manage the points you scored answering questions:

Exchange points for tickets

Administrator view:
Manage packages
Manage common users
Manage destination experts

Understanding the Importance of Software Architecture Chapter 1

[30]

To finish this, it is important to note that WWTravelClub intends to have more than 100
Destination Experts per package and will offer around 1,000 different packages all over the
world.

Book case study – understanding user needs and
system requirements
To summarize the user needs of WWTravelClub, you can read the following user stories:

US_001: As a common user, I want to view promotional packages on the home
page, so that I can easily find my next vacation.
US_002: As a common user, I want to search for packages I cannot find on the
home page so that I can explore other trip opportunities.
US_003: As a common user, I want to see the details of a package, so that I can
decide which package to buy.
US_004: As a common user, I want to register myself, so that I can start buying
the package.
US_005: As a registered user, I want to buy a package, so that I can process the
payment.
US_006: As a registered user, I want to buy a package with a club of experts
included, so that I can have an exclusive trip experience.
US_007: As a registered user, I want to ask for an expert, so that I can get the best
of my trip.
US_008: As a registered user, I want to comment on my experience, so that I can
give feedback from my trip.
US_009: As a registered user, I want to evaluate an expert who helps me, so that I
can share with others how fantastic they were.
US_010: As a registered user, I want to register as a Destination Expert View, so
that I can help people who travel to my city.
US_011: As an expert user, I want to answer questions about my city, so that I
can score points to be exchanged in the future.
US_012: As an expert user, I want to exchange points for tickets, so that I can
travel around the world more.
US_013: As an administrator user, I want to manage packages, so that users can
have fantastic opportunities to travel.

Understanding the Importance of Software Architecture Chapter 1

[31]

US_014: As an administrator user, I want to manage registered users, so
that WWTravelClub can guarantee good service quality.
US_015: As an administrator user, I want to manage expert users, so that all of
the questions regarding our destinations are answered.
US_016: As an administrator user, I want to offer more than 1,000 packages
around the world, so that different countries can experience WWTravelClub
service.
US_017: As an administrator user, I want to have more than 1,000 users
simultaneously accessing the website, so that I can support all of the needs of my
users.
US_018: As a user, I want to access WWTravelClub in my native language, so
that I can easily understand the package offered.
US_019: As a user, I want to access WWTravelClub in the Chrome, Firefox, and
Edge web browsers, so that I can use the web browser of my preference.
US_020: As a user, I want to buy packages safely, so that only WWTravelClub
will have my credit card information.

Notice that while you start writing the stories, information related to non-functional
requirements such as security, environment, performance, and scalability can be included.

However, some system requirements may be omitted when you write user stories and need
to be included in the software specification. These requirements can be related to legal
aspects, hardware and software prerequisites, or even points of attention for the correct
system delivery. They need to be mapped and listed as well as user stories. The list
of WWTravelClub system requirements is presented in the following. Notice that
requirements are written in the future because the system does not exist yet:

SR_001: The system will use Microsoft Azure components to deliver the
scalability required.
SR_002: The system will respect General Data Protection Regulation
(GDPR) requirements.
SR_003: The system will run on the Windows, Linux, iOS, and Android
platforms.
SR_004: Any web page of this system will respond in at least 2 seconds.

Understanding the Importance of Software Architecture Chapter 1

[32]

Summary
In this chapter, you learned the purpose of a software architect in a software development
team. Also, this chapter covered the basics of software development process models and
the requirements gathering process. You also had the opportunity to learn about how to
create your Azure account, which will be used during the case study of this book, which
was presented to you in the previous section. Moreover, you even learned about functional
and non-functional requirements and how to create them using user stories. These
techniques will surely help you deliver a better software project.

In the next chapter, you will have the opportunity to understand how functional and non-
functional requirements are important for software architecture.

Questions
What is the expertise that a software architect needs to have?1.
How can Azure help a software architect?2.
How does a software architect decide the best software development3.
process model to use in a project?
How does a software architect contribute to gathering requirements?4.
What kind of requirements does a software architect need to check in a5.
requirement specification?
How does design thinking help a software architect in the process of gathering6.
requirements?
How do user stories help a software architect in the process of writing7.
requirements?
What are good techniques to develop very good performance software?8.
How does a software architect check whether a user requirement is correctly9.
implemented?

Understanding the Importance of Software Architecture Chapter 1

[33]

Further reading
Here, you have some books and links you may consider reading to gather more
information about this chapter:

https:/​/ ​www. ​packtpub. ​com/ ​virtualization- ​and- ​cloud/ ​hands- ​azure-
developers

https:/​/ ​azure. ​microsoft. ​com/ ​en-​us/ ​overview/ ​what- ​is-​azure/ ​

https:/​/ ​azure. ​microsoft. ​com/ ​en-​us/ ​services/ ​devops/ ​

https:/​/ ​docs. ​microsoft. ​com/ ​en-​us/ ​dotnet/ ​core/ ​about

https:/​/ ​docs. ​microsoft. ​com/ ​en-​us/ ​aspnet/ ​core/ ​

https:/​/ ​www. ​packtpub. ​com/ ​web- ​development/ ​hands- ​full- ​stack- ​web-
development- ​aspnet- ​core

https:/​/ ​agilemanifesto. ​org/ ​

https:/​/ ​www. ​amazon. ​com/ ​Software- ​Engineering- ​10th- ​Ian- ​Sommerville/ ​dp/
0133943038

https:/​/ ​www. ​amazon. ​com/ ​Software- ​Engineering- ​Practitioners- ​Roger-
Pressman/ ​dp/ ​0078022126/ ​

https:/​/ ​scrumguides. ​org/ ​

https:/​/ ​www. ​packtpub. ​com/ ​application- ​development/ ​professional-
scrummasters- ​handbook

https:/​/ ​docs. ​microsoft. ​com/ ​en-​us/ ​aspnet/ ​core/ ​performance/ ​performance-
best-​practices

https:/​/ ​www. ​microsoft. ​com/ ​en-​us/ ​hololens

https:/​/ ​en. ​wikipedia. ​org/ ​wiki/ ​Incremental_ ​build_ ​model

https:/​/ ​en. ​wikipedia. ​org/ ​wiki/ ​Waterfall_ ​model

https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://azure.microsoft.com/en-us/overview/what-is-azure/
https://azure.microsoft.com/en-us/overview/what-is-azure/
https://azure.microsoft.com/en-us/overview/what-is-azure/
https://azure.microsoft.com/en-us/overview/what-is-azure/
https://azure.microsoft.com/en-us/overview/what-is-azure/
https://azure.microsoft.com/en-us/overview/what-is-azure/
https://azure.microsoft.com/en-us/overview/what-is-azure/
https://azure.microsoft.com/en-us/overview/what-is-azure/
https://azure.microsoft.com/en-us/overview/what-is-azure/
https://azure.microsoft.com/en-us/overview/what-is-azure/
https://azure.microsoft.com/en-us/overview/what-is-azure/
https://azure.microsoft.com/en-us/overview/what-is-azure/
https://azure.microsoft.com/en-us/overview/what-is-azure/
https://azure.microsoft.com/en-us/overview/what-is-azure/
https://azure.microsoft.com/en-us/overview/what-is-azure/
https://azure.microsoft.com/en-us/overview/what-is-azure/
https://azure.microsoft.com/en-us/overview/what-is-azure/
https://azure.microsoft.com/en-us/overview/what-is-azure/
https://azure.microsoft.com/en-us/overview/what-is-azure/
https://azure.microsoft.com/en-us/overview/what-is-azure/
https://azure.microsoft.com/en-us/overview/what-is-azure/
https://azure.microsoft.com/en-us/overview/what-is-azure/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://docs.microsoft.com/en-us/dotnet/core/about
https://docs.microsoft.com/en-us/dotnet/core/about
https://docs.microsoft.com/en-us/dotnet/core/about
https://docs.microsoft.com/en-us/dotnet/core/about
https://docs.microsoft.com/en-us/dotnet/core/about
https://docs.microsoft.com/en-us/dotnet/core/about
https://docs.microsoft.com/en-us/dotnet/core/about
https://docs.microsoft.com/en-us/dotnet/core/about
https://docs.microsoft.com/en-us/dotnet/core/about
https://docs.microsoft.com/en-us/dotnet/core/about
https://docs.microsoft.com/en-us/dotnet/core/about
https://docs.microsoft.com/en-us/dotnet/core/about
https://docs.microsoft.com/en-us/dotnet/core/about
https://docs.microsoft.com/en-us/dotnet/core/about
https://docs.microsoft.com/en-us/dotnet/core/about
https://docs.microsoft.com/en-us/dotnet/core/about
https://docs.microsoft.com/en-us/dotnet/core/about
https://docs.microsoft.com/en-us/dotnet/core/about
https://docs.microsoft.com/en-us/dotnet/core/about
https://docs.microsoft.com/en-us/aspnet/core/
https://docs.microsoft.com/en-us/aspnet/core/
https://docs.microsoft.com/en-us/aspnet/core/
https://docs.microsoft.com/en-us/aspnet/core/
https://docs.microsoft.com/en-us/aspnet/core/
https://docs.microsoft.com/en-us/aspnet/core/
https://docs.microsoft.com/en-us/aspnet/core/
https://docs.microsoft.com/en-us/aspnet/core/
https://docs.microsoft.com/en-us/aspnet/core/
https://docs.microsoft.com/en-us/aspnet/core/
https://docs.microsoft.com/en-us/aspnet/core/
https://docs.microsoft.com/en-us/aspnet/core/
https://docs.microsoft.com/en-us/aspnet/core/
https://docs.microsoft.com/en-us/aspnet/core/
https://docs.microsoft.com/en-us/aspnet/core/
https://docs.microsoft.com/en-us/aspnet/core/
https://docs.microsoft.com/en-us/aspnet/core/
https://docs.microsoft.com/en-us/aspnet/core/
https://www.packtpub.com/web-development/hands-full-stack-web-development-aspnet-core
https://www.packtpub.com/web-development/hands-full-stack-web-development-aspnet-core
https://www.packtpub.com/web-development/hands-full-stack-web-development-aspnet-core
https://www.packtpub.com/web-development/hands-full-stack-web-development-aspnet-core
https://www.packtpub.com/web-development/hands-full-stack-web-development-aspnet-core
https://www.packtpub.com/web-development/hands-full-stack-web-development-aspnet-core
https://www.packtpub.com/web-development/hands-full-stack-web-development-aspnet-core
https://www.packtpub.com/web-development/hands-full-stack-web-development-aspnet-core
https://www.packtpub.com/web-development/hands-full-stack-web-development-aspnet-core
https://www.packtpub.com/web-development/hands-full-stack-web-development-aspnet-core
https://www.packtpub.com/web-development/hands-full-stack-web-development-aspnet-core
https://www.packtpub.com/web-development/hands-full-stack-web-development-aspnet-core
https://www.packtpub.com/web-development/hands-full-stack-web-development-aspnet-core
https://www.packtpub.com/web-development/hands-full-stack-web-development-aspnet-core
https://www.packtpub.com/web-development/hands-full-stack-web-development-aspnet-core
https://www.packtpub.com/web-development/hands-full-stack-web-development-aspnet-core
https://www.packtpub.com/web-development/hands-full-stack-web-development-aspnet-core
https://www.packtpub.com/web-development/hands-full-stack-web-development-aspnet-core
https://www.packtpub.com/web-development/hands-full-stack-web-development-aspnet-core
https://www.packtpub.com/web-development/hands-full-stack-web-development-aspnet-core
https://www.packtpub.com/web-development/hands-full-stack-web-development-aspnet-core
https://www.packtpub.com/web-development/hands-full-stack-web-development-aspnet-core
https://www.packtpub.com/web-development/hands-full-stack-web-development-aspnet-core
https://www.packtpub.com/web-development/hands-full-stack-web-development-aspnet-core
https://www.packtpub.com/web-development/hands-full-stack-web-development-aspnet-core
https://www.packtpub.com/web-development/hands-full-stack-web-development-aspnet-core
https://agilemanifesto.org/
https://agilemanifesto.org/
https://agilemanifesto.org/
https://agilemanifesto.org/
https://agilemanifesto.org/
https://agilemanifesto.org/
https://agilemanifesto.org/
https://agilemanifesto.org/
https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038
https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038
https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038
https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038
https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038
https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038
https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038
https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038
https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038
https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038
https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038
https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038
https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038
https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038
https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038
https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038
https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038
https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038
https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038
https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038
https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038
https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038
https://www.amazon.com/Software-Engineering-Practitioners-Roger-Pressman/dp/0078022126/
https://www.amazon.com/Software-Engineering-Practitioners-Roger-Pressman/dp/0078022126/
https://www.amazon.com/Software-Engineering-Practitioners-Roger-Pressman/dp/0078022126/
https://www.amazon.com/Software-Engineering-Practitioners-Roger-Pressman/dp/0078022126/
https://www.amazon.com/Software-Engineering-Practitioners-Roger-Pressman/dp/0078022126/
https://www.amazon.com/Software-Engineering-Practitioners-Roger-Pressman/dp/0078022126/
https://www.amazon.com/Software-Engineering-Practitioners-Roger-Pressman/dp/0078022126/
https://www.amazon.com/Software-Engineering-Practitioners-Roger-Pressman/dp/0078022126/
https://www.amazon.com/Software-Engineering-Practitioners-Roger-Pressman/dp/0078022126/
https://www.amazon.com/Software-Engineering-Practitioners-Roger-Pressman/dp/0078022126/
https://www.amazon.com/Software-Engineering-Practitioners-Roger-Pressman/dp/0078022126/
https://www.amazon.com/Software-Engineering-Practitioners-Roger-Pressman/dp/0078022126/
https://www.amazon.com/Software-Engineering-Practitioners-Roger-Pressman/dp/0078022126/
https://www.amazon.com/Software-Engineering-Practitioners-Roger-Pressman/dp/0078022126/
https://www.amazon.com/Software-Engineering-Practitioners-Roger-Pressman/dp/0078022126/
https://www.amazon.com/Software-Engineering-Practitioners-Roger-Pressman/dp/0078022126/
https://www.amazon.com/Software-Engineering-Practitioners-Roger-Pressman/dp/0078022126/
https://www.amazon.com/Software-Engineering-Practitioners-Roger-Pressman/dp/0078022126/
https://www.amazon.com/Software-Engineering-Practitioners-Roger-Pressman/dp/0078022126/
https://www.amazon.com/Software-Engineering-Practitioners-Roger-Pressman/dp/0078022126/
https://www.amazon.com/Software-Engineering-Practitioners-Roger-Pressman/dp/0078022126/
https://www.amazon.com/Software-Engineering-Practitioners-Roger-Pressman/dp/0078022126/
https://www.amazon.com/Software-Engineering-Practitioners-Roger-Pressman/dp/0078022126/
https://scrumguides.org/
https://scrumguides.org/
https://scrumguides.org/
https://scrumguides.org/
https://scrumguides.org/
https://scrumguides.org/
https://scrumguides.org/
https://scrumguides.org/
https://www.packtpub.com/application-development/professional-scrummasters-handbook
https://www.packtpub.com/application-development/professional-scrummasters-handbook
https://www.packtpub.com/application-development/professional-scrummasters-handbook
https://www.packtpub.com/application-development/professional-scrummasters-handbook
https://www.packtpub.com/application-development/professional-scrummasters-handbook
https://www.packtpub.com/application-development/professional-scrummasters-handbook
https://www.packtpub.com/application-development/professional-scrummasters-handbook
https://www.packtpub.com/application-development/professional-scrummasters-handbook
https://www.packtpub.com/application-development/professional-scrummasters-handbook
https://www.packtpub.com/application-development/professional-scrummasters-handbook
https://www.packtpub.com/application-development/professional-scrummasters-handbook
https://www.packtpub.com/application-development/professional-scrummasters-handbook
https://www.packtpub.com/application-development/professional-scrummasters-handbook
https://www.packtpub.com/application-development/professional-scrummasters-handbook
https://www.packtpub.com/application-development/professional-scrummasters-handbook
https://www.packtpub.com/application-development/professional-scrummasters-handbook
https://www.packtpub.com/application-development/professional-scrummasters-handbook
https://www.packtpub.com/application-development/professional-scrummasters-handbook
https://docs.microsoft.com/en-us/aspnet/core/performance/performance-best-practices
https://docs.microsoft.com/en-us/aspnet/core/performance/performance-best-practices
https://docs.microsoft.com/en-us/aspnet/core/performance/performance-best-practices
https://docs.microsoft.com/en-us/aspnet/core/performance/performance-best-practices
https://docs.microsoft.com/en-us/aspnet/core/performance/performance-best-practices
https://docs.microsoft.com/en-us/aspnet/core/performance/performance-best-practices
https://docs.microsoft.com/en-us/aspnet/core/performance/performance-best-practices
https://docs.microsoft.com/en-us/aspnet/core/performance/performance-best-practices
https://docs.microsoft.com/en-us/aspnet/core/performance/performance-best-practices
https://docs.microsoft.com/en-us/aspnet/core/performance/performance-best-practices
https://docs.microsoft.com/en-us/aspnet/core/performance/performance-best-practices
https://docs.microsoft.com/en-us/aspnet/core/performance/performance-best-practices
https://docs.microsoft.com/en-us/aspnet/core/performance/performance-best-practices
https://docs.microsoft.com/en-us/aspnet/core/performance/performance-best-practices
https://docs.microsoft.com/en-us/aspnet/core/performance/performance-best-practices
https://docs.microsoft.com/en-us/aspnet/core/performance/performance-best-practices
https://docs.microsoft.com/en-us/aspnet/core/performance/performance-best-practices
https://docs.microsoft.com/en-us/aspnet/core/performance/performance-best-practices
https://docs.microsoft.com/en-us/aspnet/core/performance/performance-best-practices
https://docs.microsoft.com/en-us/aspnet/core/performance/performance-best-practices
https://docs.microsoft.com/en-us/aspnet/core/performance/performance-best-practices
https://docs.microsoft.com/en-us/aspnet/core/performance/performance-best-practices
https://docs.microsoft.com/en-us/aspnet/core/performance/performance-best-practices
https://docs.microsoft.com/en-us/aspnet/core/performance/performance-best-practices
https://www.microsoft.com/en-us/hololens
https://www.microsoft.com/en-us/hololens
https://www.microsoft.com/en-us/hololens
https://www.microsoft.com/en-us/hololens
https://www.microsoft.com/en-us/hololens
https://www.microsoft.com/en-us/hololens
https://www.microsoft.com/en-us/hololens
https://www.microsoft.com/en-us/hololens
https://www.microsoft.com/en-us/hololens
https://www.microsoft.com/en-us/hololens
https://www.microsoft.com/en-us/hololens
https://www.microsoft.com/en-us/hololens
https://www.microsoft.com/en-us/hololens
https://www.microsoft.com/en-us/hololens
https://www.microsoft.com/en-us/hololens
https://en.wikipedia.org/wiki/Incremental_build_model
https://en.wikipedia.org/wiki/Incremental_build_model
https://en.wikipedia.org/wiki/Incremental_build_model
https://en.wikipedia.org/wiki/Incremental_build_model
https://en.wikipedia.org/wiki/Incremental_build_model
https://en.wikipedia.org/wiki/Incremental_build_model
https://en.wikipedia.org/wiki/Incremental_build_model
https://en.wikipedia.org/wiki/Incremental_build_model
https://en.wikipedia.org/wiki/Incremental_build_model
https://en.wikipedia.org/wiki/Incremental_build_model
https://en.wikipedia.org/wiki/Incremental_build_model
https://en.wikipedia.org/wiki/Incremental_build_model
https://en.wikipedia.org/wiki/Incremental_build_model
https://en.wikipedia.org/wiki/Incremental_build_model
https://en.wikipedia.org/wiki/Incremental_build_model
https://en.wikipedia.org/wiki/Incremental_build_model
https://en.wikipedia.org/wiki/Incremental_build_model
https://en.wikipedia.org/wiki/Waterfall_model
https://en.wikipedia.org/wiki/Waterfall_model
https://en.wikipedia.org/wiki/Waterfall_model
https://en.wikipedia.org/wiki/Waterfall_model
https://en.wikipedia.org/wiki/Waterfall_model
https://en.wikipedia.org/wiki/Waterfall_model
https://en.wikipedia.org/wiki/Waterfall_model
https://en.wikipedia.org/wiki/Waterfall_model
https://en.wikipedia.org/wiki/Waterfall_model
https://en.wikipedia.org/wiki/Waterfall_model
https://en.wikipedia.org/wiki/Waterfall_model
https://en.wikipedia.org/wiki/Waterfall_model
https://en.wikipedia.org/wiki/Waterfall_model
https://en.wikipedia.org/wiki/Waterfall_model
https://en.wikipedia.org/wiki/Waterfall_model

2
Functional and Nonfunctional

Requirements
Once you have gathered the system requirements, it is time to think about the impact they
have on the architectural design. Scalability, performance, multithreading, interoperability,
and other subjects need to be analyzed so that we can meet user needs.

The following topics will be covered in this chapter:

What is scalability and how does it interact with Azure and .NET Core?
Good tips for writing better code when it comes to performance improvement
Creating a safe and useful multithreading software
Software usability, that is, how to design effective user interfaces
.NET Core and interoperability

Functional and Nonfunctional Requirements Chapter 2

[35]

Technical requirements
The samples provided in this chapter will require Visual Studio 2019 Community Edition
or Visual Studio Code.

You can find the sample code for this chapter here: https:/ ​/​github. ​com/
PacktPublishing/​Hands- ​On- ​Software- ​Architecture- ​with- ​CSharp- ​8/​tree/ ​master/ ​ch02.

How does scalability interact with Azure and
.NET Core?
A short search on scalability returns a definition such as the ability of a system to keep working
well when there's an increase in demand. Once developers read this, many of them incorrectly
conclude that scalability only means add more hardware to keep things working without stopping
the app.

Scalability relies on technologies involving hardware solutions. However, as a software
architect, you have to be aware that good software will keep scalability in a sustainable
model, which means that a well-architected software can save a lot of money. Hence, it is
not just a matter of hardware but also a matter of overall software design.

In Chapter 1, Understanding the Importance of Software Architecture, while discussing
software performance, we proposed some good tips to overcome bad performance issues.
The same tips will help you with scalability too. The fewer resources we spend on each
process, the more users the application can handle.

It is worth knowing that Azure and .NET Core web apps can be configured to handle
scalability too. Let's check this out in the following subsections.

https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch02
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch02
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch02
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch02
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch02
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch02
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch02
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch02
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch02
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch02
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch02
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch02
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch02
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch02
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch02
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch02
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch02
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch02
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch02
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch02
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch02
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch02
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch02
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch02
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch02
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch02
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch02
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch02

Functional and Nonfunctional Requirements Chapter 2

[36]

Creating a scalable web app in Azure
It is pretty simple to create a web app in Azure, ready for scaling. The reason why you have
to do so is to be able to maintain different amounts of users during different seasons. The
more users you have, the more hardware you will need. The following steps will show you
how to create a scalable web application in Azure:

As soon as you log in to your Azure account, you will be able to create a new1.
resource (web app, database, virtual machine, and so on), as you can see in the
following screenshot:

Functional and Nonfunctional Requirements Chapter 2

[37]

After that, you can select Web App. This tutorial will take you to the following2.
screen:

Functional and Nonfunctional Requirements Chapter 2

[38]

The required details are as follows:

App name: As you can see, this is the URL that your web app will assume after
its creation. The name is checked to ensure it is available.
Subscription: This is the account that will be charged for all application costs.
Resource Group: This is the collection of resources you can define to organize
policies and permissions. You may specify a new resource group name or add
the web app to a group specified during the definition of other resources.
OS: This is the operating system that will host the web app. Both Windows and
Linux may be used for ASP.NET Core projects.
Publish: This parameter indicates whether the web app will be delivered directly
or whether it is going to use Docker technology to publish content. Docker will
be discussed in more detail in Chapter 5, Applying a Microservice Architecture to
Your Enterprise Application.
App Service Plan/Location: This is where you define the hardware plan that's
used to handle the web app and the location of the servers. This choice defines
application scalability, performance, and costs.
Application Insights: This is a useful Azure toolset for monitoring and
troubleshooting web apps.

Applications may be scaled in two conceptually different ways:

Vertically (Scale up)
Horizontally (Scale out)

Functional and Nonfunctional Requirements Chapter 2

[39]

Both of them are available in the web app settings, as you can see in the following
screenshot:

Let's checkout the two types of scaling.

Vertical scaling (Scale up)
Scale up means changing the type of hardware that will sustain your application. In Azure,
you have the opportunity of starting with free-shared hardware and moving to an isolated
machine in a few clicks.

Functional and Nonfunctional Requirements Chapter 2

[40]

By selecting this option, you have the opportunity to select more powerful hardware
(machines with more CPUs, storage, and RAM). The following screenshot shows the user
interface for scaling up a web app:

Functional and Nonfunctional Requirements Chapter 2

[41]

Horizontal scaling (Scale out)
Scaling out means splitting all requests among more servers with the same capacity instead
of using more powerful machines. The load on all the servers is automatically balanced by
the Azure infrastructure. This solution is advised when the overall load may change
considerably in the future since horizontal scaling can be automatically adapted to the
current load. The following screenshot shows an automatic Scale out strategy defined by
two simple rules, which is triggered by CPU usage:

Functional and Nonfunctional Requirements Chapter 2

[42]

A complete description of all the available auto scale rules is beyond the purpose of this
book. However, they are quite self-explanatory and the Further reading section contains
links to the full documentation.

The Scale out feature is only available in paid service plans.

Creating a scalable web app with .NET Core
Among all the available frameworks for implementing web apps, ASP.NET Core ensures
good performance, together with low production and maintenance costs. ASP.NET Core
performance is comparable with the performance of Node.js, but production and
maintenance costs are lower because of the usage of C# (which is a strongly typed and
advanced pure object language) instead of JavaScript.

The steps that follow will guide you through the creation of an ASP.NET Core-based web
app. All the steps are quite simple, but some details require particular attention.

First of all, during the web app's creation, you can choose between .NET Core Framework
and .NET Framework. Pay attention, because only .NET Core can run on both Windows
and cheaper Linux servers, while classic .NET runs only on Windows servers. On the other
hand, with classic .NET, you will have access to a larger code base of legacy libraries that
include both Microsoft and third-party packages.

Nowadays, Microsoft recommends classic .NET, just in case the features you need are not
available in .NET Core, or even when you deploy your web app in an environment that
does not support .NET Core. In any other case, you should prefer .NET Core Framework
because it allows you to do the following:

Run your web app in Windows, Linux, or Docker containers
Design your solution with microservices
Have high performance and scalable systems

Functional and Nonfunctional Requirements Chapter 2

[43]

Containers and microservices will be covered in Chapter 5, Applying a Microservice
Architecture to Your Enterprise Application. There, you'll get a better understanding of the
advantages of these technologies. For now, it is enough to say that .NET Core and
microservices were designed for performance and scalability, which is why you should
prefer .NET Core in all of your new projects.

The following steps will show you how to create an ASP.NET Core web app in Visual
Studio 2019 with .NET Core 3.0:

Once you select ASP.NET Core Web Application, you will be directed to a1.
screen where you will be asked to set up the Project name,
Location, and Solution name:

After that, you will be able to select the .NET Core version to use. At the time of2.
writing, .NET Core 3.0 was still in its Preview 1 version.
Now that we are done with adding the basic details, you can connect your web3.
app project to your Azure account and have it published.

Functional and Nonfunctional Requirements Chapter 2

[44]

In the Solution Explorer, you have the option to Publish... if you right-4.
click anywhere in there:

After you select the Publish... menu item, you will be able to connect your Azure5.
account and then select the web app you wish to deploy:

Functional and Nonfunctional Requirements Chapter 2

[45]

There is full integration between Visual Studio and Azure. This gives you the 6.
opportunity to view all the resources you created in the Azure Portal in your
development environment:

Once you've decided on your publish settings, that is, your publish profile, the7.
web app is automatically published when you click OK:

Functional and Nonfunctional Requirements Chapter 2

[46]

For publishing .NET Core Preview versions, you have to add an extension in the web app
setup panel in Azure portal, as shown in the following screenshot:

For more information on deploying ASP.NET Core 3.0 to Azure App
Service, please take a look at this link: https:/ ​/ ​docs. ​microsoft. ​com/​en-
us/​aspnet/ ​core/ ​host- ​and- ​deploy/ ​azure- ​apps/ ​?​view= ​aspnetcore- ​2.
2#deploy- ​aspnet- ​core- ​preview- ​release- ​to-​azure- ​app-​service.

Here, we described the simplest ways to deploy a web app. Chapter 17, Deploying Your
Application with Azure DevOps, will introduce you to the Azure DevOps Continuous
Integration/Continuous Delivery (CI/CD) pipeline. This pipeline is a further Azure toolset
that automates all the required steps to get the application in production, that is, build,
testing, deployment in staging, and deployment in production.

Performance issues that need to be
considered when programming in C#
Nowadays, C# is one of the most used programming languages all over the world, so good
tips about C# programming are fundamental for the design of good architectures that
satisfy the most common non-functional requirements.

The following sections mention a few simple but efficacious tips—the associated code
samples are available in the GitHub repository of this book.

https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service

Functional and Nonfunctional Requirements Chapter 2

[47]

String concatenation
This is a classic one! A naive concatenation of strings with the + string operator may cause
serious performance issues since each time two strings are concatenated, their contents are
copied into a new string.

So, if we concatenate, say, 10 strings that have an average length of 100, the first operation
has a cost of 200, the second one has a cost of 200+100=300, the third one has a cost of
300+100= 400, and so on. It is not difficult to convince yourself that the overall cost grows
like m*n2, where n is the number of strings and m is their average length. n2 isn't too big for
small n (say, n < 10), but it becomes quite big when n reaches the magnitude of 100-1,000,
and actually unacceptable for magnitudes of 10,000-100,000.

Let's take a look at this with some test code, which compares naive concatenation with the
same operation that's performed with the help of the StringBuilder class (the code is
available in this book's GitHub repository):

If you create a StringBuilder class with something like var sb =new
System.Text.StringBuilder(), and then you add each string to it with
sb.Append(currString), the strings are not copied; instead, their pointers are queued in
a list. They are copied in the final string just once, when you call sb.ToString() to get the
final result. Accordingly, the cost of StringBuilder-based concatenation grows simply as
m*n.

Functional and Nonfunctional Requirements Chapter 2

[48]

Of course, you will probably never find a piece of software with a function like the
preceding one that concatenates 100,000 strings. However, you need to recognize pieces of
code similar to these ones where the concatenation of some 20-100 strings, say, in a web
server that handles several requests simultaneously, might cause bottlenecks that damage
your non-functional requirements for performance.

Exceptions
Always remember—exceptions take too much time to be handled! So, the usage of try-
catch needs to be concise and essential; otherwise, you will create big performance issues.

The following two samples compare the usage of try-catch and Int32.TryParse to
check whether a string can be converted into an integer, as follows:

private static string ParseIntWithTryParse()
{
 string result = String.Empty;
 int value;
 if (Int32.TryParse(result, out value))
 result = value.ToString();
 else
 result = "There is no int value";
 return $"Final result: {result}";
}

private static string ParseIntWithException()
{
 string result = String.Empty;
 try
 {
 result = Convert.ToInt32(result).ToString();
 }
 catch (Exception)
 {
 result = "There is no int value";
 }
 return $"Final result: {result}";
}

Functional and Nonfunctional Requirements Chapter 2

[49]

The second function doesn't look dangerous, but it is thousands of times slower than the
first one:

To sum this up, exceptions must be used to deal with exceptional cases that break the
normal flow of control, for instance, situations when operations must be aborted for some
unexpected reasons, and control must be returned several levels up in the call stack.

Multithreading environments for better
results – do's and don'ts
If you want to take advantage of all of the hardware that the system you're building
provides, you have to use multithreading. This way, when a thread is waiting for an
operation to complete, it can leave the CPU and other resources to other threads instead of
wasting CPU time.

On the other hand, no matter how hard Microsoft is working to help with this, parallel code
is not as simple as eating a piece of cake: it is error-prone and difficult to test and debug.
The most important thing to remember as a software architect when you start considering
using threads: does your system require them? Non-functional and some functional
requirements will definitely answer this question for you.

Functional and Nonfunctional Requirements Chapter 2

[50]

As soon as you are sure that you need a multithreading system, you should decide on
which technology is more adequate. There are a few options here, as follows:

Creating an instance of a System.Threading.Thread: This is a classic way of
creating threads in C#. The entirety of the thread life cycle will be in your hands.
This is good when you are sure about what you are going to do, but you need to
worry about every single detail of the implementation. The resulting code is hard
to conceive and debug/test/maintain. So, to keep development costs acceptable,
this approach should be confined to a few fundamental performance critique
modules.
Programming using System.Threading.Tasks.Parallel and
System.Threading.Tasks.Task classes: In the .NET Framework 4.0 versions, you
can use parallel classes to enable threads in a simpler way. This is good because
you don't need to worry about the life cycle of the threads you create, but it will
give you less control about what is happening in each thread.
Develop using asynchronous programming: This is for sure the easiest way to
develop multithreading applications since you don't need to care about thread
coordination and deadlocks are not possible. When an asynchronous method
calls another asynchronous method, it goes in sleeping mode to avoid wasting
resources until the called task returns. This way, asynchronous code mimics the
behavior of classical synchronous code while keeping most of the performance
advantages of general parallel programming.

The overall behavior is deterministic and doesn't depend on the time taken by
each task to complete, so non-reproducible bugs are not possible and the resulting
code is easy to test/debug/maintain. Defining a method as an asynchronous task
or not is the only choice left to the programmer; everything else is automatically
handled by the runtime. The only thing you should be concern about is which
methods should have asynchronous behavior.

Later on in this book, we will provide some simple examples of asynchronous
programming. For more information about asynchronous programming and its related
patterns, please check Task-Based Asynchronous Patterns in the Microsoft documentation
(https:/​/​docs.​microsoft. ​com/ ​en- ​us/ ​dotnet/ ​standard/ ​asynchronous- ​programming-
patterns/​task-​based- ​asynchronous- ​pattern- ​tap).

https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap

Functional and Nonfunctional Requirements Chapter 2

[51]

No matter the option you choose, there are some do's and don'ts that, as a software
architect, you have to pay attention to. These are as follows:

Do use concurrent collections (System.Collections.Concurrent): As soon
as you start a multithreading application, you have to use these collections. The
reason for this is that your program will probably manage the same list,
dictionary, and so on from different threads. The use of concurrent collections is
the only option for developing thread-safe programs.
Do worry about static variables: It is not possible to say that static variables are
prohibited in multithreading development, but you should pay attention to
them. Again, multiple threads taking care of the same variable can cause a lot of
trouble. If you decorate a static variable with the [ThreadStatic] attribute,
each thread will see a different copy of that variable, hence solving the problem
of several threads competing on the same value. However, ThreadStatic
variables can't be used for extra-thread communications since values written by a
thread can't be read by other threads.
Do test system performance after multithreading implementations: Threads
give you the ability to take full advantage of your hardware, but in some cases,
badly written threads can waste CPU time just doing nothing! Similar situations
may result in almost 100% CPU usage and unacceptable system slowdowns. In
some cases, the problem can be mitigated or solved by adding a
simple Thread.Sleep(1) call in the main loop of some threads to prevent them
from wasting too much CPU time, but you need to test this.
Do not consider multithreading easy: Multithreading is not as simple as it seems
in some syntax implementations. While writing a multithreading application,
you should consider things such as the synchronization of the user interface,
threading termination, and coordination. In many cases, programs just stop
working well due to a bad implementation of multithreading.
Do not forget to plan the number of threads your system should have: This is
really important for 32-bit programs. There is a limitation regarding how many
threads you can have in 32-bit environments. You should consider this when you
are designing your system.
Do not forget to end your threads: If you do not have the correct termination
procedure for each thread, you will probably have trouble with memory and
handles leaks.

Functional and Nonfunctional Requirements Chapter 2

[52]

Usability – why inserting data takes too
much time
Scalability, performance tips, and multithreading are the main tools we can use to tune
machine performance. However, the effectiveness of the system you design depends on the
overall performance of the whole processing pipeline, which includes both humans and
machines.

As a software architect, you can't improve the performance of humans, but you can
improve the performance of man-machine interaction by designing an effective user
interface (UI), that is, user interfaces that ensure a fast interaction with humans, which, in
turn, means the following:

The UI must be easy to learn to reduce the time that's needed for learning and
time waste before the target users learn to operate quickly. This constraint is
fundamental if UI changes are frequent, and for public websites that need to
attract the greatest possible number of users.
The UI must not cause any kind of slowdown in data insertion; data insertion
speed must be limited just by the user's ability to type, not by system delays or
by additional gestures that could be avoided.

The following are a few simple tips when it comes to designing easy to learn user interfaces:

Each input screen must state its purpose clearly.
Use the language of the user, not the language of developers.
Avoid complications. Design the UI with the average case in mind; more
complicated cases can be handled with extra inputs that appear only when
needed. Split complex screens into more input steps.
Use past inputs to understand user intentions and to put users on the right paths
with messages and automatic UI changes; for instance, cascading drop-down
menus.
Error messages are not bad notes the system gives to the user, but they must
explain how to insert correct input.

Functional and Nonfunctional Requirements Chapter 2

[53]

Fast user interfaces result from efficacious solutions to the following three requirements:

Input fields must be placed in the order they are usually filled, and it should be
possible to move to the next input with the Tab or Enter key. Moreover, fields that
often remain empty should be placed at the bottom of the form. Simply put, the
usage of the mouse while filling a form should be minimized. This way, the
number of user gestures is kept to a minimum. In a web application, once the
optimal placement of input fields has been decided, it is enough to use the
tabindex attribute to define the right way users move from one input field to
the next with the Tab key.
System reactions to user inputs must be as fast as possible. In particular, error (or
information) messages must appear as soon as the user leaves the input field. The
simplest way to achieve this is to move most of the help and input validation
logic to the client side so that system reactions don't need to pass through both
communication lines and servers.
Efficacious selection logic. Selecting an existing item should be as easy as
possible; for example, selecting one of some thousands of products in an offer
must be possible with a few gestures and with no need to remember the exact
product name or its barcode. The next subsection analyzes techniques we can use
to increase complexity to achieve fast selection.

Designing fast selection logic
When all the possible choices are in the order of magnitude of 1-50, the usual drop-down
menu is enough. For instance, check the currency selection drop-down menu:

Functional and Nonfunctional Requirements Chapter 2

[54]

When the order of magnitude is higher but less than a few thousand, an autocomplete that
shows the names of all the items that start with the characters typed by the user is usually a
good choice:

A similar solution can be implemented with a low computational cost since all the main
databases can efficiently select strings that start with a given substring.

When names are quite complex, when searching for the characters that were typed in by
the user, they should be extended inside each item string. This operation can't be performed
efficiently with usual databases and requires ad hoc data structures.

Finally, when we are searching inside descriptions composed of several words, more
complex search patterns are needed. This is the case, for instance, of product descriptions. If
the chosen database supports full-text search, the system can search for the occurrence of
several words that have been typed by the user inside all the descriptions efficiently.

However, when descriptions are made up of names instead of common words, it might be
difficult for the user to remember a few exact names contained in the target description.
This happens, for instance, with multi-country company names. In these cases, we need
algorithms that find the best match for the character that was typed by the user. Substrings
of the string that was typed by the user must be searched in different places of each
description. In general, similar algorithms can't be implemented efficiently with databases
based on indexes but require all the descriptions to be loaded in memory and ranked
somehow against the string that was typed by the user.

The most famous algorithm in this class is probably the Levenshtein algorithm, which is
used by most spell checkers to find a word that best fits the mistyped one by the user. This
algorithm minimizes the Levenshtein distance between the description and the string typed
by the user, that is, the minimum number of character removals and additions needed to
transform one string into another.

Functional and Nonfunctional Requirements Chapter 2

[55]

The Levenshtein algorithm works great but has a very high computational cost. Now, we
give a faster algorithm that works well for searching character occurrences in descriptions.
Characters typed by the user don't need to occur consecutively in the description but must
occur in the same order. Some characters may miss. Each description is given a penalty that
depends on the missing characters and on how the occurrences of the characters typed by
the user are far from the others. More specifically, the algorithm ranks each description
with two numbers:

The number of characters typed by the user that occurs in the description: The
more characters contained in the description, the higher its rank.
Each description is given a penalty equal to the total distance among the
occurrences of the characters typed by the user in the description.

The following screenshot shows how the word Ireland is ranked against the string ilad,
which was typed by the user:

The number of occurrences is four, while the total distance among characters occurrences is
three.

Once all the descriptions have been rated they are sorted according to the number of
occurrences. Descriptions with the same number of occurrences are sorted according to the
lowest penalties. The following is an autocomplete that implements the preceding
algorithm:

Functional and Nonfunctional Requirements Chapter 2

[56]

The C# code that ranks each description against the string typed by the user is as follows:

public class SmartDictionary<T>
{
 ...
 private Func<T, string> keyAccessor;
 protected class Rater
 {
 public T Item;
 public double Penalty=0;
 public int FoundChars=0;
 }
 ...
 protected Rater RateItem(string search, Rater x)
 {
 var toSearch = search.ToLower();
 var destination = keyAccessor(x.Item).ToLower();
 bool firstMatch = true;
 for (var j = 0; j < toSearch.Length; j++)
 {
 if (destination == string.Empty) return x;
 var currChar = toSearch[j];
 var index = destination.IndexOf(currChar);
 if (index == -1) continue;
 x.FoundChars++;
 if (firstMatch)
 {
 x.Penalty += index;
 firstMatch = false;
 }
 else x.Penalty += index*1000;
 if (index + 1 < destination.Length)
 destination = destination.Substring(index + 1);
 else
 destination = string.Empty;
 }
 return x;
 }
 ...
}

Functional and Nonfunctional Requirements Chapter 2

[57]

The item to rank is inserted in a Rater instance. Then, its string description is extracted by
a keyAccessor function. After that, the code computes both character occurrences and
occurrences in the total distance.

The full class code, along with a test console project, is available in this book's GitHub
repository.

Selecting from a huge amount of items
Here, huge doesn't refer to the amount of space needed to store the data, but to the
difficulty the user has in remembering the features of each item. When an item must be
selected from among more than 10,000-100,000 items, there is no hope to find it by
searching for character occurrences inside a description. Here, the user must be driven
toward the right item through a hierarchy of categories.

In this case, several user gestures are needed to perform a single selection. In other word,
each selection requires interaction with several input fields. Once it's decided that the
selection can't be done with a single input field, the simplest option is cascading drop-down
menus, that is, a chain of drop-down menus whose selection list depends on the values that
were selected in the previous drop-down menus.

For example, if the user needs to select a town located anywhere in the world, we may use
the first drop-down menu to select the country, and once the country has been chosen, we
may use this choice to populate a second one with all the towns in the selected country. A
simple example is as follows:

Clearly, each drop-down menu can be replaced by an autocomplete when required due to
having a high number of options.

Functional and Nonfunctional Requirements Chapter 2

[58]

If making the right selection can be done by intersecting several different hierarchies,
cascading drop-down menus become inefficient too, and we need a filter form, as follows:

Now, let's understand interoperability with .NET Core.

The fantastic world of interoperability with
.NET Core
.NET Core brought Windows developers the ability to deliver their software into various
platforms. And you, as a software architect, need to pay particular attention to this. Linux
and macOS are no longer a problem for C# lovers—it's much better than that—they are
really good opportunities to deliver to new customers. Therefore, we need to ensure
performance and multi-platform support, two common non-functional requirements in
several systems.

Both console applications and web apps designed with .NET Core in Windows are almost
completely compatible with Linux and macOS, too. This means you do not have to build
the app again to run it on these platforms. Also, very platform-specific behaviors now have
multi-platform support, as shown, for instance, by
the System.IO.Ports.SerialPort class, which, starting from .NET Core 3.0, is on Linux.

Functional and Nonfunctional Requirements Chapter 2

[59]

Microsoft offers scripts to help you install .NET Core on Linux and macOS. You can find
them at https:/​/​docs. ​microsoft. ​com/ ​en-​us/ ​dotnet/ ​core/ ​tools/ ​dotnet- ​install-
script. Once you have the SDK installed, you just need to call dotnet the same way you do
in Windows.

However, you must be aware of some features that are not fully compatible with Linux and
macOS systems. For instance, no equivalent to the Windows Registry exists in these OSes
and you have to develop an alternative yourself. If needed, an encrypted JSON config file
can be a good option.

Another important point is that Linux is case-sensitive, while Windows is not. Please,
remember this when you work with files. Another important thing is that the Linux path
separator is different from the Windows separator. You can use
the Path.PathSeparator property and all the other Path class methods to ensure your
code is actually multi-platform.

Besides, you can also adapt your code to the underlying OS by using the runtime checks
provided by .NET Core, as follows:

using System;
using System.Runtime.InteropServices;

namespace CheckOS
{
 class Program
 {
 static void Main()
 {
 if (RuntimeInformation.IsOSPlatform(OSPlatform.Windows))
 Console.WriteLine("Here you have Windows World!");
 else if (RuntimeInformation.IsOSPlatform(OSPlatform.Linux))
 Console.WriteLine("Here you have Linux World!");
 else if (RuntimeInformation.IsOSPlatform(OSPlatform.OSX))
 Console.WriteLine("Here you have macOS World!");
 }
 }
}

https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-install-script
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-install-script
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-install-script
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-install-script
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-install-script
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-install-script
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-install-script
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-install-script
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-install-script
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-install-script
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-install-script
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-install-script
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-install-script
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-install-script
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-install-script
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-install-script
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-install-script
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-install-script
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-install-script
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-install-script
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-install-script
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-install-script
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-install-script
https://docs.microsoft.com/en-us/dotnet/core/tools/dotnet-install-script

Functional and Nonfunctional Requirements Chapter 2

[60]

Creating a service in Linux
The following script can be used to encapsulate a command-line .NET Core app in Linux.
The idea is that this service works like a Windows Service. This can be really useful,
considering that most Linux installations are command-line only and run without a user
logged in:

The first step is to create file that will run the command-line app. The name of the1.
app is app.dll and it is installed in appfolder. The application will be checked
every 5,000 milliseconds. This service was created on a CentOS 7 system. Using a
Linux Terminal, you can type this:

cat > sample.service <<EOF
[Unit]
Description=Your Linux Service
After=network.target
[Service]
ExecStart=/usr/bin/dotnet $(pwd)/appfolder/app.dll 5000
Restart=on-failure
[Install]
WantedBy=multi-user.target
EOF

Once the file has been created, you have to copy the service file to a system2.
location. After that, you have to reload systemd and enable the service so that it
will restart on reboots:

sudo cp sample.service /lib/systemd/system
sudo systemctl daemon-reload
sudo systemctl enable sample

Done! Now, you can start, stop, and check the service using the following3.
commands. The whole input that you need to provide in your command-line app
is as follows:

Start the service
sudo systemctl start sample

View service status
sudo systemctl status sample

Stop the service
sudo systemctl stop sample

Now that we've learned about a few concepts, let's learn how to implement them in our use
case.

Functional and Nonfunctional Requirements Chapter 2

[61]

Book use case – understanding the main
types of .NET Core projects
The development of this book's use case will be based on various kinds of .NET Core Visual
Studio projects. This section describes all of them. Let's select New project in the Visual
Studio file menu. In the window that opens, all the .NET Core projects will be located
under the .NET Core, .NET Standard, and Cloud items in the left-hand menu:

Most of them are available under .NET Core:

Here, we have a console project, a class library project, and various types of test projects,
each based on a different test framework: xUnit, nUnit, and MSTest. Choosing among the
various testing frameworks is just a matter of preference since all of them offer comparable
features. Adding tests to each piece of software that composes a solution is a common
practice and allows software to be modified frequently without jeopardizing its reliability.

Functional and Nonfunctional Requirements Chapter 2

[62]

Testing will be discussed in detail in Chapter 15, Testing Your Code with Unit Test Cases and
TDD, and Chapter 20, Automation for Software Testing. Finally, we have the ASP.NET Core
application we already described in the Creating a scalable web app with .NET Core
subsection. There, we defined an ASP.NET MVC application, but Visual Studio also
contains project templates for projects based on RESTful APIs and the most important
single-page application frameworks such as Angular, React, Vue.js, and the new Blazor
framework based on WebAssembler. Some of them are available with the standard Visual
Studio installation; others require the installation of a SPA package.

For each project type, we can choose the .NET Core version we would like to use. Under the
.NET Standard menu item, we have only a class library project. .NET Standard class
libraries are based on .NET standards instead of a specific .NET Core version so they are
compatible with several .NET Core versions. For instance, libraries based on 2.0 standards
are compatible with all .NET Core versions greater than or equal to 2.0, and with all .NET
Framework versions greater than 4.6.

This compatibility advantage comes at the price of having less available features. However,
features that are not a part of a standard can be added as references to additional library
packages.

Finally, under the cloud menu, we have several more project types, but the only new
project related to .NET Core is the Service Fabric Application:

This allows us to define microservices. Microservice-based architectures allow an
application to be split into several independent microservices. Several instances of the same
microservice can be created and distributed across several machines to fine-tune the
performance of each application part. Microservices will be described in Chapter 5,
Applying a Microservice Architecture to Your Enterprise Application.

Functional and Nonfunctional Requirements Chapter 2

[63]

Summary
Functional requirements that describe system behavior must be completed with non-
functional requirements that constrain system performance, scalability, interoperability,
and usability. Performance requirements come from response-time and system load
requirements. As a software architect, you should ensure you have the required
performance with the minimum cost building efficient algorithms and taking full
advantage of the available hardware resources with multithreading.

Scalability is the capability of a system to be adapted to an increasing load. Systems can be
scaled vertically by providing more powerful hardware, or horizontally by replicating and
load balancing the same hardware. The cloud, in general, and Azure, in particular, can help
us implement strategies dynamically, with no need to stop your application.

Tools such as .NET Core that run on several platforms can ensure interoperability, that is,
the capability of your software to run on different target machines and with different
operating systems (Windows, Linux, macOS, Android, and so on).

Usability is ensured by taking care of the input field's order, the effectiveness of the item
selection logic, and how easy your system is to learn.

In the next chapter, you will learn how Azure DevOps tools can help us when it comes to
collecting, defining, and documenting our requirements.

Questions
Which are the two conceptual ways to scale a system? 1.
Can you deploy your web app automatically from Visual Studio to Azure?2.
What is multithreading useful for?3.
What are the main advantages of the asynchronous pattern over other4.
multithreading techniques?
Why is the order of input fields so important?5.
Why is the .NET Core Path class so important for interoperability?6.
What is the advantage of a .NET standard class library over a .NET Core class7.
library?
List the various types of .NET Core Visual Studio projects.8.

Functional and Nonfunctional Requirements Chapter 2

[64]

Further reading
The following are some books and links you may consider reading to gather more
information about this chapter:

https:/​/ ​www. ​packtpub. ​com/ ​virtualization- ​and- ​cloud/ ​hands- ​azure-
developers

https:/​/ ​docs. ​microsoft. ​com/ ​en-​us/ ​azure/ ​architecture/ ​best- ​practices/
auto-​scaling

https:/​/ ​docs. ​microsoft. ​com/ ​en-​us/ ​aspnet/ ​core/ ​host- ​and- ​deploy/ ​azure-
apps/​? ​view= ​aspnetcore- ​2. ​2#deploy- ​aspnet- ​core- ​preview- ​release- ​to- ​azure-
app-​service

https:/​/ ​docs. ​microsoft. ​com/ ​en-​us/ ​dotnet/ ​standard/ ​parallel- ​processing-
and-​concurrency

https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://www.packtpub.com/virtualization-and-cloud/hands-azure-developers
https://docs.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling
https://docs.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling
https://docs.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling
https://docs.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling
https://docs.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling
https://docs.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling
https://docs.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling
https://docs.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling
https://docs.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling
https://docs.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling
https://docs.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling
https://docs.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling
https://docs.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling
https://docs.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling
https://docs.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling
https://docs.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling
https://docs.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling
https://docs.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling
https://docs.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling
https://docs.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling
https://docs.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling
https://docs.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling
https://docs.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling
https://docs.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps/?view=aspnetcore-2.2#deploy-aspnet-core-preview-release-to-azure-app-service
https://docs.microsoft.com/en-us/dotnet/standard/parallel-processing-and-concurrency
https://docs.microsoft.com/en-us/dotnet/standard/parallel-processing-and-concurrency
https://docs.microsoft.com/en-us/dotnet/standard/parallel-processing-and-concurrency
https://docs.microsoft.com/en-us/dotnet/standard/parallel-processing-and-concurrency
https://docs.microsoft.com/en-us/dotnet/standard/parallel-processing-and-concurrency
https://docs.microsoft.com/en-us/dotnet/standard/parallel-processing-and-concurrency
https://docs.microsoft.com/en-us/dotnet/standard/parallel-processing-and-concurrency
https://docs.microsoft.com/en-us/dotnet/standard/parallel-processing-and-concurrency
https://docs.microsoft.com/en-us/dotnet/standard/parallel-processing-and-concurrency
https://docs.microsoft.com/en-us/dotnet/standard/parallel-processing-and-concurrency
https://docs.microsoft.com/en-us/dotnet/standard/parallel-processing-and-concurrency
https://docs.microsoft.com/en-us/dotnet/standard/parallel-processing-and-concurrency
https://docs.microsoft.com/en-us/dotnet/standard/parallel-processing-and-concurrency
https://docs.microsoft.com/en-us/dotnet/standard/parallel-processing-and-concurrency
https://docs.microsoft.com/en-us/dotnet/standard/parallel-processing-and-concurrency
https://docs.microsoft.com/en-us/dotnet/standard/parallel-processing-and-concurrency
https://docs.microsoft.com/en-us/dotnet/standard/parallel-processing-and-concurrency
https://docs.microsoft.com/en-us/dotnet/standard/parallel-processing-and-concurrency
https://docs.microsoft.com/en-us/dotnet/standard/parallel-processing-and-concurrency
https://docs.microsoft.com/en-us/dotnet/standard/parallel-processing-and-concurrency
https://docs.microsoft.com/en-us/dotnet/standard/parallel-processing-and-concurrency
https://docs.microsoft.com/en-us/dotnet/standard/parallel-processing-and-concurrency
https://docs.microsoft.com/en-us/dotnet/standard/parallel-processing-and-concurrency
https://docs.microsoft.com/en-us/dotnet/standard/parallel-processing-and-concurrency

3
Documenting Requirements

with Azure DevOps
Azure DevOps is the evolution of Visual Studio Team Services and there is a variety of new
features that can help developers to document and organize their software. The purpose of
this chapter is to present an overview of this tool provided by Microsoft.

The following topics will be covered in this chapter:

Creating an Azure DevOps project using your Azure account
Understanding the functionalities offered by Azure DevOps
Organizing and managing requirements using Azure DevOps
Presenting use cases in Azure DevOps

Technical requirements
This chapter requires you to create a new free Azure account or use an existing
one. The Creating an Azure account section of Chapter 1, Understanding the Importance of
Software Architecture, explains how to create one.

Introducing Azure DevOps
Azure DevOps is a Microsoft Software as a Service (SaaS) platform that enables you to
deliver continuous value to your customers. By creating an account there, you will be able
to easily plan your project, store your code safely, test it, publish the solution to a staging
environment, and then publish the solution to the actual production infrastructure.

Documenting Requirements with Azure DevOps Chapter 3

[66]

Of course, Azure DevOps is a complete framework and the ecosystem that it provides for
software development is currently available. The automation of all the steps involved in
software production ensures the continuous enhancement and improvement of an existing
solution in order to adapt it to market needs.

You can start the process moving in your Azure portal. If you don't know how to create an
Azure portal account, then please check Chapter 1, Understanding the Importance of Software
Architecture. The steps to create an Azure DevOps account are quite simple:

Select Create a resource and then DevOps Project:1.

Documenting Requirements with Azure DevOps Chapter 3

[67]

As soon as you start the wizard for creating the project, you can choose how you2.
want to deliver your system from several different platforms. This is one of the
greatest advantages of Azure DevOps as you are not limited to Microsoft tools
and products, but you can from all common platforms, tools, and products
available on the market:

Documenting Requirements with Azure DevOps Chapter 3

[68]

The options available will depend on the platform chosen in the first step. In3.
some cases, you can choose from several deployment options, as you can see in
the following screenshot, which appears if you select the .NET platform:

Documenting Requirements with Azure DevOps Chapter 3

[69]

Once the setup is complete, you will be able to manage the project using the4.
project portal according to the information you provided. It is worth mentioning
that this wizard will create an Azure DevOps Service if you do not have one. The
Azure DevOps organization is where you can organize all of you
Azure DevOps projects. The whole process takes less than 20 minutes:

Documenting Requirements with Azure DevOps Chapter 3

[70]

After that, you will be able to start planning your project. The following5.
screenshot shows the page that appears once the Azure DevOps project creation
is complete. In the remainder of this book, we will come back to this page several
times to introduce and describe various useful features that ensure a faster and
efficacious deployment:

As you can see from the preceding screenshot, the process for creating an Azure DevOps
account and starting to develop the best-in-class DevOps tool is quite simple. It is worth
mentioning that you can start using this fantastic tool at no cost, considering you have up to
five developers on your team, plus any number of stakeholders.

Organizing your work using Azure DevOps
DevOps is a Continuous Integration/Continuous Deployment (CI/CD) methodology, that
is, a set of best practices on how to apply continuous improvements to a software
application and how to deliver them to the production environment. Azure DevOps is a
powerful tool whose range of applications encompasses all the steps involved in both the
initial development of an application and in its subsequent CI/CD process.

Documenting Requirements with Azure DevOps Chapter 3

[71]

Azure DevOps contains tools for collecting requirements and for organizing the whole
development process. They can be accessed by clicking the Boards menu in the Azure
DevOps page and will be described in more detail in the next two sections:

All other functionalities available in Azure DevOps are briefly reviewed in the following
subsections. They will be discussed in detail in Chapter 15, Testing Your Code with Unit Test
Cases and TDD, to Chapter 20, Automation for Software Testing.

Azure DevOps repository
The Repos menu item gives you access to a Git repository in order to place the project code:

Documenting Requirements with Azure DevOps Chapter 3

[72]

You can connect to this repository from inside Visual Studio in a very simple way:

Start Visual Studio and ensure you are logged in to Visual Studio with the same1.
Microsoft account used to define your DevOps project (or used to add you as a
team member).
Prepare a Visual Studio solution containing the Visual Studio projects you need2.
in your application (further projects can be added during development) if your
DevOps project repository is empty.
Select the Team Explorer tab and then click the connection button:3.

Clicking the Connect... link of Azure DevOps, you will be driven to connect with4.
one of your Azure DevOps projects.
Click the Team Explorer Home button. Now, you will see commands for5.
performing Git operations and for interaction with other Azure DevOps areas:

Documenting Requirements with Azure DevOps Chapter 3

[73]

Commit the solution you just created by clicking the Changes button if the Azure6.
DevOps repository is empty and then following the subsequent instructions.
Click the Sync button to synchronize your local repository with the remote7.
Azure DevOps repository. If the remote repository is empty and you just created
a solution, this action will initialize the remote Azure DevOps repository with
this solution; otherwise, this action will download the remote repository on your
local machine.
Once all team members have initialized both their local machine repositories and8.
the Azure DevOps repository with the preceding steps, it is enough to open
Visual Studio. The solution created in your local repository will appear in the
bottom area of the Team Explorer window.
Click the window to open the solution on your local machine. Then, synchronize9.
with the remote repository to ensure the code you are modifying is up to date.

The Team Explorer menu enables you to execute most Git commands, to launch remote
builds (Builds button) and to interact with other Azure DevOps areas (see, for instance, the
Work Items button).

Package feeds
The Artifacts menu handles the software packages used by the project. There, you may
define feeds for basically all types of packages such as NuGet, Node.js, and Python. Once in
the Artifacts area, you may create several feeds by clicking the + New Feed link, where
each feed can handle several kinds of packages:

Documenting Requirements with Azure DevOps Chapter 3

[74]

If you select the option to connect to packages from public sources, as a default, the feed
connects to npmjs, nuget.org, and pypi.org. However, you can go to the upstream
sources tab in the Feed settings section through the menu in the upper-right corner and
remove/add package sources:

The Connect to feed link of each feed shows a window that, for each package
type, explains how to do the following things:

Upload private packages to the feed. This way each team can use its private1.
package's code base.
Connect to the feed to use its packages from Visual Studio. You should add all2.
the project feeds to your Visual Studio feeds in order to also use the private team
packages uploaded in the feed; otherwise, your local build will file.
Manage credentials to access the feed:3.

Documenting Requirements with Azure DevOps Chapter 3

[75]

Test plans
The Test Plans section allows you to define the test plans you want to use and their
settings. It can be accessed through the Test Plans menu item:

Documenting Requirements with Azure DevOps Chapter 3

[76]

Here, you may define, execute, and track test plans made of the following:

Manual acceptance tests
Automatic unit tests
Load tests

Automatic unit tests must be defined in test projects contained in the Visual Studio solution
and based on a framework such as NUnit, xUnit, and MSTest (Visual Studio has project
templates for all of them). Test Plans gives you the opportunity to execute these tests on
Azure and to define the following:

A number of configuration settings
When to execute them
How to track them and where to report their results in the overall project
documentation

For manual tests, you may define complete instructions for the operator, the environment
in which to execute them (for example, an operating system), and where to report their
results in the project documentation. You can also define how to execute load tests, how to
measure results, and where to report them.

Pipelines
Pipelines are automatic action plans that specify all steps from the code build until the
software deployment is in production. They can be defined in the pipelines area, which is
accessible through the Pipelines menu item:

Documenting Requirements with Azure DevOps Chapter 3

[77]

There, you can define a complete pipeline of tasks to execute alongside their triggering
events, which encompasses steps such as code building, launching test plans, and what to
do after the tests are passed.

Typically, after the tests are passed, the application is automatically deployed in a staging
area where it can be beta-tested. You can also define the criteria for the automatic
deployment in production. Such criteria include, but are not limited to, the following:

Number of days the application was beta-tested
Number of bugs found during beta-testing and/or removed by the last code
change
Manual approval by one or more managers/team members

The criteria decision will depend on the way the company wants to manage the product
that is being developed. You, as a software architect, have to understand that when it
comes to moving code to production, the safer, the better.

Managing system requirements in Azure
DevOps
Azure DevOps enables you to document system requirements using work items. Work items
are stored in your project as a piece of information that can be assigned to a person. They
are classified into various types and may contain a measure of the development effort
required, a status, and the development stage (iteration) they belong to.

In fact, DevOps methodology, as an Agile methodology, is made of several iterations and
the whole development process is organized as a set of sprints. The work items available
depends on the Working Item Process you select while creating the Azure DevOps project.
The following subsections contain a description of the most common work item types.

Documenting Requirements with Azure DevOps Chapter 3

[78]

Epics work items
Imagine you are developing a system made of various subsystems. Probably, you are not
going to conclude the whole system in a single iteration. Therefore, we need an umbrella
spanning several iterations to encapsulate all features of each subsystem. Each Epics work
item represents one of these umbrellas that can contain several features to be implemented
in various development iterations.

In the Epics work item, you can define the state and acceptance criteria as well as the start
date and target date. Besides, you can also provide a priority and an effort estimate. All of
this detailed information helps the stakeholders to follow the development process. This is
really useful as a macro view of the project.

Epics are not available as a default. They must be enabled in the project's Team Settings
page, which can be reached by clicking the project settings link in the bottom-left corner of
the project page and then selecting Team Settings:

Features work items
All of the information that you provide in an Epics work item can also be placed in a
Features work item. So, the difference between these two types of work items is not related
to the kind of information they contain, but to their roles and the focus; your team will get
to conclude them. Epics may span several iterations and are hierarchically above Features,
that is, each Epics work items is linked to several children Features, while each
Features work items must be implemented in a single iteration and is part of a single Epics
work items.

Documenting Requirements with Azure DevOps Chapter 3

[79]

It is worth mentioning that all work items have sections for team discussions. There, you
will be able to find a team member in the discussion area by typing the @ character (like in
several forum/social applications). Inside each work item, you can link and attach various
information. You may also check the history of the current work item in a specific section.

Features work items are the places to start recording user requirements. For instance, you
can write a Features work item called Access Control to define the complete functionally
needed to implement the system access control.

Product Backlog items/User Story work items
After selecting the Working Item Process, you will know which of these two work items is
available. There are minor differences between them, but their purpose is substantially the
same. They contain detailed requirements for the Features, described by the Features work
items they are connected to. More specifically, each Product Backlog/User Story work item
specifies the requirements of a single functionality that is a part of the behavior described in
its father Features work items. For instance, in a Features of system access control, the
maintenance of the users and the login interface should be two different User
Stories/Product Backlog items. These requirements will guide the creation of other children
work items:

Tasks: They are important work items that describe the job that needs to be done
to meet the requirements stated in the father Product Backlog items/User Story
work item. Task work items can contain time estimates that help team capacity
management and overall scheduling.
Test cases: These items describe how to test the functionality described by the
requirements.

The number of tasks and test cases you will create for each Product Backlog/User Story
work item will vary according to the development and testing scenario you use.

Documenting Requirements with Azure DevOps Chapter 3

[80]

Book use case – presenting use cases in
Azure DevOps
This section clarifies the concepts exposed in the previous section with the practical
example of the wwtravelclub. Considering the scenario described in Chapter 1,
Understanding the Importance of Software Architecture, we decided to define three Epics work
items, as follows:

Documenting Requirements with Azure DevOps Chapter 3

[81]

The creation of these work items is quite simple:

Inside each work item, link the different types of work items, as you can see in1.
the following screenshot.
It is really important to know that the connection between work items are really2.
useful during software development. Hence, as a software architect, you have to
provide this knowledge to your team and, more than that, you have to incentive
them to make these connections:

Documenting Requirements with Azure DevOps Chapter 3

[82]

As soon as you create a Feature work item, you will be able to connect it to3.
several Product Backlog work items that detail its specifications. The following
screenshot shows the details of a Product Backlog work item:

Documenting Requirements with Azure DevOps Chapter 3

[83]

After that, Task and Test Case work items can be created for each Product4.
Backlog work item. The user interface provided by Azure DevOps is really
efficacious because it enables you to track the chain of functionalities and the
relations among them:

Documenting Requirements with Azure DevOps Chapter 3

[84]

As soon as you complete the input for the Product Backlog and Tasks work5.
items, you will be able to plan the project sprints together with your team. The
plan view enables you to drag and drop Product Backlog work items to each
planned Sprint:

This is how these work items are created. Once you understand this mechanism, you will
be able to create and plan any software project. It is worth mentioning that the tool itself
will not solve problems related to team management. However, the tool is a great way to
incentive the team to update the project status, so you can keep a clear vision of how the
project is evolving.

Summary
This chapter covered how you can create an Azure DevOps account for a software
development project, and how to start managing your projects with Azure DevOps. It also
gave a short review of all Azure DevOps functionalities, explaining how to access them
through the Azure DevOps main menu. This chapter described in more detail how to
manage system requirements and how to organize the job with various kinds of work
items, and how to plan and organize sprints that will deliver Epics solutions with many
Features.

Documenting Requirements with Azure DevOps Chapter 3

[85]

The next chapter discusses the different models of software architecture. We will also learn
about the fundamental hints and criteria for choosing among the options offered by a
sophisticated cloud platform such as Azure while developing the infrastructure.

Questions
Is Azure DevOps available only for .NET Core projects?1.
May Azure DevOps trigger automatic builds after a commit in a specific2.
branch? May Azure DevOps automatically trigger deployment in production?
What kind of test plans are available in Azure DevOps?3.
Can DevOps projects use private NuGet packages?4.
Why do we use work items?5.
What is the difference between Epics and Features work items?6.
What kind of relation exists between Tasks and Product Backlog items/User7.
Story work items?

Further reading
Here are some books and links you may consider reading with a view to gathering
more information about this chapter:

https:/​/ ​go. ​microsoft. ​com/ ​fwlink/ ​?​LinkID= ​825688

https:/​/ ​www. ​packtpub. ​com/ ​virtualization- ​and- ​cloud/ ​hands- ​devops- ​azure-
video

https:/​/ ​www. ​packtpub. ​com/ ​application- ​development/ ​mastering- ​non-
functional- ​requirements

https://go.microsoft.com/fwlink/?LinkID=825688
https://go.microsoft.com/fwlink/?LinkID=825688
https://go.microsoft.com/fwlink/?LinkID=825688
https://go.microsoft.com/fwlink/?LinkID=825688
https://go.microsoft.com/fwlink/?LinkID=825688
https://go.microsoft.com/fwlink/?LinkID=825688
https://go.microsoft.com/fwlink/?LinkID=825688
https://go.microsoft.com/fwlink/?LinkID=825688
https://go.microsoft.com/fwlink/?LinkID=825688
https://go.microsoft.com/fwlink/?LinkID=825688
https://go.microsoft.com/fwlink/?LinkID=825688
https://go.microsoft.com/fwlink/?LinkID=825688
https://go.microsoft.com/fwlink/?LinkID=825688
https://go.microsoft.com/fwlink/?LinkID=825688
https://go.microsoft.com/fwlink/?LinkID=825688
https://go.microsoft.com/fwlink/?LinkID=825688
https://go.microsoft.com/fwlink/?LinkID=825688
https://www.packtpub.com/virtualization-and-cloud/hands-devops-azure-video
https://www.packtpub.com/virtualization-and-cloud/hands-devops-azure-video
https://www.packtpub.com/virtualization-and-cloud/hands-devops-azure-video
https://www.packtpub.com/virtualization-and-cloud/hands-devops-azure-video
https://www.packtpub.com/virtualization-and-cloud/hands-devops-azure-video
https://www.packtpub.com/virtualization-and-cloud/hands-devops-azure-video
https://www.packtpub.com/virtualization-and-cloud/hands-devops-azure-video
https://www.packtpub.com/virtualization-and-cloud/hands-devops-azure-video
https://www.packtpub.com/virtualization-and-cloud/hands-devops-azure-video
https://www.packtpub.com/virtualization-and-cloud/hands-devops-azure-video
https://www.packtpub.com/virtualization-and-cloud/hands-devops-azure-video
https://www.packtpub.com/virtualization-and-cloud/hands-devops-azure-video
https://www.packtpub.com/virtualization-and-cloud/hands-devops-azure-video
https://www.packtpub.com/virtualization-and-cloud/hands-devops-azure-video
https://www.packtpub.com/virtualization-and-cloud/hands-devops-azure-video
https://www.packtpub.com/virtualization-and-cloud/hands-devops-azure-video
https://www.packtpub.com/virtualization-and-cloud/hands-devops-azure-video
https://www.packtpub.com/virtualization-and-cloud/hands-devops-azure-video
https://www.packtpub.com/virtualization-and-cloud/hands-devops-azure-video
https://www.packtpub.com/virtualization-and-cloud/hands-devops-azure-video
https://www.packtpub.com/virtualization-and-cloud/hands-devops-azure-video
https://www.packtpub.com/virtualization-and-cloud/hands-devops-azure-video
https://www.packtpub.com/application-development/mastering-non-functional-requirements
https://www.packtpub.com/application-development/mastering-non-functional-requirements
https://www.packtpub.com/application-development/mastering-non-functional-requirements
https://www.packtpub.com/application-development/mastering-non-functional-requirements
https://www.packtpub.com/application-development/mastering-non-functional-requirements
https://www.packtpub.com/application-development/mastering-non-functional-requirements
https://www.packtpub.com/application-development/mastering-non-functional-requirements
https://www.packtpub.com/application-development/mastering-non-functional-requirements
https://www.packtpub.com/application-development/mastering-non-functional-requirements
https://www.packtpub.com/application-development/mastering-non-functional-requirements
https://www.packtpub.com/application-development/mastering-non-functional-requirements
https://www.packtpub.com/application-development/mastering-non-functional-requirements
https://www.packtpub.com/application-development/mastering-non-functional-requirements
https://www.packtpub.com/application-development/mastering-non-functional-requirements
https://www.packtpub.com/application-development/mastering-non-functional-requirements
https://www.packtpub.com/application-development/mastering-non-functional-requirements
https://www.packtpub.com/application-development/mastering-non-functional-requirements
https://www.packtpub.com/application-development/mastering-non-functional-requirements
https://www.packtpub.com/application-development/mastering-non-functional-requirements
https://www.packtpub.com/application-development/mastering-non-functional-requirements

2
Section 2: Architecting Software

Solutions in a Cloud-Based
Environment

This section introduces you to the tools included in the main modern cloud platforms. The
focus is on Microsoft Azure, which has the most flexible and diverse offerings.

Chapter 4, Deciding the Best Cloud-Based Solution, is a general introduction to the cloud and
Azure. There, you find all relevant cloud concepts and a description of the overall Azure
offering, together with examples that show how you can configure resources in the cloud to
meet your needs. Chapter 5, Applying a Microservice Architecture to Your Enterprise
Application, describes the microservice computational model, which is the most efficacious
way to achieve flexibility, high throughput, and reliability in the cloud. There, you can
learn also about containers and Docker, which will enable you to mix different technologies
in your architecture and to make your software platform-independent.

Chapter 6, Interacting with Data in C# - Entity Framework Core, and Chapter 7, How to Choose
Your Data Storage in the Cloud, describes Azure's main storage offerings and how to use
them. There, you can learn the following:

How to choose the best storage solutions for each subsystem of your architecture
How to configure storage solutions to achieve the read/write parallelism you
need
How to integrate all these into your software

Section 2: Architecting Software Solutions in a Cloud-Based Environment Chapter 2

[87]

Finally, in Chapter 8, Working with Azure Functions, you will learn about the serverless
model of computation, which is included in all main cloud offerings, and understand how
to use it in the Azure cloud. Thanks to serverless, you can run your computations just when
they are needed without preallocating cloud resources, and you can do so while paying
only for the actual computation time.

This section includes the following chapters:

Chapter 4, Deciding the Best Cloud-Based Solution
Chapter 5, Applying a Microservice Architecture to Your Enterprise Application
Chapter 6, Interacting with Data in C# - Entity Framework Core
Chapter 7, How to Choose Your Data Storage in the Cloud
Chapter 8, Working with Azure Functions

4
Deciding the Best Cloud-Based

Solution
To design your application so that it's cloud-based, you have to understand different
architectural designs—from the simplest to the most sophisticated. This chapter discusses
different software architecture models and teaches you how to take advantage of the
opportunities offered by the cloud in your solutions. This chapter will also discuss the
different types of cloud service that we can consider while developing our infrastructure,
what the ideal scenarios are, and where we can use each of them.

The following topics will be covered in this chapter:

Infrastructure as a Service solutions
Platform as a Service solutions
Software as a Service solutions
Serverless solutions
How to use hybrid solutions and why they are so useful

Technical requirements
For the practical content in this chapter, you have to create or use an Azure account. I've
explained the account creation process in Chapter 1, Understanding the Importance of
Software Architecture, in the Creating an Azure account section.

Deciding the Best Cloud-Based Solution Chapter 4

[89]

Different software deployment models
Cloud solutions can be deployed with different models. The way you decide to deploy your
applications depends on the kind of team you work with. In companies where you have
infrastructure engineers, you will probably find more people working with Infrastructure
as a Service (IaaS). On the other hand, in companies where IT is not the core business, you
will find a bunch of Software as a Service (SaaS) systems. It is really common for
developers to decide to use the Platform as a Service (PaaS) option, or go serverless, as
they have no need to deliver infrastructures in this scenario.

As a software architect, you have to cope with this environment and be sure that you are
optimizing the cost and work factors, not only during the initial development of the
solution but also during its maintenance. Also, as an architect, you have to understand the
needs of your system and work hard to connect those needs to best-in-class peripheral
solutions to speed up delivery and keep the solution as close as possible to the customer's
specifications.

Infrastructure as a service and Azure
opportunities
IaaS was the first generation of cloud services provided by many different cloud players. Its
definition is easily found in many places, but we can summarize it as "your computing
infrastructure delivered on the internet". In the same way that we have virtualization of
services in a local data center, IaaS will also give you virtualized components, such as
servers, storage, and firewalls in the cloud.

In Azure, several services are provided with an IaaS model. Most of them are paid for and
you should pay attention to this when it comes to testing. It is worth mentioning that this
book does not set out to describe all of the IaaS services that Azure provides in detail.
However, as a software architect, you just need to understand that you will find services
such as the following:

Virtual machines: Windows Server, Linux, Oracle, and Data Science - Machine
Learning
Network: Virtual networks, load balancers, and DNS zones.
Storage: Files, tables, databases, and Redis.

Deciding the Best Cloud-Based Solution Chapter 4

[90]

Perform the following steps to create any service in Azure:

You have to find the service that best fits your needs and then create a resource.1.
The following screenshot shows a Windows Server virtual machine being
configured:

Deciding the Best Cloud-Based Solution Chapter 4

[91]

Follow the wizard provided by Azure to set up your virtual machine and then2.
connect to it using Remote Desktop Protocol (RDP). A great curiosity from this
kind of subscription is related to the capacity of hardware that you can have in
some minutes. The following screenshot exemplifies this:

If you compare the on-premise velocity to deliver hardware and cloud velocity, you will
realize that there is nothing better than the cloud when it comes to time-to-market. For
instance, the D64s_v3 machine presented at the bottom of the screenshot with 64 CPUs, 256
GB of RAM, and temporary storage of 512 GB is something you probably will not find in an
on-premise data center. Besides, in some use cases, this machine will just be used for some
hours during the month so it will be impossible to justify its purchase in an on-premise
scenario. This is why cloud computing is so amazing!

Security responsibility in IaaS
Security responsibility is another important thing to know about an IaaS platform. Many
people think that once you decide to go on the cloud, all of the security is done by the
provider. However, this is not true as you can see in the following screenshot:

Deciding the Best Cloud-Based Solution Chapter 4

[92]

IaaS will force you to take care of security from the operating system to the application. In
some cases, this is inevitable, but you have to understand that this will increase your
system cost.

IaaS can be a good option if you just want to move an already existing on-premise structure
to the cloud. This enables scalability, due to the tools that Azure gives you along with all of
the other services. However, if you are planning to develop an application from scratch,
you should also consider other options available on Azure.

Let's check one of the fastest systems in the next section, that is, PaaS.

PaaS – a world of opportunities for
developers
If you are studying or have studied software architectures, you will probably understand
perfectly the meaning of the next sentence: the World demands high speed when it comes
to software development! If you agree with this, you will love PaaS.

As you can see in the preceding screenshot, PaaS allows you to worry about security only
in terms of aspects that are closer to your business: your data and applications. As a
developer, this represents freedom from having to implement a bunch of configurations
that make your solution work safely.

Deciding the Best Cloud-Based Solution Chapter 4

[93]

Besides, security handling is not the only advantage of PaaS. As a software architect, you
can introduce these services as an opportunity to deliver richer solutions faster. Time-to-
market can surely justify the cost of many applications that run on a PaaS basis.

There are lots of services delivered as PaaS nowadays in Azure and, again, it is not the
purpose of this book to list all of them. However, some of them do need to be
mentioned. The list keeps growing and the recommendation here is: use and test services as
much as you can! Make sure that you will deliver better-designed solutions with this
thought in mind.

On the other hand, it is worth mentioning that, with PaaS solutions, you will not have full
control of the operating system. In fact, in many situations, you do not even have a way to
connect to it. This is good most of the time, but in some debugging situations, you may
miss this feature. The good thing is that PaaS components are evolving every single day
and one of the biggest concerns from Microsoft is making them widely visible.

The following sections present the most common PaaS components delivered by Microsoft
for .NET Core web apps such as Azure web apps and Azure SQL Server. We also describe
Azure Cognitive Services, a very powerful PaaS platform that demonstrates how wonderful
development is in the PaaS world. We will explore some of them on greater depth in the
remainder of this book.

Web apps
A web app is a PaaS option you can use to deploy your web app. You can deploy different
types of application, such as .NET, .NET Core, Java, PHP, Node JS, and Python. A sample
of this was presented in Chapter 1, Understanding the Importance of Software Architecture.

The good thing is that creating a web app doesn't require any structure and/or IIS web
server setup. In some cases, where you are using Linux to host your .NET Core application,
you do not have IIS at all.

Moreover, web apps have a plan option where you don't need to pay for usage. Of course,
there are limitations, such as only running 32-bit apps and failing to enable scalability, but
this can be a wonderful scenario for prototyping.

Deciding the Best Cloud-Based Solution Chapter 4

[94]

Azure SQL Server
Imagine how fast you can deploy a solution if you have all of the power of an SQL Server
without needing to pay for a big server to deploy this database. This applies to Azure SQL
Server. With Azure SQL Server, you have the opportunity to use Microsoft SQL Server to
perform what you need the most—storage and data processing. In this scenario, Azure
assumes responsibility for backing up the database.

Azure SQL Server even gives you the option to manage performance by itself. This is
called automatic tuning. Again, with PaaS components, you will be able to focus on what is
really important to your business: a very fast time-to-market.

The steps for creating an Azure SQL Server database are quite simple, like what we
checked before for other components. However, there are two things you need to pay
attention to: the creation of the server itself and how you will be charged.

When you search Azure SQL Server about creating a database, you will find this wizard to
help you:

Deciding the Best Cloud-Based Solution Chapter 4

[95]

As you can see, you have to create (at least for the first database) a
database.windows.net server, where your databases will be hosted. This server will
provide all of the parameters you need to access the SQL Server database using current
tools such as Visual Studio or SQL Server Management Studio. It is worth mentioning that
you have a bunch of features regarding security, such as transparency encryption and IP
firewall.

As soon as you decide on the name of your database server, you will be able to choose the
pricing tier on which your system will be charged. Especially in Azure SQL Server
databases, there are several different pricing options, as you can see in the following
screenshot. You should study each of them carefully because, depending on your scenario,
you may save money by optimizing a pricing tier:

Deciding the Best Cloud-Based Solution Chapter 4

[96]

For more information about SQL configuration, you can check this
link: https:/ ​/​azure. ​microsoft. ​com/ ​en- ​us/​services/ ​sql- ​database/ ​.

Once you have the configuration done, you will be able to connect to this server database in
the same way you do when your SQL Server is installed on-premise. The only detail that
you have to pay attention to is the configuration of the Azure SQL Server firewall, but this
is quite simple to set up and a good demonstration of how safe the PaaS service is.

Azure Cognitive Services
Artificial Intelligence (AI) is one of the most frequently discussed topics in software
architecture. We are a step away from a really great world where AI will be everywhere. To
make this last sentence come true, as a software architect you cannot think about AI as
software you need to reinvent every time from scratch.

Azure Cognitive Services can help you with this. In this set of APIs, you will find various
ways to develop vision, knowledge, speech, searches, and language solutions. Some of
them need to be trained to make things happen, but these services provide APIs for that
too.

The great thing about PaaS is evident from this scenario. The number of jobs you will have
to perform to prepare your application in an on-premise or IaaS environment is enormous.
In PaaS, you just do not need to worry about this. You're totally focused on what really
matters to you as a software architect: the solution to your business problem.

https://azure.microsoft.com/en-us/services/sql-database/
https://azure.microsoft.com/en-us/services/sql-database/
https://azure.microsoft.com/en-us/services/sql-database/
https://azure.microsoft.com/en-us/services/sql-database/
https://azure.microsoft.com/en-us/services/sql-database/
https://azure.microsoft.com/en-us/services/sql-database/
https://azure.microsoft.com/en-us/services/sql-database/
https://azure.microsoft.com/en-us/services/sql-database/
https://azure.microsoft.com/en-us/services/sql-database/
https://azure.microsoft.com/en-us/services/sql-database/
https://azure.microsoft.com/en-us/services/sql-database/
https://azure.microsoft.com/en-us/services/sql-database/
https://azure.microsoft.com/en-us/services/sql-database/
https://azure.microsoft.com/en-us/services/sql-database/
https://azure.microsoft.com/en-us/services/sql-database/
https://azure.microsoft.com/en-us/services/sql-database/
https://azure.microsoft.com/en-us/services/sql-database/
https://azure.microsoft.com/en-us/services/sql-database/
https://azure.microsoft.com/en-us/services/sql-database/
https://azure.microsoft.com/en-us/services/sql-database/

Deciding the Best Cloud-Based Solution Chapter 4

[97]

Setting up Azure Cognitive Services in your Azure account is also quite simple:

First, will need to add Cognitive Services like any other Azure component, as1.
you can see in the following screenshot:

Deciding the Best Cloud-Based Solution Chapter 4

[98]

As soon as you have done this, you will be able to use the APIs provided by the2.
server. You will find two important features in the service you've created:
endpoints and access keys. They are going to be used in your code to access APIs:

The following code sample shows how you can use Cognitive Services to translate
sentences. The main concept underlying this translation service is that you can post the
sentence you want to translate, according to the key and region where the service was set.
The following code enables you to post a request to the service API:

private static async Task<string> PostAPI(string api, string key, string
region,
 string textToTranslate)
{
 string result = String.Empty;
 using (var client = new HttpClient())
 {
 using (var request = new HttpRequestMessage(HttpMethod.Post, api))
 {
 request.Headers.Add("Ocp-Apim-Subscription-Key", key);
 request.Headers.Add("Ocp-Apim-Subscription-Region", region);

Deciding the Best Cloud-Based Solution Chapter 4

[99]

 // five seconds for timeout
 client.Timeout = new TimeSpan(0, 0, 5);
 var body = new object[] { new { Text = textToTranslate } };
 var requestBody = JsonConvert.SerializeObject(body);

 request.Content = new StringContent(requestBody, Encoding.UTF8,
 "application/json");

 var response = await client.SendAsync(request);

 if (response.IsSuccessStatusCode)
 result = await response.Content.ReadAsStringAsync();
 }
 }
 return result;
}

It is worth mentioning that the preceding code will allow you to post requests to translate
any text into any language provided you define it in the parameters. The following is the
main program that calls the previous method:

/// <summary>
/// Check this content at: https://docs.microsoft.com/en-us/azure/cognitive
/// services/translator/reference/v3-0-reference
/// </summary>
static void Main()
{
 var host = "https://api.cognitive.microsofttranslator.com";
 var route = "/translate?api-version=3.0&to=es";
 var subscriptionKey = "[YOUR KEY HERE]";
 var region = "[YOUR REGION HERE]";

 var translatedSentence = PostAPI(host + route, subscriptionKey, region,
 "Hello World!").Result;
 Console.WriteLine(translatedSentence);
}

This is a perfect example of how easily and quickly you can use services such as this to
architect your projects. Also, this kind of approach to development is really good, since you
are using a piece of code already tested and used by other solutions.

Deciding the Best Cloud-Based Solution Chapter 4

[100]

SaaS – just sign in and get started!
Software as a Service is probably the easiest way to use cloud-based services. Cloud
players provide many good options that solve common problems in a company for their
end users.

A good example of this type of service is Office 365. The key point with these platforms is
that you don't need to worry about application maintenance. This is particularly convenient
in scenarios where your team is totally focused on developing the core business of the
application. For example, if your solution needs to deliver good reports, maybe you can
design them using Power BI (which is included in Office 365).

Another pretty good example of an SaaS platform is Azure DevOps. As a software
architect, before Azure DevOps or Visual Studio Team Services (VSTS), you needed to
install and configure Team Foundation Server (or even older tools like this one) to make
your team work with a common repository and an application life cycle management tool.

We used to spend a lot of time just working either on preparing the server for Team
Foundation Server (TFS) installation or on upgrading and continuously maintaining the
TFS already installed. This is no longer needed due to the simplicity of SaaS Azure DevOps.

Understanding what serverless means
The word explains itself: a serverless solution means a solution without a server. But how
can this be possible in a cloud architecture? It is pretty simple. You do not have to worry
about anything related to the server in such a solution.

You may now be thinking that serverless is just another option—of course, this is true as
this architecture does not deliver a complete solution. But the key point here is that, in a
serverless solution, you have a very fast, simple, and agile application life cycle since all
serverless code is stateless and loosely coupled with the remainder of the system. Some
authors refer to this as Function as a Service (FaaS).

Of course, the server runs somewhere. The key point here is that you don't need to worry
about this, or even scalability. This will enable you to focus completely on your app
business logic. Again, the World needs fast development and good customer experiences at
the same time. The more you focus on customer needs, the better!

Deciding the Best Cloud-Based Solution Chapter 4

[101]

In Chapter 8, Working with Azure Functions, you will explore one of the best serverless
implementations that Microsoft provides in Azure—Azure Functions. There, we will focus
on how you can develop serverless solutions and learn about their advantages and
disadvantages.

Why are hybrid applications so useful in
many cases?
Hybrid solutions are solutions whose parts do not share a uniform architectural choice;
each part makes a different architectural choice. In the cloud, the word hybrid refers mainly
to solutions that mix cloud subsystems with on-premise subsystems. However, it can refer
also to mixing web subsystems with device-specific subsystems.

Due to the number of services Azure can provide and the number of design architectures
that can be implemented, hybrid applications are probably the best answer to the main
question addressed in this chapter, that is, how to use the opportunities offered by the
cloud in your projects. Nowadays, many current projects are moving from an on-premise
solution to a cloud architecture and, depending on where you are going to deliver these
projects, you will still find many bad preconceptions regarding moving to the cloud. Most
of them are related to cost, security, and service availability.

You need to understand that there is some truth in these preconceptions, but not in the way
people think. For sure, you as a software architect cannot ignore them. Especially when you
develop a critical system, you have to decide whether everything can go on the cloud or
whether it is better to deliver part of the system on the edge.

Mobile solutions can be considered a classic example of hybrid applications since they mix
a web-based architecture with a device-based architecture to offer a better user experience.
There are lots of scenarios where you can replace a mobile application with a responsive
website. However, when it comes to interface quality and performance, maybe a responsive
web site will not give the end user what they really need.

In the next section, we will discuss the practical example of the book use case.

Deciding the Best Cloud-Based Solution Chapter 4

[102]

Use case – a hybrid application
If you go back to Chapter 1, Understanding the Importance of Software Architecture, you will
find a system requirement that describes the system environments where our
WWTravelClub example application is supposed to run:

SR_003: The system shall run in Windows, Linux, iOS and Android platforms.

At first sight, any developer would respond by saying: web apps. However, the iOS and
Android platforms will also need your attention as a software architect. In this scenario, as
in several situations, user experience is the key to the success of the project. The decision
needs to be driven not only by development speed but again by the benefits gained by
delivering a great user experience.

Another decision that the software architect must make in this project is related to the
technology for the mobile application if they decide to develop one. Again, this is going to
be a choice between hybrid and native apps since, in this case, a hybrid solution such as
Xamarin can be used. So, with mobile applications, you also have the option to keep
writing the code in C#.

The following screenshot represents our first choice for the WWTravelClub architecture.
The decision to rely on Azure components is related to cost and maintenance
considerations. Each of the following items will be discussed later on in this book,
in Chapter 6, Interacting with Data in C# - Entity Framework Core, Chapter 7, How to Choose
Your Data Storage in the Cloud, and Chapter 8, Working with Azure Functions, together with
the reasons for the choice. For now, it is enough to know that WWTravelClub is a hybrid
application, running Xamarin Apps on mobiles and a .NET Core web app on the server
side:

Deciding the Best Cloud-Based Solution Chapter 4

[103]

There will be an Azure SQL Server database connected from the web app by Entity
Framework Core, which will be discussed in Chapter 6, Interacting with Data in C# - Entity
Framework Core. Later on, in Chapter 7, How to Choose Your Data Storage in the Cloud, we will
also add NoSQL databases for performance and cost reasons. For picture storage, file
storage is chosen. To finish, Xamarin Apps will get information from the system through
Azure Functions.

Book use case – which is the best cloud platform
for this use case?
As you can verify in the screenshot in the last section, the WWTravelClub architecture was
designed mainly with Platform as a Service and serverless components provided by Azure.
All of the development will be conducted inside the Azure DevOps SaaS Microsoft
Platform.

In the imaginary scenario we have in WWTravelClub, the sponsors have indicated that no
one in the WWTravelClub team specializes in infrastructure. This is why the software
architecture uses PaaS services. Considering this scenario and the required development
speed, these components will surely perform well.

While we fly through the chapters and technologies discussed in this book, this architecture
will change and evolve without being constrained by any earlier choices. This is a great
opportunity offered by Azure and by modern architecture design. You can easily change
components and structures as your solution evolves.

Deciding the Best Cloud-Based Solution Chapter 4

[104]

Summary
In this chapter, you learned how to take advantage of the services offered by the cloud in
your solutions, and the various options you can choose from.

This chapter covered different ways to deliver the same application in a cloud-based
structure. We also noted how rapidly Microsoft is delivering all of these options to its
customers, because you can experience all of these options in actual applications and
choose the one that best fits your needs since there is no silver bullet that works in all
situations. As a software architect, you need to analyze your environment and your team,
and then decide on the best cloud architecture to implement in your solution.

The next chapter is dedicated to how to build a flexible architecture made up of small
scalable software modules called microservices.

Questions
Why should you use IaaS in your solution?1.
Why should you use PaaS in your solution?2.
Why should you use SaaS in your solution?3.
Why should you use serverless in your solution?4.
What is the advantage of using an Azure SQL Server database?5.
How can you accelerate AI in your application with Azure?6.
How can hybrid architectures help you to design a better solution?7.

Deciding the Best Cloud-Based Solution Chapter 4

[105]

Further reading
You can checkout these web links to decide which topics covered in this chapter you should
study in greater depth:

https:/​/ ​visualstudio. ​microsoft. ​com/ ​xamarin/ ​

https:/​/ ​www. ​packtpub. ​com/ ​application- ​development/ ​xamarin- ​cross-
platform- ​application- ​development

https:/​/ ​www. ​packtpub. ​com/ ​virtualization- ​and- ​cloud/ ​learning- ​azure-
functions

https:/​/ ​azure. ​microsoft. ​com/ ​overview/ ​what- ​is-​iaas/ ​

https:/​/ ​docs. ​microsoft. ​com/ ​en-​us/ ​azure/ ​security/ ​azure- ​security- ​iaas

https:/​/ ​azure. ​microsoft. ​com/ ​services/ ​app-​service/ ​web/ ​

https:/​/ ​azure. ​microsoft. ​com/ ​services/ ​sql-​database/ ​

https:/​/ ​azure. ​microsoft. ​com/ ​en-​us/ ​services/ ​virtual- ​machines/ ​data-
science- ​virtual- ​machines/ ​

https:/​/ ​docs. ​microsoft. ​com/ ​azure/ ​sql- ​database/ ​sql- ​database- ​automatic-
tuning

https:/​/ ​azure. ​microsoft. ​com/ ​en-​us/ ​services/ ​cognitive- ​services/ ​

https:/​/ ​docs. ​microsoft. ​com/ ​en-​us/ ​azure/ ​architecture/ ​

https:/​/ ​powerbi. ​microsoft. ​com/​

https:/​/ ​office. ​com

https:/​/ ​azure. ​microsoft. ​com/ ​en-​us/ ​overview/ ​what- ​is-​serverless-
computing/ ​

https:/​/ ​azure. ​microsoft. ​com/ ​en-​us/ ​pricing/ ​details/ ​sql- ​database/ ​

https:/​/ ​www. ​packtpub. ​com/ ​virtualization- ​and- ​cloud/ ​professional- ​azure-
sql-​database- ​administration

https://visualstudio.microsoft.com/xamarin/
https://visualstudio.microsoft.com/xamarin/
https://visualstudio.microsoft.com/xamarin/
https://visualstudio.microsoft.com/xamarin/
https://visualstudio.microsoft.com/xamarin/
https://visualstudio.microsoft.com/xamarin/
https://visualstudio.microsoft.com/xamarin/
https://visualstudio.microsoft.com/xamarin/
https://visualstudio.microsoft.com/xamarin/
https://visualstudio.microsoft.com/xamarin/
https://visualstudio.microsoft.com/xamarin/
https://visualstudio.microsoft.com/xamarin/
https://www.packtpub.com/application-development/xamarin-cross-platform-application-development
https://www.packtpub.com/application-development/xamarin-cross-platform-application-development
https://www.packtpub.com/application-development/xamarin-cross-platform-application-development
https://www.packtpub.com/application-development/xamarin-cross-platform-application-development
https://www.packtpub.com/application-development/xamarin-cross-platform-application-development
https://www.packtpub.com/application-development/xamarin-cross-platform-application-development
https://www.packtpub.com/application-development/xamarin-cross-platform-application-development
https://www.packtpub.com/application-development/xamarin-cross-platform-application-development
https://www.packtpub.com/application-development/xamarin-cross-platform-application-development
https://www.packtpub.com/application-development/xamarin-cross-platform-application-development
https://www.packtpub.com/application-development/xamarin-cross-platform-application-development
https://www.packtpub.com/application-development/xamarin-cross-platform-application-development
https://www.packtpub.com/application-development/xamarin-cross-platform-application-development
https://www.packtpub.com/application-development/xamarin-cross-platform-application-development
https://www.packtpub.com/application-development/xamarin-cross-platform-application-development
https://www.packtpub.com/application-development/xamarin-cross-platform-application-development
https://www.packtpub.com/application-development/xamarin-cross-platform-application-development
https://www.packtpub.com/application-development/xamarin-cross-platform-application-development
https://www.packtpub.com/application-development/xamarin-cross-platform-application-development
https://www.packtpub.com/application-development/xamarin-cross-platform-application-development
https://www.packtpub.com/application-development/xamarin-cross-platform-application-development
https://www.packtpub.com/application-development/xamarin-cross-platform-application-development
https://www.packtpub.com/virtualization-and-cloud/learning-azure-functions
https://www.packtpub.com/virtualization-and-cloud/learning-azure-functions
https://www.packtpub.com/virtualization-and-cloud/learning-azure-functions
https://www.packtpub.com/virtualization-and-cloud/learning-azure-functions
https://www.packtpub.com/virtualization-and-cloud/learning-azure-functions
https://www.packtpub.com/virtualization-and-cloud/learning-azure-functions
https://www.packtpub.com/virtualization-and-cloud/learning-azure-functions
https://www.packtpub.com/virtualization-and-cloud/learning-azure-functions
https://www.packtpub.com/virtualization-and-cloud/learning-azure-functions
https://www.packtpub.com/virtualization-and-cloud/learning-azure-functions
https://www.packtpub.com/virtualization-and-cloud/learning-azure-functions
https://www.packtpub.com/virtualization-and-cloud/learning-azure-functions
https://www.packtpub.com/virtualization-and-cloud/learning-azure-functions
https://www.packtpub.com/virtualization-and-cloud/learning-azure-functions
https://www.packtpub.com/virtualization-and-cloud/learning-azure-functions
https://www.packtpub.com/virtualization-and-cloud/learning-azure-functions
https://www.packtpub.com/virtualization-and-cloud/learning-azure-functions
https://www.packtpub.com/virtualization-and-cloud/learning-azure-functions
https://www.packtpub.com/virtualization-and-cloud/learning-azure-functions
https://www.packtpub.com/virtualization-and-cloud/learning-azure-functions
https://azure.microsoft.com/overview/what-is-iaas/
https://azure.microsoft.com/overview/what-is-iaas/
https://azure.microsoft.com/overview/what-is-iaas/
https://azure.microsoft.com/overview/what-is-iaas/
https://azure.microsoft.com/overview/what-is-iaas/
https://azure.microsoft.com/overview/what-is-iaas/
https://azure.microsoft.com/overview/what-is-iaas/
https://azure.microsoft.com/overview/what-is-iaas/
https://azure.microsoft.com/overview/what-is-iaas/
https://azure.microsoft.com/overview/what-is-iaas/
https://azure.microsoft.com/overview/what-is-iaas/
https://azure.microsoft.com/overview/what-is-iaas/
https://azure.microsoft.com/overview/what-is-iaas/
https://azure.microsoft.com/overview/what-is-iaas/
https://azure.microsoft.com/overview/what-is-iaas/
https://azure.microsoft.com/overview/what-is-iaas/
https://azure.microsoft.com/overview/what-is-iaas/
https://azure.microsoft.com/overview/what-is-iaas/
https://docs.microsoft.com/en-us/azure/security/azure-security-iaas
https://docs.microsoft.com/en-us/azure/security/azure-security-iaas
https://docs.microsoft.com/en-us/azure/security/azure-security-iaas
https://docs.microsoft.com/en-us/azure/security/azure-security-iaas
https://docs.microsoft.com/en-us/azure/security/azure-security-iaas
https://docs.microsoft.com/en-us/azure/security/azure-security-iaas
https://docs.microsoft.com/en-us/azure/security/azure-security-iaas
https://docs.microsoft.com/en-us/azure/security/azure-security-iaas
https://docs.microsoft.com/en-us/azure/security/azure-security-iaas
https://docs.microsoft.com/en-us/azure/security/azure-security-iaas
https://docs.microsoft.com/en-us/azure/security/azure-security-iaas
https://docs.microsoft.com/en-us/azure/security/azure-security-iaas
https://docs.microsoft.com/en-us/azure/security/azure-security-iaas
https://docs.microsoft.com/en-us/azure/security/azure-security-iaas
https://docs.microsoft.com/en-us/azure/security/azure-security-iaas
https://docs.microsoft.com/en-us/azure/security/azure-security-iaas
https://docs.microsoft.com/en-us/azure/security/azure-security-iaas
https://docs.microsoft.com/en-us/azure/security/azure-security-iaas
https://docs.microsoft.com/en-us/azure/security/azure-security-iaas
https://docs.microsoft.com/en-us/azure/security/azure-security-iaas
https://docs.microsoft.com/en-us/azure/security/azure-security-iaas
https://docs.microsoft.com/en-us/azure/security/azure-security-iaas
https://docs.microsoft.com/en-us/azure/security/azure-security-iaas
https://azure.microsoft.com/services/app-service/web/
https://azure.microsoft.com/services/app-service/web/
https://azure.microsoft.com/services/app-service/web/
https://azure.microsoft.com/services/app-service/web/
https://azure.microsoft.com/services/app-service/web/
https://azure.microsoft.com/services/app-service/web/
https://azure.microsoft.com/services/app-service/web/
https://azure.microsoft.com/services/app-service/web/
https://azure.microsoft.com/services/app-service/web/
https://azure.microsoft.com/services/app-service/web/
https://azure.microsoft.com/services/app-service/web/
https://azure.microsoft.com/services/app-service/web/
https://azure.microsoft.com/services/app-service/web/
https://azure.microsoft.com/services/app-service/web/
https://azure.microsoft.com/services/app-service/web/
https://azure.microsoft.com/services/app-service/web/
https://azure.microsoft.com/services/app-service/web/
https://azure.microsoft.com/services/app-service/web/
https://azure.microsoft.com/services/sql-database/
https://azure.microsoft.com/services/sql-database/
https://azure.microsoft.com/services/sql-database/
https://azure.microsoft.com/services/sql-database/
https://azure.microsoft.com/services/sql-database/
https://azure.microsoft.com/services/sql-database/
https://azure.microsoft.com/services/sql-database/
https://azure.microsoft.com/services/sql-database/
https://azure.microsoft.com/services/sql-database/
https://azure.microsoft.com/services/sql-database/
https://azure.microsoft.com/services/sql-database/
https://azure.microsoft.com/services/sql-database/
https://azure.microsoft.com/services/sql-database/
https://azure.microsoft.com/services/sql-database/
https://azure.microsoft.com/services/sql-database/
https://azure.microsoft.com/services/sql-database/
https://azure.microsoft.com/en-us/services/virtual-machines/data-science-virtual-machines/
https://azure.microsoft.com/en-us/services/virtual-machines/data-science-virtual-machines/
https://azure.microsoft.com/en-us/services/virtual-machines/data-science-virtual-machines/
https://azure.microsoft.com/en-us/services/virtual-machines/data-science-virtual-machines/
https://azure.microsoft.com/en-us/services/virtual-machines/data-science-virtual-machines/
https://azure.microsoft.com/en-us/services/virtual-machines/data-science-virtual-machines/
https://azure.microsoft.com/en-us/services/virtual-machines/data-science-virtual-machines/
https://azure.microsoft.com/en-us/services/virtual-machines/data-science-virtual-machines/
https://azure.microsoft.com/en-us/services/virtual-machines/data-science-virtual-machines/
https://azure.microsoft.com/en-us/services/virtual-machines/data-science-virtual-machines/
https://azure.microsoft.com/en-us/services/virtual-machines/data-science-virtual-machines/
https://azure.microsoft.com/en-us/services/virtual-machines/data-science-virtual-machines/
https://azure.microsoft.com/en-us/services/virtual-machines/data-science-virtual-machines/
https://azure.microsoft.com/en-us/services/virtual-machines/data-science-virtual-machines/
https://azure.microsoft.com/en-us/services/virtual-machines/data-science-virtual-machines/
https://azure.microsoft.com/en-us/services/virtual-machines/data-science-virtual-machines/
https://azure.microsoft.com/en-us/services/virtual-machines/data-science-virtual-machines/
https://azure.microsoft.com/en-us/services/virtual-machines/data-science-virtual-machines/
https://azure.microsoft.com/en-us/services/virtual-machines/data-science-virtual-machines/
https://azure.microsoft.com/en-us/services/virtual-machines/data-science-virtual-machines/
https://azure.microsoft.com/en-us/services/virtual-machines/data-science-virtual-machines/
https://azure.microsoft.com/en-us/services/virtual-machines/data-science-virtual-machines/
https://azure.microsoft.com/en-us/services/virtual-machines/data-science-virtual-machines/
https://azure.microsoft.com/en-us/services/virtual-machines/data-science-virtual-machines/
https://azure.microsoft.com/en-us/services/virtual-machines/data-science-virtual-machines/
https://azure.microsoft.com/en-us/services/virtual-machines/data-science-virtual-machines/
https://azure.microsoft.com/en-us/services/virtual-machines/data-science-virtual-machines/
https://docs.microsoft.com/azure/sql-database/sql-database-automatic-tuning
https://docs.microsoft.com/azure/sql-database/sql-database-automatic-tuning
https://docs.microsoft.com/azure/sql-database/sql-database-automatic-tuning
https://docs.microsoft.com/azure/sql-database/sql-database-automatic-tuning
https://docs.microsoft.com/azure/sql-database/sql-database-automatic-tuning
https://docs.microsoft.com/azure/sql-database/sql-database-automatic-tuning
https://docs.microsoft.com/azure/sql-database/sql-database-automatic-tuning
https://docs.microsoft.com/azure/sql-database/sql-database-automatic-tuning
https://docs.microsoft.com/azure/sql-database/sql-database-automatic-tuning
https://docs.microsoft.com/azure/sql-database/sql-database-automatic-tuning
https://docs.microsoft.com/azure/sql-database/sql-database-automatic-tuning
https://docs.microsoft.com/azure/sql-database/sql-database-automatic-tuning
https://docs.microsoft.com/azure/sql-database/sql-database-automatic-tuning
https://docs.microsoft.com/azure/sql-database/sql-database-automatic-tuning
https://docs.microsoft.com/azure/sql-database/sql-database-automatic-tuning
https://docs.microsoft.com/azure/sql-database/sql-database-automatic-tuning
https://docs.microsoft.com/azure/sql-database/sql-database-automatic-tuning
https://docs.microsoft.com/azure/sql-database/sql-database-automatic-tuning
https://docs.microsoft.com/azure/sql-database/sql-database-automatic-tuning
https://docs.microsoft.com/azure/sql-database/sql-database-automatic-tuning
https://docs.microsoft.com/azure/sql-database/sql-database-automatic-tuning
https://docs.microsoft.com/azure/sql-database/sql-database-automatic-tuning
https://azure.microsoft.com/en-us/services/cognitive-services/
https://azure.microsoft.com/en-us/services/cognitive-services/
https://azure.microsoft.com/en-us/services/cognitive-services/
https://azure.microsoft.com/en-us/services/cognitive-services/
https://azure.microsoft.com/en-us/services/cognitive-services/
https://azure.microsoft.com/en-us/services/cognitive-services/
https://azure.microsoft.com/en-us/services/cognitive-services/
https://azure.microsoft.com/en-us/services/cognitive-services/
https://azure.microsoft.com/en-us/services/cognitive-services/
https://azure.microsoft.com/en-us/services/cognitive-services/
https://azure.microsoft.com/en-us/services/cognitive-services/
https://azure.microsoft.com/en-us/services/cognitive-services/
https://azure.microsoft.com/en-us/services/cognitive-services/
https://azure.microsoft.com/en-us/services/cognitive-services/
https://azure.microsoft.com/en-us/services/cognitive-services/
https://azure.microsoft.com/en-us/services/cognitive-services/
https://azure.microsoft.com/en-us/services/cognitive-services/
https://azure.microsoft.com/en-us/services/cognitive-services/
https://azure.microsoft.com/en-us/services/cognitive-services/
https://azure.microsoft.com/en-us/services/cognitive-services/
https://docs.microsoft.com/en-us/azure/architecture/
https://docs.microsoft.com/en-us/azure/architecture/
https://docs.microsoft.com/en-us/azure/architecture/
https://docs.microsoft.com/en-us/azure/architecture/
https://docs.microsoft.com/en-us/azure/architecture/
https://docs.microsoft.com/en-us/azure/architecture/
https://docs.microsoft.com/en-us/azure/architecture/
https://docs.microsoft.com/en-us/azure/architecture/
https://docs.microsoft.com/en-us/azure/architecture/
https://docs.microsoft.com/en-us/azure/architecture/
https://docs.microsoft.com/en-us/azure/architecture/
https://docs.microsoft.com/en-us/azure/architecture/
https://docs.microsoft.com/en-us/azure/architecture/
https://docs.microsoft.com/en-us/azure/architecture/
https://docs.microsoft.com/en-us/azure/architecture/
https://docs.microsoft.com/en-us/azure/architecture/
https://docs.microsoft.com/en-us/azure/architecture/
https://docs.microsoft.com/en-us/azure/architecture/
https://powerbi.microsoft.com/
https://powerbi.microsoft.com/
https://powerbi.microsoft.com/
https://powerbi.microsoft.com/
https://powerbi.microsoft.com/
https://powerbi.microsoft.com/
https://powerbi.microsoft.com/
https://powerbi.microsoft.com/
https://powerbi.microsoft.com/
https://powerbi.microsoft.com/
https://office.com
https://office.com
https://office.com
https://office.com
https://office.com
https://office.com
https://office.com
https://azure.microsoft.com/en-us/overview/what-is-serverless-computing/
https://azure.microsoft.com/en-us/overview/what-is-serverless-computing/
https://azure.microsoft.com/en-us/overview/what-is-serverless-computing/
https://azure.microsoft.com/en-us/overview/what-is-serverless-computing/
https://azure.microsoft.com/en-us/overview/what-is-serverless-computing/
https://azure.microsoft.com/en-us/overview/what-is-serverless-computing/
https://azure.microsoft.com/en-us/overview/what-is-serverless-computing/
https://azure.microsoft.com/en-us/overview/what-is-serverless-computing/
https://azure.microsoft.com/en-us/overview/what-is-serverless-computing/
https://azure.microsoft.com/en-us/overview/what-is-serverless-computing/
https://azure.microsoft.com/en-us/overview/what-is-serverless-computing/
https://azure.microsoft.com/en-us/overview/what-is-serverless-computing/
https://azure.microsoft.com/en-us/overview/what-is-serverless-computing/
https://azure.microsoft.com/en-us/overview/what-is-serverless-computing/
https://azure.microsoft.com/en-us/overview/what-is-serverless-computing/
https://azure.microsoft.com/en-us/overview/what-is-serverless-computing/
https://azure.microsoft.com/en-us/overview/what-is-serverless-computing/
https://azure.microsoft.com/en-us/overview/what-is-serverless-computing/
https://azure.microsoft.com/en-us/overview/what-is-serverless-computing/
https://azure.microsoft.com/en-us/overview/what-is-serverless-computing/
https://azure.microsoft.com/en-us/overview/what-is-serverless-computing/
https://azure.microsoft.com/en-us/overview/what-is-serverless-computing/
https://azure.microsoft.com/en-us/overview/what-is-serverless-computing/
https://azure.microsoft.com/en-us/pricing/details/sql-database/
https://azure.microsoft.com/en-us/pricing/details/sql-database/
https://azure.microsoft.com/en-us/pricing/details/sql-database/
https://azure.microsoft.com/en-us/pricing/details/sql-database/
https://azure.microsoft.com/en-us/pricing/details/sql-database/
https://azure.microsoft.com/en-us/pricing/details/sql-database/
https://azure.microsoft.com/en-us/pricing/details/sql-database/
https://azure.microsoft.com/en-us/pricing/details/sql-database/
https://azure.microsoft.com/en-us/pricing/details/sql-database/
https://azure.microsoft.com/en-us/pricing/details/sql-database/
https://azure.microsoft.com/en-us/pricing/details/sql-database/
https://azure.microsoft.com/en-us/pricing/details/sql-database/
https://azure.microsoft.com/en-us/pricing/details/sql-database/
https://azure.microsoft.com/en-us/pricing/details/sql-database/
https://azure.microsoft.com/en-us/pricing/details/sql-database/
https://azure.microsoft.com/en-us/pricing/details/sql-database/
https://azure.microsoft.com/en-us/pricing/details/sql-database/
https://azure.microsoft.com/en-us/pricing/details/sql-database/
https://azure.microsoft.com/en-us/pricing/details/sql-database/
https://azure.microsoft.com/en-us/pricing/details/sql-database/
https://azure.microsoft.com/en-us/pricing/details/sql-database/
https://azure.microsoft.com/en-us/pricing/details/sql-database/
https://www.packtpub.com/virtualization-and-cloud/professional-azure-sql-database-administration
https://www.packtpub.com/virtualization-and-cloud/professional-azure-sql-database-administration
https://www.packtpub.com/virtualization-and-cloud/professional-azure-sql-database-administration
https://www.packtpub.com/virtualization-and-cloud/professional-azure-sql-database-administration
https://www.packtpub.com/virtualization-and-cloud/professional-azure-sql-database-administration
https://www.packtpub.com/virtualization-and-cloud/professional-azure-sql-database-administration
https://www.packtpub.com/virtualization-and-cloud/professional-azure-sql-database-administration
https://www.packtpub.com/virtualization-and-cloud/professional-azure-sql-database-administration
https://www.packtpub.com/virtualization-and-cloud/professional-azure-sql-database-administration
https://www.packtpub.com/virtualization-and-cloud/professional-azure-sql-database-administration
https://www.packtpub.com/virtualization-and-cloud/professional-azure-sql-database-administration
https://www.packtpub.com/virtualization-and-cloud/professional-azure-sql-database-administration
https://www.packtpub.com/virtualization-and-cloud/professional-azure-sql-database-administration
https://www.packtpub.com/virtualization-and-cloud/professional-azure-sql-database-administration
https://www.packtpub.com/virtualization-and-cloud/professional-azure-sql-database-administration
https://www.packtpub.com/virtualization-and-cloud/professional-azure-sql-database-administration
https://www.packtpub.com/virtualization-and-cloud/professional-azure-sql-database-administration
https://www.packtpub.com/virtualization-and-cloud/professional-azure-sql-database-administration
https://www.packtpub.com/virtualization-and-cloud/professional-azure-sql-database-administration
https://www.packtpub.com/virtualization-and-cloud/professional-azure-sql-database-administration
https://www.packtpub.com/virtualization-and-cloud/professional-azure-sql-database-administration
https://www.packtpub.com/virtualization-and-cloud/professional-azure-sql-database-administration
https://www.packtpub.com/virtualization-and-cloud/professional-azure-sql-database-administration
https://www.packtpub.com/virtualization-and-cloud/professional-azure-sql-database-administration

5
Applying a Microservice

Architecture to Your Enterprise
Application

This chapter is dedicated to describing highly scalable architectures based on small
modules called microservices. The microservices architecture allows for fine-grained
scaling operations where every single module can be scaled as required without it affecting
the remainder of the system. Moreover, they allow for better Continuous
Integration/Continuous Deployment (CI/CD) by permitting every system subpart to
evolve and be deployed independently of the others.

In this chapter, we will cover the following topics:

What are microservices?
When do microservices help?
How does .NET Core deal with microservices?
Which tools are needed to manage microservices?
Use case – logging a microservice

By the end of this chapter, you will have learned how to implement a microservice in .NET
Core based on this chapter's use case.

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[107]

Technical requirements
In this chapter, you will require the following:

Visual Studio 2017 or 2019 free Community Edition or better with all the
database tools installed.
A free Azure account. The Creating an Azure account section in Chapter 1,
Understanding the Importance of Software Architecture, explains how to create one.
A local emulator for Azure Service Fabric to debug your microservices in Visual
Studio. It is free and can be downloaded from https:/ ​/​www. ​microsoft. ​com/ ​web/
handlers/ ​webpi. ​ashx? ​command= ​getinstallerredirect ​appid= ​MicrosoftAzure-
ServiceFabric- ​CoreSDK. To avoid installation issues, ensure your version of
Windows is up to date. Moreover, the emulator uses PowerShell high-privilege-
level commands that, by default, are blocked by PowerShell. To enable them, you
need to execute the following command in the Visual Studio Package Manager
Console or in any PowerShell console. Visual Studio or an external PowerShell
console must be started as an administrator for the following command to be
successful:

Set-ExecutionPolicy -ExecutionPolicy Unrestricted -Force -Scope
CurrentUser

Docker CE for Windows if you want to debug Docker containerized
microservices in Visual Studio (https:/ ​/​store. ​docker. ​com/ ​editions/
community/ ​docker- ​ce- ​desktop- ​windows? ​tab= ​description).

What are microservices?
Microservice architectures allow each module that makes up a solution to be scaled
independently from the others to achieve the maximum throughput with minimal cost. In
fact, scaling whole systems instead of their current bottlenecks inevitably results in a
remarkable waste of resources, so a fine-grained control of subsystem scaling has a
considerable impact on the system's overall cost.

However, microservices are more than scalable components – they are software building
blocks that can be developed, maintained, and deployed independently of each other.
Splitting development and maintenance among modules that can be independently
developed, maintained, and deployed improves the overall system's CI/CD cycle (the
CI/CD concept was explained in more detail in the Organizing your work using Azure DevOps
section in Chapter 3, Documenting Requirements with Azure DevOps).

https://www.microsoft.com/web/handlers/webpi.ashx?command=getinstallerredirect&appid=MicrosoftAzure-ServiceFabric-CoreSDK
https://www.microsoft.com/web/handlers/webpi.ashx?command=getinstallerredirect&appid=MicrosoftAzure-ServiceFabric-CoreSDK
https://www.microsoft.com/web/handlers/webpi.ashx?command=getinstallerredirect&appid=MicrosoftAzure-ServiceFabric-CoreSDK
https://www.microsoft.com/web/handlers/webpi.ashx?command=getinstallerredirect&appid=MicrosoftAzure-ServiceFabric-CoreSDK
https://www.microsoft.com/web/handlers/webpi.ashx?command=getinstallerredirect&appid=MicrosoftAzure-ServiceFabric-CoreSDK
https://www.microsoft.com/web/handlers/webpi.ashx?command=getinstallerredirect&appid=MicrosoftAzure-ServiceFabric-CoreSDK
https://www.microsoft.com/web/handlers/webpi.ashx?command=getinstallerredirect&appid=MicrosoftAzure-ServiceFabric-CoreSDK
https://www.microsoft.com/web/handlers/webpi.ashx?command=getinstallerredirect&appid=MicrosoftAzure-ServiceFabric-CoreSDK
https://www.microsoft.com/web/handlers/webpi.ashx?command=getinstallerredirect&appid=MicrosoftAzure-ServiceFabric-CoreSDK
https://www.microsoft.com/web/handlers/webpi.ashx?command=getinstallerredirect&appid=MicrosoftAzure-ServiceFabric-CoreSDK
https://www.microsoft.com/web/handlers/webpi.ashx?command=getinstallerredirect&appid=MicrosoftAzure-ServiceFabric-CoreSDK
https://www.microsoft.com/web/handlers/webpi.ashx?command=getinstallerredirect&appid=MicrosoftAzure-ServiceFabric-CoreSDK
https://www.microsoft.com/web/handlers/webpi.ashx?command=getinstallerredirect&appid=MicrosoftAzure-ServiceFabric-CoreSDK
https://www.microsoft.com/web/handlers/webpi.ashx?command=getinstallerredirect&appid=MicrosoftAzure-ServiceFabric-CoreSDK
https://www.microsoft.com/web/handlers/webpi.ashx?command=getinstallerredirect&appid=MicrosoftAzure-ServiceFabric-CoreSDK
https://www.microsoft.com/web/handlers/webpi.ashx?command=getinstallerredirect&appid=MicrosoftAzure-ServiceFabric-CoreSDK
https://www.microsoft.com/web/handlers/webpi.ashx?command=getinstallerredirect&appid=MicrosoftAzure-ServiceFabric-CoreSDK
https://www.microsoft.com/web/handlers/webpi.ashx?command=getinstallerredirect&appid=MicrosoftAzure-ServiceFabric-CoreSDK
https://www.microsoft.com/web/handlers/webpi.ashx?command=getinstallerredirect&appid=MicrosoftAzure-ServiceFabric-CoreSDK
https://www.microsoft.com/web/handlers/webpi.ashx?command=getinstallerredirect&appid=MicrosoftAzure-ServiceFabric-CoreSDK
https://www.microsoft.com/web/handlers/webpi.ashx?command=getinstallerredirect&appid=MicrosoftAzure-ServiceFabric-CoreSDK
https://www.microsoft.com/web/handlers/webpi.ashx?command=getinstallerredirect&appid=MicrosoftAzure-ServiceFabric-CoreSDK
https://www.microsoft.com/web/handlers/webpi.ashx?command=getinstallerredirect&appid=MicrosoftAzure-ServiceFabric-CoreSDK
https://www.microsoft.com/web/handlers/webpi.ashx?command=getinstallerredirect&appid=MicrosoftAzure-ServiceFabric-CoreSDK
https://www.microsoft.com/web/handlers/webpi.ashx?command=getinstallerredirect&appid=MicrosoftAzure-ServiceFabric-CoreSDK
https://www.microsoft.com/web/handlers/webpi.ashx?command=getinstallerredirect&appid=MicrosoftAzure-ServiceFabric-CoreSDK
https://www.microsoft.com/web/handlers/webpi.ashx?command=getinstallerredirect&appid=MicrosoftAzure-ServiceFabric-CoreSDK
https://store.docker.com/editions/community/docker-ce-desktop-windows?tab=description
https://store.docker.com/editions/community/docker-ce-desktop-windows?tab=description
https://store.docker.com/editions/community/docker-ce-desktop-windows?tab=description
https://store.docker.com/editions/community/docker-ce-desktop-windows?tab=description
https://store.docker.com/editions/community/docker-ce-desktop-windows?tab=description
https://store.docker.com/editions/community/docker-ce-desktop-windows?tab=description
https://store.docker.com/editions/community/docker-ce-desktop-windows?tab=description
https://store.docker.com/editions/community/docker-ce-desktop-windows?tab=description
https://store.docker.com/editions/community/docker-ce-desktop-windows?tab=description
https://store.docker.com/editions/community/docker-ce-desktop-windows?tab=description
https://store.docker.com/editions/community/docker-ce-desktop-windows?tab=description
https://store.docker.com/editions/community/docker-ce-desktop-windows?tab=description
https://store.docker.com/editions/community/docker-ce-desktop-windows?tab=description
https://store.docker.com/editions/community/docker-ce-desktop-windows?tab=description
https://store.docker.com/editions/community/docker-ce-desktop-windows?tab=description
https://store.docker.com/editions/community/docker-ce-desktop-windows?tab=description
https://store.docker.com/editions/community/docker-ce-desktop-windows?tab=description
https://store.docker.com/editions/community/docker-ce-desktop-windows?tab=description
https://store.docker.com/editions/community/docker-ce-desktop-windows?tab=description
https://store.docker.com/editions/community/docker-ce-desktop-windows?tab=description
https://store.docker.com/editions/community/docker-ce-desktop-windows?tab=description
https://store.docker.com/editions/community/docker-ce-desktop-windows?tab=description
https://store.docker.com/editions/community/docker-ce-desktop-windows?tab=description
https://store.docker.com/editions/community/docker-ce-desktop-windows?tab=description

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[108]

The CI/CD improvement is due to microservice independence because it enables the
following:

Scaling and distributing microservices on different types of hardware.
Since each microservice is deployed independently from the others, there can't be
binary compatibility or database structure compatibility constraints. Therefore,
there is no need to align the versions of the different microservices that compose
the system. This means that each of them can evolve, as needed, without being
constrained by the others.
Assigning their development to completely separate smaller teams, thus
simplifying job organization and reducing all the inevitable coordination
inefficiencies that arise when handling large teams.
Implementing each microservice with more adequate technologies and in a more
adequate environment, since each microservice is an independent deployment
unit. This means choosing tools that best fit your requirements and an
environment that minimizes development efforts and/or maximizes
performance.
Since each microservice can be implemented with different technologies,
programming languages, tools, and operating systems, enterprises can use all
available human resources by matching environments with developers'
competences. For instance, underused Java developers can also be involved in
.NET projects if they implement microservices in Java with the same required
behavior.
Legacy subsystems can be embedded in independent microservices, thus
enabling them to cooperate with newer subsystems. This way, companies may
reduce the time to market of new system versions. Moreover, this way, legacy
systems can evolve slowly toward more modern systems with an acceptable
impact on costs and the organization.

The next subsection explains how the concept of microservices was conceived. Then, we
will continue this introductory section by exploring basic microservice design principles
and analyzing why microservices are often designed as Docker containers.

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[109]

Microservices and the evolution of the concept of
modules
For a better understanding of the advantages of microservices, as well as their design
techniques, we must keep the two-folded nature of software modularity, and of software
modules, in mind:

Code modularity refers to a code organization that makes it easy for us to modify
a chunk of code without it affecting the remainder of the application. It is usually
enforced with object-oriented design, where modules can be identified with
classes.
Deployment modularity depends on what your deployment units are and which
properties they have. The simplest deployment units are executable files and
libraries. Thus, for instance, dynamic link libraries (DLL) are, for sure, more
modular than static libraries since they must not be linked with the main
executable before being deployed.

While the fundamental concepts of code modularity have reached stasis, the concept of
deployment modularity is still evolving and microservices are currently state of the art
along this evolution path.

As a short review of the main milestones on the path that led to microservices, we can say
that, first, monolithic executables were broken into static libraries. Later on, dynamic link
libraries replaced static libraries.

A great change took place when .NET (and other analogous frameworks, such as Java)
improved the modularity of executables and libraries. In fact, with .NET, they can be
deployed on different hardware and on different operating systems since they are deployed
in an intermediary language that's compiled when the library is executed for the first time.
Moreover, they overcome some versioning issues of previous DLLs since any executable
brings with it a DLL with a version that differs from the version of the same DLL that is
installed in the operating system.

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[110]

However, .NET can't accept two referenced DLLs – let's say, A and B – using two different
versions of a common dependency – let's say, C. For instance, suppose there is a newer
version of A with a lot of new features we would like to use that, in turn, rely on a newer
version of C that's not supported by B. In a similar situation, we should renounce the newer
version of A because of the incompatibility of C with B. This difficulty has led to two
important changes:

The development world moved from DLLs and/or single files to package
management systems such as NuGet and npm, which automatically check
version compatibility with the help of semantic versioning.
Service-Oriented Architecture (SOA). Deployment units started being
implemented as XML and then as REST web services. This solves the version
compatibility problem since each web service runs in a different process and can
use the most adequate version of each library with no risk of causing
incompatibilities with other web services. Moreover, the interface that's exposed
by each web service is platform-agnostic, that is, web services can connect with
applications using any framework and run on any operating system since web
service protocols are based on universally accepted standards. SOAs and
protocols will be discussed in more detail in Chapter 12, Applying Service-
Oriented Architectures with .NET Core.

Microservices are an evolution of SOA and add more features and more constraints that
improve scalability and the modularity of services to improve the overall CI/CD cycle. It's
sometimes said that microservices are SOA done well.

Microservice design principles
To sums things up, the microservice architecture is an SOA that maximizes independence
and fine-grained scaling. Now that we've clarified all the advantages of microservice
independence and fine-grained scaling, as well as the very nature of independence, we are
in a position to look at microservice design principles.

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[111]

Let start with principles that arise from the independence constraint:

Independence of design choices: The design of each microservice must not
depend on the design choices that were made in the implementation of other
microservices. This principle enables the full independence of each microservice
CI/CD cycle and leaves us with more technological choices on how to implement
each microservice. This way, we can choose the best available technology to
implement each microservice.
Another consequence of this principle is that different microservices can't
connect to the same shared storage (database or filesystem) since sharing the
same storage also means sharing all the design choices that determined the
structure of the storage subsystem (database table design, database engine, and
so on). Thus, either a microservice has its own data storage or it has no storage at
all and communicates with other microservices that take care of handling
storage.
Here, having dedicated data storage doesn't mean that the physical database is
distributed within the process boundary of the microservice itself, but that the
microservice has exclusive access to a database or set of database tables that are
handled by an external database engine. In fact, for performance reasons,
database engines must run on dedicated hardware and with OS and hardware
features that are optimized for their storage functionalities. Usually, independence
of design choices is interpreted in a lighter form by distinguishing between logical
and physical microservices. More specifically, a logical microservice is
implemented with several physical microservices that use the same data storage
but that are load-balanced independently. That is, the logical microservice is
designed as a logical unity and then split into more physical microservices to
achieve better load balance.

Independence from the deployment environment: Microservices are scaled out
on different hardware nodes and different microservices can be hosted on the
same node. Therefore, the less a microservice relies on the services offered by the
operating system and on other installed software, the more available hardware
nodes it can be deployed on. More node optimization can also be performed.
This is the reason why microservices are usually containerized and use Docker.
Containers will be discussed in more detail in the Containers and Docker
subsection of this chapter, but basically, containerization is a technique that
allows each microservice to bring its dependencies with it so that it can run
anywhere.

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[112]

Loose coupling: Each microservice must be loosely coupled with all the other
microservices. This principle has a two-folded nature. On the one hand, this
means that, according to object-oriented programming principles, the interface
that's exposed by each microservice must not be too specific, but as general as
possible. However, it also means that communications among microservices
must be minimized in order to reduce communication costs since microservices
don't share the same address space and run on different hardware nodes.
No chained requests/responses: When a request reaches a microservice, it must
not cause a recursive chain of nested requests/responses to other microservices
since a similar chain would result in an unacceptable response time. Chained
requests/responses can be avoided if the private data models of all the
microservices synchronize with push notifications each time they change. In
other words, as soon as the data that's handled by a microservice changes, those
changes are sent to all the microservices that may need them to serve their
requests. This way, each microservice has all the data it needs to serve all its
incoming requests in its private data storage, with no need to ask other
microservices for the data that it lacks.
In conclusion, every microservice must contain all the data it needs to serve
incoming requests and ensure fast responses. To keep their data models up to
date and ready for incoming requests, microservices must communicate their
data changes as soon as they take place. These data changes should be
communicated through asynchronous messages since synchronous nested
messages cause unacceptable performance because they block all the threads
involved in the call tree until a result is returned.

It is worth pointing out that the first constraint we mentioned is substantially the Bounded
Context principle of domain-driven design, which we will talk about in detail in Chapter
10, Understanding the Different Domains in Software Solutions. In this chapter, we will see that,
often, a full domain-driven design approach is useful for the update subsystem of each
microservice.

It's not trivial that the opposite is also true, that is, that systems that have
been developed according to the Bounded Context principle are better
implemented with a microservice architecture. In fact, once a system has
been decomposed into several completely independent and loosely
coupled parts, it is very likely that these different parts need to be scaled
independently because of different traffic and different resources
requirements.

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[113]

The preceding constraints are some best practices for building a reusable SOA. More details
on these best practices will be given in Chapter 12, Applying Service-Oriented Architectures
with .NET Core, but nowadays, most SOA best practices are automatically enforced by tools
and frameworks that are used to implement web services.

Fine-grained scaling requires that microservices are small enough to isolate well-defined
functionalities, but this also requires a complex infrastructure that takes care of
automatically instantiating microservices, allocating instances on nodes, and scaling them
as needed. These kinds of structure will be discussed in the Which tools are needed to manage
Microservices? section of this chapter.

Moreover, fine-grained scaling of distributed microservices that communicate through
asynchronous communication requires each microservice to be resilient. In fact,
communication that's directed to a specific microservice instance may fail due to a
hardware fault or for the simple reason that the target instance was killed or moved to
another node during a load balancing operation.

Temporary failures can be overcome with exponential retries. This is where we retry the
same operation after each failure with a delay that increases exponentially until a
maximum number of attempts is reached. For instance, first, we would retry after 10
milliseconds, and if this retried operation results in a failure, a new attempt is done after 20
milliseconds, then after 40 milliseconds, and so on.

On the other hand, long-term failures often cause an explosion of retry operations that may
saturate all system resources in a way that is similar to a Denial Of Service Attack.
Therefore, usually, exponential retries are used together with a circuit break strategy: after a
given number of failures, a long-term failure is assumed and access to the resource is
prevented for a given time by returning an immediate failure without attempting the
communication operation.

It is also fundamental that the congestion of some subsystems, due to either failure or to a
requests peak, does not propagate to other system parts, in order to prevent overall system
congestion. Bulkhead isolation avoids congestion propagation in the following ways:

Only a maximum number of similar simultaneous outbound requests are
allowed, let's say, 10. This is similar to putting an upper bound on thread
creation.
Requests exceeding the previous bound are queued.
If the maximum queue length is reached, any further requests result in
exceptions being thrown to abort them.

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[114]

Retry policies may make it so that the same message is received and processed several
times because the sender has received no confirmation that the message has been received
or simply because it has timed-out the operation, while the receiver actually received the
message. The only possible solution to this problem is designing all messages so that
they're idempotent, that is, designing messages in such a way that processing the same
message several times has the same effect as processing it once.

Updating a database table field to a value, for instance, is an idempotent operation since
repeating it once or twice has exactly the same effect. However, incrementing a decimal
field is not an idempotent operation. Microservice designers should make an effort to
design the overall application with as many idempotent messages as possible. The
remaining non-idempotent messages must be transformed into idempotent ones in the
following ways, or with some other similar technique:

Attach both a time and some identifier that uniquely identify each message.
Store all the messages that have been received in a dictionary that's been indexed
by the unique identifier attached to the message mentioned in the previous point.
Reject old messages.
When a message that may be a duplicate is received, verify whether it's
contained in the dictionary. If it is, then it has already been processed, so reject it.
Since old messages are rejected, they can be periodically removed from the
dictionary to avoid it growing exponentially.

We will use this technique in the example at the end of this chapter.

In the next subsection, we will talk about microservice containerization based on Docker.

Containers and Docker
We've already discussed the advantages of having microservices that don't depend on the
environment where they run: better hardware usage, the ability to mix legacy software with
newer modules, the ability to mix several development stacks in order to use the best stack
for each module implementation, and so on. Independence on the hosting environment can
be easily achieved by deploying each microservice with all its dependencies on a private
virtual machine.

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[115]

However, starting a virtual machine with its private copy of the operating system takes a
lot of time, and microservices must be started and stopped quickly to reduce load balancing
and fault recovery costs. In fact, new microservices may be started either to replace faulty
ones or because they were moved from one hardware node to another to perform load
balancing. Moreover, adding a whole copy of the operating system to each microservice
instance would be an excessive overhead.

Luckily, microservices can rely on a lighter form of technology: containers. Containers are a
kind of light virtual machine. They do not virtualize a full machine – they just virtualize the
operating system (OS) filesystem level that sits on top of the OS kernel. They use the OS of
the hosting machine (kernel, DLLs, and drivers) and rely on the OS's native features to
isolate processes and resources to ensure an isolated environment for the images they run.

As a consequence, containers are tied to a specific operating system but they don't suffer
the overhead of copying and starting a whole OS in each container instance.

On each host machine, containers are handled by a runtime that takes care of creating them
from images and creating an isolated environment for each of them. The most famous
container runtime is Docker, which is a de facto standard for containerization.

Images are files that specify what is put in each container and which container resources,
such as communication ports, to expose outside the container. None of the images need to
explicitly specify their full content, but they can reference other images. This way, images
are built by adding new software and configuration information on top of existing images.

For instance, if you want to deploy a .NET Core application as a Docker image, it is enough
to just add your software and files to your Docker image and then reference an already
existing .NET Core Docker image.

To allow for easy image referencing, images are grouped into registries that may be either
public or private. They are similar to NuGet or npm registries. Docker offers a public
registry (https:/​/ ​hub. ​docker. ​com/ ​_​/​registry) where you can find most of the public
images you may need to reference in your own images. However, each company can define
private registries. For instance, Azure offers a private container registry service:
https://azure.microsoft.com/en-us/services/container-registry/.

Before instantiating each container, the Docker runtime must solve all the recursive
references. This cumbersome job is not performed each time a new container is created
since the Docker runtime has a cache where it stores the fully assembled images that
correspond to each input image and that it's already processed.

https://github.com/Particular/Workshop/tree/master/demos/asp-net-core
https://github.com/Particular/Workshop/tree/master/demos/asp-net-core
https://github.com/Particular/Workshop/tree/master/demos/asp-net-core
https://github.com/Particular/Workshop/tree/master/demos/asp-net-core
https://github.com/Particular/Workshop/tree/master/demos/asp-net-core
https://github.com/Particular/Workshop/tree/master/demos/asp-net-core
https://github.com/Particular/Workshop/tree/master/demos/asp-net-core
https://github.com/Particular/Workshop/tree/master/demos/asp-net-core
https://github.com/Particular/Workshop/tree/master/demos/asp-net-core
https://github.com/Particular/Workshop/tree/master/demos/asp-net-core
https://github.com/Particular/Workshop/tree/master/demos/asp-net-core
https://github.com/Particular/Workshop/tree/master/demos/asp-net-core
https://github.com/Particular/Workshop/tree/master/demos/asp-net-core
https://github.com/Particular/Workshop/tree/master/demos/asp-net-core
https://github.com/Particular/Workshop/tree/master/demos/asp-net-core

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[116]

Since each application is usually composed of several modules to be run in different
containers, Docker also allows .yml files, also known as composition files, that specify the
following information:

Which images to deploy.
How the internal resources that are exposed by each image must be mapped to
the physical resources of the host machine. For instance, how communication
ports that are exposed by Docker images must be mapped to the ports of the
physical machine.

We will analyze Docker images and .yml files in the How does .NET Core deal with
Microservices? section of this chapter.

The Docker runtime handles images and containers on a single machine but, usually,
containerized microservices are deployed and load-balanced on clusters that are composed
of several machines. Clusters are handled by pieces of software called Orchestrators.
Orchestrators will be discussed in the Which tools are needed to manage microservices? section
of this chapter.

Now that we have understood what microservices are, what problems they can solve, and
their basic design principles, we are ready to analyze when and how to use them in our
system architecture. The next section analyzes when we should use them.

When do microservices help?
The answer to this question requires us to understand the roles microservices play in
modern software architectures. We will look at this in the following subsections.

Layered architectures and microservices
Enterprise systems are usually organized in logical independent layers. The first layer is the
one that interacts with the user and is called the presentation layer, while the last layer
takes care of storing/retrieving data and is called the data layer. Requests originate in the
presentation layer and pass through all the layers until they reach the data layer, and then
come back, traversing all the layers in reverse until they reach the presentation layer, which
takes care of presenting the results to the user/client. Layers can't be jumped.

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[117]

Each layer takes data from the previous layer, processes it, and passes it to the next layer.
Then, it receives the results from its next layer and sends them back to its previous layer.
Also, thrown exceptions can't jump layers – each layer must take care of intercepting all the
exceptions and either solving them somehow or transforming them into other exceptions
that are expressed in the language of its previous layer. The layer architecture ensures the
complete independence of the functionalities of each layer from all the other layers of their
functionalities.

For instance, we can change the database engine without affecting all the layers that are
above the data layer. In the same way, we can completely change the user interface, that is,
the presentation layer, without affecting the remainder of the system.

Moreover, each layer implements a different kind of system specification. The data layer
takes care of what the system must remember, the presentation layer takes care of the
system-user interaction protocol, and all the layers that are in the middle implement the
domain rules, which specify how data must be processed (for instance, how an employed
paycheck must be computed). Typically, the data and presentation layers are separated by
just one domain rule layer, called the business or application layer.

Each layer speaks a different language: the data layer speaks the language of the chosen
storage engine, the business layer speaks the language of domain experts, and the
presentation layer speaks the language of users. So, when data and exceptions pass from
one layer to another, they must be translated into the language of the destination layer.

A detailed example of how to build a layered architecture will be given in the Use case -
Logging Microservices section in Chapter 10, Understanding the Different Domains in Software
Solutions, which is dedicated to domain-driven design.

That being said, how do microservices fit into a layered architecture? Are they adequate for
the functionalities of all the layers or of just some layers? Can a single microservice span
several layers?

The last question is the easiest to answer: yes! In fact, we've already stated that
microservices should store the data they need within their logical boundaries. Therefore,
there are microservices that span the business and data layers. Some others take care of
encapsulating shared data and remain confined in the data layer. Thus, we may have
business layer microservices, data layer microservices, and microservices that span both
layers. So, what about the presentation layer?

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[118]

The presentation layer can also fit into a microservice architecture if it is implemented on
the server-side. Single-page applications and mobile applications run the presentation layer
on the client machine, so they either connect directly to the business microservices layer or,
more often, to an API Gateway that exposes the public interface and takes care of routing
requests to the right microservices.

In a microservices architecture, when the presentation layer is a website, it can be
implemented with a set of microservices. However, if it requires heavy web servers and/or
heavy frameworks, containerizing them may not be convenient. This decision must also
consider the loss of performance that happens when containerizing the web server and the
possible need for hardware firewalls between the web server and the remainder of the
system.

ASP.NET Core is a lightweight framework that runs on the light Kestrel web server, so it
can be containerized efficiently and used in a microservice for intranet applications.
However, public high-traffic websites require dedicated hardware/software components
that prevent them from being deployed together with other microservices. In fact, while
Kestrel is an acceptable solution for an intranet website, public websites need a more
complete web server such as IIS. In this case, security requirements are more compelling
and require specialized hardware/software components.

Monolithic websites can be easily broken into load-balanced smaller subsites without
microservice-specific technologies, but a microservice architecture can bring all the
advantages of microservices into the construction of a single HTML page. More specifically,
different microservices may take care of different areas of each HTML page. Unfortunately,
at the time of writing, such a similar scenario is not easy to implement with the available
.NET and .NET Core technology.

A proof of concept that implements a website with ASP.NET Core-based microservices that
cooperate in the construction of each HTML page can be found here: https:/ ​/​github. ​com/
Particular/​Workshop/ ​tree/ ​master/ ​demos/ ​asp- ​net-​core. The main limit of this approach
is that microservices cooperate just to generate the data that's needed to generate the HTML
page and not to generate the actual HTML page. Instead, this is handled by a monolithic
gateway. In fact, at the time of writing, frameworks such as ASP.NET Core MVC don't
provide any facilities for the distribution of HTML generation. We will return to this
example in Chapter 13, Presenting ASP.NET Core MVC.

Now that we've clarified which parts of a system can benefit from the adoption of
microservices, we are ready to state the rules when it comes to deciding how they're
adopted.

https://github.com/Particular/Workshop/tree/master/demos/asp-net-core
https://github.com/Particular/Workshop/tree/master/demos/asp-net-core
https://github.com/Particular/Workshop/tree/master/demos/asp-net-core
https://github.com/Particular/Workshop/tree/master/demos/asp-net-core
https://github.com/Particular/Workshop/tree/master/demos/asp-net-core
https://github.com/Particular/Workshop/tree/master/demos/asp-net-core
https://github.com/Particular/Workshop/tree/master/demos/asp-net-core
https://github.com/Particular/Workshop/tree/master/demos/asp-net-core
https://github.com/Particular/Workshop/tree/master/demos/asp-net-core
https://github.com/Particular/Workshop/tree/master/demos/asp-net-core
https://github.com/Particular/Workshop/tree/master/demos/asp-net-core
https://github.com/Particular/Workshop/tree/master/demos/asp-net-core
https://github.com/Particular/Workshop/tree/master/demos/asp-net-core
https://github.com/Particular/Workshop/tree/master/demos/asp-net-core
https://github.com/Particular/Workshop/tree/master/demos/asp-net-core
https://github.com/Particular/Workshop/tree/master/demos/asp-net-core
https://github.com/Particular/Workshop/tree/master/demos/asp-net-core
https://github.com/Particular/Workshop/tree/master/demos/asp-net-core
https://github.com/Particular/Workshop/tree/master/demos/asp-net-core
https://github.com/Particular/Workshop/tree/master/demos/asp-net-core
https://github.com/Particular/Workshop/tree/master/demos/asp-net-core
https://github.com/Particular/Workshop/tree/master/demos/asp-net-core

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[119]

When is it worth considering microservice
architectures?
Microservices can improve the implementation of both the business and data layer, but
their adoption has some costs:

Allocating instances to nodes and scaling them has a cost in terms of cloud fees
or internal infrastructures and licenses.
Splitting a unique process into smaller communicating processes increases
communication costs and hardware needs, especially if the microservices are
containerized.
Designing and testing software for a microservice requires more time and
increases human resources costs. In particular, making microservices resilient
and ensuring that they adequately handle all possible failures, as well as verify
these features with integration tests, can increase the development time by more
than one order of magnitude.

So, when are microservices worth the cost of using them? Are there functionalities that
must be implemented as microservices?

A rough answer to the first question is: yes, when the application is big enough in terms of
traffic and/or software complexity. In fact, as an application grows in complexity and its
traffic increases, it's recommended that we pay the costs connected to scaling it since this
allows for more scaling optimization and better handling when it comes to the
development team. The costs we pay for these would soon exceed the cost of microservice
adoption.

Thus, if fine-grained scaling makes sense for our application, and if we are able to estimate
the savings that fine-grained scaling and development give us, we can easily compute an
overall application throughput limit that makes the adoption of microservices convenient.

Microservice costs can also be justified by the market value of our products/services
increasing. Since the microservice architecture allows us to implement each microservice
with a technology that has been optimized for its use, the quality that's added to our
software may justify all or part of the microservice costs.

However, scaling and technology optimizations are not the only parameters to consider.
Sometimes, we are forced to adopt a microservice architecture without being able to
perform a detailed cost analysis.

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[120]

If the size of the team that takes care of the CI/CD of the overall system grows too much,
the organization and coordination of this big team cause difficulties and inefficiencies. In
this type of situation, it is desirable to move to an architecture that breaks the whole CI/CD
cycle into independent parts that can be taken care of by smaller teams.

Moreover, since these development costs are only justified by a high volume of requests,
we probably have high traffic being processed by independent modules that have been
developed by different teams. Therefore, scaling optimizations and the need to reduce
interaction between development teams makes the adoption of a microservice architecture
very convenient.

From this, we may conclude that, if the system and the development team grows too much,
it is necessary to split the development team into smaller teams, each working on an
efficient Bounded Context subsystem. It is very likely that, in a similar situation, a
microservices architecture is the only possible option.

Another situation that forces the adoption of a microservice architecture is the integration
of newer subparts with legacy subsystems based on different technologies since
containerized microservices are the only way to implement an efficient interaction between
the legacy system and the new subparts in order to gradually replace the legacy subparts
with newer ones. Similarly, if our team is composed of developers with experience in
different development stacks, an architecture based on containerized microservices may
become a must.

In the next section, we will analyze building blocks and tools that are available so that we
can implement .NET Core-based microservices.

How does .NET Core deal with
microservices?
.NET Core was conceived as a multi-platform framework that was light and fast enough to
implement efficient microservices. In particular, ASP.NET Core is the ideal tool for
implementing REST APIs to communicate with a microservice, since it can run efficiently
with light web servers such as Kestrel and is itself light and modular.

The whole .NET Core framework evolved with microservices as a strategic deployment
platform in mind and has facilities and packages for building efficient and light HTTP
communication to ensure service resiliency and to handle long-running tasks. The
following subsections describe some of the different tools or solutions that we can use to
implement a .NET Core-based microservice architecture.

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[121]

.NET Core communication facilities
Microservices need two kinds of communication channel:

A communication channel to receive external requests, either directly or through
an API Gateway. HTTP is the usual protocol for external communication due to
available web services standards and tools. .NET Core's main HTTP
communication facility is ASP.NET Core since it's a lightweight HTTP
framework, which makes it ideal for implementing Web APIs in small
microservices. We will describe ASP.NET Core App in detail in Chapter 12,
Applying Service-Oriented Architectures with .NET Core, which is dedicated to
HTTP services. .NET Core also offers an efficient and modular HTTP client
solution that is able to pool and reuse heavy connection objects. Also, the
HttpClient class will be described in more detail in Chapter 12, Applying
Service-Oriented Architectures with .NET Core.
A different type of communication channel to push updates to other
microservices. In fact, we have already mentioned that intra-microservice
communication cannot be triggered by an on-going request since a complex tree
of blocking calls to other microservices would increase request latency to an
unacceptable level. As a consequence, updates must not be requested
immediately before they're used and should be pushed whenever state changes
take place. Ideally, this kind of communication should be asynchronous to
achieve acceptable performance. In fact, synchronous calls would block the
sender while they are waiting for the result, thus increasing the idle time of each
microservice. However, synchronous communication that just puts the request in
a processing queue and then returns confirmation of the successful
communication instead of the final result is acceptable if communication is fast
enough (low communication latency and high bandwidth). A
publisher/subscriber communication would be preferable since, in this case, the
sender and receiver don't need to know each other, thus increasing the
microservices' independence. In fact, all the receivers that are interested in a
certain type of communication merely need to register to receive a specific event,
while senders just need to publish those events. All the wiring is performed by a
service that takes care of queuing events and dispatching them to all the
subscribers. The publisher/subscriber pattern will be described in more detail in
Chapter 9, Design Patterns and .NET Core Implementation, along with other useful
patterns.

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[122]

While .NET Core doesn't directly offer tools that may help in asynchronous communication
or client/server tools that implement a publisher/subscriber communication, Azure offers a
similar service with Azure Service Bus. Azure Service Bus handles both queued
asynchronous communication through Azure Service Bus queues and publisher/subscriber
communication through Azure Service Bus topics.

Once you've configured an Azure Service Bus on the Azure portal, you can connect to it in
order to send messages/events and to receive messages/events through a client contained in
the Microsoft.Azure.ServiceBus NuGet package.

Azure Service Bus has two types of communication: queue-based and topic-based. In
queue-based communication, each message that's placed in the queue by a sender is
removed from the queue by the first receiver that pulls it from the queue. Topic-based
communication, on the other hand, is an implementation of the publisher/subscriber
pattern. Each topic has several subscriptions and a different copy of each message sent to a
topic can be pulled from each topic subscription.

The design flow is as follows:

Define an Azure Service Bus private namespace.1.
Get the root connection strings that were created by the Azure portal and/or2.
define new connection strings with fewer privileges.
Define queues and/or topics where the sender will send their messages in binary3.
format.
For each topic, define names for all the required subscriptions.4.
In the case of queue-based communication, the sender sends messages to a queue5.
and the receivers pull messages from the same queue. Each message is delivered
to one receiver. That is, once a receiver gains access to the queue, it reads and
removes one or more messages.
In the case of topic-based communication, each sender sends messages to a topic,6.
while each receiver pulls messages from the private subscription associated with
that topic.

There are also other commercial alternatives to Azure Service Bus, such as NServiceBus,
MassTransit, Brighter, and ActiveMQ. There is also a free open source option: RabbitMQ .
RabbitMQ can be installed locally, on a virtual machine, or in a Docker container. Then, you
can connect with it through the client contained in the RabbitMQ.Client NuGet package.

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[123]

The functionalities of RabbitMQ are similar to the ones offered by Azure Service Bus but
you have to take care of all the implementation details, confirmations of performed
operations, and so on, while Azure Service Bus takes care of all the low-level tasks and
offers you a simpler interface. Azure Service Bus and RabbitMQ will be described alongside
Publisher/Subscriber-based communication in Chapter 9, Design Patterns and .NET Core
Implementation.

If microservices are published to Azure Service Fabric, which will be described in the next
section, we can use a built-in reliable binary communication. Communication is resilient
since communication primitives automatically use a retry policy. This communication is
synchronous, but this is not a big limitation since microservices in Azure Service Fabric
have built-in queues; thus, once the receiver has received a message, they can just put it in a
queue and return it immediately, without blocking the sender.

The messages in the queue are then processed by a separate thread. The main limitation of
this built-in communication is that it is not based on the publisher/subscriber pattern; the
senders and receivers must know each other. When this is not acceptable, you should use
Azure Service Bus. We will learn how to use Service Fabric's built-in communication in the
Use case - logging microservices section of this chapter.

Resilient task execution
Resilient communication and, in general, resilient task execution can be implemented easily
with the help of a .NET Core library called Polly, which is maintained by the .NET
Foundation. Polly is available through the Polly NuGet package.

In Polly, you define policies, and then execute tasks in the context of that policy, as follows:

var myPolicy = Policy
 .Handle<HttpRequestException>()
 .Or<OperationCanceledException>()
 .Retry(3);
....
....
myPolicy.Execute(()=>{
 //your code here
});

The first part of each policy specifies the exceptions that must be handled. Then, you
specify what to do when one of those exceptions is captured. In the preceding code, the
Execute method is retried up to three times if a failure is reported either by an
HttpRequestException exception or by an OperationCanceledException exception.

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[124]

The following is the implementation of an exponential retry policy:

var erPolicy= Policy
 ...
 //Exceptions to handle here
 .WaitAndRetry(6,
 retryAttempt => TimeSpan.FromSeconds(Math.Pow(2,
 retryAttempt)));

The first argument of WaitAndRetry specifies that a maximum of six retries is performed
in case of failure. The lambda function passed as second argument specifies how much time
to wait before the next attempt. In the specific example, this time grows exponentially with
the number of the attempt with a power of 2 (2 seconds for the first retry, 4 seconds for the
second retry, and so on).

The following is a simple Circuit Breaker policy:

var cbPolicy=Policy
 .Handle<SomeExceptionType>()
 .CircuitBreaker(6, TimeSpan.FromMinutes(1));

After six failures, the task can't be executed for 1 minute since an exception is returned.

The following is the implementation of the Bulkhead Isolation policy (see the Microservices
design principles section for more information):

Policy
 .Bulkhead(10, 15)

A maximum of 10 parallel executions is allowed in the Execute method. Further tasks are
inserted in an execution queue. This has a limit of 15 tasks. If the queue limit is exceeded,
an exception is thrown.

For the Bulkhead policy to work properly and, in general, for every
strategy to work properly, task executions must be triggered through the
same policy instance; otherwise, Polly is unable to count how many
executions of a specific task are active.

Policies can be combined with the Wrap method:

var combinedPolicy = Policy
 .Wrap(erPolicy, cbPolicy);

Polly offers several more options, such as generic methods for tasks that return a specific
type, timeout policies, task result caching, the ability to define custom policies, and so on.
The link to the official Polly documentation is in the Further reading section.

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[125]

Using generic hosts
Each microservice may need to run several independent threads, each performing a
different operation on requests received. Such threads need several resources, such as
database connections, communication channels, specialized modules that perform complex
operations, and so on. Moreover, all processing threads must be adequately initialized
when the microservice is started and gracefully stopped when the microservice is stopped
as a consequence of either load balancing or errors.

All of these needs led the .NET Core team to conceive and implement hosted services and
hosts. A host creates an adequate environment for running several tasks, known as hosted
services, and provides them with resources, common settings, and graceful start/stop.

The concept of a web host was mainly conceived to implement the ASP.NET Core web
framework, but, with effect from .NET Core 2.1, the host concept was extended to all .NET
applications. All features related to the concept of "host" are contained in the
Microsoft.Extensions.Hosting NuGet package.

First, you need to configure the host with a fluent interface, starting with a HostBuilder
instance. The final step of this configuration is calling the Build method, which assembles
the actual host with all the configuration information we provided:

var myHost=new HostBuilder()
 //Several chained calls
 //defining Host configuration
 .Build();

Host configuration includes defining the common resources, defining the default folder for
files, loading the configuration parameters from several sources (JSON files, environment
variables, and any arguments that are passed to the application), and declaring all the
hosted services.

Then, the host can be started, which causes all the hosted services to be started:

host.Start();

The program remains blocked on the preceding instruction until the host is shutdown. The
host can be shutdown either by one of the hosted services or externally by calling await
host.StopAsync(timeout). Here, timeout is a time span defining the maximum time to
wait for the hosted services to stop gracefully. After this time, all the hosted services are
aborted if they haven't been terminated.

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[126]

Often, the fact that a microservice is being shutdown is signaled by a CancelationToken
being passed when the microservice is started by the orchestrator. This happens when
microservices are hosted in Azure Service Fabric.

In this case, instead of using host.Start(), we can use the RunAsync method and pass it
the CancelationToken that we received from the orchestrator:

await host.RunAsync(cancelationToken)

This way of shutting down is triggered as soon as the cancelationToken enters a
canceled state. By default, the host has a 5-second timeout for shutting down; that is, it
waits 5 seconds before exiting once a shutdown has been requested. This time can be
changed within the ConfigureServices method, which is used to declare hosted services
and other resources:

var myHost = new HostBuilder()
 .ConfigureServices((hostContext, services) =>
 {
 services.Configure<HostOptions>(option =>
 {
 option.ShutdownTimeout = System.TimeSpan.FromSeconds(10);
 });

 //further configuration
 })
 .Build();

However, increasing the host timeout doesn't increase the orchestrator timeout, so if the
host waits too long, the whole microservice is killed by the orchestrator.

Hosted services are implementations of the IHostedService interface, whose only
methods are StartAsync(CancellationToken) and StopAsync(CancellationToken).
Both methods are passed a CancelationToken. The CancelationToken in the
StartAsync method signals that a shutdown was requested. The StartAsync method
periodically checks this CancelationToken while performing all operations needed to
start the host, and if it is signaled the host start process is aborted. On the other hand, the
CancelationToken in the StopAsync method signals that the shutdown timeout expired.

Hosted services must be declared in the same ConfigureServices method that's used to
define host options, as follows:

services.AddHostedService<MyHostedService>();

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[127]

Most declarations inside ConfigureServices require the addition of the following
namespace:

using Microsoft.Extensions.DependencyInjection;

Usually, the IHostedService interface isn't implemented directly but can be inherited
from the BackgroundService abstract class, which exposes the easier-to-implement
ExecuteAsync(CancellationToken) method, which is where we can place the whole
logic of the service. A shutdown is signaled by passing CancellationToken as an
argument, which is easier to handle. We will look at an implementation of
IHostedService in the example at the end of this chapter.

To allow a hosted service to shutdown the host, we need to declare an
IApplicationLifetime interface as its constructor parameter:

public class MyHostedService: BackgroundService
{
 private applicationLifetime;
 public MyHostedService(IApplicationLifetime applicationLifetime)
 {
 this.applicationLifetime=applicationLifetime;
 }
 protected Task ExecuteAsync(CancellationToken token)
 {
 ...
 applicationLifetime.StopApplication();
 ...
 }
}

When the hosted service is created, it will be automatically passed an implementation of
IApplicationLifetime, whose StopApplication method will trigger the host
shutdown. This implementation is handled automatically, but we can declare custom
resources whose instances will be automatically passed to all the host service constructors
that declare them as parameters. There are several ways to define these resources:

services.AddTransient<MyResource>();
services.AddTransient<IResourceInterface, MyResource>();
services.AddSingleton<MyResource>();
services.AddSingleton<IResourceInterface, MyResource>();

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[128]

When we use AddTransient, a different instance is created and passed to all the
constructors that require an instance of that type. On the other hand, with AddSingleton,
a unique instance is created and passed to all the constructors that require the declared
type. The overload with two generic types allows you to pass an interface and a type that
implements that interface. This way, a constructor requires the interface and is decoupled
from the specific implementation of that interface.

If resource constructors contain parameters, they will be automatically instantiated with the
types declared in ConfigureServices in a recursive fashion. This pattern of interaction
with resources is called dependency injection (DI) and will be discussed in detail in
Chapter 9, Design Patterns and .NET Core Implementation.

HostBuilder also has a method we can use to define the default folder:

.UseContentRoot("c:\\<deault path>")

It also has methods that we can use to add logging targets:

.ConfigureLogging((hostContext, configLogging) =>
 {
 configLogging.AddConsole();
 configLogging.AddDebug();
 })

The preceding example shows a console-based logging source, but we can also log into
Azure targets with adequate providers. The Further reading section contains links to some
Azure logging providers that can work with microservices that have been deployed in
Azure Service Fabric. Once you've configured logging, you can enable your hosted services
and log custom messages by adding an ILoggerFactory parameter in their constructors.

Finally, HostBuilder has methods we can use to read configuration parameters from
various sources:

.ConfigureHostConfiguration(configHost =>
 {
 configHost.AddJsonFile("settings.json", optional: true);
 configHost.AddEnvironmentVariables(prefix: "PREFIX_");
 configHost.AddCommandLine(args);
 })

The way parameters can be used from inside the application will be explained in more
detail in Chapter 13, Presenting ASP.NET Core MVC, which is dedicated to ASP.NET Core.

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[129]

Visual Studio support for Docker
Visual Studio offers support for creating, debugging, and deploying Docker images. Docker
deployment requires us to install Docker CE for Windows on our development machine so
that we can run Docker images. The download link can be found in the Technical
requirements section at the beginning of this chapter. Before we start any development
activity, we must ensure it is installed and running (you should see a Docker icon in the
window notification bar when the Docker runtime is running).

Docker support will be described with a simple ASP.NET Core MVC project. Let's create
one. To do so, follow these steps:

Name the project MvcDockerTest.1.
For simplicity, disable authentication.2.
You are given the option to add Docker support when you create the project, but3.
please don't check the Docker support checkbox. You can test how Docker
support can be added to any project after it has been created.

Once you have your ASP.NET Core MVC application scaffolded and running, right-click
on its project icon in the Solution Explorer and select Container Orchestrator Support |
Docker Compose. This will enable not only the creation of a Docker image but also the
creation of a Docker Compose project, which helps you configure Docker Compose files so
that they run and deploy several Docker images simultaneously. In fact, if you add another
MVC project to the solution and enable container orchestrator support for it, the new
Docker image will be added to the same Docker Compose file.

The advantage of enabling Docker Compose instead of just docker is that you can
manually configure how the image is run on the development machine, as well as how
Docker image ports are mapped to external ports by editing the Docker Compose files that
are added to the solution.

If your Docker runtime has been installed properly and is running, you should be able to
run the Docker image from Visual Studio.

Let's analyze the Docker file that was created by Visual Studio. It is a sequence of image
creation steps. Each step enriches an existing image with something else with the help of
the From instruction, which is a reference to an already existing image. The following is the
first step:

FROM microsoft/dotnet:x.x-aspnetcore-runtime AS base
WORKDIR /app
EXPOSE 80
EXPOSE 443

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[130]

The first step uses the microsoft/dotnet:x.x-aspnetcore-runtime ASP.NET Core
runtime that was published by Microsoft in the Docker public repository (where x.x is the
ASP.NET Core version that was selected in your project).

The WORKDIR command creates the directory that follows the current directory within the
image that is going to be created. If the directory doesn't exist yet, it is created in the image.
The two EXPOSE commands declare which ports of the image ports will be exposed outside
the image and mapped to the actual hosting machine. Mapped ports are decided in the
deployment stage either as command-line arguments of a Docker command or within a
Docker Compose file. In our case, there are two ports: one for HTTP (80) and another for
HTTPS (443).

This intermediate image is cached by Docker, which doesn't need to recompute it since it
doesn't depend on the code we write on the selected version of the ASP.NET Core runtime.

The second step produces a different image that will not be used to deploy. Instead, it will
be used to create application-specific files that will be deployed:

FROM microsoft/dotnet:x.x-sdk AS build
WORKDIR /src
COPY MvcDockerTest/MvcDockerTest.csproj MvcDockerTest/
RUN dotnet restore MvcDockerTest/MvcDockerTest.csproj
COPY . .
WORKDIR /src/MvcDockerTest
RUN dotnet build MvcDockerTest.csproj -c Release -o /app

FROM build AS publish
RUN dotnet publish MvcDockerTest.csproj -c Release -o /app

This step starts from the ASP.NET SDK image, which contains parts we don't need to add
for deployment; these are needed to process the project code. The new src directory is
created in the build image and made the current image directory. Then, the project file is
copied into /src/MvcDockerTest.

The RUN command executes an operating system command on the image. In this case, it
calls the dotnet runtime, asking it to restore the NuGet packages that were referenced by
the previously copied project file.

Then, the COPY.. command copies the whole project file tree into the src image directory.
Finally, the project directory is made the current directory and the dotnet runtime is asked
to build the project in release mode and copy all the output files into the new /app
directory. Finally, a new image called publish executes the publish command on the
output files.

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[131]

The final step starts from the image that we created in the first step, which contains the
ASP.NET Core runtime, and adds all the files that were published in the previous step:

FROM base AS final
WORKDIR /app
COPY --from=publish /app .
ENTRYPOINT ["dotnet", "MvcDockerTest.dll"]

The ENTRYPOINT command specifies the operating system command that's needed to
execute the image. It accepts an array of strings. In our case, it accepts the dotnet
command and its first command-line argument, that is, the DLL we need to execute.

If we right-click on our project and click Publish, we are presented with several options:

Publish the image to an existing or new web app (automatically created by
Visual Studio)
Publish to one of several Docker registries, including a private Azure Container
Registry that, if it doesn't already exist, can be created from within Visual Studio
Publish to an Azure Virtual machine

Docker Compose support allows you to run and publish a multi-container application and
add further images, such as a containerized database that is available everywhere.

The following Docker Compose file adds two ASP.NET Core applications to the same
Docker image:

version: '3.4'

services:
 mvcdockertest:
 image: ${DOCKER_REGISTRY-}mvcdockertest
 build:
 context: .
 dockerfile: MvcDockerTest/Dockerfile

 mvcdockertest1:
 image: ${DOCKER_REGISTRY-}mvcdockertest1
 build:
 context: .
 dockerfile: MvcDockerTest1/Dockerfile

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[132]

The preceding code references existing Docker files. Any environment-dependent
information is placed in the docker-compose.override.yml file, which is merged with
the docker-compose.yml file when the application is launched from Visual Studio:

version: '3.4'

services:
 mvcdockertest:
 environment:
 - ASPNETCORE_ENVIRONMENT=Development
 - ASPNETCORE_URLS=https://+:443;http://+:80
 - ASPNETCORE_HTTPS_PORT=44355
 ports:
 - "3150:80"
 - "44355:443"
 volumes:
 - ${APPDATA}/Asp.NET/Https:/root/.aspnet/https:ro
 - ${APPDATA}/Microsoft/UserSecrets:/root/.microsoft/usersecrets:ro
 mvcdockertest1:
 environment:
 - ASPNETCORE_ENVIRONMENT=Development
 - ASPNETCORE_URLS=https://+:443;http://+:80
 - ASPNETCORE_HTTPS_PORT=44317
 ports:
 - "3172:80"
 - "44317:443"
 volumes:
 - ${APPDATA}/Asp.NET/Https:/root/.aspnet/https:ro
 - ${APPDATA}/Microsoft/UserSecrets:/root/.microsoft/usersecrets:ro

For each image, the file defines some environment variables, which will be defined in the
image when the application is launched, the port mappings, and some host files.

The files in the host are directly mapped into the images, so if the image isn't projected to a
host containing those files, the image won't run properly. Each declaration contains the
path in the host, how the path is mapped in the image, and the desired access rights. In our
case, volumes are used to map the self-signed https certificate that's used by Visual Studio
and the user secrets (encrypted settings) that are used by ASP.NET Core.

Now, suppose we want to add a containerized SQL Server instance. We would need
something like the following instructions split between docker-compose.yml and
docker-compose.override.yml:

sql.data:
 image: mssql-server-linux:latest
environment:

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[133]

- SA_PASSWORD=Pass@word
- ACCEPT_EULA=Y
ports:
- "5433:1433"

Here, the preceding code specifies the properties of the SQL Server container, as well as the
SQL server's configuration and installation parameters. More specifically, the preceding
code contains the following information:

sql.data is the name that's given to the container.
image specifies where to take the image from. In our case, the image is contained
in a public Docker registry.
environment specifies the environment variables that are needed by SQL
Server, that is, the administrator password and the acceptance of a SQL Server
license.
As usual, ports specifies the port mappings.

docker-compose.override.yml is used to run the images from within Visual Studio. If
you need to specify parameters for either the production environment or the testing
environment, you can add further docker-compose-xxx.override.yml files, such as
docker-compose-staging.override.yml and docker-compose-
production.override.yml, and then launch them manually in the target environment
with something like the following code:

docker-compose -f docker-compose.yml -f docker-compose-staging.override.yml

Then, you can destroy all the containers with the following code:

docker-compose -f docker-compose.yml -f docker-compose.test.staging.yml
down

While docker-compose has a limited capability when it comes to handling node clusters,
it is mainly used in testing and development environments. For production environments,
more sophisticated tools are needed, as we will see in the Which tools are needed to manage
microservices? section.

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[134]

Azure and Visual Studio support for microservice
orchestration
Visual Studio has a specific project template for microservice applications, based on the
Service Fabric platform, where you can define various microservices, configure them, and
deploy them to Azure Service Fabric, which is a microservice orchestrator. Azure Service
Fabric will be described in more detail in the next section.

In this section, we will describe the various types of microservice you can define within a
Service Fabric Application. A complete code example will be provided in the last section of
this chapter. If you want to debug microservices on your development machine, you need
to install the Service Fabric emulator listed in this chapter's technical requirements.

Service Fabric Applications can be found by selecting cloud in Visual Studio project type drop-
down filter . Once you've selected the project, you can choose from a variety of services:

All projects under .NET Core use a microservice model that is specific to Azure Service
Fabric. The Guest executable adds a wrapper around an existing Windows application to
turn it into a microservice that can run in Azure Service Fabric. The Container application
enables the addition of any Docker image in the Service Fabric Application. All the other
choices scaffold a template that allows you to code a microservice with a Service Fabric-
specific pattern.

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[135]

Once you select any of the choices in the preceding screenshot and you fill in all the request
information, Visual Studio creates two projects: an application project that contains
configuration information for the overall application and a project for the specific service
you have chosen that contains both the service code and service-specific configuration. If
you want to add more microservices to your application, right-click on the application
project and select Add | New Service Fabric Service.

If you right-click on the solution and select Add | New project, a new
Service Fabric application will be created instead of a new service being
added to the already existing application.

If you select Guest Executable, you need to provide the following:

A folder containing the main executable file, along with all the files it needs to
work properly. You need this if you want to create a copy of this folder in your
project or simply to link to the existing folder.
The main executable file.
Arguments to pass on the command line to that executable.
Which folder to use as a working folder on Azure. You want to use the folder
containing the main executable (CodeBase), the folder where Azure Service
Fabric will package the whole microservice (CodePackage), or a new subfolder
named Work.

If you select Container, you need to provide the following:

The complete name of a Docker image in your private Azure Container Registry.
The username that will be used to connect to Azure Container Registry. The
password will be specified manually in the same RepositoryCredentials
XML element of the application configuration file that was automatically created
for the username.
The port where you can access your service (Host Port) and the port inside the
container the Host Port must be mapped to (Container Port). The Container
Port must be the same port that was exposed in the Docker file and used to
define the Docker image.

Afterward, you may need to add further manual configuration to ensure that your Docker
application works properly. The Further reading section contains links to the official
documentation where you can find more details.

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[136]

There are five types of .NET Core native Service Fabric services. The Actor service pattern is
an opinionated pattern that was conceived several years ago by Carl Hewitt. We will not
discuss it here, but the Further reading section contains some links that provide more
information on this.

The remaining four patterns refer to the usage (or not) of ASP.NET Core as the main
interaction protocol and to the fact that the service has or hasn't got an internal state. In fact,
Service Fabric allows microservices to use distributed queues and dictionaries that are
globally accessible to all instances of the microservice that declares them, independent of
the hardware node where they are running (they are serialized and distributed to all
available instances when they're needed).

Stateful and stateless templates differ mainly in terms of their configuration. All native
services are classes that specify just two methods:

protected override IEnumerable<ServiceReplicaListener>
CreateServiceReplicaListeners()

protected override async Task RunAsync(CancellationToken cancellationToken)

The CreateServiceReplicaListeners method specifies a list of listeners that are used
by the microservice to receive messages and the code that handles those messages.
Listeners may use any protocol, but they are required to specify an implementation of the
relative socket.

RunAsync contains the code for background threads that asynchronously run tasks that are
triggered by received messages. Here, you can build a host that runs several hosted
services.

ASP.NET Core templates follow the same pattern; however, they use a unique ASP.NET
Core-based listener and no RunAsync implementation since background tasks can be
launched from inside ASP.NET Core. However, you may add further listeners to the array
of listeners returned by the CreateServiceReplicaListeners implementation created
by Visual Studio, and also a custom RunAsync override.

More details on Service Fabric's native services pattern will be provided in the Which tools
are needed to manage microservices? section, while a complete code example will be provided
in the Testing the application section of this chapter, which is dedicated to this book's use
case.

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[137]

While this section presented the tools we can use to build the code for our microservices,
the next section describes the tools we can use to define and manage the clusters where our
microservices will be deployed.

Which tools are needed to manage
microservices?
Effectively handling microservices in your CI/CD cycles requires both a private Docker
image registry and a state of-the-art microservice orchestrator that's capable of doing the
following:

Allocating and load-balancing microservices on available hardware nodes
Monitoring the health state of services and replacing faulty services if
hardware/software failures occur
Logging and presenting analytics
Allowing the designer to dynamically change requirements such as hardware
nodes allocated to a cluster, the number of service instances, and so on

The following subsection describes the Azure facilities we can use to store Docker images
and to orchestrate microservices.

Defining your private Docker registry in Azure
Defining your private Docker registry in Azure is easy. Just type Container registries
into the Azure search bar and select Container registries. On the page that appears, click on
the Add button.

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[138]

The following form will appear:

The name you select is used to compose the overall registry URI: <name>.azurecr.io. As
usual, you can specify the subscription, resource group, and location. The SKU dropdown
lets you choose from various levels of offerings that differ in terms of performance,
available memory, and a few other auxiliary features.

If you enable Admin user, an admin user will be created whose username is <name> and
whose password is created automatically by the portal; otherwise, the user will log in with
your Azure portal credentials. Once Admin user has been selected, their login information
will be available under the resource Access key menu item.

Whenever you mention image names in Docker commands or in a Visual Studio publish
form, you must prefix its name with the registry URI: <name>.azurecr.io/<my
imagename>.

If images are created with Visual Studio, then they can be published by following the
instructions that appear once you've published the project. Otherwise, you must use
docker commands to push them into your registry.

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[139]

Let's say you have the image in another registry. The first step pulls the image onto your
local machine:

docker pull other.registry.io/samples/myimage

If there are several versions of the preceding image, the latest will be pulled since no
version was specified. The version of the image can be specified as follows:

docker pull other.registry.io/samples/myimage:version1.0

Using the following command, you should see myimage within the list of local images:

docker images

Now, log in to Azure by typing in the following command and providing your credentials:

docker login myregistry.azurecr.io

Then, tag the image with the path you want to assign in the Azure registry:

docker tag myimage myregistry.azurecr.io/testpath/myimage

Both the name and destination tag may have versions (:<version name>).

Finally, push it:

docker push myregistry.azurecr.io/testpath/myimage

In this case, you can specify a version; otherwise, the latest version is pushed.

By doing this, you can remove the image from your local computer using the following
command:

docker rmi myregistry.azurecr.io/testpath/myimage

Azure Service Fabric
Azure Service Fabric is the main Microsoft orchestrator that can host Docker containers,
native .NET applications, and a distributed computing model called reliable services.
We've already explained how we can create and publish applications that contain these
three types of service in the Azure and Visual Studio support for microservice orchestration
subsection. In this section, we will explain how to create an Azure Service Fabric cluster in
the Azure portal and provide some more details on reliable services. More practical details
regarding reliable services will be provided in the example described in the Use case - logging
microservices section.

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[140]

You can enter the Service Fabric section of Azure by typing Service Fabric into the
Azure search bar and selecting Service Fabric Cluster. A multi-step wizard will appear.
The following subsections describe the available steps.

Step 1: Basic information
The following screenshot shows the creation of Azure Service Fabric:

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[141]

Here, you can choose the operating system, resource group, subscription, location, and
username and password you want to use to connect the remote desktop to all the cluster
nodes. You are required to choose a cluster name, which will be used to compose the
cluster URI as <cluster name>.<location>.cloudapp.azure.com, where location is
a name associated with the datacenter location you have chosen.

Step 2: Cluster configuration
In the second step, you can configure the number of nodes and their features:

You can specify up to three node types. Nodes of a different node type can be scaled
independently, and node type 1, called the primary node type, is where Azure Service
Fabric runtime services will be hosted. For each node type, you can specify the type of
machine (durability tier), machine dimensions (CPU and RAM), and the initial number of
nodes.

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[142]

You can also specify all the ports that will be visible from outside the cluster (Custom
endpoints).

The services that are hosted on the different nodes of a cluster can
communicate through any port since they are part of the same local
network. Therefore, Custom endpoints must declare the ports that need to
accept traffic from outside the cluster. The port that's exposed in Custom
endpoints is the cluster's public interface, which can be reached through
the cluster URI, that is, <cluster
name>.<location>.cloudapp.azure.com. Their traffic is
automatically redirected to all the microservices that have had the same
ports opened by the cluster load balancer.

To understand the enable reverse proxy option, we must explain how communications are
sent to several instances of services whose physical addresses change during their lifetimes.
From within the cluster, services are identified with a URI such as
fabric://<application name>/<service name>. That is, this name allows us to
access one of the several load-balanced instances of <service name>. However, these
URIs can't be used directly by communication protocols. Instead, they are used to get the
physical URI of the required resource, along with all its available ports and protocols from
the Service Fabric naming service.

Later, we will learn how to perform this operation with reliable services. However, this
model is not adequate for Dockerized services that weren't conceived to run specifically on
Azure Service Fabric since they are not aware of Service Fabric-specific naming services
and APIs.

Therefore, Service Fabric provides two more options that we can use to standardize URLs
instead of interacting directly with its naming service:

DNS: Each service can specify its hostname (also known as its DNS name). The
DNS service takes care of translating it into the actual service URL. For example,
if a service specifies an order.processing DNS name and it has an HTTP
endpoint on port 80 and a /purchase path, we can reach this endpoint with
http://order.processing:80/purchase.

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[143]

Reverse proxy: Service Fabric's Reverse Proxy intercepts all the calls that have
been directed to the cluster address and uses the name service to send them to
the right application and service within that application. Addresses that are
resolved by the reverse proxy service have the following structure: <cluster
name>.<location>.cloudapp.azure.com: <port>//<app
name>/<service name>/<endpoint path>?PartitionKey=<value> &

PartitionKind=value. Here, partition keys are used to optimize state, fully
reliable services and will be explained at the end of this subsection. This means
that stateless services lack the query string part of the previous address. Thus, a
typical address that's solved by reverse proxy may be something similar to
myCluster.eastus.cloudapp.azure.com:
80//myapp/myservice/<endpoint path>?PartitionKey=A &

PartitionKind=Named. If the preceding endpoint is called from a service
hosted on the same cluster, we can specify localhost instead of the complete
cluster name (that is, from the same cluster, not from the same node):
localhost: 80//myapp/myservice/<endpoint path>?PartitionKey=A &

PartitionKind=Named.

By default, the DNS service is activated but the reverse proxy isn't. Therefore, we must
enable it by checking the Enable reverse proxy checkbox in the second step of Service Fabric's
configuration.

Step 3: Security configuration
Once we've submitted the second step, we come to a security page:

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[144]

If we choose the basic option, the wizard creates an X509 certificate to secure our
communication with the cluster. Otherwise, we can select an existing one from the Azure
Key Vault. If you don't have a Key Vault, the wizard will make you create one so that you
can store the newly created certificate. In the certificate options, locate the certificate usage
option and select publishing/deploying. If you don't, you will receive an error message,
along with some instructions telling you what to do to fix the issue.

Once the certificate is ready, download it onto your machine (by following the wizard's
instructions) and double-click on it to install it in your local machine. The certificate will be
used to deploy applications from your machine. Specifically, you are required to insert the
following information into the Cloud Publish Profile of your Visual Studio Service Fabric
applications (see this chapter's Use case – logging microservices section for more details):

<ClusterConnectionParameters
 ConnectionEndpoint="<cluster name>.<location
 code>.cloudapp.azure.com:19000"
 X509Credential="true"
 ServerCertThumbprint="<server certificate thumbprint>"
 FindType="FindByThumbprint"
 FindValue="<client certificate thumbprint>"
 StoreLocation="CurrentUser"
 StoreName="My" />

Since both the client (Visual Studio) and the server use the same certificate for
authentication, the server and client thumbprint are the same. The certificate thumbprint
can be copied from your Azure Key Vault. It is worth mentioning that you can add also
client-specific certificates with the main server certificate by selecting the Custom option in
step 3.

Once you submit your certificate, you are presented with a summary of your configuration.
Submitting your approval will create the cluster. Pay attention to this: a cluster may spend
your Azure free credit in a short time, so just keep your cluster on when you're testing.
After, you should delete it.

As we mentioned in the Azure and Visual Studio support for microservices orchestration
subsection, Azure Service Fabric supports two kinds of reliable service: stateless and stateful.
Stateless services either don't store permanent data or they store it in external supports such
as the Redis Cache or databases (see Chapter 7, How to Choose Your Data Storage in the
Cloud, for the main storage options offered by Azure).

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[145]

Stateful services, on the other hand, use Service Fabric-specific distributed dictionaries and
queues. Each distributed data structure is accessible from all the identical replicas of a
service, but only one replica, called the primary replica, is allowed to write on them to
avoid synchronized access to those distributed resources, which may cause bottlenecks. All
the other replicas, known as secondary replicas, can only be read from these distributed
data structures.

You can check if a replica is primary by looking at the context object your code receives
from the Azure Service Fabric runtime, but usually, you don't need to do this. In fact, when
you declare your service endpoints, you are required to declare those that are read-only. A
read-only endpoint is supposed to receive requests so that it can read data from the shared
data structures. Therefore, since only read-only endpoints are activated for secondary
replicas, if you implement them correctly, write/update operations should be automatically
prevented on stateful secondary replicas with no need to perform further checks.

In stateful services, secondary replicas enable parallelism on read operations, so in order to
get parallelism on write/update operations, stateful services are assigned different data
partitions. More specifically, for each stateful service, Service Fabric creates a primary
instance for each partition. Then, each partition may have several secondary replicas.

Distributed data structures are shared between the primary instance of each partition and
its secondary replicas. The whole extent of data that can be stored in a stateful service is
split among the chosen number of partitions, according to a partition key that is generated
by a hashing algorithm on the data to be stored.

Typically, partition keys are integers that belong to a given interval that is split among all
the available partitions. For instance, a partition key can be generated by calling the .NET
GetHashCode() method on one or more string fields to get integers that are then processed
to get a unique integer (using, for instance, an exclusive or operation on the integer bits).
Then, this integer can be constrained to the integer interval that was chosen for the partition
key by taking the remainder of an integer division (for instance, the remainder of a division
for 1,000 will be an integer in the 0-999 interval).

Let's say we want four partitions, which will be selected with an integer key in the 0-999
interval. Here, Service Fabric will automatically create four primary instances of our
stateful service and assign them the following four partition key subintervals: 0-249,
250-499, 500-749, 750-999.

From within your code, you are required to compute the partition key of the data you send
to a stateful service. Then, Service Fabric's runtime will select the right primary instance for
you. The Use case – logging microservices section at the end of this chapter provides more
practical details on this and how to use reliable services in practice.

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[146]

Azure Kubernetes Service (AKS)
Kubernetes is an advanced open source orchestrator that you can install locally on your
private machine's cluster. At the time of writing, it is the most widespread orchestrator, so
Microsoft offers it as an alternative to Azure Service Fabric. Also, if you prefer Azure
Service Fabric, you may be forced to use the Azure Kubernetes Service (AKS) since some
advanced solutions (for instance, some big data solutions) are built on top of Kubernetes.
This subsection provides a short introduction to AKS, but more details can by found in the
official documentation, which is referenced in the Further reading section.

To create an AKS cluster, type AKS into Azure search, select Kubernetes services, and then
click the Add button. The following form will appear:

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[147]

As usual, you are required to specify a subscription, resource group, and location. Then,
you can choose a unique name (Kubernetes cluster name), the prefix of the cluster URI
(DNS name prefix), and the version of Kubernetes you would like to use. For
computational power, you are asked to select a machine template for each node (Node size)
and the number of nodes. If you click Next, you can provide security information, namely a
service principal, and specify whether you wish to enable role-based access control. In Azure,
service principals are accounts that are associated with services you may use to define
resource access policies. If you have no experience with this concept and/or if you don't
have any preexisting service principals, you can let the wizard create one for you.

There are other settings you can change too, but the default values work well.

Once you've created the Kubernetes cluster, you can interact with it through the kubectl
command-line tool. kubectl is integrated into the Azure console, so you need just to
activate your cluster credentials. Select the Azure console at the top of the page portal and
then type in the following command:

az aks get-credentials --resource-group <resource group> --name <cluster
name>

The preceding command downloads the credentials that were automatically created to
enable your interaction with the cluster and configures the Kubernetes CLI so that it can
use them.

Then, if you write kubectl get nodes, you should get a list of available Kubernetes
nodes.

Docker images can be loaded into the cluster and configured by writing a .yaml
configuration file, such as myClusterConfiguration.yaml, and typing the following:

kubectl apply -f myClusterConfiguration.yaml

You can create and edit this file by writing nano on the Azure console to launch the nano
editor. Once you're in the editor, you can paste content from a local file and then save it.

The preceding command deploys the application and runs it. The deployment state can be
monitored with the following command:

kubectl get service MyDeployment --watch

Here, MyDeployment is the name that's given to deployment in the .yaml file.

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[148]

When the cluster is no longer needed, you can delete it with the following command:

az aks delete --resource-group <resource group> --name <cluster name> --no-
wait

The application state can be monitored by selecting Insights from the resource Azure
menu. Here, you can apply filters and select the information you need.

.yaml files have the same structure as JSON files but they have a different syntax. You
have objects and lists but object properties are not surrounded by {} and lists are not
surrounded by []. Instead, nested objects are declared by simply indenting their content
with spaces. The number of spaces can be freely chosen, but once they've been chosen, they
must be used coherently.

List items can be distinguished from object properties by preceding them with a hyphen (-
). .yaml files can contain several sections that are separated by a line containing the ---
string. Typically, you define a Deployment that describes which images to deploy and how
many replicas they must have. Each deployment groups a set of images to be deployed
together on the same node, which means that each replica that's deployed in any node must
have all those images installed. A set of images to be deployed together is called a pod.

For instance, the following configuration deploys two replicas of a single image pod:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: MyDeployment
spec:
 replicas: 2
 selector:
 matchLabels:
 app: MyApplication
 template:
 ...
 ...

The initial header declares the Kubernetes API version to use and the kind of object we are
going to define (a deployment), and assigns a name to the object. The deployment name can
be used at a later time to modify the cluster with deployment edit commands.

template:
 metadata:
 labels:
 app: MyApplication
 spec:
 containers:

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[149]

 - name: MyContainerName
 image: myregistry.azurecr.io/testpath/myimage
 resources:
 requests:
 cpu: 100m
 memory: 128Mi
 limits:
 cpu: 250m
 memory: 256Mi
 ports:
 - containerPort: 80
 - name: http
 env:
 - name: MyEnvironmetVariable
 value: "MyEnvironmetVariable"

On the other hand, the spec attribute under the template lists all the containers that will
compose each replica of the pod.

In turn, each container has a name and specifies the Docker image to be used to instantiate
it. Then, it specifies the average computational resources that are needed and their
maximum limits. Finally, it specifies the ports that are exposed externally. These ports are
not forwarded to a different port and are exposed as they are. This port setting overrides
the EXPOSE Docker file setting.

Finally, we can specify some environment variables to set inside each container.

Since there are several replicas of the same services located on different nodes, and since
allocating services to nodes may change dynamically, there is a problem when it comes to
internal communication among pods and internal-to-external communication. This
problem is solved by defining services that offer a unique entry point for all instances of a
pod. A service definition can be added to the same .yaml file, separated by ---:

apiVersion: v1
kind: Service
metadata:
 name: MyApplication-service
spec:
 ports:
 - port: 8080
 targetPort: 80
 protocol: TCP
 name: http
 selector:
 app: MyApplication

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[150]

The preceding definition creates a service that's exposed on port 8080, which redirects all
requests to port 80 of a MyApplication replica. The pod that's served by the service is
selected by the selector property. The service IP is internally visible, but client pods don't
need to know the service IP since the services can be reached through their names, just like
hosts in a classic network. Thus, in this case, MyApplication-service:8080 does the job.

If we need a publicly accessible IP, we need to add type: LoadBalancer under spec
before ports. AKS will select a public IP for you. We can get the chosen public IP by
watching the deployment process with kubectl get service MyDeployment --watch
until the IP is selected. If we bought an IP address in the same resource group as AKS, we
can specify this IP address by adding clusterIP: <your IP> under the service spec.

Pods can be organized into namespaces if we create namespaces in our .yaml files:

apiVersion: v1
kind: Namespace
metadata:
 name: my-namespace
 labels:
 name: my-namespace

Then, you can target objects (services or deployments) in a namespace by adding
namespace: <your namespace> after its name in its definition metadata. Similarly, you
can target kubectl commands in a specific namespace by adding them with the --
namespace=<your namespace> option.

The use case in the next section will provide more details when it comes to defining a
Service Fabric application. More details on Kubernetes clusters can be found in the
references listed in the Further reading section.

Use case – logging microservices
In this section, we will take a look at a microservice-based system that logs data about
purchases relating to various destinations in our WWTravelClub use case. In particular, we
will design microservices that takes care of computing daily revenues per location. Here,
we're assuming that these microservices receive data from other subsystems hosted in the
same Azure Service Fabric application. More specifically, each purchase log message is
composed of the location name, the overall package cost, and the date and time of the
purchase.

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[151]

As a first step, let's ensure that the Service Fabric emulator that we mentioned in the
Technical requirements section of this chapter has been installed and is running on your
development machine. Now, we need so switch it so that it runs 5 nodes.

Now, we can follow the steps we explained in the Azure and Visual Studio support for
microservice orchestration section to create a Service Fabric project named
PurchaseLogging. Select a .NET Core stateful reliable service and name it LogStore.

The solution that's created by Visual Studio is composed of a PurchaseLogging project,
which represents the overall application, and a LogStore project, which will contain the
implementation of the first microservice that's included in the PurchaseLogging
application.

Under the PackageRoot folder, the LogStore service and each reliable service contain the
ServiceManifest.xml configuration file and a Settings.xml folder (under the Config
subfolder). The Settings.xml folder contains some settings that you can read from the
service code. The initial file contains predefined settings that are needed by the Service
Fabric runtime. Let's add a new settings section, as shown in the following code:

<?xml version="1.0" encoding="utf-8" ?>
<Settings xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://schemas.microsoft.com/2011/01/fabric">
 <!-- This is used by the StateManager's replicator. -->
 <Section Name="ReplicatorConfig">
 <Parameter Name="ReplicatorEndpoint" Value="ReplicatorEndpoint" />
 </Section>
 <!-- This is used for securing StateManager's replication traffic. -->
 <Section Name="ReplicatorSecurityConfig" />

 <!-- Below the new Section to add -->
 <Section Name="Timing">
 <Parameter Name="MessageMaxDelaySeconds" Value="" />
 </Section>
</Settings>

We will use the value of MessageMaxDelaySeconds to configure the system component
and ensure message idempotency. The setting value is empty, because most of the settings
are overridden by the overall application settings contained in the PurchaseLogging
project.

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[152]

The ServiceManifest.xml file contains some configurations tags that are automatically
handled by Visual Studio, as well as a list of endpoints. Two endpoints are preconfigured
since they are used by the Service Fabric runtime. Here, we must add the configuration
details of all the endpoints our microservice will listen to. Each endpoint definition has the
following format:

<Endpoint Name="<endpoint name>" PathSuffix="<the path of the endpoint
URI>" Protocol="<a protcolo like Tcp, http, https, etc.>" Port="the exposed
port" Type="<Internal or Input>"/>

If Type is Internal, the port will be opened just inside the cluster's local network;
otherwise, the port will be available from outside the cluster as well. In the preceding case,
we must declare that port in the configuration of the Azure Service Fabric cluster as well,
otherwise the cluster load balancer/firewall will not forward messages to it.

Public ports can be reached directly from the cluster URI (<cluster
name>.<location code>.cloudapp.azure.com) since the load
balancer that interfaces each cluster will forward the input traffic it
receives to them.

In this example, we won't define endpoints since we are going to use remoting-based
communication, which has already been defined, for all internal interactions, but we will
show you how to use them.

The PurchaseLogging project contains a reference to the LogStore project under the
services Solution Explorer node and contains various folders with various XML
configuration files. More specifically, we have the following folders:

ApplicationPackageRoot, which contains the overall application manifest
named ApplicationManifest.xml. This file contains some initial parameter
definitions and then further configurations. Parameters have the following
format:

<Parameter Name="<parameter name>" DefaultValue="<parameter
definition>" />

Once defined, parameters can replace any value in the remainder of the file.
Parameter values are referenced by enclosing the parameter name between
square brackets, as shown in the following code:

<UniformInt64Partition PartitionCount="[LogStore_PartitionCount]"
LowKey="0" HighKey="1000" />

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[153]

Some parameters define the number of replicas and partitions for each service
and are automatically created by Visual Studio:

<Parameter Name="LogStore_MinReplicaSetSize" DefaultValue="1" />
<Parameter Name="LogStore_PartitionCount" DefaultValue="2" />
<Parameter Name="LogStore_TargetReplicaSetSize" DefaultValue="1" />

Let's replace the initial values suggested by Visual Studio with those in the
preceding code. We will use just two partitions to show you how partitions work,
but you can increase this value to improve write/update parallelism. Each
partition of the LogStore service doesn't need several replicas since replicas
improve performance on read operations and this service is not designed to offer
read services. Therefore, you may choose just one replica, or at most two, to make
the system redundant and more robust to failures.

The preceding parameters are used to define the role of the LogStore service
inside the overall application. This definition is generated automatically by Visual
Studio in the same file, below the initial definition created by Visual studio, with
just the partition interval changed to 0-1,000:

<Service Name=LogStore
ServicePackageActivationMode="ExclusiveProcess">
 <StatefulService ServiceTypeName="LogStoreType"
 TargetReplicaSetSize=
 "[LogStore_TargetReplicaSetSize]"
 MinReplicaSetSize="[LogStore_MinReplicaSetSize]">
 <UniformInt64Partition PartitionCount="
 [LogStore_PartitionCount]"
 LowKey="0" HighKey="1000" />
 </StatefulService>
</Service>

ApplicationParameters contains possible overrides for parameters defined in
ApplicationManifest.xml for various deployment environments: the cloud
(that is, the actual Azure Service Fabric cluster) and local emulators with one or
five nodes.

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[154]

PublishProfiles contains the settings that are needed to publish the
application in the same environments handled by the ApplicationParameters
folder. You just need to customize the cloud publish profile with the actual name
of your Azure Service Fabric URI and with the authentication certificate you
downloaded during the Azure cluster configuration process:

<ClusterConnectionParameters
 ConnectionEndpoint="<cluster name>.<location
 code>.cloudapp.azure.com:19000"
 X509Credential="true"
 ServerCertThumbprint="<server certificate thumbprint>"
 FindType="FindByThumbprint"
 FindValue="<client certificate thumbprint>"
 StoreLocation="CurrentUser"
 StoreName="My" />

The remaining steps that need to be followed in order to complete the application have
been organized into several subsections. Let's start by looking at ensuring message
idempotency.

Ensuring message idempotency
Messages can become lost because of failures or small timeouts caused by load balancing.
Here, we will use a predefined remoting-based communication that performs automatic
message retries in the case of failures. However, as we explained in the Microservice design
principles subsection, this may cause the same messages to be received twice. Since we are
summing up the revenues of purchase orders, we must protect ourselves from summing up
the same purchase several times.

To do this, we will implement a library containing the necessary tools to ensure that
message replicas are discarded.

Let's add a new .NET Standard 2.0 library project called IdempotencyTools to our solution.
Now, we can remove the initial class scaffolded by Visual studio. This library needs a
reference to the same version of the Microsoft.ServiceFabric.Services NuGet
package referenced by LogStore, so let's verify the version number and add the same
NuGet package reference to the IdempotencyTools project.

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[155]

The main tool that ensures message idempotency is the IdempotentMessage class:

using System;
using System.Runtime.Serialization;

namespace IdempotencyTools
{
 [DataContract]
 public class IdempotentMessage<T>
 {
 [DataMember]
 public T Value { get; protected set; }
 [DataMember]
 public DateTimeOffset Time { get; protected set; }
 [DataMember]
 public Guid Id { get; protected set; }

 public IdempotentMessage(T originalMessage)
 {
 Value = originalMessage;
 Time = DateTimeOffset.Now;
 Id = Guid.NewGuid();
 }
 }
}

We added the DataContract and DataMember attributes since they are needed by the
remoting communication serializer we are going to use for all internal messages. Basically,
the receding class is a wrapper that adds a Guid and a time mark to the message class
instance that's passed to its constructor.

The IdempotencyFilter class uses a distributed dictionary to keep track of the messages
it's already received. To avoid the indefinite growth of this dictionary, older entries are
periodically deleted. Messages that are too old to be found in the dictionary are
automatically discarded.

The time interval entries are kept in the dictionary and are passed in the
IdempotencyFilter static factory method, which creates new filter instances, along with
the dictionary name and the IReliableStateManager instance, which are needed to
create the distributed dictionary:

public class IdempotencyFilter
{
 protected IReliableDictionary<Guid, DateTimeOffset> dictionary;
 protected int maxDelaySeconds;
 protected DateTimeOffset lastClear;

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[156]

 protected IReliableStateManager sm;
 protected IdempotencyFilter() { }
 public static async Task<IdempotencyFilter> NewIdempotencyFilter(
 string name,
 int maxDelaySeconds,
 IReliableStateManager sm)
 {
 var result = new IdempotencyFilter();
 result.dictionary = await
 sm.GetOrAddAsync<IReliableDictionary<Guid, DateTimeOffset>>
 (name);
 result.maxDelaySeconds = maxDelaySeconds;
 result.lastClear = DateTimeOffset.Now;
 result.sm = sm;
 return result;
 }
...
...

The dictionary contains each message time mark indexed by the message Guid and is
created by invoking the GetOrAddAsync method of the IReliableStateManager
instance with the dictionary type and name. lastClear contains the time of the removal of
all old messages.

When a new message arrives, the NewMessage method checks whether it must be
discarded. If the message must be discarded, it returns null; otherwise, it adds the new
message to the dictionary and returns the message without the IdempotentMessage
wrapper:

public async Task<T> NewMessage<T>(IdempotentMessage<T> message)
{
 DateTimeOffset now = DateTimeOffset.Now;
 if ((now - lastClear).TotalSeconds > 1.5 * maxDelaySeconds)
 {
 await Clear();
 }
 if ((now - message.Time).TotalSeconds > maxDelaySeconds)
 return default(T);
 using (ITransaction tx = this.sm.CreateTransaction())
 {
 ...
 ...
 }
 }

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[157]

As a first step, the method verifies whether it's time to clear the dictionary and whether the
message is too old. Then, it starts a transaction to access the dictionary. All distributed
dictionary operations must be enclosed in a transaction, as shown in the following code:

using (ITransaction tx = this.sm.CreateTransaction())
{
 var result = await dictionary.TryGetValueAsync(tx,
 message.Id);
 if (result.HasValue)
 {
 tx.Abort();
 return default(T);
 }
 else
 {
 await dictionary.TryAddAsync(tx, message.Id, message.Time);
 await tx.CommitAsync();
 return message.Value;
 }
}

If the message Guid is found in the dictionary, the transaction is aborted since the
dictionary doesn't need to be updated and the method returns default(T), which is
actually null since the message must not be processed. Otherwise, the message entry is
added to the dictionary and the unwrapped message is returned.

The code of the Clear method can be found in the GitHub repository associated with this
book.

The Interaction library
There are some types that must be shared among all microservices. If the internal
communication is implemented with either remoting or WCF, each microservice must
expose an interface with all the methods other microservices call. Such interfaces must be
shared among all microservices. Moreover, with all communication interfaces, the classes
that implement the messages must also be shared among all microservices (or among some
subsets of them). Therefore, all of these structures are declared in external libraries that are
referenced by the microservices.

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[158]

Now, let's add a new .NET Standard 2.0 library project called Interactions to our
solution. Since this library must use the IdempotentMessage generic class, we must add it
as a reference to the IdempotencyTools project. We must also add a reference to the
remoting communication library contained in the
Microsoft.ServiceFabric.Services.Remoting NuGet package since all interfaces
that are used to expose the microservice's remote methods must inherit from the IService
interface defined in this package.

IService is an empty interface that declares the communication role of the inheriting
interface. The Microsoft.ServiceFabric.Services.Remoting NuGet package version
must match the version of the Microsoft.ServiceFabric.Services package declared
in the other projects.

The following code shows the declarations of the interface that need to be implemented by
the LogStore class:

using System;
using System.Collections.Generic;
using System.Text;
using System.Threading.Tasks;
using IdempotencyTools;
using Microsoft.ServiceFabric.Services.Remoting;

namespace Interactions
{
 public interface ILogStore: IService
 {
 Task<bool> LogPurchase(IdempotentMessage<PurchaseInfo>
 idempotentMessage);
 }
}

The following is the code of the PurchaseInfo message class, which is referenced in the
ILogStore interface:

using System;
using System.Collections.Generic;
using System.Runtime.Serialization;
using System.Text;

namespace Interactions
{
 [DataContract]
 public class PurchaseInfo
 {
 [DataMember]

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[159]

 public string Location { get; set; }
 [DataMember]
 public decimal Cost { get; set; }
 [DataMember]
 public DateTimeOffset Time { get; set; }
 }
}

Now, we are ready to implement our main LogStore microservice.

Implementing the receiving side of
communication
To implement the LogStore microservice, we must add a reference to the Interaction
library, which will automatically create references to the remoting library and to the
IdempotencyTools project. Then, the LogStore class must implement the ILogStore
interface:

internal sealed class LogStore : StatefulService, ILogStore
...
...
private IReliableQueue<IdempotentMessage<PurchaseInfo>> LogQueue = null;
public async Task<bool>
 LogPurchase(IdempotentMessage<PurchaseInfo> idempotentMessage)
{
 if (LogQueue == null) return false;
 using (ITransaction tx = this.StateManager.CreateTransaction())
 {
 await LogQueue.EnqueueAsync(tx, idempotentMessage);
 await tx.CommitAsync();
 return true;
 }
}

Once the service receives a LogPurchase call from the remoting runtime, it puts the
message in the LogQueue to avoid the caller remaining blocked, waiting for message
processing completion. This way, we achieve both the reliability of a synchronous message
passing protocol (the caller knows that the message has been received) and the
performance advantages of asynchronous message processing that are typical of
asynchronous communication.

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[160]

LoqQueue, as a best practice for all distributed collections, is created in the RunAsync
method, so LogQueue may be null if the first call arrives before the Azure Service Fabric
runtime has called RunAsync. In this case, the method returns false to signal that the
service isn't ready yet. Otherwise, a transaction is created to enqueue the new message.

However, our service will not receive any communication if we don't furnish an
implementation of CreateServiceReplicaListeners() that returns all the listeners that
the service would like to activate. In the case of remoting communications, there is a
predefined method that performs the whole job, so we just need to call it:

protected override IEnumerable<ServiceReplicaListener>
 CreateServiceReplicaListeners()
{
 return this.CreateServiceRemotingReplicaListeners<LogStore>();
}

Here, CreateServiceRemotingReplicaListeners is an extension method defined in
the remoting communication library. It creates listeners for both primary replicas and
secondary replicas (for read-only operations). When creating the client, we can specify
whether its communications are addressed just to primary replicas or also to secondary
replicas.

If you would like to use different listeners, you must create an IEnumerable of
ServiceReplicaListener instances. For each listener, you must invoke the
ServiceReplicaListener constructor with three arguments:

A function that receives the reliable service context object as its input and returns
an implementation of the ICommunicationListener interface.
The name of the listener. This second argument becomes obligatory when the
service has more than one listener.
A Boolean that is true if the listener must be activated on secondary replicas.

For instance, if we would like to add both custom and HTTP listeners, the code becomes
something like the following:

return new ServiceReplicaListener[]
{
 new ServiceReplicaListener(context =>
 new MyCustomHttpListener(context, "<endpoint name>"),
 "CustomWriteUpdateListener", true),

 new ServiceReplicaListener(serviceContext =>
 new KestrelCommunicationListener(serviceContext, "<endpoint name>"
 (url, listener) =>

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[161]

 {
 ...
 })
 "HttpReadOnlyListener",
 true)
};

MyCustomHttpListener is a custom implementation of ICommunicationListener,
while KestrelCommunicationListener is a predefined HTTP listener based on Kestrel
and ASP.NET Core. The following is the full code that defines the
KestrelCommunicationListener listener:

new ServiceReplicaListener(serviceContext =>
new KestrelCommunicationListener(serviceContext, "<endpoint name>" (url,
listener) =>
{
 return new WebHostBuilder()
 .UseKestrel()
 .ConfigureServices(
 services => services
 .AddSingleton<StatefulServiceContext>(serviceContext)
 .AddSingleton<IReliableStateManager>(this.StateManager))
 .UseContentRoot(Directory.GetCurrentDirectory())
 .UseStartup<Startup>()
 .UseServiceFabricIntegration(listener,
 ServiceFabricIntegrationOptions.UseUniqueServiceUrl)
 .UseUrls(url)
 .Build();
})
"HttpReadOnlyListener",
true)

Usually, ICommunicationListener implementations accept the node context and an
endpoint name in their constructors and are responsible for reading the endpoint data
defined in the ServiceManifest.xml service, as well as creating a listening endpoint that
satisfies the specification contained there. They do this in their
CommunicationListener.OpenAsync method:

public async Task<string> OpenAsync(CancellationToken cancellationToken)
{
 EndpointResourceDescription serviceEndpoint = serviceContext
 .CodePackageActivationContext.GetEndpoint("ServiceEndpoint");
 //create service URI that depend on current Ip
 (FabricRuntime.GetNodeContext().IPAddressOrFQDN)
 //partition id (serviceContext.PartitionId)
 //and replica id (serviceContext.ReplicaOrInstanceId)
 //open the listener

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[162]

 return <computedURISchema>;
}

<computedURISchema> is the URI with the IP address replaced by a "+". Once returned by
OpenAsync, it is published in the Service Fabric naming service and used to compute the
actual service address from the cluster node IP address it's been deployed in.

ICommunicationListener implementations must also have a Close method, which must
close the opened communication channel, and an Abort method, which must immediately
close the communication channel (ungracefully, that is, without informing connected
clients and so on).

Now that we have turned communications on, we can implement the service logic.

Implementing service logic
Service logic is executed by the tasks that are launched as independent threads when
RunAsync is invoked by the Service Fabric runtime. It's good practice to create an IHost
and design all the tasks as IHostedService implementations when you only need to
implement one task. In fact, IHostedService implementations are independent chunks of
software that are easier to unit-test. IHost and IHostedService were discussed in detail
in the Using generic hosts subsection.

In this section, we will implement the logic that computes daily revenues for each location
into an IHostedservice named ComputeStatistics, which uses a distributed
dictionary whose keys are the location names and whose values are instances of a class
called RunningTotal. This class stores the current running total and the day that is being
computed:

namespace LogStore
{
 public class RunningTotal
 {
 public DateTime Day { get; set; }
 public decimal Count { get; set; }

 public RunningTotal
 Update(DateTimeOffset time, decimal value)
 {
 ...
 }
 }
}

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[163]

This class has an Update method that updates the instance when a new purchase message
is received. First of all, the incoming message time is normalized to universal time. Then,
the day part of this time is extracted and compared with the current Day of the running
total, as shown in the following code:

public RunningTotal Update(DateTimeOffset time, decimal value)
 {
 var normalizedTime = time.ToUniversalTime();
 var newDay = new DateTime(normalizedTime.Year,
 normalizedTime.Month, normalizedTime.Day);
 ...
 ...
 }

If it's a new day, we assume that the running total computation of the previous day has
finished, so the Update method returns it in a new RunningTotal instance and resets Day
and Count so that it can compute the new day running total. Otherwise, the new value is
added to the running Count and the method returns null, meaning that the day total isn't
ready yet. This implementation can be seen in the following code:

public RunningTotal Update(DateTimeOffset time, decimal value)
{
 ...
 ...
 var result = newDay > Day && Day != DateTime.MinValue ?
 new RunningTotal
 {
 Day=Day,
 Count=Count
 }
 : null;
 if(newDay > Day) Day = newDay;
 if (result != null) Count = value;
 else Count += value;
 return result;
}

The IHostedService implementation of ComputeStatistics needs some parameters to
work properly, as follows:

The queue containing all the incoming messages
The IReliableStateManager service, so that it can create the distributed
dictionary where it stores data

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[164]

The ConfigurationPackage service, so that it can read the settings defined in
the Settings.xml service file and possibly those overridden in the application
manifest

The preceding parameters must be passed in the ComputeStatistics constructor when a
ComputeStatistics instance is created by IHost through dependency injection. We will
return to the IHost definition in the next subsection. For now, let's concentrate on the
ComputeStatistics constructor and its fields:

namespace LogStore
{
 public class ComputeStatistics : BackgroundService
 {
 IReliableQueue<IdempotentMessage<PurchaseInfo>> queue;
 IReliableStateManager stateManager;
 ConfigurationPackage configurationPackage;
 public ComputeStatistics(
 IReliableQueue<IdempotentMessage<PurchaseInfo>> queue,
 IReliableStateManager stateManager,
 ConfigurationPackage configurationPackage)
 {
 this.queue = queue;
 this.stateManager = stateManager;
 this.configurationPackage = configurationPackage;
 }

All the constructor parameters are stored in private fields so that they can be used when
ExecuteAsync is called:

protected async override Task ExecuteAsync(CancellationToken stoppingToken)
{
 bool queueEmpty = false;
 var delayString=configurationPackage.Settings.Sections["Timing"]
 .Parameters["MessageMaxDelaySeconds"].Value;
 var delay = int.Parse(delayString);
 var filter = await IdempotencyFilter.NewIdempotencyFilter(
 "logMessages", delay, stateManager);
 var store = await
 stateManager.GetOrAddAsync<IReliableDictionary<string,
RunningTotal>>("partialCount");
....
...

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[165]

Before entering its loop, the ComputeStatistics service prepares some structures and
parameters. It declares that the queue isn't empty so that it can start dequeuing messages.
Then, it extracts MessageMaxDelaySeconds from the service settings and turns it into an
integer. The value of this parameter was left empty in the Settings.xml file. Now, it's
time to override it and define its actual value in ApplicationManifest.xml:

<ServiceManifestImport>
 <ServiceManifestRef ServiceManifestName="LogStorePkg"
ServiceManifestVersion="1.0.0" />
 <!--code to add start -->
 <ConfigOverrides>
 <ConfigOverride Name="Config">
 <Settings>
 <Section Name="Timing">
 <Parameter Name="MessageMaxDelaySeconds"
Value="[MessageMaxDelaySeconds]" />
 </Section>
 </Settings>
 </ConfigOverride>
 </ConfigOverrides>
 <!--code to add end-->
</ServiceManifestImport>

ServiceManifestImport imports the service manifest in the application and overrides
some configuration. Its version number must be changed every time its content and/or the
service definition is changed and the application is redeployed in Azure because version
number changes tell the Service Fabric runtime what to change in the cluster. Version
numbers also appear in other configuration settings. They must be changed every time the
entities they refer to change.

MessageMaxDelaySeconds is passed to the instance of the idempotency filter, along with
a name for the dictionary of the already received messages, and with the instance of the
IReliableStateManager service. Finally, the main distributed dictionary that's used to
store running totals is created.

After this, the service enters its loop and finishes when stoppingToken is signaled, that is,
when the Service Fabric runtime signals that the service is going to be stopped:

while (!stoppingToken.IsCancellationRequested)
 {
 while (!queueEmpty && !stoppingToken.IsCancellationRequested)
 {
 RunningTotal total = null;
 using (ITransaction tx = stateManager.CreateTransaction())
 {
 ...

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[166]

 ...
 ...
 }
 }
 await Task.Delay(100, stoppingToken);
 queueEmpty = false;
 }
}

The inner loop runs until the queue isn't empty and then exits and waits 100 milliseconds
before verifying whether new messages have been enqueued:

await Task.Delay(100, stoppingToken);
queueEmpty = false;

The following is the code for the inner loop, which is enclosed in a transaction:

RunningTotal total = null;
using (ITransaction tx = stateManager.CreateTransaction())
{
 var result = await queue.TryDequeueAsync(tx);
 if (!result.HasValue) queueEmpty = true;
 else
 {
 var item = await filter.NewMessage<PurchaseInfo>(result.Value);
 if(item != null)
 {
 var counter = await store.TryGetValueAsync(tx,
 item.Location);
 //counter update
 ...
 }
 ...
 ...
 }
}

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[167]

Here, the service is trying to dequeue a message. If the queue is empty, it sets queueEmpty
to true to exit the loop; otherwise, it passes the message through the idempotency filter. If
the message survives this step, it uses it to update the running total of the location
referenced in the message. However, correct operation of the distributed dictionary
requires that the old counter is replaced with a new counter each time an entry is updated.
Accordingly, the old counter is copied into a new RunningTotal object. This new object
can be updated with the new data if we call the Update method:

 //counter update
 var newCounter = counter.HasValue ?
 new RunningTotal
 {
 Count=counter.Value.Count,
 Day= counter.Value.Day
 }
 : new RunningTotal();
 total = newCounter.Update(item.Time, item.Cost);
 if (counter.HasValue)
 await store.TryUpdateAsync(tx, item.Location,
 newCounter, counter.Value);
 else
 await store.TryAddAsync(tx, item.Location, newCounter);

Then, the transaction is committed, as shown in the following code:

if(item != null)
{
 ...
 ...
}
await tx.CommitAsync();
if(total != null)
{
 await SendTotal(total, item.Location);
}

When the Update method returns a complete computation result, that is when the total
!= null method is called:

protected async Task SendTotal(RunningTotal total, string location)
{
 //Empty, actual application would send data to a service
 //that exposes daily statistics through a public Http endpoint
}

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[168]

The SendTotal method sends the total to a service that publicly exposes all the statistics
through an HTTP endpoint. After reading Chapter 12, Applying Service-Oriented
Architectures with .NET Core, which is dedicated to the Web API, you may want to
implement a similar service with a stateless ASP.NET Core microservice connected to a
database. The stateless ASP.NET Core service template automatically creates an ASP.NET
Core-based HTTP endpoint for you.

However, since this service must receive data from the SendTotal method, it also needs
remote-based endpoints. Therefore, we must create them, just like we did for the LogStore
microservice, and concatenate the remote-based endpoint array with the preexisting array
containing the HTTP endpoint.

Defining the microservice's host
Now, we have everything in place to define the microservice's RunAsync method:

protected override async Task RunAsync(CancellationToken cancellationToken)
{
 // TODO: Replace the following sample code with your own logic
 // or remove this RunAsync override if it's not needed in your service.
 cancellationToken.ThrowIfCancellationRequested();
 LogQueue = await
 this.StateManager
 .GetOrAddAsync<IReliableQueue
 <IdempotentMessage<PurchaseInfo>>>("logQueue");
 var configurationPackage = Context
 .CodePackageActivationContext
 .GetConfigurationPackageObject("Config");
 ...
 ...

Here, the method verifies whether the cancellation token was signaled, in which case we
throw an exception to abort the method. Then, the service queue is created, and the service
settings are saved in configurationPackage.

After that, we can create the IHost service, as we explained in the Using generic hosts
subsection:

var host = new HostBuilder()
 .ConfigureServices((hostContext, services) =>
 {
 services.AddSingleton(this.StateManager);
 services.AddSingleton(this.LogQueue);
 services.AddSingleton(configurationPackage);

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[169]

 services.AddHostedService<ComputeStatistics>();
 })
 .Build();
await host.RunAsync(cancellationToken);

ConfigureServices defines all singletons instances that may be needed by
IHostedService implementations, so they are injected into the constructor of all the
implementations that reference their types. Then, AddHostedService declares the unique
IHostedService of the microservice. Once the IHost is built, we run it until the
RunAsync cancellation token is signaled. When the cancellation token is signaled, the
request to shutdown is passed to all IHostedService implementations.

Communicating with the service
Since we haven't implemented the whole purchase logic yet, we will implement a stateless
microservice that sends random data to the LogStore service. Right-click on the
PurchaseLogging project in the Solution Explorer and select Add | Service Fabric
Service. Then, select the .NET Core stateless template and name the new microservice
project FakeSource.

Now, let's add a reference to the Interaction project. Before moving on to the service
code, we need to update the replica count of the newly created service in
ApplicationManifest.xml and in all the other environment-specific parameter overrides
(the cloud, one local cluster node, five local cluster nodes):

<Parameter Name="FakeSource_InstanceCount" DefaultValue="2" />

This fake service needs no listeners and its RunAsync method is straightforward:

string[] locations = new string[] { "Florence", "London", "New York",
"Paris" };

protected override async Task RunAsync(CancellationToken cancellationToken)
{
 Random random = new Random();
 while (true)
 {
 cancellationToken.ThrowIfCancellationRequested();

 PurchaseInfo message = new PurchaseInfo
 {
 Time = DateTimeOffset.Now,
 Location= locations[random.Next(0, locations.Length)],
 Cost= 200m*random.Next(1, 4)

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[170]

 };
 //Send message to counting microservices
 ...
 ...
 await Task.Delay(TimeSpan.FromSeconds(1), cancellationToken);
 }
}

In each loop, a random message is created and sent to the counting microservices. Then, the
thread sleeps for a second and starts a new loop. The code that sends the created messages
is as follows:

//Send message to counting microservices
var partition = new
ServicePartitionKey(Math.Abs(message.Location.GetHashCode()) % 1000);
var client = ServiceProxy.Create<ILogStore>(
 new Uri("fabric:/PurchaseLogging/LogStore"), partition);
try
{
 while (!await client.LogPurchase(new
 IdempotentMessage<PurchaseInfo>(message)))
 {
 await Task.Delay(TimeSpan.FromMilliseconds(100),
 cancellationToken);
 }
}
catch
{

}

Here, a key in the 0-9,999 interval is computed from the location string. This integer is
passed to the ServicePartitionKey constructor. Then, a service proxy is created, and the
URI of the service to call and the partition key are passed. The proxy uses this data to ask
the naming service for a physical URI for a primary instance for the given partition value.

ServiceProxy.Create also accepts a third optional argument that specifies whether
messages that are sent by the proxy can also be routed to secondary replicas. The default is
that messages are routed just to primary instances. If the message target returns false,
meaning that it's not ready (remember that LogPurchase returns false when the
LogStore message queue hasn't been created yet), the same transmission is attempted after
100 milliseconds.

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[171]

Sending messages to a remoting target is quite easy. However, other communication
listeners require that the sender interacts manually with the naming service to get a
physical service URI. This can be done with the following code:

ServicePartitionResolver resolver = ServicePartitionResolver.GetDefault();

ResolvedServicePartition partition =
await resolver.ResolveAsync(new Uri("fabric:/MyApp/MyService"),
 new ServicePartitionKey(.....), cancellationToken);
//look for a primary service only endpoint
var finalURI= partition.Endpoints.First(p =>
 p.Role == ServiceEndpointRole.StatefulPrimary).Addreess;

Moreover, in the case of generic communication protocols, we must manually handle
failures and retries with a library such as Polly (see the Resilient task execution subsection for
more information).

Testing the application
To test that the application actually computes running purchase totals, let's place a
breakpoint in the ComputeStatistics.cs file:

total = newCounter.Update(item.Time, item.Cost);
if (counter.HasValue)...//put breakpoint on this line

Each time the breakpoint is hit, look at the content of newCounter to verify how the
running totals of all the locations change.

Summary
In this chapter, we described what microservices are and how they have evolved from the
concept of a module. Then, we talked about the advantages of microservices and when it's
worth using them, as well as general criteria for their design. We also explained what
Docker containers are and analyzed the strong connection between containers and
microservice architectures.

Then, we took on a more practical implementation by describing all the tools that are
available in .NET Core so that we can implement microservice-based architectures. We also
described infrastructures that are needed by microservices and how the Azure cluster offers
Azure Kubernetes Services and Azure Service Fabric.

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[172]

Finally, we put these concepts into practice by implementing a Service Fabric application.
Here, we looked at the various ways in which Service Fabric applications can be
implemented.

The next chapter focuses on how to use ORMs and Entity Framework Core to interact with
various kinds of database while keeping our code independent from the database engine
we've selected.

Questions
What is the two-folded nature of the module concept?1.
Is scaling optimization the only advantage of microservices? If not, list some2.
further advantages.
What is Polly?3.
What is ConfigureServices?4.
What Docker support is offered by Visual Studio?5.
What Docker application method is more powerful: the one based on .yml files6.
or the one based on .yaml files?
What kinds of port must be declared during the definition of an Azure Service7.
Fabric cluster?
Why are partitions of reliable stateful services needed?8.
How can we declare that a remoting communication must be addressed by9.
secondary replicas? What about for other types of communication?

Further reading
The following are links to the official documentation for Azure Service Bus and RabbitMQ,
two event bus technologies:

Azure Service Bus: https:/ ​/ ​docs.​microsoft. ​com/ ​en- ​us/​azure/ ​service- ​bus-
messaging/ ​

RabbitMQ: https:/ ​/ ​www. ​rabbitmq. ​com/ ​getstarted. ​html

https://docs.microsoft.com/en-us/azure/service-bus-messaging/
https://docs.microsoft.com/en-us/azure/service-bus-messaging/
https://docs.microsoft.com/en-us/azure/service-bus-messaging/
https://docs.microsoft.com/en-us/azure/service-bus-messaging/
https://docs.microsoft.com/en-us/azure/service-bus-messaging/
https://docs.microsoft.com/en-us/azure/service-bus-messaging/
https://docs.microsoft.com/en-us/azure/service-bus-messaging/
https://docs.microsoft.com/en-us/azure/service-bus-messaging/
https://docs.microsoft.com/en-us/azure/service-bus-messaging/
https://docs.microsoft.com/en-us/azure/service-bus-messaging/
https://docs.microsoft.com/en-us/azure/service-bus-messaging/
https://docs.microsoft.com/en-us/azure/service-bus-messaging/
https://docs.microsoft.com/en-us/azure/service-bus-messaging/
https://docs.microsoft.com/en-us/azure/service-bus-messaging/
https://docs.microsoft.com/en-us/azure/service-bus-messaging/
https://docs.microsoft.com/en-us/azure/service-bus-messaging/
https://docs.microsoft.com/en-us/azure/service-bus-messaging/
https://docs.microsoft.com/en-us/azure/service-bus-messaging/
https://docs.microsoft.com/en-us/azure/service-bus-messaging/
https://docs.microsoft.com/en-us/azure/service-bus-messaging/
https://docs.microsoft.com/en-us/azure/service-bus-messaging/
https://www.rabbitmq.com/getstarted.html
https://www.rabbitmq.com/getstarted.html
https://www.rabbitmq.com/getstarted.html
https://www.rabbitmq.com/getstarted.html
https://www.rabbitmq.com/getstarted.html
https://www.rabbitmq.com/getstarted.html
https://www.rabbitmq.com/getstarted.html
https://www.rabbitmq.com/getstarted.html
https://www.rabbitmq.com/getstarted.html
https://www.rabbitmq.com/getstarted.html
https://www.rabbitmq.com/getstarted.html
https://www.rabbitmq.com/getstarted.html
https://www.rabbitmq.com/getstarted.html

Applying a Microservice Architecture to Your Enterprise Application Chapter 5

[173]

The documentation for Polly, a tool for reliable communication/tasks, can be found here:
https:/​/​github.​com/ ​App- ​vNext/ ​Polly.

More information on Docker can be found on Docker's official website: https:/ ​/ ​docs.
docker.​com/​.

The official documentation for Kubernetes and .yaml files can be found here: https:/ ​/
kubernetes.​io/​docs/ ​home/ ​.

The official documentation for Azure Kubernetes can be found here: https:/ ​/​docs.
microsoft.​com/​en- ​US/ ​azure/ ​aks/ ​.

The official documentation for Azure Service Fabric can be found here: https:/ ​/​docs.
microsoft.​com/​en- ​US/ ​azure/ ​service- ​fabric/ ​.

The official documentation for Azure Service Fabric's reliable services can be found here:
https:/​/​docs.​microsoft. ​com/ ​en- ​us/ ​azure/ ​service- ​fabric/ ​service- ​fabric- ​reliable-
services-​introduction.

More information about the Actor model can be found here: https:/ ​/​www. ​researchgate.
NET/​publication/​234816174_ ​Actors_ ​A_​conceptual_ ​foundation_ ​for_​concurrent_ ​object-
oriented_​programming.

The official documentation for Actor models that can be implemented in Azure Service
Fabric can be found here: https:/ ​/​docs. ​microsoft. ​com/ ​en- ​US/​azure/ ​service- ​fabric/
service-​fabric-​reliable- ​actors- ​introduction.

Microsoft has also implemented an advanced actor model that is independent of Service
Fabric. This is known as the Orleans framework. More information about Orleans can be
found at the following links:

Orleans – Virtual Actors: https:/ ​/ ​www.​microsoft. ​com/ ​en- ​us/​research/
project/ ​orleans- ​virtual- ​actors/ ​? ​from= ​https%3A%2F%2Fresearch. ​microsoft.
com%2Fen- ​us%2Fprojects%2Forleans%2F

Orleans Documentation: http:/ ​/ ​dotnet. ​github. ​io/ ​orleans/ ​Documentation/ ​

https://github.com/App-vNext/Polly
https://github.com/App-vNext/Polly
https://github.com/App-vNext/Polly
https://github.com/App-vNext/Polly
https://github.com/App-vNext/Polly
https://github.com/App-vNext/Polly
https://github.com/App-vNext/Polly
https://github.com/App-vNext/Polly
https://github.com/App-vNext/Polly
https://github.com/App-vNext/Polly
https://github.com/App-vNext/Polly
https://github.com/App-vNext/Polly
https://github.com/App-vNext/Polly
https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://docs.microsoft.com/en-US/azure/aks/
https://docs.microsoft.com/en-US/azure/aks/
https://docs.microsoft.com/en-US/azure/aks/
https://docs.microsoft.com/en-US/azure/aks/
https://docs.microsoft.com/en-US/azure/aks/
https://docs.microsoft.com/en-US/azure/aks/
https://docs.microsoft.com/en-US/azure/aks/
https://docs.microsoft.com/en-US/azure/aks/
https://docs.microsoft.com/en-US/azure/aks/
https://docs.microsoft.com/en-US/azure/aks/
https://docs.microsoft.com/en-US/azure/aks/
https://docs.microsoft.com/en-US/azure/aks/
https://docs.microsoft.com/en-US/azure/aks/
https://docs.microsoft.com/en-US/azure/aks/
https://docs.microsoft.com/en-US/azure/aks/
https://docs.microsoft.com/en-US/azure/aks/
https://docs.microsoft.com/en-US/azure/aks/
https://docs.microsoft.com/en-US/azure/service-fabric/
https://docs.microsoft.com/en-US/azure/service-fabric/
https://docs.microsoft.com/en-US/azure/service-fabric/
https://docs.microsoft.com/en-US/azure/service-fabric/
https://docs.microsoft.com/en-US/azure/service-fabric/
https://docs.microsoft.com/en-US/azure/service-fabric/
https://docs.microsoft.com/en-US/azure/service-fabric/
https://docs.microsoft.com/en-US/azure/service-fabric/
https://docs.microsoft.com/en-US/azure/service-fabric/
https://docs.microsoft.com/en-US/azure/service-fabric/
https://docs.microsoft.com/en-US/azure/service-fabric/
https://docs.microsoft.com/en-US/azure/service-fabric/
https://docs.microsoft.com/en-US/azure/service-fabric/
https://docs.microsoft.com/en-US/azure/service-fabric/
https://docs.microsoft.com/en-US/azure/service-fabric/
https://docs.microsoft.com/en-US/azure/service-fabric/
https://docs.microsoft.com/en-US/azure/service-fabric/
https://docs.microsoft.com/en-US/azure/service-fabric/
https://docs.microsoft.com/en-US/azure/service-fabric/
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-introduction
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-introduction
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-introduction
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-introduction
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-introduction
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-introduction
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-introduction
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-introduction
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-introduction
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-introduction
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-introduction
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-introduction
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-introduction
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-introduction
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-introduction
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-introduction
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-introduction
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-introduction
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-introduction
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-introduction
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-introduction
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-introduction
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-introduction
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-introduction
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-introduction
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-introduction
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-introduction
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-introduction
https://www.researchgate.net/publication/234816174_Actors_A_conceptual_foundation_for_concurrent_object-oriented_programming
https://www.researchgate.net/publication/234816174_Actors_A_conceptual_foundation_for_concurrent_object-oriented_programming
https://www.researchgate.net/publication/234816174_Actors_A_conceptual_foundation_for_concurrent_object-oriented_programming
https://www.researchgate.net/publication/234816174_Actors_A_conceptual_foundation_for_concurrent_object-oriented_programming
https://www.researchgate.net/publication/234816174_Actors_A_conceptual_foundation_for_concurrent_object-oriented_programming
https://www.researchgate.net/publication/234816174_Actors_A_conceptual_foundation_for_concurrent_object-oriented_programming
https://www.researchgate.net/publication/234816174_Actors_A_conceptual_foundation_for_concurrent_object-oriented_programming
https://www.researchgate.net/publication/234816174_Actors_A_conceptual_foundation_for_concurrent_object-oriented_programming
https://www.researchgate.net/publication/234816174_Actors_A_conceptual_foundation_for_concurrent_object-oriented_programming
https://www.researchgate.net/publication/234816174_Actors_A_conceptual_foundation_for_concurrent_object-oriented_programming
https://www.researchgate.net/publication/234816174_Actors_A_conceptual_foundation_for_concurrent_object-oriented_programming
https://www.researchgate.net/publication/234816174_Actors_A_conceptual_foundation_for_concurrent_object-oriented_programming
https://www.researchgate.net/publication/234816174_Actors_A_conceptual_foundation_for_concurrent_object-oriented_programming
https://www.researchgate.net/publication/234816174_Actors_A_conceptual_foundation_for_concurrent_object-oriented_programming
https://www.researchgate.net/publication/234816174_Actors_A_conceptual_foundation_for_concurrent_object-oriented_programming
https://www.researchgate.net/publication/234816174_Actors_A_conceptual_foundation_for_concurrent_object-oriented_programming
https://www.researchgate.net/publication/234816174_Actors_A_conceptual_foundation_for_concurrent_object-oriented_programming
https://www.researchgate.net/publication/234816174_Actors_A_conceptual_foundation_for_concurrent_object-oriented_programming
https://www.researchgate.net/publication/234816174_Actors_A_conceptual_foundation_for_concurrent_object-oriented_programming
https://www.researchgate.net/publication/234816174_Actors_A_conceptual_foundation_for_concurrent_object-oriented_programming
https://www.researchgate.net/publication/234816174_Actors_A_conceptual_foundation_for_concurrent_object-oriented_programming
https://www.researchgate.net/publication/234816174_Actors_A_conceptual_foundation_for_concurrent_object-oriented_programming
https://www.researchgate.net/publication/234816174_Actors_A_conceptual_foundation_for_concurrent_object-oriented_programming
https://www.researchgate.net/publication/234816174_Actors_A_conceptual_foundation_for_concurrent_object-oriented_programming
https://www.researchgate.net/publication/234816174_Actors_A_conceptual_foundation_for_concurrent_object-oriented_programming
https://www.researchgate.net/publication/234816174_Actors_A_conceptual_foundation_for_concurrent_object-oriented_programming
https://www.researchgate.net/publication/234816174_Actors_A_conceptual_foundation_for_concurrent_object-oriented_programming
https://www.researchgate.net/publication/234816174_Actors_A_conceptual_foundation_for_concurrent_object-oriented_programming
https://www.researchgate.net/publication/234816174_Actors_A_conceptual_foundation_for_concurrent_object-oriented_programming
https://docs.microsoft.com/en-US/azure/service-fabric/service-fabric-reliable-actors-introduction
https://docs.microsoft.com/en-US/azure/service-fabric/service-fabric-reliable-actors-introduction
https://docs.microsoft.com/en-US/azure/service-fabric/service-fabric-reliable-actors-introduction
https://docs.microsoft.com/en-US/azure/service-fabric/service-fabric-reliable-actors-introduction
https://docs.microsoft.com/en-US/azure/service-fabric/service-fabric-reliable-actors-introduction
https://docs.microsoft.com/en-US/azure/service-fabric/service-fabric-reliable-actors-introduction
https://docs.microsoft.com/en-US/azure/service-fabric/service-fabric-reliable-actors-introduction
https://docs.microsoft.com/en-US/azure/service-fabric/service-fabric-reliable-actors-introduction
https://docs.microsoft.com/en-US/azure/service-fabric/service-fabric-reliable-actors-introduction
https://docs.microsoft.com/en-US/azure/service-fabric/service-fabric-reliable-actors-introduction
https://docs.microsoft.com/en-US/azure/service-fabric/service-fabric-reliable-actors-introduction
https://docs.microsoft.com/en-US/azure/service-fabric/service-fabric-reliable-actors-introduction
https://docs.microsoft.com/en-US/azure/service-fabric/service-fabric-reliable-actors-introduction
https://docs.microsoft.com/en-US/azure/service-fabric/service-fabric-reliable-actors-introduction
https://docs.microsoft.com/en-US/azure/service-fabric/service-fabric-reliable-actors-introduction
https://docs.microsoft.com/en-US/azure/service-fabric/service-fabric-reliable-actors-introduction
https://docs.microsoft.com/en-US/azure/service-fabric/service-fabric-reliable-actors-introduction
https://docs.microsoft.com/en-US/azure/service-fabric/service-fabric-reliable-actors-introduction
https://docs.microsoft.com/en-US/azure/service-fabric/service-fabric-reliable-actors-introduction
https://docs.microsoft.com/en-US/azure/service-fabric/service-fabric-reliable-actors-introduction
https://docs.microsoft.com/en-US/azure/service-fabric/service-fabric-reliable-actors-introduction
https://docs.microsoft.com/en-US/azure/service-fabric/service-fabric-reliable-actors-introduction
https://docs.microsoft.com/en-US/azure/service-fabric/service-fabric-reliable-actors-introduction
https://docs.microsoft.com/en-US/azure/service-fabric/service-fabric-reliable-actors-introduction
https://docs.microsoft.com/en-US/azure/service-fabric/service-fabric-reliable-actors-introduction
https://docs.microsoft.com/en-US/azure/service-fabric/service-fabric-reliable-actors-introduction
https://docs.microsoft.com/en-US/azure/service-fabric/service-fabric-reliable-actors-introduction
https://docs.microsoft.com/en-US/azure/service-fabric/service-fabric-reliable-actors-introduction
https://www.microsoft.com/en-us/research/project/orleans-virtual-actors/?from=https%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fprojects%2Forleans%2F
https://www.microsoft.com/en-us/research/project/orleans-virtual-actors/?from=https%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fprojects%2Forleans%2F
https://www.microsoft.com/en-us/research/project/orleans-virtual-actors/?from=https%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fprojects%2Forleans%2F
https://www.microsoft.com/en-us/research/project/orleans-virtual-actors/?from=https%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fprojects%2Forleans%2F
https://www.microsoft.com/en-us/research/project/orleans-virtual-actors/?from=https%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fprojects%2Forleans%2F
https://www.microsoft.com/en-us/research/project/orleans-virtual-actors/?from=https%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fprojects%2Forleans%2F
https://www.microsoft.com/en-us/research/project/orleans-virtual-actors/?from=https%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fprojects%2Forleans%2F
https://www.microsoft.com/en-us/research/project/orleans-virtual-actors/?from=https%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fprojects%2Forleans%2F
https://www.microsoft.com/en-us/research/project/orleans-virtual-actors/?from=https%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fprojects%2Forleans%2F
https://www.microsoft.com/en-us/research/project/orleans-virtual-actors/?from=https%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fprojects%2Forleans%2F
https://www.microsoft.com/en-us/research/project/orleans-virtual-actors/?from=https%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fprojects%2Forleans%2F
https://www.microsoft.com/en-us/research/project/orleans-virtual-actors/?from=https%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fprojects%2Forleans%2F
https://www.microsoft.com/en-us/research/project/orleans-virtual-actors/?from=https%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fprojects%2Forleans%2F
https://www.microsoft.com/en-us/research/project/orleans-virtual-actors/?from=https%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fprojects%2Forleans%2F
https://www.microsoft.com/en-us/research/project/orleans-virtual-actors/?from=https%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fprojects%2Forleans%2F
https://www.microsoft.com/en-us/research/project/orleans-virtual-actors/?from=https%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fprojects%2Forleans%2F
https://www.microsoft.com/en-us/research/project/orleans-virtual-actors/?from=https%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fprojects%2Forleans%2F
https://www.microsoft.com/en-us/research/project/orleans-virtual-actors/?from=https%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fprojects%2Forleans%2F
https://www.microsoft.com/en-us/research/project/orleans-virtual-actors/?from=https%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fprojects%2Forleans%2F
https://www.microsoft.com/en-us/research/project/orleans-virtual-actors/?from=https%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fprojects%2Forleans%2F
https://www.microsoft.com/en-us/research/project/orleans-virtual-actors/?from=https%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fprojects%2Forleans%2F
https://www.microsoft.com/en-us/research/project/orleans-virtual-actors/?from=https%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fprojects%2Forleans%2F
https://www.microsoft.com/en-us/research/project/orleans-virtual-actors/?from=https%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fprojects%2Forleans%2F
https://www.microsoft.com/en-us/research/project/orleans-virtual-actors/?from=https%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fprojects%2Forleans%2F
https://www.microsoft.com/en-us/research/project/orleans-virtual-actors/?from=https%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fprojects%2Forleans%2F
https://www.microsoft.com/en-us/research/project/orleans-virtual-actors/?from=https%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fprojects%2Forleans%2F
https://www.microsoft.com/en-us/research/project/orleans-virtual-actors/?from=https%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fprojects%2Forleans%2F
https://www.microsoft.com/en-us/research/project/orleans-virtual-actors/?from=https%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fprojects%2Forleans%2F
https://www.microsoft.com/en-us/research/project/orleans-virtual-actors/?from=https%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fprojects%2Forleans%2F
https://www.microsoft.com/en-us/research/project/orleans-virtual-actors/?from=https%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fprojects%2Forleans%2F
https://www.microsoft.com/en-us/research/project/orleans-virtual-actors/?from=https%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fprojects%2Forleans%2F
https://www.microsoft.com/en-us/research/project/orleans-virtual-actors/?from=https%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fprojects%2Forleans%2F
https://www.microsoft.com/en-us/research/project/orleans-virtual-actors/?from=https%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fprojects%2Forleans%2F
http://dotnet.github.io/orleans/Documentation/
http://dotnet.github.io/orleans/Documentation/
http://dotnet.github.io/orleans/Documentation/
http://dotnet.github.io/orleans/Documentation/
http://dotnet.github.io/orleans/Documentation/
http://dotnet.github.io/orleans/Documentation/
http://dotnet.github.io/orleans/Documentation/
http://dotnet.github.io/orleans/Documentation/
http://dotnet.github.io/orleans/Documentation/
http://dotnet.github.io/orleans/Documentation/
http://dotnet.github.io/orleans/Documentation/
http://dotnet.github.io/orleans/Documentation/
http://dotnet.github.io/orleans/Documentation/
http://dotnet.github.io/orleans/Documentation/

6
Interacting with Data in C# -

Entity Framework Core
As we mentioned in Chapter 5, Applying a Microservice Architecture to Your Enterprise
Application, software systems are organized into layers, and each layer communicates with
the previous and next layers through interfaces that don't depend on how the layer is
implemented. When the software is a Business/Enterprise system, it usually contains at
least three layers: the data layer, the business layer, and the presentation layer. In general,
the interface that's offered by each layer and the way the layer is implemented depends on
the application.

However, it turns out that the functionalities offered by data layers are quite standard,
since they just map data from a data storage subsystem into objects and vice versa. This
leads to the conceptions of general-purpose frameworks for implementing data layers in a
substantially declarative way. These tools are called Object-Relational Mapping (ORM)
tools since they are data storage subsystems based on relational databases. However, they
also work well with the modern non-relational storages classified as NoSQL databases
(such as MongoDB and Azure Cosmos DB) since their data model is closer to the target
object model than a pure relational model.

In this chapter, we will cover the following topics:

Understanding ORM basics
Configuring Entity Framework Core
Entity Framework Core migrations
Querying and updating data with Entity Framework Core
Deploying your data layer
Understanding Entity Framework Core advanced features – global filters

This chapter describes ORMs and how to configure them, and then focuses on Entity
Framework Core, the ORM included in .NET Core.

Interacting with Data in C# - Entity Framework Core Chapter 6

[175]

Technical requirements
This chapter requires Visual Studio 2017 or 2019 free Community Edition or better with all
the database tools installed.

All the concepts in this chapter will be clarified with practical examples based on the
WWTravelClub book use case. You will find the code for this chapter at https:/ ​/​github.
com/​PacktPublishing/ ​Hands- ​On- ​Software- ​Architecture- ​with- ​CSharp- ​8.

Understanding ORM basics
ORMs map relational DB tables into in-memory collections of objects where object
properties correspond to DB table fields. Types from C#, such as Booleans, numeric types,
and strings, have corresponding DB types. If GUIDs are not available in the mapped
database, while single characters are mapped to DB single-character strings, then types
such as GUIDs are mapped to their equivalent string representations. All date and time
types are mapped either to C# DateTime when date/time contains no time zone
information or to DateTimeOffset when date/time also contains explicit time zone
information. Any DB time duration is mapped to a TimeSpan.

Since the string properties of most object-oriented languages have no length limits
associated with them (while DB string fields usually have length limits), the DB limits are
taken into account in the DB mapping configuration. In general, when the mapping
between DB types and object-oriented language types need options to be specified, these
options are declared in the mapping configuration.

The way the whole configuration is defined depends on the specific ORM. Entity
Framework Core offers three options:

Data annotations (property attributes)
Name conventions
Fluent configuration interface based on configuration objects and methods

While the fluent interface can be used to specify any configuration option, the data
annotations and name conventions can be used for a smaller subset of them.

Each ORM adapts to a specific DB type (Oracle, MySQL, SQL Server, and so on) with DB-
specific adapters called providers or connectors. Entity Framework Core has providers for
most of the available DB engines.

https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8

Interacting with Data in C# - Entity Framework Core Chapter 6

[176]

A complete list of providers can be found at https:/ ​/​docs. ​microsoft.
com/​en- ​US/ ​ef/ ​core/ ​providers/ ​.

Adapters are necessary for the differences in DB types, for the way transactions are
handled, and for all the other features that are not standardized by the SQL language.

Relations among tables are represented with object pointers. For instance, in a one-to-many
relationship, the class that's mapped to the one side of the relationship contains a collection
that is populated with the related objects on the many side of the relationship. On the other
hand, the class mapped to the many side of the relationship has a simple property that is
populated with the uniquely related object on the one side of the relationship.

The whole database (or just a part of it) is represented by an in-memory cache class that
contains a property for each collection that's mapped to a DB table. First, the query and
update operations are performed on an instance of an in-memory cache class, and then this
instance is synchronized with the database. The in-memory cache class that's used by Entity
Framework Core is called DBContext and it also contains the mapping configuration. More
specifically, the application-specific in-memory cache class is obtained by
inheriting DBContext and adding it to all the mapped collections and all the necessary
configuration information.

Summing up, DBContext subclass instances contain partial snapshots of the DB that are
synchronized with the database to get/update the actual data.

DB queries are performed with a query language made of method calls on the collections of
the in-memory cache class. The actual SQL is created and executed during the
synchronization stage. For instance, Entity Framework Core performs Language Integrated
Queries (LINQ) on the collections mapped to the DB tables.

In general, LINQ queries produce IEnumerable instances, that is, collections whose
elements are not computed when IEnumerable is created at the end of the query, but
when you actually attempt to retrieve the collection elements from IEnumerable. This
works as follows:

LINQ queries that start from a mapped collection of a DBContext create a
specific subclass of IEnumerable called IQueryable.
An IQueryable contains all the information that's needed to issue a query to the
database, but the actual SQL is produced and executed when the first element of
the IQueryable is retrieved.

https://docs.microsoft.com/en-US/ef/core/providers/
https://docs.microsoft.com/en-US/ef/core/providers/
https://docs.microsoft.com/en-US/ef/core/providers/
https://docs.microsoft.com/en-US/ef/core/providers/
https://docs.microsoft.com/en-US/ef/core/providers/
https://docs.microsoft.com/en-US/ef/core/providers/
https://docs.microsoft.com/en-US/ef/core/providers/
https://docs.microsoft.com/en-US/ef/core/providers/
https://docs.microsoft.com/en-US/ef/core/providers/
https://docs.microsoft.com/en-US/ef/core/providers/
https://docs.microsoft.com/en-US/ef/core/providers/
https://docs.microsoft.com/en-US/ef/core/providers/
https://docs.microsoft.com/en-US/ef/core/providers/
https://docs.microsoft.com/en-US/ef/core/providers/
https://docs.microsoft.com/en-US/ef/core/providers/
https://docs.microsoft.com/en-US/ef/core/providers/
https://docs.microsoft.com/en-US/ef/core/providers/
https://docs.microsoft.com/en-US/ef/core/providers/
https://docs.microsoft.com/en-US/ef/core/providers/

Interacting with Data in C# - Entity Framework Core Chapter 6

[177]

Thus, in the case of Entity Framework Core, the synchronization with the
database is performed when an element is actually retrieved from the final
IQueryable.
Typically, each Entity Framework query ends with a ToList or ToArray
operation that transforms the IQueryable into a list or array, thereby causing
the actual execution of the query on the database.
In case the query is expected to return just a single element or no element at all,
we typically execute a FirstOrDefault operation that returns a single element,
if any, or null.

Also, updates, deletions, and additions of new entities to a DB table are performed by
mimicking these operations on a DBContext collection property that represents the
database table. However, entities may only be updated or deleted this way after they have
been loaded in that memory collection by means of a query. An update query requires the
in-memory representation of the entity to be modified as needed, while a delete query
requires the in-memory representation of the entity to be removed from its in-memory
mapped collection. In Entity Framework Core, the removal operation is performed by
calling the Remove(entity) method of the collection.

The addition of a new entity has no further requirements. It is enough to add the new entity
to the in-memory collection. Updates, deletes, and additions that are performed on various
in-memory collections are actually passed to the database with an explicit call to a DB
synchronization method. For instance, Entity Framework Core passes all the changes that
are performed on a DBContext instance to the database when you call the
DBContext.SaveChanges() method.

Changes that are passed to the database during a synchronization operation are executed in
a single transaction. Moreover, for ORMs, such as Entity Framework Core, that have an
explicit representation of transactions, a synchronization operation is executed in the scope
of a transaction, since it uses that transaction instead of creating a new one.

The remaining sections in this chapter explain how to use Entity Framework Core, along
with some example code based on this book's WWTravelClub use case.

Interacting with Data in C# - Entity Framework Core Chapter 6

[178]

Configuring Entity Framework Core
Since Database handling is confined within a dedicated application layer, it is good practice
to define your Entity Framework Core (DBContext) in a separate library. Accordingly, we
need to define a .NET Core class library project. As we discussed in the Book use case – .NET
Core in action, Main Types of .NET Core projects section of Chapter 2, Functional and
Nonfunctional Requirements, we have two different kinds of library projects: .NET Standard
and .NET Core.

While .NET Core libraries are tied to a specific .NET Core version, .NET Standard 2.0
libraries have a wide range of applications since they work with any .NET version greater
than 2.0 and also with the classical .NET Framework.

However, the Microsoft.EntityFrameworkCore package (which we need in our DB
layer) depends just on .NET Standard 2.0. It is designed to work with a specific .NET Core
version (its version numbers are the same as the .NET Core versions). Therefore, if we
define our DB layer as .NET Standard 2.0, the
specific Microsoft.EntityFrameworkCore package that we add as a dependency may
conflict with another version of the same library contained in another system component
that's tied to a specific .NET Core version.

Since our library is not a general-purpose library (it's just a component of a specific
application), it is preferable to tie it to a specific .NET Core version than to track its version
dependencies in the whole design of our application. Therefore, let's choose a .NET Core
library project for the latest .NET Core version installed on our machine. Our .NET Core
library project can be created and prepared as follows:

Open Visual Studio and define a new solution named WWTravelClubDB and1.
then select Class Library (.NET Core) for the latest .NET Core version available.
We must install all Entity Framework Core-related dependencies. The simplest2.
way to have all the necessary dependencies installed is to add the NuGet
package for the provider of the database engine we are going to use – in our case,
SQL Server – as we mentioned in Chapter 4, Deciding on the Best Cloud-Based
Solution. In fact, any provider will install all the required packages since it has all
of them as dependencies. So, let's add the latest stable version
of Microsoft.EntityFrameworkCore.SqlServer. If you plan to use several
database engines, you can also add other providers since they can work side by
side. Later in this chapter, we will install other NuGet packages that contain tools
that we need to process our Entity Framework Core. Then, we will explain how
to install further tools that are needed to process Entity Framework Core's
configuration.

Interacting with Data in C# - Entity Framework Core Chapter 6

[179]

Let's rename the default Class1 class to MainDBContext. This was3.
automatically added to the class library.
Now, let's replace its content with the following code:4.

using System;
using Microsoft.EntityFrameworkCore;

namespace WWTravelClubDB
{
 public class MainDBContext: DbContext
 {
 public MainDBContext(DbContextOptions options)
 : base(options)
 {
 }
 protected override void OnModelCreating(ModelBuilder
 builder)
 {
 }
 }
}

We inherit from DbContext and we are required to pass DbContextOptions to5.
the DBContext constructor. DbContextOptions contains creation options such
as the database connection string, which depend on the target DB engine.
All the collections that have been mapped to database tables will be added as6.
properties of MainDBContext. The mapping configuration will be defined inside
of the overridden OnModelCreating method with the help of
the ModelBuilder object passed as a parameter.

The next step is the creation of all the classes that represent all the DB table rows. These are
called entities. We need an entity class for each DB table we want to map. Let's create a
Models folder in the project root for all of them. The next subsection explains how to define
all the required entities.

Defining DB entities
DB design, like the whole application design, is organized in iterations. Let's suppose that,
in the first iteration, we need a prototype with two database tables: one for all the travel
packages and another one for all the locations referenced by the packages. Each package
covers just one location, while a single location may be covered by several packages, so the
two tables are connected by a one-to-many relationship.

Interacting with Data in C# - Entity Framework Core Chapter 6

[180]

So, let's start with the location database table. As we mentioned at the end of the previous
section, we need an entity class to represent the rows of this table. Let's call
Destination the entity class:

namespace WWTravelClubDB.Models
{
 public class Destination
 {
 public int Id { get; set; }
 public string Name { get; set; }
 public string Country { get; set; }
 public string Description { get; set; }
 }
}

All the DB fields must be represented by read/write C# properties. Suppose that each
destination is something like a town or a region that can be defined by just its name and the
country it is in, and that all the relevant information is contained in its Description. In
future iterations, we will probably add several more fields. Id is an auto-generated key.

However, now, we need to add information about how all the fields are mapped to DB
fields. In Entity Framework Core, all the primitive types are mapped automatically to DB
types by the DB engine-specific provider that's used (in our case, SQL Server provider). Our
only preoccupations are as follows:

Length limits on the string: They can be taken into account by applying
adequate MaxLength and MinLength attributes to each string property. All the
attributes that are useful for the entity's configuration are contained in
the System.ComponentModel.DataAnnotation
and System.ComponentModel.DataAnnotations.Schema namespaces.
Therefore, it's good practice to add both of them to all the entity definitions.
Specifying which fields are obligatory and which ones are optional: By default,
all the reference types (such as all the strings) are assumed to be optional, while
all the value types (numbers and GUIDs, for instance) are assumed to be
obligatory. If we want a reference type to be obligatory, then we must decorate it
with the Required attribute. However, if we want a T value type property to be
optional, then we must replace it with T?.

Interacting with Data in C# - Entity Framework Core Chapter 6

[181]

Specifying which property represents the primary key: The key may be
specified by decorating a property with the Key attribute. However, if no Key
attribute is found, a property named Id (if there is one) is taken as the primary
key. In our case, there is no need for the Key attribute. If the primary key is
composed of several properties, it is enough to add the Key attribute to all of
them.

Since each destination is on the one side of a one-to-many relationship, it must contain a
collection for the related package entities; otherwise, we will not be able to refer to the
related entities in the clauses of our LINQ queries.

Putting everything together, the final version of the Destination class is as follows:

using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace WWTravelClubDB.Models
{
 public class Destination
 {
 public int Id { get; set; }
 [MaxLength(128), Required]
 public string Name { get; set; }
 [MaxLength(128), Required]
 public string Country { get; set; }
 public string Description { get; set; }
 public ICollection<Package> Packages { get; set; }
 }
}

Since the Description property has no length limits, it will be implemented with a SQL
Server ntext field of indefinite length. We can write the code for the Package class in a
similar way:

using System;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;
namespace WWTravelClubDB.Models
{
 public class Package
 {
 public int Id { get; set; }
 [MaxLength(128), Required]
 public string Name { get; set; }
 [MaxLength(128)]

Interacting with Data in C# - Entity Framework Core Chapter 6

[182]

 public string Description { get; set; }
 public decimal Price { get; set; }
 public int DuratioInDays { get; set; }
 public DateTime? StartValidityDate { get; set; }
 public DateTime? EndValidityDate { get; set; }
 public Destination MyDestination { get; set; }
 public int DestinationId { get; set; }
 }
}

Each package has a duration in days, as well as optional start and stop dates in which the
package offer is valid. MyDestination connects packages with their destinations in the
many-to-one relationship that they have with the Destination entity,
while DestinationId is the external key of the same relation.

While it is not obligatory to specify the external key, it is good practice to do so since this is
the only way to specify some properties of the relationship. For instance, in our case,
since DestinationId is an int (value type), it is obligatory. Therefore, the relationship
here is one-to-many and not (0, 1)-to-many. Defining DestinationId as int?, instead of
int, would turn the one-to-many relationship into a (0, 1)-to-many relationship.

In the next section, we will explain how to define the in-memory collection that represents
the database tables.

Defining the mapped collections
Once we have defined all the entities that are object-oriented representations of the
database rows, we need to define the in-memory collections that represent the database
tables themselves. As we mentioned in the ORM basics section, all the database operations
are mapped to the operations on these collections (the Querying and updating data with Entity
Framework Core section of this chapter explains how). It is enough to add a DbSet<T>
collection property to our DBContext for each entity, T. Usually, the name of each of these
properties is obtained by pluralizing the entity name. Thus, we need to add the following
two properties to our MainDBContext:

public DbSet<Package> Packages { get; set; }
public DbSet<Destination> Destinations { get; set; }

Up until now, we've translated database stuff into properties, classes, and data annotations.
However, Entity Framework needs further information to interact with a database. The
next subsection explains how to provide them.

Interacting with Data in C# - Entity Framework Core Chapter 6

[183]

Completing the mapping configuration
The mapping configuration information that we couldn't specify in the entity definitions
must be added in the OnModelCreating DBContext method. Each configuration
information relative to an entity, T, starts with builder.Entity<T>() and continues with
a call to a method that specifies that kind of constraint. Further nested calls specify further
properties of the constraint. For instance, our one-to-many relationship may be configured
as follows:

builder.Entity<Destination>()
 .HasMany(m => m.Packages)
 .WithOne(m => m.MyDestination)
 .HasForeignKey(m => m.DestinationId)
 .OnDelete(DeleteBehavior.Cascade);

The two sides of the relationship are specified through the navigation properties that we
added to our entities. HasForeignKey specifies the external key. Finally,
OnDelete specifies what to do with packages when a destination is deleted. In our case, it
performs a cascade delete of all the packages related to that destination.

The same configuration can be defined by starting from the other side of the relationship,
that is, starting with builder.Entity<Package>():

builder.Entity<Package>()
 .HasOne(m => m.MyDestination)
 .WithMany(m => m.Packages)
 .HasForeignKey(m => m.DestinationId)
 .OnDelete(DeleteBehavior.Cascade);

The only difference is that the previous statement's HasMany-WithOne methods are
replaced by the HasOne-WithMany methods since we started from the other side of the
relationship.

The ModelBuilder builder object allows us to specify database indexes with something
such as the following:

builder.Entity<T>()
 .HasIndex(m => m.PropertyName);

Interacting with Data in C# - Entity Framework Core Chapter 6

[184]

Multi-property indexes are defined as follows:

builder.Entity<T>()
 .HasIndex("propertyName1", "propertyName2", ...);

If we add all the necessary configuration information, then our OnModelCreating method
will look as follows:

protected override void OnModelCreating(ModelBuilder builder)
{
 builder.Entity<Destination>()
 .HasMany(m => m.Packages)
 .WithOne(m => m.MyDestination)
 .HasForeignKey(m => m.DestinationId)
 .OnDelete(DeleteBehavior.Cascade);

 builder.Entity<Destination>()
 .HasIndex(m => m.Country);

 builder.Entity<Destination>()
 .HasIndex(m => m.Name);

 builder.Entity<Package>()
 .HasIndex(m => m.Name);

 builder.Entity<Package>()
 .HasIndex("StartValidityDate", "EndValidityDate");
}

Once you've configured Entity Framework Core, we can use all the configuration
information we have to create the actual database and put all the tools we need in place in
order to update the database's structure as the application evolves. The next section
explains how.

Entity Framework Core migrations
Now that we've configured Entity Framework and defined our application-specific
DBContext subclass, we can use the Entity Framework Core design tools to generate the
physical database and create the database structure snapshot that's needed by Entity
Framework Core to interact with the database.

Interacting with Data in C# - Entity Framework Core Chapter 6

[185]

Entity Framework Core design tools must be installed in each project that needs them as
NuGet packages. There are two equivalent options:

Tools that work in any Windows console: These are available through
the Microsoft.EntityFrameworkCore.Design NuGet package. All Entity
Framework Core commands are in dotnet ef format since they are
contained in the ef command line's .NET Core application.
Tools that are specific to the Visual Studio Package Manager Console: These
are contained in the Microsoft.EntityFrameworkCore.Tools NuGet
package. They don't need the dotnet ef prefix since they can only be launched
from the Package Manager Console inside of Visual Studio.

Entity Framework Core's design tools are used within the design/update procedure. This
procedure is as follows:

We modify DBContext and Entities' definitions as needed.1.
We launch the design tools to ask Entity Framework Core to detect and process2.
all the changes we made.
Once launched, the design tools update the database structure snapshot and3.
generate a new migration, that is, a file containing all the instructions we need in
order to modify the physical database to reflect all the changes we made.
We launch another tool to update the database with the newly created migration.4.
We test the newly configured DB layer and, if new changes are necessary, we go5.
back to step 1.
When the data layer is ready, it is deployed in staging or production, where all6.
the migrations are applied once more to the actual staging/production database.

This is repeated several times in the various software project iterations and during the
lifetime of the application. If we operate on an already existing database, we need to
configure DBContext and its models to reflect the existing structure of all the tables we
want to map. Then, we call the design tools with an IgnoreChanges option so that they
generate an empty migration. Also, this empty migration must be passed to the physical
database so that it can synchronize a database structure version associated with the
physical database with the version that's been recorded in the database snapshot. This
version is important because it determines which migrations must be applied to a database
and which ones have already been applied.

Interacting with Data in C# - Entity Framework Core Chapter 6

[186]

The whole design process needs a test/design database and, if we operate on an existing
database, the structure of this test/design database must reflect the actual database – at least
in terms of the tables we want to map. To enable design tools so that we can interact with
the database, we must define the DbContextOptions options that they pass to the
DBContext constructor. These options are important at design time since they contain the
connection string of the test/design database. The design tools can be informed about
our DbContextOptions options if we create a class that implements
the IDesignTimeDbContextFactory<T> interface, where T is our DBContext subclass:

using Microsoft.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore.Design;

namespace WWTravelClubDB
{
 public class LibraryDesignTimeDbContextFactory
 : IDesignTimeDbContextFactory<MainDBContext>
 {
 private const string connectionString =
 @"Server=(localdb)\mssqllocaldb;Database=wwtravelclub;
 Trusted_Connection=True;MultipleActiveResultSets=true";
 public MainDBContext CreateDbContext(params string[] args)
 {
 var builder = new DbContextOptionsBuilder<MainDBContext>();
 builder.UseSqlServer(connectionString);
 return new MainDBContext(builder.Options);
 }
 }
}

connectionString will be used by Entity Framework to create a new database in the local
SQL Server instance that's been installed in the development machine and connects with
Windows credentials. You are free to change it to reflect your needs.

Now, we are ready to create our first migration! Let's get started:

Let's go to the Package Manager Console and ensure that WWTravelClubDB is1.
selected as our default project.

Interacting with Data in C# - Entity Framework Core Chapter 6

[187]

Now, type Add-Migration initial and press Enter to issue this command:2.

initial is the name we gave our first migration. So, in general, the
command is Add-Migration <migration name>. When we operate on
an existing database, we must add the -IgnoreChanges option to the
first migration (and just to that) so that an empty migration is created.
References to the whole set of commands can be found in the Further
reading section.

If, after having created the migration, but before having applied the migration to3.
the database, we realize we made some errors, we can undo our action with the
Remove-Migration command. If the migration has already been applied to the
database, the simplest way to correct our error is to make all the necessary
changes to the code and then apply another migration.
As soon as the Add-Migration command is executed, a new folder appears in4.
our project:

20190205102637_initial.cs is our migration expressed in an easy to
understand language.

You may review the code to verify that everything is okay and you may also modify the
migration content (only if you are enough of an expert to do it reliably). Each migration
contains an Up method and a Down method. The Up method implies the migration, while the
Down method undoes its changes. Accordingly, the Down method contains the reverse
actions of all the actions included in the Up method in reverse order.

Interacting with Data in C# - Entity Framework Core Chapter 6

[188]

20190205102637_initial.Designer.cs is the Visual Studio designer code you mustn't
modify, while MainDBContextModelSnapshot.cs is the overall database structure
snapshot. If you add further migrations, new migration files and their designer
counterparts will appear and the unique MainDBContextModelSnapshot.cs database
structure snapshot will be updated to reflect the database's overall structure.

The same command can be issued in a Windows console by typing dotnet
ef migrations add initial. However, this command must be issued from within the
project's root folder (not from within the solution's root folder).

Migrations can be applied to the database by typing Update-Database in the Package
Manager Console. The equivalent Windows console command is dotnet ef database
update. Let's try using this command to create the physical database!

The next subsection explains how to create database stuff that Entity Framework is unable
to create automatically. After that, in the next section, we will use Entity Framework's
configuration and the database we generated with dotnet ef database update to
create, query, and update data.

Understanding stored procedures and direct SQL
commands
Some database structures can't be generated automatically by the Entity Framework Core
commands and declarations we described previously. For instance, Entity Framework Core
can't generate automatically stored procedures. Stored procedures such as generic SQL
strings can be included manually in the Up and Down methods through
the migrationBuilder.Sql("<sql scommand>") method.

The safest way to do this is by adding a migration without performing any configuration
changes so that the migration is empty when it's created. Then, we can add the necessary
SQL commands to the empty Up method of this migration and their converse commands in
the empty Down method. It is good practice to put all the SQL strings in the properties of
resource files (.resx files).

Now, you are ready to interact with the database through Entity Framework Core.

Interacting with Data in C# - Entity Framework Core Chapter 6

[189]

Querying and updating data with Entity
Framework Core
To test our DB layer, we need to add a console project based on the same .NET Core version
as our library to the solution. Let's get started:

Let's call the new console project WWTravelClubDBTest.1.
Now, we need to add our data layer as a dependency of the console project by2.
right-clicking on the References node of the console project and selecting Add
reference.
Remove the content of the Main static method in the program.cs file and start3.
by writing the following:

Console.WriteLine("program start: populate database");
Console.ReadKey();

Then, add the following namespaces at the top of the file:4.

using WWTravelClubDB;
using WWTravelClubDB.Models;
using Microsoft.EntityFrameworkCore;
using System.Linq;

Now that we have finished preparing our test project, we can experiment with queries and
data updates. Let's start by creating some database objects, that is, some destinations and
packages. Follow these steps to do so:

First, we must create an instance of our DBContext subclass with an appropriate1.
connection string. We can use the
same LibraryDesignTimeDbContextFactory class that's used by the design
tools to get it:

var context = new LibraryDesignTimeDbContextFactory()
 .CreateDbContext();

New rows can be created by simply adding class instances to the mapped2.
collections of our DBContext subclass. If a Destination instance has packages
associated with it, we can simply add them to its Packages property:

var firstDestination= new Destination
{
 Name = "Florence",
 Country = "Italy",
 Packages = new List<Package>()

Interacting with Data in C# - Entity Framework Core Chapter 6

[190]

 {
 new Package
 {
 Name = "Summer in Florence",
 StartValidityDate = new DateTime(2019, 6, 1),
 EndValidityDate = new DateTime(2019, 10, 1),
 DuratioInDays=7,
 Price=1000
 },
 new Package
 {
 Name = "Winter in Florence",
 StartValidityDate = new DateTime(2019, 12, 1),
 EndValidityDate = new DateTime(2020, 2, 1),
 DuratioInDays=7,
 Price=500
 }
 }
};
context.Destinations.Add(firstDestination);
context.SaveChanges();
Console.WriteLine(
 "DB populated: first destination id is "+
 firstDestination.Id);
Console.ReadKey();

There is no need to specify primary keys since they are auto-generated and will be filled in
by the database. In fact, after the SaveChanges() operation synchronizes our context with
the actual DB, the firstDestination.Id property has a non-zero value. The same is true
for the primary keys of Package.

When we declare that an entity (in our case, a Package) is a child of another entity (in our
case, a Destination) by inserting it in a father entity collection (in our case, the Packages
collection), there is no need to explicitly set its external key (in our case, DestinationId)
since it is inferred automatically by Entity Framework Core. Once created and
synchronized with the firstDestination database, we can add further packages in two
different ways:

Create a Package class instance, set its DestinationId external
key to firstDestination.Id and add it to context.Packages
Create a Package class instance, with no need to set its external key, and then
add it to the Packages collection of its father Destination instance.

Interacting with Data in C# - Entity Framework Core Chapter 6

[191]

The latter option is the only possibility when a child entity (Package) is added with its
father entity (Destination) and the father entity has an auto-generated principal key
since, in this case, the external key isn't available at the time we perform the additions. In
most of the other circumstances, the former option is simpler since the second option
requires the father Destination entity to be loaded in memory, along with its Packages
collection, that is, together with all the packages associated with the
Destination object (by default, connected entities aren't loaded by queries).

Now, let's say we want to modify the Florence destination and give a 10% increment to all
Florence packages prices. How do we proceed? Follow these steps to find out how:

First, we need to load the entity into memory with a query, modify it, and call1.
SaveChanges() to synchronize our changes with the database. If we want to
modify, say, just its description, a query such as the following is enough:

var toModify = context.Destinations
 .Where(m => m.Name == "Florence").FirstOrDefault();

 We need to load all the related destination packages that are not loaded by2.
default. This can be done with the Include clause, as follows:

var toModify = context.Destinations
 .Where(m => m.Name == "Florence")
 .Include(m => m.Packages)
 .FirstOrDefault();

After that, we can modify the description and package prices, as follows:3.

toModify.Description =
 "Florence is a famous historical Italian town";
foreach (var package in toModify.Packages)
 package.Price = package.Price * 1.1m;
context.SaveChanges();

var verifyChanges= context.Destinations
 .Where(m => m.Name == "Florence")
 .FirstOrDefault();

Console.WriteLine(
 "New Florence description: " +
 verifyChanges.Description);
Console.ReadKey();

So far, we've performed queries whose unique purpose is to update the retrieved entities.
Next, we will explain how to retrieve information that will be shown to the user and/or be
used by complex business operations.

Interacting with Data in C# - Entity Framework Core Chapter 6

[192]

Returning data to the presentation layer
To keep the layers separated and to adapt queries to the data that's actually needed by each
use case, DB entities aren't sent as they are to the presentation layer. Instead, the data is
projected into smaller classes that contain the information that's needed by the use case.
These are implemented by the presentation layer's caller method. Objects that move data
from one layer to another are called Data Transport Objects (DTOs). As an example, let's
create a DTO containing the summary information that is worth showing when returning a
list of packages to the user (we suppose that, if needed, the user can get more details by
clicking the package they are interested in):

Let's add a DTO to our WWTravelClubDBTest project that contains all the1.
information that needs to be shown in a list of packages:

namespace WWTravelClubDBTest
{
 public class PackagesListDTO
 {
 public int Id { get; set; }
 public string Name { get; set; }
 public decimal Price { get; set; }
 public int DuratioInDays { get; set; }
 public DateTime? StartValidityDate { get; set; }
 public DateTime? EndValidityDate { get; set; }
 public string DestinationName { get; set; }
 public int DestinationId { get; set; }
 public override string ToString()
 {
 return string.Format("{0}. {1} days in {2}, price:
 {3}", Name, DuratioInDays, DestinationName, Price);
 }
 }
}

We don't need to load entities in memory and then copy their data into
the DTO, but database data can be projected directly into the DTO, thanks
to the LINQ Select clause. This minimizes how much data is exchanged
with the database.

As an example, we can populate our DTOs with a query that checks all the2.
packages that are available around the 10th of August:

var period = new DateTime(2019, 8, 10);
var list = context.Packages
 .Where(m => period >= m.StartValidityDate
 && period <= m.EndValidityDate)

Interacting with Data in C# - Entity Framework Core Chapter 6

[193]

 .Select(m => new PackagesListDTO
 {
 StartValidityDate=m.StartValidityDate,
 EndValidityDate=m.EndValidityDate,
 Name=m.Name,
 DuratioInDays=m.DuratioInDays,
 Id=m.Id,
 Price=m.Price,
 DestinationName=m.MyDestination.Name,
 DestinationId = m.DestinationId
 })
 .ToList();
foreach (var result in list)
 Console.WriteLine(result.ToString());
Console.ReadKey();

In the Select clause, we can also navigate to any related entities to get the data3.
we need. For instance, the preceding query navigates to the related
Destination entity to get the Package destination name.
Now, right-click on the WWTravelClubDBTest project in the Solution Explorer4.
and set it as the start project. Then, run the solution.
The programs stop at each Console.ReadKey() method, waiting for you to hit5.
any key. This way, you have time to analyze the output that's produced by all the
code snippets that we added to the Main method.

Now, we will learn how to handle operations that can't be efficaciously mapped to the
immediate operations in the in-memory collections that represent the database tables.

Issuing direct SQL commands
Not all database operations can be executed efficiently by querying the database with LINQ
and updating in-memory entities. For instance, counter increments can be performed more
efficiently with a single SQL instruction. Moreover, some operations can be executed with
acceptable performance if we define adequate stored procedures/SQL commands. In these
cases, we are forced to either issue direct SQL commands to the database or call database
stored procedures from our Entity Framework code. There are two possibilities: SQL
statements that perform database operations but do not return entities, and SQL statements
that do return entities.

Interacting with Data in C# - Entity Framework Core Chapter 6

[194]

SQL commands that don't return entities can be executed with the DBContext method, as
follows:

int DBContext.Database.ExecuteSqlRaw(string sql, params object[]
parameters)

Parameters can be referenced in the string as {0}, {1}, ..., {n}. Each {m} is filled
with the object contained at the m index of the parameters array, which is converted from
a .NET type into the corresponding SQL type. The method returns the number of affected
rows.

SQL commands that return collections of entities must be issued through the FromSqlRaw
method of the mapped collection associated with those entities:

context.<mapped collection>.FromSqlRaw(string sql, params object[]
parameters)

Thus, for instance, a command that returns Package instances would look something like
this:

var results = context.Packages.FromSqlRaw("<some sql>", par1, par2,
...).ToList();

SQL strings and parameters work like this in the ExecuteSqlRaw method. The following is
a simple example:

var allPackages =context.Packages.FromSqlRaw(
 "SELECT * FROM Products WHERE Name = {0}",
 myPackageName)

It is good practice to put all the SQL strings in resource files and encapsulate all
the ExecuteSqlRaw and FromSqlRaw calls inside the public methods that you defined in
your DBContext subclasses, in order to keep the dependence from a specific database
inside of your Entity Framework Core-based data layer.

Interacting with Data in C# - Entity Framework Core Chapter 6

[195]

Handling transactions
All the changes that are made to a DBContext instance are passed in a single transaction at
the first SaveChanges call. However, sometimes, it is necessary to include queries and
updates in the same transaction. In these cases, we must handle the transaction explicitly.
Several entity Framework Core commands can be included in a transaction if we put them
inside a using block associated with a transaction object:

using (var dbContextTransaction = context.Database.BeginTransaction())
{
 try{
 ...
 ...
 dbContextTransaction.Commit();
 }
 catch
 {
 dbContextTransaction.Rollback();
 }
}

In the preceding code, context is an instance of our DBContext subclass. Inside of the
using block, the transaction can be aborted and committed by calling its Rollback and
Commit methods. Any SaveChanges calls that are included in the transaction block use the
transaction they are already in, instead of creating new ones.

Deploying your data layer
When your database layer is deployed in production or in staging, usually, an empty
database already exists, so you must apply all the migrations in order to create all the
database objects. This can be done by calling context.Database.Migrate(). The
Migrate method applies the migrations that haven't been applied to the databases yet, so it
may be called safely several times during the application's lifetime. context is an instance
of our DBContext class that must be passed through a connection string with enough
privileges to create tables and to perform all the operations included in our migrations.
Thus, typically, this connection string is different from the string we will use during normal
application operations.

Interacting with Data in C# - Entity Framework Core Chapter 6

[196]

During the deployment of a web application on Azure, we are given the opportunity to
check migrations with a connection string we provide. We can also check migrations
manually by calling the context.Database.Migrate() method when the application
starts. This will be discussed in detail in Chapter 13, Presenting ASP.NET Core MVC, which
is dedicated to ASP.NET MVC Web applications.

For desktop applications, we can apply migrations during the installation of the application
and of its subsequent updates.

At the first application installation and/or in subsequent application updates, we may need
to populate some tables with initial data. For Web applications this operation can be
performed at application start, while for desktop application this operation can be included
in the installation.

Database tables can be populated with Entity Framework Core commands. First, though,
we need to verify whether the table is empty in order to avoid adding the same table rows
several times. This can be done with the Any() LINQ method, as shown in the following
code:

if(!context.Destinations.Any())
{
 //populate here the Destinations table
}

Let's take a look at a few advanced features that Entity Framework Core has to share.

Understanding Entity Framework Core
advanced feature – global filters
Global filters were introduced at the end of 2017. They enable techniques such as soft delete
and multi-tenant tables that are shared by several users, where each user just sees its
records.

Global filters are defined with the modelBuilder object, which is available in the
DBContext OnModelCreating method. The syntax for this method is as follows:

modelBuilder.Entity<MyEntity>().HasQueryFilter(m => <define filter
condition here>);

Interacting with Data in C# - Entity Framework Core Chapter 6

[197]

For instance, if we add an IsDeleted property to our Package class, we may soft delete a
Package without removing it from the database by defining the following filter:

modelBuilder.Entity<Package>().HasQueryFilter(m => !m.IsDeleted);

However, filters contain DBContext properties. Thus, for instance, if we add a
CurrentUserID property to our DBContext subclass (whose value is set as soon as a
DBContext instance is created), then we can add a filter like the following one to all the
entities that refer to a user ID:

modelBuilder.Entity<Document>().HasQueryFilter(m => m.UserId ==
CurrentUserId);

With the preceding filter in place, the currently logged user can only access the documents
they own (the ones that have their UserId). Similar techniques are very useful in the
implementation of multi-tenant applications.

Summary
In this chapter, we looked at the essentials of ORM basics and why they are so useful. Then,
we described Entity Framework Core. In particular, we discussed how to configure the
database mappings with class annotations and other declarations and commands that are
included in DBContext subclasses.

Then, we discussed how to automatically create and update the physical database structure
with the help of migrations, as well as how to query and pass updates to the database
through Entity Framework Core. Finally, we learned how to pass direct SQL commands
and transactions through Entity Framework Core, as well as how to deploy a data layer
based on Entity Framework Core.

This chapter also reviewed some of the advanced features that had been introduced in the
latest Entity Framework Core releases.

In the next chapter, we will discuss how Entity Framework Core can be used with NoSQL
data models and the various types of storage options that are available in the cloud and, in
particular, in Azure.

Interacting with Data in C# - Entity Framework Core Chapter 6

[198]

Questions
How does Entity Framework Core adapt to several different database engines?1.
How are primary keys declared in Entity Framework Core?2.
How is a string field's length declared in Entity Framework Core?3.
How are indexes declared in Entity Framework Core?4.
How are relations declared in Entity Framework Core?5.
What are the two important migration commands? 6.
By default, are related entities loaded by LINQ queries?7.
Is it possible to return database data in a class instance that isn't a database8.
entity? If yes, how?
How are migrations applied in production and staging?9.

Further reading
More details about migrations commands can be found at https:/ ​/ ​docs.
microsoft. ​com/ ​en- ​US/ ​ef/ ​core/ ​miscellaneous/ ​cli/​index and in the other links
contained there.
More details about Entity Framework Core can be found in the official Microsoft
documentation: https:/ ​/​docs. ​microsoft. ​com/ ​en- ​us/​ef/ ​core/ ​.
An exhaustive set of examples of complex LINQ queries can be found
here: https:/ ​/ ​code. ​msdn. ​microsoft. ​com/ ​101- ​LINQ- ​Samples- ​3fb9811b. ​

https://docs.microsoft.com/en-US/ef/core/miscellaneous/cli/index
https://docs.microsoft.com/en-US/ef/core/miscellaneous/cli/index
https://docs.microsoft.com/en-US/ef/core/miscellaneous/cli/index
https://docs.microsoft.com/en-US/ef/core/miscellaneous/cli/index
https://docs.microsoft.com/en-US/ef/core/miscellaneous/cli/index
https://docs.microsoft.com/en-US/ef/core/miscellaneous/cli/index
https://docs.microsoft.com/en-US/ef/core/miscellaneous/cli/index
https://docs.microsoft.com/en-US/ef/core/miscellaneous/cli/index
https://docs.microsoft.com/en-US/ef/core/miscellaneous/cli/index
https://docs.microsoft.com/en-US/ef/core/miscellaneous/cli/index
https://docs.microsoft.com/en-US/ef/core/miscellaneous/cli/index
https://docs.microsoft.com/en-US/ef/core/miscellaneous/cli/index
https://docs.microsoft.com/en-US/ef/core/miscellaneous/cli/index
https://docs.microsoft.com/en-US/ef/core/miscellaneous/cli/index
https://docs.microsoft.com/en-US/ef/core/miscellaneous/cli/index
https://docs.microsoft.com/en-US/ef/core/miscellaneous/cli/index
https://docs.microsoft.com/en-US/ef/core/miscellaneous/cli/index
https://docs.microsoft.com/en-US/ef/core/miscellaneous/cli/index
https://docs.microsoft.com/en-US/ef/core/miscellaneous/cli/index
https://docs.microsoft.com/en-US/ef/core/miscellaneous/cli/index
https://docs.microsoft.com/en-US/ef/core/miscellaneous/cli/index
https://docs.microsoft.com/en-US/ef/core/miscellaneous/cli/index
https://docs.microsoft.com/en-us/ef/core/
https://docs.microsoft.com/en-us/ef/core/
https://docs.microsoft.com/en-us/ef/core/
https://docs.microsoft.com/en-us/ef/core/
https://docs.microsoft.com/en-us/ef/core/
https://docs.microsoft.com/en-us/ef/core/
https://docs.microsoft.com/en-us/ef/core/
https://docs.microsoft.com/en-us/ef/core/
https://docs.microsoft.com/en-us/ef/core/
https://docs.microsoft.com/en-us/ef/core/
https://docs.microsoft.com/en-us/ef/core/
https://docs.microsoft.com/en-us/ef/core/
https://docs.microsoft.com/en-us/ef/core/
https://docs.microsoft.com/en-us/ef/core/
https://docs.microsoft.com/en-us/ef/core/
https://docs.microsoft.com/en-us/ef/core/
https://docs.microsoft.com/en-us/ef/core/
https://docs.microsoft.com/en-us/ef/core/
https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b

7
How to Choose Your Data

Storage in the Cloud
Azure, like other clouds, offers a wide range of storage devices. The simplest approach is to
define a scalable set of virtual machines hosted in the cloud where we can implement our
custom solutions. For instance, we can create a SQL Server cluster on our cloud-hosted
virtual machines to increase reliability and computational power. However, usually,
custom architectures aren't the optimal solution and don't take full advantage of the
opportunities offered by the cloud infrastructure.

Therefore, this chapter will not discuss such custom architectures but will focus mainly on
the various Storage as a Service (SaaS) offerings that are available in the cloud and, in
particular, on Azure. These offers include scalable solutions based on plain disk space,
relational databases, NoSQL databases, and in-memory data stores such as Redis.

Choosing a more adequate storage type is based not only on the application's functional
requirements but also on performance and scaling-out requirements. In fact, while scaling-
out when processing resources causes a linear increase in performance, scaling-out storage
resources doesn't necessarily imply an acceptable increase in performance. In a few words,
no matter how much you duplicate your data storage devices, if several requests affect
exactly the same chunk of data, they will always queue the same amount of time to access
it!

Scaling-out data causes linear increases of read operation throughput since each copy can
serve a different request, but it doesn't imply the same increase in the throughput for write
operations since all copies of the same chunk of data must be updated! Accordingly, more
sophisticated techniques are required to scale-out storage devices, and not all storage
engines scale equally well.

In particular, relational databases don't scale well in all scenarios. Therefore, scaling needs
and the need to distribute data geographically play a fundamental role in the choice of a
storage engine, as well as in the choice of a SaaS offering.

How to Choose Your Data Storage in the Cloud Chapter 7

[200]

In this chapter, we will cover the following topics:

Understanding the different repositories for different purposes
Choosing between structure or NoSQL storage
Azure Cosmos DB – an opportunity to manage a multi-continental database
Use case – storing data

Let's get started:

Technical requirements
This chapter requires that you have the following:

Visual Studio 2017 or 2019 free Community Edition or better with all its database
tools installed.
A free Azure account. The Creating an Azure account subsection in Chapter 1,
Understanding the Importance of Software Architecture, explains how to create one.
For a better development experience, we advise that you also install the local
emulator of Cosmos DB, which can be found at https:/ ​/ ​aka.​ms/ ​cosmosdb-
emulator.

Understanding the different repositories for
different purposes
This section describes the functionalities that are offered by the most popular data storage
techniques. Mainly, we will focus on the functional requirements they are able to satisfy.
Performance and scaling-out features will be analyzed in the next section, which is
dedicated to comparing relational and NoSQL databases. In Azure, the various offerings
can be found by typing product names into the search bar at the top of all Azure portal
pages.

The following subsections describe the various kinds of database that we can use in our C#
projects.

https://aka.ms/cosmosdb-emulator
https://aka.ms/cosmosdb-emulator
https://aka.ms/cosmosdb-emulator
https://aka.ms/cosmosdb-emulator
https://aka.ms/cosmosdb-emulator
https://aka.ms/cosmosdb-emulator
https://aka.ms/cosmosdb-emulator
https://aka.ms/cosmosdb-emulator
https://aka.ms/cosmosdb-emulator
https://aka.ms/cosmosdb-emulator

How to Choose Your Data Storage in the Cloud Chapter 7

[201]

Relational databases
Usually, clouds offer several database engines. Azure offers a variety of popular database
engines, such as SQL Server (Azure SQL Server), MySQL, and Oracle.

With regard to the Oracle database engine, Azure offers configurable virtual machines
with various Oracle editions installed on them, which you can easily verify by the
suggestions you get after typing Oracle into the Azure portal search bar. Azure fees don't
include Oracle licenses; they just bring computation time, so you must bring your own
license to Azure.

With MySQL on Azure, you pay to use a private server instance. The fees you incur depend
on the number of cores you have, how much memory has to be allocated, and on backup
retention time. MySQL instances are redundant and you can choose between a local or
geographically distributed redundancy:

How to Choose Your Data Storage in the Cloud Chapter 7

[202]

Azure SQL Server is the most flexible offer. Here, you can configure resources that are used
by every single database. When you create a database, you have the option to place it on an
existing server instance or create a new instance. Fees are based on the database memory
that's been reserved and on the required Database Transaction Units (DTUs). Here, a DTU
is a linear combination of I/O operations, CPU usage, and memory usage that's determined
by a reference workload. Roughly, maximal DB performance increases linearly when you
increase DTUs:

You can also configure data replication by enabling Read scale-out. This way, you can
improve the performance of read operations. Backup retention is fixed for each offering
level (basic, standard, and premium).

If you select Yes for Want to use SQL elastic pool?, the database will be added to an elastic
pool. Databases that are added to the same elastic pool will share their resources, so
resources that aren't used by a database can be used during the usage peaks of other
databases. Elastic pools can contain databases hosted on different server instances. Elastic
pools are an efficient way to optimize resource usage in order to reduce costs.

How to Choose Your Data Storage in the Cloud Chapter 7

[203]

NoSQL databases
In NoSQL databases, relational tables are replaced with more general collections that can
contain heterogeneous JSON objects. That is, collections have no predefined structure and
no predefined fields with length constraints (in the case of strings) but can contain any type
of object. The only structural constraint associated with each collection is the name of the
property that acts as a primary key.

More specifically, each collection entry can contain nested objects and object collections
nested in object properties, that is, related entities that, in relational databases, are
contained in different tables and connected through external keys. In NoSQL, databases can
be nested in their father entities. Since collection entries contain complex nested objects
instead of simple property/value pairs, as is the case with relational databases, entries aren't
called tuples or rows, but documents.

No relations and/or external key constraints can be defined between documents that belong
to the same collection or to different collections. If a document contains the primary key of
another document in one of its properties, it does so at its own risk. The developer has the
responsibility of maintaining and keeping these coherent references.

Finally, since NoSQL storage is quite cheap, whole binary files can be stored as the values
of document properties as Base64 strings. The developer can define rules to decide what
properties to index in a collection. Since documents are nested objects, properties are
actually tree paths. Usually, by default, all the paths are indexed, but you can specify which
collection of paths and subpaths to index.

NoSQL databases are queried either with a subset of SQL or with a JSON-based language
where queries are JSON objects whose paths represent the properties to query, and whose
values represent the query constraints that have been applied to them.

The possibility of nesting children objects inside documents can be simulated in relational
databases with the help of one-to-many relationships. However, with relational databases,
we are forced to redefine the exact structure of all the related tables, while NoSQL
collections don't impose any predefined structure on the objects they contain. The only
constraint is that each document must provide a unique value for the primary key
property. Therefore, NoSQL databases are the only option when the structure of our objects
is extremely variable. However, often they are chosen for the way they scale-out read and
write operations and, more generally, for their performance advantages in distributed
environments. Their performance features will be discussed in the next section, which
compares them to relational databases.

How to Choose Your Data Storage in the Cloud Chapter 7

[204]

The graph data model is an extreme case of a completely unstructured document. The
whole database is a graph where queries can add, change, and delete graph documents.

In this case, we have two kinds of document: nodes and relations. While relationships have
a well-defined structure (the primary key of the nodes connected by the relationship, plus
the relationship's name), nodes have no structure at all since properties and their values are
added together during node update operations. Graph data models were conceived to
represent the features of people and the objects they manipulate (media, posts, and so on),
along with their relationships in social applications. The Gremlin language was conceived
specifically to query graph data models. We won't discuss this in this chapter, but
references are available in the Further reading section.

NoSQL databases will be analyzed in detail in the remaining sections of this chapter, which
are dedicated to describing Azure Cosmos DB and comparing it with relational databases.

Redis
Redis is a distributed concurrent in-memory storage based on key-value pairs and supports
distributed queuing. It can be used as permanent in-memory storage and as a web
application cache for database data. Alternatively, it can render pages whose content
doesn't change very often.

Redis can also be used to store a web application's user session data. In fact, ASP.NET
MVC, Pages, and WebForms support session data to overcome the fact that the HTTP
protocol is stateless. More specifically, user data that's kept between page changes is
maintained in server-side stores such as Redis and indexed by a session key stored in
cookies.

Interaction with the Redis server in the cloud is typically based on a REST interface; that is,
each Redis resource is accessed via HTTP GET at a URI and commands are passed in the
query string, while answers are returned in JSON format. However, clients that offer an
easy-to-use interface are available in all popular languages. The client for .NET and .NET
Core is available through the StackExchange.Redis NuGet package. The basic operations
of the StackExchange.Redis client have been documented at https:/ ​/​stackexchange.
github.​io/​StackExchange. ​Redis/ ​Basics, while the full documentation can be found
at https:/​/​stackexchange. ​github. ​io/ ​StackExchange. ​Redis.

https://stackexchange.github.io/StackExchange.Redis/Basics
https://stackexchange.github.io/StackExchange.Redis/Basics
https://stackexchange.github.io/StackExchange.Redis/Basics
https://stackexchange.github.io/StackExchange.Redis/Basics
https://stackexchange.github.io/StackExchange.Redis/Basics
https://stackexchange.github.io/StackExchange.Redis/Basics
https://stackexchange.github.io/StackExchange.Redis/Basics
https://stackexchange.github.io/StackExchange.Redis/Basics
https://stackexchange.github.io/StackExchange.Redis/Basics
https://stackexchange.github.io/StackExchange.Redis/Basics
https://stackexchange.github.io/StackExchange.Redis/Basics
https://stackexchange.github.io/StackExchange.Redis/Basics
https://stackexchange.github.io/StackExchange.Redis/Basics
https://stackexchange.github.io/StackExchange.Redis/Basics
https://stackexchange.github.io/StackExchange.Redis
https://stackexchange.github.io/StackExchange.Redis
https://stackexchange.github.io/StackExchange.Redis
https://stackexchange.github.io/StackExchange.Redis
https://stackexchange.github.io/StackExchange.Redis
https://stackexchange.github.io/StackExchange.Redis
https://stackexchange.github.io/StackExchange.Redis
https://stackexchange.github.io/StackExchange.Redis
https://stackexchange.github.io/StackExchange.Redis
https://stackexchange.github.io/StackExchange.Redis
https://stackexchange.github.io/StackExchange.Redis
https://stackexchange.github.io/StackExchange.Redis
https://stackexchange.github.io/StackExchange.Redis

How to Choose Your Data Storage in the Cloud Chapter 7

[205]

The user interface for defining a Redis server on Azure is quite simple:

The Pricing tier dropdown allows us to select one of the available memory/replication
options. A quick-start guide that explains how to use Azure Redis credentials and the URI
with the StackExchange.Redis .NET Core client can be found at https:/ ​/ ​docs.
microsoft.​com/​en- ​us/ ​azure/ ​azure- ​cache- ​for- ​redis/ ​cache- ​dotnet- ​core- ​quickstart.

https://docs.microsoft.com/en-us/azure/azure-cache-for-redis/cache-dotnet-core-quickstart
https://docs.microsoft.com/en-us/azure/azure-cache-for-redis/cache-dotnet-core-quickstart
https://docs.microsoft.com/en-us/azure/azure-cache-for-redis/cache-dotnet-core-quickstart
https://docs.microsoft.com/en-us/azure/azure-cache-for-redis/cache-dotnet-core-quickstart
https://docs.microsoft.com/en-us/azure/azure-cache-for-redis/cache-dotnet-core-quickstart
https://docs.microsoft.com/en-us/azure/azure-cache-for-redis/cache-dotnet-core-quickstart
https://docs.microsoft.com/en-us/azure/azure-cache-for-redis/cache-dotnet-core-quickstart
https://docs.microsoft.com/en-us/azure/azure-cache-for-redis/cache-dotnet-core-quickstart
https://docs.microsoft.com/en-us/azure/azure-cache-for-redis/cache-dotnet-core-quickstart
https://docs.microsoft.com/en-us/azure/azure-cache-for-redis/cache-dotnet-core-quickstart
https://docs.microsoft.com/en-us/azure/azure-cache-for-redis/cache-dotnet-core-quickstart
https://docs.microsoft.com/en-us/azure/azure-cache-for-redis/cache-dotnet-core-quickstart
https://docs.microsoft.com/en-us/azure/azure-cache-for-redis/cache-dotnet-core-quickstart
https://docs.microsoft.com/en-us/azure/azure-cache-for-redis/cache-dotnet-core-quickstart
https://docs.microsoft.com/en-us/azure/azure-cache-for-redis/cache-dotnet-core-quickstart
https://docs.microsoft.com/en-us/azure/azure-cache-for-redis/cache-dotnet-core-quickstart
https://docs.microsoft.com/en-us/azure/azure-cache-for-redis/cache-dotnet-core-quickstart
https://docs.microsoft.com/en-us/azure/azure-cache-for-redis/cache-dotnet-core-quickstart
https://docs.microsoft.com/en-us/azure/azure-cache-for-redis/cache-dotnet-core-quickstart
https://docs.microsoft.com/en-us/azure/azure-cache-for-redis/cache-dotnet-core-quickstart
https://docs.microsoft.com/en-us/azure/azure-cache-for-redis/cache-dotnet-core-quickstart
https://docs.microsoft.com/en-us/azure/azure-cache-for-redis/cache-dotnet-core-quickstart
https://docs.microsoft.com/en-us/azure/azure-cache-for-redis/cache-dotnet-core-quickstart
https://docs.microsoft.com/en-us/azure/azure-cache-for-redis/cache-dotnet-core-quickstart
https://docs.microsoft.com/en-us/azure/azure-cache-for-redis/cache-dotnet-core-quickstart
https://docs.microsoft.com/en-us/azure/azure-cache-for-redis/cache-dotnet-core-quickstart
https://docs.microsoft.com/en-us/azure/azure-cache-for-redis/cache-dotnet-core-quickstart
https://docs.microsoft.com/en-us/azure/azure-cache-for-redis/cache-dotnet-core-quickstart
https://docs.microsoft.com/en-us/azure/azure-cache-for-redis/cache-dotnet-core-quickstart
https://docs.microsoft.com/en-us/azure/azure-cache-for-redis/cache-dotnet-core-quickstart

How to Choose Your Data Storage in the Cloud Chapter 7

[206]

Disk memory
All clouds offer scalable and redundant general-purpose disk memory that you can use as
virtual disks in virtual machines and/or as external file storage. Azure storage account disk
space can also be structured in Tables and Queues. However, these two storage options are
only supported for backward compatibility since Azure NoSQL databases are a better
option than tables and Azure Redis is a better option than Azure storage queues:

In the rest of this chapter, we will focus on NoSQL databases and how they differ from
relational databases. Next, we will look at how to choose one over the other.

Choosing between structured or NoSQL
storage
In the previous section, we stated that NoSQL databases should be preferred when data has
almost no predefined structure. Actually, unstructured data can be represented in relational
databases since variable properties of a tuple, t, can be placed in a connected table
containing the property name, property value, and the external key of t. However, the
problem is performance. In fact, property values that belong to a single object would be
spread all over the available memory space. In a small database, all over the available memory
space means far away but on the same disk; in a bigger database, this means far away but in
different disk units; in a distributed cloud environment, this means far away but in
different – and possibly geographically distributed – servers.

On the other hand, NoSQL databases not only keep variable attributes close to their
owners, but they also keep some related objects close since they allow related objects to be
nested inside properties and collections.

How to Choose Your Data Storage in the Cloud Chapter 7

[207]

Therefore, we can conclude that relational databases perform well when tables that are
usually accessed together can be stored close in memory. NoSQL databases, on the other
hand, automatically ensure that related data is kept close since each entry keeps most of the
data it is related to inside it as nested objects. Therefore, NoSQL databases perform better
when they are distributed to a different memory and also to different geographically
distributed servers.

Unfortunately, the only way to scale out storage write operations is to split collection
entries across several servers according to the values of shard keys. For instance, we can
place all the records containing usernames that start with A in a server, the records
containing usernames that start with B on another server, and so on. This way, write
operations for usernames with different start letters may be executed in parallel, ensuring
that the write throughput increases linearly with the number of servers.

However, if a shard collection is related to several other collections, there is no guarantee
that related records will be placed on the same server. Also, putting different collections on
different servers without using collection sharding increases write throughput linearly until
we reach the limit of a single collection per server, but it doesn't solve the issue of being
forced to perform several operations on different servers to retrieve or update data that's
usually processed together.

This issue becomes catastrophic for performance if access to related distributed objects
must be transactional and/or must ensure structural constraints (such as external key
constraints) aren't violated. In this case, all related objects must be blocked during the
transaction, preventing other requests from accessing them during the whole lifetime of a
time-consuming distributed operation.

NoSQL databases don't suffer from this problem and perform better with sharding and
consequently with write-scaled output. This is because they don't distribute related data to
different storage units and instead store them as nested objects of the same database entry.

In NoSQL database design, we always try to put all related objects that are likely to be
processed together into a single entry. Related objects that are accessed less frequently are
placed in different entries. Since external key constraints aren't enforced automatically and
NoSQL transactions are very flexible, the developer can choose the best compromise
between performance and coherence.

It is worth mentioning that there are situations where relational databases perform well
with sharding. A typical instance is a multi-tenant application. In a multi-tenant
application, all entries collections can be partitioned into non-overlapping sets called
tenants. Only entries belonging to the same tenant can refer to each other, so if all the
collections are sharded in the same way according to their object tenants, all related records
end up in the same shard, that is, in the same server, and can be navigated efficiently.

How to Choose Your Data Storage in the Cloud Chapter 7

[208]

Multi-tenant applications aren't rare in the cloud since all applications that offer the same
services to several different users are often implemented as multi-tenant applications,
where each tenant corresponds to a user subscription. Accordingly, relational databases are
conceived to work in the cloud, such as Azure SQL Server, and usually offer sharding
options for multi-tenant applications. Typically, sharding isn't a cloud service and must be
defined with database engine commands. Here, we won't describe how to define shards
with Azure SQL Server, but the Further reading section contains a link to the official
Microsoft documentation.

In conclusion, relational databases offer a pure, logical view of data that's independent of
the way they are actually stored, and use a declarative language to query and update them.
This simplifies development and system maintenance, but it may cause performance issues
in a distributed environment that requires write scale-out. In NoSQL databases, you must
handle more details about how to store data, as well as some procedural details for all the
update and query operations, manually, but this allows you to optimize performance in
distributed environments that require both read and write scale-out.

In the next section, we will look at Azure Cosmos DB, the main Azure NoSQL offering.

Azure Cosmos DB – an opportunity to
manage a multi-continental database
Azure Cosmos DB is Azure's main NoSQL offering. Azure Cosmos DB has its own interface
that is a subset of SQL, but it can be configured with a MongoDB interface. It can be
also configured as a graph data model that can be queried with Gremlin. Cosmos DB
allows replication for fault tolerance and read scale-out, and replicas can be distributed
geographically to optimize communication performance. Moreover, you can specify which
data center all the replicas are placed in. The user also has the option to write-enable all the
replicas so that writes are immediately available in the geographical area where they are
done. Write scale-up is achieved with sharding, which the user can configure by defining
which properties to use as shard keys.

You can define a Cosmos DB account by typing Cosmos DB into the Azure portal search
bar and clicking Add. The following page will appear:

How to Choose Your Data Storage in the Cloud Chapter 7

[209]

The account name you choose is used in the resource URI as {account
name}.documents.azure.com. The API dropdown lets you choose the kind of interface
you prefer (SQL, MongoDB, or Gremlin). Then, you can decide which data center the main
database will be placed in and whether you want to enable geographically distributed
replication. Once you've enabled geographically distributed replication, you can choose the
number of replicas you want to use and where to place them.

How to Choose Your Data Storage in the Cloud Chapter 7

[210]

Finally, the Multi-region Writes toggle lets you enable writes on geographically distributed
replicas. If you don't do this, all write operations will be routed to the main data center.

Going to the resource: Once you've created your account, select Data Explorer to1.
create your databases and collections inside of them:

Creating a collection: Since databases just have a name and no configuration,2.
you can directly add a collection and then the database where you wish to place
it:

How to Choose Your Data Storage in the Cloud Chapter 7

[211]

Here, you can decide on database and collection names and the property to use
for sharding (partition key). Since NoSQL entries are object trees, property names
are specified as paths. You can also add properties whose values are required to
be unique. However, uniqueness IDs are checked inside each shard, so this option
is only useful in certain situations, such as multi-tenant applications (where each
tenant is included in a single shard). The fees depend on the collection
throughput that you choose.

Targeting all resource parameters to your needs: Throughput is expressed in3.
Request Unit per second, where Request Unit per second is defined as the
throughput we have when performing a read of 1 KB per second. Hence, if you
check the Provision database throughput option, the chosen throughput is
shared with the whole database, instead of being reserved as a single collection.
Getting connection information: By selecting the Keys menu, you will see all the4.
information you need in order to connect with your Cosmos DB account from
your application:

Connection information page: Here, you will find the account URI and two5.
connection keys, which can be used interchangeably to connect with the account:

How to Choose Your Data Storage in the Cloud Chapter 7

[212]

There are also keys with read-only privileges. Every key can be regenerated and
each account has two equivalent keys so that this operation can be handled
efficiently; that is, when a key is changed, the other one is kept. Therefore,
existing applications can continue using the other key before upgrading to the
new key.

Selecting the default consistency level: By selecting the Default consistency,6.
you can choose the default replication consistency that you wish to apply to all of
your collections:

This default can be overridden in each collection, either from the Data Explorer or
programmatically. Consistency problems in read/write operations are a consequence of
data replication. More specifically, the results of various read operations may be incoherent
if the read operations are executed on different replicas that have received different partial
updates.

The following are the available consistency levels. These have been ordered from the
weakest to the strongest:

Eventual: After enough time has passed, if no further write operations are done,
all the reads converge and apply all the writes.
Consistent Prefix: All the writes are executed in the same order on all the
replicas. So, if there are n write operations, each read is consistent with the result
of applying the first m writes for some m less or equal to n.
Session: This is the same as the consistency prefix but also guarantees that each
writer sees the result of its own writes in all subsequent read operations and that
subsequent reads of each reader are coherent (either the same database or a more
updated version of it).
Bounded Staleness: This is associated either with a delay time, Delta, or with a
number of operations, N. Each read sees the results of all the write operations that
were performed before a time Delta (or before the last N operations). That is, its
reads converge with the result of all the writes with a maximum time delay of
Delta (or a maximum operations delay of N).
Strong: This is bounded staleness combined with Delta = 0. Here, each read
reflects the result of all previous write operations.

How to Choose Your Data Storage in the Cloud Chapter 7

[213]

The strongest consistency can be obtained to the detriment of performance. By default, the
consistency is set to Session, which is a good compromise between coherence and
performance. A lower level of consistency is difficult to handle in applications and is only
usually acceptable if sessions are either read-only or write-only.

If you select the Scale & settings option in the Data Explorer, you can configure which
paths to index and which kind of indexing to apply to each data type of each path. The
configuration consists of a JSON object. Let's analyze its various properties:

{
 "indexingMode": "consistent",
 "automatic": true,
 ...

If you set indexingMode to none instead of consistent, no index is generated and the
collection can be used as a key-value dictionary that's indexed by the collection primary
key. When automatic is set to true, all document properties are automatically indexed:

{
 ...
 "includedPaths": [
 {
 "path": "/*",
 "indexes": [
 {
 "kind": "Range",
 "dataType": "Number",
 "precision": -1
 },
 {
 "kind": "Range",
 "dataType": "String",
 "precision": -1
 },
 {
 "kind": "Spatial",
 "dataType": "Point"
 }
]
 }
]
},
...

How to Choose Your Data Storage in the Cloud Chapter 7

[214]

Each entry in the Included paths specifies a path pattern such as /subpath1/subpath2/?
(settings apply just to the /subpath1/subpath2/ property) or /subpath1/subpath2/*
(settings apply to all the paths starting with /subpath1/subpath2/).

Patterns contain the [] symbol when settings must be applied to child objects contained in
collection properties; for example, /subpath1/subpath2/[]/?,
/subpath1/subpath2/[]/childpath1/?, and so on. Settings specify the index type to
apply to each data type (string, number, geographic point, and so on). Range indexes are
needed for comparison operations, while hash indices are more efficient if we need equality
comparisons.

It is possible to specify a precision, that is, the maximum number of characters or digits to
use in all the index keys. -1 means no limit. -1 is acceptable for strings, while a finite
precision should be used for numbers. On the other hand, using finite precision with
strings may result in unexpected behavior since string keys are truncated. In hash indexes,
precision may vary from 1 to 8, while in range indexes, it may vary from 1 to 100:

 ...
 "excludedPaths": [
 {
 "path": "/\"_etag\"/?"
 }
]

Paths contained in excludedPaths aren't indexed at all. Index settings can also be
specified programmatically.

Here, you have two options to connect to Cosmos DB: use a version of its official client for
your preferred programming language or use Cosmos DB's Entity Framework Core
provider, which at the time of writing this book, is still in preview. In the following
subsections, we will have a look at both options. Then, we will describe how to use Cosmos
DB's Entity Framework Core provider with a practical example.

How to Choose Your Data Storage in the Cloud Chapter 7

[215]

Cosmos DB client
The Cosmos DB client for .NET Core is available through the
Microsoft.Azure.DocumentDB.Core NuGet package. It offers full control of all Cosmos
DB features, while the Cosmos DB Entity Framework provider is easier to use but hides
some Cosmos DB peculiarities. Follow these steps to interact with Cosmos DB through the
official Cosmos DB client for .NET Core:

Any operation requires the creation of a client object:1.

var client = new DocumentClient(new Uri("service endpoint"), "auth key")

Don't forget that the client must be disposed of by calling its Dispose method (or2.
by enclosing the code that references it in a using statement) when you don't
need it anymore.
Then, you can get a reference to a database and create it if it doesn't exist with the3.
following code:

Database db = client.CreateDatabaseIfNotExistsAsync(new Database { Id =
"MyDatabase" }).Result;

Finally, you can get a reference to a collection or create it if it doesn't exist with4.
the following code:

var collection = client.CreateDocumentCollectionIfNotExistsAsync(
 UriFactory.CreateDatabaseUri("MyDatabase"),
 new DocumentCollection { Id = "MyCollection" }).Result;

During collection creation, you can pass an option object, where you can specify5.
the consistency level, how to index properties, and all the other collection
features.
Then, you must define the .NET classes that correspond to the structure of the6.
JSON document you need to manipulate in your collections. You can also use
the JsonProperty attribute to map class property names to JSON names if they
aren't equal.
Once you have all the necessary classes, you can use client methods to add,7.
update, and write collection entries, as well as the client CreateDocumentQuery
method, which returns an IQueryable value that you can query with LINQ.

How to Choose Your Data Storage in the Cloud Chapter 7

[216]

When you read a document, apply some modifications, and then try to upload your
modified version of the document, someone else may have modified the same document.
Often, you only need to perform an update if no one else has modified the same document.
This can be done using the _etag property, which Cosmos DB automatically attaches to
each document. This property value changes after each update, so you need to follow these
steps:

Map the _etag JSON property to a property on your .NET class so that you get1.
its value when you read a document.
Pass the original value of the _etag property as the value of the2.
AccessCondition property of the option object you pass to the
ReplaceDocumentAsync client method.
If the _etag has changed ReplaceDocumentAsync, abort the operation and3.
return an exception.

There is also the MvcControlsToolkit.Business.DocumentDB NuGet package, which
simplifies and automates all operations that are required by the
Microsoft.Azure.DocumentDB.Core library and overcomes some limitations of Cosmos
DB SQL. The Further reading section contains references to tutorials for
Microsoft.Azure.DocumentDB.Core and
MvcControlsToolkit.Business.DocumentDB.

Cosmos DB Entity Framework Core provider
The Cosmos DB provider for Entity Framework Core is contained in the
Microsoft.EntityFrameworkCore.Cosmos NuGet package. Once you've added this to
your project, you can proceed in a similar way to when you used the SQL Server provider
in Chapter 6, Interacting with Data in C# - Entity Framework Core, but with a few differences.
Let's take a look:

There are no migrations since Cosmos DB databases have no structure to update.1.
Instead, they have a method that ensures that the database, along with all the
necessary collections, is created:

context.Database.EnsureCreated();

How to Choose Your Data Storage in the Cloud Chapter 7

[217]

DbSet<T> DBContext properties don't map one-to-one to database collections,2.
but several DbSet<T> properties can map to the same collection since collections
can contain objects with different structures. Moreover, by default, all DbSet<T>
properties are mapped to a unique collection since this is the cheapest option, but
you can override this default by explicitly specifying which collection you want
to map some entities to by using the following configuration instruction:

builder.Entity<MyEntity>()
 .ToContainer("collection-name");

The only useful annotation on entity classes is the Key attribute, which becomes3.
obligatory when the principal keys are is called Id.
Principal keys must be strings and can't be auto-incremented to avoid4.
synchronization issues in a distributed environment. The uniqueness of primary
keys can be ensured by generating GUIDs and transforming them into strings.
When defining relationships between entities, you can specify that an entity or a5.
collection of entities is owned by another entity, in which case it is stored
together with the father entity.

We will look at the usage of Cosmos DB's Entity Framework provider in the next section.

Use case – storing data
Now that we've learned how to use NoSQL, we have to decide whether NoSQL databases
are adequate for our WWTravelClub application. We need to store the following families of
data:

Information about available destinations and packages: Relevant operations for
this data are reads since packages and destinations don't change very often.
However, they must be accessed as fast as possible from all over the World in
order to ensure a pleasant user experience when users browse the available
options. Therefore, a distributed relational database with geographically
distributed replicas is possible, but not necessary, since packages can be stored
inside their destinations in a cheaper NoSQL database.
Destination reviews: In this case, distributed write operations have a non-
negligible impact. Moreover, most writes are additions, since reviews aren't
usually updated. Additions benefit a lot from sharding and don't cause
consistency issues like updates do. Accordingly, the best option for this data is a
NoSQL collection.

How to Choose Your Data Storage in the Cloud Chapter 7

[218]

Reservations: In this case, consistency errors aren't acceptable because they may
cause overbooking. Reads and writes have a comparable impact, but we need
reliable transactions and good consistency checks. Luckily, data can be organized
in a multi-tenant database where tenants are destinations since reservation
information belonging to different destinations is completely unrelated.
Accordingly, we may use sharded SQL Azure database instances.

In conclusion, the best option for data in the first and second bullet points is Cosmos DB,
while the best option for the third point is Azure SQL Server. Actual applications may
require a more detailed analysis of all data operations and their frequencies. In some cases,
it is worth implementing prototypes for various possible options and executing
performance tests with typical workloads on all of them.

In the remainder of this section, we will migrate the destinations/packages data layer we
looked at in Chapter 6, Interacting with Data in C# - Entity Framework Core, to Cosmos DB.

Implementing the destinations/packages
database with Cosmos DB
Let's move on to the database example we built in Chapter 6, Interacting with Data in C# –
Entity Framework Core, to Cosmos DB by following these steps:

First of all, we need to make a copy of the WWTravelClubDB project and make1.
WWTravelClubDBCosmo the new root folder.
Open the project and delete the migrations folder since migrations aren't2.
required anymore.
We need to replace the SQL Server Entity Framework provider with the Cosmos3.
DB provider. To do this, go to Manage NuGet Packages and uninstall the
Microsoft.EntityFrameworkCore.SqlServer NuGet package. Then, install
the Microsoft.EntityFrameworkCore.Cosmos NuGet package.
Then, do the following on the Destination and Package entities:4.

Remove all data annotations.
Add the [Key] attribute to their Id properties since this is obligatory
for Cosmos DB providers.

How to Choose Your Data Storage in the Cloud Chapter 7

[219]

Transform the type of the Id properties of both
Package and Destination, and the PackagesListDTO classes
from int to string. We need to turn into string also
the DestinationId external references in the Package, and in the
PackagesListDTO classes. In fact, the best option for keys in
distributed databases is a string generated from a GUID, because it
is hard to maintain an identity counter when table data is
distributed among several servers.

In the MainDBContext file, we need to specify that packages related to a5.
destination must be stored inside the destination document itself. This can be
achieved by replacing the Destination-Package relation configuration in the
OnModelCreatingmethod method with the following code:

builder.Entity<Destination>()
 .OwnsMany(m => m.Packages);

Here, we must replace HasMany with OwnsMany. There is no equivalent6.
to WithOne since once an entity is owned, it must have just one owner, and the
fact that the MyDestination property contains a pointer to the father entity is
evident from its type. Cosmos DB also allows the use of HasMany, but in this
case, the two entities aren't nested one in the other. There is also an OwnOne
configuration method for nesting single entities inside other entities.
Actually, both OwnsMany and OwnsOne are available for relational databases, but7.
in this case, the difference between HasMany and HasOne is that children entities
are automatically included in all queries that return their father entities, with no
need to specify an Include LINQ clause. However, child entities are still stored
in separate tables.
LibraryDesignTimeDbContextFactory must be modified to use Cosmos DB8.
connection data, as shown in the following code:

using Microsoft.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore.Design;

namespace WWTravelClubDB
{
 public class LibraryDesignTimeDbContextFactory
 : IDesignTimeDbContextFactory<MainDBContext>
 {
 private const string endpoint = "<your account endpoint>";
 private const string key = "<your account key>";
 private const string datbaseName = "packagesdb";
 public MainDBContext CreateDbContext(params string[] args)

How to Choose Your Data Storage in the Cloud Chapter 7

[220]

 {
 var builder = new DbContextOptionsBuilder<Main
 DBContext>();

 builder.UseCosmos(endpoint, key, datbaseName);
 return new MainDBContext(builder.Options);
 }
 }
}

Finally, in our test console, we must explicitly create all entity principal keys9.
using GUIDS:

var context = new LibraryDesignTimeDbContextFactory()
 .CreateDbContext();
context.Database.EnsureCreated();
var firstDestination = new Destination
{
 Id = Guid.NewGuid().ToString(),
 Name = "Florence",
 Country = "Italy",
 Packages = new List<Package>()
 {
 new Package
 {
 Id=Guid.NewGuid().ToString(),
 Name = "Summer in Florence",
 StartValidityDate = new DateTime(2019, 6, 1),
 EndValidityDate = new DateTime(2019, 10, 1),
 DuratioInDays=7,
 Price=1000
 },
 new Package
 {
 Id=Guid.NewGuid().ToString(),
 Name = "Winter in Florence",
 StartValidityDate = new DateTime(2019, 12, 1),
 EndValidityDate = new DateTime(2020, 2, 1),
 DuratioInDays=7,
 Price=500
 }
 }
};

How to Choose Your Data Storage in the Cloud Chapter 7

[221]

Here, we call context.Database.EnsureCreated() instead of applying
migrations since we only need to create the database. Once the database and
collections have been created, we can fine-tune their settings from the Azure
Portal. Hopefully, future versions of Cosmos DB Entity Framework Core provider
will allow us to specify all collection options.

Finally, the final query that starts with context.Packages.Where... must be10.
modified since queries can't start from entities that are nested in other documents
(in our case, Package entities). Therefore, we must start our query from the
unique root DbSet<T> property we have in our DBContext, that is,
Destinations. We can move from listing the external collection to listing all the
internal collections with the help of the SelectMany method, which performs a
logical merge of all nested Packages collections. However, since CosmosDB SQL
doesn't support SelectMany, we must force SelectMany to be simulated on the
client with AsIenumerable(), as shown in the following code:

var list = context.Destinations
 .AsEnumerable() // move computation on the client side
 .SelectMany(m => m.Packages)
 .Where(m => period >= m.StartValidityDate....)
 ...

The remainder of the query remains unchanged. If you run the project now, you11.
should see the same outputs that were received in the case of SQL Server (with
the exception of the primary key values).

How to Choose Your Data Storage in the Cloud Chapter 7

[222]

After executing the program, go to your Cosmos DB account. You should see12.
something like the following:

The packages have been nested inside their destinations as required and Entity Framework
Core creates a unique collection that has the same name as the DBContext class.

If you would like to continue experimenting with Cosmos DB development without
wasting all your free Azure Portal credit, you can install the Cosmos DB emulator available
at this link: https:/ ​/ ​aka. ​ms/ ​cosmosdb- ​emulator.

https://aka.ms/cosmosdb-emulator
https://aka.ms/cosmosdb-emulator
https://aka.ms/cosmosdb-emulator
https://aka.ms/cosmosdb-emulator
https://aka.ms/cosmosdb-emulator
https://aka.ms/cosmosdb-emulator
https://aka.ms/cosmosdb-emulator
https://aka.ms/cosmosdb-emulator
https://aka.ms/cosmosdb-emulator
https://aka.ms/cosmosdb-emulator
https://aka.ms/cosmosdb-emulator

How to Choose Your Data Storage in the Cloud Chapter 7

[223]

Summary
In this chapter, we looked at the main storage options available in Azure and learned when
to use them. Then, we compared relational and NoSQL databases. We pointed out that
relational databases offer automatic consistency checking and transaction isolation, but
NoSQL databases are cheaper and offer better performance, especially when distributed
writes form a high percentage of the average workload.

Then, we described Azure's main NoSQL option, Cosmos DB, and explained how to
configure it and how to connect with a client.

Finally, we learned how to interact with Cosmos DB with Entity Framework
Core and looked at a practical example based on the WWTravelClubDB use case. Here, we
learned how to decide between relational and NoSQL databases for all families of data
involved in an application. This way, you can choose the kind of data storage that ensures
the best compromise between data coherence, speed, and parallel access to data in each of
your applications.

In the next chapter, we will learn all about Serverless and Azure Functions.

Questions
Is Redis a valid alternative to relational databases?1.
Are NoSQL databases a valid alternative to relational databases?2.
What operation is more difficult to scale out in relational databases?3.
What is the main weakness of NoSQL databases? What is their main advantage?4.
Can you list all Cosmos DB consistency levels?5.
Can we use auto-increment integer keys with Cosmos DB?6.
Which Entity Framework configuration method is used to store an entity inside7.
its related father document?
Can nested collections be searched efficiently with Cosmos DB?8.

How to Choose Your Data Storage in the Cloud Chapter 7

[224]

Further reading
In this chapter, we didn't talk about how to define sharding with SQL Azure.
Here is the link to the official documentation if you want to find out
more: https:/ ​/ ​docs. ​microsoft. ​com/ ​en-​us/ ​azure/ ​sql- ​database/ ​sql-
database- ​elastic- ​scale- ​introduction.
Cosmos DB was described in detail in this chapter, but further details can be
found in the official documentation: https:/ ​/​docs. ​microsoft. ​com/ ​en- ​us/
azure/​cosmos- ​db/ ​.
The following is a reference to the Gremlin language, which is supported by
Cosmos DB: http:/ ​/ ​tinkerpop. ​apache. ​org/ ​docs/ ​current/ ​reference/ ​#graph-
traversal- ​steps.
The following is a general description of the Cosmos DB Graph Data Model:
https:/​/ ​docs. ​microsoft. ​com/ ​en-​us/ ​azure/ ​cosmos- ​db/ ​graph- ​introduction.
Details on how to use Cosmos DB's official .NET client can be found at https:/ ​/
docs.​microsoft. ​com/ ​en- ​us/ ​azure/ ​cosmos- ​db/​sql- ​api- ​dotnetcore- ​get-
started. A good introduction to the
MvcControlsToolkit.Business.DocumentDB NuGet package we mentioned
in this chapter is the Fast Azure Cosmos DB Development with the DocumentDB
Package article contained in Issue 34 of DNCMagazine. This can be downloaded
from http:/ ​/ ​www. ​dotnetcurry. ​net/​s/ ​dnc-​mag- ​34th- ​single.

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-elastic-scale-introduction
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-elastic-scale-introduction
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-elastic-scale-introduction
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-elastic-scale-introduction
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-elastic-scale-introduction
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-elastic-scale-introduction
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-elastic-scale-introduction
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-elastic-scale-introduction
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-elastic-scale-introduction
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-elastic-scale-introduction
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-elastic-scale-introduction
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-elastic-scale-introduction
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-elastic-scale-introduction
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-elastic-scale-introduction
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-elastic-scale-introduction
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-elastic-scale-introduction
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-elastic-scale-introduction
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-elastic-scale-introduction
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-elastic-scale-introduction
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-elastic-scale-introduction
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-elastic-scale-introduction
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-elastic-scale-introduction
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-elastic-scale-introduction
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-elastic-scale-introduction
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-elastic-scale-introduction
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-elastic-scale-introduction
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-elastic-scale-introduction
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-elastic-scale-introduction
https://docs.microsoft.com/en-us/azure/cosmos-db/
https://docs.microsoft.com/en-us/azure/cosmos-db/
https://docs.microsoft.com/en-us/azure/cosmos-db/
https://docs.microsoft.com/en-us/azure/cosmos-db/
https://docs.microsoft.com/en-us/azure/cosmos-db/
https://docs.microsoft.com/en-us/azure/cosmos-db/
https://docs.microsoft.com/en-us/azure/cosmos-db/
https://docs.microsoft.com/en-us/azure/cosmos-db/
https://docs.microsoft.com/en-us/azure/cosmos-db/
https://docs.microsoft.com/en-us/azure/cosmos-db/
https://docs.microsoft.com/en-us/azure/cosmos-db/
https://docs.microsoft.com/en-us/azure/cosmos-db/
https://docs.microsoft.com/en-us/azure/cosmos-db/
https://docs.microsoft.com/en-us/azure/cosmos-db/
https://docs.microsoft.com/en-us/azure/cosmos-db/
https://docs.microsoft.com/en-us/azure/cosmos-db/
https://docs.microsoft.com/en-us/azure/cosmos-db/
https://docs.microsoft.com/en-us/azure/cosmos-db/
https://docs.microsoft.com/en-us/azure/cosmos-db/
http://tinkerpop.apache.org/docs/current/reference/#graph-traversal-steps
http://tinkerpop.apache.org/docs/current/reference/#graph-traversal-steps
http://tinkerpop.apache.org/docs/current/reference/#graph-traversal-steps
http://tinkerpop.apache.org/docs/current/reference/#graph-traversal-steps
http://tinkerpop.apache.org/docs/current/reference/#graph-traversal-steps
http://tinkerpop.apache.org/docs/current/reference/#graph-traversal-steps
http://tinkerpop.apache.org/docs/current/reference/#graph-traversal-steps
http://tinkerpop.apache.org/docs/current/reference/#graph-traversal-steps
http://tinkerpop.apache.org/docs/current/reference/#graph-traversal-steps
http://tinkerpop.apache.org/docs/current/reference/#graph-traversal-steps
http://tinkerpop.apache.org/docs/current/reference/#graph-traversal-steps
http://tinkerpop.apache.org/docs/current/reference/#graph-traversal-steps
http://tinkerpop.apache.org/docs/current/reference/#graph-traversal-steps
http://tinkerpop.apache.org/docs/current/reference/#graph-traversal-steps
http://tinkerpop.apache.org/docs/current/reference/#graph-traversal-steps
http://tinkerpop.apache.org/docs/current/reference/#graph-traversal-steps
http://tinkerpop.apache.org/docs/current/reference/#graph-traversal-steps
http://tinkerpop.apache.org/docs/current/reference/#graph-traversal-steps
http://tinkerpop.apache.org/docs/current/reference/#graph-traversal-steps
http://tinkerpop.apache.org/docs/current/reference/#graph-traversal-steps
https://docs.microsoft.com/en-us/azure/cosmos-db/graph-introduction
https://docs.microsoft.com/en-us/azure/cosmos-db/graph-introduction
https://docs.microsoft.com/en-us/azure/cosmos-db/graph-introduction
https://docs.microsoft.com/en-us/azure/cosmos-db/graph-introduction
https://docs.microsoft.com/en-us/azure/cosmos-db/graph-introduction
https://docs.microsoft.com/en-us/azure/cosmos-db/graph-introduction
https://docs.microsoft.com/en-us/azure/cosmos-db/graph-introduction
https://docs.microsoft.com/en-us/azure/cosmos-db/graph-introduction
https://docs.microsoft.com/en-us/azure/cosmos-db/graph-introduction
https://docs.microsoft.com/en-us/azure/cosmos-db/graph-introduction
https://docs.microsoft.com/en-us/azure/cosmos-db/graph-introduction
https://docs.microsoft.com/en-us/azure/cosmos-db/graph-introduction
https://docs.microsoft.com/en-us/azure/cosmos-db/graph-introduction
https://docs.microsoft.com/en-us/azure/cosmos-db/graph-introduction
https://docs.microsoft.com/en-us/azure/cosmos-db/graph-introduction
https://docs.microsoft.com/en-us/azure/cosmos-db/graph-introduction
https://docs.microsoft.com/en-us/azure/cosmos-db/graph-introduction
https://docs.microsoft.com/en-us/azure/cosmos-db/graph-introduction
https://docs.microsoft.com/en-us/azure/cosmos-db/graph-introduction
https://docs.microsoft.com/en-us/azure/cosmos-db/graph-introduction
https://docs.microsoft.com/en-us/azure/cosmos-db/graph-introduction
https://docs.microsoft.com/en-us/azure/cosmos-db/graph-introduction
https://docs.microsoft.com/en-us/azure/cosmos-db/graph-introduction
https://docs.microsoft.com/en-us/azure/cosmos-db/sql-api-dotnetcore-get-started
https://docs.microsoft.com/en-us/azure/cosmos-db/sql-api-dotnetcore-get-started
https://docs.microsoft.com/en-us/azure/cosmos-db/sql-api-dotnetcore-get-started
https://docs.microsoft.com/en-us/azure/cosmos-db/sql-api-dotnetcore-get-started
https://docs.microsoft.com/en-us/azure/cosmos-db/sql-api-dotnetcore-get-started
https://docs.microsoft.com/en-us/azure/cosmos-db/sql-api-dotnetcore-get-started
https://docs.microsoft.com/en-us/azure/cosmos-db/sql-api-dotnetcore-get-started
https://docs.microsoft.com/en-us/azure/cosmos-db/sql-api-dotnetcore-get-started
https://docs.microsoft.com/en-us/azure/cosmos-db/sql-api-dotnetcore-get-started
https://docs.microsoft.com/en-us/azure/cosmos-db/sql-api-dotnetcore-get-started
https://docs.microsoft.com/en-us/azure/cosmos-db/sql-api-dotnetcore-get-started
https://docs.microsoft.com/en-us/azure/cosmos-db/sql-api-dotnetcore-get-started
https://docs.microsoft.com/en-us/azure/cosmos-db/sql-api-dotnetcore-get-started
https://docs.microsoft.com/en-us/azure/cosmos-db/sql-api-dotnetcore-get-started
https://docs.microsoft.com/en-us/azure/cosmos-db/sql-api-dotnetcore-get-started
https://docs.microsoft.com/en-us/azure/cosmos-db/sql-api-dotnetcore-get-started
https://docs.microsoft.com/en-us/azure/cosmos-db/sql-api-dotnetcore-get-started
https://docs.microsoft.com/en-us/azure/cosmos-db/sql-api-dotnetcore-get-started
https://docs.microsoft.com/en-us/azure/cosmos-db/sql-api-dotnetcore-get-started
https://docs.microsoft.com/en-us/azure/cosmos-db/sql-api-dotnetcore-get-started
https://docs.microsoft.com/en-us/azure/cosmos-db/sql-api-dotnetcore-get-started
https://docs.microsoft.com/en-us/azure/cosmos-db/sql-api-dotnetcore-get-started
https://docs.microsoft.com/en-us/azure/cosmos-db/sql-api-dotnetcore-get-started
https://docs.microsoft.com/en-us/azure/cosmos-db/sql-api-dotnetcore-get-started
https://docs.microsoft.com/en-us/azure/cosmos-db/sql-api-dotnetcore-get-started
https://docs.microsoft.com/en-us/azure/cosmos-db/sql-api-dotnetcore-get-started
https://docs.microsoft.com/en-us/azure/cosmos-db/sql-api-dotnetcore-get-started
http://www.dotnetcurry.net/s/dnc-mag-34th-single
http://www.dotnetcurry.net/s/dnc-mag-34th-single
http://www.dotnetcurry.net/s/dnc-mag-34th-single
http://www.dotnetcurry.net/s/dnc-mag-34th-single
http://www.dotnetcurry.net/s/dnc-mag-34th-single
http://www.dotnetcurry.net/s/dnc-mag-34th-single
http://www.dotnetcurry.net/s/dnc-mag-34th-single
http://www.dotnetcurry.net/s/dnc-mag-34th-single
http://www.dotnetcurry.net/s/dnc-mag-34th-single
http://www.dotnetcurry.net/s/dnc-mag-34th-single
http://www.dotnetcurry.net/s/dnc-mag-34th-single
http://www.dotnetcurry.net/s/dnc-mag-34th-single
http://www.dotnetcurry.net/s/dnc-mag-34th-single
http://www.dotnetcurry.net/s/dnc-mag-34th-single
http://www.dotnetcurry.net/s/dnc-mag-34th-single
http://www.dotnetcurry.net/s/dnc-mag-34th-single
http://www.dotnetcurry.net/s/dnc-mag-34th-single
http://www.dotnetcurry.net/s/dnc-mag-34th-single
http://www.dotnetcurry.net/s/dnc-mag-34th-single

8
Working with Azure Functions

As we mentioned in Chapter 4, Deciding on the Best Cloud-Based Solution, the serverless
architecture is one of the newest ways to provide flexible software solutions. To do so,
Microsoft Azure provides Azure Functions, an event-driven, serverless, and scalable
technology that accelerates your project development. The main goal of this chapter is to
inform you of Azure Functions and the best practices you can implement while using it.

In this chapter, we will cover the following topics:

Understanding the Azure Functions App
Programming Azure Functions using C#
Maintaining Azure Functions
Use case – implementing Azure Functions to send emails

By the end of this chapter, you will understand how to use Azure Functions in C#.

Technical requirements
This chapter requires that you have the following:

Visual Studio 2017 or 2019 free Community Edition or better with all the
database tools installed.
A free Azure account. The Creating an Azure account section of Chapter 1,
Understanding the Importance of Software Architecture, explains how to create one.

You can find the sample code for this chapter at https:/ ​/​github. ​com/ ​PacktPublishing/
Hands-​On-​Software- ​Architecture- ​with- ​CSharp- ​8/​tree/ ​master/ ​ch08.

https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch08
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch08
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch08
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch08
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch08
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch08
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch08
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch08
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch08
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch08
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch08
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch08
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch08
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch08
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch08
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch08
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch08
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch08
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch08
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch08
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch08
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch08
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch08
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch08
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch08
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch08
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch08
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch08

Working with Azure Functions Chapter 8

[226]

Understanding the Azure Functions App
The Azure Functions App is an Azure PaaS where you can build pieces of code (functions)
and connect them to your application and use triggers to start them. The concept is quite
simple – you build a function in the language you prefer and decide on the trigger that will
start it. You can write as many functions as you want in your system. There are cases where
the system is written entirely with functions.

The steps for creating the necessary environment are as simple as the ones we need to
follow in order to create the function itself. The following screenshot shows the parameters
that you have to decide on when you create the environment. After you select Create a
Resource in Azure and filter by Function App, you will see the following screen:

Working with Azure Functions Chapter 8

[227]

There are a couple of key points that you should consider while creating the environment.
The first one is the Hosting Plan, which is where you will run your functions. There are two
options for the Hosting Plan: Consumption Plan and App Service Plan. Let's talk about
these now.

Consumption Plan
If you choose a Consumption Plan, your functions will only waste resources when they are
executed. This means that you will only be charged while your functions are running.
Scalability and memory resources will be automatically managed by Azure.

Something we need to take note of while writing functions in this plan is the timeout. By
default, after 5 minutes, the function will time out. You can change the timeout value using
the functionTimeout parameter. The maximum value is 10 minutes.

When you choose a Consumption Plan, the way that you will be charged will depend on
what you're executing, their execution time, and their memory usage. More information on
this can be found at https:/ ​/​azure. ​microsoft. ​com/​en- ​us/ ​pricing/ ​details/ ​functions/ ​.

Note that this can be a good option when you don't have App Services in your environment
and you are running functions with low periodicity. On the other hand, if you need
continuous processing, you may want to consider the App Service Plan.

App Service Plan
App Service Plan is one of the options you can choose when you want to create an Azure
Functions App. The following is a list of reasons (suggested by Microsoft) why you should
use the App Service Plan instead of the Consumption Plan to maintain your functions:

You can use underutilized existing App Service instances.
Function apps run continuously or nearly continuously.
You need more CPU or memory options than what's provided with the
Consumption Plan.
Your code needs to run longer than 10 minutes.
You require features such as VNET/VPN connectivity.
You want to run your function app on Linux or on a custom image.

https://azure.microsoft.com/en-us/pricing/details/functions/
https://azure.microsoft.com/en-us/pricing/details/functions/
https://azure.microsoft.com/en-us/pricing/details/functions/
https://azure.microsoft.com/en-us/pricing/details/functions/
https://azure.microsoft.com/en-us/pricing/details/functions/
https://azure.microsoft.com/en-us/pricing/details/functions/
https://azure.microsoft.com/en-us/pricing/details/functions/
https://azure.microsoft.com/en-us/pricing/details/functions/
https://azure.microsoft.com/en-us/pricing/details/functions/
https://azure.microsoft.com/en-us/pricing/details/functions/
https://azure.microsoft.com/en-us/pricing/details/functions/
https://azure.microsoft.com/en-us/pricing/details/functions/
https://azure.microsoft.com/en-us/pricing/details/functions/
https://azure.microsoft.com/en-us/pricing/details/functions/
https://azure.microsoft.com/en-us/pricing/details/functions/
https://azure.microsoft.com/en-us/pricing/details/functions/
https://azure.microsoft.com/en-us/pricing/details/functions/
https://azure.microsoft.com/en-us/pricing/details/functions/
https://azure.microsoft.com/en-us/pricing/details/functions/
https://azure.microsoft.com/en-us/pricing/details/functions/

Working with Azure Functions Chapter 8

[228]

In the scenario of App Service Plan, the functionTimeout value varies according to the
Azure Function Runtime version. However, the value is at least 30 minutes.

Programming Azure Functions using C#
In this section, you will learn how to create Azure Functions. It is worth mentioning that
there are several ways to create them using C#. The first one is by creating the functions
and developing them in the Azure Portal itself. To do this, follow these steps:

From the Home page, go to All resources, search for the wwtravelclub app,1.
and click it. You will see the following screen:

Clicking on the In-portal creation option. Here, you will be prompted to decide2.
on the kind of trigger that you want to use to start the execution. The most used
ones are HTTP Request and Timer Trigger, as shown in the following
screenshot:

Working with Azure Functions Chapter 8

[229]

When you decide on the trigger you want to use, you have to name it.

Depending on the trigger you decide on, you will have to install some extensions3.
and set up other parameters. For instance, HTTP trigger requires that you set up
an authorization level. Three options are available, that is, Function,
Anonymous, and Admin, out of which we have selected the Function option as
shown in the following screenshot:

Working with Azure Functions Chapter 8

[230]

It is worth mentioning that this book doesn't cover all the options that are
available when it comes to building functions. As a software architect, you
should understand that Azure provides a good service for serverless
architectures in terms of functions. This can be useful in several situations.
This was discussed in more detail in Chapter 4, Deciding on the Best Cloud-
Based Solution.

The result of this is as follows. Notice that Azure provides an editor that allows5.
us to run the code, check logs, and test the function that we've created. This is a
good interface for testing and coding basic functions:

However, if you want to create more sophisticated functions, you may need a6.
more sophisticated environment so that you can code and debug them more
efficaciously. This is where the Visual Studio Azure Functions Project can help
you.

In Visual Studio, you are able to create a project dedicated to Azure
Functions by going to the New Project | Cloud menu.

Working with Azure Functions Chapter 8

[231]

Once you've submitted your project, Visual Studio will ask you for the type of 7.
trigger you're using and for the Azure version that your function will run on:

At the time of writing, there are two versions of Azure Functions:

In the first version, you can create functions that run on .NET Framework.
In the second version, you can create functions that run on .NET Core.

As a software architect, you always have to keep code reusability in mind.
In this case, you should pay attention to which version of Azure Functions
Project you will decide to build your functions in.

By default, the code that's generated is similar to the code that's generated when you create
Azure Functions in Azure Portal. The publish method follows the same steps as the publish
procedure for web apps that we described in Chapter 1, Understanding the Importance of
Software Architecture.

Working with Azure Functions Chapter 8

[232]

Listing Azure Functions templates
There are several templates in the Azure Portal that you can use to create Azure Functions.
The number of templates that you can choose from is updated continuously. The following
are just a few of them:

Blob Storage: You may want to process something for a file as soon as this file is
uploaded to your blob storage. This can be a good use case for Azure functions.
Cosmos DB: You may want to synchronize data that arrives in a Cosmos DB
database with a processing method. Cosmos DB was discussed in detail in
Chapter 7, How to Choose Your Data Storage in the Cloud.
Event Grid: This is a good way to manage Azure events. Functions can be
triggered so that they manage each event.
Event Hubs: These can be used with Azure Functions to manage data that
arrives for each connected device.
HTTP: This trigger is really useful for building serverless APIs and web apps
events.
Microsoft Graph Events: The Graph API allows you to deliver functionality
associated with Office 365. For example, using this trigger, you can connect a
calendar event to a function.
Queue storage: You can handle queue processing using a function as a service
solution.
Service Bus: This is another messaging service that can be a trigger for functions.
Azure Service Bus will be covered in more detail in Chapter 9, Design Patterns
and .NET Core Implementation.
Timer: This is commonly used with functions and is where you specify Time
Triggers so that you can continuously process data from your system.
WebHooks: WebHooks is a technology that allows your application to avoid
pooling data from an API. You can connect them to a function to learn how the
event you've hooked is being processed.

Working with Azure Functions Chapter 8

[233]

Maintaining Azure Functions
Once you've created and programmed your function, you need to monitor and maintain it.
To do this, you can use a variety of tools – all of which you can find in Azure Portal. These
tools will help you solve problems due to the amount of information you will be able to
collect with them.

The first option when it comes to monitoring your function is using the Monitor menu
inside of the Azure Functions interface in Azure Portal. There, you will be able to check all
of your function executions, including successful results and failures:

It will take about 5 minutes for any results to be available. The date shown in the grid is in
UTC time.

Working with Azure Functions Chapter 8

[234]

The same interface allows you to connect to Application Insights. This will take you to a
world of almost indefinite options that you can use to analyze your function data.
Application Insights is one of the best Application Performance Management (APM)
systems available nowadays:

Beyond the query interface, you can also check all the performance issues of your function
using the Insights interface in Azure Portal. There, you can analyze and filter all the
requests that have been received by your solution and check their performance and
dependencies. You can also trigger alerts when something abnormal happens to one of
your endpoints:

Working with Azure Functions Chapter 8

[235]

As a software architect, you will find a really good daily helper for your projects in this
tool. It is worth mentioning that Application Insights works on several other Azure
Services, such as web apps and virtual machines. This means you can monitor the health of
your system and maintain it using the wonderful features provided by Azure.

Use case – implementing Azure Functions to
send emails
Here, we will use a subset of the Azure components we described previously. The use case
from WWTravelClub proposes a worldwide implementation of the service, and there is a
chance that this service will need different architecture designs to face all the performance
key points that we described in Chapter 1, Understanding the Importance of Software
Architecture.

Working with Azure Functions Chapter 8

[236]

If you go back to the user stories that were described in Chapter 1, Understanding the
Importance of Software Architecture, you will find that many needs are related to
communication. Because of this, it is really common to have some alerts be provided by
emails in the solution. This chapter's use case will focus on how to send emails. The
architecture will be totally serverless.

The following diagram shows the basic structure of the architecture. To give users a great
experience, all the emails that are sent by the application will be queued asynchronously,
thus avoiding high delays in the system's responses:

Note that there are no servers that manage Azure Functions for inserting and Azure
Functions for getting messages from the Queue Storage. This is exactly what we call
serverless. It is worth mentioning that this architecture is not restricted to only sending
emails – it can also be used to process any HTTP POST request.

Now, we will learn how to set up security in the API so that only authorized applications
can use the given solution.

Working with Azure Functions Chapter 8

[237]

First Step – creating Azure Queue Storage
It's quite simple to create storage in Azure Portal. Let's learn how:

First, you will need to create a storage account and set up its name, security, and1.
network, as shown in the following screenshot:

Working with Azure Functions Chapter 8

[238]

Once you have the storage account in place, you will be able to set up a queue.2.
You just need to provide the queue's name:

The created queue will give you an overview of Azure Portal. There, you will3.
find your queue's URL and use the Storage Explorer:

Working with Azure Functions Chapter 8

[239]

Note that you will also be able to connect to this storage using Microsoft
Azure Storage Explorer (https:/ ​/ ​azure. ​microsoft. ​com/ ​en-​us/
features/ ​storage- ​explorer/ ​):

Now, you can start your functional programming to inform the queue that an4.
email is waiting to be sent. Here, we need to use an HTTP trigger. Note that the
function is a static class that runs asynchronously. The following code is
gathering the request data coming from the HTTP trigger and is inserting the
data into a queue that will be treated later:

public static class SendEmail
{
 [FunctionName(nameof(SendEmail))]
 public static async Task<HttpResponseMessage> RunAsync(
 [HttpTrigger(AuthorizationLevel.Function, "post")]
 HttpRequestMessage req, ILogger log)
 {
 var requestData = await req.Content.ReadAsStringAsync();
 var YOUR_CONNECTION_STRING =
 "YOUR_AZURE_STORAGE_ACCOUNT_CONNECTION_STRING_HERE";
 var storageAccount =
 CloudStorageAccount.Parse(YOUR_CONNECTION_STRING);
 var queueClient = storageAccount.CreateCloudQueueClient();
 var messageQueue = queueClient.GetQueueReference("email");
 var message = new CloudQueueMessage(requestData);
 await messageQueue.AddMessageAsync(message);
 log.LogInformation("HTTP trigger from SendEmail function
 processed a request.");

https://azure.microsoft.com/en-us/features/storage-explorer/
https://azure.microsoft.com/en-us/features/storage-explorer/
https://azure.microsoft.com/en-us/features/storage-explorer/
https://azure.microsoft.com/en-us/features/storage-explorer/
https://azure.microsoft.com/en-us/features/storage-explorer/
https://azure.microsoft.com/en-us/features/storage-explorer/
https://azure.microsoft.com/en-us/features/storage-explorer/
https://azure.microsoft.com/en-us/features/storage-explorer/
https://azure.microsoft.com/en-us/features/storage-explorer/
https://azure.microsoft.com/en-us/features/storage-explorer/
https://azure.microsoft.com/en-us/features/storage-explorer/
https://azure.microsoft.com/en-us/features/storage-explorer/
https://azure.microsoft.com/en-us/features/storage-explorer/
https://azure.microsoft.com/en-us/features/storage-explorer/
https://azure.microsoft.com/en-us/features/storage-explorer/
https://azure.microsoft.com/en-us/features/storage-explorer/
https://azure.microsoft.com/en-us/features/storage-explorer/
https://azure.microsoft.com/en-us/features/storage-explorer/
https://azure.microsoft.com/en-us/features/storage-explorer/

Working with Azure Functions Chapter 8

[240]

 return req.CreateResponse(HttpStatusCode.OK, new { success
 = true }, JsonMediaTypeFormatter.DefaultMediaType);
 }
}

You can use a tool such as Postman to test your function by running the Azure5.
Functions Emulator:

The result will appear in Microsoft Azure Storage Explorer and Azure Portal. In6.
Azure Portal, you can manage each message and dequeue each of them or even
clear the queue storage:

Working with Azure Functions Chapter 8

[241]

After this, you can create a second function. This one will be triggered by data7.
entering your queue. It is worth mentioning that, for Azure Functions v2, you
will need to add the Microsoft.Azure.WebJobs.Extensions.Storage
library as a NuGet reference:

Working with Azure Functions Chapter 8

[242]

Once you've set the connection string inside local.settings.json, you will be8.
able to run both functions and test them with Postman. The difference is that,
with the second function running, if you set a breakpoint at the start of it, you
will check whether the message has been sent:

From this point, the way to send emails will depend on the mail options you9.
have. You may decide to use a proxy or may connect directly to your email
server.

There are several advantages to creating an email service this way:

Once your service has been coded and tested, you can use it to send emails from
any of your applications. This means that your code can always be reused.
Apps that use this service will not be stopped from sending emails due to the
asynchronous advantages of posting in an HTTP service.
You don't need to pool the queue to check whether are data is ready for
processing.

Working with Azure Functions Chapter 8

[243]

Finally, the queue process runs concurrently, which delivers a better experience in most
cases. It is possible to turn it off by setting some properties in host.json. All of the options
for this can be found in the Further reading section, at the end of this chapter.

Summary
In this chapter, we looked at some of the advantages of developing functionality with
Serverless Azure Functions. You can use it as a guideline for checking the different types of
triggers that are available in Azure Functions and for planning how to monitor them. We
also saw how to program and maintain Azure functions. Finally, we looked at an example
of an architecture where you connect multiple functions to avoid pooling data and to
enable concurrent processing.

In the next chapter, we will analyze the concept of design patterns, learn why they are so
useful, and learn about some of their common patterns.

Questions
What are Azure Functions?1.
What are the programming options for Azure Functions?2.
What are the plans that can be used with Azure Functions?3.
How can you deploy Azure Functions with Visual Studio?4.
What triggers can you use to develop Azure Functions?5.
What is the difference between Azure Functions v1 and v2?6.
How does Application Insights help us maintain and monitor Azure Functions?7.

Working with Azure Functions Chapter 8

[244]

Further reading
If you want to learn more when it comes to creating Azure Functions, check out the
following links:

Azure Functions scale and hosting: https:/ ​/​docs. ​microsoft. ​com/ ​en- ​us/​azure/
azure-​functions/ ​functions- ​scale

Azure Functions - Essentials [Video] by Praveen Kumar Sreeram: https:/ ​/​www.
packtpub. ​com/ ​virtualization- ​and- ​cloud/ ​azure- ​functions- ​essentials- ​video

Introducing Azure Functions 2.0: https:/ ​/​azure. ​microsoft. ​com/ ​en- ​us/​blog/
introducing- ​azure- ​functions- ​2-​0/ ​

An overview of Azure Event Grid: https:/ ​/​azure. ​microsoft. ​com/ ​en-​us/
resources/ ​videos/ ​an- ​overview- ​of- ​azure- ​event- ​grid/ ​

Timer trigger for Azure Functions: https:/ ​/ ​docs. ​microsoft. ​com/​en- ​us/ ​azure/
azure-​functions/ ​functions- ​bindings- ​timer

Application insights section from the book, Azure for Architects by Ritesh Modi:
https:/​/ ​subscription. ​packtpub. ​com/ ​book/ ​virtualization_ ​and_ ​cloud/
9781788397391/ ​12/ ​ch12lvl1sec95/ ​application- ​insights

Monitoring Azure Functions using Application Insights section from the
book, Azure Serverless Computing Cookbook by Praveen Kumar Sreeram: https:/ ​/
subscription. ​packtpub. ​com/ ​book/​virtualization_ ​and_ ​cloud/ ​9781788390828/
6/​06lvl1sec34/ ​monitoring- ​azure- ​functions- ​using- ​application- ​insights

Get started with Azure Queue storage using .NET: https:/ ​/​docs. ​microsoft.
com/​en- ​us/ ​azure/ ​storage/ ​queues/ ​storage- ​dotnet- ​how- ​to- ​use- ​queues

Azure Functions triggers and bindings concepts: https:/ ​/​docs. ​microsoft. ​com/
en-​us/ ​azure/ ​azure- ​functions/ ​functions- ​triggers- ​bindings

Azure Queue storage bindings for Azure Functions: https:/ ​/​docs. ​microsoft.
com/​en- ​us/ ​azure/ ​azure- ​functions/ ​functions- ​bindings- ​storage- ​queue

https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://www.packtpub.com/virtualization-and-cloud/azure-functions-essentials-video
https://www.packtpub.com/virtualization-and-cloud/azure-functions-essentials-video
https://www.packtpub.com/virtualization-and-cloud/azure-functions-essentials-video
https://www.packtpub.com/virtualization-and-cloud/azure-functions-essentials-video
https://www.packtpub.com/virtualization-and-cloud/azure-functions-essentials-video
https://www.packtpub.com/virtualization-and-cloud/azure-functions-essentials-video
https://www.packtpub.com/virtualization-and-cloud/azure-functions-essentials-video
https://www.packtpub.com/virtualization-and-cloud/azure-functions-essentials-video
https://www.packtpub.com/virtualization-and-cloud/azure-functions-essentials-video
https://www.packtpub.com/virtualization-and-cloud/azure-functions-essentials-video
https://www.packtpub.com/virtualization-and-cloud/azure-functions-essentials-video
https://www.packtpub.com/virtualization-and-cloud/azure-functions-essentials-video
https://www.packtpub.com/virtualization-and-cloud/azure-functions-essentials-video
https://www.packtpub.com/virtualization-and-cloud/azure-functions-essentials-video
https://www.packtpub.com/virtualization-and-cloud/azure-functions-essentials-video
https://www.packtpub.com/virtualization-and-cloud/azure-functions-essentials-video
https://www.packtpub.com/virtualization-and-cloud/azure-functions-essentials-video
https://www.packtpub.com/virtualization-and-cloud/azure-functions-essentials-video
https://www.packtpub.com/virtualization-and-cloud/azure-functions-essentials-video
https://www.packtpub.com/virtualization-and-cloud/azure-functions-essentials-video
https://www.packtpub.com/virtualization-and-cloud/azure-functions-essentials-video
https://www.packtpub.com/virtualization-and-cloud/azure-functions-essentials-video
https://azure.microsoft.com/en-us/blog/introducing-azure-functions-2-0/
https://azure.microsoft.com/en-us/blog/introducing-azure-functions-2-0/
https://azure.microsoft.com/en-us/blog/introducing-azure-functions-2-0/
https://azure.microsoft.com/en-us/blog/introducing-azure-functions-2-0/
https://azure.microsoft.com/en-us/blog/introducing-azure-functions-2-0/
https://azure.microsoft.com/en-us/blog/introducing-azure-functions-2-0/
https://azure.microsoft.com/en-us/blog/introducing-azure-functions-2-0/
https://azure.microsoft.com/en-us/blog/introducing-azure-functions-2-0/
https://azure.microsoft.com/en-us/blog/introducing-azure-functions-2-0/
https://azure.microsoft.com/en-us/blog/introducing-azure-functions-2-0/
https://azure.microsoft.com/en-us/blog/introducing-azure-functions-2-0/
https://azure.microsoft.com/en-us/blog/introducing-azure-functions-2-0/
https://azure.microsoft.com/en-us/blog/introducing-azure-functions-2-0/
https://azure.microsoft.com/en-us/blog/introducing-azure-functions-2-0/
https://azure.microsoft.com/en-us/blog/introducing-azure-functions-2-0/
https://azure.microsoft.com/en-us/blog/introducing-azure-functions-2-0/
https://azure.microsoft.com/en-us/blog/introducing-azure-functions-2-0/
https://azure.microsoft.com/en-us/blog/introducing-azure-functions-2-0/
https://azure.microsoft.com/en-us/blog/introducing-azure-functions-2-0/
https://azure.microsoft.com/en-us/blog/introducing-azure-functions-2-0/
https://azure.microsoft.com/en-us/blog/introducing-azure-functions-2-0/
https://azure.microsoft.com/en-us/blog/introducing-azure-functions-2-0/
https://azure.microsoft.com/en-us/blog/introducing-azure-functions-2-0/
https://azure.microsoft.com/en-us/blog/introducing-azure-functions-2-0/
https://azure.microsoft.com/en-us/blog/introducing-azure-functions-2-0/
https://azure.microsoft.com/en-us/resources/videos/an-overview-of-azure-event-grid/
https://azure.microsoft.com/en-us/resources/videos/an-overview-of-azure-event-grid/
https://azure.microsoft.com/en-us/resources/videos/an-overview-of-azure-event-grid/
https://azure.microsoft.com/en-us/resources/videos/an-overview-of-azure-event-grid/
https://azure.microsoft.com/en-us/resources/videos/an-overview-of-azure-event-grid/
https://azure.microsoft.com/en-us/resources/videos/an-overview-of-azure-event-grid/
https://azure.microsoft.com/en-us/resources/videos/an-overview-of-azure-event-grid/
https://azure.microsoft.com/en-us/resources/videos/an-overview-of-azure-event-grid/
https://azure.microsoft.com/en-us/resources/videos/an-overview-of-azure-event-grid/
https://azure.microsoft.com/en-us/resources/videos/an-overview-of-azure-event-grid/
https://azure.microsoft.com/en-us/resources/videos/an-overview-of-azure-event-grid/
https://azure.microsoft.com/en-us/resources/videos/an-overview-of-azure-event-grid/
https://azure.microsoft.com/en-us/resources/videos/an-overview-of-azure-event-grid/
https://azure.microsoft.com/en-us/resources/videos/an-overview-of-azure-event-grid/
https://azure.microsoft.com/en-us/resources/videos/an-overview-of-azure-event-grid/
https://azure.microsoft.com/en-us/resources/videos/an-overview-of-azure-event-grid/
https://azure.microsoft.com/en-us/resources/videos/an-overview-of-azure-event-grid/
https://azure.microsoft.com/en-us/resources/videos/an-overview-of-azure-event-grid/
https://azure.microsoft.com/en-us/resources/videos/an-overview-of-azure-event-grid/
https://azure.microsoft.com/en-us/resources/videos/an-overview-of-azure-event-grid/
https://azure.microsoft.com/en-us/resources/videos/an-overview-of-azure-event-grid/
https://azure.microsoft.com/en-us/resources/videos/an-overview-of-azure-event-grid/
https://azure.microsoft.com/en-us/resources/videos/an-overview-of-azure-event-grid/
https://azure.microsoft.com/en-us/resources/videos/an-overview-of-azure-event-grid/
https://azure.microsoft.com/en-us/resources/videos/an-overview-of-azure-event-grid/
https://azure.microsoft.com/en-us/resources/videos/an-overview-of-azure-event-grid/
https://azure.microsoft.com/en-us/resources/videos/an-overview-of-azure-event-grid/
https://azure.microsoft.com/en-us/resources/videos/an-overview-of-azure-event-grid/
https://azure.microsoft.com/en-us/resources/videos/an-overview-of-azure-event-grid/
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-timer
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-timer
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-timer
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-timer
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-timer
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-timer
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-timer
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-timer
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-timer
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-timer
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-timer
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-timer
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-timer
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-timer
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-timer
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-timer
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-timer
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-timer
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-timer
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-timer
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-timer
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-timer
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-timer
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-timer
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788397391/12/ch12lvl1sec95/application-insights
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788397391/12/ch12lvl1sec95/application-insights
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788397391/12/ch12lvl1sec95/application-insights
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788397391/12/ch12lvl1sec95/application-insights
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788397391/12/ch12lvl1sec95/application-insights
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788397391/12/ch12lvl1sec95/application-insights
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788397391/12/ch12lvl1sec95/application-insights
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788397391/12/ch12lvl1sec95/application-insights
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788397391/12/ch12lvl1sec95/application-insights
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788397391/12/ch12lvl1sec95/application-insights
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788397391/12/ch12lvl1sec95/application-insights
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788397391/12/ch12lvl1sec95/application-insights
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788397391/12/ch12lvl1sec95/application-insights
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788397391/12/ch12lvl1sec95/application-insights
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788397391/12/ch12lvl1sec95/application-insights
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788397391/12/ch12lvl1sec95/application-insights
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788397391/12/ch12lvl1sec95/application-insights
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788397391/12/ch12lvl1sec95/application-insights
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788397391/12/ch12lvl1sec95/application-insights
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788397391/12/ch12lvl1sec95/application-insights
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788397391/12/ch12lvl1sec95/application-insights
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788397391/12/ch12lvl1sec95/application-insights
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788397391/12/ch12lvl1sec95/application-insights
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788397391/12/ch12lvl1sec95/application-insights
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788397391/12/ch12lvl1sec95/application-insights
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788397391/12/ch12lvl1sec95/application-insights
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788390828/6/06lvl1sec34/monitoring-azure-functions-using-application-insights
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788390828/6/06lvl1sec34/monitoring-azure-functions-using-application-insights
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788390828/6/06lvl1sec34/monitoring-azure-functions-using-application-insights
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788390828/6/06lvl1sec34/monitoring-azure-functions-using-application-insights
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788390828/6/06lvl1sec34/monitoring-azure-functions-using-application-insights
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788390828/6/06lvl1sec34/monitoring-azure-functions-using-application-insights
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788390828/6/06lvl1sec34/monitoring-azure-functions-using-application-insights
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788390828/6/06lvl1sec34/monitoring-azure-functions-using-application-insights
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788390828/6/06lvl1sec34/monitoring-azure-functions-using-application-insights
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788390828/6/06lvl1sec34/monitoring-azure-functions-using-application-insights
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788390828/6/06lvl1sec34/monitoring-azure-functions-using-application-insights
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788390828/6/06lvl1sec34/monitoring-azure-functions-using-application-insights
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788390828/6/06lvl1sec34/monitoring-azure-functions-using-application-insights
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788390828/6/06lvl1sec34/monitoring-azure-functions-using-application-insights
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788390828/6/06lvl1sec34/monitoring-azure-functions-using-application-insights
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788390828/6/06lvl1sec34/monitoring-azure-functions-using-application-insights
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788390828/6/06lvl1sec34/monitoring-azure-functions-using-application-insights
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788390828/6/06lvl1sec34/monitoring-azure-functions-using-application-insights
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788390828/6/06lvl1sec34/monitoring-azure-functions-using-application-insights
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788390828/6/06lvl1sec34/monitoring-azure-functions-using-application-insights
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788390828/6/06lvl1sec34/monitoring-azure-functions-using-application-insights
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788390828/6/06lvl1sec34/monitoring-azure-functions-using-application-insights
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788390828/6/06lvl1sec34/monitoring-azure-functions-using-application-insights
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788390828/6/06lvl1sec34/monitoring-azure-functions-using-application-insights
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788390828/6/06lvl1sec34/monitoring-azure-functions-using-application-insights
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788390828/6/06lvl1sec34/monitoring-azure-functions-using-application-insights
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788390828/6/06lvl1sec34/monitoring-azure-functions-using-application-insights
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788390828/6/06lvl1sec34/monitoring-azure-functions-using-application-insights
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788390828/6/06lvl1sec34/monitoring-azure-functions-using-application-insights
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788390828/6/06lvl1sec34/monitoring-azure-functions-using-application-insights
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788390828/6/06lvl1sec34/monitoring-azure-functions-using-application-insights
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788390828/6/06lvl1sec34/monitoring-azure-functions-using-application-insights
https://subscription.packtpub.com/book/virtualization_and_cloud/9781788390828/6/06lvl1sec34/monitoring-azure-functions-using-application-insights
https://docs.microsoft.com/en-us/azure/storage/queues/storage-dotnet-how-to-use-queues
https://docs.microsoft.com/en-us/azure/storage/queues/storage-dotnet-how-to-use-queues
https://docs.microsoft.com/en-us/azure/storage/queues/storage-dotnet-how-to-use-queues
https://docs.microsoft.com/en-us/azure/storage/queues/storage-dotnet-how-to-use-queues
https://docs.microsoft.com/en-us/azure/storage/queues/storage-dotnet-how-to-use-queues
https://docs.microsoft.com/en-us/azure/storage/queues/storage-dotnet-how-to-use-queues
https://docs.microsoft.com/en-us/azure/storage/queues/storage-dotnet-how-to-use-queues
https://docs.microsoft.com/en-us/azure/storage/queues/storage-dotnet-how-to-use-queues
https://docs.microsoft.com/en-us/azure/storage/queues/storage-dotnet-how-to-use-queues
https://docs.microsoft.com/en-us/azure/storage/queues/storage-dotnet-how-to-use-queues
https://docs.microsoft.com/en-us/azure/storage/queues/storage-dotnet-how-to-use-queues
https://docs.microsoft.com/en-us/azure/storage/queues/storage-dotnet-how-to-use-queues
https://docs.microsoft.com/en-us/azure/storage/queues/storage-dotnet-how-to-use-queues
https://docs.microsoft.com/en-us/azure/storage/queues/storage-dotnet-how-to-use-queues
https://docs.microsoft.com/en-us/azure/storage/queues/storage-dotnet-how-to-use-queues
https://docs.microsoft.com/en-us/azure/storage/queues/storage-dotnet-how-to-use-queues
https://docs.microsoft.com/en-us/azure/storage/queues/storage-dotnet-how-to-use-queues
https://docs.microsoft.com/en-us/azure/storage/queues/storage-dotnet-how-to-use-queues
https://docs.microsoft.com/en-us/azure/storage/queues/storage-dotnet-how-to-use-queues
https://docs.microsoft.com/en-us/azure/storage/queues/storage-dotnet-how-to-use-queues
https://docs.microsoft.com/en-us/azure/storage/queues/storage-dotnet-how-to-use-queues
https://docs.microsoft.com/en-us/azure/storage/queues/storage-dotnet-how-to-use-queues
https://docs.microsoft.com/en-us/azure/storage/queues/storage-dotnet-how-to-use-queues
https://docs.microsoft.com/en-us/azure/storage/queues/storage-dotnet-how-to-use-queues
https://docs.microsoft.com/en-us/azure/storage/queues/storage-dotnet-how-to-use-queues
https://docs.microsoft.com/en-us/azure/storage/queues/storage-dotnet-how-to-use-queues
https://docs.microsoft.com/en-us/azure/storage/queues/storage-dotnet-how-to-use-queues
https://docs.microsoft.com/en-us/azure/storage/queues/storage-dotnet-how-to-use-queues
https://docs.microsoft.com/en-us/azure/storage/queues/storage-dotnet-how-to-use-queues
https://docs.microsoft.com/en-us/azure/storage/queues/storage-dotnet-how-to-use-queues
https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-storage-queue
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-storage-queue
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-storage-queue
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-storage-queue
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-storage-queue
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-storage-queue
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-storage-queue
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-storage-queue
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-storage-queue
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-storage-queue
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-storage-queue
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-storage-queue
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-storage-queue
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-storage-queue
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-storage-queue
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-storage-queue
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-storage-queue
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-storage-queue
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-storage-queue
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-storage-queue
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-storage-queue
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-storage-queue
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-storage-queue
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-storage-queue
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-storage-queue
https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-storage-queue

3
Section 3: Applying Design

Principles for Software
Delivered in the 21st Century

In this section, you will learn about the main patterns, best practices, and frameworks used
in modern enterprise architectures. All examples are on C# 8 running on .NET Core 3.0.

In Chapter 9, Design Patterns and .NET Core Implementation, you will learn about the .NET
Core implementation of well-known and general patterns and best practices, while Chapter
11, Implementing Code Reusability in C# 8, describes techniques and best practices that
enhance code reusability.

Chapter 10, Understanding the Different Domains in a Software Solution, describes the modern
domain-driven design software production methodology, which will enable you to get the
most out of cloud- and microservice-based architectures and tackle complex applications
that require several knowledge domains. There, you will learn both about analysis
techniques and architectures and tools involved in projects based on domain-driven design.

Chapter 12, Applying Service-Oriented Architectures with .NET Core, and Chapter
13, Presenting ASP.NET Core MVC, describe web architectures that form the backbone of
modern enterprise applications. Both chapters are based on ASP.NET Core 3.0, which is the
web framework that comes with .Net Core 3.0. Chapter 12, Applying Service-Oriented
Architectures with .NET Core, describes web architectures where the enterprise system can be
accessed by external client applications through endpoints exposed on the web or on a
private network. Chapter 12, Applying Service-Oriented Architectures with .NET Core, is
dedicated to ASP.NET Core MVC web applications, which don't need specific clients
because they use browsers as clients. More specifically, they interact with the user through
the HTML they send to a standard browser.

Section 3: Applying Design Principles for Software Delivered in the 21st
Century Chapter 3

[246]

This section includes the following chapters:

Chapter 9, Design Patterns and .NET Core Implementation
Chapter 10, Understanding the Different Domains in a Software Solution
Chapter 11, Implementing Code Reusability in C# 8
Chapter 12, Applying Service-Oriented Architectures with .NET Core
Chapter 13, Presenting ASP.NET Core MVC

9
Design Patterns and .NET Core

Implementation
Design patterns can be defined as ready to use architectural solutions for common
problems you encounter during software development. They are essential for
understanding the .NET Core architecture and useful for solving ordinary problems that
we face when designing any piece of software. In this chapter, we will look at the
implementation of some design patterns. It is worth mentioning that this book doesn't
explain all the known patterns we can use. The focus here is to explain the importance of
studying and applying them.

In this chapter, we will cover the following topics:

Understanding design patterns and their purpose
Understanding the available design patterns in .NET Core

By the end of this chapter, you will have learned about some of the use cases from
WWTravelClub that you can implement with design patterns.

Technical requirements
You will require the following to complete this chapter:

Visual Studio 2017 or 2019 free Community Edition or better with all the
database tools installed.
A free Azure account. The Creating an Azure account subsection of Chapter 1,
Understanding the Importance of Software Architecture, explains how to create one.

You can find the sample code for this chapter at https:/ ​/​github. ​com/ ​PacktPublishing/
Hands-​On-​Software- ​Architecture- ​with- ​CSharp- ​8/​tree/ ​master/ ​ch09.

https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch09
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch09
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch09
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch09
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch09
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch09
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch09
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch09
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch09
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch09
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch09
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch09
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch09
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch09
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch09
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch09
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch09
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch09
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch09
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch09
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch09
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch09
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch09
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch09
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch09
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch09
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch09
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch09

Design Patterns and .NET Core Implementation Chapter 9

[248]

Understanding design patterns and their
purpose
Being able to decide on the design of a system is challenging, and the responsibility
associated with this task is enormous. As a software architect, we must always keep in
mind that features such as great reusability, good performance, and good maintainability
are key. This is where design patterns help and accelerate the design process.

As we mentioned previously, design patterns are solutions that have already been
discussed and defined so that they can solve common software architectural problems. This
approach grew in popularity after the release of the book Design Patterns – Elements of
Reusable Object-Oriented Software, where the Gang of Four (GoF) divided these patterns into
three types:

Creational
Structural
Behavioral

A little bit later, Uncle Bob introduced the SOLID principles to the developers community,
giving us the opportunity to efficaciously organize functions and data structures of each
system into classes. SOLID principles indicate how these classes should be connected. It is
worth mentioning that, compared to the design patterns presented by GoF, SOLID
principles don't deliver code recipes. Instead, they give you the basic principles to follow
when you design your solutions.

As technologies and software problems change, more patterns are conceived. The advance
of cloud computing has brought a bunch of them, all of which can be found at https:/ ​/
docs.​microsoft.​com/ ​azure/ ​architecture/ ​patterns/ ​.

The reason why you should always consider them is quite simple – as a software architect,
you cannot spend time reinventing the wheel. However, there is another great reason for
using them: you will find many patterns implemented in .NET Core.

In the next few subsections, we will cover some of the most well-known patterns. However,
the idea of this chapter is to let you know that they exist and need to be studied so that you
can accelerate and simplify your project. Moreover, each pattern with be presented with a
C# code snippet so that you can easily implement them in your projects.

https://docs.microsoft.com/azure/architecture/patterns/
https://docs.microsoft.com/azure/architecture/patterns/
https://docs.microsoft.com/azure/architecture/patterns/
https://docs.microsoft.com/azure/architecture/patterns/
https://docs.microsoft.com/azure/architecture/patterns/
https://docs.microsoft.com/azure/architecture/patterns/
https://docs.microsoft.com/azure/architecture/patterns/
https://docs.microsoft.com/azure/architecture/patterns/
https://docs.microsoft.com/azure/architecture/patterns/
https://docs.microsoft.com/azure/architecture/patterns/
https://docs.microsoft.com/azure/architecture/patterns/
https://docs.microsoft.com/azure/architecture/patterns/
https://docs.microsoft.com/azure/architecture/patterns/
https://docs.microsoft.com/azure/architecture/patterns/
https://docs.microsoft.com/azure/architecture/patterns/

Design Patterns and .NET Core Implementation Chapter 9

[249]

Builder pattern
There are cases where you will have a complex object with different behaviors due to
its configuration. Instead of setting this object up while using it, you may want to decouple
its configuration from its usage, using a customized configuration already built. This way,
you have different representations of the instances you are building. This is where you
should use the Builder pattern.

The following class diagram shows the pattern that has been implemented for a scenario
from this book's use case. The idea behind this design choice is to simplify the way rooms
from WWTravelClub are described:

As shown in the following code, the code for this is implemented in a way where the
configurations of the instances aren't set in the main program. Instead, you just build the
objects using the Construct() method. This example is simulating the creation of different
room styles (a single room and a family room) in the WWTravelClub:

using DesignPatternsSample.BuilderSample;
using System;

Design Patterns and .NET Core Implementation Chapter 9

[250]

namespace DesignPatternsSample
{
 class Program
 {
 static void Main()
 {
 #region Builder Sample
 Console.WriteLine("Builder Sample");

 var directorRoom = new DirectorRooms(new SimpleRoomBuilder());
 var simpleRoom = directorRoom.Construct();
 simpleRoom.Describe();
 directorRoom = new DirectorRooms(new FamilyRoomBuilder());
 var familyRoom = directorRoom.Construct();
 familyRoom.Describe();
 #endregion

 Console.ReadKey();
 }
 }
}

The result of this implementation is quite simple but clarifies the reason why you need to
implement a pattern:

As soon as you have the implementation, evolving this code becomes simpler and easier.
For example, if you need to build a different style of room, you just have to create the
concrete builder for that and you will be able to use it. Fortunately, if you need to increase
the configuration settings for the product, all the concrete classes you used previously will
be defined in the Builder interface and stored there so that you can update them with ease.

Design Patterns and .NET Core Implementation Chapter 9

[251]

Factory pattern
The Factory pattern is really useful in situations where you have multiple objects from the
same abstraction and you don't know which need to be created by the time you start
coding. This means you will have to create the instance according to a certain configuration
or according to where the software is living at the moment.

For instance, let's check out the WWTravelClub sample. Here, there's a User Story that
describes that this application will have customers from all over the world paying for their
trips. However, in the real world, there are different payment services available for each
country. The process of paying is similar for each country, but this system will have more
than one payment service available. A good way to simplify this payment implementation
is by using the Factory pattern. The following diagram shows the basic idea of its
architectural implementation:

Design Patterns and .NET Core Implementation Chapter 9

[252]

Notice that, since you have an interface that describes what the Payment Service for the
application is, you can use the factory to change the concrete class according to the services
that are available:

static void Main()
{
 #region Factory Sample
 var psCreator = new PaymentServiceCreator();
 var brazilianPaymentService = (IPaymentService)psCreator.Factory
 (PaymentServiceCreator.ServicesAvailable.Brazilian);
 brazilianPaymentService.EmailToCharge = "gabriel@sample.com";
 brazilianPaymentService.MoneyToCharge = 178.90f;
 brazilianPaymentService.OptionToCharge =
 FactorySample.Enums.EnumChargingOptions.CreditCard;
 brazilianPaymentService.ProcessCharging();
 var italianPaymentService = (IPaymentService)psCreator.Factory
 (PaymentServiceCreator.ServicesAvailable.Italian);
 italianPaymentService.EmailToCharge = "francesco@sample.com";
 italianPaymentService.MoneyToCharge = 188.70f;
 italianPaymentService.OptionToCharge =
 FactorySample.Enums.EnumChargingOptions.DebitCard;
 italianPaymentService.ProcessCharging();
 #endregion
 Console.ReadKey();
}

Once again, the service's usage has been simplified due to the implemented pattern. If you
were to use this code in a real-world application, you would change the instance's behavior
by defining the service you need in the Factory.

Singleton pattern
When you implement a Singleton in your application, you will have a single instance of the
object implemented in the entire solution. This can be considered as one of the most used
patterns in every application. The reason is simple – there are many use cases where you
need some classes to have just one instance. Singletons solve this by providing a better
solution than a global variable does.

In the Singleton pattern, the class is responsible for creating and delivering a single object
that will be used by the application. In other words, the Singleton class creates a single
instance:

Design Patterns and .NET Core Implementation Chapter 9

[253]

To do so, the object that's created is static and is delivered in a static property or method.
The following code implements the Singleton pattern, which has a Message property and a
Print() method:

public sealed class SingletonDemo
{
 #region This is the Singleton definition
 private static SingletonDemo _instance;
 public static SingletonDemo Current
 {
 get
 {
 if (_instance == null)
 _instance = new SingletonDemo();
 return _instance;
 }
 }
 #endregion

 public string Message { get; set; }

 public void Print()
 {
 Console.WriteLine(Message);
 }
}

Design Patterns and .NET Core Implementation Chapter 9

[254]

Its usage is really simple – you just need to call the static property every time you need to
use the Singleton object:

SingletonDemo.Current.Message = "This text will be printed by the
singleton.";
SingletonDemo.Current.Print();

One of the places where you may use this pattern is when you need to deliver the app
configuration in a way that can be easily accessed from anywhere in the solution. For
instance, let's say you have some configuration parameters that are stored in a table that
your app needs to query at several decision points. Instead of querying the configuration
table directly, you can create a Singleton class to help you:

Moreover, you will need to implement a cache in this Singleton, thus improving the
performance of the system, since you will be able to decide whether the system will check
each configuration in the database every time it needs it or if the cache will be used. The
following screenshot shows the implementation of the cache where the configuration is
loaded every 5 seconds. The parameter that is being read in this case is just a random
number:

Design Patterns and .NET Core Implementation Chapter 9

[255]

This is great for the application's performance. Besides, using parameters in several places
in your code is simpler, since you don't have to create configuration instances everywhere
in the code.

Proxy pattern
The Proxy pattern is used when you need to provide an object that controls access to
another object. One of the biggest reasons why you should do this is related to the cost of
creating the object that is being controlled. For instance, if the controlled object takes too
long to be created or consumes too much memory, a proxy can be used to guarantee that
the huge part of the object will only be created when it's required.

Design Patterns and .NET Core Implementation Chapter 9

[256]

The following class diagram shows the class diagram of a Proxy pattern's implementation
for loading pictures from the Room, but only when requested:

The client of this proxy will request its creation. Here, the proxy will only gather basic
information (Id, FileName, and Tags) from the real object and won't query PictureData.
When PictureData is requested, the proxy will load it:

static void Main()
{
 Console.WriteLine("Proxy Sample");
 var roomPicture = new ProxyRoomPicture();
 Console.WriteLine($"Picture Id: {roomPicture.Id}");
 Console.WriteLine($"Picture FileName: {roomPicture.FileName}");
 Console.WriteLine($"Tags: {string.Join(";", roomPicture.Tags)}");
 Console.WriteLine($"1st call: Picture Data");
 Console.WriteLine($"Image: {roomPicture.PictureData}");
 Console.WriteLine($"2nd call: Picture Data");
 Console.WriteLine($"Image: {roomPicture.PictureData}");
}

Design Patterns and .NET Core Implementation Chapter 9

[257]

If PictureData is requested again, since image data is already in place, the proxy will
guarantee that image reloading will not be repeated. The following screenshot shows the
result of running the preceding code:

This technique can be referred to as another well-known pattern: lazy loading. In fact, the
Proxy pattern is a way of implementing lazy loading. For instance, in Entity Framework
Core 2.1, as discussed in Chapter 6, Interacting with Data in C# - Entity Framework Core, you
can turn on lazy loading using proxies. You can find out more about this at https:/ ​/​docs.
microsoft.​com/​en- ​us/ ​ef/ ​core/ ​querying/ ​related- ​data#lazy- ​loading.

Command pattern
There are many cases where you need to execute a command that will affect the behavior of
an object. The Command pattern can help you with this by encapsulating this kind of
request in an object. The pattern also describes how to handle undo/redo support for the
request.

https://docs.microsoft.com/en-us/ef/core/querying/related-data#lazy-loading
https://docs.microsoft.com/en-us/ef/core/querying/related-data#lazy-loading
https://docs.microsoft.com/en-us/ef/core/querying/related-data#lazy-loading
https://docs.microsoft.com/en-us/ef/core/querying/related-data#lazy-loading
https://docs.microsoft.com/en-us/ef/core/querying/related-data#lazy-loading
https://docs.microsoft.com/en-us/ef/core/querying/related-data#lazy-loading
https://docs.microsoft.com/en-us/ef/core/querying/related-data#lazy-loading
https://docs.microsoft.com/en-us/ef/core/querying/related-data#lazy-loading
https://docs.microsoft.com/en-us/ef/core/querying/related-data#lazy-loading
https://docs.microsoft.com/en-us/ef/core/querying/related-data#lazy-loading
https://docs.microsoft.com/en-us/ef/core/querying/related-data#lazy-loading
https://docs.microsoft.com/en-us/ef/core/querying/related-data#lazy-loading
https://docs.microsoft.com/en-us/ef/core/querying/related-data#lazy-loading
https://docs.microsoft.com/en-us/ef/core/querying/related-data#lazy-loading
https://docs.microsoft.com/en-us/ef/core/querying/related-data#lazy-loading
https://docs.microsoft.com/en-us/ef/core/querying/related-data#lazy-loading
https://docs.microsoft.com/en-us/ef/core/querying/related-data#lazy-loading
https://docs.microsoft.com/en-us/ef/core/querying/related-data#lazy-loading
https://docs.microsoft.com/en-us/ef/core/querying/related-data#lazy-loading
https://docs.microsoft.com/en-us/ef/core/querying/related-data#lazy-loading
https://docs.microsoft.com/en-us/ef/core/querying/related-data#lazy-loading
https://docs.microsoft.com/en-us/ef/core/querying/related-data#lazy-loading
https://docs.microsoft.com/en-us/ef/core/querying/related-data#lazy-loading
https://docs.microsoft.com/en-us/ef/core/querying/related-data#lazy-loading

Design Patterns and .NET Core Implementation Chapter 9

[258]

For instance, let's imagine that, on the WWTravelClub website, the users have the ability to
evaluate the packages by specifying whether they like, dislike, or even love them. The
following class diagram is an example of what can be implemented to create this rating
system with the Command pattern:

Notice the way this pattern works – if you need a different command, such as Hate, you
don't need to change the code and classes that use the command. The Undo method can be
added in a similar way to the Redo method. The full code sample for this is available in this
book's GitHub repository.

Design Patterns and .NET Core Implementation Chapter 9

[259]

Publisher/Subscriber pattern
Providing information from an object to a group of other objects is common in all
applications. The Publisher/Subscriber pattern is almost mandatory when there's a large
volume of components (subscribers) that will receive a message containing the information
that was sent by the object (publisher).

The concept here is quite simple to understand and is shown in the following diagram:

When you have an indefinite number of different possible subscribers, it is essential to
decouple the component that broadcasts information from the components that consume it.
The Publisher/Subscriber pattern does this for us.

Implementing this pattern is complex, since distributing environments isn't a trivial task.
Therefore, it is recommended that you consider already existing technologies for
implementing the Message Broker that connects the Input Channel to the Output Channels,
instead of building it from scratch. Azure Service Bus is a reliable implementation of this
pattern, so all you need to do is connect to it.

RabbitMQ, which we mentioned in Chapter 5, Applying a Microservice Architecture to Your
Enterprise Application, is another service that can be used to implement a Message Broker,
but it is a lower-level implementation of the pattern and requires several related tasks, such
as retries, in case errors have to be coded manually.

Design Patterns and .NET Core Implementation Chapter 9

[260]

Dependency Injection pattern
The Dependency Injection pattern is considered a good way to implement the Dependency
Inversion principle. Besides, it forces all the other SOLID principles to be followed by the
implementation. As we discussed at the beginning of this chapter, a way to keep the
software's structure strong and reliable is by following the SOLID design principles
presented by Uncle Bob. These can be defined as follows:

Single Responsibility: A module or function should be responsible for a single
purpose.
Open-Closed: A software artifact should be open for extension but closed for
modification.
Liskov Substitution: The behavior of a program needs to remain unchanged
when you substitute one of its components for another component that's been
defined by a supertype of the primer object.
Interface Segregation: Creating huge interfaces will cause dependencies to occur
while you're building concrete objects, but these are harmful to the system
architecture.
Dependency Inversion: The most flexible systems are the ones where object
dependencies only refer to abstractions.

This concept is quite simple. Instead of creating instances of the objects that the component
depends on, you just need to define their dependencies, declare their interfaces, and enable
the reception of the objects by injection.

There are three ways to perform dependency injection:

Use the constructor of the class to receive the objects.
Tag some class properties to receive the objects.
Define an interface with a method to inject all the necessary components.

Design Patterns and .NET Core Implementation Chapter 9

[261]

The following diagram shows the implementation of the Dependency Injection pattern:

Apart from this, dependency injection can be used with an Inversion of Control (IoC)
container. This container enables the automatic injection of dependencies whenever they
are asked for. There are several IoC container frameworks available on the market, but with
.NET Core, there is no need to use third-party software since it contains a set of libraries to
solve this in the Microsoft.Extensions.DependencyInjection namespace.

This IoC container is responsible for creating and disposing of the objects that are
requested. The implementation of dependency injection is based on Constructor types.
There are three options for the injected component's lifetime:

Transient: The objects are created each time they are requested.
Scoped: The objects are created for each scope defined in the application. In a
Web App, a scope is identified with a web request.
Singleton: Each object has the same application lifetime, so a single object is
reused to serve all the requests for a given type.

The way you are going to use these options depends on the business rules of the project
you are developing. You need to be careful in deciding the correct one, since the behavior
of the application will change according to the type of object you are injecting.

Design Patterns and .NET Core Implementation Chapter 9

[262]

Understanding the available design patterns
in .NET Core
As we discovered in the previous sections, C# allows us to implement any of the
aforementioned patterns. .NET Core provides many implementations in its SDK that follow
all the patterns we've discussed, such as Entity Framework Core Proxy Lazy Loading.
Another good example that's been available since .NET Core 2.1 is .NET Generic Host.

In Chapter 13, Presenting ASP.NET Core MVC, we will detail the hosting that's available for
Web Apps in .NET Core. This web host helps us since the app's startup and lifetime
management is set up alongside it. The idea of .NET Generic Host is to enable this pattern
for applications that don't need HTTP implementation. With this Generic Host, any .NET
Core program can have a Startup class where we can configure the Dependency Injection
Engine. This can be really useful for creating multi-service apps.

You can find out more at .NET Generic Host at https:/ ​/ ​docs. ​microsoft. ​com/​en- ​us/
aspnet/​core/​fundamentals/ ​host/ ​generic- ​host, which contains some sample code. The
code provided in this book's GitHub repository is simpler, but it focuses on the creation of a
console app that can run a service for monitoring. The great thing about this is the way the
console app is set up to run, where the builder configures the services that will be provided
by the application, and the way logging will be managed. This is shown in the following
code:

public static void Main()
{
 var host = new HostBuilder()
 .ConfigureServices((hostContext, services) =>
 {
 services.AddHostedService<HostedService>();
 services.AddHostedService<MonitoringService>();
 })
 .ConfigureLogging((hostContext, configLogging) =>
 {
 configLogging.AddConsole();
 })
 .Build();
 host.Run();
 Console.WriteLine("Host has terminated. Press any key to finish the
 App.");
 Console.ReadKey();
 }

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/generic-host
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/generic-host
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/generic-host
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/generic-host
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/generic-host
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/generic-host
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/generic-host
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/generic-host
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/generic-host
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/generic-host
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/generic-host
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/generic-host
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/generic-host
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/generic-host
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/generic-host
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/generic-host
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/generic-host
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/generic-host
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/generic-host
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/generic-host
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/generic-host
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/generic-host
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/generic-host
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/generic-host

Design Patterns and .NET Core Implementation Chapter 9

[263]

The preceding code gives us an idea of how .NET Core uses design patterns. Using the
Builder pattern, .NET Generic Host allows you to set the classes that will be injected as
services. Apart from this, the Builder pattern helps you configure some other features, such
as the way logs will be shown/stored. This configuration allows the services to inject
ILogger<out TCategoryName> objects into any instance.

Summary
In this chapter, we understood why design patterns help with the maintainability and
reusability of the parts of the system you are building. We also looked at some typical use
cases and code snippets that you can use in your projects. Finally, we presented .NET
Generic Host, which is a good example of how .NET uses design patterns to enable code
reusability and enforce best practices. All this content will help you while architecting a
new software or even maintaining an existing one, since design patterns are solutions
already known for some real life problems in software development.

In the next chapter, we will cover the domain-driven design approach. We will also learn
how to use SOLID design principles so that we can map different domains to our software
solutions.

Questions
What are design patterns?1.
What's the difference between design patterns and design principles?2.
When is it a good idea to implement the Builder pattern?3.
When is it a good idea to implement the Factory pattern?4.
When is it a good idea to implement the Singleton pattern?5.
When is it a good idea to implement the Proxy pattern?6.
When is it a good idea to implement the Command pattern?7.
When is it a good idea to implement the Publisher/Subscriber pattern?8.
When is it a good idea to implement the Dependency Injection pattern?9.

Design Patterns and .NET Core Implementation Chapter 9

[264]

Further reading
The following are some books and websites where you can find out more regarding what
was covered in this chapter:

Clean Architecture: A Craftsman's Guide to Software Structure and Design, Martin,
Robert C. Pearson Education, 2018.
Design Patterns: Elements of Reusable Object-Oriented Software, Erica Gamma et al.
Addison-Wesley, 1994.
Design Principles and Design Patterns, Robert C. Martin, 2000.

If you need to get more info about design patterns and architectural principles, please check
these links:

https:/​/ ​www. ​packtpub. ​com/ ​application- ​development/ ​design- ​patterns-
using-​c- ​and- ​net- ​core- ​video

https:/​/ ​docs. ​microsoft. ​com/ ​en-​us/ ​dotnet/ ​standard/ ​modern- ​web- ​apps-
azure-​architecture/ ​architectural- ​principles

If you want to understand better the idea of generic hosts, follow this link:

https:/​/ ​docs. ​microsoft. ​com/ ​en-​us/ ​aspnet/ ​core/ ​fundamentals/ ​host/
generic- ​host

There is a very good explanation about service bus messaging in this link:

https:/​/ ​docs. ​microsoft. ​com/ ​en-​us/ ​azure/ ​service- ​bus-​messaging/ ​service-
bus-​dotnet- ​how- ​to- ​use- ​topics- ​subscriptions

You can learn more about dependency injection checking these links:

https:/​/ ​docs. ​microsoft. ​com/ ​en-​us/ ​aspnet/ ​core/ ​fundamentals/ ​dependency-
injection

https:/​/ ​www. ​martinfowler. ​com/ ​articles/ ​injection. ​html

https://www.packtpub.com/application-development/design-patterns-using-c-and-net-core-video
https://www.packtpub.com/application-development/design-patterns-using-c-and-net-core-video
https://www.packtpub.com/application-development/design-patterns-using-c-and-net-core-video
https://www.packtpub.com/application-development/design-patterns-using-c-and-net-core-video
https://www.packtpub.com/application-development/design-patterns-using-c-and-net-core-video
https://www.packtpub.com/application-development/design-patterns-using-c-and-net-core-video
https://www.packtpub.com/application-development/design-patterns-using-c-and-net-core-video
https://www.packtpub.com/application-development/design-patterns-using-c-and-net-core-video
https://www.packtpub.com/application-development/design-patterns-using-c-and-net-core-video
https://www.packtpub.com/application-development/design-patterns-using-c-and-net-core-video
https://www.packtpub.com/application-development/design-patterns-using-c-and-net-core-video
https://www.packtpub.com/application-development/design-patterns-using-c-and-net-core-video
https://www.packtpub.com/application-development/design-patterns-using-c-and-net-core-video
https://www.packtpub.com/application-development/design-patterns-using-c-and-net-core-video
https://www.packtpub.com/application-development/design-patterns-using-c-and-net-core-video
https://www.packtpub.com/application-development/design-patterns-using-c-and-net-core-video
https://www.packtpub.com/application-development/design-patterns-using-c-and-net-core-video
https://www.packtpub.com/application-development/design-patterns-using-c-and-net-core-video
https://www.packtpub.com/application-development/design-patterns-using-c-and-net-core-video
https://www.packtpub.com/application-development/design-patterns-using-c-and-net-core-video
https://www.packtpub.com/application-development/design-patterns-using-c-and-net-core-video
https://www.packtpub.com/application-development/design-patterns-using-c-and-net-core-video
https://www.packtpub.com/application-development/design-patterns-using-c-and-net-core-video
https://www.packtpub.com/application-development/design-patterns-using-c-and-net-core-video
https://www.packtpub.com/application-development/design-patterns-using-c-and-net-core-video
https://www.packtpub.com/application-development/design-patterns-using-c-and-net-core-video
https://www.packtpub.com/application-development/design-patterns-using-c-and-net-core-video
https://www.packtpub.com/application-development/design-patterns-using-c-and-net-core-video
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/architectural-principles
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/architectural-principles
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/architectural-principles
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/architectural-principles
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/architectural-principles
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/architectural-principles
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/architectural-principles
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/architectural-principles
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/architectural-principles
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/architectural-principles
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/architectural-principles
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/architectural-principles
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/architectural-principles
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/architectural-principles
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/architectural-principles
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/architectural-principles
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/architectural-principles
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/architectural-principles
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/architectural-principles
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/architectural-principles
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/architectural-principles
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/architectural-principles
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/architectural-principles
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/architectural-principles
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/architectural-principles
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/architectural-principles
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/architectural-principles
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/architectural-principles
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/architectural-principles
https://docs.microsoft.com/en-us/dotnet/standard/modern-web-apps-azure-architecture/architectural-principles
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/generic-host
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/generic-host
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/generic-host
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/generic-host
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/generic-host
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/generic-host
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/generic-host
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/generic-host
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/generic-host
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/generic-host
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/generic-host
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/generic-host
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/generic-host
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/generic-host
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/generic-host
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/generic-host
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/generic-host
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/generic-host
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/generic-host
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/generic-host
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/generic-host
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/generic-host
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/generic-host
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/generic-host
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-how-to-use-topics-subscriptions
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-how-to-use-topics-subscriptions
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-how-to-use-topics-subscriptions
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-how-to-use-topics-subscriptions
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-how-to-use-topics-subscriptions
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-how-to-use-topics-subscriptions
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-how-to-use-topics-subscriptions
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-how-to-use-topics-subscriptions
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-how-to-use-topics-subscriptions
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-how-to-use-topics-subscriptions
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-how-to-use-topics-subscriptions
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-how-to-use-topics-subscriptions
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-how-to-use-topics-subscriptions
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-how-to-use-topics-subscriptions
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-how-to-use-topics-subscriptions
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-how-to-use-topics-subscriptions
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-how-to-use-topics-subscriptions
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-how-to-use-topics-subscriptions
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-how-to-use-topics-subscriptions
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-how-to-use-topics-subscriptions
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-how-to-use-topics-subscriptions
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-how-to-use-topics-subscriptions
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-how-to-use-topics-subscriptions
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-how-to-use-topics-subscriptions
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-how-to-use-topics-subscriptions
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-how-to-use-topics-subscriptions
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-how-to-use-topics-subscriptions
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-how-to-use-topics-subscriptions
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-how-to-use-topics-subscriptions
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-how-to-use-topics-subscriptions
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-how-to-use-topics-subscriptions
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-how-to-use-topics-subscriptions
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-how-to-use-topics-subscriptions
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-how-to-use-topics-subscriptions
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-how-to-use-topics-subscriptions
https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-how-to-use-topics-subscriptions
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://www.martinfowler.com/articles/injection.html
https://www.martinfowler.com/articles/injection.html
https://www.martinfowler.com/articles/injection.html
https://www.martinfowler.com/articles/injection.html
https://www.martinfowler.com/articles/injection.html
https://www.martinfowler.com/articles/injection.html
https://www.martinfowler.com/articles/injection.html
https://www.martinfowler.com/articles/injection.html
https://www.martinfowler.com/articles/injection.html
https://www.martinfowler.com/articles/injection.html
https://www.martinfowler.com/articles/injection.html
https://www.martinfowler.com/articles/injection.html
https://www.martinfowler.com/articles/injection.html
https://www.martinfowler.com/articles/injection.html
https://www.martinfowler.com/articles/injection.html

10
Understanding the Different

Domains in Software Solutions
This chapter is dedicated to a modern software development technique called domain-
driven design (DDD), which was first proposed by Eric Evans. While DDD has existed for
more than 15 years, it reached a great success in the last few years because of its ability to
cope with two important problems:

Modeling complex systems where no single expert has in-depth knowledge of
the whole domain. This knowledge is split among several people.
Facing big projects with several development teams. There are many reasons
why a project is split among several teams, with the most common being the
team's size and all of its members having different skills and/or different
locations. In fact, experience has proven that teams of more than 6-8 people are
not efficacious and clearly different skills and locations prevent a tight
interaction from occurring. Team splitting prevents tight interaction from
happening for all the people involved in the project.

In turn, the importance of the two aforementioned problems grew more in the last few
years for the following reasons:

Software systems always took up a lot of space inside every organization and
became more and more complex and geographically distributed.
At the same time, the need for frequent updates increased so that these complex
software systems could be adapted, as per the needs of a quickly changing
market.
The preceding problems led to the conception of more sophisticated CI/CD cycles
and the adoption of complex distributed architectures that may leverage
reliability, high throughput, quick updates, and the capability to evolve legacy
subsystems gradually. Yes – we are speaking of the microservices and container-
based architectures we analyzed in Chapter 5, Applying a Microservice
Architecture to Your Enterprise Application.

Understanding the Different Domains in Software Solutions Chapter 10

[266]

In this scenario, it's common to implement complex software systems with associated fast
CI/CD cycles that always require more people to evolve and maintain them. In turn, this
created the requirement of developing technologies that were adequate for high-complexity
domains and for the cooperation of several loosely coupled development teams.

In this chapter, we will analyze the basic principles, advantages, and common patterns
related to DDD, as well as how to use them in our solutions. More specifically, we will
cover the following topics:

What are software domains?
Understanding domain-driven design
Using SOLID principles to map your domains
Use case – understanding the domains of the use case

Let's get started.

Technical requirements
This chapter requires Visual Studio 2017 or 2019 free Community Edition or better with all
the database tools installed.

All the code snippets in this chapter can be found in the GitHub repository associated with
this book, https:/ ​/​github. ​com/ ​PacktPublishing/ ​Hands- ​On- ​Software- ​Architecture-
with-​CSharp-​8.

What are software domains?
As we discussed in Chapter 2, Functional and Nonfunctional Requirements, and Chapter 3,
Documenting the Requirements with Azure DevOps, the transfer of knowledge from domain
experts to the development team plays a fundamental role in software design. Developers
try to communicate with experts and describe their solutions in a language that domain
experts and stakeholders can understand. However, often, the same word has a different
meaning in various parts of an organization, and what appear to be the same conceptual
entities have completely different shapes in different contexts.

https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8

Understanding the Different Domains in Software Solutions Chapter 10

[267]

For instance, in our WWTravelClub use case, the order-payment and packages-handling
subsystems use completely different models for customers. Order-payment characterizes a
customer by their payment methods and currency, bank accounts, and credit cards, while
package-handling is more concerned with the locations and packages that have been visited
and/or purchased in the past, the user's preferences, and their geographical location.
Moreover, while order-payment refers to various concepts with a language that we may
roughly define as a bank language, packages-handling uses a language that is typical of
travel agencies/operators.

The classical way to cope with these discrepancies is to use a unique abstract entity called
customer, which projects into two different views – the order-payment view and the
packages-handling view. Each projection operation takes some operations and some
properties from the customer abstract entity and changes their names. Since domain
experts only give us the projected views, our main task as system designers is to create a
conceptual model that can explain all the views. The following diagram shows how
different views are handled:

The main advantage of the classic approach is that we have a unique and coherent
representation of the data of the domain. If this conceptual model is built successfully, all
the operations will have a formal definition and purpose and the whole abstraction will be
a rationalization of the way the whole organization should work, possibly highlighting and
correcting errors and simplifying some procedures.

Understanding the Different Domains in Software Solutions Chapter 10

[268]

However, what are the downsides of this approach? First of all, the way work is organized
may have an excessive impact on the preexisting organization that may prevent it from
operating correctly for a certain amount of time since the constraint of using a unique
coherent model doesn't offer enough options to mitigate this impact. Errors must be
removed, duplication must be removed, and everything must be perfectly coherent so that
there is a minimum irreducible impact that we can't mitigate since the only way to mitigate
it would be to renounce the overall coherence.

This minimum impact can be acceptable in a small organization, when the software is
destined for a small part of the overall organization, or when the software automatizes a
small enough percentage of the data flow. However, as the software becomes the backbone
of a whole geographically distributed organization, sharp changes become more
unacceptable and unfeasible. Moreover, as the complexity of the software system grows,
several other issues appear, as follows:

Arriving at a uniquely coherent view of data becomes more difficult since we
can't face complexity by breaking these tasks into smaller loosely coupled tasks.
As complexity grows, there is a need for frequents system changes, but it is quite
difficult to update and maintain a unique global model. Moreover, bugs/errors
that are introduced by changes in small subparts of the system may propagate to
the whole organization through the uniquely shared model.
System modeling must be split among several teams and only loosely coupled
tasks can be faced with separate teams.
The need to move to a microservice-based architecture makes the bottleneck of a
unique database more unacceptable.
As the system grows, we need to communicate with more domain experts, each
speaking a different language and each with a different view of that data model.
Thus, we need to translate our unique model's properties and operations to/from
more languages to be able to communicate with them.
As the system grows, it becomes more inefficient to deal with records with
several hundreds/thousands of fields. Such inefficiencies originate in database
engines that inefficiently handle big records with several fields (memory
fragmentation, problems with too many related indices, and so on). However, the
main inefficiencies take place in ORMs and business layers that are forced to
handle these big records in their update operations. In fact, while query
operations usually require just a few fields that have been retrieved from the
storage engine, updates and business processing involve the whole entity.

Understanding the Different Domains in Software Solutions Chapter 10

[269]

As the traffic in the data storage subsystem grows, we need read and
update/write parallelism in all the data operations. As we discussed in Chapter
7, How to Choose Your Data Storage in the Cloud, while read parallelism is easily
achieved with data replication, write parallelism requires sharding, and it is
difficult to shard a uniquely monolithic and tightly connected data model.

These issues are the reason for DDD's success in the last few years since they were
characterized by more complex software systems that became the backbone of entire
organizations. DDD's basic principles will be discussed in detail in the next section.

Understanding domain-driven design
Domain-driven design is about the construction of a unique domain model and keeps all
the views as separate models. Thus, the whole application domain is split into smaller
domains, each with a separate model. These separate domains are called Bounded
Contexts. Each domain is characterized by the language spoken by the experts and used to
name all the domain concepts and operations. Thus, each domain defines a common
language used by both the expert and the development team called Ubiquitous Language.
Translations are not needed anymore, and if the development team uses interfaces as a base
for its code, the domain expert is able to understand and validate them since all the
operations and properties are expressed in the same language that's used by the expert.

Here, we're getting rid of a cumbersome unique abstract model, but now we have several
separated models that we need to relate somehow. DDD proposes that it will handle all of
these separated models, that is, all the Bounded Contexts, as follows:

We need to add Bounded Context boundaries whenever the meaning of the
language terms change. For instance, in the WWTravelClub use case, order-
payment and packages-handling belong to different Bounded Contexts because
they give a different meaning to the word customer.
We need to explicitly represent relations among bounded contexts. Different
development teams may work on different bounded contexts, but each team
must have a clear picture of the relationship between the Bounded Context it is
working on and all the other models. For this reason, such relationships are
represented in a unique document that's shared with every team.
We need to keep all the bounded contexts aligned with continuous integration.
Meetings are organized and simplified system prototypes are built in order to
verify that all the Bounded Contexts are evolving coherently, that is, that all the
Bounded Contexts can be integrated into the desired application behavior.

Understanding the Different Domains in Software Solutions Chapter 10

[270]

The following diagram shows how the WWTravelClub example that we discussed in the
previous section changes with the adoption of DDD:

There is a relationship between the customer entities of both Bounded Contexts, while the
Purchase entity of the packages-handling Bounded Context is related to the payments.
Identifying entities that map to each other in the various Bounded Contexts is the first step
of formally defining the interfaces that represent all the possible communications among
the contexts.

For instance, from the preceding diagram, we know that payments are done after
purchases, and so we can deduce that the payment-orders Bounded Context must have an
operation to create a payment for a specific customer. In this domain, new customers are
created if they don't already exist. The payment creation operation is triggered immediately
after purchase. Since several more operations are triggered after an item is purchased, we
can implement all the communication related to a purchase event with
the Publisher/Subscriber pattern we explained in Chapter 9, Design Patterns and .NET Core
Implementation. These are known as domain events in DDD. Using events to implement
communications between Bounded Contexts is very common since it helps keep Bounded
Contexts loosely coupled.

Once an instance of either an event or an operation that's been defined in the Bounded
Context's interface crosses the context boundary, it is immediately translated into the
Ubiquitous Language of the receiving context. It is important that this translation is
performed before the input data starts interacting with the other domain entities to avoid
the Ubiquitous Language of the other domain becoming contaminated by extra-context
terms.

Understanding the Different Domains in Software Solutions Chapter 10

[271]

Each Bounded Context implementation must contain a Data Model Layer
completely expressed in terms of the Bounded Context Ubiquitous
Language (class and interface names and property and method names),
with no contamination from other Bounded Contexts Ubiquitous
Languages, and without contamination from programming technical stuff.
This is necessary to ensure good communication with domain experts and
to ensure that domain rules are translated correctly into code so that they
can be easily validated by domain experts.
When there is a strong mismatch between the communication language
and the target Ubiquitous Language, an anti-corruption layer is added to
the receiving Bounded Context boundary. The only purpose of this anti-
corruption layer is to perform a language translation.

The document that contains a representation of all the Bounded Contexts, along with the
Bounded Context's mutual relationships and interface definitions, is called a Context
Mapping. The relationships among contexts contain organizational constraints that specify
the kind of cooperation that's required among the team that works on the different
Bounded Contexts. Such relationships don't constrain the Bounded Context interfaces but
do affect the way they may evolve during the software CI/CD cycle. They represent
patterns of team cooperation. The most common patterns are as follows:

Partner: This is the original pattern suggested by Eric Evans. The idea is that the
two teams have a mutual dependency on each other for delivery. In other terms,
they decide together and, if needed, change the Bounded Context's mutual
communication specifications during the software CI/CD cycle.
Customer/supplier development teams: In this case, a team acts as a customer
and the other acts as a supplier. Both teams define the interface of the customer
side of the Bounded Context and some automated acceptance tests to validate it.
After that, the supplier can work independently. This pattern works when the
customer's Bounded Context is the only active part that invokes the interface
methods that are exposed by the other Bounded Context. This is adequate for the
interaction between the order-payments and the packages-handling contexts,
where order-payments acts as a supplier since its functions are subordinate to the
needs of packages-handling. When this pattern can be applied, it decouples the
two Bounded Contexts completely.

Understanding the Different Domains in Software Solutions Chapter 10

[272]

Conformist: This is similar to the customer/supplier, but in this case, the
customer side accepts an interface that's been imposed by the supplier side with
no negotiation stage. This pattern offers no advantages to the other patterns, but
sometimes we are forced into the situation depicted by the pattern since either
the supplier's Bounded Context is implemented in a preexisting product that
can't be configured/modified too much or because it is a legacy subsystem that
we don't want to modify.

It is worth pointing out that the separation in Bounded Contexts is only efficacious if the
resulting Bounded Contexts are loosely coupled; otherwise, the reduction of complexity
that's obtained by breaking a whole system into subparts would be overcome by the
complexity of the coordination and communication processes. However, if Bounded
Contexts are defined with the language criterion, that is, Bounded Context boundaries are
added whenever the Ubiquitous Language changes, this should actually be the case. In fact,
different languages may arise just as a result of a loose interaction between organization
subparts since the more subparts there are for an organization to interact with, the more
they end up using a common language.

Moreover, all human organizations can grow by evolving into loosely coupled subparts for
the same reason complex software systems may be implemented just for the cooperation of
loosely coupled submodules: this is the only way humans are able to cope with complexity.
From this, we can conclude that complex organizations/artificial systems can always be
decomposed into loosely coupled subparts. We just need to understand how.

Beyond the basic principles we've mentioned so far, DDD furnishes a few basic primitives
to describe each Bounded Context, as well as some implementation patterns. While
Bounded Context primitives are an integral part of DDD, these patterns are just useful
heuristics we can use in our implementation, so their usage in some or in all Bounded
Contexts is not obligatory once we opt for DDD adoption.

In the next section, we will describe primitives and patterns.

Understanding the Different Domains in Software Solutions Chapter 10

[273]

Entities and value objects
DDD entities represent domain objects that have a well-defined identity, as well as all the
operations that are defined on them. They don't differ too much from the entities of other,
more classical approaches. Also, DDD entities are the starting point of the storage layer
design. The main difference is that DDD stresses their object-oriented nature more, while
other approaches use them mainly as records whose properties can be written/updated
without too many constraints. DDD, on the other hand, forces strong SOLID principles on
them to ensure that only certain information is encapsulated inside of them and that only
certain information is accessible from outside of them, which operations are allowed on
them, and which business-level validation criteria apply to them.

In other words, DDD entities are richer than the entities of record-based approaches. In
other approaches, operations that manipulate entities are defined outside of them in classes
that represent business and/or domain operations. In DDD, these operations are moved to
the entity definitions as their class methods. The reason for this is that they offer better
modularity and keep related chunks of software in the same place so that they can be
maintained and tested easily.

For the same reason, business validation rules are moved inside of DDD entities. DDD
entity validation rules are business-level rules, so they must not be confused with database
integrity rules or with user-input validation rules. They contribute to the way entities
represent domain objects by encoding the constraints the represented objects must obey. In
.NET Core, business validation can be carried out with one of the following techniques
listed:

Calling the validation methods in all the class methods that modify the entity
Hooking the validation methods to all the property setters
Decorating the class and/or its properties with a custom validation attribute and
then invoking the TryValidateObject static method of
the System.ComponentModel.DataAnnotations.Validator class on the
entity each time it is modified

Understanding the Different Domains in Software Solutions Chapter 10

[274]

Once detected, validation errors must be handled somehow, that is, the current operation
must be aborted and the error must be reported to an appropriate error handler. The
simplest way to handle validation errors is by throwing an exception. This way, both
purposes are easily achieved and we can choose where to intercept and handle
them. Unfortunately, as we discussed in the Performance issues that need to be considered while
programming in C# section of Chapter 2, Functional and Nonfunctional Requirements,
exceptions imply big performance penalties, so, often, different options are considered.
Handling errors in the normal flow of control would break modularity by spreading the
code that's needed to handle the error all over the stack of methods that caused the error,
with a never-ending set of conditions all over that code. Therefore, more sophisticated
options are needed.

A good alternative to exceptions is to notify the error handler of any errors that are defined
in the Dependency Injection engine. Being scoped, the same service instance is returned
while each request is being processed so that the handler that controls the execution of the
whole call stack can inspect possible errors when the flow of control returns to it and can
handle them appropriately. Unfortunately, this sophisticated technique can't abort the
operation's execution immediately or return it to the controlling handler. Therefore, the
developer is forced to add adequate control conditions to prevent the continuation of the
operation. This is why exceptions are recommended for this scenario, notwithstanding their
performance issues.

Business-level validation must not be confused with input validation,
which will be discussed in more detail in Chapter 13, Presenting ASP.NET
Core MVC, since the two types of validation have different and
complementary purposes. While business-level validation rules encode
domain rules, input validation enforces the format of every single input
(string length, email and URL correct formats, and so on), ensures that all
the necessary input has been provided, enforces the execution of the
chosen user-machine interaction protocols, and provides fast and
immediate feedback that drives the user to interact with the system.

Since DDD entities must have a well-defined identity, they must have properties that act as
primary keys. It is common to override the Object.Equal method of all the DDD entities
in such a way that two objects are considered equal whenever they have the same primary
keys. This is easily achieved by letting all the entities inherit from an abstract Entity class,
as shown in the following code:

public abstract class Entity<K>: IEntity<K>
 where K: IEqualityComparer<K>
{
 public virtual K Id { get; protected set; }
 public bool IsTransient()

Understanding the Different Domains in Software Solutions Chapter 10

[275]

 {
 return Object.Equals(Id, default(K));
 }
 public override bool Equals(object obj)
 {
 if (obj == null || !(obj is Entity<K>))
 return false;
 if (Object.ReferenceEquals(this, obj))
 return true;
 if (this.GetType() != obj.GetType())
 return false;
 Entity<K> item = (Entity<K>)obj;
 if (item.IsTransient() || this.IsTransient())
 return false;
 else
 return Object.Equals(item.Id, Id);
 }
 int? _requestedHashCode;
 public override int GetHashCode()
 {
 if (!IsTransient())
 {
 if (!_requestedHashCode.HasValue)
 _requestedHashCode = this.Id.GetHashCode() ^ 31;
 return _requestedHashCode.Value;
 }
 else
 return base.GetHashCode();
 }
 public static bool operator ==(Entity<K> left, Entity<K> right)
 {
 if (Object.Equals(left, null))
 return (Object.Equals(right, null));
 else
 return left.Equals(right);
 }
 public static bool operator !=(Entity<K> left, Entity<K> right)
 {
 return !(left == right);
 }
}

It is worth pointing out that, once we've redefined the Object.Equal method in the
Entity class, we can also override with the == and != operators.

Understanding the Different Domains in Software Solutions Chapter 10

[276]

The IsTransient predicate returns true whenever the entity has been recently created
and hasn't been recorded in the permanent storage, so its primary key is still undefined.

In .NET, it is good practice that, whenever you override
the Object.Equal method of a class, you also override its
Object.GetHashCode method so that class instances can be efficiently
stored in data structures such as dictionaries and sets. That's why the
Entity class overrides it.

It is also worth implementing an IEntity<K> interface that defines all the
properties/methods of Entity<K>. This interface is useful whenever we need to hide data
classes behind interfaces.

Value objects, on the other hand, represent complex types that can't be encoded with
numbers or strings. Therefore, they have no identity and no principal keys. They have no
operations defined on them and are immutable; that is, once they've been created, all their
fields can be read but cannot be modified. For this reason, they are usually encoded with
classes whose properties have protected/private setters. Two value objects are considered
equal when all their independent properties are equal (some properties are not
independent since they just show data that's been encoded by other properties in a different
way, as is the case for the ticks of DateTime and its representation of the date and time
fields).

Typical value objects include costs represented as a number and a currency symbol,
locations represented as longitude and latitude, addresses, contact information, and so on.
When the interface of the storage engine is Entity Framework, which we analyzed in
Chapter 6, Interacting with Data in C# - Entity Framework Core, and Chapter 7, How to Choose
Your Data Storage in the Cloud, value objects are connected with the entity that uses them
through the OwnsMany and OwnsOne relationships. In fact, such relationships also accept
classes with no principal keys defined on them.

When the storage engine is a NoSQL database, value objects are stored inside the record of
the entities that use them. On the other hand, in the case of relational databases, they can
either be implemented with separated tables whose principal keys are handled
automatically by Entity Framework and are hidden from the developer (no property is
declared as a principal key) or, in the case of OwnsOne, they are flattened and added to the
table associated with the entity that uses them.

Understanding the Different Domains in Software Solutions Chapter 10

[277]

Using SOLID principles to map your
domains
In the following subsections, we will describe some of the patterns that are commonly used
with DDD. Some of them can be adopted in all projects, while others can only be used for
certain Bounded Contexts. The general idea is that the business layer is split into two
layers:

Application layer
Domain layer

Here, the domain layer is based on the Ubiquitous Language and manipulates DDD entities
and value objects. DDD entities and value objects are defined in this domain layer. The
whole business layer communicates with the data layer that's implemented with Entity
Framework through interfaces that are defined in the domain layer but are implemented in
the data layer. Data that's passed/returned by these interface methods are known as DDD
entities (the representation of queries and their results). The domain layer has no direct
reference to the library that implements the data layer, but the connection between domain
layer interfaces and their data layer implementations is performed in the dependency
injection engine of the application layer. From this, we can understand the following:

The data layer has a reference to the domain layer since it must implement its
interfaces and must create DDD entities and value objects that are defined in the
domain layer.
The application layer has references to the domain and data layers, but references
to the data layer types only appear in the dependency engine, where they are
associated with the respective interfaces that were defined in the domain layer.

Thus, the domain layer contains the representation of the domain objects, the methods to
use on them, validation constraints, and its relationship with various entities. To increase
modularity and decoupling, communication among entities is usually encoded with events,
that is, with a publisher/subscriber pattern. This means entity updates can trigger events
that have been hooked to business operations.

This layered architecture allows us to change the whole data layer without affecting the
domain layer, which only depends on the domain specifications and language and doesn't
depend on the technical details of how the data is handled.

Understanding the Different Domains in Software Solutions Chapter 10

[278]

 The application layer contains the definitions of all the operations that may potentially
affect several entities and the definitions of all the queries that are needed by the
applications. Both business operations and queries use the interfaces defined in the domain
layer to interact with the data layer. However, while business operations manipulate and
exchange entities with these interfaces, queries send query specifications and receive
generic DTOs from them. Business operations are invoked either by other layers (typically
the presentation layer) or by communication with the application layer. Business operations
may also be hooked to events that are triggered when entities are modified by other
operations.

Thus, the application layer operates on the interfaces defined in the domain layer instead of
interacting directly with their data layer implementations, which means that the application
layer is decoupled from the data layer. More specifically, data layer objects are only
mentioned in the dependency injection engine definitions. All the other application layer
components refer to the interfaces that are defined in the domain layers, and the
dependency injection engine injects the appropriate implementations.

The application layer communicates with other application components through one or
more of the following patterns:

It exposes business operations and queries on a communication endpoint, such
as an HTTP Web API (see Chapter 12, Applying Service-Oriented Architectures with
.NET Core). In this case, the presentation layer may connect to this endpoint or to
other endpoints that, in turn, take information from this and other endpoints.
Application components that collect information from several endpoints and
expose them in a unique endpoint are called gateways. They may be either
custom or general-purpose, such as Ocelot.
It is referenced as a library by an application that directly implements the
presentation layer, such as an ASP.NET Core MVC Web application.
It doesn't expose all the information through endpoints and communicates some
of the data it processes/creates to other application components that, in turn,
expose endpoints.

Before we describe these patterns, we need to understand the concept of aggregates.

Understanding the Different Domains in Software Solutions Chapter 10

[279]

Aggregates
So far, we have talked about entities as the units that are processed by a DDD-based
business layer. However, several entities can be manipulated and made into single entities.
An example of this is a purchase order and all of its items. In fact, it makes absolutely no
sense to process a single order item independently of the order it belongs to. This happens
because order-items are actually subparts of an order, not independent entities.

There is no transaction that may affect a single order-item without it affecting the order that
the item is in. Imagine that two different people in the same company are trying to increase
the total quantity of cement but one increases the quantity of type-1 cement (item 1) while
the other increases the quantity of type-2 cement (item 2). If each item is processed as an
independent entity, both quantities will be increased, which could cause an incoherent
purchase order since the total quantity of cement would be increased twice.

On the other hand, if the whole order, along with all its order-items, is loaded and saved
with every single transaction by both people, one of the two will overwrite the changes of
the other one, so whoever makes the final change will have their requirements set. In a web
application, it isn't possible to lock the purchase order for the whole time the user sees and
modifies it, so an optimistic concurrency policy is used. For instance, it is enough to add a
version number to each purchase order and to do the following:

Read the order without opening any transaction.1.
Before saving the modified order, we open a transaction and perform a second2.
read.
If the version number of the newly retrieved order differs from the one of the3.
order that was modified by the user, the operation is aborted because someone
else modified the order that was shown to the user immediately after the first
read. In this case, the user is informed of the problem and the newly retrieved
order is shown to the user once more.
If the version number is unchanged, we increase the version number, proceed4.
with the save, and commit the transaction.

A purchase order, along with all its subparts (its order-items), is called an aggregate, while
the order entity is called the root of the aggregate. Aggregates always have roots since they
are hierarchies of entities connected by subparts relations.

Since each aggregate represents a single complex entity, all the operations on it must be
exposed by a unique interface. Therefore, the aggregate root usually represents the whole
aggregate, and all the operations on the aggregate are defined as methods of the root entity.

Understanding the Different Domains in Software Solutions Chapter 10

[280]

When the aggregate pattern is used, the units of information that are transferred between the
business layer and the data layer are called aggregates, queries, and query results. Thus,
aggregates replace single entities.

What about the WWTravelClub location and packages entities we looked at in Chapter 6,
Interacting with Data in C# - Entity Framework Core, and Chapter 7, How to Choose Your Data
Storage in the Cloud? Are packages part of the unique aggregates that are rooted in their
associated locations? No! In fact, locations are rarely updated and changes that are made to
a package have no influence on its location and on the other packages associated with the
same location.

The repository and Unit of Work patterns
The repository pattern is how we implement the interface between the domain data layer.
Interfaces that are implemented by repositories are defined in the domain layer, while their
implementations are defined in the data layer. The peculiarity of this way of implementing
the interface with the data layer is its entity-centric nature, meaning that there should be a
different repository for each root aggregate. Each repository contains all the save/creation
operations that were performed on the associated aggregate, as well as all the query
operations that were performed on the entities that compose the aggregate.

Since there are also transactions that can span several aggregates, usually, the repository
pattern is applied with the Unit of Work pattern. The Unit of Work pattern states that each
data layer interface (in our case, each repository) contains a reference to a Unit of
Work interface that represents the identity of the current transaction. This means that
several repositories with the same Unit of Work reference belong to the same transaction.

Both patterns can be implemented by defining some seed interfaces:

public interface IUnitOfWork
{
 Task<bool> SaveEntitiesAsync();
 Task StartAsync();
 Task CommitAsync();
 Task RollbackAsync();
}

public interface IRepository<T>: IRepository
{
 IUnitOfWork UnitOfWork { get; }
}

Understanding the Different Domains in Software Solutions Chapter 10

[281]

All the repository interfaces inherit from IRepository<T> and bind T to the aggregate
root they are associated with, while Unity of Work simply implements IUnitOfWork. When
using Entity Framework, IUnitOfWork is usually implemented with DBContext, which
means that SaveEntitiesAsync() can perform other operations and then call the
DBContext SaveChangeAsync method so that all the pending changes are saved with a
single transaction. If a wider transaction that starts when some data is retrieved from the
storage engine is needed, it must be started and committed/aborted by the application layer
handler that takes care of the whole operation. IRepository<T> inherits from an empty
IRepisotory interface to help automatic repository discovery. The GitHub repository
associated with this book contains a RepositoryExtensions class
whose AddAllRepositories IServiceCollection extension method automatically
discovers all the repository implementations contained in an assembly and adds them to
the dependency injection engine.

The following is a diagram of the data layer/domain layer/data layer architecture based on
the repository and Unity of Work patterns:

The main advantage of avoiding direct references to repository implementations is that the
various modules can be tested easily if we mock these interfaces.

Understanding the Different Domains in Software Solutions Chapter 10

[282]

DDD entities and Entity Framework Core
DDD requires entities to be defined in a way that is different from the way we defined
entities in Chapter 6, Interacting with Data in C# - Entity Framework Core. In fact, Entity
Framework entities are record-like lists of public properties with almost no methods, while
DDD entities should have methods that encode domain logic, more sophisticated validation
logic, and read-only properties. While further validation logic and methods can be added
without breaking Entity Framework's operations, adding read-only properties that must
not be mapped to database properties can create problems that must be handled
adequately. Preventing properties from being mapped to the database is quite easy – all we
need to do is decorate them with the NotMapped attribute.

The issues that read-only properties have are a little bit more complex and can be solved in
three fundamental ways:

Define the DDD entities as different classes and copy data to/from them when
entities are returned/passed to repository methods. This is the easiest solution
but it requires that you write some code so that you can convert the entities
between the two formats. DDD entities are defined in the domain layer, while the
EF entities continue being defined in the data layer.
Let Entity Framework Core map fields to class private fields so that you can
decide on how to expose them to properties by writing custom getters and/or
setters. This can be done in the configuration code of the entity, as follows:

modelBuilder.Entity<MyEntity>()
 .Property("_myPrivatefield");

The main disadvantage of this approach is that the field is provided as a string,
which prevents any compile-time checks and also prevents automatic refactoring,
thereby creating possible sources of bugs and maintainability issues. Moreover,
we can't use data annotations to configure the property since the whole
configuration must be performed with the fluent interface of
the OnModelCreating DBContext method. In this case, entity definitions must
be moved from the domain layer as prescribed by DDD.

Hide the Entity Framework class with all its public properties behind an interface
that, when needed, only exposes property getters. The interface is defined in the
domain layer, while the entity continues being defined in the data layer.
In this case, the repository must expose a Create method that returns an
implementation of the interface; otherwise, the higher layers won't be able to
create new instances that can be added to the storage engine since interfaces can't
be created with new.

Understanding the Different Domains in Software Solutions Chapter 10

[283]

For instance, suppose that we would like to define a DDD interface called
IDestination for the Destination class defined in the Defining DB
Entities subsection of Chapter 6, Interacting with Data in C# – Entity Framework
Core, and suppose we would like to expose the Id, Name, and Country properties
as read-only since once a destination is created they can't be modified anymore.
Here, it is enough to let Destination implement IDestination and to define
Id, Name, and Country as read-only in IDestination:

public interface IDestination
{
 int Id { get; }
 string Name { get; }
 string Country { get; }
 string Description { get; set; }
 ...
}

Now that we've discussed the basic patterns of DDD and how to adapt the Entity
Framework for the needs of DDD, we can discuss more advanced DDD patterns. In the
next subsection, we will introduce the CQRS pattern.

Command Query Responsibility Segregation
(CQRS) pattern
In its more general form, the usage of this pattern is quite easy: use different structures to
store and query data. Here, the requirements regarding how to store and update data differ
from the requirements of queries. In the case of DDD, the unit of storage is the aggregate, so
additions, deletions, and updation involve aggregates, while queries usually involve more
or less complicated transformations of properties that have been taken from several
aggregates.

Moreover, usually, we don't perform business operations on query results – we just use
them to compute other data (averages, sums, and so on). Therefore, while updates require
entities with full object-oriented semantics (methods, validation rules, encapsulated
information, and so on), query results just need sets of property/values pairs, so DTOs with
only public properties and no methods work well.

Understanding the Different Domains in Software Solutions Chapter 10

[284]

In its more common form, the pattern can be depicted as follows:

The main takeaway from this is that the extraction of query results don't need to pass
through the construction of entities and aggregates, but the fields shown in the query must
be extracted from the storage engine and projected into ad hoc DTOs. If queries are
implemented with LINQ, we need to use the Select clause to project the necessary
properties into DTOs:

ctx.MyTable.Where(...)....Select(new MyDto{...}).ToList();

However, in more complex situations, the CQRS may be implemented in a stronger form.
Namely, we can use different Bounded Contexts to store preprocessed query results. This
approach is common when queries involve data stored in different Bounded Contexts that's
handled by different distributed microservices.

In fact, the other option would be an aggregator microservice that queries all the necessary
microservices in order to assemble each query result. However, recursive calls to other
microservices to build an answer may result in unacceptable response times. Moreover,
factoring out some preprocessing ensures better usage of the available resources. This
pattern is implemented by sending changes caused by Bounded Context updates to all the
microservices that need them for computing their preprocessed query results.

Understanding the Different Domains in Software Solutions Chapter 10

[285]

The usage of this stronger form of the CQRS pattern transforms usual local database
transactions into complex time-consuming distributed transactions since a failure in a
single query preprocessor microservice should invalidate the whole transaction. As we
explained in Chapter 5, Applying a Microservice Architecture to Your Enterprise Application,
implementing distributed transactions is usually unacceptable for performance reasons, so
the common solution is to renounce to immediate overall coherent database and to accept
that the overall database will eventually be coherent after each update. Transient failures
can be solved with the retry policies that we analyzed in Chapter 5, Applying a Microservice
Architecture to Your Enterprise Application, while permanent failures are handled by
performing corrective actions on the already committed local transactions instead of
pretending to implement an overall globally distributed transaction.

As we discussed in Chapter 5, Applying a Microservice Architecture to Your Enterprise
Application, communication between microservices is often implemented with the
publisher/subscriber pattern to improve microservice separation.

At this point, you may be asking the following question:

"Why do we need to keep the original data once we have all the preprocessed query results?
We will never use them to answer queries!"

Some of the answers to this are as follows:

They are the source of truth that we may need to recover from failures.
We need them to compute new preprocessed results when we add new queries.
We need them to process new updates. In fact, processing updates usually
requires that some of the data is retrieved from the database, possibly shown to
the user, and then modified. For instance, to modify an item in an existing
purchase order, we need the whole order so that we can show it to the user and
compute the changes so that we can forward it to other microservices. Moreover,
whenever we modify or add data to the storage engine, we must verify the
coherence of the overall database (unique key constraints, foreign key
constraints, and so on).

In the next section, we will describe a common pattern that's used for handling operations
that span several aggregates or several Bounded Contexts.

Understanding the Different Domains in Software Solutions Chapter 10

[286]

Command handlers and domain events
To keep aggregates separated, usually, interactions with other aggregates and other
Bounded Contexts is done through events. It is good practice to store all the events when
they are computed during each aggregate process instead of processing them immediately
in order to avoid them interfering with the ongoing computation. This is easily achieved by
adding the following code to the abstract Entity class defined in the Entities and value
objects subsection of this chapter, as follows:

public List<IEventNotification> DomainEvents { get; private set; }
public void AddDomainEvent(IEventNotification evt)
{
 DomainEvents = DomainEvents ?? new List<IEventNotification>();
 DomainEvents.Add(evt);
}
public void RemoveDomainEvent(IEventNotification evt)
{
 DomainEvents?.Remove(evt);
}

Here, IEventNotification is an empty interface that's used to mark classes as events.

Event processing is usually performed immediately before changes are stored in the storage
engine. Accordingly, a good place to perform event processing is in
the SaveEntitiesAsync() method of each IUnitOfWork implementation (see the The
repository and Unit of Work patterns subsection).

Subscriptions to an event, T, can be provided as an implementation of
the IEventHandler<T> interface:

public interface IEventHandler<T>
 where T: IEventNotification
{
 Task HandleAsync(T ev);
}

Analogously, business operations can be described by the command object, which contains
all the input data of the operation, while the code that implements the actual operation can
be provided through the implementation of an ICommandHandler<T> interface:

public interface ICommandHandler<T>
 where T: ICommand
{
 Task HandleAsync(T command);
}

Understanding the Different Domains in Software Solutions Chapter 10

[287]

Here, ICommand is an empty interface that's used to mark classes as
commands. ICommandHandler<T> and IEventHandler<T> are examples of the command
pattern we described in Chapter 9, Design Patterns and .NET Core Implementation.

Each ICommandHandler<T> can be registered in the dependency injection engine so that
classes that need to execute a command, T, can use ICommandHandler<T> in their
constructor. This way, we decouple the abstract definition of a command (command class)
from the way it is executed.

The same construction can't be applied to events, T, and their IEventHandler<T> because
when an event is triggered, we need to retrieve several IEventHandler<T> and not just
one. We need to do this since each event may have several subscriptions. However, a few
lines of code can easily solve this difficulty. First, we need to define a class that hosts all the
handlers for a given event type:

public class EventTrigger<T>
 where T: IEventNotification
 {
 private IEnumerable<IEventHandler<T>> handlers;
 public EventTrigger(IEnumerable<IEventHandler<T>> handlers)
 {
 this.handlers = handlers;
 }
 public async Task Trigger(T ev)
 {
 foreach (var handler in handlers)
 await handler.HandleAsync(ev);
 }
 }

The idea is that each class that needs to trigger event T requires an EventTrigger<T> and
then passes the event to be triggered to its Trigger method, which, in turn, invokes all the
handlers.

Then, we need to register EventTrigger<T> in the dependency injection engine. A good
idea is to define the dependency injection extensions that we can invoke to declare each
event, as follows:

 service.AddEventHandler<MyEventType, MyHandlerType>()

This AddEventHandler extension must automatically produce a DI definition
for EventTrigger<T> and must process all the handlers that are declared with
AddEventHandler for each type, T.

Understanding the Different Domains in Software Solutions Chapter 10

[288]

The following extension class does this for us:

public static class EventDIExtensions
{
 private static IDictionary<Type, List<Type>> eventDictionary =
 new Dictionary<Type, List<Type>>();
 public static IServiceCollection AddEventHandler<T, H>
 (this IServiceCollection service)
 where T : IEventNotification
 where H: class, IEventHandler<T>
 {
 service.AddScoped<H>();
 List<Type> list = null;
 eventDictionary.TryGetValue(typeof(T), out list);
 if(list == null)
 {
 list = new List<Type>();
 eventDictionary.Add(typeof(T), list);
 service.AddScoped<EventTrigger<T>>(p =>
 {
 var handlers = new List<IEventHandler<T>>();
 foreach(var type in eventDictionary[typeof(T)])
 {
 handlers.Add(p.GetService(type) as IEventHandler<T>);
 }
 return new EventTrigger<T>(handlers);
 });
 }
 list.Add(typeof(H));
 return service;
 }
 ...
 ...
}

The H types of all the handlers associated with each event, T, are recorded in a list contained
in an entry of a dictionary indexed by the T type of the event. Then, each H is recorded in
the dependency injection engine.

Understanding the Different Domains in Software Solutions Chapter 10

[289]

The first time an entry for an event, T, is added, the corresponding dictionary entry is
created (a List<Type>) and the corresponding EventTrigger<T> is added to the
dependency injection engine. The EventTrigger<T> instance is created by a function
that's passed to AddSingleton<EventTrigger<T>>, which uses the dictionary entry for T
to get all the handler types. Then, all the handler types are used to retrieve the instances for
the dependency injection engine with p.GetService(type). We can use this operation
since all the handler types were registered in the dependency injection engine. Finally, the
list of all the handlers is used to create the required instance of EventTrigger<T>.

When the program starts up, all the ICommandHandler<T> and IEventHandler<T>
implementations can be retrieved with reflection and registered automatically. To help with
automatic discovery, they inherit from ICommandHandler and IEventHandler, which are
both empty interfaces. The EventDIExtensions class, which is available in this book's
GitHub repository, contains methods for the automatic discovery and registration of
command handlers and event handlers. The GitHub repository also contains an
IEventMediator interface and its EventMediator interface,
whose TriggerEvents(IEnumerable<IEventNotification> events) method
retrieves all the handlers associated with the events it receives in its argument from the
dependency injection engine and executes them. It is enough to have IEventMediator
injected into a class so that it can trigger events. EventDIExtensions also contains an
extension method that discovers all the queries that implement the empty IQuery interface
and adds them to the dependency injection engine.

A more sophisticated implementation is given by the MediatR NuGet package. The
previous subsection is dedicated to an extreme implementation of the CQRS pattern.

Event sourcing
Event sourcing is an extreme implementation of the stronger form of CQRS. It is useful
when the original Bounded Context isn't used at all to retrieve information and just as a
source of truth is used for new queries and for recovering from failures. In this case, instead
of updating data, we simply add events that describe the operation that was performed:
deleted record Id 15, changed the name to John in Id 21, and so on. These events are
immediately sent to all the dependent Bounded Contexts, and in the case of failures and/or
the addition of new queries, all we have to do is to reprocess some of them.

Understanding the Different Domains in Software Solutions Chapter 10

[290]

 While all of the techniques we've described up until now can be used in every type of
project if minor modifications are made, event sourcing requires a deep analysis to be
performed before it can be adopted since, in several cases, it may create bigger problems
than the ones it can solve. To get an idea of the problems it may cause when it's misused,
imagine that we apply it to purchase orders that have been modified and validated by
several users before being approved. Since purchase orders need to be retrieved before
they're updated/validated, the purchase order's Bounded Context isn't used just as a source
of truth, so event sourcing should not be applied to it. If this isn't the case, then we can
apply event sourcing to it, in which case our code would be forced to rebuild the whole
order from the recorded events each time the order is updated.

An example of its usage is the revenue logging system we described at the end of Chapter
5, Applying a Microservice Architecture to Your Enterprise Application. Single revenues are
recorded with event sourcing and then sent to the microservice we described in Chapter
5, Applying a Microservice Architecture to Your Enterprise Application, which, in turn, uses
them to preprocess future queries, that is, to compute daily revenues.

In the next section, we will learn how DDD can be applied to this book's WWTravelClub
use case.

Use case – understanding the domains of
the use case
From the requirements listed in the Case study – WWTravelClub section of Chapter 1,
Understanding the Importance of Software Architecture, and for the analysis in the Use case –
where do I store data? section of Chapter 7, How to Choose Your Data Storage in the Cloud, we
know that the WWTravelClub system is composed of the following parts:

Information about the available destinations and packages. We implemented the
first prototype of this subsystem's data layer in Chapter 7, How to Choose Your
Data Storage in the Cloud.
Reservation/purchase orders subsystem.
Communication with the experts/reviews subsystem.
Payment subsystem. We briefly analyzed the features of this subsystem and its
relationship with the reservation purchase subsystem at the beginning of the
Domain-driven design section of this chapter.
User accounts subsystem.
Statistics reporting subsystem.

Understanding the Different Domains in Software Solutions Chapter 10

[291]

Do the preceding subsystems represent different Bounded Contexts? Can some subsystems
be split into different Bounded Contexts? The answers to these questions are given by the
languages that are spoken in each subsystem:

The language that's spoken in subsystem 1 is the language of travel agencies.
There is no concept of a customer; just of locations, packages, and their features.
The language that's spoken in subsystem 2 is common to all service purchases,
such as the available resources, reservations, and purchase orders. This is a
separate Bounded Context.
The language that's spoken in subsystem 3 has a lot in common with subsystem
1's language. However, there are also typical social media concepts, such as rating,
chats, post sharing, media sharing, and so on. This subsystem can be split into
two parts: a social media subsystem that has a new bounded context and an
available information subsystem that is part of the Bounded Context of subsystem
1.
As we pointed out in the Domain-driven design section, in subsystem 4, we speak
the language of banking. This subsystem communicates with the reservation
purchase subsystem and executes tasks that are needed to carry out a purchase.
From these observations, we can see that it is a different Bounded Context and
has a customer/supplier relationship with the purchase/reservation system.
Subsystem 5 is definitely a separate Bounded Context (as in almost all web
applications). It has a relationship with all the Bounded Contexts that either have
a concept of a user or a concept of a customer because the concept of user
accounts always maps to these concepts. But how? Simple—the currently logged-
in user is assumed to be the social media user of the social media Bounded
Context, the customer of the reservation/purchase Bounded Context, and the
payer of the payment Bounded Context.
The query-only subsystem, that is, 6, speaks the language of analytics and
statistics and differs a lot from the languages that are spoken in the other
subsystems. However, it has a connection with almost all the Bounded Contexts
since it takes all its input from them. The preceding constraints force us to adopt
CQRS in its strong form, thereby considering it a query-only separated Bounded
Context. We implemented a part of it in Chapter 5, Applying a Microservice
Architecture to Your Enterprise Application, by using a microservice that conforms
to a strong form of CQRS.

Understanding the Different Domains in Software Solutions Chapter 10

[292]

In conclusion, each of the listed subsystems defines a different Bounded Context, but part
of the communication with the experts/reviews subsystem must be included in the Information
about available destinations and packages Bounded Context.

As the analysis continues and a prototype is implemented, some Bounded Contexts may
split and some others may be added, but it is fundamental to immediately start modeling
the system and to immediately start analyzing the relations among the Bounded Contexts
with the partial information we have since this will drive further investigations and will
help us define the communication protocols and Ubiquitous Languages that are needed so
that we can interact with the domain experts.

The following is a basic first sketch of the domain map:

For simplicity, we've omitted the Statistics reporting Bounded Context. Here, we're
assuming that the User accounts and Social Bounded Contexts have a
conformist relationship with all the other Bounded Contexts that communicate with them
because they are implemented with already existing software, so all the other components
must adapt to them.

Understanding the Different Domains in Software Solutions Chapter 10

[293]

As we mentioned previously, the relationship between Reservation and Payments is
customer/supplier because Payments furnishes services that are used to execute the tasks of
Reservation. All the other relationships are classed as Partners. The various concepts of
customer/user that most Bounded Contexts have are coordinated by the User
accounts authorization token, which indirectly takes care of mapping these concepts
between all the Bounded Contexts.

The Packages/location subsystem not only communicates the packages information that's
needed for carrying out a reservation/purchase – it also takes care of informing pending
purchase orders of possible price changes. Finally, we can see that social interactions are
started from an existing review or location, thereby creating communication with the
Package/locations Bounded Context.

Summary
In this chapter, we analyzed the main reasons for the adoption of domain-driven design
and why and how it faces the needs of the market. Here, we described how to identify
domains and how to coordinate the teams that work on different domains of the same
application with domain maps. Then, we analyzed the way DDD represents data with
entities, value objects and aggregates, furnishing advice, and code snippets so that we
could implement them in practice.

We also covered some typical patterns that are used with DDD, that is, the repository and
Unit of Work patterns, domain event patterns, CQRS, and event sourcing. Then, we learned
how to implement them in practice. We also showed you how to implement domain events
and the command pattern with decoupled handling so that we can add furnishing code
snippets to real-world projects.

Finally, we used the principles of DDD in practice to define domains and to create the first
sketch of a domain map for this book's WWTravelClub use case.

In the next chapter, you will learn how to maximize code reuse in your projects.

Understanding the Different Domains in Software Solutions Chapter 10

[294]

Questions
What furnishes the main hints so that we can discover domain boundaries?1.
What is the main tool that's used for coordinating the development of a separate2.
Bounded Context?
Is it true that each entry that composes an aggregate communicates with the3.
remainder of the system with its own methods?
Why is there a single aggregate root?4.
How many repositories can manage an aggregate?5.
How does a repository interact with the application layer?6.
Why is the Unit of Work pattern needed?7.
What are the reasons for the light form of CQRS? What about the reasons for its8.
strongest form?
What is the main tool that allows us to couple commands/domain events with9.
their handlers?
Is it true that event sourcing can be used to implement any Bounded Context?10.

Further reading
More resources on domain-driven design can be found here: https:/ ​/
domainlanguage. ​com/ ​ddd/ ​

A detailed discussion of CQRS design principles can be found here: http:/ ​/
udidahan. ​com/ ​2009/ ​12/ ​09/ ​clarified- ​cqrs/ ​

More information on MediatR can be found on MediatR's GitHub
repository: https:/ ​/​github. ​com/​jbogard/ ​MediatR

A good description of event sourcing, along with an example of it, can be seen in
the following blog post by Martin Fowler: https:/ ​/​martinfowler. ​com/ ​eaaDev/
EventSourcing. ​html

https://domainlanguage.com/ddd/
https://domainlanguage.com/ddd/
https://domainlanguage.com/ddd/
https://domainlanguage.com/ddd/
https://domainlanguage.com/ddd/
https://domainlanguage.com/ddd/
https://domainlanguage.com/ddd/
https://domainlanguage.com/ddd/
https://domainlanguage.com/ddd/
http://udidahan.com/2009/12/09/clarified-cqrs/
http://udidahan.com/2009/12/09/clarified-cqrs/
http://udidahan.com/2009/12/09/clarified-cqrs/
http://udidahan.com/2009/12/09/clarified-cqrs/
http://udidahan.com/2009/12/09/clarified-cqrs/
http://udidahan.com/2009/12/09/clarified-cqrs/
http://udidahan.com/2009/12/09/clarified-cqrs/
http://udidahan.com/2009/12/09/clarified-cqrs/
http://udidahan.com/2009/12/09/clarified-cqrs/
http://udidahan.com/2009/12/09/clarified-cqrs/
http://udidahan.com/2009/12/09/clarified-cqrs/
http://udidahan.com/2009/12/09/clarified-cqrs/
http://udidahan.com/2009/12/09/clarified-cqrs/
http://udidahan.com/2009/12/09/clarified-cqrs/
http://udidahan.com/2009/12/09/clarified-cqrs/
http://udidahan.com/2009/12/09/clarified-cqrs/
http://udidahan.com/2009/12/09/clarified-cqrs/
https://github.com/jbogard/MediatR
https://github.com/jbogard/MediatR
https://github.com/jbogard/MediatR
https://github.com/jbogard/MediatR
https://github.com/jbogard/MediatR
https://github.com/jbogard/MediatR
https://github.com/jbogard/MediatR
https://github.com/jbogard/MediatR
https://github.com/jbogard/MediatR
https://github.com/jbogard/MediatR
https://github.com/jbogard/MediatR
https://martinfowler.com/eaaDev/EventSourcing.html
https://martinfowler.com/eaaDev/EventSourcing.html
https://martinfowler.com/eaaDev/EventSourcing.html
https://martinfowler.com/eaaDev/EventSourcing.html
https://martinfowler.com/eaaDev/EventSourcing.html
https://martinfowler.com/eaaDev/EventSourcing.html
https://martinfowler.com/eaaDev/EventSourcing.html
https://martinfowler.com/eaaDev/EventSourcing.html
https://martinfowler.com/eaaDev/EventSourcing.html
https://martinfowler.com/eaaDev/EventSourcing.html
https://martinfowler.com/eaaDev/EventSourcing.html
https://martinfowler.com/eaaDev/EventSourcing.html

11
Implementing Code Reusability

in C# 8
Code reusability is one of the most important topics in software architecture. This chapter
aims to discuss ways to enable code reuse and understand how .NET Standard goes in this
direction to solve the problem of managing and maintaining a reusable library.

The following topics will be covered in this chapter:

Understanding the principles of code reuse
The advantages of working with .NET Standard
Creating reusable libraries

Technical requirements
This chapter requires the following things:

You need Visual Studio 2017 or the 2019 free community edition or better with
all the database tools installed.
A free Azure account: The Creating an Azure Account section in Chapter
1, Understanding the Importance of Software Architecture, explains how to create
one.
An Azure DevOps account: The What is Azure DevOps? section in Chapter
3, Documenting Requirements with Azure DevOps, explains how to create one.

You will find the sample code of this chapter at https:/ ​/​github. ​com/ ​PacktPublishing/
Hands-​On-​Software- ​Architecture- ​with- ​CSharp- ​8/​tree/ ​master/ ​ch11.

https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch11
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch11
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch11
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch11
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch11
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch11
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch11
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch11
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch11
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch11
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch11
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch11
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch11
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch11
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch11
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch11
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch11
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch11
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch11
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch11
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch11
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch11
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch11
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch11
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch11
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch11
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch11
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch11

Implementing Code Reusability in C# 8 Chapter 11

[296]

Understanding the principles of code
reusability
There is a single reason that you can always use to justify code reuse—you cannot spend
your valuable time recreating the wheel if it is already running well in other scenarios. That
is why most engineering domains are based on reusability principles. Think about the light
switch you have in your house.

Can you imagine the number of applications that can be made with the same interface
components? The fundamentals of code reuse are the same. Again, it is a matter of planning
a good solution so part of it can be reused later.

In software engineering, code reuse is one of the techniques that can bring to software
project a bunch of advantages, such as the following:

There's confidence in the software, considering that the reused piece of code was
already tested in another application
There's better usage of software architects since they can be dedicated to solving
this kind of problem
There's the possibility of bringing to the project a pattern that's already accepted
by the market
Development speed goes up due to the already implemented components
Maintenance is easier

These aspects indicate that code reuse shall be done whenever it is possible. It is your
responsibility, as a software architect, to ensure the preceding advantages and, more than
that, to incentivize your team to enable reuse in the software they are creating.

What is not code reuse?
The first thing you have to understand is that code reuse does not mean copying and
pasting code from one class to another. Even if this code was written by another team or
project, this does not indicate you are properly working with reusability principles. Let's
imagine a scenario that we will find in this book's use case, the WWTravelClub evaluation.

Implementing Code Reusability in C# 8 Chapter 11

[297]

In the project scenario, you may want to evaluate different kinds of subjects, such as the
Package, Destination Expert, City, Comments, and so on. The process for getting the
evaluation average is the same, no matter which subject you are referring to. Due to this,
you may want to enable reuse by copying and pasting the code for each evaluation. The
(bad) result will be something like this:

In the preceding diagram, the process for calculating the evaluation average is
decentralized, which means that the same code will be duplicated in different classes. This
will cause a lot of trouble, especially if the same approach starts happening in other
applications. For instance, if there is a new specification about how you have to calculate
the average or if you just get a bug in the calculation formula, you will have to fix it in all
instances of code.

Implementing Code Reusability in C# 8 Chapter 11

[298]

What is code reuse?
The solution to the problem mentioned in the last section is quite simple. You have to
analyze your code and select the parts of it that it would be a good idea to decouple from
your application. The greatest reason why you should decouple it is related to how you are
sure that this code can be reused in other parts of the application or even in another
application:

The centralization of the code brings to you, as a software architect, a different
responsibility for it. You will have to keep in mind that a bug or an incompatibility of this
code can cause damage to many parts of the application or different applications. On the
other hand, once you have this code tested and running, you will be able to propagate its
usage with no worries. Besides, if you need to evolve the average calculation process, you
will have to change the code in a single class.

Implementing Code Reusability in C# 8 Chapter 11

[299]

It is worth mentioning that the more you use the same code, the cheaper this development
will become. Cost needs to be mentioned because, in general, the conception of reusable
software costs more in the beginning.

Inserting reusability into your development cycle
If you understood that reusability will take you to another level of code implementation,
you should have been thinking about how to make this technique available in your
development cycle. As a matter of fact, creating and maintaining a component library is not
very easy, due to the responsibility you will have and the lack of good tools to support the
search for existent components.

On the other hand, there are some things that you may consider implementing in your
software development process every time you initiate a new development:

Use already implemented components from your user
library, selecting features in the software requirements specification that need
them.
Identify features in the software requirements specification that are candidates to
be designed as library components.
Modify the specification considering that these features will be developed using
reusable components.
Design the reusable components and be sure that they have the appropriate
interfaces to be used in many projects.
Build the project architecture with the new component library version.
Document the component library version so every developer and team knows
about it.

The use-identify-modify-design-build process is a technique that you may consider implement
every time you need to enable software reuse. As soon as you have the components you
need to write for this library, you will need to decide on the technology that will provide
these components.

During the history of software development, there were many approaches for doing this;
some of them are discussed in Chapter 5, Applying a Microservice Architecture to Your
Enterprise Application, in the Microservices as the evolution of the concept of module section.

Implementing Code Reusability in C# 8 Chapter 11

[300]

Using .NET Standard for code reuse
.NET has evolved a lot since its first version. This evolution is not only related to the
number of commands and performance issues, but the supported platforms too. As
discussed in Chapter 1, Understanding the Importance of Software Architecture, you can run
C# .NET in billions of devices, even if they are running Linux, Android, macOS, or iOS. For
this reason, .NET Standard was first announced together with .NET Core 1.0, but the
breaking changes happened with .NET Standard 2.0, when .NET Framework 4.6, .NET
Core, and Xamarin were compatible with it.

The key point is that .NET Standard is not only a kind of Visual Studio project. More than
that, it is a formal specification available to all .NET implementations. As you can see in the
following table, it covers everything from the .NET Framework to Unity (https:/ ​/​github.
com/​dotnet/​standard/ ​tree/ ​master/ ​docs/ ​versions):

.NET Standard 1.0 1.1 1.2 1.3 1.4 1.5 1.6 2.0 2.1
.NET Core 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 3.0
.NET Framework 4.5 4.5 4.5.1 4.6 4.6.1 4.6.11 4.6.11 4.6.11 N/A2

Mono 4.6 4.6 4.6 4.6 4.6 4.6 4.6 5.4 6.2
Xamarin.iOS 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.14 12.12
Xamarin.Mac 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.8 5.12
Xamarin.Android 7.0 7.0 7.0 7.0 7.0 7.0 7.0 8.0 9.3
Unity 2018.1 2018.1 2018.1 2018.1 2018.1 2018.1 2018.1 2018.1 TBD
Universal Windows Platform 8.0 8.0 8.1 10.0 10.0 10.0.16299 10.0.16299 10.0.16299 TBD

The preceding table indicates that if you build a class library that's compatible with this
standard, you will be able to reuse it in any of the platforms presented. Think about how
fast your development process can become if you plan to do so in all your projects.

Obviously, some components are not included in .NET Standard, but its evolution is
continuous. It is worth mentioning that Microsoft's official documentation indicates that the
higher the version, the more APIs are available to you.

Creating a .NET Standard library
It is quite simple to create a class library compatible with .NET Standard. Basically, you
need to choose the following project when creating the library:

https://github.com/dotnet/standard/tree/master/docs/versions
https://github.com/dotnet/standard/tree/master/docs/versions
https://github.com/dotnet/standard/tree/master/docs/versions
https://github.com/dotnet/standard/tree/master/docs/versions
https://github.com/dotnet/standard/tree/master/docs/versions
https://github.com/dotnet/standard/tree/master/docs/versions
https://github.com/dotnet/standard/tree/master/docs/versions
https://github.com/dotnet/standard/tree/master/docs/versions
https://github.com/dotnet/standard/tree/master/docs/versions
https://github.com/dotnet/standard/tree/master/docs/versions
https://github.com/dotnet/standard/tree/master/docs/versions
https://github.com/dotnet/standard/tree/master/docs/versions
https://github.com/dotnet/standard/tree/master/docs/versions
https://github.com/dotnet/standard/tree/master/docs/versions
https://github.com/dotnet/standard/tree/master/docs/versions
https://github.com/dotnet/standard/tree/master/docs/versions
https://github.com/dotnet/standard/tree/master/docs/versions
https://github.com/dotnet/standard/tree/master/docs/versions

Implementing Code Reusability in C# 8 Chapter 11

[301]

Once you have concluded this part, you will notice that the only difference between a
common class library and the one you created is the target framework defined in the project
file:

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <TargetFramework>netstandard2.0</TargetFramework>
 </PropertyGroup>
</Project>

As soon as your project is loaded, you can start coding the classes that you intend to reuse.
The advantage of building reusable classes using this approach is that you will be able to
reuse the written code in all of the project types we checked before. On the other hand, you
will find out that some APIs that are available in .NET Framework do not exist in this type
of project. You can follow the future of the standard at https:/ ​/​github. ​com/ ​dotnet/
standard/​tree/​master/ ​docs/ ​planning/ ​netstandard- ​2.​1.

https://github.com/dotnet/standard/tree/master/docs/planning/netstandard-2.1
https://github.com/dotnet/standard/tree/master/docs/planning/netstandard-2.1
https://github.com/dotnet/standard/tree/master/docs/planning/netstandard-2.1
https://github.com/dotnet/standard/tree/master/docs/planning/netstandard-2.1
https://github.com/dotnet/standard/tree/master/docs/planning/netstandard-2.1
https://github.com/dotnet/standard/tree/master/docs/planning/netstandard-2.1
https://github.com/dotnet/standard/tree/master/docs/planning/netstandard-2.1
https://github.com/dotnet/standard/tree/master/docs/planning/netstandard-2.1
https://github.com/dotnet/standard/tree/master/docs/planning/netstandard-2.1
https://github.com/dotnet/standard/tree/master/docs/planning/netstandard-2.1
https://github.com/dotnet/standard/tree/master/docs/planning/netstandard-2.1
https://github.com/dotnet/standard/tree/master/docs/planning/netstandard-2.1
https://github.com/dotnet/standard/tree/master/docs/planning/netstandard-2.1
https://github.com/dotnet/standard/tree/master/docs/planning/netstandard-2.1
https://github.com/dotnet/standard/tree/master/docs/planning/netstandard-2.1
https://github.com/dotnet/standard/tree/master/docs/planning/netstandard-2.1
https://github.com/dotnet/standard/tree/master/docs/planning/netstandard-2.1
https://github.com/dotnet/standard/tree/master/docs/planning/netstandard-2.1
https://github.com/dotnet/standard/tree/master/docs/planning/netstandard-2.1
https://github.com/dotnet/standard/tree/master/docs/planning/netstandard-2.1
https://github.com/dotnet/standard/tree/master/docs/planning/netstandard-2.1
https://github.com/dotnet/standard/tree/master/docs/planning/netstandard-2.1
https://github.com/dotnet/standard/tree/master/docs/planning/netstandard-2.1
https://github.com/dotnet/standard/tree/master/docs/planning/netstandard-2.1

Implementing Code Reusability in C# 8 Chapter 11

[302]

How does C# deal with code reuse?
There are many approaches where C# helps us deal with code reuse. The ability to build
libraries, as we checked in the last topic, is one of them. The most important one is the fact
that the language is object-oriented. Besides, it is worth mentioning the facilities that
generics brought to C# language. This topic will discuss the last two mentioned.

Object-oriented analysis
The object-oriented analysis approach gives us the ability to reuse code in different ways,
from the facility of inheritance to the changeability of polymorphism. Complete adoption of
object-oriented programming. will let you implement abstraction and encapsulation too.

The following screenshot presents using the object-oriented approach to make reuse easier.
As you can see, there are different ways to calculate the grades of an evaluation,
considering you can be a basic or a prime user of the system:

Implementing Code Reusability in C# 8 Chapter 11

[303]

There are two aspects to be analyzed as code reuse in this design. The first is that there's no
need to declare the properties in each child class since inheritance is doing it for you.

The second is the opportunity we have to use polymorphism, enabling different behaviors
for the same method:

public class PrimeUsersEvaluation : Evaluation
{
 /// <summary>
 /// The business rule implemented here indicates that grades that
 /// came from prime users have 20% of increase
 /// </summary>
 /// <returns>the final grade from a prime user</returns>
 public override double CalculateGrade()
 {
 return Grade * 1.2;
 }
}

You can check in the preceding code the usage of the polymorphism principle, where the
calculation of evaluation for prime users will increase by 20%. Now, take a look at how
easy it is to call different objects inherited by the same class. Since the collection content
implements the same interface, IContentEvaluated, it can have basic and prime users
too:

public class EvaluationService
{
 public IContentEvaluated content { get; set; }
 /// <summary>
 /// No matter the Evaluation, the calculation will always get
 /// values from the method CalculateGrade
 /// </summary>
 /// <returns>The average of the grade from Evaluations</returns>
 public double CalculateEvaluationAverage()
 {
 var count = 0;
 double evaluationGrade = 0;
 foreach (var evaluation in content.Evaluations)
 {
 evaluationGrade += evaluation.CalculateGrade();
 count++;
 }
 return evaluationGrade/count;
 }
}

Implementing Code Reusability in C# 8 Chapter 11

[304]

Object-oriented adoption can be considered mandatory when using C#. However, more
specific usage will need study and practice. You, as a software architect, shall always
incentivize your team to study object-oriented analysis. The more they have good
abstraction abilities, the easier code reuse will become.

Generics
Generics were introduced in C# in version 2.0, and it is definitely considered an approach
that increases code reuse. It also maximizes type safety and performance.

The basic principle of generics is that you can define in an interface, class, method,
property, event, delegate, or even a placeholder that will be replaced with a specific type at
a later time when one of the preceding entities will be used. The opportunity you have with
this feature is incredible since you can use the same code to run different versions of the
type, generically.

The following code is a modification of EvaluationService, which was presented in the
last section. The idea here is to enable the generalization of the service, giving the
opportunity to define the goal of evaluation since its creation:

public class EvaluationService<T> where T: IContentEvaluated

This declaration indicates that any class that implements the
IContentEvaluaded interface can be used for this service. Besides, the service will be
responsible for creating the evaluated content.

The following code implements exactly the evaluated content created since the construction
of the service. This code uses System.Reflection and the generic definition from the
class:

public EvaluationService()
{
 var name = GetTypeOfEvaluation();
 content = (T)Assembly.GetExecutingAssembly().CreateInstance(name);
}

It is worth mentioning that this code will work because all of the classes are in the same
assembly. The result of this modification can be checked in the instance creation of the
service:

var service = new EvaluationService<CityEvaluation>();

Implementing Code Reusability in C# 8 Chapter 11

[305]

The good news is that now you have a generic service that will automatically instantiate the
list object with the evaluations of the content you need. It worth mentioning that generics
obviously will need more time dedicated to the first project construction. However, after
the design is done, you will have a good, fast, and easy-to-maintain code. This is what we
call reuse!

Use case – reusing code as a fast track to
deliver good and safe software
The final design of the solution for evaluating content for WWTravelClub can be checked as
follows. This approach consists of the usage of many topics that were discussed in this
chapter. First, all of the code is placed in a .NET Standard class library. This means that you
can add this code to different types of solutions, such as .NET Core web apps and Xamarin
apps for the Android and iOS platforms:

This design makes use of object-oriented principles such as inheritance, so you do not need
to write properties and methods more than once that can be used in many classes;
and polymorphism, so that you can change the behavior of the code without changing the
name of the method.

Implementing Code Reusability in C# 8 Chapter 11

[306]

To finish, the design abstracts the idea of the content by introducing generics as a tool that
can facilitate the manipulation of similar classes, such as the ones we have in
WWTravelClub to evaluate contents regarding cities, comments, destination experts, and
travel packages.

The big difference between a team that incentivizes code reuse and one that does not is the
velocity of delivering good software to end users. Of course, beginning this approach is not
easy, but rest assured that you will get good results after some time working with it.

Summary
This chapter aimed to help you understand the advantages of code reuse. It also gave you
an idea about what is not properly reused code. This chapter also presented approaches for
reusing code.

Considering that technology without process does not take you anywhere, a process was
presented to enable code reuse. This process is related to using already
finished components from your library; identifying features in the software requirements
specification that are candidates to be designed as library components; modifying the
specification considering these features; designing the reusable components; and
building the project architecture with the new component library version.

To finish, this chapter presented .NET Standard libraries as an approach to reuse code for
different C # platforms, reinforced the principles of object-oriented programming as a way
to reuse code, and presented generics as a sophisticated implementation to simplify the
treatment of objects with the same characteristics. In the next chapter, we will be seeing
how to apply service-oriented architecture (SOA) with .NET Core.

It is worth mentioning that SOA is considered a way to implement code reuse in
sophisticated environments.

Implementing Code Reusability in C# 8 Chapter 11

[307]

Questions
Can copy-and-paste be considered code reuse? What are the impacts of this1.
approach?
How can you make use of code reuse without copying and pasting code?2.
Is there a process that can help code reuse?3.
What is the difference between .NET Standard and .NET Core?4.
What are the advantages of creating a .NET Standard library?5.
How does object-oriented analysis help with code reuse?6.
How do generics help with code reuse?7.

Further reading
These are some books and websites where you will find more information about this
chapter:

Clean Architecture: A Craftsman's Guide to Software Structure and Design by Martin,
Robert C. Pearson Education, 2018.
Design Patterns: Elements of Reusable Object-Oriented Software by Erica Gamma [et
al.] Addison-Wesley, 1994.
Design Principles and Design Patterns by Robert C. Martin, 2000.
https:/​/ ​devblogs. ​microsoft. ​com/​dotnet/ ​introducing- ​net- ​standard/ ​

https:/​/ ​www. ​packtpub. ​com/ ​application- ​development/ ​net- ​standard- ​20-
cookbook

https:/​/ ​github. ​com/ ​dotnet/ ​standard/ ​blob/ ​master/ ​docs/ ​versions. ​md

https:/​/ ​docs. ​microsoft. ​com/ ​pt-​br/ ​dotnet/ ​csharp/ ​programming- ​guide/
generics/ ​

https://devblogs.microsoft.com/dotnet/introducing-net-standard/
https://devblogs.microsoft.com/dotnet/introducing-net-standard/
https://devblogs.microsoft.com/dotnet/introducing-net-standard/
https://devblogs.microsoft.com/dotnet/introducing-net-standard/
https://devblogs.microsoft.com/dotnet/introducing-net-standard/
https://devblogs.microsoft.com/dotnet/introducing-net-standard/
https://devblogs.microsoft.com/dotnet/introducing-net-standard/
https://devblogs.microsoft.com/dotnet/introducing-net-standard/
https://devblogs.microsoft.com/dotnet/introducing-net-standard/
https://devblogs.microsoft.com/dotnet/introducing-net-standard/
https://devblogs.microsoft.com/dotnet/introducing-net-standard/
https://devblogs.microsoft.com/dotnet/introducing-net-standard/
https://devblogs.microsoft.com/dotnet/introducing-net-standard/
https://devblogs.microsoft.com/dotnet/introducing-net-standard/
https://devblogs.microsoft.com/dotnet/introducing-net-standard/
https://devblogs.microsoft.com/dotnet/introducing-net-standard/
https://devblogs.microsoft.com/dotnet/introducing-net-standard/
https://devblogs.microsoft.com/dotnet/introducing-net-standard/
https://www.packtpub.com/application-development/net-standard-20-cookbook
https://www.packtpub.com/application-development/net-standard-20-cookbook
https://www.packtpub.com/application-development/net-standard-20-cookbook
https://www.packtpub.com/application-development/net-standard-20-cookbook
https://www.packtpub.com/application-development/net-standard-20-cookbook
https://www.packtpub.com/application-development/net-standard-20-cookbook
https://www.packtpub.com/application-development/net-standard-20-cookbook
https://www.packtpub.com/application-development/net-standard-20-cookbook
https://www.packtpub.com/application-development/net-standard-20-cookbook
https://www.packtpub.com/application-development/net-standard-20-cookbook
https://www.packtpub.com/application-development/net-standard-20-cookbook
https://www.packtpub.com/application-development/net-standard-20-cookbook
https://www.packtpub.com/application-development/net-standard-20-cookbook
https://www.packtpub.com/application-development/net-standard-20-cookbook
https://www.packtpub.com/application-development/net-standard-20-cookbook
https://www.packtpub.com/application-development/net-standard-20-cookbook
https://www.packtpub.com/application-development/net-standard-20-cookbook
https://www.packtpub.com/application-development/net-standard-20-cookbook
https://www.packtpub.com/application-development/net-standard-20-cookbook
https://www.packtpub.com/application-development/net-standard-20-cookbook
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://github.com/dotnet/standard/blob/master/docs/versions.md
https://docs.microsoft.com/pt-br/dotnet/csharp/programming-guide/generics/
https://docs.microsoft.com/pt-br/dotnet/csharp/programming-guide/generics/
https://docs.microsoft.com/pt-br/dotnet/csharp/programming-guide/generics/
https://docs.microsoft.com/pt-br/dotnet/csharp/programming-guide/generics/
https://docs.microsoft.com/pt-br/dotnet/csharp/programming-guide/generics/
https://docs.microsoft.com/pt-br/dotnet/csharp/programming-guide/generics/
https://docs.microsoft.com/pt-br/dotnet/csharp/programming-guide/generics/
https://docs.microsoft.com/pt-br/dotnet/csharp/programming-guide/generics/
https://docs.microsoft.com/pt-br/dotnet/csharp/programming-guide/generics/
https://docs.microsoft.com/pt-br/dotnet/csharp/programming-guide/generics/
https://docs.microsoft.com/pt-br/dotnet/csharp/programming-guide/generics/
https://docs.microsoft.com/pt-br/dotnet/csharp/programming-guide/generics/
https://docs.microsoft.com/pt-br/dotnet/csharp/programming-guide/generics/
https://docs.microsoft.com/pt-br/dotnet/csharp/programming-guide/generics/
https://docs.microsoft.com/pt-br/dotnet/csharp/programming-guide/generics/
https://docs.microsoft.com/pt-br/dotnet/csharp/programming-guide/generics/
https://docs.microsoft.com/pt-br/dotnet/csharp/programming-guide/generics/
https://docs.microsoft.com/pt-br/dotnet/csharp/programming-guide/generics/
https://docs.microsoft.com/pt-br/dotnet/csharp/programming-guide/generics/
https://docs.microsoft.com/pt-br/dotnet/csharp/programming-guide/generics/
https://docs.microsoft.com/pt-br/dotnet/csharp/programming-guide/generics/
https://docs.microsoft.com/pt-br/dotnet/csharp/programming-guide/generics/
https://docs.microsoft.com/pt-br/dotnet/csharp/programming-guide/generics/

12
Applying Service-Oriented

Architectures with .NET Core
The term Service-Oriented Architecture (SOA) refers to a modular architecture where
interaction between system components is achieved through communication. SOA allows
applications from different organizations to exchange data and transactions automatically
and allows organizations to offer services on the internet.

Moreover, as we discussed in the Microservices as the evolution of the concept of
modules section of Chapter 5, Applying a Microservice Architecture to Your Enterprise
Application, communication-based interaction solves binary compatibility and version
mismatch problems that inevitably appear in complex systems made up of modules that
share the same address space. Moreover, with SOA, you don't need to deploy different
copies of the same component in the various systems/subsystem that use it – each
component only needs to be deployed in just one place. This can be a single server, a cluster
located in a single data center, or a geographically distributed cluster. Here, each version of
your component is deployed just once, and the server/cluster logic automatically creates all
the necessary replicas, thus simplifying the overall Continuous Integration / Continuous
Delivery (CI/CD) cycle.

As long as a newer version conforms to the communication interface that's declared to the
clients, no incompatibilities can occur. On the other hand, with DLLs/packages, when the
same interface is maintained, incompatibilities may arise because of possible version
mismatches in terms of the dependencies of other DLLs/packages that the library module
might have in common with its clients.

Applying Service-Oriented Architectures with .NET Core Chapter 12

[309]

Organizing clusters/networks of cooperating services was discussed in Chapter 5, Applying
a Microservice Architecture to Your Enterprise Application. In this chapter, we will mainly focus
on the communication interface offered by each service. More specifically, we will discuss
the following topics:

Understanding the principles of the SOA approach
How does .NET Core deal with SOA?
Use case – exposing WWTravelClub packages

By the end of this chapter, you will know how to publicly expose data from
the WWTravelClub book use case through an ASP.NET Core service.

Technical requirements
This chapter requires Visual Studio 2017 or 2019 free Community Edition or better with all
the database tools installed.

All the concepts in this chapter will be clarified with practical examples based on this
book's WWTravelClub book use case. You will find the code for this chapter at https:/ ​/
github.​com/​PacktPublishing/ ​Hands- ​On- ​Software- ​Architecture- ​with- ​CSharp- ​8.

Understanding the principles of the SOA
approach
Like classes in an object-oriented architecture, services are implementations of interfaces
that, in turn, come from system functional specifications. Therefore, the first step in a
service design is the definition of its abstract interface. During this stage, you define all the
service operations as interface methods that operate on the types of your favorite language
(C#, Java, C++, JavaScript, and so on) and decide which operations to implement with
synchronous communication and which ones to implement with asynchronous
communication.

The interfaces that are defined in this initial stage won't necessarily be used in the actual
service implementation, and are just useful design tools. Once we've decided on the
architecture of the services, these interfaces are usually redefined so that we can adapt them
to the peculiarity of the architecture.

https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8

Applying Service-Oriented Architectures with .NET Core Chapter 12

[310]

It is worth pointing out that SOA messages must keep the same kind of semantics as
method calls/answers; that is, the reaction to a message must not depend on any previously
received messages. Here, the messages must be independent of each other, and the service
must not remember any previously received messages.

For instance, if the purpose of messages is to create a new database entry, this semantic
must not change with the context of other messages, and the way the database entry is
created must depend on the content of the current message and not on other previously
received messages. As a consequence, a client can't create sessions and can't log in to a
service, perform some operations, and then log out. An authentication token must be
repeated in each message.

The reasons for this constraint are modularity, testability, and maintainability. In fact, a
session-based service would be very hard to test and modify due to the interactions that
are hidden in the session data.

Once you've decided on the interface that's going to be implemented by a service, you must
decide which communication stack/ SOA architecture to adopt. The communication stack
must be part of some official or de facto standard to ensure your service's interoperability.
Interoperability is the main constraint prescribed by SOA: services must offer a
communication interface that does not depend on the specific communication library used,
on the implementation language, or on the deployment platform.

Once you've decided on the communication stack/architecture, you need to adapt your
previous interfaces to the architecture's peculiarities (see the REST web services subsection of
this chapter for more details). Then, you must translate these interfaces into the chosen
communication language. This means that you have to map all the programming language
types into types that are available in the chosen communication language.

The actual translation of data is usually performed automatically by the SOA libraries that
are used by your development environment. However, some configuration might be
needed and, in any case, we must be aware of how our programming language types are
transformed before each communication. For instance, some numeric types might be
transformed into types with less precision or with different ranges of values.

The interoperability constraint can be interpreted in a lighter form in the case of
microservices that aren't accessible outside of their clusters, since they need to
communicate with other microservices that belong to the same cluster. In this case, this
means that the communication stack might be platform-specific so that it can increase
performance, but it must be a de facto standard to avoid compatibility problems with other
microservices that might be added to the cluster as the application evolves.

Applying Service-Oriented Architectures with .NET Core Chapter 12

[311]

We've spoken of the communication stack and not of the communication protocol because SOA
communication standards usually define the format of the message's content and provide
different possibilities for the specific protocol that's used to embed those messages. For
instance, the SOAP protocol just defines an XML-based format for the various kind of
messages, but SOAP messages can be conveyed by various protocols. Usually, the most
common protocol that's used for SOAP is HTTP, but you may decide to jump to the HTTP
level and send SOAP messages directly over TCP/IP for better performance.

The choice of communication stack you should adopt depends on several factors:

Compatibility constraints: If your service must be publicly available on the
internet to business clients, then you must conform to the most common choices,
which means using either SOAP over HTTP or JSON REST services. The most
common choices are different if your clients aren't business clients but Internet of
Things (IoT) clients. Also, within IoT, the protocols that are used in different
application areas can be different. For instance, marine vehicle status data isn't
typically exchanged with Signal K.
Development/deployment platform: Not all communication stacks are available
on all development frameworks and on all deployment platforms. For
instance, .NET remoting, which we used in the code example at the end of
Chapter 5, Applying a Microservice Architecture to Your Enterprise Application, is
specific to .NET and Azure Service Fabric. Luckily, all the most common
communication stacks that are used in public business services, such as SOAP
and JSON-based REST communication, are available in all the main
development/deployment platforms.
Performance: If your system is not exposed to the outside world and is a private
part of your microservice cluster, performance considerations have a higher
priority. That's why, in the Service Fabric example at the end of Chapter
5, Applying a Microservice Architecture to Your Enterprise Application, we used .NET
remoting as an internal communication stack. It is worth pointing out that, with
private services, you need to be concerned about interoperability and refrain from
using custom communication stacks. .NET remoting is not an official standard,
but it is acceptable because it is a kind of de facto standard for internal
communication within Azure Service Fabric.
Availability of tools and knowledge in your team: Having knowledge and
knowing about the availability of tools in your team/organization has an
important weight when it comes to choosing between acceptable communication
stacks. However, this kind of constraint always has less priority than
compatibility constraints since it makes no sense to conceive a system that is easy
to implement for your team but that almost nobody can use.

Applying Service-Oriented Architectures with .NET Core Chapter 12

[312]

Flexibility versus available features: Some communication solutions, while less
complete, offer a higher degree of flexibility, while other solutions, while being
more complete, offer less flexibility. The need for flexibility started a movement
from SOAP-based services to the more flexible REST services in the last few
years. This point will be discussed in more detail when we describe SOAP and
REST services in the remainder of this section.
Service description: When services must be exposed on the internet, client
applications need a publicly available description of the service specifications in
order to design their communication clients. Some communication stacks include
languages and conventions to describe service specifications. Formal service
specifications that are exposed this way can be processed so that
they automatically create communication clients. SOAP goes further and allows
service discoverability by means of a public XML-based directory containing
information about the tasks each web service can carry out.

Once you've chosen the communication stack you wish to use, you must use the tools that
are available in your development environment to implement the service in a way that
conforms to the chosen communication stack. Sometimes, communication stack compliance
is automatically ensured by the development tools, but sometimes, it may require some
development effort. For instance, in the .NET world, the compliance of SOAP services is
automatically ensured by development tools if you use WCF, while the compliance of REST
services falls under the developer's responsibility.

Some of the fundamental features of SOA solutions are as follows:

Authentication: Allows the client to authenticate to access service operations.
Authorization: Handles the client's permissions.
Security: This is how communication is kept safe, that is, how to prevent
unauthorized systems from reading and/or modifying the content of the
communication. Typically, encryption prevents both unauthorized modifications
and reading, while electronic signature algorithms prevent just modifications.
Exceptions: Returns exceptions to the client.
Message reliability: Ensures that messages reliably reach their destination in
case of possible infrastructure faults.

Though sometimes desirable, the following features aren't always necessary:

Distributed transactions: The capability to handle distributed transactions, thus
undoing all the changes you've made whenever the distributed transactions fail
or are aborted

Applying Service-Oriented Architectures with .NET Core Chapter 12

[313]

Support for the Publisher/Subscriber pattern: If and how events and
notifications are supported
Addressing: If and how references to other services and or service/methods are
supported
Routing: If and how messages can be routed through a network of services

The remainder of this section is dedicated to describing SOAP and REST services since they
are the de facto standard for business services that are exposed outside of their
clusters/servers. For performance reasons, microservices use other protocols such as .NET
Remoting and AMQP for inter-cluster communication. The usage of .NET Remoting was
discussed in Chapter 5, Applying a Microservice Architecture to Your Enterprise Application,
while links on AMQP are given in the Further reading section.

SOAP web services
The Simple Object Access Protocol (SOAP) allows both one-way messages and
answer/response messages. Communication can be both synchronous and asynchronous,
but, if the underlying protocol is synchronous, such as in the case of HTTP, the sender
receives an acknowledgment saying that the message was received (but not necessarily
processed). When asynchronous communication is used, the sender must listen for
incoming communications. Often, asynchronous communication is implemented with the
subscriber/publisher pattern that we described in Chapter 9, Design Patterns and .NET Core
Implementation.

Messages are represented as XML documents called envelopes. Each envelope contains a
header, a body, and a fault element. The body is where the actual content of the message
is placed. The fault element contains possible errors, so it's the way exceptions are
exchanged when communication occurs. Finally, the header contains any auxiliary
information that enriches the protocol but does not contain domain data. For example, the
header may contain an authentication token, and/or a signature if the message is signed.

The underlying protocol that's used to send the XML envelopes is usually HTTP, but the
SOAP specification allows any protocol, so we can use TCP/IP or SMTP directly. As a
matter of fact, the more diffused underlying protocol is HTTP, so, if you don't have a good
reason to choose another protocol, you should use HTTP in order to maximize the service's
interoperability.

Applying Service-Oriented Architectures with .NET Core Chapter 12

[314]

SOAP specifications contain the basics of message exchange, while other auxiliary features
are described in separate specification documents called WS- * and are usually handled by
adding extra information in the SOAP header. WS-* specifications handle all the
fundamental and desirable features of SOA we listed previously. For instance, WS-
Security takes care of security, including authentication, authorization, and
encryption/signatures; WS-Eventing and WS-Notification are two alternative ways of
implementing the publisher/subscriber pattern; WS-ReliableMessaging is concerned
with the reliable delivery of messages in case of possible faults, and WS-Transaction is
concerned with distributed transactions.

The preceding WS-* specifications are in no way exhaustive but are the more relevant and
supported features. In fact, actual implementations in various environments (such as Java
and .NET) furnish the more relevant WS-* services, but no implementation supports all
the WS-* specifications.

All the XML documents/document parts involved in the SOAP protocol are formally
defined in XSD documents, which are special XML documents whose content provides a
description of XML structures. Also, all your custom data structures (classes and interfaces
in an object-oriented language) must be translated into XSD if they are going to be part of a
SOAP envelope.

Each XSD specification has an associated namespace that identifies the specification and a
physical location where it can be found. Both the namespace and the physical location are
URIs. The location URI doesn't need to be publicly accessible if the web service is accessible
just from within an intranet.

The whole definition of a service is an XSD specification that may contain references to
other namespaces, that is, to other XSD documents. In a few words, all the messages of a
SOAP communication must be defined in an XSD specification. Then, a server and a client
can communicate if they refer to the same XSD specifications. This means, for instance, that
you need to create a new XSD specification each time you add another field to a message.
After that, you need to update all the XSD files that reference the old message definition to
the new message definition by creating a new version of them. In turn, these modifications
require the creation of other versions for other XSD files, and so on. Therefore, simple
modifications that maintain compatibility with the previous behavior (clients could simply
ignore the field that was added) may cause an exponential chain of version changes.

Applying Service-Oriented Architectures with .NET Core Chapter 12

[315]

In the last few years, the difficulty in handling modifications, along with the complexity of
handling the configuration of all the WS-* specifications and performance problems, caused
a gradual move toward the simpler REST services that we will describe in the upcoming
sections. This move started with services that were called from JavaScript due to the
difficulty of implementing complete SOAP clients that were able to run efficiently in a web
browser. Moreover, the complex SOAP machinery was oversized for the simple needs of
the typical clients running in a browser and may have caused a complete waste of
development time.

Around 2018, services aimed at non-JavaScript clients started a massive move toward REST
services, and nowadays the preferred choice is REST services, with SOAP being used either
for compatibility with legacy systems or when features that aren't supported by REST
services are needed. A typical application area that continues to prefer to SOAP system is
that of payment/banking systems because these systems need transactional support that is
offered by the WS-Transaction SOAP specification. There is no equivalent in the REST
services world.

REST web services
REST services were initially conceived to avoid the complex machinery of SOAP in simple
cases such as calls to a service from the JavaScript code of a web page. Then, they gradually
became the preferred choice for complex systems. REST services use HTTP to exchange
data in JSON or, less commonly, in XML format. In a few words, they replace the SOAP
body with the HTTP body, the SOAP header with the HTTP header, and the HTTP
response code replaces the fault element and furnishes further auxiliary information on the
operation that was performed.

The main reason for the success of REST services is that HTTP already offers most of
SOAP's features natively, which means we can avoid building a SOAP level on top of
HTTP. Moreover, the whole HTTP machinery is simpler than SOAP: simpler to program,
simpler to configure, and simpler to implement efficiently.

Moreover, REST services impose fewer constraints on the clients. In particular, type
compatibility between servers and clients conforms to the more flexible JavaScript type
compatibility model because JSON is a subset of JavaScript. Moreover, when XML is used
in place of JSON, it maintains the same JavaScript type compatibility rules. No XML
namespaces need to be specified.

Applying Service-Oriented Architectures with .NET Core Chapter 12

[316]

When using JSON and XML, if the server adds some more fields to the response while
keeping the same semantic of all the other fields compatible with the previous client, they
can simply ignore the new fields. Accordingly, changes that are made to a REST service
definition only need to be propagated to previous clients in case of breaking changes that
cause an actual incompatible behavior in the server.

Moreover, it is likely that changes are self-limited and do not result in an exponential chain
of changes because type compatibility does not require the reference to a specific type to be
defined in a unique shared place and simply requires that the shape of types is compatible.

Let's clarify the REST service's type compatibility rules with an example. Let's imagine
that several services use a Person object that contains Name, Surname, and Address string
fields:

{
 Name: string,
 Surname: string,
 Address: string
}

Type compatibility is ensured if the service and client refer to different copies of the
preceding definition. It is also acceptable for the client to use a definition with fewer fields,
since it can simply ignore all the other fields:

{
 Name: string,
 Surname: string,
}

Now, let's say that a service, S1, that handles a Persons database, replaces the Address
string with a complex object:

{
 Name: string,
 Surname: string,
 Address:
 {
 Country: string,
 Town: string
 Location: string
 }
}

Applying Service-Oriented Architectures with .NET Core Chapter 12

[317]

Now, let's say that a service, S2, takes Persons from S1 and adds it to the responses it
returns on some of its methods. After the breaking change of S1, it can adapt its
communication client that calls S1 to the new format. Then, it can convert the new Person
format into the older one before using Persons in its responses. This way. S2 avoids
propagating the breaking change of S1.

In general, basing type compatibility on the object shape (tree of nested properties), instead
of a reference to the same formal type definition, increases flexibility and modifiability. The
price we pay for this increased flexibility is that type compatibility can't be computed
automatically by comparing the formal definition of server and client interfaces. In fact, in
absence of a univocal specification, each time a new version of the service is released, the
developer must verify that the semantics of all the fields that the client and server have in
common remain unchanged from the previous version. The basic idea behind REST
services is to give up the severity checks and complex protocols for greater flexibility and
simplicity, while SOAP does exactly the opposite.

The REST services manifesto states that REST uses native HTTP features to implement all
the required service features. So, for instance, authentication will be performed directly
with the HTTP Authorization field, encryption will be achieved with HTTPS, exceptions
will be handled with an HTTP error status code, and routing and reliable messaging will be
handled by the machinery the HTTP protocol relies on. Addressing is achieved by using
URLs to refer to services, their methods, and other resources.

There is no native support for asynchronous communication since HTTP is a synchronous
protocol. There's also no native support for the Publisher/Subscriber pattern, but two
services can interact with the Publisher/Subscriber pattern by each exposing an endpoint to
the other. More specifically, the first service exposes a subscription endpoint, while the
second one exposes an endpoint where it receives its notifications, which are authorized
through a common secret that's exchanged during the subscription. This pattern is quite
common. GitHub also allows us to send our REST services to repository events.

REST services offer no easy options when it comes to implementing distributed
transactions, which is why payment/banking systems still prefer SOAP. Luckily, most
application areas don't need the strong form of consistency that's ensured by distributed
transactions. For them, lighter forms of consistency, such as eventual consistency, are enough
and are preferred for performance reasons. Please refer to Chapter 7, How to Choose Your
Data Storage in the Cloud, for a discussion on the various types of consistencies.

Applying Service-Oriented Architectures with .NET Core Chapter 12

[318]

The REST manifesto not only prescribes the usage of the predefined solutions that are
already available in HTTP but also the usage of a WEB-like semantic. More specifically, all
the service operations must be conceived as CRUD operations on resources that are
identified by URLs (the same resource may be identified by several URLs). In fact, REST is
an acronym for Representational State Transfer, meaning that each URL is the
representation of some sort of object. Each kind of service request needs to adopt the
appropriate HTTP verb, as follows:

GET (Read operation): The URL represents the resource that is returned by the
read operation. Thus, GET operations mimic pointer dereferencing. In the case of
a successful operation, a 200 (ok) status code is returned.
POST (Creation operation): The JSON/XML object that's contained in the request
body is added as a new resource to the object represented by the operation URL.
If the new resource is successfully created immediately, a 201 (created) status
code is returned, along with a response object that depends on the operation. The
response object should contain the most specific URL that identifies the created
resource. If creation is deferred to a later time, a 202 (accepted) status code is
returned.
PUT: The JSON/XML object contained in the request body replaces the object
referenced by the request URL. In the case of successful operation, a 200 (ok)
status code is returned. This operation is idempotent, meaning that repeating the
same request twice causes the same modification.
PATCH: The JSON/XML object contained in the request body contains instructions
on how to modify the object referenced by the request URL. This operation is not
idempotent since the modification may be an increment of a numeric field. In the
case of successful operation, a 200 (ok) status code is returned.
DELETE: The resource referenced by the request URL is removed. In the case of
successful operation, a 200 (ok) status code is returned.

If the resource has been moved from the request URL to another URL, a redirect code is
returned:

301 (moved permanently), plus the new URL where we can find the resource
307 (moved temporarily), plus the new URL where we can find the resource

Applying Service-Oriented Architectures with .NET Core Chapter 12

[319]

If the operation fails, a status code that depends on the kind of failure is returned. Some
examples of failures codes are as follows:

400 (bad request): The request that was sent to the server is ill-formed.
404 (not found): When the request URL doesn't refer to any known object.
405 (method not allowed): When the request verb is not supported by the
resource referenced by the URL.
401 (unauthorized): The operation requires authentication, but the client has not
furnished any valid authorization header.
403 (forbidden): The client is correctly authenticated but has no right to perform
the operation.

The preceding list of status codes is not exhaustive. References to an exhaustive list will be
provided in the Further reading section.

It is fundamental to point out that POST/PUT/PATCH/DELETE operations may have – and
usually have – side effects on other resources. Otherwise, it would be impossible to code
operations that act simultaneously on several resources.

In other words, the HTTP verb must conform with the operation that's performed on the
resource and referenced by the request URL, but the operation might affect other resources.
The same operation might be performed with a different HTTP verb on one of the other
involved resources. It is the developer's responsibility to choose which way to perform the
same operation in order to implement it in the service interface.

Thanks to the side effects of HTTP verbs, REST services are able to encode all of these
operations as CRUD operations on resources represented by URLs.

Often, moving an existing service to REST requires us to split the various inputs between
the request URL and the request body. More specifically, we extract the input fields that
univocally define one of the objects involved in the method's execution and use them to
create a URL that univocally identifies that object. Then, we decide on which HTTP verb to
use based on the operation that's performed on the selected object. Finally, we place the
remainder of the input in the request body.

If our services were designed with an object-oriented architecture focused on the business
domain objects (such as DDD, as described in Chapter 10, Understanding the Different
Domains in Software Solutions), the REST translation of all the service methods should be
quite immediate, since services should already be organized around domain resources.
Otherwise, moving to REST might require some service interface redefinitions.

Applying Service-Oriented Architectures with .NET Core Chapter 12

[320]

The adoption of full REST semantics has the advantage that services can be extended with
or without small modifications being made to the preexisting operation definitions. In fact,
extensions should mainly manifest as additional properties of some objects and as
additional resources URLs with some associated operations. Therefore, preexisting clients
can simply ignore them.

Now, let's learn how methods can be expressed in the REST language with a simple
example of an intra-bank money transfer. A bank account can be represented by an URL, as
follows:

https://mybank.com/bankaccounts/{bank account number}

A transfer might be represented as a PATCH request whose body contains an object with
properties representing the amount of money, time of transfer, description, and the account
receiving the money. The operation modifies the account mentioned in the URL, but also
the receiving account as a side effect. If the account has not enough money, a 403 (Forbidden)
status code is returned, along with an object with all the error details (an error description,
the available funds, and so on).

However, since all the bank operations are recorded in the account statement, the creation
and addition of a new transfer object for a bank account operations collection associated with
the bank account is a better way to represent the transfer. In this case, the URL might be
something like the following:

https://mybank.com/bankaccounts/{bank account number}/operations

Here, the HTTP verb is POST since we are creating a new object. The body content is exactly
the same and a 403 status code is returned in case there's a lack of funds.

Both representations of the transfer cause exactly the same changes in the database.
Moreover, once the inputs are extracted from the different URLs and from the possibly
different request bodies, the subsequent processing is exactly the same. In both cases, we
have exactly the same inputs and the same processing – it's just the exterior appearance of
the two requests that's different.

However, the introduction of the virtual operations collection allows us to extend the service
with several more operations collection-specific methods. It is worth pointing out that the
operations collection doesn't need to be connected with a database table or with any
physical object: it lives in the world of URLs and creates a convenient way for us to model
the transfer.

Applying Service-Oriented Architectures with .NET Core Chapter 12

[321]

The increased usage of REST services leads to a description of REST service interfaces to be
created, similar to the ones developed for SOAP. This standard is called OpenAPI. We will
talk about this in the following subsection.

The OpenAPI standard
OpenAPI is a standard that's used for describing the REST API. It is currently version 3.
The whole service is described by a JSON endpoint, that is, an endpoint that describes the
service with a JSON object. This JSON object has a general section that applies to the whole
service and contains the general features of the services, such as its version and description,
as well as shared definitions.

Then, each service endpoint has a specific section that describes the endpoint URL or URL
format (in case some inputs are included in the URL), all its inputs, all the possible output
types and status codes, and all the authorization protocols. Each endpoint-specific section
can reference the definitions contained in the general section.

A description of the OpenAPI syntax is out of the scope of this book, but references are
provided in the Further reading section. Various development frameworks automatically
generate OpenAPI documentation by processing the REST API code and further
information is provided by the developer, so your team doesn't need to have in-depth
knowledge of OpenAPI syntax.

The How does .NET Core deal with SOA? section explains how we can generate automatically
OpenAPI documentation in ASP.NET Core REST API projects, while the use case at the end
of this chapter provides a practical example of its usage.

We will end this subsection by talking about how to handle authentication and
authorization in REST services.

REST services authorization and authentication
Since REST services are sessionless, when authentication is required, the client must send
an authentication token in every single request. That token is usually placed in the HTTP
authorization header, but this depends on the type of authentication protocol you're using.
The simplest way to authenticate is through the explicit transmission of a shared secret.
This can be done with the following code:

Authorization: Api-Key <string known by both server and client>

Applying Service-Oriented Architectures with .NET Core Chapter 12

[322]

The shared secret is called an API key. Since, at the time of writing, there is no standard on
how to send it, API keys can also be sent in other headers, as shown in the following code:

X-API-Key: <string known by both server and client>

Needless to say, API key-based authentication needs HTTPS to stop shared secrets from
being stolen. API keys are very simple to use, but they do not convey information about
user authorizations, so they can be adopted when the operations allowed by the client are
quite standard and there are no complex authorization patterns. Moreover, when
exchanged in requests, API keys are susceptible to being attacked on the server or client
side.

Safer techniques use shared secrets that are valid for a long period of time, just by the user
logging in. Then, the login returns a short-life token that is used as a shared secret in all the
subsequent requests. When the short-life secret is going to expire, it can be renewed with a
call to a renew endpoint.

The whole login logic is completely decoupled from the short-life token-based
authorization logic. The login is usually based on login endpoints that receive long-term
credentials and returns short-life tokens. Login credentials are either usual username-
password pairs that are passed as input to the login method or other kinds of authorization
tokens that are converted into short-life tokens that are served by the login endpoint. Login
can also be achieved with various authentication protocols based on X.509 certificates.

The most widespread short-life token type is the so-called bearer token. Each bearer token
encodes information about how long it lasts and a list of assertions, called claims, that can
be used for authorization purposes. Bearer tokens are returned by either login operations or
renewal operations. Their characteristic feature is that they are not tied to the client that
receives them or to any other specific client.

No matter how a client gets a bearer token, this is all a client needs to be granted all the
rights implied by its claims. It is enough to transfer a bearer token to another client to
empower that client with all rights implied by all the bearer token claims, since no proof of
identity is required by bearer token-based authorization.

Therefore, once a client gets a bearer token, it can delegate some operations to third parties
by transferring its bearer token to them. Typically, when a bearer token must be used for
delegation, during the login phase, the client specifies the claims to include in order to
restrict what operations can be authorized by the token.

Applying Service-Oriented Architectures with .NET Core Chapter 12

[323]

 Compared to API key authentication, bearer token-based authentication is disciplined by
standards. In particular, they must use the following Authorization header:

Authorization: Bearer <bearer token string>

Bearer tokens can be implemented in several ways. REST services typically use JWT tokens
that are strung with a Base64URL encoding of JSON objects. More specifically, JWT creation
starts with a JSON header, as well as a JSON payload. The JSON header specifies the kind
of token and how it is signed, while the payload consists of a JSON object that contains all
the claims as property/value pairs. The following is an example header:

{
 "alg": "RS256",
 "typ": "JWT"
}

The following is an example payload:

{
 "iss": "issuerbomain.com"
 "sub": "example",
 "aud": ["S1", "S2"],
 "roles": [
 "ADMIN",
 "USER"
],
 "exp": 1512975450,
 "iat": 1512968250230
}

Then, the header and payload are BASE64URL-encoded and the corresponding string is
concatenated, as follows:

<header BASE64 string>.<payload base64 string>

The preceding string is then signed with the algorithm specified in the header, which, in
our example, is RSA +SHA256, and the signature string is concatenated with the original
string as follows:

<header BASE64 string>.<payload base64 string>.<signature string>

The preceding code is the final bearer token string. A symmetric signature can be used
instead of RSA, but, in this case, both the JWT issuer and all the services using it for
authorization must share a common secret, while, with RSA, the private key of the JWT
issuer doesn't need to be shared with anyone, since the signature can be verified with just
the issuer public key.

Applying Service-Oriented Architectures with .NET Core Chapter 12

[324]

Some payload properties are standard, such as the following:

iss: Issuer of the JWT.
aud: The audience, that is, the services and/or operations that can use the token
for authorization. If a service doesn't see its identifier within this list, it should
reject the token.
sub: A string that identifies the principal (that is, the user) to which the JWT was
issued.
iat, exp, and nbf: These are for the time the JWT was issued, its expiration time,
and, if set, the time after which the token is valid, respectively. All the times are
expressed as a number of seconds from the 1st of January 1970 midnight UTC.
Here, all the days are considered as having exactly 86,400 seconds in them.

Other claims may be defined as public if we represent them with a unique URI; otherwise,
they are considered private to the issuer and to the services known to the issuer.

How does .NET Core deal with SOA?
.Net Core has excellent support for REST services through ASP.NET Core. In terms of
SOAP services, classic .NET handles them with WCF technology. In WCF, service
specifications are defined through .NET interfaces and the actual service code is supplied in
classes that implement those interfaces.

Endpoints, underlying protocols (HTTP and TCP/IP), and any other features are defined in
a configuration file. In turn, the configuration file can be edited with an easy to use
configuration tool. Therefore, the developer is responsible for providing just the service
behavior as a standard .NET class and for configuring all the service features in a
declarative way. This way, the service configuration is completely decoupled from the
actual service behavior and each service can be reconfigured so that it can be adapted to a
different environment without the need to modify its code.

WCF technology has not been ported to .NET Core and there are no plans to perform a
complete port of it. Instead, Microsoft is investing in gRPC, Google's open source
technology.

Applying Service-Oriented Architectures with .NET Core Chapter 12

[325]

The main reasons behind the decision to abandon WCF in .NET core are as follows:

As we've already discussed, SOAP technology has been overtaken by REST
technology in most application areas.
WCF technology is strictly tied to Windows, so it would be very expensive to
reimplement all its features from scratch in .NET Core. Since support for classic
.NET will continue, users that need WCF can still rely on classic .NET.
As a general strategy, with .NET Core, Microsoft prefers investing in open source
technologies that can be shared with other competitors. That's why, instead of
investing in WCF, Microsoft provided a gRPC implementation starting from
.NET Core 3.0.

While .NET Core doesn't support SOAP technology, it does support SOAP clients. More
specifically, it is quite easy to create a SOAP service proxy for an existing SOAP service in
Visual Studio, starting from the 2017 version (please refer to Chapter 9, Design Patterns and
.NET Core Implementation, for a discussion of what a proxy is and of the proxy pattern). In
the case of services, a proxy is a class that implements the service interface and whose
methods perform their job by calling the analogous methods of the remote service.

To create a service proxy, right-click on the connected services node in Visual Studio, go
to Solution Explores, and then select Add connected service. Then, in the form that
appears, select Microsoft WCF Service Reference Provider. Here, you can specify the URL
of the service (where the WSDL service description is contained), the namespace where you
wish to add the proxy class, and much more. At the end of the wizard, Visual Studio
automatically adds all the necessary NuGet packages and scaffolds the proxy class. This is
enough to create an instance of this class and to call its methods so that we can interact with
the remote SOAP service.

There are also third parties, such as NuGet packages that provide limited support for SOAP
services, but at the moment, they aren't very useful, since such limited support does not
include features that aren't available in REST services.

Starting from .NET Core SDK, Visual Studio 2019 supports the gRPC project template,
which scaffolds both a gRPC server and a gRPC client. At the time of writing, gRPC is not a
standard and just a Google open source project. However, if both Microsoft and Google
continue investing in it, it might become a de facto standard. gRPC implements a remote
procedure call pattern that offers both synchronous and asynchronous calls.

Applying Service-Oriented Architectures with .NET Core Chapter 12

[326]

It is configured in a way that is similar to WCF and to .NET remoting, as we described at
the end of Chapter 5, Applying a Microservice Architecture to Your Enterprise Application. That
is, services are defined through interfaces and their code is provided in classes that
implement those interfaces, while clients interact with those services through proxies that
implement the same service interfaces.

gRPC is a good option for internal communications within a microservices cluster,
especially if the cluster is not fully based on Service Fabric technology and can't rely on
.NET remoting. Since there are gRPC libraries for all the main languages and development
frameworks, it can be used in Kubernetes-based clusters, as well as in Service Fabric
clusters that host Docker images that have been implemented in other frameworks.

gRPC is more efficient than the REST services protocol due to its more compact
representation of data and it being easier to use, since everything to do with the protocol is
taken care of by the development framework. However, at the time of writing, none of its
features rely on well-established standards, so it can't be used for publicly exposed
endpoints – it can only be used for intra-cluster communication. For this reason, we will not
describe gRPC in detail, but the Further reading section of this chapter contains references to
both gRPC in general and to its .NET Core implementation.

Using gRPC is super easy since Visual Studio's gRPC project template scaffolds everything
so that the gRPC service and its clients are working. The developer just needs to define the
application-specific C# service interface and a class that implements it.

The remainder of the section is dedicated to .NET Core support for REST services from both
the server and client-side.

A short introduction to ASP.NET Core
ASP.NET Core applications are .NET Core applications based on the Host concept we
described in the Using generic hosts subsection of Chapter 5, Applying a Microservice
Architecture to Your Enterprise Application. The program.cs file of each ASP.NET
application creates a Host, builds it, and runs it with the following code:

public class Program
{
 public static void Main(string[] args)
 {
 CreateHostBuilder(args).Build().Run();
 }

 public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)

Applying Service-Oriented Architectures with .NET Core Chapter 12

[327]

 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });
}

CreatesDefaultBuilder sets up a standard Host,
while ConfigureWebHostDefaults configures it so that it can handle an HTTP pipeline.
More specifically, it does the following:

It sets the ContentRootPath property of the IHostingEnvironment interface
for the current directory.
It loads the configuration information from appsettings.json and
appsettings.[EnvironmentName].json. Once loaded, the configuration
information contained in the JSON object properties can be mapped to .NET
Object properties with the ASP.NET Core options framework. More
specifically, appsettings.json and
appsettings.[EnvironmentName].json are merged and
the appsettings.[EnvironmentName] file's environment-specific information
overrides the corresponding appsettings.json settings. EnvironmentName is
taken from the ASPNETCORE_ENVIRONMENT environment variable. In
turn, ASPNETCORE_ENVIRONMENT is defined in the
Properties\launchSettings.json file when the application is run in Visual
Studio. The following screenshot shows where you can
find launchSettings.json in Visual Studio Solution Explorer:

In launchSettings.json, you can define several environments that can be

selected with the dropdown next to Visual Studio's run button . By
default, the IIS Express setting sets ASPNETCORE_ENVIRONMENT to
Development. The following is a typical launchSettings.json file:

{
 "iisSettings": {
 "windowsAuthentication": false,
 "anonymousAuthentication": true,
 "iisExpress": {
 "applicationUrl": "http://localhost:2575",

Applying Service-Oriented Architectures with .NET Core Chapter 12

[328]

 "sslPort": 44393
 }
 },
 "profiles": {
 "IIS Express": {
 "commandName": "IISExpress",
 "launchBrowser": true,
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 },
 ...
 ...
 }
 }
}

The value to use for ASPNETCORE_ENVIRONMENT when the application is
published can be added to the published XML file after it has been created by
Visual Studio. This value
is <EnvironmentName>Staging</EnvironmentName>. It can be also specified
in your Visual Studio ASP.NET Core project file (.csproj):
<PropertyGroup>

<EnvironmentName>Staging</EnvironmentName></PropertyGroup>.

It configures Host logging so that it can write to the console and debug output.
This setting can be changed with further configuration.
It sets up/connects a web server to the ASP.NET Core pipeline.

When the application runs in Linux, the ASP.NET Core pipeline connects to the .NET Core
Kestrel web server. Since Kestrel is a minimal web server, you are responsible for reverse
proxying requests to it from a complete web server, such as Apache or Nginx, that adds
features that Kestrel doesn't have. When the application runs in Windows, by default,
ConfigureWebHostDefaults connects the ASP.NET Core pipeline directly to Internet
Information Services (IIS). However, you can also use Kestrel in Windows and you can
reverse proxy IIS requests to Kestrel by changing the AspNetCoreHostingModel setting of
your Visual Studio project file like so:

<PropertyGroup>
 ...
 <AspNetCoreHostingModel>OutOfProcess</AspNetCoreHostingModel>
</PropertyGroup>

Applying Service-Oriented Architectures with .NET Core Chapter 12

[329]

UseStartup<Startup>() lets Host services (see the Using generic hosts subsection in
Chapter 5, Applying a Microservice Architecture to Your Enterprise Application) and the
definition of the ASP.NET Core pipeline be taken from the methods of the
project's Startup.cs class. More specifically, services are defined in
its ConfigureServices(IServiceCollection services) method, while the ASP.NET
Core pipeline is defined in the Configure method. The following code shows the
standard Configure method scaffolded with an API REST project:

public void Configure(IApplicationBuilder app,
 IWebHostEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }

 app.UseHttpsRedirection();

 app.UseRouting();

 app.UseAuthorization();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapControllers();
 });
}

Each module in the pipeline is defined by an app.Use<something> method, which often
accepts some options. Each module processes the requests and then either forwards the
modified request to the next module in the pipeline or returns an HTTP response. When an
HTTP response is returned, it is processed by all the previous modules in reverse order.

Modules are inserted in the pipeline in the order they are defined by
the app.Use<something> method calls. The preceding code adds an error page
if ASPNETCORE_ENVIRONMENT is Development; otherwise, UseHsts negotiates a security
protocol with the client. Finally, UseEndpoints adds the MVC controllers that create the
actual HTTP response. A complete description of the ASP.NET Core pipeline will be given
in the Understanding the presentation layers of web applications section of Chapter 13,
Presenting ASP.NET Core MVC.

In the next subsection, we will explain how the MVC framework lets you implement REST
services.

Applying Service-Oriented Architectures with .NET Core Chapter 12

[330]

Implementing REST services with ASP.NET Core
In the MVC framework, HTTP requests are processed by classes called Controllers. Each
request is mapped to the call of a Controller public method. The selected controller and
controller methods depend on the shape of the request path, and they are defined by
routing rules, that, for the REST API, are usually provided through attributes associated
with both the Controller class and its methods.

Controller methods that process HTTP requests are called action methods. When the
controller and action methods are selected, the MVC framework creates a controller
instance to serve the request. All the parameters of the controller constructors are resolved
with dependency injection with types defined in the ConfigureServices method of the
Startup.cs class.

Please refer to the Using generic hosts subsection of Chapter 5, Applying a
Microservice Architecture to Your Enterprise Application, for a description of
how to use dependency injection with .NET Core Hosts, and to the
Dependency injection pattern subsection of Chapter 10, Understanding the
Different Domains in Software Solutions, for a general discussion of
dependency injection.

The following is a typical REST API controller and its controller method definitions:

 [Route("api/[controller]")]
 [ApiController]
 public class ValuesController : ControllerBase
 {
 // GET api/values/5
 [HttpGet("{id}")]
 public ActionResult<string> Get(int id)
 {
 ...

The [ApiController] attribute declares that the controller is a REST API controller.
[Route("api/[controller]")] declares that the controller must be selected on paths
that start with api/<controller name>. The controller name is the name of the controller
class without the Controller postfix. Thus, in this case, we have api/values.

[HttpGet("{id}")] declares that the method must be invoked on GET requests of the
api/values/<id> type, where id must be a number that's passed as an argument to the
method invocation. This can be done with Get(int id). There's also an Http<verb>
attribute for each HTTP verb: HttpPost and HttpPatch.

Applying Service-Oriented Architectures with .NET Core Chapter 12

[331]

We may also have another method defined like so:

[HttpGet]
public ... Get()

This method is invoked on GET requests of the api/values type, that is, on GET requests
without id after the controller name.

Several action methods can have the same name, but only one should be compatible with
each request path; otherwise, an exception is thrown. In other words, routing rules and
Http<verb> attributes must univocally define which controller and which of its action
methods to select for each request.

By default, parameters are passed to the action methods of API controllers according to the
following rules:

Simple types (integers, floats, and DateTimes) are taken from the request
path if routing rules specify them as parameters, as in the case of the previous
example's [HttpGet("{id}")] attribute. If they are not found in the routing
rules, the MVC framework looks for query string parameters with the same
name. Thus, for instance, if we replace [HttpGet("{id}")] with [HttpGet],
the MVC framework will look for something like api/values?id=<an
integer>.
Complex types are extracted from the request body by formatters. The right
formatter is chosen according to the value of the request's Content-Type
header. If no Content-Type header is specified, the JSON formatter is taken. The
JSON formatter tries to parse the request body as a JSON object and then tries to
transform this JSON object into an instance of the .NET Core complex type. If
either the JSON extraction or the subsequent conversion fails, an exception is
thrown. By default, just the JSON input formatter is supported, but you can also
add an XML formatter that can be used when Content-Type specifies XML
content. It is enough to add
the Microsoft.AspNetCore.Mvc.Formatters.Xml NuGet package and
replace services.AddMvc()
with services.AddMvc().AddXmlSerializerFormatters() in
the ConfigureServices method of Startup.cs.

Applying Service-Oriented Architectures with .NET Core Chapter 12

[332]

You can customize the source that's used to fill an action method parameter by prefixing
the parameter with an adequate attribute. The following code shows some examples of this:

...MyAcrionMethod(....[FromHeader] string myHeader....)
// x is taken from a request header named myHeader

...MyAcrionMethod(....[FromServices] MyType x....)
// x is filled with an istance of MyType through dependency injection

The return type of an Action method must be an IAsyncResult interface or a type that
implements that interface. In turn, IAsyncResult has just the following method:

public Task ExecuteResultAsync (ActionContext context)

This method is called by the MVC framework at the right time to create the actual response
and response headers. The ActionContext object, when passed to the method, contains
the whole context of the HTTP request, which includes a request object with all the
necessary information about the original HTTP requests (headers, body, and cookies), as
well as a response object that collects all the pieces of the response that is being built.

You don't have to create an implementation of IAsyncResult manually,
since ControllerBase already has methods to create IAsyncResult implementations so
that all the necessary HTTP responses are generated. Some of these methods are as follows:

OK: This returns a 200 status code, as well as an optional result object. It is used
either as return OK() or as return OK(myResult).
BadRequest: This returns a 400 status code, as well as an optional request object.
Created(string uri, object o): This returns a 201 status code, as well as a
result object and the URI of the created resource.
Accepted: This returns a 202 status result, as well as an optional result object
and resource URI.
Unauthorized: This returns a 401 status result, as well as an optional result
object.
Forbid: This returns a 403 status result, as well as an optional list of failed
permissions.
StatusCode(int statusCode, object o = null): This returns a custom
status code, as well as an optional result object.

An action method can return a result object directly with return myObject. This is
equivalent to returning OK(myObject).

Applying Service-Oriented Architectures with .NET Core Chapter 12

[333]

When all the result paths return a result object of the same type, say, MyType, the action
method can be declared as returning ActionResult<MyType> to get a better type check.

By default, result objects are serialized in JSON in the response body. However, if an XML
formatter has been added to the MVC framework processing pipeline, as shown
previously, the way the result is serialized depends on the Accept header of the HTTP
request. More specifically, if the client explicitly requires an XML format with the Accept
header, the object will be serialized in XML; otherwise, it will be serialized in JSON.

Complex objects that are passed as input to action methods can be validated with
validation attributes, as follows:

public class MyType
{
 [Required]
 public string Name{get; set;}
 ...
 [MaxLength(64)]
 public string Description{get; set;}
}

If the controller has been decorated with the [ApiController] attribute
and if validation fails, the MVC framework automatically creates a
BadRequest response containing a dictionary with all the validation errors
detected, without executing the action method. Therefore, you don't need
to add further code to handle validation errors.

Action methods can also be declared as async methods, as follows:

public async Task<IActionResult> MyMethod(......)
{
 await MyBusinessObject.MyBusinessMethod();
 ...
}

public async Task<ActionResult<MyType>> MyMethod(......)
{
 ...

Practical examples of controllers/action methods will be shown in the use case section of
this chapter. In the next subsection, we will explain how to handle authorization and
authentication with JWT tokens.

Applying Service-Oriented Architectures with .NET Core Chapter 12

[334]

ASP.NET Core service authorization
When using a JWT token, authorizations are based on the claims contained in the JWT
token. All the token claims in any action method can be accessed through the User.Claims
controller property. Since User.Claims is an IEnumerable<Claim>, it can be processed
with LinQ to verify complex conditions on claims. If authorization is based on role claims,
you can simply use the User.IsInRole function, as shown in the following code:

If(User.IsInRole("Administrators") || User.IsInRole("SuperUsers"))
{
 ...
}
else return Forbid();

However, permissions are not usually checked from within action methods and are
automatically checked by the MVC framework, according to authorization attributes that
decorate either the whole controller or a single action method. If an action method or the
whole controller is decorated with [Authorize], then access to the action method is
possible only if the request has a valid authentication token, which means we don't have to
perform a check on the token claims. It is also possible to check whether the token contains
a set of roles using the following code:

[Authorize(Roles = "Administrators,SuperUsers")]

More complex conditions on claims require that authorization policies are defined in
the ConfigureServices method of Startup.cs, as shown in the following code:

public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc();
 ...
 services.AddAuthorization(options =>
 {
 options.AddPolicy("Father", policy =>
 policy.RequireAssertion(context =>
 context.User
 .HasClaim(c =>c.Type == "Married") &&
 context.User
 .HasClaim(c => c.Type == "HasSon")));
 });
}

After that, you can decorate the action methods or controllers with [Authorize(Policy =
"Father")].

Applying Service-Oriented Architectures with .NET Core Chapter 12

[335]

Before using JWT-based authorization, you must configure it in Startup.cs. First of all,
you must add the middleware that processes authentication tokens in the ASP.NET Core
processing pipeline defined in the Configure method, as shown here:

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
 ...
 app.UseAuthentication();//authentication middleware
 app.UseMvc();
}

Then, you must configure the authentication services in the ConfigureServices section.
Here, you define the authentication options that will be injected through dependency
injection into the authentication middleware:

services.AddAuthentication(JwtBearerDefaults.AuthenticationScheme)
 .AddJwtBearer(options => {
 options.TokenValidationParameters =
 new TokenValidationParameters
 {
 ValidateIssuer = true,
 ValidateAudience = true,
 ValidateLifetime = true,
 ValidateIssuerSigningKey = true,

 ValidIssuer = "My.Issuer",
 ValidAudience = "This.Website.Audience",
 IssuerSigningKey =
 new
SymmetricSecurityKey(Encoding.ASCII.GetBytes("MySecret"))
 };
});

The preceding code provides a name to the authentication scheme, that is, a default name.
Then, it specifies JWT authentication options. Usually, we require that the authentication
middleware verifies that the JWT token is not expired (ValidateLifetime = true), that
it has the right issuer and audience (see the REST services authorization and
authentication section of this chapter), and that its signature is valid.

The preceding example uses a symmetric signing key generated from a string. This means
that the same key is used to sign and to verify the signature. This is an acceptable choice if
JWT tokens are created by the same website that uses them, but it is not an acceptable
choice if there is a unique JWT issuer that controls access to several Web API sites.

Applying Service-Oriented Architectures with .NET Core Chapter 12

[336]

Here, we should use an asymmetric key (typically, a RsaSecurityKey), so JWT verification
requires just the knowledge of the public key associated with the actual private signing key.
Identity Server 4 can be used to quickly create a website that works as an authentication
server. It emits a JWT token with the usual username/password credentials or converts
other authentication tokens. If you use an authentication server such as Identity Server 4,
you don't need to specify the IssuerSigningKey option, since the authorization
middleware is able to retrieve the required public key from the authorization server
automatically. It is enough to provide the authentication server URL, as shown here:

.AddJwtBearer(options => {
 options.Authority = "https://www.MyAuthorizationserver.com";
 options.TokenValidationParameters =...
 ...

On the other hand, if you decide to emit JWT in your Web API's site, you can define a
Login action method that accepts an object with a username and password, and that, while
relying on database information, builds the JWT token with code similar to the following:

var claims = new List<Claim>
{
 new Claim(...),
 new Claim(...) ,
 ...
};
var token = new JwtSecurityToken(
 issuer: "MyIssuer",
 audience: ...,
 claims: claims,
 expires: DateTime.UtcNow.AddMinutes(expiryInMinutes),
 signingCredentials:
 new
SymmetricSecurityKey(Encoding.ASCII.GetBytes("MySecret"));
 return OK(new JwtSecurityTokenHandler().WriteToken(token));

Here, JwtSecurityTokenHandler().WriteToken(token) generates the actual token
string from the token properties contained in the JwtSecurityToken instance.

In the next subsection, we will learn how to empower our Web API with an OpenAPI
documentation point so that proxy classes for communicating with our services can be
generated automatically.

Applying Service-Oriented Architectures with .NET Core Chapter 12

[337]

ASP.NET Core support for OpenAPI
Most of the information that's needed to fill in an OpenAPI JSON document can be
extracted from Web API controllers through reflection, that is, input types and sources
(path, request body, and header) and endpoint paths (these can be extracted from routing
rules). Returned output types and status codes, in general, can't be easily computed since
they can be generated dynamically. Therefore, the MVC framework provides
the ProducesResponseType attribute so that we can declare a possible return type – a
status code pair. It is enough to decorate each action method with as
many ProducesResponseType attributes as there are possible types, that is, possible
status code pairs, as shown in the following code:

[HttpGet("{id}")]
[ProducesResponseType(typeof(MyReturnType), StatusCodes.Status200OK)]
[ProducesResponseType(typeof(MyErrorReturnType),
StatusCodes.Status404NotFound)]
public IActionResult GetById(int id)...

If no object is returned along a path, we can just declare the status code, as follows:

 [ProducesResponseType(StatusCodes.Status403Forbidden)]

We can also specify just the status code when all the paths return the same type and when
that type is specified in the action method return type as
ActionResult<CommonReturnType>].

Once all the action methods have been documented, in order to generate any actual
documentation for the JSON endpoints, we must install the Swashbuckle.AspNetCore
NuGet package and place some code in the Startup.cs file. More specifically, we must
add some middleware in the Configure method, as shown here:

app.UseSwagger(); //open api middleware
app.UseAuthentication();
app.UseMvc();

Then, we must add some configuration options in the ConfigureServices method, as
follows:

services.AddSwaggerGen(c =>
{
 c.SwaggerDoc("MyServiceName", new Info
 {
 Version = "v1",
 Title = "ToDo API",
 Description = "My service description",

Applying Service-Oriented Architectures with .NET Core Chapter 12

[338]

 TermsOfService = "My terms of service",
 Contact = new Contact
 {
 Name = "My Contact Name",
 Email = string.Empty,
 Url = "https://MyContatcUrl.com"
 },
 License = new License
 {
 Name = "My License name",
 Url = "https://MyLicensecUrl.com"
 }
 });
});

The first argument of the SwaggerDoc method is the documentation endpoint name. By
default, the documentation endpoint is accessible through
the <webroot>//swagger/<endpoint name>/swagger.json path, but this can be
changed in several ways. The rest of the information contained in the Info class is self-
explanatory.

We can add several SwaggerDoc calls to define several documentation endpoints.
However, by default, all the documentation endpoints will contain the same
documentation, which includes a description of all the REST services included in the
project. This default can be changed by calling
the c.DocInclusionPredicate(Func<string, ApiDescription> predicate)
method from within services.AddSwaggerGen(c => {...}).

DocInclusionPredicate must be passed a function that receives a JSON document name
and an action method description and must return true if the documentation of the action
must be included in that JSON document.

To declare that your REST APIs need a JWT token, you must add the following code within
services.AddSwaggerGen(c => {...}):

var security = new Dictionary<string, IEnumerable<string>>
{
 {"Bearer", new string[] { }},
};

c.AddSecurityDefinition("Bearer", new ApiKeyScheme
{
 Description = "JWT Authorization header using the Bearer scheme.
 Example: \"Authorization: Bearer {token}\"",
 Name = "Authorization",
 In = "header",

Applying Service-Oriented Architectures with .NET Core Chapter 12

[339]

 Type = "apiKey"
});
c.AddSecurityRequirement(security);

You can enrich the JSON documentation endpoint with information that's been extracted
from triple-slash comments, which are usually added to generate automatic code
documentation. The following code shows some examples of this. The following snippet
shows how we can add a method description and parameter information:

//adds a description to the REST method

/// <summary>
/// Deletes a specific TodoItem.
/// </summary>
/// <param name="id"></param>
[HttpDelete("{id}")]
public IActionResult Delete(long id)

The following snippet shows how we can add an example of usage:

//adds an example of usage

/// <summary>
/// Creates an item.
/// </summary>
/// <remarks>
/// Sample request:
///
/// POST /MyItem
/// {
/// "id": 1,
/// "name": "Item1"
/// }
///
/// </remarks>

The following snippet shows how we can add parameter descriptions and return type
descriptions for each HTTP status code:

//Add input parameters and return object descriptions

/// <param name="item">item to be created</param>
/// <returns>A newly created TodoItem</returns>
/// <response code="201">Returns the newly created item</response>
/// <response code="400">If the item is null</response>

Applying Service-Oriented Architectures with .NET Core Chapter 12

[340]

To enable extraction from triple-slash comments, we must enable code documentation
creation by adding the following code in our project file (.csproj):

<PropertyGroup>
 <GenerateDocumentationFile>true</GenerateDocumentationFile>
 <NoWarn>$(NoWarn);1591</NoWarn>
</PropertyGroup>

Then, we must enable code documentation processing from
within services.AddSwaggerGen(c => {...}) by adding the following code:

var xmlFile = $"{Assembly.GetExecutingAssembly().GetName().Name}.xml";
var xmlPath = Path.Combine(AppContext.BaseDirectory, xmlFile);
c.IncludeXmlComments(xmlPath);

Once our documentation endpoints are ready, we can add some more middleware that's
contained in the same Swashbuckle.AspNetCore NuGet package to generate a friendly
user interface that we can test our REST API on:

app.UseSwaggerUI(c =>
{
 c.SwaggerEndpoint("/swagger/<documentation name>/swagger.json", "
 <api name that appears in dropdown>");
});

If you have several documentation endpoints, you need to add a SwaggerEndpoint call for
each of them. We will use this interface to test the REST API defined in this chapter's use
case.

Once you have a working JSON documentation endpoint, you can automatically generate
the C# or TypeScript code of a proxy class with one of the following methods:

The NSwagStudio Windows program, which is available at https:/ ​/ ​github.
com/​RicoSuter/ ​NSwag/ ​wiki/ ​NSwagStudio.
The NSwag.CodeGeneration.CSharp or
NSwag.CodeGeneration.TypeScript NuGet packages if you want to
customize code generation.
The NSwag.MSBuild NuGet package if you want to tie code generation to Visual
Studio build operations. The documentation for this can be found at https:/ ​/
github.​com/ ​RicoSuter/ ​NSwag/ ​wiki/ ​MSBuild.

In the next subsection, you will learn how to invoke a REST API from another REST API or
from a .NET Core client.

https://github.com/RicoSuter/NSwag/wiki/NSwagStudio
https://github.com/RicoSuter/NSwag/wiki/NSwagStudio
https://github.com/RicoSuter/NSwag/wiki/NSwagStudio
https://github.com/RicoSuter/NSwag/wiki/NSwagStudio
https://github.com/RicoSuter/NSwag/wiki/NSwagStudio
https://github.com/RicoSuter/NSwag/wiki/NSwagStudio
https://github.com/RicoSuter/NSwag/wiki/NSwagStudio
https://github.com/RicoSuter/NSwag/wiki/NSwagStudio
https://github.com/RicoSuter/NSwag/wiki/NSwagStudio
https://github.com/RicoSuter/NSwag/wiki/NSwagStudio
https://github.com/RicoSuter/NSwag/wiki/NSwagStudio
https://github.com/RicoSuter/NSwag/wiki/NSwagStudio
https://github.com/RicoSuter/NSwag/wiki/NSwagStudio
https://github.com/RicoSuter/NSwag/wiki/NSwagStudio
https://github.com/RicoSuter/NSwag/wiki/MSBuild
https://github.com/RicoSuter/NSwag/wiki/MSBuild
https://github.com/RicoSuter/NSwag/wiki/MSBuild
https://github.com/RicoSuter/NSwag/wiki/MSBuild
https://github.com/RicoSuter/NSwag/wiki/MSBuild
https://github.com/RicoSuter/NSwag/wiki/MSBuild
https://github.com/RicoSuter/NSwag/wiki/MSBuild
https://github.com/RicoSuter/NSwag/wiki/MSBuild
https://github.com/RicoSuter/NSwag/wiki/MSBuild
https://github.com/RicoSuter/NSwag/wiki/MSBuild
https://github.com/RicoSuter/NSwag/wiki/MSBuild
https://github.com/RicoSuter/NSwag/wiki/MSBuild
https://github.com/RicoSuter/NSwag/wiki/MSBuild
https://github.com/RicoSuter/NSwag/wiki/MSBuild

Applying Service-Oriented Architectures with .NET Core Chapter 12

[341]

.Net Core HTTP clients
The HttpClient class in the System.Net.Http namespace is a .NET standard 2.0 built-in
HTTP client class. While it could be used directly whenever we need to interact with a
REST service, there are some problems in creating and releasing HttpClient instances
repeatedly, as follows:

Their creation is expensive.
When an HttpClient is released, for instance, in a using statement, the
underlying connection isn't closed immediately but at the first garbage collection
session, which is a repeated creation. Release operations quickly exhaust the
maximum number of connections the operating system can handle.

Therefore, either a single HttpClient instance is reused, such as a singleton, or
HttpClient instances are somehow pooled. Starting from the 2.1 version of .NET Core, an
HttpClientFactory class was introduced to pool HTTP clients. More specifically,
whenever a new HttpClient instance is required for an HttpClientFactory object, a
new HttpClient is created. However, the
underlying HttpClientMessageHandler instances, which are expansive to create, are
pooled until their maximum lifetime expires.

HttpClientMessageHandler instances must have a finite duration since they cache DNS
resolution information that may change over time. The default lifetime
of HttpClientMessageHandler is 2 minutes, but it can be redefined by the developer.

Using HttpClientFactory allows us to automatically pipeline all the HTTP operations
with other operations. For instance, we can add a Polly retry strategy to handle all the
failures of all our HTTP operations automatically. For an introduction to Polly, please refer
to the Resilient task execution subsection of Chapter 5, Applying a Microservice Architecture to
Your Enterprise Application.

The simplest way to exploit the advantages offered by the HttpClientFactory class is to
add the Microsoft.Extensions.Http NuGet package and then to follow these steps:

Define a proxy class, say, MyProxy, to interact with the desired REST service.1.
Let MyProxy accept an HttpClient instance in its constructor.2.
Use the HttpClient that was injected into the constructor to implement all the3.
necessary operations.

Applying Service-Oriented Architectures with .NET Core Chapter 12

[342]

Declare your proxy in the services configuration method of your Host which, in4.
the case of an ASP.NET Core application, is the ConfigureServices method of
the Startup.cs class, while, in the case of a client application, this is the
ConfigureServices method of the HostBuilder instance. In the simplest case,
the declaration is something similar
to services.AddHttpClient<MyProxy>(). This will automatically
add MyProxy to the services that are available for dependency injection, so you
can easily inject it, for instance, in your controller's constructors. Moreover, each
time an instance of MyProxy is created, an HttpClient is returned by an
HttpClientFactory and is automatically injected into its constructor.

In the constructors of the classes that need to interact with a REST service, we may also
need an interface instead of a specific proxy implementation with a declaration of the type:

services.AddHttpClient<IMyProxy, MyProxy>()

A Polly resilient strategy (see the Resilient task execution subsection of Chapter 5, Applying a
Microservice Architecture to Your Enterprise Application) can be applied to all the HTTP calls
issued by our proxy class, as shown here:

var myRetryPolicy = Policy.Handle<HttpRequestException>()
 ...//policy definition
 ...;
services.AddHttpClient<IMyProxy, MyProxy>()
 .AddPolicyHandler(myRetryPolicy);

Finally, we can preconfigure some of the properties of all the HttpClient instances that
are passed to our proxy, as shown here:

services.AddHttpClient<IMyProxy, MyProxy>(clientFactory =>
{
 clientFactory.DefaultRequestHeaders.Add("Accept", "application/json");
 clientFactory.BaseAddress = new Uri("https://www.myService.com/");
})
 .AddPolicyHandler(myRetryPolicy);

This way, each client that's passed to the proxy is preconfigured so that they require a JSON
response and have to work with a specific service. Once the base address has been defined,
each HTTP request needs to specify the relative path of the service method to call.

Applying Service-Oriented Architectures with .NET Core Chapter 12

[343]

The following code shows how to perform a POST to a service. Here, we're stating that the
HttpClient that was injected into the proxy constructor has been stored in the webClient
private field:

//Add a bearer token to authenticate the call
webClient.DefaultRequestHeaders.Add("Authorization", "Bearer " + token);
...
//Call service method with a POST verb and get response
var response = await
webClient.PostAsJsonAsync<MyPostModel>("my/method/relative/path",
 new MyPostModel
 {
 //fill model here
 ...
 });
//extract response status code
var status = response.StatusCode;
...
//extract body content from response
string stringResult = await response.Content.ReadAsStringAsync();

If you use Polly, you don't need to intercept and handle communication errors since this job
is performed by Polly. First, you need to verify the status code to decide what to do next.
Then, you can parse the JSON string contained in the response body to get a .NET instance
of a type, that, in general, depends on the status code. The code to perform the parsing is
based on the Newtonsoft.Json NuGet package's JsonConvert class and is as follows:

var result=JsonConvert.DeserializeObject<MyResultClass>(stringResult);

Performing a GET request is similar but, instead of calling PostAsJsonAsync, you need to
call GetAsync, as shown here:

var response = await webClient.GetAsync("my/getmethod/relative/path");

The use of other HTTP verbs is completely analogous.

Applying Service-Oriented Architectures with .NET Core Chapter 12

[344]

Use case – exposing WWTravelClub
packages
In this section, we will implement an ASP.NET REST service that lists all the packages that
are available for a given vacation's start and end dates. For didactic purposes, we won't
structure the application according to the best practices described in Chapter 10,
Understanding the Different Domains in Software Solutions; instead, we will simply generate
the results with a LINQ query that will be directly placed in the controller action method. A
well-structured ASP.NET Core application will be presented in Chapter 13, Presenting
ASP.NET Core MVC, which is dedicated to the MVC framework.

Let's make a copy of the WWTravelClubDB solution folder and rename the new
folder WWTravelClubREST. The WWTravelClubDB project was built step by step in the
various sections of Chapter 6, Interacting with Data in C# - Entity Framework Core. Let's open
the new solution and add a new ASP.NET Core API project to it
named WWTravelClubREST (the same name as the new solution folder). For simplicity,
select no authentication. Right-click on the newly created project and select Set as StartUp
project to make it the default project that's launched when the solution is run.

Finally, we need to add a reference to the WWTravelClubDB project.

ASP.NET Core projects store configuration constants in the appsettings.json file. Let's
open this file and add the database connection string for the database we created in
the WWTravelClubDB project to it, as shown here:

{
 "ConnectionStrings": {
 "DefaultConnection": "Server=
 (localdb)\\mssqllocaldb;Database=wwtravelclub;
 Trusted_Connection=True;MultipleActiveResultSets=true"
 },
 ...
 ...
}

Now, we must add the WWTravelClubDB entity framework database context to
the ConfigureServices method in Startup.cs, as shown here:

services.AddDbContext<WWTravelClubDB.MainDBContext>(options =>
 options.UseSqlServer(
 Configuration.GetConnectionString("DefaultConnection"),
 b => b.MigrationsAssembly("WWTravelClubDB")));

Applying Service-Oriented Architectures with .NET Core Chapter 12

[345]

The option object settings that are passed to AddDbContext specify the usage of SQL server
with a connection string that is extracted from the ConnectionStrings section of the
appsettings.json configuration file with
the Configuration.GetConnectionString("DefaultConnection") method. The b
=> b.MigrationsAssembly("WWTravelClubDB") lambda function declares the name of
the assembly that contains the database migrations (see Chapter 6, Interacting with Data in
C# - Entity Framework Core) which, in our case, is the DLL that was generated by
the WWTravelClubDB project. For the preceding code to compile, you should add using
Microsoft.EntityFrameworkCore;.

Since we want to enrich our REST service with OpenAPI documentation, let's add a
reference to the Swashbuckle.AspNetCore NuGet package. For .NET 3.0, you must select
at least version 5.0 RC-4, so, if you don't see the 5.0 version among the search results, please
enable the Include prerelease checkbox. Now, we can add the following very basic
configuration to the ConfigureServices method:

services.AddSwaggerGen(c =>
{
 c.SwaggerDoc("WWWTravelClub", new OpenAPIInfo
 {
 Version = "WWWTravelClub 1.0.0",
 Title = "WWWTravelClub",
 Description = "WWWTravelClub Api",
 TermsOfService = null
 });
});

Then, we can add the middleware for the OpenAPI endpoint and for adding a user
interface for our API documentation, as shown here:

app.UseSwagger();
app.UseSwaggerUI(c =>
{
 c.SwaggerEndpoint(
 "/swagger/WWWTravelClub/swagger.json",
 "WWWTravelClub Api");
});

app.UseEndpoints(endpoints => //preexisting code//
{
 endpoints.MapControllers();
});

Applying Service-Oriented Architectures with .NET Core Chapter 12

[346]

Now, we are ready to encode our service. Let's delete ValueController, which is
automatically scaffolded by Visual Studio. Then, right-click on the Controller folder and
select Add | Controller. Now, choose an empty API controller
called PackagesController. First, let's modify the code, as follows:

[Route("api/packages")]
[ApiController]
public class PackagesController : ControllerBase
{
 [HttpGet("bydate/{start}/{stop}")]
 [ProducesResponseType(typeof(IEnumerable<PackagesListDTO>), 200)]
 [ProducesResponseType(400)]
 [ProducesResponseType(500)]
 public async Task<IActionResult> GetPackagesByDate(
 [FromServices] WWTravelClubDB.MainDBContext ctx,
 DateTime start, DateTime stop)
 {
 }
}

The Route attribute declares that the basic path for our service will be api/packages. The
unique action method that we implement is GetPackagesByDate, which is invoked on
HttpGet requests on paths of the bydate/{start}/{stop} type, where start and stop
are the DateTime parameters that are passed as input to GetPackagesByDate. The
ProduceResponseType attributes declare the following:

When a request is successful, a 200 code is returned, and the body contains an
IEnumerable of the PackagesListDTO (which we will soon define) type
containing the required package information.
When the request is ill-formed, a 400 code is returned. We don't specify the type
returned since Bad Requests are automatically handled by the MVC framework
through the ApiController attribute.
In the case of unexpected errors, a 500 code is returned with an empty body.

Now, let's define the PackagesListDTO class in a new DTOs folder:

namespace WWTravelClubREST.DTOs
{
 public class PackagesListDTO
 {
 public int Id { get; set; }
 public string Name { get; set; }
 public decimal Price { get; set; }
 public int DuratioInDays { get; set; }
 public DateTime? StartValidityDate { get; set; }

Applying Service-Oriented Architectures with .NET Core Chapter 12

[347]

 public DateTime? EndValidityDate { get; set; }
 public string DestinationName { get; set; }
 public int DestinationId { get; set; }
 }
}

Finally, let's add the following using clauses to our controller code so that we can easily
refer to our DTO and to Entity Framework LINQ methods:

using Microsoft.EntityFrameworkCore;
using WWTravelClubREST.DTOs;

Now, we are ready to fill the body of the GetPackagesByDate method with the following
code:

try
{
 var res = await ctx.Packages
 .Where(m => start >= m.StartValidityDate
 && stop <= m.EndValidityDate)
 .Select(m => new PackagesListDTO
 {
 StartValidityDate = m.StartValidityDate,
 EndValidityDate = m.EndValidityDate,
 Name = m.Name,
 DuratioInDays = m.DuratioInDays,
 Id = m.Id,
 Price = m.Price,
 DestinationName = m.MyDestination.Name,
 DestinationId = m.DestinationId
 })
 .ToListAsync();
 return Ok(res);
}
catch
{
 return StatusCode(500);
}

The LINQ query is similar to the one contained in the WWTravelClubDBTest project we
tested in Chapter 6, Interacting with Data in C# - Entity Framework Core. Once the result has
been computed, it is returned with an OK call. The method's code handles internal server
errors by catching exceptions and returning a 500 status code, since Bad Requests are
automatically handled before the controller method is called by the ApiController
attribute.

Applying Service-Oriented Architectures with .NET Core Chapter 12

[348]

Let's run the solution. When the browser opens, it's unable to receive any result from our
ASP.NET Core website. Let's modify the browser URL so that it's
https://localhost:<previous port>/swagger. The user interface of the OpenAPI
documentation will look as follows:

Applying Service-Oriented Architectures with .NET Core Chapter 12

[349]

PackagesListDTO is the model we defined to list the packages, while ProblemDetails is
the model that's used to report errors in the case of Bad Requests. By clicking the
GET button, we can get more details about our GET method and we can also test it, as
shown in the following screenshot:

Pay attention when it comes to inserting dates that are covered by packages in the database;
otherwise, an empty list will be returned. The ones shown in the preceding screenshot
should work.

Dates must be entered in a correct JSON format; otherwise, a 400 Bad Request error is
returned, like the one shown in the following code:

{
 "errors": {
 "start": [
 "The value '2019' is not valid."
]
 },
 "title": "One or more validation errors occurred.",
 "status": 400,
 "traceId": "80000008-0000-f900-b63f-84710c7967bb"
}

Applying Service-Oriented Architectures with .NET Core Chapter 12

[350]

If you insert the correct input parameters, the Swagger UI returns the packages that satisfy
the query in JSON format.

That's all! You have implemented your first API with OpenAPI documentation!

Summary
In this chapter, we introduced SOA, its design principles, and its constraints. Among them,
it is worth remembering interoperability.

Then, we focused on well-established standards for business applications that achieve the
interoperability that's needed for publicly exposed services. Therefore, SOAP and REST
services were discussed in detail, along with the transition from SOAP services to REST
services, which has taken place in most application areas in the last few years. Then, REST
services principles, authentication/authorization, and its documentation were described in
greater detail.

Finally, we looked at the tools that are available in .NET Core that we can use to implement
and interact with services. We looked at a variety of frameworks for intra-cluster
communication, such as .NET remoting and gRPC, and tools for SOAP and REST-based
public services.

Here, we mainly focused on REST services. Their ASP.NET Core implementations were
described in detail, along with the techniques we can use in order to authenticate/authorize
them and their documentation. We also focused on how to implement efficient .NET Core
proxies so that we can interact with REST services.

In the next chapter, we will learn how to use .NET Core 3.0 while building an application
on ASP .NET Core MVC.

Questions
Can services use cookie-based sessions?1.
Is it good practice to implement a service with a custom communication2.
protocol? Why or why not?
Can a POST request to a REST service cause a delete?3.
How many dot-separated parts are contained in a JWT bearer token?4.
By default, where are the complex type parameters of a REST service's action5.
methods taken from?

Applying Service-Oriented Architectures with .NET Core Chapter 12

[351]

How is a controller declared as a REST service? 6.
What are the main documentation attributes of ASP.NET Core services?7.
How are ASP.NET Core REST service routing rules declared?8.
How should a proxy be declared so that we can take advantage of .NET9.
Core's HttpClientFactory class features?

Further reading
This chapter mainly focused on the more commonly used REST service. If you are
interested in SOAP services, a good place to start is the Wikipedia page regarding SOAP
specifications: https:/ ​/ ​en. ​wikipedia. ​org/ ​wiki/ ​List_ ​of_​web_ ​service_ ​specifications.
On the other hand, if you are interested in the Microsoft .NET WCF technology for
implementing SOAP services, you can refer to WCF's official documentation here: https:/ ​/
docs.​microsoft.​com/ ​en- ​us/ ​dotnet/ ​framework/ ​wcf/​.

This chapter mentioned the AMQP protocol as an option for intra-cluster communication
without describing it. Detailed information on this protocol is available on AMQP's official
site: https:/​/​www. ​amqp. ​org/ ​.

More information on gRPC is available on Google gRPC's official site: https:/ ​/​grpc. ​io/ ​.
More information on the Visual Studio gRPC project template can be found here: https:/ ​/
docs.​microsoft.​com/ ​en- ​US/ ​aspnet/ ​core/ ​grpc/ ​?​view= ​aspnetcore- ​3.​0.

More details on ASP.NET Core services are available in the official documentation: https:/
/​docs.​microsoft.​com/ ​en- ​US/ ​aspnet/ ​core/ ​web- ​api/​? ​view= ​aspnetcore- ​3.​0. More
information on .NET Core's HTTP client is available here: https:/ ​/​docs. ​microsoft. ​com/
en-​US/​aspnet/​core/ ​fundamentals/ ​http- ​requests? ​view= ​aspnetcore- ​3. ​0.

More information on JWT token authentication is available here: https:/ ​/​jwt. ​io/​. If you
would like to generate JWT tokens with Identity Serve 4, you may refer to its official
documentation page: http:/ ​/​docs. ​identityserver. ​io/ ​en/​latest/ ​.

More information on OpenAPI is available at https:/ ​/​swagger. ​io/​docs/ ​specification/
about/​, while more information on Swashbuckle can be found on its GitHub repository
page: https:/​/​github. ​com/ ​domaindrivendev/ ​Swashbuckle.

https://en.wikipedia.org/wiki/List_of_web_service_specifications
https://en.wikipedia.org/wiki/List_of_web_service_specifications
https://en.wikipedia.org/wiki/List_of_web_service_specifications
https://en.wikipedia.org/wiki/List_of_web_service_specifications
https://en.wikipedia.org/wiki/List_of_web_service_specifications
https://en.wikipedia.org/wiki/List_of_web_service_specifications
https://en.wikipedia.org/wiki/List_of_web_service_specifications
https://en.wikipedia.org/wiki/List_of_web_service_specifications
https://en.wikipedia.org/wiki/List_of_web_service_specifications
https://en.wikipedia.org/wiki/List_of_web_service_specifications
https://en.wikipedia.org/wiki/List_of_web_service_specifications
https://en.wikipedia.org/wiki/List_of_web_service_specifications
https://en.wikipedia.org/wiki/List_of_web_service_specifications
https://en.wikipedia.org/wiki/List_of_web_service_specifications
https://en.wikipedia.org/wiki/List_of_web_service_specifications
https://en.wikipedia.org/wiki/List_of_web_service_specifications
https://en.wikipedia.org/wiki/List_of_web_service_specifications
https://en.wikipedia.org/wiki/List_of_web_service_specifications
https://en.wikipedia.org/wiki/List_of_web_service_specifications
https://en.wikipedia.org/wiki/List_of_web_service_specifications
https://en.wikipedia.org/wiki/List_of_web_service_specifications
https://docs.microsoft.com/en-us/dotnet/framework/wcf/
https://docs.microsoft.com/en-us/dotnet/framework/wcf/
https://docs.microsoft.com/en-us/dotnet/framework/wcf/
https://docs.microsoft.com/en-us/dotnet/framework/wcf/
https://docs.microsoft.com/en-us/dotnet/framework/wcf/
https://docs.microsoft.com/en-us/dotnet/framework/wcf/
https://docs.microsoft.com/en-us/dotnet/framework/wcf/
https://docs.microsoft.com/en-us/dotnet/framework/wcf/
https://docs.microsoft.com/en-us/dotnet/framework/wcf/
https://docs.microsoft.com/en-us/dotnet/framework/wcf/
https://docs.microsoft.com/en-us/dotnet/framework/wcf/
https://docs.microsoft.com/en-us/dotnet/framework/wcf/
https://docs.microsoft.com/en-us/dotnet/framework/wcf/
https://docs.microsoft.com/en-us/dotnet/framework/wcf/
https://docs.microsoft.com/en-us/dotnet/framework/wcf/
https://docs.microsoft.com/en-us/dotnet/framework/wcf/
https://docs.microsoft.com/en-us/dotnet/framework/wcf/
https://docs.microsoft.com/en-us/dotnet/framework/wcf/
https://docs.microsoft.com/en-us/dotnet/framework/wcf/
https://www.amqp.org/
https://www.amqp.org/
https://www.amqp.org/
https://www.amqp.org/
https://www.amqp.org/
https://www.amqp.org/
https://www.amqp.org/
https://www.amqp.org/
https://www.amqp.org/
https://www.amqp.org/
https://grpc.io/
https://grpc.io/
https://grpc.io/
https://grpc.io/
https://grpc.io/
https://grpc.io/
https://grpc.io/
https://grpc.io/
https://docs.microsoft.com/en-US/aspnet/core/grpc/?view=aspnetcore-3.0.
https://docs.microsoft.com/en-US/aspnet/core/grpc/?view=aspnetcore-3.0.
https://docs.microsoft.com/en-US/aspnet/core/grpc/?view=aspnetcore-3.0.
https://docs.microsoft.com/en-US/aspnet/core/grpc/?view=aspnetcore-3.0.
https://docs.microsoft.com/en-US/aspnet/core/grpc/?view=aspnetcore-3.0.
https://docs.microsoft.com/en-US/aspnet/core/grpc/?view=aspnetcore-3.0.
https://docs.microsoft.com/en-US/aspnet/core/grpc/?view=aspnetcore-3.0.
https://docs.microsoft.com/en-US/aspnet/core/grpc/?view=aspnetcore-3.0.
https://docs.microsoft.com/en-US/aspnet/core/grpc/?view=aspnetcore-3.0.
https://docs.microsoft.com/en-US/aspnet/core/grpc/?view=aspnetcore-3.0.
https://docs.microsoft.com/en-US/aspnet/core/grpc/?view=aspnetcore-3.0.
https://docs.microsoft.com/en-US/aspnet/core/grpc/?view=aspnetcore-3.0.
https://docs.microsoft.com/en-US/aspnet/core/grpc/?view=aspnetcore-3.0.
https://docs.microsoft.com/en-US/aspnet/core/grpc/?view=aspnetcore-3.0.
https://docs.microsoft.com/en-US/aspnet/core/grpc/?view=aspnetcore-3.0.
https://docs.microsoft.com/en-US/aspnet/core/grpc/?view=aspnetcore-3.0.
https://docs.microsoft.com/en-US/aspnet/core/grpc/?view=aspnetcore-3.0.
https://docs.microsoft.com/en-US/aspnet/core/grpc/?view=aspnetcore-3.0.
https://docs.microsoft.com/en-US/aspnet/core/grpc/?view=aspnetcore-3.0.
https://docs.microsoft.com/en-US/aspnet/core/grpc/?view=aspnetcore-3.0.
https://docs.microsoft.com/en-US/aspnet/core/grpc/?view=aspnetcore-3.0.
https://docs.microsoft.com/en-US/aspnet/core/grpc/?view=aspnetcore-3.0.
https://docs.microsoft.com/en-US/aspnet/core/grpc/?view=aspnetcore-3.0.
https://docs.microsoft.com/en-US/aspnet/core/grpc/?view=aspnetcore-3.0.
https://docs.microsoft.com/en-US/aspnet/core/grpc/?view=aspnetcore-3.0.
https://docs.microsoft.com/en-US/aspnet/core/grpc/?view=aspnetcore-3.0.
https://docs.microsoft.com/en-US/aspnet/core/grpc/?view=aspnetcore-3.0.
https://docs.microsoft.com/en-US/aspnet/core/grpc/?view=aspnetcore-3.0.
https://docs.microsoft.com/en-US/aspnet/core/web-api/?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/web-api/?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/web-api/?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/web-api/?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/web-api/?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/web-api/?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/web-api/?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/web-api/?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/web-api/?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/web-api/?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/web-api/?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/web-api/?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/web-api/?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/web-api/?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/web-api/?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/web-api/?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/web-api/?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/web-api/?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/web-api/?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/web-api/?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/web-api/?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/web-api/?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/web-api/?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/web-api/?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/web-api/?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/web-api/?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/web-api/?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/web-api/?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/web-api/?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/web-api/?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/fundamentals/http-requests?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/fundamentals/http-requests?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/fundamentals/http-requests?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/fundamentals/http-requests?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/fundamentals/http-requests?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/fundamentals/http-requests?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/fundamentals/http-requests?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/fundamentals/http-requests?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/fundamentals/http-requests?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/fundamentals/http-requests?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/fundamentals/http-requests?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/fundamentals/http-requests?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/fundamentals/http-requests?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/fundamentals/http-requests?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/fundamentals/http-requests?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/fundamentals/http-requests?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/fundamentals/http-requests?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/fundamentals/http-requests?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/fundamentals/http-requests?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/fundamentals/http-requests?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/fundamentals/http-requests?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/fundamentals/http-requests?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/fundamentals/http-requests?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/fundamentals/http-requests?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/fundamentals/http-requests?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/fundamentals/http-requests?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/fundamentals/http-requests?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/fundamentals/http-requests?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/fundamentals/http-requests?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/fundamentals/http-requests?view=aspnetcore-3.0
https://jwt.io/
https://jwt.io/
https://jwt.io/
https://jwt.io/
https://jwt.io/
https://jwt.io/
https://jwt.io/
https://jwt.io/
http://docs.identityserver.io/en/latest/
http://docs.identityserver.io/en/latest/
http://docs.identityserver.io/en/latest/
http://docs.identityserver.io/en/latest/
http://docs.identityserver.io/en/latest/
http://docs.identityserver.io/en/latest/
http://docs.identityserver.io/en/latest/
http://docs.identityserver.io/en/latest/
http://docs.identityserver.io/en/latest/
http://docs.identityserver.io/en/latest/
http://docs.identityserver.io/en/latest/
http://docs.identityserver.io/en/latest/
http://docs.identityserver.io/en/latest/
http://docs.identityserver.io/en/latest/
https://swagger.io/docs/specification/about/
https://swagger.io/docs/specification/about/
https://swagger.io/docs/specification/about/
https://swagger.io/docs/specification/about/
https://swagger.io/docs/specification/about/
https://swagger.io/docs/specification/about/
https://swagger.io/docs/specification/about/
https://swagger.io/docs/specification/about/
https://swagger.io/docs/specification/about/
https://swagger.io/docs/specification/about/
https://swagger.io/docs/specification/about/
https://swagger.io/docs/specification/about/
https://swagger.io/docs/specification/about/
https://github.com/domaindrivendev/Swashbuckle
https://github.com/domaindrivendev/Swashbuckle
https://github.com/domaindrivendev/Swashbuckle
https://github.com/domaindrivendev/Swashbuckle
https://github.com/domaindrivendev/Swashbuckle
https://github.com/domaindrivendev/Swashbuckle
https://github.com/domaindrivendev/Swashbuckle
https://github.com/domaindrivendev/Swashbuckle
https://github.com/domaindrivendev/Swashbuckle
https://github.com/domaindrivendev/Swashbuckle
https://github.com/domaindrivendev/Swashbuckle

13
Presenting ASP.NET Core

MVC
In this chapter, you will learn how to implement an application presentation layer. More
specifically, you will learn how to implement a web application based on ASP.NET Core
MVC.

ASP.NET Core is a .NET framework for implementing web applications. ASP.NET Core
has been partially described in previous chapters, so this chapter focuses mainly on
ASP.NET Core MVC. More specifically, the contribution of this chapter is as follows:

Understanding the presentation layers of web applications
Understanding the ASP.NET Core MVC structure
What is new in .NET Core 3.0 for ASP.NET Core?
Understanding the connection between ASP.NET Core MVC and design
principles
Use case – implementing a web app in ASP.NET Core MVC

We will review and give further details on the structure of the ASP.NET Core framework
that, in part, was discussed in Chapter 12, Applying Service-Oriented Architectures with .NET
Core, and Chapter 4, Deciding the Best Cloud-Based Solution. Here, the main focus is on how
to implement web-based presentation layers based on the so-called Model View Controller
(MVC) architectural pattern.

We will also analyze all of the new features available in the last ASP.NET Core 3.0 version
and the architectural patterns included in the ASP.NET Core MVC framework and/or used
in typical ASP.NET Core MVC projects. Some of these patterns were discussed in Chapter
9, Design Patterns and .NET Core Implementation, and Chapter 10, Understanding the Different
Domains in Software Solutions, whereas some others, such as the MVC pattern itself, are new.

Presenting ASP.NET Core MVC Chapter 13

[353]

You will learn how to implement an ASP.NET Core MVC application, and how to organize
the whole Visual Studio solution with the practical example at the end of this chapter. This
example describes a complete ASP.NET Core MVC application for editing the packages of
the WWTravelClub book use case.

Technical requirements
This chapter requires Visual Studio 2017 or the 2019 free Community Edition or better with
all database tools installed.

All concepts are clarified with practical examples based on the WWTravelClub book use
case. The code for this chapter is available at https:/ ​/​github. ​com/ ​PacktPublishing/
Hands-​On-​Software- ​Architecture- ​with- ​CSharp- ​8.

Understanding the presentation layers of
web applications
This chapter discusses an architecture for the implementation of presentation layers of web-
based applications based on the ASP.NET Core framework. Presentation layers of web
applications are based on three techniques:

Mobile or desktop native applications that exchange data with servers through
REST or SOAP services: We have not discussed them since they are strictly tied
to the client device and its operating system, therefore, analyzing them, which
would require a dedicated book, is completely beyond the scope of this book.
Single Page Applications (SPA): These are HTML-based applications whose
dynamic HTML is created on the client either in JavaScript or with the help of
WebAssembly (a kind of cross-browser assembly that can be used as a high-
performance alternative to JavaScript). Like native applications, SPAs exchange
data with the server through REST or SOAP services, but they have the
advantage of being independent of the device and its operating system since they
run in a browser. SPA frameworks are complex subjects that require dedicated
books, so they cannot be described in this book. Some related links are listed in
the Further reading section.
HTML pages created by the server whose content depends on the data to be
shown to the user: The ASP.NET Core MVC framework, which will be discussed
in this chapter, is a framework for creating such dynamic HTML pages.

https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8

Presenting ASP.NET Core MVC Chapter 13

[354]

The remainder of this chapter focuses on how to create HTML pages on the server side and,
more specifically, on ASP.NET Core MVC, which is introduced in the next section.

Understanding the ASP.NET Core MVC
structure
ASP.NET Core is based on the concept of the Generic Host explained in the Using Generic
Hosts subsection of Chapter 5, Applying a Microservice Architecture to Your Enterprise
Application. The basic architecture of ASP.NET Core is outlined in the A short introduction to
ASP.NET Core subsection of Chapter 12, Applying Service-Oriented Architectures with .NET
Core.

It is worth reminding readers that the host configuration is delegated to the Startup class
defined in the Startup.cs file by calling the .UseStartup<Startup>() method of
the IWebHostBuilder interface. ConfigureServices(IServiceCollection
services) of the Startup class defines all services that can be injected in object
constructors through DI. DI is described in detail in the Using Generic Hosts subsection of
Chapter 5, Applying Microservice Architecture to Your Enterprise Application.

The Configure(IApplicationBuilder app, IHostingEnvironment env) startup
method, instead, defines the so-called ASP.NET Core pipeline that was briefly described in
A short introduction to ASP.NET Core subsection of Chapter 12, Applying Service-Oriented
Architectures with .NET Core, and that will be described in more detail in the next
subsection.

How ASP.NET Core pipeline works
ASP.NET Core furnishes a set of configurable modules you may assemble according to
your needs. Each module takes care of functionality that you may need or not. Examples of
functionalities are authorization, authentication, static file processing, protocol negotiation,
CORS handling, and so on.

You can put together all of the modules you need by inserting them into a common
processing framework called the ASP.NET Core pipeline.

Presenting ASP.NET Core MVC Chapter 13

[355]

More specifically, ASP.NET Core requests are processed by pushing a context object
through a pipeline of ASP.NET Core modules, as shown in the following diagram:

The object that is inserted in the pipeline is an HttpContext instance that contains the
whole data of the incoming request. More specifically the Request property of
HttpContext contains an HttpRequest object whose properties represent the incoming
request in a structured way. There are properties for headers, cookies, request path,
parameters, form fields, and the request body.

The various modules can contribute to the construction of the final response by writing in
an HttpResponse object contained in the Response property of the HttpContext
instance. The HttpResponse class is similar to the HttpRequest class, but its properties
refer to the response being built.

Some modules can build an intermediate data structure that is then used by other modules
in the pipeline. In general, such intermediary data can be stored in custom entries of
IDictionary<object, object> contained in the Items property of the HttpContext
object. However, there is a predefined property, User, which contains information on the
currently logged user. The logged-in user is not computed automatically but must be
computed by an authentication module. The ASP.NET Core services authorization subsection
of Chapter 12, Applying Service-Oriented Architectures with .NET Core, explains how to add
the standard module that performs JWT token-based authentication to the ASP.NET Core
pipeline.

HttpContext has also a Connection property that contains information on the underlying
connection established with the client and a WebSockets property that contains
information on possible WebSocket-based connections established with the clients.

HttpContext also has a Features property that contains IDictionary<Type, object>,
which specifies the features supported by the web server that hosts the web application and
by the modules of the pipeline. Features can be set with the .Set<Type>(Type o) method
and can be retrieved with the .Get<Type>() method.

Presenting ASP.NET Core MVC Chapter 13

[356]

Web server features are automatically added by the framework, when all other features are
added by pipeline modules while they process HttpContext. Features are not specific for
the incoming request but depend just on the application-hosting environment, and on the
modules added to the ASP.NET Core pipeline.

HttpContext gives access also to the dependency injection engine through its
RequestServices property. You can get an instance of a type managed by the
dependency engine by calling the .RequestService.GetService(Type t) method.

The HttpContext instance that is created for processing a web request is
not available only to modules, but also to the application code through DI.
It is enough to insert an IHttpContextAccessor parameter in the
constructor of a class that is automatically dependency injected, such as a
controller (see later on in this section), and then access
its HttpContext property.

A module is any class with the following structure:

public class CoreMiddleware
{
 private readonly RequestDelegate _next;
 public CoreMiddleware(RequestDelegate next, ILoggerFactory
 loggerFactory)
 {
 ...
 _next = next;
 ...
 }

 public async Task Invoke(HttpContext context)
 {
 /*
 Insert here the module specific code that processes the
 HttpContext instance

 */
 await _next.Invoke(context);
 /*
 Insert here other module specific code that processes the
 HttpContext instance
 */
 }
}

Presenting ASP.NET Core MVC Chapter 13

[357]

In general, each module processes the HttpContext instance passed by the previous
module in the pipeline, then calls await _next.Invoke(context) to invoke the modules
in the remainder of the pipeline. When all other modules finish their processing and the
response for the client has been prepared, each module can perform further post-processing
of the response in the code that follows the _next.Invoke(context) call.

Modules are registered in the ASP.NET Core pipeline by calling the UseMiddleware<T>
method in the Startup.cs file's Configure method, as shown here:

public void Configure(IApplicationBuilder app, IHostingEnvironment env,
IServiceProvider serviceProvider)
{
 ...
 app.UseMiddleware<MyCustomModule>
 ...
}

Modules are inserted in the pipeline in the same order when UseMiddleware is called.
Since each functionality added to an application might require several modules and might
require operations other than adding modules, you usually define
an IApplicationBuilder extension such as UseMyFunctionality, as shown in the
following code:

public static class MyMiddlewareExtensions
{
 public static IApplicationBuilder UseMyFunctionality(this
 IApplicationBuilder builder,...)
 {
 //other code
 ...
 builder.UseMiddleware<MyModule1>();
 builder.UseMiddleware<MyModule2>();
 ...
 //Other code
 ...
 return builder;
 }
}

After that, the whole functionality can be added to the application by calling
app.UseMyFunctionality(...). For instance, the ASP.NET Core MVC functionality is
added to the ASP.NET Core pipeline by calling app.UseEndpoints(....).

Presenting ASP.NET Core MVC Chapter 13

[358]

Often, functionalities added with each app.Use... require that some .NET types are
added to the application DI engine. In these cases, we also define an IServiceCollection
extension named AddMyFunctionality that must be called in the Startup.cs file's
ConfigureServices(IServiceCollection services) method. For instance, ASP.NET
Core MVC requires a call like the following:

services.AddControllersWithViews(o =>
{
 //set here MVC options by modifying the o option parameter
}

If you don't need to change the default MVC options, you can simply
call services.AddControllersWithViews().

The next subsection describes another important feature of the ASP.NET Core framework,
namely, how to handle application configuration data.

Loading configuration data and using it with the
options framework
When an ASP.NET Core application starts, it reads configuration information (such as a
database connection string) from the appsettings.json and
appsettings.[EnvironmentName].json files, where EnvironmentName is a string
value that depends on where the application is deployed. Typical values for
EnvironmentName are as follows:

Production is used for production deployment.
Development is used during development.
Staging is used when the application is tested in staging.

The two JSON trees extracted from the appsettings.json and
appsettings.[EnvironmentName].json files are merged into a unique tree where
values contained in [EnvironmentName].json override the values contained in the
corresponding paths of appsettings.json. This way, the application can be run with
different configurations in different deployment environments. In particular, you may use a
different database connection string, and hence, a different database instance in each
different environment.

Presenting ASP.NET Core MVC Chapter 13

[359]

The [EnvironmentName] string is taken from the ASPNETCORE_ENVIRONMENT operating
system environment variable. In turn, ASPNETCORE_ENVIRONMENT can be automatically set
during the application's deployment with Visual Studio in two ways:

During Visual Studio deployment, Visual Studio publish wizard creates an XML
publish profile. If the publish wizard allows you to choose
the ASPNETCORE_ENVIRONMENT from a drop-down list, you are done:

Otherwise, you may proceed as follows:

Once you fill in the information in the wizard, save the publish profile1.
without publishing.

Presenting ASP.NET Core MVC Chapter 13

[360]

Then, edit the profile with a text editor and add an XML property such2.
as, <EnvironmentName>Staging</EnvironmentName>. Since all
already defined publish profiles can be selected during the application
publication, you may define a different publish profile for each of your
environments, and then, you may select the one you need during each
publication.

The value to set ASPNETCORE_ENVIRONMENT to during deployment can also be
specified in the Visual Studio ASP.NET Core project file (.csproj) of your
application by adding the following code:

<PropertyGroup>
 <EnvironmentName>Staging</EnvironmentName>
</PropertyGroup>

During development in Visual Studio, the value to give to ASPNETCORE_ENVIRONMENT
when the application is run can be specified in the
Properties\launchSettings.json file of the ASP.NET Core project. The
launchSettings.json file contains several named groups of settings. These settings
configure how to launch the web application when it is run from Visual Studio. You may
choose to apply all settings of a group by selecting the group name with the drop-down list
next to Visual Studio's run button:

Your selection in this drop-down list will be shown in the run button, the default selection
being IIS Express.

The following code shows a typical launchSettings.json file in which you can either
add a new group of settings or change the settings of the existing default groups:

{
 "iisSettings": {
 "windowsAuthentication": false,
 "anonymousAuthentication": true,
 "iisExpress": {
 "applicationUrl": "http://localhost:2575",
 "sslPort": 44393
 }
 },
 "profiles": {
 "IIS Express": {
 "commandName": "IISExpress",

Presenting ASP.NET Core MVC Chapter 13

[361]

 "launchBrowser": true,
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 },
 ...
 ...
 }
 }
}

The named groups of settings are under the profiles properties. There, you may choose
where to host the application (IISExpress), to launch the browser, and the values of some
environment variables.

The current environment loaded from the ASPNETCORE_ENVIRONMENT operating system
environment variable can be tested through the IHostingEnvironment interface during
the ASP.NET Core pipeline definition since an IHostingEnvironment instance is passed
as a parameter to the Startup.cs file's Configure method. IHostingEnvironment is
also available to the remainder of the user code through DI.

IHostingEnvironment.IsEnvironment(string environmentName) checks whether
the current value of ASPNETCORE_ENVIRONMENT is environmentName. There are also
specific shortcuts for testing development (.IsDevelopment()), production
(.IsProduction()), and staging (.IsStaging()). IHostingEnvironment also contains
the current root directory of the ASP.NET Core application (.WebRootPath) and the
directory reserved for static files (.ContentRootPath) that are served as they are by the
web server (CSS, JavaScript, images, and so on).

Both launchSettings.json and all publish profiles can be accessed as children of the
Properties node in Visual Studio Explorer, as shown in the following screenshot:

Presenting ASP.NET Core MVC Chapter 13

[362]

Once appsettings.json and appsettings.[EnvironmentName].json are
loaded, the configuration tree resulting from their merge can be mapped to the properties
of .NET objects. For example, let's suppose we have an Email section of the appsettings
files that contains all of the information needed to connect to an email server, as shown
here:

{
 "ConnectionStrings": {
 "DefaultConnection": "...."
 },
 "Logging": {
 "LogLevel": {
 "Default": "Warning"
 }
 },
 "Email": {
 "FromName": "MyName",
 "FromAddress": "info@MyDomain.com",
 "LocalDomain": "smtps.MyDomain.com",
 "MailServerAddress": "smtps.MyDomain.com",
 "MailServerPort": "465",
 "UserId": "info@MyDomain.com",
 "UserPassword": "mypassword"

Then, the whole Email section can be mapped to an instance of the following class:

 public class EmailConfig
 {
 public String FromName { get; set; }
 public String FromAddress { get; set; }
 public String LocalDomain { get; set; }

 public String MailServerAddress { get; set; }
 public String MailServerPort { get; set; }

 public String UserId { get; set; }
 public String UserPassword { get; set; }
 }

The code that performs the mapping must be inserted in the ConfigureServices method
in the Startup.cs file since the EmailConfig instance will be available through DI. The
code we need is shown here:

public Startup(IConfiguration configuration)
{
 Configuration = configuration;
}

Presenting ASP.NET Core MVC Chapter 13

[363]

....
public void ConfigureServices(IServiceCollection services)
{
 ...
 services.Configure<EmailConfig>(Configuration.GetSection("Email"));
 ..

After the preceding settings, classes that need EmailConfig data must declare an
IOptions<EmailConfig> options parameter that will be provided by the DI engine. An
EmailConfig instance is contained in options.Value.

The next subsection describes the basic ASP.NET Core pipeline modules needed by an
ASP.NET Core MVC application.

Defining the ASP.NET Core MVC pipeline
If you create a new ASP.NET Core MVC project in Visual Studio, a standard pipeline is
created in the Startup.cs file's Configure method. There, if needed, you may add
further modules or change the configuration of the existing modules.

The initial code of the Configure method handles errors and performs basic HTTPS
configuration:

 if (env.IsDevelopment())
{
 app.UseDeveloperExceptionPage();
 app.UseDatabaseErrorPage();
}
else
{
 app.UseExceptionHandler("/Home/Error");
 app.UseHsts();
}
app.UseHttpsRedirection();

If there are errors, if the application is in a development environment, the module installed
by UseDeveloperExceptionPage adds a detailed error report to the response, while the
module installed by UseDatabaseErrorPage processes and adds details of Entity
Framework database errors, if any, to the response. These modules are valuable debugging
tools.

Presenting ASP.NET Core MVC Chapter 13

[364]

If an error occurs when the application is not in development mode,
UseExceptionHandler restores the request processing from the path it receives as an
argument, that is, from /Home/Error. In other words, it simulates a new request with the
/Home/Error path. This request is pushed into the standard MVC processing until it
reaches the endpoint associated with the /Home/Error path, where the developer is
expected to place the custom code that handles the error.

When the application is not in development, UseHsts adds the Strict-Transport-
Security header to the response that informs the browser that the application must be
accessed only with HTTPS. After this declaration, compliant browsers should automatically
convert any HTTP request to the application into an HTTPS request for the time specified
in the Strict-Transport-Security header. As a default, UseHsts specifies 30 days as
the time in the header, but you may specify a different time and other header parameters
by adding an options object in the ConfigureServices method of Startup.cs:

services.AddHsts(options => {
 ...
 options.MaxAge = TimeSpan.FromDays(60);
 ...
});

UseHttpsRedirection causes an automatic redirection to an HTTPS URL when an HTTP
URL is received, in a way to force a secure connection. Once the first HTTPS secure
connection is established, the Strict-Transport-Security header prevents future
redirections that might be used to perform man-in-the-middle attacks.

The following code shows the remainder of the default pipeline:

app.UseStaticFiles();
app.UseCookiePolicy();

app.UseRouting();

app.UseAuthentication();
app.UseAuthorization();

...

Presenting ASP.NET Core MVC Chapter 13

[365]

UseStaticFiles makes accessible from the web all files contained in the wwwroot folder
of the project (typically CSS, JavaScript, images, and font files) through their actual path.

UseCookiePolicy ensures that cookies are processed by the ASP.NET Core pipeline only
if the user has given consent for cookie usage. Consent to cookie usage is given through a
consent cookie, that is, cookie processing is enabled only if this consent cookie is found
among the request cookies. This cookie must be created by JavaScript when the user clicks a
consent button. The whole string that contains both the consent cookie names and its
contents can be retrieved from the HttpContext.Features, as shown in the following
snippet:

var consentFeature = context.Features.Get<ITrackingConsentFeature>();
var showBanner = !consentFeature?.CanTrack ?? false;
var cookieString = consentFeature?.CreateConsentCookie();

CanTrack is true only if consent is required and has not been given yet. When the consent
cookie is detected, CanTrack is set to false. This way, showBanner is true only if consent
is required and has not been given yet. Therefore, it tells us whether to ask the user for
consent or not.

Options of the consent module are contained in a CookiePolicyOptions instance that
must be configured manually with the options framework. The following code snippet
shows the default configuration code scaffolded by Visual Studio that configures
CookiePolicyOptions in the code instead of using the configuration file:

services.Configure<CookiePolicyOptions>(options =>
{
 options.CheckConsentNeeded = context => true;
});

UseAuthentication enables authentication schemes. As a default, it only enables cookie-
based authentication, that is, an authentication scheme where the authentication token is
placed in a cookie. The authentication cookie is created during user login.

Cookies authorization options (such as the cookie name) and other authentication schemes
can be enabled by configuring an options object in the ConfigureServices method, as
shown here:

services.AddAuthentication(o =>
{
 o.DefaultScheme =
 CookieAuthenticationDefaults.AuthenticationScheme;
})
.AddCookie(o =>
{

Presenting ASP.NET Core MVC Chapter 13

[366]

 o.Cookie.Name = "my_cookie";
})
.AddJwtBearer(o =>
{
 ...
});

The preceding code specifies a custom authentication cookie name and adds JWT-based
authentication for the REST service contained in the application. Both AddCookie and
AddJwtBearer have overloads that accept the name of the authentication scheme before
the action where you can define the authentication scheme options. Since the authentication
scheme name is necessary to refer to a specific authentication scheme, when it is not
specified, a default name is used:

The standard name contained in
CookieAuthenticationDefaults.AuthenticationScheme for cookie
authentication
The standard name contained in
JwtBearerDefaults.AuthenticationScheme for JWT authentication

The name passed in o.DefaultScheme selects the authentication scheme used for filling
the User property of HttpContext.

For more information about JWT authentication, please refer to the
ASP.NET Core services authorization subsection of Chapter 12, Applying
Service-Oriented Architectures with .NET Core.

UseAuthorization enables authorization based on the Authorize attribute. Options can
be configured with an AddAuthorization method placed in the ConfigureServices
method. These options allow the definition of policies for claims-based authorization.

For more information on authorization, please refer to the ASP.NET Core
services authorization subsection of Chapter 12, Applying Service-Oriented
Architectures with .NET Core.

Presenting ASP.NET Core MVC Chapter 13

[367]

UseRouting and UseEndpoints handle the so-called ASP.NET Core endpoints. An
endpoint is an abstraction of a handler that serves specific classes of URLs. URLs are
transformed into an Endpoint instance by using patterns. When a pattern matches a URL,
an Endpoint instance is created and filled with both the pattern name and data extracted
from the URL as a consequence of matching URL parts with named parts of the pattern, as
shown in the following code snippet:

Request path: /UnitedStates/NewYork
Pattern: Name="location", match="/{Country}/{Town}"

Endpoint: DisplayName="Location", Country="UnitedStates", Town="NewYork"

UseRouting adds a module that processes the request path to get the request
Endpoint instance and adds it to the HttpContext.Features dictionary under
the IEndpointFeature type. The actual Endpoint instance is contained in the Endpoint
property of IEndpointFeature.

Each pattern also contains the handler that should process all requests that match the
pattern. This handler is passed to Endpoint when the Endpoint is created.

UseEndpoints instead adds the middleware that invokes the handler associated with the
request endpoint. It is placed at the end of the pipeline since the execution of the handler is
expected to produce the final response.

As the following code snippet shows, patterns are processed in the
UseRouting middleware but they are specified in the UseEndpoints method. This
splitting is not necessary but is done for coherence with the previous ASP.NET Core
versions that contained no method analogous to UseRouting, but a unique call at the end
of the pipeline. In the new version, patterns are still defined in UseEndpoints, which is
placed at the end of the pipeline, but UseEndpoints just creates a data structure containing
all patterns, when the application starts. Then, this data structure is processed by the
UseRouting middleware, as shown in the following code:

app.UseRouting();

app.UseAuthentication();
app.UseAuthorization();

app.UseEndpoints(endpoints =>
{
 endpoints.MapControllerRoute(
 name: "default",
 pattern: "{controller=Home}/{action=Index}/{id?}");
});

Presenting ASP.NET Core MVC Chapter 13

[368]

MapControllerRoute defines the patterns associated with the MVC engine that will be
described in the next subsection. There are other methods that define other types of
patterns. A call such as .MapHub<MyHub>("/chat") maps paths to hubs that handle
WebSockets, whereas .MapHealthChecks("/health") maps paths to ASP.NET Core
components that return application health data. You can also directly map a pattern to a
custom handler with .MapGet, which intercepts GET requests, and .MapPost, which
intercepts POST requests. The following in an example of MapGet:

MapGet("hello/{country}", context =>
 context.Response.WriteAsync(
 $"Selected country is {context.GetRouteValue("country")}"));

Patterns are processed in the order in which they are defined until a matching pattern is
found. Since the authentication/authorization middleware is placed after the routing
middleware, it can process the Endpoint request to verify whether the current user has the
required authorizations to execute the Endpoint handler. Otherwise, a 401 (Unauthorized)
or 403 (Forbidden) response is immediately returned. Only requests that survive
authentication and authorization have their handlers executed by the UseEndpoints
middleware.

With the ASP.NET Core RESTful API described in Chapter 12, Applying Service-Oriented
Architectures with .NET Core, ASP.NET Core MVC also uses attributes placed on controllers
or on controller methods to specify authorization rules. However, an instance of
AuthorizeAttribute can be also added to a pattern to apply its authorization constraints
to all URLs matching that pattern, as shown in the following example:

endpoints
 .MapHealthChecks("/healthz")
 .RequireAuthorization(new AuthorizeAttribute(){ Roles = "admin", });

The preceding code makes the health check path available only to administrative users.

Defining controllers and ViewModels
The various .MapControllerRoute calls in UseEndpoints associate URL patterns to
controllers and to methods of these controllers, where controllers are classes that inherit
from the Microsoft.AspNetCore.Mvc.Controller class. Controllers are discovered by
inspecting all of the application's .dll files and are added to the DI engine. This job is
performed by the call to AddControllersWithViews in the ConfigureServices method
of the startup.cs file.

Presenting ASP.NET Core MVC Chapter 13

[369]

The pipeline module added by UseEndpoints takes the controller name from the
controller pattern variable, and the name of the controller method to invoke from
the action pattern variable. Since, by convention, all controller names are expected to end
with the Controller suffix, the actual controller type name is obtained from the name
found in the controller variable by adding this suffix. Hence, for instance, if the name
found in controller is "Home", then the UseEndpoints module tries to get an instance of
the HomeController type from the DI engine. All of the controller public methods can be
selected by the routing rules. Use of a controller public method can be prevented by
decorating it with the [NonAction] attribute. All controller methods available to the
routing rules are called action methods.

MVC controllers work like the API controllers that we described in the Implementing REST
services with ASP.NET Core subsection of Chapter 12, Applying Service-Oriented Architectures
with .NET Core. The only difference is that API controllers are expected to produce JSON or
XML, while MVC controllers are expected to produce HTML. For this reason, while API
controllers inherit from the ControllerBase class, MVC controllers inherit from the
Controller class, which, in turn, inherits from the ControllerBase class and adds its
methods that are useful for HTML generation, such as invoking views, which are described
in the next subsection, and creating a redirect response.

MVC controllers may use also a routing technique similar to one of the API controllers, that
is, routing based on controllers and controller method attributes. This behavior is enabled
by calling the .MapDefaultControllerRoute() method in UseEndpoints. If this call is
placed before all MapControllerRoute calls, then controller routes have priority
on MapControllerRoute patterns; otherwise, the converse is true.

All attributes we have seen for API controllers can be also used with MVC controllers and
action methods (HttpGet, HttpPost, ...Authorize, and so on). Developers can write
their own custom attributes by inheriting from the ActionFilter class or other derived
classes. I will not give details on this right now, but these details can be found in the official
documentation referred to in the Further reading section.

When the UseEndpoints module invokes a controller, all of its constructor parameters are
filled by the DI engine since the controller instance itself is returned by the DI engine, and
since DI automatically fills constructor parameters with DI in a recursive fashion.

Action method parameters, instead, are taken from the following sources:

Request headers
Variables in the pattern matched by the current request
Query string parameters

Presenting ASP.NET Core MVC Chapter 13

[370]

Form parameters (in the case of POST requests)
Dependency injection (DI)

While the parameters filled with DI are matched by type, all other parameters are matched
by name ignoring the letter casing. That is, the action method parameter name must match
the header, query-string, form, or pattern variable. When the parameter is a complex type, a
match is searched for each property, using the property name for the match. In the case of
nested complex types, a match is searched for each path and the name associated with the
path is obtained by chaining all property names in the path and separating them with dots.
For instance, the name associated with a path composed by Property1, Property2,,
Propertyn, is Property1.Property2.Property3...Propertyn. The name obtained
this way must match a header name, pattern variable name, query string parameter name,
and so on.

By default, simple type parameters are matched with pattern variables and query string
variables, while complex types parameters are matched with form parameters. However,
the preceding defaults can be changed by prefixing the parameters with attributes as
detailed here:

[FromForm] forces a match with form parameters.
[FromHeader] forces a match with a request header.
[FromRoute] forces a match with pattern variables.
[FromQuery] forces a match with a query string variable.
[FromServices] forces the use of DI.

During the match, the string extracted from the selected source is converted into the type of
the action method parameter using the current thread culture. If either a conversion fails or
no match is found for a not nullable action method parameter, then the whole action
method invocation process fails, and a 404 response is automatically returned. For instance,
in the following example, the id parameter is matched with query string parameters or
pattern variables since it is a simple type, while myclass properties and nested properties
are matched with form parameters since MyClass is a complex type. Finally, myservice is
taken from DI since it is prefixed with the [FromServices] attribute:

 public class HomeController : Controller
 {
 public IActionResult MyMethod(
 int id,
 MyClass myclass,
 [FromServices] MyService myservice)
 {
 ...

Presenting ASP.NET Core MVC Chapter 13

[371]

If no match is found for the id parameter, a 404 response is automatically returned since
integers are not nullable. If, instead, no MyService instance is found in the DI container, an
exception is thrown because in this case the failure doesn't depend on a wrong request but
a design error.

MVC controllers return an IActionResult interface or a Task<IActionResult> result if
they are declared as async. IActionResult has a unique
ExecuteResultAsync(ActionContext) method that, when invoked by the framework,
produces the actual response.

For each different IActionResult, MVC controllers have methods that return them. The
most commonly used IActionResult is ViewResult, which is returned by a View
method:

public IActionResult MyMethod(...)
{
 ...
 return View("myviewName", MyViewModel)
}

ViewResult is a very common way for a controller to create an HTML response. More
specifically, the controller interacts with business/data layers to produce an abstraction of
the data that will be shown in the HTML page. This abstraction is an object called
a ViewModel. The ViewModel is passed as a second argument to the View method, while
the first argument is the name of an HTML template called View that is instantiated with
the data contained in the ViewModel.

Summing up, the MVC controllers' processing sequence is as follows:

Controllers perform some processing to create the ViewModel, which is an1.
abstraction of the data to show on the HTML page.
Then, controllers create ViewResult by passing a View name and ViewModel to2.
the View method.
The MVC framework invokes ViewResult and causes the template contained in3.
the View to be instantiated with the data contained in the ViewModel.
The result of the template instantiation is written in the response with adequate4.
headers.

This way, the controller performs the conceptual job of HTML generation by building a
ViewModel, while the View, that is, the template, takes care of all the graphical details.

Presenting ASP.NET Core MVC Chapter 13

[372]

Views are described in greater detail in the next subsection, while the Model (ViewModel)
View Controller pattern is discussed in more detail in the Connection between ASP.NET Core
MVC and design principles section of this chapter. Finally, a practical example is given in the
Use case – web app in ASP.NET Core MVC section of this chapter.

Another common IActionResult is RedirectResult, which creates a redirect response,
hence forcing the browser to move to a specific URL. Redirects are often used after the user
has successfully submitted a form that completes a previous operation. In this case, it is
common to redirect the user to a page where they can select another operation.

The simplest way to return RedirectResult is by bypassing a URL to the Redirect
method. This is the advised way to perform a redirect to a URL that is outside the web
application. When the URL is within the web application, instead, it is advisable to use the
RedirectToAction method, which accepts the controller name, the action method name,
and the desired parameters for the target action method. The framework uses this data to
compute a URL that causes the desired action method to be invoked with the provided
parameters. This way, if the routing rules are changed during the application development
or maintenance, the new URL is automatically updated by the framework with no need to
modify all occurrences of the old URL in the code. The following code shows how to call
RedirectToAction:

return RedirectToAction("MyActionName", "MyControllerName",
 new {par1Name=par1VAlue,..parNName=parNValue});

Another useful IActionResult is ContentResult, which can be created by calling the
Content method. ContentResult allows you to write any string to the response and to
specify its MIME type, as shown in the following example:

return Content("this is plain text", "text/plain");

Finally, the File method returns FileResult, which writes binary data in the response.
There are several overloads of this method that allow the specification of a byte array, a
stream, or the path of a file, plus the MIME type of the binary data.

Now, let's move to describe how actual HTML is generated in Views.

Presenting ASP.NET Core MVC Chapter 13

[373]

Understanding Razor Views
ASP.NET Core MVC uses a language called Razor to define the HTML templates contained
in the Views. Razor views are files that are compiled into .NET classes either at their first
usage, when the application is built, or when the application is published. As a default,
both pre-compilation on each build and on publish are enabled, but this behavior can be
changed by adding the following code to the web application project file:

<PropertyGroup>
 <TargetFramework>netcoreapp3.0</TargetFramework>
 <!-- add code below -->
 <RazorCompileOnBuild>false</RazorCompileOnBuild>
 <RazorCompileOnPublish>false</RazorCompileOnPublish>
 <!-- end of code to add -->
 ...
</PropertyGroup>

Views can also be precompiled into views libraries by choosing a Razor view library project
in the windows that appear after you have chosen an ASP.NET Core project.

Also, after the compilation, views remain associated with their paths, which become their
full names. Each controller has an associated folder under the Views folder with the same
name as the controller, which is expected to contain all the views used by that controller.
The following screenshot shows the folder associated with the HomeController and its
Views:

The preceding screenshot also shows the Shared folder, which is expected to contain all the
views used by several controllers. The controller refers to views in the View method
through their paths without the .cshtml extension. If the path starts with /, the path is
interpreted as relative to the application root. Otherwise, as a first attempt, the path is
interpreted as relative to the folder associated with the controller and, if no view is found
there, the view is searched in the Shared folder.

Presenting ASP.NET Core MVC Chapter 13

[374]

Hence, for instance, the Privacy.cshtml View file in the preceding screenshot can be
referred to from within HomeController as View("Privacy", MyViewModel). If the
name of the View is the same as the name of the action method, we can simply write
View(MyViewModel).

Razor views are a mix of HTML code with C# code, plus some Razor-specific statements.
They all begin with a header that contains the type of ViewModel that the View is expected
to receive:

@model MyViewModel

Each view may contain also some using statements whose effect is the same as the using
statements of standard code files:

@model MyViewModel
@using MyApplication.Models

@using statements declared in the special _ViewImports.cshtml file, that is, in the root
of the Views folder, are automatically applied to all views.

Each view can also require instances of types from the DI engine in its header with the
syntax shown here:

@model MyViewModel
@using MyApplication.Models
@inject IViewLocalizer Localizer

The preceding code requires an instance of the IViewLocalizer interface and places it in
the Localizer variable. The remainder of the View is a mix of C# code, HTML, and Razor
control flow statements. Each area of a view can be either in HTML mode or C# mode. The
code in a View area that is in HTML mode is interpreted as HTML, while the code in a
View area that is in C# mode is interpreted as C#.

The topic that follows explains Razor flow of control statements.

Learning Razor flow of control statements
If you want to write some C# code in an HTML area, you can create a C# area with the
@{..} flow of control Razor statement, as shown here:

@{
 //place C# code here
 var myVar = 5;
 ...
 <div>

Presenting ASP.NET Core MVC Chapter 13

[375]

 <!-- here you are in HTML mode again -->
 ...
 </div>
 //after the HTML block you are still in C# mode
 var x = "my string";
}

The preceding example shows that it is enough to write an HTML tag to create an HTML
area inside of the C# area and so on recursively. As soon as the HTML tag closes, you are
again in C# mode.

C# code produces no HTML, while HTML code is added to the response in the same order
it appears. You can add text computed with C# code while in HTML mode by prefixing any
C# expression with @. If the expression is complex, composed of a chain of properties and
method calls, it must be enclosed by parentheses. The following code shows some
examples:

Current date is:
@DateTime.Today.ToString("d")
...
<p>
 User name is: @(myName+ " "+mySurname)
</p>
...
<input type="submit" value="@myUserMessage" />

Types are converted into strings using the current culture settings (see the Connection
between ASP.NET Core MVC and design principles section for details on how to set the culture
of each request). Moreover, strings are automatically HTML encoded to avoid the < and >
symbols that might interfere with the view HTML. HTML encoding can be prevented with
the @HTML.Raw function, as shown here:

@HTML.Raw(myDynamicHtml)

In an HTML area, alternative HTML can be selected with the @if Razor statement:

@if(myUser.IsRegistered)
{
 //this is a C# code area
 var x=5;
 ...
 <p>
 <!-- This is an HTML area -->
 </p>
 //this is a C# code area again
}
else if(callType == CallType.WebApi)

Presenting ASP.NET Core MVC Chapter 13

[376]

{
 ...
}
else
{
 ..
}

An HTML template can be instantiated several times with the for, foreach, and while
Razor statements, as shown in the following examples:

@for(int i=0; i< 10; i++)
{

}

@foreach(var x in myIEnumerable)
{

}

@while(true)
{
}

Please do not confuse the statements described so far with the usual C# if, for, foreach,
and while statements, since they are Razor-specific statements whose syntax is similar to
their standard C# counterparts.

Razor views can contain comments that do not generate any code. Any text included within
@*...*@ is considered a comment and is removed when the page is compiled. The next
topic describes properties that are available in all Views.

Understanding Razor View properties
Some standard variables are predefined in each view. The most important variable is
Model, which contains the ViewModel passed to the view. For instance, if we pass a
Person model to a view, then @Model.Name displays the name of
the Person passed to the view.

Presenting ASP.NET Core MVC Chapter 13

[377]

The ViewData variable contains IDictionary<string, object>, which is shared with
the controller that invoked the view. That is, all controllers also have a ViewData property
containing IDictionary<string, object>, and every entry that is set in the controller is
available also in the ViewData variable of the invoked view. ViewData is an alternative to
the ViewModel for a controller to pass information to its invoked view.

The User variable contains the currently logged user, that is, the same instance contained in
the current request's Http.Context.User property. The Url variable contains an instance
of the IUrlHelper interface whose methods are utilities for computing URLs of
application pages. For instance, Url.Action("action", "controller", new
{par1=valueOfPar1,...}) computes the URL that causes the action method action of the
controller to be invoked with all parameters specified in the anonymous object passed as its
parameters.

The Context variable contains the whole request HttpContext. The ViewContext
variable contains data about the context of the view invocation, included metadata about
the action method that invoked the view.

The next topic describes how Razor enhances HTML tag syntax.

Using Razor tag helpers
In ASP.NET Core MVC, the developer can define the so-called tag helpers that either
enhance existing HTML tags with new tag attributes or define new tags. While Razor views
are compiled, any tag is matched against existing tag helpers. When a match is found, the
source tag is replaced with HTML created by the tag helpers. Several tag helpers may be
defined for the same tag. They are all executed in an order that can be configured with a
priority attribute associated with each tag helper.

All tag helpers defined for the same tag may cooperate during the processing of each tag
instance because they are passed as a shared data structure where each of them may apply
a contribution. Usually, the final tag helper that is invoked processes this shared data
structure to produce the output HTML.

Tag helpers are classes that inherit from the TagHelper class. This topic doesn't discuss
how to create new tag helpers but introduces the main predefined tag helpers that come
with ASP.NET Core MVC. A complete guide on how to define tag helpers is available in
the official documentation that is referenced in the Further reading section.

Presenting ASP.NET Core MVC Chapter 13

[378]

To use a tag helper, you must declare the .dll file containing it with a declaration like in
the following:

@addTagHelper *, Dll.Complete.Name

If you would like to use just one of the tag helpers defined in the .dll file, you must
replace * with the tag name.

The preceding declaration can be placed either in each view that uses the tag helpers
defined in the library or, once and for all, in the _ViewImports.cshtml file in the root of
the Views folder. As a default, _ViewImports.cshtml adds all predefined ASP.NET Core
MVC tag helpers with the following declaration:

@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

The anchor tag is enhanced with attributes that automatically compute the URL and that
invoke a specific action method with given parameters, as shown here:

<a asp-controller="{controller name}"
asp-action="{action method name}"
asp-route-{action method parameter1}="value1"
...
asp-route-{action method parametern}="valuen">
 put anchor text here

A similar syntax is added to the form tags:

<form asp-controller="{controller name}"
asp-action="{action method name}"
asp-route-{action method parameter1}="value1"
...
asp-route-{action method parametern}="valuen"
...
>
 ...

The script tag is enhanced with attributes that allow falling back to a different source if
the download fails. Typical usage is to download scripts from some cloud service to
optimize the browser cache and to fall back to a local copy of the script in case of failure.
The following code uses the fallback technique to download the bootstrap JavaScript file:

<script src="https://stackpath.bootstrapcdn.com/
bootstrap/4.3.1/js/bootstrap.bundle.min.js"
asp-fallback-src="~/lib/bootstrap/dist/js/
bootstrap.bundle.min.js"
asp-fallback-test="window.jQuery && window.jQuery.fn &&

Presenting ASP.NET Core MVC Chapter 13

[379]

window.jQuery.fn.modal" crossorigin="anonymous"
integrity="sha384-
xrRywqdh3PHs8keKZN+8zzc5TX0GRTLCcmivcbNJWm2rs5C8PRhcEn3czEjhAO9o">
</script>

asp-fallback-test contains a JavaScript test that verifies whether the download
succeeded. In the preceding example, the test verifies whether a JavaScript object has been
created.

The environment tag can be used to select different HTML for different environments
(development, staging, and production). Its typical usage is selecting the debug version of
JavaScript files during development, as shown in this example:

<environment include="Development">
 @*development version of JavaScript files*@
</environment>
<environment exclude="Development">
 @*development version of JavaScript files *@
</environment>

There is also a cache tag, which caches its content in memory to optimize rendering speed:

<cache>
 @* heavy to compute content to casche *@
</cache>

As a default, content is cached for 20 minutes, but the tag has attributes to define when the
cache expires, such as expires-on="{datetime}", expires-after="{timespan}",
and expires-sliding="{timespan}". Here, the difference between expires-
sliding and expires-after is that, in the second attribute, the expiration time count is
reset each time the content is requested. The vary-by attribute causes the creation of a
different cache entry for each different value passed to vary-by. There are also attributes
such as vary-by-header—which creates a different entry for each different value
assumed by the request header specified in the attribute, vary-by-cookie, and so on.

All input tags, that is, textarea, input, and select, have an asp-for attribute that
accepts a properties path rooted in the view ViewModel as their value. For instance, if the
view has a Person ViewModel, we may have something like this:

<input type="text" asp-for"Address.Town"/>

Presenting ASP.NET Core MVC Chapter 13

[380]

The first effect of the preceding code is to assign the value of the Town nested property to
the value attribute of the input tag. In general, if the value is not a string, it is converted
into a string using the current request culture.

However, it also sets the name of the input field to Address.Town and the ID of the input
field to Address_Town since dots are not allowed in tag IDs.

A prefix can be added to these standard names by specifying it in
ViewData.TemplateInfo.HtmlFieldPrefix. For instance, if the previous property is set
to MyPerson, the name becomes MyPerson.Address.Town.

If the form is submitted to an action method that has the same Person class as one of its
parameters, the name Address.Town given to the input field will cause the Town property
of this parameter to be filled with the input field. In general, the string contained in the
input field is converted into the type of the property they are matched with using the
current request culture. Summing up, names of input fields are created in such a way that
a complete Person model can be recovered in the action method when the HTML page is
posted.

The same asp-for attribute can be used in a label tag to cause the label to refer to the
input field with the same asp-for value.

The following code is an example of an input/label pair:

<label asp-for"Address.Town"></label
<input type="text" asp-for"Address.Town"/>

When no text is inserted in the label, the text shown in the label is taken from a Display
attribute that decorates the property (Town, in the example), if any; otherwise, the name of
the property is used.

If span or div contains a data-valmsg-for="Address.Town" error attribute, then
validation messages concerning the Address.Town input will be inserted automatically
inside that tag. The validation framework is described in the Connection between ASP.NET
Core MVC and design principles section.

It is also possible to automatically create a validation error summary by adding the
attribute that follows to div or span:

asp-validation-summary="ValidationSummary.{All, ModelOnly}"

Presenting ASP.NET Core MVC Chapter 13

[381]

If the attribute is set to ValidationSummary.ModelOnly, only messages that are not
associated with specific input fields will be shown in the summary, and if the value
is ValidationSummary.All, all error messages will be shown.

The asp-items attribute allows specifying the options of select through
IEnumerable<SelectListItem>, where each SelectListItem contains both the text
and value of each option. SelectListItem contains also an optional Group property you
can use to organize into groups the options shown in select.

The next topic shows how to reuse view code.

Reusing view code
ASP.NET Core MVC includes several techniques for reusing view code. The most
important is the layout page.

In each web application, several pages share the same structure, for instance, the same main
menu or the same left or right bar. In ASP.NET Core, this common structure is factored out
in views called layout pages/views.

Each view can specify the view to use as its layout page with the following code:

@{
 Layout = "_MyLayout";
}

If no layout page is specified, a default layout page, defined in the
_ViewStart.cshtml file located in the Views folder, is used. The default content
of _ViewStart.cshtml is as follows:

@{
 Layout = "_Layout";
}

Therefore, the default layout page in the files scaffolded by Visual Studio is
_Layout.cshtml, which is contained in the Shared folder.

Presenting ASP.NET Core MVC Chapter 13

[382]

The layout page contains the HTML shared with all of its children pages, the HTML page
headers, and the page references to CSS and JavaScript files. The HTML produced by each
view is placed inside of its layout place, where the layout page calls the @RenderBody()
method, as shown in the following example:

...
<main role="main" class="pb-3">
 ...
 @RenderBody()
 ...
</main>
...

ViewState of each View is copied into ViewState of its layout page, so ViewState can be
used to pass information to the view layout page. Typically, it is used to pass the view title
to the layout page that use it to compose the page's title header, as shown here:

@*In the view *@

@{
 ViewData["Title"] = "Home Page";
}

@*In the layout view*@
<head>
 <meta charset="utf-8" />
 ...
 <title>@ViewData["Title"] - My web application</title>
 ...

While the main content produced by each view is placed in a single area of its layout page,
each layout page can also define several sections placed in different areas where each view
can place further secondary contents.

For instance, suppose a layout page defines a Scripts section, as shown here:

...
<script src="~/js/site.js" asp-append-version="true"></script>

@RenderSection("Scripts", required: false)
...

Presenting ASP.NET Core MVC Chapter 13

[383]

Then, the view can use the previously defined section to pass some view specific JavaScript
references, as shown here:

.....
@section scripts{
 <script src="~/js/pages/pageSpecificJavaScript.min.js"></script>
}
.....

If an action method is expected to return HTML to an Ajax call, it must produce an HTML
fragment instead of a whole HTML page. Therefore, in this case, no layout page must be
used. This is achieved by calling the PartialView method instead of the View method in
the controller action method. PartialView and View have exactly the same overloads and
parameters.

Another way to reuse view code is to factor out a view fragment that's common to several
views into another view that is called by all previous views. A view can call another view
with the partial tag, as shown here:

<partial name="_viewname" for="ModelProperty.NestedProperty"/>

The preceding code invokes _viewname and passes it to the object contained in
Model.ModelProperty.NestedProperty as its ViewModel. When a view is invoked by
the partial tag, no layout page is used since the called view is expected to return an
HTML fragment.

The ViewData.TemplateInfo.HtmlFieldPrefix property of the called view is set to
the "ModelProperty.NestedProperty" string. This way, possible input fields rendered
in _viewname.cshtml will have the same name as if they were rendered directly by the
calling view.

Instead of specifying the ViewModel of _viewname through a property of the caller view
(ViewModel), you can also pass an object directly that is contained in a variable or returned
by a C# expression by replacing for with model, as shown in this example:

<partial name="_viewname" model="new MyModel{...})" />

In this case, ViewData.TemplateInfo.HtmlFieldPrefix of the called view keeps its
default value, that is, the empty string.

Presenting ASP.NET Core MVC Chapter 13

[384]

A view can also call something more complex than another view, that is, another controller
method that, in turn, renders a view. Controllers that are designed to be invoked by views
are called view components. The following code is an example of component invocation:

<vc:[view-component-name] par1="par1 value" par2="parameter2 value">
</vc:[view-component-name]>

Parameter names must match the ones used in the view component method. However,
both component name and parameter names must be translated into kebab case, that is, all
characters must be transformed into lowercase and all characters that in the original name
were in uppercase and each word must be separated by a -. For instance, MyParam must be
transformed into my-param.

Actually, view components are classes that derive from the ViewComponent class. When a
component is invoked, the framework looks for either an Invoke method or an
InvokeAsync method and passes it to the parameters defined in the component
invocation. InvokeAsync must be used if the method is defined as async; otherwise, we
must use Invoke.

The following code is an example of a view component definition:

public class MyTestViewComponent : ViewComponent
 {
 public async Task<IViewComponentResult> InvokeAsync(
 int par1, bool par2)
 {
 var model=
 return View("ViewName", model);
 }
 }

The previously defined component must be invoked with a call such as the following:

<vc:my-test par1="10" par2="true"></my-test>

If the component is invoked by a view of a controller called MyController, ViewName is
searched in the following paths:

/Views/MyController/Components/MyTest/ViewName

/Views/Shared/Components/MyTest/ViewName

Now, let's look at the new features that came along with .NET Core 3.0.

Presenting ASP.NET Core MVC Chapter 13

[385]

What is new in .NET Core 3.0 for ASP.NET
Core?
The main innovation introduced by ASP.NET 3.0 is that the routing engine was factored
out of the MVC engine and is now available for other handlers. In previous versions, routes
and routing were a part of the MVC handler added with app.UseMvc(....); that now has
been replaced by app.UseRouting() plus UseEndpoints(...), which can route requests
not only to controllers but also to other handlers.

Endpoints and their associated handlers are now defined in UseEndpoints, as shown here:

 app.UseEndpoints(endpoints =>
 {
 ...
 endpoints.MapControllerRoute("default", "
 {controller=Home}/{action=Index}/{id?}");
 ...
 });

MapControllerRoute associates patterns with controllers, but we may use also something
such as endpoints.MapHub<ChatHub>("/chat"), which associates a pattern with a hub
that handles WebSocket connections. In the previous section, we have seen that patterns
can be associated also with custom handlers using MapPost and MapGet.

An independent router also allows us to add authorizations not only to controllers but also
to any handler, as shown here:

MapGet("hello/{country}", context =>
 context.Response.WriteAsync(
 $"Selected country is {context.GetRouteValue("country")}"))
 .RequireAuthorization(new AuthorizeAttribute(){ Roles = "admin" });

In the 3.0 version, ASP.NET Core has an independent JSON formatter and doesn't depend
on the third-party Newtonsoft JSON serializer any more. However, if you have more
sophisticated needs, you have still the option to replace the minimal ASP.NET Core JSON
formatter with Newtonsoft JSON serializer by installing the
Microsoft.AspNetCore.Mvc.NewtonsoftJson NuGet package and configuring
controllers, as shown here:

services.AddControllersWithViews()
 .AddNewtonsoftJson();

Presenting ASP.NET Core MVC Chapter 13

[386]

Here, AddNewtonsoftJson has also an overload that accepts configuration options for the
Newtonsoft JSON serializer:

.AddNewtonsoftJson(options =>
 options.SerializerSettings.ContractResolver =
 new CamelCasePropertyNamesContractResolver());

In previous versions, you were forced to add both controllers and views to the DI engine. In
version 3, we can still inject both controllers and views with
services.AddControllersWithViews but you can also add controllers
with AddControllers if you are going to implement REST endpoints only.

In previous versions, ASP.NET Core had a custom implementation of IWebHostBuilder,
which was completely independent of HostBuilder, which is the standard
implementation of IHostBuilder used to configure a generic host. The following code
shows how the ASP.NET Core host was configured before version 3.0:

public class Program
{
 public static void Main(string[] args)
 {
 CreateWebHostBuilder(args).Build().Run();
 }

 public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>();
}

ASP.NET Core 3.0, instead, uses a type that inherits from HostBuilder and adds the
methods of IWebHostBuilder, as shown here:

public class Program
{
 public static void Main(string[] args)
 {
 CreateHostBuilder(args).Build().Run();
 }

 public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });
}

Presenting ASP.NET Core MVC Chapter 13

[387]

As a first step, Host.CreateDefaultBuilder creates a standard
HostBuilder, ConfigureWebHostDefaults copies data contained in this HostBuilder
in a derived class that also implements IWebHostBuilder and lets the developer configure
this IWebHostBuilder in the action that it receives as an argument. IWebHostBuilder,
once configured, is returned as IHostBuilder so that all web-specific things remain
hidden.

This way development paths of HostBuilder and WebHostBuilder have been merged,
and new enhancements and extension methods of IHostBuilder are automatically
available also for the ASP.NET Core host.

Understanding the connection between
ASP.NET Core MVC and design principles
The whole ASP.NET Core framework is built on top of the design principles and patterns
that we analyzed in Chapter 5, Applying a Microservice Architecture to Your Enterprise
Application, Chapter 6, Interacting with Data in C# - Entity Framework Core, Chapter 9, Design
Patterns and .NET Core Implementation, Chapter 10, Understanding the Different Domains in
Software Solutions, and Chapter 11, Implementing Code Reusability in C# 8.

All functionalities are provided through DI so that each of them can be replaced without
affecting the remainder of the code. However, providers needed by ASP.NET Core pipeline
modules are grouped into option objects instead of being added individually to the DI
engine to conform to the SOLID Single Responsibility Principle.

Moreover, configuration data, instead of being available from a unique dictionary created
from a configuration file, is organized into option objects thanks to the options framework
we described in the first section of this chapter. This is an application of the SOLID
Interface Segregation Principle.

However, ASP.NET Core also applies other patterns that are specific instances of the
general Separation of Concerns principle, which is a generalization of the Single
Responsibility Principle. They are as follows:

The middleware modules architecture (ASP.NET Core pipeline)
Factoring out validation and globalization from the application code
The MVC pattern itself

We will analyze all of these in the various subsections that follow.

Presenting ASP.NET Core MVC Chapter 13

[388]

Advantages of the ASP.NET Core pipeline
The ASP.NET Core pipeline architecture has two important advantages:

All different operations performed on the initial request are factored out into
different modules, according to the Single Responsibility Principle.
The modules that perform these different operations don't need to call each other
because each module is invoked once and for all by the ASP.NET Core
framework. This way, the code for each module is not required to perform any
action that is connected with responsibilities assigned to other modules.

This ensures maximum independence of functionalities and simpler code. For instance,
once authorization and authentication modules are on, no other module needs to worry
about authorization anymore. Each controller code can focus on application-specific
business stuff.

Server-side and client-side validation
Validation logic has been completely factored out from the application code and has been
confined in the definition of validation attributes. The developer needs to just specify the
validation rule to apply to each model property by decorating the property with an
adequate validation attribute.

Validation rules are checked automatically when action method parameters are
instantiated. Both errors and paths in the model (where they occurred) are then recorded in
a dictionary that is contained in the ModelState controller property. The developer has the
responsibility to verify whether there are errors by checking ModelState.IsValid, in
which case the developer must return the same ViewModel to the same view so that the
user can correct all errors.

Error messages are automatically shown in the view with no action required to the
developer. The developer is only required to do the following:

Add span or div with data-valmsg-for attribute next to each input field
that will be automatically filled with the possible error.
Add div with an asp-validation-summary attribute that will be automatically
filled with the validation error summary. See the Tag helpers topic for more
details.

Presenting ASP.NET Core MVC Chapter 13

[389]

It is enough to add some JavaScript references by invoking the
_ValidationScriptsPartial.cshtml view with the partial tag to enable the same
validation rules also on the client-side, so that errors are shown to the user before the form
is posted to the server. Some predefined validation attributes are contained in the
System.ComponentModel.DataAnnotations and Microsoft.AspNetCore.Mvc
namespaces and include the following attributes:

The Required attribute requires the user to specify a value for the property that
it decorates. An implicit Required attribute is automatically applied to all non-
nullable properties such as all floats, integers, and decimals since they can't have
a null value.
The Range attribute constrains numeric quantities within a range.
They also include attributes that constrain string lengths.

Custom error messages can be inserted directly in the attributes, or attributes can refer to
the property of resource types containing them.

The developer can define its custom attributes by providing the validation code both in C#
and in JavaScript for client-side validation.

Attribute-based validation can be replaced by other validation providers, such as fluent
validation that defines validation rules for each type using a fluent interface. It is enough to
change a provider in a collection contained in the MVC options object that can be
configured through an action passed to the services.AddControllersWithViews
method. MVC options are configured as shown here:

services.AddControllersWithViews(o => {
 ...
 // code that modifies o properties
});

The validation framework automatically checks whether numeric and date inputs are well
formatted according to the selected culture.

ASP.NET Core globalization
In multicultural applications, pages must be served according to the language and culture
preferences of each user. Typically, multicultural applications can serve their content in a
few languages, and they can handle dates and numeric formats in several more languages.
In fact, while the content in all supported languages must be produced manually, .NET
Core has the native capability of formatting and parsing dates and numbers in all cultures.

Presenting ASP.NET Core MVC Chapter 13

[390]

For instance, a web application might support unique content for all English-based cultures
(en), but all known English-based cultures for numbers and dates formats (en-US, en-GB,
en-CA, and so on).

The culture used for numbers and dates in a .NET thread is contained in
the Thread.CurrentThread.CurrentCulture property. Hence, by setting this property
to new CultureInfo("en-CA"), numbers and dates will be formatted/parsed according
to the Canadian culture. Thread.CurrentThread.CurrentUICulture, instead, decides
the culture of the resource files, that is, it selects a culture-specific version of each resource
file or view. Accordingly, a multicultural application is required to set the two cultures
associated to the request thread and to organize multilingual content into language
dependent resource files and/or views.

According to the Separation of Concerns principle, the whole logic used to set the request
culture according to the user preferences is factored out into a specific module of the
ASP.NET Core pipeline. To configure this module, as a first step, we set the supported
date/numbers cultures, as in the following example:

var supportedCultures = new[]
{

 new CultureInfo("en-AU"),
 new CultureInfo("en-GB"),
 new CultureInfo("en"),
 new CultureInfo("es-MX"),
 new CultureInfo("es"),
 new CultureInfo("fr-CA"),
 new CultureInfo("fr"),
 new CultureInfo("it-CH"),
 new CultureInfo("it")
};

Then, we set the languages supported for the content. Usually, a version of the language
that is not specific for any country is selected to keep the number of translations small
enough, as shown here:

var supportedUICultures = new[]
{
 new CultureInfo("en"),
 new CultureInfo("es"),
 new CultureInfo("fr"),
 new CultureInfo("it")
};

Presenting ASP.NET Core MVC Chapter 13

[391]

Then, we add the culture middleware to the pipeline, as shown here:

app.UseRequestLocalization(new RequestLocalizationOptions
{
 DefaultRequestCulture = new RequestCulture("en", "en"),

 // Formatting numbers, dates, etc.
 SupportedCultures = supportedCultures,
 // UI strings that we have localized.
 SupportedUICultures = supportedUICultures,
 FallBackToParentCultures = true,
 FallBackToParentUICultures = true
});

If the culture requested by the user is explicitly found among the ones listed in
supportedCultures or supportedUICultures, it is used without modifications.
Otherwise, since FallBackToParentCultures and FallBackToParentUICultures are
true, the parent culture is tried, that is, for instance, if the required fr-FR culture is not
found among those listed, then the framework searches for its generic version, fr. If this
attempt also fails, the framework uses the cultures specified in DefaultRequestCulture.

By default, the culture middleware searches the culture selected for the current user with
three providers that are tried in the order shown here:

The middleware looks for the culture and ui-culture query string1.
parameters.
If the previous step fails, the middleware looks for a cookie named2.
.AspNetCore.Culture, the value of which is expected to be as in this example:
c=en-US|uic=en.
If both previous steps fail, the middleware looks for the Accept-Language3.
request header sent by the browser, which can be changed in the browser
settings, and that is initially set to the operating system culture.

With the preceding strategy, the first time a user requests an application page, the browser
culture is taken (the provider listed in step 3). Then, if the user clicks a language-change link
with the right query string parameters, a new culture is selected by provider 1. Usually,
after a language link is clicked, the server also generates a language cookie to remember the
user's choice through provider 2.

Presenting ASP.NET Core MVC Chapter 13

[392]

The simplest way to provide content localization is to provide a different view for each
language. Hence, if we would like to localize the Home.cshtml view for different
languages, we must provide views named Home.en.cshtml, Home.es.cshtml, and so on.
If no view specific for the ui-culture thread is found, the not localized Home.cshtml
version of the view is chosen.

View localization must be enabled by calling the AddViewLocalization method, as
shown here:

services.AddControllersWithViews()
 .AddViewLocalization(LanguageViewLocationExpanderFormat.Suffix)

Another option is to store simple strings or HTML fragments in resource files specific for all
supported languages. The usage of resource files must be enabled by calling the
AddLocalization method in the configure services section, as shown here:

services.AddLocalization(options =>
 options.ResourcesPath = "Resources");

ResourcesPath is the root folder where all resource files will be placed. If it is not
specified, the empty string is assumed, and resource files will be placed in the web
application root. Resource files for a specific view, say the
/Views/Home/Index.cshtml view, must have a path like this:

<ResourcesPath >/Views/Home/Index.<culture name>.resx

Hence, if ResourcesPath is empty, resources must have
the /Views/Home/Index.<culture name>.resx path, that is, they must be placed in the
same folder as the view.

Once key-value pairs to all resource files associated with a view are added, localized HTML
fragments can be added to the view as follows:

Inject IViewLocalizer in the view with @inject IViewLocalizer
Localizer.
Where needed, replace the text in the View with accesses to the Localizer
dictionary, such as Localizer["myKey"], where "myKey" is a key used in the
resource files.

Presenting ASP.NET Core MVC Chapter 13

[393]

The following code shows an example of the IViewLocalizer dictionary:

@{
 ViewData["Title"] = Localizer["HomePageTitle"];
}
<h2>@ViewData["MyTitle"]</h2>

If localization fails because the key is not found in the resource file, the key itself is
returned. Strings used in data annotation, such as validation attributes, are used as a key in
resource files if data annotation localization is enabled, as shown here:

 services.AddControllersWithViews()
 .AddViewLocalization(LanguageViewLocationExpanderFormat.Suffix)
 .AddDataAnnotationsLocalization();

Resource files for data annotations applied to a class whose full name is,
say, MyWebApplication.ViewModels.Account.RegisterViewModel, must have the
following path:

<ResourcesPath >/ViewModels/Account/RegisterViewModel.<culture name>.resx

It is worth to point out that the first segment of the namespace that corresponds to the .dll
application name is replaced by ResourcePath. If ResourcesPath is empty and if you use
the default namespaces created by Visual Studio, then resource files must be placed in the
same folder of the classes they are associated with.

It is possible to localize strings and HTML fragments in controllers or wherever
dependencies can be injected by associating each group of resource files with a type, such
as MyType, and then injecting either IHtmlLocalizer<MyType> for HTML fragments
or IStringLocalizer<MyType> for strings that need to be HTML encoded.

Their usage is identical to the usage of IViewLocalizer. The path of the resource files
associated with MyType is computed as in the case of data annotations. If you would like to
use a unique group of resource files for the whole application, a common choice is to use
the Startup class as the reference type (IStringLocalizer<Startup > and
IHtmlLocalizer<Startup >). Another common choice is the creation of various empty
classes to use as reference types for various groups of resource files.

After having learned how to manage globalization in your ASP.NET Core projects, in the
next subsection, we can move to the description of the more important pattern used by
ASP.NET Core MVC to enforce the Separation of Concerns, the MVC pattern itself.

Presenting ASP.NET Core MVC Chapter 13

[394]

The MVC pattern
MVC is a pattern for the implementation of presentation layers of a web application. The
basic idea is to apply a Separation of Concerns between the logic of the presentation layer and
its graphics. Logic is taken care of by controllers, while graphics are factored out into views.
Controllers and views communicate through the model, which is often called the
ViewModel to distinguish it from the models of the business and data layers

However, what is the logic of a presentation layer? In Chapter 1, Understanding the
Importance of Software Architecture, we saw that software requirements can be documented
with use cases that describe the interaction between the user and the system. Roughly, the
logic of the presentation layer consists of the management of use cases, hence, roughly, use
cases are mapped to controllers and every single operation of a use case is mapped to an
action method of those controllers. Hence, controllers take care of managing the protocol of
interaction with the user and rely on the business layer for any business processing
involved during each operation.

Each action method receives data from the user, performs some business processing and,
depending on the results of this processing, decides what to show to the user and encodes it
in the ViewModel. Views receive ViewModels that describe what to show to the user and
decide the graphics to use, that is, HTML to use.

What are the advantages of separating logic and graphics into two different components?
The main advantages are listed here:

Changes in graphics do not affect the remainder of the code, so you can
experiment with various graphic options to optimize the interaction with the
user without putting the reliability of the remainder of the code at risk.
The application can be tested by instantiating controllers and passing the
parameters, with no need to use testing tools that operate on the browser pages.
In this way, tests are easier to implement. Moreover, they do not depend on the
way graphics are implemented, so they do not need to be updated each time
graphic changes.
It is easier to split the job between developers that implements controllers and
graphic designers that implements views. Often, graphical designers have
difficulties with Razor, so they might just furnish an example HTML page that
developers transform into Razor views that operate on the actual data.

Now, let's look at how to create a web app in ASP.NET Core MVC.

Presenting ASP.NET Core MVC Chapter 13

[395]

Use case – implementing a web app in
ASP.NET Core MVC
In this section, as an example of the ASP.NET Core application, we will implement the
administrative panel for managing destinations and packages of the WWTravelClub book
use case. The application will be implemented with the Domain-Driven Design (DDD)
approach described in Chapter 10, Understanding the Different Domains in Software Solutions,
therefore, a good understanding of that chapter is a fundamental prerequisite for reading
this section. The subsections that follow describe, the overall application specifications and
organization and then the various application parts.

Defining application specifications
The destinations and packages have been described in Chapter 6, Interacting with Data in
C# - Entity Framework Core. Here, we will use exactly the same data model, with the
necessary modifications to adapt it to the DDD approach. The administrative panel must
allow packages, a destinations listing, and CRUD operations on them. To simplify the
application, the two listings will be quite simple: the application will show all destinations
sorted according to their names and all packages sorted starting from the ones with a
higher-end validity date.

Moreover, we suppose the following things:

The application that shows destinations and packages to the user shares the same
database used by the administrative panel. Since only the administrative panel
application needs to modify data, there will be just one write copy of the
database with several read-only replicas.
Price modifications and package deletions are immediately used to update the
user shopping carts. For this reason, the administrative application must send
asynchronous communications about price changes and package removals. We
will not implement the whole communication logic, but we will just add all such
events to an event table, which should be used as input to a parallel thread in
charge of sending these events to all relevant microservices.

Here, we will give the full code for just the package management, while most of the code
for destination management is left as an exercise for the reader. The full code is available in
the chapter 13 folder of the GitHub repository associated with this book. In the
remainder of the section, we will describe the application overall organization and we will
discuss some relevant samples of code.

Presenting ASP.NET Core MVC Chapter 13

[396]

Defining the application architecture
The application is organized along with the guidelines described in Chapter
10, Understanding Different Domains in a Software Solution, considering the DDD approach
and using SOLID principles to map your domain sections. That is, the application is
organized within three layers, each implemented as a different project:

There's a data layer that contains repository implementation and classes
describing database entities. It is a .NET Core library project. However, since it
needs some HTTP stack interfaces and classes, we must add a reference not only
to the .NET Core SDK but also to the ASP.NET Core SDK. This can be done as
follows:

Right-click on the project icon in the solution explorer and select Edit1.
project file.
In the edit window, replace <Project Sdk="Microsoft.NET.Sdk">2.
with <Project Sdk="Microsoft.NET.Sdk.web"> and save.
Since, after this modification, Visual Studio automatically turns this3.
library project into an application project, please right-click on the
project again and select Properties. In the project property window,
replace Console Application with Class Library in the Output
Type drop-down list.

There's also a domain layer that contains repository specifications, that is,
interfaces that describe repository implementations and DDD aggregates. In our
implementation, we decided to implement aggregates by hiding forbidden
operations/properties of root data entities behind interfaces. Hence, for instance,
the Package data layer class, which is an aggregate root, has a corresponding
IPackage interface in the domain layer that hides all the property setters of the
Package entity. The domain layer also contains the definitions of all the domain
events, while the corresponding event handlers are defined in the application
layer.
Finally, there's the application layer, that is, the ASP.NET Core MVC application,
where we define DDD queries, commands, command handlers, and event
handlers. Controllers fill query objects and execute them to get ViewModels they
can pass to views. They update storage by filling command objects and executing
their associated command handlers. In turn, command handlers use
IRepository interfaces and IUnitOfWork coming from the domain layer to
manage and coordinate transactions.

The application uses the Query Command Segregation pattern; therefore, it uses command
objects to modify the storage and the query object to query it.

Presenting ASP.NET Core MVC Chapter 13

[397]

The query is simple to use and implement: controllers fill their parameters and then call
their execution methods. In turn, query objects have direct LINQ implementations that
project results directly on the ViewModels used by the controller Views with Select LINQ
methods. You may also decide to hide the LINQ implementation behind the same
repository classes used for the storage update operations.

However, since repositories don't know anything about ViewModels, which is presentation
layer stuff, in this case, you are forced to use intermediate objects defined in the domain
layer (DTOs), which must then be copied into ViewModels. This would make the definition
of new queries and the modification of existing queries time-consuming operations since
you are forced to modify several classes. In any case, it is good practice to hide query
objects behind interfaces so their implementations can be replaced by fake implementations
when you test controllers.

The chain of objects and calls involved in the execution of commands, instead, is more
complex since it requires the construction and modification of aggregates and the definition
of the interaction between several aggregates and between aggregates and other
applications through domain events.

The following diagram is a sketch of how storage update operations are performed:

A controller's action method receives one or more ViewModels and performs1.
validation.
One or more ViewModels containing changes to apply are hidden behind2.
interfaces defined in the domain layer. They are used to fill the properties of a
command object.

Presenting ASP.NET Core MVC Chapter 13

[398]

A command handler matching the previous command is retrieved via DI in the3.
controller action method (through the[FromServices] parameter attribute we
described in the Controllers and ViewModels subsection). Then, the handler is
executed.
When creating the command handler discussed in step 3, the ASP.NET Core DI4.
engine automatically injects all parameters declared in its constructor. In
particular, it injects all IRepostory implementations needed to perform all
command handler transactions. The command handler performs its job by calling
the methods of these IRepository implementations received in its constructor
to build aggregates and to modify the built aggregates. Aggregates either
represent already-existing entities or newly created ones. Handlers use the
IUnitOfWork interface contained in each IRepository, and the concurrency
exceptions returned by the data layer to organize their operations as transactions.
It is worth pointing out that each aggregate has its own IRepository, and that
the whole logic for updating each aggregate is defined in the aggregate itself and
not in its associated IRepository to keep the code more modular.
Behind the scenes, in the data layer, IRepository implementations use Entity5.
Framework to perform their job. Aggregates are implemented by root data
entities hidden behind interfaces defined in the domain layer, while
IUnitOfWork methods that handle transactions and that pass changes to the
database are implemented with DBContext methods. In other words,
IUnitOfWork is implemented with the application's DBContext.
Domain events are generated during each aggregate processing and added to the6.
aggregates themselves by calling their AddDomainEvent methods. However,
they are not triggered immediately. Usually, they are triggered at the end of all
the aggregates' processing and before changes are passed to the database;
however, this is not a general rule.
The application handles errors by throwing exceptions. A more efficient7.
approach would be to define a request-scoped object in the dependency engine
where each application subpart may add its errors as domain events. However,
while this approach is more efficient, it increases the complexity of the code and
the application development time.

The Visual Studio solution is composed of three projects:

There's a project containing the domain layer called
PackagesManagementDomain, which is a standard 2.0 library.
There's a project containing the whole data layer called
PackagesManagementDB, which is a .NET Core 3.0 library.

Presenting ASP.NET Core MVC Chapter 13

[399]

Finally, there's an ASP.NET Core MVC 3.0 project called
PackagesManagement that contains both application and presentation layers.
When you define this project, select no authentication, otherwise the user
database will be added directly to the ASP.NET Core MVC project instead of
adding it to the database layer. We will add the user database manually in the
data layer.

Let's start by creating the PackagesManagement ASP.NET Core MVC project so that the
whole solution has the same name as the ASP.NET Core MVC project. Then, let's add the
other two library projects to the same solution.

Finally, let the ASP.NET Core MVC project reference both projects, while
PackagesManagementDB references PackagesManagementDomain. We suggest you
define your own projects and then copy the code of this book's GitHub repository into them
as you progress through reading this section.

The next subsection describes the code of the PackagesManagementDomain data layer
project.

Defining the domain layer
Once the PackagesManagementDomain standard 2.0 library project is added to the
solution, let's add a Tools folder to the project root. Then, let's place there all
DomainLayer tools contained in the code associated with chapter 10. Since the code
contained in this folder uses data annotations and defines DI extension methods, we must
also add references to the System.ComponentModel.Annotations
and Microsoft.Extensions.DependencyInjection NuGet packages.

Then, we need an Aggregates folder containing all the aggregate definitions (remember,
we implemented aggregates as interfaces), namely, IDestination, IPackage, and
IPackageEvent. Here, IPackageEvent is the aggregate associated with the table where
we will place events to be propagated to other applications.

As an example, let's analyze IPackage:

public interface IPackage : IEntity<int>
{
 void FullUpdate(IPackageFullEditDTO o);
 string Name { get; set; }

 string Description { get;}
 decimal Price { get; set; }

Presenting ASP.NET Core MVC Chapter 13

[400]

 int DuratioInDays { get; }
 DateTime? StartValidityDate { get;}
 DateTime? EndValidityDate { get; }
 int DestinationId { get; }
}

It contains the same properties of the Package entity, which we saw in Chapter 6,
Interacting with Data in C# - Entity Framework Core. The only differences are the following:

It inherits from IEntity<int>, which furnishes all basic functionalities of
aggregates.
It has no Id property since it is inherited from IEntity<int>.
All properties are read-only, and it has an Update method since all aggregates
can only be modified through update operations defined in the user domain (in
our case, the Update method)

Now, let's also add a DTOs folder. Here, we place all interfaces used to pass updates to the
aggregates. Such interfaces are implemented by the application layer ViewModels used to
define such updates. In our case, it contains IPackageFullEditDTO, which we can use to
update existing packages. If you would like to add the logic to manage destinations, you
must define an analogous interface for the IDestination aggregate.

An IRepository folder contains all repository specifications, namely
IDestinationRepository, IPackageRepository, and IPackageEventRepository.
Here, IPackageEventRepository is the repository associated with the IPackageEvent
aggregate. As an example, let's have a look at the IPackageRepository repository:

public interface IPackageRepository:
 IRepository<IPackage>
{
 Task<IPackage> Get(int id);
 IPackage New();
 Task<IPackage> Delete(int id);
}

Repositories always contain just a few methods since all business logic should be
represented as aggregate methods, in our case, just the methods to create a new package, to
retrieve an existing package, and to delete an existing package. The logic to modify an
existing package is included in the Update method of IPackage.

Presenting ASP.NET Core MVC Chapter 13

[401]

Finally, as with all domain layer projects, PackagesManagementDomain contains an event
folder with all domain event definitions. In our case, the folder is named Events and
contains the package-deleted event and the price-changed event:

public class PackageDeleteEvent: IEventNotification
{
 public PackageDeleteEvent(int id, long oldVersion)
 {
 PackageId = id;
 OldVersion = oldVersion;
 }
 public int PackageId { get; private set; }
 public long OldVersion { get; private set; }
}
{
 public class PackagePriceChangedEvent: IEventNotification
 {
 public PackagePriceChangedEvent(int id, decimal price,
 long oldVersion, long newVersion)
 {
 PackageId = id;
 NewPrice = price;
 OldVersion = oldVersion;
 NewVersion = newVersion;
 }
 public int PackageId { get; private set; }
 public decimal NewPrice { get; private set; }
 public long OldVersion { get; private set; }
 public long NewVersion { get; private set; }
 }
}

When an aggregate sends all its changes to another application, it must have a version
property. The application that receives the changes uses this version property to apply all
changes in the right order. An explicit version number is necessary because changes are
sent asynchronously, so the order they are received may differ from the order they were
sent. For this purpose, events that are used to publish changes outside of the application
have both OldVersion (the version before the change) and NewVersion (the version after
the change) properties. Events associated with delete events have no NewVersion, since
after being deleted, an entity can't store any versions.

The next subsection explains how all interfaces defined in the domain layer are
implemented in the data layer.

Presenting ASP.NET Core MVC Chapter 13

[402]

Defining the data layer
The data layer project contains references to the
Microsoft.AspNetCore.Identity.EntityFrameworkCore and
Microsoft.EntityFrameworkCore.SqlServer NuGet packages, since we use Entity
Framework Core with SQL server. It references
Microsoft.EntityFrameworkCore.Tools and
Microsoft.EntityFrameworkCore.Design, which is needed to generate database
migrations, as explained in the Entity Framework Core migrations section of Chapter 6,
Interacting with Data in C# - Entity Framework Core.

We have a Models folder that contains all database entities. They are similar to the ones in
Chapter 6, Interacting with Data in C# - Entity Framework Core. The only differences are as
follows:

They inherit from Entity<T>, which contains all basic features of aggregates.
Please notice that inheriting from Entity<T> is only needed for aggregate roots;
all other entities must be defined as explained in Chapter 6, Interacting with Data
in C# - Entity Framework Core. In our example, all entities are aggregate roots.
They have no Id since it is inherited from Entity<T>.
Some of them have an EntityVersion property that is decorated with the
[ConcurrencyCheck] attribute. It contains the entity version that is needed for
sending property all entity changes to other applications. The
ConcurrencyCheck attribute is needed to prevent concurrency errors while
updating the entity version without suffering the performance penalty implied
by a transaction.

More specifically, when saving entity changes, if the value of a field marked with
the ConcurrencyCheck attribute is different from the one that was read when the entity
was loaded in memory, a concurrency exception is thrown to inform the calling method
that someone else modified this value after the entity was read but before we attempted to
save its changes. This way, the calling method can repeat the whole operation with the
hope that, this time, no-one will write the same entity in the database during its execution.

It is worth analyzing the Package entity:

public class Package: Entity<int>, IPackage
{
 public void FullUpdate(IPackageFullEditDTO o)
 {
 if (IsTransient())
 {

Presenting ASP.NET Core MVC Chapter 13

[403]

 Id = o.Id;
 DestinationId = o.DestinationId;
 }
 else
 {
 if (o.Price != this.Price)
 this.AddDomainEvent(new PackagePriceChangedEvent(
 Id, o.Price, EntityVersion, EntityVersion+1));
 }
 Name = o.Name;
 Description = o.Description;
 Price = o.Price;
 DuratioInDays = o.DuratioInDays;
 StartValidityDate = o.StartValidityDate;
 EndValidityDate = o.EndValidityDate;
 }
 [MaxLength(128), Required]
 public string Name { get; set; }
 [MaxLength(128)]
 public string Description { get; set; }
 public decimal Price { get; set; }
 public int DuratioInDays { get; set; }
 public DateTime? StartValidityDate { get; set; }
 public DateTime? EndValidityDate { get; set; }
 public Destination MyDestination { get; set; }
 [ConcurrencyCheck]
 public long EntityVersion{ get; set; }

 public int DestinationId { get; set; }
}

The FullUpdate method is the only way to update the IPackage aggregate when the
price changes add PackagePriceChangedEvent to the entity list of events.

The MainDBContext.cs file contains the data layer database context definition. It doesn't
inherit from DBContext but from the following predefined context class:

IdentityDbContext<IdentityUser<int>, IdentityRole<int>, int>

This context defines the user's tables needed for the authentication. In our case, we opted
for the IdentityUser<T> standard and the IdentityRole<S> respectively for users and
roles and used integers for both the T and S Entity keys. However, we may also use classes
that inherit from IdentityUser and IdentityRole and add then further properties.

In the OnModelCreating method, we must call base.OnModelCreating(builder) in
order to apply the configuration defined in IdentityDbContext.

Presenting ASP.NET Core MVC Chapter 13

[404]

MainDBContext implements IUnitOfWork. The following code shows the implementation
of all methods that start, rollback, and commit a transaction:

public async Task StartAsync()
{
 await Database.BeginTransactionAsync();
}

public async Task CommitAsync()
{
 Database.CommitTransaction();
}

public async Task RollbackAsync()
{
 Database.RollbackTransaction();
}

However, they are rarely used by command classes in a distributed environment since
retrying the same operation until no concurrency exception is returned usually ensures
better performance than transactions.

It is worth analyzing the implementation of the method that passes all changes applied to
DBContext to the database:

public async Task<bool> SaveEntitiesAsync()
{
 try
 {
 return await SaveChangesAsync() > 0;
 }
 catch (DbUpdateConcurrencyException ex)
 {
 foreach (var entry in ex.Entries)
 {

 entry.State = EntityState.Detached;
 }
 throw ex;
 }
}

The preceding implementation just calls the SaveChangesAsync DBContext
context method that saves all changes to the database, but then it intercepts all concurrency
exceptions and detaches from the context all entities involved in the concurrency error. This
way, next time a command retries the whole failed operation, their updated versions will
be reloaded from the database.

Presenting ASP.NET Core MVC Chapter 13

[405]

The Repositories folder contains all repository implementations. It is worth analyzing
the implementation of the IPackageRepository.Delete method:

public async Task<IPackage> Delete(int id)
{
 var model = await Get(id);
 if (model == null) return null;
 context.Packages.Remove(model as Package);
 model.AddDomainEvent(
 new PackageDeleteEvent(
 model.Id, (model as Package).EntityVersion));
 return model;
}

It reads the entity from the database and formally removes it from the Packages dataset.
This will force the entity to be deleted in the database when changes are saved to the
database. Moreover, it adds PackageDeleteEvent to the aggregate list of events.

The Extensions folder contains the DBExtensions static class that, in turn, defines two
extension methods to be added to the application DI engine and the ASP.NET Core
pipeline respectively. Once added to the pipeline, these two methods will connect the
database layer to the application layer.

The IServiceCollection extension of AddDbLayer accepts (as its input parameters) the
database connection string and the name of the .dll file that contains all migrations. Then,
it does the following:

services.AddDbContext<MainDBContext>(options =>
 options.UseSqlServer(connectionString,
 b => b.MigrationsAssembly(migrationAssembly)));

That is, it adds the database context to the DI engine and defines its options, namely, that it
uses SQL Server, the database connection string, and the name of the .dll that contains all
migrations.

Then, it does the following:

services.AddIdentity<IdentityUser<int>, IdentityRole<int>>()
 .AddEntityFrameworkStores<MainDBContext>()
 .AddDefaultTokenProviders();

Presenting ASP.NET Core MVC Chapter 13

[406]

That is, it adds and configures all the types needed to handle database-based
authentication. In particular, it adds the UserManager and RoleManager types, which the
application layer can use to manage users and roles. AddDefaultTokenProviders adds
the provider that creates the authentication tokens using data contained in the database
when users log in.

Finally, it discovers and adds to the DI engine all repository implementations by calling
the AddAllRepositories method that is defined in the DDD tools we added to the
domain layer project.

The UseDBLayer extension method ensures migrations are applied to the database by
calling context.Database.Migrate() and then populates the database with some initial
objects. In our case, it uses RoleManager and UserManager to create an administrative role
and an initial administrator. Then, it creates some sample destinations and packages.

To create migrations, we must add the aforementioned extension methods to the ASP.NET
Core MVC Startup.cs file, as shown here:

public void ConfigureServices(IServiceCollection services)
{
 ...
 services.AddRazorPages();
 services.AddDbLayer(
 Configuration.GetConnectionString("DefaultConnection"),
 "PackagesManagementDB");

public void Configure(IApplicationBuilder app,
 IWebHostEnvironment env, IServiceProvider serviceProvider)
 ...
 app.UseAuthentication();
 app.UseAuthorization();
 ...
 app.UseDBLayer(serviceProvider);
}

Please be sure that both the authorization and authentication modules have been added to
the ASP.NET Core pipeline, otherwise, the authentication/authorization engine will not
work.

Presenting ASP.NET Core MVC Chapter 13

[407]

Then, we must add the connection string to the appsettings.json file, as shown here:

{
 "ConnectionStrings": {
 "DefaultConnection":
"Server=(localdb)\\mssqllocaldb;Database=package-
management;Trusted_Connection=True;MultipleActiveResultSets=true"
 },
 ...
}

Finally, let's add Microsoft.EntityFrameworkCore.Design to the ASP.NET Core
project.

We are forced to configure all database stuff in the startup project because migration tools
use the startup project DI engine to create and apply migrations.

At this point, let's open Visual Studio Package Manager Console and select
PackageManagementDB as the default project and then launch the following command:

Add-Migration Initial -Project PackagesManagementDB

The preceding command will scaffold the first migration. We may apply it to the database
with the Update-Database command. Please note that if you copy the project from
GitHub, you don't need to scaffold migrations since they have already been created, but
you just need to update the database.

The next subsection describes the application layer.

Defining the application layer
As a first step, for simplicity, let's freeze the application culture to en-US by adding the
code that follows to the ASP.NET Core pipeline:

app.UseAuthorization();

// Code to add: configure the Localization middleware
var ci = new CultureInfo("en-US");
app.UseRequestLocalization(new RequestLocalizationOptions
{
 DefaultRequestCulture = new RequestCulture(ci),
 SupportedCultures = new List<CultureInfo>
 {
 ci,
 },

Presenting ASP.NET Core MVC Chapter 13

[408]

 = new List<CultureInfo>
 {
 ci,
 }
});

Then, let's create a Tools folder and place the ApplicationLayer code there, which you
may find in the chapter 10 code of the GitHub repository associated with this book. With
these tools in place, we can add the code that automatically discovers and adds all queries,
command handlers, and event handlers to the DI engine, as shown here:

public void ConfigureServices(IServiceCollection services)
{
 ...
 ...
 services.AddAllQueries(this.GetType().Assembly);
 services.AddAllCommandHandlers(this.GetType().Assembly);
 services.AddAllEventHandlers(this.GetType().Assembly);
}

Then, we must add a Queries folder to place all queries and their associated interfaces. As
an example, let's have a look at the query that lists all packages:

public class PackagesListQuery:IPackagesListQuery
{
 MainDBContext ctx;
 public PackagesListQuery(MainDBContext ctx)
 {
 this.ctx = ctx;
 }
 public async Task<IEnumerable<PackageInfosViewModel>> GetAllPackages()
 {
 return await ctx.Packages.Select(m => new PackageInfosViewModel
 {
 StartValidityDate = m.StartValidityDate,
 EndValidityDate = m.EndValidityDate,
 Name = m.Name,
 DuratioInDays = m.DuratioInDays,
 Id = m.Id,
 Price = m.Price,
 DestinationName = m.MyDestination.Name,
 DestinationId = m.DestinationId
 })
 .OrderByDescending(m=> m.EndValidityDate)
 .ToListAsync();
 }
}

Presenting ASP.NET Core MVC Chapter 13

[409]

The query object is automatically injected in the application DB context. The
GetAllPackages method uses LINQ to project all of the required information into
PackageInfosViewModel and sorts all results in descending order on the
EndValidityDate property.

PackageInfosViewModel is placed in the Models folder together with all other
ViewModels. It is good practice to organize ViewModels in folders, by defining a different
folder for each controller. It is worth analyzing the ViewModel used for editing packages:

public class PackageFullEditViewModel: IPackageFullEditDTO
 {
 public PackageFullEditViewModel() { }
 public PackageFullEditViewModel(IPackage o)
 {
 Id = o.Id;
 DestinationId = o.DestinationId;
 Name = o.Name;
 Description = o.Description;
 Price = o.Price;
 DuratioInDays = o.DuratioInDays;
 StartValidityDate = o.StartValidityDate;
 EndValidityDate = o.EndValidityDate;
 }
 ...
 ...

It has a constructor that accepts an IPackage aggregate. This way, package data is copied
into the ViewModel that is used to populate the edit view. It implements the
IPackageFullEditDTO DTO interface defined in the domain layer. This way, it can be
directly used to send IPackage updates to the domain layer.

All properties contain validation attributes that are automatically used by client-side and
server-side validation engines. Each property contains a Display attribute that defines the
label to give to the input field that will be used to edit the property. It is better to place the
field labels in the ViewModels than placing them directly in the views since, this way, the
same names are automatically used in all views that use the same ViewModel. The
following code block lists all its properties:

public int Id { get; set; }
[StringLength(128, MinimumLength = 5), Required]
[Display(Name = "name")]
public string Name { get; set; }
[Display(Name = "package infos")]
[StringLength(128, MinimumLength = 10), Required]
public string Description { get; set; }
[Display(Name = "price")]

Presenting ASP.NET Core MVC Chapter 13

[410]

[Range(0, 100000)]
public decimal Price { get; set; }
[Display(Name = "duration in days")]
[Range(1, 90)]
public int DuratioInDays { get; set; }
[Display(Name = "available from"), Required]
public DateTime? StartValidityDate { get; set; }
[Display(Name = "available to"), Required]
public DateTime? EndValidityDate { get; set; }
[Display(Name = "destination")]
public int DestinationId { get; set; }

The Commands folder contains all commands. As an example, let's have a look at the
command used to modify packages:

public class UpdatePackageCommand: ICommand
{
 public UpdatePackageCommand(IPackageFullEditDTO updates)
 {
 Updates = updates;
 }
 public IPackageFullEditDTO Updates { get; private set; }
}

Its constructor must be invoked with an implementation of the IPackageFullEditDTO
DTO interface, that, in our case, is the edit ViewModel we described before. Command
handlers are placed in the Handlers folder. It is worth analyzing the command that
updates packages:

IPackageRepository repo;
IEventMediator mediator;
public UpdatePackageCommandHandler(IPackageRepository repo, IEventMediator
mediator)
{
 this.repo = repo;
 this.mediator = mediator;
}

Its constructor has automatically injected the IPackageRepository repository and
an IEventMediator instance needed to triggers events handler. The following code also
shows the implementation of the standard HandleAsync command handler method:

public async Task HandleAsync(UpdatePackageCommand command)
{
 bool done = false;
 IPackage model = null;
 while (!done)

Presenting ASP.NET Core MVC Chapter 13

[411]

 {
 try
 {
 model = await repo.Get(command.Updates.Id);
 if (model == null) return;
 model.FullUpdate(command.Updates);
 await mediator.TriggerEvents(model.DomainEvents);
 await repo.UnitOfWork.SaveEntitiesAsync();
 done = true;
 }
 catch (DbUpdateConcurrencyException)
 {

 }
 }
}

Command operations are repeated until no concurrency exception is
returned. HandleAsync uses the repository to get an instance of the entity to modify. If the
entity is not found (it has been deleted), the commands stop its execution. Otherwise, all
changes are passed to the retrieved aggregate. Immediately after the update, all events
contained in the aggregate are triggered. In particular, if the price has changed, the event
handler associated with the price change is executed. The concurrency check ensures that
the package version is updated properly (by incrementing its previous version number by
1) and that the price changed event is passed the right version numbers.

Also, event handlers are placed in the Handlers folder. As an example, let's have a look at
the price changed event handler:

public class PackagePriceChangedEventHandler :
 IEventHandler<PackagePriceChangedEvent>
{
 IPackageEventRepository repo;
 public PackagePriceChangedEventHandler(IPackageEventRepository repo)
 {
 this.repo = repo;
 }
 public async Task HandleAsync(PackagePriceChangedEvent ev)
 {
 repo.New(PackageEventType.CostChanged, ev.PackageId,
 ev.OldVersion, ev.NewVersion, ev.NewPrice);
 }
}

Presenting ASP.NET Core MVC Chapter 13

[412]

The constructor has automatically injected the IPackageEventRepository repository that
handles the database table with all events to send to other applications. The HandleAsync
implementation simply calls the repository method that adds a new record to this table.

All records in the table handled by IPackageEventRepository, which can be retrieved
and sent to all interested microservices by a parallel task defined in the DI engine with a
call such as services.AddHostedService<MyHostedService>(); as detailed in the
Using Generic Hosts subsection of Chapter 5, Applying Microservice Architecture to Your
Enterprise Application. However, this parallel task is not implemented in the GitHub code
associated with this chapter.

The next subsection describes how controllers and views are designed.

Controllers and views
We need to add two more controllers to the one automatically scaffolded by Visual Studio,
namely, AccountController, which takes care of user login/logout and registration, and
ManagePackageController to handle all package-related operations. It is enough to
right-click on the Controllers folder and then select Add | Controller. Then, choose the
controller name and select the empty MVC controller to avoid that Visual Studio might
scaffold code you don't need.

For simplicity, AccountController just has login and logout methods, so you can log in
just with the initial administrator user. However, you can add further action methods that
use the UserManager class to define, update, and delete users. The UserManager class can
be provided through DI, as shown here:

private readonly UserManager<IdentityUser<int>> _userManager;
private readonly SignInManager<IdentityUser<int>> _signInManager;

public AccountController(
 UserManager<IdentityUser<int>> userManager,
 SignInManager<IdentityUser<int>> signInManager)
{
 _userManager = userManager;
 _signInManager = signInManager;
}

Presenting ASP.NET Core MVC Chapter 13

[413]

SignInManager takes care of login/logout operations. The Logout action method is quite
simple and is shown here:

[HttpPost]
public async Task<IActionResult> Logout()
{
 await _signInManager.SignOutAsync();
 return RedirectToAction(nameof(HomeController.Index), "Home");
}

It just calls the signInManager.SignOutAsync method and then redirects the browser to
the home page. To avoid it being called by clicking a link it is decorated with HttpPost, so
it can only be invoked via a form submit.

Login instead requires two action methods. The first one is invoked via Get and shows the
login form, where the user must place their username and password. It is shown here:

[HttpGet]
public async Task<IActionResult> Login(string returnUrl = null)
{
 ViewData["ReturnUrl"] = returnUrl;
 return View();
}

It receives returnUrl as its parameter when the browser is automatically redirected to the
login page by the authorization module. This happens when an unlogged user tries to
access a protected page. returnUrl is stored in the ViewState dictionary that is passed to
the login view. The form in the login view passes it back, together with the username and
password, to the controller when it is submitted, as shown in this code:

<form asp-route-returnurl="@ViewData["ReturnUrl"]" method="post">
...
</form>

The form post is intercepted by an action method with the same Login name but decorated
with the [HttpPost] attribute, as shown here:

[ValidateAntiForgeryToken] public async Task<IActionResult> Login(
 LoginViewModel model,
 string returnUrl = null)
 {
 ...

Presenting ASP.NET Core MVC Chapter 13

[414]

The preceding method receives the Login model used by the login view together with the
returnUrl query string parameter. The ValidateAntiForgeryToken attribute verifies a
token (called an anti-forgery token) that MVC forms automatically add to a hidden field to
prevent cross-site attacks.

As a first step, the action method logs the user out if they are already logged in:

if (User.Identity.IsAuthenticated)
{
 await _signInManager.SignOutAsync();
 return View(model);
}

Otherwise, it verifies whether there are validation errors, in which case, it shows the same
view filled with the data of the ViewModel to let the user correct their errors:

if (ModelState.IsValid)
{
 ...
}
else
 // If we got this far, something failed, redisplay form
 return View(model);

If the model is valid, _signInManager is used to log in the user:

var result = await _signInManager.PasswordSignInAsync(
 model.UserName,
 model.Password, model.RememberMe,
 lockoutOnFailure: false);

If the result returned by the operation is successful, the action method redirects the browser
to returnUrl, if not null, otherwise to the home page:

if (result.Succeeded)
{
 if (!string.IsNullOrEmpty(returnUrl))
 return LocalRedirect(returnUrl);
 else
 return RedirectToAction(nameof(HomeController.Index), "Home");
}
else
{
 ModelState.AddModelError(string.Empty,
 "wrong username or password");
 return View(model);
}

Presenting ASP.NET Core MVC Chapter 13

[415]

If, the login fails, it adds an error to ModelState and shows the same form to let the user
try again.

ManagePackagesController contains an Index method that shows all packages in table
format:

[HttpGet]
public async Task<IActionResult> Index(
 [FromServices]IPackagesListQuery query)
{
 var results = await query.GetAllPackages();
 var vm = new PackagesListViewModel { Items = results };
 return View(vm);
}

This action method is injected into the proper query object by DI, invokes it, and inserts the
resulting IEnumerable in the Items property of a PackagesListViewModel instance. It
is a good practice to include IEnumerables in ViewModels, so if necessary, other
properties can be added without modifying the existing view code. Results are shown in a
Bootstrap 4 table since Bootstrap 4 CSS is automatically scaffolded by Visual Studio.

The result is shown here:

The New package link (it is shaped like a Bootstrap 4 button, but it is a link) invokes a
controller Create action method, while the delete and edit links in each row invoke a
Delete and Edit action method and pass them the ID of the package shown in the row.
Here is the implementation of the two-row links:

@foreach(var package in Model.Items)
{
<tr>
 <td>
 <a asp-controller="ManagePackages"

Presenting ASP.NET Core MVC Chapter 13

[416]

 asp-action="@nameof(ManagePackagesController.Delete)"
 asp-route-id="@package.Id">
 delete

 </td>
 <td>
 <a asp-controller="ManagePackages"
 asp-action="@nameof(ManagePackagesController.Edit)"
 asp-route-id="@package.Id">
 edit

 </td>
 ...
 ...

It is worth describing the code of the HttpGet and HttpPost Edit action methods:

[HttpGet]
public async Task<IActionResult> Edit(
 int id,
 [FromServices] IPackageRepository repo)
{
 if (id == 0) return RedirectToAction(
 nameof(ManagePackagesController.Index));
 var aggregate = await repo.Get(id);
 if (aggregate == null) return RedirectToAction(
 nameof(ManagePackagesController.Index));
 var vm = new PackageFullEditViewModel(aggregate);
 return View(vm);
}

The Edit method of HttpGet uses IPackageRepository to retrieve the existing package.
If the package is not found, that means it has been deleted by some other user, and the
browser is redirected again to the list page to show the updated list of packages. Otherwise,
the aggregate is passed to the PackageFullEditViewModel ViewModel that is rendered
by the Edit view.

The view used to render the package must render select with all possible package
destinations, so it needs an instance of the IDestinationListQuery query that was
implemented to assist with the destination selection HTML logic. This query is injected
directly in the view since it is a view responsibility to decide how to enable the user to
select a destination. The code that injects the query and uses it is shown here:

@inject PackagesManagement.Queries.IDestinationListQuery destinationsQuery
@{
 ViewData["Title"] = "Edit/Create package";
 var allDestinations =

Presenting ASP.NET Core MVC Chapter 13

[417]

 await destinationsQuery.AllDestinations();
}

The action method that processes the post of the view form is given here:

[HttpPost]
public async Task<IActionResult> Edit(
 PackageFullEditViewModel vm,
 [FromServices] ICommandHandler<UpdatePackageCommand> command)
{
 if (ModelState.IsValid)
 {
 await command.HandleAsync(new UpdatePackageCommand(vm));
 return RedirectToAction(
 nameof(ManagePackagesController.Index));
 }
 else
 return View(vm);
}

If ModelState is valid, UpdatePackageCommand is created and its associated handler is
invoked; otherwise, the View is displayed again to the user to enable them to correct all the
errors.

The new links to the package list page and login page must be added to the main menu,
which is in the _Layout view, as shown here:

<li class="nav-item">
 <a class="nav-link text-dark"
 asp-controller="ManagePackages"
 asp-action="Index">Manage packages

@if (User.Identity.IsAuthenticated)
{
 <li class="nav-item">
 <a class="nav-link text-dark"
href="javascript:document.getElementById('logoutForm').submit()">
 Logout

}
else
{
 <li class="nav-item">
 <a class="nav-link text-dark"
 asp-controller="Account" asp-action="Login">Login

}

Presenting ASP.NET Core MVC Chapter 13

[418]

logoutForm is an empty form whose only purpose is to send a post to the Logout action
method. It has been added at the end of the body, as shown here:

@if (User.Identity.IsAuthenticated)
{
 <form asp-area="" asp-controller="Account"
 asp-action="Logout" method="post"
 id="logoutForm" ></form>
}

Now, the application is ready! You can run it, log in, and start to manage packages.

Summary
In this chapter, we analyzed the ASP.NET Core pipeline and various modules that compose
an ASP.NET Core MVC application in detail, such as authentication/authorization, the
options framework, and routing. Then, we described how controllers and Views map
requests to response HTML. We also analyzed all the improvements introduced in version
3.0.

Finally, we analyzed all the design patterns implemented in the ASP.NET Core MVC
framework, and, in particular, the importance of the Separation of Concerns principle and
how ASP.NET Core MVC implements it with the ASP.NET Core pipeline and in its
validation and globalization modules. Finally, we focused in more detail on the importance
of Separation of Concerns between the presentation layer logic and graphics and how the
MVC pattern ensures it.

The next chapter discusses best practices that will help you to program safe, simple, and
maintainable software.

Questions
Can you list all the middleware modules scaffolded by Visual Studio in an1.
ASP.NET Core project?
Does the ASP.NET Core pipeline module need to inherit from a base class or2.
implement some interface?
Is it true that a tag must have just one tag helper defined for it or an exception is3.
thrown?

Presenting ASP.NET Core MVC Chapter 13

[419]

Do you remember how to test in a controller if validation errors occurred?4.
What is the instruction in a layout view to include the output of the main view5.
called?
How are secondary sections of the main view invoked in a layout view?6.
How does a controller invoke a view?7.
As a default, how many providers are installed in the globalization module?8.
Are ViewModels the only way for controllers to communicate with their invoked9.
views?

Further reading
More details on the ASP.NET MVC framework are available in its official documentation
at https:/​/​docs.​microsoft. ​com/ ​en- ​US/ ​aspnet/ ​core/ ​.​ More details on Razor syntax can
be found at https:/ ​/​docs. ​microsoft. ​com/​en- ​us/ ​aspnet/ ​core/ ​razor- ​pages/ ​? ​view=
aspnetcore-​3.​0​tabs= ​visual- ​studio.

Documentation on the creation custom tag helpers that were not discussed in this chapter
can be found at https:/ ​/​docs. ​microsoft. ​com/ ​en- ​US/​aspnet/ ​core/ ​mvc/​views/ ​tag-
helpers/​authoring. Documentation on the creation of custom controller attributes can be
found at https:/​/​docs. ​microsoft. ​com/ ​en-​US/ ​aspnet/ ​core/ ​mvc/ ​controllers/ ​filters. ​

The definition of custom validation attributes is discussed in this article: https:/ ​/​blogs.
msdn.​microsoft.​com/ ​mvpawardprogram/ ​2017/ ​01/ ​03/​asp- ​net- ​core- ​mvc/ ​.

For alternative approaches to the construction of presentation layers for web applications,
the official documentation of Blazor is
at https://dotnet.microsoft.com/apps/aspnet/web-apps/client. A good introduction
to all the techniques and tools needed to implement a modern JavaScript-based Single Page
Application is found in this book: https:/ ​/​www. ​packtpub. ​com/ ​application- ​development/
hands-​typescript-​c- ​and- ​net- ​core- ​developers, which describes TypeScript, advanced
JavaScript features, WebPack, and the Angular SPA framework.

https://docs.microsoft.com/en-US/aspnet/core/
https://docs.microsoft.com/en-US/aspnet/core/
https://docs.microsoft.com/en-US/aspnet/core/
https://docs.microsoft.com/en-US/aspnet/core/
https://docs.microsoft.com/en-US/aspnet/core/
https://docs.microsoft.com/en-US/aspnet/core/
https://docs.microsoft.com/en-US/aspnet/core/
https://docs.microsoft.com/en-US/aspnet/core/
https://docs.microsoft.com/en-US/aspnet/core/
https://docs.microsoft.com/en-US/aspnet/core/
https://docs.microsoft.com/en-US/aspnet/core/
https://docs.microsoft.com/en-US/aspnet/core/
https://docs.microsoft.com/en-US/aspnet/core/
https://docs.microsoft.com/en-US/aspnet/core/
https://docs.microsoft.com/en-US/aspnet/core/
https://docs.microsoft.com/en-US/aspnet/core/
https://docs.microsoft.com/en-US/aspnet/core/
https://docs.microsoft.com/en-US/aspnet/core/
https://docs.microsoft.com/en-US/aspnet/core/
https://docs.microsoft.com/en-US/aspnet/core/
https://docs.microsoft.com/en-us/aspnet/core/razor-pages/?view=aspnetcore-3.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/razor-pages/?view=aspnetcore-3.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/razor-pages/?view=aspnetcore-3.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/razor-pages/?view=aspnetcore-3.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/razor-pages/?view=aspnetcore-3.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/razor-pages/?view=aspnetcore-3.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/razor-pages/?view=aspnetcore-3.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/razor-pages/?view=aspnetcore-3.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/razor-pages/?view=aspnetcore-3.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/razor-pages/?view=aspnetcore-3.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/razor-pages/?view=aspnetcore-3.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/razor-pages/?view=aspnetcore-3.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/razor-pages/?view=aspnetcore-3.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/razor-pages/?view=aspnetcore-3.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/razor-pages/?view=aspnetcore-3.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/razor-pages/?view=aspnetcore-3.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/razor-pages/?view=aspnetcore-3.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/razor-pages/?view=aspnetcore-3.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/razor-pages/?view=aspnetcore-3.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/razor-pages/?view=aspnetcore-3.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/razor-pages/?view=aspnetcore-3.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/razor-pages/?view=aspnetcore-3.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/razor-pages/?view=aspnetcore-3.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/razor-pages/?view=aspnetcore-3.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/razor-pages/?view=aspnetcore-3.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/razor-pages/?view=aspnetcore-3.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/razor-pages/?view=aspnetcore-3.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/razor-pages/?view=aspnetcore-3.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/razor-pages/?view=aspnetcore-3.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/razor-pages/?view=aspnetcore-3.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/razor-pages/?view=aspnetcore-3.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/razor-pages/?view=aspnetcore-3.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/razor-pages/?view=aspnetcore-3.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/razor-pages/?view=aspnetcore-3.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/razor-pages/?view=aspnetcore-3.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/razor-pages/?view=aspnetcore-3.0&tabs=visual-studio
https://docs.microsoft.com/en-US/aspnet/core/mvc/views/tag-helpers/authoring
https://docs.microsoft.com/en-US/aspnet/core/mvc/views/tag-helpers/authoring
https://docs.microsoft.com/en-US/aspnet/core/mvc/views/tag-helpers/authoring
https://docs.microsoft.com/en-US/aspnet/core/mvc/views/tag-helpers/authoring
https://docs.microsoft.com/en-US/aspnet/core/mvc/views/tag-helpers/authoring
https://docs.microsoft.com/en-US/aspnet/core/mvc/views/tag-helpers/authoring
https://docs.microsoft.com/en-US/aspnet/core/mvc/views/tag-helpers/authoring
https://docs.microsoft.com/en-US/aspnet/core/mvc/views/tag-helpers/authoring
https://docs.microsoft.com/en-US/aspnet/core/mvc/views/tag-helpers/authoring
https://docs.microsoft.com/en-US/aspnet/core/mvc/views/tag-helpers/authoring
https://docs.microsoft.com/en-US/aspnet/core/mvc/views/tag-helpers/authoring
https://docs.microsoft.com/en-US/aspnet/core/mvc/views/tag-helpers/authoring
https://docs.microsoft.com/en-US/aspnet/core/mvc/views/tag-helpers/authoring
https://docs.microsoft.com/en-US/aspnet/core/mvc/views/tag-helpers/authoring
https://docs.microsoft.com/en-US/aspnet/core/mvc/views/tag-helpers/authoring
https://docs.microsoft.com/en-US/aspnet/core/mvc/views/tag-helpers/authoring
https://docs.microsoft.com/en-US/aspnet/core/mvc/views/tag-helpers/authoring
https://docs.microsoft.com/en-US/aspnet/core/mvc/views/tag-helpers/authoring
https://docs.microsoft.com/en-US/aspnet/core/mvc/views/tag-helpers/authoring
https://docs.microsoft.com/en-US/aspnet/core/mvc/views/tag-helpers/authoring
https://docs.microsoft.com/en-US/aspnet/core/mvc/views/tag-helpers/authoring
https://docs.microsoft.com/en-US/aspnet/core/mvc/views/tag-helpers/authoring
https://docs.microsoft.com/en-US/aspnet/core/mvc/views/tag-helpers/authoring
https://docs.microsoft.com/en-US/aspnet/core/mvc/views/tag-helpers/authoring
https://docs.microsoft.com/en-US/aspnet/core/mvc/views/tag-helpers/authoring
https://docs.microsoft.com/en-US/aspnet/core/mvc/views/tag-helpers/authoring
https://docs.microsoft.com/en-US/aspnet/core/mvc/controllers/filters
https://docs.microsoft.com/en-US/aspnet/core/mvc/controllers/filters
https://docs.microsoft.com/en-US/aspnet/core/mvc/controllers/filters
https://docs.microsoft.com/en-US/aspnet/core/mvc/controllers/filters
https://docs.microsoft.com/en-US/aspnet/core/mvc/controllers/filters
https://docs.microsoft.com/en-US/aspnet/core/mvc/controllers/filters
https://docs.microsoft.com/en-US/aspnet/core/mvc/controllers/filters
https://docs.microsoft.com/en-US/aspnet/core/mvc/controllers/filters
https://docs.microsoft.com/en-US/aspnet/core/mvc/controllers/filters
https://docs.microsoft.com/en-US/aspnet/core/mvc/controllers/filters
https://docs.microsoft.com/en-US/aspnet/core/mvc/controllers/filters
https://docs.microsoft.com/en-US/aspnet/core/mvc/controllers/filters
https://docs.microsoft.com/en-US/aspnet/core/mvc/controllers/filters
https://docs.microsoft.com/en-US/aspnet/core/mvc/controllers/filters
https://docs.microsoft.com/en-US/aspnet/core/mvc/controllers/filters
https://docs.microsoft.com/en-US/aspnet/core/mvc/controllers/filters
https://docs.microsoft.com/en-US/aspnet/core/mvc/controllers/filters
https://docs.microsoft.com/en-US/aspnet/core/mvc/controllers/filters
https://docs.microsoft.com/en-US/aspnet/core/mvc/controllers/filters
https://docs.microsoft.com/en-US/aspnet/core/mvc/controllers/filters
https://docs.microsoft.com/en-US/aspnet/core/mvc/controllers/filters
https://docs.microsoft.com/en-US/aspnet/core/mvc/controllers/filters
https://docs.microsoft.com/en-US/aspnet/core/mvc/controllers/filters
https://docs.microsoft.com/en-US/aspnet/core/mvc/controllers/filters
https://blogs.msdn.microsoft.com/mvpawardprogram/2017/01/03/asp-net-core-mvc/
https://blogs.msdn.microsoft.com/mvpawardprogram/2017/01/03/asp-net-core-mvc/
https://blogs.msdn.microsoft.com/mvpawardprogram/2017/01/03/asp-net-core-mvc/
https://blogs.msdn.microsoft.com/mvpawardprogram/2017/01/03/asp-net-core-mvc/
https://blogs.msdn.microsoft.com/mvpawardprogram/2017/01/03/asp-net-core-mvc/
https://blogs.msdn.microsoft.com/mvpawardprogram/2017/01/03/asp-net-core-mvc/
https://blogs.msdn.microsoft.com/mvpawardprogram/2017/01/03/asp-net-core-mvc/
https://blogs.msdn.microsoft.com/mvpawardprogram/2017/01/03/asp-net-core-mvc/
https://blogs.msdn.microsoft.com/mvpawardprogram/2017/01/03/asp-net-core-mvc/
https://blogs.msdn.microsoft.com/mvpawardprogram/2017/01/03/asp-net-core-mvc/
https://blogs.msdn.microsoft.com/mvpawardprogram/2017/01/03/asp-net-core-mvc/
https://blogs.msdn.microsoft.com/mvpawardprogram/2017/01/03/asp-net-core-mvc/
https://blogs.msdn.microsoft.com/mvpawardprogram/2017/01/03/asp-net-core-mvc/
https://blogs.msdn.microsoft.com/mvpawardprogram/2017/01/03/asp-net-core-mvc/
https://blogs.msdn.microsoft.com/mvpawardprogram/2017/01/03/asp-net-core-mvc/
https://blogs.msdn.microsoft.com/mvpawardprogram/2017/01/03/asp-net-core-mvc/
https://blogs.msdn.microsoft.com/mvpawardprogram/2017/01/03/asp-net-core-mvc/
https://blogs.msdn.microsoft.com/mvpawardprogram/2017/01/03/asp-net-core-mvc/
https://blogs.msdn.microsoft.com/mvpawardprogram/2017/01/03/asp-net-core-mvc/
https://blogs.msdn.microsoft.com/mvpawardprogram/2017/01/03/asp-net-core-mvc/
https://blogs.msdn.microsoft.com/mvpawardprogram/2017/01/03/asp-net-core-mvc/
https://blogs.msdn.microsoft.com/mvpawardprogram/2017/01/03/asp-net-core-mvc/
https://blogs.msdn.microsoft.com/mvpawardprogram/2017/01/03/asp-net-core-mvc/
https://blogs.msdn.microsoft.com/mvpawardprogram/2017/01/03/asp-net-core-mvc/
https://blogs.msdn.microsoft.com/mvpawardprogram/2017/01/03/asp-net-core-mvc/
https://blogs.msdn.microsoft.com/mvpawardprogram/2017/01/03/asp-net-core-mvc/
https://blogs.msdn.microsoft.com/mvpawardprogram/2017/01/03/asp-net-core-mvc/
https://dotnet.microsoft.com/apps/aspnet/web-apps/client
https://dotnet.microsoft.com/apps/aspnet/web-apps/client
https://www.packtpub.com/application-development/hands-typescript-c-and-net-core-developers
https://www.packtpub.com/application-development/hands-typescript-c-and-net-core-developers
https://www.packtpub.com/application-development/hands-typescript-c-and-net-core-developers
https://www.packtpub.com/application-development/hands-typescript-c-and-net-core-developers
https://www.packtpub.com/application-development/hands-typescript-c-and-net-core-developers
https://www.packtpub.com/application-development/hands-typescript-c-and-net-core-developers
https://www.packtpub.com/application-development/hands-typescript-c-and-net-core-developers
https://www.packtpub.com/application-development/hands-typescript-c-and-net-core-developers
https://www.packtpub.com/application-development/hands-typescript-c-and-net-core-developers
https://www.packtpub.com/application-development/hands-typescript-c-and-net-core-developers
https://www.packtpub.com/application-development/hands-typescript-c-and-net-core-developers
https://www.packtpub.com/application-development/hands-typescript-c-and-net-core-developers
https://www.packtpub.com/application-development/hands-typescript-c-and-net-core-developers
https://www.packtpub.com/application-development/hands-typescript-c-and-net-core-developers
https://www.packtpub.com/application-development/hands-typescript-c-and-net-core-developers
https://www.packtpub.com/application-development/hands-typescript-c-and-net-core-developers
https://www.packtpub.com/application-development/hands-typescript-c-and-net-core-developers
https://www.packtpub.com/application-development/hands-typescript-c-and-net-core-developers
https://www.packtpub.com/application-development/hands-typescript-c-and-net-core-developers
https://www.packtpub.com/application-development/hands-typescript-c-and-net-core-developers
https://www.packtpub.com/application-development/hands-typescript-c-and-net-core-developers
https://www.packtpub.com/application-development/hands-typescript-c-and-net-core-developers
https://www.packtpub.com/application-development/hands-typescript-c-and-net-core-developers
https://www.packtpub.com/application-development/hands-typescript-c-and-net-core-developers
https://www.packtpub.com/application-development/hands-typescript-c-and-net-core-developers
https://www.packtpub.com/application-development/hands-typescript-c-and-net-core-developers

4
Section 4: Programming

Solutions for an Unavoidable
Future Evolution

This section will focus on the necessity of delivering good code. The goal is to present
techniques that will help you deliver good software that can be maintained and evolved
continuously.

In Chapter 14, Best Practices in Coding C# 8, we will present some coding best practices to
help developers program safe, simple, and maintainable software. The chapter also
includes tips and tricks for coding in C#.

In Chapter 15, Testing Your Code with Unit Test Cases and TDD, we will present code testing
techniques and principles, taking the view that a necessary element of software
development is ensuring that an application is bug-free and that it satisfies all
specifications. Besides that, it will present test-driven development, a software
development methodology that gives unit tests a central role.

Then, in Chapter 16, Using Tools to Write Better Code, a bunch of the techniques and tools
you need to achieve well-written code for your project will be presented. The idea here is
that, although coding can be considered an art, writing understandable code is surely a
philosophy, and there are tools that can help you with this.

This section includes the following chapters:

Chapter 14, Best Practices in Coding C# 8
Chapter 15, Testing Your Code with Unit Test Cases and TDD
Chapter 16, Using Tools to Write Better Code

14
Best Practices in Coding C# 8

When you act as a software architect on a project, it is your responsibility to define and/or
maintain a coding standard that will direct the team for programming according to the
company's expectations. This chapter covers some of the best practices in coding that will
help developers like you to program safe, simple, and maintainable software. It also
includes tips and tricks for coding in C#.

The following topics will be covered in this chapter:

How the complexity of your code can affect performance
The importance of using a version control system
Writing safe code in C#
.NET core tips and tricks for coding
Book use case – dos and don'ts in writing code

Technical requirements
This chapter requires the Visual Studio 2019 free community edition or better with all
database tools installed.

You will find the sample code of this chapter here: https:/ ​/​github. ​com/ ​PacktPublishing/
Hands-​On-​Software- ​Architecture- ​with- ​CSharp- ​8/​tree/ ​master/ ​ch14.

https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch14
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch14
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch14
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch14
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch14
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch14
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch14
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch14
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch14
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch14
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch14
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch14
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch14
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch14
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch14
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch14
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch14
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch14
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch14
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch14
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch14
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch14
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch14
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch14
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch14
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch14
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch14
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch14

Best Practices in Coding C# 8 Chapter 14

[422]

The more complex your code is, the worse a
programmer you are
For many people, a good programmer is one who writes complex code. However, the
evolution of maturity in software development means there is a different way of thinking
about it. The complexity does not mean a good job, it means poor code quality. Some
incredible scientists and researchers confirm this theory and emphasize that professional
code needs to be focused on time, of high quality, and within budget.

So, if you want to write good code, you need to keep the focus on how to do it, considering
you are not the only one who will read it later. This is a good tip that changes the way you
write code. This is how we will discuss each point of this chapter.

If your understanding of the importance of writing good code is aligned to the idea of
simplicity and clarity while writing it, you should have to take a look at the Visual Studio
tool Code Metrics:

Best Practices in Coding C# 8 Chapter 14

[423]

The Code Metrics tool will deliver metrics that will give you insights about the quality of
the software you are delivering. The metrics that the tool provides are listed here and can
be found at this link https:/ ​/ ​docs. ​microsoft. ​com/ ​en-​us/ ​visualstudio/ ​code- ​quality/
code-​metrics-​values? ​view= ​vs- ​2019:

Maintainability index
Cyclomatic complexity
Depth of inheritance
Class coupling
Lines of code

The next subsections are focused on describing how they are useful in some real-life
scenarios.

Maintainability index
This index indicates how easy it is to maintain the code—the easier the code, the higher the
index (limited to 100). Easy maintenance is one of the key points to keep software in good
health. It is obvious that any software will require changes in the future since change is
inevitable. For this reason, consider refactoring your code if you have low levels of
maintainability. Writing classes and methods dedicated to a single responsibility, avoiding
duplicate code, and limiting the number of lines of code of each method are examples of
how you can improve the maintainability index.

Cyclomatic complexity
The author of Cyclomatic Complexity Metric is Thomas J. McCabe. He defines the complexity
of a software function according to the number of code paths available (graph nodes). The
more paths you have, the more complex your function is. McCabe considers that each
function must have a complexity score of less than 10. That means that, if the code has more
complex methods, you have to refactor it, transforming parts of these codes into separate
methods. There are some real scenarios where this behavior is easily detected:

Loops inside loops
Lots of consecutive if-else
switch with code processing for each case inside the same method

https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019

Best Practices in Coding C# 8 Chapter 14

[424]

For instance, look at the first version of this method for processing different responses of a
credit card transaction. As you can check, the cyclomatic complexity is bigger than the
number considered by McCabe as a basis. The reason why this happens is because of the
number of if-else inside each case of the main switch:

static void Main()
{
 var billingMode = GetBillingMode();
 var messageResponse = ProcessCreditCardMethod();
 switch (messageResponse)
 {
 case "A":
 if (billingMode == "M1")
 Console.WriteLine($"Billing Mode {billingMode} for Message
 Response {messageResponse}");
 else
 Console.WriteLine($"Billing Mode {billingMode} for Message
 Response {messageResponse}");
 break;
 case "B":
 if (billingMode == "M2")
 Console.WriteLine($"Billing Mode {billingMode} for Message
 Response {messageResponse}");
 else
 Console.WriteLine($"Billing Mode {billingMode} for Message
 Response {messageResponse}");
 break;
 case "C":
 if (billingMode == "M3")
 Console.WriteLine($"Billing Mode {billingMode} for Message
 Response {messageResponse}");
 else
 Console.WriteLine($"Billing Mode {billingMode} for Message
 Response {messageResponse}");
 break;
 case "D":
 if (billingMode == "M4")
 Console.WriteLine($"Billing Mode {billingMode} for Message
 Response {messageResponse}");
 else
 Console.WriteLine($"Billing Mode {billingMode} for Message
 Response {messageResponse}");
 break;
 case "E":
 if (billingMode == "M5")
 Console.WriteLine($"Billing Mode {billingMode} for Message
 Response {messageResponse}");

Best Practices in Coding C# 8 Chapter 14

[425]

 else
 Console.WriteLine($"Billing Mode {billingMode} for Message
 Response {messageResponse}");
 break;
 case "F":
 if (billingMode == "M6")
 Console.WriteLine($"Billing Mode {billingMode} for Message
 Response {messageResponse}");
 else
 Console.WriteLine($"Billing Mode {billingMode} for Message
 Response {messageResponse}");
 break;
 case "G":
 if (billingMode == "M7")
 Console.WriteLine($"Billing Mode {billingMode} for Message
 Response {messageResponse}");
 else
 Console.WriteLine($"Billing Mode {billingMode} for Message
 Response {messageResponse}");
 break;
 case "S":
 if (billingMode == "M8")
 Console.WriteLine($"Billing Mode {billingMode} for Message
 Response {messageResponse}");
 else
 Console.WriteLine($"Billing Mode {billingMode} for Message
 Response {messageResponse}");
 break;
 default:
 Console.WriteLine("The result of processing is unknown");
 break;
 }
}

If you calculate the code metrics of this code, you will find a really bad result when it comes
to cyclomatic complexity, as you can see in the following screenshot:

Best Practices in Coding C# 8 Chapter 14

[426]

The code itself makes no sense, but the point here is to show you the number of
improvements that can be made in order to write better code:

The options from the switch-case could be written using Enum.
Each case processing can be done in a specific method.
switch-case can be substituted with Dictionary<Enum, Method>.

By refactoring this code with the preceding techniques, the result is a piece of code that is
much easier to understand, as you can see in the following code snippet of its main method:

static void Main()
{
 var billingMode = GetBillingMode();
 var messageResponse = ProcessCreditCardMethod();
 Dictionary<CreditCardProcessingResult, CheckResultMethod>
 methodsForCheckingResult =
 GetMethodsForCheckingResult();
 if (methodsForCheckingResult.ContainsKey(messageResponse))
 methodsForCheckingResult[messageResponse](billingMode,
 messageResponse);
 else
 Console.WriteLine("The result of processing is unknown");
}

The full code can be found on the GitHub of this chapter and presents how lower-
complexity code can be achieved. The following screenshot shows these results according
to code metrics:

Best Practices in Coding C# 8 Chapter 14

[427]

As you can see in the preceding screenshot, there is a considerable reduction of complexity
after refactoring. The key point here is that with the techniques applied, understanding of
the code increased and the complexity decreased, proving the importance of cyclomatic
complexity.

Depth of inheritance
This metric represents the number of classes connected to the one that is being analyzed.
The more classes you have inherited, the worse your code is. This is similar to class
coupling and indicates how difficult it is to change your code.

For instance, the following screenshot has four inherited classes:

Best Practices in Coding C# 8 Chapter 14

[428]

You can see in the following screenshot that the deeper class has the worse the metric,
considering there are three other classes that can change its behavior:

Inheritance is one of the basic object-oriented analysis principles. However, it can
sometimes be bad for your code in that it can cause dependencies. So, if it makes sense to
do so, instead of using inheritance, consider using aggregation.

Class coupling
When you connect too many classes in a single class, obviously you will get coupling and
this can cause bad maintenance of your code. For instance, see the following screenshot. It
shows a design where aggregation has been done a lot. There is no sense to the code itself:

Best Practices in Coding C# 8 Chapter 14

[429]

Once you have calculated the code metrics for the preceding design, you will see that the
number of class coupling instances for the ProcessData() method, which calls
ExecuteTypeA(), ExecuteTypeB(), and ExecuteTypeC(), equals three (3):

Some papers indicate that the maximum number of class coupling instances should be nine
(9). With aggregation being a better practice than inheritance, the use of interfaces will
solve class coupling problems. For instance, the same code with the following design will
give you a better result:

Best Practices in Coding C# 8 Chapter 14

[430]

Notice that using the interface in the design will allow you the possibility of increasing the
number of execution types without increasing the Class Coupling of the solution:

As a software architect, you have to consider designing your solution to have more
cohesion than coupling. The literature indicates that good software has low coupling and
high cohesion. This is a basic principle that can guide you to a better architectural model.

Lines of code
This metric is useful to make you understand the size of the code you are dealing with.
There is no way to connect lines of code and complexity since the number of lines is not
indicative of that. On the other hand, the lines of code show the software size and software
design. For instance, if you have too many lines of code in a single class (more than 1,000
lines of code—1 KLOC), it indicates that it is a bad design.

Using a version control system
You may find this topic in this book a bit obvious, but many people and companies still do
not consider having a version control system as a basic tool for software development! The
idea of writing about it is to force you to understand it. There is no architectural model or
best practice that can save software development if you do not use a version control system.

In the last few years, we have been enjoying the advantages of online version control
systems, such as GitHub, BitBucket, and Azure DevOps. The fact is, you have to have a tool
like that in your software development life cycle and there is no reason to not have it
anymore since most providers offer free versions for small groups. Even if you develop by
yourself, these tools are useful for tracking your changes, managing your software versions,
and guaranteeing the consistency and integrity of your code.

Best Practices in Coding C# 8 Chapter 14

[431]

Dealing with version control systems in teams
The use of a version control system tool when you are alone is quite obvious. You want to
keep your code safe. But this kind of system was definitely developed to solve team
problems while writing code. For this reason, some features such as branching and merging
were introduced to keep code integrity even in scenarios where the number of developers is
quite big.

As a software architect, you will have to decide which branch strategy you will conduct in
your team. Azure DevOps and GitHub suggest different ways to deliver that, and both of
them are useful in some scenarios.

The information about how Azure DevOps team deals with it can be found here: https:/ ​/
devblogs.​microsoft. ​com/ ​devops/ ​release- ​flow- ​how- ​we-​do- ​branching- ​on-​the- ​vsts-
team/​. GitHub describes its process here: https:/ ​/​guides. ​github. ​com/​introduction/
flow/​. We have no idea about which is the one that best fits your needs, but we do want
you to understand that you need to have a strategy for controlling your code.

Writing safe code in C#
C# can be considered a safe programming language by design. Unless you force it, there is
no need for pointers, and memory release is, in most cases, managed by the garbage
collector. Even so, some care should be taken so you can get better and safe results from
your code. Let's have a look at them.

try-catch
Exceptions in coding are so frequent that you may have a way to manage them whenever
they happen. try-catch statements are built to manage these exceptions and they are
really important to keeping your code safe. There are a lot of cases where an application
crashes and the reason for that is the lack of using try-catch. The following code shows an
example of the lack of usage of the try-catch statement:

private static int CodeWithNoTryCatch(string textToConvert)
{
 return Convert.ToInt32(textToConvert);
}

https://devblogs.microsoft.com/devops/release-flow-how-we-do-branching-on-the-vsts-team/
https://devblogs.microsoft.com/devops/release-flow-how-we-do-branching-on-the-vsts-team/
https://devblogs.microsoft.com/devops/release-flow-how-we-do-branching-on-the-vsts-team/
https://devblogs.microsoft.com/devops/release-flow-how-we-do-branching-on-the-vsts-team/
https://devblogs.microsoft.com/devops/release-flow-how-we-do-branching-on-the-vsts-team/
https://devblogs.microsoft.com/devops/release-flow-how-we-do-branching-on-the-vsts-team/
https://devblogs.microsoft.com/devops/release-flow-how-we-do-branching-on-the-vsts-team/
https://devblogs.microsoft.com/devops/release-flow-how-we-do-branching-on-the-vsts-team/
https://devblogs.microsoft.com/devops/release-flow-how-we-do-branching-on-the-vsts-team/
https://devblogs.microsoft.com/devops/release-flow-how-we-do-branching-on-the-vsts-team/
https://devblogs.microsoft.com/devops/release-flow-how-we-do-branching-on-the-vsts-team/
https://devblogs.microsoft.com/devops/release-flow-how-we-do-branching-on-the-vsts-team/
https://devblogs.microsoft.com/devops/release-flow-how-we-do-branching-on-the-vsts-team/
https://devblogs.microsoft.com/devops/release-flow-how-we-do-branching-on-the-vsts-team/
https://devblogs.microsoft.com/devops/release-flow-how-we-do-branching-on-the-vsts-team/
https://devblogs.microsoft.com/devops/release-flow-how-we-do-branching-on-the-vsts-team/
https://devblogs.microsoft.com/devops/release-flow-how-we-do-branching-on-the-vsts-team/
https://devblogs.microsoft.com/devops/release-flow-how-we-do-branching-on-the-vsts-team/
https://devblogs.microsoft.com/devops/release-flow-how-we-do-branching-on-the-vsts-team/
https://devblogs.microsoft.com/devops/release-flow-how-we-do-branching-on-the-vsts-team/
https://devblogs.microsoft.com/devops/release-flow-how-we-do-branching-on-the-vsts-team/
https://devblogs.microsoft.com/devops/release-flow-how-we-do-branching-on-the-vsts-team/
https://devblogs.microsoft.com/devops/release-flow-how-we-do-branching-on-the-vsts-team/
https://devblogs.microsoft.com/devops/release-flow-how-we-do-branching-on-the-vsts-team/
https://devblogs.microsoft.com/devops/release-flow-how-we-do-branching-on-the-vsts-team/
https://devblogs.microsoft.com/devops/release-flow-how-we-do-branching-on-the-vsts-team/
https://devblogs.microsoft.com/devops/release-flow-how-we-do-branching-on-the-vsts-team/
https://devblogs.microsoft.com/devops/release-flow-how-we-do-branching-on-the-vsts-team/
https://devblogs.microsoft.com/devops/release-flow-how-we-do-branching-on-the-vsts-team/
https://devblogs.microsoft.com/devops/release-flow-how-we-do-branching-on-the-vsts-team/
https://guides.github.com/introduction/flow/
https://guides.github.com/introduction/flow/
https://guides.github.com/introduction/flow/
https://guides.github.com/introduction/flow/
https://guides.github.com/introduction/flow/
https://guides.github.com/introduction/flow/
https://guides.github.com/introduction/flow/
https://guides.github.com/introduction/flow/
https://guides.github.com/introduction/flow/
https://guides.github.com/introduction/flow/
https://guides.github.com/introduction/flow/
https://guides.github.com/introduction/flow/
https://guides.github.com/introduction/flow/

Best Practices in Coding C# 8 Chapter 14

[432]

On the other hand, bad try-catch usage can cause damage to your code too, especially
because you will not see the correct behavior of that code and may misunderstand the
results provided. The following code shows an example of an empty try-catch statement:

private static int CodeWithEmptyTryCatch(string textToConvert)
{
 try
 {
 return Convert.ToInt32(textToConvert);
 }
 catch
 {
 return 0;
 }
}

try-catch statements must always be connected to logging solutions, so that you can have
a response from the system that will indicate the correct behavior and, at the same time,
will not cause application crashes. The following code shows an ideal try-catch statement
with logging management:

private static int CodeWithCorrectTryCatch(string textToConvert)
{
 try
 {
 return Convert.ToInt32(textToConvert);
 }
 catch (Exception err)
 {
 Logger.GenerateLog(err);
 return 0;
 }
}

As a software architect, you should conduct code inspections to fix this kind of behavior
found in the code. Instability in a system is often connected to the lack of try-catch
statements in the code.

try-finally and using
Memory leaks can be considered one of the worst behaviors of software. They cause
instability, bad usage of computer resources, and undesired application crashes. C# tries to
solve this with Garbage Collector, which automatically releases objects from memory as
soon as it realizes the object can be freed.

Best Practices in Coding C# 8 Chapter 14

[433]

Objects that interact with I/O are the ones that generally are not managed by Garbage
Collector: filesystem, sockets, and so on. The following code is a sample of wrong usage of
FileStream object, because it considers the Garbage Collector will release the memory
used, but it will not:

private static void CodeWithIncorrectFileStreamManagement()
{
 FileStream file = new FileStream("C:\\file.txt", FileMode.CreateNew);
 byte[] data = GetFileData();
 file.Write(data, 0, data.Length);
}

Besides, it takes a while for Garbage Collector to interact with objects that need to be
released and sometimes you may want to do it yourself. For both cases, the use of try-
finally or using statements is the best practice:

private static void CodeWithCorrectFileStreamManagementFirstOption()
{
 using (FileStream file = new FileStream("C:\\file.txt",
 FileMode.CreateNew))
 {
 byte[] data = GetFileData();
 file.Write(data, 0, data.Length);
 }
}

private static void CodeWithCorrectFileStreamManagementSecondOption()
{
 FileStream file = new FileStream("C:\\file.txt", FileMode.CreateNew);
 try
 {
 byte[] data = GetFileData();
 file.Write(data, 0, data.Length);
 }
 finally
 {
 file.Dispose();
 }
}

The preceding code shows exactly how to deal with objects that are not managed by
Garbage Collector. You have both try-finally and using being implemented. As a
software architect, you do need to pay attention to this kind of code. The lack of try-
finally or using statements can cause huge damage to software behavior when it is
running.

Best Practices in Coding C# 8 Chapter 14

[434]

The IDisposable interface
The same way you will have trouble if you do not manage objects created inside a method
with try-finally/using statements, objects created in a class that does not properly
implement the IDisposable interface may cause memory leaks in your application. For
this reason, when you have a class that deals with and creates objects, you should
implement the disposable pattern to guarantee the release of all resources created by it:

The good news is that Visual Studio gives you the code snippet to implement this interface
by just indicating it in your code and right-clicking on the Quick Actions and
refactorings option, as you can see in the preceding screenshot. Once you have the code
inserted, you need to follow the TODO instructions so that you have the correct pattern
implemented.

.NET Core tips and tricks for coding

.NET Core implements some good features that help us to write better code. One of the
most useful for having safer code is dependency injection (DI), which was already
discussed in Chapter 9, Design Patterns and .NET Core Implementation. There are some good
reasons to consider this. The first one is because you will not need to worry about disposing
of injected objects since you are not going to be the creator of them.

Best Practices in Coding C# 8 Chapter 14

[435]

Besides, DI enables you to inject ILogger, a really useful tool for debugging exceptions that
will need to be managed by try-catch statements in your code. Furthermore, programming
in C# with .NET Core must follow the common good practices of any programming
language. The following list shows some of them:

Classes, methods, and variables should have understandable names: The name
should explain everything the reader needs to know. There should be no need for
an explanatory comment.
Methods cannot have high complexity levels: Cyclomatic complexity should be
checked so that methods do not have too many lines of code.
Duplicate code should be avoided: There is no reason for having duplicate code
in a high-level programming language like C#.
Objects should be checked before usage: Since null objects can exist, the code
must have null-type checking.
Constants and enumerators should be used: A good way for avoiding magic
numbers and text inside code is transforming this information into constants and
enumerators, which generally are more understandable.
Unsafe code should be avoided: Unless there is no other way to implement
code, unsafe code should be avoided.
try-catch statements cannot be empty: There is no reason for a try-catch
statement without treatment in the catch area.
try-finally/using statements should always be used: Even for objects where
Garbage Collector will take care of the disposed-of object, consider disposing of
objects that you were responsible for creating yourself.
At least public methods should be commented: Considering that public
methods are the ones used outside your library, they have to be explained for
their correct external usage.
switch-case statements must have a default treatment: Since the switch-case
statement may receive an entrance variable unknown in some cases, the default
treatment will guarantee that the code will not break in such a situation.

As a software architect, a good practice is to provide your developers with a code pattern
that will be used by all programmers as a way to keep the style of the code consistent. You
can use a code pattern as a checklist for coding inspection, which will enrich software code
quality.

Best Practices in Coding C# 8 Chapter 14

[436]

WWTravelClub – dos and don'ts in writing
code
As a software architect, you have to define a code standard that matches the needs of the
company you are working for.

In the sample project of this book (check out more about the WWTravelClub project in
Chapter 1, Understanding the Importance of Software Architecture), this is no different. The
way we decided to present the standard for it is describing a list of dos and don'ts that we
followed while writing the samples we produced. It is worth mentioning that the list is a
good way to start your standard and as a software architect, you should discuss this list
with the developers you have in the team, so you can evolve it in a practical and good
manner:

DO write your code in English.
DO follow C# coding standards with CamelCase.
DO write classes, methods, and variables with understandable names.
DO comment public classes, methods, and properties.
DO use the using statement whenever possible.
DO use async implementation whenever possible.
DO ask for authorization before implementing unmanaged code.
DO ask for authorization before implementing threads.
DON'T write empty try-catch statements.
DON'T write methods with more than a score of 10 of cyclomatic complexity.
DON'T use break and continue inside for/while/do-while/foreach
statements.
DON'T use goto statements.

These dos and don'ts are simple to follow and, better than that, will yield great results for
the code your team produces. In Chapter 16, Using Tools to Write Better Code, we will
discuss the tools to help you to implement these rules.

Best Practices in Coding C# 8 Chapter 14

[437]

Summary
We discussed during this chapter some important tips for writing safe code. This chapter
introduced a tool for analyzing code metrics, so you can manage the complexity and
maintainability of the software you are developing. To finish, we presented some good tips
to guarantee your software will not crash due to memory leaks and exceptions. In real life,
a software architect will always be asked to solve this kind of problem.

In the next chapter, we will learn about some unit testing techniques, the principles of unit
testing, and a software process model that focuses on C# test projects.

Questions
Why do we need to care about maintainability?1.
What is cyclomatic complexity?2.
List the advantages of using a version control system.3.
What is the difference between try-catch, try-finally, and try-catch-4.
finally?
What is Garbage Collector?5.
What is the importance of implementing the IDisposable interface?6.
What advantages do we get from .NET Core when it comes to coding?7.

Further reading
These are some books and websites where you will find more information about the topics
of this chapter:

The Art of Designing Embedded Systems by Jack G. Ganssle. Elsevier, 1999.
Refactoring: Improving the Design of Existing Code by Martin Fowler. Addison
Wesley, 1999.
A Complexity Measure by Thomas J. McCabe. IEEE Trans. Software
Eng. 2(4): 308-320, 1976 (https:/ ​/ ​dblp. ​uni-​trier. ​de/​db/ ​journals/ ​tse/​tse2.
html).
https:/​/ ​blogs. ​msdn. ​microsoft. ​com/ ​zainnab/ ​2011/ ​05/ ​25/ ​code- ​metrics-
class-​coupling/ ​

https://dblp.uni-trier.de/db/journals/tse/tse2.html
https://dblp.uni-trier.de/db/journals/tse/tse2.html
https://dblp.uni-trier.de/db/journals/tse/tse2.html
https://dblp.uni-trier.de/db/journals/tse/tse2.html
https://dblp.uni-trier.de/db/journals/tse/tse2.html
https://dblp.uni-trier.de/db/journals/tse/tse2.html
https://dblp.uni-trier.de/db/journals/tse/tse2.html
https://dblp.uni-trier.de/db/journals/tse/tse2.html
https://dblp.uni-trier.de/db/journals/tse/tse2.html
https://dblp.uni-trier.de/db/journals/tse/tse2.html
https://dblp.uni-trier.de/db/journals/tse/tse2.html
https://dblp.uni-trier.de/db/journals/tse/tse2.html
https://dblp.uni-trier.de/db/journals/tse/tse2.html
https://dblp.uni-trier.de/db/journals/tse/tse2.html
https://dblp.uni-trier.de/db/journals/tse/tse2.html
https://dblp.uni-trier.de/db/journals/tse/tse2.html
https://dblp.uni-trier.de/db/journals/tse/tse2.html
https://dblp.uni-trier.de/db/journals/tse/tse2.html
https://dblp.uni-trier.de/db/journals/tse/tse2.html
https://dblp.uni-trier.de/db/journals/tse/tse2.html
https://blogs.msdn.microsoft.com/zainnab/2011/05/25/code-metrics-class-coupling/
https://blogs.msdn.microsoft.com/zainnab/2011/05/25/code-metrics-class-coupling/
https://blogs.msdn.microsoft.com/zainnab/2011/05/25/code-metrics-class-coupling/
https://blogs.msdn.microsoft.com/zainnab/2011/05/25/code-metrics-class-coupling/
https://blogs.msdn.microsoft.com/zainnab/2011/05/25/code-metrics-class-coupling/
https://blogs.msdn.microsoft.com/zainnab/2011/05/25/code-metrics-class-coupling/
https://blogs.msdn.microsoft.com/zainnab/2011/05/25/code-metrics-class-coupling/
https://blogs.msdn.microsoft.com/zainnab/2011/05/25/code-metrics-class-coupling/
https://blogs.msdn.microsoft.com/zainnab/2011/05/25/code-metrics-class-coupling/
https://blogs.msdn.microsoft.com/zainnab/2011/05/25/code-metrics-class-coupling/
https://blogs.msdn.microsoft.com/zainnab/2011/05/25/code-metrics-class-coupling/
https://blogs.msdn.microsoft.com/zainnab/2011/05/25/code-metrics-class-coupling/
https://blogs.msdn.microsoft.com/zainnab/2011/05/25/code-metrics-class-coupling/
https://blogs.msdn.microsoft.com/zainnab/2011/05/25/code-metrics-class-coupling/
https://blogs.msdn.microsoft.com/zainnab/2011/05/25/code-metrics-class-coupling/
https://blogs.msdn.microsoft.com/zainnab/2011/05/25/code-metrics-class-coupling/
https://blogs.msdn.microsoft.com/zainnab/2011/05/25/code-metrics-class-coupling/
https://blogs.msdn.microsoft.com/zainnab/2011/05/25/code-metrics-class-coupling/
https://blogs.msdn.microsoft.com/zainnab/2011/05/25/code-metrics-class-coupling/
https://blogs.msdn.microsoft.com/zainnab/2011/05/25/code-metrics-class-coupling/
https://blogs.msdn.microsoft.com/zainnab/2011/05/25/code-metrics-class-coupling/
https://blogs.msdn.microsoft.com/zainnab/2011/05/25/code-metrics-class-coupling/
https://blogs.msdn.microsoft.com/zainnab/2011/05/25/code-metrics-class-coupling/
https://blogs.msdn.microsoft.com/zainnab/2011/05/25/code-metrics-class-coupling/
https://blogs.msdn.microsoft.com/zainnab/2011/05/25/code-metrics-class-coupling/
https://blogs.msdn.microsoft.com/zainnab/2011/05/25/code-metrics-class-coupling/
https://blogs.msdn.microsoft.com/zainnab/2011/05/25/code-metrics-class-coupling/

Best Practices in Coding C# 8 Chapter 14

[438]

https:/​/ ​docs. ​microsoft. ​com/ ​en-​us/ ​visualstudio/ ​code- ​quality/ ​code-
metrics- ​values? ​view= ​vs- ​2019

https:/​/ ​github. ​com/ ​

https:/​/ ​bitbucket. ​org/ ​

https:/​/ ​azure. ​microsoft. ​com/ ​en-​us/ ​services/ ​devops/ ​

https:/​/ ​guides. ​github. ​com/ ​introduction/ ​flow/ ​

https:/​/ ​blogs. ​msdn. ​microsoft. ​com/ ​devops/ ​2018/ ​04/ ​19/​release- ​flow- ​how-
we-​do- ​branching- ​on- ​the- ​vsts- ​team/ ​

https:/​/ ​docs. ​microsoft. ​com/ ​aspnet/ ​core/ ​fundamentals/ ​logging/ ​

https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-values?view=vs-2019
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://bitbucket.org/
https://bitbucket.org/
https://bitbucket.org/
https://bitbucket.org/
https://bitbucket.org/
https://bitbucket.org/
https://bitbucket.org/
https://bitbucket.org/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://guides.github.com/introduction/flow/
https://guides.github.com/introduction/flow/
https://guides.github.com/introduction/flow/
https://guides.github.com/introduction/flow/
https://guides.github.com/introduction/flow/
https://guides.github.com/introduction/flow/
https://guides.github.com/introduction/flow/
https://guides.github.com/introduction/flow/
https://guides.github.com/introduction/flow/
https://guides.github.com/introduction/flow/
https://guides.github.com/introduction/flow/
https://guides.github.com/introduction/flow/
https://guides.github.com/introduction/flow/
https://guides.github.com/introduction/flow/
https://blogs.msdn.microsoft.com/devops/2018/04/19/release-flow-how-we-do-branching-on-the-vsts-team/
https://blogs.msdn.microsoft.com/devops/2018/04/19/release-flow-how-we-do-branching-on-the-vsts-team/
https://blogs.msdn.microsoft.com/devops/2018/04/19/release-flow-how-we-do-branching-on-the-vsts-team/
https://blogs.msdn.microsoft.com/devops/2018/04/19/release-flow-how-we-do-branching-on-the-vsts-team/
https://blogs.msdn.microsoft.com/devops/2018/04/19/release-flow-how-we-do-branching-on-the-vsts-team/
https://blogs.msdn.microsoft.com/devops/2018/04/19/release-flow-how-we-do-branching-on-the-vsts-team/
https://blogs.msdn.microsoft.com/devops/2018/04/19/release-flow-how-we-do-branching-on-the-vsts-team/
https://blogs.msdn.microsoft.com/devops/2018/04/19/release-flow-how-we-do-branching-on-the-vsts-team/
https://blogs.msdn.microsoft.com/devops/2018/04/19/release-flow-how-we-do-branching-on-the-vsts-team/
https://blogs.msdn.microsoft.com/devops/2018/04/19/release-flow-how-we-do-branching-on-the-vsts-team/
https://blogs.msdn.microsoft.com/devops/2018/04/19/release-flow-how-we-do-branching-on-the-vsts-team/
https://blogs.msdn.microsoft.com/devops/2018/04/19/release-flow-how-we-do-branching-on-the-vsts-team/
https://blogs.msdn.microsoft.com/devops/2018/04/19/release-flow-how-we-do-branching-on-the-vsts-team/
https://blogs.msdn.microsoft.com/devops/2018/04/19/release-flow-how-we-do-branching-on-the-vsts-team/
https://blogs.msdn.microsoft.com/devops/2018/04/19/release-flow-how-we-do-branching-on-the-vsts-team/
https://blogs.msdn.microsoft.com/devops/2018/04/19/release-flow-how-we-do-branching-on-the-vsts-team/
https://blogs.msdn.microsoft.com/devops/2018/04/19/release-flow-how-we-do-branching-on-the-vsts-team/
https://blogs.msdn.microsoft.com/devops/2018/04/19/release-flow-how-we-do-branching-on-the-vsts-team/
https://blogs.msdn.microsoft.com/devops/2018/04/19/release-flow-how-we-do-branching-on-the-vsts-team/
https://blogs.msdn.microsoft.com/devops/2018/04/19/release-flow-how-we-do-branching-on-the-vsts-team/
https://blogs.msdn.microsoft.com/devops/2018/04/19/release-flow-how-we-do-branching-on-the-vsts-team/
https://blogs.msdn.microsoft.com/devops/2018/04/19/release-flow-how-we-do-branching-on-the-vsts-team/
https://blogs.msdn.microsoft.com/devops/2018/04/19/release-flow-how-we-do-branching-on-the-vsts-team/
https://blogs.msdn.microsoft.com/devops/2018/04/19/release-flow-how-we-do-branching-on-the-vsts-team/
https://blogs.msdn.microsoft.com/devops/2018/04/19/release-flow-how-we-do-branching-on-the-vsts-team/
https://blogs.msdn.microsoft.com/devops/2018/04/19/release-flow-how-we-do-branching-on-the-vsts-team/
https://blogs.msdn.microsoft.com/devops/2018/04/19/release-flow-how-we-do-branching-on-the-vsts-team/
https://blogs.msdn.microsoft.com/devops/2018/04/19/release-flow-how-we-do-branching-on-the-vsts-team/
https://blogs.msdn.microsoft.com/devops/2018/04/19/release-flow-how-we-do-branching-on-the-vsts-team/
https://blogs.msdn.microsoft.com/devops/2018/04/19/release-flow-how-we-do-branching-on-the-vsts-team/
https://blogs.msdn.microsoft.com/devops/2018/04/19/release-flow-how-we-do-branching-on-the-vsts-team/
https://blogs.msdn.microsoft.com/devops/2018/04/19/release-flow-how-we-do-branching-on-the-vsts-team/
https://blogs.msdn.microsoft.com/devops/2018/04/19/release-flow-how-we-do-branching-on-the-vsts-team/
https://blogs.msdn.microsoft.com/devops/2018/04/19/release-flow-how-we-do-branching-on-the-vsts-team/
https://blogs.msdn.microsoft.com/devops/2018/04/19/release-flow-how-we-do-branching-on-the-vsts-team/
https://blogs.msdn.microsoft.com/devops/2018/04/19/release-flow-how-we-do-branching-on-the-vsts-team/
https://blogs.msdn.microsoft.com/devops/2018/04/19/release-flow-how-we-do-branching-on-the-vsts-team/
https://blogs.msdn.microsoft.com/devops/2018/04/19/release-flow-how-we-do-branching-on-the-vsts-team/
https://blogs.msdn.microsoft.com/devops/2018/04/19/release-flow-how-we-do-branching-on-the-vsts-team/
https://docs.microsoft.com/aspnet/core/fundamentals/logging/
https://docs.microsoft.com/aspnet/core/fundamentals/logging/
https://docs.microsoft.com/aspnet/core/fundamentals/logging/
https://docs.microsoft.com/aspnet/core/fundamentals/logging/
https://docs.microsoft.com/aspnet/core/fundamentals/logging/
https://docs.microsoft.com/aspnet/core/fundamentals/logging/
https://docs.microsoft.com/aspnet/core/fundamentals/logging/
https://docs.microsoft.com/aspnet/core/fundamentals/logging/
https://docs.microsoft.com/aspnet/core/fundamentals/logging/
https://docs.microsoft.com/aspnet/core/fundamentals/logging/
https://docs.microsoft.com/aspnet/core/fundamentals/logging/
https://docs.microsoft.com/aspnet/core/fundamentals/logging/
https://docs.microsoft.com/aspnet/core/fundamentals/logging/
https://docs.microsoft.com/aspnet/core/fundamentals/logging/
https://docs.microsoft.com/aspnet/core/fundamentals/logging/
https://docs.microsoft.com/aspnet/core/fundamentals/logging/
https://docs.microsoft.com/aspnet/core/fundamentals/logging/
https://docs.microsoft.com/aspnet/core/fundamentals/logging/

15
Testing Your Code with Unit

Test Cases and TDD
When developing software, it is essential that you ensure that an application is bug-free
and that it satisfies all specifications. This can be done by testing all the modules while they
are being developed or when the overall application has been either completely or partially
implemented.

Performing all the tests manually is not a feasible option since most of the tests must be
executed each time the application is modified, and, as explained throughout this book,
modern software is being continuously modified to adapt the applications to the needs of a
fast-changing market. This chapter discusses all the types of tests needed to deliver reliable
software, and how to organize and automate them.

More specifically, this chapter covers the following topics:

Understanding automated tests and their usage
Understanding the basics of test-driven development (TDD)
Optimizing a software investment using TDD
Defining C# test projects in Visual Studio

In this chapter, we'll see which types of tests are worth implementing, and what unit tests
are. We'll see the different types of projects available and how to write unit tests in them. By
the end of the chapter, the book use case will help us to execute our tests in Azure DevOps
during the Continuous Integration/Continuous Delivery (CI/CD) cycle of our applications
automatically.

Testing Your Code with Unit Test Cases and TDD Chapter 15

[440]

Technical requirements
This chapter requires the 2019 free Community Edition with all database tools installed. It
also requires a free Azure account; if you have not already created one, see the Creating an
Azure account section in Chapter 1, Understanding the Importance of Software Architecture.

All concepts in this chapter are clarified with practical examples based on the
WWTravelClub book use case. The code for this chapter is available at: https:/ ​/ ​github.
com/​PacktPublishing/ ​Hands- ​On- ​Software- ​Architecture- ​with- ​CSharp- ​8.

Understanding automated tests
Delaying the application testing until immediately after most of its functionalities have
been completely implemented must be avoided for the following reasons:

If a class or module has been incorrectly designed or implemented, it might have
already influenced the way other modules were implemented. Therefore, at this
point, fixing the problem might have a very high cost.
The possible combination of input that is needed to test all possible paths that
execution can take grows exponentially with the number of modules or classes
that are tested together. Thus, for instance, if the execution of a class method A
can take three different paths, while the execution of another method B can take
four paths, then testing A and B together would require 3 x 4 different inputs. In
general, if we test several modules together, the total number of paths to test is
the product of the number of paths to test in each module. If modules are tested
separately, instead, the number of inputs required is just the sum of the paths
needed to test each module.
If a test of an aggregate made of N modules fails, then locating the origin of the
bug among the N modules is usually a very time consuming activity.
When N modules are tested together, we have to redefine all tests involving the
N modules, even if just one of the N modules changes during the application's
CI/CD cycle.

The preceding considerations show that it is more convenient to test each module method
separately. Unluckily, a battery of tests that verifies all methods independently from their
context is incomplete because some bugs may be caused by incorrect interactions between
modules.

https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8

Testing Your Code with Unit Test Cases and TDD Chapter 15

[441]

Therefore, tests are organized into two stages:

Unit tests: These verify that all execution paths of each module behave properly.
They are quite complete and usually cover all possible paths. This is feasible
because there are not very many possible execution paths of each method or
module compared to the possible execution paths of the whole application.
Integration tests: These are executed once the software passes all its unit tests.
Integration tests verify all modules interact properly to get the expected results.
Integration tests do not need to be complete since unit tests will have already
verified that all execution paths of each module work properly. They need to
verify all patterns of interaction, that is, all the possible ways the various
modules may cooperate.

Usually, each interaction pattern has more than one test associated with it: a
typical activation of a pattern, and some extreme cases of activation. For instance,
if a whole pattern of interaction receives an array as input, we will write a test for
the typical size of the array, a test with a null array, a test for an empty array,
and a test with a very big array. This way we verify that the way the single
module was designed is compatible with the needs of the whole interaction
pattern.

With the preceding strategy in place, if we modify a single module without changing its
public interface, we need to change the unit tests for that module.

If, instead, the change involves the way some modules interact, then we also have to add
new integration tests or to modify existing ones. However, usually, this is not a big problem
since most of the tests are unit tests, so rewriting a large percentage of all integration tests
does not require too big an effort. Moreover, if the application was designed according to
the Single Responsibility, Open/Closed, Liskov Substitution, Interface Segregation,
Dependency Inversion (SOLID) principles, then the number of integration tests that must
be changed after a single code modification should be small since the modification should
affect just a few classes that interact directly with the modified method or class.

At this point, it should be clear that both unit tests and integration tests must be reused
during the entire lifetime of the software. That is why it is worth automating them.
Automation of unit and integration tests avoids possible errors of manual test execution
and saves time. A whole battery of several thousand automated tests can verify software
integrity after each small modification in a few minutes, thus enabling the frequent changes
needed in the CI/CD cycles of modern software.

Testing Your Code with Unit Test Cases and TDD Chapter 15

[442]

As new bugs are found, new tests are added to discover them so that they
cannot reappear in future versions of the software. This way automated
test always become more reliable and protect the software more form
bugs added by new changes. Thus, the probability of adding new bugs
(that are not immediately discovered) is greatly reduced.

The next section will give us the basics for organizing and designing automated unit and
integration tests, as well as practical details on how to write a test in C# in the C# Test
Projects section.

Writing automated (unit and integration) tests
Tests are not written from scratch; all software development platforms have tools that help
us to both write tests and launch them (or some of them). Once the selected tests have been
executed, all tools show a report and give the possibility to debug the code of all failed
tests.

More specifically, all unit and integration test frameworks are made of three important
parts:

Facilities for defining all tests: They verify if the actual results correspond to
expected results. Usually, a test is organized into test classes, where each test
calls tests either a single application class or a single class method. Each test is
split into three stages:

Test preparation: The general environment needed by the test is1.
prepared. This stage doesn't prepare the single input each method to
test must be called with, but just the global environment, such as
objects to inject in class constructors or simulations of database tables.
Usually, the same preparation procedure is used in several tests, so test
preparations are factored out into dedicated modules.
Test execution: The methods to test are invoked with adequate input2.
and all results of their executions are compared with expected results
with constructs such as Assert.Equal(x, y), Assert.NotNull(x),
and so on.
Tear-down: The whole environment is cleaned up to avoid the3.
execution of a test influencing other tests. This step is the converse of
step 1.

Testing Your Code with Unit Test Cases and TDD Chapter 15

[443]

Mock facilities: While integration tests use all (or almost all) classes involved in
a pattern of objects cooperation, in unit tests the use of other application classes is
forbidden. Thus, if a class under test, say, A, uses a method of another application
class, B, that is injected in its constructor in one of its methods, M, then in order to
test M we must inject a fake implementation of B. It is worth pointing out that
only classes that do some processing are not allowed to use another class during
unit tests, while pure data classes can. Mock frameworks contain facilities to
define fake implementations of interfaces and interface methods that return data
that can be defined in tests. Typically, fake implementations are also able to
report information on all fake method calls. Such fake implementations do not
need the definition of actual class files but are done online in the test code by
calling methods such as new Mock<IMyInterface>().
Execution and reporting tool: This is a visual configuration-based tool that the
developer may use to decide which tests to launch and when to launch them.
Moreover, it also shows the final outcome of the tests as a report containing all
successful tests, all failed tests, each test's execution time, and other information
that depends on the specific tool and on how it was configured. Usually,
execution and reporting tools that are executed in development IDEs such as
Visual Studio also give you the possibility of launching a debug session on each
failed test.

Since mock frameworks can only create fake implementations of interfaces
but not of classes, we should inject interfaces or pure data classes (that
don't need to be mocked) in class constructors and methods; otherwise,
classes cannot be unit tested. Therefore, for each cooperating class that we
want to inject into another class, we must define a corresponding
interface.

Moreover, classes should use instances that are injected in their
constructors or methods, and not class instances available in the public
static fields of other classes; otherwise, the hidden interactions might be
forgotten while writing tests, and this might complicate the preparation
step of tests.

The next section describes other types of test used in software development.

Testing Your Code with Unit Test Cases and TDD Chapter 15

[444]

Writing acceptance and performance tests
Acceptance tests define the contract between the project stakeholders and the development
team. They are used to verify that the software developed actually behaves as agreed with
them. Acceptance tests verify not only functional specifications but also constraints on the
software usability and user interface. Since they also have the purpose of showing how the
software appears and behaves on actual computer monitors and displays, they are never
completely automatic but consist mainly of lists of recipes and verifications that must be
followed by an operator.

Sometimes, automatic tests are developed to verify just the functional specifications, but
such tests usually bypass the user interface and inject the test input directly in the logic that
is immediately behind the user interface. For instance, in the case of an ASP.NET Core
MVC application, the whole website is run in a complete environment that includes all the
needed storage filled with test data; input is not provided to HTML pages but is injected
directly in the ASP.NET Core controllers. Tests that bypass the user interface are called
subcutaneous tests. ASP.NET Core supplies various tools to perform subcutaneous tests
and also tools that automate the interaction with HTML pages.

Subcutaneous tests are usually preferred in the case of automated tests, while full tests are
executed manually for the following reasons:

No automatic test can verify how the user interface appears and how usable it is.
Automating the actual interaction with the user interface is a very time-
consuming task.
User interfaces are changed frequently to improve their usability and to add new
features, and also small changes in a single application screen, may force a
complete rewrite of all tests that operate on that screen.

In a few words, user interface tests are very expansive and have low reusability, so it's
rarely worth automating them. However, ASP.NET Core supplies
the Microsoft.AspNetCore.Mvc.Testing NuGet package to run the whole website in a
testing environment. Using it together with the AngleSharp NuGet package, which parses
HTML pages into DOM trees, you can write automated full tests with an acceptable
programming effort. The automated ASP.NET Core acceptance tests will be described in
detail in Chapter 20, Automation for Software Testing.

Testing Your Code with Unit Test Cases and TDD Chapter 15

[445]

Performance tests apply a fake load to an application to see if it is able to handle the typical
production load, to discover its load limits, and to locate bottlenecks. The application is
deployed in a staging environment that is a copy of the actual production environment in
terms of hardware resources. Then, fake requests are created and applied to the system,
and response times and other metrics are collected. Fake request batches should have the
same composition as the actual production batches. They can be generated from the actual
production request logs if they are available.

If response times are not satisfactory, other metrics are collected to discover possible
bottlenecks (low memory, slow storages, or slow software modules). Once located, a
software component that is responsible for the problem can be analyzed in the debugger to
measure the execution time of the various method calls involved in a typical request.

Failures in the performance tests may lead either to a redefinition of the hardware needed
by the application or to the optimization of some software modules, classes or methods.

Both Azure and Visual Studio offer tools to create fake loads and to report execution
metrics. However, they have been declared obsolete and will be discontinued in quite a
short time (about one year from writing this book), and so we will not describe them. As an
alternative, there are both open source and third-party tools that can be used. Some of them
are listed in the Further reading section.

The next section describes a software development methodology that gives a central role to
tests.

Understanding test-driven development
(TDD)
Test-driven development (TDD) is a software development methodology that gives a
central and central role to unit tests. According to this methodology, unit tests are a
formalization of the specifications of each class, so they must be written before the code of
the class. Actually, a full test that covers all code paths univocally defines the code
behavior, so it can be considered a specification for the code. It is not a formal specification
that defines the code behavior through some formal language, but a specification based on
behavior examples.

Testing Your Code with Unit Test Cases and TDD Chapter 15

[446]

The ideal way to test software would be to write formal specifications of the whole software
behavior and to verify with some completely automatic tools if the software that was
actually produced conforms with them. In the past, some research effort was spent defining
formal languages for describing code specifications, but expressing the behavior the
developer has in mind with similar languages was a very difficult and error-prone task.
Therefore, these attempts were quickly abandoned in favor of approaches based on
examples. At that time, the main purpose was the automatic generation of code. Nowadays,
automatic code generation has been substantially abandoned and survives in small
application areas, such as the creation of device drivers. In these areas, the effort of
formalizing the behavior in a formal language is worth the time saved in trying to test
difficult-to-reproduce behaviors of parallel threads.

Unit tests were initially conceived as a way to encode example-based specifications in a
completely independent way, as a part of a specific agile development methodology called
Extreme Programming. However, nowadays, TDD is used independently of Extreme
Programming and is included as an obligatory prescription in other agile methodologies.

While it is undoubtedly true that unit tests refined after finding hundreds of bugs act as
reliable code specifications, it is not obvious that developers can easily design unit tests that
can be immediately used as reliable specifications for the code to be written. In fact,
generally, you need an infinite or at least an immense number of examples to univocally
define a code's behavior if examples are chosen at random.

The behavior can be defined with an acceptable number of examples only after you have
understood all possible execution paths. In fact, at this point, it is enough to select a typical
example for each execution path. Therefore, writing a unit test for a method after that
method has been completely coded is easy: it simply requires selecting a typical instance for
each execution path of the already existing code. However, writing unit tests this way does
not protect from errors in the design of the execution paths themselves. For instance, it
doesn't prevent the typical error of forgetting to test a variable for the null value before
invoking a member. That is why TDD suggests writing unit tests before the application
code.

We may conclude that, while writing unit tests, the developer must forecast somehow all
execution paths by looking for extreme cases and by possibly adding more examples than
strictly needed. However, the developer can make mistakes while writing the application
code, and he or she can also make mistakes in forecasting all possible execution paths while
designing the unit tests.

Testing Your Code with Unit Test Cases and TDD Chapter 15

[447]

We have found the main drawback of TDD: unit tests themselves may be wrong. That is,
not only application code, but also its associated TDD unit tests may be incoherent with the
behavior the developer has in mind. Therefore, in the beginning, unit tests can't be
considered software specifications, but rather a possible wrong and incomplete description
of the software behavior. Therefore, we have two descriptions of the behavior we have in
mind, the application code itself and its TDD unit tests that were written before the
application code.

What makes TDD work is that the probability of making exactly the same
error while writing the tests and while writing the code is very low.
Therefore, whenever a test fails there is an error either in the tests or in the
application code, and, conversely, if there is an error either in the
application code or in the test, there is a very high probability a test will
fail. That is, the usage of TDD ensures that most of the bugs are
immediately found!

Writing a class method or a chunk of code with TDD is a loop composed of three stages:

Red stage: In this stage, the developer designs new unit tests that must
necessarily fail because at this time there is no code that implements the behavior
they describe.
Green stage: In this stage, the developer writes the minimum code or makes the
minimum modifications to existing code that are necessary to pass all unit tests.
Refactoring stage: Once the test is passed, code is refactored to ensure good code
quality and the application of best practices and patterns. In particular, in this
stage, some code can be factored out in other methods or in other classes. During
this stage, we may also discover the need for other unit tests, because new
execution paths or new extreme cases are discovered or created.

The loop stops as soon as all tests pass without writing new code or modifying the existing
code.

Sometimes, it is very difficult to design the initial unit tests because it is quite difficult to
imagine how the code might work and the execution paths it might take. In this case, you
can get a better understanding of the specific algorithm to use by writing an initial sketch of
the application code. In this initial stage, we need to focus just on the main execution path,
completely ignoring extreme cases and input verifications. Once we get a clear picture of
the main ideas behind an algorithm that should work we can enter the standard three-stage
TDD loop.

In the next section, we will list all test projects available in Visual Studio and describe xUnit
in detail.

Testing Your Code with Unit Test Cases and TDD Chapter 15

[448]

Defining C# test projects
Visual Studio contains project templates for three types of unit testing frameworks, namely,
MSTest, xUnit, and NUnit. Once you start the new project wizard, in order to visualize the
version of all of them that is adequate for .NET Core C# applications, set Project type as
Test, Language as C#, and Platform as Linux, since .NET Core projects are the only ones
that can be deployed on Linux.

The following screenshot shows the selection that should appear:

All the preceding projects automatically include the NuGet package for running all the tests
in the Visual Studio test user interface (Visual Studio test runner). However, they do not
include any facility for mocking interfaces, so you need to add the Moq NuGet package that
contains a popular mocking framework.

All test projects must contain a reference to the project to be tested.

Testing Your Code with Unit Test Cases and TDD Chapter 15

[449]

In the next section, we will describe xUnit, since it is probably the most popular of the three
frameworks. However, all three frameworks are quite similar and differ mainly in the
names of the methods and in the names of the attributes used to decorate various testing
stuff.

Using the xUnit test framework
In xUnit, tests are methods decorated with either with the [Fact] or with the [Theory]
attributes. Tests are automatically discovered by the test runner that lists all of them in the
user interface so the user can run either all of them or just a selection of them.

A new instance of the test class is created before running each test, so the test
preparation code contained in the class constructor is executed before each test of the class. If
you also need tear-down code, the test class must implement the IDisposable interface so
that the tear-down code can be included in the IDisposable.Dispose method.

The test code invokes the methods to be tested and then tests the results with methods of
the Assert static class, such as Assert.NotNull(x), Assert.Equal(x, y),
and Assert.NotEmpty(IEnumerable x). There are also methods that verify if a call
throws an exception of a specific type, for instance:

 Assert.Throws<MyException>(() => {/* test code */ ...}).

When an assertion fails, an exception is thrown. A test fails if a not-intercepted exception is
thrown either by the test code or by an assertion.

The following is an example of a method that defines a single test:

[Fact]
public void Test1()
{
 var myInstanceToTest = new ClassToTest();
 Assert.Equal(5, myInstanceToTest.MethodToTest(1));
}

The [Fact] attribute is used when a method defines just one test, while
the [Theory] attribute is used when the same method defines several tests, each on a
different tuple of data. Tuples of data can be specified in several ways and are injected in
the test as method parameters.

Testing Your Code with Unit Test Cases and TDD Chapter 15

[450]

The previous code can be modified to test MethodToTest on several input as follows:

[Theory]
[InlineData(1, 5)]
[InlineData(3, 10)]
[InlineData(5, 20)]
public void Test1(int testInput, int testOutput)
{
 var myInstanceToTest = new ClassToTest();
 Assert.Equal(testOutput,
 myInstanceToTest.MethodToTest(testInput);
}

Each InlineData attribute specifies a tuple to be injected in the method parameters. Since
just simple constant data can be included as attribute arguments, xUnit gives you also the
possibility to take all data tuples from a class that implements IEnumerable, as shown in
the following example:

public class Test1Data: IEnumerable<object[]>
{
 public IEnumerator<object[]> GetEnumerator()
 {
 yield return new object[] { 1, 5};
 yield return new object[] { 3, 10 };
 yield return new object[] { 5, 20 };
 }

 IEnumerator IEnumerable.GetEnumerator()
 {
 return GetEnumerator();
 }
}
...
...
[Theory]
[ClassData(typeof(Test1Data))]
public void Test1(int testInput, int testOutput)
{
 var myInstanceToTest = new ClassToTest();
 Assert.Equal(testOutput,
 myInstanceToTest.MethodToTest(testInput);
}

The type of the class that provides the test data is specified with the ClassData attribute.

Testing Your Code with Unit Test Cases and TDD Chapter 15

[451]

It is also possible to take data from a static method of a class that returns an IEnumerable
with the MemberData attribute, as shown in the following example:

[Theory]
[MemberData(nameof(MyStaticClass.Data),
 MemberType= typeof(MyStaticClass))]
public void Test1(int testInput, int testOutput)
{
 ...

The MemberData attribute is passed the method name as the first parameter, and the class
type in the MemberType named parameter. If the static method is part of the same test class
the MemberType parameter can be omitted.

The next section shows how to deal with some advanced preparation and tear-down
scenarios.

Advanced test preparation and tear-down
scenarios
Sometimes the preparation code contains very time-consuming operations, such as opening
a connection with a database, that don't need to be repeated before each test but can be
executed once before all the tests contained in the same class. In xUnit, this kind of test
preparation code can't be included in the test class constructor; since a different instance of
the test class is created before every single test, it must be factored out in a separate class
called a fixture class.

If we also need a corresponding tear-down code, the fixture class must implement
IDisposable. In other test frameworks, such as NUnit, the test class instances are created
just once instead, so they don't need the fixture code to be factored out in other classes.
However, test frameworks that, like NUnit, do not create a new instance before each test
may suffer from bugs because of unwanted interactions between test methods.

The following is an example of an xUnit fixture class that opens and closes a database
connection:

public class DatabaseFixture : IDisposable
{
 public DatabaseFixture()
 {
 Db = new SqlConnection("MyConnectionString");
 }

Testing Your Code with Unit Test Cases and TDD Chapter 15

[452]

 public void Dispose()
 {
 Db.Close()
 }
 public SqlConnection Db { get; private set; }
}

Since a fixture class instance is created just once before all tests associated with the fixture
are executed and the same instance is disposed of immediately after the tests, then the
database connection is created just once when the fixture class is created and is disposed of
immediately after the tests when the fixture object is disposed of.

The fixture class is associated with each test class by letting the test class implement the
empty IClassFixture<T> interface, as follows:

public class MyTestsClass : IClassFixture<DatabaseFixture>
{
 DatabaseFixture fixture;

 public MyDatabaseTests(DatabaseFixture fixture)
 {
 this.fixture = fixture;
 }
 ...
 ...
}

A fixture class instance is automatically injected in the test class constructor in order to
make all data computed in the fixture test preparation available for the tests. This way, for
instance, in our previous example we can get the database connection instance so that all
test methods of the class can use it.

If we want to execute some test preparation code on all tests contained in a collection of test
classes instead of a single test class, we must associate the fixture class to an empty class
that represents the collection of test classes, as follows:

[CollectionDefinition("My Database collection")]
public class DatabaseCollection : ICollectionFixture<DatabaseFixture>
{
 // this class is empty, since it is just a placeholder
}

The CollectionDefinition attribute declares the name of the collection, and
the IClassFixture<T> interface has been replaced with ICollectionFixture<T>.

Testing Your Code with Unit Test Cases and TDD Chapter 15

[453]

Then we declare that a test class belongs to the previously defined collection by applying it
to the Collection attribute with the name of the collection, as follows:

[Collection("My Database collection")]
public class MyTestsClass
{
 DatabaseFixture fixture;

 public MyDatabaseTests(DatabaseFixture fixture)
 {
 this.fixture = fixture;
 }
 ...
 ...
}

The Collection attribute declares which collection to use, while the DataBaseFixture
argument in the test class constructor provides an actual fixture class instance, so it can be
used in all class tests.

The next section shows how to mock interfaces with the Moq framework.

Mocking interfaces with Moq
Mocking capabilities are not included in any of the test frameworks we listed in this
section as they are not included in xUnit. Therefore, they must be provided by installing a
specific NuGet package. The Moq framework available in the Moq NuGet package is the
most popular mock framework available for .NET and .NET Core. It is quite easy to use
and will be briefly described in this section.

Once we've installed the NuGet package, we need to add a using Moq statement in our
test files. A mock implementation is easily defined, as follows:

 var myMockDependency = new Mock<IMyInterface>();

The behavior of the mock dependency on specific input of the specific method can be
defined with the Setup/Return method pair as follows:

myMockDependency.Setup(x=>x.MyMethod(5)).Returns(10);

After Return, we may place another Setup/Return pair that defines either the behavior of
different input of the same method or the behavior of a different method. This way we can
specify an indefinite number of input/output behaviors.

Testing Your Code with Unit Test Cases and TDD Chapter 15

[454]

Instead of specific input values, we may also use wildcards that match a specific type as
follows:

myMockDependency.Setup(x => x.MyMethod(It.IsAny<int>))
 .Returns(10);

Once configured the mock dependency we may extract the mocked instance from its
Object property and use it as if it were an actual implementation, as follows:

var myMockedInstance=myMockDependency.Object;
...
myMockedInstance.MyMethod(10);

However, mocked methods are usually called by the code under test, so we just need to
extract the mocked instance and use it as an input in our tests.

We may also mock properties and async methods as follows:

myMockDependency.Setup(x => x.MyProperty)
 .Returns(42);
...
myMockDependency.Setup(p => p.MyMethodAsync(1))
 .ReturnsAsync("aasas");
var res=await myMockDependency.Object
 .MyMethodAsync(1);

With async methods, Returns must be replaced by ReturnsAsync.

Each mocked instance records all calls to its methods and properties, so we may use this
information in our tests. The following code shows an example:

myMockDependency.Verify(x => x.MyMethod(1), Times.AtLeast(2))

The preceding statement asserts MyMethod that has been invoked with the given arguments
at least twice. There are also Times.Never, a Times.Once (that asserts the method was
called just once), and more.

The Moq documentation summarized up to now should cover 99% of the needs that may
arise in your tests, but Moq also offers more complex options. The Further reading section
contains the link to the complete documentation.

The next section shows how to define in practice unit tests and how to run them both in
Visual Studio and in Azure DevOps with the help of the book use case.

Testing Your Code with Unit Test Cases and TDD Chapter 15

[455]

Use case – automating unit tests in DevOps
Azure
In this section, we add some unit test projects to the example application we built in
Chapter 13, Presenting ASP.NET Core MVC. If you don't have it, you can download it from
the Chapter 13, Presenting ASP.NET Core MVC, section of the GitHub repository associated
with the book. The Chapter 4, Deciding The Best Cloud-Based Solution, section of the GitHub
repository contains the code we will add in this section and all the instructions to add it.

As a first step, let's make a new copy of the solution folder and name it
PackagesManagementWithTests. Then open the solution and add it to xUnit .NET Core
C# test project named PackagesManagementTest. Finally, add a reference to the ASP.NET
Core project (PackagesManagement), since we will test it, and a reference to the last
version of the Moq NuGet package, since we need mocking capabilities. At this point, we
are ready to write our tests.

As an example, we will write unit tests for the Edit method decorated with [HttpPost] of
the ManagePackagesController controller, which is shown as follows:

[HttpPost]
public async Task<IActionResult> Edit(
 PackageFullEditViewModel vm,
 [FromServices] ICommandHandler<UpdatePackageCommand> command)
{
 if (ModelState.IsValid)
 {
 await command.HandleAsync(new UpdatePackageCommand(vm));
 return RedirectToAction(
 nameof(ManagePackagesController.Index));
 }
 else
 return View(vm);
}

Before writing our test methods, let's rename the test class that was automatically included
in the test project as ManagePackagesControllerTests.

Testing Your Code with Unit Test Cases and TDD Chapter 15

[456]

The first test verifies that in case there are errors in ModelState the action method renders
a view with the same model it received as an argument so that the user can correct all
errors. Let's delete the existing test method and write an empty
DeletePostValidationFailedTest method, as follows:

[Fact]
public async Task DeletePostValidationFailedTest()
{
}

The method must be async since the Edit method that we have to test is async. In this
test, we don't need mocked objects since no injected object will be used. Thus, as a
preparation for the test we just need to create a controller instance, and we must add an
error to ModelState as follows:

var controller = new ManagePackagesController();
controller.ModelState
 .AddModelError("Name", "fake error");

Then we invoke the method, injecting ViewModel and a null command handler as its
arguments since the command handler will not be used:

var vm = new PackageFullEditViewModel();
var result = await controller.Edit(vm, null);

In the verification stage, we verify that the result is ViewResult and that it contains the
same model that was injected in the controller:

Assert.IsType<ViewResult>(result);
Assert.Equal(vm, (result as ViewResult).Model);

Now we also need a test to verify that in case there are no errors the command handler is
called, and then the browser is redirected to the Index controller action method. We call
the DeletePostSuccessTest method:

[Fact]
public async Task DeletePostSuccessTest()
{
}

Testing Your Code with Unit Test Cases and TDD Chapter 15

[457]

This time the preparation code must include the preparation of a command handler mock,
as follows:

var controller = new ManagePackagesController();
var commandDependency =
 new Mock<ICommandHandler<UpdatePackageCommand>>();
commandDependency
 .Setup(m => m.HandleAsync(It.IsAny<UpdatePackageCommand>()))
 .Returns(Task.CompletedTask);
var vm = new PackageFullEditViewModel();

Since the handler HandleAsync method returns no async value, we can't use
ReturnsAsync, but we have to return just a completed Task (Task.Complete) with the
Returns method. The method to test is called with both ViewModel and the mocked
handler:

var result = await controller.Edit(vm,
 commandDependency.Object);

In this case, the verification code is as follows:

commandDependency.Verify(m => m.HandleAsync(
 It.IsAny<UpdatePackageCommand>()),
 Times.Once);
Assert.IsType<RedirectToActionResult>(result);
var redirectResult = result as RedirectToActionResult;
Assert.Equal(nameof(ManagePackagesController.Index),
 redirectResult.ActionName);
Assert.Null(redirectResult.ControllerName);

As the first step, we verify that the command handler has actually been invoked once. A
better verification should also include a check that it was invoked with a command that
includes ViewModel passed to the action method. This can be done by extracting this
information from commandDependency.Invocations. We will take it up as an exercise.

Then we verify that the action method returns RedirectToActionResult with the right
action method name and with no controller name specified.

Once all tests are ready, if the test windows don't appear on the left bar of Visual Studio, we
may simply select the Run all tests item from Visual Studio Test menu. Once the test
window appears, further invocations can be launched from within this window.

If a test fails, we can add a breakpoint to its code, so we can launch a debug session on it by
right-clicking on it in the test window and then by selecting Debug selected tests.

Testing Your Code with Unit Test Cases and TDD Chapter 15

[458]

The following steps show how to connect our solution with an Azure DevOps repository,
and we will define an Azure DevOps pipeline that builds the project and launches its tests.
In this way, every day after that all developers have pushed their changes we can launch
the pipeline to verify that the repository code compiles and passes all the tests:

As a first step, we need a free DevOps subscription. If you don't already have1.
one, please create one by clicking the Start Free button on this page: https:/ ​/
azure.​microsoft. ​com/ ​en- ​us/ ​services/ ​devops/ ​. Here, let's define an
organization but stop before creating a project, since we will create the project
from within Visual Studio.
Ensure you are logged into Visual Studio with your Azure account (the same2.
used in the creation of the DevOps account). At this point, you may create a
DevOps repository for your solution by right-clicking on the solution and by
selecting Configure continuous delivery to Azure.... In the window that
appears, an error message will inform you that you have no repository
configured for your code:

Click the Add to source control now link. After that, the DevOps screen will3.
appear in the Visual Studio Team Explorer tab:

https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/

Testing Your Code with Unit Test Cases and TDD Chapter 15

[459]

Once you click the Publish Git Repo button, you will be prompted to select your4.
DevOps organization and a name for the repository. After you successfully
publish your code to a DevOps repository, the DevOps screen should change as
follows:

The DevOps screen shows a link to your online DevOps project. In future when
you open your solution, if the link does not appear, please click the DevOps
screen Connect button or the Manage connections link (whichever appears) to
select and connect your project.

Click this link to go to the online project. Once there, if you click the Repos item,5.
on the left-hand menu, you will see the repository you just published.
Now, click the Pipelines menu item to create a DevOps pipeline to build and test6.
your project. In the window that appears, click the button to create a new
pipeline:

Testing Your Code with Unit Test Cases and TDD Chapter 15

[460]

You will be prompted to select where your repository is:7.

Select Azure Repos Git and then your repository. Then you will be prompted8.
about the kind of project:

Select ASP.NET Core. A pipeline for building and testing your project will be9.
automatically created for you. Save it by committing the newly created .yaml file
to your repository:

Testing Your Code with Unit Test Cases and TDD Chapter 15

[461]

The pipeline can be run by selecting the Queue button, but since the standard10.
pipeline scaffolded by DevOps has a trigger on the master branch of the
repository, it is automatically launched each time changes to this branch are
committed and each time the pipeline is modified. The pipeline can be modified
by clicking the Edit button:

Testing Your Code with Unit Test Cases and TDD Chapter 15

[462]

Once in edit mode, all pipeline steps can be edited by clicking the Settings link11.
that appears above each of them. New pipeline steps can be added as follows:

Write task: where the new step must be added and then accept one1.
of the suggestions that appear while you are typing the task name.
After you have written a valid task name a Settings link appears above2.
the new step, click it.
Insert the desired task parameters in the window that appears and3.
save.

In order to have our test working, we need to specify the criteria to locate all12.
assemblies that contain tests. In our case, since we have a unique .dll file
containing the tests, it is enough to specify its name. Click the Settings link of the
VSTest@2 test task, and replace the content that is automatically suggested for
the Test files field with the following:

**\PackagesManagementTest.dll
!***TestAdapter.dll
!**\obj**

Then click Add to modify the actual pipeline content. As soon as you confirm13.
your changes in the Save and run dialog, the pipeline is launched, and if there
are no errors, test results are computed. The results of tests launched during a
specific build can be analyzed by selecting the specific build in the pipeline
History tab and by clicking the Tests tab on the page that appears. In our case,
we should see something like the following screenshot:

Testing Your Code with Unit Test Cases and TDD Chapter 15

[463]

If you click the Analytics tab of the pipeline page, you will see analytics about all14.
builds, including analytics about the test results:

Clicking the test area of the Analytics page gets us a detailed report about all15.
pipeline test results.

Summary
In this chapter, we explained why it is worth automating software tests, and then we
focused on the importance of unit tests. We also listed all types of tests and their main
features, focusing mainly on unit tests. We analyzed the advantages of TDD, and how to
use it in practice. With this knowledge, you should be able to produce software that is both
reliable and easy to modify.

Finally, we analyzed all test tools available for .NET Core projects, focusing on the
description of xUnit and Moq and showed how to use them in practice both in Visual
Studio and in Azure DevOps with the help of the book use case.

The next chapter looks at how to test and measure the quality of the code.

Testing Your Code with Unit Test Cases and TDD Chapter 15

[464]

Questions
Why is it worth automating unit tests?1.
What is the main reason TDD is able immediately to discover most bugs?2.
What is the difference between the [Theory] and [Fact] attributes of xUnit?3.
Which xUnit static class is used in test assertions?4.
Which methods allow the definition of the Moq mocked dependencies?5.
Is it possible to mock async methods with Moq? If yes, how?6.

Further reading
While the documentation on xUnit included in the chapter is quite complete, it doesn't
include the few configuration options offered by xUnit. The full xUnit documentation is
available at https:/ ​/ ​xunit. ​net/ ​. Documentation for MSTest and NUnit can be found
at https:/​/​github. ​com/ ​microsoft/ ​testfx and at https:/ ​/ ​github. ​com/ ​nunit/ ​docs/ ​wiki/
NUnit-​Documentation respectively.

Moq full documentation is at https:/ ​/ ​github. ​com/ ​moq/ ​moq4/ ​wiki/ ​Quickstart.

Here are some links to performance test frameworks for web applications:

https:/​/ ​jmeter. ​apache. ​org/ ​ (free and open source)
https:/​/ ​www. ​neotys. ​com/ ​neoload/ ​overview

https:/​/ ​www. ​microfocus. ​com/ ​en-​us/ ​products/ ​loadrunner- ​load- ​testing/
overview

https:/​/ ​www. ​microfocus. ​com/ ​en-​us/ ​products/ ​silk- ​performer/ ​overview

https://xunit.net/
https://xunit.net/
https://xunit.net/
https://xunit.net/
https://xunit.net/
https://xunit.net/
https://xunit.net/
https://xunit.net/
https://github.com/microsoft/testfx
https://github.com/microsoft/testfx
https://github.com/microsoft/testfx
https://github.com/microsoft/testfx
https://github.com/microsoft/testfx
https://github.com/microsoft/testfx
https://github.com/microsoft/testfx
https://github.com/microsoft/testfx
https://github.com/microsoft/testfx
https://github.com/microsoft/testfx
https://github.com/microsoft/testfx
https://github.com/nunit/docs/wiki/NUnit-Documentation
https://github.com/nunit/docs/wiki/NUnit-Documentation
https://github.com/nunit/docs/wiki/NUnit-Documentation
https://github.com/nunit/docs/wiki/NUnit-Documentation
https://github.com/nunit/docs/wiki/NUnit-Documentation
https://github.com/nunit/docs/wiki/NUnit-Documentation
https://github.com/nunit/docs/wiki/NUnit-Documentation
https://github.com/nunit/docs/wiki/NUnit-Documentation
https://github.com/nunit/docs/wiki/NUnit-Documentation
https://github.com/nunit/docs/wiki/NUnit-Documentation
https://github.com/nunit/docs/wiki/NUnit-Documentation
https://github.com/nunit/docs/wiki/NUnit-Documentation
https://github.com/nunit/docs/wiki/NUnit-Documentation
https://github.com/nunit/docs/wiki/NUnit-Documentation
https://github.com/nunit/docs/wiki/NUnit-Documentation
https://github.com/nunit/docs/wiki/NUnit-Documentation
https://github.com/moq/moq4/wiki/Quickstart
https://github.com/moq/moq4/wiki/Quickstart
https://github.com/moq/moq4/wiki/Quickstart
https://github.com/moq/moq4/wiki/Quickstart
https://github.com/moq/moq4/wiki/Quickstart
https://github.com/moq/moq4/wiki/Quickstart
https://github.com/moq/moq4/wiki/Quickstart
https://github.com/moq/moq4/wiki/Quickstart
https://github.com/moq/moq4/wiki/Quickstart
https://github.com/moq/moq4/wiki/Quickstart
https://github.com/moq/moq4/wiki/Quickstart
https://github.com/moq/moq4/wiki/Quickstart
https://github.com/moq/moq4/wiki/Quickstart
https://github.com/moq/moq4/wiki/Quickstart
https://github.com/moq/moq4/wiki/Quickstart
https://jmeter.apache.org/
https://jmeter.apache.org/
https://jmeter.apache.org/
https://jmeter.apache.org/
https://jmeter.apache.org/
https://jmeter.apache.org/
https://jmeter.apache.org/
https://jmeter.apache.org/
https://jmeter.apache.org/
https://jmeter.apache.org/
https://www.neotys.com/neoload/overview
https://www.neotys.com/neoload/overview
https://www.neotys.com/neoload/overview
https://www.neotys.com/neoload/overview
https://www.neotys.com/neoload/overview
https://www.neotys.com/neoload/overview
https://www.neotys.com/neoload/overview
https://www.neotys.com/neoload/overview
https://www.neotys.com/neoload/overview
https://www.neotys.com/neoload/overview
https://www.neotys.com/neoload/overview
https://www.neotys.com/neoload/overview
https://www.neotys.com/neoload/overview
https://www.microfocus.com/en-us/products/loadrunner-load-testing/overview
https://www.microfocus.com/en-us/products/loadrunner-load-testing/overview
https://www.microfocus.com/en-us/products/loadrunner-load-testing/overview
https://www.microfocus.com/en-us/products/loadrunner-load-testing/overview
https://www.microfocus.com/en-us/products/loadrunner-load-testing/overview
https://www.microfocus.com/en-us/products/loadrunner-load-testing/overview
https://www.microfocus.com/en-us/products/loadrunner-load-testing/overview
https://www.microfocus.com/en-us/products/loadrunner-load-testing/overview
https://www.microfocus.com/en-us/products/loadrunner-load-testing/overview
https://www.microfocus.com/en-us/products/loadrunner-load-testing/overview
https://www.microfocus.com/en-us/products/loadrunner-load-testing/overview
https://www.microfocus.com/en-us/products/loadrunner-load-testing/overview
https://www.microfocus.com/en-us/products/loadrunner-load-testing/overview
https://www.microfocus.com/en-us/products/loadrunner-load-testing/overview
https://www.microfocus.com/en-us/products/loadrunner-load-testing/overview
https://www.microfocus.com/en-us/products/loadrunner-load-testing/overview
https://www.microfocus.com/en-us/products/loadrunner-load-testing/overview
https://www.microfocus.com/en-us/products/loadrunner-load-testing/overview
https://www.microfocus.com/en-us/products/loadrunner-load-testing/overview
https://www.microfocus.com/en-us/products/loadrunner-load-testing/overview
https://www.microfocus.com/en-us/products/loadrunner-load-testing/overview
https://www.microfocus.com/en-us/products/loadrunner-load-testing/overview
https://www.microfocus.com/en-us/products/silk-performer/overview
https://www.microfocus.com/en-us/products/silk-performer/overview
https://www.microfocus.com/en-us/products/silk-performer/overview
https://www.microfocus.com/en-us/products/silk-performer/overview
https://www.microfocus.com/en-us/products/silk-performer/overview
https://www.microfocus.com/en-us/products/silk-performer/overview
https://www.microfocus.com/en-us/products/silk-performer/overview
https://www.microfocus.com/en-us/products/silk-performer/overview
https://www.microfocus.com/en-us/products/silk-performer/overview
https://www.microfocus.com/en-us/products/silk-performer/overview
https://www.microfocus.com/en-us/products/silk-performer/overview
https://www.microfocus.com/en-us/products/silk-performer/overview
https://www.microfocus.com/en-us/products/silk-performer/overview
https://www.microfocus.com/en-us/products/silk-performer/overview
https://www.microfocus.com/en-us/products/silk-performer/overview
https://www.microfocus.com/en-us/products/silk-performer/overview
https://www.microfocus.com/en-us/products/silk-performer/overview
https://www.microfocus.com/en-us/products/silk-performer/overview
https://www.microfocus.com/en-us/products/silk-performer/overview
https://www.microfocus.com/en-us/products/silk-performer/overview
https://www.microfocus.com/en-us/products/silk-performer/overview

16
Using Tools to Write Better

Code
As we saw in Chapter 14, Best Practices in Coding C# 8, coding can be considered an art, but
writing understandable code is surely more like philosophy. In the aforementioned chapter,
we discussed practices that you, as a software architect, need for your developers. In this
chapter, we will describe the techniques and tools for code analysis, so you have well-
written code for your project.

The following topics will be covered in this chapter:

Identifying well-written code
Understanding the tools that can be used in the process to make things easier
A book use case—implementing code inspection before publishing the
application

By the end of the chapter, you will be able to define which tools you are going to
incorporate into your software development life cycle to enable code analysis.

Using Tools to Write Better Code Chapter 16

[466]

Technical requirements
This chapter requires Visual Studio 2017 or the 2019 free Community Edition or better. You
will find the sample code for this chapter at https:/ ​/​github. ​com/ ​PacktPublishing/ ​Hands-
On-​Software-​Architecture- ​with- ​CSharp- ​8/​tree/ ​master/ ​ch16.

Identifying a well-written code
It is not easy to define whether a code is well-written or not. The best practices described in
Chapter 14, Best Practices in Coding C# 8, can certainly guide you as a software architect to
define a standard for your team. But even with a standard, mistakes will happen and you
will probably find them only after the code is in production. The decision to refactor code
in production just because it does not follow all the standards you define is not an easy one
to take, especially if this code is working properly. Some people conclude that a well-
written code is one that works well in production. However, this surely can cause damage
to the software's life, since developers can be inspired by that not-standard code.

For this reason, you—as a software architect—need to find ways to anticipate the lack of
application of the coding standard you defined. Luckily, nowadays, we have many options
for tools that can help us with this task. They are considered the automation of static code
analysis; this technique is seen as a great opportunity to improve the software developed
and to help the developers.

The reason your developers will evolve with code analysis is that you start to disseminate
knowledge between them during code inspections. The tools that we have now have the
same purpose. Better than that, with Roslyn they do this task while you are writing the
code. Roslyn is the compiler platform for .NET, and it enables you to develop some tools
for analyzing code. These analyzers can check style, quality, design, and other issues.

https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch16
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch16
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch16
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch16
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch16
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch16
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch16
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch16
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch16
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch16
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch16
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch16
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch16
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch16
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch16
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch16
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch16
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch16
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch16
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch16
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch16
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch16
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch16
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch16
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch16
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch16
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch16
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch16

Using Tools to Write Better Code Chapter 16

[467]

For instance, look at the following code. It does not make any sense, but you can see that
there are some mistakes:

using System;
namespace SampleCodeChapter16
{
 class Program
 {
 static void Main(string[] args)
 {
 try
 {
 int variableUnused = 10;
 int variable = 10;
 if (variable == 10)
 {
 Console.WriteLine("variable equals 10");
 }
 else
 {
 switch (variable)
 {
 case 0:
 Console.WriteLine("variable equals 0");
 break;
 }
 }
 }
 catch
 {
 }
 }
 }
}

The idea of this code is to show you the power of some tools to improve the code you are
delivering. Let's check each of them in the next topic, including how to set up them.

Using Tools to Write Better Code Chapter 16

[468]

Understanding and applying tools that can
evaluate C# code
The evolution of code analysis in Visual Studio is continuous. This means that Visual
Studio 2019 certainly has more tools for this purpose than Visual Studio 2017, and so on.

One of the issues that you (as a software architect) need to deal with is the coding style of the
team. This certainly results in a better understanding of the code. For instance, if you go to
Visual Studio Menu | Tools | Options, you will find ways to set up how to deal with different
code style patterns, and it even indicates a bad coding style as an error in the Code
Style option, as follows:

For instance, the preceding screenshot suggests that Avoid unused parameters were
considered an error. After this change, the result of the compilation of the same code
presented at the beginning of the chapter was different, as you can see in the following
screenshot:

Using Tools to Write Better Code Chapter 16

[469]

You can export your coding style configuration and attach it to your
project so it will follow the rules you have defined.

Another good tool that Visual Studio 2019 provides is Analyze and Code Cleanup. In this
tool, you are able to set up some code standards that can be cleaned from your code using
the tool. For instance, in the following screenshot, it was set to remove unnecessary code:

Using Tools to Write Better Code Chapter 16

[470]

The way you run the code cleanup is by selecting it in the Solution Explorer area, as you
can see in the following screenshot. This process will run in all the code files you have:

After solving the errors indicated by the Code Style and Code Cleanup tools, the sample
code we are working on has some minimal simplifications, as follows:

using System;
namespace SampleCodeChapter16
{
 class Program
 {
 static void Main()
 {
 try
 {
 int variable = 10;
 if (variable == 10)
 {
 Console.WriteLine("variable equals 10");
 }
 else
 {
 switch (variable)
 {
 case 0:
 Console.WriteLine("variable equals 0");
 break;
 }
 }
 }
 catch
 {
 }
 }

Using Tools to Write Better Code Chapter 16

[471]

 }
}

It is worth mentioning that the preceding code has many improvements that need to be.
Beyond that, Visual Studio enables additional tools for the IDE by installing extensions to it.
These tools can help you to improve your code quality since some of them were built to do
code analysis. This section will list some free options so that you can decide the one that
best fits your needs. There are certainly other options and even paid ones. The idea here is
not to indicate a specific tool but to give you an idea of their abilities.

To install these extensions, you will need to find the menu on Visual Studio. Here, you have
a screenshot of the Extension Manager:

Using Tools to Write Better Code Chapter 16

[472]

There are many other cool extensions that can improve the productivity
and quality of your code and solution. Do a search for them in this
manager.

After you select the extension that will be installed, you will need to restart Visual Studio.
Most of them are easy to identify after installation since they modify the behavior of the
IDE.

Applying extension tools to analyze code
Although the sample code delivered after the Code Style and Code Cleanup tools is better
than the one we presented at the beginning of the chapter, it is clearly far from the best
practices discussed in Chapter 14, Best Practices in Coding C# 8. In the next sections, you
will be able to check the behavior of three extensions that can help you evolve this code:
Microsoft Code Analysis 2019, SonarLint for Visual Studio 2019, and Code Cracker for
Visual Studio 2017.

Using Microsoft Code Analysis 2019
This extension is provided by Microsoft DevLabs and is an upgrade for the FxCop rules
that we used to automate in the past. Basically, it has more than 100 rules for detecting
problems in the code as you type it.

Using Tools to Write Better Code Chapter 16

[473]

For instance, just by enabling the extension and rebuilding the small sample we are using in
this chapter, Code Analysis found a new issue to solve, as you can see in the following
screenshot:

It is worth mentioning that we discussed the usage of empty try-catch statements as an
anti-pattern in Chapter 14, Best Practices in Coding C# 8. So, it would be really good for the
health of the code if this kind of problem could be exposed like this.

Using Tools to Write Better Code Chapter 16

[474]

Applying SonarLint for Visual Studio 2019
SonarLint is an open source initiative from the Sonar Source community to detect bugs and
quality issues while you code. There is support for C#, VB .NET, C, C++, and JavaScript.
The great thing about this extension is that it comes with explanations to resolve detected
issues, and that is why we say developers learn how to code well while using these tools.
Check out the following screenshot with the analysis made in the sample code:

We can check that this extension was able to point other mistakes and, as they promise,
there is an explanation for each warning. This is really useful not only for detecting
problems but for training developers in good coding practices.

Using Tools to Write Better Code Chapter 16

[475]

Getting Code Cracker for Visual Studio 2017 as a helper
to write better code
Code Cracker is another tool with the same idea of analyzing code using Roslyn. It is an
initiative of some Microsoft MVPs and it is open source, too. According to Visual Studio
Marketplace, more people are using this tool than any other:

It is worth mentioning that there are new rules detected in this tool that were not found in
the other tools. The reason why there are differences between the code analysis from one
extension to others is that probably the rules programmed were not the same.

Checking the final code after analysis
After the analysis of the three extensions, we have finally solved all the issues presented.
We can check the final code, as follows:

using System;
namespace SampleCodeChapter16
{
 static class Program
 {
 static void Main()

Using Tools to Write Better Code Chapter 16

[476]

 {
 try
 {
 int variable = 10;
 if (variable == 10)
 {
 Console.WriteLine("variable equals 10");
 }
 else
 {
 switch (variable)
 {
 case 0:
 Console.WriteLine("variable equals 0");
 break;
 default:
 Console.WriteLine("Unknown behavior");
 break;
 }
 }
 }
 catch (Exception err)
 {
 Console.WriteLine(err);
 }
 }
 }
}

As you can see, the preceding code is not only easier to understand, it is safer and is
enabled to consider different paths of programming since the default for the switch-case
was programmed. This pattern was discussed in Chapter 14, Best Practices in Coding C# 8,
too, which concludes that best practices can be easily followed using one (or all) of the
extensions mentioned in this chapter.

Using Tools to Write Better Code Chapter 16

[477]

Use case – evaluating the C# code before
publishing the application
In Chapter 3, Documenting Requirements with Azure DevOps, we created the WWTravelClub
repository in the platform. As we saw there, Azure DevOps enables continuous integration,
and this can be really useful. In this section, we will discuss more reasons why the DevOps
concept and the Azure DevOps platform are so useful.

For now, the only thing we would like to introduce is the possibility of analyzing code after
it is committed by the developers but has not yet been published. Nowadays, in a SaaS
world for application life cycle tools, this is only possible thanks to some of the SaaS code
analysis platforms that we have. The use case will use Sonar Cloud.

Sonar Cloud is free for open source code and can analyze code stored in GitHub, Bitbucket,
and Azure DevOps. The registration needs a user for these platforms. As soon as you log
in, you can follow the steps described in the following article to create the connection
between your Azure DevOps and Sonar Cloud: https:/ ​/​sonarcloud. ​io/​documentation/
analysis/​scan/​sonarscanner- ​for- ​azure- ​devops/ ​.

By setting up the connection between your project in Azure DevOps and Sonar Cloud, you
will have a build pipeline like the one that follows:

https://sonarcloud.io/documentation/analysis/scan/sonarscanner-for-azure-devops/
https://sonarcloud.io/documentation/analysis/scan/sonarscanner-for-azure-devops/
https://sonarcloud.io/documentation/analysis/scan/sonarscanner-for-azure-devops/
https://sonarcloud.io/documentation/analysis/scan/sonarscanner-for-azure-devops/
https://sonarcloud.io/documentation/analysis/scan/sonarscanner-for-azure-devops/
https://sonarcloud.io/documentation/analysis/scan/sonarscanner-for-azure-devops/
https://sonarcloud.io/documentation/analysis/scan/sonarscanner-for-azure-devops/
https://sonarcloud.io/documentation/analysis/scan/sonarscanner-for-azure-devops/
https://sonarcloud.io/documentation/analysis/scan/sonarscanner-for-azure-devops/
https://sonarcloud.io/documentation/analysis/scan/sonarscanner-for-azure-devops/
https://sonarcloud.io/documentation/analysis/scan/sonarscanner-for-azure-devops/
https://sonarcloud.io/documentation/analysis/scan/sonarscanner-for-azure-devops/
https://sonarcloud.io/documentation/analysis/scan/sonarscanner-for-azure-devops/
https://sonarcloud.io/documentation/analysis/scan/sonarscanner-for-azure-devops/
https://sonarcloud.io/documentation/analysis/scan/sonarscanner-for-azure-devops/
https://sonarcloud.io/documentation/analysis/scan/sonarscanner-for-azure-devops/
https://sonarcloud.io/documentation/analysis/scan/sonarscanner-for-azure-devops/
https://sonarcloud.io/documentation/analysis/scan/sonarscanner-for-azure-devops/
https://sonarcloud.io/documentation/analysis/scan/sonarscanner-for-azure-devops/
https://sonarcloud.io/documentation/analysis/scan/sonarscanner-for-azure-devops/
https://sonarcloud.io/documentation/analysis/scan/sonarscanner-for-azure-devops/

Using Tools to Write Better Code Chapter 16

[478]

It is worth mentioning that C# projects do not have a GUID number, and this is required by
Sonar Cloud. You can easily generate one using this link (https:/ ​/​www. ​guidgenerator.
com/​), and it will need to be placed as in the following screenshot:

As soon as you finish the build, the result of code analysis will be presented in Sonar
Cloud, as you can see in the next screenshot. If you want to navigate down to this project,
you can visit: https:/ ​/​sonarcloud. ​io/ ​dashboard? ​id=​WWWTravelClub:

https://www.guidgenerator.com/
https://www.guidgenerator.com/
https://www.guidgenerator.com/
https://www.guidgenerator.com/
https://www.guidgenerator.com/
https://www.guidgenerator.com/
https://www.guidgenerator.com/
https://www.guidgenerator.com/
https://www.guidgenerator.com/
https://sonarcloud.io/dashboard?id=WWWTravelClub
https://sonarcloud.io/dashboard?id=WWWTravelClub
https://sonarcloud.io/dashboard?id=WWWTravelClub
https://sonarcloud.io/dashboard?id=WWWTravelClub
https://sonarcloud.io/dashboard?id=WWWTravelClub
https://sonarcloud.io/dashboard?id=WWWTravelClub
https://sonarcloud.io/dashboard?id=WWWTravelClub
https://sonarcloud.io/dashboard?id=WWWTravelClub
https://sonarcloud.io/dashboard?id=WWWTravelClub
https://sonarcloud.io/dashboard?id=WWWTravelClub
https://sonarcloud.io/dashboard?id=WWWTravelClub
https://sonarcloud.io/dashboard?id=WWWTravelClub
https://sonarcloud.io/dashboard?id=WWWTravelClub

Using Tools to Write Better Code Chapter 16

[479]

Also, by this time, the code analyzed is not in the release yet. So this can be really useful for
getting the next step of quality before releasing your system. You can use this approach as a
reference for automating code analysis during committal.

Summary
This chapter presented tools that can be used to apply the best practices of coding described
in Chapter 14, Best Practices in Coding C# 8. We looked at the Roslyn compiler, which
enables code analysis at the same time the developer is coding, and we looked at the use
case—evaluating the C# code before publishing the application, which implements code
analysis during the Azure DevOps building process using Sonar Cloud.

As soon as you apply to your projects everything you have learned in this chapter, the code
analysis will give you the opportunity to improve the quality of the code you are delivering
to your customer. This is a very important role of a software architect.

In the next chapter, we will be deploying your application with Azure DevOps.

Questions
How can software be described as well-written code?1.
What is Roslyn?2.
What is code analysis?3.
What is the importance of code analysis?4.
How does Roslyn help in code analysis?5.
What are Visual Studio extensions?6.
What are the extension tools presented for code analysis?7.

Using Tools to Write Better Code Chapter 16

[480]

Further reading
These are some websites where you will find more information on the topics in this
chapter:

https:/​/ ​marketplace. ​visualstudio. ​com/ ​items? ​itemName=
VisualStudioPlatformTeam. ​MicrosoftCodeAnalysis2019

https:/​/ ​marketplace. ​visualstudio. ​com/ ​items? ​itemName= ​SonarSource.
SonarLintforVisualStudio2019

https:/​/ ​marketplace. ​visualstudio. ​com/ ​items? ​itemName= ​GiovanniBassi- ​MVP.
CodeCrackerforC

https:/​/ ​github. ​com/ ​dotnet/ ​roslyn- ​analyzers

https:/​/ ​docs. ​microsoft. ​com/ ​en-​us/ ​visualstudio/ ​ide/ ​code- ​styles- ​and-
code-​cleanup

https:/​/ ​sonarcloud. ​io/ ​documentation/ ​analysis/ ​scan/ ​sonarscanner- ​for-
azure-​devops/ ​

https:/​/ ​www. ​guidgenerator. ​com/​

https://marketplace.visualstudio.com/items?itemName=VisualStudioPlatformTeam.MicrosoftCodeAnalysis2019
https://marketplace.visualstudio.com/items?itemName=VisualStudioPlatformTeam.MicrosoftCodeAnalysis2019
https://marketplace.visualstudio.com/items?itemName=VisualStudioPlatformTeam.MicrosoftCodeAnalysis2019
https://marketplace.visualstudio.com/items?itemName=VisualStudioPlatformTeam.MicrosoftCodeAnalysis2019
https://marketplace.visualstudio.com/items?itemName=VisualStudioPlatformTeam.MicrosoftCodeAnalysis2019
https://marketplace.visualstudio.com/items?itemName=VisualStudioPlatformTeam.MicrosoftCodeAnalysis2019
https://marketplace.visualstudio.com/items?itemName=VisualStudioPlatformTeam.MicrosoftCodeAnalysis2019
https://marketplace.visualstudio.com/items?itemName=VisualStudioPlatformTeam.MicrosoftCodeAnalysis2019
https://marketplace.visualstudio.com/items?itemName=VisualStudioPlatformTeam.MicrosoftCodeAnalysis2019
https://marketplace.visualstudio.com/items?itemName=VisualStudioPlatformTeam.MicrosoftCodeAnalysis2019
https://marketplace.visualstudio.com/items?itemName=VisualStudioPlatformTeam.MicrosoftCodeAnalysis2019
https://marketplace.visualstudio.com/items?itemName=VisualStudioPlatformTeam.MicrosoftCodeAnalysis2019
https://marketplace.visualstudio.com/items?itemName=VisualStudioPlatformTeam.MicrosoftCodeAnalysis2019
https://marketplace.visualstudio.com/items?itemName=VisualStudioPlatformTeam.MicrosoftCodeAnalysis2019
https://marketplace.visualstudio.com/items?itemName=VisualStudioPlatformTeam.MicrosoftCodeAnalysis2019
https://marketplace.visualstudio.com/items?itemName=VisualStudioPlatformTeam.MicrosoftCodeAnalysis2019
https://marketplace.visualstudio.com/items?itemName=SonarSource.SonarLintforVisualStudio2019
https://marketplace.visualstudio.com/items?itemName=SonarSource.SonarLintforVisualStudio2019
https://marketplace.visualstudio.com/items?itemName=SonarSource.SonarLintforVisualStudio2019
https://marketplace.visualstudio.com/items?itemName=SonarSource.SonarLintforVisualStudio2019
https://marketplace.visualstudio.com/items?itemName=SonarSource.SonarLintforVisualStudio2019
https://marketplace.visualstudio.com/items?itemName=SonarSource.SonarLintforVisualStudio2019
https://marketplace.visualstudio.com/items?itemName=SonarSource.SonarLintforVisualStudio2019
https://marketplace.visualstudio.com/items?itemName=SonarSource.SonarLintforVisualStudio2019
https://marketplace.visualstudio.com/items?itemName=SonarSource.SonarLintforVisualStudio2019
https://marketplace.visualstudio.com/items?itemName=SonarSource.SonarLintforVisualStudio2019
https://marketplace.visualstudio.com/items?itemName=SonarSource.SonarLintforVisualStudio2019
https://marketplace.visualstudio.com/items?itemName=SonarSource.SonarLintforVisualStudio2019
https://marketplace.visualstudio.com/items?itemName=SonarSource.SonarLintforVisualStudio2019
https://marketplace.visualstudio.com/items?itemName=SonarSource.SonarLintforVisualStudio2019
https://marketplace.visualstudio.com/items?itemName=SonarSource.SonarLintforVisualStudio2019
https://marketplace.visualstudio.com/items?itemName=SonarSource.SonarLintforVisualStudio2019
https://marketplace.visualstudio.com/items?itemName=GiovanniBassi-MVP.CodeCrackerforC
https://marketplace.visualstudio.com/items?itemName=GiovanniBassi-MVP.CodeCrackerforC
https://marketplace.visualstudio.com/items?itemName=GiovanniBassi-MVP.CodeCrackerforC
https://marketplace.visualstudio.com/items?itemName=GiovanniBassi-MVP.CodeCrackerforC
https://marketplace.visualstudio.com/items?itemName=GiovanniBassi-MVP.CodeCrackerforC
https://marketplace.visualstudio.com/items?itemName=GiovanniBassi-MVP.CodeCrackerforC
https://marketplace.visualstudio.com/items?itemName=GiovanniBassi-MVP.CodeCrackerforC
https://marketplace.visualstudio.com/items?itemName=GiovanniBassi-MVP.CodeCrackerforC
https://marketplace.visualstudio.com/items?itemName=GiovanniBassi-MVP.CodeCrackerforC
https://marketplace.visualstudio.com/items?itemName=GiovanniBassi-MVP.CodeCrackerforC
https://marketplace.visualstudio.com/items?itemName=GiovanniBassi-MVP.CodeCrackerforC
https://marketplace.visualstudio.com/items?itemName=GiovanniBassi-MVP.CodeCrackerforC
https://marketplace.visualstudio.com/items?itemName=GiovanniBassi-MVP.CodeCrackerforC
https://marketplace.visualstudio.com/items?itemName=GiovanniBassi-MVP.CodeCrackerforC
https://marketplace.visualstudio.com/items?itemName=GiovanniBassi-MVP.CodeCrackerforC
https://marketplace.visualstudio.com/items?itemName=GiovanniBassi-MVP.CodeCrackerforC
https://marketplace.visualstudio.com/items?itemName=GiovanniBassi-MVP.CodeCrackerforC
https://marketplace.visualstudio.com/items?itemName=GiovanniBassi-MVP.CodeCrackerforC
https://github.com/dotnet/roslyn-analyzers
https://github.com/dotnet/roslyn-analyzers
https://github.com/dotnet/roslyn-analyzers
https://github.com/dotnet/roslyn-analyzers
https://github.com/dotnet/roslyn-analyzers
https://github.com/dotnet/roslyn-analyzers
https://github.com/dotnet/roslyn-analyzers
https://github.com/dotnet/roslyn-analyzers
https://github.com/dotnet/roslyn-analyzers
https://github.com/dotnet/roslyn-analyzers
https://github.com/dotnet/roslyn-analyzers
https://github.com/dotnet/roslyn-analyzers
https://github.com/dotnet/roslyn-analyzers
https://docs.microsoft.com/en-us/visualstudio/ide/code-styles-and-code-cleanup
https://docs.microsoft.com/en-us/visualstudio/ide/code-styles-and-code-cleanup
https://docs.microsoft.com/en-us/visualstudio/ide/code-styles-and-code-cleanup
https://docs.microsoft.com/en-us/visualstudio/ide/code-styles-and-code-cleanup
https://docs.microsoft.com/en-us/visualstudio/ide/code-styles-and-code-cleanup
https://docs.microsoft.com/en-us/visualstudio/ide/code-styles-and-code-cleanup
https://docs.microsoft.com/en-us/visualstudio/ide/code-styles-and-code-cleanup
https://docs.microsoft.com/en-us/visualstudio/ide/code-styles-and-code-cleanup
https://docs.microsoft.com/en-us/visualstudio/ide/code-styles-and-code-cleanup
https://docs.microsoft.com/en-us/visualstudio/ide/code-styles-and-code-cleanup
https://docs.microsoft.com/en-us/visualstudio/ide/code-styles-and-code-cleanup
https://docs.microsoft.com/en-us/visualstudio/ide/code-styles-and-code-cleanup
https://docs.microsoft.com/en-us/visualstudio/ide/code-styles-and-code-cleanup
https://docs.microsoft.com/en-us/visualstudio/ide/code-styles-and-code-cleanup
https://docs.microsoft.com/en-us/visualstudio/ide/code-styles-and-code-cleanup
https://docs.microsoft.com/en-us/visualstudio/ide/code-styles-and-code-cleanup
https://docs.microsoft.com/en-us/visualstudio/ide/code-styles-and-code-cleanup
https://docs.microsoft.com/en-us/visualstudio/ide/code-styles-and-code-cleanup
https://docs.microsoft.com/en-us/visualstudio/ide/code-styles-and-code-cleanup
https://docs.microsoft.com/en-us/visualstudio/ide/code-styles-and-code-cleanup
https://docs.microsoft.com/en-us/visualstudio/ide/code-styles-and-code-cleanup
https://docs.microsoft.com/en-us/visualstudio/ide/code-styles-and-code-cleanup
https://docs.microsoft.com/en-us/visualstudio/ide/code-styles-and-code-cleanup
https://docs.microsoft.com/en-us/visualstudio/ide/code-styles-and-code-cleanup
https://docs.microsoft.com/en-us/visualstudio/ide/code-styles-and-code-cleanup
https://docs.microsoft.com/en-us/visualstudio/ide/code-styles-and-code-cleanup
https://sonarcloud.io/documentation/analysis/scan/sonarscanner-for-azure-devops/
https://sonarcloud.io/documentation/analysis/scan/sonarscanner-for-azure-devops/
https://sonarcloud.io/documentation/analysis/scan/sonarscanner-for-azure-devops/
https://sonarcloud.io/documentation/analysis/scan/sonarscanner-for-azure-devops/
https://sonarcloud.io/documentation/analysis/scan/sonarscanner-for-azure-devops/
https://sonarcloud.io/documentation/analysis/scan/sonarscanner-for-azure-devops/
https://sonarcloud.io/documentation/analysis/scan/sonarscanner-for-azure-devops/
https://sonarcloud.io/documentation/analysis/scan/sonarscanner-for-azure-devops/
https://sonarcloud.io/documentation/analysis/scan/sonarscanner-for-azure-devops/
https://sonarcloud.io/documentation/analysis/scan/sonarscanner-for-azure-devops/
https://sonarcloud.io/documentation/analysis/scan/sonarscanner-for-azure-devops/
https://sonarcloud.io/documentation/analysis/scan/sonarscanner-for-azure-devops/
https://sonarcloud.io/documentation/analysis/scan/sonarscanner-for-azure-devops/
https://sonarcloud.io/documentation/analysis/scan/sonarscanner-for-azure-devops/
https://sonarcloud.io/documentation/analysis/scan/sonarscanner-for-azure-devops/
https://sonarcloud.io/documentation/analysis/scan/sonarscanner-for-azure-devops/
https://sonarcloud.io/documentation/analysis/scan/sonarscanner-for-azure-devops/
https://sonarcloud.io/documentation/analysis/scan/sonarscanner-for-azure-devops/
https://sonarcloud.io/documentation/analysis/scan/sonarscanner-for-azure-devops/
https://sonarcloud.io/documentation/analysis/scan/sonarscanner-for-azure-devops/
https://sonarcloud.io/documentation/analysis/scan/sonarscanner-for-azure-devops/
https://www.guidgenerator.com/
https://www.guidgenerator.com/
https://www.guidgenerator.com/
https://www.guidgenerator.com/
https://www.guidgenerator.com/
https://www.guidgenerator.com/
https://www.guidgenerator.com/
https://www.guidgenerator.com/
https://www.guidgenerator.com/
https://www.guidgenerator.com/

5
Section 5: Delivering Software

Continuously and at a High
Quality Level

This last section of the book will guide you on how to deliver software using DevOps
principles for Continuous Integration (CI) and Continuous Deployment (CD). The
greatest players in the software services world have transformed the concept of software
delivery in the last few years. Therefore, this section will discuss the new and revolutionary
ways of thinking that have emerged.

In Chapter 17, Deploying Your Application with Azure DevOps, we will discuss the new
philosophy of software delivery and how Azure DevOps can help you embrace this new
approach, and master build and deploy pipelines principles.

In Chapter 18, Understanding DevOps Principles, we will cover the main concepts of
DevOps, the process that everybody is learning about and putting into practice these days.
Besides that, the chapter will present tools for developing and delivering your software
with DevOps.

Then, in Chapter 19, Challenges of Applying CI Scenarios in DevOps, the focus will be directed
toward the challenges related to continuously integrating and deploying a solution. The
idea is to make sure you understand the risks and follow best practices when using CI.

Section 5: Delivering Software Continuously and at a High Quality Level Chapter 5

[482]

 Chapter 20, Automation for Software Testing, is focused on software testing automation.
Since testing is an unavoidable (and repetitive) process, its automation is extremely
important. This chapter will teach you how to write automated functional test cases for a
project.

This section includes the following chapters:

Chapter 17, Deploying Your Application with Azure DevOps
Chapter 18, Understanding DevOps Principles
Chapter 19, Challenges of Applying CI Scenarios in DevOps
Chapter 20, Automation for Software Testing

17
Deploying Your Application with

Azure DevOps
This chapter focuses on so-called service design thinking, that is, keeping in mind the
software you are designing as a service offered to an organization/part of an organization.
The main takeaway of this approach is that the highest priority is the value your software
gives to the target organization. Moreover, you are not offering just working code and an
agreement to fix bugs, but a solution for all of the needs that your software was conceived
for. In other words, your job includes everything it needs to satisfy those needs, such as
monitoring users' satisfaction and adapting the software when the user needs change.

Finally, it is easier to monitor the software to reveal issues and new needs and to modify it
to adapt it quickly to ever-changing needs.

Service design thinking is strictly tied to the Software as a Service (SaaS) model, which we
discussed in Chapter 4, Deciding the Best Cloud-Based Solution. In fact, the simplest way to
offer solutions based on web services is to offer the usage of web services as a service
instead of selling the software that implements them.

More specifically, this chapter covers the following topics:

Understanding SaaS
Preparing a solution for a service scenario
Use case – deploying our package-management application with Azure Pipelines

By the end of this chapter, you will be able to design software according to service design
thinking principles and use Azure Pipelines to deploy your application.

Deploying Your Application with Azure DevOps Chapter 17

[484]

Technical requirements
This chapter requires Visual Studio 2017 or 2019 free Community Edition or better with all
database tools installed. It requires a free Azure account. If you have not already created
one, the Creating an Azure account subsection of Chapter 1, Understanding the Importance of
Software Architecture, explains how to do so. This chapter uses the same code as Chapter 15,
Testing Your Code with Unit Test Cases and TDD, which is available here: https:/ ​/​github.
com/​PacktPublishing/ ​Hands- ​On- ​Software- ​Architecture- ​with- ​CSharp- ​8.

Understanding SaaS
Selling/using software as a service is connected with a wider set of solutions design
principles called service design thinking. Service design thinking is not just a software
development technique and/or a software deployment approach, but it impacts several
business areas, namely, organization and human resources, software development
processes, and finally, hardware infrastructures and software architecture.

In the subsections that follow, we will briefly discuss the implications for each of the
business areas we listed, and in the last subsection, we will focus specifically on the SaaS
deployment model.

Adapting your organization to a service scenario
The first organizational implication comes from the need to optimize the value of the
software for the target organization. This requires a human resource or a team—in charge
of planning and monitoring the impact of the software in the target organization—to
maximize the value added by the software. This strategic role is not needed just during the
initial design stage but during the whole lifetime of the application. In fact, this role is in
charge of keeping the software fine-tuned with the ever-changing needs of the target
organization.

Another important area of impact is human resource management. In fact, since the main
priority is the value added by the software and not exploiting existing resources and
competences, human resources must be adapted to the project needs. This means acquiring
new resources as soon as they are needed and developing the required competencies
through new human resources and/or adequate training of existing resources.

The next subsection deals with the implications of all processes involved in software
development.

https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8

Deploying Your Application with Azure DevOps Chapter 17

[485]

Developing software in a service scenario
The main constraint that impacts software development processes is the need to keep the
software fine-tuned with the organization's needs. This need can be satisfied by any agile
methodology based on a CI/CD approach. For a short review of CI/CD, please refer to the
Organizing your work using Azure DevOps section of Chapter 3, Documenting Requirements
with Azure DevOps, while for a detailed discussion of CI/CD, please refer to Chapter 17,
Deploying Your Application with Azure DevOps, which is completely dedicated to CI/CD. It is
worth pointing out that any well-designed CI/CD cycle should include the processing of
user feedback and user satisfaction reports.

Moreover, to optimize the value added by the software, it is a good practice to organize
stages where the development team (or part of it) is placed in close contact with the system
users so that developers can better understand the impact of the software on the target
organization.

Finally, the value added by the software must always be kept in mind when writing both
functional and non-functional requirements. For this reason, it is useful to annotate user
stories with consideration of why and how they contribute to value. The process of collecting
requirements is discussed in Chapter 2, Functional and Nonfunctional Requirements.

More technical implications are discussed in the next subsection.

Technical implications of a service scenario
In a service scenario, both the hardware infrastructure and software architecture are
constrained by the three main principles mentioned as follows, which are an immediate
consequence of the requirement to keep the software fine-tuned with the organization's
needs, namely, the following:

There's the need to monitor the software to discover any kind of issue that might
have been caused by system malfunctions or changes in software usage and/or
user needs. This implies extracting health checks and load statistics from all
hardware/software components. Good hints for discovering changes in the
organization's needs are also given by statistics on the operations performed by
the users—more specifically, the average time spent by both the user and the
application on each operation instance, and the number of instances of each
operation performed per unit of time (day, week, or month).
There's also the need to monitor user satisfaction. Feedback on user satisfaction
can be obtained by adding to each application screen a link to an easy-to-fill user-
satisfaction report page.

Deploying Your Application with Azure DevOps Chapter 17

[486]

Finally, there's the need to adapt both hardware and software quickly, both to the
traffic received by each application module and to the changes in the
organization's needs. This means the following:

Paying extreme attention to software modularity
Keeping the door open for changes in the database engine and
preferring SOA or microservices-based solutions to monolithic
software
Keeping the door open to new technologies

Making the hardware easy to adapt means allowing hardware scaling, which in turn
implies either the adoption of cloud infrastructures, hardware clusters, or both. It is also
important to keep the door open to changes in cloud service suppliers, which in turn means
encapsulating the dependence on the cloud platform in a small number of software
modules.

The maximization of the value added by the software can achieved by choosing the best
technology available for the implementation of each module, which in turn means being
able to mix different technologies. Here is where container-based technologies, such as
Docker, come into play. Docker and related technologies were described in Chapter 5,
Applying a Microservice Architecture to Your Enterprise Application.

Summing up, all of the requirements we have listed converge toward most of the advanced
technologies we have described in this book, such as cloud services, scalable web
applications, distributed/scalable databases, Docker, SOA, and microservices architectures.

More details on how to prepare your software for a service environment are given in the
next section, while the next subsection focuses specifically on the advantages and
disadvantages of SaaS applications.

Adopting a SaaS solution
The main attraction of SaaS solutions is their flexible payment model, which offers the
following advantages:

You can avoid abandoning big investments in favor of more affordable monthly
payments.
You can start with a cheap system and then move toward more expansive
solutions only when the business grows.

Deploying Your Application with Azure DevOps Chapter 17

[487]

However, SaaS solutions also offer other advantages, namely, the following:

In all cloud solutions, you can easily scale up your solution.
The application is automatically updated.
Since SaaS solutions are delivered over the public internet, they are accessible
from any location.

Unluckily, SaaS advantages come at a cost, since SaaS also has not negligible
disadvantages, namely, the following:

Your business is strictly tied to the SaaS provider, which might discontinue the
service and/or modify it in a way that is not acceptable to you anymore.
Usually, you can't implement any kind of customization, being limited to the few
standard options offered by the SaaS supplier. However, sometimes SaaS
suppliers also offer the possibility to add custom modules written either by them
or by you.

Summing up, SaaS solutions offer interesting advantages but also some disadvantages, so
you, as a software architect, must perform a detailed analysis to decide how to adopt them.

The next section explains how to adapt software to be used in a service scenario.

Preparing a solution for a service scenario
First of all, preparing a solution for a service scenario means designing it specifically for the
cloud and/or for a distributed environment. In turn, this means designing it with
scalability, fault tolerance, and automatic fault recovery in mind.

The main implications of the preceding three points are concerned with the way the state is
handled. Stateless module instances are easy to scale and to replace, so you should carefully
plan which modules are stateless and which ones have states. Moreover, as explained in
Chapter 7, How to Choose Your Data Storage in the Cloud, you have to keep in mind that
write and read operations scale in a completely different way. In particular, read operations
are easier to scale with replication, while write operations do not scale well with relational
databases and often require NoSQL solutions.

Deploying Your Application with Azure DevOps Chapter 17

[488]

High scalability in a distributed environment prevents the usage of distributed transactions
and of synchronous operations, in general. Therefore, data coherence and fault tolerance
can be achieved only with more complex techniques based on asynchronous messages,
such as the following:

One technique is storing all messages to send in a queue so that asynchronous
transmissions can be retried in the event of errors or timeouts. Messages can be
removed from the queue either when confirmation of reception is received or
when the module decides to abort the operation that produced the message.
Another is handling the possibility that the same message is received several
times because timeouts caused the same message to be sent several times.
If needed, use techniques such as optimistic concurrency and event sourcing to
minimize concurrency problems in databases. Optimistic concurrency is
explained in The data layer subsection of the use case at the end of Chapter 13,
Presenting ASP.NET Core MVC, while event sourcing is described together with
other data layer stuff in the Using SOLID principles to map your domains section of
Chapter 10, Understanding the Different Domains in a Software Solution.

The first two points in the preceding list are discussed in detail together
with other distributed processing techniques in the How does .NET Core
deal with Microservices? section of Chapter 5, Applying a Microservice
Architecture to Your Enterprise Application.

Fault tolerance and automatic fault recovery require that software modules implement
health check interfaces that the cloud framework might call, to verify whether the module
is working properly or whether it needs to be killed and replaced by another instance.
ASP.NET Core and all Azure microservices solutions offer off-the-shelf basic health checks,
so the developer doesn't need to take care of them. However, more detailed custom health
checks can be added by implementing a simple interface.

The difficulty increases if you have the goal of possibly changing the cloud provider of
some of the application modules. In this case, the dependency from the cloud platform
must be encapsulated in just a few modules, and solutions that are too strictly tied to a
specific cloud platform must be discarded. Hence, for instance, you should avoid the use of
stateful/stateless native Service Fabric services since their architecture is specific to Azure
Service Fabric, so they can't be ported to a different cloud platform.

If your application is conceived for a service scenario, everything must be automated: new
versions testing and validation, the creation of the whole cloud infrastructure needed by
the application, and the deployment of the application on that infrastructure.

Deploying Your Application with Azure DevOps Chapter 17

[489]

All cloud platforms offer languages and facilities to automate the whole software CI/CD
cycle, that is, building the code, testing it, triggering manual version approvals, hardware
infrastructure creation, and application deployment.

Azure Pipelines allows the complete automatization of all of the steps listed. The use case
in Chapter 15, Testing Your Code with Unit Test Cases and TDD, shows how to automatize all
steps up to and including software testing with Azure Pipelines. The use case in the next
section will show how to automatize the application deployment on the Azure web app
platform.

Automatization has a more fundamental role in SaaS applications since the whole creation
of a new tenant for each new customer must be automatically triggered by the customer
subscription. More specifically, multi-tenant SaaS applications can be implemented with
three fundamental techniques:

All customers share the same hardware infrastructure and data storage. This
solution is the easiest to implement since it requires the implementation of a
standard web application. However, it is possible just for very simple SaaS
services since, for more complex applications, it becomes always more difficult to
ensure that storage space and computation time are split equally between users.
Moreover, as the database becomes more and more complex, it is always more
difficult to keep the data of different users safely isolated.
All customers share the same infrastructure but each customer has its own data
storage. This option solves all database problems of the previous solution, and it
is quite easy to automatize since the creation of a new tenant requires just the
creation of a new database. This solution offers a simple way to define pricing
strategies, by linking them to storage consumption.
Each customer has their private infrastructure and data storage. This is the most
flexible strategy. From the user's point of view, its only disadvantage is the
higher price. Therefore, it is convenient only above a minimum threshold of
computational power required by each user. It is more difficult to automate since
a whole infrastructure must be created for each new customer and a new
instance of the application must be deployed on it.

Whichever of the three strategies is chosen, you need the possibility to scale out your cloud
resources as your consumers increase.

Deploying Your Application with Azure DevOps Chapter 17

[490]

If you also need the possibility to ensure your infrastructure creation scripts work across
several cloud providers, then, on the one hand, you can't use features that are too specific to
a single cloud platform, and on the other, you need a unique infrastructure creation
language that can be translated into the native languages of the more common cloud
platforms. Terraform and Ansible are two very common choices for describing hardware
infrastructures.

Use case – deploying our package-
management application with Azure
Pipelines
In this section, we will configure an automatic deployment to the Azure App Service
platform for the DevOps project that we already defined in the use case at the end of
Chapter 15, Testing Your Code with Unit Test Cases and TDD. Azure DevOps can also
automatically create a new web app, but to prevent configuration errors (which might
consume all your free credit), we will create it manually and let Azure DevOps just deploy
the application. All of the required steps are organized into various subsections as follows.

Creating the Azure Web App and the Azure
database
An Azure Web App can be defined by following the simple steps that follow:

Go to the Azure portal and select App Services, and then click the Add button to1.
create a new Web App. Fill in all data as follows:

Deploying Your Application with Azure DevOps Chapter 17

[491]

Clearly, you may use a Resource Group you already have, and the most2.
convenient region for you. For Runtime stack, please select the same .NET Core
version you used in the Visual Studio solution.

Deploying Your Application with Azure DevOps Chapter 17

[492]

Now, if you have enough credit, let's create a SQL Server database for the3.
application, and let's call it PackagesManagementDatabase. If you don't have
enough credit, don't worry—you can still test application deployment, but the
application will return an error when it tries to access the database. Please refer
to the Relational databases subsection of Chapter 7, How to Choose Your Data
Storage in the Cloud, for how to create a SQL Server database.

Configuring your Visual Studio solution
Once you've defined the Azure Web App, you need to configure the application for
running in Azure by following these simple steps:

If you defined an Azure database, you need two different connection strings in1.
your Visual Studio solution, one of the local databases for development and one
of the Azure database for the web app.
Now, open both appsettings.Development.json and appsettings.json in2.
your Visual Studio solution, as follows:

Then, copy the whole ConnectionStrings node of appsettings.json into3.
appsettings.Development.json, as follows:

"ConnectionStrings": {
 "DefaultConnection": "Server=(localdb)....."
},

Now you have the local connection string in the development settings, so you can
change DefaultConnection in appsettings.json with one of the Azure
databases.

Go to the database in the Azure portal, copy the connection string, and fill it with4.
the username and password you got when you defined the database server.
Finally, commit your changes locally and then synchronize with the remote5.
repository. Now, your changes are on DevOps Pipelines, which is already
processing them to get a new build.

Deploying Your Application with Azure DevOps Chapter 17

[493]

Configuring Azure Pipelines
Finally, you can configure an Azure Pipeline for the automatic delivery of your application
on Azure by following these steps:

Connect Visual Studio with your DevOps project by clicking the Manage1.
Connections link in the Connection tab of the Visual Studio Team
Server window. Then, click the DevOps link to go to your online project.
Modify the PackagesManagementWitTests build pipeline by adding a further2.
step after the unit test step. In fact, we need a step that prepares all files to be
deployed in a ZIP file.
Click the Edit button of the PackagesManagementWitTests pipeline, and then3.
go to the end of the file and write the following:

- task: PublishBuildArtifacts@1

When the Settings link appears above the new task, click it to configure the new4.
task:

Accept the default Path to publish since it is already synchronized with the path5.
of the task that will deploy the application, and just insert the artifact name, and
then select Azure Pipeline as the location. As soon as you save, the pipeline will
start, and the newly added task should succeed.

Deploying Your Application with Azure DevOps Chapter 17

[494]

Deployments and other release artifacts are added to different pipelines called6.
Release Pipelines, to decouple them from build related artifacts. With Release
Pipelines, you cannot edit a .yaml file, but you will work with a graphic
interface.
Click the Releases left menu tab to create a new Release Pipeline. As soon as7.
you click add a new pipeline, you will be prompted to add the first task of the
first pipeline stage. In fact, the whole release pipeline is composed of different
stages, each grouping sequences of tasks. While each stage is just a sequence of
tasks, the stages diagram can branch and we can add several branches after each
stage. This way, we can deploy to different platforms that each require different
tasks. In our simple example, we will use a single stage.
Select the Deploy Azure App Service task. As soon as you add this task, you will8.
be prompted to fill in missing information:

Click the error link and fill in the missing parameters:9.

Deploying Your Application with Azure DevOps Chapter 17

[495]

Select your subscription, and then, if an authorization button appears, please10.
click it to authorize Azure Pipelines to access your subscription. Then, select
Windows as the deployment platform, and finally, select the App Service you
created from the App service name drop-down list. Task settings are
automatically saved while you write them, so you need just to click the Save
button for the whole pipeline.
Now, we need to connect this pipeline to a source artifact. Click the Add11.
Artifact button and then select Build as the source type, because we need to
connect the new release pipeline with the ZIP file created by our build pipeline.
A settings window appears:

:

Select our previous build pipeline from the drop-down list, and keep Latest as12.
the version. Finally, accept the suggested name in Source alias.

Deploying Your Application with Azure DevOps Chapter 17

[496]

Our release pipeline is ready and can be used as it is. The image of the source
artifact you just added contains a trigger icon in its top-right corner, as follows:

If you click on the trigger icon, you are given the option to automatically
trigger the release pipeline as soon as a new build is available:

Keep it disabled; we can enable it after we have completed and manually tested the release
pipeline. In preparation for an automatic trigger, we need to add a human approval task
before the application is deployed.

Adding a manual approval for the release
Since tasks are usually executed by software agents, we need to embed human approval in
a manual job. Let's add it with the following steps:

Click the three dots on the right of the Stage 1 header:1.

Deploying Your Application with Azure DevOps Chapter 17

[497]

Then, select Add an agentless job. Once the agentless job has been added, click2.
its add button and add a Manual intervention task. The following screenshot
shows the Manual intervention settings:

Add instructions for the operator and select your account in the Notify3.
users field.

Deploying Your Application with Azure DevOps Chapter 17

[498]

Now, drag the whole Agentless job with the mouse, to place it before the4.
application deployment task. The final screenshot should be as follows:

Finished! Click the save button in the top-left to save the pipeline.5.

Now, everything is ready to create our first automatic release.

Creating a release
Once you have everything in place, a new release can be prepared and deployed as follows:

Let's click the Create release button to start the creation of a new release:1.

Deploying Your Application with Azure DevOps Chapter 17

[499]

Verify that the Source alias is the last available, add a release description, and2.
then click Create. In a short time, you should receive an email for the release
approval. Click the link it contains, and go to the approval page:

Deploying Your Application with Azure DevOps Chapter 17

[500]

Click the Resume / Reject button and then approve the release. Wait for the3.
deployment to complete. You should have all of the tasks successfully
completed, as shown in the following screenshot:

You have run your first successful release pipeline!

In a real-life project, the release pipeline would contain some more tasks. In fact,
applications (before being deployed in the actual production environment) are deployed in
a staging environment where they are beta-tested. Hence, probably, after this first
deployment, there would be some manual tests, manual authorization for the deployment
in production, and the final deployment in production.

Summary
We described service design thinking principles and the SaaS software deployment model.
Now, you should be able to analyze all of the implications of these approaches for an
organization, and you should be able to adapt pre-existing software development processes
and hardware/software architectures to take advantage of the opportunities they offer.

We also explained the need for, and the techniques involved in, the automatization of the
software cycle, cloud hardware infrastructure configuration, and application deployment.

Once you have implemented the example in the last use case section, you should be able to
use Azure Pipelines to automate infrastructure configuration and application deployment.

The next chapter gives more insights into DevOps, which, together with CI/CD, which is
discussed in detail in Chapter 19, Challenges of Applying CI Scenarios in DevOps, plays a
fundamental role in service scenarios and, in particular, the maintenance of SaaS
applications.

Deploying Your Application with Azure DevOps Chapter 17

[501]

Questions
What is the main goal of service design thinking?1.
Is it true that service design thinking requires the optimal usage of all2.
competencies already available in the company?
Why is a complete automatization fundamental in the life cycle of SaaS3.
applications?
Is it possible to define hardware cloud infrastructures with a platform-4.
independent language?
What is the preferred Azure tool for the automatization of the whole application5.
lifecycle?
If two SaaS suppliers offer the same software product, should you prefer the6.
most reliable or the cheapest one?
Is scalability the only important requirement in a service scenario?7.

Further reading
The main references in this chapter are references to other chapters/sections of this book
and have already been given throughout this chapter. Here, we give just the link to the
Azure Pipelines documentation: https:/ ​/ ​docs. ​microsoft. ​com/ ​en-​us/ ​azure/ ​devops/
pipelines/​?​view= ​azure- ​devops, and to the two infrastructure description languages cited
in this chapter, Terraform (https:/ ​/ ​www. ​terraform. ​io/​) and Ansible (https:/ ​/​www.
ansible.​com/​).

https://docs.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops
https://www.terraform.io/
https://www.terraform.io/
https://www.terraform.io/
https://www.terraform.io/
https://www.terraform.io/
https://www.terraform.io/
https://www.terraform.io/
https://www.terraform.io/
https://www.terraform.io/
https://www.terraform.io/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/
https://www.ansible.com/

18
Understanding DevOps

Principles
DevOps is a process that everybody is learning and putting into practice these days. But as
a software architect, you need to understand and propagate DevOps not only as a process
but as a philosophy. This chapter will cover the main concepts, principles, and tools you
need to develop and deliver your software with DevOps.

 The following topics will be covered in this chapter:

Describing what DevOps is and looking at a sample of how to apply it in the
WWTravelClub project
Understanding DevOps principles and deployment stages to leverage the
deployment process
Learning DevOps tools that can be used together with Azure DevOps to improve
tests and feedback

In contrast with other chapters, the WWTravelClub project will be presented during the
topics and we will offer a conclusion at the end of the chapter, giving you the opportunity
to understand how this philosophy can be implemented. All the screenshots exemplifying
the DevOps principles come from the main sample of the book, so you will be able to
understand the DevOps principles easily.

Understanding DevOps Principles Chapter 18

[503]

Technical requirements
This chapter requires the Visual Studio 2019 Community Edition or better. You may also
need an Azure DevOps account, as described in Chapter 3, Documenting Requirements with
Azure DevOps.

Describing DevOps
DevOps comes from a union of the words Development and Operations, so this process
simply unifies actions in these areas. However, when you start to study a little bit more
about it, you will realize that connecting these two areas is not enough to achieve the true
goals of this philosophy.

We can also say that DevOps is the process that answers the current needs of humanity
regarding software delivery.

Donovan Brown, Principal DevOps Manager of Microsoft, has a
spectacular definition of what DevOps is: http:/ ​/​donovanbrown. ​com/
post/ ​what- ​is- ​devops.

A way to deliver value continuously to our end users, using process, people, and
products—this is the best description of the DevOps philosophy. We need to develop and
deliver customer-oriented software. As soon as all areas of the company understand that
the key point is the end user, your task as a software architect is to present the technology
that will facilitate the process of delivering.

It is worth mentioning that all the content of this book is connected to this approach. It is
never a matter of knowing a bunch of tools and technologies. As a software architect, you
have to understand that it is always a way to bring faster solutions easily to your end user,
linked to their real needs. For this reason, you need to learn the DevOps principles, which
will be discussed during the chapter.

http://donovanbrown.com/post/what-is-devops
http://donovanbrown.com/post/what-is-devops
http://donovanbrown.com/post/what-is-devops
http://donovanbrown.com/post/what-is-devops
http://donovanbrown.com/post/what-is-devops
http://donovanbrown.com/post/what-is-devops
http://donovanbrown.com/post/what-is-devops
http://donovanbrown.com/post/what-is-devops
http://donovanbrown.com/post/what-is-devops
http://donovanbrown.com/post/what-is-devops
http://donovanbrown.com/post/what-is-devops
http://donovanbrown.com/post/what-is-devops
http://donovanbrown.com/post/what-is-devops
http://donovanbrown.com/post/what-is-devops

Understanding DevOps Principles Chapter 18

[504]

Understanding DevOps principles
Considering DevOps as a philosophy, it is worth mentioning that you there some principles
that enable the process to work well in your team. These principles are continuous
integration, continuous delivery, and continuous feedback.

For more information, please visit: https:/ ​/​azure. ​microsoft. ​com/ ​en-
us/​overview/ ​what- ​is- ​devops/ ​.

DevOps concept is represented by the symbol of infinity in many books and technical
articles. This symbol represents the necessity to have a continuous approach in the software
development life cycle. During the cycle, you will need to plan, build, continuously
integrate, deploy, operate, get feedback, and start all over again. The process has to be a
collaborative one, since everybody has the same focus—to deliver value to the end user.
Together with these principles, you as a software architect will need to decide the best
software development process that can fit this approach. We discussed these processes in
Chapter 1, Understanding the Importance of Software Architecture.

Defining continuous integration
When you start building enterprise solutions, collaboration is the key to getting things done
faster and to meeting the user needs. Version control systems, as we discussed in Chapter
14, Best Practices in Coding C# 8, are essential for this process, but the tool by itself does not
do the job, especially if the tool is not well configured.

As a software architect, continuous integration (CI) will help you to have a concrete
approach for software development collaboration. When you implement it, as soon as a
developer commits its code, the main code is automatically built and tested.

The good thing when you apply it is that you can motivate developers to merge their
changes as fast as they can in order to minimize merge conflicts. Besides, they can share
unit tests, which will improve the quality of software.

https://azure.microsoft.com/en-us/overview/what-is-devops/
https://azure.microsoft.com/en-us/overview/what-is-devops/
https://azure.microsoft.com/en-us/overview/what-is-devops/
https://azure.microsoft.com/en-us/overview/what-is-devops/
https://azure.microsoft.com/en-us/overview/what-is-devops/
https://azure.microsoft.com/en-us/overview/what-is-devops/
https://azure.microsoft.com/en-us/overview/what-is-devops/
https://azure.microsoft.com/en-us/overview/what-is-devops/
https://azure.microsoft.com/en-us/overview/what-is-devops/
https://azure.microsoft.com/en-us/overview/what-is-devops/
https://azure.microsoft.com/en-us/overview/what-is-devops/
https://azure.microsoft.com/en-us/overview/what-is-devops/
https://azure.microsoft.com/en-us/overview/what-is-devops/
https://azure.microsoft.com/en-us/overview/what-is-devops/
https://azure.microsoft.com/en-us/overview/what-is-devops/
https://azure.microsoft.com/en-us/overview/what-is-devops/
https://azure.microsoft.com/en-us/overview/what-is-devops/
https://azure.microsoft.com/en-us/overview/what-is-devops/
https://azure.microsoft.com/en-us/overview/what-is-devops/
https://azure.microsoft.com/en-us/overview/what-is-devops/
https://azure.microsoft.com/en-us/overview/what-is-devops/

Understanding DevOps Principles Chapter 18

[505]

It is very simple to set up CI in Azure DevOps. In the build pipeline, you will find its
option by editing the configuration, as you can see in the following screenshot:

It is worth mentioning that if you have a solution set with unit and functional tests, as soon
as you commit the code, it will automatically be compiled and tested. This will make your
master branch stable and safe in every commit from your team.

The key point of CI is the ability to identify problems faster. You will have this opportunity
when you allow the code to be tested and analyzed by others. The only thing the DevOps
approach helps with is making sure this happens as fast as possible.

Understanding continuous delivery
and multistage environment with Azure DevOps
Once every single commit of your application is built, and this code is tested with both unit
and functional tests, you may also want to deploy it continuously. Doing this is not just a
matter of configuring the tool. As a software architect, you need to be sure that the team
and the process are ready to go to this step.

Understanding DevOps Principles Chapter 18

[506]

The approach associated with continuous delivery (CD) needs to guarantee that the
production environment will be kept safe in each new deployment. To do so, a multistage
pipeline needs to be adopted. The following screenshot shows an approach with common
stages for this end:

Release stages using Azure DevOps

As you can see, these stages were configured using the Azure DevOps release pipeline.
Each stage has its own purpose, which will leverage the quality of the product delivered in
the end. Let's look at the stages:

Development/tests: This stage is used by developers and testers to build new
functionality. This environment will certainly be the one that's most exposed to
bugs and incomplete functions.
Quality assurance: This environment gives a brief version of new functionalities
to areas of the team not related to development and tests. Program managers,
marketing, vendors, and others can use it as an area of study, validation, and
even preproduction. Besides, the development and quality teams can guarantee
that the new releases are correctly deployed, considering both functionality and
infrastructure.
Production: This is the stage where customers have their solution running. The
goal for a good production environment, according to CD, is to have it updated
as quickly as possible. The frequency will vary according to team size, but there
are some approaches where this process happens more than once a day.

Understanding DevOps Principles Chapter 18

[507]

The adoption of three stages of deploying your application will impact on the quality of the
solution. Besides, it will enable the team to have a safer process of deployment, with fewer
risks and better stability of the product. This approach may look a bit expensive at first
sight, but without it the results of bad deployment will generally be more expensive than
this investment.

Besides all the safety, you will have to consider the multistage scenario. You can set up the
pipeline in a way where only with defined authorizations will you be able to transition
from one stage to another:

As you can see in the preceding screenshot, it is quite simple to set up pre-deployment
conditions, and you can see in the following screenshot that there is more than a single
option to customize the authorization method. This gives you the possibility to refine the
CD approach, reaching exactly the needs of the project you are dealing with.

The following screenshot shows the options provided by Azure DevOps for pre-
deployment approval. You can define the people who can approve the stage and set
policies for them, that is, revalidate the approver identity before completing the process.
You, as a software architect, will need to identify the configuration that fits the project you
are creating with this approach:

Understanding DevOps Principles Chapter 18

[508]

It is worth mentioning that although this approach is far better than a single-stage
deployment, a DevOps pipeline will direct you, as a software architect, to another stage of
monitoring. Continuous feedback will be an incredible tool for this, and we will discuss this
approach in the next section.

Defining continuous feedback and the related
DevOps tools
Once you have a solution that is running perfectly in the deployment scenario described in
the last section, feedback will be essential for your team to understand the results of the
release and how the version is working for the customers. To get this feedback some tools
can help both the developers and the customers, bringing these people together to fast-
track process of feedback. Let's have a look at these tools.

Understanding DevOps Principles Chapter 18

[509]

Monitoring you software with Application Insights
Application Insights is definitely the tool a software architect needs to have for continuous
feedback on their solution. As soon as you connect your app to it, you start receiving
feedback on each request made to the software. This enables you to monitor not only the
requests made but your database performance, the errors that the application may be
suffering from, and the calls that take the most time to process.

Obviously, you will have costs relating to having this tool plugged into your environment,
but the facilities that the tool provides will definitely be worth it. Besides, you need to
understand that there is a very small performance cost since all the requests to store data
in Application Insights run in a separate thread. The following screenshot shows how
easily you can create a tool in your environment:

Understanding DevOps Principles Chapter 18

[510]

For instance, let's suppose you need to analyze the requests that take more time in your
application. The process of attaching Application Insights to your web app is quite simple,
considering it may be done as soon as you set up your web app. If you are not sure whether
Application Insights is your web app, you can find out using the Azure portal. Navigate
to App Services and look at the Application Insights settings, as shown in the following
screenshot:

Understanding DevOps Principles Chapter 18

[511]

The interface will give you the opportunity to create or attach an already created monitor
service to your web app. It is worth mentioning that you can connect more than one web
app to the same Application Insights component. The following screenshot shows how to
add a web app to an already created Application Insights resource:

Understanding DevOps Principles Chapter 18

[512]

Once you have Application Insights configured for your web app, you will find the
following screen in App Services:

Understanding DevOps Principles Chapter 18

[513]

Once it is connected to your solution, the data collection will happen continuously and you
will see the results in the dashboard provided by the component. You can find this screen
in the same place as you configured Application Insights, inside the web app
configurations, or in the Azure portal, navigating through the Application Insights
resource:

This dashboard gives you an idea of failed requests, server response time, and server
requests. You may also turn on the availability check, which will make requests to your
selected URL from any of the Azure data centers.

But the beauty of Application Insights is related to how deeply it analyzes your system. In
the following screenshot, for instance, it is giving you feedback on the number of requests
done on the website. You can analyze it by ranking the ones that took more time to process
or the ones that were called more often:

Understanding DevOps Principles Chapter 18

[514]

Considering this view can be filtered in different ways and you receive the info just after it
happens in your web app, this is certainly a tool that defines continuous feedback. This is
one of the best ways you can use the DevOps principles to achieve exactly what your
customer needs.

Application Insights is a technical tool that does exactly what you as a software architect
need to monitor modern applications in a real analytic model. It is a continuous feedback
approach based on the behavior of users of the system you are developing.

Understanding DevOps Principles Chapter 18

[515]

Using the Test and Feedback tool to enable feedback
Another really useful tool in the process of continuous feedback is the Test and Feedback
tool, designed by Microsoft to help product owners and quality assurance users in the
process of analyzing new features.

Using Azure DevOps, you may ask for feedback to your team by selecting an option inside
each working item, as you can see in the following screenshot:

Once you receive a feedback request, you may use the Test and Feedback tool to analyze
and give the correct feedback to the team. You will be able to connect the tool to your Azure
DevOps project, giving you more features while analyzing the feedback request. The
following screenshot shows how to set up Azure DevOps project URL for the Test and
Feedback tool. You can download this tool from https:/ ​/​marketplace. ​visualstudio. ​com/
items?​itemName=​ms. ​vss- ​exploratorytesting- ​web.

https://marketplace.visualstudio.com/items?itemName=ms.vss-exploratorytesting-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-exploratorytesting-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-exploratorytesting-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-exploratorytesting-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-exploratorytesting-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-exploratorytesting-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-exploratorytesting-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-exploratorytesting-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-exploratorytesting-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-exploratorytesting-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-exploratorytesting-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-exploratorytesting-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-exploratorytesting-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-exploratorytesting-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-exploratorytesting-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-exploratorytesting-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-exploratorytesting-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-exploratorytesting-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-exploratorytesting-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-exploratorytesting-web

Understanding DevOps Principles Chapter 18

[516]

The tool is quite simple. You can take screenshots, record a process, or even make a note.
The following picture shows how easily you can write a message inside the screenshot:

Understanding DevOps Principles Chapter 18

[517]

The good thing is that you record all this analysis in a session timeline. As you can see in
the next screenshot, you can have more feedback in the same session, which is good for the
analyzing process:

Understanding DevOps Principles Chapter 18

[518]

Once you have the analysis done and you are connected to Azure DevOps, you will be able
to report a bug, create a task, or even start a new test case:

The result of the bug created can be checked in the Work items board in Azure DevOps. It
is worth mentioning that you don't need a developer license of Azure DevOps to have
access to this area of the environment. This enables you, as a software architect, to spread
this basic and really useful tool to many key users of the solution you are building.

Understanding DevOps Principles Chapter 18

[519]

The following screenshot shows the bug created by the tool once you have connected it to
your Azure DevOps project:

It is definitely important to have a tool like this to have good feedback on your project. But
as a software architect, you may have to find the best solutions to accelerate this process.
The tools explored in the book are good ways to do so. You may consider this approach
every time you need to implement one more step in the development process.

Understanding DevOps Principles Chapter 18

[520]

The WWTravelClub project approach
During this chapter, screenshots from the WWTravelClub project have shown the steps
needed to implement a good DevOps cycle. The WWTravelClub team has decided to use
Azure DevOps because they understand that the tool is essential for getting the best
DevOps experience for the whole cycle.

The requirements were written using user stories, which can be found in the work items
section of Azure DevOps. The code is placed in the repository of the Azure DevOps project.
Both concepts were explained in Chapter 3, Documenting Requirements with Azure DevOps.

The management life cycle used for getting things done is Scrum, presented in Chapter
1, Understanding the Importance of Software Architecture. This approach divides the
implementation into Sprints, which forces the need to deliver value by the end of each
cycle. Using the continuous integration facilities we learned in this chapter, code will be
compiled each time the team concludes a development to the master branch of the
repository.

Once the code is compiled and tested, the first stage of the deployment is done. The first
stage is normally named Development/Test because you enable it for internal tests. Both
Application Insights and Test and Feedback can be used to get the first feedback on the new
release.

If the tests and the feedback of the new release pass, it is time to go to the second
stage—Quality Assurance. Application Insights and Test and Feedback can be used again,
but now in a more stable environment.

The cycle ends with the authorization to deploy in the production stage. This certainly is a
tough decision, but DevOps indicates that you have to do it continuously so you can get
better feedback from customers. Application Insights keeps being a really useful tool, since
you are able to monitor the evolution of the new release in production, even comparing it to
the past releases.

The WWTravelClub project approach described here can be used in many other modern
application development life cycles. You, as a software architect, are in charge of making
this happen. The tools are ready to go, and it depends on you to make things right!

Understanding DevOps Principles Chapter 18

[521]

Summary
In this chapter, we learned how DevOps is not only a bunch of techniques and tools used
together to deliver software continuously but a philosophy to enable continuous delivery of
value to the end user of the project you are developing.

Considering this approach, we saw how continuous integration, continuous delivery, and
continuous feedback are essential to the purpose of DevOps. We also saw how Azure,
Azure DevOps, and Microsoft tools help you to achieve your goals.

This chapter brought you this approach using WWTravelClub as an example, enabling
CI/CD inside Azure DevOps, and using Application Insights and the Test and Feedback
tool for both technical and functional feedback. In real life, these tools will enable you to
understand the current behavior of the system you are developing faster, as you will have
continuous feedback on it.

In the next chapter, we will learn about continuous integration in detail.

Questions
What is DevOps?1.
What is continuous integration?2.
What is continuous delivery?3.
What is continuous feedback?4.
What is the difference between the build and release pipelines?5.
What is the main purpose of Application Insights in the DevOps approach?6.
How can the Test and Feedback tool help in the process of DevOps?7.

Understanding DevOps Principles Chapter 18

[522]

Further Reading
These are some websites where you will find more information on the topics covered in this
chapter:

http:/​/​donovanbrown. ​com/ ​

https:/​/ ​www. ​packtpub. ​com/ ​networking- ​and- ​servers/ ​devops- ​fundamentals-
video

https:/​/ ​docs. ​microsoft. ​com/ ​en-​us/ ​azure/ ​devops/ ​learn/ ​what- ​is-​devops

https:/​/ ​azuredevopslabs. ​com/ ​labs/ ​devopsserver/ ​exploratorytesting/ ​

https:/​/ ​docs. ​microsoft. ​com/ ​en-​us/ ​azure/ ​azure- ​monitor/ ​app/ ​app-​insights-
overview

https:/​/ ​marketplace. ​visualstudio. ​com/ ​items? ​itemName= ​ms.​vss-
exploratorytesting- ​web

https:/​/ ​docs. ​microsoft. ​com/ ​en-​us/ ​azure/ ​devops/ ​test/ ​request-
stakeholder- ​feedback

http://donovanbrown.com/
http://donovanbrown.com/
http://donovanbrown.com/
http://donovanbrown.com/
http://donovanbrown.com/
http://donovanbrown.com/
http://donovanbrown.com/
http://donovanbrown.com/
https://www.packtpub.com/networking-and-servers/devops-fundamentals-video
https://www.packtpub.com/networking-and-servers/devops-fundamentals-video
https://www.packtpub.com/networking-and-servers/devops-fundamentals-video
https://www.packtpub.com/networking-and-servers/devops-fundamentals-video
https://www.packtpub.com/networking-and-servers/devops-fundamentals-video
https://www.packtpub.com/networking-and-servers/devops-fundamentals-video
https://www.packtpub.com/networking-and-servers/devops-fundamentals-video
https://www.packtpub.com/networking-and-servers/devops-fundamentals-video
https://www.packtpub.com/networking-and-servers/devops-fundamentals-video
https://www.packtpub.com/networking-and-servers/devops-fundamentals-video
https://www.packtpub.com/networking-and-servers/devops-fundamentals-video
https://www.packtpub.com/networking-and-servers/devops-fundamentals-video
https://www.packtpub.com/networking-and-servers/devops-fundamentals-video
https://www.packtpub.com/networking-and-servers/devops-fundamentals-video
https://www.packtpub.com/networking-and-servers/devops-fundamentals-video
https://www.packtpub.com/networking-and-servers/devops-fundamentals-video
https://www.packtpub.com/networking-and-servers/devops-fundamentals-video
https://www.packtpub.com/networking-and-servers/devops-fundamentals-video
https://www.packtpub.com/networking-and-servers/devops-fundamentals-video
https://www.packtpub.com/networking-and-servers/devops-fundamentals-video
https://docs.microsoft.com/en-us/azure/devops/learn/what-is-devops
https://docs.microsoft.com/en-us/azure/devops/learn/what-is-devops
https://docs.microsoft.com/en-us/azure/devops/learn/what-is-devops
https://docs.microsoft.com/en-us/azure/devops/learn/what-is-devops
https://docs.microsoft.com/en-us/azure/devops/learn/what-is-devops
https://docs.microsoft.com/en-us/azure/devops/learn/what-is-devops
https://docs.microsoft.com/en-us/azure/devops/learn/what-is-devops
https://docs.microsoft.com/en-us/azure/devops/learn/what-is-devops
https://docs.microsoft.com/en-us/azure/devops/learn/what-is-devops
https://docs.microsoft.com/en-us/azure/devops/learn/what-is-devops
https://docs.microsoft.com/en-us/azure/devops/learn/what-is-devops
https://docs.microsoft.com/en-us/azure/devops/learn/what-is-devops
https://docs.microsoft.com/en-us/azure/devops/learn/what-is-devops
https://docs.microsoft.com/en-us/azure/devops/learn/what-is-devops
https://docs.microsoft.com/en-us/azure/devops/learn/what-is-devops
https://docs.microsoft.com/en-us/azure/devops/learn/what-is-devops
https://docs.microsoft.com/en-us/azure/devops/learn/what-is-devops
https://docs.microsoft.com/en-us/azure/devops/learn/what-is-devops
https://docs.microsoft.com/en-us/azure/devops/learn/what-is-devops
https://docs.microsoft.com/en-us/azure/devops/learn/what-is-devops
https://docs.microsoft.com/en-us/azure/devops/learn/what-is-devops
https://docs.microsoft.com/en-us/azure/devops/learn/what-is-devops
https://docs.microsoft.com/en-us/azure/devops/learn/what-is-devops
https://docs.microsoft.com/en-us/azure/devops/learn/what-is-devops
https://docs.microsoft.com/en-us/azure/devops/learn/what-is-devops
https://azuredevopslabs.com/labs/devopsserver/exploratorytesting/
https://azuredevopslabs.com/labs/devopsserver/exploratorytesting/
https://azuredevopslabs.com/labs/devopsserver/exploratorytesting/
https://azuredevopslabs.com/labs/devopsserver/exploratorytesting/
https://azuredevopslabs.com/labs/devopsserver/exploratorytesting/
https://azuredevopslabs.com/labs/devopsserver/exploratorytesting/
https://azuredevopslabs.com/labs/devopsserver/exploratorytesting/
https://azuredevopslabs.com/labs/devopsserver/exploratorytesting/
https://azuredevopslabs.com/labs/devopsserver/exploratorytesting/
https://azuredevopslabs.com/labs/devopsserver/exploratorytesting/
https://azuredevopslabs.com/labs/devopsserver/exploratorytesting/
https://azuredevopslabs.com/labs/devopsserver/exploratorytesting/
https://azuredevopslabs.com/labs/devopsserver/exploratorytesting/
https://azuredevopslabs.com/labs/devopsserver/exploratorytesting/
https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://marketplace.visualstudio.com/items?itemName=ms.vss-exploratorytesting-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-exploratorytesting-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-exploratorytesting-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-exploratorytesting-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-exploratorytesting-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-exploratorytesting-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-exploratorytesting-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-exploratorytesting-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-exploratorytesting-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-exploratorytesting-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-exploratorytesting-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-exploratorytesting-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-exploratorytesting-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-exploratorytesting-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-exploratorytesting-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-exploratorytesting-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-exploratorytesting-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-exploratorytesting-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-exploratorytesting-web
https://marketplace.visualstudio.com/items?itemName=ms.vss-exploratorytesting-web
https://docs.microsoft.com/en-us/azure/devops/test/request-stakeholder-feedback
https://docs.microsoft.com/en-us/azure/devops/test/request-stakeholder-feedback
https://docs.microsoft.com/en-us/azure/devops/test/request-stakeholder-feedback
https://docs.microsoft.com/en-us/azure/devops/test/request-stakeholder-feedback
https://docs.microsoft.com/en-us/azure/devops/test/request-stakeholder-feedback
https://docs.microsoft.com/en-us/azure/devops/test/request-stakeholder-feedback
https://docs.microsoft.com/en-us/azure/devops/test/request-stakeholder-feedback
https://docs.microsoft.com/en-us/azure/devops/test/request-stakeholder-feedback
https://docs.microsoft.com/en-us/azure/devops/test/request-stakeholder-feedback
https://docs.microsoft.com/en-us/azure/devops/test/request-stakeholder-feedback
https://docs.microsoft.com/en-us/azure/devops/test/request-stakeholder-feedback
https://docs.microsoft.com/en-us/azure/devops/test/request-stakeholder-feedback
https://docs.microsoft.com/en-us/azure/devops/test/request-stakeholder-feedback
https://docs.microsoft.com/en-us/azure/devops/test/request-stakeholder-feedback
https://docs.microsoft.com/en-us/azure/devops/test/request-stakeholder-feedback
https://docs.microsoft.com/en-us/azure/devops/test/request-stakeholder-feedback
https://docs.microsoft.com/en-us/azure/devops/test/request-stakeholder-feedback
https://docs.microsoft.com/en-us/azure/devops/test/request-stakeholder-feedback
https://docs.microsoft.com/en-us/azure/devops/test/request-stakeholder-feedback
https://docs.microsoft.com/en-us/azure/devops/test/request-stakeholder-feedback
https://docs.microsoft.com/en-us/azure/devops/test/request-stakeholder-feedback
https://docs.microsoft.com/en-us/azure/devops/test/request-stakeholder-feedback
https://docs.microsoft.com/en-us/azure/devops/test/request-stakeholder-feedback
https://docs.microsoft.com/en-us/azure/devops/test/request-stakeholder-feedback

19
Challenges of Applying CI

Scenarios in DevOps
Continuous Integration (CI) is a step ahead of DevOps. In the previous chapter, we
discussed the basics of CI and how DevOps depends on it. Its implementation was
presented in Chapter 18, Understanding DevOps Principles, too, but differently from the
other practical chapters, the purpose of this chapter is discussing how to enable CI in a real
scenario, considering the challenges that you, as a software architect, will need to deal with.

The topics covered in this chapter are as follows:

Understanding CI
Understanding the risks and challenges when using CI
Understanding the WWTravelClub project approach for this chapter

Like in the previous chapter, the sample of the WWTravelClub will be presented during the
explanation of the chapter, since all the screens captured to exemplify CI came from it.
Besides this, we will offer a conclusion at the end of the chapter so you can understand CI
principles easily.

By the end of the chapter, you will be able to decide whether or not to use CI in your project
environment. Additionally, you will be able to define the tools needed for the successful
use of this approach.

Challenges of Applying CI Scenarios in DevOps Chapter 19

[524]

Technical requirements
This chapter requires Visual Studio 2019 Community Edition or better. You may also need
an Azure DevOps account, as described in Chapter 3, Documenting Requirements with Azure
DevOps.

Understanding CI
As soon as you start working with a platform such as Azure DevOps, enabling CI will
definitely be easy when it comes to clicking on the options for doing so, as we saw in
Chapter 18, Understanding DevOps Principles. So, technology is not the Achilles' heel for
implementing this process.

The following screenshot shows an example of how easy it is to turn on CI using Azure
DevOps. By clicking in the build pipeline and editing it, you will be able to set a trigger that
enables CI after some clicks:

The truth is that CI will help you solve some problems. For instance, it will force you to test
your code, since you will need to commit the changes faster, so other developers can make
use of the code you are programming.

On the other hand, you will not enable CI just by clicking on the preceding screenshot. For
sure, you will turn on the possibility of starting a build as soon as you get a commit done
and the code is done, but this is far from saying you have CI available in your solution.

Challenges of Applying CI Scenarios in DevOps Chapter 19

[525]

The reason why you as a software architect need to worry a bit more about it is related to
the real understanding of what DevOps is. As discussed in Chapter 18, Understanding
DevOps Principles, the need to deliver value to the end user will always be a good way to
decide and draw the development life cycle. So, even if turning on CI is easy, what is the
impact of this feature being enabled for your end user? Once you have all the answers to
this question and you know how to reduce the risks of its implementation, then you will be
able to say that you have a CI process implemented.

It is worth mentioning that CI is a principle that will make DevOps work better and faster,
as was discussed in Chapter 18, Understanding DevOps Principles. However, DevOps surely
can live without it, once you are not sure if your process is mature enough to enable code
being continuously delivered. More than that, if you turn on CI in a team that is not mature
enough to deal with its complexity, you will probably cause a bad understanding of
DevOps, since you will start incurring some risks while deploying your solution.

This is the reason why we are dedicating an extra chapter on CI. You need to understand
the risks and challenges you will have as a software architect once you turn CI on.

Understanding the risks and challenges
when using CI
Now, you may be thinking about the risks and challenges as a way for you to avoid using
CI. But why should we avoid using it if it will help you do a better DevOps process? This is
not the purpose of the chapter. The idea of this section is to help you, as a software
architect, to mitigate the risks and find a better way to pass through the challenges using
good processes and techniques.

The list of risks and challenges that will be discussed in the chapter are as follows:

Continuous production deployment
Incomplete features in the production
Unstable solutions for testing

Once you have the techniques and the processes defined to deal with them, there is no
reason to not use CI. It is worth mentioning that DevOps does not depend on CI. However,
it does make DevOps work more softly. Now, let's have a look at them.

Challenges of Applying CI Scenarios in DevOps Chapter 19

[526]

Disabling continuous production deployment
Continuous production deployment is a process where, after a commit of a new piece of
code and some pipeline steps, you will have this code in the production environment. This
is not impossible but is really hard and expensive to do. Besides, you need to have a really
mature team. The problem is that most of the demos and samples you will find on the
internet presenting CI will show you a fast-track to deploy the code. The demonstrations of
CI/CD look so simple and easy to do! This simplicity can suggest you work as soon as
possible on its implementation. However, if you think a little more, this scenario can be
dangerous if you deploy directly in production! In a solution that needs to be available 24
hours a day, 7 days a week, this is impractical. So, you will need to worry about that and
think of different solutions.

The first one is the use of a multi-stage scenario, as described in Chapter 18, Understanding
DevOps Principles. The multi-stage scenario can bring more security to the ecosystem of the
deployment you are building. Besides, you will get more options to avoid wrong
deployments into production, such as pre-deployment approvals:

Challenges of Applying CI Scenarios in DevOps Chapter 19

[527]

It is worth mentioning, too, that you can build a deployment pipeline where all your code
and software structure will be updated by this tool. However, if you have something out of
this scenario, such as database scripts and environment configurations, a wrong publication
into production may cause damage to end users. Besides, the decision of when the
production will be updated needs to be planned and, in many scenarios, all the platform
users need. Use a change management procedure in these cases needs to be decided.

So, the challenge of delivering code to production will make you think about a schedule to
do so. It does not matter if your cycle is monthly, daily, or even at each commit. The key
point here is that you need to create a process and a pipeline that guarantees that only good
and approved software is in the production stage.

Incomplete features
While a developer of your team is creating a new feature or fixing a bug, you will probably
consider generating a branch that can avoid the use of the branch designed for continuous
delivery. A branch can be considered a feature available in code repositories to enable the
creation of an independent line of development since it isolates the code. As you can see in
the following screenshot, creating a branch using Visual Studio is quite simple:

Challenges of Applying CI Scenarios in DevOps Chapter 19

[528]

This seems to be a good approach, but let's suppose that the developer has considered the
implementation ready for deploying and has just merged the code into the master branch.
What if this feature is not ready yet, just because a requirement was omitted? What if the
bug has caused an incorrect behavior? The result can be a release with an incomplete
feature or an incorrect fix.

A good practice to avoid broken features and even wrong fixes in the master branch is the
use of pull requests. Pull requests will let other team developers know that the code you
developed is ready to be merged. The following screenshot shows how you can use Azure
DevOps to create a New Pull Request for a change you have made:

Once the pull request is created and the reviewers are defined, each reviewer will be able to
analyze the code and decide whether this code is healthy enough to be in the master
branch. The following screenshot shows a way to check it by using the compare tool to
analyze the change:

Challenges of Applying CI Scenarios in DevOps Chapter 19

[529]

Once all approvals are done, you will be able to safely merge the code to the master branch,
as you can see in the following screenshot. To merge the code, you will need to click on
Complete merge. If the CI trigger is enabled, as shown earlier in the chapter, Azure
DevOps will start a build pipeline:

Challenges of Applying CI Scenarios in DevOps Chapter 19

[530]

There is no way to argue that without a process like this, the master branch will suffer from
many bad code being deployed that can cause damage together with CD. It is worth
mentioning that the code review is an excellent practice in CI/CD scenarios, and it is
considered a wonderful practice for creating good quality in any software as well.

The challenge that you need to focus on here is guaranteeing that only entire features will
appear to your end users. You may use for solving it the feature flag principle, which is a
technique that makes sure only features that are ready are presented to end users. Again,
we are not talking about CI as a tool, but as a process to be defined and used every single
time you need to deliver code for production.

Unstable solution for testing
Considering that you have already mitigated the two other risks presented in this topic,
you may find it pretty hard to have bad code after CI. It is true that the worries presented
earlier will certainly be lower considering the fact that you are working with a multi-stage
scenario and pull requests before pushing to the first stage.

But is there a way to accelerate the evaluation of release, being sure that this new release is
ready for your stakeholder's tests? Yes, there is! Technically, the way you can do so is
described in the use cases of Chapter 15, Testing Your Code with Unit Test Cases and TDD,
and Chapter 20, Automation for Software Testing.

As discussed in both those chapters, it is impracticable to automate every single part of the
software, considering the efforts needed to do so. Besides, the maintenance of automation
can be more expensive in scenarios where the user interface or the business rules change a
lot.

To exemplify it, let's have a look at the following screenshot, which shows the unit and
functional tests created by Azure DevOps when the WWTravelClub project is started:

Challenges of Applying CI Scenarios in DevOps Chapter 19

[531]

There are some architectural patterns, such as SOLID, presented in Chapter 9, Design
Patterns and .NET Core Implementation, and quality assurance approaches, such as peer
review, that will give you better results than software testing.

However, these approaches do not invalidate automation practice. The truth is that all of
them will be useful for getting a stable solution, especially when you are running a CI
scenario. In this environment, the best thing you can do is to detect errors and wrong
behaviors as fast as you can. Both unit and functional tests, as shown earlier, will help you
with this.

Challenges of Applying CI Scenarios in DevOps Chapter 19

[532]

Unit tests will help you a lot while discovering business logic errors before deployment,
during the building pipeline. For instance, in the following screenshot, you will find a
simulated error that canceled the build since the unit test did not pass:

The way to get this error is quite simple. You need to code something that does not respond
according to what the unit tests are checking. Once you commit it, considering you have the
trigger of continuous deployment on, you will have the code building in the pipeline. One
of the last steps provided by the Azure DevOps Project Wizard we have created is the
execution of the unit tests. So, after the build of the code, the unit tests will run. If the code
does not match the tests anymore, you will get the error.

Meanwhile, the following screenshot shows an error during the functional tests in the
Development/Tests stage. At this moment, the Development/Tests environment has a bug
that was rapidly detected by functional tests:

Challenges of Applying CI Scenarios in DevOps Chapter 19

[533]

But this is not the only good thing about applying functional tests in the process of CI/CD,
once you have protected other deployment stages with this approach. For instance, let's
take a look at the following screenshot from the Release pipeline interface in Azure
DevOps. If you look at Release-9, you will realize that since this error happened after the
publication in the Development/Tests environment, the multi-staged environment will
protect the other stages of the deployment:

Challenges of Applying CI Scenarios in DevOps Chapter 19

[534]

The key point to success in the CI process is to think about it as a useful tool for accelerating
the delivery of software and to not forget that a team always needs to deliver value to their
end users. With this approach, the techniques presented earlier will provide incredible
ways to achieve the results that your team aims for.

Understanding the WWTravelClub project
approach
During the chapter, WWTravelClub project screenshots were present, exemplifying the
steps for getting a safer approach while enabling CI. Even considering WWTravelClub as a
hypothetical scenario, some concerns were taken into account while building it:

CI is enabled, but a multi-stage scenario is enabled too.
Even with a multi-stage scenario, the pull request is a way to guarantee that only
code with good quality will be presented in the first stage.
To do a good job in the pull request, peer reviews are undertaken.
The peer reviews check, for instance, the presence of a feature flag while creating
a new feature.
The peer reviews check both unit and functional tests developed during the
creation of the new feature.

The preceding steps are not exclusively for WWTravelClub. You as a software architect will
need to define the approach to guarantee a safe CI scenario. You may use this as a starting
point.

Summary
This chapter covered the importance of understanding when you can enable CI in the
software development life cycle, considering the risks and challenges you will take as a
software architect once you decide to have it done in your solution.

Additionally, the chapter introduced some solutions and concepts that can make this
process easier, such as multi-stage environments, pull request reviews, feature flags, peer
reviews, and automated tests. Understanding these techniques and processes will enable
you to guide your project to a safer behavior when it comes to CI in a DevOps scenario.

In the next chapter, we will see how automation for software testing works.

Challenges of Applying CI Scenarios in DevOps Chapter 19

[535]

Questions
What is CI?1.
Can you have DevOps without CI?2.
What are the risks of enabling CI in a non-mature team?3.
How can a multi-stage environment help CI?4.
How can automated tests help CI?5.
How can pull requests help CI?6.
Do pull requests only work with CI?7.

Further reading
These are some websites where you will find more information on the topics covered in this
chapter:

https:/​/ ​azure. ​microsoft. ​com/ ​en-​us/ ​solutions/ ​architecture/ ​azure- ​devops-
continuous- ​integration- ​and- ​continuous- ​deployment- ​for- ​azure- ​web- ​apps/ ​

https:/​/ ​docs. ​microsoft. ​com/ ​en-​us/ ​azure/ ​devops- ​project/ ​azure- ​devops-
project- ​github

https:/​/ ​docs. ​microsoft. ​com/ ​en-​us/ ​aspnet/ ​core/ ​azure/ ​devops/ ​cicd

https:/​/ ​www. ​packtpub. ​com/ ​virtualization- ​and- ​cloud/ ​professional-
microsoft- ​azure- ​devops- ​engineering

https:/​/ ​www. ​packtpub. ​com/ ​virtualization- ​and- ​cloud/ ​hands- ​devops- ​azure-
video

https:/​/ ​www. ​packtpub. ​com/ ​networking- ​and- ​servers/ ​implementing- ​devops-
microsoft- ​azure

https:/​/ ​docs. ​microsoft. ​com/ ​en-​us/ ​azure/ ​devops/ ​repos/ ​git/​pullrequest

https:/​/ ​devblogs. ​microsoft. ​com/​devops/ ​whats- ​new- ​with- ​azure- ​pipelines/ ​

https:/​/ ​martinfowler. ​com/ ​bliki/ ​FeatureToggle. ​html

https://azure.microsoft.com/en-us/solutions/architecture/azure-devops-continuous-integration-and-continuous-deployment-for-azure-web-apps/
https://azure.microsoft.com/en-us/solutions/architecture/azure-devops-continuous-integration-and-continuous-deployment-for-azure-web-apps/
https://azure.microsoft.com/en-us/solutions/architecture/azure-devops-continuous-integration-and-continuous-deployment-for-azure-web-apps/
https://azure.microsoft.com/en-us/solutions/architecture/azure-devops-continuous-integration-and-continuous-deployment-for-azure-web-apps/
https://azure.microsoft.com/en-us/solutions/architecture/azure-devops-continuous-integration-and-continuous-deployment-for-azure-web-apps/
https://azure.microsoft.com/en-us/solutions/architecture/azure-devops-continuous-integration-and-continuous-deployment-for-azure-web-apps/
https://azure.microsoft.com/en-us/solutions/architecture/azure-devops-continuous-integration-and-continuous-deployment-for-azure-web-apps/
https://azure.microsoft.com/en-us/solutions/architecture/azure-devops-continuous-integration-and-continuous-deployment-for-azure-web-apps/
https://azure.microsoft.com/en-us/solutions/architecture/azure-devops-continuous-integration-and-continuous-deployment-for-azure-web-apps/
https://azure.microsoft.com/en-us/solutions/architecture/azure-devops-continuous-integration-and-continuous-deployment-for-azure-web-apps/
https://azure.microsoft.com/en-us/solutions/architecture/azure-devops-continuous-integration-and-continuous-deployment-for-azure-web-apps/
https://azure.microsoft.com/en-us/solutions/architecture/azure-devops-continuous-integration-and-continuous-deployment-for-azure-web-apps/
https://azure.microsoft.com/en-us/solutions/architecture/azure-devops-continuous-integration-and-continuous-deployment-for-azure-web-apps/
https://azure.microsoft.com/en-us/solutions/architecture/azure-devops-continuous-integration-and-continuous-deployment-for-azure-web-apps/
https://azure.microsoft.com/en-us/solutions/architecture/azure-devops-continuous-integration-and-continuous-deployment-for-azure-web-apps/
https://azure.microsoft.com/en-us/solutions/architecture/azure-devops-continuous-integration-and-continuous-deployment-for-azure-web-apps/
https://azure.microsoft.com/en-us/solutions/architecture/azure-devops-continuous-integration-and-continuous-deployment-for-azure-web-apps/
https://azure.microsoft.com/en-us/solutions/architecture/azure-devops-continuous-integration-and-continuous-deployment-for-azure-web-apps/
https://azure.microsoft.com/en-us/solutions/architecture/azure-devops-continuous-integration-and-continuous-deployment-for-azure-web-apps/
https://azure.microsoft.com/en-us/solutions/architecture/azure-devops-continuous-integration-and-continuous-deployment-for-azure-web-apps/
https://azure.microsoft.com/en-us/solutions/architecture/azure-devops-continuous-integration-and-continuous-deployment-for-azure-web-apps/
https://azure.microsoft.com/en-us/solutions/architecture/azure-devops-continuous-integration-and-continuous-deployment-for-azure-web-apps/
https://azure.microsoft.com/en-us/solutions/architecture/azure-devops-continuous-integration-and-continuous-deployment-for-azure-web-apps/
https://azure.microsoft.com/en-us/solutions/architecture/azure-devops-continuous-integration-and-continuous-deployment-for-azure-web-apps/
https://azure.microsoft.com/en-us/solutions/architecture/azure-devops-continuous-integration-and-continuous-deployment-for-azure-web-apps/
https://azure.microsoft.com/en-us/solutions/architecture/azure-devops-continuous-integration-and-continuous-deployment-for-azure-web-apps/
https://azure.microsoft.com/en-us/solutions/architecture/azure-devops-continuous-integration-and-continuous-deployment-for-azure-web-apps/
https://azure.microsoft.com/en-us/solutions/architecture/azure-devops-continuous-integration-and-continuous-deployment-for-azure-web-apps/
https://azure.microsoft.com/en-us/solutions/architecture/azure-devops-continuous-integration-and-continuous-deployment-for-azure-web-apps/
https://azure.microsoft.com/en-us/solutions/architecture/azure-devops-continuous-integration-and-continuous-deployment-for-azure-web-apps/
https://azure.microsoft.com/en-us/solutions/architecture/azure-devops-continuous-integration-and-continuous-deployment-for-azure-web-apps/
https://azure.microsoft.com/en-us/solutions/architecture/azure-devops-continuous-integration-and-continuous-deployment-for-azure-web-apps/
https://azure.microsoft.com/en-us/solutions/architecture/azure-devops-continuous-integration-and-continuous-deployment-for-azure-web-apps/
https://azure.microsoft.com/en-us/solutions/architecture/azure-devops-continuous-integration-and-continuous-deployment-for-azure-web-apps/
https://azure.microsoft.com/en-us/solutions/architecture/azure-devops-continuous-integration-and-continuous-deployment-for-azure-web-apps/
https://azure.microsoft.com/en-us/solutions/architecture/azure-devops-continuous-integration-and-continuous-deployment-for-azure-web-apps/
https://azure.microsoft.com/en-us/solutions/architecture/azure-devops-continuous-integration-and-continuous-deployment-for-azure-web-apps/
https://azure.microsoft.com/en-us/solutions/architecture/azure-devops-continuous-integration-and-continuous-deployment-for-azure-web-apps/
https://azure.microsoft.com/en-us/solutions/architecture/azure-devops-continuous-integration-and-continuous-deployment-for-azure-web-apps/
https://docs.microsoft.com/en-us/azure/devops-project/azure-devops-project-github
https://docs.microsoft.com/en-us/azure/devops-project/azure-devops-project-github
https://docs.microsoft.com/en-us/azure/devops-project/azure-devops-project-github
https://docs.microsoft.com/en-us/azure/devops-project/azure-devops-project-github
https://docs.microsoft.com/en-us/azure/devops-project/azure-devops-project-github
https://docs.microsoft.com/en-us/azure/devops-project/azure-devops-project-github
https://docs.microsoft.com/en-us/azure/devops-project/azure-devops-project-github
https://docs.microsoft.com/en-us/azure/devops-project/azure-devops-project-github
https://docs.microsoft.com/en-us/azure/devops-project/azure-devops-project-github
https://docs.microsoft.com/en-us/azure/devops-project/azure-devops-project-github
https://docs.microsoft.com/en-us/azure/devops-project/azure-devops-project-github
https://docs.microsoft.com/en-us/azure/devops-project/azure-devops-project-github
https://docs.microsoft.com/en-us/azure/devops-project/azure-devops-project-github
https://docs.microsoft.com/en-us/azure/devops-project/azure-devops-project-github
https://docs.microsoft.com/en-us/azure/devops-project/azure-devops-project-github
https://docs.microsoft.com/en-us/azure/devops-project/azure-devops-project-github
https://docs.microsoft.com/en-us/azure/devops-project/azure-devops-project-github
https://docs.microsoft.com/en-us/azure/devops-project/azure-devops-project-github
https://docs.microsoft.com/en-us/azure/devops-project/azure-devops-project-github
https://docs.microsoft.com/en-us/azure/devops-project/azure-devops-project-github
https://docs.microsoft.com/en-us/azure/devops-project/azure-devops-project-github
https://docs.microsoft.com/en-us/azure/devops-project/azure-devops-project-github
https://docs.microsoft.com/en-us/azure/devops-project/azure-devops-project-github
https://docs.microsoft.com/en-us/azure/devops-project/azure-devops-project-github
https://docs.microsoft.com/en-us/azure/devops-project/azure-devops-project-github
https://docs.microsoft.com/en-us/azure/devops-project/azure-devops-project-github
https://docs.microsoft.com/en-us/aspnet/core/azure/devops/cicd
https://docs.microsoft.com/en-us/aspnet/core/azure/devops/cicd
https://docs.microsoft.com/en-us/aspnet/core/azure/devops/cicd
https://docs.microsoft.com/en-us/aspnet/core/azure/devops/cicd
https://docs.microsoft.com/en-us/aspnet/core/azure/devops/cicd
https://docs.microsoft.com/en-us/aspnet/core/azure/devops/cicd
https://docs.microsoft.com/en-us/aspnet/core/azure/devops/cicd
https://docs.microsoft.com/en-us/aspnet/core/azure/devops/cicd
https://docs.microsoft.com/en-us/aspnet/core/azure/devops/cicd
https://docs.microsoft.com/en-us/aspnet/core/azure/devops/cicd
https://docs.microsoft.com/en-us/aspnet/core/azure/devops/cicd
https://docs.microsoft.com/en-us/aspnet/core/azure/devops/cicd
https://docs.microsoft.com/en-us/aspnet/core/azure/devops/cicd
https://docs.microsoft.com/en-us/aspnet/core/azure/devops/cicd
https://docs.microsoft.com/en-us/aspnet/core/azure/devops/cicd
https://docs.microsoft.com/en-us/aspnet/core/azure/devops/cicd
https://docs.microsoft.com/en-us/aspnet/core/azure/devops/cicd
https://docs.microsoft.com/en-us/aspnet/core/azure/devops/cicd
https://docs.microsoft.com/en-us/aspnet/core/azure/devops/cicd
https://docs.microsoft.com/en-us/aspnet/core/azure/devops/cicd
https://docs.microsoft.com/en-us/aspnet/core/azure/devops/cicd
https://docs.microsoft.com/en-us/aspnet/core/azure/devops/cicd
https://docs.microsoft.com/en-us/aspnet/core/azure/devops/cicd
https://www.packtpub.com/virtualization-and-cloud/professional-microsoft-azure-devops-engineering
https://www.packtpub.com/virtualization-and-cloud/professional-microsoft-azure-devops-engineering
https://www.packtpub.com/virtualization-and-cloud/professional-microsoft-azure-devops-engineering
https://www.packtpub.com/virtualization-and-cloud/professional-microsoft-azure-devops-engineering
https://www.packtpub.com/virtualization-and-cloud/professional-microsoft-azure-devops-engineering
https://www.packtpub.com/virtualization-and-cloud/professional-microsoft-azure-devops-engineering
https://www.packtpub.com/virtualization-and-cloud/professional-microsoft-azure-devops-engineering
https://www.packtpub.com/virtualization-and-cloud/professional-microsoft-azure-devops-engineering
https://www.packtpub.com/virtualization-and-cloud/professional-microsoft-azure-devops-engineering
https://www.packtpub.com/virtualization-and-cloud/professional-microsoft-azure-devops-engineering
https://www.packtpub.com/virtualization-and-cloud/professional-microsoft-azure-devops-engineering
https://www.packtpub.com/virtualization-and-cloud/professional-microsoft-azure-devops-engineering
https://www.packtpub.com/virtualization-and-cloud/professional-microsoft-azure-devops-engineering
https://www.packtpub.com/virtualization-and-cloud/professional-microsoft-azure-devops-engineering
https://www.packtpub.com/virtualization-and-cloud/professional-microsoft-azure-devops-engineering
https://www.packtpub.com/virtualization-and-cloud/professional-microsoft-azure-devops-engineering
https://www.packtpub.com/virtualization-and-cloud/professional-microsoft-azure-devops-engineering
https://www.packtpub.com/virtualization-and-cloud/professional-microsoft-azure-devops-engineering
https://www.packtpub.com/virtualization-and-cloud/professional-microsoft-azure-devops-engineering
https://www.packtpub.com/virtualization-and-cloud/professional-microsoft-azure-devops-engineering
https://www.packtpub.com/virtualization-and-cloud/professional-microsoft-azure-devops-engineering
https://www.packtpub.com/virtualization-and-cloud/professional-microsoft-azure-devops-engineering
https://www.packtpub.com/virtualization-and-cloud/professional-microsoft-azure-devops-engineering
https://www.packtpub.com/virtualization-and-cloud/professional-microsoft-azure-devops-engineering
https://www.packtpub.com/virtualization-and-cloud/hands-devops-azure-video
https://www.packtpub.com/virtualization-and-cloud/hands-devops-azure-video
https://www.packtpub.com/virtualization-and-cloud/hands-devops-azure-video
https://www.packtpub.com/virtualization-and-cloud/hands-devops-azure-video
https://www.packtpub.com/virtualization-and-cloud/hands-devops-azure-video
https://www.packtpub.com/virtualization-and-cloud/hands-devops-azure-video
https://www.packtpub.com/virtualization-and-cloud/hands-devops-azure-video
https://www.packtpub.com/virtualization-and-cloud/hands-devops-azure-video
https://www.packtpub.com/virtualization-and-cloud/hands-devops-azure-video
https://www.packtpub.com/virtualization-and-cloud/hands-devops-azure-video
https://www.packtpub.com/virtualization-and-cloud/hands-devops-azure-video
https://www.packtpub.com/virtualization-and-cloud/hands-devops-azure-video
https://www.packtpub.com/virtualization-and-cloud/hands-devops-azure-video
https://www.packtpub.com/virtualization-and-cloud/hands-devops-azure-video
https://www.packtpub.com/virtualization-and-cloud/hands-devops-azure-video
https://www.packtpub.com/virtualization-and-cloud/hands-devops-azure-video
https://www.packtpub.com/virtualization-and-cloud/hands-devops-azure-video
https://www.packtpub.com/virtualization-and-cloud/hands-devops-azure-video
https://www.packtpub.com/virtualization-and-cloud/hands-devops-azure-video
https://www.packtpub.com/virtualization-and-cloud/hands-devops-azure-video
https://www.packtpub.com/virtualization-and-cloud/hands-devops-azure-video
https://www.packtpub.com/virtualization-and-cloud/hands-devops-azure-video
https://www.packtpub.com/networking-and-servers/implementing-devops-microsoft-azure
https://www.packtpub.com/networking-and-servers/implementing-devops-microsoft-azure
https://www.packtpub.com/networking-and-servers/implementing-devops-microsoft-azure
https://www.packtpub.com/networking-and-servers/implementing-devops-microsoft-azure
https://www.packtpub.com/networking-and-servers/implementing-devops-microsoft-azure
https://www.packtpub.com/networking-and-servers/implementing-devops-microsoft-azure
https://www.packtpub.com/networking-and-servers/implementing-devops-microsoft-azure
https://www.packtpub.com/networking-and-servers/implementing-devops-microsoft-azure
https://www.packtpub.com/networking-and-servers/implementing-devops-microsoft-azure
https://www.packtpub.com/networking-and-servers/implementing-devops-microsoft-azure
https://www.packtpub.com/networking-and-servers/implementing-devops-microsoft-azure
https://www.packtpub.com/networking-and-servers/implementing-devops-microsoft-azure
https://www.packtpub.com/networking-and-servers/implementing-devops-microsoft-azure
https://www.packtpub.com/networking-and-servers/implementing-devops-microsoft-azure
https://www.packtpub.com/networking-and-servers/implementing-devops-microsoft-azure
https://www.packtpub.com/networking-and-servers/implementing-devops-microsoft-azure
https://www.packtpub.com/networking-and-servers/implementing-devops-microsoft-azure
https://www.packtpub.com/networking-and-servers/implementing-devops-microsoft-azure
https://www.packtpub.com/networking-and-servers/implementing-devops-microsoft-azure
https://www.packtpub.com/networking-and-servers/implementing-devops-microsoft-azure
https://www.packtpub.com/networking-and-servers/implementing-devops-microsoft-azure
https://www.packtpub.com/networking-and-servers/implementing-devops-microsoft-azure
https://docs.microsoft.com/en-us/azure/devops/repos/git/pullrequest
https://docs.microsoft.com/en-us/azure/devops/repos/git/pullrequest
https://docs.microsoft.com/en-us/azure/devops/repos/git/pullrequest
https://docs.microsoft.com/en-us/azure/devops/repos/git/pullrequest
https://docs.microsoft.com/en-us/azure/devops/repos/git/pullrequest
https://docs.microsoft.com/en-us/azure/devops/repos/git/pullrequest
https://docs.microsoft.com/en-us/azure/devops/repos/git/pullrequest
https://docs.microsoft.com/en-us/azure/devops/repos/git/pullrequest
https://docs.microsoft.com/en-us/azure/devops/repos/git/pullrequest
https://docs.microsoft.com/en-us/azure/devops/repos/git/pullrequest
https://docs.microsoft.com/en-us/azure/devops/repos/git/pullrequest
https://docs.microsoft.com/en-us/azure/devops/repos/git/pullrequest
https://docs.microsoft.com/en-us/azure/devops/repos/git/pullrequest
https://docs.microsoft.com/en-us/azure/devops/repos/git/pullrequest
https://docs.microsoft.com/en-us/azure/devops/repos/git/pullrequest
https://docs.microsoft.com/en-us/azure/devops/repos/git/pullrequest
https://docs.microsoft.com/en-us/azure/devops/repos/git/pullrequest
https://docs.microsoft.com/en-us/azure/devops/repos/git/pullrequest
https://docs.microsoft.com/en-us/azure/devops/repos/git/pullrequest
https://docs.microsoft.com/en-us/azure/devops/repos/git/pullrequest
https://docs.microsoft.com/en-us/azure/devops/repos/git/pullrequest
https://docs.microsoft.com/en-us/azure/devops/repos/git/pullrequest
https://docs.microsoft.com/en-us/azure/devops/repos/git/pullrequest
https://devblogs.microsoft.com/devops/whats-new-with-azure-pipelines/
https://devblogs.microsoft.com/devops/whats-new-with-azure-pipelines/
https://devblogs.microsoft.com/devops/whats-new-with-azure-pipelines/
https://devblogs.microsoft.com/devops/whats-new-with-azure-pipelines/
https://devblogs.microsoft.com/devops/whats-new-with-azure-pipelines/
https://devblogs.microsoft.com/devops/whats-new-with-azure-pipelines/
https://devblogs.microsoft.com/devops/whats-new-with-azure-pipelines/
https://devblogs.microsoft.com/devops/whats-new-with-azure-pipelines/
https://devblogs.microsoft.com/devops/whats-new-with-azure-pipelines/
https://devblogs.microsoft.com/devops/whats-new-with-azure-pipelines/
https://devblogs.microsoft.com/devops/whats-new-with-azure-pipelines/
https://devblogs.microsoft.com/devops/whats-new-with-azure-pipelines/
https://devblogs.microsoft.com/devops/whats-new-with-azure-pipelines/
https://devblogs.microsoft.com/devops/whats-new-with-azure-pipelines/
https://devblogs.microsoft.com/devops/whats-new-with-azure-pipelines/
https://devblogs.microsoft.com/devops/whats-new-with-azure-pipelines/
https://devblogs.microsoft.com/devops/whats-new-with-azure-pipelines/
https://devblogs.microsoft.com/devops/whats-new-with-azure-pipelines/
https://devblogs.microsoft.com/devops/whats-new-with-azure-pipelines/
https://devblogs.microsoft.com/devops/whats-new-with-azure-pipelines/
https://devblogs.microsoft.com/devops/whats-new-with-azure-pipelines/
https://devblogs.microsoft.com/devops/whats-new-with-azure-pipelines/
https://martinfowler.com/bliki/FeatureToggle.html
https://martinfowler.com/bliki/FeatureToggle.html
https://martinfowler.com/bliki/FeatureToggle.html
https://martinfowler.com/bliki/FeatureToggle.html
https://martinfowler.com/bliki/FeatureToggle.html
https://martinfowler.com/bliki/FeatureToggle.html
https://martinfowler.com/bliki/FeatureToggle.html
https://martinfowler.com/bliki/FeatureToggle.html
https://martinfowler.com/bliki/FeatureToggle.html
https://martinfowler.com/bliki/FeatureToggle.html
https://martinfowler.com/bliki/FeatureToggle.html
https://martinfowler.com/bliki/FeatureToggle.html
https://martinfowler.com/bliki/FeatureToggle.html

20
Automation for Software

Testing
In previous chapters, we discussed the importance of unit tests and integration tests in
software development, and how they ensure the reliability of your code base. We also
discussed how unit and integration tests are integral parts of all software production stages
and are run each time the code base is modified.

There are also other important tests, called functional/acceptation tests. They are run only
at the end of each sprint to verify that the output of the sprint actually satisfies the
specifications that were agreed upon with the stakeholders.

This chapter is specifically dedicated to functional/acceptance tests and to the techniques
for defining and executing them. More specifically, this chapter covers the following topics:

Understanding the purpose of functional tests
Using unit testing tools for automating functional tests in C#
Use case – automating functional tests

By the end of this chapter, you will be able to design both manual and automatic tests to
verify that the code produced by a sprint complies with its specifications.

Technical requirements
The reader is encouraged to read Chapter 15, Testing Your Code with Unit Test Cases and
TDD, before proceeding with this chapter.

This chapter requires Visual Studio 2017 or the 2019 free Community Edition or better with
all the database tools installed. Here, we will modify the code of Chapter 15, Testing Your
Code with Unit Test Cases and TDD, which is available at https:/ ​/ ​github. ​com/
PacktPublishing/​Hands- ​On- ​Software- ​Architecture- ​with- ​CSharp- ​8/​tree/ ​master/ ​ch20.

https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch20
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch20
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch20
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch20
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch20
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch20
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch20
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch20
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch20
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch20
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch20
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch20
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch20
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch20
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch20
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch20
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch20
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch20
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch20
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch20
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch20
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch20
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch20
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch20
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch20
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch20
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch20
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch20
https://github.com/PacktPublishing/Hands-On-Software-Architecture-with-CSharp-8/tree/master/ch20

Automation for Software Testing Chapter 20

[537]

Understanding the purpose of functional
tests
Functional/acceptance tests use techniques similar to unit and integration tests but differ
from them in that they are run only at the end of each sprint. They have the fundamental
role of verifying that the current version of the whole software complies with its
specifications. This verification is turned into a formal process for the following purposes:

Functional tests represent the most important part of the contract between
stakeholders and the development team, the other part being the verification of
non-functional specifications. The way this contract is formalized depends on the
very nature of the relationship between the development team and stakeholders.
In the case of a supplier-customer relationship, they become part of the supplier-
customer business contract for each sprint, and they are written by a team that
works for the customer. If the tests fail, then the sprint is rejected and the
supplier must run a supplementary sprint to fix all problems. In case there is no
formal business contract, the result of the tests is usually used to drive the
specifications for the next sprints. However, also in this case, if the failure
percentage is high, the sprint may be rejected and should be repeated.
Formalized functional tests that run at the end of each sprint avoid that results
achieved in previous sprints might be destroyed by new code.
When using an agile development methodology, maintaining an updated battery
of functional tests is the best way to get a formal representation of the final
system specifications since, during agile development, the specifications of the
final system are not decided before development starts but are the result of the
system evolution.

Since the output of the first sprints may differ a lot from the final system in these early
stages, it is not worth spending too much time writing detailed manual tests and/or
automatized tests. Therefore, you may limit to add a few examples to the user stories that
will be used both as inputs for software development and as manual tests.

As system functionalities become always more stable, it is worth investing time in writing
detailed and formal functional tests for them. For each functional specification, we must
write tests that verify their correct operation also in extreme cases. For instance, in a
payment use case, we must write tests that verify all possibilities:

Not enough funds
Various digitization errors

Automation for Software Testing Chapter 20

[538]

Card expired
Wrong credentials and repeated wrong credentials

In the case of manual tests, for each of the preceding scenarios, we must give all details of
all steps involved in each operation, and for each step, the expected result.

An important decision is if you want to automate all or a part of the acceptance/functional
tests since it is very expansive to write automatic tests that simulate a human operator that
interacts with a system's user interface. The final decision depends on the cost of the test
implementation divided by the expected number of times it will be used.

In the case of CI/CD, the same functional test can be executed several times but, unluckily,
functional/acceptance tests are strictly tied to the way the user interface is implemented,
and, in modern systems, the user interface is frequently changed. Therefore, in this case, the
same test is executed with exactly the same user interface not more than a couple of times.

In order to overcome all the problems related to the user interface, functional tests can be
implemented as subcutaneous tests, that is, as tests that bypass the user interface.
However, subcutaneous tests are incomplete by their very nature since they can't detect
errors in the user interface itself. Moreover, in the case of a web application, subcutaneous
tests usually suffer from other limitations because they bypass the whole HTTP protocol. In
the case of ASP.NET Core applications, this means that the whole ASP.NET Core pipeline
must be bypassed and that requests are passed directly to ASP.NET controllers. Therefore,
authentication, authorization, CORS, and the behavior of other modules in the ASP.NET
Core pipeline will not be analyzed by the tests.

A complete automatic functional test of a web application should do the following things:

Start an actual browser on the URL to be tested.1.
Wait so that any JavaScript on the page completes its execution.2.
Then, send commands to the browser that simulate the behavior of a human3.
operator.
Finally, after each interaction with the browser, automatic tests should wait so4.
that any JavaScript that was triggered by the interaction completes.

While browser automatization tools exist, tests implemented with browser automatization,
as mentioned earlier, are very expensive and difficult to implement. Therefore, the
suggested approach of ASP.NET Core MVC is to send actual HTTP requests to an actual
copy of the web application, with a .NET HTTP client instead of using a browser. Once the
HTTP client receives an HTTP response, it parses it in a DOM tree and verifies that it
received the right response.

Automation for Software Testing Chapter 20

[539]

The only difference with the browser automatization tools is that the HTTP client is not able
to run any JavaScript. However, other tests may be added to test the JavaScript code. These
tests are based on test tools that are specific to JavaScript, such as Jasmine and Karma.

The next section explains how to automatize functional tests for web applications with a
.NET HTTP client, while a practical example of functional test automation is shown in the
last section.

Using unit testing tools to automate
functional tests in C#
Automated functional/acceptance tests use the same test tools as unit and integration tests.
That is, these tests can be embedded in the same xUnit, NUnit, or MSTests projects that we
described in Chapter 15, Testing Your Code with Unit Test Cases and TDD. However, in this
case, we must add further tools that are able to interact with and inspect the user interface.

In the remainder of this chapter, we will focus on web applications since they are the main
focus of this book. Accordingly, if we are testing web APIs, we just need HTTPClient
instances since they can easily interact with web API endpoints both in XML and JSON.

In the case of ASP.NET Core MVC applications that return HTML pages, the interaction is
more complex, since we also need tools for parsing and interacting with the HTML page
DOM tree. The AngleSharp NuGet package is a great solution since it supports state-of-
the-art HTML and minimal CSS and has extension points for externally provided JavaScript
engines, such as Node.js. However, we don't advise you to include JavaScript and CSS in
your tests, since they are strictly tied to target browsers, so the best option for them is to use
JavaScript-specific test tools that you can run directly in the target browsers themselves.

There are two basic options for testing a web application with the HTTPClient class:

An HTTPClient instance connects with the actual staging web application
through the internet/intranet, together with all other humans that are beta-testing
the software. The advantage of this approach is that you are testing the real stuff,
but tests are more difficult to conceive since you can't control the initial state of
the application before each test.

Automation for Software Testing Chapter 20

[540]

An HTTPClient instance connects with a local application that is configured,
initialized, and launched before every single test. This scenario is completely
analogous to the unit test scenario. Test results are reproducible the initial state
before each test is fixed, tests are easier to design, and the actual database can be
replaced by a faster and easier-to-initialize in-memory database. However, in this
case, you are far from the actual system's operation.

A good strategy is to use the second approach, where you have full control of the initial
state, for testing all extreme cases, and then the first approach for testing random average
cases on the real stuff.

The two sections that follow describe both approaches. The two approaches differ just in
the way you define the fixtures of your tests.

Testing the staging application
In this case, your tests need just an instance of HTTPClient, so you must define an efficient
fixture that supplies HTTPClient instances, avoiding the risk of running out of windows
connections. We faced this problem in the .NET Core HTTP clients section of Chapter
12, Applying Service-Oriented Architectures with .NET Core. It can be solved by managing
HTTPClient instances with IHTTPClientFactory and injecting them with dependency
injection.

Once we have a dependency injection container, we can enrich it with the capability of
efficiently handling HTTPClient instances with the following code snippet:

services.AddHTTPClient();

Here, the AddHTTPClient extension belongs to the
Microsoft.Extensions.DependencyInjection namespace and is defined in
the Microsoft.Extensions.HTTP NuGet package. Therefore, our test fixture must create
a dependency injection container, must call AddHTTPClient, and finally, must build the
container. The following fixture class does this job (please refer to the Advanced test
preparation/test tear down scenarios section of Chapter 15, Testing Your Code with Unit Test
Cases and TDD, if you don't remember fixture classes):

public class HTTPClientFixture
{
 public HTTPClientFixture()
 {
 var serviceCollection = new ServiceCollection();
 serviceCollection

Automation for Software Testing Chapter 20

[541]

 .AddHTTPClient();
 ServiceProvider = serviceCollection.BuildServiceProvider();
 }

 public ServiceProvider ServiceProvider { get; private set; }
}

After the preceding definition, your tests should look as follows:

public class UnitTest1:IClassFixture<HTTPClientFixture>
{
 private ServiceProvider _serviceProvider;

 public UnitTest1(HTTPClientFixture fixture)
 {
 _serviceProvider = fixture.ServiceProvider;
 }

 [Fact]
 public void Test1()
 {
 using (var factory =
 _serviceProvider.GetService<IHTTPClientFactory>())
 {
 HTTPClient client = factory.CreateClient();
 //use client to interact with application here
 }
 }
}

In Test1, once you get an HTTP client, you can test the application by issuing an HTTP
request and then by analyzing the response returned by the application. More details on
how to process the response returned by the server will be given in the Use case section.

The next section explains how to test an application that runs in a controlled environment.

Testing a controlled application
In this case, we create an ASP.NET Core server within the test application and test it with
an HTTPClient instance. The Microsoft.AspNetCore.Mvc.Testing NuGet package
contains all that we need to create both an HTTP client and the server running the
application. We also need to reference the whole web framework by referencing
the Microsoft.AspNetCore.App NuGet package.

Automation for Software Testing Chapter 20

[542]

Finally, we must also transform the test project into a web project with the following steps:

Click on the test project icon in Visual Studio solution explorer, and select the1.
edit project item from the context menu.
Replace the root XML node, which should be <Project2.
Sdk="Microsoft.NET.Sdk">, with <Project
Sdk="Microsoft.NET.Sdk.web">.

Microsoft.AspNetCore.Mvc.Testing contains a fixture class that does the job of
launching a local web server and furnishing a client for interacting with it. The predefined
fixture class is WebApplicationFactory<T>. The generic T argument must be instantiated
with the Startup class of your web project.

Tests look like the following class:

public class UnitTest1
 : IClassFixture<WebApplicationFactory<MyProject.Startup>>
{
 private readonly
 WebApplicationFactory<RazorPagesProject.Startup> _factory;

 public UnitTest1 (WebApplicationFactory<MyProject.Startup> factory)
 {
 _factory = factory;
 }

 [Theory]
 [InlineData("/")]
 [InlineData("/Index")]
 [InlineData("/About")]

 public async Task MustReturnOK(string url)
 {
 var client = _factory.CreateClient();
 // here both client and server are ready
 var response = await client.GetAsync(url);
 //get the response
 response.EnsureSuccessStatusCode();
 // verify we got a success return code.
 }
 ...

}

Automation for Software Testing Chapter 20

[543]

If you want to analyze the HTML of the returned pages, you must also reference
the AngleSharp NuGet package. We will see how to use it in the example of the next
section. The simplest way to cope with databases in this type of tests is to replace them with
in-memory databases that are faster and automatically cleared whenever the local server is
shut down and restarted.

This can be done by creating a new deployment environment, say AutomaticStaging,
and an associate configuration file that is specific for the tests. After having created this
new deployment environment, go to the ConfigureServices method of your
application's Startup class and locate the place where you add your
DBContext configuration. Once located that place, add an if there, that, in case the
application is running in the AutomaticStaging environment, replaces your DBContext
configuration with something like this:

services.AddDbContext<MyDBContext>(options =>
options.UseInMemoryDatabase(databaseName: "MyDatabase"));

As an alternative, you can also add all needed instructions to clear a standard database in
the constructor of a custom fixture that inherits from WebApplicationFactory<T>.

Use case – automating functional tests
In this section, we will add a simple acceptance test to the ASP.NET Core test project of
Chapter 15, Testing Your Code with Unit Test Cases and TDD. Our test approach is based on
the Microsoft.AspNetCore.Mvc.Testing and AngleSharp NuGet packages. Please
make a new copy of the whole solution.

As a first step, we must turn the test project into a web project by replacing the sdk
attribute of the root node of its project file in Sdk="Microsoft.NET.Sdk.web".

The test project already references the ASP.NET Core project under test and all the
required xUnit NuGet packages, so we need to add just the
Microsoft.AspNetCore.Mvc.Testing and AngleSharp NuGet packages.

Now, let's add a new class file called UIExampleTestcs.cs. We need using statements to
reference all the necessary namespaces. More specifically, we need the following:

using PackagesManagement;: This is needed for referencing your application
classes.
using Microsoft.AspNetCore.Mvc.Testing;: This is needed for referencing
the client and server classes.

Automation for Software Testing Chapter 20

[544]

using AngleSharp; and using AngleSharp.Html.Parser;: These are
needed for referencing AngleSharp classes.
System.IO: This is needed in order to extract HTML from HTTP responses.
using Xunit: This is needed for referencing all xUnit classes.

Summing up, the whole using block is as follows:

using PackagesManagement;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Xunit;
using Microsoft.AspNetCore.Mvc.Testing;
using AngleSharp;
using AngleSharp.Html.Parser;
using System.IO;

We will use the standard fixture class we introduced in the previous Testing a controlled
application section, that is, the following:

public class UIExampleTestcs:
 IClassFixture<WebApplicationFactory<Startup>>
{
 private readonly
 WebApplicationFactory<Startup> _factory;
 public UIExampleTestcs(WebApplicationFactory<Startup> factory)
 {
 _factory = factory;
 }
}

Now, we are ready to write a test for the home page! This test verifies that the home URL
returns a successful HTTP result and that the home page contains a link to the package
management page, which is the /ManagePackages relative link.

It is fundamental to understand that automatic tests must not depend on the details of the
HTML, but that they must verify just logical facts, in order to avoid frequent changes after
each small modification of the application HTML. That's why we just verify that the needed
links exist without putting constraints on where they are.

Automation for Software Testing Chapter 20

[545]

Let's call TestMenu our home page test:

[Fact]
public async Task TestMenu()
{
 var client = _factory.CreateClient();
 ...
 ...
}

The first step of each test is the creation of a client. Then, if the test needs the analysis of
some HTML, we must prepare the so-called AngleSharp browsing context:

//Create an angleSharp default configuration
var config = Configuration.Default;

//Create a new context for evaluating webpages
//with the given config
var context = BrowsingContext.New(config);

The configuration object specifies options such as cookie handling and other browser-
related properties. At this point, we are ready to require the home page:

var response = await client.GetAsync("/");

As a first step, we verify that the response we received contains a success status code, as
follows:

response.EnsureSuccessStatusCode();

The preceding method call throws an exception in case of unsuccessful status code, hence
causing the test to fail. HTML analysis needs to be extracted from the response. The
following code shows a simple way to do it:

var stream = await response.Content.ReadAsStreamAsync();
string source;
using (StreamReader responseReader = new StreamReader(stream))
{
 source = await responseReader.ReadToEndAsync();
}

ReadAsStreamAsync returns Stream, which we can use to build StreamReader (a stream
specialized for reading text), which can read the whole response body.

Automation for Software Testing Chapter 20

[546]

Now, we must pass the extracted HTML to our previous AngleSharp browsing context
object, so it can build a DOM tree. The following code shows how to do it:

var document = await context.OpenAsync(req => req.Content(source));

The OpenAsync method executes a DOM-building activity with the settings contained in
context. The input for building the DOM document is specified by the lambda function
passed as an argument to OpenAsync. In our case, req.Content(...) builds a DOM tree
from the HTML string passed to the Content method, which is the HTML contained in the
response received by the client.

Once a document object is obtained, we can use it as we would use it in JavaScript. In
particular, we can use QuerySelector to find an anchor with the required link:

var node = document.QuerySelector("a[href=\"/ManagePackages\"]");

It remains to verify just that node is not null:

Assert.NotNull(node);

We have done it! If you want to analyze pages that require a user to be logged in or other
more complex scenarios, you need to enable cookies and automatic URL redirects in the
HTTP client. This way, the client will behave like a usual browser that stores and sends
cookies and that moves to another URL whenever it receives a Redirect HTTP
response. This can be done by passing an options object to the CreateClient method, as
follows:

var client = _factory.CreateClient(
 new WebApplicationFactoryClientOptions
 {
 AllowAutoRedirect=true,
 HandleCookies=true
 });

With the preceding setup, your tests can do everything a usual browser can do. For
instance, you can design tests where the HTTP client logs in and accesses pages that require
authentication since HandleCookies=true lets the authentication cookie be stored by the
client and be sent in all subsequent requests.

Automation for Software Testing Chapter 20

[547]

Summary
This chapter explains the importance of acceptance/functional tests, and how to define
detailed manual tests to be run on the output of each sprint. At this point, you should be
able to define automatic and/or manual tests to verify that, at the end of each sprint, your
application complies with its specifications.

Then, this chapter analyzed when it is worth automating some or all acceptance/functional
tests and describes how to automate them in ASP.NET Core applications.

A final example showed how to write, in practice, ASP.NET Core acceptance/functional
tests with the help of AngleSharp to inspect the responses returned by the application.

Questions
Is it always worth automating user interface acceptance tests in the case of quick1.
CI/CD cycles?
What is the disadvantage of the subcutaneous test for ASP.NET Core2.
applications?
What is the suggested technique for writing ASP.NET Core acceptance tests?3.
What is the suggested way of inspecting the HTML returned by the server?4.

Further reading
More details on the Microsoft.AspNetCore.Mvc.Testing NuGet package and
AngleSharp can be found in their respective official documentation at https:/ ​/​docs.
microsoft.​com/​en- ​US/ ​aspnet/ ​core/ ​test/ ​integration- ​tests? ​view= ​aspnetcore- ​3.
0 and https:/​/​anglesharp. ​github. ​io/ ​.

Readers interested in JavaScript tests can refer to the Jasmine documentation: https:/ ​/
jasmine.​github.​io/ ​.

https://docs.microsoft.com/en-US/aspnet/core/test/integration-tests?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/test/integration-tests?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/test/integration-tests?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/test/integration-tests?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/test/integration-tests?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/test/integration-tests?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/test/integration-tests?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/test/integration-tests?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/test/integration-tests?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/test/integration-tests?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/test/integration-tests?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/test/integration-tests?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/test/integration-tests?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/test/integration-tests?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/test/integration-tests?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/test/integration-tests?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/test/integration-tests?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/test/integration-tests?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/test/integration-tests?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/test/integration-tests?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/test/integration-tests?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/test/integration-tests?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/test/integration-tests?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/test/integration-tests?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/test/integration-tests?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/test/integration-tests?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/test/integration-tests?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/test/integration-tests?view=aspnetcore-3.0
https://docs.microsoft.com/en-US/aspnet/core/test/integration-tests?view=aspnetcore-3.0
https://anglesharp.github.io/
https://anglesharp.github.io/
https://anglesharp.github.io/
https://anglesharp.github.io/
https://anglesharp.github.io/
https://anglesharp.github.io/
https://anglesharp.github.io/
https://anglesharp.github.io/
https://anglesharp.github.io/
https://anglesharp.github.io/
https://jasmine.github.io/
https://jasmine.github.io/
https://jasmine.github.io/
https://jasmine.github.io/
https://jasmine.github.io/
https://jasmine.github.io/
https://jasmine.github.io/
https://jasmine.github.io/
https://jasmine.github.io/

Assessments

Chapter 1
A software architect needs to be aware of any technology that can help them1.
solve problems faster and ensure they have better quality.
Azure provides, and keeps evolving, lots of components that a software architect2.
can implement in solutions.
The process model can help you understand the team you have, the kind of3.
solution you will provide, and the budget that's available.
A software architect pays attention to any user or system requirement that can4.
have an effect on performance, security, usability, and so on.
All of them, but the non-functional requirements need to be given more5.
attention.
Design Thinking is a tool that helps software architects define exactly what users6.
need.
User Stories are good when we want to define functional requirements.7.
Caching, asynchronous programming, and correct object allocation.8.
To check that the implementation is correct, a software architect compares it with9.
models and prototypes that have already been designed and validated.

Chapter 2
Vertically and horizontally.1.
Yes, you can deploy automatically to an already defined web app or create a new2.
one directly using Visual Studio.
To take advantage of available hardware resources by minimizing the time they3.
remain idle.
Code behavior is deterministic, so it is easy to debug. No deadlocks are possible4.
and the execution flow mimics the flow of sequential code, which means it's
easier to design and understand.
Because the right order minimizes the number of gestures that are needed to fill5.
in a form.

Assessments

[549]

Because it allows for the manipulation of path files in a way that is independent6.
of the operating system.
It can be used with several .NET Core versions, as well as with several versions7.
of the classic .NET framework.
Console, .NET Core, and .NET standard class library; ASP.NET Core, Test, and8.
Microservices.

Chapter 3
No, it is available for several platforms.1.
Yes, every step involved in the development/deployment process can be2.
automated, including deployment to production.
Automatic, manual, and load test plans.3.
Yes, they can – through Azure DevOps feeds.4.
To manage requirements and to organize the whole development process.5.
Epic work items represent high-level system subparts that are made up of several6.
features.
A children-father relationship.7.

Chapter 4
IaaS is a good option when you are migrating from an on-premise solution or if1.
you have an infrastructure team.
PaaS is the best option for fast and safe software delivery in systems where the2.
team is focused on software development.
If the solution you intend to deliver is provided by a well-known player, such as3.
a SaaS, you should consider using it.
Serverless is definitely an option when you are building a new system where you4.
don't have people who specialize in infrastructure and you don't want to worry
about scalability.
Azure SQL Server Database can be up in minutes and you will have all the5.
power of a Microsoft SQL Server afterward.
Azure provides a set of services called Azure Cognitive Services. These services6.
provide solutions for vision, speech, language, search, and knowledge.

Assessments

[550]

In a hybrid scenario, you have the flexibility to decide on the best solution for7.
each part of your system while respecting the solution's path and driving it into
the future.
To allow update/write parallelism.8.
The third argument that's passed to the Create method, which creates proxy9.
instances, allows us to specify permitted targets for communication. In general,
the third argument of the ServiceReplicaListener constructor specifies
whether the listener will be created on secondary replicas or not.

Chapter 5
The modularity of code and deployment modularity.1.
No, other important advantages include handling the development team and the2.
whole CI/CD cycle well, and the possibility of mixing heterogeneous
technologies easily and effectively.
A library that helps us implement resilient communication.3.
It is in the HostBuilder method that you can declare dependency injection and4.
hosted services.
Once you've installed Docker on your development machine, you can develop,5.
debug, and deploy Dockerized .NET Core applications. You can also add Docker
images to Service Fabric applications that are being handled with Visual Studio.
The one based on Kubernetes .yaml files.6.
The one that's exposed to traffic from outside the cluster and is accessible7.
through the cluster's URI.

Chapter 6
With the help of database-dependent providers.1.
Either by calling them Id or by decorating them with the Key attribute.2.
With the MaxLength and MinLength attributes.3.
With something similar to: builder.Entity<Package>().HasIndex(m =>4.
m.Name);.

Assessments

[551]

With something similar to builder.Entity<Destination>():5.
.HasMany(m => m.Packages)
.WithOne(m => m.MyDestination)
.HasForeignKey(m => m.DestinationId)
.OnDelete(DeleteBehavior.Cascade);

Add-Migration and Update-Database.6.
No, but you can forcefully include them with the Include LINQ clause.7.
Yes, it is, thanks to the Select LINQ clause.8.
By calling context.Database.Migrate().9.

Chapter 7
No, it is an in-memory dictionary that can be used as a cache or for other in-1.
memory storage needs.
Yes, they are. Most of this chapter's sections are dedicated to explaining why. 2.
Write operations.3.
The main weaknesses of NoSQL databases are their consistency and transactions,4.
while their main advantage is performance, especially when it comes to handling
distributed writes.
Eventual, Consistency Prefix, Session, Bounded Staleness, Strong.5.
No, they are not efficient in a distributed environment. GUID-based strings6.
perform better, since their uniqueness is automatic and doesn't require
synchronization operations.
OwnsMany and OwnsOne.7.
Yes, they can. Once you use SelectMany, indices can be used to search for8.
nested objects.

Chapter 8
Azure Functions is an Azure PaaS component that allows you to implement FaaS1.
solutions.
You can program Azure Functions in different languages, such as C#, F#, and2.
Node. You can also create functions using Azure Portal and Visual Studio VS
Code.

Assessments

[552]

There are two plan options in Azure Functions. The first plan is the Consumption3.
Plan, where you are charged according to the amount you use. The second plan
is the App Service Plan, where you share your App Service resources with the
function's needs.
The process of deploying Functions in Visual Studio is the same as in web app4.
deployment.
There are lots of ways we can trigger Azure Functions, such as using Blob5.
Storage, Cosmos DB, Event Grid, Event Hubs, HTTP, Microsoft Graph Events,
Queue storage, Service Bus, Timer, and Webhooks.
Azure Functions v1 needs the .NET Framework Engine, whereas v2 needs .NET6.
Core.
The execution of every Azure Function can be monitored by Application7.
Insights. Here, you can check the time it took to process, resource usage, errors,
and exceptions that happened in each function call.

Chapter 9
Design patterns are good solutions to common problems in software1.
development.
While design patterns give you code implementation for typical problems we2.
face in development, design principles help you select the best options when it
comes to implementing the software architecture.
The Builder Pattern will help you generate sophisticated objects without the need3.
to define them in the class you are going to use them in.
The Factory Pattern is really useful in situations where you have multiple kinds4.
of object from the same abstraction and you don't know which of them needs to
be created by the time you start coding.
The Singleton Pattern is useful when you need a class that has only one instance5.
during the software's execution.
The Proxy Pattern is used when you need to provide an object that controls6.
access to another object.
The Command Pattern is used when you need to execute a command that will7.
affect the behavior of an object.
The Publisher/Subscriber Pattern is useful when you need to provide information8.
about an object to a group of other objects.
The DI Pattern is useful if you want to implement the Dependency Inversion9.
principle.

Assessments

[553]

Chapter 10
Changes in the language used by experts and changes in the meaning of words.1.
Domain mapping.2.
No; the whole communication passes through the entity, that is, the aggregate3.
root.
Because aggregates represent part-subpart hierarchies.4.
Just one, since repositories are aggregate-centric.5.
The application layer manipulates repository interfaces. Repository6.
implementations are registered in the dependency injection engine.
To coordinate in single transactions operations on several aggregates.7.
The specifications for updates and queries are usually quite different, especially8.
in simple CRUD systems. The reason for its strongest form is mainly the
optimization of query response times.
Dependency injection.9.
No; a serious impact analysis must be performed so that we can adopt it.10.

Chapter 11
No, since you will have lots of duplicate code in this approach, which will cause1.
difficulties when it comes to maintenance.
The best approach for code reuse is creating libraries.2.
Yes. You can find components that have already been created in the libraries3.
you've created before and then increase these libraries by creating new
components that can be reused in the future.
The .NET Standard is a specification that allows compatibility between different4.
frameworks of .NET, from .NET Framework to Unity. .NET Core is one .NET
implementation and is open source.
By creating a .NET Standard library, you will be able to use it in different .NET5.
implementations, such as .NET Core, the .NET Framework, and Xamarin.
You can enable code reuse using object-oriented principles (inheritance,6.
encapsulation, abstraction, and polymorphism).
Generics is a sophisticated implementation that simplifies how objects with the7.
same characteristics are treated by defining a placeholder that will be replaced
with the specific type at compile time.

Assessments

[554]

Chapter 12
No, since this would violate the principle that a service reaction to a request must1.
depend on the request itself and not on other messages/requests that had
previously been exchanged with the client.
No, since this would violate the interoperability constraint.2.
Yes, it can. The primary action of a POST must be creation, but a delete can be3.
performed as a side-effect.
Three, that is, Base64 encoding of the header and body plus the signature.4.
From the request body.5.
With the ApiController attribute.6.
The ProducesResponseType attribute.7.
With the Route and Http<verb> attributes.8.
Something like services.AddHttpClient<MyProxy>().9.

Chapter 13
Developer error pages and developer database error pages, production error1.
pages, hosts, HTTPS redirection, routing, authentication and authorization, and
endpoint invokers.
No.2.
False. Several tag helpers can be invoked on the same tag.3.
ModelState.IsValid.4.
@RenderBody().5.
We can use @RenderSection("Scripts", required: false).6.
We can use return View("viewname", ViewModel).7.
Three.8.
No; there is also the ViewState dictionary.9.

Assessments

[555]

Chapter 14
Maintainability gives you the opportunity to deliver the software you designed1.
quickly. It also allows you to fix bugs easily.
Cyclomatic complexity is a metric that detects the number of nodes a method2.
has. The higher the number, the worse the effect.
A version control system will guarantee the integrity of your source code, giving3.
you the opportunity to analyze the history of each modification that you've
made.
Try-catch is a way to control exceptions that have been invoked by the code you4.
are writing. Try-finally is a way to guarantee that, even with an exception inside
the try-block, the finally block will carry out its process. You can use try-catch-
finally when you want to solve both situations in the same piece of code.
A garbage collector is a .NET Core/.NET Framework system that monitors your5.
application and detects objects that you aren't using anymore. It disposes of these
objects to release memory.
The IDisposable interface is important in classes that instantiate objects that6.
need to be disposed of by the programmer since the garbage collector cannot
dispose of them.
.NET Core encapsulates some design patterns in some of its libraries in a way7.
that can guarantee safer code, such as with dependency injection and Builder.

Chapter 15
Because most of the tests must be repeated after any software changes occur.1.
Because the probability of exactly the same error occurring in a unit test and in its2.
associated application code is very low.
 [Theory] is used when the test method defines several tests, while [Fact] is3.
used when the test method defines just one test.
Assert.4.
Setup, Returns, and ReturnsAsync.5.
Yes; with ReturnAsync.6.

Assessments

[556]

Chapter 16
Well-written code is code that any person skilled in that programming language1.
can handle, modify, and evolve.
Roslyn is the .NET Compiler that's used for code analysis inside Visual Studio.2.
Code analysis is a practice that considers the way the code is written to detect3.
bad practices before compilation.
Code analysis can find problems that happen even with apparently good4.
software, such as memory leaks and bad programming practices.
Roslyn can be programmed for code analysis.5.
Visual Studio Extensions are tools that have been programmed to run inside6.
Visual Studio. These tools can help you out in some cases where Visual Studio
IDE doesn't have the appropriate feature for you to use.
Microsoft Code Analysis, SonarLint, and Code Cracker.7.

Chapter 17
To maximize the value that the software provides for the target organization.1.
No; it requires the acquisition of all competencies that are required to maximize2.
the value added by the software.
Because when a new user subscribes, its tenant must be created automatically,3.
and because new software updates must be distributed to all the customer's
infrastructures.
Yes; Terraform is an example.4.
Azure pipelines.5.
Your business depends on the SaaS supplier, so its reliability is fundamental.6.
No; scalability is just as important as fault tolerance and automatic fault7.
recovery.

Assessments

[557]

Chapter 18
DevOps is the approach of delivering value to the end user continuously. To do1.
this with success, continuous integration, continuous delivery, and continuous
feedback must be undertaken.
Continuous integration allows you to check the quality of the software you are2.
delivering every single time you commit a change. You can do this by turning on
this feature in Azure DevOps.
Continuous delivery allows you to deploy a solution once you are sure that all3.
the quality checks have passed the tests you designed. Azure DevOps helps you
with that by providing you with relevant tools.
Continuous Feedback is the adoption of tools in the DevOps life cycle that enable4.
fast feedback when it comes to performance, usability, and other aspects of the
application you are developing.
The build pipeline will let you run tasks for building and testing your5.
application, while the release pipeline will give you the opportunity to define
how the application will be deployed in each scenario.
Application Insights is a helpful tool for monitoring the health of the system6.
you've deployed, which makes it a fantastic continuous feedback tool.
Test & Feedback is a tool that allows stakeholders to analyze the software you are7.
developing and enables a connection with Azure DevOps to open tasks and even
bugs.

Chapter 19
It is an approach that makes sure that every single commit to the code repository1.
is built and tested.
Yes, you can have DevOps separately and then enable Continuous Delivery later.2.
Your team and process need to be ready and attentive for this to happen.
All of these risks may cause damage to your production environment. You can3.
have, for example, a feature that isn't ready but has been deployed, you can cause
a stop at a bad time for your customers, or you can even suffer a bad collateral
effect due to an incorrect fix.
A multi-stage environment protects production from bad releases.4.
Automated tests anticipate bugs and bad behaviors in preview scenarios.5.

Assessments

[558]

Pull requests allow code reviews before commits are made in the master branch.6.
No; pull requests can help you in any development approach where you have7.
GIT as your source control.

Chapter 20
No; it depends on the complexity of the user interface and how often it changes.1.
The ASP.NET Core pipeline isn't executed, but inputs are passed directly to2.
controllers.
Use of the Microsoft.AspNetCore.Mvc.Testing NuGet package.3.
Use of the AngleSharp NuGet package.4.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Hands-On Design Patterns with C# and .NET Core
Gaurav Aroraa, Jeffrey Chilberto

ISBN: 978-1-78913-364-6

Make your code more flexible by applying SOLID principles
Follow the test-driven development (TDD) approach in your .NET Core projects
Get to grips with efficient database migration, data persistence, and testing
techniques
Convert a console application to a web application using the right MVP
Write asynchronous, multithreaded, and parallel code
Implement MVVM and work with RxJS and AngularJS to deal with changes in
databases
Explore the features of microservices, serverless programming, and cloud
computing

https://www.packtpub.com/in/application-development/hands-design-patterns-c-and-net-core

Other Books You May Enjoy

[560]

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development - Fourth
Edition
Mark J. Price

ISBN: 978-1-78847-812-0

Build cross-platform applications for Windows, macOS, Linux, iOS, and Android
Explore application development with C# 8.0 and .NET Core 3.0
Explore ASP.NET Core 3.0 and create professional web applications
Learn object-oriented programming and C# multitasking
Query and manipulate data using LINQ
Use Entity Framework Core and work with relational databases
Discover Windows app development using the Universal Windows Platform and
XAML
Build mobile applications for iOS and Android using Xamarin.Forms

https://www.packtpub.com/mobile/c-8-0-and-net-core-3-0-modern-cross-platform-development-fourth-edition

Other Books You May Enjoy

[561]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

.

.NET Core 3.0
 features 385, 386, 387
.Net Core HTTP clients 341, 342, 343
.NET Core, with microservices
 about 120
 Azure and Visual Studio support, for microservice

orchestration 134, 135, 136
 communication channels 121, 122
 generic hosts 125, 126, 127, 128
 resilient task execution 123, 124
 Visual Studio support, for Docker 129, 131, 132,

133

.NET Core
 about 11
 dealing, with Service-Oriented Architecture

(SOA) 324, 325, 326
 design patterns 262, 263
 interoperability 58, 59
 project types 62
 projects 61, 62
 scalability 35
 scalable web app, creating 42, 43, 44, 45, 46
 tips and tricks, for coding 435
.NET Generic Host
 reference link 262
.NET Standard 2.1
 reference link 301
.NET Standard
 library, creating 300
 using, for code reusability 300
 versions, reference link 300

A
acceptance tests
 writing 444

Access Control 79
advanced test preparations 451, 452
aggregates 279, 280
agile 16
Agile Manifesto
 URL 16
agile software development process models
 about 16, 17
 Scrum Model 17
Analyze and Code Cleanup 469
Application Insights monitor
 creating 510
Application Insights
 about 509
 attaching 512
 dashboard 513
 enabling, to Web App 511
 sample view 514
 settings, in App Service 513
 software, monitoring 509
Application Performance Management (APM) 234
Artificial Intelligence (AI) 96
ASP.NET Core MVC pipeline
 defining 363, 364, 365, 367, 368
ASP.NET Core MVC
 and design principles 387
 configuration data, loading 358
 configuration data, using with options framework

358

 controllers, defining 368, 371, 372
 pipeline 354, 356, 358
 pipeline, defining 363
 Razor Views 373
 structure 354
 view code, reusing 381, 382, 384
 ViewModels, defining 368, 371, 372
 web app, implementing 395

[563]

ASP.NET Core pipeline
 advantages 388
 client-side validation 388, 389
 server-side validation 388, 389
 working 354
ASP.NET Core
 .NET Core 3.0, features 385
 about 11, 326, 327, 328, 329
 globalization 389, 391, 393
 REST services, implementing with 330, 331,

332, 333
 service authorization 334, 336
 support, for OpenAPI 337, 338, 339, 340
asynchronous programming
 applying, on ASP.NET Core applications 25
 reference link 50
automated tests
 about 440
 execution and reporting tool 443
 facilities 442
 mock facilities 443
 writing 442, 443
Azure account
 creating 12, 13, 14
Azure Cognitive Services 96, 98, 99
Azure Cosmos DB
 about 208, 209, 210, 211, 212, 213, 214
 used, for implementing Destination/Packages

database 218, 219, 220, 221, 222
Azure DevOps team
 reference link 431
Azure DevOps
 about 11, 65, 67, 69, 70
 Epics work items 78
 Features work items 78
 multistage environment 505, 506, 507, 508
 package feeds 73, 74
 pipelines 76
 Product Backlog work items 79
 repository 71, 72, 73
 system requisites, managing 77
 use cases 80, 82, 84
 used, for organizing work 70
 User Story work items 79
Azure Functions App

 about 226, 227
 App Service Plan 227
 Consumption Plan 227
Azure Functions templates
 Blob Storage: 232
 Cosmos DB 232
 Event Grid 232
 Event Hubs 232
 HTTP 232
 listing 232
 Microsoft Graph Events 232
 Queue storage 232
 Service Bus 232
 Timer 232
 WebHooks 232
Azure Functions
 implementing, to send emails 235, 236
 maintaining 233, 234, 235
 pricing, reference link 227
 programming, with C# 228, 229, 230, 231
Azure Kubernetes Service (AKS) 146, 147, 148,

149

Azure Pipelines
 packages-management application, deploying

with 490
Azure Queue Storage
 creating 237, 238, 239, 240, 241, 242
Azure Service Fabric
 about 139
 cluster configuration 141, 142
 creating 140, 141
 DNS 142
 reverse proxy 143
 security configuration 143, 144, 145
Azure SQL Server 94, 95, 96
Azure Storage Explorer
 reference link 239
Azure
 opportunities 89, 91
 private Docker registry, defining 137, 138
 scalability 35
 scalable web app, creating 36, 37, 38

[564]

B
Blob Storage 232
Bounded Contexts 269
Builder pattern 249, 250
bulkhead isolation 113

C
C# code
 evaluation, before publishing application 477,

478

 evaluation, by applying tools 468, 469, 470, 471
C# test projects
 defining 448
C#, performance issues
 considerations 46
C#
 about 11, 28
 implementing, with code reusability 302
 object-oriented analysis 302, 303
 safe code, writing 431
 used, for programming Azure Functions 228,

229, 230, 231
caching 25
cascading drop-down menus
 example 57, 58
Cloud Design Patterns
 URL 248
Code Cracker
 obtaining, for Visual Studio 2017 475
Code Metrics tool
 about 422
 class coupling 428, 429, 430
 cyclomatic complexity 423, 425, 426
 depth of inheritance 427, 428
 lines of code 430
 maintainability index 423
 reference link 423
code reusability
 .NET Standard, using 300
 about 296, 298
 advantages 296
 inserting, into development cycle 299
 principles 296
 use case 305

 used, for implementing C# 302
command handlers 286, 288, 289
Command pattern 257, 258
Command Query Responsibility Segregation

(CQRS) pattern 283, 284, 285
communication stack
 options 311
configuration data
 loading 358, 359, 361, 362, 363
 using, with options framework 358, 359, 361,

362, 363
conformist pattern 272
connectors 175
consistency levels
 Bounded Staleness 212
 Consistency Prefix 212
 eventual 212
 session 212
 strong 212
containers 114
Context Mapping 271
continuous delivery (CD) 506, 507, 508
continuous feedback
 defining 508
continuous integration (CI) 504, 505, 524, 525
Continuous Integration (CI), risks and challenges
 about 525
 continuous production deployment, disabling

526, 527
 incomplete features 527, 528, 529, 530
 unstable solution, for testing 530, 531, 532,

533, 534
Continuous Integration/Continuous Deployment

(CI/CD)
 about 70
 with microservices 108
controlled application
 testing 541, 543
Cosmos DB client 215, 216, 232
Cosmos DB emulator
 installation link 222
Cosmos DB Entity Framework Core provider 216,

217

customer 267
customer/supplier development teams pattern 271

[565]

D
data layer
 deploying 195, 196
data storage
 destination reviews 217
 destinations information 217
 packages information 217
 reservations 218
 use case 217, 218
Data Transport Objects (DTOs) 192
data
 querying, with Entity Framework Core 189, 190,

191

 returning, to presentation layer 192, 193
 updating, with Entity Framework Core 189, 190,

191

database access
 obtaining 26
Database Transaction Units (DTUs) 202
DB entities 179, 181, 182
DDD entities 273, 274, 276, 282, 283
Dependency Injection (DI) pattern 128, 260, 261,

356

design patterns
 about 248
 Builder pattern 249, 250
 Command pattern 257, 258
 Dependency Injection (DI) pattern 260, 261
 Factory pattern 251, 252
 in .NET Core 262, 263
 Proxy pattern 255, 256, 257
 Publisher/Subscriber pattern 259
 purpose 248
 Singleton pattern 252, 254, 255
design thinking 22
design thinking, steps
 define 22
 empathize 22
 ideate 22
 prototype 22
 test 22
Destination/Packages database
 implementing, with Cosmos DB 218, 219, 220,

221, 222
DevOps Azure

 unit tests, automating in 455, 456, 457, 459,
460, 462, 463

DevOps principles 504
DevOps tools
 checking, for continuous feedback 508
DevOps
 about 503
 reference link 503
direct SQL commands
 about 188
 issuing 193, 194
disk memory 206
Docker
 about 114, 115
 reference link 115
domain events 270, 286, 288, 289
domain-driven design (DDD)
 about 265, 269, 270, 271, 272
 value objects 273, 274, 276
dynamic link libraries (DLL) 109

E
easy to learn user interfaces
 designing, tips 52
 requirements 53
entities 179
Entity Framework Core
 about 282, 283
 advanced feature 196, 197
 configuring 178, 179
 data, querying with 189, 190, 191
 data, updating with 189, 190, 191
 DB entities, defining 179, 181, 182
 direct SQL commands 188
 mapped collections, defining 182
 mapping configuration, completing 183, 184
 migrating 184, 185, 186, 187, 188
 options 185
 stored procedures 188
envelopes 313
Epics work items 78
Event Grid 232
Event Hubs 232
event sourcing 289, 290
exceptions 48, 49

[566]

extension tools
 applying, for code analysis 472
Extreme Programming 446

F
Factory pattern 251, 252
fast selection logic
 designing 53, 54, 55, 57
Features work items 78
final code
 checking, after analysis 475, 476
fixture class instance 452
Function as a Service (FaaS) 100
functional tests
 automating, in C# with unit testing tools 539,

540

 automating, use case 543, 544, 545, 546
 purpose 537, 538

G
Gang of Four (GoF) 248
Garbage Collector (GC) 25
General Data Protection Regulation (GDPR) 31
generics 304, 305
global filters 196, 197

H
high-quality software design
 aspects, enabling for 18
horizontal scaling 41, 42
hosted services 125
HTTP 232
human resources management 484
hybrid applications
 benefits 101
 use case 102, 103

I
IdempotencyTools project 154
IDisposable interface 434
Incremental Model
 analyzing 15, 16
 URL 16
Infrastructure as a Service (IaaS)

 about 89, 91
 security responsibility 91, 92
installation scripts, in Linux and macOS
 reference link 59
integration tests 441
Interaction library 157
interfaces
 mocking, with Moq 453, 454
Internet Information Services (IIS) 328
interoperability
 with .NET Core 58, 59
Inversion of Control (IoC) 261

L
Language Integrated Queries (LINQ) 176
lazy loading
 reference link 257
Levenshtein algorithm 54, 55
Linux
 service, creating 60
logging microservices
 application, testing 171

M
mapped collections
 defining 182
mapping configuration
 completing 183, 184
memory leaks 432
microservice architectures
 features 119, 120
microservices, logging
 about 150, 151, 152, 153, 154
 communication, with service 169, 170, 171
 host, defining 168, 169
 Interaction library 157, 158
 message idempotency, ensuring 154, 155, 157
 receiving side of communication, implementing

159, 160, 162
 service logic, implementing 162, 163, 165, 167,

168

microservices
 about 107
 CI/CD improvement 108
 design principles 111, 112, 113, 114

[567]

 layered architectures 116, 117
 managing, tools 137
 role 116
Microsoft Azure
 about 11, 12
 URL 12
Microsoft Code Analysis 2019
 using 472, 473
Microsoft Graph Events 232
mocking 453
Model View Controller (MVC) 352, 394
modules 109
Moq
 used, for mocking interfaces 453, 454
multistage environment
 with Azure DevOps 505, 506, 507, 508
multithreading environments 49

N
NoSQL databases 203, 204, 206, 207, 208
NoSQL storage 206, 207, 208
NSwag.MSBuild
 reference link 340
NSwagStudio Windows program
 reference link 340

O
object allocation
 dealing with 25, 26
object-oriented analysis 302, 303
Object-Relational Mapping (ORM) 174, 175, 176,

177

OpenAPI standard 321
OpenAPI
 about 321
 ASP.NET Core support 337, 338, 339
 ASP.NET Core, support for 340
operating system (OS) 19, 115
Orchestrators 116
organization
 adapting, to service scenario 484

P
packages-management application, deploying with

Azure Pipelines

 Azure database, creating 490, 492
 Azure Pipelines, configuring 493, 494, 495, 496
 Azure web app, creating 490, 492
 manual approval, adding for release 496, 497,

498

 release, creating 498, 500
 scenarios 490
 Visual Studio solution, configuring 492
partner pattern 271
Pencil Project
 reference link 20
performance tests
 writing 445
Platform as a Service (PaaS)
 about 25
 advantages 92, 93
 Azure Cognitive Services 96, 98, 99
 Azure SQL Server 94, 95, 96
 web apps 93
pod 148
presentation layer
 data, returning to 192, 193
 of web applications 353
primary node 141
private Docker registry
 defining, in Azure 137, 138
Product Backlog work items
 tasks 79
 test cases 79
 User Story work items 79
Product Owner 17
providers
 about 175
 reference link 175
Proxy pattern 255, 256, 257
Publisher/Subscriber pattern 259

Q
Queue storage 232

R
Razor Views
 about 373, 374
 flow of control 374, 375, 376
 properties 376

[568]

 tag helpers 377, 378, 379, 381
Redis 204, 205
relational databases 201, 202
release stages, with Azure DevOps
 development/tests 506
 production 506
 quality assurance 506
reliable services 139
Remote Desktop Protocol (RDP) 91
repositories 200
repository pattern 280, 281
Representational State Transfer 318
requirements analysis
 about 20
 prototyping 20
 use cases 20
requirements engineering
 reference link 19
requirements gathering process
 about 18, 19
 elicitation of user needs, practicing 19
 impact, on system results 24
 performance principle, applying 23
 requirements analysis 20
 requirements, analyzing 20
 robustness principle, applying 23
 scalability principle, applying 23
 scenarios 24, 27, 28
 security principle, applying 23
 specification, reviewing 21
 specifications, writing 21
REST services
 implementing, with ASP.NET Core 330, 331,

332, 333
REST web services
 about 315, 316, 317, 318, 319, 320
 authentication 321, 323, 324
 authorization 321, 323, 324
 OpenAPI standard 321

S
SaaS solution
 adopting 486, 487
safe code
 writing, in C# 431

scalability
 with .NET Core 35
 with Azure 35
scalable web app
 creating, in Azure 36, 37, 38
 creating, with .NET Core 42, 43, 44, 45, 46
Scrum Master 17
Scrum Model 17
security responsibility
 in IaaS 91, 92
serverless solution 100
Service Bus 232
service design thinking 484
service scenario
 organization, adapting to 484
 software, developing 485
 solution, preparing for 487, 488, 489
 technical implications 485, 486
Service-Oriented Architecture (SOA)
 .NET Core, dealing with 324, 325, 326
 about 110, 308
service
 creating, in Linux 60
shard collection 207
Simple Object Access Protocol (SOAP) 313
Single Page Applications (SPA) 353
Single Responsibility, Open/Closed, Liskov

Substitution, Interface Segregation,
Dependency Inversion (SOLID) 441

Singleton pattern 252, 254, 255
SOA approach
 options 312
 principles 309, 310, 313
SOA solutions
 features 312
SOAP web services 313, 314, 315
software architect
 do's 51
 don'ts 51
software architecture
 about 10
Software as a Service (SaaS) 65, 89, 100, 484
software deployment models 89
software development process models 14
software domains 266, 267, 268, 269

[569]

software engineering 10
software
 developing, in service scenario 485
 monitoring, with Application Insights 509
SOLID design principles
 about 260
 Dependency Inversion 260
 Interface Segregation 260
 Liskov Substitution 260
 Open-Closed 260
 Single Responsibility 260
 used, for mapping domains 277, 278
Sonar Cloud 477
SonarLint
 applying, for Visual Studio 2019 474
Sprint 17
StackExchange.Redis
 references 204
staging application
 testing 540, 541
stored procedures 188
string concatenation 47
structured data 206, 207, 208
subcutaneous tests 444

T
tear-down scenarios 451, 452
technical implications
 of service scenario 485, 486
tenants 207
Test and Feedback tool
 download link 515
 used, for enabling feedback 515, 517, 518
test-driven development (TDD) 445, 447
tests
 integration tests 441
 unit tests 441
Timer 232
tools
 applying, for C# code evaluation 468, 469, 470,

471

 used, for managing microservices 137
traditional software development process models
 Incremental Model 15, 16
 reviewing 14

 Waterfall Model, principles 14, 15
transactions
 handling 195
try-catch statement 431, 432
try-finally statement 432, 433

U
Ubiquitous Language 269
Unified Modeling Language (UML) 20
Unit of Work patterns 280, 281
unit testing tools
 used, for automating functional tests in C# 539,

540

unit tests
 about 441
 automating, in DevOps Azure 455, 456, 457,

459, 460, 462, 463
usability 52
user interface (UI) 52
user needs detection
 scenarios 28
User Story work items
 about 79
 tasks 79
 test cases 79
using statement 433

V
version control system
 dealing with 431
 using 430
vertical scaling 39
view components 384
ViewModel 371
Visual Studio 2017
 Code Cracker, obtaining for 475
Visual Studio 2019
 SonarLint, applying for 474
Visual Studio Team Services (VSTS) 100

W
Waterfall Model
 principles 14, 15
 URL 15
web app implementation, in ASP.NET Core MVC

 about 395
 application layer, defining 407, 409, 410, 412
 architecture, defining 396, 397, 399
 controllers, adding 412, 413, 415, 416, 418
 data layer, defining 402, 403, 405, 406, 407
 domain layer, defining 399, 401
 specifications, defining 395
 views 418
 views, adding 412, 413, 414, 415, 416, 418
web applications
 presentation layer 353
web apps 93
WebHooks 232
well-written code
 identifying 466, 467
World Wild Travel Club (WWTravelClub)

 about 28, 29, 30
 user stories 30, 31
WWTravelClub project
 approach 520, 534
WWTravelClub use case
 domains 290, 292, 293
WWTravelClub
 best practices, for writing code 436
 cloud platform, selecting 103
 host, defining 347
 packages, exposing 344, 345, 346, 348

X
xUnit test framework
 using 449, 450, 451

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1: Transforming Customer Needs in Real-World Applications
	Chapter 1: Understanding the Importance of Software Architecture
	Technical requirements
	What is software architecture?
	Creating an Azure account

	Software development process models
	Reviewing traditional software development process models
	Understanding the waterfall model principles
	Analyzing the incremental model

	Understanding agile software development process models
	Getting into the Scrum model

	Enabling aspects to be gathered to design high-quality software
	Understanding the requirements gathering process
	Practicing the elicitation of user needs
	Analyzing requirements
	Writing the specifications
	Reviewing the specification

	Using design thinking as a helpful tool
	Understanding the principles of scalability, robustness, security, and performance

	Some cases where the requirements gathering process impacted system results
	Case 1 – my website is too slow to open that page!
	Understanding caching
	Applying asynchronous programming
	Dealing with object allocation
	Getting better database access

	Case 2 – the user's needs are not properly implemented
	Case 3 – the usability of the system does not meet user needs

	Case study – detecting user needs
	Book case study – introducing World Wild Travel Club
	Book case study – understanding user needs and system requirements

	Summary
	Questions
	Further reading

	Chapter 2: Functional and Nonfunctional Requirements
	Technical requirements
	How does scalability interact with Azure and .NET Core?
	Creating a scalable web app in Azure
	Vertical scaling (Scale up)
	Horizontal scaling (Scale out)

	Creating a scalable web app with .NET Core

	Performance issues that need to be considered when programming in C#
	String concatenation
	Exceptions

	Multithreading environments for better results – do's and don'ts
	Usability – why inserting data takes too much time
	Designing fast selection logic
	Selecting from a huge amount of items

	The fantastic world of interoperability with .NET Core
	Creating a service in Linux

	Book use case – understanding the main types of .NET Core projects
	Summary
	Questions
	Further reading

	Chapter 3: Documenting Requirements with Azure DevOps
	Technical requirements
	Introducing Azure DevOps
	Organizing your work using Azure DevOps
	Azure DevOps repository
	Package feeds
	Test plans
	Pipelines

	Managing system requirements in Azure DevOps
	Epics work items
	Features work items
	Product Backlog items/User Story work items

	Book use case – presenting use cases in Azure DevOps
	Summary
	Questions
	Further reading

	Section 2: Architecting Software Solutions in a Cloud-Based Environment
	Chapter 4: Deciding the Best Cloud-Based Solution
	Technical requirements
	Different software deployment models
	Infrastructure as a service and Azure opportunities
	Security responsibility in IaaS

	PaaS – a world of opportunities for developers
	Web apps
	Azure SQL Server
	Azure Cognitive Services

	SaaS – just sign in and get started!
	Understanding what serverless means
	Why are hybrid applications so useful in many cases?
	Use case – a hybrid application
	Book use case – which is the best cloud platform for this use case?

	Summary
	Questions
	Further reading

	Chapter 5: Applying a Microservice Architecture to Your Enterprise Application
	Technical requirements
	What are microservices?
	Microservices and the evolution of the concept of modules
	Microservice design principles
	Containers and Docker

	When do microservices help?
	Layered architectures and microservices
	When is it worth considering microservice architectures?

	How does .NET Core deal with microservices?
	.NET Core communication facilities
	Resilient task execution
	Using generic hosts
	Visual Studio support for Docker
	Azure and Visual Studio support for microservice orchestration

	Which tools are needed to manage microservices?
	Defining your private Docker registry in Azure
	Azure Service Fabric
	Step 1: Basic information
	Step 2: Cluster configuration
	Step 3: Security configuration

	Azure Kubernetes Service (AKS)

	Use case – logging microservices
	Ensuring message idempotency
	The Interaction library
	Implementing the receiving side of communication
	Implementing service logic
	Defining the microservice's host
	Communicating with the service
	Testing the application

	Summary
	Questions
	Further reading

	Chapter 6: Interacting with Data in C# - Entity Framework Core
	Technical requirements
	Understanding ORM basics
	Configuring Entity Framework Core
	Defining DB entities
	Defining the mapped collections
	Completing the mapping configuration

	Entity Framework Core migrations
	Understanding stored procedures and direct SQL commands

	Querying and updating data with Entity Framework Core
	Returning data to the presentation layer
	Issuing direct SQL commands
	Handling transactions

	Deploying your data layer
	Understanding Entity Framework Core advanced feature – global filters
	Summary
	Questions
	Further reading

	Chapter 7: How to Choose Your Data Storage in the Cloud
	Technical requirements
	Understanding the different repositories for different purposes
	Relational databases
	NoSQL databases
	Redis
	Disk memory

	Choosing between structured or NoSQL storage
	Azure Cosmos DB – an opportunity to manage a multi-continental database
	Cosmos DB client
	Cosmos DB Entity Framework Core provider

	Use case – storing data
	Implementing the destinations/packages database with Cosmos DB

	Summary
	Questions
	Further reading

	Chapter 8: Working with Azure Functions
	Technical requirements
	Understanding the Azure Functions App
	Consumption Plan
	App Service Plan

	Programming Azure Functions using C#
	Listing Azure Functions templates

	Maintaining Azure Functions
	Use case – implementing Azure Functions to send emails
	First Step – creating Azure Queue Storage

	Summary
	Questions
	Further reading

	Section 3: Applying Design Principles for Software Delivered in the 21st Century
	Chapter 9: Design Patterns and .NET Core Implementation
	Technical requirements
	Understanding design patterns and their purpose
	Builder pattern
	Factory pattern
	Singleton pattern
	Proxy pattern
	Command pattern
	Publisher/Subscriber pattern
	Dependency Injection pattern

	Understanding the available design patterns in .NET Core
	Summary
	Questions
	Further reading

	Chapter 10: Understanding the Different Domains in Software Solutions
	Technical requirements
	What are software domains?
	Understanding domain-driven design
	Entities and value objects

	Using SOLID principles to map your domains
	Aggregates
	The repository and Unit of Work patterns
	DDD entities and Entity Framework Core
	Command Query Responsibility Segregation (CQRS) pattern
	Command handlers and domain events
	Event sourcing

	Use case – understanding the domains of the use case
	Summary
	Questions
	Further reading

	Chapter 11: Implementing Code Reusability in C# 8
	Technical requirements
	Understanding the principles of code reusability
	What is not code reuse?
	What is code reuse?
	Inserting reusability into your development cycle

	Using .NET Standard for code reuse
	Creating a .NET Standard library

	How does C# deal with code reuse?
	Object-oriented analysis
	Generics

	Use case – reusing code as a fast track to deliver good and safe software
	Summary
	Questions
	Further reading

	Chapter 12: Applying Service-Oriented Architectures with .NET Core
	Technical requirements
	Understanding the principles of the SOA approach
	SOAP web services
	REST web services
	The OpenAPI standard
	REST services authorization and authentication

	How does .NET Core deal with SOA?
	A short introduction to ASP.NET Core
	Implementing REST services with ASP.NET Core
	ASP.NET Core service authorization
	ASP.NET Core support for OpenAPI
	.Net Core HTTP clients

	Use case – exposing WWTravelClub packages
	Summary
	Questions
	Further reading

	Chapter 13: Presenting ASP.NET Core MVC
	Technical requirements
	Understanding the presentation layers of web applications
	Understanding the ASP.NET Core MVC structure
	How ASP.NET Core pipeline works
	Loading configuration data and using it with the options framework
	Defining the ASP.NET Core MVC pipeline
	Defining controllers and ViewModels
	Understanding Razor Views
	Learning Razor flow of control statements
	Understanding Razor View properties
	Using Razor tag helpers
	Reusing view code

	What is new in .NET Core 3.0 for ASP.NET Core?
	Understanding the connection between ASP.NET Core MVC and design principles
	Advantages of the ASP.NET Core pipeline
	Server-side and client-side validation
	ASP.NET Core globalization
	The MVC pattern

	Use case – implementing a web app in ASP.NET Core MVC
	Defining application specifications
	Defining the application architecture
	Defining the domain layer
	Defining the data layer
	Defining the application layer
	Controllers and views

	Summary
	Questions
	Further reading

	Section 4: Programming Solutions for an Unavoidable Future Evolution
	Chapter 14: Best Practices in Coding C# 8
	Technical requirements
	The more complex your code is, the worse a programmer you are
	Maintainability index
	Cyclomatic complexity
	Depth of inheritance
	Class coupling
	Lines of code

	Using a version control system
	Dealing with version control systems in teams

	Writing safe code in C#
	try-catch
	try-finally and using
	The IDisposable interface

	.NET Core tips and tricks for coding
	WWTravelClub – dos and don'ts in writing code
	Summary
	Questions
	Further reading

	Chapter 15: Testing Your Code with Unit Test Cases and TDD
	Technical requirements
	Understanding automated tests
	Writing automated (unit and integration) tests
	Writing acceptance and performance tests

	Understanding test-driven development (TDD)
	Defining C# test projects
	Using the xUnit test framework
	Advanced test preparation and tear-down scenarios
	Mocking interfaces with Moq

	Use case – automating unit tests in DevOps Azure
	Summary
	Questions
	Further reading

	Chapter 16: Using Tools to Write Better Code
	Technical requirements
	Identifying a well-written code
	Understanding and applying tools that can evaluate C# code
	Applying extension tools to analyze code
	Using Microsoft Code Analysis 2019
	Applying SonarLint for Visual Studio 2019
	Getting Code Cracker for Visual Studio 2017 as a helper to write better code
	Checking the final code after analysis

	Use case – evaluating the C# code before publishing the application
	Summary
	Questions
	Further reading

	Section 5: Delivering Software Continuously and at a High Quality Level
	Chapter 17: Deploying Your Application with Azure DevOps
	Technical requirements
	Understanding SaaS
	Adapting your organization to a service scenario
	Developing software in a service scenario
	Technical implications of a service scenario
	Adopting a SaaS solution

	Preparing a solution for a service scenario
	Use case – deploying our package-management application with Azure Pipelines
	Creating the Azure Web App and the Azure database
	Configuring your Visual Studio solution
	Configuring Azure Pipelines
	Adding a manual approval for the release
	Creating a release

	Summary
	Questions
	Further reading

	Chapter 18: Understanding DevOps Principles
	Technical requirements
	Describing DevOps
	Understanding DevOps principles
	Defining continuous integration
	Understanding continuous delivery and multistage environment with Azure DevOps
	Defining continuous feedback and the related DevOps tools
	Monitoring you software with Application Insights
	Using the Test and Feedback tool to enable feedback

	The WWTravelClub project approach
	Summary
	Questions
	Further Reading

	Chapter 19: Challenges of Applying CI Scenarios in DevOps
	Technical requirements
	Understanding CI
	Understanding the risks and challenges when using CI
	Disabling continuous production deployment
	Incomplete features
	Unstable solution for testing

	Understanding the WWTravelClub project approach
	Summary
	Questions
	Further reading

	Chapter 20: Automation for Software Testing
	Technical requirements
	Understanding the purpose of functional tests
	Using unit testing tools to automate functional tests in C#
	Testing the staging application
	Testing a controlled application

	Use case – automating functional tests
	Summary
	Questions
	Further reading

	Assessments
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16
	Chapter 17
	Chapter 18
	Chapter 19
	Chapter 20

	Other Books You May Enjoy
	Index

