

Hands-On Parallel
Programming with C# 8 and
.NET Core 3

Build solid enterprise software using task parallelism and
multithreading

Shakti Tanwar

BIRMINGHAM - MUMBAI

Hands-On Parallel Programming with C# 8
and .NET Core 3
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Richa Tripathi
Acquisition Editor: Alok Dhuri
Content Development Editor: Digvijay Bagul
Senior Editor: Rohit Singh
Technical Editor: Pradeep Sahu
Copy Editor: Safis Editing
Project Coordinator: Francy Puthiry
Proofreader: Safis Editing
Indexer: Priyanka Dhadke
Production Designer: Jyoti Chauhan

First published: December 2019

Production reference: 1191219

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78913-241-0

www.packt.com

http://www.packt.com

To my wife, Kirti Tanwar, and my son, Shashwat Singh Tanwar, for being my life support
and for keeping me motivated to excel in all walks of life.

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Shakti Tanwar is the CEO of Techpro Compsoft Pvt Ltd, a global provider of consulting in
information technology services. He is a technical evangelist and software architect with
more than 15 years of experience in software development and corporate training. Shakti is
a Microsoft Certified Trainer and has been conducting training in association with
Microsoft in the Middle East. His areas of expertise include .NET; Azure Machine Learning;
artificial intelligence; applications of pure functional programming to build fault-tolerant,
reactive systems; and parallel computing. His love for teaching led him to start a
special "train the professors" program for the betterment of colleges in India.

This book would not have been possible without the sacrifices of my wife, Kirti, and son,
Shashwat. They stood by me through every struggle and every success. It was their smiles
and motivation during tough times that kept me going.
I’m also eternally grateful to my parents and my siblings, who always motivated me to
scale new heights of success.
Many thanks to my friends, mentors, and team Packt, who guided me throughout this
journey.

About the reviewers
Alvin Ashcraft is a developer living near Philadelphia. He has spent his 23-year career
building software with C#, Visual Studio, WPF, ASP.NET, and more. He has been awarded,
nine times, the Microsoft MVP title. You can read his daily links for .NET developers on his
blog, Morning Dew. He works as a principal software engineer for Allscripts, building
healthcare software. He has previously been employed by software companies, including
Oracle. He has reviewed other titles for Packt Publishing, such as Mastering ASP.NET Core
2.0, Mastering Entity Framework Core 2.0, and Learning ASP.NET Core 2.0.

I would like to thank wonderful wife, Stelene, and our three amazing daughters for their
support. They were very understanding when I was reading and reviewing these chapters
on evenings and weekends to help deliver a useful, high-quality book for .NET developers.

Vidya Vrat Agarwal is an avid reader, speaker, published author for Apress, and technical
reviewer of over a dozen books for Apress, Packt, and O'Reilly. He is a hands-on architect
with 20 years of experience in architecting, designing, and developing distributed software
solutions for large enterprises. At T-Mobile as a principal architect, he has worked with B2C
and B2B teams where he continues to partner with other domain architects to establish the
solution vision and architecture roadmaps for various T-Mobile initiatives to positively
impact millions of T-Mobile customers. He sees software development as a craft, and he is a
big proponent of software architecture and clean code practices.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Section 1: Fundamentals of Threading, Multitasking, and
Asynchrony
Chapter 1: Introduction to Parallel Programming 7

Technical requirements 8
Preparing for multi-core computing 8

Processes 8
Some more information about the OS 9

Multitasking 9
Hyper-threading 9

Flynn's taxonomy 11
Threads 12

Types of threads 12
Apartment state 12

Multithreading 15
Thread class 17

Advantages and disadvantages of threads 21
The ThreadPool class 21

Advantages, disadvantages, and when to avoid using ThreadPool 24
BackgroundWorker 25

Advantages and disadvantages of using BackgroundWorker 29
Multithreading versus multitasking 29

Scenarios where parallel programming can come in handy 30
Advantages and disadvantages of parallel programming 30
Summary 31
Questions 32

Chapter 2: Task Parallelism 33
Technical requirements 34
Tasks 34
Creating and starting a task 35

The System.Threading.Tasks.Task class 35
Using lambda expressions syntax 36
Using the Action delegate 36
Using delegate 36

The System.Threading.Tasks.Task.Factory.StartNew method 37
Using lambda expressions syntax 37
Using the Action delegate 37
Using delegate 37

The System.Threading.Tasks.Task.Run method 38

Table of Contents

[ii]

Using lambda expressions syntax 38
Using the Action delegate 38
Using delegate 38

The System.Threading.Tasks.Task.Delay method 39
The System.Threading.Tasks.Task.Yield method 40
The System.Threading.Tasks.Task.FromResult<T> method 43
The System.Threading.Tasks.Task.FromException and
System.Threading.Tasks.Task.FromException<T> methods 44
The System.Threading.Tasks.Task.FromCanceled and
System.Threading.Tasks.Task.FromCanceled<T> methods 44

Getting results from finished tasks 45
How to cancel tasks 46

Creating a token 47
Creating a task using tokens 47

Polling the status of the token via the IsCancellationRequested property 47
Registering for a request cancellation using the Callback delegate 48

How to wait on running tasks 50
Task.Wait 51
Task.WaitAll 52
Task.WaitAny 52
Task.WhenAll 53
Task.WhenAny 53

Handling task exceptions 54
Handling exception from single tasks 54
Handling exceptions from multiple tasks 55
Handling task exceptions with a callback function 56

Converting APM patterns into tasks 57
Converting EAPs into tasks 59
More on tasks 61

Continuation tasks 61
Continuing tasks using the Task.ContinueWith method 61
Continuing tasks using Task.Factory.ContinueWhenAll and
Task.Factory.ContinueWhenAll<T> 63
Continuing tasks using Task.Factory.ContinueWhenAny and
Task.Factory.ContinueWhenAny<T> 63

Parent and child tasks 64
Creating a detached task 64
Creating an attached task 65

Work-stealing queues 66
Summary 69

Chapter 3: Implementing Data Parallelism 70
Technical requirements 70
Moving from sequential loops to parallel loops 71

Using the Parallel.Invoke method 72
Using the Parallel.For method 74

Table of Contents

[iii]

Using the Parallel.ForEach method 75
Understanding the degree of parallelism 76
Creating a custom partitioning strategy 78

Range partitioning 79
Chunk partitioning 79

Canceling loops 80
Using the Parallel.Break method 81
Using ParallelLoopState.Stop 83
Using CancellationToken to cancel loops 83

Understanding thread storage in parallel loops 85
Thread local variable 86
Partition local variable 87

Summary 88
Questions 89

Chapter 4: Using PLINQ 90
Technical requirements 90
LINQ providers in .NET 91
Writing PLINQ queries 92

Introducing the ParallelEnumerable class 92
Our first PLINQ query 93

Preserving order in PLINQ while doing parallel executions 94
Sequential execution using the AsUnOrdered() method 95

Merge options in PLINQ 96
Using the NotBuffered merge option 96
Using the AutoBuffered merge option 97
Using the FullyBuffered merge option 98

Throwing and handling exceptions with PLINQ 100
Combining parallel and sequential LINQ queries 103
Canceling PLINQ queries 104
Disadvantages of parallel programming with PLINQ 105
Understanding the factors that affect the performance of
PLINQ (speedups) 106

Degree of parallelism 106
Merge option 106
Partitioning type 106
Deciding when to stay sequential with PLINQ 107
Order of operation 107
ForAll versus calling ToArray() or ToList() 108
Forcing parallelism 108
Generating sequences 108

Summary 109
Questions 109

Table of Contents

[iv]

Section 2: Data Structures that Support Parallelism in .NET
Core
Chapter 5: Synchronization Primitives 112

Technical requirements 113
What are synchronization primitives? 113
Interlocked operations 114

Memory barriers in .NET 115
What is reordering? 116
Types of memory barriers 117
Avoiding code reordering using constructs 118

Introduction to locking primitives 119
How locking works 119
Thread state 120
Blocking versus spinning 121
Lock, mutex, and semaphore 122

Lock 122
Mutex 125
Semaphore 127

Local semaphore 128
Global semaphore 129

ReaderWriterLock 129
Introduction to signaling primitives 129

Thread.Join 130
EventWaitHandle 131

AutoResetEvent 131
ManualResetEvent 132

WaitHandles 135
Lightweight synchronization primitives 138

Slim locks 138
ReaderWriterLockSlim 139
SemaphoreSlim 141
ManualResetEventSlim 141

Barrier and countdown events 142
A case study using Barrier and CountDownEvent 142

SpinWait 145
SpinLock 146

Summary 147
Questions 148

Chapter 6: Using Concurrent Collections 149
Technical requirements 149
An introduction to concurrent collections 150

Introducing IProducerConsumerCollection<T> 150
Using ConcurrentQueue<T> 151

Using queues to solve a producer-consumer problem 152

Table of Contents

[v]

Solving problems using concurrent queues 153
Performance consideration – Queue<T> versus ConcurrentQueue<T> 154
Using ConcurrentStack<T> 155
Creating a concurrent stack 155
Using ConcurrentBag<T> 156

Using BlockingCollection<T> 158
Creating BlockingCollection<T> 158

A multiple producer-consumer scenario 160
Using ConcurrentDictionary<TKey,TValue> 161

Summary 163
Questions 164

Chapter 7: Improving Performance with Lazy Initialization 165
Technical requirements 165
Introducing lazy initialization concepts 166
Introducing System.Lazy<T> 169

Construction logic encapsulated inside a constructor 169
Construction logic passed as a delegate to Lazy<T> 171

Handling exceptions with the lazy initialization pattern 172
No exceptions occur during initialization 172
Random exception while initialization with exception caching 172
Not caching exceptions 175

Lazy initialization with thread-local storage 176
Reducing the overhead with lazy initializations 178
Summary 181
Questions 182

Section 3: Asynchronous Programming Using C#
Chapter 8: Introduction to Asynchronous Programming 184

Technical requirements 184
Types of program execution 185

Understanding synchronous program execution 185
Understanding asynchronous program execution 187

When to use asynchronous programming 188
Writing asynchronous code 188

Using the BeginInvoke method of the Delegate class 189
Using the Task class 190
Using the IAsyncResult interface 191

When not to use asynchronous programming 193
In a single database without connection pooling 193
When it is important that the code is easy to read and maintain 193
For simple and short-running operations 193
For applications with lots of shared resources 194

Problems you can solve using asynchronous code 194
Summary 195

Table of Contents

[vi]

Questions 196

Chapter 9: Async, Await, and Task-Based Asynchronous Programming
Basics 197

Technical requirements 198
Introducing async and await 198

The return type of async methods 202
Async delegates and lambda expressions 203
Task-based asynchronous patterns 204

The compiler method, using the async keyword 204
Implementing the TAP manually 204

Exception handling with async code 205
A method that returns Task and throws an exception 205

An async method from outside a try-catch block without the await keyword 206
An async method from inside the try-catch block without the await keyword 208
Calling an async method with the await keyword from outside the try-catch
block 210
Methods returning void 211

Async with PLINQ 212
Measuring the performance of async code 213
Guidelines for using async code 216

Avoid using async void 216
Async chain all the way 216
Using ConfigureAwait wherever possible 217

Summary 218
Questions 218

Section 4: Debugging, Diagnostics, and Unit Testing
for Async Code
Chapter 10: Debugging Tasks Using Visual Studio 221

Technical requirements 222
Debugging with VS 2019 222
How to debug threads 222
Using Parallel Stacks windows 226

Debugging using Parallel Stacks windows 226
Threads view 227
Tasks view 228

Debugging using the Parallel Watch window 229
Using Concurrency Visualizer 231

Utilization view 232
Threads view 233
Cores view 234

Summary 234
Questions 235

Table of Contents

[vii]

Further reading 235

Chapter 11: Writing Unit Test Cases for Parallel and Asynchronous
Code 236

Technical requirements 237
Unit testing with .NET Core 237
Understanding the problems with writing unit test cases for async
code 239
Writing unit test cases for parallel and async code 242

Checking for a successful result 242
Checking for an exception result when the divisor is 0 243

Mocking the setup for async code using Moq 243
Testing tools 246
Summary 247
Questions 247
Further reading 248

Section 5: Parallel Programming Feature Additions
to .NET Core
Chapter 12: IIS and Kestrel in ASP.NET Core 250

Technical requirements 250
IIS threading model and internals 251

Starvation Avoidance 252
Hill Climbing 252

Kestrel threading model and internals 253
ASP.NET Core 1.x 254
ASP.NET Core 2.x 255

Introducing the best practices of threading in microservices 256
Single thread-single process microservices 256
Single thread-multiple process microservices 257
Multiple threads-single process 257
Asynchronous services 257
Dedicated thread pools 257

Introducing async in ASP.NET MVC core 258
Async streams 262

Summary 265
Questions 266

Chapter 13: Patterns in Parallel Programming 267
Technical requirements 267
The MapReduce pattern 268

Implementing MapReduce using LINQ 268
Aggregation 271
The fork/join pattern 273

Table of Contents

[viii]

The speculative processing pattern 273
The lazy pattern 275
Shared state pattern 278
Summary 278
Questions 279

Chapter 14: Distributed Memory Management 280
Technical requirements 281
Introduction to distributed systems 281
Shared versus distributed memory model 282

Shared memory model 283
Distributed memory model 285

Types of communication network 286
Static communication networks 286
Dynamic communication networks 287

Properties of communication networks 287
Topology 287
Routing algorithms 288
Switching strategy 289
Flow control 289

Exploring topologies 290
Linear and ring topologies 290

Linear arrays 290
Ring or torus 291

Meshes and tori 291
2D mesh 292
2D torus 293

Programming distributed memory machines using message
passing 293

Why MPI? 294
Installing MPI on Windows 294
Sample program using MPI 294
Basic send/receive use 295

Collectives 297
Summary 297
Questions 298

Assessments 299

Other Books You May Enjoy 303

Index 306

Preface
Packt first contacted me about writing this book nearly a year ago. It's been a long journey,
harder than I anticipated at times, and I've learned a lot. The book you hold now is the
culmination of many long days, and I'm proud to finally present it.

Having written this book about C# means a lot to me as it has always been a dream of mine
to write about the language that I started my career with. C# has really grown in leaps and
bounds since it was first introduced. .NET Core has actually enhanced the power and
reputation of C# within the developer community.

To make this book meaningful to a wide audience, we will cover both the classic threading
model and the Task Parallel Library (TPL), using code to explain them. We'll first look at
the basic concepts of the OS that make it possible to write multithreaded code. We'll then
look closely at the differences between classic threading and the TPL.

In this book, I take care to approach parallel programming in the context of modern-day
best programming practices. The examples have been kept short and simple so as to ease
your understanding. The chapters have been written in a way that makes the topics easy to
learn even if you don't have much prior knowledge of them.

I hope you enjoy reading this book as much as I enjoyed writing it.

Who this book is for
This book is for C# programmers who want to learn multithreading and parallel
programming concepts and want to use them in enterprise applications built using .NET
Core. It is also designed for students and professionals who simply want to learn about
how parallel programming works with modern-day hardware.

It is assumed that you already have some familiarity with the C# programming language
and some basic knowledge of how OSes work.

Preface

[2]

What this book covers
Chapter 1, Introduction to Parallel Programming, introduces the important concepts of
multithreading and parallel programming. This chapter includes coverage of how OSes
have evolved to support modern-day parallel programming constructs.

Chapter 2, Task Parallelism, demonstrates how to divide your program into tasks for the
efficient utilization of CPU resources and high performance.

Chapter 3, Implementing Data Parallelism, focuses on implementing data parallelism using
parallel loops. This chapter also covers extension methods to help in achieving parallelism,
as well as partitioning strategies.

Chapter 4, Using PLINQ, explains how to take advantage of PLINQ support. This includes
ordering queries and canceling queries, as well as the pitfalls of using PLINQ.

Chapter 5, Synchronization Primitives, covers the synchronization constructs available in C#
for working with shared resources in multithreaded code.

Chapter 6, Using Concurrent Collections, describes how to take advantage of concurrent
collections available in .NET Core without worrying about the effort of manual
synchronization coding.

Chapter 7, Improving Performance with Lazy Initialization, explores how to implement built-
in constructs utilizing lazy patterns.

Chapter 8, Introduction to Asynchronous Programming, explores how to write
asynchronous code in earlier versions of .NET.

Chapter 9, Async, Await, and Task-Based Asynchronous Programming Basics, covers how to
take advantage of the new constructs in .NET Core to implement asynchronous code.

Chapter 10, Debugging Tasks Using Visual Studio, focuses on the various tools available in
Visual Studio 2019 that makes debugging parallel tasks easier.

Chapter 11, Writing Unit Test Cases for Parallel and Asynchronous Code, covers the various
ways to write unit test cases in Visual Studio and .NET Core.

Chapter 12, IIS and Kestrel in ASP.NET Core, introduces the concepts of IIS and Kestrel. The
chapter also looks at support for asynchronous streams.

Preface

[3]

Chapter 13, Patterns in Parallel Programming, explains the various patterns that are already
implemented in the C# language. This also includes custom pattern implementations.

Chapter 14, Distributed Memory Management, explores how memory is shared in distributed
programs.

To get the most out of this book
You need to have Visual Studio 2019 installed on your system along with .NET Core 3.1.
Basic knowledge of C# and OS concepts is recommended as well.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the Support tab.2.
Click on Code Downloads.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.

NET-Core-3. In case there's an update to the code, it will be updated on the existing GitHub
repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

http://www.packt.com
https://www.packtpub.com/support
http://www.packt.com
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[4]

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ /static. packt- cdn. com/downloads/
9781789132410_ColorImages. pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Mount the downloaded WebStorm-10*.dmg disk image file as another disk in
your system."

A block of code is set as follows:

private static void PrintNumber10Times()
{
 for (int i = 0; i < 10; i++)
 {
 Console.Write(1);
 }
 Console.WriteLine();
}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

private static void PrintNumber10Times()
{
 for (int i = 0; i < 10; i++)
 {
 Console.Write(1);
 }
 Console.WriteLine();
}

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Rather than finding the optimal number of threads ourselves,
we can leave it to the Common Language Runtime."

https://static.packt-cdn.com/downloads/9781789132410_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789132410_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789132410_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789132410_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789132410_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789132410_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789132410_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789132410_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789132410_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789132410_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789132410_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789132410_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789132410_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789132410_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789132410_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789132410_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789132410_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789132410_ColorImages.pdf

Preface

[5]

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

https://www.packtpub.com/support/errata
http://authors.packtpub.com/
http://www.packt.com/

1
Section 1: Fundamentals of

Threading, Multitasking, and
Asynchrony

In this section, you will become familiar with the concepts of threading, multitasking, and
asynchronous programming.

This section comprises the following chapters:

Chapter 1, Introduction to Parallel Programming
Chapter 2, Task Parallelism
Chapter 3, Implementing Data Parallelism
Chapter 4, Using PLINQ

1
Introduction to Parallel

Programming
Parallel programming has been supported in .NET since the start and it has gained a strong
footing since the introduction of the Task Parallel Library (TPL) from .NET framework 4.0
onward.

Multithreading is a subset of parallel programming and is one of the least understood
aspects of programming; it's one that many new developers struggle to understand. C# has
evolved significantly since its inception. It has very strong support, not only for
multithreading but also for asynchronous programming. Multithreading in C# goes way
back to C# version 1.0. C# is primarily synchronous, but with the strong async support that
has been added from C# 5.0 onward, it has become the first choice for application
programmers. Whereas multithreading only deals with how to parallelize within processes,
parallel programming also deals with inter-process communication scenarios.

Prior to the introduction of the TPL, we relied
on Thread, BackgroundWorker, and ThreadPool to provide us with multithreading
capabilities. At the time of C# v1.0, it relied on threads to split up work and free up the user
interface (UI), thereby allowing the user to develop responsive applications. This model is
now referred to as classic threading. With time, this model made way for another model of
programming, called TPL, which relies on tasks and still uses threads internally.

In this chapter, we will learn about various concepts that will help you learn about writing
multithreaded code from scratch.

Introduction to Parallel Programming Chapter 1

[8]

We will cover the following topics:

Basic concepts of multi-core computing, starting with an introduction to the
concepts and processes related to the operating system (OS)
Threads and the difference between multithreading and multitasking
Advantages and disadvantages of writing parallel code and scenarios in which
parallel programming is useful

Technical requirements
All the examples demonstrated in this book have been created in Visual Studio 2019 using
C# 8. All the source code can be found on GitHub at https:/ /github. com/
PacktPublishing/Hands- On- Parallel- Programming- with- C- 8-and- .NET- Core- 3/tree/
master/Chapter01.

Preparing for multi-core computing
In this section, we will introduce the core concepts of the OS, starting with the process,
which is where threads live and run. Then, we will consider how multitasking evolved
with the introduction of hardware capabilities, which make parallel programming possible.
After that, we will try to understand the different ways of creating a thread with code.

Processes
In layman's terms, the word process refers to a program in execution. In terms of the OS,
however, a process is an address space in the memory. Every application, whether it is a
Windows, web, or mobile application, needs processes to run. Processes provide security
for programs against other programs that run on the same system so that data that's
allocated to one cannot be accidentally accessed by another. They also provide isolation so
that programs can be started and stopped independently of each other and independently
of the underlying OS.

https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter01
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter01

Introduction to Parallel Programming Chapter 1

[9]

Some more information about the OS
The performance of applications largely depends on the quality and configuration of the
hardware. This includes the following:

CPU speed
Amount of RAM
Hard disk speed (5400/7200 RPM)
Disk type, that is, HDD or SSD

Over the last few decades, we have seen huge jumps in hardware technology. For example,
microprocessors used to have a single core, which is a chip with one central processing
unit (CPU). By the turn of the century, we saw the advent of multi-core processors, which
are chips with two or more processors, each with its own cache.

Multitasking
Multitasking refers to the ability of a computer system to run more than one process
(application) at a time. The number of processes that can be run by a system is directly
proportional to the number of cores in that system. Therefore, a single-core processor can
only run one task at a time, a dual-core processor can run two tasks at a time, and a quad-
core processor can run four tasks at a time. If we add the concept of CPU scheduling to this,
we can see that the CPU runs more applications at a time by scheduling or switching them
based on CPU scheduling algorithms.

Hyper-threading
Hyper-threading (HT) technology is a proprietary technology that was developed by Intel
that improves the parallelization of computations that are performed on x86 processors. It
was first introduced in Xeon server processors in 2002. HT-enabled single-processor chips
run with two virtual (logical) cores and are capable of executing two tasks at a time. The
following diagram shows the difference between single- and multi-core chips:

Introduction to Parallel Programming Chapter 1

[10]

The following are a few examples of processor configurations and the number of tasks that
they can perform:

A single processor with a single-core chip: One task at a time
A single processor with an HT-enabled single-core chip: Two tasks at a time
A single processor with a dual-core chip: Two tasks at a time
A single processor with an HT-enabled dual-core chip: Four tasks at a time
A single processor with a quad-core chip: Four tasks at a time
A single processor with an HT-enabled quad-core chip: Eight tasks at a time

The following is a screenshot of a CPU resource monitor for an HT-enabled quad-core
processor system. On the right-hand side, you can see that there are eight available CPUs:

Introduction to Parallel Programming Chapter 1

[11]

You might be wondering how much you can improve the performance of your computer
simply by moving from a single-core to a multi-core processor. At the time of writing, most
of the fastest supercomputers are built on the Multiple Instruction, Multiple Data
(MIMD) architecture, which was one of the classifications of computer architecture
proposed by Michael J. Flynn in 1966.

Let's try to understand this classification.

Flynn's taxonomy
Flynn classified computer architectures into four categories based on the number of
concurrent instruction (or control) streams and data streams:

Single Instruction, Single Data (SISD): In this model, there is a single control
unit and a single instruction stream. These systems can only execute one
instruction at a time without any parallel processing. All single-core processor
machines are based on the SISD architecture.
Single Instruction, Multiple Data (SIMD): In this model, we have a single
instruction stream and multiple data streams. The same instruction stream is
applied to multiple data streams in parallel. This is handy in speculative-
approach scenarios where we have multiple algorithms for data and we don't
know which one will be faster. It provides the same input to all the algorithms
and runs them in parallel on multiple processors.
Multiple Instructions, Single Data (MISD): In this model, multiple instructions
operate on one data stream. Therefore, multiple operations can be applied in
parallel on the same data source. This is generally used for fault tolerance and in
space shuttle flight control computers.
Multiple Instructions, Multiple Data (MIMD): In this model, as the name
suggests, we have multiple instruction streams and multiple data streams. Due to
this, we can achieve true parallelism, where each processor can run different
instructions on different data streams. Nowadays, this architecture is used by
most computer systems.

Now that we've covered the basics, let's move our discussion to threads.

Introduction to Parallel Programming Chapter 1

[12]

Threads
A thread is a unit of execution inside a process. At any point, a program may consist of one
or more threads for better performance. GUI-based Windows applications, such as
legacy Windows Forms (WinForms) or Windows Presentation Foundation (WPF), have a
dedicated thread for managing the UI and handling user actions. This thread is also called
the UI thread, or the foreground thread. It owns all the controls that are created as part of
the UI.

Types of threads
There are two different types of managed threads, that is, a foreground thread and
a background thread. The difference between these is as follows:

Foreground threads: These have a direct impact on an application's lifetime. The
application keeps running until there is a foreground thread.
Background threads: These have no impact on the application's lifetime. When
the application exits, all the background threads are killed.

An application may comprise any number of foreground or background threads. While
active, a foreground thread keeps the application running; that is, the application's lifetime
depends on the foreground thread. The application stops completely when the last
foreground thread is stopped or aborted. When the application exits, the system stops all
the background threads.

Apartment state
Another important aspect of threads to understand is the apartment state. This is the area
inside a thread where Component Object Model (COM) objects reside.

COM is an object-oriented system for creating binary software that the
user can interact with and is distributed and cross-platform. COM has
been used to create Microsoft OLE and ActiveX technologies.

As you may be aware, all Windows forms controls are wrapped over COM objects.
Whenever you create a .NET WinForms application, you are actually hosting COM
components. A thread apartment is a distinct area inside the application process where
COM objects are created. The following diagram demonstrates the relationship between the
thread apartment and COM objects:

Introduction to Parallel Programming Chapter 1

[13]

As you can see from the preceding diagram, every thread has thread apartments where
COM objects reside.

A thread can belong to one of two apartment states:

Single-Threaded Apartment (STA): The underlying COM object can be accessed
via a single thread only
Multi-Threaded Apartment (MTA): The underlying COM object can be accessed
via multiple threads at a time

The following list highlights some important points regarding thread apartment states:

Processes can have multiple threads, either foreground or background.
Each thread can have one apartment, either STA or MTA.
Every apartment has a concurrency model, either single-threaded or
multithreaded. We can change the thread state programmatically as well.
An application process may have more than one STA, but a maximum of one
MTA.
An example of an STA application is a Windows application, and an example of
an MTA application is a web application.
COM objects are created in apartments. One COM object can only lie in one
thread apartment, and apartments cannot be shared.

Introduction to Parallel Programming Chapter 1

[14]

An application can be forced to start in STA mode by using the STAThread attribute over
the main methods. The following is an example of the Main method of a legacy WinForm:

static class Program
{
 /// <summary>
 /// The main entry point for the application.
 /// </summary>
 [STAThread]
 static void Main()
 {
 Application.EnableVisualStyles();
 Application.SetCompatibleTextRenderingDefault(false);
 Application.Run(new Form1());
 }
}

The STAThread attribute is also present in WPF but is hidden from users. The following is
the code for the compiled App.g.cs class, which can be found in the obj/Debug directory
of your WPF project after compilation:

/// <summary>
 /// App
 /// </summary>
 public partial class App : System.Windows.Application {

 /// <summary>
 /// InitializeComponent
 /// </summary>
 [System.Diagnostics.DebuggerNonUserCodeAttribute()]
 [System.CodeDom.Compiler.GeneratedCodeAttribute(
 "PresentationBuildTasks", "4.0.0.0")]
 public void InitializeComponent() {

 #line 5 "..\..\App.xaml"
 this.StartupUri = new System.Uri("MainWindow.xaml",
 System.UriKind.Relative);

 #line default
 #line hidden
 }

 /// <summary>
 /// Application Entry Point.
 /// </summary>
 [System.STAThreadAttribute()]
 [System.Diagnostics.DebuggerNonUserCodeAttribute()]

Introduction to Parallel Programming Chapter 1

[15]

 [System.CodeDom.Compiler.GeneratedCodeAttribute(
 "PresentationBuildTasks", "4.0.0.0")]
 public static void Main() {
 WpfApp1.App app = new WpfApp1.App();
 app.InitializeComponent();
 app.Run();
 }
 }

As you can see, the Main method is decorated with the STAThread attribute.

Multithreading
Parallel execution of code in .NET is achieved through multithreading. A process (or
application) can utilize any number of threads, depending on its hardware capabilities.
Every application, including console, legacy WinForms, WPF, and even web applications, is
started by a single thread by default. We can easily achieve multithreading by creating
more threads programmatically as and when they are required.

Multithreading typically functions using a scheduling component known as a thread
scheduler, which keeps track of when a thread should run out of active threads inside a
process. Every thread that's created is assigned a System.Threading.ThreadPriority,
which can have one of the following valid values. Normal is the default priority that's
assigned to any thread:

Highest

AboveNormal

Normal

BelowNormal

Lowest

Every thread that runs inside a process is assigned a time slice by the OS based on the
thread priority scheduling algorithm. Every OS can have a different scheduling algorithm
for running threads, so the order of execution may vary in different operating systems. This
makes it more difficult to troubleshoot threading errors. The most common scheduling
algorithm is as follows:

Find the threads with the highest priority and schedule them to run.1.
If there is more than one thread with the highest priority, each thread is assigned2.
a fixed time slices in which they can execute.

Introduction to Parallel Programming Chapter 1

[16]

Once the highest-priority threads finish executing, the lower-priority threads3.
start to be allocated to time slices in which it can begin executing.
If a new highest-priority thread is created, low-priority threads are pushed back4.
again.

Time slicing refers to switching the execution between the active threads. It can vary,
depending on the hardware configuration. A single-core processor machine can only run
one thread at a time, so the thread scheduler carries out the time slicing. The time slice
largely depends on the clock speed of the CPU, but there still aren't many performance
gains that can be achieved via multithreading in such systems. Moreover, context switching
comes with performance overheads. If the work that's allocated to a thread spans multiple
time slices, then the thread needs to be switched in and out of memory. Every time it
switches out, it needs to bundle and save its state (data) and reload it when it switches back
in.

Concurrency is a concept that's primarily used in the context of multi-core processors. A
multi-core processor has a higher number of CPUs available, as we discussed previously,
and therefore different threads can be run simultaneously on different CPUs. A higher
number of processors means a higher degree of concurrency.

There are multiple ways that threads can be created in programs. These include the
following:

The Thread class
The ThreadPool Class
The BackgroundWorker Class
Asynchronous delegates
TPL

We will cover asynchronous delegates and TPL in depth during the course of this book, but
in this chapter, we will provide an explanation of the remaining three methods.

Introduction to Parallel Programming Chapter 1

[17]

Thread class
The simplest and easiest way of creating threads is via the Thread class, which is defined in
the System.Threading namespace. This approach has been used since the arrival of .NET
version 1.0 and it works with .NET core as well. To create a thread, we need to pass a
method that the thread needs to execute. The method can either be parameter-less or
parameterized. There are two delegates that are provided by the framework to wrap these
functions:

System.Threading.ThreadStart

System.Threading.ParameterizedThreadStart

We will learn both of these through examples. Before showing you how to create a thread, I
will try to explain how a synchronous program works. Later on, we will introduce
multithreading so that we understand the asynchronous way of execution. An example of
how to create a thread is as follows:

using System;
namespace Ch01
{
 class _1Synchronous
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Start Execution!!!");

 PrintNumber10Times();
 Console.WriteLine("Finish Execution");
 Console.ReadLine();
 }
 private static void PrintNumber10Times()
 {
 for (int i = 0; i < 10; i++)
 {
 Console.Write(1);
 }
 Console.WriteLine();
 }
 }
}

Introduction to Parallel Programming Chapter 1

[18]

In the preceding code, everything runs in the main thread. We have called the
PrintNumber10Times method from within the Main method, and since the Main method
is invoked by the main GUI thread, the code runs synchronously. This can cause
unresponsive behavior if the code runs for a long time as the main thread will be busy
during execution.

The output of the code is as follows:

In the following timeline, we can see that everything happens in the Main Thread:

The preceding diagram shows sequential code execution on the Main thread.

Now, we can make the program multithreaded by creating a thread to do the printing. The
main thread prints the statements that are written in the Main method:

using System;
namespace Ch01
{
 class _2ThreadStart
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Start Execution!!!");
 //Using Thread without parameter
 CreateThreadUsingThreadClassWithoutParameter();
 Console.WriteLine("Finish Execution");
 Console.ReadLine();
 }
 private static void CreateThreadUsingThreadClassWithoutParameter()
 {
 System.Threading.Thread thread;
 thread = new System.Threading.Thread(new
 System.Threading.ThreadStart(PrintNumber10Times));

Introduction to Parallel Programming Chapter 1

[19]

 thread.Start();
 }
 private static void PrintNumber10Times()
 {
 for (int i = 0; i < 10; i++)
 {
 Console.Write(1);
 }
 Console.WriteLine();
 }
 }
}

In the preceding code, we have delegated the execution of PrintNumber10Times() to a
new thread that has been created via the Thread class. The Console.WriteLine
statements in the Main method are still executed via the main thread,
but PrintNumber10Times is not called via the child thread.

The output of the code is as follows:

The timeline for this process is as follows. You can see that Console.WriteLine executes
on the Main Thread and that the loop executes on the Child Thread:

The preceding diagram is an example of multithreaded execution.

Introduction to Parallel Programming Chapter 1

[20]

If we compare the outputs, we can see that the program finishes everything in the main
thread and then starts to print the number 10 times. The operations in this example are very
small and thus work in a deterministic manner. If there are time-consuming statements in
the main thread before Finish Execution is printed, however, the results can vary. We will
look at how multithreading works and how it is related to CPU speed and numbers later on
in this chapter in order to fully understand this idea.

Here is another example to show you how to pass data to the thread using
the System.Threading.ParameterizedThreadStart delegate:

using System;
namespace Ch01
{
 class _3ParameterizedThreadStart
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Start Execution!!!");
 //Using Thread with parameter
 CreateThreadUsingThreadClassWithParameter();
 Console.WriteLine("Finish Execution");
 Console.ReadLine();
 }
 private static void CreateThreadUsingThreadClassWithParameter()
 {
 System.Threading.Thread thread;
 thread = new System.Threading.Thread(new
 System.Threading.ParameterizedThreadStart(PrintNumberNTimes));
 thread.Start(10);
 }
 private static void PrintNumberNTimes(object times)
 {
 int n = Convert.ToInt32(times);
 for (int i = 0; i < n; i++)
 {
 Console.Write(1);
 }
 Console.WriteLine();
 }
 }
}

Introduction to Parallel Programming Chapter 1

[21]

The output of the preceding code is as follows:

Using the Thread class has some advantages and disadvantages. Let's try to understand
them.

Advantages and disadvantages of threads
The Thread class has the following advantages:

Threads can be utilized to free up the main thread.
Threads can be used to break up a task into smaller units that can be executed
concurrently.

The Thread class has the following disadvantages:

With more threads, the code becomes difficult to debug and maintain.
Thread creation puts a load on the system in terms of memory and CPU
resources.
We need to do exception handling inside the worker method as any unhandled
exceptions can result in the program crashing.

The ThreadPool class
Thread creation is an expensive operation in terms of both memory and CPU resources. On
average, every thread consumes around 1 MB of memory and a few hundred microseconds
of CPU time. Application performance is a relative concept, so it will not necessarily
improve by creating a large number of threads. Conversely, creating a large number of
threads can sometimes decrease application performance drastically. We should always
aim to create an optimal number of threads, depending on the target system's CPU load,
that is, other programs running on the system. This is because every program gets a time
slice by the CPU, which is then distributed among the threads inside the application. If you
create too many threads, they may not be able to do any constructive work before being
swapped out of memory to give the time slice other similar-priority threads.

Introduction to Parallel Programming Chapter 1

[22]

Finding the optimal number of threads can be tricky as it can vary from one system to
another, depending on the configuration and the number of applications that are running
concurrently on the system. What may be an optimal number on one system may cause a
negative impact on another. Rather than finding the optimal number of threads ourselves,
we can leave it to the Common Language Runtime (CLR). The CLR has an algorithm to
determine the optimal number based on the CPU load at any point in time. It maintains a
pool of threads, known as the ThreadPool. The ThreadPool resides in a process and each
application has its own pool of threads. The advantage of thread pooling is that it maintains
an optimal number of threads and assigns them to a task. When the work is finished, the
threads are returned to the pool, where they can be assigned to the next work item, thereby
preventing the cost of creating and destroying threads.

The following is a list of the optimal number of threads that can be created in different
frameworks inside ThreadPool:

25 per core in .NET Framework 2.0
250 per core in .NET Framework 3.5
1,023 in .NET Framework 4.0 in a 32-bit environment
32,768 in .NET Framework 4.0 onward, as well as in .NET core in a 64-bit
environment

While working with an investment bank, we came across a scenario where
a trade process was taking almost 1,800 seconds to book close to 1,000
trades synchronously. After trying various optimal numbers, we finally
switched to ThreadPool and made the process multithreaded. With .NET
Framework version 2.0, the application finished in close to 72 seconds.
With version 3.5, the same application finished in just a few seconds. This
is a typical example of using the framework that's been provided rather
than reinventing the wheel. You can get much-needed performance gains
just by updating the framework.

We can create a thread via ThreadPool by calling ThreadPool.QueueUserWorkItem, as
shown in the following example.

Introduction to Parallel Programming Chapter 1

[23]

Here is the method that we want to call in parallel:

private static void PrintNumber10Times(object state)
{
 for (int i = 0; i < 10; i++)
 {
 Console.Write(1);
 }
 Console.WriteLine();
}

Here is how we can create a thread using ThreadPool.QueueUserWorkItem while
passing the WaitCallback delegate:

private static void CreateThreadUsingThreadPool()
{
 ThreadPool.QueueUserWorkItem(new WaitCallback(PrintNumber10Times));
}

Here is a call from the Main method:

using System;
using System.Threading;

namespace Ch01
{
 class _4ThreadPool
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Start Execution!!!");
 CreateThreadUsingThreadPool();
 Console.WriteLine("Finish Execution");
 Console.ReadLine();
 }
 }
}

The output of the preceding code is as follows:

Introduction to Parallel Programming Chapter 1

[24]

Every thread pool maintains a minimum and a maximum number of threads. These values
can be modified by calling the following static methods:

ThreadPool.SetMinThreads

ThreadPool.SetMaxThreads

A thread is created via System.Threading. The Thread class doesn't
belong to the ThreadPool.

Let's take a look at the advantages and disadvantages associated with using the
ThreadPool class and when to avoid using it.

Advantages, disadvantages, and when to avoid using ThreadPool
The advantages of the ThreadPool are as follows:

Threads can be utilized to free up the main thread.
Threads are created and maintained in an optimal way by CLR.

The disadvantages of the ThreadPool are as follows:

With more threads, the code becomes difficult to debug and maintain.
We need to do exception handling inside the worker method as any unhandled
exception can result in the program crashing.
Progress reporting, cancellations, and completion logic need to be written from
scratch.

The following are the reasons when we should avoid ThreadPool:

When we need a foreground thread.
When we need to set an explicit priority to a thread.
When we have long-running or blocking tasks. Having a large number of
blocked threads in the pool will prevent new tasks from starting due to the
limited number of threads that are available per process in ThreadPool.
If we need STA threads since ThreadPool threads are MTA by default.
If we need to dedicate a thread to a task by providing it a distinct identity since
we cannot name a ThreadPool thread.

Introduction to Parallel Programming Chapter 1

[25]

BackgroundWorker
BackgroundWorker is a construct provided by .NET to create more manageable threads
from a ThreadPool. When explaining GUI-based applications, we saw that the Main
method was decorated with the STAThread attribute. This attribute guarantees control
safety as controls are created in the apartment owned by the thread and cannot be shared
with other threads. In Windows applications, there is the main thread of execution that
owns the UI and controls, which is created when the application starts. It is responsible for
accepting user inputs and painting or repainting the UI based on the actions of the user. For
a great user experience, we should try to make the UI as thread-free as possible and
delegate all time-consuming tasks to worker threads. Some common tasks that are usually
assigned to worker threads are as follows:

Downloading images from a server
Interacting with a database
Interacting with a filesystem
Interacting with web services
Complex local computations

As you can see, most of these are input/output (I/O) operations. I/O operations are carried
out by the CPU. The moment we call a piece of code that encapsulates an I/O operation, the
execution is passed from the thread to the CPU, which performs the task. When it is
complete, the result of the operation is returned to the caller thread. This period from
passing the baton and receiving results is a period of inactivity for the thread as it just has
to wait for the operation to complete. If this occurs in the main thread, the application
becomes unresponsive. For this reason, it makes sense to delegate these tasks to the worker
threads. There are still several challenges to overcome with regard to responsive
applications. Let's look at an example.

Case study:

We need to fetch data from a service that streams data. We would like to update the user
with the percentage completion of work. Once the work is complete, we need to update the
user with all the data.

Challenges:

The service call takes time, so we need to delegate the call in a worker thread to avoid UI
freeze.

Introduction to Parallel Programming Chapter 1

[26]

Solution:

BackgroundWorker is a class provided in System.ComponentModel that can be used to
create a worker thread utilizing ThreadPool, as we discussed previously. This means that
it works in an efficient way. BackgroundWorker also supports progress reporting and
cancellations, apart from notifying the result of the operation.

This scenario can be further explained with the following code:

using System;
using System.ComponentModel;
using System.Text;
using System.Threading;

namespace Ch01
{
 class _5BackgroundWorker
 {
 static void Main(string[] args)
 {
 var backgroundWorker = new BackgroundWorker();
 backgroundWorker.WorkerReportsProgress = true;
 backgroundWorker.WorkerSupportsCancellation = true;
 backgroundWorker.DoWork += SimulateServiceCall;
 backgroundWorker.ProgressChanged += ProgressChanged;
 backgroundWorker.RunWorkerCompleted +=
 RunWorkerCompleted;
 backgroundWorker.RunWorkerAsync();
 Console.WriteLine("To Cancel Worker Thread Press C.");
 while (backgroundWorker.IsBusy)
 {
 if (Console.ReadKey(true).KeyChar == 'C')
 {
 backgroundWorker.CancelAsync();
 }
 }
 }
 // This method executes when the background worker finishes
 // execution
 private static void RunWorkerCompleted(object sender,
 RunWorkerCompletedEventArgs e)
 {
 if (e.Error != null)
 {
 Console.WriteLine(e.Error.Message);
 }
 else

Introduction to Parallel Programming Chapter 1

[27]

 Console.WriteLine($"Result from service call
 is {e.Result}");
 }

 // This method is called when background worker want to
 // report progress to caller
 private static void ProgressChanged(object sender,
 ProgressChangedEventArgs e)
 {
 Console.WriteLine($"{e.ProgressPercentage}% completed");
 }

 // Service call we are trying to simulate
 private static void SimulateServiceCall(object sender,
 DoWorkEventArgs e)
 {
 var worker = sender as BackgroundWorker;
 StringBuilder data = new StringBuilder();
 //Simulate a streaming service call which gets data and
 //store it to return back to caller
 for (int i = 1; i <= 100; i++)
 {
 //worker.CancellationPending will be true if user
 //press C
 if (!worker.CancellationPending)
 {
 data.Append(i);
 worker.ReportProgress(i);
 Thread.Sleep(100);
 //Try to uncomment and throw error
 //throw new Exception("Some Error has occurred");
 }
 else
 {
 //Cancels the execution of worker
 worker.CancelAsync();
 }
 }
 e.Result = data;
 }
 }
}

Introduction to Parallel Programming Chapter 1

[28]

BackgroundWorker provides an abstraction over raw threads, which gives more control
and options to the user. The best part about using BackgroundWorker is that it uses
an Event-Based Asynchronous Pattern (EAP), which means it is able to interact with the
code more efficiently than raw threads. The code is more or less self-explanatory. In order
to raise progress reporting and cancellation events, you need to set the following
properties to true:

backgroundWorker.WorkerReportsProgress = true;
backgroundWorker.WorkerSupportsCancellation = true;

You need to subscribe to the ProgressChanged event to receive progress, the DoWork
event to pass a method that needs to be invoked by the thread, and
the RunWorkerCompleted event to receive either the final results or any error messages
from the thread's execution:

backgroundWorker.DoWork += SimulateServiceCall;
backgroundWorker.ProgressChanged += ProgressChanged;
backgroundWorker.RunWorkerCompleted += RunWorkerCompleted;

Once this has been set up, you can invoke the worker by calling the following command:

backgroundWorker.RunWorkerAsync();

At any point in time, you can cancel the execution of the thread by calling
the backgroundWorker.CancelAsync() method, which sets the CancellationPending
property on the worker thread. We need to write some code that keeps checking this flag
and exits gracefully.

If there are no exceptions, the result of the thread's execution can be returned to the caller
by setting the following:

e.Result = data;

If there are any unhandled exceptions in the program, they are returned to the caller
gracefully. We can do this by wrapping it into RunWorkerCompletedEventArgs and
passing it as a parameter to the RunWorkerCompleted event handler.

We will look at the advantages and disadvantages of using BackgroundWorker in the next
section.

Introduction to Parallel Programming Chapter 1

[29]

Advantages and disadvantages of using BackgroundWorker
The advantages of using BackgroundWorker are as follows:

Threads can be utilized to free up the main thread.
Threads are created and maintained in an optimal way by the ThreadPool
class's CLR.
Graceful and automatic exception handling.
Supports progress reporting, cancellation, and completion logic using events.

The disadvantage of using BackgroundWorker is that, with more threads, the code
becomes difficult to debug and maintain.

Multithreading versus multitasking
We have seen how both multithreading and multitasking work. Both have advantages and
disadvantages and you can use either, depending on your specific use case. The following
are some examples where multithreading can come in handy:

If you need a system that is easy to set up and terminate: Multithreading can be
useful when you have a process that has a large overhead. With threads, all you
need to do is copy the thread stack. Creating a duplicate process, however,
means recreating the entire data process in a separate memory space.
If you require fast task switching: The CPU caches and program context can be
easily maintained between threads in a process. If you have to switch the CPU to
a different process, however, it has to be reloaded.
If you need to share data with other threads: All the threads inside a process
share the same memory pool, which makes it easier for them to share data to
compare processes. If processes want to share data, they need I/O operation and
transport protocols, which is expensive.

In this section, we have discussed the basics of multithreading and multitasking, alongside
various approaches that were used to create threads in older versions of .NET. In the next
section, we will try to understand some scenarios where you can utilize parallel
programming techniques.

Introduction to Parallel Programming Chapter 1

[30]

Scenarios where parallel programming can
come in handy
The following are the scenarios in which parallel programming can be useful:

Creating a responsive UI for GUI-based applications: We can delegate all of the
heavy lifting and time-consuming tasks to the worker thread, thereby allowing
the UI thread to process user interactions and the UI repainting tasks.
Processing simultaneous requests: In server-side programming scenarios, we
need to process a large number of concurrent users. We can create a separate
thread to process each request. For example, we can use an ASP.NET request
model, which makes use of ThreadPool and assigns a thread to every request
that hits the server. Then, the thread takes care of processing the request and
returning a response to the client. In a client-side scenario, we can call multiple
mutually exclusive API calls via multithreading to save time.
Making efficient use of CPU: With multi-core processors, only one core is
generally utilized without multithreading and is overburdened. We can make
full use of CPU resources by creating multiple threads, each running on separate
CPUs. Sharing the burden in this way results in improved performance. This is
useful for long-running and complex calculations, which can be performed faster
using a divide-and-conquer strategy.
Speculative approaches: Scenarios involving more than one algorithm, such as
for an input set of numbers, where we want to get a sorted set as quickly as
possible. The only way to do this is to pass the input to all the algorithms and run
them in parallel, and whichever finishes first is accepted, while the rest are
canceled.

Advantages and disadvantages of
parallel programming
Multithreading leads to parallelism, which has its own programming and pitfalls. Now that
we have grasped the basic concepts of parallel programming, it is important to understand
its advantages and disadvantages.

Introduction to Parallel Programming Chapter 1

[31]

The following are the benefits of parallel programming:

Enhanced performance: We can achieve better performance since tasks are
distributed across threads that run in parallel.
Improved GUI responsiveness: Since tasks perform non-blocking I/O, this
means the GUI thread is always free to accept user inputs. This results in better
responsiveness.
The simultaneous and parallelized occurrence of tasks: Since tasks run in
parallel, we can simultaneously run different programming logic.
Better use of cache storage by utilizing resources and better use of CPU
resources. Tasks can run on different cores, thereby ensuring maximizing
throughput.

Parallel programming also has the following disadvantages:

Complex debugging and testing processes: It's not easy to debug threads
without good multithreading tool support as different threads runs in parallel.
Context switching overheads: Every thread works on a slice of time that's been
allocated to it. Once the time slice expires, context switching happens, which also
wastes resources.
High chance of deadlock occurrence: If multiple threads work on a shared
resource, we need to apply locks to achieve thread-safety. This can lead to
deadlocks if multiple threads are simultaneously locking and waiting for shared
resources.
Difficult to program: With code branching, parallel programs can be difficult to
write compared to synchronous versions.
Unpredictable results: Since parallel programming relies on CPU cores, we can
get different results on different configuration machines.

We should always understand that parallel programming is a relative concept and that
something that worked for others may or may not work for you. You are advised to
implement this approach and validate it yourself.

Summary
In this chapter, we discussed the scenarios, benefits, and pitfalls of parallel programming.
Computer systems have evolved over the last few decades from single-core processors to
multi-core processors. The hardware in chips has become HT-enabled, thereby increasing
the performance of modern systems.

Introduction to Parallel Programming Chapter 1

[32]

Before embarking on your journey in parallel programming, it's a good idea to understand
the basic concepts related to the OS, such as processes, tasks, and the difference between
multithreading and multitasking.

In the next chapter, we will focus our discussion entirely on the TPL and its associated
implementations. In the real world, however, there is a lot of legacy code that still relies on
older constructs, so knowledge of these will be handy.

Questions
Multithreading is a superset of parallel programming.1.

True1.
False2.

How many cores will there be in a single-processor dual-core machine with2.
hyper-threading enabled?

21.
42.
83.

When an application exits, all the foreground threads are killed as well. There is3.
no separate logic required to close foreground threads on an application's exit.

True1.
False2.

Which exception is thrown when a thread has tried to access controls it has not4.
owned/created?

ObjectDisposedException1.
InvalidOperationException2.
CrossThreadException3.

Which of these provides cancellation support and progress reporting?5.
Thread1.
BackgroundWorker2.
ThreadPool3.

2
Task Parallelism

In the previous chapter, we introduced the concept of parallel programming. In this
chapter, we will move on to discussing TPL and task parallelism.

One of the major goals of .NET as a programming framework is to make a developer's life
easier by wrapping up all the commonly required tasks as APIs. As we have already seen,
threads have existed since the earliest versions of .NET, but they were initially very
complex and were associated with a lot of overhead. Microsoft has introduced a lot of new
parallel primitives that make it easier to write, debug, and maintain parallel programs from
scratch, without having to deal with the complexities that are involved with legacy
threading.

The following topics will be covered in this chapter:

Creating and starting a task
Getting results from finished tasks
How to cancel tasks
How to wait on running tasks
Handling task exceptions
Converting Asynchronous Programming Model (APM) patterns into tasks
Converting Event-Based Asynchronous Patterns (EAPs) into tasks
More on tasks:

Continuation tasks
Parent and child tasks
Local and global queues and storage
Work-stealing queues

Task Parallelism Chapter 2

[34]

Technical requirements
To complete this chapter, you should have a good understanding of C# and some advanced
concepts such as delegates.

The source code for this chapter is available on GitHub at https:/ /github. com/
PacktPublishing/Hands- On- Parallel- Programming- with- C- 8-and- .NET- Core- 3/tree/
master/Chapter02.

Tasks
Tasks are abstractions in .NET that provide units of asynchrony, just like promises in
JavaScript. In initial versions of .NET, we had to rely on threads only, which were created
either directly or using the ThreadPool class. The ThreadPool class provided a managed
abstraction layer over threads but developers still relied on the Thread class for better
control. By creating a thread via the Thread class, we gained access to the underlying
object, which we can wait for, cancel, or move to the foreground or background. In real
time, however, we required threads to perform work continuously. This required us to
write lots of code, which was difficult to maintain. The Thread class was also unmanaged,
which put a high burden on both the memory and the CPU. We needed the best of both
worlds, which is where tasks come to the rescue. A task is nothing but a wrapper over a
thread, which is created via ThreadPool. Tasks provide features such as await,
cancellation, and continuation, and these run after a task has finished.

Tasks have the following important features:

Tasks are executed by a TaskScheduler and the default scheduler simply runs
on ThreadPool.
We can return values from tasks.
Tasks let you know when they finish, unlike ThreadPool or threads.
A task can be run in continuation using the ContinueWith() construct.
We can wait on tasks by calling Task.Wait(). This blocks the calling thread
until it has finished.
Tasks make the code much more readable compared to legacy threads or
ThreadPool. They also paved the way to the introduction of the asynchronous
programming construct in C# 5.0.

https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter02
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter02

Task Parallelism Chapter 2

[35]

We can establish a parent/child relationship when one task is started from
another task.
We can propagate child task exceptions to parent tasks.
A task can be canceled using the CancellationToken class.

Creating and starting a task
There are many ways in which we can create and run a task using the TPL. In this section,
we will try to understand all of these approaches and do a comparative analysis wherever
we can. First, you need to add a reference to the System.Threading.Tasks namespace:

using System.Threading.Tasks;

We will try to create a task using the following approaches:

The System.Threading.Tasks.Task class
The System.Threading.Tasks.Task.Factory.StartNew method
The System.Threading.Tasks.Task.Run method
System.Threading.Tasks.Task.Delay

System.Threading.Tasks.Task.Yield

System.Threading.Tasks.Task.FromResult<T> Method

System.Threading.Tasks.Task.FromException and
Task.FromException<T>

System.Threading.Tasks.Task.FromCancelled and
Task.FromCancelled<T>

The System.Threading.Tasks.Task class
A task class is a way of executing work asynchronously as a ThreadPool thread and is
based on the Task-Based Asynchronous Pattern (TAP). The non-generic Task class doesn't
return results, so whenever we need to return values from a task, we need to use the
generic version, Task<T>. The tasks that are created via the Task class are not scheduled to
run until we call the Start method.

We can create a task using the Task class in various ways, all of which we'll cover in the
following subsections.

Task Parallelism Chapter 2

[36]

Using lambda expressions syntax
In the following code, we are creating a task by calling the Task constructor and passing a
lambda expression containing the method we want to execute:

Task task = new Task (() => PrintNumber10Times ());
task.Start();

Using the Action delegate
In the following code, we are creating a task by calling the Task constructor and passing a
delegate containing the method we want to execute:

Task task = new Task (new Action (PrintNumber10Times));
task.Start();

Using delegate
In the following code, we are creating a task object by calling the Task constructor and
passing an anonymous delegate containing the method we want to execute:

Task task = new Task (delegate {PrintNumber10Times ();});
task.Start();

In all of these cases, the output will be as follows:

All the preceding methods do the same thing – they just have different syntaxes.

We can only call the Start method on tasks that have not run previously.
If you need to rerun a task that has already been completed, you need to
create a new task and call the Start method on that.

Task Parallelism Chapter 2

[37]

The
System.Threading.Tasks.Task.Factory.StartNew
method
We can also create a task using the StartNew method of the TaskFactory class, as follows.
In this approach, the task is created and scheduled for execution inside the ThreadPool
and a reference of that Task is returned to the caller.

We can create a task using the Task.Factory.StartNew method. We'll go over this in the
following subsections.

Using lambda expressions syntax
In the following code, we are creating a Task by calling the StartNew() method on
TaskFactory and passing a lambda expression containing the method we want to execute:

Task.Factory.StartNew(() => PrintNumber10Times());

Using the Action delegate
In the following code, we are creating a Task by calling the StartNew() method on
TaskFactory and passing a delegate wrapping method that we want to execute:

Task.Factory.StartNew(new Action(PrintNumber10Times));

Using delegate
In the following code, we are creating a Task by calling the StartNew() method on
TaskFactory and passing the delegate wrapping method we want to execute:

 Task.Factory.StartNew(delegate { PrintNumber10Times(); });

All the preceding methods do the same thing – they just have different syntaxes.

Task Parallelism Chapter 2

[38]

The System.Threading.Tasks.Task.Run method
We can also create a task using the Task.Run method. This works just like the StartNew
method and returns a ThreadPool thread.

We can create a Task using the Task.Run method in the following ways, all of which will
be discussed in the following subsections.

Using lambda expressions syntax
In the following code, we are creating a Task by calling the static Run() method on Task
and passing a lambda expression containing the method we want to execute:

Task.Run(() => PrintNumber10Times ());

Using the Action delegate
In the following code, we are creating a Task by calling the static Run() method on Task
and passing a delegate containing the method we want to execute:

Task.Run(new Action (PrintNumber10Times));

Using delegate
In the following code, we are creating a Task by calling the static Run() method on Task
and passing a delegate containing the method we want to execute:

Task.Run(delegate {PrintNumber10Times ();});

Task Parallelism Chapter 2

[39]

The System.Threading.Tasks.Task.Delay method
We can create a task that completes after a specified interval of time or that can be canceled
at any time by the user using the CancellationToken class. In the past, we used
the Thread.Sleep() method of the Thread class to create blocking constructs to wait on
other tasks. The problem with this approach, however, was that it still used CPU resources
and ran synchronously. Task.Delay provides a better alternative to waiting on tasks
without utilizing CPU cycles. It also runs asynchronously:

Console.WriteLine("What is the output of 20/2. We will show result in 2
seconds.");
Task.Delay(2000);
Console.WriteLine("After 2 seconds delay");
Console.WriteLine("The output is 10");

The preceding code asks the user a question and then waits for two seconds before
presenting the answer. During those two seconds, the main thread doesn't have to wait but
has to carry out other tasks to improve the user's experience. The code runs asynchronously
on the system clock and, once the time expires, the rest of the code is executed.

The output of the preceding code is as follows:

Before looking at the other methods we can use to create a task, we'll take a look at two
asynchronous programming constructs that were introduced in C# 5.0: the async and
await keywords.

async and await are code markers that make it easier for us to write asynchronous
programs. We will learn about these keywords in depth in Chapter 9, Async, Await, and
Task-Based Asynchronous Programming Basics. As the name suggests, we can wait on any
asynchronous call using the await keyword. The moment the executing thread encounters
the await keyword inside a method, it returns to ThreadPool, marks the rest of the
method as a continuation delegate, and starts executing the other queued tasks. Once the
asynchronous task finishes, any available thread from ThreadPool finishes the rest of the
method.

Task Parallelism Chapter 2

[40]

The System.Threading.Tasks.Task.Yield method
This is another way of creating an await task. The underlying task is not directly accessible
to the caller but is used in some scenarios involving asynchronous programming that are
related to program execution. It is more like a promise than a task. Using Task.Yield, we
can force our method to be asynchronous and return control to the OS. When the rest of the
method executes at a later point in time, it may still run as asynchronous code. We can
achieve the same effect using the following code:

await Task.Factory.StartNew(() => {},
 CancellationToken.None,
 TaskCreationOptions.None,
 SynchronizationContext.Current != null?
 TaskScheduler.FromCurrentSynchronizationContext():
 TaskScheduler.Current);

This approach can be used to make UI applications responsive by providing control to the
UI thread from time to time inside long-running tasks. However, this is not the preferred
approach for UI applications. There are better alternatives, which are available in the form
of Application.DoEvents() in WinForms and Dispatcher.Yield
(DispatcherPriority.ApplicationIdle) in WPF:

private async static void TaskYield()
{
 for (int i = 0; i < 100000; i++)
 {
 Console.WriteLine(i);
 if (i % 1000 == 0)
 await Task.Yield();
 }
}

In the case of console or web applications, when we run the code and apply a breakpoint on
the task's yield, we will see random thread pool threads switching context to run the code.
The following screenshots depict various threads controlling execution at various stages.

Task Parallelism Chapter 2

[41]

The following screenshot shows all the threads executing at the same time in the program
flow. We can see that the current thread ID is 1664:

Task Parallelism Chapter 2

[42]

If we press F5 and allow the breakpoint to get hit for another value of i, we will see that the
code is now being executed by another thread with an ID of 10244:

We will learn more about thread windows and debugging techniques in Chapter 11,
Writing Unit Test Cases for Parallel and Asynchronous Code.

Task Parallelism Chapter 2

[43]

The
System.Threading.Tasks.Task.FromResult<T>
method
This approach, which was introduced recently in .NET framework 4.5, is very much
underrated. We can return a completed task with results via this approach, as shown here:

static void Main(string[] args)
{
 StaticTaskFromResultUsingLambda();
}
private static void StaticTaskFromResultUsingLambda()
{
 Task<int> resultTask = Task.FromResult<int>(Sum(10));
 Console.WriteLine(resultTask.Result);
}
private static int Sum (int n)
{
 int sum=0;
 for (int i = 0; i < 10; i++)
 {
 sum += i;
 }
 return sum;
}

As you can see from the preceding code, we have actually converted a synchronous Sum
method to return results in an asynchronous manner using the Task.FromResult<int>
class. This approach is frequently used in TDD for mocking asynchronous methods, as well
as inside asynchronous methods to return default values based on conditions. We will
explain these approaches in Chapter 11, Writing Unit Test Cases for Parallel and
Asynchronous Code.

Task Parallelism Chapter 2

[44]

The
System.Threading.Tasks.Task.FromException
and
System.Threading.Tasks.Task.FromException<T>
methods
These methods create tasks that have completed with a predefined exception and are used
to throw exceptions from asynchronous tasks, as well as in TDD. We will explain this
approach further in Chapter 11, Writing Unit Test Cases for Parallel and Asynchronous Code:

return Task.FromException<long>(
new FileNotFoundException("Invalid File name."));

As you can see in the preceding code, we are wrapping FileNotFoundException as a task
and returning it to the caller.

The System.Threading.Tasks.Task.FromCanceled
and
System.Threading.Tasks.Task.FromCanceled<T>
methods
 These methods are used to create tasks that have completed as a result of cancellation via
the cancellation token:

CancellationTokenSource source = new CancellationTokenSource();
var token = source.Token;
source.Cancel();
Task task = Task.FromCanceled(token);
Task<int> canceledTask = Task.FromCanceled<int>(token);

As shown in the preceding code, we created a cancellation token using
the CancellationTokenSource class. Then, we created a task from that token. The
important thing to consider here is that the token needs to be canceled before we can use it
with the Task.FromCanceled method.

This approach is useful if we want to return values from asynchronous methods, as well as
in TDD.

Task Parallelism Chapter 2

[45]

Getting results from finished tasks
To return values from tasks, TPL provides a generic variant of all of the classes that we
defined previously:

Task<T>

Task.Factory.StartNew<T>

Task.Run<T>

Once a task finishes, we should be able to get results from it by accessing
the Task.Result property. Let's try to understand this using some code examples. We will
create various tasks and try to return values from them on completion:

using System;
using System.Threading.Tasks;
namespace Ch02
{
 class _2GettingResultFromTasks
 {
 static void Main(string[] args)
 {
 GetResultsFromTasks();
 Console.ReadLine();
 }
 private static void GetResultsFromTasks()
 {
 var sumTaskViaTaskOfInt = new Task<int>(() => Sum(5));
 sumTaskViaTaskOfInt.Start();
 Console.WriteLine($"Result from sumTask is
 {sumTaskViaTaskOfInt.Result}");
 var sumTaskViaFactory = Task.Factory.StartNew<int>(() =>
 Sum(5));
 Console.WriteLine($"Result from sumTask is
 {sumTaskViaFactory.Result}");
 var sumTaskViaTaskRun = Task.Run<int>(() => Sum(5));
 Console.WriteLine($"Result from sumTask is
 {sumTaskViaTaskRun.Result}");
 var sumTaskViaTaskResult = Task.FromResult<int>(Sum(5));
 Console.WriteLine($"Result from sumTask is
 {sumTaskViaTaskResult.Result}");
 }
 private static int Sum(int n)
 {
 int sum = 0;
 for (int i = 0; i < n; i++)
 {

Task Parallelism Chapter 2

[46]

 sum += i;
 }
 return sum;
 }
 }
}

As shown in the preceding code, we have created tasks using generic variants. Once they
finished, we were able to get the results using the result property:

In the next section, we will learn about how we can cancel tasks.

How to cancel tasks
Another important function of the TPL is to equip developers with ready-made data
structures to cancel running tasks. Those of you that have a classic threading background
will be aware of how difficult it used to be to make threads support canceling with all the
custom home-grown logic, but this is no longer the case. The .NET Framework provides
two classes to support task cancellation:

CancellationTokenSource: This class is responsible for creating cancellation
tokens and passing the cancellation request to all the tokens that were created via
the source
CancellationToken: This class is used by listeners to monitor the current state
of a request

To create tasks that can be canceled, we need to perform the following steps:

Create an instance of the System.Threading.CancellationTokenSource1.
class, which further provides a System.Threading.CancellationToken via
the Token Property.
Pass the token while creating the task.2.
When required, call the Cancel() method on the CancellationTokenSource.3.

Let's try to understand how to create a token and how to pass it to the task.

Task Parallelism Chapter 2

[47]

Creating a token
Tokens can be created using the following code:

CancellationTokenSource tokenSource = new CancellationTokenSource();
CancellationToken token = tokenSource.Token;

First, we created a tokenSource using the CancellationTokenSource constructor. Then,
we got our token using the token property of tokenSource.

Creating a task using tokens
We can create a task by passing CancellationToken as the second argument to the task
constructor, as follows:

var sumTaskViaTaskOfInt = new Task<int>(() => Sum(5), token);
var sumTaskViaFactory = Task.Factory.StartNew<int>(() => Sum(5), token);
var sumTaskViaTaskRun = Task.Run<int>(() => Sum(5), token);

In the classic threading model, we used to call the Abort() method on a thread that was
non-deterministic. This would stop the thread abruptly, thereby leaking memory if
resources were unmanaged. With TPL, we can call the Cancel method, which is a
cancellation token source that will, in turn, set up the IsCancellationRequested
property on the token. The underlying method that's being executed by the task should
watch for this property and should exit gracefully if it is set.

There are various ways of keeping a watch of whether the token source has requested a
cancellation:

Polling the status of the IsCancellationRequested property on the token
Registering for a request cancellation callback

Polling the status of the token via the
IsCancellationRequested property
This approach is handy in scenarios that involve recursive methods or methods that contain
long-running computational logic via loops. Within our method or loops, we write code
that polls IsCancellationRequested at certain optimal intervals. If it is set, it breaks the
loop by calling the ThrowIfCancellationRequested method of the token class.

Task Parallelism Chapter 2

[48]

The following code is an example of canceling a task by polling the token:

 private static void CancelTaskViaPoll()
 {
 CancellationTokenSource cancellationTokenSource =
 new CancellationTokenSource();
 CancellationToken token = cancellationTokenSource.Token;
 var sumTaskViaTaskOfInt = new Task(() =>
 LongRunningSum(token), token);
 sumTaskViaTaskOfInt.Start();
 //Wait for user to press key to cancel task
 Console.ReadLine();
 cancellationTokenSource.Cancel();
 }
 private static void LongRunningSum(CancellationToken token)
 {
 for (int i = 0; i < 1000; i++)
 {
 //Simulate long running operation
 Task.Delay(100);
 if (token.IsCancellationRequested)
 token.ThrowIfCancellationRequested();
 }
 }

In the preceding code, we created a cancellation token via the CancellationTokenSource
class. Then, we created a task by passing the token. The task executes a long-running
method, LongRunningSum (simulated), which keeps polling for
the IsCancellationRequested property of the token. It throws an exception if the user
has called cancellationTokenSource.Cancel() before the method finishes.

Polling doesn't come with any significant performance overhead and can
be used according to your requirements. Use it when you have full control
over the work that's performed by the task, such as if it's core logic that
you wrote yourself.

Registering for a request cancellation using the
Callback delegate
This approach makes use of a Callback delegate that gets invoked when the cancellation is
requested by the underlying token. We should use this with operations that are blocked in
a way that makes it not possible to check the value of CancellationToken in a regular
fashion.

Task Parallelism Chapter 2

[49]

Let's have a look at the following code, which downloads files from a remote URL:

private static void DownloadFileWithoutToken()
{
 WebClient webClient = new WebClient();
 webClient.DownloadStringAsync(new
 Uri("http://www.google.com"));
 webClient.DownloadStringCompleted += (sender, e) =>
 {
 if (!e.Cancelled)
 Console.WriteLine("Download Complete.");
 else
 Console.WriteLine("Download Cancelled.");
 };
}

As you can see from the preceding method, once we call the DownloadStringAsync
method of WebClient, the control leaves the user. Although the WebClient class allows us
to cancel the task via the webClient.CancelAsync() method, we don't have any control
over when to invoke that.

The preceding code can be modified to make use of a Callback delegate so that we can
gain more control over task cancellation, as follows:

static void Main(string[] args)
{
 CancellationTokenSource cancellationTokenSource = new
 CancellationTokenSource();
 CancellationToken token = cancellationTokenSource.Token;
 DownloadFileWithToken(token);
 //Random delay before we cancel token
 Task.Delay(2000);
 cancellationTokenSource.Cancel();
 Console.ReadLine();
 }
private static void DownloadFileWithToken(CancellationToken token)
{
 WebClient webClient = new WebClient();
 //Here we are registering callback delegate that will get called
 //as soon as user cancels token
 token.Register(() => webClient.CancelAsync());
 webClient.DownloadStringAsync(new
 Uri("http://www.google.com"));
 webClient.DownloadStringCompleted += (sender, e) => {
 //Wait for 3 seconds so we have enough time to cancel task
 Task.Delay(3000);
 if (!e.Cancelled)

Task Parallelism Chapter 2

[50]

 Console.WriteLine("Download Complete.");
 else
 Console.WriteLine("Download Cancelled.");};
}

As you can see, in this modified version, we passed a cancellation token and subscribed to
the cancellation callback via the Register method.

As soon as the user calls the cancellationTokenSource.Cancel() method, it will cancel
the download operation by calling webClient.CancelAsync().

CancellationTokenSource works well with the legacy
ThreadPool.QueueUserWorkItem as well.

Here is code that creates a CancellationTokenSource that can be passed to ThreadPool to
support cancellation:

// Create the token source.
CancellationTokenSource cts = new CancellationTokenSource();
// Pass the token to the cancellable operation.
ThreadPool.QueueUserWorkItem(new WaitCallback(DoSomething), cts.Token);

In this section, we discussed various ways of canceling tasks. Canceling tasks can really
save us a lot of CPU time in cases where tasks may have become redundant. For example,
say we have created multiple tasks to sort a list of numbers using different algorithms.
Although all the algorithms will return the same result (a sorted list of numbers), we are
interested in getting results as fast as we can. We will accept the result for the first (fastest)
algorithm and cancel the rest to improve system performance. In the next section, we will
discuss how to wait on running tasks.

How to wait on running tasks
In the previous examples, we called the Task.Result property to get a result from a
completed task. This blocks the calling thread until a result is available. TPL provides
another way for us to wait on one or more tasks.

Task Parallelism Chapter 2

[51]

There are various APIs available in TPL so that we can wait on one or more tasks. These are
as follows:

Task.Wait

Task.WaitAll

Task.WaitAny

Task.WhenAll

Task.WhenAny

These APIs will be defined in the following subsections.

Task.Wait
This is an instance method that can be used to wait on a single task. We can specify the
maximum amount of time for which the caller will wait for the task to complete before
unblocking itself with a timeout exception. We can also have full control over monitoring
events that have been canceled by passing a cancellation token to the method. The calling
method will be blocked until the thread either completes, is canceled, or throws an
exception:

var task = Task.Factory.StartNew(() => Console.WriteLine("Inside Thread"));
//Blocks the current thread until task finishes.
task.Wait();

There are five overloaded versions of the Wait method:

Wait(): Waits indefinitely for the task to finish. The calling thread is blocked
until the child thread has finished.
Wait(CancellationToken): Waits for the task to finish execution indefinitely
or when the cancellation token is canceled.
Wait(int): Waits for the task to finish execution within a specified period of
time, in milliseconds.
Wait(TimeSpan): Waits for the task to finish execution within a specified time
interval.
Wait(int, CancellationToken): Waits for the task to finish execution within
a specified period of time, in milliseconds, or when the cancellation token is
canceled.

Task Parallelism Chapter 2

[52]

Task.WaitAll
This is a static method that is defined in the Task class and used to wait on multiple tasks.
The tasks are passed as an array to the method and the caller is blocked until all the tasks
are completed. This method also supports timeout and cancellation tokens. Some example
code that uses this method is as follows:

 Task taskA = Task.Factory.StartNew(() =>
 Console.WriteLine("TaskA finished"));
 Task taskB = Task.Factory.StartNew(() =>
 Console.WriteLine("TaskB finished"));
 Task.WaitAll(taskA, taskB);
 Console.WriteLine("Calling method finishes");

The output of the preceding code is as follows:

As you can see, the Calling method finishes statement is executed when both tasks have
finished executing.

An example use case of this method might be when we need data from multiple sources
(we have one task for each source) and we want to combine the data from all the tasks so
that they can be displayed on the UI.

Task.WaitAny
This is another static method that is defined in the Task class. Just like WaitAll, WaitAny
is used to wait on multiple tasks, but the caller is unblocked as soon as any of the tasks that
are passed as arrays to the method finish executing. Like the other methods, WaitAny
supports the timeout and cancellation tokens. Some example code that uses this method is
as follows:

Task taskA = Task.Factory.StartNew(() =>
 Console.WriteLine("TaskA finished"));
Task taskB = Task.Factory.StartNew(() =>
 Console.WriteLine("TaskB finished"));
Task.WaitAny(taskA, taskB);
Console.WriteLine("Calling method finishes");

Task Parallelism Chapter 2

[53]

In the preceding code, we started two tasks and waited on them using WaitAny. This
method blocks the current thread. As soon as any of the tasks complete, the calling thread is
unblocked.

An example use case of this method might be when the data we require is available from
different sources and we need it as quickly as possible. Here, we create tasks that make
requests to different sources. As soon as any of the tasks finish, we will unblock the calling
thread and get the result from the finished task.

Task.WhenAll
This is a non-blocking variant of the WaitAll method. It returns a task that represents a
waiting action for all of the specified tasks. Unlike WaitAll, which blocks the calling
thread, WhenAll can be awaited inside an asynchronous method, thus freeing up the
calling thread to perform other operations. Some example code that uses this method is as
follows:

Task taskA = Task.Factory.StartNew(() =>
 Console.WriteLine("TaskA finished"));
Task taskB = Task.Factory.StartNew(() =>
 Console.WriteLine("TaskB finished"));
Task.WhenAll(taskA, taskB);
Console.WriteLine("Calling method finishes");

This code works the same way as Task.WaitAll, apart from the fact that the calling thread
returns to the ThreadPool instead of being blocked.

Task.WhenAny
This is a non-blocking variant of WaitAny. It returns a task that encapsulates a waiting
action on a single underlying task. Unlike WaitAny, it doesn't block the calling thread. The
calling thread can call await on it inside an asynchronous method. Some example code that
uses this method is as follows:

Task taskA = Task.Factory.StartNew(() =>
 Console.WriteLine("TaskA finished"));
Task taskB = Task.Factory.StartNew(() =>
 Console.WriteLine("TaskB finished"));
Task.WhenAny(taskA, taskB);
Console.WriteLine("Calling method finishes");

Task Parallelism Chapter 2

[54]

This code works the same way as Task.WaitAny, apart from the fact that the calling thread
returns to the ThreadPool instead of being blocked.

In this section, we discussed how to write efficient code while working with multiple
threads without code branching. Code flow looks synchronous though it works in parallel
wherever required. In the next section, we will learn about how tasks deal with exceptions.

Handling task exceptions
Exception handling is one of the most important aspects of parallel programming. All good
clean code practitioners focus on handling exceptions efficiently. This becomes even more
important with parallel programming as any unhandled exceptions in threads or tasks can
cause the application to crash abruptly. Fortunately, TPL provides a nice, efficient design to
handle and manage exceptions. Any unhandled exceptions that occur in a task are deferred
and then propagated to a joining thread, which observes the task for exceptions.

Any exception that occurs inside a task is always wrapped under
the AggregateException class and returned to the caller that is observing the exceptions.
If the caller is waiting on a single task, the inner exception property of the
AggregateException class will return the original exception. If the caller is waiting for
multiple tasks, however, such as Task.WaitAll, Task.WhenAll, Task.WaitAny, or
Task.WhenAny, all the exceptions that occur from tasks are returned to the caller as a
collection. They are accessible via the InnerExceptions property.

Now, let's look at the various ways we can handle exceptions inside tasks.

Handling exception from single tasks
In the following code, we're creating a simple task that tries to divide a number by 0,
thereby causing a DivideByZeroException. The exception is returned to the caller and
handled inside the catch block. Since it's a single task, the exception object is wrapped
under the InnerException property of the AggregateException object:

class _4HandlingExceptions
{
 static void Main(string[] args)
 {
 Task task = null;
 try
 {
 task = Task.Factory.StartNew(() =>

Task Parallelism Chapter 2

[55]

 {
 int num = 0, num2 = 25;
 var result = num2 / num;
 });
 task.Wait();
 }
 catch (AggregateException ex)
 {
 Console.WriteLine($"Task has finished with
 exception {ex.InnerException.Message}");
 }
 Console.ReadLine();
 }
}

The following is the output when we run the preceding code:

Handling exceptions from multiple tasks
Now, we'll create multiple tasks and then try to throw exceptions from them. Then, we'll
learn how to list different exceptions from different tasks from the caller:

static void Main(string[] args)
{
 Task taskA = Task.Factory.StartNew(()=> throw
 new DivideByZeroException());
 Task taskB = Task.Factory.StartNew(()=> throw
 new ArithmeticException());
 Task taskC = Task.Factory.StartNew(()=> throw
 new NullReferenceException());
 try
 {
 Task.WaitAll(taskA, taskB, taskC);
 }
 catch (AggregateException ex)
 {
 foreach (Exception innerException in ex.InnerExceptions)
 {
 Console.WriteLine(innerException.Message);
 }
 }

Task Parallelism Chapter 2

[56]

 Console.ReadLine();
}

Here is the output when we run the preceding code:

In the preceding code, we created three tasks that throw different exceptions and all
threads are awaited using Task.WaitAll. As you can see, the exceptions are observed by
calling WaitAll and not just by starting the task, which is why we wrapped WaitAll
inside the try block. The WaitAll method will return when all the tasks that have been
passed to it have faulted by throwing exceptions and the corresponding catch block is
executed. We can find all the exceptions that originated from all the tasks by iterating over
the InnerExceptions property of the AggregateException class.

Handling task exceptions with a callback function
Another option to find out about these exceptions is to use the callback function to access
and handle the exceptions that originate from tasks:

static void Main(string[] args)
 {
 Task taskA = Task.Factory.StartNew(() => throw
 new DivideByZeroException());
 Task taskB = Task.Factory.StartNew(() => throw
 new ArithmeticException());
 Task taskC = Task.Factory.StartNew(() => throw
 new NullReferenceException());
 try
 {
 Task.WaitAll(taskA, taskB, taskC);
 }
 catch (AggregateException ex)
 {
 ex.Handle(innerException =>
 {
 Console.WriteLine(innerException.Message);
 return true;
 });
 }

Task Parallelism Chapter 2

[57]

 Console.ReadLine();
 }

Here is the output when we run the preceding code in Visual Studio:

As shown in the preceding code, rather than integrating over InnerExceptions, we have
subscribed to the handle callback function on AggregateException. This is fired for all
the tasks that throw the exception and we can return true, indicating that the exception
has been handled gracefully.

Converting APM patterns into tasks
The legacy APM approach used the IAsyncResult interface to create asynchronous
methods with a design pattern using two methods: BeginMethodName and
EndMethodName. Let's try to understand the journey of a program from being synchronous,
to an APM, and then to a task.

Here is a synchronous method that reads data from a text file:

private static void ReadFileSynchronously()
{
 string path = @"Test.txt";
 //Open the stream and read content.
 using (FileStream fs = File.OpenRead(path))
 {
 byte[] b = new byte[1024];
 UTF8Encoding encoder = new UTF8Encoding(true);
 fs.Read(b, 0, b.Length);
 Console.WriteLine(encoder.GetString(b));
 }
 }

Task Parallelism Chapter 2

[58]

There is nothing fancy in the preceding code. First, we created a FileStream object and
called the Read method, which reads the file from the disk synchronously into a buffer and
then writes the buffer to the console. We converted the buffer into a string using the
UTF8Encoding class. The problem with this approach, however, is that the moment a call
to Read is made, the thread is blocked until the read operation has finished. I/O operations
are managed by the CPU using CPU cycles, so there is no point in keeping the thread
waiting for the I/O operation to complete. Let's try to understand the APM way of doing
this:

private static void ReadFileUsingAPMAsyncWithoutCallback()
 {
 string filePath = @"Test.txt";
 //Open the stream and read content.
 using (FileStream fs = new FileStream(filePath,
 FileMode.Open, FileAccess.Read, FileShare.Read,
 1024, FileOptions.Asynchronous))
 {
 byte[] buffer = new byte[1024];
 UTF8Encoding encoder = new UTF8Encoding(true);
 IAsyncResult result = fs.BeginRead(buffer, 0,
 buffer.Length, null, null);
 Console.WriteLine("Do Something here");
 int numBytes = fs.EndRead(result);
 fs.Close();
 Console.WriteLine(encoder.GetString(buffer));
 }
 }

As shown in the preceding code, we have replaced the synchronous Read method with an
asynchronous version, that is, BeginRead. The moment the compiler encounters
BeginRead, an instruction is sent to the CPU to start reading the file and the thread is
unblocked. We can perform other tasks in the same method before blocking the thread
again by calling EndRead to wait for the Read operation to finish and collect the result. This
is a simple yet efficient approach in order to make responsive applications, though we are
also blocking the thread to fetch results. Rather than calling EndRead in the same method,
we can make use of Overload, which accepts a callback method that gets called
automatically when the read operation finishes, to avoid blocking the thread. The signature
of this method is as follows:

public override IAsyncResult BeginRead(
 byte[] array,
 int offset,
 int numBytes,
 AsyncCallback userCallback,
 object stateObject)

Task Parallelism Chapter 2

[59]

Here, we have seen how we moved from a synchronous method to APM. Now, we are
going to convert the APM implementation into a task. This is demonstrated in the
following code:

private static void ReadFileUsingTask()
 {
 string filePath = @"Test.txt";
 //Open the stream and read content.
 using (FileStream fs = new FileStream(filePath, FileMode.Open,
 FileAccess.Read, FileShare.Read, 1024,
 FileOptions.Asynchronous))
 {
 byte[] buffer = new byte[1024];
 UTF8Encoding encoder = new UTF8Encoding(true);
 //Start task that will read file asynchronously
 var task = Task<int>.Factory.FromAsync(fs.BeginRead,
 fs.EndRead, buffer, 0, buffer.Length,null);
 Console.WriteLine("Do Something while file is read
 asynchronously");
 //Wait for task to finish
 task.Wait();
 Console.WriteLine(encoder.GetString(buffer));
 }
 }

As shown in the preceding code, we replaced the BeginRead method with
Task<int>.Factory.FromAsync. This is a way of implementing a TAP. The method
returns a task, which runs in the background while we continue doing other work in the
same method, before blocking the thread again to get the results using task.Wait(). This
is how you can easily convert any APM code into TAP.

Converting EAPs into tasks
EAPs are used to create components that wrap expensive and time-consuming operations.
Due to this, they need to be made asynchronous. This pattern has been used in the .NET
Framework to create components such as BackgroundWorker and WebClient.

Methods that implement this pattern carry out long-running tasks asynchronously in the
background but keep notifying the user of their progress and status via events, which is
why they are known as event-based.

Task Parallelism Chapter 2

[60]

The following code shows an implementation of a component that uses EAP:

 private static void EAPImplementation()
 {
 var webClient = new WebClient();
 webClient.DownloadStringCompleted += (s, e) =>
 {
 if (e.Error != null)
 Console.WriteLine(e.Error.Message);
 else if (e.Cancelled)
 Console.WriteLine("Download Cancel");
 else
 Console.WriteLine(e.Result);
 };
 webClient.DownloadStringAsync(new
 Uri("http://www.someurl.com"));
 }

In the preceding code, we subscribed to the DownloadStringCompleted event, which gets
fired once webClient has downloaded the file from the URL. As you can see, we tried to
read various result options, such as exception, cancellation, and result, using the if-else
construct. Converting EAP into TAP is tricky compared to APM as it requires a good
understanding of the internal nature of EAP components because we need to plug the new
code into the correct events to make it work. Let's take a look at the converted
implementation:

private static Task<string> EAPToTask()
 {
 var taskCompletionSource = new TaskCompletionSource<string>();
 var webClient = new WebClient();
 webClient.DownloadStringCompleted += (s, e) =>
 {
 if (e.Error != null)
 taskCompletionSource.TrySetException(e.Error);
 else if (e.Cancelled)
 taskCompletionSource.TrySetCanceled();
 else
 taskCompletionSource.TrySetResult(e.Result);
 };
 webClient.DownloadStringAsync(new
 Uri("http://www.someurl.com"));
 return taskCompletionSource.Task;
 }

Task Parallelism Chapter 2

[61]

The simplest way of converting EAP into TAP is via the TaskCompletionSource class. We
have plugged in all the scenarios and set the result, exception, or cancellation results to the
instance of the TaskCompletionSource class. Then, we returned the wrapped
implementation as a task to the user.

More on tasks
Now, let's learn some more important concepts about tasks that might come in handy. Up
until now, we have created tasks that are independent. To create more complex solutions,
however, we sometimes need to define relationships between tasks. We can create subtasks,
child tasks, as well as continuation tasks to do this. Let's try to understand each of these
with examples. Later in this section, we will learn about thread storage and queues.

Continuation tasks
Continuation tasks work more like promises. We can make use of them when we need to
chain multiple tasks. The second task starts when the first one finishes and the result of the
first task or the exceptions are passed to the child task. We can chain more than one task to
create a long chain of tasks, or we can create a selective continuation chain with the
methods provided by TPL. The following constructs are provided by TPL for task
continuation:

Task.ContinueWith

Task.Factory.ContinueWhenAll

Task.Factory.ContinueWhenAll<T>

Task.Factory.ContinueWhenAny

Task.Factory.ContinueWhenAny<T>

Continuing tasks using the Task.ContinueWith method
The continuation of a task can be easily achieved using the ContinueWith method that's
provided by TPL.

Let's try to understand simple chaining with an example:

var task = Task.Factory.StartNew<DataTable>(() =>
 {
 Console.WriteLine("Fetching Data");
 return FetchData();

Task Parallelism Chapter 2

[62]

 }).ContinueWith(
 (e) => {
 var firstRow = e.Result.Rows[0];
 Console.WriteLine("Id is {0} and Name is {0}",
 firstRow["Id"], firstRow["Name"]);
 });

In the preceding example, we need to fetch and display data. The primary task calls the
FetchData method. When it has finished, the result is passed as input to the continuation
task, which takes care of printing the data. The output is as follows:

We can chain multiple tasks as well, thereby creating a chain of tasks, as shown here:

 var task = Task.Factory.StartNew<int>(() => GetData()).
 .ContinueWith((i) => GetMoreData(i.Result)).
 .ContinueWith((j) => DisplayData(j.Result)));

We can control when the continuation task will run by passing
the System.Threading.Tasks.TaskContinuationOptions enumeration as a parameter
that has the following options:

None: This is the default option. The continuation task will run when the primary
task has completed.
OnlyOnRanToCompletion: The continuation task will run when the primary
task has completed successfully, meaning it has not canceled or faulted.
NotOnRanToCompletion: The continuation task will run when the primary task
has been canceled or faulted.
OnlyOnFaulted: The continuation task will run only when the primary task has
faulted.
NotOnFaulted: The continuation task will run only when the primary task has
not faulted.
OnlyOnCancelled: The continuation task will run only when the primary task
has been canceled.
NotOnCancelled: The continuation task will run only when the primary task
has not been canceled.

Task Parallelism Chapter 2

[63]

Continuing tasks using Task.Factory.ContinueWhenAll
and Task.Factory.ContinueWhenAll<T>
We can wait for multiple tasks and chain a continuation code that will only run when all
the tasks are completed successfully. Let's look at an example:

 private async static void ContinueWhenAll()
 {
 int a = 2, b = 3;
 Task<int> taskA = Task.Factory.StartNew<int>(() => a * a);
 Task<int> taskB = Task.Factory.StartNew<int>(() => b * b);
 Task<int> taskC = Task.Factory.StartNew<int>(() => 2 * a * b);
 var sum = await Task.Factory.ContinueWhenAll<int>(new Task[]
 { taskA, taskB, taskC }, (tasks)
 =>tasks.Sum(t => (t as Task<int>).Result));
 Console.WriteLine(sum);
 }

In the preceding code, we want to calculate a*a + b*b +2 *a *b. We break down the
task into three units: a*a, b*b, and 2*a*b. Each of these units is executed by three different
threads: taskA, taskB, and taskC. Then, we wait for all the tasks to finish and pass them
as a first parameter to the ContinueWhenAll method. When all the threads finish
executing, the continuation delegate executes, which is specified by the second parameter
to the ContinueWhenAll method. The continuation delegate sums the result of the
execution from all the threads and returns them to the caller, which is printed in the next
line.

Continuing tasks using
Task.Factory.ContinueWhenAny and
Task.Factory.ContinueWhenAny<T>
We can wait for multiple tasks and chains in continuation code that will run when any of
the tasks are completed successfully:

private static void ContinueWhenAny()
 {
 int number = 13;
 Task<bool> taskA = Task.Factory.StartNew<bool>(() =>
 number / 2 != 0);
 Task<bool> taskB = Task.Factory.StartNew<bool>(() =>
 (number / 2) * 2 != number);
 Task<bool> taskC = Task.Factory.StartNew<bool>(() =>
 (number & 1) != 0);

Task Parallelism Chapter 2

[64]

 Task.Factory.ContinueWhenAny<bool>(new Task<bool>[]
 { taskA, taskB, taskC }, (task) =>
 {
 Console.WriteLine((task as Task<bool>).Result);
 }
);
 }

As shown in the preceding code, we have three different pieces of logic to find out whether
a number is odd. Let's assume that we don't know which of these pieces of logic is going to
be the fastest. To calculate the result, we create three tasks, each of which encapsulates a
different odd-number-finding logic, and run them concurrently. Since a number can be
either odd or even at a time, the result from all the threads will be the same and will differ
in terms of their speed of execution. Due to this, it makes sense to just get the first result
and discard the rest. This is what we have achieved using the ContinueWhenAny method.

Parent and child tasks
Another type of relationship that can occur between threads is a parent-child relationship.
The child task is created as a nested task inside the body of the parent task. The child task
can be created either as attached or detached. Both types of tasks are created inside the
parent task and, by default, the created tasks are detached. We can make an attached task
by setting the AttachedToParent property of the task to true. You may want to consider
creating an attached task in any of the following scenarios:

All the exceptions that are thrown in the child task need to be propagated to the
parent
The status of the parent task is dependent on the child task
The parent needs to wait for the child task to finish

Creating a detached task
The code to create a detached class is as follows:

Task parentTask = Task.Factory.StartNew(() =>
 {
 Console.WriteLine(" Parent task started");
 Task childTask = Task.Factory.StartNew(() => {
 Console.WriteLine(" Child task started");
 });
 Console.WriteLine(" Parent task Finish");
 });

Task Parallelism Chapter 2

[65]

 //Wait for parent to finish
 parentTask.Wait();
 Console.WriteLine("Work Finished");

As you can see, we have created another task within the body of a task. By default, the child
or nested task is created as detached. We waited for the parent task to finish by calling
parentTask.Wait(). In the following output, you can see that the parent task doesn't wait
for the child task to finish and finishes first, followed by the child task starting:

Creating an attached task
An attached task is created similarly to a detached one. The only difference is that we set
the AttachedParent property of the task to true. This is demonstrated in the following
snippet:

 Task parentTask = Task.Factory.StartNew(() =>
 {
 Console.WriteLine("Parent task started");
 Task childTask = Task.Factory.StartNew(() => {
 Console.WriteLine("Child task started");
 },TaskCreationOptions.AttachedToParent);
 Console.WriteLine("Parent task Finish");
 });
 //Wait for parent to finish
 parentTask.Wait();
 Console.WriteLine("Work Finished");

The output is as follows:

Here, you can see that the parent task does not finish until the child task has finished
executing.

Task Parallelism Chapter 2

[66]

In this section, we discussed advanced aspects of tasks, including creating relationships
among tasks. In the next section, we will dig more into working internally on tasks by
understanding the concept of work queues and how tasks deal with them.

Work-stealing queues
Work-stealing is a performance optimization technique for a thread pool. Every thread pool
maintains a single global queue of tasks that are created inside a process. In Chapter 1,
Introduction to Parallel Programming, we learned that the thread pool maintains an optimal
number of worker threads to work on tasks. The ThreadPool also maintains a thread
global queue, where it queues all the work items before they can be assigned to available
threads. Since this is a single queue and we work in multithreaded scenarios, we need to
implement thread-safety using synchronization primitives. With a single global queue,
synchronization leads to performance loss.

The .NET Framework works around this performance loss by introducing the concept of
local queues, which are managed by threads. Each thread has access to a global queue and
also maintains its own thread-local queue to store work items in. Parent tasks can be
scheduled inside the global queue. When tasks execute and need to create subtasks, they
can be stacked up on local queues and processed using the FIFO algorithm as soon as the
thread finishes executing.

The following diagram depicts the relationship between a global queue, a local queue, the
thread, and the Threadpool:

Task Parallelism Chapter 2

[67]

Let's say that the main thread creates a set of tasks. All of these tasks are queued to the
global queue to be executed later based on the availability of the thread inside the thread
pool. The following diagram depicts the global queue with all the queued tasks:

Let's say Task 1 is scheduled on Thread 1, Task 2 on Thread 2, and so on, as shown in the
following diagram:

Task Parallelism Chapter 2

[68]

If Task 1 and Task 2 generate more tasks, the new tasks will be stored in the thread-local
queue, as shown in the following diagram:

Similarly, if more tasks are created by these child tasks, they will go inside the local queue
instead of the global queue. Once Thread 1 has finished with Task 1, it will look into its
local queues and pick up the last task (LIFO). There is a high chance that the last task may
still be in the cache and so it doesn't need to be reloaded. Again, this improves
performance.

Once a thread (T1) exhausts its local queue, it will search in the global queue. If there are no
items in the global queue, it will search in the local queues for other threads (say T2). This
technique is called work-stealing and is an optimization technique. This time, it doesn't
pick the last task (LIFO) from T2 since the last item may still be in the T2 thread's cache.
Instead, it picks up the first task (FIFO) since there is a high chance that the thread has
moved out of T2's cache. This technique improves performance by making cached tasks
available to the local thread and out-of-cache tasks to other threads.

Task Parallelism Chapter 2

[69]

Summary
In this chapter, we have discussed how to break up tasks into smaller units so that each unit
can be handled independently by a thread. We have also learned about various ways we
can create tasks by utilizing ThreadPool. We introduced various techniques related to the
internal workings of tasks, including the concepts of work-stealing and task creation or
cancellation. We will be utilizing the knowledge we gained in this chapter in the rest of this
book.

In the next chapter, we will introduce the concepts of data parallelism. This will include
working with parallel loops and handling exceptions in them.

3
Implementing Data Parallelism

So far, we have learned about the basics of parallel programming, tasks, and task
parallelism. In this chapter, we will cover another important aspect of parallel
programming, which deals with the parallel execution of data: data parallelism. While task
parallelism creates a separate unit of work for each participating thread, data parallelism
creates a common task that is executed by every participating thread in a source collection.
This source collection is partitioned so that multiple threads can work on it concurrently.
Therefore, it is important to understand data parallelism to get the maximum performance
out of loops/collections.

In this chapter, we will discuss the following topics:

Handling exceptions in parallel loops
Creating custom partitioning strategies in parallel loops
Canceling loops
Understanding thread storage in parallel loops

Technical requirements
To complete this chapter, you should have a good understanding of the TPL and C#. The
source code for this chapter is available on GitHub at https:/ /github. com/
PacktPublishing/Hands- On- Parallel- Programming- with- C- 8-and- .NET- Core- 3/tree/
master/Chapter03.

https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter03
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter03

Implementing Data Parallelism Chapter 3

[71]

Moving from sequential loops to parallel
loops
The TPL supports data parallelism through the System.Threading.Tasks.Parallel
class, which provides parallel implementation of the For and Foreach loops. As a
developer, you don't need to worry about synchronization or creating tasks as this is
handled by the parallel class. This syntactic sugar allows you to easily write parallel loops
in a way that's similar to how you have been writing sequential loops.

Here is an example of a sequential for loop that books a trade by posting the trade object to
the server:

foreach (var trade in trades)
{
 Book(trade);
}

Since the loop is sequential, the total time that it takes to finish the loop is the time it takes
to book one trade multiplied by the total number of trades. This means that the loop slows
down as the number of trades increases, although the trade booking time remains the same.
Here, we are dealing with large numbers. Since we are going to be booking trades on a
server and all the servers support multiple requests, it makes sense to convert this loop
from a sequential loop into a parallel loop as that will give us significant performance
gains.

The previous code can be converted so that it's parallel as follows:

Parallel.ForEach(trades, trade => Book(trade));

While running a parallel loop, the TPL partitions the source collection so that the loop can
execute on multiple parts concurrently. The partitioning of tasks is done by
the TaskScheduler class, which takes the system resources and the load into consideration
while creating partitions. We can also create a custom partitioner or scheduler, as we will
see later in this chapter in the Creating a custom partitioning strategy section.

Implementing Data Parallelism Chapter 3

[72]

Data parallelism performs better if the partitioning units are independent. With minimal
performance overhead, we can also create dependency partitioning units using a technique
called reduction, which reduces a series of operations to a scalar value. There are three
ways to convert sequential code into parallel code:

Using the Parallel.Invoke method
Using the Parallel.For method
Using the Parallel.ForEach method

Let’s try to understand the various ways in which the Parallel class can be utilized to
exhibit data parallelism.

Using the Parallel.Invoke method
This is the most basic way of executing a set of operations in parallel and forms the basis for
parallel for and foreach loops. The Parallel.Invoke method accepts an array of
actions as a parameter and executes them, though it never guarantees that the actions will
be executed in parallel. There are some important points to remember when using
Parallel.Invoke:

Parallelism is not guaranteed. Whether the actions are executed in parallel or in
sequence will depend on the TaskScheduler.
Parallel.Invoke doesn't guarantee the order of operations for passed actions.
It blocks the calling thread until all the actions are completed.

The syntax of Parallel.Invoke is as follows:

public static void Invoke(
 params Action[] actions
)

Implementing Data Parallelism Chapter 3

[73]

We can either pass an action or a lambda expression, as demonstrated in the following
example:

try
{
 Parallel.Invoke(() => Console.WriteLine("Action 1"),
 new Action(() => Console.WriteLine("Action 2")));
}
catch(AggregateException aggregateException)
{
 foreach (var ex in aggregateException.InnerExceptions)
 {
 Console.WriteLine(ex.Message);
 }
}
Console.WriteLine("Unblocked");
Console.ReadLine();

The Invoke method behaves like an attached child task as it is blocked until all the actions
are completed. All the exceptions are stacked together inside
System.AggregateException and thrown to the caller. In the preceding code, since there
is no exception, we will see the following output:

We can achieve a similar effect using the Task class, although this may look like very
complex code in comparison to how Parallel.Invoke works:

Task.Factory.StartNew(() => {
 Task.Factory.StartNew(() => Console.WriteLine("Action 1"),
 TaskCreationOptions.AttachedToParent);
 Task.Factory.StartNew(new Action(() => Console.WriteLine("Action 2"))
 , TaskCreationOptions.AttachedToParent);
 });

The Invoke method behaves like an attached child task as it is blocked until all the actions
are completed. All the exceptions are stacked together inside
System.AggregateException and thrown to the caller.

Implementing Data Parallelism Chapter 3

[74]

Using the Parallel.For method
Parallel.For is a variant of the sequential for loop, with the difference that the iterations
run in parallel. Parallel.For returns an instance of the ParallelLoopResult class,
which provides the loop competition status once the loop has finished execution. We can
also check the IsCompleted and LowestBreakIteration properties of
ParallelLoopResult to find out if the method has completed or canceled, or if break has
been called by the users. Here are the possible scenarios:

IsCompleted LowestBreakIteration Reason
True N/A Run to completion
False Null Loop stopped pre-matching
False Non-null integral value Break called on the loop

The basic syntax of the Parallel.For method is as follows:

public static ParallelLoopResult For
{
 Int fromIncalme,
 Int toExclusiveme,
 Action<int> action
}

An example of this is as follows:

Parallel.For (1, 100, (i) => Console.WriteLine(i));

This approach can be useful if you don't want to cancel, break, or maintain any thread local
state and the order of execution is not important. For example, imagine that we want to
count the number of files in a directory that have been created today. The code for this is as
follows:

int totalFiles = 0;
var files = Directory.GetFiles("C:\\");
Parallel.For(0, files.Length, (i) =>
 {
 FileInfo fileInfo = new FileInfo(files[i]);
 if (fileInfo.CreationTime.Day == DateTime.Now.Day)
 Interlocked.Increment(ref totalFiles);
 });
Console.WriteLine($"Total number of files in C: drive are {files.Count()}
and {totalFiles} files were created today.");

Implementing Data Parallelism Chapter 3

[75]

This code iterates all the files in the C: drive and counts all the files that were created today.
The following is the output on my machine:

In the next section, we will try to understand the Parallel.ForEach method, which
provides a parallel variant of the ForEach loop.

For some collections, sequential executions work faster, depending on the
syntax of the loop and the type of work that's being done.

Using the Parallel.ForEach method
This is a variation of the ForEach loop wherein iterations may run in parallel. The source
collection is partitioned and then the work is scheduled to run multiple threads.
Parallel.ForEach works on generic collections and, just like the for loop, returns
ParallelLoopResult.

The basic syntax of the Parallel.ForEach loop is as follows:

Parallel.ForEach<TSource>(
 IEnumerable<TSource> Source,
 Action<TSource> body
)

An example of this is as follows. We have a list of ports that we need to monitor. We also
need to update their statuses:

List<string> urls = new List<string>() {"www.google.com" ,
"www.yahoo.com","www.bing.com" };
Parallel.ForEach(urls, url =>
{
 Ping pinger = new Ping();
 Console.WriteLine($"Ping Url {url} status is {pinger.Send(url).Status}
 by Task {Task.CurrentId}");
});

In the preceding code, we used the System.Net.NetworkInformation.Ping class to
ping a part and display a status to the console. Since the parts are independent, we can
achieve great performance if the code is made parallel and the order is also not important.

Implementing Data Parallelism Chapter 3

[76]

The following screenshot shows the output of the preceding code:

Parallelism can make applications slow on single-core processors. We can control how
many cores can be utilized in a parallel operation by using the degree of parallelism, which
we will cover next.

Understanding the degree of parallelism
So far, we have learned how data parallelism gives us the advantage of running loops in
parallel on multiple cores of a system, thereby making efficient use of the available CPU
resources. You should be aware that there is another important concept that you can use in
order to control how many tasks you want to create in your loops. This concept is called the
degree of parallelism. It's a number that specifies the maximum number of tasks that can be
created by your parallel loops. You can set the degree of parallelism via a property called
MaxDegreeOfParallelism, which is part of the ParallelOptions class. The following is
the syntax of Parallel.For, wherein you can pass the ParallelOptions instance:

public static ParallelLoopResult For(
 int fromInclusive,
 int toExclusive,
 ParallelOptions parallelOptions,
 Action<int> body
)

The following is the syntax of the Parallel.For and Parallel.ForEach methods,
wherein you can pass the ParallelOptions instance:

public static ParallelLoopResult ForEach<TSource>(
 IEnumerable<TSource> source,
 ParallelOptions parallelOptions,
 Action<TSource> body
)

The default value for the degree of parallelism is 64, which means that the parallel loops
can utilize up to 64 processors in a system by creating that many tasks. We can modify this
value to limit the number of tasks. Let's try to understand this concept with a few examples.

Implementing Data Parallelism Chapter 3

[77]

Let's look at an example of a Parallel.For loop with MaxDegreeOfParallelism set to
4:

Parallel.For(1, 20, new ParallelOptions { MaxDegreeOfParallelism = 4 },
index =>
 {
 Console.WriteLine($"Index {index} executing on Task Id
 {Task.CurrentId}");
 });

The output is as follows:

As you can see, the loop was executed by four tasks denoted by the task IDs 1, 2, 3, and 4.

Here is an example of a Parallel.ForEach loop with MaxDegreeOfParallelism set to
4:

var items = Enumerable.Range(1, 20);
Parallel.ForEach(items, new ParallelOptions { MaxDegreeOfParallelism = 4 },
item =>
 {
 Console.WriteLine($"Index {item} executing on Task Id
 {Task.CurrentId}");
 });

Implementing Data Parallelism Chapter 3

[78]

The output is as follows:

As you can see, this loop was executed by four tasks denoted by the task IDs 1, 2, 3, and 4.

We should modify this setting for advanced scenarios where we are aware that a running
algorithm cannot span more than a certain number of processors. We should also modify
this setting if we are running multiple algorithms in parallel and we want to restrict each
algorithm to only utilize a certain number of processors. Next, we will learn how to make
custom partitions in collections by introducing the concept of partitioning strategies.

Creating a custom partitioning strategy
Partitioning is another important concept in data parallelism. To achieve parallelism in the
source collection, it needs to be partitioned into smaller sections called ranges or chunks,
which can be concurrently accessed by various threads. Without partitioning, the loop will
execute serially. Partitioners can be classified into two categories and we can create custom
partitioners as well. These categories are as follows:

Range partitioning
Chunk partitioning

Let's discuss these in detail.

Implementing Data Parallelism Chapter 3

[79]

Range partitioning
This type of partitioning is primarily used with collections where the length is known in
advance. As the name suggests, every thread gets a range of elements to process or the start
and end index of a source collection. This is the simplest form of partitioning and very
efficient in the sense that every thread executes its range without overwriting other threads.
There is no synchronization overhead, though some bits of performance are lost initially
while creating ranges. This type of partitioning works best in scenarios where the number
of elements in each range is the same so that they will take a similar length of time to finish.
With a different number of elements, some tasks may finish early and sit idle, whereas
other tasks may have a lot of pending elements in the range to process.

Chunk partitioning
This type of partitioning is primarily used with collections such as LinkedList, where the
length isn't known in advance. Chunk partitioning provides more load balancing in case
you have uneven collections. Every thread picks up a chunk of elements, processes them,
and then comes back to pick up another chunk that hasn't been picked up by other threads
yet. The size of the chunk depends on the partitioner's implementation and there is
synchronization overhead to make sure that the chunks that are allocated to two threads
don't contain duplicates.

We can change the default partitioning strategy of the Parallel.ForEach loop to perform
custom chunk partitioning, as shown in the following example:

var source = Enumerable.Range(1, 100).ToList();
OrderablePartitioner<Tuple<int,int>> orderablePartitioner=
Partitioner.Create(1, 100);
Parallel.ForEach(orderablePartitioner, (range, state) =>
 {
 var startIndex = range.Item1;
 var endIndex = range.Item2;
 Console.WriteLine($"Range execution finished on task
 {Task.CurrentId} with range
 {startRange}-{endRange}");
 });

In the preceding code, we created chunked partitioners using the OrderablePartitioner
class on a range of items (here, from 1 to 100). We passed partitioners to the ForEach loop,
where each chunk is passed to a thread and executed. The output is as follows:

Implementing Data Parallelism Chapter 3

[80]

So far, we have a good understanding of how parallel loops work. Now, we need to discuss
some advanced concepts in order to find out more about how we can control loop
execution; that is, how to stop a loop as needed.

Canceling loops
We have used constructs such as break and continue in sequential loops; break is used
to break out of a loop by finishing the current iteration and skipping the rest, whereas
continue skips the current iteration and moves to the rest of the iterations. These
constructs can be used because the sequential loops are executed by a single thread. In the
case of parallel loops, we cannot use the break and continue keywords since they run on
multiple threads or tasks. To break a parallel loop, we need to make use of the
ParallelLoopState class. To cancel a loop, we need to make use of
the CancellationToken and ParallelOptions classes.

Implementing Data Parallelism Chapter 3

[81]

In this section, we will discuss the options that you require to cancel loops:

Parallel.Break

ParallelLoopState.Stop

CancellationToken

Let's get started!

Using the Parallel.Break method
Parallel.Break tries to mimic the results of a sequential execution. Let's have a look at
how to break from a parallel loop. In the following code, we need to search a list of
numbers for a specific number. We need to break the loop's execution when a match is
found:

 var numbers = Enumerable.Range(1, 1000);
 int numToFind = 2;
 Parallel.ForEach(numbers, (number, parallelLoopState) =>
 {
 Console.Write(number + "-");
 if (number == numToFind)
 {
 Console.WriteLine($"Calling Break at {number}");
 parallelLoopState.Break();
 }
 });

As shown in the preceding code, the loop is supposed to run until the number 2 is found.
With a sequential loop, it will break exactly on the second iteration. With parallel loops,
since iterations run on multiple tasks, it will actually print values more than 2, as shown in
the following output:

To break out of the loop, we called parallelLoopState.Break(), which tries to mimic
the behavior of the actual break keyword in a sequential loop. When the Break() method
is encountered by any of the cores, it will set an iteration number in the
LowestBreakIteration property of the ParallelLoopState object. This becomes the
maximum number or the last iteration that can be executed. All the other tasks will
continue iterating until this number is reached.

Implementing Data Parallelism Chapter 3

[82]

Subsequent calls to the Break method by running iterations in parallel further reduces
LowestBreakIteration, as shown in the following code:

 var numbers = Enumerable.Range(1, 1000);
 Parallel.ForEach(numbers, (i, parallelLoopState) =>
 {
 Console.WriteLine($"For i={i} LowestBreakIteration =
 {parallelLoopState.LowestBreakIteration} and
 Task id ={Task.CurrentId}");
 if (i >= 10)
 {
 parallelLoopState.Break();
 }
 });

When we run the preceding code in Visual Studio, we get the following output:

Here, we run the code on a multi-core processor. As you can see, a lot of iterations get a
null value for LowestBreakIteration as the code is being executed on multiple cores. On
iteration 17, one core calls the Break() method and sets the value of
LowestBreakIteration to 17. On iteration 10, another core calls Break() and further
reduces the number to 10. Later, on iteration 9, another core calls Break(), and further
reduces the number to 9.

Implementing Data Parallelism Chapter 3

[83]

Using ParallelLoopState.Stop
If you don't want to mimic the results of sequential loops and want to exit the loop as soon
as possible, you can call ParallelLoopState.Stop. Just like we did with the Break()
method, all the iterations running in parallel finish before the loop exits:

var numbers = Enumerable.Range(1, 1000);
Parallel.ForEach(numbers, (i, parallelLoopState) =>
 {
 Console.Write(i + " ");
 if (i % 4 == 0)
 {
 Console.WriteLine($"Loop Stopped on {i}");
 parallelLoopState.Stop();
 }
 });

The following is the output when we run the preceding code in Visual Studio:

As you can see, one core called Stop on iteration 4, another core called Stop on iteration 8,
and a third core called Stop on iteration 12. Iterations 3 and 10 still execute since they were
already scheduled for execution.

Using CancellationToken to cancel loops
Just like normal tasks, we can use the CancellationToken class to cancel the
Parallel.For and Parallel.ForEach loops. When we cancel the token, the loop will
finish the current iterations that may be running in parallel but will not start new iterations.
Once the existing iterations finish, the parallel loops throw
OperationCanceledException.

Implementing Data Parallelism Chapter 3

[84]

Let's look at this with an example. First, we'll create a cancellation token source:

CancellationTokenSource cancellationTokenSource = new
CancellationTokenSource();

Then, we'll create a task that cancels the token after five seconds:

Task.Factory.StartNew(() =>
{
 Thread.Sleep(5000);
 cancellationTokenSource.Cancel();
 Console.WriteLine("Token has been cancelled");
});

After that, we'll create a parallel options object by passing the cancellation token:

ParallelOptions loopOptions = new ParallelOptions()
{
 CancellationToken = cancellationTokenSource.Token
};

Next, we'll run the loop with an operation that will last for more than five seconds:

try
{
 Parallel.For(0, Int64.MaxValue, loopOptions, index =>
 {
 Thread.Sleep(3000);
 double result = Math.Sqrt(index);
 Console.WriteLine($"Index {index}, result {result}");
 });
}
catch (OperationCanceledException)
{
 Console.WriteLine("Cancellation exception caught!");
}

Implementing Data Parallelism Chapter 3

[85]

The following is the output when we run the preceding code in Visual Studio:

As you can see, the scheduled iterations are still executed, even after the canceling token
has been called. I hope this gives you a good idea of how we can cancel loops based on
program requirements. Another important aspect of parallel programming is the concept of
storage. We'll discuss this in the next section.

Understanding thread storage in parallel
loops
By default, all parallel loops have access to a global variable. However, there is a
synchronization overhead associated with accessing global variables, and because of this, it
makes sense to use thread-scoped variables wherever possible. We can create either
a thread local or a partition local variable to be used in parallel loops.

Implementing Data Parallelism Chapter 3

[86]

Thread local variable
Thread local variables are like global variables for a particular task. They have a lifetime
that spans the number of iterations the loop is going to execute.

In the following example, we are going to look at thread local variables using the for loop.
In the case of the Parallel.For loop, multiple tasks are created to run the iterations. Let's
say we need to find out the sum of 60 numbers via a parallel loop.

As an example, say there are four tasks, each of which has 15 iterations. One way of
achieving this is to create a global variable. After every iteration, the running task should
update the global variable. This would require synchronization overhead. For four tasks,
there would be four thread local variables that are private to each task. The variable will be
updated by the task and the last updated value can be returned to the caller program,
which can then be used to update the global variable.

Here are the steps to be followed:

Create a collection of 60 numbers, with each item having a value equal to the1.
index:

var numbers = Enumerable.Range(1, 60);

Create a finished action that will execute once the task has finished all its2.
allocated iterations. The method will receive the final result of the thread local
variable and add that to the global variable, that is, sumOfNumbers:

long sumOfNumbers = 0;
Action<long> taskFinishedMethod = (taskResult) =>
{
 Console.WriteLine($"Sum at the end of all task iterations for
task
 {Task.CurrentId} is {taskResult}");
 Interlocked.Add(ref sumOfNumbers, taskResult);
};

Create a For loop. The first two parameters are startIndex and endIndex. The3.
third parameter is a delegate that provides a seed value for the thread local
variable. It is an action that needs to be performed by the task. In our case, we are
just assigning the index to subtotal, which is our thread local variable.

Implementing Data Parallelism Chapter 3

[87]

Let's say there is a task, TaskA, which gets the iterations with an index from 1 to 5. TaskA
will add up these iterations as 1+2+3+4+5. This equals 15, which will be returned as the
task's result and passed to taskFinishedMethod as a parameter:

Parallel.For(0,numbers.Count(),
 () => 0,
 (j, loop, subtotal) =>
 {
 subtotal += j;
 return subtotal;
 },
 taskFinishedMethod
);
Console.WriteLine($"The total of 60 numbers is {sumOfNumbers}");

Here is the output when we run the preceding code in Visual Studio:

Remember that the output may be different on different machines, depending on the
number of available cores.

Partition local variable
This is similar to the thread local variable but works with partitions. As you are aware, the
ForEach loop divides the source collection into a number of partitions. Each partition will
have its own copy of the partition local variable. With the thread local variable, there is a
single copy of the variable per thread. Here, however, we can have multiple copies per
thread since multiple partitions can be run on a single thread.

First, we need to create a ForEach loop. The first parameter is a source collection, which
means numbers. The second parameter is a delegate that provides a seed value for the
thread local variable. The third parameter is an action that needs to be performed by the
task. In our case, we are just assigning the index to the subtotal, which is our thread local
variable.

Implementing Data Parallelism Chapter 3

[88]

For the sake of understanding, let's say there is a task, TaskA, that gets iterations with
indexes from 1 to 5. TaskA will add up these iterations, which is 1+2+3+4+5. This equals 15,
which will be returned as the task's result and passed to taskFinishedMethod as a
parameter.

The code for this is as follows:

Parallel.ForEach<int, long>(numbers,
 () => 0, // method to initialize the local variable
 (j, loop, subtotal) => // Action performed on each iteration
 {
 subtotal += j; //Subtotal is Thread local variable
 return subtotal; // value to be passed to next iteration
 },
 taskFinishedMethod);
Console.WriteLine($"The total of 60 numbers is {sumOfNumbers}");

Again, in this case, the output will be different on different machines, depending on the
number of available cores.

Summary
In this chapter, we elaborated on achieving task parallelism using TPL. We started by
introducing how to move sequential loops to parallel using some built-in methods
provided by TPL, such as Parallel.Invoke, Parallel.For, and Parallel.ForEach.
Next, we discussed how to get maximum utilization out of the available CPU resources by
understanding the degree of parallelism and partitioning strategies. Then, we discussed
how to cancel and break out of parallel loops using built-in constructs such as cancellation
tokens, Parallel.Break, and ParallelLoopState.Stop. At the end of this chapter, we
discussed various thread storage options that are available in TPL.

The TPL provides a few very exciting options that we can use to achieve data parallelism
through the parallel implementation of For and ForEach loops. Along with features such
as ParallelOptions and ParallelLoopState, we can achieve significant performance
benefits and control without losing a lot of synchronization overhead.

In the next chapter, we will look at another exciting feature of the parallel library called
PLINQ.

Implementing Data Parallelism Chapter 3

[89]

Questions
Which of these is not the correct method to provide a for loop in TPL?1.

Parallel.Invoke1.
Parallel.While2.
Parallel.For3.
Parallel.ForEach4.

Which is not a default partitioning strategy?2.
Bulk partitioning1.
Range partitioning2.
Chunk partitioning3.

What is the default value for the degree of parallelism?3.
11.
642.

Parallel.Break guarantees immediate returns as soon as it is executed.4.
True1.
False2.

Can one thread see another thread's thread local or partition local value?5.
Yes1.
No2.

4
Using PLINQ

PLINQ is a parallel implementation of the Language Integrate Query (LINQ). PLINQ was
first introduced in .NET Framework 4.0 and since then has been made feature-rich. Before
LINQ, it was difficult for developers to fetch data from various data sources such as XML
or databases as each source required different skills. LINQ is a language syntax that relies
on .NET delegates and built-in methods to query or modify data without having to worry
about learning low-level tasks.

In this chapter, we will start by understanding the LINQ providers in .NET. With PLINQ
being the preferred choice for programmers, we will cover its various programming
aspects, along with some disadvantages associated with it. Finally, we will understand the
factors that affect the performance of PLINQ.

We will cover the following topics:

LINQ providers in .NET
Writing PLINQ queries
Preserving order in PLINQ
Merge options in PLINQ
Handling exceptions in PLINQ
Combining parallel and sequential queries
PLINQ disadvantages
Speedups in PLINQ

Technical requirements
To complete this chapter, you should have a good understanding of TPL and C#. The
source code for this chapter is available on GitHub at https:/ /github. com/
PacktPublishing/Hands- On- Parallel- Programming- with- C- 8-and- .NET- Core- 3/tree/
master/Chapter04.

https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter04
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter04

Using PLINQ Chapter 4

[91]

LINQ providers in .NET
LINQ is a set of APIs that help us work with XML, objects, and databases more easily.
LINQ has many providers, including the following, all of which are commonly used:

LINQ to objects: LINQ to objects allows developers to query in-memory
objects such as arrays, collections, generic types, and so on. It returns
an IEnumerable and supports features such as sorting, filtering, grouping,
ordering, and aggregate functions. Its functionality is defined in
the System.Linq namespace.
LINQ to XML: LINQ to XML, or XLINQ, allows developers to query or modify
XML data sources. It's defined in the System.Xml.Linq namespace.
LINQ to ADO.NET: LINQ to ADO.NET is not one but a group of technologies
that allows developers to query or modify relational data sources such as the
SQL Server, MySQL, or Oracle.
LINQ to SQL: This is also known as DLINQ. DLINQ uses Object
Relational Mapping (ORM) and is a legacy technology that is supported but not
enhanced by Microsoft. It works only with the SQL Server and allows users to
map database tables to .NET classes. It also has an adapter that works like a
developer interface to a database.
LINQ to datasets: This allows developers to query or modify datasets in memory.
It works with any database that ADO.NET has a provider for.
LINQ to entities: This is the most advanced and sought-after technology. It
allows developers to work with any relational database, including SQL Server,
Oracle, IBM Db2, and MySQL. LINQ to entities also supports ORM.
PLINQ: This is also known as PLINQ. PLINQ is a parallel implementation of
LINQ for objects. LINQ queries execute sequentially and can be really slow for
heavy computing operations. PLINQ supports the parallel execution of queries
by having a task scheduled to be run on multiple threads and optionally on
multiple cores as well.

.NET supports the seamless conversion of LINQ to PLINQ using
the AsParallel() method. PLINQ is a very good choice for computing heavy operations.
It works by portioning the source data into chunks, which are, in turn, executed by
different threads running on multiple cores. PLINQ also supports XLINQ and LINQ to
objects.

Using PLINQ Chapter 4

[92]

Writing PLINQ queries
To understand PLINQ queries, we need to understand the ParallelEnumerable class
first. Once we have an understanding of the ParallelEnumerable class, we will learn
how to write parallel queries.

Introducing the ParallelEnumerable class
The ParallelEnumerable class is available in the System.Linq namespace and
the System.Core assembly.

Apart from supporting most of the standard query operators defined by LINQ,
the ParallelEnumerable class supports a lot of extra methods that support parallel
execution:

AsParallel(): This is the seed method that's required for parallelization.
AsSequential(): Enables sequential execution of a parallel query by changing
the parallel behavior.
AsOrdered(): By default, PLINQ doesn't preserve the order in which tasks are
executed and results are returned. We can preserve this ordering by calling
the AsOrdered() method.
AsUnordered(): This is the default behavior of ParallelQuery, which can be
overridden by the AsOrdered() method. We can change the behavior from
ordered to unordered by calling this method.
ForAll(): Enables query execution to be performed in parallel.
Aggregate(): This method can be used to aggregate results from various
thread-local partitions in a parallel query.
WithDegreesOfParallelism(): Using this method, we can specify the
maximum number of processors that are used to parallelize query executions.
WithParallelOption(): Using this method, we can buffer the results that are
produced by a parallel query.
WithExecutionMode(): Using this method, we can force the parallel execution
of a query or let PLINQ decide whether the query needs to be executed as
sequential or parallel.

Using PLINQ Chapter 4

[93]

We will learn more about these methods later in this chapter through the use of code
examples. There is a very handy tool called LINQPad that's worth mentioning here.
LINQPad helps us learn about LINQ/PLINQ queries since it has more than 500 available
samples and the ability to connect to a variety of data sources. You can download it from
https://www.linqpad. net/ .

Our first PLINQ query
Let's say that we want to find all the numbers that are divisible by three.

First, we define a range of 100,000 numbers:

var range = Enumerable.Range(1, 100000);

To find all the numbers that are divisible by three sequentially, use the following LINQ
query:

var resultList = range.Where(i => i % 3 == 0).ToList();

The following is a parallel version of the same query using the AsParallel method but
using the method syntax:

 var resultList = range.AsParallel().Where(i => i % 3 == 0).ToList();

Here is the same version using the query syntax option in LINQ:

var resultList = (from i in range.AsParallel()
 where i % 3 == 0
 select i).ToList();

Here is the complete code:

var range = Enumerable.Range(1, 100000);
//Here is sequential version
var resultList = range.Where(i => i % 3 == 0).ToList();
Console.WriteLine($"Sequential: Total items are {resultList.Count}");
//Here is Parallel Version using .AsParallel method
resultList = range.AsParallel().Where(i => i % 3 == 0).ToList();
resultList = (from i in range.AsParallel()
 where i % 3 == 0
 select i).ToList();
 Console.WriteLine($"Parallel: Total items are {resultList.Count}");
Console.WriteLine($"Parallel: Total items are {resultList.Count}");

https://www.linqpad.net/
https://www.linqpad.net/
https://www.linqpad.net/
https://www.linqpad.net/
https://www.linqpad.net/
https://www.linqpad.net/
https://www.linqpad.net/
https://www.linqpad.net/
https://www.linqpad.net/
https://www.linqpad.net/

Using PLINQ Chapter 4

[94]

The output of this will be as follows:

Preserving order in PLINQ while doing
parallel executions
PLINQ executes work items in parallel and, by default, doesn't care about preserving the
order of items to improve the performance of parallel queries. However, it is sometimes
important that items are executed in the same order as they exist in the source collection.
For example, imagine you are sending multiple requests to the server to download files in
chunks and later on merging those chunks to recreate the file on the client side. Since the
file is downloaded in parts, every part needs to be downloaded and merged in the correct
order. Preserving the order while executing items in parallel has a direct impact on
performance as we need to preserve the original ordering throughout the partitions
and ensure that the ordering is consistent when merging items.

We can override the default behavior and turn on order preservation by using the
AsOrdered() method on the source collection. If, at any point, we want to turn off the
order preservation, we can call the AsUnOrdered() method.

Let's look at an example:

var range = Enumerable.Range(1, 10);
Console.WriteLine("Sequential Ordered");
range.ToList().ForEach(i => Console.Write(i + "-"));

This code is sequential, so when we run it, we get the following output:

We can make a parallel version using the AsParallel() method:

Console.WriteLine("Parallel Unordered");
var unordered = range.AsParallel().Select(i => i).ToList();
unordered.ForEach(i => Console.WriteLine(i));

Using PLINQ Chapter 4

[95]

The preceding code executes in parallel, but the ordering is all messed up:

To get the best of both worlds, that is, parallel execution with ordering, we can modify the
code as follows:

var range = Enumerable.Range(1, 10);
Console.WriteLine("Parallel Ordered");
var ordered = range.AsParallel().AsOrdered().Select(i => i).ToList();
ordered.ForEach(i => Console.WriteLine(i));

Here is the output:

As you can see, when we call the AsOrdered() method, it executes all the work items in
parallel while preserving the original order, whereas, in the default one, the order was not
preserved. The performance implications of using the AsOrdered() method are huge since
the order is restored at every step of the execution.

Sequential execution using the AsUnOrdered()
method
Once we have called AsOrdered on PLINQ, the query will execute sequentially. There may
be situations in which we want to execute a query as ordered for a certain period but
change to unordered after that to gain performance.

Let's say we want to generate the squares of the first 100 numbers from a range of numbers.
One way to do this in parallel is as follows:

 var range = Enumerable.Range(100, 10000);
 var ordered = range.AsParallel().AsOrdered().Take(100).Select(i => i *
i);

Using PLINQ Chapter 4

[96]

We need AsOrdered() to get the first 100 numbers. The problem is that the Select query
will also perform as ordered. We can improve performance by combining AsOrdered()
and AsUnOrdered():

var range = Enumerable.Range(100, 10000);
var ordered =
range.AsParallel().AsOrdered().Take(100).AsUnordered().Select(i => i *
i).ToList();

Now, the first 100 items will be retrieved in parallel and in order. After that, the query will
execute without any order preservation.

Merge options in PLINQ
As we mentioned previously, when we create a parallel query, the source collection is
partitioned so that multiple tasks can work on sections concurrently. Once the query
completes, the results need to be merged so that they can be made available to the
consuming thread. There are various ways to merge the results, depending on the query
operators. We can specify how we want to merge the results explicitly using
the ParallelMergeOperation enumeration and the WithMergeOption() extension
method.

Let's take a look at the various merge options that are available to us.

Using the NotBuffered merge option
The results of concurrent tasks are not buffered. As soon as any of the tasks finish, they
return the result to the consuming thread:

var range = ParallelEnumerable.Range(1, 100);
Stopwatch watch = null;
ParallelQuery<int> notBufferedQuery =
range.WithMergeOptions(ParallelMergeOptions.NotBuffered)
 .Where(i => i % 10 == 0)
 .Select(x => {
 Thread.SpinWait(1000);
 return x;
 });
watch = Stopwatch.StartNew();
foreach (var item in notBufferedQuery)
{
 Console.WriteLine($"{item}:{watch.ElapsedMilliseconds}");

Using PLINQ Chapter 4

[97]

}
Console.WriteLine($"\nNotBuffered Full Result returned in
{watch.ElapsedMilliseconds} ms");

The output of this is as follows:

Using the AutoBuffered merge option
The results from concurrent tasks are buffered and the buffer is made available to
consuming threads in periodic intervals. Depending on the size of the collection, multiple
buffers might be returned. Using this option, the consuming thread needs to wait longer to
get the first result. This is also the default option.

Consider the following code:

var range = ParallelEnumerable.Range(1, 100);
Stopwatch watch = null;
ParallelQuery<int> query =
range.WithMergeOptions(ParallelMergeOptions.AutoBuffered)
 .Where(i => i % 10 == 0)
 .Select(x => {
 Thread.SpinWait(1000);
 return x;
 });
watch = Stopwatch.StartNew();
foreach (var item in query)
{
 Console.WriteLine($"{item}:{watch.ElapsedMilliseconds}");
}
Console.WriteLine($"\nAutoBuffered Full Result returned in
{watch.ElapsedMilliseconds} ms");
watch.Stop();

Using PLINQ Chapter 4

[98]

The output is as follows:

Using the FullyBuffered merge option
The results from concurrent tasks are fully buffered before they are made available in one
go to the consuming thread. This improves the overall performance, though the time it
takes to get the first result will be longer:

var range = ParallelEnumerable.Range(1, 100);
Stopwatch watch = null;
ParallelQuery<int> fullyBufferedQuery =
range.WithMergeOptions(ParallelMergeOptions.FullyBuffered)
 .Where(i => i % 10 == 0)
 .Select(x => {
 Thread.SpinWait(1000);
 return x;
 });
watch = Stopwatch.StartNew();
foreach (var item in fullyBufferedQuery)
{
 Console.WriteLine($"{item}:{watch.ElapsedMilliseconds}");
}
Console.WriteLine($"\nFullyBuffered Full Result returned in
{watch.ElapsedMilliseconds} ms");
watch.Stop();

Using PLINQ Chapter 4

[99]

The output will be as follows:

Not all query operators support all merge modes. The following is a list of operators, along
with their restrictions:

Using PLINQ Chapter 4

[100]

This information can be found at http:/ /msdn. microsoft. com/ en- us/
library/ dd997424(v= vs. 110). aspx.

Apart from the preceding operators, ForAll() is always NotBuffered and OrderBy is
always FullyBuffered. If any custom merge options are specified on these operators, they
are just ignored.

Throwing and handling exceptions with
PLINQ
Just like other parallel primitives, PLINQ throws a System.AggregateException
whenever it encounters an exception. Exception handling largely depends on your design.
You may want the program to fail as soon as possible or you may want all the exceptions to
be returned to the caller.

In the following example, we will wrap a parallel query inside a try-catch block. When
the query throws an exception, it will propagate back to the caller, wrapped in
System.AggregateException:

var range = ParallelEnumerable.Range(1, 20);
ParallelQuery<int> query= range.Select(i => i / (i -
10)).WithDegreeOfParallelism(2);
try
{
 query.ForAll(i => Console.WriteLine(i));
}
catch (AggregateException aggregateException)
{
 foreach (var ex in aggregateException.InnerExceptions)
 {
 Console.WriteLine(ex.Message);
 if (ex is DivideByZeroException)
 Console.WriteLine("Attempt to divide by zero. Query
 stopped.");
 }
}

http://msdn.microsoft.com/en-us/library/dd997424(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/dd997424(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/dd997424(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/dd997424(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/dd997424(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/dd997424(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/dd997424(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/dd997424(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/dd997424(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/dd997424(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/dd997424(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/dd997424(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/dd997424(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/dd997424(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/dd997424(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/dd997424(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/dd997424(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/dd997424(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/dd997424(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/dd997424(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/dd997424(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/dd997424(v=vs.110).aspx

Using PLINQ Chapter 4

[101]

The output will be as follows:

We can also specify a try-catch block within a delegate, which would alert us about error
conditions as soon as possible. It can also be used in a scenario in which we just want to log
an exception and continue the query's execution by providing a default value as the query
result in the case of an exception:

var range = ParallelEnumerable.Range(1, 20);
Func<int, int> selectDivision = (i) =>
{
 try
 {
 return i / (i - 10);
 }
 catch (DivideByZeroException ex)
 {
 Console.WriteLine($"Divide by zero exception for {i}");
 return -1;
 }
};
ParallelQuery<int> query = range.Select(i =>
selectDivision(i)).WithDegreeOfParallelism(2);
try
{
 query.ForAll(i => Console.WriteLine(i));
}

Using PLINQ Chapter 4

[102]

catch (AggregateException aggregateException)
{
 foreach (var ex in aggregateException.InnerExceptions)
 {
 Console.WriteLine(ex.Message);
 if (ex is DivideByZeroException)
 Console.WriteLine("Attempt to divide by zero. Query stopped.");
 }
}

The output is as follows:

Exception handling is very important for maintaining the correct flow in the application, as
well as to notify the user of applications with error conditions. With proper exception
handling and logging, we can troubleshoot application errors in production environments
as well. In the next section, we will discuss how to merge parallel and sequential queries.

Using PLINQ Chapter 4

[103]

Combining parallel and sequential LINQ
queries
We have already discussed the use of AsParallel() to create parallel queries. Sometimes,
we may want to execute operators sequentially. We can force PLINQ to operate
sequentially using the AsSequential() method. Once this method is applied to any
parallel query, the following operators execute in a sequence. Consider the following code:

var range = Enumerable.Range(1, 1000);
range.AsParallel().Where(i => i % 2 == 0).AsSequential().Where(i => i % 8
== 0).AsParallel().OrderBy(i => i);

Here, the first Where class, Where(i => i % 2 == 0), will execute in parallel. The second
Where class, Where(i => i % 8 == 0), however, will execute sequentially. OrderBy will
also be switched to parallel execution mode.

This is shown in the following diagram:

Now, we should have a good idea about how to merge synchronous and parallel LINQ
queries. In the next section, we will learn how to cancel PLINQ queries to save CPU
resources.

Using PLINQ Chapter 4

[104]

Canceling PLINQ queries
We can cancel a PLINQ query using the CancellationTokenSource and
CancellationToken classes. The cancellation token is passed to the PLINQ query using
the WithCancellation clause and then we can call CancellationToken.Cancel to
cancel the query operation. When a query is canceled, it throws
OperationCancelledException.

This is done as follows:

Create a cancellation token source:1.

CancellationTokenSource cs = new CancellationTokenSource();
Create a task that starts immediately and cancel the token after 4
seconds
 Task cancellationTask = Task.Factory.StartNew(() =>
 {
 Thread.Sleep(4000);
 cs.Cancel();
 });

Wrap the PLINQ query inside a try block:2.

try
 {
 var result = range.AsParallel()
 .WithCancellation(cs.Token)
 .Select(number => number)
 .ToList();
 }

Add two catch blocks; one to catch OperationCanceledException and the3.
other to capture AggregateException:

 catch (OperationCanceledException ex)
 {
 Console.WriteLine(ex.Message);
 }
 catch (AggregateException ex)
 {
 foreach (var inner in ex.InnerExceptions)
 {
 Console.WriteLine(inner.Message);
 }
 }

Using PLINQ Chapter 4

[105]

Take the range as a very large value that takes more than four seconds to execute:4.

 var range = Enumerable.Range(1,1000000);

Run the code. After four seconds, we will see the following output:5.

Parallel programming comes with its own caveats. In the next section, we will introduce the
disadvantages of writing parallel code with PLINQ.

Disadvantages of parallel programming with
PLINQ
In most cases, PLINQ performs much faster than its non-parallel counterpart LINQ.
However, there is some performance overhead, which is related to partitioning and
merging while parallelizing the LINQ. The following are some of the things we need to
consider while using PLINQ:

Parallel is not always faster: Parallelization is an overhead. Unless your source1.
collection is huge or it has compute-bound operations, it makes more sense to
execute the operations in sequence. Always measure the performance of
sequential and parallel queries to make an informed decision.
Avoid I/O operations that involve atomicity: All I/O operations that involve2.
writing to a filesystem, database, network, or shared memory location should be
avoided inside PLINQ. This is because these methods are not thread-safe, so
using them may lead to exceptions. A solution would be to use synchronization
primitives, but this would also reduce performance drastically.
Your queries may not always be running in parallel: Parallelization in PLINQ is3.
a decision that's taken by CLR. Even if we called the AsParallel() method in
the query, it isn't guaranteed to take a parallel path and may run sequentially
instead.

Using PLINQ Chapter 4

[106]

Understanding the factors that affect the
performance of PLINQ (speedups)
The primary purpose of PLINQ is to speed up query execution by splitting the task and
executing it in parallel. However, there are a lot of factors that can impact the performance
of PLINQ. These include synchronization overheads to do with chunking and partitioning,
as well as scheduling and collecting results from threads. PLINQ performs best in
delightfully parallel scenarios, where threads don't have to share a state and don't have to
worry about the order of execution. Being delightfully parallel is ideal but not always
achievable due to the nature of work. Let's try to understand the factors that can impact the
performance of PLINQ.

Degree of parallelism
With a greater number of cores at our disposal, we can achieve significant performance
gains since TPL makes sure multiple tasks can execute concurrently on multiple cores. This
improvement in performance may not be exponential and, while tuning the performance,
we should try to run on different systems with multiple cores and compare results.

Merge option
We can significantly improve the user experience in scenarios where results change often
and the user wants to see results as soon as possible without waiting. The default option
with PLINQ is to buffer results and later merge them and return them to the user. We can
modify this behavior by choosing an appropriate merge option.

Partitioning type
We should always check whether our work items are balanced or unbalanced. For
unbalanced work item scenarios, custom partitioners may be introduced to improve
performance.

Using PLINQ Chapter 4

[107]

Deciding when to stay sequential with PLINQ
We should always work out the computational cost of each work item and the entire
operation as a whole so that we can decide whether we want to stay sequential or move to
parallelism. Parallel queries may not always be fast due to the additional overhead of
partitioning, scheduling, and so on:

Computational Cost = Cost to execute 1 work item * total number of work items

Parallel queries can provide significant performance gains with increasing computational
cost per item. However, if the performance gain is very low, it makes sense to execute the
query sequentially.

Whether PLINQ decides to execute sequentially or in parallel depends on the combination
of operators in the query. Simply put, if the query has any of the following operators,
PLINQ may decide to run a query as sequential:

Take, TakeWhile, Skip, SkipWhile, First, Last, Concat, Zip, or ElementAt
Indexed Where and Select, which are overloads of Where and Select,
respectively

The following code demonstrates using indexed Where and Select:

IEnumerable<int> query =
 numbers.AsQueryable()
 .Where((number, index) => number <= index * 10);
IEnumerable<bool> query =
 range.AsQueryable()
 .Select((number, index) => number <= index * 10);

Order of operation
PLINQ provides better performance with unordered collections as there are performance
costs associated with making collections execute as ordered. This performance cost includes
partitioning, scheduling, and gathering results, as well as calling GroupJoin and filters. As
a developer, you should consider when you want to use AsOrdered().

Using PLINQ Chapter 4

[108]

ForAll versus calling ToArray() or ToList()
When we call ToList() or ToArray() or enumerate a result in a loop, we force PLINQ to
merge results from all the parallel threads into a single data structure. This is a performance
overhead. If we just want to perform some actions on a set of items, it is better to use
the ForAll() method.

Forcing parallelism
PLINQ is not guaranteed to carry out parallel execution every time. It may decide to run
sequential executions, depending on the type of query. We can control this using
the WithExecutionMode method. WithExecutionMode is an extension method that
works on objects of the ParallelQuery type. It takes ParallelExecutionMode as a
parameter, which is an enum. The default value of ParallelExecutionMode lets PLINQ
decide on the best execution mode. We can force the execution mode to be parallel using
the ForceParallelism option:

var range = Enumerable.Range(1, 10);
var squares = range.AsParallel().WithExecutionMode
(ParallelExecutionMode.ForceParallelism).Select(i => i * i);
squares.ToList().ForEach(i => Console.Write(i + "-"));

Generating sequences
Throughout this book, we used the Enumerable.Range() method to generate a sequence
of numbers. We can generate numbers in parallel as well using the ParallelEnumerable
class. Let's do a simple test comparison between Enumerable and
the ParallelEnumerable class:

Stopwatch watch = Stopwatch.StartNew();
IEnumerable<int> parallelRange = ParallelEnumerable.Range(0, 5000).Select(i
=> i);
watch.Stop();
Console.WriteLine($"Time elapsed {watch.ElapsedMilliseconds}");
Stopwatch watch2 = Stopwatch.StartNew();
IEnumerable<int> range = Enumerable.Range(0, 5000);
watch2.Stop();
Console.WriteLine($"Time elapsed {watch2.ElapsedMilliseconds}");
Console.ReadLine();

Using PLINQ Chapter 4

[109]

The output is as follows:

As you can see, ParallelEnumerable works much faster than Enumerable for creating a
range.

In a similar scenario, we may want to generate a number a certain amount of times. We can
use the ParallelEnumerable.Repeat() method for this scenario, as follows:

IEnumerable<int> rangeRepeat = ParallelEnumerable.Repeat(1, 5000);

Now that we've understood the factors that affect the performance of PLINQ, we have
come to the end of this chapter. Now, let's summarize what we've learned.

Summary
In this chapter, we discussed the basics of LINQ before moving on to understand how we
can write parallel queries using PLINQ. We learned that PLINQ can work well to improve
the performance of the application as a whole, but it is important to bear its disadvantages
in mind. As a programmer, it is always a good idea to weigh up your options by writing
both LINQ and PLINQ queries and comparing their performance.

In the next chapter, we will learn about using synchronization primitives to preserve the
consistency and state of data when data is shared across multiple threads.

Questions
Which of these LINQ providers has better support for relational objects?1.

LINQ to SQL1.
LINQ to entities2.

We can easily convert LINQ into parallel LINQ by using AsParallel().2.
True1.
False2.

Using PLINQ Chapter 4

[110]

It's not possible to switch between ordered and unordered execution in PLINQ.3.
True1.
False2.

Which of these allows the results for concurrent tasks to be buffered and made4.
available to consuming threads at periodic intervals?

FullyBuffered1.
AutoBuffered2.
NotBuffered3.

Which exception will be thrown if the following code is executed inside a task?5.

int i=5;
i = i/i -5;

AggregateException1.
DivideByZeroException2.

2
Section 2: Data Structures that

Support Parallelism in .NET
Core

In this section, you will delve more deeply into language and framework constructs that
support parallelism, concurrency, and synchronization.

This section comprises the following chapters:

Chapter 5, Synchronization Primitives
Chapter 6, Using Concurrent Collections
Chapter 7, Improving Performance with Lazy Initialization

5
Synchronization Primitives

In the previous chapter, we discussed the potential pitfalls of parallel programming. One of
these was synchronization overheads. As we break down work into tasks to be processed
by multiple work items, there arises a need to synchronize the results from each thread. We
discussed the concept of thread-local-storage and partition-local-storage, which can be used
to work around this synchronization issue to a certain extent. However, it is still necessary
to synchronize threads so that we can write data to a shared memory location and so that
we can perform I/O operations.

In this chapter, we will discuss the synchronization primitives that are provided by the
.NET Framework and the TPL.

In this chapter, we will cover the following topics:

Synchronization primitives
Interlocked operations
Locking primitives
Signaling primitives
Lightweight synchronization primitives
Barriers and countdown events

By the end of this chapter, you will have a good understanding of the various locking
and signaling primitives that are provided by .NET Framework, including
some lightweight synchronization primitives that should be used as much as possible
wherever there are synchronization needs.

Synchronization Primitives Chapter 5

[113]

Technical requirements
To complete this chapter, you should have a good understanding of TPL, primarily parallel
loops. The source code for this chapter is available on GitHub at https:/ /github. com/
PacktPublishing/Hands- On- Parallel- Programming- with- C- 8-and- .NET- Core- 3/tree/
master/Chapter05.

What are synchronization primitives?
Before understanding synchronization primitives, we need to understand critical section.
Critical section is part of the execution path of a thread that must be protected from
concurrent access in order to maintain some invariants. Critical section is not a
synchronization primitive in itself but relies on synchronization primitives.

Synchronization primitives are simple software mechanisms that are provided by the
underlying platform (the OS). They help in multithreading the kernel. Synchronization
primitives internally use low-level atomic operations, as well as memory barriers. This
means that users of synchronization primitives don't have to worry about implementing
locks and memory barriers themselves. Some common examples of synchronization
primitives are locks, mutexes, conditional variables, and semaphores. The monitor is a
higher-level synchronization tool that makes use of other synchronization primitives
internally.

The .NET Framework provides a range of synchronization primitives to deal with the
interaction among threads, as well as to avoid potential race conditions. Synchronization
primitives can be broadly divided into five categories:

Interlocked operations
Locking
Signaling
Lightweight synchronization types
SpinWait

In the following sections, we will discuss each category and their respective low-level
primitives.

https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter05
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter05

Synchronization Primitives Chapter 5

[114]

Interlocked operations
The interlocked class encapsulates synchronization primitives and is used to provide
atomic operations to variables that are shared across threads. It provides methods such
as Increment, Decrement, Add, Exchange, and CompareExchange.

Consider the following code, which tries to increment a counter inside a parallel loop:

Parallel.For(1, 1000, i =>
 {
 Thread.Sleep(100);
 _counter++;
 });
 Console.WriteLine($"Value for counter should be 999 and
 is {_counter}");

If we run this code, we will see the following output:

As you can see, the expected value and the actual value do not match. This is because of the
race condition among the threads, which has arisen because the thread wants to read a
value from a variable to which the value has been written but not yet committed.

We can modify the preceding code using the Interlocked class to make it thread-safe, as
follows:

Parallel.For(1, 1000, i =>
 {
 Thread.Sleep(100);
 Interlocked.Increment(ref _counter);
 });
 Console.WriteLine($"Value for counter should be 999 and
 is {_counter}");

The expected output is as follows:

Synchronization Primitives Chapter 5

[115]

Similarly, we can use Interlocked.Decrement(ref _counter) to decrement the value
in a thread-safe manner.

The following code shows the complete list of operations:

 //_counter becomes 1
Interlocked.Increment(ref _counter);
// _counter becomes 0
Interlocked.Decrement(ref _counter);
// Add: _counter becomes 2
Interlocked.Add(ref _counter, 2);
//Subtract: _counter becomes 0
Interlocked.Add(ref _counter, -2);
// Reads 64 bit field
Console.WriteLine(Interlocked.Read(ref _counter));
// Swaps _counter value with 10
Console.WriteLine(Interlocked.Exchange(ref _counter, 10));
//Checks if _counter is 10 and if yes replace with 100
Console.WriteLine(Interlocked.CompareExchange(ref _counter, 100, 10));
// _counter becomes 100

Apart from the preceding methods, two new methods were added in .NET Framework
4.5: Interlocked.MemoryBarrier() and
Interlocked.MemoryBarrierProcessWide().

In the next section, we will learn more about memory barriers in .NET.

Memory barriers in .NET
Threading models work differently on single-core versus multicore processors. On single-
core processors, only one thread gets a CPU slice while other threads wait for their turn.
This ensures that whenever a thread accesses the memory (for loading and storing), it is in
the right order. This model is also known as a sequential consistency model. In the case of
multicore processor systems, multiple threads run concurrently. Sequential consistency is
not guaranteed in these systems since either the hardware or the Just in Time (JIT)
compiler might reorder the memory instructions to improve performance. The memory
instructions may also be reordered for performance purposes for caching, load
speculations, or delaying store operations.

Synchronization Primitives Chapter 5

[116]

An example of a load speculation is as follows:

a=b;

An example of a store operation is as follows:

c=1;

Load and store statements, when encountered by the compiler, are not always executed in
the same order as they are written. Compilers do some reordering for performance benefits.
Let's try to understand more about reordering.

What is reordering?
For a given sequence of code statements, the compiler can choose to either execute them in
the same order as they are received or reorder them to gain performance if multiple threads
are working on the same code. For example, take a look at the following code:

a = b;
c = 1;

The preceding code can be reordered and executed in the following order for another
thread:

c = 1;
a = b;

Code reordering is a problem for multicore processors with weak memory models, such as
Intel Itanium processors. It has no impact on single-core processors, however, due to the
sequential consistency model. The code is restructured so that another thread can take
advantage or store an instruction that is already in the memory. Code reordering can be
done either by hardware or by a JIT compiler. To guarantee code reordering, we need some
sort of memory barrier.

Synchronization Primitives Chapter 5

[117]

Types of memory barriers
Memory barriers ensure that any code statements above or below the barrier will not cross
the barrier, thereby enforcing the order of the code. There are three types of memory
barrier:

Store (write) memory barrier: A store memory barrier ensures that no store
operations are allowed to move across the barrier. It has no effect on load
operations; these can still be reordered. The equivalent CPU instruction to
achieve this effect is SFENCE:

Load (read) memory barrier: A load barrier ensures that no load operations are
allowed to move across the barrier but places no such enforcement on store
operations. The equivalent CPU instruction to achieve this effect is LFENCE:

Synchronization Primitives Chapter 5

[118]

Full memory barrier: A full memory barrier ensures ordering by not allowing
store or load operations to move across the memory barrier. The equivalent CPU
instruction to achieve this effect is MFENCE. The behavior of the full memory
barrier is often implemented by .NET synchronization constructs such as the
following:

Task.Start, Task.Wait, and Task.Continuation
Thread.Sleep, Thread.Join, Thread.SpinWait,
Thread.VolatileRead, and Thread.VolatileWrite
Thread.MemoryBarrier

Lock, Monitor.Enter, and Monitor.Exit
Interlocked class operations

Half barriers are provided by the Volatile keyword and the Volatile class methods.
The .NET Framework provides some built-in patterns using volatile fields in classes such
as Lazy<T> and LazyInitializer. We will discuss these further in Chapter 7, Improving
Performance with Lazy Initialization.

Avoiding code reordering using constructs
We can avoid reordering using Thread.MemoryBarrier, as shown in the following code:

static int a = 1, b = 2, c = 0;
private static void BarrierUsingTheadBarrier()
{
 b = c;
 Thread.MemoryBarrier();
 a = 1;
}

Thread.MemoryBarrier creates a full barrier that doesn’t allow load or store operations to
pass. It has been wrapped inside Interlocked.MemoryBarrier, so the same code can be
written as follows:

private static void BarrierUsingInterlockedBarrier()
 {
 b = c;
 Interlocked.MemoryBarrier();
 a = 1;
 }

Synchronization Primitives Chapter 5

[119]

If we want to create a process- and system-wide barrier, we can make use of
Interlocked.MemoryBarrierProcessWide, which was introduced in .NET Core 2.0.
This is a wrapper over the FlushProcessWriteBuffer Windows API or
sys_membarrier on a Linux kernel:

private static void BarrierUsingInterlockedProcessWideBarrier()
{
 b = c;
 Interlocked.MemoryBarrierProcessWide();
 a = 1;
}

The preceding example shows us how we can create a process-wide barrier. Now, let's look
at what locking primitives are.

Introduction to locking primitives
Locks can be used to limit access to a protected resource to only a single thread or group of
threads. To be able to implement locking efficiently, we need to identify appropriate critical
sections that can be protected via locking primitives.

How locking works
When we apply a lock to a shared resource, the following steps are performed:

A thread or group of threads access a shared resource by acquiring a lock.1.
Other threads that cannot get access to a lock go into a wait state.2.
As soon as the lock is freed by one of the threads, it is acquired by another3.
thread, which starts its execution.

To understand locking primitives, we need to understand various thread states, as well as
concepts such as blocking and spinning.

Synchronization Primitives Chapter 5

[120]

Thread state
At any point during the thread's life cycle, we can query a thread state using
the ThreadState property of the thread. A thread can be in any one of the following states:

Unstarted: The thread has been created by CLR but the
System.Threading.Thread.Start method hasn't been invoked on the thread
yet.
Running: The thread has been started via a call to Thread.Start. It is not
waiting for any pending operations.
WaitSleepJoin: The thread is in a blocked state as a result of invoking the
Wait(), Sleep(), or Join() methods by calling the thread.
StopRequested: The thread has been requested to stop.
Stopped: The thread has stopped executing.
AbortRequested: The Abort() method has been called on the thread, but the
thread hasn't been aborted yet as it is waiting for ThreadAbortException,
which will try to terminate it.
Aborted: The thread has been aborted.
SuspendRequested: The thread is requested to suspend as a result of calling the
Suspend method.
Suspended: The thread has been suspended.
Background: The thread is being executed in the background.

Let's try to explore the journey of a thread from its initial state, UnStarted, to its final state,
Stopped:

Synchronization Primitives Chapter 5

[121]

When a thread is created by CLR, it is in an Unstarted state. It makes a transition from
Unstarted to Running when the external thread calls the Thread.Start() method on it.
From the Running state, a thread can transition to the following states:

WaitSleepJoin

AbortRequested

Stopped

A thread is said to be blocked when it is in the WaitSleepJoin state. The execution of a
blocked thread is paused since it is waiting for some external conditions to be met, which
may be the result of some CPU-bound I/O operation or some other thread. Once blocked,
the thread immediately yields the CPU time slice and doesn't use the processor slice
until the blocked condition is satisfied. At this point, the thread is unblocked. Blocking and
unblocking constitutes a performance overhead as this requires the CPU to carry out
context switching.

A thread can be unblocked in any of the following events:

If the blocking condition is satisfied
By calling Thread.Interrupt on the blocked thread
By aborting a thread using Thread.Abort
When the specified timeout is reached

Blocking versus spinning
A blocked thread relinquishes the processor slice for a specified amount of time. This
improves performance by making it available for other threads but incurs the overhead of
context switching. It is good in a scenario where the thread has to be blocked for a
considerable amount of time. If the waiting time is less, it makes sense to go for spinning
without relinquishing the processor slice. For example, the following code simply loops
infinitely:

while(!done);

This is just an empty while loop that checks for a Boolean variable. When the wait is over,
the variable will be set to false and the loop can break. Although this is a waste of processor
time, it can significantly improve performance if the wait isn't very long. The .NET
Framework provides some special constructs, which we will discuss later in this
chapter, such as SpinWait and SpinLock.

Synchronization Primitives Chapter 5

[122]

Let’s try to understand some locking primitives with code examples.

Lock, mutex, and semaphore
Lock and mutex are locking constructs that allow only one thread to access a protected
resource. Lock is a shortcut implementation that uses another higher-level synchronization
class called Monitor.

Semaphore is a locking construct that allows a specified number of threads to access a
protected resource. Lock can only synchronize access inside a process, but if we need to
access a system-level resource or shared memory, we need to actually synchronize access
across multiple processes. A mutex allows us to synchronize access to resources across
processes by providing a kernel-level lock.

The following table provides a comparison of the capabilities of these constructs:

As we can see, Lock and Mutex only allow single-thread access to shared resources,
whereas Semaphore and SemaphoreSlim can be used to allow access to resources that
have been shared by multiple threads. Also, where Lock and SemaphoreSlim only work
inside a process, Mutex and Semaphore have a process-wide lock.

Lock
Let's consider the following code, which tries to write a number to a text file:

var range = Enumerable.Range(1, 1000);
Stopwatch watch = Stopwatch.StartNew();
 for (int i = 0; i < range.Count(); i++)
 {
 Thread.Sleep(10);
 File.AppendAllText("test.txt", i.ToString());
 }

Synchronization Primitives Chapter 5

[123]

 watch.Stop();
 Console.WriteLine($"Total time to write file is
 {watch.ElapsedMilliseconds}");

The output when we run the preceding code is as follows:

As you can see, the task is composed of 1,000 work items and each work item takes
approximately 10 milliseconds to execute. The time that's taken by the task is 1,000
multiplied by 10, which is 10,000 milliseconds. We also have to take into consideration the
time taken to perform I/O, so the total time turns out to be 11,949.

Let's try to parallelize this task using the AsParallel() and AsOrdered() clauses, as
follows:

range.AsParallel().AsOrdered().ForAll(i =>
{
 Thread.Sleep(10);
 File.AppendAllText ("test.txt", i.ToString());
});

When we try to run this code, we get the following System.IO.IOException: 'The
process cannot access the file …\test.txt' because it is being used by

another process.'.

What actually happened here is that the file is a shared resource with a critical section and
therefore only allows atomic operations. With the parallel code, we have a situation where
multiple threads are actually trying to write to the file and causing an exception. We need
to make sure that the code runs in parallel as fast as possible but also maintains atomicity
while writing to the file. We need to modify the preceding code using a lock statement.

First, declare a static reference type variable. In our case, we take a variable of
the object type. We need a reference type variable since the lock can only be applied on
the heap memory:

static object _locker = new object ();

Synchronization Primitives Chapter 5

[124]

Next, we modify the code inside the ForAll() method to include a lock:

range.AsParallel().AsOrdered().ForAll(i =>
 {
 lock (_locker)
 {
 Thread.Sleep(10);
 File.WriteAllText("test.txt", i.ToString());
 }
 });

Now, when we run this code, we won't get any exceptions, but the time that the task took
was actually more than the sequential execution:

What went wrong here? Lock ensures atomicity by making sure that only one thread is
allowed to access the vulnerable code, but this comes with the overhead of blocking the
thread that is waiting for the lock to be freed. We call this a dumb lock. We can modify the
program slightly to only lock the critical section to improve performance while maintaining
atomicity, as follows:

range.AsParallel().AsOrdered().ForAll(i =>
 {
 Thread.Sleep(10);
 lock (_locker)
 {
 File.WriteAllText("test.txt", i.ToString());
 }
 });

Following is the output of the preceding code:

As you can see, we achieved significant gains by mixing synchronization along with
parallelization. We can achieve similar results using another locking primitive, that is, the
Monitor class.

Synchronization Primitives Chapter 5

[125]

Lock is actually a shorthand syntax for achieving
Monitor.Enter() and Monitor.Exit() wrapped inside a try-catch block. The same
code can, therefore, be written as follows:

range.AsParallel().AsOrdered().ForAll(i =>
{
 Thread.Sleep(10);
 Monitor.Enter(_locker);
 try
 {
 File.WriteAllText("test.txt", i.ToString());
 }
 finally
 {
 Monitor.Exit(_locker);
 }
});

The output of this code is as follows:

Mutex
The preceding code works well for a single instance application since tasks run inside a
process and the lock actually locks a memory barrier inside the process. If we run multiple
instances of the application, both applications will have their own copy of the static data
members and will, therefore, lock their own memory barriers. This will allow one thread
per process to actually enter the critical section and try to write the file. This causes the
following System.IO.IOException: 'The process cannot access the file
…\test.txt' because it is being used by another process.'.

To be able to apply locks to shared resources, we can apply a lock at the kernel level using
the mutex class. Like lock, mutex allows only one thread to access a protected resource but
can work across processes as well, thereby allowing only one thread per system to access a
protected resource, irrespective of the number of processes that are executing.

A mutex can be named or unnamed. An unnamed mutex works like a lock and cannot
work across processes.

Synchronization Primitives Chapter 5

[126]

First, we'll create an unnamed Mutex:

private static Mutex mutex = new Mutex();

Then, we'll modify the preceding parallel code so that we can use Mutex like a lock:

range.AsParallel().AsOrdered().ForAll(i =>
 {
 Thread.Sleep(10);
 mutex.WaitOne();
 File.AppendAllText("test.txt", i.ToString());
 mutex.ReleaseMutex();
 });

The output of the preceding code is as follows:

With a Mutex class, we can call the WaitHandle.WaitOne() method to lock the critical
section and ReleaseMutex() to unlock the critical sections. Closing or disposing of a
mutex automatically releases it.

The preceding program works well, but if we try to run it on multiple instances, it will
throw an IOException. For this, we can create a namedMutex, as follows:

private static Mutex namedMutex = new Mutex(false,"ShaktiSinghTanwar");

Optionally, we can specify a timeout while calling WaitOne() on the mutex so that it waits
for a signal for a specified amount of time before unblocking itself. This is shown in the
following example:

namedMutex.WaitOne(3000);

The preceding mutex will wait for three seconds before unblocking itself if it doesn't receive
a signal.

Lock and mutex can only be released from the thread that obtained them.

Synchronization Primitives Chapter 5

[127]

Semaphore
Lock, mutex, and monitor allow only one thread to access a protected resource. Sometimes,
however, we need to allow multiple threads to be able to access a shared resource.
Examples of these include resource pooling scenarios and throttling scenarios. A
semaphore, unlike lock or mutex, is thread-agnostic, which means that any thread can call
a release of semaphore. Just like a mutex, it works across processes as well.

A typical semaphore constructor is as follows:

As you can see, it accepts two parameters: the initialCount, which specifies how many
threads are initially allowed to enter, and maximumCount, which specifies the total number
of threads that can enter.

Let's say we have a remote service that only allows three concurrent connections per client
and takes one second to process a request, as follows:

private static void DummyService(int i)
 {
 Thread.Sleep(1000);
 }

We have a method that has 1,000 work items that need to call the service with parameters.
We need to process a task in parallel but also make sure that there are no more than three
calls to the service at any time. We can achieve this by creating a semaphore with a max
count of 3:

Semaphore semaphore = new Semaphore(3,3);

Now, we can write some code that can simulate making 1,000 requests in parallel, but only
three at a time, using the following semaphore:

 range.AsParallel().AsOrdered().ForAll(i =>
 {
 semaphore.WaitOne();
 Console.WriteLine($"Index {i} making service call using
 Task {Task.CurrentId}");
 //Simulate Http call
 CallService(i);
 Console.WriteLine($"Index {i} releasing semaphore using

Synchronization Primitives Chapter 5

[128]

 Task {Task.CurrentId}");
 semaphore.Release();
 });

The output of this is as follows:

As you can see, three threads enter and call the service while other threads wait for the lock
to be released. As soon as a thread releases the lock, another thread enters but only if three
threads are inside the critical section at any one time.

There are two types of semaphores: local and global. We will discuss these next.

Local semaphore
A local semaphore is local to the application where it's used. Any semaphore that is
created without a name will be created as a local semaphore, as follows:

Semaphore semaphore = new Semaphore(1,10);

Synchronization Primitives Chapter 5

[129]

Global semaphore
A global semaphore is global to the operating system as it applies kernel- or system-level
locking primitives. Any semaphore that is created with a name will be created as a global
semaphore, as follows:

Semaphore semaphore = new Semaphore(1,10,”Globalsemaphore”);

If we create a semaphore with only one thread, it will act like a lock.

ReaderWriterLock
The ReaderWriterLock class defines a lock that supports multiple readers and a single
writer at a time. This is handy in scenarios where a shared resource is read frequently by
many threads but updated infrequently. There are two reader-writer lock classes that are
provided by the .NET Framework: ReaderWriterLock and ReaderWriterLockSlim.
ReaderWriterLock is almost outdated now since it can incur potential deadlocks, reduced
performance, complex recursion rules, and upgrading or downgrading of locks. We will
discuss ReaderWriterLockSlim in more detail later in this chapter.

Introduction to signaling primitives
An important aspect of parallel programming is task coordination. While creating tasks,
you may come across a producer/consumer scenario where a thread (the consumer) is
waiting for a shared resource to be updated by another thread (the producer). Since the
consumer doesn't know when the producer is going to update the shared resource, it keeps
on polling the shared resource, which can lead to race conditions. Polling is highly
inefficient in dealing with these scenarios. It is better to use the signaling primitives that are
provided by the .NET Framework. With signaling primitives, the consumer thread is
paused until it receives a signal from the producer thread. Let's discuss some common
signaling primitives, such as Thread.Join, WaitHandles, and EventWaitHandlers.

Synchronization Primitives Chapter 5

[130]

Thread.Join
This is the simplest way in which we can make a thread wait for a signal from another
thread. Thread.Join is blocking in nature, which means that the caller thread is blocked
until the joined thread is complete. Optionally, we can specify a timeout that allows the
blocked thread to come out of its blocking state once the timeout has been reached.

In the following code, we will create a child thread that simulates a long-running task. Once
complete, it will update the output in the local variable, which is called result. The
program is supposed to print the result 10 to the console. Let's try to run the code:

int result = 0;
Thread childThread = new Thread(() =>
{
 Thread.Sleep(5000);
 result = 10;
});
childThread.Start();
Console.WriteLine($"Result is {result}");

The output of the preceding code is as follows:

We expected the result to be 10, but it has come out as 0. This happened because the main
thread that was supposed to write the value runs before the child thread has finished
execution. We can achieve the desired behavior by blocking the main thread until the child
thread completes. This can be done by calling Join() on the child thread, as follows:

int result = 0;
Thread childThread = new Thread(() =>
{
 Thread.Sleep(5000);
 result = 10;
});
childThread.Start();
childThread.Join();
Console.WriteLine($"Result is {result}");

Synchronization Primitives Chapter 5

[131]

If we run the code again now, we will see the desired output after a wait of five seconds,
during which the main thread is blocked:

EventWaitHandle
The System.Threading.EventWaitHandle class represents a synchronization event for a
thread. It serves as a base class for the AutoResetEvent and ManualResetEvent classes.
We can signal an EventWaitHandle by calling Set() or SignalAndWait(). The
EventWaitHandle class doesn't have any thread affinity, so it can be signaled by any
thread. Let's learn more about AutoResetEvent and ManualResetEvent.

AutoResetEvent
This refers to WaitHandle classes that are automatically reset. Once they are reset, they
allow one thread to pass through the barrier that is created. As soon as the thread is passed,
they are set again, thereby blocking threads until the next signal.

In the following example, we are trying to find out the sum of 10 numbers in a thread-safe
manner, without using locks.

First, create an AutoResetEvent with the initial state as non-signaled, or false. This
means that all the threads should wait until a signal is received. If we set the initial state to
signaled, or true, the first thread will go through while the others wait for a signal:

AutoResetEvent autoResetEvent = new AutoResetEvent(false);

Next, create a signaling task that fires a signal 10 times per second using
the autoResetEvent.Set() method:

Task signallingTask = Task.Factory.StartNew(() => {
 for (int i = 0; i < 10; i++)
 {
 Thread.Sleep(1000);
 autoResetEvent.Set();
 }
});

Synchronization Primitives Chapter 5

[132]

Declare a variable sum and initialize it to 0:

int sum = 0;

Create a parallel for loop that creates 10 tasks. Each task will start immediately and wait
for a signal to enter, thereby blocking at the autoResetEvent.WaitOne() statement. After
every second, a signal will be sent by the signaling task and one thread will enter and
update the sum:

 Parallel.For(1, 10, (i) => {
 Console.WriteLine($"Task with id {Task.CurrentId} waiting for
 signal to enter");
 autoResetEvent.WaitOne();
 Console.WriteLine($"Task with id {Task.CurrentId} received
 signal to enter");
 sum += i;
 });

The output is as follows:

As you can see, all 10 tasks blocked initially and released one per second after receiving the
signal.

ManualResetEvent
This refers to wait handles that need to be reset manually. Unlike AutoResetEvent, which
only allows one thread to pass per signal, ManualResetEvent allows threads to keep
passing through until it is set again. Let's try to understand this using a simple example.

Synchronization Primitives Chapter 5

[133]

In the following example, we need to make 15 service calls in batches of 5 in parallel, with a
2-second delay between each batch. While making the service call, we need to make sure
that the system is connected to the network. To simulate the network status, we will create
two tasks: one that signals the network off and one that signals the network on.

First, we'll create a manual reset event with the initial state off:

ManualResetEvent manualResetEvent = new ManualResetEvent(false);

Next, we'll create two tasks that simulate the network turning on and off by firing the
network off event every two seconds (which blocks all the network calls) and the network
on event every five seconds (which allows all the network calls to go through):

Task signalOffTask = Task.Factory.StartNew(() => {
 while (true)
 {
 Thread.Sleep(2000);
 Console.WriteLine("Network is down");
 manualResetEvent.Reset();
 }
 });
 Task signalOnTask = Task.Factory.StartNew(() => {
 while (true)
 {
 Thread.Sleep(5000);
 Console.WriteLine("Network is Up");
 manualResetEvent.Set();
 }
 });

As you can see from the preceding code, we have signaled a manual reset event every five
seconds using manualResetEvent.Set(). We turn it off every two seconds using
manualResetEvent.Reset(). The following code makes the actual service calls:

for (int i = 0; i < 3; i++)
 {
 Parallel.For(0, 5, (j) => {
 Console.WriteLine($"Task with id {Task.CurrentId} waiting
 for network to be up");
 manualResetEvent.WaitOne();
 Console.WriteLine($"Task with id {Task.CurrentId} making
 service call");
 DummyServiceCall();
 });
 Thread.Sleep(2000);
 }

Synchronization Primitives Chapter 5

[134]

As you can see from the preceding code, we have created a for loop that creates five tasks
in each iteration with a sleep interval of two seconds between iterations.

Before making service calls, we wait for the network to be up by calling
manualResetEvent.WaitOne();.

If we run the preceding code, we'll receive the following output:

As you can see, five tasks are started and blocked immediately to wait for the network to be
up. After five seconds, when the network is up, we signal using the Set() method and all
five threads pass through to make the service call. This is repeated with each iteration of the
for loop.

Synchronization Primitives Chapter 5

[135]

WaitHandles
System.Threading.WaitHandle is a class that inherits from the MarshalByRefObject
class and is used to synchronize threads that are running in an application. Blocking and
signaling are used to synchronize threads using wait handles. Threads can be blocked by
calling any of the methods of the WaitHandle class. They are released, depending on the
type of signaling construct that is selected. The methods of the WaitHandle class are as
follows:

WaitOne: Blocks the calling thread until it receives a signal from the wait handles
that it's waiting for.
WaitAll: Blocks the calling thread until it receives a signal from all of the wait
handles it's waiting for.

The following is an example that shows us how WaitAll works:

public static bool WaitAll (System.Threading.WaitHandle[]
waitHandles, TimeSpan timeout, bool exitContext);

Here is an example that makes use of two threads to simulate two different
service calls. Both threads will execute in parallel but will wait
at WaitHandle.WaitAll(waitHandles) before printing the sum to the console:

static int _dataFromService1 = 0;
static int _dataFromService2 = 0;
private static void WaitAll()
{
 List<WaitHandle> waitHandles = new List<WaitHandle>
 {
 new AutoResetEvent(false),
 new AutoResetEvent(false)
 };
 ThreadPool.QueueUserWorkItem(new WaitCallback
 (FetchDataFromService1), waitHandles.First());
 ThreadPool.QueueUserWorkItem(new WaitCallback
 (FetchDataFromService2), waitHandles.Last());
 //Waits for all the threads (waitHandles) to call the .Set()
 //method
 //i.e. wait for data to be returned from both service
 WaitHandle.WaitAll(waitHandles.ToArray());
 Console.WriteLine($"The Sum is
 {_dataFromService1 + _dataFromService2}");
}
private static void FetchDataFromService1(object state)
{
 Thread.Sleep(1000);

Synchronization Primitives Chapter 5

[136]

 _dataFromService1 = 890;
 var autoResetEvent = state as AutoResetEvent;
 autoResetEvent.Set();
}
private static void FetchDataFromService2(object state)
{
 Thread.Sleep(1000);
 _dataFromService2 = 3;
 var autoResetEvent = state as AutoResetEvent;
 autoResetEvent.Set();
}

The output of the preceding code is as follows:

WaitAny: Blocks the calling thread until it receives a signal from any of the wait
handles it's waiting for.

The following is the signature of the WaitAny method:

public static int WaitAny (System.Threading.WaitHandle[]
waitHandles);

Here is an example that makes use of two threads to perform an item search. Both
threads will execute in parallel and the program waits for any of the threads to
finish execution at the WaitHandle.WaitAny(waitHandles) method before
printing the item index to the console.

We have two methods, binary search and linear search, that perform a search
using binary and linear algorithms. We want to get a result as soon as possible
from either of these methods. We can achieve this via signaling using
AutoResetEvent and store the results in the findIndex
and winnerAlgo global variables:

 static int findIndex = -1;
 static string winnerAlgo = string.Empty;
 private static void BinarySearch(object state)
 {
 dynamic data = state;
 int[] x = data.Range;
 int valueToFind = data.ItemToFind;
 AutoResetEvent autoResetEvent = data.WaitHandle
 as AutoResetEvent;

Synchronization Primitives Chapter 5

[137]

 //Search for item using .NET framework built in Binary Search
 int foundIndex = Array.BinarySearch(x, valueToFind);
 //store the result globally
 Interlocked.CompareExchange(ref findIndex, foundIndex, -1);
 Interlocked.CompareExchange(ref winnerAlgo, "BinarySearch",
 string.Empty);
 //Signal event
 autoResetEvent.Set();
 }

 public static void LinearSearch(object state)
 {
 dynamic data = state;
 int[] x = data.Range;
 int valueToFind = data.ItemToFind;
 AutoResetEvent autoResetEvent = data.WaitHandle as
AutoResetEvent;
 int foundIndex = -1;
 //Search for item linearly using for loop
 for (int i = 0; i < x.Length; i++)
 {
 if (valueToFind == x[i])
 {
 foundIndex = i;
 }
 }
 //store the result globally
 Interlocked.CompareExchange(ref findIndex, foundIndex, -1);
 Interlocked.CompareExchange(ref winnerAlgo, "LinearSearch",
 string.Empty);
 //Signal event
 autoResetEvent.Set();
 }

The following code calls both algorithms in parallel using ThreadPool:

 private static void AlgoSolverWaitAny()
 {
 WaitHandle[] waitHandles = new WaitHandle[]
 {
 new AutoResetEvent(false),
 new AutoResetEvent(false)
 };
 var itemToSearch = 15000;
 var range = Enumerable.Range(1, 100000).ToArray();
 ThreadPool.QueueUserWorkItem(new WaitCallback
 (LinearSearch),new {Range = range,ItemToFind =
 itemToSearch, WaitHandle= waitHandles[0] });

Synchronization Primitives Chapter 5

[138]

 ThreadPool.QueueUserWorkItem(new WaitCallback(BinarySearch),
 new { Range = range, ItemToFind =
 itemToSearch, WaitHandle = waitHandles[1] });
 WaitHandle.WaitAny(waitHandles);
 Console.WriteLine($"Item found at index {findIndex} and faster
 algo is {winnerAlgo}");
 }

SignalAndWait: This method is used to call Set() on a wait handle and
calls WaitOne for another wait handle. In a multithreaded environment, this
method can be utilized to release one thread at a time and then resets to wait for
the next thread:

public static bool SignalAndWait (System.Threading.WaitHandle
toSignal, System.Threading.WaitHandle toWaitOn);

Lightweight synchronization primitives
The .NET Framework also provides lightweight synchronization primitives, which are
better in performance than their counterparts. They avoid dependency on kernel objects
such as wait handles wherever possible, so they only work inside the process. These
primitives should be used when the thread's wait time is short. We can divide them into
two categories, both of which we'll look at in this section.

Slim locks
Slim locks are slim implementations of legacy synchronization primitives that can improve
performance by reducing overheads.

The following table shows the legacy synchronization primitives and their slim
counterparts:

Synchronization Primitives Chapter 5

[139]

Let's try to learn more about slim locks.

ReaderWriterLockSlim
ReaderWriterLockSlim is a lightweight implementation of ReaderWriterLock. It
represents a lock that can be used to manage protected resources in a way that allows
multiple threads to share read access while allowing only one thread write access.

The following example uses ReaderWriterLockSlim to protect access on a list that is
shared by three reader threads and one writer thread:

static ReaderWriterLockSlim _readerWriterLockSlim = new
ReaderWriterLockSlim();
static List<int> _list = new List<int>();
private static void ReaderWriteLockSlim()
{
 Task writerTask = Task.Factory.StartNew(WriterTask);
 for (int i = 0; i < 3; i++)
 {
 Task readerTask = Task.Factory.StartNew(ReaderTask);
 }
}
static void WriterTask()
{
 for (int i = 0; i < 4; i++)
 {
 try
 {
 _readerWriterLockSlim.EnterWriteLock();
 Console.WriteLine($"Entered WriteLock on Task
{Task.CurrentId}");
 int random = new Random().Next(1, 10);
 _list.Add(random);
 Console.WriteLine($"Added {random} to list on Task
{Task.CurrentId}");
 Console.WriteLine($"Exiting WriteLock on Task
{Task.CurrentId}");
 }
 finally
 {
 _readerWriterLockSlim.ExitWriteLock();
 }
 Thread.Sleep(1000);
 }
}
static void ReaderTask()

Synchronization Primitives Chapter 5

[140]

{
 for (int i = 0; i < 2; i++)
 {
 _readerWriterLockSlim.EnterReadLock();
 Console.WriteLine($"Entered ReadLock on Task {Task.CurrentId}");
 Console.WriteLine($"Items: {_list.Select(j=>j.ToString
()).Aggregate((a, b) =>
 a + "," + b)} on Task {Task.CurrentId}");
 Console.WriteLine($"Exiting ReadLock on Task {Task.CurrentId}");
 _readerWriterLockSlim.ExitReadLock();
 Thread.Sleep(1000);
 }
}

The output of this code is as follows:

Synchronization Primitives Chapter 5

[141]

SemaphoreSlim
SemaphoreSlim is a lightweight implementation of semaphore. It throttles access to a
protected resource to a number of threads.

Here is a slim version of the semaphore program that we showed earlier in this chapter:

 private static void ThrottlerUsingSemaphoreSlim()
 {
 var range = Enumerable.Range(1, 12);
 SemaphoreSlim semaphore = new SemaphoreSlim(3, 3);
 range.AsParallel().AsOrdered().ForAll(i =>
 {
 try
 {
 semaphore.Wait();
 Console.WriteLine($"Index {i} making service call using
Task {Task.CurrentId}");
 //Simulate Http call
 CallService(i);
 Console.WriteLine($"Index {i} releasing semaphore using
Task {Task.CurrentId}");
 }
 finally
 {
 semaphore.Release();
 }
 });
 }
 private static void CallService(int i)
 {
 Thread.Sleep(1000);
 }

The difference we can see here, apart from replacing the Semaphore class
with SemaphoreSlim, is that we now have the Wait() method instead of WaitOne().
This makes much more sense as we are allowing more than one thread to pass through.

Another important difference is that SemaphoreSlim is always created as a local
semaphore, unlike semaphore, which can be created globally as well.

ManualResetEventSlim
ManualResetEventSlim is a lightweight implementation of ManualResetEvent. It has
better performance and less overhead than ManualResetEvent.

Synchronization Primitives Chapter 5

[142]

We can create an object using the following syntax, just like ManualResetEvent:

ManualResetEventSlim manualResetEvent = new ManualResetEventSlim(false);

Just like other slim counterparts, one major difference here is that we have replaced the
WaitOne() method with Wait().

You can try running some ManualResetEvent demonstration code by making the
preceding changes and see if it works.

Barrier and countdown events
The .NET Framework has some built-in signaling primitives that help us synchronize
multiple threads without us having to write lots of synchronization logic. All the
synchronization is handled internally by the provided data structures. In this section, let's
discuss two very important signaling primitives: CountDownEvent and Barrier:

CountDownEvent: The System.Threading.CountDownEvent class refers to an
event that's signaled when its count becomes 0.

Barrier: The Barrier class allows multiple threads to run without having the
master thread controlling them. It creates a barrier that participating threads
must wait in until all the threads have arrived. Barrier works well for cases
where work needs to be carried out in parallel and in phases.

A case study using Barrier and CountDownEvent
As an example, let's say we need to fetch data from two services that are dynamically
hosted. Before fetching the data from service one, we need to host it. Once the data has been
fetched, it needs to be closed down. Only when service one has been closed down can we
start service two and fetch data from it. The data needs to be fetched as quickly as possible.
Let's create some code to meet the requirements of this scenario.

Create a Barrier with 5 participants:

static Barrier serviceBarrier = new Barrier(5);

Synchronization Primitives Chapter 5

[143]

Create two CountdownEvents that will trigger the start or close of services when six
threads have passed through it. Five worker tasks will participate, along with a task that
will manage the start or close of services:

static CountdownEvent serviceHost1CountdownEvent = new CountdownEvent(6);
static CountdownEvent serviceHost2CountdownEvent = new CountdownEvent(6);

Finally, create another CountdownEvent with a count of 5. This refers to the number of
threads that can pass through before the event is signaled. CountdownEvent will trigger
when all the worker tasks finish executing:

static CountdownEvent finishCountdownEvent = new CountdownEvent(5);

Here is our serviceManagerTask implementation:

 Task serviceManager = Task.Factory.StartNew(() =>
 {
 //Block until service name is set by any of thread
 while (string.IsNullOrEmpty(_serviceName))
 Thread.Sleep(1000);
 string serviceName = _serviceName;
 HostService(serviceName);
 //Now signal other threads to proceed making calls to
service1
 serviceHost1CountdownEvent.Signal();
 //Wait for worker tasks to finish service1 calls
 serviceHost1CountdownEvent.Wait();
 //Block until service name is set by any of thread
 while (_serviceName != "Service2")
 Thread.Sleep(1000);
 Console.WriteLine($"All tasks completed for service
{serviceName}.");
 //Close current service and start the other service
 CloseService(serviceName);
 HostService(_serviceName);
 //Now signal other threads to proceed making calls to
service2
 serviceHost2CountdownEvent.Signal();
 serviceHost2CountdownEvent.Wait();
 //Wait for worker tasks to finish service2 calls
 finishCountdownEvent.Wait();
 CloseService(_serviceName);
 Console.WriteLine($"All tasks completed for service
{_serviceName}.");
 });

Synchronization Primitives Chapter 5

[144]

Here is the method that is executed by the worker tasks:

 private static void GetDataFromService1And2(int j)
 {
 _serviceName = "Service1";
 serviceHost1CountdownEvent.Signal();
 Console.WriteLine($"Task with id {Task.CurrentId} signalled
countdown event and waiting for
 service to start");
 //Waiting for service to start
 serviceHost1CountdownEvent.Wait();
 Console.WriteLine($"Task with id {Task.CurrentId} fetching data
from service ");
 serviceBarrier.SignalAndWait();
 //change servicename
 _serviceName = "Service2";
 //Signal Countdown event
 serviceHost2CountdownEvent.Signal();
 Console.WriteLine($"Task with id {Task.CurrentId} signalled
countdown event and waiting for
 service to start");
 serviceHost2CountdownEvent.Wait();
 Console.WriteLine($"Task with id {Task.CurrentId} fetching data
from service ");
 serviceBarrier.SignalAndWait();
 //Signal Countdown event
 finishCountdownEvent.Signal();
 }
 //Finally make worker tasks
 for (int i = 0; i < 5; ++i)
 {
 int j = i;
 tasks[j] = Task.Factory.StartNew(() =>
 {
 GetDataFromService1And2(j);
 });
 }
 Task.WaitAll(tasks);
 Console.WriteLine("Fetch completed");

Synchronization Primitives Chapter 5

[145]

The output of the preceding code is as follows:

In this section, we have looked at various built-in signaling primitives that help make code
synchronization easier without the need to lock ourselves as a developer. Blocking still
comes at a performance cost as it involves context switching. In the next section, we will
look at some spinning techniques that can help remove that context switching overhead.

SpinWait
At the beginning of this chapter, we mentioned that spinning is much more efficient than
blocking for smaller waits. Spinning has fewer kernel overheads related to context
switching and transitioning.

We can create a SpinWait object as follows:

var spin = new SpinWait();

Then, wherever we need to make a spin, we can just call the following command:

spin.SpinOnce();

Synchronization Primitives Chapter 5

[146]

SpinLock
Locks and interlocking primitives can significantly slow down performance if the wait time
to get a lock is very low. SpinLock provides a lightweight, low-level alternative to locking.
SpinLock is a value type, so if we want to use the same object in multiple places, we need
to pass it by a reference. For performance reasons, even when SpinLock hasn't even
acquired the lock, it yields the time slice of the thread so that the garbage collector can work
efficiently. By default, SpinLock doesn't support thread tracking, which refers to
determining which thread has acquired the lock. However, this feature can be turned on.
This is only recommended for debugging and not for production as it reduces performance.

Create a SpinLock object as follows:

 static SpinLock _spinLock = new SpinLock();

Create a method that will be called by various threads and update a global static list:

 static List<int> _itemsList = new List<int>();
 private static void SpinLock(int number)
 {
 bool lockTaken = false;
 try
 {
 Console.WriteLine($"Task {Task.CurrentId} Waiting for
lock");
 _spinLock.Enter(ref lockTaken);
 Console.WriteLine($"Task {Task.CurrentId} Updating list");
 _itemsList.Add(number);
 }
 finally
 {
 if (lockTaken)
 {
 Console.WriteLine($"Task {Task.CurrentId} Exiting
Update");
 _spinLock.Exit(false);
 }
 }
 }

As you can see, the lock is acquired using _spinLock.Enter(ref lockTaken) and
released via _spinLock.Exit(false). Everything between these two statements will be
executed as synchronized between all the threads.

Synchronization Primitives Chapter 5

[147]

Let's call this method in a parallel loop:

Parallel.For(1, 5, (i) => SpinLock(i));

Here is the synchronized output if we had used locking primitives:

As a rule of thumb, if we have small tasks, context switching can be completely avoided by
using spinning.

Summary
In this chapter, we have learned about the synchronization primitives that are provided by
.NET Core. Synchronized primitives are a must if you want to write parallel code and
ensure that it is correct, even when multiple threads are working on it. Synchronization
primitives come with performance overheads and the use of their slim counterparts is
advised wherever possible.

We learned about signaling primitives as well, which can come in very handy when
threads need to work on some external events. We also discussed the barrier and
countdown events, which help us avoid code synchronization issues without the need to
write additional logic. Finally, we introduced some spinning techniques, which take away
performance overheads that arise from blocking code, that is, SpinLock and SpinWait.

In the next chapter, we will learn about the various data structures provided by .NET Core.
These are synchronized automatically and are parallel at the same time.

Synchronization Primitives Chapter 5

[148]

Questions
Which of these can be used for cross-process synchronization?1.

Lock1.
Interlocked.Increment2.
Interlocked.MemoryBarrierProcessWide3.

Which of these is not a valid memory barrier?2.
Read memory barrier1.
Half memory barrier2.
Full memory barrier3.
Read and execute memory barrier4.

From which of the following states can we not resume a thread?3.
WaitSleepJoin1.
Suspended2.
Aborted3.

An unnamed semaphore can provide synchronization where?4.
Within process1.
Across process2.

Which of these constructs support tracking threads?5.
SpinWait1.
SpinLock2.

6
Using Concurrent Collections

In the last chapter, we saw some parallel programming implementations in which
resources needed to be protected from concurrent access by multiple threads.
Synchronization primitives are tricky to implement. Often, a shared resource is a collection
that needs to be read and written by multiple threads. Since a collection can be accessed in a
variety of ways (such as by using Enumerate, Read, Write, Sort, or Filter), it becomes
tricky to write a custom collection with managed synchronization using primitives. Because
of this, there has always been a need for thread-safe collections.

In this chapter, we will learn about various programming constructs available in C# that
help in parallel development. The following are the high-level topics that will be covered in
this chapter:

An introduction to concurrent collections
A multiple producer/consumer scenario

Technical requirements
You should have a good understanding of TPL and C#. The source code for this chapter is
available on GitHub at https:/ /github. com/ PacktPublishing/ Hands- On- Parallel-
Programming-with- C- 8- and- . NET- Core- 3/ tree/ master/ Chapter06.

https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter06
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter06

Using Concurrent Collections Chapter 6

[150]

An introduction to concurrent collections
From .NET Framework 4, a lot of thread-safe collections were added to the .NET repertoire.
A new namespace, System.Threading.Concurrent, was also added. This included
constructs like the following:

IProducerConsumerCollection<T>

BlockingCollection<T>

ConcurrentDictionary<TKey,TValue>

When using the preceding structs, there is no need for any additional synchronization and
both reading and updating can be done atomically.

Thread safety is not an entirely new concept in the case of collections. Even with older
collections such as ArrayList and Hashtable, the Synchronized property was exposed,
which made it possible to access these collections in a thread-safe manner. This, however,
came with a performance hit, because to make the collection thread-safe, the entire
collection was wrapped inside a lock with every read or update operation.

Concurrent collections wrap lightweight, slim synchronization primitives such
as SpinLock, SpinWait, SemaphoreSlim, and CountDownEvent, hence making them less
heavy on cores. As we already know, spinning is much more efficient than blocking for
smaller wait times. Also, with built-in algorithms in place, if wait times increase, the lighter
locks are converted into kernel locks.

Introducing IProducerConsumerCollection<T>
The producer and consumer collections are the collections that provide efficient lock-free
alternatives to their generic counterparts, such as Stack<T> and Queue<T>. Any producer
or consumer collection must allow the user to add items and remove items. .NET
Framework provides the IProducerConsumerCollection<T> interface that represents
thread-safe stacks, queues, and bags. The following are the classes that implement the
interface:

ConcurrentQueue<T>

ConcurrentStack<T>

ConcurrentBag<T>

Using Concurrent Collections Chapter 6

[151]

Two important methods are provided by the interface: TryAdd and TryTake. The syntax of
TryAdd is as follows:

bool TryAdd (T item);

The TryAdd method adds an item and returns true. If there is any problem with adding
the item, it will return false.

The syntax of TryTake is as follows:

bool TryTake (out T item);

The TryTake method removes an item and returns true. If there is any problem with
removing the item, it will return false.

Using ConcurrentQueue<T>
Concurrent queues can be used to solve producer/consumer scenarios in application
programming. In the producer/consumer programming pattern, one or more threads
produce data and one or more threads consume data. This leads to race conditions among
threads. We can solve this problem via the following approaches:

Using queues
Using ConcurrentQueue<T>

Based on which thread (producer/consumer) has the responsibility to add/consume data,
the producer-consumer pattern can be classified into the following:

Pure producer-consumer, where a thread can either only produce data or only
consume data but cannot do both
Mixed producer-consumer, where any thread can produce or consume data at
the same time

Let's try to solve a producer-consumer problem using queues first.

Using Concurrent Collections Chapter 6

[152]

Using queues to solve a producer-consumer problem
In this example, we will create a producer and consumer scenario using queues that are
defined in the System.Collections namespace. There will be multiple tasks that will
attempt to read or write to a queue and we need to ensure that the reads and writes are
atomic:

Let's first create queue and populate it with some data:1.

Queue<int> queue = new Queue<int>();
for (int i = 0; i < 500; i++)
{
 queue.Enqueue(i);
}

Declare a variable that will hold the final result:2.

int sum = 0;

Next, we will create a parallel loop that will read the item from the queue using3.
multiple tasks and add the sum in a thread-safe manner to the sum variable
declared previously:

Parallel.For(0, 500, (i) =>
{
 int localSum = 0;
 int localValue;
 while (queue.TryDequeue(out localValue))
 {
 Thread.Sleep(10);
 localSum += localValue;
 }
 Interlocked.Add(ref sum, localSum);
});
Console.WriteLine($"Calculated Sum is {sum} and should be
{Enumerable.Range(0, 500).Sum()}");

If we run the program, you will get the following output. As you can see, it's not the
expected output due to the race condition that occurred between the tasks while trying to
read concurrently:

Using Concurrent Collections Chapter 6

[153]

To make the preceding program thread-safe, we can lock the critical section by modifying
the parallel loop code as follows:

Parallel.For(0, 500, (i) =>
{
 int localSum = 0;
 int localValue;
 Monitor.Enter(_locker);
 while (cq.TryDequeue(out localValue))
 {
 Thread.Sleep(10);
 localSum += localValue;
 }
 Monitor.Exit(_locker);
 Interlocked.Add(ref sum, localSum);
});

Similarly, we need to synchronize all read/write points to the queue that is exposed to the
parallel code in more complex scenarios. The following is the output if we run the
preceding code:

As you can see, everything works as expected, although there is an additional
synchronization overhead that can lead to deadlock in frequent read or write scenarios.

Solving problems using concurrent queues
We can solve the producer-consumer problem by making use of the
System.Collections.Concurrent.ConcurrentQueue class, which is a thread-safe
version of a queue. Let's modify the preceding code by using a concurrent queue, as
follows:

private static void ProducerConsumerUsingConcurrentQueues()
{
 // Create a Queue.
 ConcurrentQueue<int> cq = new ConcurrentQueue<int>();
 // Populate the queue.
 for (int i = 0; i < 500; i++){
 cq.Enqueue(i);
 }
 int sum = 0;
 Parallel.For(0, 500, (i) =>
 {

Using Concurrent Collections Chapter 6

[154]

 int localSum = 0;
 int localValue;
 while (cq.TryDequeue(out localValue))
 {
 Thread.Sleep(10);
 localSum += localValue;
 }
 Interlocked.Add(ref sum, localSum);
 });
 Console.WriteLine($"outerSum = {sum}, should be {Enumerable.Range(0,
500).Sum()}");
}

As you can see, we have just replaced Queue<int> with ConcurrentQueue<int> in the
code we wrote previously, which had synchronization overheads. With
ConcurrentQueue, we don't have to worry about other synchronization primitives.

Here is the output if we run the preceding code:

Just like Queue<T>, ConcurrentQueue<T> also works in First In, First Out (FIFO) mode.

Performance consideration – Queue<T> versus
ConcurrentQueue<T>
We should use ConcurrentQueue in the following scenarios, where it has slight or very
big performance benefits over queues:

In a pure producer-consumer scenario, where the processing time for each item is
very low
In a pure producer-consumer scenario, where there is only one dedicated
producer thread and only one dedicated consumer thread
In pure as well as mixed producer-consumer scenarios where the processing time
is 500 FLOPS (short for Floating-Point Operations Per Second) or more

We should use queues over concurrent queues in a mixed producer-consumer scenario
where the processing time for each item is lower, to gain performance.

Using Concurrent Collections Chapter 6

[155]

Using ConcurrentStack<T>
ConcurrentStack<T> is a concurrent version of Stack<T> and implements
the IProducerConsumerCollection<T> interface. We can push or pop items from the
stack, which works in the Last In, First Out (LIFO) format. It doesn't involve kernel-level
locking, rather it relies on spinning and compare-and-swap operations to remove any
contention.

The following are some important methods of the ConcurrentStack<T> class:

Clear: Removes all elements from the collection
Count: Returns the number of elements in the collection
IsEmpty: Returns true if the collection is empty
Push (T item): Adds an element to the collection
TryPop (out T result): Removes an element from the collection, and returns
true if the item is removed; otherwise, it returns false
PushRange (T [] items): Adds a range of items to the collection; the
operation is performed atomically
TryPopRange (T [] items): Removes a range of items from the collection

Let's see how to create a concurrent stack instance.

Creating a concurrent stack
We can create a concurrent stack instance and add items as follows:

ConcurrentStack<int> concurrentStack = new ConcurrentStack<int>();
concurrentStack.Push (1);
concurrentStack.PushRange(new[] { 1,2,3,4,5});

We can get items from the stack as follows:

int localValue;
concurrentStack.TryPop(out localValue)
concurrentStack.TryPopRange (new[] { 1,2,3,4,5});

Here is the complete code that creates a concurrent stack, adds items, and iterates on items
in parallel:

private static void ProducerConsumerUsingConcurrentStack()
{
 // Create a Queue.
 ConcurrentStack<int> concurrentStack = new ConcurrentStack<int>();

Using Concurrent Collections Chapter 6

[156]

 // Populate the queue.
 for (int i = 0; i < 500; i++){
 concurrentStack.Push(i);
 }
 concurrentStack.PushRange(new[] { 1,2,3,4,5});
 int sum = 0;
 Parallel.For(0, 500, (i) =>
 {
 int localSum = 0;
 int localValue;
 while (concurrentStack.TryPop(out localValue))
 {
 Thread.Sleep(10);
 localSum += localValue;
 }
 Interlocked.Add(ref sum, localSum);
 });
 Console.WriteLine($"outerSum = {sum}, should be 124765");
}

The output is as follows:

Using ConcurrentBag<T>
ConcurrentBag<T> is an unordered collection, unlike ConcurrentStack and
ConcurrentQueues, which orders the items while storing and retrieving them.
ConcurrentBag<T> is optimized for scenarios in which the same threads work as a
producer as well as a consumer. ConcurrentBag supports the work-stealing algorithm and
maintains a local queue for each thread.

The following code creates ConcurrentBag and adds or gets items from it:

ConcurrentBag<int> concurrentBag = new ConcurrentBag<int>();
//Add item to bag
concurrentBag.Add(10);
int item;
//Getting items from Bag
concurrentBag.TryTake(out item)

Using Concurrent Collections Chapter 6

[157]

The complete code is as follows:

static ConcurrentBag<int> concurrentBag = new ConcurrentBag<int>();
private static void ConcurrentBackDemo()
{
 ManualResetEventSlim manualResetEvent = new
ManualResetEventSlim(false);
 Task producerAndConsumerTask = Task.Factory.StartNew(() =>
 {
 for (int i = 1; i <= 3; ++i)
 {
 concurrentBag.Add(i);
 }
 //Allow second thread to add items
 manualResetEvent.Wait();
 while (concurrentBag.IsEmpty == false)
 {
 int item;
 if (concurrentBag.TryTake(out item))
 {
 Console.WriteLine($"Item is {item}");
 }
 }
 });
 Task producerTask = Task.Factory.StartNew(() =>
 {
 for (int i = 4; i <= 6; ++i)
 {
 concurrentBag.Add(i);
 }
 manualResetEvent.Set();
 });
}

The output is as follows:

Using Concurrent Collections Chapter 6

[158]

As you are aware, every thread has a thread-local queue. Items 1, 2, and 3 are added to the
local queue of producerAndConsumerTask and items 4, 5, and 6 are added to the local
queue of producerTask. When producerAndConsumerTask has added items, we wait for
producerTask to finish pushing its items. Once all the items are pushed,
producerAndConsumerTask starts retrieving items. Since it has pushed 1, 2, and 3, which
are in the local queue, it will process those first before moving to the local queue of
producerTask.

Using BlockingCollection<T>
The BlockingCollection<T> class is a thread-safe collection that implements
the IProduceConsumerCollection<T> interface. We can add or remove items from the
collection concurrently without worrying about synchronization, which is handled
automatically. There will be two threads: the producer and the consumer. The producer
thread will produce data and we can limit the maximum number of items that can be
produced by the producer thread before it enters sleep mode and is then blocked. The
consumer thread will consume data and will be blocked when the collection is emptied.
The producer thread is unblocked and the consumer thread removes some items from the
collection. The consumer thread is unblocked when the producer thread adds some data to
the collection.

There are two important aspects of blocking collections:

Bounding: This means we can bound the collection to a maximum value after
which no new objects can be added and the producer thread enters sleep mode.
Blocking: This means we can block the consumer thread when the collection is
empty.

Let's see how to create blocking collections.

Creating BlockingCollection<T>
The following code creates a new BlockingCollection that creates up to 10 items after
which it goes to the blocked state before items are consumed by consumer threads:

BlockingCollection<int> blockingCollection = new
BlockingCollection<int>(10);

Using Concurrent Collections Chapter 6

[159]

Items can be added to the collection as follows:

blockingCollection.Add(1);
blockingCollection.TryAdd(3, TimeSpan.FromSeconds(1))

Items can be removed from the collection as follows:

int item = blockingCollection.Take();
blockingCollection.TryTake(out item, TimeSpan.FromSeconds(1))

The producer thread calls the CompleteAdding() method when there are no more items to
add. This method, in turn, sets the IsAddingComplete property of the collection to true.

The consumer thread uses the IsCompleted property when the collection is empty and
IsAddingComplete is also true. This is an indication that all items have been processed
and the producer will not add any more items.

The complete code is as follows:

BlockingCollection<int> blockingCollection = new
BlockingCollection<int>(10);
Task producerTask = Task.Factory.StartNew(() =>
{
 for (int i = 0; i < 5; ++i)
 {
 blockingCollection.Add(i);
 }
 blockingCollection.CompleteAdding();
});
Task consumerTask = Task.Factory.StartNew(() =>
{
 while (!blockingCollection.IsCompleted)
 {
 int item = blockingCollection.Take();
 Console.WriteLine($"Item retrieved is {item}");
 }
});
Task.WaitAll(producerTask, consumerTask);

Using Concurrent Collections Chapter 6

[160]

The output is as follows:

Now, after introducing the concurrent collections, in the next section, we will try to take the
producer-consumer scenario forward and learn about how to deal with multiple
producers/consumers.

A multiple producer-consumer scenario
In this section, we will see how blocking collections work when there are multiple producer
and consumer threads. For the sake of understanding, we will create two producers and
one consumer. The producer threads will produce the items. Once all of the producer
threads have called CompleteAdding, then the consumer will start reading items from the
collection:

Let's start by creating a blocking collection with multiple producers:1.

BlockingCollection<int>[] produceCollections = new
BlockingCollection<int>[2];
produceCollections[0] = new BlockingCollection<int>(5);
produceCollections[1] = new BlockingCollection<int>(5);

Next, we will create two producer tasks that will add items to the producers:2.

Task producerTask1 = Task.Factory.StartNew(() =>
{
 for (int i = 1; i <= 5; ++i)
 {
 produceCollections[0].Add(i);
 Thread.Sleep(100);
 }
 produceCollections[0].CompleteAdding();
});
Task producerTask2 = Task.Factory.StartNew(() =>
{
 for (int i = 6; i <= 10; ++i)
 {
 produceCollections[1].Add(i);

Using Concurrent Collections Chapter 6

[161]

 Thread.Sleep(200);
 }
 produceCollections[1].CompleteAdding();
});

In the end, we will write consumer logic that will try to consume items from both3.
producer collections as soon as the items are available:

while (!produceCollections[0].IsCompleted ||
!produceCollections[1].IsCompleted)
{
 int item;
 BlockingCollection<int>.TryTakeFromAny(produceCollections, out
item, TimeSpan.FromSeconds(1));
 if (item != default(int))
 {
 Console.WriteLine($"Item fetched is {item}");
 }
}

As you can see from the preceding code method, TryTakeFromAny tries to read
the item from multiple producers and return when the item is available.

The output is as follows:

In programming, we often come across a scenario where we need to store data concurrently
as key-value pairs. For that purpose, the ConcurrentDictionary collection comes in
handy, which we will introduce in the next section.

Using ConcurrentDictionary<TKey,TValue>
ConcurrentDictionary<TKey,TValue> represents a thread-safe dictionary. It is used to
hold key-value pairs that can be read or written in a thread-safe manner.

Using Concurrent Collections Chapter 6

[162]

ConcurrentDictionary can be created as follows:

ConcurrentDictionary<int, int> concurrentDictionary = new
ConcurrentDictionary<int, int>();

Items can be added to the dictionary as follows:

concurrentDictionary.TryAdd(i, i * i);
string value = (i * i).ToString();
// Add item if not exist or else update
concurrentDictionary.AddOrUpdate(i, value,(key, val) => (key *
key).ToString());
//Fetches item with key 5 or if not exist than add key 5 with value 25
concurrentDictionary.GetOrAdd(5, "25");

Items can be removed from the dictionary as follows:

string value;
concurrentDictionary.TryRemove(5, out value);

Items in the dictionary can be updated as follows:

//If a key with a value of 25 is found, it will be updated to have a value
of 30 concurrentDictionary.TryUpdate(5, "30","25");

In the following code, we will create two producer threads that will add items to a
dictionary. The producers will create some duplicate items and the dictionary will make
sure they are added in a thread-safe manner without throwing duplicate key errors. Once
the producer threads finish, the consumer will read all items using the keys or values
property:

ConcurrentDictionary<int, string> concurrentDictionary = new
ConcurrentDictionary<int, string>();
Task producerTask1 = Task.Factory.StartNew(() =>
{
 for (int i = 0; i < 20; i++)
 {
 Thread.Sleep(100);
 concurrentDictionary.TryAdd(i, (i * i).ToString());
 }
});
Task producerTask2 = Task.Factory.StartNew(() =>
{
 for (int i = 10; i < 25; i++)
 {
 concurrentDictionary.TryAdd(i, (i * i).ToString());
 }
});

Using Concurrent Collections Chapter 6

[163]

Task producerTask3 = Task.Factory.StartNew(() =>
{
 for (int i = 15; i < 20; i++)
 {
 Thread.Sleep(100);
 concurrentDictionary.AddOrUpdate(i, (i * i).ToString(),(key, value)
 => (key * key).ToString());
 }
});
Task.WaitAll(producerTask1, producerTask2);
Console.WriteLine("Keys are {0} ", string.Join(",",
concurrentDictionary.Keys.Select(c => c.ToString()).ToArray()));

The output is as follows:

In this section, we learned how concurrent collections can be very handy in producer-
consumer scenarios. With concurrent collections, the onus is on getting code to behave
correctly while dealing with multiple tasks without the need for custom synchronization
overheads.

Summary
In this chapter, we discussed thread-safe collections that are part of .NET Framework.
Concurrent collections are available in the System.Collection.Concurrent namespace
and there are collections for various use cases in programming. Some common use cases
require collections that include dictionaries, lists, bags, and so on.

We also discussed a producer and consumer scenario in which data is produced by some
threads and consumed by other threads at the same time. Usually, in these scenarios, there
are race conditions, but concurrent collections can deal with them effectively.

In the next chapter, we will learn about improving the performance of parallel code via lazy
initialization patterns.

Using Concurrent Collections Chapter 6

[164]

Questions
Which of these is not a concurrent collection?1.

ConcurrentQueue<T> 1.
ConcurrentBag<T>2.
ConcurrentStack<T> 3.
ConcurrentList<T>4.

When a thread can only produce data and another thread can only consume data2.
but not both, what is this arrangement?

Pure producer-consumer 1.
Mixed producer-consumer2.

A queue will perform best when the processing time for items is less in the case3.
of a pure producer-consumer scenario.

True 1.
False2.

Which is not a member of ConcurrentStack?4.
Push1.
TryPop2.
TryPopRange3.
TryPush4.

7
Improving Performance with

Lazy Initialization
In the last chapter, we discussed thread-safe concurrent collections in C#. Concurrent
collections help to improve the performance of parallel code without having a developer
worry about synchronization overheads.

In this chapter, we will discuss some more concepts that help to improve the performance
of code, both using custom implementations as well as using built-in constructs. Here are
the topics we are going to discuss during this chapter:

Introduction to lazy initialization concepts
Introduction to System.Lazy<T>
How to handle exceptions with the lazy pattern
Lazy initialization with thread-local storage
Reducing the overhead with lazy initializations

Let's get started by introducing the lazy initialization pattern.

Technical requirements
Readers should have a good understanding of TPL and C#. The source code for this chapter
is available on GitHub at https:/ / github. com/PacktPublishing/ -Hands- On-Parallel-
Programming-with- C- 8- and- . NET- Core- 3/ tree/ master/ Chapter07.

https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter07
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter07
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter07
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter07
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter07
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter07
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter07
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter07
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter07
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter07
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter07
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter07
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter07
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter07
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter07
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter07
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter07
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter07
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter07
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter07
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter07
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter07
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter07
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter07
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter07
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter07
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter07
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter07
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter07
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter07
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter07
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter07
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter07
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter07
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter07
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter07
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter07
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter07
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter07
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter07

Improving Performance with Lazy Initialization Chapter 7

[166]

Introducing lazy initialization concepts
Lazy loading is a commonly used design pattern in application programming wherein we
defer the creation of an object until it is actually required in an application. Proper use of
the lazy load pattern can significantly improve the performance of the application.

One of the common usages of this pattern can be seen in cache aside patterns. We use the
cache aside pattern for objects whose creation is expensive either in terms of resources or
memory. Instead of creating them multiple times, we create objects once and cache them for
future use. This pattern is possible when the initialization of an object is moved out of the
constructor to the method or properties. The object will only be initialized when the
method or property is called for the first time by code. It will then be cached for subsequent
calls. Take a look at the following code sample that initializes the underlying data member
in the constructor:

 class _1Eager
 {
 //Declare a private variable to hold data
 Data _cachedData;
 public _1Eager()
 {
 //Load data as soon as object is created
 _cachedData = GetDataFromDatabase();
 }
 public Data GetOrCreate()
 {
 return _cachedData;
 }
 //Create a dummy data object every time this method gets called
 private Data GetDataFromDatabase()
 {
 //Dummy Delay
 Thread.Sleep(5000);
 return new Data();
 }
 }

The problem with the preceding code is that the underlying data is initialized as soon as the
object is created, even though the underlying object can only be accessed by calling
the GetOrCreate() method. The program might not even call the method in some
scenarios and so memory gets wasted.

Improving Performance with Lazy Initialization Chapter 7

[167]

Lazy loading can be implemented entirely using custom code, as shown in the following
code sample:

 class _2SimpleLazy
 {
 //Declare a private variable to hold data
 Data _cachedData;

 public _2SimpleLazy()
 {
 //Removed initialization logic from constructor
 Console.WriteLine("Constructor called");
 }
 public Data GetOrCreate()
 {
 //Check is data is null else create and store for later use
 if (_cachedData == null)
 {
 Console.WriteLine("Initializing object");
 _cachedData = GetDataFromDatabase();
 }
 Console.WriteLine("Data returned from cache");
 //Returns cached data
 return _cachedData;
 }

 private Data GetDataFromDatabase()
 {
 //Dummy Delay
 Thread.Sleep(5000);
 return new Data();
 }
 }

As you can see from the preceding code, we moved the initialization logic out from the
constructor to the GetOrCreate() method, which checks whether the item is in the cache
before returning it to the caller. Data is initialized if it is not present in the cache.

Here is the code calling the preceding method:

public static void Main(){
 _2SimpleLazy lazy = new _2SimpleLazy();
 var data = lazy.GetOrCreate();
 data = lazy.GetOrCreate();
}

Improving Performance with Lazy Initialization Chapter 7

[168]

The output will be as follows:

The preceding code, although lazy, has the potential problem of multiloading. This means
the call to the database might run multiple times if the GetOrCreate() method is called by
multiple threads at the same time.

This can be improved by introducing locking, as shown in the following code example. For
the cache aside pattern, it makes sense to use another pattern, double-checked locking:

 class _2ThreadSafeSimpleLazy
 {
 Data _cachedData;
 static object _locker = new object();

 public Data GetOrCreate()
 {
 //Try to Load cached data
 var data = _cachedData;
 //If data not created yet
 if (data == null)
 {
 //Lock the shared resource
 lock (_locker)
 {
 //Second try to load data from cache as it might have been
 //populate by another thread while current thread was
 // waiting for lock
 data = _cachedData;
 //If Data not cached yet
 if (data == null)
 {
 //Load data from database and cache for later use
 data = GetDataFromDatabase();
 _cachedData = data;
 }
 }
 }
 return _cachedData;
 }

Improving Performance with Lazy Initialization Chapter 7

[169]

 private Data GetDataFromDatabase()
 {
 //Dummy Delay
 Thread.Sleep(5000);
 return new Data();
 }
 public void ResetCache()
 {
 _cachedData = null;
 }
 }

The preceding code is self-explanatory. We can see that it is complex to create a lazy pattern
from scratch. Fortunately, .NET Framework provides data structures for the lazy pattern.

Introducing System.Lazy<T>
.NET Framework provides a System.Lazy<T> class that has all of the benefits of lazy
initialization without the need to worry about synchronization overheads. Objects created
using System.Lazy<T> are deferred until they are accessed for the first time. With the
custom lazy code explained in previous sections, we can see that we moved the
initialization part from the constructor to the method/property to support lazy
initialization. With Lazy<T>, we don't need to modify any code.

There are multiple ways to implement lazy initialization patterns in C#. These include the
following:

Construction logic encapsulated inside a constructor
Construction logic passed as a delegate to Lazy<T>

In the subsequent sections, we will try to understand these scenarios in depth.

Construction logic encapsulated inside
a constructor
Let's first try to implement the lazy initialization pattern with classes that encapsulate
construction logic in the constructor. Let's say we have a Data class:

 class DataWrapper
 {
 public DataWrapper()

Improving Performance with Lazy Initialization Chapter 7

[170]

 {
 CachedData = GetDataFromDatabase();
 Console.WriteLine("Object initialized");
 }
 public Data CachedData { get; set; }
 private Data GetDataFromDatabase()
 {
 //Dummy Delay
 Thread.Sleep(5000);
 return new Data();
 }
 }

As you can see, the initialization happens inside the constructor. If we use this class
normally, using the following code, the object is initialized at the moment the
DataWrapper object is created:

 DataWrapper dataWrapper = new DataWrapper();

The output is as follows:

The preceding code can be converted using Lazy<T> as follows:

 Console.WriteLine("Creating Lazy object");
 Lazy<DataWrapper> lazyDataWrapper = new Lazy<DataWrapper>();
 Console.WriteLine("Lazy Object Created");
 Console.WriteLine("Now we want to access data");
 var data = lazyDataWrapper.Value.CachedData;
 Console.WriteLine("Finishing up");

As you can see, rather than creating an object directly, we wrapped it inside the lazy class.
The constructor won't be called until we access the Value property of the Lazy object, as
you can see from the following output:

Improving Performance with Lazy Initialization Chapter 7

[171]

Construction logic passed as a delegate to
Lazy<T>
Objects often don't hold construction logic as they are plain data models. We need to fetch
data the first time the lazy objects are accessed while also passing the logic to fetch the data.
This can be made possible using another overload of System.Lazy<T>, as follows:

 class _5LazyUsingDelegate
 {
 public Data CachedData { get; set; }
 static Data GetDataFromDatabase()
 {
 Console.WriteLine("Fetching data");
 //Dummy Delay
 Thread.Sleep(5000);
 return new Data();
 }
 }

In the following code, we are creating a Lazy<Data> object by passing the Func<Data>
delegate:

 Console.WriteLine("Creating Lazy object");
 Func<Data> dataFetchLogic = new Func<Data>(()=> GetDataFromDatabase());
 Lazy<Data> lazyDataWrapper = new Lazy<Data>(dataFetchLogic);
 Console.WriteLine("Lazy Object Created");
 Console.WriteLine("Now we want to access data");
 var data = lazyDataWrapper.Value;
 Console.WriteLine("Finishing up");

As you can see from the preceding code, we passed Func<T> to the Lazy<T> constructor.
The logic gets called on the first access to the Value property of the Lazy<T> instance, as
shown in the following output:

In addition to having a good idea about how to construct and use lazy objects in .NET, we
also need to understand how to handle exceptions with lazy initialization patterns! Let's see
the following section.

Improving Performance with Lazy Initialization Chapter 7

[172]

Handling exceptions with the lazy
initialization pattern
Lazy objects are immutable by design. This means that they always return the same
instance that they were initialized with. We have seen that we can pass initialization logic
to Lazy<T> and that we can have initialization logic in the underlying object's constructor.
What will happen if the construction/initialization logic is faulty and throws an exception?
The behavior of Lazy<T> in this scenario depends on the value of the
LazyThreadSafetyMode enumeration and your choice of Lazy<T> constructor. There are
many ways to handle exceptions while working with lazy patterns. Some of these are as
follows:

No exceptions occur during initialization
Random exception while initialization with exception caching
Not caching exceptions

In the subsequent sections, we will try to understand these scenarios in depth.

No exceptions occur during initialization
The initialization logic runs once and the object is cached to be returned with subsequent
access to the Value property. We have already seen this behavior while explaining
Lazy<T> in a previous section.

Random exception while initialization with
exception caching
In this case, since the underlying object is not created, the initialization logic will run on
every call to the Value property. This is helpful in scenarios where the construction logic
depends on external factors such as an internet connection while calling the external
service. If the internet goes down momentarily, then the initialization call will fail, but
subsequent calls can return the data. By default, Lazy<T> will cache exceptions for all
parameterized constructor implementations, but it will not cache exceptions for the
parameter less constructor implementation.

Improving Performance with Lazy Initialization Chapter 7

[173]

Let's try to understand what happens when Lazy<T> initialization logic throws a random
exception:

First, we create Lazy<Data> with the initialization logic provided by the1.
GetDataFromDatabase() function, as follows:

Func<Data> dataFetchLogic = new Func<Data>(() =>
GetDataFromDatabase());
Lazy<Data> lazyDataWrapper = new Lazy<Data>(dataFetchLogic);

Next, we access the Value property of Lazy<Data>, which will execute the2.
initialization logic and throw an exception since the value of the counter is 0:

 try
 {
 data = lazyDataWrapper.Value;
 Console.WriteLine("Data Fetched on Attempt 1");
 }
 catch (Exception)
 {
 Console.WriteLine("Exception 1");
 }

Next, we increment the counter by one and again try to access the Value3.
property. According to the logic, this time, it should return the Data object, but
we see that the code again throws an exception:

 class _6_1_ExceptionsWithLazyWithCaching
 {
 static int counter = 0;
 public Data CachedData { get; set; }
 static Data GetDataFromDatabase()
 {
 if (counter == 0)
 {
 Console.WriteLine("Throwing exception");
 throw new Exception("Some Error has occurred");
 }
 else
 {
 return new Data();
 }
 }

 public static void Main()
 {
 Console.WriteLine("Creating Lazy object");

Improving Performance with Lazy Initialization Chapter 7

[174]

 Func<Data> dataFetchLogic = new Func<Data>(() =>
 GetDataFromDatabase());
 Lazy<Data> lazyDataWrapper = new
 Lazy<Data>(dataFetchLogic);
 Console.WriteLine("Lazy Object Created");
 Console.WriteLine("Now we want to access data");
 Data data = null;
 try
 {
 data = lazyDataWrapper.Value;
 Console.WriteLine("Data Fetched on Attempt 1");
 }
 catch (Exception)
 {
 Console.WriteLine("Exception 1");
 }
 try
 {
 counter++;
 data = lazyDataWrapper.Value;
 Console.WriteLine("Data Fetched on Attempt 1");
 }
 catch (Exception)
 {
 Console.WriteLine("Exception 2");
 // throw;
 }
 Console.WriteLine("Finishing up");
 Console.ReadLine();
 }
 }

As you can see, the exception is thrown a second time, even though we increased the
counter by one. This is because the exception value was cached and returned the next time
the Value property is accessed. The output is shown as follows:

Improving Performance with Lazy Initialization Chapter 7

[175]

The preceding behavior is the same as creating Lazy<T> by passing
System.Threading.LazyThreadSafetyMode.None as a second parameter:

Lazy<Data> lazyDataWrapper = new
Lazy<Data>(dataFetchLogic,System.Threading.LazyThreadSafetyMode.None);

Not caching exceptions
Let's change the initialization of Lazy<Data> in the preceding code to the following:

Lazy<Data> lazyDataWrapper = new
Lazy<Data>(dataFetchLogic,System.Threading.LazyThreadSafetyMode.Publication
Only);

This will allow the initialization logic to be run multiple times by different threads until one
of the threads succeeds in running the initialization without any errors. If any thread
throws an error during the initialization process in a multithreaded scenario, then all
instances of the underlying object created by the completed threads are discarded and the
exception is propagated to the Value property. In the case of a single thread, an exception
will return when the initialization logic is re-run upon subsequent access of the Value
property. The exceptions are not cached.

The output is as follows:

After seeing how to handle exceptions with the lazy initialization pattern, let's now learn
about the usage of thread-local storage for lazy initialization.

Improving Performance with Lazy Initialization Chapter 7

[176]

Lazy initialization with thread-local storage
In multithreaded programming, we often want to create a variable that is local to a thread,
which means that each thread will have its own copy of the data. This holds true for all
local variables, but global variables are always shared across threads. In old versions of
.NET, we used the ThreadStatic attribute to make a static variable behave as a thread-
local variable. However, this is not foolproof and doesn't work well with initialization. If
we are initializing a ThreadStatic variable, then only the first thread gets the initialized
value, whereas the rest of the threads get the default value of the variable, which is 0 in the
case of an integer. This can be demonstrated using the following code:

 [ThreadStatic]
 static int counter = 1;
 public static void Main()
 {
 for (int i = 0; i < 10; i++)
 {
 Task.Factory.StartNew(() => Console.WriteLine(counter));
 }
 Console.ReadLine();
 }

In the preceding code, we initialized a static counter variable with a value of 1 and made
it thread static so that every thread can have its own copy. For demonstration purposes, we
created 10 tasks that print the value of the counter. According to the logic, all threads
should print 1, but as you can see from the following output, only one thread prints 1, and
the rest print 0:

Improving Performance with Lazy Initialization Chapter 7

[177]

.NET Framework 4 provides System.Threading.ThreadLocal<T> as an alternative to
ThreadStatic and works more like Lazy<T>. Using ThreadLocal<T>, we can create a
thread-local variable that can be initialized by passing an initialization function, as follows:

 static ThreadLocal<int> counter = new ThreadLocal<int>(() => 1);
 public static void Main()
 {
 for (int i = 0; i < 10; i++)
 {
 Task.Factory.StartNew(() => Console.WriteLine($"Thread with
 id {Task.CurrentId} has counter value as {counter.Value}"));
 }
 Console.ReadLine();
 }

The output is as expected:

The differences between Lazy<T> and ThreadLocal<T> are as follows:

Each thread initializes the ThreadLocal variable using its own private data
whereas, in the case of Lazy<T>, the initialization logic only runs once.
Unlike Lazy<T>, the Value property in ThreadLocal<T> is read/write.
In the absence of any initialization logic, the default value of T will be assigned to
the ThreadLocal variable.

Improving Performance with Lazy Initialization Chapter 7

[178]

Reducing the overhead with lazy
initializations
Lazy<T> uses a level of indirection by wrapping the underlying object. This can cause
computational as well as memory issues. To avoid wrapping objects, we can use the static
variant of Lazy<T> class, which is the LazyInitializer class.

We can use LazyInitializer.EnsureInitialized to initialize a data member that is
passed via a reference as well as an initialization function, like we did with Lazy<T>.

The method can be called via multiple threads, but once a value is initialized, it will be used
as a result for all of the threads. For the sake of demonstration, I have added a line to the
console inside the initialization logic. Though the loop runs 10 times, the initialization will
happen only once for single-thread execution:

 static Data _data;
 public static void Main()
 {
 for (int i = 0; i < 10; i++)
 {
 Console.WriteLine($"Iteration {i}");
 // Lazily initialize _data
 LazyInitializer.EnsureInitialized(ref _data, () =>
 {
 Console.WriteLine("Initializing data");
 // Returns value that will be assigned in the ref parameter.
 return new Data();
 });
 }
 Console.ReadLine();
 }

Improving Performance with Lazy Initialization Chapter 7

[179]

Here is the output:

This is good for sequential execution. Let's try to modify the code and run it via multiple
threads:

static Data _data;
static void Initializer()
{
 LazyInitializer.EnsureInitialized(ref _data, () =>
 {
 Console.WriteLine($"Task with id {Task.CurrentId} is
 Initializing data");
 // Returns value that will be assigned in the ref parameter.
 return new Data();
 });

 public static void Main()
 {
 Parallel.For(0, 10, (i) => Initializer());
 Console.ReadLine();
 }
}

Improving Performance with Lazy Initialization Chapter 7

[180]

Here is the output:

As you can see, with multiple threads, there is a race condition and all threads end up
initializing the data. We can avoid this race condition by modifying the program as follows:

 static Data _data;
 static bool _initialized;
 static object _locker = new object();
 static void Initializer()
 {
 Console.WriteLine("Task with id {0}", Task.CurrentId);
 LazyInitializer.EnsureInitialized(ref _data,ref _initialized,
 ref _locker, () =>
 {
 Console.WriteLine($"Task with id {Task.CurrentId} is
 Initializing data");
 // Returns value that will be assigned in the ref parameter.
 return new Data();
 });
 }
 public static void Main()
 {
 Parallel.For(0, 10, (i) => Initializer());
 Console.ReadLine();
 }

Improving Performance with Lazy Initialization Chapter 7

[181]

As you can see from the preceding code, we have used an overload of the
EnsureInitialized method and passed a Boolean variable and a SyncLock object as a
parameter. This will ensure that the initialization logic can be executed only by one thread
at a time, as demonstrated in the following output:

In this section, we discussed how we can work around the overheads associated with
Lazy<T> by utilizing another built-in static variant of Lazy<T> known as
the LazyInitializer class.

Summary
In this chapter, we discussed various aspects of lazy loading and the data structures
provided by .NET Framework to make lazy loading easier to implement.

Lazy loading can significantly improve the performance of applications by reducing
memory footprints as well as saving on computing resources by stopping duplicate
initialization. We have a choice to either create lazy from scratch using Lazy<T> or avoid
complexity by using the static LazyInitializer class. With optimal usage of thread
storages and good exception handling logic, these are certainly great tools for developers.

In the next chapter, we will start discussing asynchronous programming approaches
available in C#.

Improving Performance with Lazy Initialization Chapter 7

[182]

Questions
Lazy initialization always involves creation object in the constructor.1.

True 1.
False2.

In the lazy initialization pattern, object creation is deferred until it's actually2.
needed.

True 1.
False2.

Which of these can be used to create lazy objects that do not cache exceptions?3.
LazyThreadSafetyMode.DoNotCacheException1.
LazyThreadSafetyMode.PublicationOnly2.

Which attribute can be used to create a variable that's local to a thread?4.
ThreadLocal 1.
ThreadStatic2.
Both3.

3
Section 3: Asynchronous

Programming Using C#
In this section, you will learn about another important aspect of making performant
programs (using asynchronous programming techniques) while keeping an eye on how
this was done in earlier versions compared to the newer async and await constructs.

This section comprises the following chapters:

Chapter 8, Introduction to Asynchronous Programming
Chapter 9, Async, Await, and Task-Based Asynchronous Programming Basics

8
Introduction to Asynchronous

Programming
In the previous chapters, we have seen how parallel programming works. Parallelism is
about creating small tasks called units of work that can be executed simultaneously by one
or more application threads. Since threads run inside the application process, they notify
the called thread once they finish using delegates.

In this chapter, we will start by introducing the difference between synchronous code and
asynchronous code. Then, we'll discuss when to use asynchronous code and when to avoid
it. We will also discuss how asynchronous patterns have evolved over time. Finally, we will
see how new features in parallel programming help us get around the complexities of
asynchronous code.

In this chapter, we'll cover the following topics:

Synchronous versus asynchronous code
When to use asynchronous programming
When to avoid asynchronous programming
Problems you can solve using asynchronous code
Asynchronous patterns in early versions of C#

Technical requirements
To complete this chapter, you should have a good understanding of TPL and C#. The
source code for this chapter is available on GitHub at https:/ /github. com/
PacktPublishing/Hands- On- Parallel- Programming- with- C- 8-and- .NET- Core- 3/tree/
master/Chapter08.

https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter08
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter08

Introduction to Asynchronous Programming Chapter 8

[185]

Types of program execution
At any point in time, program flow can either be synchronous or asynchronous.
Synchronous code is easier to write and maintain but comes with performance overheads
and UI responsiveness issues. Asynchronous code improves the performance and
responsiveness of an application as a whole but, in turn, is difficult to write, debug, and
maintain.

We'll understand the synchronous and asynchronous way of program execution in detail in
the following subsections.

Understanding synchronous program execution
In the case of synchronous execution, control never moves out of the calling thread. Code is
executed one line at a time, and, when a function is called, the calling thread waits for the
function to finish executing before executing the next line of code. Synchronous
programming is the most commonly used method of programming and it works well due
to the increase in CPU performance we have seen over the past few years. With faster
processors, the code completes sooner.

With parallel programming, we have seen that we can create multiple threads that can run
concurrently. We can start many threads but also make the main program flow
synchronous by calling structures such as Thread.Join and Task.Wait. Let's take a look
at an example of synchronous code:

We start the application thread by calling the M1() method.1.
At line 3, M1() calls M3() synchronously.2.
The moment the M2() method is called, the control execution transfers to3.
the M1() method.
Once the called method (M2) is finished, the control returns to the main thread,4.
which executes the rest of the code in M1(), that is, lines 4 and 5.
The same thing happens on line 5 with a call to M2. Line 6 executes when M2 has5.
finished.

Introduction to Asynchronous Programming Chapter 8

[186]

The following is a diagrammatic representation of synchronous code execution:

In the next section, we will try to understand more about writing asynchronous code,
which will help us compare both program flows.

Introduction to Asynchronous Programming Chapter 8

[187]

Understanding asynchronous program execution
The asynchronous model allows us to execute multiple tasks concurrently. If we call a
method asynchronously, the method is executed in the background while the thread that
is called returns immediately and executes the next line of code. The asynchronous method
may or may not create a thread, depending on the type of task we're dealing with. When
the asynchronous method finishes, it returns the result to the program via callbacks. An
asynchronous method can be void, in which case we don't need to specify callbacks.

The following is a diagram showing a caller thread executing the M1() method, which calls
an async method called M2():

Introduction to Asynchronous Programming Chapter 8

[188]

Contrary to the previous approach, here, caller thread doesn't wait for M2() to finish. If
there is any output that needs to be utilized from M2(), it needs to be put into some other
method, say, M3(), here. This is what happens:

While executing M1(), the caller thread makes asynchronous calls to M2().1.
The caller thread provides a callback function, say, M3(), while calling M2().2.
The caller thread doesn't wait for M2() to finish; instead, it finishes the rest of the3.
code in M1() (if there is any to finish).
M2() will be executed by the CPU either instantly in a separate thread or at a4.
later date.
Once M2() finishes, M3() is called, which receives output from M2() and5.
processes it.

As you can see, it's easy to understand the synchronous program's execution, whereas
asynchronous code comes with code branching. We will learn how to mitigate this
complexity using the async and await keywords in Chapter 9, Async, Await, and Task-
Based Asynchronous Programming Basics.

When to use asynchronous programming
There are many situations in which Direct Memory Access (DMA) is used to access the
host system or I/O operations (such as files, databases, or network access) are used, which
is where processing is done by the CPU rather than the application thread. In the preceding
scenario, the calling thread makes a call to the I/O API and waits for the task to complete by
moving to a blocked state. When the task is completed by the CPU, the thread is unblocked
and finishes the rest of the method.

Using asynchronous methods, we can improve the application's performance and
responsiveness. We can also execute a method via a different thread.

Writing asynchronous code
Asynchronous programming is not new to C#. We used to write asynchronous code in
earlier versions of C# using the BeginInvoke method of the Delegate class, as well as by
using the IAsyncResult interface implementations. With the introduction of TPL, we
started writing asynchronous code using the Task class. From C# 5.0 onward, the async
and await keywords have been the preferred choice for developers writing asynchronous
code.

Introduction to Asynchronous Programming Chapter 8

[189]

We can write asynchronous code in the following ways:

Using the Delegate.BeginInvoke() method
Using the Task class
Using the IAsyncResult interface
Using the async and await keywords

In the subsequent sections, we'll look at each of these in detail with code examples, except
for the async and await keywords – Chapter 9, Async, Await, and Task-Based Asynchronous
Programming Basics, is dedicated to them!

Using the BeginInvoke method of the Delegate class
Using Delegate.BeginInvoke is no longer supported in .NET Core, but we will look at it
here in terms of backward compatibility with earlier versions of .NET.

We can use the Delegate.BeginInvoke method to call any method asynchronously. This
can be done to improve the UI's performance if some tasks need to be moved from the UI
thread into the background.

Let's look at a Log method as an example. The following code works synchronously and
writes logs. For the sake of demonstration, the logging code has been removed and
replaced with a dummy 5-second delay, after which the Log method prints a line to the
console:

Here is a dummy Log method that takes 5 seconds to finish:

private static void Log(string message)
{
 //Simulate long running method
 Thread.Sleep(5000);
 //Log to file or database
 Console.WriteLine("Logging done");
}

Here is the call to the Log method from the Main method:

 static void Main(string[] args)
 {
 Console.WriteLine("Starting program");
 Log("this information need to be logged");
 Console.WriteLine("Press any key to exit");
 Console.ReadLine();
 }

Introduction to Asynchronous Programming Chapter 8

[190]

Clearly, a 5-second delay for writing logs is too long. Since we don't expect any output from
the Log method (writing to the console is just for demonstration purposes), it makes sense
to call it asynchronously and return the response to the caller immediately.

The following is the output of the program as it is currently:

We can add a Log method call to the preceding method. Then, we can wrap the Log
method call inside a delegate and call the BeginInvoke method on the delegate, as follows:

//Log("this information need to be logged");
Action logAction = new Action(()=> Log("this information need to be
logged")); logAction.BeginInvoke(null,null);

This time, when we execute the code, we will see asynchronous behavior in older versions
of .NET. In .NET Core, however, the code breaks at runtime with the following error
message:

System.PlatformNotSupportedException: 'Operation is not supported on
this platform.'

In .NET Core, wrapping the synchronous methods into async delegates is no longer
supported for two main reasons:

Async delegates use an IAsyncResult-based async pattern, which is not
supported by .NET Core base class libraries.
Async delegates are not possible without System.Runtime.Remoting, which is
also not supported in .NET Core.

Using the Task class
Another way to implement asynchronous programming in .NET Core is to use
the System.Threading.Tasks.Task class, as we mentioned earlier. The preceding code
can be changed to the following:

// Log("this information need to be logged");
Task.Factory.StartNew(()=> Log("this information need to be logged"));

Introduction to Asynchronous Programming Chapter 8

[191]

This will give us the required output without changing too much of the current code flow:

We discussed Task in Chapter 2, Task Parallelism. The Task class provides us with a very
powerful way to implement task-based asynchronous patterns.

Using the IAsyncResult interface
The IAsyncResult interface has been used to implement asynchronous programming in
older versions of C#. The following is some example code that works well in earlier
versions of .NET:

First, we create AsyncCallback that will be executed when the async method1.
finishes:

AsyncCallback callback = new AsyncCallback(MyCallback);

Then, we create a delegate that will execute an Add method with the parameters2.
that are passed. Once finished, it will execute the callback method wrapped by
AsyncCallBack:

SumDelegate d = new SumDelegate(Add);
d.BeginInvoke(100, 200, callback, state);

When the MyCallBack method is called, it returns the IAsyncResult instance.3.
To get the underlying result, state, and callback, we need to cast the
IAsyncResult instance to AsyncResult:

AsyncResult ar = (AsyncResult)result;

Once we have AsyncResult, we can call EndInvoke to get the values that have4.
been returned by the Add method:

int i = d.EndInvoke(result);

Introduction to Asynchronous Programming Chapter 8

[192]

Here is the complete code:

using System.Runtime.Remoting.Messaging;
public delegate int SumDelegate(int x, int y);

static void Main(string[] args)
{
 AsyncCallback callback = new AsyncCallback(MyCallback);
 int state = 1000;
 SumDelegate d = new SumDelegate(Add);
 d.BeginInvoke(100, 200, callback, state);
 Console.WriteLine("Press any key to exit");
 Console.ReadLine();
}
public static int Add(int a, int b)
{
 return a + b;
}
public static void MyCallback(IAsyncResult result)
{
 AsyncResult ar = (AsyncResult)result;
 SumDelegate d = (SumDelegate)ar.AsyncDelegate;
 int state = (int)ar.AsyncState;
 int i = d.EndInvoke(result);
 Console.WriteLine(i);
 Console.WriteLine(state);
 Console.ReadLine();
}

Unfortunately, .NET Core has no support for System.Runtime.Remoting and so the
preceding code will not work in .NET Core. We can only use task-based asynchronous
patterns for all IAsyncResult scenarios:

FileInfo fi = new FileInfo("test.txt");
 byte[] data = new byte[fi.Length];
 FileStream fs = new FileStream("test.txt", FileMode.Open,
FileAccess.Read, FileShare.Read, data.Length, true);
 // We still pass null for the last parameter because
 // the state variable is visible to the continuation delegate.
 Task<int> task = Task<int>.Factory.FromAsync(
 fs.BeginRead, fs.EndRead, data, 0, data.Length, null);
 int result = task.Result;
 Console.WriteLine(result);

Introduction to Asynchronous Programming Chapter 8

[193]

The preceding code reads data from the file using the FileStream class. FileStream
implements IAsyncResult and thus supports the BeginRead and EndRead
methods. Then, we used the Task.Factory.FromAsync method to wrap IAsyncResult
and return the data.

When not to use asynchronous
programming
Asynchronous programming can be very beneficial when it comes to creating a responsive
UI and improving the application's performance. There are, however, scenarios in which
asynchronous programming should be avoided as it may reduce performance and increase
the complexity of the code. In the following subsections, we'll go through a few situations
in which it is best not to use asynchronous programming.

In a single database without connection pooling
In cases where we have a single database server that doesn't have connection pooling
enabled, asynchronous programming will have no benefits. With long-running connections
and multiple requests, there will be performance bottlenecks, irrespective of whether calls
are made synchronously or asynchronously.

When it is important that the code is easy to read
and maintain
When using the IAsyncResult interface, we have to break down the source method into
two methods: BeginMethodName and EndMethodName. Changing the logic in this way can
take a lot of time and effort and make the code hard to read, debug, and maintain.

For simple and short-running operations
We need to consider how much time the code is taking while it's running synchronously. If
it isn't taking too long, it makes sense to keep the code synchronous as making code
asynchronous comes with a small performance hit that would not be beneficial for small
gains.

Introduction to Asynchronous Programming Chapter 8

[194]

For applications with lots of shared resources
If your application is using lots of shared resources, such as global variables or system files,
it makes sense to keep the code synchronous; otherwise, we will end up reducing the
performance benefits. Just like shared resources, we need to apply synchronization
primitives that can reduce performance with multiple threads. Sometimes, single-threaded
applications can be more performant than their multithreaded counterparts.

Problems you can solve using
asynchronous code
Let's go through a few situations where asynchronous programming can be handy to
improve the responsiveness of the application and the performance of both the application
and the server. Some situations are as follows:

Logging and auditing: Logging and auditing are cross-cutting concerns for
applications. If you happen to write your own code for logging and auditing,
then calls to the server become slow as they need to write back the logs as well.
We can make logging and auditing asynchronous and we should make the
implementation stateless wherever possible. This will make sure that callbacks
can be returned in a static context so that calls can continue to execute while the
response returns to the browser.
Service calls: Web service calls and database calls can be made asynchronous
because, once we make a call to the service/database, the control leaves the
current application and goes to the CPU, which makes the network call. The
caller thread goes into a blocked state. Once the response from the service call
comes back, the CPU receives it and raises an event. The calling thread is
unblocked and starts further execution. As a pattern, you are likely to have seen
that all service proxies return asynchronous methods.
Creating responsive UIs: There may be scenarios in programs where a user clicks
a button to save data. Saving data can involve multiple small tasks: reading data
from the UI into models, making a connection to a database, and making calls to
the database to update the data. This can take a long time and if these calls are
made on a UI thread, then the thread is blocked until this completes. This means
the user won't be able to do anything on the UI until the call is returned. We can
improve the user experience by making asynchronous calls.

Introduction to Asynchronous Programming Chapter 8

[195]

CPU-bound applications: With the advent of new technology and support in
.NET, we can now write machine learning, ETL processing, and cryptocurrency
mining code in .NET. These tasks are highly CPU-intensive and it makes sense to
make these programs asynchronous.

Asynchronous patterns in early versions of C#

In early versions of .NET, two patterns were supported to perform I/O-
bound and compute-bound operations:

Asynchronous Programming Model (APM)

Event-Based Asynchronous Pattern (EAP)

We discussed both of these approaches in detail in Chapter 2, Task
Parallelism. We also learned how to convert these legacy implementations
into task-based asynchronous patterns.

Now, let's recall what we've covered in this chapter.

Summary
In this chapter, we discussed what asynchronous programming is and why it makes sense
to write asynchronous code. We also discussed scenarios where asynchronous
programming can be implemented and where it should be avoided. Finally, we covered
various asynchronous patterns that have been implemented in TPL.

Asynchronous programming, if used correctly, can really enhance the performance of
server-side applications by efficiently utilizing threads. It also improves the responsiveness
of desktop/mobile applications.

In the next chapter, we will discuss the asynchronous programming primitives that are
provided by the .NET Framework.

Introduction to Asynchronous Programming Chapter 8

[196]

Questions
________ code is easier to write, debug, and maintain.1.

Synchronous1.
Asynchronous2.

In what scenario should you use asynchronous programming?2.
File I/O1.
Database with connection pooling2.
Network I/O3.
Database without connection pooling4.

Which approach can be used to write async code?3.
Delegate.BeginInvoke1.
Task2.
IAsyncResult3.

Which of these cannot be used to write async code in .NET Core?4.
IAsyncResult1.
Task2.

9
Async, Await, and Task-Based

Asynchronous Programming
Basics

In the previous chapter, we introduced asynchronous programming practices and solutions
available in C#, even prior to .NET Core. We also discussed scenarios where asynchronous
programming can be handy, and where it should be avoided.

In this chapter, we will dig more deeply into asynchronous programming, and will
introduce two keywords that make writing asynchronous code very easy. We will be
covering the following topics in this chapter:

Introduction to async and await
Async delegates and lambda expressions
The Task-Based Asynchronous Pattern (TAP)
Exception handling in asynchronous code
Async with PLINQ
Measuring async code performance
Guidelines for using async code

Let's start with an introduction to the async and await keywords, which were first
introduced in C# 5.0 and adopted in .NET Core as well.

Async, Await, and Task-Based Asynchronous Programming Basics Chapter 9

[198]

Technical requirements
Readers should have a good understanding of the Task Parallel Library (TPL) and C#. The
source code for this chapter is available on GitHub at https:/ /github. com/
PacktPublishing/-Hands- On- Parallel- Programming- with- C-8-and- .NET- Core- 3/ tree/
master/Chapter09.

Introducing async and await
async and await are two very popular keywords among .NET Core developers writing
asynchronous code with the new asynchronous APIs provided by .NET Framework. They
are used for marking code when calling asynchronous operations. In the last chapter, we
discussed the challenges of converting a synchronous method into an asynchronous one.
Previously, we did this by breaking down the method into two methods,
BeginMethodName and EndMethodName, which can be called asynchronously. This
approach makes the code clumsy and difficult to write, debug, and maintain. With the
async and await keywords, however, the code can stay how it was in the synchronous
implementation, with only small changes required. All the difficult work of breaking down
the method, executing the asynchronous method, and getting the response back to the
program is done by the compiler.

All new I/O APIs provided by .NET Framework support task-based asynchrony, which we
discussed in the previous chapter. Let's now try to understand a few scenarios involving
I/O operations, wherein we can take advantage of the async and await keywords. Let's
say we want to download data from a public API that returns data in JSON format. In older
versions of C#, we can write synchronous code using the WebClient class available in the
System.Net namespace, as follows.

First, add a reference to the System.Net assembly:

WebClient client = new WebClient();
string reply = client.DownloadString("http://www.aspnet.com");
Console.WriteLine(reply);

Next, create an object of the WebClient class and call the DownloadString method by
passing the URL of the page to download. The method will run synchronously, and the
calling thread will be blocked until the download operation is finished. This can hamper
the performance of the server (if used in server-side code) and the responsiveness of the
application (if used in Windows application code).

https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter09
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter09
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter09
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter09
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter09
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter09
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter09
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter09
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter09
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter09
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter09
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter09
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter09
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter09
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter09
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter09
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter09
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter09
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter09
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter09
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter09
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter09
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter09
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter09
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter09
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter09
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter09
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter09
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter09
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter09
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter09
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter09
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter09
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter09
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter09
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter09
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter09
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter09
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter09

Async, Await, and Task-Based Asynchronous Programming Basics Chapter 9

[199]

To improve performance and responsiveness, we can use the asynchronous version of
the DownloadString method, which was introduced much later.

Here is a method that creates a download request for a remote resource that is
http://www.aspnet.com and subscribes to the DownloadStringCompleted event,
rather than waiting for the download to complete:

private static void DownloadAsynchronously()
 {
 WebClient client = new WebClient();
 client.DownloadStringCompleted += new
 DownloadStringCompletedEventHandler(DownloadComplete);
 client.DownloadStringAsync(new Uri("http://www.aspnet.com"));
 }

And here is the DownloadComplete event handler, which gets fired when the download is
finished:

private static void DownloadComplete(object sender,
DownloadStringCompletedEventArgs e)
{
 if (e.Error != null)
 {
 Console.WriteLine("Some error has occurred.");
 return;
 }
 Console.WriteLine(e.Result);
 Console.ReadLine();
 }

In the preceding code, we have used the Event-Based Asynchronous Pattern (EAP). As you
can see, we have subscribed to the DownloadCompleted event, which will be raised by
the WebClient class once the download is finished. Then, we have made a call to
the DownloadStringAsync method, which will call the code asynchronously and return
immediately, avoiding the need to block the thread. When the download finishes in the
background, the DownloadComplete method will be called, and we can receive either the
error, using the e.Error property, or the data, using the e.Result property of
DownloadStringCompletedEventArgs.

Async, Await, and Task-Based Asynchronous Programming Basics Chapter 9

[200]

If we run the preceding code in a Windows application, the results will be as expected, but
the response will always be received by a worker thread (which executes in the
background), and not by the main thread. As Windows application developers, we need to
be mindful of the fact that we cannot update the UI controls from the DownloadComplete
method, and that all such calls need to be delegated back to the main UI thread using
techniques such as Invoke in classic Windows Forms, or Dispatcher in Windows
Presentation Foundation (WPF). The best thing about using the Invoke/Dispatcher
approach is that the main thread is never blocked, and the application is, therefore, more
responsive as a whole.

In the code samples accompanying this book, we have included scenarios for Windows
Forms as well as for WPF, although .NET Core doesn't yet support Windows applications
or WPF. This support is expected to be introduced in the next version of Visual Studio, VS
2019.

Let's try to run the preceding code in a .NET Core console application from the main
thread, as follows:

 public static void Main()
 {
 DownloadAsynchronously();
 }

We can modify the DownloadComplete method by adding a Console.WriteLine
statement, as follows:

private static void DownloadComplete(object sender,
DownloadStringCompletedEventArgs e)
 {
 …
 …
 …
 Console.ReadLine() ;//Added this line
 }

According to the logic, the program should download the page asynchronously, print the
output, and wait for the user input before it terminates. When we run the preceding code,
we will see that the program terminates without printing anything and without waiting for
the user input. Why did this happen?

As already stated, the main thread gets unblocked as soon as it calls the
DownloadStringAsync method. The main thread doesn't wait for the callback to execute.
This is by design, and asynchronous methods are expected to behave in this manner.
However, since the main thread has nothing else to do and has already done what it was
expected to do, which was calling the method, the application terminates.

Async, Await, and Task-Based Asynchronous Programming Basics Chapter 9

[201]

As a web application developer, you might face a similar problem if you use the preceding
code in a server-side application using Web Forms or ASP.NET MVC. The IIS thread
executing your request will return immediately, without waiting for the download to
finish, if you have called the method asynchronously. The results will therefore not be as
expected. We are not expecting the code to print the output to the console in a web
application, and the Console.WriteLine statement is simply ignored when run in web
application code. Suppose your logic is to return the web page as a response to the client
request. We can achieve this using the WebClient class synchronously, as shown in the
following example, using ASP.NET MVC:

public IActionResult Index()
{
 WebClient client = new WebClient();
 string content = client.DownloadString(new
 Uri("http://www.aspnet.com"));
 return Content(content,"text/html");
}

The problem here is that the preceding code will block the thread, which can have an
impact on the performance of the server and lead to a self-inflicted Denial-of-Service (DoS)
attack, which occurs when a lot of users hit a portion of the application concurrently. As
more and more threads are hit and become blocked, there will be a point at which the
server won't have any threads free to process client requests, and will start queueing
requests. Once the queue limit is reached, the server will start throwing a 503 error: Service
Unavailable.

We cannot use the DownloadStringAsync method because the moment it is called, the
thread will return a response back to the client, without waiting for DownloadComplete to
finish. We need a way to make the server thread wait without blocking it. async and
await come to our rescue in such a scenario. Apart from helping us to achieve our
objective, they also help us to have clean code that is easy to write, debug, and maintain.

To demonstrate async and await, we can use another important class of .NET
Core, HttpClient, which is available in the System.Net.Http namespace. HttpClient
should be used instead of WebClient, as it has full support for task-based asynchronous
operations, has a vastly improved performance, and supports HTTP methods such as GET,
POST, PUT, and DELETE.

Here is an async version of the preceding code, using the HttpClient class and
introducing the async and await keywords:

public async Task<IActionResult> Index()
 {
 HttpClient client = new HttpClient();

Async, Await, and Task-Based Asynchronous Programming Basics Chapter 9

[202]

 HttpResponseMessage response = await
 client.GetAsync("http://www.aspnet.com");
 string content = await response.Content.ReadAsStringAsync();
 return Content(content,"text/html");
 }

First, we need to change the method signature to include the async keyword. This is an
instruction to the compiler that this method will execute asynchronously where necessary.
Then, we wrap the return type of the method inside Task<T>. This is important since .NET
Framework supports task-based async operations, and all async methods must return
Task.

We need to create an instance of the HttpClient class and call the GetAsync() method,
passing the URL of the resource that you want to download. Unlike the EAP pattern, which
relies on callbacks, we instead just write the await keyword with the call. This makes sure
of the following:

The method executes asynchronously.
The calling thread gets unblocked so that it can go back to the thread pool and
process other client requests, thus making the server responsive.
When the download is complete, the ThreadPool receives an interrupt signal
from the processor, and it will take out a free thread from the ThreadPool,
which can be either the same thread that was operating on the request or a
different thread.
The ThreadPool thread receives the response and starts executing the rest of the
method.

When the download finishes, we can read the content that is downloaded by using another
async operation, called ReadAsStringAsync(). This section has shown that it is easy to
write async methods that resemble their synchronous counterparts, making their logic
straightforward as well.

The return type of async methods
In the preceding example, we changed the return type of the method from IAsyncResult
to Task<IAsyncResult>. There can be three return types from async methods:

void

Task

Task<T>

Async, Await, and Task-Based Asynchronous Programming Basics Chapter 9

[203]

All async methods must return a Task in order to be awaited (using the await keyword).
This is because, once you call them, they don't return immediately, but rather, they execute
a long-running task asynchronously. In doing this, the caller thread may switch in and out
of context as well.

void can be used with asynchronous methods where the caller thread doesn't want to wait.
These methods can be any operation that can happen in the background that's not part of
the response being returned to the user. For example, logging and auditing can be made
asynchronous. This means that they can be wrapped inside async void methods. The caller
thread will return immediately on calling the operation, and the logging and auditing
operations will take place later on. It's thus highly recommended to return a Task instead
of void from asynchronous methods.

Async delegates and lambda expressions
We can use the async keyword to create asynchronous delegates and lambda expressions
as well.

Here is a synchronous delegate that returns the square of a number:

Func<int, int> square = (x) => {return x * x;};

We can make the preceding delegate asynchronous by appending the async keyword, as
follows:

Func<int, Task<int>> square =async (x) => {return x * x;};

Similarly, lambda expressions can be converted, as follows:

Func<int, Task<int>> square =async (x) => x * x;

Asynchronous methods work in a chain. Once you have made any one method
asynchronous, then all methods that call that method need to be converted to being
asynchronous as well, thus creating a long chain of asynchronous methods.

Async, Await, and Task-Based Asynchronous Programming Basics Chapter 9

[204]

Task-based asynchronous patterns
In Chapter 2, Task Parallelism, we discussed how the TAP can be achieved using the Task
class. There are two ways to implement this pattern:

The compiler method, using the async keyword
The manual method

Let's see how these methods operate, in the subsequent sections.

The compiler method, using the async keyword
When we use the async keyword to make any method asynchronous, the compiler carries
out the required optimization to execute the method asynchronously, using the TAP
internally. An async method must return either System.Threading.Task or
System.Threading.Task<T>. The compiler takes care of executing the method
asynchronously and returns results or exceptions back to the caller.

Implementing the TAP manually
We have already shown how to implement the TAP manually in the EAP and
Asynchronous Programming Model (APM). Implementing this pattern gives us more
control over the overall implementation of the method. We can create a
TaskCompletionSource<TResult> class and then perform an asynchronous operation.
When the asynchronous operation finishes, we can return the result back to the caller by
calling the SetResult, SetException, or SetCanceled methods of the
TaskCompletionSource<TResult> class, as shown in the following code:

public static Task<int> ReadFromFileTask(this FileStream stream, byte[]
buffer, int offset, int count, object state)
{
 var taskCompletionSource = new TaskCompletionSource<int>();
 stream.BeginRead(buffer, offset, count, ar =>
 {
 try
 {
 taskCompletionSource.SetResult(stream.EndRead(ar));
 }
 catch (Exception exc)
 {
 taskCompletionSource.SetException(exc);

Async, Await, and Task-Based Asynchronous Programming Basics Chapter 9

[205]

 }
 }, state);
 return taskCompletionSource.Task;
}

In the preceding code, we created a method returning Task<int> that can work on any
System.IO.FileStream object as an extension method. Within the method, we created a
TaskCompletionSource<int> object, and then called the asynchronous operation
provided by the FileStream class to read the file into a byte array. If the read operation
finishes successfully, we return the results back to the caller using the SetResult method;
otherwise, we return the exceptions using the SetException method. Finally, the method
returns the underlying task from the TaskCompletionSource<int> object to the caller.

Exception handling with async code
In the case of synchronous code, all exceptions are propagated to the top of the stack until
they are handled by a try-catch block or they are thrown as an unhandled exception. When
we await on any asynchronous method, the call stack will not be the same, as the thread has
made a transition from the method to the thread pool, and is now coming back. C#,
however, has made it easier for us to do exception handling by changing the exception
behavior for async methods. All async methods return either Task or void. Let's try to
understand both scenarios with examples, and see how the programs will behave.

A method that returns Task and throws an
exception
Let's say we have the following method, which is void. As a best practice, we return Task
from it:

 private static Task DoSomethingFaulty()
 {
 Task.Delay(2000);
 throw new Exception("This is custom exception.");
 }

The method throws an exception after a delay of two seconds.

Async, Await, and Task-Based Asynchronous Programming Basics Chapter 9

[206]

We will try to call this method using various methods to try to understand the behavior of
how exceptions are handled for async methods. The following scenarios will be discussed
in this section:

Calling the async method from outside the try-catch block without the await
keyword
Calling the async method from inside the try-catch block without the await
keyword
Calling the async method with the await keyword from outside the try-catch
block
Methods returning void

We will see these methods in detail in the subsequent sections.

An async method from outside a try-catch block
without the await keyword
The following is a sample async method that returns a Task. The method, in turn, calls
another method, DoSomethingFaulty (), which throws an exception.

Here is our DoSomethingFaulty() method implementation:

 private static Task DoSomethingFaulty()
 {
 Task.Delay(2000);
 throw new Exception("This is custom exception.");
 }

And here is the code for the AsyncReturningTaskExample() method:

private async static Task AsyncReturningTaskExample()
 {
 Task<string> task = DoSomethingFaulty();
 Console.WriteLine("This should not execute");
 try
 {
 task.ContinueWith((s) =>
 {
 Console.WriteLine(s);
 });
 }
 catch (Exception ex)
 {

Async, Await, and Task-Based Asynchronous Programming Basics Chapter 9

[207]

 Console.WriteLine(ex.Message);
 Console.WriteLine(ex.StackTrace);
 }
 }

Here is a call to this method from the Main() method:

 public static void Main()
 {
 Console.WriteLine("Main Method Starts");
 var task = AsyncReturningTaskExample();
 Console.WriteLine("In Main Method After calling method");
 Console.ReadLine();
 }

Async main is a handy addition to C# from version 7.1 onward. It became
broken in release 7.2 but was fixed back in .NET Core 3.0.

As you can see, the program calls the async method—that
is AsyncReturningTaskExample()—without using the await keyword.
The AsyncReturningTaskExample() method further calls the DoSomethingFaulty()
method, which throws an exception. The following output is produced when we run this
code:

Async, Await, and Task-Based Asynchronous Programming Basics Chapter 9

[208]

In the case of synchronous programming, the program would have resulted in an
unhandled exception, and it would have crashed. But here, the program continues as if
nothing happened. This is due to the way in which Task objects are handled by the
framework. In this case, the task will return to the caller with a Status of Faulted, as can be
seen in the following screenshot:

A better code would have been to check the task status and fetch all exceptions if there are
any:

var task = AsyncReturningTaskExample();
if (task.IsFaulted)
 Console.WriteLine(task.Exception.Flatten().Message.ToString());

As we saw in Chapter 2, Task Parallelism, this task returns an instance of
AggregateExceptions. To get all inner exceptions thrown, we can use the Flatten()
method, as demonstrated in the previous screenshot.

An async method from inside the try-catch block
without the await keyword
Let's change the method to move the call to the async
method GetSomethingFaulty() inside the try-catch block, and call from the Main()
method.

Async, Await, and Task-Based Asynchronous Programming Basics Chapter 9

[209]

Here is the Main method:

public static void Main()
{
 Console.WriteLine("Main Method Started");
 var task = Scenario2CallAsyncWithoutAwaitFromInsideTryCatch();
 if (task.IsFaulted)
 Console.WriteLine(task.Exception.Flatten().Message.ToString());
 Console.WriteLine("In Main Method After calling method");
 Console.ReadLine();
}

And here is the Scenario2CallAsyncWithoutAwaitFromInsideTryCatch() method:

private async static Task
Scenario2CallAsyncWithoutAwaitFromInsideTryCatch()
{
 try
 {
 var task = DoSomethingFaulty();
 Console.WriteLine("This should not execute");
 task.ContinueWith((s) =>
 {
 Console.WriteLine(s);
 });
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 Console.WriteLine(ex.StackTrace);
 }
}

This time, we see that the exception will be thrown and received by the catch block, after
which time the program will resume as normal.

Async, Await, and Task-Based Asynchronous Programming Basics Chapter 9

[210]

It's worth taking a look at the value of the Task object inside the Main method:

As you can see, if task creation is not carried out inside the try-catch block,
the exceptions will be unobserved. This can cause issues, since the logic
may not work as expected. A best practice is to always wrap the task
creation inside the try-catch block.

As you can see, since the exceptions were handled, the execution returned normally from
the async method. The status of the returned task becomes RanToCompletion.

Calling an async method with the await keyword from
outside the try-catch block
The following code block shows the code for the method that calls the faulty
method, DoSomethingFaulty(), and waits for the method to finish, using the await
keyword:

private async static Task Scenario3CallAsyncWithAwaitFromOutsideTryCatch()
{
 await DoSomethingFaulty();
 Console.WriteLine("This should not execute");
}

Async, Await, and Task-Based Asynchronous Programming Basics Chapter 9

[211]

And here is the call from the Main method:

public static void Main()
{
 Console.WriteLine("Main Method Starts");
 var task = Scenario3CallAsyncWithAwaitFromOutsideTryCatch();
 if (task.IsFaulted)
 Console.WriteLine(task.Exception.Flatten().Message.ToString());
 Console.WriteLine("In Main Method After calling method");
 Console.ReadLine();
}

The behavior of the program, in this case, will be the same as in the first scenario.

Methods returning void
If the methods return void instead of Task, the program will crash. You can try running
the following code.

Here is a method returning void instead of Task:

private async static void
Scenario4CallAsyncWithoutAwaitFromOutsideTryCatch()
{
 Task task = DoSomethingFaulty();
 Console.WriteLine("This should not execute");
}

And here is a call from the Main method:

public static void Main()
{
 Console.WriteLine("Main Method Started");
 Scenario4CallAsyncWithoutAwaitFromOutsideTryCatch();
 Console.WriteLine("In Main Method After calling method");
 Console.ReadLine();
}

There will be no output, as the program will crash.

Although it makes sense to never return void from async methods,
mistakes do happen. We should write code so that it never crashes or only
crashes gracefully after logging exceptions.

Async, Await, and Task-Based Asynchronous Programming Basics Chapter 9

[212]

We can handle this globally by subscribing to two global event handlers, as follows:

AppDomain.CurrentDomain.UnhandledException += (s, e) =>
Console.WriteLine("Program Crashed", "Unhandled Exception Occurred");
TaskScheduler.UnobservedTaskException += (s, e) =>
Console.WriteLine("Program Crashed", "Unhandled Exception Occurred");

The preceding code will handle all unhandled exceptions in the program, and accounts for
good practices in exception management. The program should not crash randomly, and, if
it needs to crash at all, then it should log information and clean up all resources.

Async with PLINQ
PLINQ is a very handy tool for developers, to improve the performance of applications by
executing a set of tasks in parallel. Creating a number of tasks can improve performance,
but, if tasks are blocking in nature, then the application will end up creating lots of blocking
threads and, at some point, will become unresponsive. This is especially true if the task is
executing some I/O operations. Here is a method that needs to download 100 pages from
the web as quickly as possible:

 public async static void Main()
 {
 var urls = Enumerable.Repeat("http://www.dummyurl.com", 100);
 foreach (var url in urls)
 {
 HttpClient client = new HttpClient();
 HttpResponseMessage response = await
 client.GetAsync("http://www.aspnet.com");
 string content = await
 response.Content.ReadAsStringAsync();
 Console.WriteLine();
 }

As you can see, the preceding code, being synchronous, has a complexity of O(n). If one
request takes one second to finish, the method will take at least 100 seconds (n = 100 here).

To make the download faster (assuming we have a good server configuration that can
handle this load multiplied by the number of users your application wants to support), we
need to make this method parallel. We can do this using Parallel.ForEach, as follows:

 Parallel.ForEach(urls, url =>
 {
 HttpClient client = new HttpClient();
 HttpResponseMessage response = await

Async, Await, and Task-Based Asynchronous Programming Basics Chapter 9

[213]

 client.GetAsync("http://www.aspnet.com");
 string content = await
 response.Content.ReadAsStringAsync();
 });

Suddenly, the code starts complaining:

The 'await' operator can only be used within an async lambda expression. Consider marking this
lambda expression with the 'async' modifier.

This is because we have used a lambda expression, which needs to be made async as well,
as shown in the following code:

Parallel.ForEach(urls,async url =>
 {
 HttpClient client = new HttpClient();
 HttpResponseMessage response = await
 client.GetAsync("http://www.aspnet.com");
 string content = await
 response.Content.ReadAsStringAsync();
 });

The code will now compile and work as expected, with much-improved performance.
Talking more about performance in the next section, we will dig more deeply into how to
measure the performance of asynchronous code.

Measuring the performance of async code
Async code can improve the performance and responsiveness of applications, but there are
trade-offs. In the case of GUI-based applications, such as Windows Forms or WPF, if a
method is taking a long time, it makes sense to make it async. For server applications,
however, you need to measure the trade-off between the extra memory utilized by the
blocked threads and the extra processor overhead required to make methods
asynchronous.

Consider the following code, which creates three tasks. Each task runs asynchronously, one
after another. As one method finishes, it goes on to execute another task asynchronously.
The total time taken to finish the method can be calculated using Stopwatch:

public static void Main(string[] args)
{
 MainAsync(args).GetAwaiter().GetResult();
 Console.ReadLine();
}

Async, Await, and Task-Based Asynchronous Programming Basics Chapter 9

[214]

public static async Task MainAsync(string[] args)
{
 Stopwatch stopwatch = Stopwatch.StartNew();
 var value1 = await Task1();
 var value2 = await Task2();
 var value3 = await Task3();
 stopwatch.Stop();
 Console.WriteLine($"Total time taken is
 {stopwatch.ElapsedMilliseconds}");
}
public static async Task<int> Task1()
{
 await Task.Delay(2000);
 return 100;
}
public static async Task<int> Task2()
{
 await Task.Delay(2000);
 return 200;
}
public static async Task<int> Task3()
{
 await Task.Delay(2000);
 return 300;
}

The output of the preceding code is as follows:

This is as good as writing synchronous code. The benefit is that the thread is not blocked,
but the overall performance of the application is poor since all code now runs
synchronously. We could change the preceding code to improve the performance, as
follows:

Stopwatch stopwatch = Stopwatch.StartNew();
 await Task.WhenAll(Task1(), Task2(), Task3());
 stopwatch.Stop();
 Console.WriteLine($"Total time taken is
{stopwatch.ElapsedMilliseconds}");

Async, Await, and Task-Based Asynchronous Programming Basics Chapter 9

[215]

As you can see, this is a better use of Parallel and async to get an improved performance:

To understand async better, we also need to understand which thread runs our code. Since
new async APIs work with the Task class, all the calls are executed by the ThreadPool
thread. When we make async calls—say, to fetch data from a network—the control gets
transferred to the I/O completion port thread, which is managed by the OS. Usually, this is
only one thread that is shared across all network requests. When the I/O request completes,
the OS fires an interrupt signal that adds a job to the queue of the I/O completion port. In
the case of server-side applications, which usually work in Multi-Threaded Apartment
(MTA) mode, any thread can start an async request and any other thread can receive it.

In the case of Windows applications, however, (including both WinForms and WPF), which
work in Single-Threaded Apartment (STA) mode, it becomes important that an async call
gets returned to the same thread that started it (normally a UI thread). Every UI thread in a
Windows application has a SynchronizationContext that makes sure that the code is
always executed by the correct thread. This is important due to control ownership. To
avoid cross-threading issues, only the owner thread can change the values of the controls.
The most important method of the SynchronizationContext class is Post, which can
make a delegate run in the right context, thus avoiding cross-threading issues.

Whenever we await a task, the current SynchronizationContext is captured. Then,
when the method needs to be resumed, the await keyword internally uses the Post
method to resume the method in the captured SynchronizationContext. Calling the
Post method is very costly, however, but there is a built-in performance optimization
provided by the framework. The Post method doesn't get called if the captured
SynchronizationContext is the same as the current SynchronizationContext of the
returning thread.

If we are writing a class library and we don't really care about which
SynchronizationContext the call will be returned to, we can completely turn off the
Post method. We can achieve this by calling the ConfigureAwait() method on the
returning task, as follows:

HttpClient client = new HttpClient();
HttpResponseMessage response = await
client.GetAsync(url).ConfigureAwait(false);

Async, Await, and Task-Based Asynchronous Programming Basics Chapter 9

[216]

So far, we have learned the important aspects of asynchronous programming. We now
need to know the guidelines for using async code while programming!

Guidelines for using async code
Some guidelines/best practices while writing with asynchronous code are the following:

Avoid using async void.
Async chain all the way.
Use ConfigureAwait wherever possible.

We will learn more about these in the following sections.

Avoid using async void
We have already seen how returning void from async methods actually affects the
exception handling. Async methods should return Task or Task<T> so that exceptions can
be observed and not become unhandled.

Async chain all the way
Mixing async and blocking methods will have an impact on performance. Once we decide
to make a method async, the entire chain of methods that are supposed to be called from
that method should be made async as well. Not doing so can sometimes result in a
deadlock, as demonstrated in the following code example:

private async Task DelayAsync()
{
 await Task.Delay(2000);
}
public void Deadlock()
{
 var task = DelayAsync();
 task.Wait();
}

Async, Await, and Task-Based Asynchronous Programming Basics Chapter 9

[217]

If we call the Deadlock() method from any ASP.NET or GUI-based application, it would
create a deadlock, although the same code would run fine in a console application. When
we call the DelayAsync() method, it captures the current SynchronizationContext, or
the current TaskScheduler if the SynchronizationContext is null. When the awaited
task is complete, it tries to execute the remainder of the method with the captured context.
The problem here is that there is already a thread that's waiting synchronously for the
async method to finish. In this situation, both threads will be waiting for the other thread to
finish, thus causing a deadlock. This problem is raised only in GUI-based or ASP.NET
applications because they rely on the SynchronizationContext that can only execute one
chunk of code at a time. Console applications, on the other hand, utilize ThreadPool
instead of SynchronizationContext. When the await finishes, the pending async method
part is scheduled on a ThreadPool thread. The method is completed on a separate thread
and returns the task back to the caller, so there is no deadlock.

Never try to create sample async/await code in a console application and
copy and paste it in a GUI or ASP.NET application, as they have different
models for executing async code.

Using ConfigureAwait wherever possible
We could have avoided deadlock in the preceding code example by completely skipping
the use of SynchronizationContext:

private async Task DelayAsync()
{
await Task.Delay(2000);
}
public void Deadlock()
{
var task = DelayAsync().ConfigureAwait(false);
task.Wait();
}

When we use ConfigureAwait(false), the method is awaited. When the await
completes, the processor tries to execute the rest of the async method within the thread pool
context. The method is able to complete with no issues since there are no blocking contexts.
The method completes its returned task, and there's no deadlock.

We have come to the end of this chapter. Let's now see all we have learned!

Async, Await, and Task-Based Asynchronous Programming Basics Chapter 9

[218]

Summary
In this chapter, we discussed two very important constructs that make writing
asynchronous code very easy. All the heavy work is done by the compiler when we use
these keywords, and the code looks very similar to its synchronous counterpart. We also
discussed which thread the code runs on when we make methods asynchronous, and the
performance penalty associated with utilizing SynchronizationContext. Finally, we
looked at how we can turn off the SynchronizationContext completely to improve
performance.

In the next chapter, we will introduce parallel debugging techniques using Visual Studio.
We will also learn the tools available in Visual Studio to help in parallel code debugging.

Questions
What keyword is used to unblock a thread inside async methods?1.

async1.
await2.
Thread.Sleep 3.
Task4.

Which of the following are valid return types for async methods?2.
void 1.
Task2.
Task<T> 3.
IAsyncResult4.

TaskCompletionSource<T> can be used to implement a task-based async3.
pattern manually.

True 1.
False2.

Async, Await, and Task-Based Asynchronous Programming Basics Chapter 9

[219]

Can we write Main methods as async?4.
Yes 1.
No2.

Which property of the Task class can be used to check whether an exception has5.
been thrown by an async method?

IsException 1.
IsFaulted2.

We should always use void as a return type for async methods.6.
True 1.
False2.

4
Section 4: Debugging,

Diagnostics, and Unit Testing
for Async Code

In this section, we will explain debugging techniques and tools that are available for Visual
Studio users. The primary focus will be on understanding IDE features such as the parallel
Tasks window, the Thread window, the Parallel Stacks window, and Concurrency
Visualizer tools. We will also cover how to write unit test cases for code that uses TPL and
async programming, how to write mock and stubs for test cases, and some tips and tricks to
make sure the test cases the test cases we write for ORM don't fail.

This section comprises the following chapters:

Chapter 10, Debugging Tasks Using Visual Studio
Chapter 11, Writing Unit Test Cases for Parallel and Asynchronous Code

10
Debugging Tasks Using Visual

Studio
Parallel programming can improve the performance and responsiveness of applications,
but sometimes the results are not as expected. Common problems related to
parallel/asynchronous code are performance and correctness.

With performance, we mean that the results of execution are slow. With correctness, we
mean that results are not as expected (this might be due to race conditions). Another big
issue when dealing with multiple concurrent tasks is deadlocks. Debugging multithreaded
code is always a challenge as threads keep switching while you are debugging. While
working on GUI-based applications, it's also important to find out which thread is running
our code.

In this chapter, we will explain how to debug threads using tools available in Visual Studio,
including the Threads window, the Tasks window, and Concurrency Visualizer.

In this chapter, the following topics will be covered:

Debugging with VS 2019
How to debug threads
Using Parallel Tasks windows
Debugging using Parallel Stacks windows
Using Concurrency Visualizer

Debugging Tasks Using Visual Studio Chapter 10

[222]

Technical requirements
A prior understanding of threads, tasks, Visual Studio, and parallel programming is
required before you start this chapter.

You can check the accompanying source code at GitHub at the following link: https:/ /
github.com/PacktPublishing/ - Hands- On- Parallel- Programming- with- C-8- and-. NET-
Core-3/tree/master/ Chapter10.

Debugging with VS 2019
Visual Studio provides lots of built-in tools to help with the aforementioned debugging and
troubleshooting issues. Some of the tools that we are going to discuss in this chapter are as
follows:

The Thread window
The Parallel Stacks window
The Parallel Watch window
The Debug Location toolbar
Concurrency Visualizer (VS 2017 only as of the time of writing)
The GPU thread window

In the following sections, we will try to understand all of these tools in depth.

How to debug threads
When working with multiple threads, it becomes important to find out which thread is
executing at a particular time. This allows us to troubleshoot cross-threading issues as well
as race conditions. Using the Threads window, we can check and work with threads while
debugging. When you hit a breakpoint while debugging code in Visual Studio IDE, the
thread window provides a table with each row containing information about active
threads.

https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter10
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter10
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter10
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter10
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter10
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter10
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter10
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter10
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter10
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter10
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter10
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter10
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter10
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter10
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter10
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter10
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter10
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter10
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter10
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter10
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter10
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter10
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter10
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter10
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter10
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter10
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter10
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter10
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter10
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter10
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter10
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter10
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter10
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter10
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter10
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter10
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter10
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter10
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter10

Debugging Tasks Using Visual Studio Chapter 10

[223]

Now, let's explore how to debug threads using Visual Studio:

Let's write the following code in Visual Studio:1.

for (int i = 0; i < 10; i++)
 {
 Task task = new TaskFactory().StartNew(() =>
 {
 Console.WriteLine($"Thread with Id
 {Thread.CurrentThread.ManagedThreadId}");
 });
 }

Create a breakpoint by pressing F9 on the Console.Writeline statement.2.
Run the application in debug mode by pressing F5. The application will create3.
threads and start executing. When a breakpoint is hit, we will open the Threads
window from the toolbar's Debug | Windows | Threads window:

There is a lot of information that is captured by the .NET environment regarding threads
that are displayed in columns. A yellow arrow identifies the thread that is currently being
executed.

Debugging Tasks Using Visual Studio Chapter 10

[224]

Some of the columns include the following:

Flag: If we want to keep track of a particular thread, we can flag it. This can be
done by clicking on the flag icon.
ID: This shows the unique identification number allocated to each thread.
Managed ID: This shows the managed identification number assigned to each
thread.
Category: Every thread is assigned a unique category that helps us to identify
whether it is a GUI thread (main thread) or a worker thread.
Name: This shows a name for each thread, or is displayed as <No Name>.
Location: This assists in identifying where the thread is executing. We can drill
down to see the complete call stack.

We can flag threads that we want to monitor by clicking on the flag icon. To view only
flagged threads, we can click on the Show Flagged Threads Only option in the Threads
window:

Another cool feature of the Threads window is that we can freeze threads that we think
might be causing issues during debugging in order to monitor application behavior. The
system will not begin execution of frozen threads even if it has sufficient resources
available. When frozen, a thread moves to a suspended state:

Debugging Tasks Using Visual Studio Chapter 10

[225]

While debugging, we can also switch execution from one thread to another either by right-
clicking the thread in the Threads window, or by double-clicking it:

Visual Studio also supports debugging tasks using Parallel Stacks windows. We will take a
look at this in the next section.

Debugging Tasks Using Visual Studio Chapter 10

[226]

Using Parallel Stacks windows
The Parallel Stacks window is a very good tool for debugging threads and tasks, and this
has been introduced in later versions of Visual Studio. We can open the Parallel Stacks
window while debugging by navigating to Debug | Windows | Parallel Stacks:

As you can see from the preceding screenshot, there are various views within which we can
switch while working on the Parallel Stacks window. We will learn about how to debug
using Parallel Stacks windows and these views in our next topic.

Debugging using Parallel Stacks windows
Parallel Stacks windows have a drop-down menu with two options. We can switch
between these options to get several views within the Parallel Stacks window. These views
are the following:

Threads view
Tasks view

Let's examine these views in detail in the following sections.

Debugging Tasks Using Visual Studio Chapter 10

[227]

Threads view
The Threads view shows call stacks for all threads running while debugging an
application:

The yellow arrow shows the current location where the code is executing. Hovering over
any method from the Parallel Stacks window opens up the Threads window with
information about the thread currently being executed:

Debugging Tasks Using Visual Studio Chapter 10

[228]

We can switch to any other method by double-clicking on it:

We can also switch to Method View to see the complete call stack:

Method View is very handy for debugging a call stack to find out which values were
passed to a method at any point in time.

Tasks view
We should use the Tasks view if we are using the Task Parallel Library to create
System.Threading.Tasks.Task objects in our code:

Debugging Tasks Using Visual Studio Chapter 10

[229]

As you can see in the following screenshot, there are currently 10 tasks that are being
executed, each shown along with the current line of execution.

The status of all running tasks can be seen by hovering over any method:

The Tasks window helps us in analyzing the performance issues in an application arising
from slow method calls or deadlocks.

Debugging using the Parallel Watch window
We can make use of Parallel Watch windows when we want to see the value of a variable
on different threads. Consider the following code:

for (int i = 0; i < 10; i++)
{
 Task task = new Task(() =>

Debugging Tasks Using Visual Studio Chapter 10

[230]

 {
 for (int j = 0; j < 100; j++)
 {
 Thread.Sleep(100);
 }
 Console.WriteLine($"Thread with Id
 {Thread.CurrentThread.ManagedThreadId}");
 });
 task.Start();
}

This code creates multiple tasks and every task runs a for loop for 100 iterations. In every
iteration, the thread goes to sleep for 100 ms. We allow the code to run for some time and
then hit a breakpoint. We can see all this in action using the Parallel Watch window. We
can open Parallel Watch windows from Debug | Windows | Parallel Watch. We can open
four such windows, and each window can monitor only one variable value on different
tasks at a time:

As you can see from the preceding code, we want to monitor the value of j. Consequently,
we write j in the header of the third column and press the Enter key. This adds j to the
watch window shown here and we can see the value of j on all threads/tasks.

Debugging Tasks Using Visual Studio Chapter 10

[231]

Using Concurrency Visualizer
Concurrency Visualizer is a very handy addition to the Visual Studio tools collection. It
doesn't get shipped by default in Visual Studio, but can be downloaded from the Visual
Studio Marketplace here: https:/ /marketplace. visualstudio. com.

This is a very advanced tool that can be used to troubleshoot complex threading issues such
as performance bottlenecks, thread contention issues, checking CPU utilization, cross-core
thread migrations, and areas of overlapped I/O.

Concurrency Visualizer only supports Windows/console projects and is not available for
web projects. Let's consider the following code in a console application:

Action computeAction = () =>
{
int i = 0;
 while (true)
 {
 i = 1 * 1;
 }
};
Task.Run(() => computeAction());
Task.Run(() => computeAction());
Task.Run(() => computeAction());
Task.Run(() => computeAction());

In the preceding code, we created four tasks that run a compute task such as 1*1
indefinitely. We will then put a breakpoint inside the while loop and open Concurrency
Visualizer.

Now, we will run the preceding code from Visual Studio and, while the code is running,
click Attach to Process... as shown in the following screenshot:

https://marketplace.visualstudio.com
https://marketplace.visualstudio.com
https://marketplace.visualstudio.com
https://marketplace.visualstudio.com
https://marketplace.visualstudio.com
https://marketplace.visualstudio.com
https://marketplace.visualstudio.com
https://marketplace.visualstudio.com
https://marketplace.visualstudio.com

Debugging Tasks Using Visual Studio Chapter 10

[232]

You first need to install Concurrency Visualizer for your version of Visual
Studio. Concurrency Visualizer for Visual Studio 2017 can be found here:
https:/ /marketplace. visualstudio. com/ items? itemName=
VisualStudioProductTeam. ConcurrencyVisualizer2017#overview.

Once attached, Concurrency Visualizer will stop profiling. We will let the application run
for some time so that it can collect enough data to review and then stop the profiler from
generating views.

By default, this opens the Utilization view, which is one of the three views present in
Concurrency Visualizer. The other two are the Threads and Cores views. We will explore
the Utilization view in the following section.

Utilization view
The Utilization view shows system activity across all processors. Here is a snapshot of the
concurrency profiler once it stops profiling:

https://marketplace.visualstudio.com/items?itemName=VisualStudioProductTeam.ConcurrencyVisualizer2017#overview
https://marketplace.visualstudio.com/items?itemName=VisualStudioProductTeam.ConcurrencyVisualizer2017#overview
https://marketplace.visualstudio.com/items?itemName=VisualStudioProductTeam.ConcurrencyVisualizer2017#overview
https://marketplace.visualstudio.com/items?itemName=VisualStudioProductTeam.ConcurrencyVisualizer2017#overview
https://marketplace.visualstudio.com/items?itemName=VisualStudioProductTeam.ConcurrencyVisualizer2017#overview
https://marketplace.visualstudio.com/items?itemName=VisualStudioProductTeam.ConcurrencyVisualizer2017#overview
https://marketplace.visualstudio.com/items?itemName=VisualStudioProductTeam.ConcurrencyVisualizer2017#overview
https://marketplace.visualstudio.com/items?itemName=VisualStudioProductTeam.ConcurrencyVisualizer2017#overview
https://marketplace.visualstudio.com/items?itemName=VisualStudioProductTeam.ConcurrencyVisualizer2017#overview
https://marketplace.visualstudio.com/items?itemName=VisualStudioProductTeam.ConcurrencyVisualizer2017#overview
https://marketplace.visualstudio.com/items?itemName=VisualStudioProductTeam.ConcurrencyVisualizer2017#overview
https://marketplace.visualstudio.com/items?itemName=VisualStudioProductTeam.ConcurrencyVisualizer2017#overview
https://marketplace.visualstudio.com/items?itemName=VisualStudioProductTeam.ConcurrencyVisualizer2017#overview
https://marketplace.visualstudio.com/items?itemName=VisualStudioProductTeam.ConcurrencyVisualizer2017#overview
https://marketplace.visualstudio.com/items?itemName=VisualStudioProductTeam.ConcurrencyVisualizer2017#overview
https://marketplace.visualstudio.com/items?itemName=VisualStudioProductTeam.ConcurrencyVisualizer2017#overview

Debugging Tasks Using Visual Studio Chapter 10

[233]

As you can see from the preceding screenshot, there are four cores that have 100% CPU
load. This is indicated by the green color. This view is typically used to get a high-level
overview of concurrency status.

Threads view
The Threads view provides a very detailed analysis of the current system state. Through
this, we can identity whether threads are executing or blocking on account of issues such as
I/O and synchronization:

This view becomes very helpful in identifying and fixing performance bottlenecks in a
system. We can therefore clearly identify how much time is spent in actual execution and
how much time is spent dealing with synchronization issues.

Debugging Tasks Using Visual Studio Chapter 10

[234]

Cores view
The Cores view can be used to identify how many times the threads perform a core switch:

As you can see in the preceding diagram, our four threads with the IDs 12112, 1604, 16928,
and 4928 perform context switches across cores almost 60% of the time.

Armed with an understanding of all three views that are present in Concurrency Visualizer,
we have come to the end of this chapter. Now, let's summarize what we have learned.

Summary
In this chapter, we discussed how to debug a multithreaded application using Thread
windows for monitoring innumerable information captured by the .NET environment. We
also learned how we can have a better insight into an application by using flag threads,
switching among threads, having Threads and Tasks views in a Parallel Stacks window,
opening up multiple Parallel Watch windows, and observing single-variable values on
different tasks at a time.

In addition to this, we explored Concurrency Visualizer, which is an advanced tool used to
troubleshoot complex threading issues that support Windows/console projects only.

In the next chapter, we will learn about writing unit test cases for parallel and async code
and the problems associated with this. In addition, we'll learn about the challenges
involved in setting up mock objects and how we can solve them.

Debugging Tasks Using Visual Studio Chapter 10

[235]

Questions
Which of these is not a valid window for debugging threads in Visual Studio?1.

Parallel Threads1.
Parallel Stack2.
GPU Thread3.
Parallel Watch4.

We can track a particular thread while debugging by flagging it.2.
True1.
False2.

Which of these is not a valid view in Parallel Watch windows? 3.
Tasks1.
Process2.
Threads3.

How can we check a call stack of threads?4.
Method view1.
Task view2.

Which of these is not a valid view for Concurrency Visualizer? 5.
Threads view1.
Cores view2.
Process view3.

Further reading
You can read about parallel programming and debugging techniques at the following links:

https:// www. packtpub. com/ application- development/ c-multithreaded- and-
parallel- programming

https:// www. packtpub. com/ application- development/ net- 45-parallel-
extensions- cookbook

https://www.packtpub.com/application-development/c-multithreaded-and-parallel-programming
https://www.packtpub.com/application-development/c-multithreaded-and-parallel-programming
https://www.packtpub.com/application-development/c-multithreaded-and-parallel-programming
https://www.packtpub.com/application-development/c-multithreaded-and-parallel-programming
https://www.packtpub.com/application-development/c-multithreaded-and-parallel-programming
https://www.packtpub.com/application-development/c-multithreaded-and-parallel-programming
https://www.packtpub.com/application-development/c-multithreaded-and-parallel-programming
https://www.packtpub.com/application-development/c-multithreaded-and-parallel-programming
https://www.packtpub.com/application-development/c-multithreaded-and-parallel-programming
https://www.packtpub.com/application-development/c-multithreaded-and-parallel-programming
https://www.packtpub.com/application-development/c-multithreaded-and-parallel-programming
https://www.packtpub.com/application-development/c-multithreaded-and-parallel-programming
https://www.packtpub.com/application-development/c-multithreaded-and-parallel-programming
https://www.packtpub.com/application-development/c-multithreaded-and-parallel-programming
https://www.packtpub.com/application-development/c-multithreaded-and-parallel-programming
https://www.packtpub.com/application-development/c-multithreaded-and-parallel-programming
https://www.packtpub.com/application-development/c-multithreaded-and-parallel-programming
https://www.packtpub.com/application-development/c-multithreaded-and-parallel-programming
https://www.packtpub.com/application-development/c-multithreaded-and-parallel-programming
https://www.packtpub.com/application-development/c-multithreaded-and-parallel-programming
https://www.packtpub.com/application-development/c-multithreaded-and-parallel-programming
https://www.packtpub.com/application-development/c-multithreaded-and-parallel-programming
https://www.packtpub.com/application-development/net-45-parallel-extensions-cookbook
https://www.packtpub.com/application-development/net-45-parallel-extensions-cookbook
https://www.packtpub.com/application-development/net-45-parallel-extensions-cookbook
https://www.packtpub.com/application-development/net-45-parallel-extensions-cookbook
https://www.packtpub.com/application-development/net-45-parallel-extensions-cookbook
https://www.packtpub.com/application-development/net-45-parallel-extensions-cookbook
https://www.packtpub.com/application-development/net-45-parallel-extensions-cookbook
https://www.packtpub.com/application-development/net-45-parallel-extensions-cookbook
https://www.packtpub.com/application-development/net-45-parallel-extensions-cookbook
https://www.packtpub.com/application-development/net-45-parallel-extensions-cookbook
https://www.packtpub.com/application-development/net-45-parallel-extensions-cookbook
https://www.packtpub.com/application-development/net-45-parallel-extensions-cookbook
https://www.packtpub.com/application-development/net-45-parallel-extensions-cookbook
https://www.packtpub.com/application-development/net-45-parallel-extensions-cookbook
https://www.packtpub.com/application-development/net-45-parallel-extensions-cookbook
https://www.packtpub.com/application-development/net-45-parallel-extensions-cookbook
https://www.packtpub.com/application-development/net-45-parallel-extensions-cookbook
https://www.packtpub.com/application-development/net-45-parallel-extensions-cookbook
https://www.packtpub.com/application-development/net-45-parallel-extensions-cookbook
https://www.packtpub.com/application-development/net-45-parallel-extensions-cookbook
https://www.packtpub.com/application-development/net-45-parallel-extensions-cookbook
https://www.packtpub.com/application-development/net-45-parallel-extensions-cookbook

11
Writing Unit Test Cases for
Parallel and Asynchronous

Code
In this chapter, we will introduce how to write unit test cases for parallel and asynchronous
code. Writing unit test cases is an important aspect of writing robust code that is easy to
maintain when you're working with large teams.

With the new CI/CD platforms, it's easier to make running unit test cases a part of the build
process. This helps in finding issues at a very early stage. It also makes sense to write
integration tests so that we can evaluate whether different components are working
correctly together. Although you will find more features in Visual Studio's Community and
Professional editions, only Visual Studio Enterprise edition has support for analyzing code
coverage for unit test cases.

In this chapter, we will cover the following topics:

Understanding the problems with writing unit test cases for async code
Writing unit test cases for parallel and async code
Mocking the setup for async code using Moq
Using testing tools

Writing Unit Test Cases for Parallel and Asynchronous Code Chapter 11

[237]

Technical requirements
A basic understanding of unit testing and C# is required for learning how to write unit test
cases using frameworks supported by Visual Studio. The source code for this chapter can
be found on GitHub at https:/ / github. com/PacktPublishing/ Hands- On-Parallel-
Programming-with- C- 8- and- . NET- Core- 3/ tree/ master/ Chapter11.

Unit testing with .NET Core
.NET Core supports three frameworks for writing unit tests, that is, MSTest, NUnit, and
xUnit, as shown in the following screenshot:

Initially, the preferred framework for writing test cases was NUnit. Then, MSTest was
added to Visual Studio, before xUnit was introduced into .NET Core. xUnit is a very lean
version in comparison to NUnit and helps users write clean tests and take advantage of
new features. Some of the benefits of xUnit are as follows:

It is lightweight.
It uses new features.
It has improved test isolation.
The xUnit creator is also from Microsoft and is a tool that's used within
Microsoft.
The Setup and TearDown attributes have been replaced with a constructor and
System.IDisposable, thereby forcing the developer to write clean code.

https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter11

Writing Unit Test Cases for Parallel and Asynchronous Code Chapter 11

[238]

A unit test case is just a simple function that returns void, which is used to test the function
logic and verify the output against a predefined set of inputs. To make the function
recognizable as a test case, it must be decorated with the [Fact] attribute, as follows:

[Fact]
public void SomeFunctionWillReturn5AsWeUseResultToLetItFinish()
{
 var result = SomeFunction().Result;
 Assert.Equal(5, result);
}

To run this test case, we need to right-click on the function in the code and click Run Test(s)
or Debug Test(s):

Writing Unit Test Cases for Parallel and Asynchronous Code Chapter 11

[239]

The output of the test case's execution can be seen in the Test Explorer window:

While this is fairly straightforward, writing unit test cases for parallel and asynchronous
code is challenging. We'll discuss this in more detail in the next section.

Understanding the problems with writing
unit test cases for async code
Async methods return a Task that needs to be awaited to get results. If it is not awaited, the
method will return immediately, without waiting for the async task to finish. Consider the
following method, which we're using to write a unit test case with xUnit:

private async Task<int> SomeFunction()
{
 int result =await Task.Run(() =>
 {
 Thread.Sleep(1000);
 return 5;

Writing Unit Test Cases for Parallel and Asynchronous Code Chapter 11

[240]

 });
 return result;
}

The method returns a constant value of 5 after a delay of 1 second. Since the method used
Task, we made use of the async and await keywords to get the expected results. The
following is a very simple test case we can use to test this method using MSTest:

[TestMethod]
public async void SomeFunctionShouldFailAsExpectedValueShouldBe5AndNot3()
{
 var result = await SomeFunction();
 Assert.AreEqual(3, result);
 }

As you can see, the method should fail as the expected return value is 3 whereas the
method is returning 5. When we run this test, however, it passes:

What happened here is that, since the method is marked as async, it returned immediately
when it encountered the await keyword. When a task is returned, it's deemed to run at a
future point in time, but since the test case returned without any failures, it was marked as
a pass by the test framework. This is a major cause of concern as this means the tests will
pass, even if the task throws an exception.

The preceding test case can be written slightly differently to make it run with MSTest:

[TestMethod]
public void SomeFunctionWillReturn5AsWeUseResultToLetItFinish()
{
 var result = SomeFunction().Result;
 Assert.AreEqual(3, result);
}

Writing Unit Test Cases for Parallel and Asynchronous Code Chapter 11

[241]

The same unit test case can be written in xUnit as follows:

[Fact]
public void SomeFunctionWillReturn5AsWeUseResultToLetItFinish()
{
 var result = SomeFunction().Result;
 Assert.Equal(5, result);
}

When we run the preceding xUnit test case, it runs successfully. However, the problem
with this code is that it's a blocking test case, which can have a significant impact on the
performance of our test suite. A better unit test case would be as follows:

[Fact]
public async void SomeFunctionWillReturn5AsCallIsAwaited()
{
 var result = await SomeFunction();
 Assert.Equal(5, result);
}

Initially, async unit test cases were not supported by every unit testing framework, as we
saw in the case of MSTest. However, they are supported by xUnit and NUnit. The
preceding test case once again returns as a success.

The preceding unit test case can be written using NUnit as follows:

[Test]
public async void SomeFunctionWillReturn5AsCallIsAwaited()
{
 var result = await SomeFunction();
 Assert.AreEqual(3, result);
}

There are some differences here compared to the preceding code. The [Fact] attribute is
replaced by [Test], while Assert.Equal is replaced by Assert.AreEqual. The main
difference, however, which you will see when you try running the preceding test case in
Visual Studio, is that it will fail with the following error: "Message: Async test method
must have non-void return type". So, for NUnit, the method needs to be changed, as
follows:

[Test]
public async Task SomeFunctionWillReturn5AsCallIsAwaited()
{
 var result = await SomeFunction();
 Assert.AreEqual(3, result);
}

Writing Unit Test Cases for Parallel and Asynchronous Code Chapter 11

[242]

The only difference here is that void is replaced with Task.

In this section, we have seen the problems that we may face when we use various
frameworks that are provided for unit testing. Now, let's take a look at how to write better
unit test cases.

Writing unit test cases for parallel and async
code
In the previous section, we learned how to write unit test cases for async code. In this
section, we will discuss writing unit test cases for exception scenarios. Consider the
following method:

private async Task<float> GetDivisionAsync(int number , int divisor)
{
 if (divisor == 0)
 {
 throw new DivideByZeroException();
 }
 int result = await Task.Run(() =>
 {
 Thread.Sleep(1000);
 return number / divisor;
 });
 return result;
}

The preceding method returns the result of the division of two numbers asynchronously. If
the divisor is 0, then the DivideByZero exception is thrown by the method. We need two
types of test cases to cover both scenarios:

Checking for a successful result
Checking for an exception result when the divisor is 0

Checking for a successful result
The test case will look as follows:

[Test]
public async Task GetDivisionAsyncShouldReturnSuccessIfDivisorIsNotZero()
{
 int number = 20;

Writing Unit Test Cases for Parallel and Asynchronous Code Chapter 11

[243]

 int divisor = 4;
 var result = await GetDivisionAsync(number, divisor);
 Assert.AreEqual(result, 5);
}

As you can see, the expected result is 5. When we run the test, it will show up as successful
in the Test Explorer.

Checking for an exception result when the divisor
is 0
We can write a test case for a method that throws an exception using the
Assert.ThrowsAsync<> method:

[Test]
public void GetDivisionAsyncShouldCheckForExceptionIfDivisorIsNotZero()
{
 int number = 20;
 int divisor = 0;
 Assert.ThrowsAsync<DivideByZeroException>(async () =>
 await GetDivisionAsync(number, divisor));
}

As you can see, we checked the assertion using
Assert.ThrowsAsync<DivideByZeroException> while calling the GetDivisionAsync
method asynchronously. Since we pass the divisor as 0, the method will throw an
exception and the assertion will hold true.

Mocking the setup for async code using
Moq
Mocking objects is a very important aspect of unit testing. As you may be aware, unit
testing is about testing one module at a time; any external dependency is assumed to be
working fine.

Writing Unit Test Cases for Parallel and Asynchronous Code Chapter 11

[244]

There are many mocking frameworks available for .NET, including the following:

NSubstitute (not supported in .NET core)
Rhino Mocks (not supported in .NET core)
Moq (supported in .NET core)
NMock3 (not supported in .NET core)

For the sake of demonstration, we will be using Moq to mock our serviced components.

In this section, we will create a simple service containing asynchronous methods. Then, we
will try to write unit test cases for the methods that call the service. Let's consider a service
interface:

public interface IService
{
 Task<string> GetDataAsync();
}

As we can see, the interface has a GetDataAsync() method, which fetches data in an
asynchronous manner. The following snippet shows a controller class that makes use of
some dependency injection frameworks to gain access to the service instance:

class Controller
{
 public Controller (IService service)
 {
 Service = service;
 }
 public IService Service { get; }
 public async Task DisplayData()
 {
 var data =await Service.GetDataAsync();
 Console.WriteLine(data);
 }
}

The preceding Controller class also exposes an asynchronous method called
DisplayData(), which fetches data from a service and writes it to the console. When we
try to write a unit test case for the preceding method, the first problem we will encounter is
that we have no way of creating the service instance in the absence of any concrete
implementation. Even if we do have a concrete implementation, we should avoid calling
the actual service method as this would be more appropriate in an integration test case
rather than a unit test case. Mocking comes to our rescue here.

Writing Unit Test Cases for Parallel and Asynchronous Code Chapter 11

[245]

Let's try to write a unit test case for the preceding method using Moq:

We need to install Moq as a NuGet package.1.
Add the namespace for it as follows:2.

using Moq;

Create a mock object, as follows:3.

var serviceMock = new Mock<IService>();

Set up a mock object that returns dummy data. This can be achieved using the4.
Task.FromResult method, as follows:

serviceMock.Setup(s => s.GetDataAsync()).Returns(
 Task.FromResult("Some Dummy Value"));

Next, we need to create a controller object by passing the mocked object we just5.
created:

var controller = new Controller(serviceMock.Object);

The following is a simple test case for the DisplayData() method:

 [Test]
 public async System.Threading.Tasks.Task DisplayDataTestAsync()
 {
 var serviceMock = new Mock<IService>();
 serviceMock.Setup(s => s.GetDataAsync()).Returns(
 Task.FromResult("Some Dummy Value"));
 var controller = new Controller(serviceMock.Object);
 await controller.DisplayData();
 }

The preceding code shows how we can set up data for mock objects. Another way to set up
data for mock objects is via the TaskCompletionSource class, as follows:

[Test]
public async Task DisplayDataTestAsyncUsingTaskCompletionSource()
{
 // Create a mock service
 var serviceMock = new Mock<IService>();
 string data = "Some Dummy Value";
 //Create task completion source
 var tcs = new TaskCompletionSource<string>();
 //Setup completion source to return test data
 tcs.SetResult(data);
 //Setup mock service object to return Task underlined by tcs

Writing Unit Test Cases for Parallel and Asynchronous Code Chapter 11

[246]

 //when GetDataAsync method of service is called
 serviceMock.Setup(s => s.GetDataAsync()).Returns(tcs.Task);
 //Pass mock service instance to Controller
 var controller = new Controller(serviceMock.Object);
 //Call DisplayData method of controller asynchronously
 await controller.DisplayData();
}

Since the number of test cases can really grow in an enterprise project, the need to be able to
find and execute test cases arises. In the next section, we will discuss some common testing
tools in Visual Studio that can help us manage the test case execution process.

Testing tools
One of the most important tools in Visual Studio to run a test or see the results of test
execution is Test Explorer. We had a brief look at Test Explorer at the start of this chapter.
One key feature of Test Explorer is its ability to run test cases in parallel. If you have a
system with multiple cores, you can easily take advantage of parallelism to run test cases
faster. This can be done by clicking on the Run Tests in parallel toolbar button in Test
Explorer:

Depending on your version of Visual Studio, some additional support is provided by
Microsoft. One useful tool is the option to generate unit test cases automatically using
Intellitest. Intellitest analyzes your source code and automatically generates test cases, test
data, and test suites. Intellitest isn't supported in .NET core yet, though it's available for
other versions of the .NET Framework. It's likely to have a future upgrade to Visual Studio.

Writing Unit Test Cases for Parallel and Asynchronous Code Chapter 11

[247]

Summary
In this chapter, we have learned about writing unit test cases for async methods, which
helps in achieving robust code, supporting large teams, and adapting to new CI/CD
platforms, which helps in finding issues at a very early stage. We started by introducing a
few problems that you may come across while writing unit test cases for parallel and async
code and how you can mitigate them using correct coding practices. Then, we moved on
and looked at mocking, which is a very important aspect of unit testing.

We learned that Moq has support for .NET Core and that .NET Core is evolving very fast;
soon, there will be support for all the major mocking frameworks. All the steps for writing
test cases were explained as well, including installing Moq as a NuGet package and setting
up data for mock objects. Finally, we explored the features of an important testing tool, Test
Explorer, which we can use to write cleaner test cases, and how to parallelize unit test cases
for faster execution.

In the next chapter, we will introduce the concepts and roles of IIS and Kestrel in a .NET
Core web application development environment.

Questions
Which of these is not a supported unit testing framework in Visual Studio?1.

JUnit 1.
NUnit2.
xUnit 3.
MSTest4.

How can we check the output of a unit test case?2.
By using the Task Explorer window 1.
By using the Test Explorer window2.

Which attributes can you apply to a test method when the testing framework is3.
xUnit?

Fact 1.
TestMethod2.
Test3.

Writing Unit Test Cases for Parallel and Asynchronous Code Chapter 11

[248]

How can you verify the success of a test case that throws an exception?4.
Assert.AreEqual(ex, typeof(Exception) 1.
Assert.IsException2.
Assert.ThrowAsync<T>3.

Which of these mocking frameworks is supported in .NET Core?5.
NSubstitute 1.
Moq2.
Rhino Mocks 3.
NMock4.

Further reading
You can read about parallel programming and unit testing techniques at the following web
pages:

https:// www. packtpub. com/ application- development/ c-multithreaded- and-
parallel- programming

https:// www. packtpub. com/ application- development/ net- 45-parallel-
extensions- cookbook

https://www.packtpub.com/application-development/c-multithreaded-and-parallel-programming
https://www.packtpub.com/application-development/c-multithreaded-and-parallel-programming
https://www.packtpub.com/application-development/c-multithreaded-and-parallel-programming
https://www.packtpub.com/application-development/c-multithreaded-and-parallel-programming
https://www.packtpub.com/application-development/c-multithreaded-and-parallel-programming
https://www.packtpub.com/application-development/c-multithreaded-and-parallel-programming
https://www.packtpub.com/application-development/c-multithreaded-and-parallel-programming
https://www.packtpub.com/application-development/c-multithreaded-and-parallel-programming
https://www.packtpub.com/application-development/c-multithreaded-and-parallel-programming
https://www.packtpub.com/application-development/c-multithreaded-and-parallel-programming
https://www.packtpub.com/application-development/c-multithreaded-and-parallel-programming
https://www.packtpub.com/application-development/c-multithreaded-and-parallel-programming
https://www.packtpub.com/application-development/c-multithreaded-and-parallel-programming
https://www.packtpub.com/application-development/c-multithreaded-and-parallel-programming
https://www.packtpub.com/application-development/c-multithreaded-and-parallel-programming
https://www.packtpub.com/application-development/c-multithreaded-and-parallel-programming
https://www.packtpub.com/application-development/c-multithreaded-and-parallel-programming
https://www.packtpub.com/application-development/c-multithreaded-and-parallel-programming
https://www.packtpub.com/application-development/c-multithreaded-and-parallel-programming
https://www.packtpub.com/application-development/c-multithreaded-and-parallel-programming
https://www.packtpub.com/application-development/c-multithreaded-and-parallel-programming
https://www.packtpub.com/application-development/c-multithreaded-and-parallel-programming
https://www.packtpub.com/application-development/net-45-parallel-extensions-cookbook
https://www.packtpub.com/application-development/net-45-parallel-extensions-cookbook
https://www.packtpub.com/application-development/net-45-parallel-extensions-cookbook
https://www.packtpub.com/application-development/net-45-parallel-extensions-cookbook
https://www.packtpub.com/application-development/net-45-parallel-extensions-cookbook
https://www.packtpub.com/application-development/net-45-parallel-extensions-cookbook
https://www.packtpub.com/application-development/net-45-parallel-extensions-cookbook
https://www.packtpub.com/application-development/net-45-parallel-extensions-cookbook
https://www.packtpub.com/application-development/net-45-parallel-extensions-cookbook
https://www.packtpub.com/application-development/net-45-parallel-extensions-cookbook
https://www.packtpub.com/application-development/net-45-parallel-extensions-cookbook
https://www.packtpub.com/application-development/net-45-parallel-extensions-cookbook
https://www.packtpub.com/application-development/net-45-parallel-extensions-cookbook
https://www.packtpub.com/application-development/net-45-parallel-extensions-cookbook
https://www.packtpub.com/application-development/net-45-parallel-extensions-cookbook
https://www.packtpub.com/application-development/net-45-parallel-extensions-cookbook
https://www.packtpub.com/application-development/net-45-parallel-extensions-cookbook
https://www.packtpub.com/application-development/net-45-parallel-extensions-cookbook
https://www.packtpub.com/application-development/net-45-parallel-extensions-cookbook
https://www.packtpub.com/application-development/net-45-parallel-extensions-cookbook
https://www.packtpub.com/application-development/net-45-parallel-extensions-cookbook
https://www.packtpub.com/application-development/net-45-parallel-extensions-cookbook

5
Section 5: Parallel

Programming Feature Additions
to .NET Core

In this section, you will become familiar with new breakthroughs in .NET Core that support
parallel programming.

This section comprises the following chapters:

Chapter 12, IIS and Kestrel in ASP.NET Core
Chapter 13, Patterns in Parallel Programming
Chapter 14, Distributed Memory Management

12
IIS and Kestrel in ASP.NET

Core
In the previous chapter, we discussed writing unit test cases for parallel and asynchronous
code. We also discussed three unit testing frameworks that are available in Visual Studio:
MSUnit, NUnit, and xUnit.

In this chapter, we will introduce how the threading model works with Internet
Information Services (IIS) and Kestrel. We will also look at various tweaks we can make to
take maximum advantage of resources on a server. We will introduce the working model of
Kestrel and how we can take advantage of parallel programming techniques while creating
microservices.

In this chapter, we will cover the following topics:

The IIS threading model and internals
The Kestrel threading model and internals
Introduction to best practices of threading in microservices
Introduction to async in ASP.NET MVC Core
Async streams (new in .NET Core 3.0)

Let's get started.

Technical requirements
A good understanding of how servers work is required so that you can understand this
chapter. You should also learn about threading models before you start this chapter. The
source code for this chapter is available on GitHub at https:/ /github. com/
PacktPublishing/-Hands- On- Parallel- Programming- with- C-8-and- .NET- Core- 3/ tree/
master/Chapter12.

https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter12
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter12
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter12
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter12
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter12
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter12
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter12
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter12
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter12
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter12
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter12
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter12
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter12
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter12
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter12
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter12
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter12
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter12
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter12
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter12
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter12
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter12
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter12
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter12
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter12
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter12
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter12
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter12
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter12
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter12
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter12
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter12
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter12
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter12
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter12
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter12
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter12
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter12
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter12

IIS and Kestrel in ASP.NET Core Chapter 12

[251]

IIS threading model and internals
As the name suggests, these are services that are utilized on the Windows system to
connect your web applications from other systems via the internet over a set of protocols
such as HTTP, TCP, web sockets, and more.

In this section, we will discuss how the IIS threading model works. At the core of IIS lies
the CLR thread pool. It's very important to understand how the CLR thread pool adds and
removes threads in order to understand how IIS works to serve user requests.

Every application that gets deployed to IIS is assigned a unique worker process. Each
worker process has two thread pools: the worker thread pool and the IOCP (short for I/O
completion port) thread pool:

Whenever we create a new thread pool thread using either legacy
ThreadPool.QueueUserWorkItem or TPL, the ASP.NET runtime makes use of
worker threads for processing.
Whenever we perform any I/O operations, that is, database calls, file read/write,
or network calls to another web service, the ASP.NET runtime makes use of
IOCP threads.

By default, there is one worker thread and one IOCP thread per processor. So, a dual-core
CPU will have two workers and two IOCP threads by default. ThreadPool keeps adding
and removing threads, depending on load and demand. IIS assigns a thread to each request
that it receives. This allows every request to have a different context from other requests
hitting the server at the same time. It's the responsibility of the thread to cater to requests,
as well as generating and sending a response back to a client.

If the number of available thread pool threads is less than the number of requests that are
received by a server at any time, the requests will start to be queued. Later, the thread pool
generates threads using one of two important algorithms, known as Hill Climbing and
Starvation Avoidance. The creation of threads is not instant and it usually takes up to 500 ms
from the time ThreadPool comes to know that there is a shortage of threads. Let's try to
understand both algorithms that are used by ThreadPool to generate threads.

IIS and Kestrel in ASP.NET Core Chapter 12

[252]

Starvation Avoidance
In this algorithm, ThreadPool keeps monitoring the queue, and if it doesn't progress, then
it keeps pumping new threads into the queue.

Hill Climbing
In this algorithm, ThreadPool tries to maximize the throughput using as few threads as
possible.

Running IIS with the default settings will have a significant impact on performance since,
by default, only one worker thread is available per processor. We can increase this setting
by modifying the configuration element in the machine.config file, as follows:

<configuration>
 <system.web>
 <processModel minWorkerThreads="25" minIoThreads="25" />
 </system.web>
</configuration>

As you can see, we increased the minimum worker threads and IOCP threads to 25. As
more requests come in, additional threads will be created. An important thing to note here
is that since every request is assigned one unique thread, we should avoid writing blocking
code. With blocking code, there will not be free threads. Once a thread pool is exhausted,
the requests will start to queue. IIS can only queue up to 1,000 requests per application
pool. We can modify this by changing the requestQueueLimit application settings in
the machine.config file.

To modify the settings for all the application pools, we need to add the applicationPool
element with the required values:

<system.web>
 <applicationPool
 maxConcurrentRequestPerCPU="5000"
 maxConcurrentThreadsPerCPU="0"
 requestQueueLimit="5000" />
</system.web>

IIS and Kestrel in ASP.NET Core Chapter 12

[253]

To modify the settings for a single application pool, we need to navigate to the Advanced
Settings of a specific application pool in IIS. As shown in the following screenshot, we can
change the Queue Length property to modify a number of requests that can be queued per
application pool:

As a good coding practice for developers to reduce contention issues and thus avoid
queues on the server, we should try to use the async/await keywords for any blocking I/O
code. This will reduce contention issues on a server as threads will not be blocked and
return to the thread pool to serve other requests.

Kestrel threading model and internals
IIS has been the most popular server for hosting .NET applications, but it's tied to the
Windows OS. With more and more cloud providers coming and non-Windows cloud
hosting options becoming a lot cheaper, there was a need for a cross-platform hosting
server. Microsoft introduced Kestrel as a cross-platform web server for hosting ASP.NET
Core applications. If we create and run ASP.NET Core applications, Kestrel is the default
web server that runs them. Kestrel is open source and uses an event-driven, asynchronous
I/O-based server. Kestrel is not a full-fledged web server and is recommended to be used
behind full-featured web servers such as IIS and Nginx.

When it was initially launched, Kestrel was based on the libuv library, which is also open
source. The use of libuv in .NET is not new and dates back to ASP.NET 5. libuv has been
specifically built for asynchronous I/O operations and uses a single-threaded event looping
model. The library also supports cross-platform asynchronous sockets on Windows,
macOS, and Linux. You can check its progress and download the source code for libuv for
custom implementation from GitHub at https:/ /github. com/libuv/ libuv.

https://github.com/libuv/libuv
https://github.com/libuv/libuv
https://github.com/libuv/libuv
https://github.com/libuv/libuv
https://github.com/libuv/libuv
https://github.com/libuv/libuv
https://github.com/libuv/libuv
https://github.com/libuv/libuv
https://github.com/libuv/libuv
https://github.com/libuv/libuv
https://github.com/libuv/libuv

IIS and Kestrel in ASP.NET Core Chapter 12

[254]

libuv has been used in Kestrel to only support async I/O. Apart from I/O operations, all
the other work that's done in Kestrel is still done by .NET worker threads using managed
code. The core idea behind creating Kestrel is improving the performance of servers. The
stack is very robust and extensible. libuv in Kestrel is used as a transport layer only and,
due to excellent abstraction, it can be replaced by other network implementations as well.
Kestrel also supports running multiple event loops, thereby making it a more robust choice
than Node.js. The number of event loops that are used depends on the number of logical
processors on the machine and on there being one thread running one event loop. We can
configure this number via code as well while creating the host.

The following is an excerpt from the Program.cs file, which is present in all ASP.NET
Core projects:

public class Program
{
 public static void Main(string[] args)
 {
 CreateWebHostBuilder(args).Build().Run();
 }
 public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
 WebHost.CreateDefaultBuilder(args).UseStartup<Startup>();
 }

As you will see, the Kestrel server is based on the builder pattern, and functionality can be
added using the appropriate packages and extension methods. In the following sections, we
will learn how to modify the settings of Kestrel for different versions of .NET Core.

ASP.NET Core 1.x
We can use an extension method called UseLibuv to set the thread count. We can do this
by setting the ThreadCount property, as shown in the following code:

public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseLibuv(opts => opts.ThreadCount = 4)
 .UseStartup<Startup>();

IIS and Kestrel in ASP.NET Core Chapter 12

[255]

WebHost has been replaced by a generic host in .NET Core 3.0. The
following is a code snippet for ASP.NET Core 3.0:

public static IHostBuilder CreateHostBuilder(string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });

ASP.NET Core 2.x
Starting from ASP.NET 2.1, Kestrel has replaced the default transport from libuv for
managed sockets. So, if you are upgrading your project from ASP.NET Core to ASP.NET
2.x or 3.x and still want to use libuv, you need to add
the Microsoft.AspNetCore.Server.Kestrel.Transport.Libuv NuGet package to
make the code work.

Kestrel currently supports the following scenarios:

HTTPS
Opaque upgrades, which are used to enable web sockets (https:/ / github. com/
aspnet/websockets)
Unix sockets behind Nginx for high performance
HTTP/2 (not currently supported on macOS)

Since Kestrel is built on sockets, you can configure the connection limits of them by using
the ConfigureLimits method on Host:

Host.CreateDefaultBuilder(args)
.ConfigureKestrel((context, options) =>
{
 options.Limits.MaxConcurrentConnections = 100;
 options.Limits.MaxConcurrentUpgradedConnections = 100;
}

The default connection limit is unlimited if we set MaxConcurrentConnections to null.

https://github.com/aspnet/websockets
https://github.com/aspnet/websockets
https://github.com/aspnet/websockets
https://github.com/aspnet/websockets
https://github.com/aspnet/websockets
https://github.com/aspnet/websockets
https://github.com/aspnet/websockets
https://github.com/aspnet/websockets
https://github.com/aspnet/websockets
https://github.com/aspnet/websockets

IIS and Kestrel in ASP.NET Core Chapter 12

[256]

Introducing the best practices of threading
in microservices
Microservices are the most popular software design patterns for making very performant
and scalable backend services. Rather than building one service for an entire application,
multiple loosely coupled services are created, with each being responsible for a single
feature. Depending on the load on features, each service can be scaled up or down
individually. Consequently, while designing microservices, the choice of the threading
model you use becomes very important.

Microservices can be stateless or stateful. The choice between stateless and stateful does
have an impact on performance. With stateless services, the requests can be served in any
order without regard to what happened before or after the current request, whereas with
stateful services, all the requests should be processed in a particular order, like a queue.
This can have an impact on performance. Since microservices are asynchronous, we need to
write some logic to make sure the request is processed in the correct order and state after
each request is communicated to the next message. Microservices can be single-threaded or
multithreaded as well, and this choice coupled with the state can really improve or degrade
performance and should be well thought out while planning services.

The microservice design approaches can be categorized as follows:

Single thread-single process microservices
Single thread-multiple processes microservices
Multiple threads-single process microservices

We'll look at these design approaches in more detail in the following sections.

Single thread-single process microservices
This is the most basic design for microservices. The microservice runs on a single thread in
a single CPU core. With every new request from a client, a new thread is created, which
spawns a new process. This takes away the connection pooling caching benefits. While
working with a database, every new process will create a new connection pool. Also, since
only one process can be created at a time, only one client can be served.

The cons of single thread-single process microservices include the fact that it is a waste of
resources and that the throughput of the service doesn't increase when the load is
increased.

IIS and Kestrel in ASP.NET Core Chapter 12

[257]

Single thread-multiple process microservices
The microservice runs on a single thread but can spawn multiple processes, thereby
improving their throughput. Since a new process is created for each client, we cannot take
advantage of connection pooling while connecting to databases. There are some third-party
environments, such as Zend, OpCache, and APC, that provide cross-process opcode caches.

The pros of the single thread-multiple processes microservices approach is that it improves
throughput on load, but note that we cannot take advantage of connection pooling.

Multiple threads-single process
Microservice runs on multiple threads and there is a single long-lived process. With the
same database, we can take advantage of connection pooling and also limit the number of
connections as and when needed. The problem with the single process is that all the threads
will use a shared resource and can have resource contention issues.

The pro of the multiple threads-single process approach is that it improves the performance
of stateless services, whereas its con is that there can be synchronization issues when
sharing a resource.

Asynchronous services
We can avoid performance issues during integration with various application components
by decoupling communication between microservices. Microservices must be created
asynchronously by design to achieve this decoupling.

Dedicated thread pools
If the application flow requires us to connect to various microservices, then it makes more
sense to create a dedicated thread pool for such tasks. With a single thread pool, if a service
starts having issues, then all the threads from the pool can become exhausted. This
can impact the performance of a microservice. This pattern is also known as the Bulkheads
pattern. The following diagram shows two microservices with a shared pool. As you can
see, both microservices use a shared connection pool:

IIS and Kestrel in ASP.NET Core Chapter 12

[258]

The following diagram shows two microservices with dedicated thread pools:

In the next section, we will introduce how async can be used in ASP.NET MVC core.

Introducing async in ASP.NET MVC core
async and await are code markers that help us write asynchronous code using TPL. They
help maintain the structure of code and make it look synchronous while processing code
asynchronously in the background.

IIS and Kestrel in ASP.NET Core Chapter 12

[259]

We introduced async and await in Chapter 9, Async, Await, and Task-
Based Asynchronous Programming Basics.

Now, let's create an asynchronous web API with ASP.NET Core 3.0 and VS 2019 preview.
The API will read a file from the server:

Open Visual Studio 2019 to be presented with the following screen. Create a1.
new ASP.NET Core Web Application project in VS 2019, as shown in the
following screenshot:

Give the project a name and the location where you want it to be created:2.

IIS and Kestrel in ASP.NET Core Chapter 12

[260]

Select the project's type, which in our case is API, and click Create:3.

IIS and Kestrel in ASP.NET Core Chapter 12

[261]

Now, create a new folder in our project called Files and add a file named4.
data.txt that contains the following content:

Next, we will modify the Get method in ValuesController.cs, as follows:5.

[HttpGet]
public ActionResult<IEnumerable<string>> Get()
{
 var filePath = System.IO.Path.Combine(
 HostingEnvironment.ContentRootPath,"Files","data.txt");
 var text = System.IO.File.ReadAllText(filePath);
 return Content(text);
}

This is a simple method that reads a file from the server and returns the content as a string
to the user. The problem with this code is that, when File.ReadAllText is called, the
calling thread will be blocked until the file is read completely. As we now know, our
server's response will be to make the call asynchronous, as follows:

[HttpGet]
public async Task<ActionResult<IEnumerable<string>>> GetAsync()
{
 var filePath = System.IO.Path.Combine(
 HostingEnvironment.ContentRootPath, "Files", "data.txt");
 var text = await System.IO.File.ReadAllTextAsync(filePath);

IIS and Kestrel in ASP.NET Core Chapter 12

[262]

 return Content(text);
}

The ASP.NET Core web API supports all the new features of parallel programming,
including async, as we have seen from the preceding code example.

Async streams
.NET Core 3.0 also introduced asynchronous streams support. IAsyncEnumerable<T> is
the asynchronous version of IEnumerable<T>. This new feature allows developers to
await foreach loops over IAsyncEnumerable<T> to consume elements from the stream
and use yield to return a stream to produce elements.

This is very important in scenarios where we want to iterate over elements asynchronously
and perform some compute operations on iterated elements. With more emphasis being on
big data nowadays (which is available as streamed output), it makes more sense to go for
async streams, which support high volumes of data while making servers responsive by
efficiently utilizing threads at the same time.

Two new interfaces have been added to support async streams:

public interface IAsyncEnumerable<T>
{
 public IAsyncEnumerator<T> GetEnumerator();
}
public interface IAsyncEnumerator<out T>
{
 public T Current { get; }
 public Task<bool> MoveNextAsync();
}

As you can see from the definition of IAsyncEnumerator, MoveNext has been made
asynchronous. This has two benefits:

It's easy to cache Task<bool> over Task<T> so that there will be fewer memory
allocations
Existing collections just need to add one extra method to support asynchronous
behaviors

Let's try to understand this using some sample code that enumerates numbers at odd
indexes asynchronously.

IIS and Kestrel in ASP.NET Core Chapter 12

[263]

Here is a custom enumerator:

class OddIndexEnumerator : IAsyncEnumerator<int>
{
 List<int> _numbers;
 int _currentIndex = 1;
 public OddIndexEnumerator(IEnumerable<int> numbers)
 {
 _numbers = numbers.ToList();
 }
 public int Current
 {
 get
 {
 Task.Delay(2000);
 return _numbers[_currentIndex];
 }
 }
 public ValueTask DisposeAsync()
 {
 return new ValueTask(Task.CompletedTask);
 }
 public ValueTask<bool> MoveNextAsync()
 {
 Task.Delay(2000);
 if (_currentIndex < _numbers.Count() - 2)
 {
 _currentIndex += 2;
 return new ValueTask<bool>(Task.FromResult<bool>(true));
 }
 return new ValueTask<bool>(Task.FromResult<bool>(false));
 }
}

As you can see from the MoveNextAsync() method we defined in the preceding code, this
method starts with an odd index (that is, index 1) and keeps reading items at odd indexes.

The following is our collection, which makes use of the custom enumeration logic we
created previously and implements the GetAsyncEnumerator() method of
the IAsyncEnumerable<T> interface to return the OddIndexEnumerator enumerator we
created:

class CustomAsyncIntegerCollection : IAsyncEnumerable<int>
{
 List<int> _numbers;
 public CustomAsyncIntegerCollection(IEnumerable<int> numbers)
 {

IIS and Kestrel in ASP.NET Core Chapter 12

[264]

 _numbers = numbers.ToList();
 }
 public IAsyncEnumerator<int> GetAsyncEnumerator(
 CancellationToken cancellationToken = default)
 {
 return new OddIndexEnumerator(_numbers);
 }
}

Here is our magic extension method, which will convert our custom collection into
an AsyncEnumerable. As you can see, it works on any collection that
implements IEnumerable<int> and wraps the underlying collection
with CustomAsyncIntegerCollection, which, in turn,
implements IAsyncEnumerable<T>:

public static class CollectionExtensions
{
 public static IAsyncEnumerable<int> AsEnumerable(this
 IEnumerable<int> source) => new CustomAsyncIntegerCollection(source);
}

Once all the pieces are in place, we can create a method that returns an asynchronous
stream. We can see how items are generated by using the yield keyword:

static async IAsyncEnumerable<int> GetBigResultsAsync()
{
 var list = Enumerable.Range(1, 20);
 await foreach (var item in list.AsEnumerable())
 {
 yield return item;
 }
}

The following code calls the stream. Here, we call the GetBigResultsAsync() method,
which returns IAsyncEnumerable<int> inside a foreach loop and then iterates over it
asynchronously:

async static Task Main(string[] args)
{
 await foreach (var dataPoint in GetBigResultsAsync())
 {
 Console.WriteLine(dataPoint);
 }
 Console.WriteLine("Hello World!");
}

IIS and Kestrel in ASP.NET Core Chapter 12

[265]

The following is the output of the preceding code. As you can see, it generated numbers at
the odd indexes in the collection:

In this section, we introduced async streams, which make it very efficient for us to iterate
over a collection in parallel without blocking the caller thread, which is something that's
been missing since TPL was introduced.

Now, let's take a look at what we covered in this chapter.

Summary
In this chapter, we discussed IIS threading models and making changes to .NET Core
implementations of a server by going from using libuv to .NET Core 2.0 in order to
manage sockets from .NET Core 2.1 onward. We also discussed ways to improve the
performance of IIS, Kestrel, and some thread pool algorithms such as Starvation Avoidance
and Hill Climbing. We introduced the concepts of microservices and various threading
patterns that are used in microservices, such as single thread-single process microservices,
single thread-multiple process microservices, and multiple threads-single process
microservices.

IIS and Kestrel in ASP.NET Core Chapter 12

[266]

We also discussed the process of using async in ASP.NET MVC Core 3.0 and introduced
the new concept of async streams in .NET Core 3.0, as well as its usage. Async streams can
be very handy in big data scenarios in which the load on servers can be huge due to a rapid
influx of data.

In the next chapter, we will learn about some patterns that are commonly used in parallel
and asynchronous programming. These patterns will enhance our understanding of
parallel programming.

Questions
Which of these is used to host web applications?1.

IWebHostBuilder1.
IHostBuilder2.

Which of the following ThreadPool algorithms tries to maximize the2.
throughput using as few threads as possible?

Hill Climbing1.
Starvation Avoidance2.

Which is not a valid microservice design approach?3.
Single thread-single process 1.
Single thread-multiple processes2.
Multiple threads-single process3.
Multiple threads-multiple processes4.

We can await foreach loops in new versions of .NET Core.4.
True1.
False2.

13
Patterns in Parallel

Programming
In the previous chapter, we introduced threading models in IIS and Kestrel and how
they can be optimized to improve performance, as well as some new async feature support
in .NET Core 3.0.

In this chapter, we will introduce parallel programming patterns and focus on
understanding the parallel code problem scenarios and solving them using parallel
programming/async techniques.

Although there are numerous patterns that have been utilized in parallel programming
techniques, we will limit ourselves to explaining the most important ones.

In this chapter, we will cover the following topics:

MapReduce

Aggregation
Fork/join
Speculative processing
Laziness
Shared state

Technical requirements
Knowledge of C# and parallel programming is required in order to understand this
chapter. The source code for this chapter can be found on GitHub at https:/ / github. com/
PacktPublishing/-Hands- On- Parallel- Programming- with- C-8-and- .NET- Core- 3/ tree/
master/Chapter13.

https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter13
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter13
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter13
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter13
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter13
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter13
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter13
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter13
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter13
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter13
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter13
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter13
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter13
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter13
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter13
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter13
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter13
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter13
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter13
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter13
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter13
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter13
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter13
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter13
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter13
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter13
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter13
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter13
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter13
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter13
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter13
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter13
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter13
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter13
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter13
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter13
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter13
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter13
https://github.com/PacktPublishing/-Hands-On-Parallel-Programming-with-C-8-and-.NET-Core-3/tree/master/Chapter13

Patterns in Parallel Programming Chapter 13

[268]

The MapReduce pattern
The MapReduce pattern was introduced in order to handle big data problems such as large-
scale computing requirements spanning across a cluster of servers. The pattern can also be
used on single-core machines.

A MapReduce program is composed of two tasks: map and reduce. The input for the
MapReduce program is passed as a set of key-value pairs and the output is also received as
such.

To implement this pattern, we need to start by writing a map function that takes in data
(key/value pair) as a single input value and converts it into another set of intermediate data
(key/value pair). The user then writes a reduce function that takes the output from the map
function (key/value pair) as input and combines the data with a smaller dataset containing
any number of rows of data.

Let's look at how to implement a basic MapReduce pattern using LINQ and convert it into a
PLINQ-based implementation.

Implementing MapReduce using LINQ
The following is a typical graphical representation of the MapReduce pattern. The input
goes through various mapped functions, with each returning a set of mapped values as
output. These are then grouped and joined by Reduce() functions to create the final
output:

Patterns in Parallel Programming Chapter 13

[269]

Follow these steps to implement the MapReduce pattern using LINQ:

First, we need to write a map function with a single input value that returns a set1.
of mapped values. We can use LINQ's SelectMany function for this.
Then, we need to group data according to the intermediate key. We can use2.
LINQ's GroupBy method for this.
Finally, we need a reduce method that will take an intermediate key as input. It3.
will also take a corresponding set of values for that and produce output. We can
use SelectMany for this.
Our final MapReduce pattern will now look as follows:4.

public static IEnumerable<TResult> MapReduce<TSource, TMapped,
TKey, TResult>(
this IEnumerable<TSource> source,
Func<TSource, IEnumerable<TMapped>> map,
Func<TMapped, TKey> keySelector,
Func<IGrouping<TKey, TMapped>, IEnumerable<TResult>> reduce)
{
return source.SelectMany(map)
.GroupBy(keySelector)
.SelectMany(reduce);
}

Now, we can change the input and output so that it works with5.
ParallelQuery<T> rather than IEnumerable<T>, as follows:

public static ParallelQuery<TResult> MapReduce<TSource, TMapped,
TKey, TResult>(
this ParallelQuery<TSource> source,
Func<TSource, IEnumerable<TMapped>> map,
Func<TMapped, TKey> keySelector,
Func<IGrouping<TKey, TMapped>, IEnumerable<TResult>> reduce)
{
return source.SelectMany(map)
.GroupBy(keySelector)
.SelectMany(reduce);
}

Patterns in Parallel Programming Chapter 13

[270]

The following is an example of using the custom implementation of MapReduce in .NET
Core. The program generates some positive and negative random numbers in a range.
Then, it applies a map to filter out any positive numbers and group them by number.
Finally, it applies the reduce function to return a list of numbers, along with their counts:

private static void MapReduceTest()
{
 //Maps only positive number from list
 Func<int, IEnumerable<int>> mapPositiveNumbers = number =>
 {
 IList<int> positiveNumbers = new List<int>();
 if (number > 0)
 positiveNumbers.Add(number);
 return positiveNumbers;
 };
 // Group results together
 Func<int, int> groupNumbers = value => value;
 //Reduce function that counts the occurrence of each number
 Func<IGrouping<int, int>,IEnumerable<KeyValuePair<int, int>>>
 reduceNumbers = grouping => new[] {
 new KeyValuePair<int, int>(grouping.Key, grouping.Count())
 };
 // Generate a list of random numbers between -10 and 10
 IList<int> sourceData = new List<int>();
 var rand = new Random();
 for (int i = 0; i < 1000; i++)
 {
 sourceData.Add(rand.Next(-10, 10));
 }
 // Use MapReduce function
 var result = sourceData.AsParallel().MapReduce(mapPositiveNumbers,
 groupNumbers,
 reduceNumbers);
 // process the results
 foreach (var item in result)
 {
 Console.WriteLine($"{item.Key} came {item.Value} times");
 }
}

The following is an excerpt from the output we receive if we run the preceding program
code in Visual Studio. As you can see, it iterates the provided list and finds the count of
how many times the numbers occurred:

Patterns in Parallel Programming Chapter 13

[271]

In the next section, we will discuss another common and important parallel design pattern
called aggregation. While the MapReduce pattern acts as a filter, aggregation just combines
all the data from the input and puts it in another format.

Aggregation
Aggregation is another common design pattern that's used in parallel applications. In
parallel programs, the data is divided into units so that it can be processed across cores by a
number of threads. At some point, there is a need to combine data from all the relevant
sources before it can be presented to the user. This is where aggregation comes into the
picture.

Now, let's explore the need for aggregation and what is provided by PLINQ.

A common use case of aggregation is as follows. Here, we are trying to iterate a set of
values, perform some operations, and return the result to the caller:

var output = new List<int>();
var input = Enumerable.Range(1, 50);
Func<int,int> action = (i) => i * i;
foreach (var item in input)
{
 var result = action(item);
 output.Add(result);
}

Patterns in Parallel Programming Chapter 13

[272]

The problem with the preceding code is that the output isn't thread-safe. Due to this, to
avoid cross-threading issues, we need to make use of synchronization primitives:

var output = new List<int>();
var input = Enumerable.Range(1, 50);
Func<int, int> action = (i) => i * i;
Parallel.ForEach(input, item =>
{
 var result = action(item);
 lock (output)
 output.Add(result);
});

The preceding code works well if the computation that's done per item is small. However,
as the computation that's done per item increases the cost of taking and releasing, the lock
will also increase. This results in degraded performance. Concurrent collections, which we
discussed in Chapter 6, Using Concurrent Collections, comes to the rescue here. With
concurrent collections, we don't have to worry about synchronizations. The following code
snippet is using concurrent collection:

var input = Enumerable.Range(1, 50);
Func<int, int> action = (i) => i * i;
var output = new ConcurrentBag<int>();
Parallel.ForEach(input, item =>
{
 var result = action(item);
 output.Add(result);
});

PLINQ also defines methods that help with aggregation and handle synchronization. Some
of these methods are ToArray, ToList, ToDictionary, and ToLookup:

var input = Enumerable.Range(1, 50);
Func<int, int> action = (i) => i * i;
var output = input.AsParallel()
 .Select(item => action(item))
 .ToList();

In the preceding code, the ToList() method takes care of aggregating all the data while
also dealing with synchronization. Some implementation patterns are available in TPL and
are built into programming languages. One of them is the fork/join pattern, which we will
discuss next.

Patterns in Parallel Programming Chapter 13

[273]

The fork/join pattern
In fork/join patterns, work is forked (split) into a set of tasks that can be executed
asynchronously. Later, the forked work is joined in the same order or a different order, as
per the requirements and scope of parallelization. We have already seen some common
examples of fork/join patterns in this book when we discussed delightfully parallel loops.
Some implementations of fork/join are as follows:

Parallel.For

Parallel.ForEach

Parallel.Invoke

System.Threading.CountdownEvent

Utilizing these framework-provided methods aids in faster development without
developers having to worry about synchronization overheads. These patterns result in high
throughput. To achieve high throughput and to reduce latency, another pattern, called
speculative processing, is widely used.

The speculative processing pattern
The speculative processing pattern is another parallel programming pattern that relies on
high throughput to reduce latency. This is very useful in scenarios where there are multiple
ways of performing a task but the user doesn't know which way will return the results
fastest. This approach creates a task for each possible method, which is then executed
across processors. The task that finishes first is used as output, ignoring the others (which
may still complete successfully but are slow).

The following is a typical SpeculativeInvoke representation. It accepts an array of
Func<T> as parameters and executes them in parallel until one of them returns:

public static T SpeculativeInvoke<T>(params Func<T>[] functions)
{
 return SpeculativeForEach(functions, function => function());
}

The following method executes each action that's passed to it in parallel and breaks out of a
parallel loop by calling the ParallelLoopState.Stop() method as soon as any of the
called implementations execute successfully:

public static TResult SpeculativeForEach<TSource, TResult>(
 IEnumerable<TSource> source,

Patterns in Parallel Programming Chapter 13

[274]

 Func<TSource, TResult> body)
{
 object result = null;
 Parallel.ForEach(source, (item, loopState) =>
 {
 result = body(item);
 loopState.Stop();
 });
 return (TResult)result;
}

The following code uses two different logics to calculate the square of 5. We will pass both
approaches to the SpeculativeInvoke method and print the result as soon as possible:

Func<string> Square = () => {
 Console.WriteLine("Square Called");
 return $"Result From Square is {5 * 5}";
 };
Func<string> Square2 = () =>
 {
 Console.WriteLine("Square2 Called");
 var square = 0;
 for (int j = 0; j < 5; j++)
 {
 square += 5;
 }
 return $"Result From Square2 is {square}";
 };
string result = SpeculativeInvoke(Square, Square2);
Console.WriteLine(result);

Here is the output of the preceding code:

As you will see, both methods finish but only the output of the first finished execution is
returned to the caller. Creating too many tasks can have an adverse effect on system
memory as more and more variables need to be allocated and kept in memory. Therefore,
it becomes very important to allocate objects only when they are actually required. Our
next pattern helps us achieve this.

Patterns in Parallel Programming Chapter 13

[275]

The lazy pattern
Lazy is another programming pattern that is used by application developers to improve
application performance. Laziness is about delaying computation until it's actually needed.
In a best-case scenario, the computation might not be needed at all, which helps in not
wasting compute resources and thus improving the performance of the system as a whole.
Lazy evaluation is not new to computing, and LINQ uses lazy loading heavily. LINQ follows
the deferred execution model in which queries are not executed until we call MoveNext()
on them using some iterator functions.

The following is an example of a thread-safe lazy singleton pattern that utilizes some heavy
compute operations for creation and is thus deferred:

public class LazySingleton<T> where T : class
 {
 static object _syncObj = new object();
 static T _value;
 private LazySingleton()
 {
 }
 public static T Value
 {
 get
 {
 if (_value == null)
 {
 lock (_syncObj)
 {
 if (_value == null)
 _value = SomeHeavyCompute();
 }
 }
 return _value;
 }
 }
 private static T SomeHeavyCompute() { return default(T); }
 }

A lazy object is created by calling the LazySingleton<T> class's Value property. Laziness
guarantees that an object is not created until the Value property is called. Once created, the
singleton implementation ensures that the same object is returned on subsequent calls. A
null check on _value avoids creating a lock on subsequent calls, thereby saving some
memory I/O operations and improving performance.

Patterns in Parallel Programming Chapter 13

[276]

We can get around writing so much code by making use of System.Lazy<T>, as shown in
the following code example:

public class MyLazySingleton<T>
{
 //Declare a Lazy<T> instance with initialization
 //function (SomeHeavyCompute)
 static Lazy<T> _value = new Lazy<T>();
 //Value property to return value of Lazy instance when
 //actually required by code
 public T Value { get { return _value.Value; } }
 //Initialization function
 private static T SomeHeavyCompute()
 {
 return default(T);
 }
}

While working with asynchronous programming, we can combine the power of Lazy<T>
with TPL to achieve significant results.

The following is an example of using both Lazy<T> and Task<T> to implement lazy and
asynchronous behavior:

var data = new Lazy<Task<T>>(() =>
Task<T>.Factory.StartNew(SomeHeavyCompute));

We can access the underlying Task through the data.Value property. The underlying
lazy implementation will ensure that the same task instance is returned every time, no
matter how many times you call the data.Value property. This is useful in scenarios
where you don't want to launch many threads and just want to launch a single thread that
may carry out some asynchronous processing.

Consider the following piece of code, which fetches data from a service and saves it to an
Excel or CSV file from two different thread implementations:

public static string GetDataFromService()
{
 Console.WriteLine("Service called");
 return "Some Dummy Data";
}

Patterns in Parallel Programming Chapter 13

[277]

The following are two example methods that have logic we can save as text or in CSV
format:

public static void SaveToText(string data)
{
 Console.WriteLine("Save to Text called");
 //Save to Text
}
public static void SaveToCsv(string data)
{
 Console.WriteLine("Save to CSV called");
 //Save to CSV
}

The following code shows how we can wrap the service call inside lazy and make sure
that a service call is made only once while the output can be used asynchronously. As you
can see, we have wrapped the lazy initialization method as a task using
Task.Factory.StartNew(GetDataFromService):

 //
 Lazy<Task<string>> lazy = new Lazy<Task<string>>(
 Task.Factory.StartNew(GetDataFromService));
 lazy.Value.ContinueWith((s)=> SaveToText(s.Result));
 lazy.Value.ContinueWith((s) => SaveToCsv(s.Result));

The following is the output of the preceding code:

As you can see, the service is only called once. Whenever you need to create objects, the
lazy pattern is an advisable proposition for developers. When we create multiple tasks, we
face problems associated with the synchronization of resources. An understanding of
shared state patterns comes in handy in these scenarios.

Patterns in Parallel Programming Chapter 13

[278]

Shared state pattern
We covered the implementation of these patterns in Chapter 5, Synchronization Primitives.

A parallel application has to deal with a shared state problem constantly. The application
will have some data members that need to be protected when they're accessed in a
multithreaded environment. There are many ways to deal with shared state problems, such
as using Synchronization, Isolation, and Immutability. Synchronization can be
achieved using the synchronization primitives provided by the .NET Framework and it can
also provide mutual exclusion over a shared data member. Immutability guarantees only
one state for a data member and never changes. Consequently, the same state can be shared
across threads without any issues. Isolation deals with each thread having its own copy of
data members.

Now, we'll summarize what we learned in this chapter.

Summary
In this chapter, we introduced various patterns of parallel programming and provided
examples of each. Though not an exhaustive list, these patterns can prove to be a good
starting point for parallel application programming developers.

In a nutshell, we discussed the MapReduce pattern, the speculative processing pattern, the
lazy pattern, and the aggregation pattern. We also introduced some implementation
patterns, such as fork/join and the shared state pattern, both are which are used in .NET
Framework libraries for parallel programming.

In the next chapter, we will introduce distributed memory management and focus on
understanding the shared memory model as well as the distributed memory model. We
will also discuss various types of communication networks and their properties with
example implementations.

Patterns in Parallel Programming Chapter 13

[279]

Questions
Which of these is not an implementation of the fork/join pattern?1.

System.Threading.Barrier1.
System.Threading.Countdown2.
Parallel.For3.
Parallel.ForEach4.

Which of these is the implementation of the lazy pattern in TPL? 2.
Lazy<T>1.
LazySingleton2.
LazyInitializer3.

Which pattern relies on achieving high throughput to reduce latency?3.
Lazy1.
Shared state2.
Speculative processing3.

Which pattern can you use if you need to filter out data from a list and return a4.
single output?

Aggregation1.
MapReduce2.

14
Distributed Memory

Management
In the last two decades, the industry has seen a paradigm shift to big data and machine
learning architectures that involve processing terabytes/petabytes of data as quickly as
possible. As computing power became cheaper, there was a need to use multiple processors
to speed up processing to a larger scale. This has led to distributed computing. Distributed
computing refers to an arrangement of computer systems that are connected via some
networking/distribution middleware. All the connected systems share resources and
coordinate their activities via middleware so that they work in a way that is perceived as a
single system by the end user. Distributed computing is needed due to the huge volume
and throughput requirements of modern applications. Some typical examples of scenarios
where computing demands cannot be fulfilled by a single system and that need to be
distributed across a grid of computers are as follows:

Google performs at least 1.5 trillion searches per year.
IOT devices send multiple terabytes of data to event hubs.
Data warehouses receive and compute terabytes of records in minimal time.

In this chapter, we will discuss distributed memory management and the need for
distributed computing. We will also learn about how messages are passed across
communication networks for distributed systems, as well as various types of
communicated networks.

Distributed Memory Management Chapter 14

[281]

This chapter will cover the following topics:

Advantages of distributed systems
Shared memory model versus distributed memory model
Types of communication network
Properties of communication networks
Exploring topologies
Programming distributed memory machines using message passing
Collectives

Technical requirements
To complete this chapter, you'll need knowledge of programming in C and C# Windows
platform API invocation programming.

Introduction to distributed systems
We have already discussed how distributed computing works in this book. In this section,
we will try to understand distributed computing with a small example that works on
arrays.

Let's say we have an array of 1,040 elements and we would like to find the sum of all the
numbers:

a = [1,2,3, 4...., n]

If the total time that's taken to add numbers is x (let's say all of the numbers are large) and
we want to compute them all as fast as possible, we can take advantage of distributed
computing. We would divide the array into multiple arrays (let's say, four arrays), each
with 25% of the original number of elements, and send each array to a different processor to
calculate the sum, as follows:

Distributed Memory Management Chapter 14

[282]

In this arrangement, the total time that's taken to add all the numbers is reduced to (x/4 + d)
or (x/number of processors +d), where d is the time that's taken to collate the sums from all
the processors and add them to get the final results.

Some of the advantages of distributed systems are as follows:

Systems can be scaled to any level without any hardware restrictions
No single point of failure, which makes them more fault-tolerant
Highly available
Very efficient when handling big data problems

Distributed systems are often confused with parallel systems, but there are subtle
differences between them. Parallel systems are an arrangement of multi-processors that are
placed mostly in single, but sometimes in multiple, containers in close vicinity. Distributed
systems, on the other hand, consist of multiple processors (each having its own memory
and I/O devices) that are connected together via a network that enables data exchange.

Shared versus distributed memory model
To achieve high performance, the multi-processor and multi-computer architectures have
evolved. With the multi-processor architecture, multiple processors share a common
memory and communicate with each other by reading/writing to the shared memory. With
multi-computers, multiple computers that don't share a single physical memory
communicate with each other by passing messages. Distributed Shared Memory (DSM)
deals with sharing memory in a physical, non-shared (distributed) architecture.

Let's look at each one and talk about their differences.

Distributed Memory Management Chapter 14

[283]

Shared memory model
In the case of shared memory models, multiple processors share a single common memory
space. Since multiple processors share memory space, there needs to be some
synchronization measures in place to avoid data corruption and race conditions. As we
have seen so far in this book, synchronization comes with performance overheads. The
following is an example representation of the shared memory model. As you can see, there
are n processors in the arrangement, all of which have access to a commonly shared
memory block:

The features of the shared memory model are as follows:

All the processors have access to the entire memory block. The memory block can
be a single piece of memory composed of memory modules, as shown in the
following diagram:

Distributed Memory Management Chapter 14

[284]

Processors communicate with each other by creating shared variables in the main
memory.
The efficiency of parallelization largely depends on the speed of the service bus.
Due to the speed of the service bus, the system can only be scaled up to n number
of processors.

Shared memory models are also known as symmetric multiprocessing (SMP) models since
all the processors have access to all the available memory blocks.

Distributed Memory Management Chapter 14

[285]

Distributed memory model
In the case of the distributed memory model, the memory space is no longer shared across
processors. In fact, the processors don't share common physical locations; instead, they can
be remotely placed. Each processor has its own private memory space and I/O devices.
Data is stored across processors rather than in single memory. Each processor can work on
its own local data, but to access data that's been stored in other processor memories, they
need to connect via a communication network. Data is passed via message passing across
processors using the send message and receive message instructions. The following is a
diagrammatic representation of a distributed memory model:

Distributed Memory Management Chapter 14

[286]

The preceding diagram depicts each processor, along with its own memory space and
interaction with communication networks via I/O interfaces. Let's try to understand the
various types of communication networks that can be used in distributed systems.

Types of communication network
Communication networks are the links that connect two or more nodes in a typical
computer network. Communication networks are classified into two categories:

Static communication networks
Dynamic communication networks

Let's take a look at both.

Static communication networks
Static communication networks contain links, as shown in the following diagram:

Links are used to connect nodes together, thereby creating a complete communication
network where any node can talk to any other node.

Distributed Memory Management Chapter 14

[287]

Dynamic communication networks
Dynamic communication networks have links and switches, as shown in the following
diagram:

Switches are devices that have input/output ports, and they redirect input data to output
ports. This means that pathways are dynamic. If one processor wants to send data to
another, it needs to be done via a switch, as demonstrated in the preceding diagram.

Properties of communication networks
While designing a communication network, we need to consider the following
characteristics:

Topology
Routing algorithm
Switching strategy
Flow control

Let's look at these characteristics in more detail.

Topology
Topology refers to how nodes (bridges, switches, and infrastructure devices) are connected.
Some common topologies include crossbar, ring, 2D mesh, 3D mesh, higherD mesh, 2D
torus, 3D torus, higherD torus, hypercube, tree, butterfly, perfect shuffle, and dragonfly.

Distributed Memory Management Chapter 14

[288]

In the case of the crossbar topology, every node in the network is connected to every other
node (though they may not be connected directly). Thus, messages can be passed via a
number of routes to avoid any conflicts. Here is a typical crossbar topology:

In the case of the mesh topology, or meshnet, as it's popularly called, nodes connect to each
other directly without having a dependency on other nodes in the network. This way, all
the nodes can relay information independently. The mesh can be partially or fully
connected. Here is a typical fully connected mesh:

We will look at topology in more detail later in this chapter, in the Exploring
topologies section.

Routing algorithms
Routing is a process via which a packet of information is sent across the network so that it
reaches the intended node. Routing can be adaptive, that is, it responds to changes in the
network topology by continuously taking information from adjacent nodes, or non-
adaptive, that is, they are static and is where routing information is downloaded to nodes
when the network is booted. Routing algorithms need to be chosen to make sure there are
no deadlocks. For example, in 2D torus, all the pathways go from east to west and north to
south to avoid any deadlock scenarios. We will look at 2D torus in more detail later in this
chapter.

Distributed Memory Management Chapter 14

[289]

Switching strategy
Choosing an appropriate switching strategy can increase the performance of a network. The
two most prominent switching strategies are as follows:

Circuit switching: In circuit switching, the full path is reserved for an entire
message, such as the telephone. To begin a call on a telephone network, a
dedicated circuit needs to be established between the caller and callee and the
circuit persists during the entire call duration.
Packet switching: In packet switching, the message is broken into separately
routed packets, such as the internet. In terms of cost benefits, it's far better than
circuit switching as the cost of the link is shared across users. Packet switching is
primarily used for asynchronous scenarios such as sending emails or file transfer.

Flow control
Flow control is a process by which a network makes sure that packets are transferred across
the sender and received efficiently and without error. In the case of the network topology,
the speeds of the sender and receiver can vary, which can lead to bottlenecks or loss of
packets in some cases. With flow control, we can make decisions in case there's congestion
on the network. Some strategies include storing data temporarily into buffers, rerouting
data to other nodes, instructing source nodes to temporarily halt, discarding data, and so
on. The following are some common flow control algorithms:

Stop and wait: The entire message is broken into parts. The sender sends a part
to the receiver and waits for an acknowledgement to come within a specific time
period (timeout). Once the sender receives an acknowledgment, it sends the next
part of the message.
Sliding window: The receiver assigns a transmitting window for a sender to
send messages. The sender has to stop transmitting when the window is full so
that the receiver can process messages and advertise the next transmitting
window. This approach works best when the receiver is storing data in a buffer
and thus can only receive the buffer capacity.

Distributed Memory Management Chapter 14

[290]

Exploring topologies
So far, we've looked at some complete communication networks where each processor can
communicate with the others directly, without the need for any switch. This arrangement
serves well when there is a small number of processors but can become a real pain if the
number of processors needs to be increased. There are various other performance
topologies available that can be used. There are two important aspects while measuring the
performance of a graph in a topology:

The diameter of the graph: The longest path between the nodes.
Bisection bandwidth: The bandwidth across the smallest cut that divides the
network into two equal halves. This is important for networks where each
processor needs to communicate with the others.

The following are examples of some network topologies.

Linear and ring topologies
These topologies work well with 1D arrays. In the case of the linear topology, all the
processors are in a linear arrangement with one input and output flow, whereas in the case
of the ring topology, processors form a loop back to the start processor.

Let's look at them in more detail.

Linear arrays
All the processors are in a linear arrangement, as shown in the following diagram:

Distributed Memory Management Chapter 14

[291]

This arrangement will have the following values for the diameter and bisection bandwidth:

Diameter = n-1, where n is the number of processors
Bisection bandwidth = 1

Ring or torus
All the processors are in ring arrangements and information flows from one processor to
another, making a loopback to the originating processor. Then, this makes a ring, as shown
in the following diagram:

This arrangement will have the following values for the diameter and bisection bandwidth:

Diameter = n/2, where n is the number of processors
Bisection bandwidth = 2

Meshes and tori
These topologies work well with 2D and 3D arrays. Let's look at them in more detail.

Distributed Memory Management Chapter 14

[292]

2D mesh
In the case of the mesh, nodes connect to each other directly without having a dependency
on other nodes in a network. All the nodes are in a 2D mesh arrangement, as shown in the
following diagram:

This arrangement will have the following values for the diameter and bisection bandwidth:

Diameter = 2 * (sqrt (n) – 1), where n is the number of processors
Bisection bandwidth = sqrt(n)

Distributed Memory Management Chapter 14

[293]

2D torus
All the processors are in a 2D torus arrangement, as shown in the following diagram:

This arrangement will have the following values for the diameter and bisection bandwidth:

Diameter = sqrt(n), where n is the number of processors
Bisection bandwidth = 2 * sqrt(n)

Programming distributed memory machines
using message passing
In this section, we will discuss how to program distributed memory machines using
Microsoft's message passing interface (MPI).

Distributed Memory Management Chapter 14

[294]

MPI is a standard, portable system that has been developed for distributed and parallel
systems. It defines the basic set of functions that are utilized by parallel hardware vendors
to support distributed memory communication. In the following sections, we will discuss
the advantages of using MPI over old messaging libraries and explain how to install and
run a simple MPI program.

Why MPI?
An advantage of MPI is that MPI routines can be called from a variety of languages, such as
C, C++, C#, Java, Python, and more. MPI is highly portable compared to old messaging
libraries, and MPI routines are speed-optimized for each piece of hardware that they are
supposed to run.

Installing MPI on Windows
MPI can be downloaded and installed as a ZIP file from https:/ /www. open- mpi. org/
software/ompi/v1. 10/ .

Alternatively, you can download the Microsoft version of MPI from https:/ /github. com/
Microsoft/Microsoft- MPI/ releases.

Sample program using MPI
The following is a simple HelloWorld program that we can run using MPI. The program
prints the processor number that the code is being executed on after a delay of two seconds.
The same code can be run on multiple processors (we are able to specify the processor
count).

Let's create a new console application project in Visual Studio and write the following code
in the Program.cs file:

[DllImport("Kernel32.dll"), SuppressUnmanagedCodeSecurity]
public static extern int GetCurrentProcessorNumber();

static void Main(string[] args)
{
 Thread.Sleep(2000);
 Console.WriteLine($"Hello {GetCurrentProcessorNumber()} Id");
}

https://www.open-mpi.org/software/ompi/v1.10/
https://www.open-mpi.org/software/ompi/v1.10/
https://www.open-mpi.org/software/ompi/v1.10/
https://www.open-mpi.org/software/ompi/v1.10/
https://www.open-mpi.org/software/ompi/v1.10/
https://www.open-mpi.org/software/ompi/v1.10/
https://www.open-mpi.org/software/ompi/v1.10/
https://www.open-mpi.org/software/ompi/v1.10/
https://www.open-mpi.org/software/ompi/v1.10/
https://www.open-mpi.org/software/ompi/v1.10/
https://www.open-mpi.org/software/ompi/v1.10/
https://www.open-mpi.org/software/ompi/v1.10/
https://www.open-mpi.org/software/ompi/v1.10/
https://www.open-mpi.org/software/ompi/v1.10/
https://www.open-mpi.org/software/ompi/v1.10/
https://www.open-mpi.org/software/ompi/v1.10/
https://www.open-mpi.org/software/ompi/v1.10/
https://www.open-mpi.org/software/ompi/v1.10/
https://www.open-mpi.org/software/ompi/v1.10/
https://github.com/Microsoft/Microsoft-MPI/releases
https://github.com/Microsoft/Microsoft-MPI/releases
https://github.com/Microsoft/Microsoft-MPI/releases
https://github.com/Microsoft/Microsoft-MPI/releases
https://github.com/Microsoft/Microsoft-MPI/releases
https://github.com/Microsoft/Microsoft-MPI/releases
https://github.com/Microsoft/Microsoft-MPI/releases
https://github.com/Microsoft/Microsoft-MPI/releases
https://github.com/Microsoft/Microsoft-MPI/releases
https://github.com/Microsoft/Microsoft-MPI/releases
https://github.com/Microsoft/Microsoft-MPI/releases
https://github.com/Microsoft/Microsoft-MPI/releases
https://github.com/Microsoft/Microsoft-MPI/releases
https://github.com/Microsoft/Microsoft-MPI/releases

Distributed Memory Management Chapter 14

[295]

GetCurrentProcessorNumber() is a utility function that gives the processor number of
where our code is being executed. As you can see from the preceding code, there is no
magic – it runs as a single thread and prints Hello and the current processor number.

We will install msmpisetup.exe from the Microsoft MPI link we provided in the Installing
MPI on Windows section. Once installed, we need to execute the following command from
Command Prompt:

C:\Program Files\Microsoft MPI\Bin>mpiexec.exe -n 5 “path to executable “

Here, n signifies the number of processors that we want the program to run on.

The following is the output of the preceding code:

As you can see, we can run the same program on multiple processors using MPI.

Basic send/receive use
MPI is a C++ implementation, and most of the documentation on the Microsoft website will
only be available in C++. However, it's easy to create a .NET compiled wrapper and use it in
any of our projects. There are some third-party .NET implementations available as well for
MPI but, unfortunately, there is no support for .NET Core implementations as of now.

Here is the syntax of an MPI_Send function that sends a buffer of data to another processor:

int MPIAPI MPI_Send(
 _In_opt_ void *buf, //pointer to buffer containing Data to send
 int count, //Number of elements in buffer
 MPI_Datatype datatype,//Datatype of element in buffer
 int dest, //rank of destination process
 int tag, //tag to distinguish between messages
 MPI_Comm comm //Handle to communicator
);

The method returns when the buffer can be safely reused.

Distributed Memory Management Chapter 14

[296]

Here is the syntax of an MPU_Recv function, which will receive a buffer of data from
another processor:

int MPIAPI MPI_Recv(
 _In_opt_ void *buf,
 int count,
 MPI_Datatype datatype,
 int source,
 int tag,
 MPI_Comm comm,
 Out MPI_Status *status //Returns MPI_SUCCESS or the error code.
);

This method doesn't return until the buffer is received.

Here is a typical example of using the send and receive functions:

#include “mpi.h”
#include <iostream>
int main(int argc, char *argv[])
{
int rank, buffer;
MPI::Init(argv, argc);
rank = MPI::COMM_WORLD.Get_rank();
// Process 0 sends data as buffer and Process 1 receives data as buffer
if (rank == 0) {
buffer = 999999;
MPI::COMM_WORLD.Send(&buffer, 1, MPI::INT, 1, 0);
}
else if (rank == 1) {
MPI::COMM_WORLD.Recv(&buffer, 1, MPI::INT, 0, 0);
std::cout << “Data Received “ << buf << “\n”;
}
MPI::Finalize();
return 0;
}

When running via MPI, the communicator will send data that will be received by the
receive function in another processor.

Distributed Memory Management Chapter 14

[297]

Collectives
Collectives, as the name suggests, is a communication method wherein all the processors in
a communicator are involved. Collectives help us achieve these tasks. Two collective
methods that are primarily used for this are as follows:

MPI_BCAST: This distributes data from one (root) process to another processor in
a communicator
MPI_REDUCE: This combines data from all the processors within a communicator
and returns it to the root process

Now that we understand collectives, we have come to the end of this chapter and
ultimately the end of this book. Now, it's time to see what we have learned!

Summary
In this chapter, we discussed distributed memory management implementations. We
learned about distributed memory management models, such as shared memory and
distributed memory processors, as well as their implementation. In the end, we discussed
what an MPI is and how it can be utilized. We also discussed communication networks and
various design considerations for implementing efficient networks. Now, you should have
a good understanding of network topologies, routing algorithms, switching strategies, and
flow controls.

In this book, we have covered various programming constructs that are available in .NET
Core 3.1 to achieve parallel programming. Parallel programming, if used correctly, can
greatly enhance the performance and responsiveness of applications. The new features and
syntaxes that are available in .NET Core 3.1 really make writing/debugging and
maintaining parallel code easier. We also covered how we used to write multithreaded
code before TPL came into being, for comparison's sake.

With new constructs for asynchronous programming (async and await), we learned how to
take full advantage of non-blocking I/Os while the program flow is synchronous. Then, we
discussed new features such as async streams and async main methods, which help us
write async code more easily. We also discussed parallel tooling support in Visual Studio
that can help us debug code better. Finally, we discussed how to write unit test cases for
parallel code to make our code more robust.

Then, we wrapped up this book by introducing distributed programming techniques and
how to use them in .NET Core.

Distributed Memory Management Chapter 14

[298]

Questions
____________ is an arrangement of multi-processors placed mostly in single1.
containers but sometimes in multiple containers in close vicinity to each other.
In the case of the dynamic communication network, any node can send data to2.
any other node.

True1.
False2.

Which of the following are characteristics of a communication network?3.
Topology1.
Switching strategy2.
Flow control3.
Shared memory4.

In the case of the distributed memory model, the memory space is shared across4.
processors.

True1.
False2.

Circuit switching can be used for asynchronous scenarios.5.
True1.
False 2.

Assessments

Chapter 1 – Introduction to Parallel
Programming

21.
22.
23.
24.
25.

Chapter 3 – Implementing Data Parallelism
21.
12.
23.
24.
25.

Chapter 4 – Using PLINQ
21.
12.
23.
24.
15.

Assessments

[300]

Chapter 5 – Synchronization Primitives
31.
42.
33.
14.
15.

Chapter 6 – Using Concurrent Collections
41.
12.
13.
44.

Chapter 7 – Improving Performance with
Lazy Initialization

21.
12.
23.
34.

Chapter 8 – Introduction to Asynchronous
Programming

11.
1, 2, 32.
1, 23.
14.

Assessments

[301]

Chapter 9 – Async, Await, and Task-Based
Asynchronous Programming Basics

21.
1, 2, 32.
13.
14.
15.
26.

Chapter 10 – Debugging Tasks Using Visual
Studio

31.
12.
23.
24.
35.

Chapter 11 – Writing Unit Test Cases for
Parallel and Asynchronous Code

11.
22.
13.
34.
25.

Assessments

[302]

Chapter 12 – IIS and Kestrel in ASP.NET
Core

11.
12.
43.
14.

Chapter 13 – Patterns in Parallel
Programming

11.
22.
33.
24.

Chapter 14 – Distributed Memory
Management

Parallel systems1.
22.
43.
24.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Hands-On Software Architecture with C# 8 and .NET Core 3
Gabriel Baptista, Francesco Abbruzzese

ISBN: 978-1-78980-093-7

Overcome real-world architectural challenges and solve design consideration
issues
Apply architectural approaches like Layered Architecture, service-oriented
architecture (SOA), and microservices
Learn to use tools like containers, Docker, and Kubernetes to manage
microservices
Get up to speed with Azure Cosmos DB for delivering multi-continental
solutions
Learn how to program and maintain Azure Functions using C#
Understand when to use test-driven development (TDD) as an approach for
software development
Write automated functional test cases for your projects

https://www.packtpub.com/programming/hands-on-software-architecture-with-c-8

Other Books You May Enjoy

[304]

Hands-On Design Patterns with C# and .NET Core
Gaurav Aroraa, Jeffrey Chilberto

ISBN: 978-1-78913-364-6

Make your code more flexible by applying SOLID principles
Follow the test-driven development (TDD) approach in your .NET Core projects
Get to grips with efficient database migration, data persistence, and testing
techniques
Convert a console application to a web application using the right MVP
Write asynchronous, multithreaded, and parallel code
Implement MVVM and work with RxJS and AngularJS to deal with changes in
databases
Explore the features of microservices, serverless programming, and cloud
computing

https://www.packtpub.com/in/application-development/hands-design-patterns-c-and-net-core

Other Books You May Enjoy

[305]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

.

.NET Core
 using, for unit testing 237, 238, 239
.NET, LINQ providers
 about 91
 LINQ to ADO.NET 91
 LINQ to datasets 91
 LINQ to entities 91
 LINQ to objects 91
 LINQ to SQL (DLINQ) 91
 LINQ to XML (XLINQ) 91
 Parallel LINQ (PLINQ) 91
.NET
 memory barriers 115

2
2D mesh arrangement 292
2D torus arrangement 293

A
aggregation 271, 272
APM patterns
 converting, into tasks 57, 58, 59
ASP.NET core 1.x
 Kestrel settings, modifying for 254
ASP.NET core 2.x
 Kestrel settings, modifying for 255
ASP.NET MVC core
 asynchronous code 258, 259, 261
AsUnOrdered() method
 used, for sequential execution 95, 96
async code, guidelines
 about 216
 async chain method, calling 216, 217
 async void, avoiding 216
 ConfigureAwait wherever possible, using 217

async code, performance
 measuring 213, 214, 215
async code
 used, for exception handling 205
async methods
 about 198, 199, 201, 202
 return types 202, 203
 with PLINQ 212
async streams 262, 263, 265
asynchronous code
 in ASP.NET MVC core 258, 259, 261
 setup, mocking with Moq 243, 244, 246
 used, for auditing 194
 used, for creating responsive UIs 194
 used, for logging 194
 used, for solving problems 194
 using, for CPU-bound applications 195
 using, for service calls 194
 writing 188, 189
 writing, with BeginInvoke method of Delegate

class 189, 190
 writing, with IAsyncResult interface 191, 192
 writing, with Task class 190, 191
asynchronous delegates
 creating, with async keyword 203
asynchronous program execution 187, 188
Asynchronous Programming Model (APM) 195,

204

asynchronous programming
 avoiding 193, 194
 using 188
asynchronous services 257
attached task
 creating 65
AutoBuffered merge option
 using 97
await method 198, 199, 201, 202

[307]

B
BackgroundWorker
 about 25, 26, 28
 advantages 29
 disadvantage 29
barrier
 about 142
 case study 142, 144, 145
BeginInvoke method, of Delegate class
 used, for writing asynchronous code 189, 190
blocking
 versus spinning 121
BlockingCollection(T)
 creating 158, 159, 160
 using 158
Bulkheads pattern 257

C
Callback delegate
 used, for registering request cancellation 48, 49,

50

CancellationToken
 used, for canceling loops 83, 85
Central Processing Unit (CPU) 9
child tasks 64
chunk partitioning 79, 80
chunks 78
collectives 297
Common Language Runtime (CLR) 22
communication network, types
 about 286
 dynamic communication networks 287
 static communication networks 286
communication networks, properties
 about 287
 flow control 289
 routing algorithms 288
 switching strategy 289
 topology 287, 288
Component Object Model (COM) 12
concurrency 16
Concurrency Visualizer
 Cores view 234
 Threads view 233

 using 231, 232
 Utilization view 232
concurrent collections
 about 150
 BlockingCollection(T), using 158
 concurrent stack, creating 155, 156
 ConcurrentBag(T), using 156, 158
 ConcurrentQueue(T), using 151
 ConcurrentStack(T), using 155
 IProducerConsumerCollection(T) 150, 151
 problems, solving with concurrent queues 153,

154

 producer-consumer problem, solving with
queues 152, 153

 Queue(T), versus ConcurrentQueue(T) 154
concurrent stack
 creating 155, 156
ConcurrentBag(T)
 using 156, 158
ConcurrentDictionary(TKey,TValue)
 using 161, 163
ConcurrentQueue(T)
 using 151
 versus Queue(T) 154
ConcurrentStack(T)
 using 155
constructs
 used, for avoiding code reordering 118
continuation tasks 61
Cores view 234
CountDownEvent
 about 142
 case study 142, 145
custom partitioning strategy
 chunk partitioning 79, 80
 creating 78
 range partitioning 79

D
debugging
 with Parallel Stacks windows 226
 with Parallel Watch windows 229, 230
 with VS 2019 222
dedicated thread pools 257, 258
degree of parallelism 76, 77, 78

[308]

Denial-of-Service (DoS) attack 201
detached task
 creating 64
Direct Memory Access (DMA) 188
distributed memory machines
 programming, with MPI 293
distributed memory model
 about 285, 286
 versus shared memory model 282
Distributed Shared Memory (DSM) 282
distributed systems 281, 282
dynamic communication networks 287

E
Event-Based Asynchronous Pattern (EAP)
 about 28, 195, 199
 converting, into tasks 59, 60, 61
EventWaitHandle
 about 131
 AutoResetEvent 131, 132
 ManualResetEvent 132, 134
exception handling, with async code
 about 205
 method, returning Task and throwing exception

205

exception handling, with lazy initialization pattern
 about 172
 no exceptions 172
 not caching exceptions 175
 random exception 172, 174
exceptions handling, for async methods
 scenarios 206, 207, 208, 209, 210, 211, 212
exceptions
 handling, with PLINQ 100, 101, 102
 throwing, with PLINQ 100, 101, 102

F
finished tasks
 results, obtaining from 45, 46
Floating-Point Operations Per Second (FLOPS)

154

flow control 289
flow control, algorithms
 sliding window 289
 stop and wait 289

Flynn classified computer architectures
 Multiple Instructions, Multiple Data (MIMD) 11
 Multiple Instructions, Single Data (MISD) 11
 Single Instruction, Multiple Data (SIMD) 11
 Single Instruction, Single Data (SISD) 11
fork/join pattern 273
FullyBuffered merge option
 using 98, 100

H
Hill Climbing algorithm 252, 253
hyper-threading (HT)
 about 9, 11
 Flynn's taxonomy 11

I
IAsyncResult interface
 used, for writing asynchronous code 191, 192
IIS threading model
 Hill Climbing algorithm 252, 253
 Starvation Avoidance algorithm 252
 working 251
Intellitest 246
interlocked operations
 about 114, 115
 constructs, used for avoiding code reordering

118, 119
 memory barriers, in .NET 115
 reordering 116
IProducerConsumerCollection(T) 150, 151

J
Just in Time (JIT) 115

K
Kestrel setting
 modifying, for ASP.NET core 1.x 254
 modifying, for ASP.NET core 2.x 255
Kestrel threading model 253, 254

L
lambda expressions
 creating, with async keyword 203
Last In First Out (LIFO) 155

[309]

lazy initialization pattern
 exception handling 172
lazy initialization
 concepts 166, 167, 169
 overhead, reducing 178, 180, 181
 with thread-local storage 176, 177
lazy pattern 275, 276, 277
LFENCE effect 117
lightweight synchronization primitives
 slim locks 138
linear topology
 about 290
 linear arrays 290, 291
LINQ providers
 in .NET 91
LINQ to ADO.NET 91
LINQ to datasets 91
LINQ to entities 91
LINQ to objects 91
LINQ to SQL (DLINQ) 91
LINQ to XML (XLINQ) 91
LINQ
 used, for implementing MapReduce pattern 268,

269, 270, 271
LINQPad
 about 93
 download link 93
lock 122, 123, 125
locking primitives
 about 119
 ReaderWriterLock 129
 thread state 120, 121
 working 119
loops
 canceling 80
 canceling, with CancellationToken 83, 85
 canceling, with Parallel.Break method 81, 82
 canceling, with ParallelLoopState.Stop 83

M
MapReduce pattern
 about 268
 implementing with LINQ 268, 269, 270, 271
memory barriers
 full memory barrier 118

 in .NET 115
 load (read) memory barrier 117
 store (write) memory barrier 117
 types 117
merge options, PLINQ
 about 96
 AutoBuffered merge option 97
 FullyBuffered merge option 98, 100
 NotBuffered merge option 96
mesh topology 291
message passing interface (MPI)
 about 293
 for program 294, 295
 installing, on Windows 294
 need for 294
 used, for programming distributed memory

machines 293
MFENCE effect 118
microservice design approaches
 about 256
 asynchronous services 257
 dedicated thread pools 257, 258
 single thread-multiple process microservices 257
 single thread-single process microservices 256
microservices
 threading, best practices 256
Moq
 used, for mocking setup for async code 243,

244, 246
MPI_Send function 295, 296
MPU_Recv function 295, 296
Multi-Threaded Apartment (MTA) 215
multicore computing, process
 about 8
 operating system (OS) 9
multicore computing
 hyper-threading (HT) 9, 11
 multitasking 9
 multithreading 15, 16
 preparing for 8
 threads 12
Multiple Instruction, Multiple Data (MIMD) 11
multiple producer-consumer
 ConcurrentDictionary(TKey,TValue), using 161,

163

[310]

 scenario 160, 161
multiple threads-single process 257
multitasking 9
multithreading
 versus multitasking 29
mutex 122, 125, 126

N
NotBuffered merge option
 using 96

O
Object Relational Mapping (ORM) 91
operating system (OS) 9
output
 creating, via Thread class 19

P
parallel and async code, unit test cases
 about 242
 result, checking 242, 243
Parallel LINQ (PLINQ)
 about 91
 order, preserving while parallel executions 94,

95

 used, for handling exceptions 100, 101, 102
 used, for throwing exceptions 100, 101, 102
 with async method 212
parallel LINQ queries
 versus sequential LINQ queries 103
parallel loops
 thread storage 85
parallel programming, with PLINQ
 disadvantages 105
parallel programming
 advantages 31
 disadvantages 31
 usage, scenarios 30
Parallel Stacks windows, views
 Tasks view 228, 229
 Threads view 227, 228
Parallel Stacks windows
 used, for debugging 226
 using 226
parallel systems 282

Parallel Watch windows
 used, for debugging 229, 230
Parallel.Break method
 used, for canceling loops 81, 82
Parallel.For method
 used, to move from sequential loops to parallel

loops 74, 75
Parallel.ForEach method
 used, to move from sequential loops to parallel

loops 75, 76
Parallel.Invoke method
 used, to move from sequential loops to parallel

loops 72, 73
ParallelEnumerable class 92, 93
ParallelLoopState.Stop
 used, for canceling loops 83
parents tasks 64
partition local variable 87, 88
performance impact factor, PLINQ
 about 106
 degree of parallelism 106
 ForAll() method, versus Toarray() 108
 ForAll() method, versus ToList() 108
 merge option 106
 order of operation 107
 parallelism, forcing 108
 partitioning type 106
 PLINQ, versus parallelism 107
 sequences, generating 108, 109
PLINQ queries
 about 93, 94
 canceling 104, 105
 ParallelEnumerable class 92, 93
 writing 92
program execution, types
 about 185
 asynchronous program execution 187, 188
 synchronous program execution 185, 186

R
range partitioning 79
ranges 78
ReaderWriterLock class 129
ring topology 290, 291
routing algorithms 288

[311]

running tasks
 waiting on 50

S
semaphore
 about 122, 127, 128
 global semaphore 129
 local semaphore 128
sequential consistency model 115
sequential execution
 with AsUnOrdered() method 95, 96
sequential LINQ queries
 versus parallel LINQ queries 103
sequential loops, to parallel loops
 about 71, 72
 with Parallel.For method 74, 75
 with Parallel.ForEach method 75, 76
 with Parallel.Invoke method 72, 73
sequential
 creating, via Thread class 18
SFENCE effect 117
shared memory model
 about 283, 284
 versus distributed memory model 282
shared state pattern 278
single thread-multiple process microservices 257
Single-Threaded Apartment (STA) 215
slim locks
 about 138
 ManualResetEventSlim 141
 ReaderWriterLockSlim 139, 140
speculative processing pattern 273, 274
SpinLock object
 creating 146, 147
spinning
 versus blocking 121
SpinWait object
 creating 145
Starvation Avoidance algorithm 252
static communication networks 286
switching strategy
 about 289
 circuit switching 289
 packet switching 289
synchronization primitives

 about 113, 129
 categories 113
 EventWaitHandle 131
 interlocked operations 114
 lightweight synchronization primitives 138
 locking primitives 119
 SpinWait object, creating 145
 Thread.Join 130
 WaitHandles 135
synchronous program execution 185, 186
System.Lazy(T)
 about 169
 construction logic, encapsulating 169
 construction logic, passing as delegate 171
System.Threading.Tasks.Task class
 about 35
 Action delegate, using 36
 delegate, using 36
 lambda expressions syntax, using 36
System.Threading.Tasks.Task.Delay method 39
System.Threading.Tasks.Task.Factory.StartNew

method
 about 37
 Action delegate, using 37
 delegate, using 37
 lambda expressions syntax, using 37
System.Threading.Tasks.Task.FromCanceled

method 44
System.Threading.Tasks.Task.FromCanceled(T)

method 44
System.Threading.Tasks.Task.FromException

method 44
System.Threading.Tasks.Task.FromException(T)

method 44
System.Threading.Tasks.Task.FromResult(T)

method 43
System.Threading.Tasks.Task.Run method
 about 38
 Action delegate, using 38
 delegate, using 38
 lambda expressions syntax, using 38
System.Threading.Tasks.Task.Yield method 40,

41, 42

[312]

T
Task class
 used, for writing asynchronous code 190, 191
task exceptions
 handling 54
 handling, from multiple tasks 55, 56
 handling, from single tasks 54, 55
 handling, with callback function 56, 57
Task-Based Asynchronous Pattern (TAP)
 about 35, 204
 implementing, with compiler method using async

keyword 204
 implementing, with manual method 204, 205
Task.Wait method 51
Task.WaitAll method 52
Task.WaitAny method 52, 53
Task.WhenAll method 53
Task.WhenAny method 53
tasks
 about 34, 35, 61
 APM patterns, converting into 57, 58, 59
 cancelling 46
 continuing, with Task.ContinueWith method 61,

62

 continuing, with Task.Factory.ContinueWhenAll
63

 continuing, with
Task.Factory.ContinueWhenAll(T) 63

 continuing, with Task.Factory.ContinueWhenAny
63

 continuing, with
Task.Factory.ContinueWhenAny(T) 63

 creating 35
 creating, with tokens 47
 EAPs, converting into 59, 60, 61
 starting 35
Test Explorer 246
thread local variable
 creating 86, 87
thread scheduler 15
thread states
 Aborted 120
 AbortRequested 120
 Background 120
 Running 120

 Stopped 120
 StopRequested 120
 Suspended 120
 SuspendRequested 120
 Unstarted 120
 WaitSleepJoin 120
thread storage
 in parallel loops 85
thread-local storage
 used, for lazy initialization 176, 177
Thread.Join 130
threads debugging 222, 224, 225
Threads view 233
threads, apartment states
 about 12, 14, 15
 Multi-Threaded Apartment (MTA) 13
 Single-Threaded Apartment (STA) 13
threads, Thread class
 advantages 21
 disadvantages 21
threads, ThreadPool class
 advantages 24
 avoiding 24
 disadvantages 24
threads, types
 background threads 12
 foreground threads 12
threads
 about 12
 creating, via Thread class 17, 21
 creating, via ThreadPool class 21, 22, 24
time slicing 16
tokens, status
 polling, via IsCancellationRequested property

47, 48
tokens
 creating 47
 used, for creating tasks 47
topologies
 exploring 290
topology 287, 288
torus topology 291

U
unit test cases, writing for async code
 problems 239, 240, 242
unit test cases
 writing, for parallel and async code 242
unit testing
 with .NET Core 237, 238, 239
Utilization view 232

V
VS 2019
 used, for debugging 222

W
WaitHandles 135, 136, 138
Windows Presentation Foundation (WPF) 200
Windows
 MPI, installing 294
work-stealing queues 66, 68

	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1: Fundamentals of Threading, Multitasking, and Asynchrony
	Chapter 1: Introduction to Parallel Programming
	Technical requirements
	Preparing for multi-core computing
	Processes
	Some more information about the OS

	Multitasking
	Hyper-threading
	Flynn's taxonomy

	Threads
	Types of threads
	Apartment state

	Multithreading
	Thread class
	Advantages and disadvantages of threads

	The ThreadPool class
	Advantages, disadvantages, and when to avoid using ThreadPool

	BackgroundWorker
	Advantages and disadvantages of using BackgroundWorker

	Multithreading versus multitasking

	Scenarios where parallel programming can come in handy
	Advantages and disadvantages of parallel programming
	Summary
	Questions

	Chapter 2: Task Parallelism
	Technical requirements
	Tasks
	Creating and starting a task
	The System.Threading.Tasks.Task class
	Using lambda expressions syntax
	Using the Action delegate
	Using delegate

	The System.Threading.Tasks.Task.Factory.StartNew method
	Using lambda expressions syntax
	Using the Action delegate
	Using delegate

	The System.Threading.Tasks.Task.Run method
	Using lambda expressions syntax
	Using the Action delegate
	Using delegate

	The System.Threading.Tasks.Task.Delay method
	The System.Threading.Tasks.Task.Yield method
	The System.Threading.Tasks.Task.FromResult<T> method
	The System.Threading.Tasks.Task.FromException and System.Threading.Tasks.Task.FromException<T> methods
	The System.Threading.Tasks.Task.FromCanceled and System.Threading.Tasks.Task.FromCanceled<T> methods

	Getting results from finished tasks
	How to cancel tasks
	Creating a token
	Creating a task using tokens
	Polling the status of the token via the IsCancellationRequested property
	Registering for a request cancellation using the Callback delegate

	How to wait on running tasks
	Task.Wait
	Task.WaitAll
	Task.WaitAny
	Task.WhenAll
	Task.WhenAny

	Handling task exceptions
	Handling exception from single tasks
	Handling exceptions from multiple tasks
	Handling task exceptions with a callback function

	Converting APM patterns into tasks
	Converting EAPs into tasks
	More on tasks
	Continuation tasks
	Continuing tasks using the Task.ContinueWith method
	Continuing tasks using Task.Factory.ContinueWhenAll and Task.Factory.ContinueWhenAll<T>
	Continuing tasks using Task.Factory.ContinueWhenAny and Task.Factory.ContinueWhenAny<T>

	Parent and child tasks
	Creating a detached task
	Creating an attached task

	Work-stealing queues
	Summary

	Chapter 3: Implementing Data Parallelism
	Technical requirements
	Moving from sequential loops to parallel loops
	Using the Parallel.Invoke method
	Using the Parallel.For method
	Using the Parallel.ForEach method

	Understanding the degree of parallelism
	Creating a custom partitioning strategy
	Range partitioning
	Chunk partitioning

	Canceling loops
	Using the Parallel.Break method
	Using ParallelLoopState.Stop
	Using CancellationToken to cancel loops

	Understanding thread storage in parallel loops
	Thread local variable
	Partition local variable

	Summary
	Questions

	Chapter 4: Using PLINQ
	Technical requirements
	LINQ providers in .NET
	Writing PLINQ queries
	Introducing the ParallelEnumerable class
	Our first PLINQ query

	Preserving order in PLINQ while doing parallel executions
	Sequential execution using the AsUnOrdered() method

	Merge options in PLINQ
	Using the NotBuffered merge option
	Using the AutoBuffered merge option
	Using the FullyBuffered merge option

	Throwing and handling exceptions with PLINQ
	Combining parallel and sequential LINQ queries
	Canceling PLINQ queries
	Disadvantages of parallel programming with PLINQ
	Understanding the factors that affect the performance of PLINQ (speedups)
	Degree of parallelism
	Merge option
	Partitioning type
	Deciding when to stay sequential with PLINQ
	Order of operation
	ForAll versus calling ToArray() or ToList()
	Forcing parallelism
	Generating sequences

	Summary
	Questions

	Section 2: Data Structures that Support Parallelism in .NET Core
	Chapter 5: Synchronization Primitives
	Technical requirements
	What are synchronization primitives?
	Interlocked operations
	Memory barriers in .NET
	What is reordering?
	Types of memory barriers
	Avoiding code reordering using constructs

	Introduction to locking primitives
	How locking works
	Thread state
	Blocking versus spinning
	Lock, mutex, and semaphore
	Lock
	Mutex
	Semaphore
	Local semaphore
	Global semaphore

	ReaderWriterLock

	Introduction to signaling primitives
	Thread.Join
	EventWaitHandle
	AutoResetEvent
	ManualResetEvent

	WaitHandles

	Lightweight synchronization primitives
	Slim locks
	ReaderWriterLockSlim
	SemaphoreSlim
	ManualResetEventSlim

	Barrier and countdown events
	A case study using Barrier and CountDownEvent

	SpinWait
	SpinLock

	Summary
	Questions

	Chapter 6: Using Concurrent Collections
	Technical requirements
	An introduction to concurrent collections
	Introducing IProducerConsumerCollection<T>
	Using ConcurrentQueue<T>
	Using queues to solve a producer-consumer problem
	Solving problems using concurrent queues

	Performance consideration – Queue<T> versus ConcurrentQueue<T>
	Using ConcurrentStack<T>
	Creating a concurrent stack
	Using ConcurrentBag<T>

	Using BlockingCollection<T>
	Creating BlockingCollection<T>

	A multiple producer-consumer scenario
	Using ConcurrentDictionary<TKey,TValue>

	Summary
	Questions

	Chapter 7: Improving Performance with Lazy Initialization
	Technical requirements
	Introducing lazy initialization concepts
	Introducing System.Lazy<T>
	Construction logic encapsulated inside a constructor
	Construction logic passed as a delegate to Lazy<T>

	Handling exceptions with the lazy initialization pattern
	No exceptions occur during initialization
	Random exception while initialization with exception caching
	Not caching exceptions

	Lazy initialization with thread-local storage
	Reducing the overhead with lazy initializations
	Summary
	Questions

	Section 3: Asynchronous Programming Using C#
	Chapter 8: Introduction to Asynchronous Programming
	Technical requirements
	Types of program execution
	Understanding synchronous program execution
	Understanding asynchronous program execution

	When to use asynchronous programming
	Writing asynchronous code
	Using the BeginInvoke method of the Delegate class
	Using the Task class
	Using the IAsyncResult interface

	When not to use asynchronous programming
	In a single database without connection pooling
	When it is important that the code is easy to read and maintain
	For simple and short-running operations
	For applications with lots of shared resources

	Problems you can solve using asynchronous code
	Summary
	Questions

	Chapter 9: Async, Await, and Task-Based Asynchronous Programming Basics
	Technical requirements
	Introducing async and await
	The return type of async methods

	Async delegates and lambda expressions
	Task-based asynchronous patterns
	The compiler method, using the async keyword
	Implementing the TAP manually

	Exception handling with async code
	A method that returns Task and throws an exception
	An async method from outside a try-catch block without the await keyword
	An async method from inside the try-catch block without the await keyword
	Calling an async method with the await keyword from outside the try-catch block
	Methods returning void

	Async with PLINQ
	Measuring the performance of async code
	Guidelines for using async code
	Avoid using async void
	Async chain all the way
	Using ConfigureAwait wherever possible

	Summary
	Questions

	Section 4: Debugging, Diagnostics, and Unit Testing for Async Code
	Chapter 10: Debugging Tasks Using Visual Studio
	Technical requirements
	Debugging with VS 2019
	How to debug threads
	Using Parallel Stacks windows
	Debugging using Parallel Stacks windows
	Threads view
	Tasks view

	Debugging using the Parallel Watch window

	Using Concurrency Visualizer
	Utilization view
	Threads view
	Cores view

	Summary
	Questions
	Further reading

	Chapter 11: Writing Unit Test Cases for Parallel and Asynchronous Code
	Technical requirements
	Unit testing with .NET Core
	Understanding the problems with writing unit test cases for async code
	Writing unit test cases for parallel and async code
	Checking for a successful result
	Checking for an exception result when the divisor is 0

	Mocking the setup for async code using Moq
	Testing tools
	Summary
	Questions
	Further reading

	Section 5: Parallel Programming Feature Additions to .NET Core
	Chapter 12: IIS and Kestrel in ASP.NET Core
	Technical requirements
	IIS threading model and internals
	Starvation Avoidance
	Hill Climbing

	Kestrel threading model and internals
	ASP.NET Core 1.x
	ASP.NET Core 2.x

	Introducing the best practices of threading in microservices
	Single thread-single process microservices
	Single thread-multiple process microservices
	Multiple threads-single process
	Asynchronous services
	Dedicated thread pools

	Introducing async in ASP.NET MVC core
	Async streams

	Summary
	Questions

	Chapter 13: Patterns in Parallel Programming
	Technical requirements
	The MapReduce pattern
	Implementing MapReduce using LINQ

	Aggregation
	The fork/join pattern
	The speculative processing pattern
	The lazy pattern
	Shared state pattern
	Summary
	Questions

	Chapter 14: Distributed Memory Management
	Technical requirements
	Introduction to distributed systems
	Shared versus distributed memory model
	Shared memory model
	Distributed memory model

	Types of communication network
	Static communication networks
	Dynamic communication networks

	Properties of communication networks
	Topology
	Routing algorithms
	Switching strategy
	Flow control

	Exploring topologies
	Linear and ring topologies
	Linear arrays
	Ring or torus

	Meshes and tori
	2D mesh
	2D torus

	Programming distributed memory machines using message passing
	Why MPI?
	Installing MPI on Windows
	Sample program using MPI
	Basic send/receive use

	Collectives
	Summary
	Questions

	Assessments
	Other Books You May Enjoy
	Index

