

Hands-On Object-Oriented
Programming with C#

Build maintainable software with reusable code using C#

Raihan Taher

BIRMINGHAM - MUMBAI

Hands-On Object-Oriented Programming
with C#
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Aaron Lazar
Acquisition Editor: Sandeep Mishra
Content Development Editor: Anugraha Arunagiri
Technical Editor: Neha Pande
Copy Editor: Safis Editing
Language Support Editors: Mary McGowan, Storm Mann
Project Coordinator: Ulhas Kambali
Proofreader: Safis Editing
Indexer: Priyanka Dhadke
Graphics: Tania Dutta
Production Coordinator: Aparna Bhagat

First published: February 2019

Production reference: 2140519

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78829-622-9

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Raihan Taher is a young, skilled software developer who has gained extensive experience
by being involved in a variety of projects throughout his career. His particular areas of
interest are web development and software architecture. His ability to write clean code and
observe best practices in software development are his major assets. Throughout his
relatively short career, he has worked for a number of renowned multinational companies,
including Accenture, Quintiq (Dassault Systèmes), and SEB Pension. His desire to share his
knowledge has encouraged him to write technical blogs, create online video courses, write
books, and conduct technical training sessions. His courses, blog posts, and books have
already been well received by many new developers. As regards the future, his vision is to
discover and establish best practices for software development and share those with fellow
developers. His ability to write quality software is what makes him accomplished. Aside
from this, he is an avid reader and is excited by the challenge of learning new things. He
always pushes himself to learn and implement new technologies in his work. Keeping
himself up to date with new technologies and implementing those in his work makes him
an expert in the area of cutting-edge technologies. He also loves to travel and explore
adventurous places with his wife.

About the reviewer
Gaurav Aroraa completed his M.Phil in computer science. He is a Microsoft MVP, a
lifetime member of the Computer Society of India (CSI), an advisory member of
IndiaMentor, and is certified as a scrum trainer/coach, XEN for ITIL-F, and APMG for
PRINCE-F and PRINCE-P. Gaurav is an open source developer, and the founder of Ovatic
Systems Private Limited. Recently, he was conferred as icon of the year—excellence in
mentoring technology start-ups for the year 2018-19 by Radio City, a Jagran initiative, for
his extraordinary work during his 20-year career in industry in the field of technology
mentoring. You can tweet Gaurav on his Twitter handle: @g_arora.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Overview of C# as a Language 6
Evolution of C# 7

Managed code 8
Generics 8
LINQ 8
Dynamics 8
Async/await 9
Compiler as a service 9
Exception filters 9
C# 8 and beyond 9

Architecture of .NET 10
Common Language Runtime 11
Common Type System 11
.NET framework class libraries 11
Just-in-time compiler 11

Fundamentals and syntax of C# language 12
Data types 12
Nullable types 12
Literals 13

Boolean 13
Integer 13
Real 14
Character 14
String 14

Programming syntax – conditions 15
If-else construct 15
Switch-case construct 15
goto statements 16

Programming syntax – loops 16
The while construct 17
The do-while construct 17
The for construct 17
The foreach construct 18
Contextual – break and continue statements 18

Break 18
Continue 19

Writing your first C# program in a console application 19
Visual Studio as an editor 21

Evolution of Visual Studio 22

Table of Contents

[ii]

Types of Visual Studio 22
Visual Studio Community 22
Visual Studio Professional 22
Visual Studio Enterprise 23
Visual Studio Code 23

Introduction to the Visual Studio IDE 23
New Project 23

Solution Explorer 25
Main workspace area 27
Output window 29
The Command and Immediate windows 29
Search option in IDE 30

Writing your first program in Visual Studio 31
How to debug 33
Debugging through code 34

Summary 35

Chapter 2: Hello OOP - Classes and Objects 36
Classes in OOP 37

The general form of a class 38
Writing a simple class 39

Objects in OOP 40
How to create objects 41

Variables in C# 41
Methods in a class 43

Creating a method 43
Constructor of a class 44

Characteristics of OOP 46
Inheritance 46
Encapsulation 47
Abstraction 48
Polymorphism 49

Summary 51

Chapter 3: Implementation of OOP in C# 52
Interfaces 52
The abstract class 54
The partial class 55
The sealed class 56
Tuples 57
Properties 58
Access specifiers for classes 59

Public 59
Private 60
Internal 60
Protected 61
Protected internal 62

Table of Contents

[iii]

Summary 63

Chapter 4: Object Collaboration 64
Examples of object collaboration 64
Different types of object collaboration in C# 65

Case study 66
Dependency 67
Association 71

Aggregation 72
Composition 74

Inheritance 76
Summary 78

Chapter 5: Exception Handling 79
Why we need exception handling in programming 80

Exception handling in C# programming 81
Basics of exception handling 81
Try and catch 82
What happens if you don't handle exceptions? 82
Multiple catch blocks 83
Using the throw keyword 86
What does the finally block do? 87
Exception class 90

Some common exception classes 91
User-defined exceptions 92
The exception filter 94
Exception handling best practices 95
Summary 96

Chapter 6: Events and Delegates 97
What is a delegate? 97

How to create and use delegates 98
Method group conversion 100

Using the static and instance methods as delegates 101
Multicasting 102
Covariance and contravariance 105
Events 108

Multicasting events 110
Event guidelines from .NET 112

Summary 114

Chapter 7: Generics in C# 115
What are generics? 115
Why do we need generics? 120
Different constraints of generics 121

Table of Contents

[iv]

Base class constraints 122
Interface constraints 123
Reference type and value type constraints 124
Multiple constraints 124

Generic methods 124
Type-inferencing 126

Covariance and contravariance in generics 127
Covariance 127
Contravariance 128

Summary 130

Chapter 8: Modeling and Designing Software 131
The importance of design diagrams 132

Different UML diagrams 132
Class diagrams 133

Inheritance 134
Association 135
Aggregation 135
Composition 135
Dependency 136
An example of a class diagram 136

Use case diagrams 139
The actor 139
The use case 140
The communication link 140
The system boundaries 141
An example of a use case diagram 142

A sequence diagram 143
An actor 143
A lifeline 143
An activation 144
A call message 145
A return message 145
A self message 146
A recursive message 146
A create message 147
A destroy message 147
A duration message 148
A note 148
An example of a sequence diagram 148

Summary 150

Chapter 9: Visual Studio and Associated Tools 151
Visual Studio project types and templates 152
Visual Studio Editor and different windows 156

Editor window 156

Table of Contents

[v]

Solution Explorer 161
Output window 163

Debugging windows 164
Breakpoints window 165
Exception Settings 166
Output 167
Diagnostic Tools 168
Immediate window 169
Python debugger window 169

Breakpoints, Call Stack Trace, and Watch 169
Breakpoint 170
Call Stack Trace 171
Watch window 172

Git in Visual Studio 173
Refactoring and code-optimization techniques 175

Rename 175
Changing the method signature 176
Encapsulate Field 177
Extract Method 178

Summary 179

Chapter 10: Exploring ADO.NET with Examples 180
The fundamentals of ADO.NET 181

Data providers 181
Connection objects 181
The Command object 182
The DataReader object 187
DataAdapter 188

Connecting to various databases 189
SQL Server 189
The Oracle database 190

Working with DataReaders and DataAdapters 190
DataReaders 191
DataAdapters 192

Working with stored procedures 193
Working with the Entity Framework 194

What is an entity in the Entity Framework? 194
Different types of Entity properties 195

Scalar properties 195
Navigation properties 196

The code-first approach 196
The database-first approach 197
Using the Entity Framework 197

Transactions in SQL 199
Atomic 200
Consistent 200

Table of Contents

[vi]

Isolated 200
Durable 200

Summary 201

Chapter 11: New Features in C# 8 202
Environment Setup 203
Nullable reference types 203
Async streams 205
Ranges and indices 207
Default implementation of interface members 209
Switch expressions 210
Target-typed new expressions 212
Summary 212

Chapter 12: Understanding Design Patterns and Principles 213
Design principles 214

The single responsibility principle 214
The open-closed principle 215
The Liskov substitution principle 215
The interface segregation principle 215
The dependency inversion principle 215

Creational design patterns 216
The abstract factory pattern 217
The builder pattern 217
The factory method pattern 218
The prototype pattern 218
The singleton pattern 219

Structural design patterns 219
The adapter pattern 220
The decorator pattern 220
The facade pattern 220
The proxy pattern 221

Behavioral design patterns 221
The command pattern 222
The observer pattern 222
The strategy pattern 223

The MVC pattern 224
Summary 225

Chapter 13: Git - The Version Control System 226
What is version control? 226
How Git works 227

Modified 228
Staged 228
Committed 228

Table of Contents

[vii]

Installing Git on Windows 229
The basics of Git 231

Git config 231
Git init 232
Git clone 232
Git status 233
Git add 233
Git commit 235
Git log 236
Git remote 237
Git push 238
Git pull 239
Git fetch 239

Branching in Git 240
Creating a branch 242
Viewing available branches 243
Changing branches 243
Deleting a branch 244
Merging in Git 244

Summary 245

Chapter 14: Prepare Yourself - Interviews and the Future 246
Interview questions 247

What are the fundamental principles of object-oriented programming? 247
What is inheritance? 247
What is encapsulation? 247
What is abstraction? 248
What is polymorphism? 248
What is an interface? 248
What is an abstract class? 248
What is a sealed class? 248
What is a partial class? 249
What are the differences between interfaces and abstract classes? 249
What is the difference between method-overloading and method-
overriding? 249
What are access modifiers? 250
What is boxing and unboxing? 250
What are the differences between a struct and a class? 250
What is an extension method in C# and how do we use it? 251
What is managed and unmanaged code? 251
What is a virtual method in C#? 251
What do you understand by value types and reference types in C#.NET? 251
What are design principles? 252
What is the single responsibility principle? 252
What is the Open/Closed principle? 252
What is the Liskov substitution principle? 252

Table of Contents

[viii]

What is the interface segregation principle? 253
What is the dependency inversion principle? 253

Interview and career tips 253
Improving your communication skills 253
Keep practicing 254

Things to learn next 255
Building the habit of reading 255
Summary 256

Other Books You May Enjoy 257

Index 260

Preface
Object-oriented programming (OOP) is a programming paradigm organized around
objects rather than actions, and data rather than logic. With the newest release of C#, there
are a number of new additions that improve OOP. This book aims to teach OOP in C# in an
engaging and interactive way. After going through the book, you will have an
understanding of the four pillars of OOP, which are encapsulation, inheritance, abstraction,
and polymorphism, and be able to leverage the latest features of C# 8.0, such as Nullable
Reference Types and Asynchronous Streams. You will then explore various design
patterns, principles, and best practices in OOP.

Who this book is for
This book is intended for people who are new to OOP. It assumes that you already have
basic C# skills. No knowledge of OOP in any other language is expected.

What this book covers
Chapter 1, Overview of C# as a Language, covers a basic overview of the C# programming
language to enable the beginner to understand the language constructs. The chapter will
also explain why .NET exists as a framework and how to utilize the .NET framework in
programs. The chapter will conclude by introducing Visual Studio as an editor for
developing C# projects.

Chapter 2, Hello OOP - Classes and Objects, explains the most basic concepts of object-
oriented programming. We start by explaining what a class is and how to write a class.

Chapter 3, Implementation of OOP in C#, covers the concepts that make C# an OOP
language. This chapter covers some very important topics of the C# language and how to
utilize those in real-life programming.

Chapter 4, Object Collaboration, covers object collaboration, what it is, how objects relate to
one another in a program, and how many types of relationships exist between objects. We
will also discuss dependency Collaboration, Association, and Inheritance.

Preface

[2]

Chapter 5, Exception Handling, covers how to handle exceptions in your code while
executing it. We will explore the different types of exceptions and how to use the try/catch
block to eliminate problems in your code.

Chapter 6, Events and Delegates, covers events and delegates. In this chapter, we will cover
what an event is, what a delegate is, how an event is connected to a delegate, and their
respective uses.

Chapter 7, Generics in C#, introduces a very interesting and important topic – generics. We
will learn what generics are and why they are so powerful.

Chapter 8, Modeling and Designing Software, covers the different Unified Modeling
Language (UML) diagrams used in software design. We will talk in detail about the most
popular ones, including the class diagram, the use case diagram, and the sequence diagram.

Chapter 9, Visual Studio and Associated Tools, covers the best editor for C# programming.
Visual Studio is a very rich IDE. It has some awesome features that make the life of a
developer super productive. In this chapter, we will introduce the different projects and
windows available in Visual Studio.

Chapter 10, Exploring ADO.NET with Examples, covers the ADO.NET classes, along with
the fundamentals of various data adapters, stored procedures, and object relationship
models through the Entity framework. We will also discuss transactions in ADO.NET.

Chapter 11, New Features in C# 8, covers new features of the C# language, which is
improving day by day as C# language engineers incorporate additional features into the
language. In 2019, Microsoft announced that C# 8.0 will be released, and outlined the new
features that will come with this version. This chapter will discuss the new features that are
going to be introduced in C# 8.0. We will talk about nullable reference types, async streams,
ranges, default implementations of interface members, and several other topics.

Chapter 12, Understanding Design Patterns and Principles, contains information about design
principles and some very popular and important design patterns.

Chapter 13, Git – The Version Control System, discusses the most popular version control
system available today – Git. It is essential for all developers to learn Git.

Chapter 14, Prepare Yourself, Interview, and The Future, includes some of the most common
interview questions and answers to those questions, so that you are prepared for your next
interview. This chapter is mainly to give you an idea about potential interview questions.

Preface

[3]

To get the most out of this book
The reader should have some prior knowledge of .NET Core and .NET Standard, along
with a basic knowledge of C#, Visual Studio 2017 (as an IDE), version control, relational
databases, and basic software design.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Hands- On- Object- Oriented- Programming- with- CSharp. In case there's
an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ /www. packtpub. com/ sites/ default/ files/
downloads/9781788296229_ ColorImages. pdf.

http://www.packt.com
http://www.packt.com/support
http://www.packt.com
https://github.com/PacktPublishing/Hands-On-Object-Oriented-Programming-with-CSharp
https://github.com/PacktPublishing/Hands-On-Object-Oriented-Programming-with-CSharp
https://github.com/PacktPublishing/Hands-On-Object-Oriented-Programming-with-CSharp
https://github.com/PacktPublishing/Hands-On-Object-Oriented-Programming-with-CSharp
https://github.com/PacktPublishing/Hands-On-Object-Oriented-Programming-with-CSharp
https://github.com/PacktPublishing/Hands-On-Object-Oriented-Programming-with-CSharp
https://github.com/PacktPublishing/Hands-On-Object-Oriented-Programming-with-CSharp
https://github.com/PacktPublishing/Hands-On-Object-Oriented-Programming-with-CSharp
https://github.com/PacktPublishing/Hands-On-Object-Oriented-Programming-with-CSharp
https://github.com/PacktPublishing/Hands-On-Object-Oriented-Programming-with-CSharp
https://github.com/PacktPublishing/Hands-On-Object-Oriented-Programming-with-CSharp
https://github.com/PacktPublishing/Hands-On-Object-Oriented-Programming-with-CSharp
https://github.com/PacktPublishing/Hands-On-Object-Oriented-Programming-with-CSharp
https://github.com/PacktPublishing/Hands-On-Object-Oriented-Programming-with-CSharp
https://github.com/PacktPublishing/Hands-On-Object-Oriented-Programming-with-CSharp
https://github.com/PacktPublishing/Hands-On-Object-Oriented-Programming-with-CSharp
https://github.com/PacktPublishing/Hands-On-Object-Oriented-Programming-with-CSharp
https://github.com/PacktPublishing/Hands-On-Object-Oriented-Programming-with-CSharp
https://github.com/PacktPublishing/Hands-On-Object-Oriented-Programming-with-CSharp
https://github.com/PacktPublishing/Hands-On-Object-Oriented-Programming-with-CSharp
https://github.com/PacktPublishing/Hands-On-Object-Oriented-Programming-with-CSharp
https://github.com/PacktPublishing/Hands-On-Object-Oriented-Programming-with-CSharp
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/9781788296229_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788296229_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788296229_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788296229_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788296229_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788296229_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788296229_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788296229_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788296229_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788296229_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788296229_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788296229_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788296229_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788296229_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788296229_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788296229_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788296229_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788296229_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788296229_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788296229_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788296229_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788296229_ColorImages.pdf

Preface

[4]

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "relationship between the Tweet and Message objects."

A block of code is set as follows:

class Customer
{
 public string firstName;
 public string lastName;
 public string phoneNumber;
 public string emailAddress;

 public string GetFullName()
 {
 return firstName + " " + lastName;
 }
}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

class class-name {
 // property 1
 // property 2
 // ...

 // method 1
 // method 2
 // ...
}

Any command-line input or output is written as follows:

git config --global user.name = "john"
git config --global user.email = "john@example.com"

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Go to Tools | Extensions and Updates."

Preface

[5]

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://www.packt.com/

1
Overview of C# as a Language

With the introduction of modern-day programming practices, it is evident that developers
are looking for more advanced constructs to help them to deliver the best software in the
most effective way. Languages that evolve on top of frameworks are built to enhance the
capabilities of the developers in a way that allows them to quickly build their code with less
complexity so that the code is maintainable, yet readable.

There are many high-level object, oriented programming languages available on the
market, but among them I would say one of the most promising is C#. The C# language is
not new in the programming world and has existed for over a decade, but with the
dynamic progress of the language itself creating so many newer constructs, it has already
left some of the most widely accepted language competition behind. C# is an object-
oriented, type-safe, general-purpose language that is built on top of the .NET framework
that was developed by Microsoft and approved by the European Computer Manufacturers
Association (ECMA) and the International Standards Organization (ISO). It is built to run
on the Common Language Infrastructure and can interact with any other languages that are
built based on the same architecture. Inspired by C++, the language is rich in delivering the
best of breed applications without handling too many complexities in code.

In this chapter, we will cover the following topics:

Evolution of C#
Architecture of C#
Fundamentals and syntax of the C# language
Visual Studio as an editor
Writing your first program in Visual Studio

Overview of C# as a Language Chapter 1

[7]

Evolution of C#
C# has been one of the most dynamic languages in recent times. This language is open
source and mostly driven by a group of software engineers, who recently came up with lots
of major changes to enhance the language and provide features to handle the complexities
in the languages that exist. Some of the major enhancements that have been put forward for
the language include Generics, LINQ, Dynamics, and the async/await pattern:

In the preceding diagram, we can see how the language has evolved from its inception with
managed code in C# 1.0, to async programming constructs that were introduced in C# 5.0,
to modern-day C# 8. Before going further, let's look at some of the highlights of C# in its
different stages of evolution.

Overview of C# as a Language Chapter 1

[8]

Managed code
The phrase managed code came into being after Microsoft declared the .NET framework.
Any code running in a managed environment is handled by Common Language
Runtime (CLR), which keeps

Generics
Generics is a concept that was introduced with C# 2.0 and allows template type definition
and type parameters. Generics allow the programmer to define types with open-ended type
parameters that dramatically changed the way that programmers write code. The type-
safety with dynamic typed generic templates improves readability, reusability, and
code performance.

LINQ
The third installment of the C# language introduced Language Integrated Query (LINQ), a
new construct of queries that can be run over object structures. LINQ is very new to the
programming world and gives us a glimpse of functional programming on top of object-
oriented general programming structure. LINQ also introduced a bunch of new interfaces
in the form of the IQueryable interface, which introduced a number of libraries that can
interact with the external world using LINQ. LINQ was boosted with the introduction of
Lambda expressions and expression trees.

Dynamics
The fourth instalment also provides a completely new construct. It introduces the dynamic
language structure. The dynamic programming capability helps the developer to defer the
programming calls to runtime. There is a specific syntactic sugar that was introduced in the
language that compiles the dynamic code on the same runtime. The version also puts
forward a number of new interfaces and classes that enhance its language capabilities.

Overview of C# as a Language Chapter 1

[9]

Async/await
With any language, threading or asynchronous programming is a pain. When dealing with
asynchrony, the programmers have to come across many complexities that reduce the
readability and maintainability of the code. With the async/await feature in the C#
language, programming in an asynchronous way is as simple as synchronous
programming. The programming has been simplified, with all of the complexities handled
by the compiler and the framework internally.

Compiler as a service
Microsoft has been working on how some parts of the source code of the compiler can be
opened up to the world. Consequently, as a programmer, you are capable of querying the
compiler on some of its internal work principles. C# 6.0 introduced a number of libraries
that enable the developer to get an insight into the compiler, the binder, the syntax tree of
the program, and so on. Although the features were developed for a long time as the
Roslyn project, Microsoft have finally released it to the external world.

Exception filters
C# 6.0 is adorned with a lot of smaller features. Some of the features give the developers an
opportunity to implement complex logic with simple code, while some of them enhance the
overall capabilities of the language. Exception filters are newly introduced with this
version and give a program the capability to filter out certain exception types. The
exception filters, being a CLR construct, have been hidden in the language throughout its
lifetime, but were finally introduced with C# 6.0.

C# 8 and beyond
With C# being the most dynamic language in the market, it is constantly improving. With
the newer features, such as nullable reference types, async streams, ranges and indices,
interface members, and many other features that came with the latest version of C#, they
have enhanced the basic features and helped programmers to take advantage of these new
constructs, hence making their lives easier.

Note that, during the language's evolution, the .NET framework was also made open
source. You can find the source code of the .NET framework at the following link: https:/ /
referencesource.microsoft. com/ .

https://referencesource.microsoft.com/
https://referencesource.microsoft.com/
https://referencesource.microsoft.com/
https://referencesource.microsoft.com/
https://referencesource.microsoft.com/
https://referencesource.microsoft.com/
https://referencesource.microsoft.com/
https://referencesource.microsoft.com/
https://referencesource.microsoft.com/

Overview of C# as a Language Chapter 1

[10]

Architecture of .NET
Even though it is a decade old, the .NET framework is still well-built and makes sure to
make it tiered, moduler, and hierarchical. Each tier provides specific functionalities to the
user—some in terms of security and some in terms of language capabilities. The tiers
produce a layer of abstraction to the end users and hide most of the complexities of the
native operating system as much as possible. The .NET framework is partitioned into
modules, with each of them having their own distinct responsibilities. The higher tiers
request specific capabilities from the lower tiers and hence it is hierarchical.

Let's look at a diagram of the .NET architecture:

The preceding diagram depicts how the .NET framework architecture is laid out. On its
lowest level, it is the operating system that interacts with the kernel APIs that are present in
the operating system. The Common Language Infrastructure connects with the CLR, which
provides services that monitor each code execution and managed memory, handles
exceptions, and ensures that the application behaves as intended. Another important goal
of the infrastructure is language inter-operability. The common language runtime is yet
again abstracted with the .NET class libraries. This layer holds the binaries that the
language is built on, and all of the compilers built on top of the libraries provide the same
compiled code so that the CLR can understand the code and interact easily with one
another.

Before going further, let's quickly look at some of the key aspects on which languages are
built on the .NET framework.

Overview of C# as a Language Chapter 1

[11]

Common Language Runtime
The CLR provides an interfacing between the underlying unmanaged infrastructure with
the managed environment. This provides all of the basic functionalities of the managed
environment in the form of garbage collection, security, and interoperability. The CLR is
formed with the just-in-time compiler, which compiles the assembly code that's produced
with the specific compilers to the native calls. CLR is the most important portion of the
.NET architecture.

Common Type System
As there is a layer of abstraction between the language and the framework, it is evident that
each of the language literals are mapped to specific CLR types. For instance, the integer of
VB.NET is the same as the int of C#, as both of them point to the same type, System.Int32. It
is always preferred to use language types since the compiler takes care of the mapping of
types. The CTS system is built as a hierarchy of types with System.Object at its apex. The
Common Type System (CTS) is divided into two kinds, one of which is value types, which
are primitives that are derived from System.ValueTypes, while anything other than that
is a reference type. The value types are treated differently to the reference types. This is
because while allocation of memory value types are created on a thread stack during
execution, reference types are always created on the heap.

.NET framework class libraries
The framework class library lies in-between the language and the CLR, and therefore any
type that's present in the framework is exposed to the language you code. The .NET
framework is formed with a good number of classes and structures, exposing never-ending
functionalities that you, as a programmer, can benefit from. The class libraries are stored in
the form of binaries that can be referenced directly from your program code.

Just-in-time compiler
.NET languages are compiled twice. During the first form of compilation, the high-level
language is converted into a Microsoft Intermediate Language (MSIL), which can be
understood by the CLR, while the MSIL is again compiled during runtime when the
program is executed. The JIT works inside the program runtime and periodically compiles
the code that is expected to be required during execution.

Overview of C# as a Language Chapter 1

[12]

Fundamentals and syntax of C# language
Being a high-level language, C# is adorned with a lot of newer and updated syntax, which
helps the programmer to write code efficiently. As we mentioned earlier, the type system
that's supported by the language is divided into two types:

Value types
Reference types

The value types are generally primitive types that are stored in the stack during local
execution for faster allocation and deallocation of memory. The value types are mostly used
during the development of code and, consequently, this forms the major spectrum of the
code altogether.

Data types
The basic data types of C# are divided into the following categories:

Boolean type: bool
Character type: char
Integer types: sbyte, byte, short, ushort, int, uint, long, and ulong
Floating-point types: float and double
Decimal precision: decimal
String: string
Object type: object

These are primitive data types. These data types are embedded in the C# programming
language.

Nullable types
The primitive types or value types are not nullable in C#. Consequently, there is always a
requirement for the developer to make the type nullable, as a developer might need to
identify whether the value is provided explicitly or not. The newest version of .NET
provides nullable types:

Nullable<int> a = null;
int? b = a; //same as above

Overview of C# as a Language Chapter 1

[13]

Both lines in the preceding example define the nullable variable, while the second line is
just a shortcut of the first declaration. When the value is null, the HasValue property will
return false. This will ensure that you can detect whether the variable is explicitly
specified as a value or not.

Literals
Literals are also an important part of any program. C# language gives the developer
different kinds of options that allow the programmer to specify literals in code. Let's take a
look at the different types of literals that are supported.

Boolean
Boolean literals are defined in the form of true or false. No other values except true and
false can be assigned in the Boolean type:

bool result = true;

The default value of a Boolean type is false.

Integer
An integer is a number that can have a plus (+) or minus (-) sign as a prefix, but this is
optional. If no sign is given, it is considered as positive. You can define numeric literals in
int, long, or hexadecimal form:

int numberInDec = -16;
int numberInHex = -0x10;
long numberinLong = 200L;

You can see that the first literal, -16, is a literal that's been specified in an integer variable,
while the same value is assigned to an integer using a hexadecimal literal. The long variable
is assigned a value with an L suffix.

Overview of C# as a Language Chapter 1

[14]

Real
Real values are sequences of digits with a positive or negative sign, like integers. This also
makes it possible to specify fraction values:

float realNumber = 12.5f;
realNumber = 1.25e+1f;
double realdNumber = 12.5;

As you can see, the literal in the last line, 12.5, is double by default, hence it needed to be
assigned to a double variable, while the first two lines specify the literal in float types. You
can also specify d or D as a suffix to define a double, like f or F for float and m for
decimal.

Character
Character literals need to be kept inside a single quote. The value of the literal can be as
follows:

A character, for example, c
A character code, for example, \u0063
An escape character, for example, \\ (the forward slash is an escape character)

String
A string is a sequence of characters. In C#, a string is represented by double quotation
marks. There are different ways a string can be created in C#. Let's look at the different
ways of creating a string in C#:

string s = "hello world";
string s1 = "hello \n\r world"; //prints the string with escape sequence
string s2 = @"hello \n\r world"; //prints the string without escape
sequence
string s3 = $"S1 : {s1}, S2: {s2}"; // Replaces the {s1} and {s2} with
values

The @ character can be placed as a prefix before a string to take the string as it is, without
worrying about any escape characters. It is called a verbatim string. The $ character is used
as a prefix for string interpolation. In case your string literal is preceded with the $ sign, the
variables are automatically replaced with values if they're placed within { } brackets.

Overview of C# as a Language Chapter 1

[15]

Programming syntax – conditions
Conditions are one of the most common building blocks of any program. A program cannot
have single dimensions; comparison, jumps, and breaks are the most common forms of
practice in C#. There are three types of conditions available:

if...else

switch-case

goto (lumps without condition)

If-else construct
The most commonly used conditional statement is the if-else construct. The building block
of the if-else structure contains an if keyword, followed by a Boolean expression and a set
of curly brackets to specify the steps to execute. Optionally, there could be an else
keyword, followed by curly brackets for the code to execute when the if block is false:

int a = 5;
if (a == 5)
{
 // As a is 5, do something
}
else
{
 // As a is not 5, do something
}

The if-else construct can also have an else-if statement to specify multiple criteria for
execution.

Switch-case construct
Switch-case, on the other hand, is almost similar to the if statement; in this statement, the
cases will determine the execution step. In the case of switch, this always falls in a discrete
set of values, and hence, those values can be set up:

int a = 5;
switch (a)
{
 case 4:
 // Do something;
 break;
 case 5:

Overview of C# as a Language Chapter 1

[16]

 // Do something;
 break;
 default:
 // Do something;
 break;
}

The switch case automatically picks the correct case statement, depending on the value, and
executes the steps defined inside the block. A case need to be concluded with a break
statement.

goto statements
Even though they are less popular and it is not advisable to use them, goto statements are
used for unconditional jumps in the language and they are widely used by the language
itself. As a developer, you can use a goto statement to jump to any location of your
program with the context you have:

... code block
goto lbl1;
...
...
lbl1: expression body

The goto statement directly jumps to the location specified without any condition or
criteria.

Programming syntax – loops
For a repetitive task during execution, loops play a vital role. Loops allow the programmer
to define a criteria in which the loop will end or until the loop should execute, depending
on the type of loop. There are four types of loops:

While
Do-while
For
Foreach

Overview of C# as a Language Chapter 1

[17]

The while construct
A loop is used in the programming world to make a sequence of execution steps repeat
itself until the condition is met. The while loop is one of the building blocks of the C#
programming architecture and is used to loop through the body mentioned in
curly brackets until the condition mentioned in the while criteria is true:

while (condition)
{
 loop body;
}

The condition mentioned in the loop should evaluate to true to execute the loop for the
next iteration.

The do-while construct
The do...while construct checks the condition after executing the step once. Even though
the do...while loop is similar to the while loop, the only difference between a
do...while loop and a while loop is that a do...while loop will execute the body at
least once, even if the criteria is false:

do
{
 loop body;
}
while (condition);

The for construct
The most popular loop in the language is the for loop, which handles complications by
maintaining the number of executions of the loop efficiently within the block itself:

for (initialization; condition; update)
{
 /* loop body */
}

Overview of C# as a Language Chapter 1

[18]

The for loop has a few sections in the criteria. Each of these is separated by a semicolon (;).
The first portion defines the index variable, which is executed once before executing the
loop. The second portion is the condition that is executed in every iteration of the for loop.
If the condition becomes false, the for loop doesn't continue its execution and stops. The
third portion is also executed after every execution of the loop body and it manipulates the
variable that was used in the for loop initialization and condition.

The foreach construct
The foreach loops are new to the language and are used to iterate over a sequence of
objects. Even though this is purely syntactic sugar in the language, the foreach loop is
widely used when dealing with collections. The foreach loop inherently uses an
IEnumerable<object> interface and should only be used for objects implementing this:

foreach (type variable in collection)
{
 //statements;
}

Contextual – break and continue statements
If you are working with loops, it is very important to understand two more contextual
keywords that make it possible to interact with loops.

Break
This allows the developer to break the loop and take the context out of the loop, even
though the criteria is still valid. The programming contextual keyword, break, is used as a
bypass to break the loop in which it is getting executed. The break statement is valid inside
loops and switch statements.

Overview of C# as a Language Chapter 1

[19]

Continue
This is used to invoke the next iteration. The contextual keyword allows the developer to
continue to the next step without executing any further code in the block.

Now, let's look at how we can use both of these contextual statements in our program:

var x = 0;
while(x<=10)
{
 x++;
 if(x == 2)continue;
 Console.WriteLine(x);
 if(x == 5) break;
 Console.WriteLine("End of loop body");
}
Console.WriteLine($"End of loop, X : {x}");

The preceding code will skip execution of the body for the iteration value, 2, because of the
continue statement. The loop will execute until the value of x is 5 because of the break
statement.

Writing your first C# program in a console
application
As you are now aware of the fundamentals and basics of the C# language, literals, loops,
conditions, and so on, I think it is time to see a C# code example. So, let's start this
section by writing a simple console application, compiling it, and running it using the C#
compiler.

Open any notepad application that you have in your computer and type in the following
code:

using System;

public Program
{
 static void Main(string[] args)
 {
 int num, sum = 0, r;
 Console.WriteLine("Enter a Number : ");
 num = int.Parse(Console.ReadLine());
 while (num != 0)
 {

Overview of C# as a Language Chapter 1

[20]

 r = num % 10;
 num = num / 10;
 sum = sum + r;
 }
 Console.WriteLine("Sum of Digits of the Number : " + sum);
 Console.ReadLine();
 }
}

The preceding code is a classic example of calculating the sum of all of the digits of a
number. It takes a number as input using the Console.ReadLine() function, parses it,
and stores it into a variable, num, loops through while the number is 0, and takes modulus
by 10 to get the reminder of the division, which is then summed up to produce the result.

You can see there is a using statement at the top of the code block, which ensures
that Console.ReadLine() and Console.WriteLine() can be called. System is a
namespace from the code, which enables the program to call the classes defined inside it
without specifying the full namespace path of the class.

Let's save the class as program.cs. Now, open the console and move it to the location
where you have saved the code.

To compile the code, we can use the following command:

csc Program.cs

The compilation will produce something like this:

Overview of C# as a Language Chapter 1

[21]

The compilation will produce program.exe. If you run this, it will take the number as
input and produce the result:

You can see that the code is being executed in the console window.

If we dissect how the code is being executed further, we can see that the .NET framework
provides the csc compiler, an executable that is capable of compiling my C# code into a
managed executable. The compiler produces an executable with MSIL as its content, and
then, when the executable is being executed, the .NET framework invokes an executable
and uses JIT to compile it further so that it can interact with the input/output devices.

The csc compiler provides various command-line hooks, which can be used further to add
dynamic link library (dll) references to the program, target the output as dll, and much
more. You can find the full functional document at the following link: https:/ / docs.
microsoft.com/en- us/ dotnet/ csharp/ language- reference/ compiler- options/ listed-
alphabetically.

Visual Studio as an editor
Microsoft has created a number of improvement toolsets that help in creating, debugging,
and running programs. One of these tools is called Visual Studio (VS). Microsoft VS is a
Development Environment that works with Microsoft languages. It is a tool that developers
can rely on so that they can work easily with Microsoft technologies. VS has been around
for quite some time, but the new VS has been totally redesigned and was released as VS
2019 to support .NET languages.

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/listed-alphabetically
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/listed-alphabetically
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/listed-alphabetically
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/listed-alphabetically
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/listed-alphabetically
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/listed-alphabetically
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/listed-alphabetically
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/listed-alphabetically
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/listed-alphabetically
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/listed-alphabetically
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/listed-alphabetically
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/listed-alphabetically
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/listed-alphabetically
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/listed-alphabetically
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/listed-alphabetically
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/listed-alphabetically
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/listed-alphabetically
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/listed-alphabetically
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/listed-alphabetically
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/listed-alphabetically
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/listed-alphabetically
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/listed-alphabetically
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/listed-alphabetically
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/listed-alphabetically
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/listed-alphabetically
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/listed-alphabetically
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-options/listed-alphabetically

Overview of C# as a Language Chapter 1

[22]

Evolution of Visual Studio
As time passed, Microsoft released newer versions of VS with more advantages and
enhancements. Being a plugin host that hosts a number of services as plug-in, VS has
evolved with a lot of tools and extensions. It has been the core part of every developer's
activity. VS has been used by a large number of people who are not a part of the developer
community, because they have found this IDE beneficial for editing and managing
documents.

Types of Visual Studio
Microsoft has introduced different types or editions of VS. The difference between these
editions are features and pricing. Among the editions, one is free, while others you have to
buy. Consequently, knowing which edition provides which features and which edition is
better for which type of work will make it easier for a developer to choose the edition right.

Let's look at a comparison between all versions of VS.

Visual Studio Community
VS Community edition is the free edition. This edition doesn't have some advanced
features that are available in the others, but this Community edition is perfectly fine for
building small/mid-sized projects. This is especially useful for a person who wants to
explore the C# programming language, since they can download this edition for free and
start building applications.

Visual Studio Professional
This version of VS is for your own development, with important debugging tools and all of
the commonly used developer tools. So, you can use the IDE as your primary orientation
and then you can go ahead!

Overview of C# as a Language Chapter 1

[23]

Visual Studio Enterprise
VS Enterprise edition is for enterprises that require commercial levels of usage of the IDE. It
supports special tools for testing, debugging, and so on. It also discovers common coding
errors, generates test data, and much more.

Visual Studio Code
VS Code is a small, open source tool that is not a full IDE, but a simple code editor that has
been developed by Microsoft. This editor is very lightweight and platform-independent. VS
Code doesn't come with most of the features that the VS IDE has, but has sufficient features
for developing and debugging an application.

For this book, we are going to use VS Community in most of our cases, but you can install
any version that you wish. You can download the Community edition free of cost at the
following link: https:/ /www. visualstudio. com/downloads/ .

Introduction to the Visual Studio IDE
After you first install VS, the VS installer will give you a few options regarding workloads,
which means the type of applications you are going to develop using this IDE. For this
book, we will only be creating C# console applications, so you can choose that option if you
want. Now, let's start the VS IDE. After loading the IDE, it'll show you a start page with
multiple options. Choose the option to create a new project.

New Project
After you choose new project, the New Project dialog box will appear. In this dialog box, a
number of options will be available based on the packages that are currently installed with
the IDE, as shown in the following screenshot:

https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/
https://www.visualstudio.com/downloads/

Overview of C# as a Language Chapter 1

[24]

In the preceding screenshot, the left-hand side groups are the types of templates that you
can choose from. Here, I have chosen Windows Desktop and, from the middle window, I
have selected Console App (.NET framework) to create my application. The bottom of the
screen allows you to name the project and choose the location to store the project files.
There are two checkboxes available, one of which says Create directory for solution when
selected (by default, this remains selected). This creates a directory below the chosen path
and places the files inside it, otherwise it will create files just inside the folder.

Use Search Installed Template to search for any template by its name at the right corner of
the dialog box if you do not find your template. Since more than one framework can exist in
one PC, the New Project dialog will allow you to choose a framework; you need to use this
while deploying the application. It shows .NET framework 4.6.1 by default as the
framework for the project, but you can change to any framework by selecting one from the
drop-down menu.

Overview of C# as a Language Chapter 1

[25]

Finally, click OK to create the project with the default files:

The preceding screenshot shows what a basic IDE looks like after the project is created. We
can also see each section of IDE. The main IDE is composed of many tool windows. You can
see some tool windows on all sides of the screen. The Task List window is at the bottom of
the screen. The main IDE workspace is in the middle and forms the working area of the
IDE. The workspace can be zoomed into by using the Zoom control in the corner of the
screen. The IDE search box at the top of the screen gives you insight into finding options
inside the IDE more elegantly and easily. We will now divide the whole IDE into those
parts and explore the IDE.

Solution Explorer
The folders and files are hierarchically depicted in the Solution Explorer. Solution Explorer
is the main window and lists the entire solution that is loaded to the IDE. This gives you a
view of projects and files that have a solution for easy navigation in the form of a tree. The
outer node of the Solution Explorer is itself a solution, then the projects, and then the files
and folders. The Solution Explorer supports loading folders inside the solution and storing
documents in the first level, too. The project that is set as startup is marked in bold.

Overview of C# as a Language Chapter 1

[26]

There are many buttons present at the top of the Solution Explorer called toolbar buttons.
Based on the file that's selected in the tree, the toolbar buttons will be enabled or disabled.
Let's look at each of them individually:

Collapse All button: This button allows you to collapse all of the nodes below
the node that's currently selected. While working with a big solution, it is often
necessary to collapse a portion of the tree completely. You can use this feature
without collapsing each node manually.
Properties: As a shortcut to the Properties window, you can select this button to
open the Properties window and load the metadata associated with the currently
selected node.
Show all files: A solution is generally mapped to a Folder structure on a
directory in the filesystem. The files that are included in the solution are only
shown on the Solution tree. Showing all files allows you to toggle between
viewing all files in the directory and only the files that have been added to the
solution.
Refresh: This refreshes the state of files in the current solution. The Refresh
button also checks every file from the filesystem and shows its status accordingly
(if any).
View Class Diagram: The class diagram is the logical tree of namespaces and
classes rather than the files in the filesystem. When you select this option, VS
launches the class diagram with all of the details of its properties, methods, and
so on. The class diagram is useful for viewing all of the classes and their
associations individually.
View Code: When you select a code file, the View Code button appears, which
loads the code file associated with the current selection. For instance, when you
select a Windows Form, it will show its code behind where the code needs to be
written.
View Designer: Sometimes, based on the file type that is selected in the tree, the
View Designer button appears. This button launches the Designer associated
with the currently selected file type.
Add New Folder: As I have already stated, a solution can also contain folders.
You can add folders directly to the solution by using the Add New Folder
button.
Create New Solution: Sometimes, when working with large projects, you might
need to create a subset of the entire solution and list only the items that you are
currently working on. This button will create a separate Solution Explorer that is
in sync with the original Solution Explorer, but projects a specific portion of the
solution tree.

Overview of C# as a Language Chapter 1

[27]

The solution tree in VS also loads the class structure of the project in the way it is organized
in the filesystem. If you see a collapsed folder, you can expand it to see what is inside it. If
you expand a .cs file, all of the members of that class are listed. If you just want to see how
the classes are organized, you can use the class view window, but by using the Solution
Explorer, you can see the classes, as well as the other elements inside its own hierarchy.
You can open the Class View by choosing View | ClassView or pressing Ctrl + W and C, so
that you can view only a portion of the class and its members:

Some files are shown in the solution as blank files (in our case, folders such as bin
and obj). This means that these files exist in the filesystem but are not included in the
solution file.

Each file shows additional information on the right-hand side of the tree node in the
solution. This button gives extra information that's associated with the file. For instance, if
you click on the button corresponding to a .cs file, it will open a menu with Contains.
This will get the associated class view for that particular file in the solution. The menu can
be pretty long, depending on the items that cannot be shown in the generalized toolbar
buttons. When the solution loads additional information, there are forward and backward
buttons, which can be used to navigate between views on the solution.

Main workspace area
The main workspace area is where you will actually write your code or apply different
settings to your application. This section will open different kinds of files that you have in
your project. This is the area which, as a developer, you will spend most of your time
coding. You can open multiple files in this window. Different files will be shown in
different tabs and you can switch from one tab to another just by clicking on the tab. If you
need to, you can also pin tabs. You can make the tabs float if you think you need them that
way, or you can also make it full-screen size so that you can focus on the code you are
working on.

Overview of C# as a Language Chapter 1

[28]

So, when you double-click on files in the Solution Explorer or choose Open from the
context menu of the file, that file is opened in a tab in the main editor area. This way, you
can open multiple files in separate tabs in the editor window and switch between them
when needed. Each tab header contains a few fixed sets of items:

In the preceding screenshot, you can see that the tab header contains the name of the file
(Program.cs) that links to the tab; it shows a * when the item needs to be saved, and it has
a Toggle pinner button (just like all other IDE tool windows), which makes the tab sticky on
the left side, and a close button. The title section also sometimes indicates some additional
status, for example, when the file is locked, it shows a lock icon, and when the object is
loaded from metadata, it shows that in square brackets, as in the preceding screenshot. In
this section, as we keep on opening files, it goes in a stack of tab pages, one after another,
until it reaches the end. After the whole area is occupied, it finally creates a menu on the
rightmost corner of the workspace title to hold a list of all of the files that cannot be shown
on the screen. From this menu, you can choose which file you need to open. Ctrl + Tab can
also be used to toggle between the tabs that are already loaded in the workspace.

Below the title of the tab and before the main workable area are two drop-down menus.
One has been loaded with the class that is opened in the IDE, and the right one loads all of
the members that are created on the file. These drop-downs menu aid in easier navigation
in the file by listing all of the classes that are loaded in the current file on the left, while on
the right there is another that contextually lists all of the members that are there in the class.
These two drop-downs menu are smart enough to update the drop-down values
automatically whenever any new code is added to the editor.

Overview of C# as a Language Chapter 1

[29]

The main workspace area is bounded by two scrollbars, which handle the overflow of the
document. However, after the vertical scrollbar, there is a special button to split the
window, as shown in the following screenshot:

The horizontal scrollbar, on the other hand, holds another drop-down menu that shows the
current zoom percentage of the Editor. VS now allows you to scale your editor to your
preferred zoom level. The shortcut for the Zoom feature is Ctrl + scroll mouse wheel.

Output window
The output window is placed on the bottom of the IDE (in general) and it opens up at
various times when you either compile, connect to various services, start debugging, or do
something that requires the IDE to show some code. The Output window is used by the
IDE to display log and trace messages:

The Output window is docked on the bottom of the page, which lists various types of
output. From the drop-down menu at the top, you can select which output you want to see
in the output window. You will also have the option to clear the log if you want to display
only the newer logs.

The Command and Immediate windows
The Command window is very similar to Command Prompt of the Windows operating
system. You can execute commands using this tool. In the VS command line, you can
execute commands on the project you are working on in. Commands are very handy and
increase your productivity as you don't have to drag your mouse around to execute
something. You can run a command to make this happen easily.

Overview of C# as a Language Chapter 1

[30]

To open a Command window in VS, you can click on the View menu and then Windows.
After this, select Command Window. Alternatively, you can use the keyboard shortcut, Ctrl
+ Alt + A, to open it. When you are in the Command window, you will see a > placed in
front of every input. This is called a prompt. In the prompt, when you start typing, it will
show an Intellisense menu for you. Start typing Build.Compile, at which point the project
will be compiled for you as well. You can also use Debug.Start to start debugging the
application. You can debug your application easily using commands. I will list some of the
important commands that are used most often when debugging using the Command
window:

?: Tells you the value of a variable (you can also use Debug.Print to do the
same)
??: Sends the variable to the watch window
locals: Shows the locals window
autos: Shows the autos window
GotoLn: Sets the cursor to a specific line
Bp: Puts a breakpoint in the current line

Similar to the Command window, an Intermediate window lets you test code without
having to run it. An Intermediate window is used to evaluate, execute a statement, or even
print variable values. To open the Immediate window, go to Debug | Windows and select
Immediate.

Search option in IDE
On the very top-right corner of the screen, you will find a new Search box. This is called the
IDE search box. VS IDE is vast. There are thousands of options available inside of it that
you can configure. Sometimes, it is hard to find a specific option that you want. The IDE
search feature helps you find this option easier:

The search option will list all of the entries related to VS IDE options, and you can easily
find any feature you are looking for here.

Overview of C# as a Language Chapter 1

[31]

Writing your first program in Visual Studio
VS is the IDE where developers mostly code while working with the C# language. As you
already have a basic idea of how VS works, let's write our first program in VS. Let's create a
console application, name the solution MyFirstApp, and press OK. The default solution
template will be automatically added, which includes one Program.cs with the Main
program, and a number of other files.

Let's build a program that generates an ATM machine. There will be a menu that has three
options:

Withdraw
Deposit
Balance check

The withdrawal will be performed on the balance (initially $1,000) and a deposit will add
an amount to the current balance. Now, let's see what the program looks like:

class Program
{
 static void Main(string[] args)
 {
 int balance, depositAmt, withdrawAmt;
 int choice = 0, pin = 0;
 Console.WriteLine("Enter your ledger balance");
 balance = int.Parse(Console.ReadLine());
 Console.WriteLine("Enter Your Pin Number ");
 pin = int.Parse(Console.ReadLine());

 if(pin != 1234)
 {
 Console.WriteLine("Invalid PIN");
 Console.ReadKey(false);
 return;
 }

 while (choice != 4)
 {
 Console.WriteLine("********Welcome to PACKT Payment
Bank**************\n");
 Console.WriteLine("1. Check Balance\n");
 Console.WriteLine("2. Withdraw Cash\n");
 Console.WriteLine("3. Deposit Cash\n");
 Console.WriteLine("4. Quit\n");
Console.WriteLine("***\n\n");
 Console.WriteLine("Enter your choice: ");

Overview of C# as a Language Chapter 1

[32]

 choice = int.Parse(Console.ReadLine());

 switch (choice)
 {
 case 1:
 Console.WriteLine("\n Your balance $: {0} ", balance);
 break;
 case 2:
 Console.WriteLine("\n Enter the amount you want to
withdraw : ");
 withdrawAmt = int.Parse(Console.ReadLine());
 if (withdrawAmt % 100 != 0)
 {
 Console.WriteLine("\n Denominations present are 100,
500 and 2000. Your amount cannot be processed");
 }
 else if (withdrawAmt > balance)
 {
 Console.WriteLine("\n Sorry, insufficient balance.");
 }
 else
 {
 balance = balance - withdrawAmt;
 Console.WriteLine("\n\n Your transaction is
processed.");
 Console.WriteLine("\n Current Balance is {0}",
balance);
 }
 break;
 case 3:
 Console.WriteLine("\n Enter amount you want to deposit");
 depositAmt = int.Parse(Console.ReadLine());
 balance = balance + depositAmt;
 Console.WriteLine("Your ledger balance is {0}", balance);
 break;
 case 4:
 Console.WriteLine("\n Thank you for using the PACKT
ATM.");
 break;
 }
 }
 Console.ReadLine();
 }
}

Overview of C# as a Language Chapter 1

[33]

Now, let's illustrate the program. The program requests a PIN number before opening the
ATM machine. The PIN is not checked and can be anything. Once the program starts up, it
creates a menu in the front of the console with all of the desired options.

You can see that the entire code is written inside a while loop, as it ensures that the
program is kept alive for multiple executions. During execution, you can choose any of the
options that are available and perform the action associated with it.

To execute the program, just click on the Run button on the toolbar of the IDE:

If the program does not run automatically, you can look at the Error List window to figure
out the actual issue. If you made a mistake in the code, VS will show you the appropriate
error message and you can double-click on this to navigate to the actual location.

How to debug
If you have heard about VS, you must have heard about the debugging capabilities of the
IDE. You can start the program in debug mode by pressing F10. The program will start in
debug mode with the context in the first line. Let's execute a few of the lines. This will look
as follows:

Overview of C# as a Language Chapter 1

[34]

The highlighted line in the code editor workspace depicts the line where the current
execution has halted. The line is also marked with an arrow on the very left of the code
editor. You can continue pressing F10 or F11 (step into) buttons to execute these lines. You
must inspect the Locals window to find out about all of the values of the local variables
during their execution.

Debugging through code
For really advanced users, the .NET class library opens up some of the interesting debugger
APIs that you can invoke from your source code to call a debugger manually.

From the very beginning of a program, there is a DEBUG preprocessor variable, which
determines whether the project was built in debug mode.

You can write the code in the following way:

#IF DEBUG
/// The code runs only in debug mode
#ENDIF

Overview of C# as a Language Chapter 1

[35]

The preprocessor directives are actually evaluated during compile time. This means that
the code inside IF DEBUG will only be compiled in the assembly when the project is built in
debug mode.

There are other options such as Debug.Assert, Debug.Fail, and Debug.Print. All of
these only work during debug mode. In release mode, these APIs won't be compiled.

You can also call the debugger attached to the process if there is any such process
available, using the Debugger.Break() method, which will break in the debugger at the
current line. You can check the debugger. IsAttached is used to find out whether the
debugger is attached to the current process.

When you start debugging your code, VS launches the actual process as well as one in
.vshost in its filename. VS enhances the experience of debugging by enabling Partial
Trust's debugging and improving the F5 experience by using the .vshost file. These files
work in the background to attach the actual process with a predefined app domain for
debugging to make a flawless debugging experience.

.vshost files are solely used by the IDE and shouldn't be shipped in an actual project.

VS needs Terminal Services to run these debuggers as it communicates with the process
even when it is in the same machine. It does this by using a Terminal Service to maintain a
seamless experience with both normal and remote debugging of a process.

Summary
In this chapter, we looked at the basics of the C# language and introduced the VS Editor.
We also tried to write our first program using the command line and VS.

In the next chapter, we will continue this discussion by looking at OOP concepts and
techniques, which will allow us to write more classes.

2
Hello OOP - Classes and

Objects
Object-oriented programming (OOP) is something special. If you search the internet for
books on OOP, you'll find hundreds of books on this topic. But still this topic will never
become stale as it is the most efficient and most commonly used programming
methodology in the industry. With the increase in the demand for software developers,
there has also been an increase in the demand for good learning content. Our approach in
this book is to describe the concepts of OOP in the simplest way. Understanding the basics
of OOP is a must for developers who want to work with C#, as C# is a fully OOP language.
In this chapter, we will try to understand what OOP actually is and the most basic concepts
of OOP that are essential to begin our programming journey. Before anything else, let's first
start by analyzing the meaning of the term object-oriented programming.

The first word is object. According to the dictionary, an object is something that can be
seen, felt, or touched; something that has physical existence in the real world. If an item is
virtual, this means that it doesn't have any physical existence and is not considered an
object. The second word is oriented, which indicates a direction or something to aim for.
For example, when we say that we are oriented toward the building, we mean that we are
facing towards it. The third word is programming. I believe I don't have to explain what
programming is, but in case you are totally unaware of what programming is and are
reading this book to learn, let me explain briefly what programming is. Programming is
just giving instructions to the computer. As the computer doesn't speak our language, we
humans have to give instructions to the computer in a language that the computer
understands. We humans call these instructions computer programs, as we are guiding or
instructing a computer to do a particular thing.

Hello OOP - Classes and Objects Chapter 2

[37]

Now that we know the definitions of those three keywords, if we put all these words
together, we can understand the meaning of the phrase object-oriented programming. OOP
means that we write our computer programs by keeping objects at the center of our
thinking. OOP is neither a tool nor a programming language—it is just a concept. Some
programming languages are designed to follow this concept. C# is one of the most popular
object-oriented languages. There are other object-oriented languages, such as Java, C++, and
so on.

In OOP, we try to think about our software components as small objects, and create
relationships between them to solve a problem. You may have came across this approach
with other programming concepts in the programming world, such as procedural
programming, functional programming, and other kinds of programming. One of the most
popular computer programming languages of all time—the C programming language—is a
procedural programming language. F# is an example of a functional programming
language.

In this chapter, we will cover the following topics of OOP:

Classes in OOP
The general form of a class
What is an object?
Methods in a class
Characteristics of OOP

Classes in OOP
In OOP, you derive objects from classes. In this section, we'll take a closer look at what a
class actually is.

Classes are one of the most important concepts in OOP. You can say they are the building
blocks of OOP. A class can be described as the blueprint of an object.

Hello OOP - Classes and Objects Chapter 2

[38]

A class is like a template or blueprint that tells us what properties and behaviors an
instance of this class will have. In most circumstances, a class itself can't actually do
anything—it is just used to create objects. Let's look at an example to demonstrate what I
am saying. Let's say we have a Human class. Here, when we say Human, we don't mean any
particular person, but we are referring to a human being in general. A human that has two
hands, two legs, and a mouth, and which can also walk, talk, eat, and think. These
properties and their behaviors are applicable to most human beings. I know that this is not
the case for disabled people, but for now, we will assume our generic human is
able—bodied, keeping our example simple. So when we see the aforementioned properties
and behaviors in an object, we can easily categorize that object as a human object or person.
This classification is called a class in OOP.

Let's take a closer look at the properties and behaviors of a Human class. There are hundreds
of properties that you can list for a human, but for the sake of simplicity, we can say that
the following are the properties of a human being:

Height
Weight
Age

We can do the same for behavioral properties. There are hundreds of particular behaviors
that a person can perform, but here we will only consider the following:

Walk
Talk
Eat

The general form of a class
To create a class in C#, you have to follow a particular syntax. The general form of this is as
follows:

class class-name {
 // this is class body
}

Hello OOP - Classes and Objects Chapter 2

[39]

The class phrase is a reserved keyword in C#, and it is used to tell the compiler that we
want to create a class. To create a class, place the class keyword and then the name of the
class after a space. The name of the class can be anything that starts with a character or an
underscore. We can also include numbers in the class name, but not the first character of a
class name. After the chosen name of the class, you have to put an opening curly brace,
which denotes the start of the class body. You can add content in the class, such as
properties and methods, and then finish the class with a closing curly brace, as follows:

class class-name {
 // property 1
 // property 2
 // ...

 // method 1
 // method 2
 // ...
}

There are other keywords that can be used with classes to add more functionality, such as
access modifiers, virtual methods, partial methods, and so on. Don't worry about these
keywords or their uses, as we will discuss these later in this book.

Writing a simple class
Now let's create our first class. Let's imagine that we are developing some software for a
bank. Our application should keep track of the bank's customers and their bank accounts,
and perform some basic actions on those bank accounts. As we are going to design our
application using C#, we have to think of our application in an object-oriented way. Some
objects that we will need for this application could be a customer object, a bank account
object, and other objects. So, to make blueprints of these objects, we have to create
a Customer class and a BankAccount class, as well as the other classes that we will need.
Let's first create the Customer class using the following code:

class Customer
{
 public string firstName;
 public string lastName;
 public string phoneNumber;
 public string emailAddress;

 public string GetFullName()
 {

Hello OOP - Classes and Objects Chapter 2

[40]

 return firstName + " " + lastName;
 }
}

We started with the class keyword and then the name of the class, which is Customer.
After that, we added the class body inside curly braces, {}. The variables that the class has
are firstName, lastName, phoneNumber, and emailAddress. The class also has a method
called GetFullName(), which uses the firstName and the lastName fields to prepare the
full name and return it.

Now let's create a BankAccount class using the following code:

class BankAccount {
 public string bankAccountNumber;
 public string bankAccountOwnerName;
 public double amount;
 public datetime openningDate;

 public string Credit(){
 // Amount credited
 }

 public string Debit(){
 // Amount debited
 }
}

Here, we can see that we have followed a similar approach to create a class. We have used
the class keyword and then the name of the BankAccount class . After the name, we
started the class body with an opening curly brace and entered fields such
as bankAccountNumber, bankAccountOwnerName, amount, and openningDate, followed
by two methods, Credit and Debit. By placing a closing curly brace, we end the class
body.

For now, don't get worried about keywords such as public; we will learn about these
keywords later in the book when we talk about access specifiers.

Objects in OOP
We now know what a class is. Now let's look at what object refers to in OOP.

Hello OOP - Classes and Objects Chapter 2

[41]

An object is an instance of a class. In other words, an object is an implementation of a class.
For example, in our banking application, we have a Customer class, but that doesn't mean
that we actually have a customer in our application. To create a customer, we have to create
an object of the Customer class. Let's say that we have a customer called Mr. Jack Jones. For
this customer, we have to create an object of the Customer class, where the name of the
person is Jack Jones.

As Mr. Jones is our customer, this means that he also has an account in our bank. To create
a bank account for Mr. Jones, we have to create an object of the BankAccount class.

How to create objects
In C#, to create an object of a class, you have to use the new keyword. Let's look at an
example of an object:

Customer customer1 = new Customer();

Here, we started by writing Customer, which is the name of the class. This represents the
type of the object. After that, we gave the name of the object, which in this case is
customer1. You can give any name to that object. For example, if the customer is Mr.
Jones, we could name the object jackJones. After the object name, we then inserted an
equals sign (=), which means that we are assigning a value to the customer1 object. After
that, we entered a keyword called new, which is a special keyword that tells the compiler to
create a new object of the class that is given next to it. Here, we gave Customer again with
() next to it. When we place Customer(), we are actually calling the constructor of that
class. We will talk about constructors in subsequent chapters.

We can create jackJones by using the following code:

Customer jackJones = new Customer();

Variables in C#
In the previous code, you might have noticed that we created a few variables. A variable is
something that varies, which means it is not constant. In programming, when we create a
variable, the computer actually allocates a space in memory for it so that a value of the
variable can be stored there.

Hello OOP - Classes and Objects Chapter 2

[42]

Let's assign some values to the variables of the objects that we created in the previous
section. We will first work with the customer1 object, as shown in the following code:

using System;

namespace Chapter2
{
 public class Code_2_2
 {
 static void Main(string[] args)
 {
 Customer customer1 = new Customer();
 customer1.firstName = "Molly";
 customer1.lastName = "Dolly";
 customer1.phoneNumber = "98745632";
 customer1.emailAddress = "mollydolly@email.com";

 Console.WriteLine("First name is " + customer1.firstName);
 Console.ReadKey();
 }
 }

 public class Customer
 {
 public string firstName;
 public string lastName;
 public string phoneNumber;
 public string emailAddress;

 public string GetFullName()
 {
 return firstName + " " + lastName;
 }
 }
}

Here, we are assigning values to the customer1 object. The code instructs the computer to
create a space in the memory and store the value in it. Later, whenever you access the
variable, the computer will go to the memory location and find out the value of the
variable. Now, if we write a statement that will print the value of the
firstName variable with the additional string before it, it will look as follows:

Console.WriteLine("First name is " + customer1.firstName);

The output of this code will be as follows:

First name is Molly

Hello OOP - Classes and Objects Chapter 2

[43]

Methods in a class
Let's talk about another important topic—namely methods. A method is a piece of code
that is written in the code file and can be reused. A method can hold many lines of code,
which will be executed when it is called. Let's take a look at the general form of a method:

access-modifier return-type method-name(parameter-list) {
 // method body
}

We can see that the first thing in the method declaration is an access-modifier. This will
set the access permission of the method. Then, we have the return-type of the method,
which will hold the type that the method will return, such as string, int, double, or
another type. After that, we have the method-name and then brackets, (), which indicate
that it is a method. In the brackets, we have the parameter-list. This can either be empty
or can contain one or more parameters. Finally, we have curly brackets, {}, which hold the
method body. The code that the method will execute goes inside here.

Any code following this structure will be considered a method by the C# compiler.

Creating a method
Now that we know what a method is, let's take a look at an example, as shown in the
following code:

public string GetFullName(string firstName, string lastName){
 return firstName + lastName;
}

This code will create a method called GetFullName. This method takes two parameters,
firstName and lastName, which are placed inside the parentheses. We can also see that
we have to specify the types of those parameters. In this particular example, both the
parameter types are string.

Now, take a look at the method body, which is the section between the curly brackets, {}.
We can see that the code returns firstName + lastName, which means that it is
concatenating the two parameters, firstName and lastName, and returning the string.
As we are planning to return a string from this method, we set the return type of the
method to string. Another thing to notice is that the access type is set to public for this
method, which means that any other class can access it.

Hello OOP - Classes and Objects Chapter 2

[44]

Constructor of a class
In every class, there is a special type of method, called a constructor. You can create a
constructor in a class and program it. If you don't create one yourself, the compiler will
create a very simple constructor and use that instead. Let's take a look at what the
constructor is and what it does.

A constructor is a method that gets triggered when an object of a class is created. A
constructor is mainly used to set the prerequisites of the class. For example, if you are
creating an object of the Human class, that human object must have a date of birth.
Without a date of birth, no human would exist. You can set this requirement in the
constructor. You can also configure the constructor to set the date of birth as today if
no date of birth is given. This depends on the needs of your application. Another example
could be a bank account object, for which you have to provide the bank account holder.
No bank account can exist without an owner, so you can set this requirement in the
constructor.

Let's take a look at the general form of a constructor, as shown in the following code:

access-modifier class-name(parameter-list) {
 // constructor body
}

Here, we can see that there is a difference between a constructor and a normal method,
namely that a constructor doesn't have a return type. This is because a constructor can't
return anything; it's for initialization, not for any other type of action. Normally, the type of
access is public for constructors, because otherwise no object can be instantiated. If you
specifically want to prevent objects of a class from being instantiated, you can set the
constructor as private. Let's look at an example of a constructor, as shown in the
following code:

class BankAccount {
 public string owner;

 public BankAccount(){
 owner = "Some person";
 }
}

Hello OOP - Classes and Objects Chapter 2

[45]

In this example, we can see that we have a class called BankAccount and that it has a
variable called owner. As we know, no bank account can exist without an owner, so we
need to assign a value to the owner when an object is created. In order to create a
constructor, we just make the access type of the constructor public, as we want objects
to get instantiated. We can also take the name of the owner of the bank account as a
parameter in the constructor and use it to assign the variable, as shown in the following
code:

class BankAccount {
 public string owner;
 public BankAccount(string theOwner){
 owner = theOwner;
 }
}

If you put parameters in the constructor, then, when initializing the object, the parameters
need to be passed, as shown in the following code:

BankAccount account = new BankAccount("Some Person");

Another interesting thing is that you can have multiple constructors in a class. You might
have one constructor that takes one argument and another that doesn't take any arguments.
Depending on the way in which you are initializing the object, the respective constructor
will be called. Let's look at the following example:

class BankAccount {
 public string owner;
 public BankAccount(){
 owner = "Some person";
 }
 public BankAccount(string theOwner){
 owner = theOwner;
 }
}

In the preceding example, we can see that we have two constructors for the
BankAccount class. If you pass a parameter when you create a BankAccount object, it will
call the second constructor, which will set the value and create the object. If you don't pass
a parameter while creating the object, the first constructor will be called. If you don't have
either one of these constructors, this method of object creation won't be available.

Hello OOP - Classes and Objects Chapter 2

[46]

If you don't create a class, then the compiler creates an empty constructor for that class, as
follows:

class BankAccount {
 public string owner;
 public BankAccount()
 {
 }
}

Characteristics of OOP
OOP is one of the most important programming methodologies nowadays. The whole
concept depends on four main ideas, which are known as the pillars of OOP. These four
pillars are as follows:

Inheritance
Encapsulation
Polymorphism
Abstraction

Inheritance
The word inheritance means receiving or deriving something from something else. In real
life, we might talk about a child inheriting a house from his or her parents. In that case, the
child has the same power over the house that his parents had. This concept of inheritance is
one of the pillars of OOP. In programming, when one class is derived from another class,
this is called inheritance. This means that the derived class will have the same properties as
the parent class. In programming terminology, the class from which another class is
derived is called the parent class, while the classes that inherit from these are called child
classes.

Let's look at an example:

public class Fruit {
 public string Name { get; set; }
 public string Color { get; set; }
}

public class Apple : Fruit {
 public int NumberOfSeeds { get; set; }

Hello OOP - Classes and Objects Chapter 2

[47]

}

In the preceding example, we used inheritance. We have a parent class, called Fruit. This
class holds the common properties that every fruit has: a Name and a Color. We can use
this Fruit class for all fruits.

If we create a new class, called Apple, this class can inherit the Fruit class because we
know that an apple is a fruit. The properties of the Fruit class are also properties of the
Apple class. If the Apple inherits the Fruit class, we don't need to write the same
properties for the Apple class because it inherits these from the Fruit class.

Encapsulation
Encapsulation means hiding or covering. In C#, encapsulation is achieved by access
modifiers. The access modifiers that are available in C# are the following:

Public
Private
Protected
Internal
Internal protected

Encapsulation is when you want to control other classes' access to a certain class. Let's say
you have a BankAccount class. For security reasons, it isn't a good idea to make that class
accessible to all classes. It's better to make it Private or use another kind of access
specifier.

You can also limit access to the properties and variables of a class. For example, you might
need to keep the BankAccount class public for some reason, but make the
AccountBalance property private so that no other class can access this property except
the BankAccount class. You can do this as follows:

public class BankAccount {
 private double AccountBalance { get; set; }
}

Hello OOP - Classes and Objects Chapter 2

[48]

Like variables and properties, you can also use access specifiers for methods. You can write
private methods that are not needed by other classes, or that you don't want to expose to
other classes. Let's look at the following example:

public class BankAccount{
 private double AccountBalance { get; set; }
 private double TaxRate { get; set; }
 public double GetAccountBalance() {
 double balanceAfterTax = GetBalanceAfterTax();
 return balanceAfterTax;
 }

 private double GetBalanceAfterTax(){
 return AccountBalance * TaxRate;
 }
}

In the preceding example, the GetBalanceAfterTax method is a method that will not be
needed by other classes. We only want to provide the AccountBalance after tax, so we can
make this method private.

Encapsulation is a very important part of OOP as it gives us control over code.

Abstraction
If something is abstract, it means that it doesn't have an instance in reality but does exist as
an idea or concept. In programming, we use this technique to organize our thoughts. This is
one of the pillars of OOP. In C#, we have abstract classes, which implement the concept
of abstraction. Abstract classes are classes that don't have any instances, classes that
implement the abstract class will implement the properties and methods of that
abstract class. Let's look at an example of an abstract class, as shown in the following
code:

public abstract class Vehicle {
 public abstract int GetNumberOfTyres();
}

public class Bicycle : Vehicle {
 public string Company { get; set; }
 public string Model { get; set; }
 public int NumberOfTyres { get; set; }

 public override int GetNumberOfTyres() {
 return NumberOfTyres;

Hello OOP - Classes and Objects Chapter 2

[49]

 }
}

public class Car : Vehicle {
 public string Company { get; set; }
 public string Model { get; set; }
 public int FrontTyres { get; set; }
 public int BackTyres { get; set; }

 public override int GetNumberOfTyres() {
 return FrontTyres + BackTyres;
 }
}

In the preceding example, we have an abstract class called Vehicle. It has one abstract
method, called GetNumberOfTyres(). As it is an abstract method, this has to be
overridden by the classes that implement the abstract class. Our Bicycle and
Car classes implement the Vehicle abstract class, so they also override the abstract
method GetNumberOfTyres(). If you take a look at the implementation of these methods
in the two classes, you will see that the implementation is different, which is due to
abstraction.

Polymorphism
The word polymorph means many forms. To understand the concept of polymorphism
properly, let's work with an example. Let's think about a person, such as Bill Gates. We all
know that Bill Gates is a great software developer, businessman, philanthropist, and also a
great human being. He is one individual, but he has different roles and performs different
tasks. This is polymorphism. When Bill Gates was developing software, he was playing the
role of a software developer. He was thinking about the code he was writing. Later, when
he became the CEO of Microsoft, he started managing people and thinking about growing
the business. He's the same person, but with different roles and different responsibilities.

In C#, there are two kind of polymorphism: static polymorphism and dynamic
polymorphism. Static polymorphism is a kind of polymorphism where the role of a
method is determined at compilation time, whereas, in dynamic polymorphism, the role of
a method is determined at runtime. Examples of static polymorphism include method
overloading and operator overloading. Let's take a look at an example of method
overloading:

public class Calculator {
 public int AddNumbers(int firstNum, int secondNum){
 return firstNum + secondNum;

Hello OOP - Classes and Objects Chapter 2

[50]

 }

 public double AddNumbers(double firstNum, double secondNum){
 return firstNum + secondNum;
 }
}

Here, we can see that we have two methods with the same name, AddNumbers. Normally,
we can't have two methods that have the same name; however, as the parameters of those
methods are different, methods are allowed to have the same name by the compiler.
Writing a method with the same name as another method, but with different parameters, is
called method overloading. This is a kind of polymorphism.

Like method overloading, operator overloading is also a static polymorphism. Let's look at
an example of operator overloading to demonstrate this:

public class MyCalc
{
 public int a;
 public int b;
 public MyCalc(int a, int b)
 {
 this.a = a;
 this.b = b;
 }

 public static MyCalc operator +(MyCalc a, MyCalc b)
 {
 return new MyCalc(a.a * 3 ,b.b * 3);
 }
}

In the preceding example, we can see that the plus sign (+) is overloaded with another kind
of calculation. So if you sum up two MyCalc objects, you will get an overloaded result
instead of the normal sum, and this overloading happens at compile time, so it is static
polymorphism.

Dynamic polymorphism refers to the use of the abstract class. When you write an abstract
class, no instance can be created from that abstract class. When any other class uses or
implements that abstract class, the class also has to implement the abstract methods of that
abstract class. As different classes can implement the abstract class and can have different
implementations of abstract methods, polymorphic behavior is achieved. In this case, we
have methods with the same name but different implementations.

Hello OOP - Classes and Objects Chapter 2

[51]

Summary
This chapter covers classes and objects, the most important building blocks of OOP. These
are the two things that we should learn before jumping into any other topics in OOP. It is
important to make sure that these concepts are clear in our minds before moving on to
other ideas. In this chapter, we learned about what a class is and why it's needed in OOP.
We also looked at how to create a class in C# and how to define an object. After that, we
looked at the relationship between classes and objects and how to instantiate a class and
use it. We also talked about variables and methods in a class. Lastly, we covered the four
pillars of OOP. In the next chapter, we will learn more about inheritance and class
hierarchy.

3
Implementation of OOP in C#

In the previous chapter, we looked at classes, objects, and the four principles of OOP. In
this chapter, we will learn about some C# language features that make the language an
OOP language. Without knowing these concepts, writing object-oriented code with C#
programming could be difficult, or will prevent you from using it to its full potential. In
Chapter 2, Hello OOP - Classes and Objects, we learned that abstraction, inheritance,
encapsulation, and polymorphism are the four basic principles of OOP, but we haven't yet
learned how the C# language can be used to fulfill these principles. We are going to discuss
this topic in this chapter.

In this chapter, we will cover the following topics:

Interfaces
The abstract class
The partial class
The sealed class
Tuples
Properties
Access specifiers for classes

Interfaces
A class is a blueprint, which means it contains the members and methods that the
instantiated objects will have. An interface can also be categorized as a blueprint, but
unlike a class, an interface doesn't have any method implementation. Interfaces are more
like a guideline for classes that implement the interface.

Implementation of OOP in C# Chapter 3

[53]

The main features of interfaces in C# are as follows:

Interfaces can't have a method body; they can only have the method signature.
Interfaces can have methods, properties, events, and indexes.
An interface can't be instantiated, so no object of an interface can be created.
One class can extend multiple interfaces.

One of the major uses of an interface is dependency injection. By using interfaces, you can
reduce the dependencies in a system. Let's look at an example of an interface:

interface IBankAccount {
 void Debit(double amount);
 void Credit(double amount);
}
class BankAccount : IBankAccount {
 public void Debit(double amount){
 Console.WriteLine($"${amount} has been debited from your
account!");
 }
 public void Credit(double amount){
 Console.WriteLine($"${amount} has been credited to your account!");
 }
}

In the preceding example, we can see that we have one interface, called
IBankAccount, that has two members: Debit and Credit. Both of these methods have no
implementations in the interface. In the interface, the method signatures are more like
guidelines or requirements for the classes that will implement this interface. If any class
implements this interface, then the class has to implement the method body. This is a great
use of the OOP concept of inheritance. The class will have to give an implementation of the
methods that are mentioned in the interface. If the class doesn't implement any of the
methods of the interface, the compiler will throw an error that the class has not
implemented all the methods of the interface. By language design, if an interface is
implemented by a class, all the members of the interface must be taken care of in the class.
Consequently, in the preceding code, the BankAccount class has implemented the
IBankAccount interface and this is why the two methods, Debit and Credit, have to be
implemented.

Implementation of OOP in C# Chapter 3

[54]

The abstract class
An abstract class is a special kind of class that comes with the C# programming language.
This class has similar functionalities to an interface. For example, an abstract class can have
methods without implementation and with implementation. Consequently, when a class
implements an abstract class, the class has to override the abstract methods of the abstract
class. One of the main characteristics of an abstract class is that it can't be instantiated. An
abstract class can only be used for inheritance. It might or might not have abstract methods
and assessors. Sealed and abstract modifiers can't be placed in the same class, as they have
completely separate meanings.

Let's take a look at an example of an abstract class:

abstract class Animal {
 public string name;
 public int ageInMonths;
 public abstract void Move();
 public void Eat(){
 Console.WriteLine("Eating");
 }
}
class Dog : Animal {
 public override void Move() {
 Console.WriteLine("Moving");
 }
}

In the preceding example, we saw that the Dog class is implementing the Animal class, and
as the Animal class has an abstract method called Move(), the Dog class must override it.

If we try to instantiate the abstract class, the compiler will throw an error, as follows:

using System;
namespace AnimalProject {
 abstract class Animal {
 public string name;
 public int ageInMonths;
 public abstract void Move();
 public void Eat(){
 Console.WriteLine("Eating");
 }
 }
 static void Main(){
 Animal animal = new Animal(); // Not possible as the Animal class
is abstract class

Implementation of OOP in C# Chapter 3

[55]

 }
}

The partial class
You can split a class, a struct, or an interface into smaller portions that can be placed in
different code files. If you want to do this, you have to use the keyword partial. Even
though the code is in separate code files, when complied, they will be treated as one class
altogether. There are many benefits of partial classes. One benefit is that different
developers can work on different code files at a time. Another benefit is that if you are
using autogenerated code and you want to extend some functionality of that autogenerated
code, you can use a partial class in a separate file. Consequently, you are not directly
touching the autogenerated code, but adding new functionality in the class.

The partial class has a few requirements, one of which is that all classes must have the
keyword partial in their signatures. All the partial classes also have to have the same
name, but the file names can be different. The partial classes also have to have the same
accessibility, such as public, private, and so on.

The following is an example of a partial class:

// File name: Animal.cs
using System;
namespace AnimalProject {
 public partial class Animal {
 public string name;
 public int ageInMonths;
 public void Eat(){
 Console.WriteLine("Eating");
 }
 }
}
// File name: AnimalMoving.cs
using System;
namespace AnimalProject {
 public partial class Animal {
 public void Move(){
 Console.WriteLine("Moving");
 }
 }
}

Implementation of OOP in C# Chapter 3

[56]

As shown in the preceding code, you can create many partial classes of a class. This will
increase the readability of your code, and your code organization will be more structured.

The sealed class
One of the principles of OOP is inheritance, but sometimes you may need to restrict
inheritance in your code for the sake of your application's architecture. C# provides a
keyword called sealed. If this keyword is placed before a class's signature, the class is
considered a sealed class. If a class is sealed, that particular class can't be inherited by other
classes. If any class tries to inherit a sealed class, the compiler will throw an error. Structs
can also be sealed, and in that case, no class can inherit that struct.

Let's look at an example of a sealed class:

sealed class Animal {
 public string name;
 public int ageInMonths;
 public void Move(){
 Console.WriteLine("Moving");
 }
 public void Eat(){
 Console.WriteLine("Eating");
 }
}
public static void Main(){
 Animal dog = new Animal();
 dog.name = "Doggy";
 dog.ageInMonths = 1;
 dog.Move();
 dog.Eat();
}

In the preceding example, we can see how we can create a sealed class. Just using the
sealed keyword before the class keyword makes the class a sealed class. In the preceding
example, we created an Animal sealed class, and in the main method, we instantiated the
class and used it. This is now working fine. However, if we try to create a Dog class that will
inherit the Animal class, as in the following code, then the compiler will throw an error,
saying that the sealed Animal class can't be inherited:

class Dog : Animal {
 public char gender;
}

Implementation of OOP in C# Chapter 3

[57]

Here is a screenshot of what the compiler will show:

Tuples
A tuple is a data structure that holds a set of data. Tuples are mainly helpful when you
want to group data and use it. Normally, a C# method can only return one value. By using
a tuple, it is possible to return multiple values from a method. The Tuple class is available
under the System.Tuple namespace. A tuple can be created using the Tuple<>
constructor or by an abstract method named Create that comes with the Tuple class.

You can fix any data type in a tuple and access it using Item1, Item2, and so on. Let's look
at an example to get a better idea of this:

var person = new Tuple<string, int, string>("Martin Dew", 42, "Software
Developer"); // name, age, occupation
or
var person = new Tuple.Create("Martin Dew", 42, "Software Developer");

Let's take a look at how to return a tuple from a method by using the following code:

public static Tuple<string, int, string> GetPerson() {
 var person = new Tuple<string, int, string>("Martin Dew", 42, "Software
Developer");
 return person;
}
static void Main() {
 var developer = GetPerson();
 Console.WriteLine("The person is {0}. He is {1} years old. He is a
{2}", developer.Item1, developer.Item2, developer.Item3);
}

Implementation of OOP in C# Chapter 3

[58]

Properties
For security reasons, all the fields of a class shouldn't be exposed to the outside world.
Consequently, exposing private fields is done by properties in C#, which are members of
that class. Underneath the properties are special methods that are called accessors. A
property contains two accessors: get and set. The get accessor gets values from the field
while the set accessor sets values to the field. There is a special keyword for a property,
named value. This represents the value of a field.

By using access modifiers, properties can have different access levels. A property can be
public, private, read only, open for read and write, and write only. If only the
set accessor is implemented, this means that the only write permission is given. If both
set and get accessors are implemented, this means that both read and write permissions
are open for that property.

C# provides a smart way of writing setter and getter methods. If you create a property
in C#, you don't have to manually write setter and getter methods for a particular field.
Consequently, the common practice in C# is to create properties in a class, rather than
creating fields and setter and getter methods for those fields.

Let's take a look at how to create property in C#, as shown in the following code:

class Animal {
 public string Name {set; get;}
 public int Age {set; get;}
}

The Animal class has two properties: Name and Age. Both the properties have Public
access modifiers as well as setter and getter methods. This means that both properties
are open for read and write operations. The convention is that properties should be in
camel case.

If you want to modify your set and get methods, you can do so in the following way:

class Animal {
 public string Name {
 set {
 name = value;
 }
 get {
 return name;
 }
 }

Implementation of OOP in C# Chapter 3

[59]

 public int Age {set; get;}
}

In the preceding example, we are not using the shortcut of creating setters and getters
for the Name property. We have extensively written what the set and get methods should
do. If you look closely, you will see the name field in lowercase. This means that when you
create a property in camel case, a field with the same name is created internally, but in
Pascal case. The value is a special keyword that actually represents the value of that
property.

Properties are working behind the scenes in the background, which makes the code much
cleaner and easier to use. It's very much recommended that you use properties instead of
local fields.

Access specifiers for classes
Access specifiers, or access modifiers, are some reserved keywords that determine the
accessibility of a class, method, property, or other entity. The object-oriented principle of
encapsulation is achieved by using these access specifiers in C#. In total, there are five
access specifiers. Let's take a look at what these are and what the differences are between
them.

Public
The public access specifier means that there is no limitation to access the entity being
modified. If a class or member is set as public, it can be accessed by other classes or
programs in the same assembly, other assemblies, and even other programs that are
installed in the operating system that the program is running in. Normally, the starting
point of an application or main method is set as public, meaning that it can be accessed by
others. To make a class public, you just need to put a public keyword before the
keyword class, as shown in the following code:

public class Animal {
}

The preceding Animal class can be accessed by any other class, and as the member Name is
also public, it can also be accessed from any location.

Implementation of OOP in C# Chapter 3

[60]

Private
The private specifier is the most secure access specifier available in the C# programming
language. By setting a class or member of a class as private, you are determining that the
class or the member won't be allowed to be accessed by other classes. The scope of
a private member is within the class. For example, if you create a private field, that field
can't be accessed outside the class. That private field can only be used internally in that
class.

Let's look at an example of a class with a private field:

public class Animal {
 private string name;
 public string GetName() {
 return name;
 }
}

Here, as the GetName() method and the private field name are in the same class, the
method can access the field. However, if another method outside of the Animal class tries
to access the name field, it won't be able to.

For example, in the following code, the Main method is trying to set the private field
name, which is not permissible:

using System;
namespace AnimalProject {
 static void Main(){
 Animal animal = new Animal();
 animal.name = "Dog"; // Not possible, as the name field is private
 animal.GetName(); // Possible, as the GetName method is public
 }
}

Internal
If you set internal as an access specifier, this means that the entity is only accessible
within the same assembly. All the classes in the assembly can access this class or member.
When you build a project in .NET, it creates an assembly file, either dll or exe. There could
be many assemblies in one solution, and internal members are only accessible by the classes
on those particular assemblies.

Implementation of OOP in C# Chapter 3

[61]

Let's look at an example of this, as shown in the following code:

using System;
namespage AnimalProject {
 static void Main(){
 Dog dog = new Dog();
 dog.GetName();
 }
 internal class Dog {
 internal string GetName(){
 return "doggy";
 }
 }
}

Protected
Protected members are accessible by the class itself, as well as the child classes that inherit
the class. Other than that, no other class can access a protected member. The protected
access modifier is very useful when inheritance takes place.

Let's learn how to use this by looking at the following code:

using System;
namespage AnimalProject {
 static void Main(){
 Animal animal = new Animal();
 Dog dog = new Dog();
 animal.GetName(); // Not possible as Main is not a child of Animal
 dog.GetDogName();
 }
 class Animal {
 protected string GetName(){
 return "doggy";
 }
 }
 class Dog : Animal {
 public string GetDogName() {
 return base.GetName();
 }
 }
}

Implementation of OOP in C# Chapter 3

[62]

Protected internal
A protected internal is a combination of a protected access modifier and an internal access
modifier. A member whose access modifier is protected internal can be accessed by all
classes in the same assembly, as well as by any class that inherits it, regardless of the
assembly. For example, say that you have a class named Animal in an assembly called
Assembly1.dll. In the Animal class, there is a protected internal method called GetName.
Any other class in Assembly1.dll can access the GetName method. Now, suppose there is
another assembly named Assembly2.dll. In Assembly2.dll, there is a class named
Dog that extends the Animal class. As GetName is a protected internal, even though the Dog
class is in a separate assembly, it can still access the GetName method.

Let's look at the following example to get a clearer understanding of this:

//Assembly1.dll
using System;
namespace AnimalProject {
 public class Animal {
 protected internal string GetName(){
 return "Nice Animal";
 }
 }
}
//Assembly2.dll
using System;
namespace AnimalProject2 {
 public class Dog : Animal {
 public string GetDogName(){
 return base.GetName(); // This will work
 }
 }
 public class Cat {
 Animal animal = new Animal();
 public string GetCatName(){
 return animal.GetName(); // This is not possible, as GetName is
protected internal
 }
 }
}

Implementation of OOP in C# Chapter 3

[63]

Summary
In this chapter, we looked at class hierarchies and some other features that make the C#
programming language an OOP language. Knowing these concepts is essential for a C#
developer. By knowing class hierarchies, you can design your system so that it is decoupled
and flexible. You need to know how to use inheritance in your application to get the best of
OOP. The interface, abstract class, sealed class, and partial class will give you good control
of your application. When working in a team, defining the class hierarchies properly will
help you to maintain code quality and security.

Knowing about tuples and properties will improve your code cleanness and make your life
much easier when developing the application. Access specifiers are implementations of the
OOP concept of encapsulation. It is important to be familiar with these concepts. You need
to know which piece of code should be available publicly, which should be private, and
which should be protected. If you misuse these access specifiers, you might end up in a
situation where your application will have security holes and code repetition.

In the next chapter, we will discuss the important and interesting topic of object
collaboration.

4
Object Collaboration

As we saw in earlier chapters, OOP is all about objects, which are the main focus of this
programming methodology. When we design our software using this methodology, we
will keep the concepts of OOP in mind. We will also try to break our software components
into smaller objects and create proper relationships between the objects so that all of them
can work together to give us our desired output. This relationship between objects is called
object collaboration.

In this chapter, we will cover the following topics:

What is object collaboration?
Different types of collaboration
What is dependency collaboration?
What is association?
What is inheritance?

Examples of object collaboration
Object collaboration is one of the most important topics in OOP. If the objects don't
collaborate with each other in a program, nothing can be achieved. For example, if we think
about a simple web application, we can see how the relationship between different objects
plays an important role in constructing the application. Twitter, for example, has many
objects that are related to each other in order to make the application work. The User object
consists of the username, password, first name, last name, picture, and other user-related
information belonging to Twitter users. There could be another object called Tweet that
consists of a message, date and time, the username of the user who posted the tweet, and
some other properties. There may also be another object called Message that holds the
content of the message, who it was from, who it was sent to, and the date and time. This is
the simplest breakdown possible for a big application like Twitter; it almost certainly
contains many other objects. But for now, let's just think about these three objects and try to
find a relationship between them.

Object Collaboration Chapter 4

[65]

First, we will look at the User object. This is one of the most important objects in Twitter, as
it holds the user information. Everything in Twitter is either made or performed by a user
or for a user, so we can assume that there should be some other objects that will need to
have a relationship with this User object. Now let's try to see whether the Tweet object has
any relationship with the User object or not. A tweet is a message that should be available
for all users to see if the Tweet object is public. If it is private, only that user's followers will
see it. As we can see, a Tweet object has a very strong relationship with a User object. So,
with the OOP approach, we can say that the User object has a collaboration with the Tweet
object in the Twitter application.

If we also try to analyze the relationship between User and Message objects, we will see
that the Message object also has a very strong relationship with the User object. A message
is sent by a user to another user; therefore, without a user, the Message object has no
proper implementation.

But is there any relationship between the Tweet and Message objects? From what has been
said, we can say that there is no relationship between these two objects. It's not necessary
for every object to be related to all other objects, but an object usually has a relationship
with at least one other object. Now let's see what different types of object collaborations are
available in C#.

Different types of object collaboration in C#
There are many ways an object can collaborate with other objects in programming.
However, in this chapter, we will only talk about the three most important collaboration
rules.

We will first try to explain each of these types, looking at some examples to help us to
understand them. If you can't relate these concepts to your work, it might be a little hard for
you to understand the importance of object collaboration, but trust me, these concepts are
very important on your path to becoming a good software developer.

All these concepts and terms will come in handy when you
have discussions about software design with other people, or even when you design your
own software. As a consequence, my suggestion would be to focus on understanding the
concepts and relate them to your work in order to reap the benefits of this information.

Object Collaboration Chapter 4

[66]

Now, let's look at the three collaboration types that we are going to be talking about in this
chapter, as shown in the following list:

Dependency
Association
Inheritance

Let's think of an imaginary application and try to relate these collaboration concepts to the
objects of this application. Learning is easier and more interesting when you can relate
concepts to the real world, so this is the approach we will take in the following sections.

Case study
Since the main goal of this chapter is to learn about the concepts involved in object
collaboration rather than design a fully fledged, super-duper application, we will design
our objects in a simple and minimal manner.

For our example, we are going to develop some restaurant management software. This
could be for a luxury restaurant, or a small cafe where people come to drink coffee and
relax. In our case, we are thinking of a restaurant with mid-range pricing. To begin building
this application, let's think about what classes and objects we need. We will be needing a
Food class, a Chef class, a Waiter class, and maybe a Beverage class.

When you are done reading this chapter, don't jump straight into the next chapter. Instead,
spend some time thinking about some of the objects that aren't mentioned in this
chapter and try to analyze the relationships between the objects you have thought about.
This will help you to develop your knowledge of the concept of object
collaboration. Remember: software development is not a typing job, it requires heavy brain
work. Consequently, the more you think about the concepts, the better at software
developing you will become.

Now, let's see what objects I came up with when I did some thinking about the objects that
should be included in our imaginary restaurant application:

Food

Beef Burger

Pasta

Object Collaboration Chapter 4

[67]

Beverage

Cola

Coffee

Order

OrderItem

Staff

Chef

Waiter

FoodRepository

BeverageRepository

StaffRepository

Some of these objects might not make much sense to you right now. For example, the
FoodRepository, BeverageRepository, and StaffRepository objects are not actually
business objects, but are helper objects that help different modules to interact with each
other in the application. The FoodRepository object, for example, will be used to save and
retrieve Food objects from the database and the UI. Similarly, the
BeverageRepository object will deal with beverages. We also have a class called
Food that is a general type of class, as well as more specific food objects such as Beef
Burger and Pasta. These objects are subcategories of the Food object. As software
developers, we have identified the objects that are needed to develop this software. Now,
it's time to use these objects in a way that solves the problem that the software will be used
for; however, before we start writing code, we need to understand and figure out how the
objects can relate to each other so that the application is the best that it can be. Let's start
with the dependency relationship.

Dependency
When an object uses another unrelated object to carry out a task, the relationship between
them is called a dependency. In the software world, we also refer to this relationship as
uses a relation. Now, let's see if any kind of dependency relationship exists between the
objects that we have thought about for our restaurant application.

Object Collaboration Chapter 4

[68]

If we analyze our FoodRepository object, which will be saving and retrieving Food
objects from the database and passing them to the UI, we can say that the FoodRepository
object has to use the Food object. This means that the relationship between the Food and
FoodRepository object is a type of dependency relationship. If we think about the flow in
the frontend when a new Food objects is created, that object will be passed to the
FoodRepository. The FoodRepository will then serialize the Food object to database
data in order to save it in the database. If the FoodRepository doesn't use the Food object,
then how would it know what to serialize and store in the database? Here, the
FoodRepository must have a dependency relationship with the Food object. Let's look at
the code for this:

public class Food {
 public int? FoodId {get;set;}
 public string Name {get;set;}
 public decimal Price {get;set;}
}

public class FoodRepository {
 public int SaveFood(Food food){
 int result = SaveFoodInDatabase(food);
 return result;
 }

 public Food GetFood(int foodId){
 Food result = new Food();
 result = GetFoodFromDatabaseById(foodId);
 return result;
 }
}

In the preceding code, we can see that the FoodRepository class has two methods. One
method is SaveFood and the other is GetFood.

The SaveFood method involves taking one Food object and saving it in the database. After
saving the food item in the database, it returns the newly created foodId back to the
FoodRepository. The FoodRepository then passes the newly created FoodId to the UI
to inform the user that the food item creation was successful. On the other hand, the other
GetFood method takes an ID as parameter from the UI and checks whether or not the ID is
a valid input. If it is, the FoodRepository passes the FoodId to the databasehandler
object, which searches the food in the database and maps it back as a Food object. After this,
the Food object is returned to the view.

Object Collaboration Chapter 4

[69]

Here, we can see that the FoodRepository object needs to use the Food object to do its
work. This type of relationship is called a dependency relationship. We can also use the
uses a phrase to identify this relationship. The FoodRepository uses a Food object to save
food in the database.

Like FoodRepository, the BeverageRepository does the same thing for a Beverage
object: it saves and retrieves beverage objects in the database and UI. Now let's see what the
BeverageRepository looks like as code:

public class Beverage {
 public int? BeverageId {get;set;}
 public string Name { get;set;}
 public decimal Price {get;set;}
}

public class BeverageRepository {
 public int SaveBeverage(Beverage beverage){
 int result = SaveBeverageInDatabase(beverage);
 return result;
 }

public Beverage GetBeverage(int beverageId) {
 Beverage result = new Beverage();
 result = GetBeverageFromDatabaseById(beverageId);
 return result;
 }
}

If you look at the preceding code, you will see that the BeverageRepository has two
methods: SaveBeverage and GetBeverage. Both of these methods use the Beverage
object. This means that the BeverageRepository has a dependency relationship with a
Beverage object.

Now let's take a look at the two classes we have created so far, as shown in the following
code:

public class FoodRepository {
 public int SaveFood(Food food){
 int result = SaveFoodInDatabase(food);
 return result;
 }

 public Food GetFood(int foodId){
 Food result = new Food();
 result = GetFoodFromDatabaseById(foodId);
 return result;

Object Collaboration Chapter 4

[70]

 }
}

public class BeverageRepository {
 public int SaveBeverage(Beverage beverage){
 int result = SaveBeverageInDatabase(beverage);
 return result;
 }

public Beverage GetBeverage(int beverageId){
 Beverage result = new Beverage();
 result = GetBeverageFromDatabaseById(beverageId);
 return result;
 }
}

One object can be related to multiple objects using a dependency relationship. In OOP, this
type of relationship is very common.

Let's look at another example of dependency relationships. A relationship between a
Programmer and a Computer could be a dependency relationship. How? Well, we know
that a Programmer is most likely a human and a Computer is a machine. A Programmer
uses a Computer to write computer programs, but the Computer is not a property of the
Programmer. A Programmer uses a computer, and this doesn't have to be one specific
computer—it can be any computer. So can we say that a relationship between a
Programmer and a Computer is a type of dependency relationship? Yes, we surely can.
Let's see how we can represent this in code:

public class Programmer {
 public string Name { get; set; }
 public string Age { get; set; }
 public List<ProgrammingLanguages> ProgrammingLanguages { get; set; }
 public ProgrammerType Type { get; set; } // Backend/Frontend/Full
Stack/Web/Mobbile etc

 public bool WorkOnAProject(Project project, Computer computer){
 // use the provided computer to do the project
 // here we can see that the programmer is using a computer
 }
}

public class Computer {
 public int Id { get; set; }
 public string ModelNumber { get; set; }
 public Company Manufacturer { get; set; }
 public Ram Ram { get; set; }

Object Collaboration Chapter 4

[71]

 public MotherBoard MotherBoard { get; set; }
 public CPU CPU { get; set; }
}

In the preceding example, we can clearly see how a Programmer and a Computer have a
dependency relationship, however, this is not always the case: it depends on how you
design your objects. If you have designed your Programmer class in such a way that each
programmer has to have a dedicated computer, you could have used Computer as a
property in the Programmer class, and then the relationship between the programmer and
the computer would have changed. Consequently, the relationship depends on how the
objects are designed.

My main goal in this section was to clarify the dependency relationship. I hope the nature
of dependency relationships is now clear to you.

Now let's see how the dependency relationship is drawn in a Unified Modeling Language
(UML) diagram, as shown in the following diagram:

A solid line is used to represent a dependency relationship.

Association
Another type of relationship is the association relationship. This type of relationship is
unlike the dependency relationship. In this type of relationship, one object knows another
object and is associated with it. This relationship is achieved by having one object as a
property of another object. In the software community, this relationship type is also
referred to as a has a relationship. For example, a car has an engine. If you think of any
objects that you can relate to each other using the phrase has a, then that relationship is
an association relationship. In our car example, the engine is a part of the car. Without an
engine, the car can't carry out any functions. While the engine itself is a separate object, it is
part of the car, and therefore there is an association between the car and the engine.

Object Collaboration Chapter 4

[72]

This association relationship can be divided into the following two categories:

Aggregation
Composition

Let's see what these two types of relationship are and how they differ from each other.

Aggregation
When one object has another object in it as a property and this other object is independent,
this is called an aggregation relationship. Let's take the example in the previous section
and try to see whether this was an aggregation relationship or not.

The previous example looked at the relationship between a car and an engine. We all know
that a car must have an engine, and that is why an engine is the property of a car, as shown
in the following code:

public class Car {
 public Engine Engine { get; set; }
 // Other properties and methods
}

Now the question is, what is this type of relationship? The deciding factor is that an engine
is a separate object that functions independently of a car. When the manufacturer creates an
engine, they don't make it when they are creating the other parts of the car: they can create
it separately. Even without a car, an engine can be tested or even used for another purpose.
Consequently, we can say that the type of relationship that the car has with the engine is
an aggregation relationship.

Now let's look at the example of our restaurant management software. If we analyze the
relationship between the Food and Chef objects, it is clear that no food can exist without a
chef. Someone has to cook, bake, and prepare the food, the food cannot do this itself.
Consequently, we can say that the food has a chef. This means that the Food object should
have a property named Chef, which will hold the Chef object of that Food. Let's look at the
code for this relationship:

public class Food {
 public int? FoodId {get;set;}
 public string Name { get; set; }
 public string Price { get; set; }
 public Chef Chef { get; set; }
}

Object Collaboration Chapter 4

[73]

If we think about the Beverage object, every beverage must have a company or maker. For
example, commercial beverages are made by companies such as Pepsi Co., Coca Cola
Company, and so on. The beverages that these companies produce are their legal property.
Beverages can also be made locally, in which case the company name would be the name of
the local shop. However, the main idea here is that a beverage must have a manufacturer
company. Let's see how the Beverage class would look in code:

public class Beverage {
 public int? BeverageId {get;set;}
 public string Name { get; set; }
 public string Price { get; set; }
 public Manufacturer Manufacturer { get; set; }
}

In both of these examples, the Chef and Manufacturer objects are objects that are used as
the property of Food and Beverage respectively. We also know that a Chef or a
Manufacturer company is independent. Consequently, the relationship between Food and
Chef is an aggregation relationship. This is also the case for Beverage and Manufacturer.

To make things clearer, let's look at another example of aggregation. Our computer that we
use for programming or for any other task is made up of different components. We have a
motherboard, RAM, CPU, graphics card, screen, keyboard, mouse, and many other things.
Some components have an aggregation relationship with the computer. For example, the
motherboard, RAM, and CPU are internal components that are needed to build a computer.
All of these components can exist independently of the computer, and consequently, all of
these have aggregation relationships with the computer. Let's look at how the Computer
class is related to the MotherBoard class in the following code:

public class Computer {
 public int Id { get; set; }
 public string ModelNumber { get; set; }
 public Company Manufacturer { get; set; }
 public Ram Ram { get; set; }
 public MotherBoard MotherBoard { get; set; }
 public CPU CPU { get; set; }
}

public class Ram {
 // Ram properties and methods
}

public class CPU {
 // CPU properties and methods
}

Object Collaboration Chapter 4

[74]

public class MotherBoard {
 // MotherBoard properties and methods
}

Now, let's see how the aggregation relationship is drawn in a UML diagram. If we try to
display the preceding computer class aggregation relationship with the RAM, CPU, and
motherboard, then it would look something like the following:

A solid line and a diamond are used to represent an aggregation relationship. The diamond
is placed at the side of the class that holds the property, as shown in the following diagram:

Composition
A composition relationship is a type of association relationship. This means that one object
will have another object as its property, but where it differs from aggregation is that, in
composition, the object that is used as a property can't exist independently; it must have the
help of another object in order to be functional. If we think about the Chef and
Manufacturer classes, the existence of these classes is not fully dependent on
the Food and Beverage classes. Instead, these classes can exist independently, and
therefore have an aggregation relationship.

Object Collaboration Chapter 4

[75]

However, if we think about the relationship between the Order and OrderItem objects, we
can see that the OrderItem object has no meaning without Order. Let's look at the
following code of the Order class:

public class Order {
 public int OrderId { get; set; }
 public List<OrderItem> OrderItems { get; set; }
 public DateTime OrderTime { get; set; }
 public Customer Customer { get; set; }
}

Here, we can see that the Order object has a list of OrderItems in it. These OrderItems
are the Food items that the customer has ordered. A customer can order one dish or
multiple dishes, which is why the OrderItems is a list type. So now it's time to justify our
thinking. Does an OrderItem really have a composition relationship with Order? Are we
making any mistakes here? Are we thinking about an aggregation relationship as a
composition relationship?

To identify which type of association relationship it is, we have to ask ourselves some
questions. Can OrderItem exist without Order? If not, then why not? It's a separate object!
However, if you think a little more deeply, you will realize that no OrderItem can exist
without an Order, as a customer has to order an item, and without an Order object, the
OrderItem object is not trackable. The OrderItem item cannot be served to any customer
as there is no data for which customer the OrderItem is for. Consequently, we can say that
the OrderItem has a composition relationship with the Order object.

Let's look at another example of composition. In our schooling system, we have students,
teachers, subjects, and grades, right? Now, I would say that the relationship between a
Subject object and a Grade object is a composition relationship. Let me justify my answer.
Take a look at the following code of these two classes:

public class Subject {
 public int Id { get; set; }
 public string Name { get; set; }
 public Grade Grade { get; set; }
}

public class Grade {
 public int Id { get; set; }
 public double Mark { get; set; }
 public char GradeSymbol { get; set; } // A, B, C, D, F etc
}

Object Collaboration Chapter 4

[76]

Here, we can see that the Grade object holds the mark that a student has scored on a test for
a particular subject. It also holds the GradeSymbol, such as A, B, or F, depending on the
marking rules of that school. We can see in the Subject class that there is a property called
Grade. This holds the grade for that particular Subject object. If we just think about Grade
individually rather than in association with the Subject class, we will get a bit confused
and wonder what subject the grade is for.

Consequently, the relationship between Grade and Subject is a composition relationship.

Let's look at how we can show a composition relationship in a UML diagram using the
preceding example of Subject and Grade:

A solid line and a black diamond are used to represent a composition relationship. The
diamond is placed at the side of the class that holds the property:

Inheritance
This is one of the four pillars of OOP. Inheritance is when one object inherits or reuses
another object's properties or methods. The class that gets inherited is called the base
class and the class that inherits the base class is normally called the derived class. The
inheritance relationship can be treated as an is a relationship. For example, pasta is a Food.
The Pasta object has a unique ID in the database, which has other properties such as name,
price, and chef. So, as Pasta satisfies all the attributes of the Food class, it can inherit
the Food class and use the properties of the Food class. Let's look at the code:

public class Pasta : Food {
 public string Type { get; set; }
 public Sauce Sauce { get; set; }
 public string[] Spices { get; set; }
}

Object Collaboration Chapter 4

[77]

The case is the same for beverages. For example, Coffee is a type of beverage that has all
the attributes that the Beverage object has. A coffee has a name and price, and it might
have sugar, milk, and coffee beans. Let's write the Coffee class and see how it looks:

public class Coffee : Beverage {
 public int Sugar { get; set; }
 public int Milk { get; set; }
 public string LocationOfCoffeeBean { get; set; }
}

So here, we can say that Coffee is inheriting the Beverage class. Here, Coffee is the
derived class and Beverage is the base class.

In an earlier example, we used the Programmer object. In that case, do you think that the
Programmer class can actually inherit the Human class? Yes, for sure. A programmer is
nobody other than a human in this example. If we look at the properties of a Programmer
and the properties of a Human, we will find that there are some common properties, such as
the name, age, and so on. Consequently, we can modify the code of the Programmer class
to resemble the following:

public class Programmer : Human {
 // Name, Age properties can be inherited from Human
 public List<ProgrammingLanguages> ProgrammingLanguages { get; set; }
 public ProgrammerType Type { get; set; } // Backend/Frontend/Full
Stack/Web/Mobbile etc

 public bool WorkOnAProject(Project project, Computer computer){
 // use the provided computer to do the project
 // here we can see that the programmer is using a computer
 }
}

Now, let's see how we can draw a UML diagram for our Programmer class:

Inheritance is represented by a solid line with a triangle sign attached to it. This triangle
points in the direction of the super class:

Object Collaboration Chapter 4

[78]

Summary
The object collaboration types that we looked at in this chapter are the most commonly
used types in C#. When designing an application or architecting some software, object
collaboration is very important. It will define how flexible the software is, how many new
functions can be added, and how easy it will be to maintain the code. Object collaboration is
very important.

In the next chapter, we will talk about exception handling. This is another very important
part of programming.

5
Exception Handling

Let's begin this chapter by looking at two words: exception and handling. In English, the
word exception refers to something unusual that doesn't usually happen. In programming,
the word exception has a similar meaning, but is related to software code. By their nature,
computer programs should do only those things that we instruct them to do, and it is
considered abnormal when a computer won't or can't follow our instructions. If the
computer program fails to follow our instructions, it is classified as an exception in the
software world.

Error is another word that is heavily used in programming. It is important for us to
understand that an error and an exception are not the same thing. An error refers to an
incident where the software couldn't even run. More specifically, an error means that the
code that is written contains something wrong, and that is why the compiler couldn't
compile/build the code. On the other hand, an exception is something that happens at
runtime. The easiest way to distinguish between these two concepts is—if the code doesn't
compile/build, then there is an error in your code. If the code compiles/builds, but when
you run it you get some unusual behavior, then it's an exception.

Exception handling means handling/controlling/supervising exceptions that occur while
we are running the program. The topics that we are going to explore in this chapter are as
follows:

Why we need exception handling in programming
Exception handling in C# programming
The basics of exception handling
try and catch
What happens if you don't handle exceptions
Multiple catch blocks
What the throw keyword is used for

Exception Handling Chapter 5

[80]

What the finally block does
Exception classes
Some common exception classes
Exception-handling best practices

Why we need exception handling in
programming
Imagine that you have written some code. The code should do what you have instructed it
to, right? But for some reason, the software is unable to execute the commands you have
given. Maybe the software is facing some issues that make it impossible to run.

For example, let's say that you have instructed the software to read a file, collect data, and
store it in a database. However, the software is unable to find the file at the location where
the file is supposed to be. There could be many reasons why the file isn't found there: the
file may have been deleted by someone or may have been moved to another location. Now,
what will your software do? It's not smart enough to handle this situation automatically. If
the software is not clear about its work, it will throw an exception. It is our duty as a
software developer to tell the software what to do in these kind of situations.

The software will let us know that it is stuck and can't resolve the situation by passing a
message. But what should it say to us? "Help! Help!" won't be an appropriate message, and
this kind of message won't make the developer's life any easier. We need more information
about the situation so that we can guide the computer to work accordingly. For that reason,
the .NET framework has created some very common exceptions that occur very often in
programming. If the problem that the software is facing has a predefined exception, it will
throw that. For example, say that there is a program that is trying to divide a number by
zero. Mathematically, this is not possible, but the computer has to do it because you have
instructed it to do so. Now the computer is in big trouble; it's confused and helpless. It tries
to divide the number by zero as you instructed, but then the compiler will stop it and
say "Ask for help, Mr. Program!", which means, "Throw a DivideByZeroException to your
master for help". The program will then throw a DivideByZeroException and expect some
code that the programmer has written to handle it. This is how we will actually know what
exceptions we need to handle in the program. This is why we need exceptions in
programming.

Exception Handling Chapter 5

[81]

Exception handling in C# programming
The .NET framework and C# programming language have developed some powerful ways
to handle exceptions. System.Exceptions is a class in .NET under the system namespace
and has some functionality that will help you to manage exceptions that occur during
runtime and prevent your program from crashing. If you don't handle exceptions properly
in your code, your software will crash. This is why exception handling is very important in
software development.

Now, you might be wondering how you can handle exceptions in your code. An exception
is something unexpected. How can you know which exception will occur in your code and
cause the program to crash? This is a very good question, and I am sure this question was
also asked when language developers were designing the language. That is why they came
up with a solution for .NET that has created a very beautiful mechanism to handle
exceptions.

Basics of exception handling
Exception handling in C# is mainly achieved by four keywords: try, catch, throw, and
finally. Later, we will talk about these keywords in detail. However, just to give you a
basic idea of what is meant by those keywords, let's briefly discuss them:

try: When you are not sure of the expected behavior of a piece of code or if there
is a possibility of an exception, you should put that code in a try block. The try
block will throw an exception if any exception happens inside the code for that
block. If no exception occurs, the try block will act like a normal code block. The
try block is actually designed to throw exceptions, which is its main task.
catch: The catch block is executed when an exception is caught. Exceptions
thrown by the try block will be handled by the following catch block. There
could be multiple catch blocks for a try block. Each catch block can be
dedicated to a particular exception. Consequently, we should write different
catch blocks for different types of exception.
throw: This is used when you manually want to throw an exception. There could
be situations in which you want to do this to control a specific kind of situation.
finally: This is a block of code that will be compulsorily executed. It doesn't
matter whether the try block threw an exception or not—the finally block will
be executed. This is mainly used to code some tasks that are essential to handle in
any case.

Exception Handling Chapter 5

[82]

Try and catch
The try and catch keywords are the two most important keywords for exception handling
in C#. If you write a try block without a catch block, then it won't make any sense
because, if a try block throws an exception and there is no catch block to handle it, then
what is the benefit? The exception will still be unhandled. The catch block actually
depends on a try block. A catch block can't exist if there is no try block associated with
it. Let's look at how we can write a try-catch block:

try
{
 int a = 5 / 0;
}
catch(DivideByZeroException ex)
{
 Console.WriteLine(“You have divided by zero”);
}

We can also have more catch blocks for a try block. Let's look at an example of this:

try
{
 int a = 5 / 0;
}
catch(DivideByZeroException ex)
{
 Console.WriteLine(“You have divided by zero”);
}
catch(Exception ex)
{
 Console.WriteLine(“Normal exception”);
}

What happens if you don't handle
exceptions?
Are exceptions really important? Are they worth the time spent handling them when you
have tons of complexities in the logic? Yes, they are super important. Let's explore what
will happen if you don't take care of exceptions. When an exception is triggered, if no code
handles it, the exception goes to the system runtime.

Exception Handling Chapter 5

[83]

Furthermore, when the system runtime faces an exception, it just terminates the program.
So, now you understand why you should handle exceptions. If you fail to do this, your
application might break down in the middle of running. I am sure you personally don't like
programs that crash while you are using them, so we have to be careful about writing
exception-free software. Let's look at an example of what happens during system runtime if
the exception is not handled:

Using system;

class LearnException {
 public static void Main()
 {
 int[] a = {1,2,3,4};
 for (int i=0; i<10; i++)
 {
 Console.WriteLine(a[i]);
 }
 }
}

If we run this code, then the first four times that it is run, it will perform perfectly and print
some numbers from one to four. But after that, it will throw an exception of
IndexOutOfRangeException and the system runtime will terminate the program.

Multiple catch blocks
It's normal to get different types of exceptions in one try block. But how can you handle
them? You should not use a general exception to do this. If you throw a general exception
instead of throwing a specific exception, you might miss some important information about
the exception. For this reason, the C# language introduced multiple catch blocks for a try
block. You can specify one catch block that will be called for one type of exception, and
you can create other catch blocks just after one-by-one with different exception types.
When a specific exception is thrown, only that particular catch block will be executed if it
has a dedicated catch block for that kind of exception. Let's look at an example:

using System;

class ManyCatchBlocks
{
 public static void Main()
 {
 try
 {

Exception Handling Chapter 5

[84]

 var a = 5;
 var b = 0;
 Console.WriteLine("Here we will divide 5 by 0");
 var c = a/b;
 }
 catch(IndexOutOfRangeException ex)
 {
 Console.WriteLine("Index is out of range " + ex);
 }
 catch(DivideByZeroException ex)
 {
 Console.WriteLine("You have divided by zero, which is not
correct!");
 }
 }
}

If you run the preceding code, you will see that only the second catch block is executed. If
you open up the console window, you will see that the following line has been printed out:

You have divided by zero, which is not correct!

So, we can see that if you have multiple catch blocks, only the particular catch block that
matches the type of exception that was thrown will be executed.

Now you might be thinking, "You said we shouldn't use a general exception handler. But why is
that? Yes, we might miss some information but my system isn't crashing! Isn't it better this way?"
Actually, the answer to this question is not straightforward. It may vary from system to
system, but let me tell you why you want the system to crash sometimes. Suppose you have
a system where you deal with very complex and sensitive data. When an exception
happens in such a system, it might be very risky to allow the customer to use the software.
The customer could do some serious damage to the data, as the exception was not handled
properly. But yes, if you think your system will be fine if you allow the user to continue,
even if they got an unknown exception, you can use a general catch block. Now let me
show you how you can do this. If you want a catch block to catch any kind of exception,
regardless of the exception type, then your catch block should accept the Exception class
as a parameter, as shown in the following code:

using System;

namespace ExceptionCode
{
 class Program
 {
 static void Main(string[] args)
 {

Exception Handling Chapter 5

[85]

 try
 {
 var a = 0;
 var b = 5;
 var c = b / a;
 }
 catch (IndexOutOfRangeException ex)
 {
 Console.WriteLine("Index out of range " + ex);
 }
 catch (Exception ex)
 {
 Console.WriteLine("I will catch you exception! You can't hide from
me!" + ex);
 }

 Console.WriteLine("Hello");
 Console.ReadKey();
 }
 }
}

Alternatively, you can also pass a no parameter to the catch block. This will also catch
every kind of exception and execute the code in the body. An example of this is given in the
following code:

using System;

namespace ExceptionCode
{
 class Program
 {
 static void Main(string[] args)
 {
 try
 {
 var a = 0;
 var b = 5;
 var c = b / a;
 }
 catch (IndexOutOfRangeException ex)
 {
 Console.WriteLine("Index out of range " + ex);
 }
 catch
 {
 Console.WriteLine("I will catch you exception! You can't hide from
me!");

Exception Handling Chapter 5

[86]

 }

 Console.WriteLine("Hello");
 Console.ReadKey();
 }
 }
}

However, keep in mind that this has to be the last catch block, otherwise, there will be a
runtime error.

Using the throw keyword
Sometimes, in your own program, you have to create exceptions by yourself. No, not to
take revenge on the user, but for the sake of your application. Sometimes, there are
situations where you need to throw an exception to bypass a difficulty, to log something,
or just redirect the flow of the software. Don't worry: by doing this you are not becoming
the bad guy; you are actually the hero who is saving the program from trouble. But how
can you create an exception? To do that, C# has a keyword called throw. This keyword will
help you to create an instance of a type of exception and throw it. Let me show you an
example of the throw keyword:

using System;

namespace ExceptionCode
{
 class Program
 {
 public static void Main(string[] args)
 {
 try
 {
 Console.WriteLine("You are the boss!");
 throw new DivideByZeroException();
 }
 catch (IndexOutOfRangeException ex)
 {
 Console.WriteLine("Index out of range " + ex);
 }
 catch (DivideByZeroException ex)
 {
 Console.WriteLine("Divide by zero " + ex);
 }
 catch
 {

Exception Handling Chapter 5

[87]

 Console.WriteLine("I will catch you exception! You can't hide from me!");
 }

 Console.WriteLine("See, i told you!");
 Console.ReadKey();
 }
 }
}

The output is as follows:

You can see that, if you run the preceding code, you will get the
DivideByZeroException catch block executed.

So, if you want to throw an exception (because you want the upper-layer catch block to
handle it, for example), you simply throw a new instance of an exception. This could be any
kind of exception, including a system exception or a self-created exception. Just keep in
mind that there is a catch block that will handle it.

What does the finally block do?
When we say "finally", we mean something that we were waiting for or something that is
going to conclude the process. This is almost the same in exception handling. A
finally block is a block of code that will be executed no matter what happens in the try
or catch block. It doesn't matter what types of exception were thrown or whether or
not they were handled, the finally block will be executed. Now you may ask, "Why do we
need this finally block? If there is any exception in our program, we will handle it with the
catch block! Can't we write the code inside the catch block instead of the finally block?"

Yes, you can, but what happens if an exception was thrown but the catch block wasn't
triggered? This would mean that the code inside the catch block will not get executed. For
this reason, the finally block is important. It doesn't matter whether or not there was any
exception; the finally block will run. Let me show you an example of the finally block:

using System;

namespace ExceptionCode
{

Exception Handling Chapter 5

[88]

 class Program
 {
 static void Main(string[] args)
 {
 try
 {
 int a = 0;
 int b = 5;
 int c = b / a;
 }
 catch (IndexOutOfRangeException ex)
 {
 Console.WriteLine("Index out of range " + ex);
 }
 catch (DivideByZeroException ex)
 {
 Console.WriteLine("Divide by zero " + ex);
 }
 catch
 {
 Console.WriteLine("I will catch you exception! You can't hide from me!");
 }
 finally
 {
 Console.WriteLine("I am the finally block i will run by hook or by
crook!");
 }
 Console.ReadLine();
 }
 }
}

The output is as follows:

An important use case of the finally block could be when you open a database
connection in the try block! You have to close this, otherwise, that connection will be open
for the rest of the program and it will use a lot of resources. In addition, there are a limited
number of connections a database can make, so if you open one and don't close it, that
connection string is wasted. The best practice is to close the connection as soon as your
work with it is complete.

Exception Handling Chapter 5

[89]

The finally block plays the best role here. It doesn't matter what will happen in the try
block, the finally block will close the connection, as shown in the following code:

using System;

namespace ExceptionCode
{
 class Program
 {
 static void Main(string[] args)
 {
 try
 {
 // Step 1: Established database connection

 // Step 2: Do some activity in database
 }
 catch (IndexOutOfRangeException ex)
 {
 // Handle IndexOutOfRangeExceptions here
 }
 catch (DivideByZeroException ex)
 {
 // Handle DivideByZeroException here
 }
 catch
 {
 // Handle All other exception here
 }
 finally
 {
 // Close the database connection
 }
 }
 }
}

Here, we are performing two main tasks in the try block. First, we open a database
connection, and secondly, we perform some activity in the database. Now, if any exception
happens while we do any of this, an exception will be thrown that will be handled by a
catch block. At the very end, the finally block will close the database connection.

The finally block is not something that you must have to have to handle exceptions, but
you should use it if you need it.

Exception Handling Chapter 5

[90]

Exception class
An exception is simply a class in C#. This has a few properties and methods. The four
most commonly used properties are as follows:

Property Description
Message This contains what the exception is about.
StackTrace This contains the method call-stack information.
TargetSite This gives an object that contains the method where the exception happened.
InnerException This gives the instance of the exception that caused the exception.

Exception class properties and methods

One of the most popular methods in this class is ToString(). This method returns a string
that contains information about the exception. The exception is easier to read and
understand when it is represented in string format.

Let's look at an example of using these properties and methods:

using System;

namespace ExceptionCode
{
 class Program
 {
 static void Main(string[] args)
 {
 try
 {
 var a = 0;
 var b = 5;
 var c = b / a;
 }
 catch (DivideByZeroException ex)
 {
 Console.WriteLine("Message:");
 Console.WriteLine(ex.Message);
 Console.WriteLine("Stack Trace:");
 Console.WriteLine(ex.StackTrace);
 Console.WriteLine("String:");
 Console.WriteLine(ex.ToString());
 }

 Console.ReadKey();
 }

Exception Handling Chapter 5

[91]

 }
}

The output is as follows:

Here, we can see that the message property of the exception holds the information
Attempted to divide by zero. In addition, the ToString() method gives a lot of
information about the exception. These properties and methods will help you a lot when
handling exceptions in your program.

Some common exception classes
There are many exception classes available in .NET Framework. The .NET Framework team
created these to make the developer's life easier. The .NET Framework provides specific
information about the exceptions. The following are some of the most common exception
classes:

Exception Class Description
DivideByZeroException This exception is thrown when any number is divided by zero.

IndexOutOfRangeException This exception is thrown when the application tries to use an index of
an array that doesn't exist.

InvalidCastException This exception is thrown when trying to perform invalid casting.

NullReferenceException This exception is thrown when trying to use or access a null reference
type.

Different exception classes of .NET framework

Let's look at an example in which one of these exception classes is used. In this example, we
are using the IndexOutOfRange exception class:

using System;

namespace ExceptionCode
{
 class Program

Exception Handling Chapter 5

[92]

 {
 static void Main(string[] args)
 {
 int[] a = new int[] {1,2,3};

 try
 {
 Console.WriteLine(a[5]);
 }
 catch (IndexOutOfRangeException ex)
 {
 Console.WriteLine("Message:");
 Console.WriteLine(ex.Message);
 Console.WriteLine("Stack Trace:");
 Console.WriteLine(ex.StackTrace);
 Console.WriteLine("String:");
 Console.WriteLine(ex.ToString());
 }

 Console.ReadKey();
 }
 }
}

The output is as follows:

User-defined exceptions
Sometimes, you'll encounter a situation where you might think that the predefined
exceptions do not satisfy your condition. In this instance, you might wish there was a way
to create your own exception classes and use them. Thankfully, in C#, there is actually a
mechanism where you can create your own custom exceptions, and can write whatever
message is appropriate for that kind of exception. Let's look at an example of how to create
and use custom exceptions:

using System;

Exception Handling Chapter 5

[93]

namespace ExceptionCode
{

 class HelloException : Exception
 {
 public HelloException() { }
 public HelloException(string message) : base(message) { }
 public HelloException(string message, Exception inner) : base(message,
inner) { }
 }

 class Program
 {
 static void Main(string[] args)
 {
 try
 {
 throw new HelloException("Hello is an exception!");
 }
 catch (HelloException ex)
 {
 Console.WriteLine("Exception Message:");
 Console.WriteLine(ex.Message);
 }

 Console.ReadKey();
 }
 }
}

The output is as follows:

So, we can see from the preceding example that you just have to create a class that will
extend the Exception class. This class should have three constructors: one shouldn't take
any parameter, one should take a string and pass it to the base, and one should take a string
and an exception and pass it to the base.

Using a custom exception is like using any other built-in exception provided by .NET
Framework.

Exception Handling Chapter 5

[94]

The exception filter
The exception filter feature isn't very old at the time of writing—it was introduced in C# 6.
The main benefit of this is that you can catch more specific exceptions in a block. Let's look
at an example:

using System;

namespace ExceptionCode
{
 class Program
 {
 static void Main(string[] args)
 {

 int[] a = new int[] {1,2,3};

 try
 {
 Console.WriteLine(a[5]);
 }
 catch (IndexOutOfRangeException ex) when (ex.Message == "Test Message")
 {
 Console.WriteLine("Message:");
 Console.WriteLine("Test Message");
 }
 catch (IndexOutOfRangeException ex) when (ex.Message == "Index was outside
the bounds of the array.")
 {
 Console.WriteLine("Message:");
 Console.WriteLine(ex.Message);
 Console.WriteLine("Stack Trace:");
 Console.WriteLine(ex.StackTrace);
 Console.WriteLine("String:");
 Console.WriteLine(ex.ToString());
 }

 Console.ReadKey();
 }
 }
}

Exception Handling Chapter 5

[95]

The output is as follows:

To filter out exceptions, you have to use the when keyword just next to the catch
declaration line. So first, when any exception is thrown, it will check what type of exception
it is and then check the condition provided after the when keyword. In our example, the
exception type is IndexOutOfRangeException and the condition is ex.Message ==
"Index was outside the bounds of the array.". We can see that, when the code
ran, only that particular catch block was executed, which fulfilled all the conditions.

Exception handling best practices
As you can see, there are different ways in which you can handle exceptions: sometimes
you can throw exceptions, sometimes you can use the finally block, and sometimes you
can use multiple catch blocks. Consequently, there is a chance that you can get confused at
the beginning if you don't have enough experience with exception handling. But thanks to
the C# community, there are some best practices for exception handling. Let's have a look at
some of them:

Use a finally block to close/clean up dependent resources that could cause a
problem in the future.
Catch the specific exception and handle it properly. Use multiple catch blocks if
needed.
Create your own exceptions if needed and use them.
Handle exceptions as soon as possible.
Don't use a general exception handler if you can handle an exception using a
specific handler.
The exception messages should be very clear.

Exception Handling Chapter 5

[96]

Summary
We all dream of a perfect world where there are no errors or unexpected situations, but in
reality, this is impossible. Software development is also not free from errors and exceptions.
Software developers don't want their software to break down, but unexpected exceptions
happen every now and then. Consequently, handling these exceptions is necessary for
developing awesome software. In this chapter, we familiarized ourselves with what an
exception is in software development. We have also learned how to handle exceptions, why
we need to handle exceptions, how to create custom exceptions, and many other important
topics. When implementing exception handling in your application, try to follow best
practices so that you get an application that runs smoothly.

6
Events and Delegates

Events and delegates may seem like complex programming topics, but actually, they are
not. In this chapter, we will first learn about these concepts by analyzing the meaning of
their respective names. Then we will relate the general meaning of these words to
programming. We will look at a lot of example code in this chapter, which will help us
understand the concepts with ease. Before we dive into this, let's look at the topics that we
are going to cover in this chapter:

How to create and use delegates
Method group conversion
Multicasting
Covariance and contravariance
Events and multicast events
.NET event guidelines

What is a delegate?
A delegate is a proxy, an alternative, or a representative of someone else. For example, we
may read in the newspaper that a delegate from another country is coming to our country
to meet a high official. This person is a delegate because they have come to our country to
represent their own country. They could be a representative for the president, prime
minister, or any other high official of that country. Let's imagine that the delegate is
representing the president of a country. Maybe the president was unable to attend this
meeting in person for some reason, and that is why a delegate was sent on their behalf. This
delegate will do the same work that the president was supposed to do on the trip and make
decisions on behalf of the president. The delegate is not a fixed individual; could be any
qualified person that the president chooses.

Events and Delegates Chapter 6

[98]

The concept of a delegate is similar in software development. We can have a functionality
where a method doesn't do the actual work that it was ask to do, but rather, it will call
another method to execute that work. Furthermore, in programming, the method that
doesn't do the actual work, but passes it to another method, is called a delegate.
Consequently, a delegate will actually hold a reference of a method. When the delegate is
called, the referenced method will actually be called and executed.

Now, you may ask, "Why should I call a delegate if it is going to call another method? Why don't I
just call the method directly?" Well, we do this because if you directly call the method, you
lose your flexibility by making your code coupled. You are hard coding the method name
in your code so that, whenever that line of code will run, that method will be
executed. However, with a delegate, you can decide which method to call at runtime
instead of compile time.

How to create and use delegates
To create a delegate, we need to use the delegate keyword. Let me show you how to
declare a delegate in a general form:

delegate returnType delegateName(parameters)

Now let me show you some real example code:

using System;

namespace Delegate1
{
 delegate int MathFunc(int a, int b);

 class Program
 {
 static void Main(string[] args)
 {
 MathFunc mf = new MathFunc(add);

 Console.WriteLine("add");
 Console.WriteLine(mf(4, 5));

 mf = new MathFunc(sub);

 Console.WriteLine("sub");
 Console.WriteLine(mf(4, 5));

 Console.ReadKey();
 }

Events and Delegates Chapter 6

[99]

 public static int add(int a, int b)
 {
 return a + b;
 }

 public static int sub(int a, int b)
 {
 return (a > b) ? (a - b) : (b - a);
 }
 }
}

The output of the preceding code will be as follows:

Let's now discuss the preceding code. At the very top, inside the namespace, we can see the
declaration of the delegate, as shown in the following code:

delegate int MathFunc(int a, int b);

We used the delegate keyword to let the compiler know that we are declaring a
delegate. Then we set the return type to int and named the delegate MathFunc. We also
passed two int type parameters in this delegate.

After that, the program class gets started, and in that class, we have two methods in
addition to the main method. One is add and the other is sub. If you pay close attention to
these methods, you will see that they have the same signature as the delegate. This is done
deliberately, because a method can use a delegate when the method has the same
signature as the delegate.

Now, if we look at the main method, we will find the following interesting code:

MathFunc mf = new MathFunc(add);

Events and Delegates Chapter 6

[100]

In this first line of the main method, we create an object of the delegate. While doing this,
we pass the add method in the constructor. This is required, as you need to pass a method
for which you want to use the delegate. Then we can see that, when we call the delegate
mf(4,5), it returns 9. This means that it is actually calling the add method. After that, we
assign sub to the delegate. Upon calling the mf(4,5), this time we get 1. This means that
the sub method was called. In this way, a delegate can be used for many methods that
have the same signature.

Method group conversion
In the last example, we saw how we can create an object of a delegate and pass the method
name in the constructor. Now we will look at another way of achieving the same thing, but
in an easier way. This is called method group conversion. Here, you don't need to initialize
the delegate object, but you can directly assign the method to it. Let me show you an
example:

using System;

namespace Delegate1
{
 delegate int MathFunc(int a, int b);

 class Program
 {
 static void Main(string[] args)
 {
 MathFunc mf = add;

 Console.WriteLine("add");
 Console.WriteLine(mf(4, 5));

 mf = sub;

 Console.WriteLine("sub");
 Console.WriteLine(mf(4, 5));
 Console.ReadKey();
 }

 public static int add(int a, int b)
 {
 return a + b;
 }

 public static int sub(int a, int b)

Events and Delegates Chapter 6

[101]

 {
 return (a > b) ? (a - b) : (b - a);
 }
 }
}

Here, we can see that instead of passing the method name in the constructor, we directly
assign the method to it. This is a quick way of assigning a delegate in C#.

Using the static and instance methods as
delegates
In the previous examples, we used static methods in our delegates. However, you can also
use instance methods in delegates. Let's look at an example:

using System;

namespace Delegate1
{
 delegate int MathFunc(int a, int b);

 class Program
 {
 static void Main(string[] args)
 {
 MyMath mc = new MyMath();

 MathFunc mf = mc.add;

 Console.WriteLine("add");
 Console.WriteLine(mf(4, 5));

 mf = mc.sub;

 Console.WriteLine("sub");
 Console.WriteLine(mf(4, 5));

 Console.ReadKey();
 }
 }
 class MyMath
 {
 public int add(int a, int b)
 {
 return a + b;

Events and Delegates Chapter 6

[102]

 }

 public int sub(int a, int b)
 {
 return (a > b) ? (a - b) : (b - a);
 }
 }
}

In the preceding example, we can see that we have instance methods under
the MyMath class. To use those methods in delegates, we first have to create an object of that
class and simply assign the methods to a delegate using the object instance.

Multicasting
Multicasting is an excellent feature of delegates. With multicasting, you can assign more
than one method to a delegate. When that delegate is executed, it runs all the methods that
were assigned one after another. Using the + or += operator, you can add methods to a
delegate. There is also a way to remove added methods from the delegate. To do this, you
have to use the - or -= operator. Let's look at an example to understand clearly what
multicasting is:

using System;

namespace MyDelegate
{
 delegate void MathFunc(ref int a);

 class Program
 {
 static void Main(string[] args)
 {
 MathFunc mf;
 int number = 10;
 MathFunc myAdd = MyMath.add5;
 MathFunc mySub = MyMath.sub3;

 mf = myAdd;
 mf += mySub;

 mf(ref number);

 Console.WriteLine($"Final number: {number}");

 Console.ReadKey();

Events and Delegates Chapter 6

[103]

 }
 }

 class MyMath
 {
 public static void add5(ref int a)
 {
 a = a + 5;
 Console.WriteLine($"After adding 5 the answer is {a}");
 }

 public static void sub3(ref int a)
 {
 a = a - 3;
 Console.WriteLine($"After subtracting 3 the answer is {a}");
 }
 }
}

The preceding code will give the following output:

Here, we can see how our delegate executed the two methods one after the other. We have
to keep in mind that it works like a queue, so the first method you add will be the first
method to get executed. Now let's see how we can remove a method from a delegate:

using System;

namespace MyDelegate
{
 delegate void MathFunc(ref int a);

 class Program
 {
 static void Main(string[] args)
 {
 MathFunc mf;
 MathFunc myAdd = MyMath.add5;
 MathFunc mySub = MyMath.sub3;
 MathFunc myMul = MyMath.mul10;

Events and Delegates Chapter 6

[104]

 mf = myAdd;
 mf += mySub;
 int number = 10;

 mf(ref number);

 mf -= mySub;
 mf += myMul;
 number = 10;

 mf(ref number);

 Console.WriteLine($"Final number: {number}");

 Console.ReadKey();
 }
 }

 class MyMath
 {
 public static void add5(ref int a)
 {
 a = a + 5;
 Console.WriteLine($"After adding 5 the answer is {a}");
 }

 public static void sub3(ref int a)
 {
 a = a - 3;
 Console.WriteLine($"After subtracting 3 the answer is {a}");
 }

 public static void mul10(ref int a)
 {
 a = a * 10;
 Console.WriteLine($"After multiplying 10 the answer is {a}");
 }
 }
}

Events and Delegates Chapter 6

[105]

The preceding code will give us the following output:

Here, we have firstly added two methods to the delegate. Then, we removed the sub3
method and added the mul10 method. After making all these changes when we executed
the delegate, we saw that 5 was added to the number, then 10 was multiplied by the
number. No subtraction took place.

Covariance and contravariance
There are two important delegate features. What we have learned so far is that normally, to
register a method in a delegate, the method has to match the signature of the delegate. This
means that the return type and the parameters of the method and the delegate have to be
the same. However, with the use of the concepts of covariance and contravariance, you can
actually register methods to a delegate that don't have the same return types or parameters.
The delegate will then be able to execute them when called.

Covariance is when you assign a method to a delegate that has a return type that is a
derived type of the delegate's return type. For example, if class B is derived from class A,
and if the delegate returns class A, then a method can be registered to the delegate that
returns class B. Let's look at the example in the following code:

using System;

namespace EventsAndDelegates
{
 public delegate A DoSomething();

 public class A
 {
 public int value { get; set; }
 }

 public class B : A {}

Events and Delegates Chapter 6

[106]

 public class Program
 {
 public static A WorkA()
 {
 A a = new A();
 a.value = 1;
 return a;
 }

 public static B WorkB()
 {
 B b = new B();
 b.value = 2;
 return b;
 }

 public static void Main(string[] args)
 {
 A someA = new A();

 DoSomething something = WorkB;

 someA = something();

 Console.WriteLine("The value is " + someA.value);

 Console.ReadLine();
 }
 }
}

The output of the preceding code will be as follows:

On the other hand, contravariance is when a method is passed to a delegate and the
parameters of the method don't match the parameters of the delegate. Here, we have to
keep in mind that the parameter type of the method has to be at least derived from the
parameter type of the delegate. Let's look at an example of contravariance:

using System;

namespace EventsAndDelegates

Events and Delegates Chapter 6

[107]

{
 public delegate int DoSomething(B b);

 public class A
 {
 public int value = 5;
 }

 public class B : A {}

 public class Program
 {
 public static int WorkA(A a)
 {
 Console.WriteLine("Method WorkA called: ");
 return a.value * 5;
 }

 public static int WorkB(B b)
 {
 Console.WriteLine("Method WorkB called: ");
 return b.value * 10;
 }

 public static void Main(string[] args)
 {
 B someB = new B();

 DoSomething something = WorkA;

 int result = something(someB);

 Console.WriteLine("The value is " + result);

 Console.ReadLine();
 }
 }
}

The preceding code will give the following output:

Events and Delegates Chapter 6

[108]

Here, we can see that the delegate takes type B as a parameter. However, when the WorkA
method had been registered as a method in the delegate, it didn't give any error or
warning, even though the parameter that WorkA method takes is type A. The reason why it
works is because type B is derived from type A.

Events
You can think of an event as a kind of method that gets executed in some circumstances
and notifies handlers or delegates about that incident. For example, when you sign up for
an email newsletter, you get emails from the website about the latest articles, blog posts, or
news that are posted. These emails could be daily, weekly, monthly, yearly, or according to
some other specified period of time that you have chosen. These emails are not sent by a
human being manually, but by an automatic system/software. This automatic email sender
can be developed using events. Now, you might think, why do I need an event for this,
can't I send an email to the subscriber by a normal method? Yes, you can. However,
suppose that in the near future, you also want to introduce a feature where you will
be notified on the mobile app. You'd have to change the code and add the functionality for
that. A few days after that, if you want to further extend your system and send an SMS to
specific subscribers, you have to change the code again. Not only that, but the code you
write to achieve this will be very strongly coupled if you write it using normal methods.
You can solve these kinds of problem using event. You can also create different event
handlers and assign those event handlers to an event so that, whenever that event gets
fired, it will notify all the registered handlers that will perform their work. Let's now look at
an example to make this a little clearer:

using System;

namespace EventsAndDelegates
{
 public delegate void GetResult();

 public class ResultPublishEvent
 {
 public event GetResult PublishResult;

 public void PublishResultNow()
 {
 if (PublishResult != null)
 {
 Console.WriteLine("We are publishing the results now!");
 Console.WriteLine("");
 PublishResult();

Events and Delegates Chapter 6

[109]

 }
 }
 }

 public class EmailEventHandler
 {
 public void SendEmail()
 {
 Console.WriteLine("Results have been emailed successfully!");
 }
 }

 public class Program
 {
 public static void Main(string[] args)
 {
 ResultPublishEvent e = new ResultPublishEvent();

 EmailEventHandler email = new EmailEventHandler();

 e.PublishResult += email.SendEmail;
 e.PublishResultNow();

 Console.ReadLine();
 }
 }
}

The output of the preceding code is as follows:

In the preceding code, we can see that, when the PublishResultNow() method gets
called, it basically fires the PublishResult event. Furthermore, the
SendMail() method that did subscribe to the event gets executed and prints Results
have been emailed successfully! on the console.

Events and Delegates Chapter 6

[110]

Multicasting events
You can multicast in an event in the same way that you can in a delegate. This means that
you can register multiple event handlers (methods that have subscribed to the event) to an
event and all of them will be executed one by one when the event gets fired. To multicast,
you have to use the += sign to register event handlers to the event. You can also remove
event handlers from the event by using the -= operator. When you apply multicast, the first
event handler that was registered will get executed first, then the second, and so on. By
multicasting, you can easily extend or reduce event handlers in your application without
doing much work. Let's look at an example of multicasting:

using System;

namespace EventsAndDelegates
{
 public delegate void GetResult();

 public class ResultPublishEvent
 {
 public event GetResult PublishResult;

 public void PublishResultNow()
 {
 if (PublishResult != null)
 {
 Console.WriteLine("");
 Console.WriteLine("We are publishing the results now!");
 Console.WriteLine("");
 PublishResult();
 }
 }
 }

 public class EmailEventHandler
 {
 public void SendEmail()
 {
 Console.WriteLine("Results have been emailed successfully!");
 }
 }

 public class SmsEventHandler
 {
 public void SmsSender()
 {
 Console.WriteLine("Results have been messaged successfully!");

Events and Delegates Chapter 6

[111]

 }
 }

 public class Program
 {
 public static void Main(string[] args)
 {
 ResultPublishEvent e = new ResultPublishEvent();

 EmailEventHandler email = new EmailEventHandler();
 SmsEventHandler sms = new SmsEventHandler();

 e.PublishResult += email.SendEmail;
 e.PublishResult += sms.SmsSender;
 e.PublishResultNow();

 e.PublishResult -= sms.SmsSender;

 e.PublishResultNow();

 Console.ReadLine();
 }
 }
}

The following is the output of the preceding code:

Now if we analyze the preceding code, we can see that we have created another
class, SmsEventHandler, and this class has a method called SmsSender, which follows the
same signature as our delegate GetResult, as shown in the following code:

public class SmsEventHandler
{
 public void SmsSender()

Events and Delegates Chapter 6

[112]

 {
 Console.WriteLine("Results have been messaged successfully!");
 }
}

Then, in the main method, we create an instance of this SmsEventHandler class and
register the SmsSender method to the event, as shown in the following code:

e.PublishResult += sms.SmsSender;

After firing the event once, we remove the SmsSender event handler from the event using
the -= operator, as follows:

e.PublishResult -= sms.SmsSender;

When we fire the event again, we can see in the output that only the email event handler
was executed.

Event guidelines from .NET
For better stability, .NET Framework has provided some guidelines for using events in C#.
It's not that you absolutely must follow these guidelines, but following these guidelines will
certainly make your program more productive. Now let's see what guidelines we need to
follow.

An event should take the following two parameters:

The reference to the object that generated the event
The type of EventArgs that will hold other important information needed by the
event handlers

The general form of the code should be as follows:

void eventHandler(object sender, EventArgs e)
{
}

Let's look at an example that follows these guidelines:

using System;

namespace EventsAndDelegates
{
 class MyEventArgs : EventArgs
 {

Events and Delegates Chapter 6

[113]

 public int number;
 }

 delegate void MyEventHandler(object sender, MyEventArgs e);

 class MyEvent
 {
 public static int counter = 0;

 public event MyEventHandler SomeEvent;

 public void GetSomeEvent()
 {
 MyEventArgs a = new MyEventArgs();

 if (SomeEvent != null)
 {
 a.number = counter++;
 SomeEvent(this, a);
 }
 }

 }

 class X
 {
 public void Handler(object sender, MyEventArgs e)
 {
 Console.WriteLine("Event number: " + e.number);
 Console.WriteLine("Source Object: " + sender);
 Console.WriteLine();
 }
 }

 public class Program
 {
 public static void Main(string[] args)
 {
 X x = new X();

 MyEvent myEvent = new MyEvent();

 myEvent.SomeEvent += x.Handler;

 myEvent.GetSomeEvent();
 myEvent.GetSomeEvent();

 Console.ReadLine();

Events and Delegates Chapter 6

[114]

 }
 }
}

The output of the preceding code is as follows:

If we analyze the preceding code, we will see that we have passed the counter value using
the EventArgs parameter, and the reference of the object using the object parameter.

Summary
In this chapter, we learned about delegates and events. These topics are very important in
software development as they provide the functionality to automate code over a particular
occasion. These concepts are both heavily used in the field of web development.

In the next chapter, we will look into generics and collections in C#. These are very
interesting features of the C# programming language that you can use to write generic
delegates in your programs.

7
Generics in C#

Generics is a very important topic in the C# programming language. As far as I know, it
would be hard to find any modern software written in C# that doesn't use generics.

The topics we will cover in this chapter are as follows:

What are generics?
Why do we need generics?
Different constraints of generics
Generic methods
Covariance and Contravariance in generics

What are generics?
In C#, generics are used to create classes, methods, structs and other components that are
not specific, but general. This allows us to use the generic component for different reasons.
For example, if you have a general-purpose soap, you can use that soap for any kind of
washing. You can use it to wash your hands, to wash your clothes, or even to wash your
dirty dishes. However, if you have a specific category of soap, such as laundry detergent, it
can only be used for washing clothes and not for any other thing. Consequently, generics
give us some extra power of re-usability in our code, which is good for an application as
there would be less code which does similar work. Generics are not newly developed; they
has been available since C# 2. So, with so many years of usage, generics have become
commonly used by programmers.

Generics in C# Chapter 7

[116]

Let's take a look at an example of a Generic class:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace Chapter7
{
 class Price<T>
 {
 T ob;

 public Price(T o)
 {
 ob = o;
 }

 public void PrintType()
 {
 Console.WriteLine("The type is " + typeof(T));
 }

 public T GetPrice()
 {
 return ob;
 }
 }

 class Code_7_1
 {
 static void Main(string[] args)
 {
 Price<int> price = new Price<int>(55);

 price.PrintType();

 int a = price.GetPrice();

 Console.WriteLine("The price is " + a);

 Console.ReadKey();
 }
 }
}

Generics in C# Chapter 7

[117]

The output of the preceding code is as follows:

If you are totally new to the syntax of generics, you might be surprised to see the angle
brackets, <>, next to the Price class. You also might be wondering what the T inside <> is.
This is the syntax of generics in C#. By putting <> next to the class name, we are telling the
compiler that this is a generic class. Furthermore, the T inside <> is a type parameter. Yes, I
know what you are asking: "What is a type parameter?" A type parameter is like any other
parameter in C# programming, except it passes a type instead of a value or reference. Now,
let's analyze the preceding code.

We created a generic Price class. To make it generic, we placed <T> next to the class name.
Here, the T is a type parameter, but it's not something fixed that you have to use T with to
represent the type parameter—you can use anything to represent it. However, it is
traditional to use T for the type parameter. If there are more type parameters, V and E are
used. There is another popular convention when using two or more parameters, which is to
name the parameter something such as TValue and TKey, instead of just V and E, which is
done for better readability. However, as you can see, we have prefixed T before the words
Value and Key, which is done to distinguish between a type parameter and a general
parameter.

In the Price<T> class, we first created a variable named ob, which is a type of T:

T ob;

When we run the preceding code, the type that we pass in the class will be the type of this
object. Consequently, we can say that T is a placeholder, which will be replaced with some
other concrete C# types (int, double, string, or any other complex type) in the runtime.

On the next lines, we created a constructor:

public Price(T o)
{
 ob = o;
}

Generics in C# Chapter 7

[118]

In the constructor, we passed a parameter of the T type and then assigned the value of the
passed parameter, o, to the local variable, ob. We can do this assignment as the parameter
passed in the constructor is also the T type.

Then, we created a second method:

public void PrintType()
{
 Console.WriteLine("The type is " + typeof(T));
}

public T GetPrice()
{
 return ob;
}

Here, the first method prints the type of T. This will be helpful for identifying the type
when we run the program. Another method is to return the local variable, ob. Here is
where we notice that we are returning T from the GetPrice method.

Now, if we focus on our main method, we will see that in the first line we are instantiating
our generic class, Price, with int as a type parameter, and passing an integer value, 55, to
the constructor:

Price<int> price = new Price<int>(55);

When we do this, the compiler treats every T in the Price class as int. Consequently, the
local parameter, ob, will be of the int type. When we run the PrintType method, this
should print System.Int32 on the screen, and when we run the GetPrice method, it should
return an Int type value.

Now, as the Price method is generic, we can use this Price method for string types as
well. To do that, we have to set the type parameter as string. Let's add some more code
into the preceding example, which will create a Price object that deals with strings:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace Chapter7
{
 class Price<T>
 {
 T ob;

Generics in C# Chapter 7

[119]

 public Price(T o)
 {
 ob = o;
 }

 public void PrintType()
 {
 Console.WriteLine("The type is " + typeof(T));
 }

 public T GetPrice()
 {
 return ob;
 }
 }

 class Code_7_2
 {
 static void Main(string[] args)
 {
 Price<int> price = new Price<int>(55);

 price.PrintType();

 int a = price.GetPrice();

 Console.WriteLine("the price is " + a);

 Price<string> priceStr = new Price<string>("Hello People");

 priceStr.PrintType();

 string b = priceStr.GetPrice();

 Console.WriteLine("the string is " + b);

 Console.ReadKey();
 }
 }
}

Generics in C# Chapter 7

[120]

The output of the preceding code is as follows:

Why do we need generics?
After seeing the previous example, you might wonder why we need generics when we can
use the object type instead. The object type can be used for any type in C#, and the
preceding example can be achieved through the use of an object type. Yes, the preceding
example can be achieved through the use of the object type, but there won't be any type-
safety. In contrast, generics ensure that the type-safety is there when the code gets executed.

If you are like me, you definitely want to know what type-safety is. Type-safety actually
refers to keeping the type secure or unchangeable when executing any task in the program.
This helps us reduce runtime errors.

Now, let's write the preceding program, using the object type instead of a generic, to see
how generics can handle type-safety and object types can't:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace Chapter7
{
 class Price
 {
 object ob;

 public Price(object o)
 {
 ob = o;
 }

Generics in C# Chapter 7

[121]

 public void PrintType()
 {
 Console.WriteLine("The type is " + ob.GetType());
 }

 public object GetPrice()
 {
 return ob;
 }
 }

 class Code_7_3
 {
 static void Main(string[] args)
 {
 Price price = new Price(55);

 price.PrintType();

 int a = (int)price.GetPrice();

 Console.WriteLine("the price is " + a);

 Console.ReadKey();
 }
 }
}

The output of the preceding code is as follows:

Different constraints of generics
There are different types of constraints available in C# generics:

Base class constraints
Interface constraints

Generics in C# Chapter 7

[122]

Reference type and value type constraints
Multiple constraints

The most common and popular types are base class constraints and interface constraints, so
we will focus on them in the following sections.

Base class constraints
The idea of this constraint is that only the classes that extend a base class can be used as
generic type. For example, if you have a class named Person and you use this Person class
as a base for the Generic constraint, only the Person class or any other class that inherits
the Person class can be used as the type argument for that generic class. Let's look at an
example:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace Chapter7
{
 public class Person
 {
 public void PrintName()
 {
 Console.WriteLine("My name is Raihan");
 }
 }

 public class Boy : Person
 {

 }

 public class Toy
 {

 }

 public class Human<T> where T : Person
 {
 T obj;

 public Human(T o)

Generics in C# Chapter 7

[123]

 {
 obj = o;
 }

 public void MustPrint()
 {
 obj.PrintName();
 }
 }

 class Code_7_3
 {
 static void Main(string[] args)
 {
 Person person = new Person();
 Boy boy = new Boy();
 Toy toy = new Toy();

 Human<Person> personTypeHuman = new Human<Person>(person);
 personTypeHuman.MustPrint();

 Human<Boy> boyTypeHuman = new Human<Boy>(boy);
 boyTypeHuman.MustPrint();

 /* Not allowed
 Human<Toy> toyTypeHuman = new Human<Toy>(toy);
 toyTypeHuman.MustPrint();
 */

 Console.ReadKey();
 }
 }
}

Interface constraints
Similar to the Base class constraint, we see the interface constraint when your generic class
constraint is set as an Interface. Only those classes can be used in the generic method that
implements that interface.

Generics in C# Chapter 7

[124]

Reference type and value type constraints
When you want to differentiate between your generic class and reference types and value
types, you need to use this constraint. When you use a Reference type constraint, the
generic class will only accept the Reference type objects. To achieve that, you have to
extend your generic class with a class keyword:

... where T : class

Furthermore, when you want to use a value type, you need to write the following code:

... where T : struct

As we know, class is a reference type and struct is a value type. So, when you make a
value type constraint, this means that the generic will only work for value types such as
int or double. No reference type, such as string or any other custom class, will work.

Multiple constraints
In C#, you can use multiple constraints in a generic class. When you do this, you need to
take care of the sequence. There is actually no limit to how many constraints you can
include; you can use as many you need.

Generic methods
Like the Generic class, there can be generic methods, and a generic method does not
necessarily have to be inside a generic class. A generic method can be inside a non-generic
class as well. To create a generic method, you have to place the type parameter next to the
method name and before the parenthesis. The general form is given here:

access-modifier return-type method-name<type-parameter>(params){ method-
body }

Now, let's look at an example of a generic method:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace Chapter7

Generics in C# Chapter 7

[125]

{
 class Hello
 {
 public static T Larger<T>(T a, T b) where T : IComparable<T>
 {
 return a.CompareTo(b) > 0 ? a : b;
 }
 }

 class Code_7_4
 {
 static void Main(string[] args)
 {
 int result = Hello.Larger<int>(3, 4);

 double doubleResult = Hello.Larger<double>(4.3, 5.6);

 Console.WriteLine("The Large value is " + result);
 Console.WriteLine("The Double Large value is " + doubleResult);

 Console.ReadKey();
 }
 }
}

The output of the preceding code is as follows:

Here, we can see that our Hello class is not a Generic class. However, the
Larger method is a generic method. This method takes two parameters and compares
them, returning the larger value. This method has also implemented a constraint, which is
IComparable<T>. In the main method, we have called this generic method several times,
once with int values and once with double values. In the output, we can see that the
method was successfully able to compare and return the larger value.

In this example, we have used only one type of parameter, but it is possible to have more
than one parameter in a generic method. We have also created a static method in this
example code, but a generic method can be non-static as well. Being static/non-static doesn't
have anything to do with being a generic method.

Generics in C# Chapter 7

[126]

Type-inferencing
Compilers are getting smarter. One such example is type-inferencing in a generic method.
Type-inferencing means calling a generic method without specifying the type parameter,
and letting the compiler identify which type to use. This means that in the previous
example, we could not have specified the type parameter when calling the method.

Let's see some example code of type-inferencing:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace Chapter7
{
 class Hello
 {
 public static T Larger<T>(T a, T b) where T : IComparable<T>
 {
 return a.CompareTo(b) > 0 ? a : b;
 }
 }

 class Code_7_5
 {
 static void Main(string[] args)
 {
 int result = Hello.Larger(3, 4);

 double doubleResult = Hello.Larger(4.3, 5.6);

 Console.WriteLine("The Large value is " + result);
 Console.WriteLine("The Double Large value is " + doubleResult);

 Console.ReadKey();
 }
 }
}

Generics in C# Chapter 7

[127]

The output of the preceding code is as follows:

In this code, we can see that we haven't specified the type parameter in the generic method.
However, the code still compiles and shows the correct output. This is because the compiler
used type inferences to figure out the type of arguments that were passed in the methods
and executed the method as if the parameter type was already given to the compiler.
Because of that, when you use a type inference, it's not allowed to provide different types of
arguments in a generic method. If you need to pass different types of arguments, you
should explicitly do that. You can also apply the constraints on a method that can be
applied on the classes as well.

Covariance and contravariance in generics
If you have studied delegates, I am sure you have heard about covariance and
contravariance. These were mainly introduced for non-generic delegates. However, from
C# 4, these are also available for generic interfaces and delegates. The concepts of
covariance and contravariance in generics is almost the same as it is in delegates. Let's look
into this with examples.

Covariance
This means that the generic interface that has a T type parameter can return T or any class
that is derived from T. To achieve this, the parameter should be used with the out
keyword. Let's see the generic form:

access-modifier interface-name<out T>{}

Generics in C# Chapter 7

[128]

Contravariance
Contravariance is another feature that is implemented in generics. The word
"Contravariance" might sound a little complex, but the concept behind it is very simple.
Normally, when creating a generic method, the argument we pass to it is the same type as
T. If you try to pass another type of argument, it will give you a compile-time error.
However, when using contravariance, you can pass the base class, which the type
parameter implements. In addition, to use contravariance, there is a special syntax we have
to follow. Let's see the generic syntax:

access-modifier interface interface-name<in T>{}

If you analyze the preceding statement, you will see that there is a keyword used before T,
which is in. This keyword tells the compiler that this is contravariance. If you don't include
the in keyword, contravariance will not be applicable.

Now, let's look at some example code to make our understanding clearer:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace Chapter7
{
 public interface IFood<in T>
 {
 void PrintMyName(T obj);
 }

 class HealthyFood<T> : IFood<T>
 {
 public void PrintMyName(T obj)
 {
 Console.WriteLine("This is " + obj);
 }
 }

 class Vegetable
 {
 public override string ToString()
 {
 return "Vegetable";
 }
 }

Generics in C# Chapter 7

[129]

 class Potato : Vegetable
 {
 public override string ToString()
 {
 return "Potato";
 }
 }

 class Code_7_6
 {
 static void Main(string[] args)
 {
 IFood<Potato> mySelf = new HealthyFood<Potato>();
 IFood<Potato> mySelf2 = new HealthyFood<Vegetable>();

 mySelf2.PrintMyName(new Potato());

 Console.ReadKey();
 }
 }
}

The output of the preceding code is as follows:

If we now analyze this code, we will see that we have created an Interface named IFood,
which uses contravariance. This means that if this interface is implemented in a generic
class, that class will allow the base class of the provided type parameter.

The IFood interface has a method signature:

void PrintMyName(T obj);

Here, T is used as a parameter in the method.

Now, a class named HealthyFood implements the interface, and the method that is
implemented in the class only prints a string:

class HealthyFood<T> : IFood<T>
{
 public void PrintMyName(T obj)
 {
 Console.WriteLine("This is " + obj);

Generics in C# Chapter 7

[130]

 }
}

Then, we created two classes: Vegetable and Potato. Potato extends Vegetable. Both
classes override the ToString() method, and return Potato if the class is Potato or
Vegetable if the class is Vegetable.

In the main method, we create an object of the Potato class and an object of
the Vegetable class. Both of these are kept in the IFood<Potato> variable:

IFood<Potato> mySelf = new HealthyFood<Potato>();
IFood<Potato> mySelf2 = new HealthyFood<Vegetable>();

The interesting part here is that the mySelf2 variable is of the IFood<Potato> type, but it
holds an object of the HealthyFood<Vegetable> type. This is only possible because of
contravariance.

Check out the following statement:

mySelf2.PrintMyName(new Potato());

When we execute it, we can see that the output is as follows:

This is Potato

If you remove the in keyword and try to run the program again, you will fail and the
compiler will throw an error to say that this is not possible. It was only possible to run the
code because of contravariance.

Summary
Generics in C# is a very powerful feature that reduces code duplication, makes the program
more structured, and provides extensibility. Some of the important data structures are
created based on the concept of generics; for example, List (collection) is a generic type in
C#. This is one of the most heavily used data structures in modern-day development.

In the next chapter, we are going to learn how to design and model our software using
diagrams for better communication. When developing software, if the software design is
not clearly communicated to the developers, there is a high likelihood that the software will
not serve the purpose it was built for. Consequently, understanding important models and
diagrams is very important.

8
Modeling and Designing

Software
As civil engineering emerged and large structures were created, the practice of modeling
and designing became really important. The same happened with software development.
Nowadays, software is everywhere: in your computer, mobile phone, TV, car, and so on. As
the uses of software expanded, software development became increasingly complex and
expensive, requiring both time and money.

Software modeling and design are important parts of the software development life cycle. If
you have an idea and you are planning to start a software project, the first thing you should
do is design and model the software, not just jump into writing the code. This will give you
a high-level view of the software and the opportunity to architect it in such a way that it
will be easy to extend and modify. If you don't carry out modeling beforehand, you might
end up in a situation where you have to restructure your software architecture, which
could be very expensive.

The topics that we will cover in this chapter are as follows:

The importance of design diagrams
Different Unified Modeling Language (UML) diagrams
Class diagrams
Use case diagrams
Sequence diagrams

Modeling and Designing Software Chapter 8

[132]

The importance of design diagrams
The UML is a design language that is the standard language that is used for software
modeling and design. It was first developed by Grady Booch, Ivar Jacobson, and James
Rumbaugh at Rational Software between 1994–1995. In 1997, the Object Management
Group (OMG) adopted it as the standard language for modeling. Later, in 2005, the
International Organization for Standardization (ISO) approved UML as an ISO standard,
and since then, it has been adopted by every software community.

UML diagrams allow developers to convey software design to other people. It is a language
that has a set of rules that encourages easy communication. If you learn to read UML, you
can understand any software model that is written in UML. Explaining a software model in
plain English would be very difficult.

Different UML diagrams
There are many types of UML diagrams, but we will only discuss the most important ones
in this chapter. UML diagrams fall into the following two major categories:

Structural diagrams
Behavioral diagrams

The following list shows the diagrams that come under the category of structural diagrams:

Class diagrams
Component diagrams
Composite structure diagrams
Deployment diagrams
Object diagrams
Package diagrams
Profile diagrams

Behavioral diagrams include the following:

Activity diagrams
Communication diagrams
Interaction overview diagrams
Sequence diagrams

Modeling and Designing Software Chapter 8

[133]

State diagrams
Timing diagrams
Use case diagrams

Class diagrams
A class diagram is a structural diagram that is mainly used to provide the design of a piece
of object-oriented software. This diagram demonstrates the structure of a software, the
attributes and methods of a class, and the relationship between classes in the system. It can
be used for development as well as for documentation; software developers frequently use
this diagram to get a quick idea of the code and to help fellow developers understand the
system. It is also occasionally used by employees involved in the business side of a
company.

The following are the three main parts of a class diagram:

The class name
The attribute section
The method section

A class diagram consists of different classes that are represented as boxes or rectangles. A
rectangle is normally divided into the aforementioned sections. The first part holds the
name of the class, the second portion holds the attributes, and the third section contains the
methods.

Let's take a look at an example of a class diagram:

Modeling and Designing Software Chapter 8

[134]

Here, we can see that we have a class called Car, as indicated by the top box. Below that,
we have the attributes of that class. We can see that color is the name of an attribute,
which has a + sign in front of it, indicating that it is a public variable. We can also see that
there is a : (colon) next to the variable name, which is a separator. Whatever is given after
the colon represents the type of the variable. In this case, we can see that the color variable
is of the string type. The next attribute is company, which is also a variable of the string
type. This has a - sign in front of it, which means that it is a private variable. The third
attribute is fuel, and we can see that this is a private variable of the integer type.

If we look below the attributes, we will see the methods of the Car class. We can see that it
has three methods: move(direction: string), IsFuelEmpty(),
and RefilFuel(litre: int). Like the attributes, we can see that the methods have a :
(colon). In this case, the type that is given after the colon is the return type of the method.
The first method, move, doesn't return anything, so the type is void. In the IsFuelEmpty()
method, the return type is Boolean, and this is also the case for the third method. Another
thing to note here is the parameters of the methods, which are placed in parentheses after
the method name. For example, the move method has a parameter called direction,
which is a string type. The RefilFuel(litre: int) method has an int type
parameter, which is litre.

In the preceding example, we saw how a class is represented in a class diagram. Normally,
a system has multiple classes that are related to each other in some way. A class diagram
demonstrates the relationships of the classes as well, which gives the viewer a full picture
of the system's object relationships. In Chapter 4, Object Collaboration, we learned about the
different relationships between classes and objects in object-oriented software. Let's now
take a look at how we can represent these different object relationships using class
diagrams.

Inheritance
Inheritance is a relationship in which one class is like another class, in the same way that a
BMW i8 Roadster is a kind of car. This type of relationship is shown using a line and a
hollow arrow. The arrow points from the class to the super class, as shown in the following
diagram:

Modeling and Designing Software Chapter 8

[135]

Association
An association relationship is the most basic relationship between objects. When one object
has some kind of logic or physical relationship with another object it is called association
relationship. It is represented by a line and an arrow. If there is an arrow on both sides, this
represents a bidirectional relationship. An example of an association could be the following:

Aggregation
An aggregation relationship is a special type of association relationship. This relationship
is usually known as a has-a relationship. When one class has another class/object in it, this
is an aggregation relationship. This is represented using a line and a hollow diamond. For
example, a car has a tire. A tire and a car have an aggregation relationship, as shown in the
following diagram:

Composition
When one class has another class in it and the dependent class can't exist without the super
class, this is a composition relationship. For example, a bank account can't exist without a
bank, as shown in the following diagram:

Modeling and Designing Software Chapter 8

[136]

Dependency
When a class has a dependent class, but the class itself is not dependent on its own
dependent class, the relationship between those classes is called a dependency
relationship. In a dependency relationship, any change in the dependent class doesn't have
any effect on the class it is dependent on. But the dependent class will be affected if the
class that it is dependent on changes.

This relationship is represented by a dashed line with an arrow at the end. For example,
let's imagine that we have a theme on our mobile phone. If we change the theme, the
phone's icons will change, so the icons have a dependency on the theme. This relationship
is shown in the following diagram:

An example of a class diagram
Let's take a look at an example of a class diagram of a project. Here, we have some grade
management software that is used by the teachers and students of a school. The software
allows teachers to update the grades of particular students for different subjects. It also
allows the students to view their grade. For this software, we have the following classes:

Person:

Person class diagram

Modeling and Designing Software Chapter 8

[137]

Teacher:

Teacher class diagram

Student:

Student class diagram

Subject:

Subject class diagram

Modeling and Designing Software Chapter 8

[138]

Here, we have used Visual Studio to generate our class diagram, so the arrows might not
match the arrows that are given in the previous sections. If you are drawing your class
diagrams using other drawing software, or if you are drawing by hand, then use the arrows
specified in the previous sections.

Let's take a look at the following complete class diagram:

Here, we can see that we have a Person class that has two attributes, a FirstName and a
LastName. The Student and Teacher classes inherit the Person class, so we can see that
the arrow is hollow. The Student class has two attributes, email and studentId. It also
has a method called GetExamGrade (string subject), which takes the name of the subject
and returns the grade in char type. We can see that another class, Subject, has a
composition relationship with Student. Student has a list of subjects and the Subject
class has three attributes, grade, name, and subjectId. The Teacher class has an email,
phoneNumber, and teacherId, which are string, string, and int types respectively.
The Teacher class has an association relationship with the Student class, as a teacher has
a group of students under them. The Teacher class also has a method
called GiveExamGrade, which takes three parameters, studentId, subject, and grade.
This method will set the grades on the students' subjects.

Modeling and Designing Software Chapter 8

[139]

Just by looking at the class diagram, we get a clear idea of the system. We know how the
subject is related to the student and how students are related to teachers. We also know that
a subject's object can't exist without a student object, as they have a composition
relationship. This is the beauty of the class diagram.

Use case diagrams
A use case diagram is a behavioral diagram that is very commonly used in software
development. The main purpose of this diagram is to illustrate the functional usage of a
piece of software. It holds the use cases of a system and can be used to provide a high-level
view of the functionality or even a very specific low-level module of a software. Normally
for a system, there are multiple use case diagrams that focus on the different levels of the
system. Use case diagrams shouldn't be used to display the implementation details of a
system; they were developed to show only the functional requirements of a system. Use
case diagrams are very good diagrams for business people to convey what they need from
a system.

There are four main parts of a use case diagram, as shown in the following list:

The actor
The use case
The communication link
The system boundaries

The actor
The actor in a use case diagram is not necessarily a person—it is rather the user of the
system. It could be a person, another system, or even another module of the system. A
visual representation of an actor is given in the following diagram:

Modeling and Designing Software Chapter 8

[140]

An actor is responsible for providing an input. It gives instructions to the system and the
system works accordingly. Every action an actor does has a purpose. A use case diagram
shows us what an actor can do and what the expectations of the actor are.

The use case
The visual part or representation of a use case diagram is known as the use case. This
represents the functionality of the system. An actor will execute a use case to achieve a goal.
A use case is represented by an oval with the name of the functionality. For example, in a
restaurant app, placing an order could be a use case. We can represent this as follows:

The communication link
A communication link is a simple line from an actor to a use case. This link is used to show
that an actor has a relationship with a particular use case. An actor won't have access to all
use cases, so communication links are very important when displaying which use cases are
accessible by which actor. Let's take a look at an example of a communication link, as
shown in the following diagram:

Modeling and Designing Software Chapter 8

[141]

The system boundaries
System boundaries are mainly used to show the scope of a system. It is important to be
able to identify which use cases fall in our system and which don't. In a use case diagram,
we only focus on the use cases in our system. In large systems, each module of the
system is sometimes treated as a boundary if those modules are independent enough to
function without each other. This is normally shown with a rectangular box that holds the
use cases. An actor is not a part of the system, so the actor will be outside of the system
boundary, as shown in the following diagram:

Modeling and Designing Software Chapter 8

[142]

An example of a use case diagram
Let's now imagine that we have a restaurant system in which a customer can order food.
The chef prepares the food and the manager keeps track of the sales, as shown in the
following diagram:

From the preceding diagram, we can see that we have three actors (the Customer, the Chef,
and the Manager). We also have different use cases—Check Menu, Order Food, Cook
Food, Serve Food, Pay, and Sales Report, which are connected to one or more actors. The
Customer actor is involved in the Check Menu, Order Food, and Pay use cases. The Chef
has to access Order Food in order to find out about the orders. The Chef is also involved in
the Cook Food and Serve Food use cases. Unlike the Chef and the Customer, the Manager
is able to see the Sales Report of the restaurant.

By looking at this use case diagram, we are able to identify the functionalities of the system.
It doesn't give you any implementation details, but we can easily see an overview of the
system.

Modeling and Designing Software Chapter 8

[143]

A sequence diagram
A sequence diagram is an interaction diagram that falls under the category of
behavioral diagrams. As the name suggests, it shows the sequence of the activities of a
system. By looking at a sequence diagram, you can identify which activities happen during
a particular time frame and which activities come next. It allows us to understand the flow
of a system. The activities it represents might be an interaction between a user and a
system, between two systems, or between a system and a subsystem.

The horizontal axis of a sequence diagram shows time passing from left to right, while the
vertical axis shows the flow of activity. Different activities are placed in the diagram in a
sequential manner. A sequence diagram doesn't necessarily show the duration of time
passing but rather the steps from one activity to another.

In the following sections, we'll take a look at the notations that are used in a sequence
diagram.

An actor
An actor in a sequence diagram is very similar to an actor in a use case diagram. It could be
a user, another system, or even a user group. An actor is not part of the system and
executes commands externally. Different operations are executed upon receiving
commands from users. The actor is denoted with a stick figure, as shown in the following
diagram:

A lifeline
A lifeline in sequence diagram is an entity or element of a system. Every lifeline has its own
logic and tasks to do. Normally, a system has multiple lifelines, and commands are passed
from one lifeline to another.

Modeling and Designing Software Chapter 8

[144]

A lifeline is denoted by a box with a vertical line issuing from the bottom, as shown in the
following diagram:

An activation
An activation is a small rectangular box on a lifeline. This activation box represents the
point when an activity was active. The top of the box represents the start of the activity and
the end of the box represents the end of the activity.

Let's see how it looks in a diagram:

Modeling and Designing Software Chapter 8

[145]

A call message
A call message indicates an interaction between lifelines. It flows from left to right and is
denoted by an arrow at the end of a line, as shown in the following diagram. A message call
represents some kind of information or a trigger to the next lifeline:

A return message
The normal message flow in a sequence diagram is from left to right, as this represents the
action commands; however, sometimes messages are returned to the caller. A return
message flows from right to left and is denoted by a dotted line with an arrow head at the
end, as shown in the following diagram:

Modeling and Designing Software Chapter 8

[146]

A self message
Sometimes, messages are passed from a lifeline to itself, such as an internal communication.
It will be denoted in a similar way to a message call, but instead of pointing to another
activity of another lifeline, it returns to the same activity of the same lifeline, as shown in
the following diagram:

A recursive message
When a self message is sent for recursive purposes, it is called a recursive message. Another
small activity on the same timeline is drawn for this purpose, as shown in the following
diagram:

Modeling and Designing Software Chapter 8

[147]

A create message
This type of message is not a normal message, such as a call message. A create message is
used when a lifeline is created by another lifeline, as shown in the following diagram:

A destroy message
When a destroy message is sent from an activity to a lifeline, it means that the following
lifeline is not going to be executed and the flow will be stopped, as shown in the following
diagram. It is called a destroy message because it destroys the activity flow:

Modeling and Designing Software Chapter 8

[148]

A duration message
We use a duration message to show when there is a time duration between when an
activity passes a message to the next activity and when the next activity receives it. It is
similar to a call message, but is angled down, as shown in the following diagram:

A note
A note is used to include any necessary remarks to do with an element or an action. It has
no particular rules. It can be placed anywhere that is suitable to represent the event clearly.
Any type of information can be written in a note. A note is represented as follows:

An example of a sequence diagram
The best way to learn anything is by looking at an example of it. Let's take a look at the
following sequence diagram of a simple restaurant system:

Modeling and Designing Software Chapter 8

[149]

Here, we can see that a customer first asks for the menu from the UI. The UI passes the
request to the Controller and then the Controller passes the request to the Manager. The
Manager gets the menu and responds to the Controller. The Controller responds to the UI
and the UI displays the menu in the display.

After the Customer chooses an item, the order goes step by step to the Manager. The
Manager calls another method to prepare the food and sends a response to the Customer
notifying them that the order has been received. When the food is ready, it is served to the
Customer. Upon receiving the food, the Customer pays the bill and collects a Payment
Receipt.

By looking at the sequence diagram, we can see the different activities involved in the
process. It's pretty clear how the system is working step by step. This kind of diagram is
very useful in showing the flow of a system, and is very popular.

Modeling and Designing Software Chapter 8

[150]

Summary
In this chapter, you learned the basics of how to model and design your software using
UML diagrams. This is very important for every software developer, because we need to be
able to communicate with businesses and vice versa. You will also find that these diagrams
are useful when discussing systems with other developers or software architects. We
haven't covered all the different diagrams that are available for modeling and designing
software in this chapter, because this is beyond the scope of this book. We covered class
diagrams, use case diagrams, and sequence diagrams in this chapter. We saw an example of
each of these diagrams and looked at how to draw them.

In the next chapter, we will look at how to work with Visual Studio. We will see some tips
and tricks that will help you increase your productivity while working with Visual Studio.

9
Visual Studio and Associated

Tools
Visual Studio is an integrated development environment (IDE) from Microsoft. It's
computer software, and a tool that can be used to write, debug, and execute code. Visual
Studio is one of the most popular IDEs available in the industry, and is mainly used
for .NET applications. As it is from Microsoft, it makes .NET development very easy and
smooth. You can use Visual Studio for other programming languages, but I can't guarantee
that it will be the most useful option; however, for C# developers like me, this is the best
IDE available. As a developer, I spend most of my time in Visual Studio.

At the time of writing this book, the latest version of Visual Studio is Visual Studio 2017.
Microsoft has introduced different editions of Visual Studio. One of these, the Community
edition, is free. There are also two other editions: Visual Studio Professional and Visual
Studio Enterprise. The Professional and Enterprise editions are not free, and are more
suitable for big projects. In this book, we will explore the features of the Community
edition, as that is free and has sufficient functionalities for the purposes of this book.

In this chapter, we will learn about the features of Visual Studio. We will cover the
following topics:

Visual Studio project types and templates
Visual Studio Editor and the different windows
Debugging windows
Breakpoints, Call Stack Trace, and Watch
Git in Visual Studio
Refactoring and code-optimization techniques

Visual Studio and Associated Tools Chapter 9

[152]

Visual Studio project types and templates
Visual Studio is the best IDE for Microsoft-related technology stacks. You can use Visual
Studio whether you are planning to develop a desktop application for Windows or a web
application for Windows Server. The best part of using Visual Studio is that the IDE will
help you with lots of common tasks that you would have to perform manually if you were
not using it. For example, if you were planning to create a web application using ASP.NET
Model-View-Controller (MVC), Visual Studio can provide you a template for an MVC
application. You can start with the template and modify it according to your requirements.
Without this, you would have to download the packages, create the folders, and set the web
configuration for the application. To get the full benefit of Visual Studio, you have to know
the different projects and templates that come with it so that you can speed up your
development process.

Let's take a look at the different project types that Visual Studio provides. After opening
Visual Studio, if you click New Project, the following window will pop up:

Visual Studio and Associated Tools Chapter 9

[153]

Here, on the left-hand side, we can see the major categories of the projects: Recent,
Installed, and Online. In the Recent tab, you can see the project types that have been used
recently, so you don't have to search for commonly used project types every time. In
the Installed tab, you will find the project types that are already installed on your
computer. When you install Visual Studio, you can choose which workloads you want to
install.

The Workloads window that will appear while installing Visual Studio looks as follows:

The Workloads options you choose have a direct relation to the installed project types.
Under the Online tab, you will find the projects that were not installed when Visual Studio
was installed. There are many project templates available for Visual Studio, which is why
they are not all installed at once.

Visual Studio and Associated Tools Chapter 9

[154]

Now, if we expand the Installed tab, we will see that the different programming languages
are shown as child tabs: Visual C#, Visual Basic, Visual C++, and so on. As this book
relates to C#, we will only focus on the Visual C# area, as shown in the following
screenshot:

If we expand the Visual C# tab, we will see more tabs that relate to more specific types of
projects, such as Windows Desktop, Web, .NET Core, Test, and so on. But if we focus on
the middle part of the window, we will see the different project templates, such as
Windows Forms App (.NET Framework), Console App (.NET Core), Console App (.NET
Framework), Class Library (.NET Standard), Class Library (.NET Framework), ASP .NET
Core Web Application, ASP.NET Web Application (.NET Framework), and so on. On the
right-hand side of the window, we can see a short description of the project template that
you have selected in the middle pane, as shown in the following screenshot:

Visual Studio and Associated Tools Chapter 9

[155]

Let's take a look at some of the most common project templates available in Visual Studio
2017:

Console App: A project to create a command-line application. There are two
different types of this kind of project: one for .NET Core and another for .NET
Framework.
Class Library: You can use this template if you are developing a class library
project that can be used as an extension code of another project. In Visual Studio
2017, you again get two options: one for .NET Standard and another for .NET
Framework.
ASP.NET Core Web Application: This project is for web applications that use
.NET Core, which is platform-independent. You can create MVC, web API, and
SPA applications with this type of project.

Visual Studio and Associated Tools Chapter 9

[156]

ASP.NET Web Application (.NET Framework): This project template is used to
develop web applications using .NET Framework. Similar to the ASP.NET Core
Web Application template, with this project template, you can choose from MVC,
web API, or SPA projects.
WCF Server Application: You can use this project type to create a Windows
Communication Foundation (WCF) service.
WPF App (.NET Framework): You can choose this template if you are creating a
Windows Presentation Foundation (WPF) project.
Unit Test Project (.NET Framework): This is a project for unit testing. If you
create this project, you will get a premade test class, and you can use it to write
your unit tests.

There are many other project templates available that are used by .NET developers. It is
always better to start with a project template rather than a blank template if you are sure
about your application's purpose.

Visual Studio Editor and different windows
Visual Studio is not like a simple text editor. It has many tools and features, so it can be a
little overwhelming. However, to get started, you don't need to understand every tool and
feature: you just need the basics. As you learn more about it, you can take full advantage of
its capabilities, making your life easier and making you more productive. Later in this
chapter, we will also learn some very useful keyboard shortcuts. We will first take a look at
the basics.

Editor window
After you create or open a project in Visual Studio, you will see a screen that looks like the
one shown in the following screenshot, unless you have a different environment setup. On
the left-hand side, the window that shows the code is called the Editor window. This is the
window where you will write your code. This Editor window is very smart; it appears
when the file is open in the editor in the upper-left corner. If multiple files are open, the
active file will have a blue background and the inactive files will be black, as shown in the
following screenshot:

Visual Studio and Associated Tools Chapter 9

[157]

The line numbers are shown on the left-hand side of each code line, and the code is
represented in different colors. The words in blue are reserved keywords in C#, the text in
white is your active modifiable code, the green text represents a class name, and the orange
text refers to string text. There are some other colors, underline marks, and symbols
available in Visual Studio to help you understand the code better. If you are reading a
black-and-white copy of this book, I would suggest that you open Visual Studio and write
the code to check the color representation. For example, take a look at the using statements
in the following screenshot. Apart from the System namespace, all other namespaces are in
a duller color, which means that those namespaces are not yet in use in this file. The
System namespace is bright white because we have used the Console.WriteLine()
method in our code, which belongs to the System namespace. You can also see that there
are boxes with the - sign inside it, on the left of the code with a horizontal line below it. This
shows the code-folding options.

Visual Studio and Associated Tools Chapter 9

[158]

You can easily fold a code in order to see a particular code more clearly:

The dashed line from an opening curly brace to a closed curly brace shows you which area
the braces cover. So even if you have not placed your opening and closing braces in the
same vertical line, you will be able to see which lines those braces cover, as shown in the
following screenshot:

Visual Studio and Associated Tools Chapter 9

[159]

The Editor window has some other useful features, such as IntelliSense and refactoring.
IntelliSense suggests other options or more details of a component when you write code,
including code completion, information about the code, the usage of the code, and the code
requirements. For example, if you are writing Console, it will suggest different options
that you might want to write and will also tell you what that particular code does and how
to use it, as shown in the following screenshot. This is very helpful when learning about
different methods and how they are used:

Different console methods

Refactoring means improving the code without changing its functionality. Later in this
chapter, we will talk about refactoring in detail.

Another very interesting feature available in the Editor window is Quick Action, which is
the light bulb on the left-hand side of the selected line of code. This recommends things that
Visual Studio thinks you should change about that particular line of code. You can also use
this for refactoring your code. For example, if we stop in the middle of writing Console
and look at the bulb, it will show you a red cross at the bottom of the bulb, which means
that this line of code is not valid and Visual Studio has some recommendations. Let's see
what it recommends and whether we can use it to fix our code.

Visual Studio and Associated Tools Chapter 9

[160]

If we click on the bulb, it will show the options that you can see in the following screenshot.
From there, Change 'Conso' to 'Console' is the option that we want to execute. If we click
it, Visual Studio will fix the code for you:

Let's see how we can refactor our code with Quick Action. If we try to create an object of a
class that doesn't exist in the code base, it will show you a bulb with a red cross. If you take
a look at the options, you will see that Visual Studio is asking whether it should create a
class for you, as shown in the following screenshot:

Visual Studio and Associated Tools Chapter 9

[161]

There are many other features available in the Editor windows to make your life more
productive as a developer. I would suggest that you try more of these and read further
documentation to learn more.

Solution Explorer
If you take a look at the right-hand side of Visual Studio, you will see a window named
Solution Explorer. This is a very important window in Visual Studio; it displays the files
and folders in the solution you are working on. In Visual Studio, we have solutions that are
like wrappers of different projects. This term could be a little confusing, as we would
normally use the word project to identify a particular piece of work. In Visual Studio,
solutions are created as wrappers and projects are created inside solutions. A solution can
have multiple projects in it. This breakdown helps to make modular applications. In this
Solution Explorer window, you can see which projects are in the solution and which files
are in the projects.

Visual Studio and Associated Tools Chapter 9

[162]

You can expand or minimize the projects and folders to get a better view, as shown in the
following screenshot:

In the preceding screenshot, you can see that we have a solution called ExploreVS, and
inside that, we have a project called ExploreVS. The project and the solution names are the
same here because, when we created the solution, we chose to use the same name. If you
want, you can have different names for the solution and the project.

In the Solution Explorer window, you can right-click on the solution and add another
project easily. If you want to add a file or folder to the project, you can right-click on it and
add it. In the following screenshot, you can see that we have added another project called
TestApp to the solution, as well as a class called Person in the ExploreVS project. You can
also see the number of projects that the solutions contain next to the solution name. There is
also a search option in the Solution Explorer to search files easily in big solutions, in
addition to some other features hiding behind the icons at the top. The circular arrow
refreshes the Solution Explorer. Next to that, the stacked boxes collapse the projects to get a
high-level view of the solution. After that, the icon with the three documents shows all the
documents in the Solution Explorer. This is necessary because not every file is always
available for viewing, as Visual Studio gives us the option to exclude files from the
solution. This doesn't delete the file from the filesystem, but just ignores it in the solution.
Then, next to that icon, we have a view code icon, which will open the code in the code
editor. We also have the Properties icon, which will show the properties of a file or project.

Visual Studio and Associated Tools Chapter 9

[163]

On the left, we have the Home icon, which will bring you to the home panel. Next to that,
we have the Solutions and Folders switcher. If you click that, instead of seeing the solution,
you will see the folder of the filesystem, as shown in the following screenshot:

Output window
The Output window is a very important window for a developer, as all the logs and
outputs of your build and debugging can be viewed here. If you build your application and
it fails, you can use the Output window to figure out what went wrong and fix the issue. If
your build runs successfully, you will get a message that the build was successful in the
Output window, as shown in the following screenshot:

Visual Studio and Associated Tools Chapter 9

[164]

You can view the different types of logs, such as your version control logs, in this window.
To change the options, go to the drop-down menu next to the Show output from text and
view the log of a particular output. You can clear the logs by clicking on the icon that has
horizontal lines and a red cross and toggle the word-wrapping function using the next icon.

Debugging windows
Debugging is a very important part of software development. When you write some code,
there is a very high chance that your code won't build the first time. Even if it does build,
you may not get the expected results. This is where debugging comes in handy. If you are
using a text editor, it can be quite hard to debug some code, because normal text editors
don't give you any debugging facilities, and so you might have to use a console. Visual
Studio, however, provides some excellent tools and features for debugging, which can
make you much more productive. To find these, go to the Debug menu from the Visual
Studio menu bar and click on Windows, as shown in the following screenshot:

From this list, we can see that the different windows are as follows:

Breakpoints
Exception Settings
Output
Show Diagnostic Tools
Immediate
Python Debug Interactive

Visual Studio and Associated Tools Chapter 9

[165]

Breakpoints window
The Breakpoints window lists the breakpoints that you have placed in your code base. It
shows you information about the labels, conditions, filters, filenames, function names, and
a few other properties in your code base, as shown in the following screenshot:

If you are not aware of the labels, conditions, and actions of a breakpoint, let's briefly look
at them in the following list:

Labels: You can name a breakpoint or give a label to a breakpoint to
easily identify its purpose. You can right-click on a breakpoint and choose Edit
Labels to add a label or choose from a previous label, as shown in the following
screenshot:

Visual Studio and Associated Tools Chapter 9

[166]

Conditions: You can set the conditions on a breakpoint. This means that the
breakpoint will only stop if those conditions are true. To add a condition to a
breakpoint, right-click on the breakpoint and then click Conditions, as shown in
the following screenshot:

Actions: Like conditions, you can add actions to a breakpoint. An example of an
action could be to write in a logging system or console.

There are some other functionalities that the Breakpoints window has. You can delete all
the breakpoints of the solution, disable or enable breakpoints, import or export breakpoints,
go to the code location of a breakpoint, or search for a breakpoint.

Exception Settings
The Exception Settings window displays the different exceptions that are available. If you
open the window, you will see a list of exceptions and a checkbox next to each item. You
can check a checkbox if you want the debugger to break that exception in Visual Studio, as
shown in the following code:

Visual Studio and Associated Tools Chapter 9

[167]

Output
We have already discussed the Output window in the previous section. You can output
different values in the Output window to check whether they are correct. You can read
information about the exceptions in the Output window to find out more about the
exceptions, as shown in the following screenshot:

Visual Studio and Associated Tools Chapter 9

[168]

Diagnostic Tools
The Diagnostic Tools window will show you the performance of your application. You can
check how much memory and CPU it is using, along with some other performance-related
figures, as shown in the following screenshot:

Visual Studio and Associated Tools Chapter 9

[169]

Immediate window
The Immediate window helps you to debug the values of a variable, methods, and other
code phrases while running the application. You can manually check the values of different
variables at a certain point of a running program. You can check what a method is
returning by executing it in this window. In the following screenshot, you can see that we
have set a value 1 to an int variable called x. Then, we execute a method called Add(x,5),
which returns the sum of the two numbers. Here, we pass x and 5 as parameters and get 6
in return:

Python debugger window
Using the Python debugger window, you can run Python scripts on the application you are
working on in Visual Studio. As this book has nothing to do with the Python programming
language, we won't discuss this window in any more detail.

Breakpoints, Call Stack Trace, and Watch
In the previous section, we looked at the windows that are used for debugging in Visual
Studio. We'll now look at some cool features—breakpoints, Call Stack Trace, and Watch—in
detail.

Visual Studio and Associated Tools Chapter 9

[170]

Breakpoint
A breakpoint is not a feature of the C# programming language—it's a feature of the
debugger that comes with Visual Studio. A breakpoint is a spot or place in your code where
you want to pause the debugger to examine the code. In Visual Studio, breakpoints can be
found in the left-hand pane of the code editor window. To add a breakpoint, click on the
appropriate line of code and a red ball will appear, which represents the breakpoint. You
can also use the F9 key (or function 9 key) as a keyboard shortcut to toggle breakpoints.

The following screenshot shows what a breakpoint looks like in Visual Studio:

After you place a breakpoint, the debugger will pause at that position and give you options
to look around the data. When the debugger is paused at the breakpoint, you can choose
to Step Into, Step Over, or Step Out to navigate the code, as indicated by the arrows in the
top bar. In the circle, you will see an arrow indicating where the debugger is now pointing,
as shown in the following screenshot:

Visual Studio and Associated Tools Chapter 9

[171]

The main purpose of breakpoints is to check the data and see how a particular piece of code
reacts when it is run. Visual Studio provides a very easy way to debug code using
breakpoints.

Call Stack Trace
Call Stack is a window that is very useful when debugging your application. It shows you
the flow of your application and tells you which methods have been called to reach a
certain point. For example, if you have a method that can be called by two different sources,
then, by looking at the call stack, you can easily identify which source called the method
and get a better idea of the program flow.

Visual Studio and Associated Tools Chapter 9

[172]

Watch window
The Watch window is another very useful feature for debugging in Visual Studio. In your
code base, you might face a situation where you need to check the value of a particular
variable. Hovering over to check the value every time is time-consuming. Instead, you can
add those variables to your watch list and keep the Watch window open in Visual Studio to
see the values of those variables at that moment.

In the following screenshot, you can see how the Watch window is used to watch the
variable values:

Visual Studio and Associated Tools Chapter 9

[173]

Git in Visual Studio
Version control is now an essential part of software development. It doesn't matter how big
or small a project is, version control is a must for every software application. There are
many version control systems available, but Git is the most popular. For the remote
repository, you can use Microsoft Team Foundation Server, Microsoft Azure, GitHub, or
any other remote repository. As GitHub is also the most popular remote repository, we will
take a look at how to integrate it with Visual Studio in this section.

Currently, by default, Visual Studio doesn't have the functionality to connect with GitHub,
and so you have to use an extension. To get the extension, go to Tools | Extensions and
Updates. Then, in the Online category, search for GitHub. You will see an extension called
Github Extension for Visual Studio, as shown in the following screenshot. Install the
extension and restart Visual Studio:

Visual Studio and Associated Tools Chapter 9

[174]

Now, if you open the Team Explorer window, you can see a section for GitHub. Enter your
GitHub credentials and connect, as shown in the following screenshot. After the connection
is confirmed, you will be all set to communicate with GitHub through Visual Studio:

You can create or clone repositories from Visual Studio and keep committing your code
and pushing it to the remote repository in GitHub. You can also carry out all major Git
tasks in Visual Studio. You can create branches, push and pull code, and send pull requests.

The following screenshot shows the Git panel in the Visual Studio Team Explorer window:

Visual Studio and Associated Tools Chapter 9

[175]

It's really useful to be able to use your IDE to handle version control without having to use
any external software. You don't need to use the CLI for your version control either.

Refactoring and code-optimization
techniques
If you're not aware of the concept of refactoring, I recommend that you carry out some
further research; it is a very interesting topic, and crucial for quality software development.
Basically, refactoring refers to the process of modifying existing code for the sake of code
improvement without changing its functionality.

Visual Studio provides some excellent features and tools for refactoring. We'll take a look at
a few of these in the following sections.

Rename
You can change the name of a method, field, property, class, or anything else by using the
Rename feature of Visual Studio, as shown in the following screenshot. To do this,
highlight the entity and press Ctrl + R twice. Alternatively, go to Edit | Refactor | Rename.
When you change the name this way, it will be updated wherever it is used. This simple
refactoring step allows you to change the name of something anytime you like:

Visual Studio and Associated Tools Chapter 9

[176]

Changing the method signature
Imagine that you have a method that is used in many places in your solution. Now, if you
change the parameters of that method, your code will break until you fix the method
everywhere it is used. Doing this manually is time-consuming, and is likely to
generate errors. Visual Studio provides a refactoring feature that can be used to refactor a
method signature wherever it is used in the code, as shown in the following screenshot.

If you want to change the parameter sequence in a method, you can use Ctrl + R and Ctrl +
O or click Edit | Refactor | Reorder Parameter from the menu. To remove a parameter
from the method, you can use Ctrl + R and Ctrl + V or click Edit | Refactor | Remove
Parameters:

It is always recommend that you use Visual Studio refactoring tools rather than refactoring
manually.

Visual Studio and Associated Tools Chapter 9

[177]

Encapsulate Field
You can use the Visual Studio refactoring tool to convert a field to a property, instead of
doing it manually. Highlight the field and press Ctrl + R and Ctrl + E, or go to
Edit | Refactor | Encapsulate Field.

This will change all the places in the code in which the variable has been used, as shown in
the following screenshot:

Visual Studio and Associated Tools Chapter 9

[178]

Extract Method
If you see a piece of code and you think it should be in a method, you can use Extract
Method refactoring to extract the selected code and create a new method for it, as shown in
the following screenshot. The refactoring tool is so smart that it can also identify whether
the method should return a particular value or not. To do this, select the code you want to
extract to a method, then press Ctrl + R and Ctrl + M, or go to Edit | Refactor | Extract
Method:

There are many other refactoring features available in Visual Studio. It isn't possible to
cover them all here; I recommend that you look at the Visual Studio documentation for
more information.

Visual Studio and Associated Tools Chapter 9

[179]

Summary
Visual Studio is an essential tool for a C# developer; understanding it properly will increase
your productivity. In this chapter, we discussed various concepts related to Visual Studio,
including its project and templates, its different editors and windows, and its debugging
facilities. We also looked at breakpoints, Call Stack Trace, and the Watch window, and how
to use these to optimize your debugging process. After that, we explored Git and GitHub
integration with Visual Studio. Finally, we talked about the different refactoring features
that are available in Visual Studio. It's very hard to cover all of the concepts that are related
to such an extraordinary IDE in one chapter of a book; I would recommend that you play
with it and explore it further in order to learn how to use it in the best way possible. In the
next chapter, we will talk about databases and ADO.NET.

10
Exploring ADO.NET with

Examples
If you have any exposure to web development, you might have heard of ASP.NET, which is
a framework for web development. Similarly, if you have worked with databases before in
.NET projects, you should have heard of or used ADO.NET. ADO.NET is a framework
that's similar to ASP.NET, but instead of web development, this framework is used for
database-related work. ActiveX Data Object (ADO) was an old technology created by
Microsoft, but the evolution to ADO.NET has been extraordinary. ADO.NET contains
classes and methods that can be used to easily establish a connection with a database
management system such as SQL Server or Oracle. Not only that, it also provides methods
and objects that help to execute commands in the database, such as select, insert, update,
and delete.

We need a separate framework for database connection and activity because there are a lot
of different database systems that can be used when developing an application. Databases
are a very important part of an application; applications need data and data needs to be
stored in a database. Because databases are so important and there are so many databases
available, it would be very hard for a developer to write all of the necessary code. It's not
worth writing separate bits of code when we could write one piece of code that is
reusable. This is why Microsoft came up with the ADO.NET framework. This framework
has different data providers, datasets, data adapters, and various other things that are
related to databases.

This chapter will cover the following topics:

The fundamentals of ADO.NET
DataProvider, Connection, Command, DataReader, and DataAdapter
Connecting SQL Server Database and the Oracle Database

Exploring ADO.NET with Examples Chapter 10

[181]

Stored Procedures
Entity Frameworks
Transactions in SQL

The fundamentals of ADO.NET
To learn about ADO.NET, we need to know how an application works with a database.
Then, we need to know how ADO.NET provides support for this process. Let's start by
learning about some important concepts.

Data providers
There are different kinds of data providers available in ADO.NET. The most popular data
providers are SQL Server, Open Database Connectivity (ODBC), Object Linking and
Embedding Database (OLE DB), and Java Database Connectivity (JDBC). These data
providers have a very similar code structure, which makes a developer's life much easier. If
you have used one in the past, you will be able to use any of the others without much
difficulty. These data providers can be divided into different components: Connection,
Command, DataReader, and DataAdapter.

Connection objects
Connection is a component that establishes a connection with a database to execute a
command on the database. It doesn’t matter which database you want to connect, you can
use ADO.NET for them all. Even if there is no specific data provider for a particular
database, you can use the OLE DB data provider to connect with any database. This
connection object has a property called connectionstring. That is one of the most
important elements of connection. The connection string is a string that holds data as key-
value pairs. For example, a connection string contains information about the server in
which the database is located, the name of the database, the user credentials, and some
more information. If the database is in the same computer, you have to use localhost as
the server. ConnectionString contains the database name and the authorization data,
such as the username and password required to access the database. Let's see an example of
connectionString for SQL Server:

SqlConnection con = new SqlConnection();
Con.connectionString = "Data Source=localhost; database=testdb; Integrated
Security=SSPI";

Exploring ADO.NET with Examples Chapter 10

[182]

Here, Data Source is the server name as the database is located in the same computer.
The database keyword in the connection string holds the name of the database, which is
testdb in this example. You will see in some connection strings that Initial Catalog
is used instead of the database keyword in the connection string to store the name of the
database. You can use either Initial Catalog or database to specify the name of the
database in connection string. The last part of the connectionString property that we
have here is Integrated Security, which is used as authentication. If you set it as TRUE
or SSPI, this means that you are instructing the program to use Windows authentication to
access the database. If you have a specific database user that you want to use, you can
specify that by adding a user key and a password key in the connection string. You can
provide some other data as well, including connection timeout and connect timeout. This
connection string contains the minimum information required.

The Command object
The Command object is used to give instructions to the database. Every data provider has
its own command object that is inherited from the DbCommand object. The command object in
the SQL data provider is SqlCommand, whereas the OLE DB provider has
an OleDbCommand object. The command object is used to execute any kind of SQL
statement, such as SELECT, UPDATE, INSERT, or DELETE. Command objects can also execute
Stored Procedures. Later in the Working with stored procedures section, we will look at how to
do that. They also have a few methods that are used to let the compiler know what type of
command we are executing. For example, the ExecuteReader method queries in the
database and returns a DataReader object:

using System.Data.SqlClient;
using System;
using System.Data;

public class Program
{
 public static void Main()
 {
 string connectionString = "Data source = localhost;Initial Catalog=
TestDBForBook;Integrated Security = SSPI;";
 SqlConnection conn = new SqlConnection(connectionString);
 string sql = "SELECT * FROM Person";
 SqlCommand command = new SqlCommand(sql, conn);
 conn.Open();
 SqlDataReader reader = command.ExecuteReader();
 while (reader.Read())
 {
 Console.WriteLine("FirstName " + reader[1] + " LastName " +

Exploring ADO.NET with Examples Chapter 10

[183]

reader[2]);
 }
 conn.Close();
 }
}

The output is as follows:

The database table appears as follows:

ExecuteNonQuery is another method that is mainly used to execute non-query methods,
such as INSERT, UPDATE, and DELETE. When you insert some data into a database, you are
not querying anything in the database, you just want to insert the data. The same goes for
update and delete. The ExecuteNonQuery method returns an INT value, which represents
how many rows in the database were affected by the command. For example, if you are
inserting a person in a Person table, you are inserting one new row in the table, so only
one row is getting affected. The method will therefore return 1 to you.

Let's see an example code of the ExecuteNonQuery() method:

using System.Data.SqlClient;
using System;
using System.Data;
public class Program
{
 public static void Main()
 {

Exploring ADO.NET with Examples Chapter 10

[184]

 string connectionString = "Data source = localhost;Initial Catalog=
TestDBForBook;Integrated Security = SSPI;";
 SqlConnection conn = new SqlConnection(connectionString);
 string sql = "INSERT INTO Person (FirstName, LastName, Age) VALUES
('John', 'Nash', 34)";
 SqlCommand command = new SqlCommand(sql, conn);
 conn.Open();
 int rowsAffected = command.ExecuteNonQuery();
 conn.Close();
 Console.WriteLine("Number of rows inserted: " + rowsAffected);
 }
}

The output is as follows:

Let's say you want to update the Age of Mr. John Nash. When you execute the UPDATE
query, it will affect only one row of the table, so it will return 1. But, for example, if you
execute a query in which the condition matches several different rows, it will update all of
the rows and return the total number of rows that were affected. Take a look at the
following example. Here, we have a Food table that has different food items. Every item
has a category:

Exploring ADO.NET with Examples Chapter 10

[185]

Here, we can see that there is no discount on any food items. Let's say that we now want to
give a discount of 5% on every breakfast item. To change the Discount value, you will
have to execute an UPDATE command to update all of the rows. From the table, we can see
that there are two breakfast items in the table. If we run an UPDATE command with a
condition that applies only to Category= 'Breakfast', it should affect two rows. Let's
see the C# code for this process. We are going to use the ExecuteNonQuery command here:

using System.Data.SqlClient;
using System;
using System.Data;
public class Program
{
 public static void Main()
 {
 string connectionString = "Data source = localhost;Initial Catalog=
TestDBForBook;Integrated Security = SSPI;";
 SqlConnection conn = new SqlConnection(connectionString);
 string sql = "UPDATE Food SET Discount = 5 WHERE Category =
'Breakfast'";
 SqlCommand command = new SqlCommand(sql, conn);
 conn.Open();
 int rowsAffected = command.ExecuteNonQuery();
 conn.Close();
 Console.WriteLine("Number of rows inserted: " + rowsAffected);
 }
}

The output is as follows:

Exploring ADO.NET with Examples Chapter 10

[186]

We can see from the output that 2 rows were affected. Now, let's take a look at the database
table:

We can see that two rows were changed.

If you execute a DELETE command using the ExecuteNonQuery method, it will return the
amount of rows that were affected. If you get 0 as a result, this means that your command
wasn't successfully executed.

There are many other methods in the SQLCommand object. ExecuteScalar returns a scalar
value from the query. ExecuteXMLReader returns an XmlReader object. There are other
methods that work in an asynchronous way. All of these methods work in a similar way to
the examples shown here.

There is a property in the Command object called CommandType. CommandType is an enum
type that states how the command is provided. The enum values are Text,
StoredProcedure, and TableDirect. If text is selected, the SQL command will be
executed as an SQL query in the data source directly. In StoredProcedure, you can set
parameters and execute storedprocedures to execute a command in the database. By
default, the value is set as TEXT. This is why, in the earlier examples, we didn't set the value
of CommandType.

Exploring ADO.NET with Examples Chapter 10

[187]

The DataReader object
DataReader objects provide a way of reading a forward-only stream of rows from database.
Like the others, a DataReader is an object of a data provider. Every data provider has
different DataReader objects that inherit from DbDataReader. When you execute
an ExecuteReader command, it returns a DataReader object. You can process this
DataReader object to collect the data you have queried for. If you are using SQL Server as
your database, you should use the SqlDataReader object. SqlDataReader has a method
called Read(), which returns true when you have available data in the DataReader object
to read. If there is no data in the SqlDataReader object, the Read() method will return
false. It's a common practice to first check whether the Read() method is true and then
read the data. The following example shows how SqlDataReader is used:

using System.Data.SqlClient;
using System;
using System.Data;

public class Program
{
 public static void Main()
 {
 string connectionString = "Data source = localhost;Initial Catalog=
TestDBForBook;Integrated Security = SSPI;";
 SqlConnection conn = new SqlConnection(connectionString);
 string sql = "SELECT * FROM Person";
 SqlCommand command = new SqlCommand(sql, conn);
 conn.Open();
 SqlDataReader reader = command.ExecuteReader();
 while (reader.Read())
 {
 Console.WriteLine("FirstName " + reader[1] + " LastName " +
reader[2]);
 }
 conn.Close();
 }
}

Here, the command.ExecuteReader() method returns an SqlDataReader object, which
holds the result of the query:

SELECT * FROM Person

Exploring ADO.NET with Examples Chapter 10

[188]

First, we hold the returned object in a variable called reader, which is of
the SqlDataReader type. Then, we check whether its Read() method is true. If it is, we
execute the following statement:

Console.WriteLine("FirstName " + reader[1] + " LastName " + reader[2]);

Here, the reader is working as an array and we get the value of the database table columns
sequentially from the index. As we can see from the following table structure in the
database, it has four columns, Id, FirstName, LastName, and Age:

These columns will be mapped one after another. reader[0] refers to the Id column,
reader[1] refers to the Firstname column, and so on.

The statement we have written will print the value of the FirstName column, where it will
find reader[1]. It will then print the value of the LastName column, where it will find
reader[2].

If this array index is confusing for you and if you want more readability, feel free to use
named indexes instead of numbers:

Console.WriteLine("FirstName " + reader["FirstName"] + " LastName " +
reader["LastName"])

This will print the same thing. Instead of putting reader[1], we have written
reader["FirstName"], so it's clearer which column we are accessing. If you use this
approach, make sure the name is written correctly.

DataAdapter
DataAdapter is another way to read and use data from a data source. DataAdapter gives
you an easy way to store the data directly to a dataset. You can also use DataAdapter to
write back in the data source from the dataset. Every provider has its own DataAdapter. An
SQL data provider, for example, has SqlDataAdapter.

Exploring ADO.NET with Examples Chapter 10

[189]

Connecting to various databases
Let's see some examples of how to connect to different databases using ADO.NET. If you
are using ADO.NET, the most probable database system you are going to use is SQL Server
Database as that is the best match when you are using a Microsoft stack. You won't,
however, have any reduction in performance or encounter problems if you use any other
source. Let's see how we can connect with other databases with ADO.NET.

SQL Server
To connect to SQL Server, we need to use the SQL Server provider in ADO.NET. Take a
look at the following code:

using System.Data.SqlClient;
using System;
using System.Data;
public class Program
{
 public static void Main()
 {
 string connectionString = "Data source = localhost;Initial Catalog=
TestDBForBook;Integrated Security = SSPI;";
 SqlConnection conn = new SqlConnection(connectionString);
 string sql = "SELECT * FROM Person";
 SqlCommand command = new SqlCommand(sql, conn);
 conn.Open();
 SqlDataReader reader = command.ExecuteReader();
 while (reader.Read())
 {
 Console.WriteLine("FirstName " + reader["FirstName"] + "
LastName " + reader["LastName"]);
 }
 conn.Close();
 }
}

Exploring ADO.NET with Examples Chapter 10

[190]

The Oracle database
To connect to the Oracle database, we need to use the ODBC provider in ADO.NET. Take a
look at the following code:

using System.Data.SqlClient;
using System;
using System.Data;
using System.Data.Odbc;
public class Program
{
 public static void Main()
 {
 string connectionString = "Data Source=Oracle9i;User
ID=*****;Password=*****;";
 OdbcConnection odbcConnection = new
OdbcConnection(connectionString);
 string sql = "SELECT * FROM Person";
 OdbcCommand odbcCommand = new OdbcCommand(sql, odbcConnection);
 odbcConnection.Open();
 OdbcDataReader odbcReader = odbcCommand.ExecuteReader();
 while (odbcReader.Read())
 {
 Console.WriteLine("FirstName " + odbcReader["FirstName"] + "
LastName " + odbcReader["LastName"]);
 }
 odbcConnection.Close();
 }
}

Working with DataReaders and
DataAdapters
DataReaders and DataAdapters are core objects of a data provider. These are some of the
most important features that ADO.NET provides. Let's see how to work these objects.

Exploring ADO.NET with Examples Chapter 10

[191]

DataReaders
Every provider has DataReaders. Underneath, all classes do the same thing.
SqlDataReader, OdbcDataReader, and OleDbDataReader all implement the
IDataReader interface. The main use of DataReader is to read data from a data source
when it is coming from a stream. Let's take a look at the different properties that a data
reader has:

Property Description
Depth The depth of nesting for a row
FieldCount Returns the number of columns in a row
IsClosed Returns TRUE if DataReader is closed
Item Returns the value of a column
RecordsAffected The number of rows affected

A DataReader has the following methods:

Method Description
Close This method will close the DataReader object.

Read
This method will read the next piece of data in
DataReader.

NextResult This method will move the head to the next result.

GetString,GetChar, and so
on

The GetString method will return the value in string
format. GetChar will return the value in Char format.
There are other methods that will return a value in that
particular type.

The following code snippet shows an example of DataReader:

using System;
using System.Collections.Generic;
using System.Text;
using System.Data.SqlClient;
namespace CommandTypeEnumeration
{
 class Program
 {
 static void Main(string[] args)
 {
 // Create a connection string
 string ConnectionString = "Integrated Security = SSPI; " +
 "Initial Catalog= Northwind; " + " Data source = localhost; ";

Exploring ADO.NET with Examples Chapter 10

[192]

 string SQL = "SELECT * FROM Customers";
 // create a connection object
 SqlConnection conn = new SqlConnection(ConnectionString);
 // Create a command object
 SqlCommand cmd = new SqlCommand(SQL, conn);
 conn.Open();
 // Call ExecuteReader to return a DataReader
 SqlDataReader reader = cmd.ExecuteReader();
 Console.WriteLine("customer ID, Contact Name, " + "Contact
Title, Address ");
 Console.WriteLine("=============================");
 while (reader.Read())
 {
 Console.Write(reader["CustomerID"].ToString() + ", ");
 Console.Write(reader["ContactName"].ToString() + ", ");
 Console.Write(reader["ContactTitle"].ToString() + ", ");
 Console.WriteLine(reader["Address"].ToString() + ", ");
 }
 //Release resources
 reader.Close();
 conn.Close();
 }
 }
}

DataAdapters
DataAdapters work like a bridge between disconnected ADO.NET objects and the data
source. This means that they help to establish a connection and execute commands in the
database. They also map back the query results to the disconnected ADO.NET objects. Data
Adapters use DataSet or DataTable to store data after its retrieval from a data source.
DataAdapter has a method called Fill(),which collects data from a data source and
populates DataSet or DataTable. If you want to retrieve the schema information, you can
use another method called FillSchema(). A further method, named Update(), transfers
all changes made in DataSet or DataTable to the data source.

One of the benefits of using Data Adapters is that no information about the connection,
database, tables, columns, or any other information related to the data source is passed to
the disconnected object. It's therefore safe to use when passing a value to an external
source.

Exploring ADO.NET with Examples Chapter 10

[193]

Working with stored procedures
Stored Procedures are batches of SQL statements that are stored in a database for the
purpose of reuse. ADO.NET has support for Stored Procedures, which means that we can
use ADO.NET to call stored procedures in a database and get results from them. It is a very
common practice to pass parameters, which could be input or output parameters, to stored
procedures. The ADO.NET command object has parameters that are objects of the
parameter type. Depending on the provider, the parameter object changes, but they all
follow the same base. Let's take a look at how to use stored procedures instead of normal
SQL statements in ADO.NET.

To use a stored procedure, the SQL string that is passed in SQLCommand should be the name
of the Stored Procedure:

string ConnectionString = "Integrated Security = SSPI;Initial
Catalog=Northwind;Data source=localhost;";
SqlConnection conn = new SqlConnection(ConnectionString);
String sql = “InsertPerson”;
SqlCommand command = new SqlCommand(sql, conn);

We normally pass parameters to stored procedures as follows:

using System.Data.SqlClient;
using System;
using System.Data;

public class Program
{
 public static void Main()
 {
 string ConnectionString = "Integrated Security = SSPI; Initial
Catalog= Northwind; Data source = localhost; ";
 SqlConnection conn = new SqlConnection(ConnectionString);
 String sql = "InsertPerson";
 SqlCommand command = new SqlCommand(sql, conn);
 command.CommandType = CommandType.StoredProcedure;
 SqlParameter param = command.Parameters.Add("@FirstName",
SqlDbType.NVarChar, 11);
 param.Value = "Raihan";
 param = command.Parameters.Add("@LastName", SqlDbType.NVarChar, 11);
 param.Value = "Taher";
 conn.Open();
 int rowsAffected = command.ExecuteNonQuery();
 conn.Close();

Exploring ADO.NET with Examples Chapter 10

[194]

 Console.WriteLine(rowsAffected);
 }
}

Let's now see the stored procedure to get an idea of how the parameter is used:

CREATE procedure InsertPerson (
@FirstName nvarchar (11),
@LastName nvarchar (11)
)
AS
INSERT INTO Person (FirstName, LastName) VALUES (@FirstName, @LastName);
GO

Working with the Entity Framework
The Entity Framework (EF) is an Object Relational Mapper (ORM) framework developed
by Microsoft. It was developed for .NET developers to work with databases easily using
entity objects. It sits in the middle of your backend code or business logic and the database.
It allows the developer to write code in the application language, C#, to talk with the
database. This means that there is no need to use and write the ADO.NET
code manually, which we did in the preceding sections. EF has different kinds of
commands to the normal SQL commands. EF commands, which look very similar to C#
code, will communicate with the database using SQL in the background. It can
communicate with any type of data source, so you don't have to worry about setting up or
writing different code for each DBMS.

What is an entity in the Entity Framework?
An entity is a class in the application domain that is also included as a DbSet property in
the derived DbContext class. An entity is transformed into a table and the properties of an
entity are transformed as columns when EF executes it:

public class Student{
}

public class StudentClass{
}

public class Teacher{
}

public class SchoolContext : DbContext {

Exploring ADO.NET with Examples Chapter 10

[195]

 public SchoolContext(){}
 public DbSet<Student> Students { get; set; }
 public DbSet<StudentClass> StudentClasses { get; set; }
 public DbSet<Teacher> Teachers { get; set; }
}

Different types of Entity properties
Let's see what different types of properties an Entity can have:

Scalar properties
Navigation properties. These include the following:

Reference Navigation properties
Collection Navigation properties

Scalar properties
These are the properties that are used as columns in the database directly. They are used to
save and query in the database. Let's see an example of these properties:

public class Student{
 public int StudentID { get; set; }
 public string StudentName { get; set; }
 public DateTime? DateOfBirth { get; set; }
 public byte[] Photo { get; set; }
 public decimal Height { get; set; }
 public float Weight { get; set; }
 public StudentAddress StudentAddress { get; set; }
 public Grade Grade { get; set; }
}

The following properties are scalar properties:

public int StudentID { get; set; }
public string StudentName { get; set; }
public DateTime? DateOfBirth { get; set; }
public byte[] Photo { get; set; }
public decimal Height { get; set; }
public float Weight { get; set; }

Exploring ADO.NET with Examples Chapter 10

[196]

Navigation properties
This type of property represents relationships between entities. They are not related
directly to particular columns. There are two types of navigation properties:

Reference navigation property: If another entity type is used as a property, it is
called a reference navigation property
Collection navigation property: If an entity is included as a collection type, it is
called a collection navigation property

An example of navigation properties is as follows:

public Student Student { get; set; }
public ICollection<Student> Students { get; set; }

Here, Student is a reference navigation property and Students is a collection navigation
property.

Now let's see the two approaches of using EF: the code-first approach and the database-
first approach.

The code-first approach
This can be thought of as similar to domain-driven design. In this approach, you write the
entity objects and the domain and then use the domain to generate a database using EF.
Using different attributes in the entity objects, EF can understand what to do with the
database and how. For example, if you want a particular property in your model to be
treated as a primary key, you can use data annotations or a fluent API to indicate to the EF
that it should treat this column as a primary key when creating the table in the database.

Exploring ADO.NET with Examples Chapter 10

[197]

The database-first approach
In this approach, you create the database first and then ask EF to generate the entity for
you. You make all of your changes at the database level and not in your entities in the
backend application. Here, the EF does a different job to in the code-first approach. In the
database-first approach, EF reads through the database tables and columns and generates
C# classes models in which each column is treated as a property. The EF also takes care of
the relationship between different database tables and creates the same kind of relationship
in the generated models.

Using the Entity Framework
Both approaches have their benefits, but the code-first approach is more popular among
developers as you have to deal less with the database and work more in C#.

An EF doesn't comes with the .NET framework by default. You have to download the
library from the NuGet package manager and install it in the project you are working with.
To download and install the entity framework, you can open the Nuget Package Manager
Console and write the following command:

Install-Package EntityFramework

This command will download and install the Entity Framework in your project:

If you are not comfortable with the Package Manager Console, you can also use the
GUI's Manage Packages for Solution window to install entity framework. Go to
the Browse tab and search for Entity Framework. You will see it at the top of the search
results. Click it and install it in your project:

Exploring ADO.NET with Examples Chapter 10

[198]

Installing Entity Framework using Nuget Package Manager

In this book, we are focusing more on C#, so we will look more closely at the code-first
approach than the database-first approach. In the code-first approach, as we don't touch the
database code, we need to make our entity objects in a way that can be followed when
creating a database. After we have created the database tables, if we want to update the
tables or change the tables, we need to use migrations. Database migration creates a new
instance of the database and applies the new changes in the new instance. By using
migrations, it's easier to manipulate the database.

Let's now learn a little bit more about the history and the flow of EF. It was first published
in the year 2008 with .NET 3.5. At the time of writing this book, the latest version of EF is
version 6. EF also has a .NET Core version that is called Entity Framework Core. Both
frameworks are open source. When you install an entity framework in your project and
write a Plain Old CLR Object (POCO) class, that POCO class is used by the entity
framework. First, EF creates an Entity Data Model (EDM) from it. This EDM is used later
to save and query in the database. Language Integrated Queries (LINQs) and SQL
can both be used to give instructions to EF. When one entity object is used in EDM, it is
tracked. When it is updated, the database will also be updated.

Exploring ADO.NET with Examples Chapter 10

[199]

We can use the SaveChanges() method to execute insert, update, and delete activity in the
database. For asynchronous programming, the SaveChangesAsync() method is used. For
a better query experience, EF has first-level caching, so when repeated queries are executed,
EF returns the results from the cache instead of going to the database to collect the same
result.

An EF API mainly does four things:

Maps classes to the database schema
Translates LINQs into Entity Queries to SQL and executes them
Tracks changes
Saves changes in the database

EF converts entity objects and context classes into EDM, and EDM is used in the database.
For example, let's say we have the following class:

public class Person {
 public int PersonId { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
}

The EF will convert it into EDM, which looks as follows:

Table Name: Person
PersonId(PK,int,not null)
FirstName (nvarchar(50),null)
LastName (nvarchar(50),null)

Then, this EDM will be used to create or update the Person database table.

Transactions in SQL
A transaction is a single unit of work that either has to complete the whole work or roll
back to its previous state. A transaction can't stop in the middle of a piece of work. It's a
very important feature for sensitive data-handling. One of the best uses of transactions is
when dealing with money-transfer processes. When a person transfers some money to
another person's account, if any error occurs in the middle of the process, the whole process
should be cancelled or rolled back.

There are four properties of a transaction in SQL: Atomic, Consistent, Isolated, and
Durable (ACID).

Exploring ADO.NET with Examples Chapter 10

[200]

Atomic
Atomic means that all statements in a group must be executed. If one of the statements in a
group doesn't get executed, none of the statement should be executed. The whole group of
the statement should work as a single unit.

Consistent
When a transaction is executed, the database should reach from one state to another. We
call the initial point the starting point and the point after execution the end point. In a
transaction, the start and end points should be clear. If the transaction is successful, the
database state should be at the end point, otherwise it should be at the start point.
Maintaining this consistency is what this property is about.

Isolated
A group of a statements that are part of a transaction should be isolated from other
statements in another transaction or manual statements. While a transaction is running, if
another statement changes a particular piece of data, the whole transaction would produce
bad data. When a transaction is run, all other outside statements are not allowed to run on
that particular piece of data in the database.

Durable
After a group of statements is executed, the result needs to be stored in a permanent place.
If, in the middle of a transaction, an error occurs, the statements can be rolled back and the
database goes to its previous position.

Transactions plays a very important role in SQL, so the SQL data provider provides
the SQLTransaction class, which can be used to execute transactions using ADO.NET.

Exploring ADO.NET with Examples Chapter 10

[201]

Summary
Data is a very important part of a software application. To maintain data, we need some
kind of database that will store the data in a structured way, so that it can be easily
retrieved, saved, updated, and deleted. It's essential that our software is able to
communicate with a data source to use the data. The ADO.NET framework provides this
facility to .NET developers. Learning and understanding ADO.NET is one of the basic
requirements of any .NET developer. In this chapter, we covered the fundamentals of
ADO.NET elements, such as DataProviders, Connection, Command, DataReader, and
DataAdapter. We also learned how to connect with the SQL Server database and the
Oracle Database using ADO.NET. We discussed stored procedures and explained what the
Entity Framework is and how to use it.

In the next chapter, we will be talking about a very interesting topic: Reflection.

11
New Features in C# 8

For decades, we have seen the development of a wide variety of programming languages.
Some are now almost dead, some are used by few companies, and others have remained
dominant in the market for many years. C# belongs to the third category. The first version
of C# was released in the year 2000. When C# was released, many people said that it was a
clone of Java. Over time, however, C# became more mature and started dominating the
market. This is especially the case for the Microsoft technology stack, where C# is
undoubtedly the number one programming language. With every new release, Microsoft
has introduced amazing features and made the language very powerful.

At the end of 2018, Microsoft announced some exciting features that will be available in C#
8. At the time of writing, C# 8 is still yet to be officially released, so I can't guarantee that all
of these features will be available in the final release. However, there is a very high chance
that these features will be available in the final release. In this chapter, we will look at these
features and try to understand how the language is evolving into an extraordinary
programming language. Let's take a look at the features that we are going to discuss:

Nullable reference types
Async streams
Ranges and indices
Default implementation of interface members
Switch expressions
Target-typed new expressions

New Features in C# 8 Chapter 11

[203]

Environment Setup
To execute the code of this chapter you will need Visual Studio 2019. At the time of my
writing this book, Visual Studio 2019 is not yet released officially. However, the preview
version is available and to execute the code of this chapter, you will need Visual Studio
2019 preview version at least. Another thing to keep in mind is to create .NET Core Console
App projects when testing the code of this chapter.

To download Visual Studio 2019 Preview Version, go to this link: https:/ /visualstudio.
microsoft.com/vs/ preview/ .

Visual Studio 2019 Preview download page

Nullable reference types
If you have ever faced an exception while coding in C#, it is likely to have been a null
reference exception. Null reference exceptions are one of the most common exceptions a
programmer will face while developing applications, so the C# language development team
has worked hard to make them easier to understand.

https://visualstudio.microsoft.com/vs/preview/
https://visualstudio.microsoft.com/vs/preview/
https://visualstudio.microsoft.com/vs/preview/
https://visualstudio.microsoft.com/vs/preview/
https://visualstudio.microsoft.com/vs/preview/
https://visualstudio.microsoft.com/vs/preview/
https://visualstudio.microsoft.com/vs/preview/
https://visualstudio.microsoft.com/vs/preview/
https://visualstudio.microsoft.com/vs/preview/
https://visualstudio.microsoft.com/vs/preview/
https://visualstudio.microsoft.com/vs/preview/
https://visualstudio.microsoft.com/vs/preview/
https://visualstudio.microsoft.com/vs/preview/

New Features in C# 8 Chapter 11

[204]

In C#, there are two types of data: value types and reference types. Value types normally
have default values when you create them, whereas reference types are, by default, null.
Null means that the memory address does not point to any other memory address. When
the program tries to find a reference and can't find any, it throws an exception. As
developers, we want to ship software that is exception-free, so we try to handle all the
exceptions in our code; however, sometimes, it can be really hard to find a null reference
exception when developing applications.

In C# 8, the language development team came up with nullable reference types, which
means that you can make a reference type nullable. If you do this, the compiler will not
allow you to set null to non-nullable reference variables. If you are using Visual Studio, you
will also get a warning if you try to set a null value to a non-nullable reference variable.

As this is a new feature and not available in old versions of C#. The C# programming
language team came up with the idea of enabling the feature by writing a piece of code, so
that the old systems do not crash. You can enable this feature for the whole project or for an
individual file.

To enable nullable reference types in a code file, you have to place the following code at the
top of the source code:

#nullable enable

Let's take a look at an example of a nullable reference type:

class Hello {
 public string name;
 name = null;
 Console.WriteLine($"Hello {name}");
}

If you run the preceding code, you get an exception when trying to print the statement. Try
to enable nullable reference types by using the following code:

#nullable enable

class Hello {
 public string name;
 name = null;
 Console.WriteLine($"Hello {name}");
}

New Features in C# 8 Chapter 11

[205]

The preceding code will show you a warning to the effect that the name can't be null. To
make this workable, you have to change the code as follows:

#nullable enable

class Hello {
 public string? name;
 name = null;
 Console.WriteLine($"Hello {name}");
}

By changing the string name to nullable, you are telling the compiler that it's OK to make
this field nullable.

Async streams
If you have worked with async methods in C#, you might have noticed that returning
streams is not possible, or is hard to achieve with existing features. This would, however,
be a helpful feature, which would make development tasks much simpler. This is why C# 8
has introduced a new interface called IAsyncEnumerable. With this new interface,
asynchronous streams of data can be returned. Let me explain a little bit more about this.

Before async streams, in the C# programming language an async method was not able to
return a stream of data—it could could only return a single value.

Let's take a look at an example of code that doesn't use an async stream:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace ExploreVS
{
 class Program
 {
 public static void Main(string[] args)
 {
 var numbers = GetNumbersAsync();
 foreach(var n in GetSumOfNums(numbers))
 {
 Console.WriteLine(n);
 }
 Console.ReadKey();
 }

New Features in C# 8 Chapter 11

[206]

 public static IEnumerable<int> GetNumbersAsync()
 {
 List<int> a = new List<int>();
 a.Add(1);
 a.Add(2);
 a.Add(3);
 a.Add(4);
 return a;
 }
 public static IEnumerable<int> GetSumOfNums(IEnumerable<int> nums)
 {
 var sum = 0;
 foreach(var num in nums)
 {
 sum += num;
 yield return sum;
 }
 }

 }
}

With async streams, a stream of data can now be returned using IAsyncEnumerable. Let's
take a look at the following code:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace ExploreVS
{
 class Program
 {
 public static async void Main(string[] args)
 {
 var numbers = GetNumbersAsync();
 await foreach(var n in GetSumOfNums(numbers))
 {
 Console.WriteLine(n);
 }
 Console.ReadKey();
 }
 public static IEnumerable<int> GetNumbersAsync()
 {
 List<int> a = new List<int>();
 a.Add(1);
 a.Add(2);

New Features in C# 8 Chapter 11

[207]

 a.Add(3);
 a.Add(4);
 return a;
 }
 public static async IAsyncEnumerable<int>
GetSumOfNums(IAsyncEnumerable<int> nums)
 {
 var sum = 0;
 await foreach(var num in nums)
 {
 sum += num;
 yield return sum;
 }
 }

 }
}

From the preceding example, we can see how we can use this new feature of C# to
return asynchronous streams.

Ranges and indices
C# 8 comes with ranges, which allow you to take a slice of an array or string. Before, if you
wanted to get only the first three numbers of an array, you had to iterate through the array
and use a condition to find out which values you wanted to use. Let's take a look at an
example:

using System;
namespace ConsoleApp6
{
 class Program
 {
 static void Main(string[] args)
 {
 var numbers = new int[] { 1, 2, 3, 4, 5 };
 foreach (var n in numbers)
 {
 if(numbers[3] == n) { break; }
 Console.WriteLine(n);
 }
 Console.ReadKey();
 }
 }
}

New Features in C# 8 Chapter 11

[208]

With ranges, you can easily slice the array and take whatever value you want, as shown in
the following code:

using System;
namespace ConsoleApp6
{
 class Program
 {
 static void Main(string[] args)
 {
 var numbers = new int[] { 1, 2, 3, 4, 5 };
 foreach (var n in numbers[0..3])
 {
 Console.WriteLine(n);
 }
 Console.ReadKey();
 }
 }
}

In the preceding example, we can see that we gave a range ([0..3]) in the foreach loop
next to the numbers. This means that we should only take the values of index 0 to index 3 in
the array.

There are other ways to slice an array. You can use ^ to say that indexes should be taken
backward. For example, if you want to get values from the second element to the second-
from-last element, you can use [1..^1]. If you apply this, the result you will get is 2, 3,
4.

Let's take a look at the use of ranges in the following code:

using System;
namespace ConsoleApp6
{
 class Program
 {
 static void Main(string[] args)
 {
 var numbers = new int[] { 1, 2, 3, 4, 5 };
 foreach (var n in numbers[1..^1])
 {
 Console.WriteLine(n);
 }
 Console.ReadKey();
 }
 }
}

New Features in C# 8 Chapter 11

[209]

When running the above code you will need a special Nuget package in your project. The
name of the package is Sdcb.System.Range. To install this package you can go to Nuget
Package Manager in Visual Studio and install it.

Installing Sdcb.System.Range Nuget package

If you are still having build errors, there is a possibility that your project is still using C# 7
and, to upgrade to C# 8, you hover over the place which is marked with a red underline
and click the light bulb that will popup. Then, Visual Studio will ask if you want to use C# 8
for your project. You need to click on Upgrade this project to C# language version '8.0
beta'. This will upgrade your project from C# 7 to C# 8 and you will be able to run your
code.

Figure: Upgrade project to C# 8

Default implementation of interface
members
We all know that, in C#, interfaces don't have any method implementations; they only
contain the method signature. In C# 8, however, interfaces are allowed to have
implemented methods. These methods can be overridden by classes if they need to be.
Interface methods will also have access to modifiers, such as public, virtual, protected, or
internal. By default, the access level is set to virtual unless it is fixed as sealed or private.

New Features in C# 8 Chapter 11

[210]

There is another important thing to note. No attributes or fields are yet allowed in an
interface. This means that interface methods can't use any instance fields in the methods.
Interface methods can take parameters as input and use those, but not instance variables.
Let's take a look at an example of an interface method:

using System;
namespace ConsoleApp7
{
 class Program
 {
 static void Main(string[] args)
 {
 IPerson person = new Person();
 person.PrintName("John", "Nash");
 Console.ReadKey();
 }
 }
 public class Person : IPerson
 {
 }
 public interface IPerson
 {
 public void PrintName(string FirstName, string LastName)
 {
 Console.WriteLine($"{FirstName} {LastName}");
 }
 }
}

At this time of writing the book, this feature has not yet been available in
the C# 8 preview version. This is still marked as a proposed feature but,
hopefully, it will be implemented in the final release. Therefore, the above
given code might not work even if you use Visual Studio 2019 preview
version.

Switch expressions
We have been using switch statements for many years now. Whenever we think of or hear
about switches, we think about case and break. C# 8, however, will force us to change that
mindset through the introduction of switch expressions. This means that switch statements
will not be the same as they were in the past.

New Features in C# 8 Chapter 11

[211]

Let's take a look at what our old switch statement used to look like:

using System;
namespace ConsoleApp7
{
 class Program
 {
 static void Main(string[] args)
 {
 string person = "nash";
 switch (person)
 {
 case "john":
 Console.WriteLine("Hi from john!");
 break;
 case "smith":
 Console.WriteLine("Hi from smith!");
 break;
 case "nash":
 Console.WriteLine("Hi from nash!");
 break;
 case "harrold":
 Console.WriteLine("Hi from harrold!");
 break;
 default:
 Console.WriteLine("Hi from None!");
 break;
 }
 Console.ReadKey();
 }
 }
}

With the new approach, we won't place the person in parentheses after the switch, but we
will place the switch to the right of the person variable, and no case keywords will be
needed. Let's take a look at how we can use switch expressions in a new way:

{
 "john" j => Console.WriteLine("Hi from john!"),
 "smith" s => Console.WriteLine("Hi from smith!"),
 "nash" n => Console.WriteLine("Hi from nash!"),
 "harrold" h => Console.WriteLine("Hi from harrold!"),
 _ => Console.WriteLine("Hi from None!")
};

Here, we can also see that, for the default case, we just use the underscore (_).

New Features in C# 8 Chapter 11

[212]

Target-typed new expressions
In C# 8, another new feature is target-typed new expressions. This feature will make code
assignment much cleaner. Let's start with some example code in which we are creating a
dictionary with a value:

person switch
Dictionary<string, List<int>> student = new Dictionary<string, List<int>> {
 { "john", new List<int>() { 98, 75 } }
};

With target-typed new expressions, the preceding code can be written as follows:

Dictionary<string, List<int>> student = new() {
 { "john", new() { 98, 75 } }
};

When you place new(), the variable takes the type that is on the left-hand side and creates
a new instance of it.

Summary
Every time Microsoft announces a new release of the C# programming language, I get
excited to see what they are bringing to the table, and every time, I am impressed with the
results. C# 8 was no exception. The nullable reference type in particular is an amazing
feature because it allows us to prevent a very common exception. Async streams are
another fantastic feature, especially for the development of IoT. Ranges, interface members,
switch expressions, and all the other additions are small steps towards significant
progress. New features such as these make a developer's life much easier, and bring
benefits to businesses by reducing software crashes. In the next chapter, we are going to
discuss design principles and different design patterns.

12
Understanding Design Patterns

and Principles
Over the years, software has become increasingly complicated. Now, software is not only
used for mathematical calculations or simple create, read, update, and delete (CRUD)
operations: we are employing it to carry out complex tasks, such as controlling rocket
engines or managing huge amounts of data every day. Businesses from a vast range of
sectors have started to adopt software systems, including banks, insurance companies,
research institutes, education institutes, and government agencies. The higher the demand
for software, the more people begin to build careers in software development. From
assembly-language programming, came procedural programming, before the introduction
of the era of Object-oriented programming (OOP), which is still the most popular model,
despite the emergence of other types of programming, such as functional programming.
OOP has helped developers write good, modular software that is easy to maintain and
extend. In this chapter, we are going to discuss some of the most important design
principles and patterns that are followed by thousands of developers, and we are going to
cover the following topics:

Design principles in software development
Different design patterns in software development
Creational design patterns
Behavioral design patterns
Structural design patterns
The Model-View-Controller (MVC) pattern

Understanding Design Patterns and Principles Chapter 12

[214]

Design principles
Before we start discussing design principles, let's think about what we mean by design
principles in software development. When we develop software, we first design its
architecture, and then we start writing its code. We want to write our code in such a way
that it generates no bugs, or so it is easy to find bugs if there are any. We also want the code
to be easily understandable when we read it and we want it to be structured in such a way
that it can be changed later if required. Although it is difficult to write the best-possible
code, there are various principles in software development that have been developed by
experienced computer scientists. Using these, developers can write very clean code.

The software developer Robert C. Martin, also known as Uncle Bob, came up with five
software design principles. These principles are so effective and helpful for developers that
they have become a norm in the software industry. Collectively, they are known as the
SOLID principle, which represents the following different definitions:

S stands for the single responsibility principle

O stands for the open-closed principle

L stands for the Liskov substitution principle

I stands for the interface segregation principle

D stands for the dependency inversion principle

Let's discuss these principles one by one.

The single responsibility principle
"A class should have one, only one reason to change."

– Robert C. Martin

This means that when we write a class, we should design it in such a way that it has only
one responsibility. You should only need to change the class for one reason. If you have
multiple reasons to change the class, it is violating the single responsibility principle.

Understanding Design Patterns and Principles Chapter 12

[215]

If a class has more than one responsibility and you make changes to a piece of code, this
might break another piece of code, as they are in the same class and share some
dependencies. Your code might not be very decoupled.

The open-closed principle
Code needs to be written in such a way that adding new things in a software entity, such as
classes, modules, or functions, is good, but modifying the entity itself should not be
allowed. This reduces the possibility of bugs being generated.

The Liskov substitution principle
"Derived types must be completely substitutable for their base types."

– Barbara Liskov

This principle states that when you write a class, if it is derived from another class, it
should be replaceable with the base class. Otherwise, your code will be very fragile and
coupled. This principle was first discovered by Barbara Liskov, so it is named after her.

The interface segregation principle
Sometimes, developers create large interfaces that contain too much information. Many
classes might use this interface, but they might not need everything in it. This is what you
should avoid in order to follow this principle. This principle supports small interfaces
instead of big interfaces and, if necessary, a class can inherit multiple small interfaces that
are actually applicable for the class.

The dependency inversion principle
"High-level modules should not depend on low-level modules; both should depend on
abstractions. Abstractions should not depend on details. Details should depend upon
abstractions"

– Robert C. Martin

Understanding Design Patterns and Principles Chapter 12

[216]

We know that, in software development, we work with layers. To make the layers
decoupled, we have to design the dependencies of these layers in such a way that, instead
of depending on each other, the layers should depend on abstraction. Therefore, if you
change something in a high-level module or a low-level module, it won't harm the system.
When we create these abstractions, we have to design them in such a way that they are not
dependent on the implementation details. The abstractions should be independent and the
classes that implement these interfaces or abstract classes should depend on those
abstractions.

Creational design patterns
In OOP, where all things are treated as objects, it's very important to keep track of how an
object is created and managed. If a developer doesn't pay much attention to this topic, the
objects of the software could make the software fragile and coupled. It's important to
maintain the objects appropriately to keep the application easily extendable. Creational
design patterns are patterns that help create objects in a manner where the most common
problems regarding object creation can be avoided.

There are two main concepts that exist in creational design patterns:

Encapsulating knowledge about the concrete classes the system uses
Hide creating and combining instances of the concrete classes

Creational design patterns are classified into object-creational patterns and class-creational
patterns, in which object-creational patterns deal with the creation of objects and class-
creational patterns deal with the discovery of classes.

There are five main creational design patterns in the industry:

The abstract factory pattern
The builder pattern
The factory method pattern
The prototype pattern
The singleton pattern

Understanding Design Patterns and Principles Chapter 12

[217]

The abstract factory pattern
The definition of this pattern from Design Patterns: Elements of Reusable Object-Oriented
Software by the Gang of Four is to provide a combination to build families of similar or
reliant objects without specifying their concrete classes.

The most important thing that this pattern offers is separation or abstraction of object
creation. If you are not following any pattern, the simplest thing that comes to mind when
you are creating an object is to use the new keyword and create an object wherever you
need it. For example, if I need a Person object in my Bank class, the easiest way to do this
would be to instantiate a Person object using a new keyword in the Bank class. However,
using this approach sometimes creates complexity in the software. To avoid that, we can
use the abstract factory pattern.

The abstract factory pattern is mainly used in cases where you have objects from the same
family, or that are related or dependent in some way. The idea is to create factory classes to
carry out the work of object creation. If an object A, needs an instance of another object B,
object A should ask the factory of object B to create an object of B and pass it to object A. In
this way, object A is independent of the creation of object B. Now, in the abstract factory
pattern, there is another layer of abstraction. The factory classes are also abstracted. This
means that object A won't call the factory of object B directly, but instead use an abstraction.
There should be a mechanism that determines which Factory class needs to be called. This
means that object A is not dependent on any particular factory of another object.

The builder pattern
Separating the plan of a complicated object from its imitation is the main idea of the builder
pattern. In object-oriented software development, we sometimes need to create objects that
are quite complex. For example, we might create an object that uses other objects, which in
turn use other objects. Creating or instantiating this kind of object could be difficult when
you just need that object to carry out another kind of work. It might also make the code
more complex and reduce its readability.

Let's think about an example. Imagine that you are making some burgers, some of which
are chicken burgers and some of which are beef burgers. When creating the chicken burger
objects, you have to create a chicken burger patty object, a tomato ketchup object, a cheese
object, and a bread object every time you create a chicken burger object, which leads to
messy code. You also have to follow the same process when creating a beef burger object.
This is a really complex way of handling and creating these objects.

Understanding Design Patterns and Principles Chapter 12

[218]

The builder pattern provides a nice way to solve this complexity. Using this pattern, we
create a class called Builder whose main task is to create complex objects and return the
newly-created object. With the builder pattern, we use another type of class, which is
normally called the director class. The task of this class is to call the Builder class and
get the object from it.

Let's return to our burger example. We can have a ChickenBurgerBuilder class and a
BeefBurgerBuilder class. These will set the items, the burger patty, the bread, the
ketchup, and the cheese, in the class. When the BurgerDirector class wants to create a
chicken burger, it will call ChickenBurgerBuilder. To create a beef burger, it will
call BeefBurgerBuilder. The complexity of creating the burger patty and the other
ingredients will be handled by the Builder class.

The factory method pattern
The factory method pattern is very similar to the abstract factory pattern. The difference is
that, in the factory method pattern, the factory layer is not abstracted. Using this pattern
means that you will create a factory class that will handle the creation of classes that
implement the same abstraction. This means that, if there is an interface that is defined by
many subclasses, a Factory class can create any of those subclasses depending on the logic
passed to Factory.

Let's think about an example. We will use the Factory method pattern to solve our burger-
creating problem from the Builder pattern example we mentioned in the section, The builder
Pattern. We will create a Factory, called BurgerFactory, that will take an input, such as
typeOfBurger (Chicken or Beef). Then, BurgerFactory will decide which Burger type of
object should be created. Let's suppose we have an Interface called Burger that both
ChickenBurger and BeefBurger implement. This means that BurgerFactory will return
an object of the Burger type. The client will not be aware which Burger Object will be
created and returned. By using this pattern, we are isolating the client from a specific object,
which increases the flexibility of the code.

The prototype pattern
This design pattern is used when you want to avoid creating new classes of the same type
or sub-type using traditional object-creation mechanisms, such as new keywords. Put
simply, this pattern states that we should clone an object and then work with the cloned
object as another newly-created object. This way, the traditional method of object creation is
avoided.

Understanding Design Patterns and Principles Chapter 12

[219]

The singleton pattern
The singleton pattern is a very simple design pattern. It involves creating only one object of
a class in the whole application. A singleton object is an object that can't have multiple
instances. Whenever a piece of code needs to use this singleton object, it won't create a new
object; instead, it will use the old object that is already available.

This design pattern is applicable when you want to handle some information from one
source only. The best example of when we might use a singleton pattern is in a database
connection string. In an application, if there are multiple database connections used, the
database might get corrupted and cause exceptions in the application. Here, it's better to
make the connection string a singleton object, meaning that only one instance is used for all
communication. This reduces the chance of discrepancy.

Structural design patterns
Some of the design patterns that are available in software development are related to the
code structure. These patterns help you to design your code in such a way that you will be
able to avoid common structural problems. In the Design Patterns: Elements of Reusable
Object-Oriented Software book by the Gang of Four, there are seven structural design
patterns. In this section, we are just going to discuss four of these, which are as follows:

The adapter pattern
The decorator pattern
The facade pattern
The proxy pattern

If you want to find out more about the other three, take a look at the book Design Patterns:
Elements of Reusable Object-Oriented Software by the Gang of Four. At first, it might be a little
confusing to start using these patterns, but, as you get more experienced, it will become
easier to identify which pattern is appropriate for which situation.

Understanding Design Patterns and Principles Chapter 12

[220]

The adapter pattern
Normally, when we think of the word adapter, we think about a small device that helps us
plug our electronic devices into a power socket with a different kind of interface on the
plug. The adapter design pattern actually does the same thing in software code. This design
pattern states that, if two modules of a software want to communicate with each other, but
the interface that one module expects is different from the interface that the other module
has, instead of changing one interface to match the other interface, an adapter should be
used. The benefit of doing this is that, in the future, if you want your code to talk to another
interface, you won't have to change your code, but just use another adapter.

For example, imagine you have an Interface, A, but the code that you want to talk to wants
another Interface, B. Instead of changing Interface A to Interface B, you use an adapter that
converts interface A to interface B. This way, the code that uses interface A will not break,
and you will be able to communicate with the code that asks for interface B.

The decorator pattern
The decorator pattern allows us to add new behaviors to objects dynamically. When this
new behavior is added to an object, it shouldn't affect any other behavior that already exists
on that object. This pattern provides a solution when you have to add new behaviors to an
object at runtime. It also removes the need to create subclasses just to add a behavior to a
task.

The facade pattern
Sometimes, if you have complex object relationships, it is hard to map them all and use
them in your code. The facade pattern states that you should use a middle object to deal
with the object-relational issues and give the client an easy point of contact. Let's think
about an example: when you go to a restaurant and order some food, you actually don't go
to each chef or person in the kitchen and collect food portions and make your own food;
you tell the waiter what food you want. You don't know how the item will be prepared or
who will prepare it. You have no control over the making of the food, you just know that
you will get the item that you have asked for. Here, the person taking the order is working
as a facade. They take your order and ask different people to prepare the item you asked
for.

Understanding Design Patterns and Principles Chapter 12

[221]

Let's say that you ordered a beef burger. You call a GetBeefBurger() method and the
facade will actually call the following:

Bread.GetBread()
Sauce.PutSauceOnBread(Bread)
SliceTomato()
PutTomatoOnBread()
Beef.FryBeefPatty()
PutBeefPattyOnBread()
WrapTheBurger()
ServeTheBurger()

The preceding methods are not real methods. I just want to give you an idea that the work
of a facade is actually to hide the complexity from the client.

The proxy pattern
This pattern is very similar to the other structural design patterns that we have discussed. If
there is a situation in which a piece of code should not call another piece of code directly for
whatever reason, the proxy pattern can be used. The proxy pattern is especially useful
when a piece of code doesn't have access rights to call another piece of code or when calling
a piece of code directly is expensive in terms of resources. An example of when we might
want to use a proxy pattern would be if we wanted to use a third-party library in our
application, but we don't want our code to call the library directly for security reasons. In
this case, we can create a proxy and let it communicate with the third-party code.

Behavioral design patterns
Behavioral design patterns are design patterns that deal with communication between
objects. These design patterns allow your objects to communicate in a way that avoids the
common issues that developers face related to object behavior. There are many patterns in
this category:

The chain-of-responsibility pattern
The command pattern
The interpreter pattern
The iterator pattern
The mediator pattern
The memento pattern

Understanding Design Patterns and Principles Chapter 12

[222]

The observer pattern
The state pattern
The strategy pattern
The template-method pattern
The visitor pattern

In this book, however, we are only going to talk about the following behavioral design
patterns:

The command pattern
The observer pattern
The strategy pattern

If you want to find out more, refer to the Design Patterns: Elements of Reusable Object-Oriented
Software book by the Gang of Four that we mentioned earlier.

The command pattern
This pattern states that, when an object wants to notify another object or call a method of
another object, it should use another object instead of doing so directly. The object that will
establish the communication is known as the command object. The command will
encapsulate the object that holds the method to be called, the method name to be called,
and the parameters that are to be passed, if there are any. The command pattern helps to
decouple the relationship between the invoker and the receiver.

The observer pattern
The observer pattern is a solution to a problem in which many objects need to know when
a particular object changes because they might have to update the data on their end. One
way to do this is that all the objects, or observers, should ask the object, or the observable,
whether the data has changed. If the data has changed in the observable, the observer will
do its work. However, if we do this, the observers have to ask the observable about data
changes very frequently to avoid slowing down your application. This requires a lot of
resources.

The observer pattern says that the observable should know the list of the observers that
want to know about the data changes in the subject and notify each observer when the data
in the subject is changed. This could be done by calling a method of the observers. A good
use of this pattern is event and delegate in C#.

Understanding Design Patterns and Principles Chapter 12

[223]

The strategy pattern
Let's take a look at a definition of the strategy pattern from the Design Patterns: Elements of
Reusable Object-Oriented Software book by the Gang of Four:

For example, a method could have different types of implementations depending on which
class is using it. The definition, therefore, means that we need to make these different
algorithms implement a base class or interface so that they belong to the same family and
can be used interchangeably by the clients. The last part of the definition means that this
pattern will allow clients to use different algorithms without affecting other clients.

Let's imagine that we have a class, called Animal, that has a few common properties, such
as eat, walk, and noise. Now, let's say you want to add another property, such as fly.
Most of the animals in your class can fly, but a few can't. You could break the Animal class
into two different classes, such as AnimalWhichCanFly and AnimalWhichCantFly.
However, splitting this Animal class into two could over-complicate things as these
animals could have other different attributes as well. Instead of using inheritance, therefore,
you could use composition, which means you can add a property called fly in the Animal
class and use it to indicate this behavior.

The strategy pattern states that instead of using a fixed type, fly, as the property type, we
should use an interface, such as IFly, and then create subclasses that implement IFly
and have different algorithms. Then, we can take advantage of polymorphism and assign
the specific subclass at runtime when the subclasses of the Animal class are created.

Let's try to apply this on the preceding example. In the Animal class, instead of using the
Fly property, we will use IFly and then implement different classes that implement IFly.
For example, we create the CanFly : IFly and CannotFly : IFly classes. CanFly and
CannotFly will have different implementations of the Fly method. If we create a Dog class
that implements the Animal class, we will set the Fly property as the CannotFly class. If
we create a Bird class, we will create an instance of CanFly and assign it to the Fly
property. By applying this pattern, we have achieved a less-complicated object structure
and easily-changeable algorithms.

Understanding Design Patterns and Principles Chapter 12

[224]

The MVC pattern
The MVC pattern is one of the most popular design patterns in the industry. You might
have heard about it already, even if you are very new to the industry. This pattern is
heavily used in web development. Many popular web-development frameworks use this
design pattern. Some popular frameworks that use the MVC pattern are given here:

C#: ASP.NET MVC Web Framework
Java: Spring framework
PHP: Laravel framework, Codeigniter framework
Ruby: Rails framework

The MVC design pattern states that we should divide a web application into three parts:

Model
View
Controller

The model is the part that will hold the data models or objects and will be used in database
transactions. View refers to the frontend of the application, which the users or customers
look at. Finally, the controller is the part that handles all the business logic of the
application. All the logic and decision-making parts will be in the controller.

The benefit of the MVC pattern is that your application is decoupled. Your view is
independent from your business logic and your business logic is independent of your data
source. This way, you can easily change one part of your application without affecting
other parts of the application.

Understanding Design Patterns and Principles Chapter 12

[225]

Summary
Software development is interesting because it changes all the time. There are many ways
in which you can develop, design, or code something. None of these can be classified as the
best way, because your code might need to change depending on the situation. However,
because software development is a type of engineering, there are various rules that will
make your software stronger and more reliable. Software design principles and design
patterns are examples of these kinds of rules. Knowing these concepts and applying them
to your own situation will make your life as a developer much easier.

This chapter has hopefully given you an idea of the basics of design patterns and shown
you where you can look for more information. In the next chapter, we will get to know a
very powerful and interesting software called Git. Git is a version-control system that helps
to keep track of software code.

13
Git - The Version Control

System
Nowadays, software development has reached a new level. It no longer only involves
writing code—a software developer now also has to be familiar with a range of important
tools. Without these tools, it becomes very difficult to work in a team or to work efficiently.
Version control is one of these tools. Of the various version control systems available, Git is
the most popular and powerful. Git version control has been in the industry for quite a long
time, but has recently become a part of almost all software companies. Knowing Git is now
essential for developers. In this chapter, we will learn about Git version control systems.
Let's take a look at the topics we are going to cover:

What is a version control system?
How Git works
Installing Git in Windows
The basics of Git
Branches in Git

What is version control?
A version control system is a system or application that keeps track of software code
changes during development. Software developers used to keep backups of their code by
copying the code into another folder or machine. If the developer or production machine
crashed, they could take the code from the backup and run it. However, manually keeping
and maintaining backups is troublesome and prone to error, and backup systems are
vulnerable to corruption. For this reason, developers began looking for a system or
application that could keep their code safe.

Git - The Version Control System Chapter 13

[227]

Version control is also useful in situations where more than one programmer is working on
a project. In the past, programmers had to either work on different files to avoid conflicts or
carefully merge the code after some time. Manually merging code is very risky and time-
consuming.

In a version control system, every change in a code file is actually a new version of the
code. In the software industry, there are many version control systems available, including
Git, Subversion, Mercurial, and Perforce. Git, the most popular version control system, was
developed by the software developer Linus Torvalds. It is a remarkable application that is
now used in almost every software company in the world.

How Git works
The main task of Git is to keep track of code versions and allow developers to go back to
any previous state if necessary. This is done by taking a snapshot of every version and
maintaining it in a local file storage system. Unlike other systems, Git uses local file storage
to store snapshots, which means that Git can be used locally—even without an internet
connection. With the local version of Git, you can do almost everything that you can do
with an internet-connected version of Git.

After you install Git in your project, you can choose which directory of your filesystem you
want to keep under Git version control. Normally, a project or directory—which is one
entity in Git—is called a repository. A repository might contain different projects, one
project, or just some of the project files, depending on what you want to keep in Git version
control. There are two ways that you can have a Git repository on your local machine.
Either you can initialize a Git repository by yourself, or you can clone a repository from a
remote server. Either way, you will create a folder called .git in the same folder in which
the repository was created or cloned. This .git file is the local storage file, and all the
information related to that repository will be stored there. Git stores data in a very efficient
manner, so the file won't get very big, even if you have tons of snapshots.

There are three main states in Git, which we will explore in the following sections:

Modified
Staged
Committed

Git - The Version Control System Chapter 13

[228]

Modified
When you have a Git repository initialized and then add a new file or edit an existing file,
that particular file will be marked as Modified in Git. This means that the file contains
some changes from the already stored snapshot that Git has in its local storage/database.
For example, if you create a C# console app project in a Git repository, then all the files of
that solution will be marked as Modified, as none of them are available in the Git
repository history.

Staged
In Git, Staged refers to files that are ready to be committed. To prevent accidental commits
of unwanted files to the Git repository, Git introduced this step between Modified and
Committed. When you mark files as Staged, this means that you want those files to be
committed in the next commit. This also gives you the option to edit files and not make
them Staged so that the changes won't be saved in the repository. This feature is very
handy if you want to apply some configurations in your local machine, but don't want
those changes in the repository.

Committed
The Committed state is when a version of a file is saved in the local database. It means that
a snapshot is taken and stored in the Git history for future reference. When working with
the repository remotely, the code that you will push is actually only the committed code.

Let's take a look at the following diagram to understand the flow between these states:

Git - The Version Control System Chapter 13

[229]

Installing Git on Windows
Git was primarily developed for Linux- or Unix-based operating systems. When it grew in
popularity and Windows users started to demand Git, Git for Windows was launched.
Installing Git on Windows is now a very easy process. To install Git, go to https:/ / git-
scm.com/download/ win.

You will be taken to the page shown in the following screenshot:

Git for Windows should start downloading automatically. If it doesn't start, you can click
on the links given on the website. The download file will be an executable file, so to start
installation, execute the executable file. During installation, if you are not sure what to
choose, the best option here is to keep everything as default.

https://git-scm.com/download/win
https://git-scm.com/download/win
https://git-scm.com/download/win
https://git-scm.com/download/win
https://git-scm.com/download/win
https://git-scm.com/download/win
https://git-scm.com/download/win
https://git-scm.com/download/win
https://git-scm.com/download/win
https://git-scm.com/download/win
https://git-scm.com/download/win
https://git-scm.com/download/win

Git - The Version Control System Chapter 13

[230]

The following screenshot shows which components you can install:

There is a section in which you can choose the default editor to be used for Git. The default
editor that is chosen is Vim, as shown in the following screenshot. If you are not used to
using Vim, you can change it to your preferred one:

Git - The Version Control System Chapter 13

[231]

Follow the steps. After Git is installed, to test whether the installation was successful, go to
the command line or PowerShell and type the following:

git --version

You should see an output similar to the following:

If you can see the version number, this means that the installation was successful.

The basics of Git
As mentioned, Git was first developed for Linux systems, which is why the main way of
using this tool is through the command line. On Windows, we don't use the command line
as much as a Linux or Unix user, but using it gives you access to all the features of Git. For
Windows, there are some GUI tools that can be used for Git actions, but they often have
some limitations. As the command line is the preferred method for Git, we will cover only
the command-line commands in this book.

Git config
The git config command is a command that is used to configure your Git settings. The
minimum setting for Git is to set a username and email address. You can either configure
each Git repository differently or configure the settings globally. If you set the
configuration globally, you don't have to configure the email address and username every
time you initialize a Git repository. You can always override these in each repository if
necessary.

To configure your email address and username, run the following command:

git config user.name = "john"
git config user.email = "john@example.com"

Git - The Version Control System Chapter 13

[232]

If you want to set the configuration globally, you need to add the --global keyword, as
follows:

git config --global user.name = "john"
git config --global user.email = "john@example.com"

If you want to see what other global configuration settings are available, you can use the
following command:

git config --list

You can then change the settings that you want to change.

Git init
If you have a project that is not currently using Git version control, you can use the
following command to initialize the project:

git init

When you run the preceding command, the Git program that you have installed in your
machine creates a .git directory in the project directory and starts tracking the source code
of that project. After you initialize Git in a new project, all the files are displayed as
Modified and you have to stage those files to commit those changes.

Git clone
If you want to use a project that is on a remote server, you have to clone the project. To
clone a project, you have to use the following command:

git clone [repo-url]

For example, if you want to clone the Angular project, you have to type the following:

git clone https://github.com/angular/angular.git

When you clone a repository to your local environment, the .git folder is downloaded.
This includes the history of commits, branches, tags, and all other information contained in
the remote server. It is basically a copy of a version of the remote server. If you commit a
change in your local copy and then push it to the remote repository, then your local copy
will sync with the remote copy.

Git - The Version Control System Chapter 13

[233]

Git status
While working, you will want to check the status of your current code. This means finding
out which files are Modified and which files are Staged. You can get all of this information
by using the following command:

git status

Let's take a look at an example. If we add a new file called hello.txt to our project, which
is tracked by Git, and check its status, we will see something like the following:

Here, we can see a file called hello.txt under Untracked files, which means that this file
is not yet tracked by Git. The git status command also tells you which branch you are
currently in. In this case, we are in the master branch.

Git add
The git add command is a command that will add Modified files/folders to the Git
tracking system. This means that the files and folders will be staged. The command looks as
follows:

git add <file-name/folder-name>

Git - The Version Control System Chapter 13

[234]

Let's continue with our example to see what happens when we add the hello.txt file in
Git. To do this, we will execute the following command:

git add hello.txt

The output is as follows:

Here, we see a warning about line feed (LF) and Carriage Return, Line Feed (CR+LF),
which refer to some kind of formatting. The reason for the replacement is that we are using
the Windows operating system here, but we don't need to worry about that for the time
being. The main point here is that the file has been staged properly. Now, if we check the
status, we will see the following:

Here, we can see that the hello.txt file is placed in the Changes to be
committed section. This means that the file has been staged.

Git - The Version Control System Chapter 13

[235]

In a real project, you might work on several different files at a time before you stage the
files. It could be very tedious to add the files one by one, or even to write the file names
separated by commas. If you want all your modified files to be staged, you can use the
following command to add all files in the staged area:

git add *

Git commit
The git commit command is used when you want to commit your code to the Git history.
This means taking a snapshot of your code base and storing it in the Git database for future
reference. To commit files/folders, you have to use the following command:

git commit

If you execute the preceding code, the default editor that was set for Git will open up and
ask you to enter a message for the commit. There is also a shorter way of doing this. If you
want to enter a message directly with the commit, you can run the following command:

git commit -m "your message"

Let's now commit our hello.txt file in our Git repository. To do this, we'll run the
following command:

git commit -m "committing the hello.txt file with hello message"

The output should look like the following screenshot:

After the successful commit, we will see the line 1 file changed, 1 insertion(+). If
you check the status again, you will see that there is nothing to commit, as shown in the
following screenshot:

Git - The Version Control System Chapter 13

[236]

Git log
To check which commits have been made in the repository, you can use the following
command:

git log

The output will look as follows:

From the log, we can see that only one commit has been made so far. We can see the hash of
the commit, which is the number next to the word commit. We can see that the commit was
made on the master branch by Raihan Taher. We can also see the commit message in the
log. This is a very helpful command to check what has been committed.

Git - The Version Control System Chapter 13

[237]

Git remote
The git remote command is used to see whether you have any connections with a remote
repository. If you run the following command, it will show you the name of the remote
repository. Normally, the remote name is set as Origin. You can have multiple remote
repositories. Let's take a look at the command:

git remote

If we execute this command, we won't see anything as there is no remote repository yet, as
shown in the following screenshot:

Let's add a remote repository. We will use GitHub as our remote server. After creating a
repository in GitHub, I have copied the URL of that repository. We will add it to our local
repository. To do this, we use the following command:

git remote add <remote-name> <repository-link-remote>

In our example, the command is as follows:

git remote add origin https://github.com/raihantaher/bookgitexample.git

After we add our remote repository, if we execute git remote, we will see that
the origin is listed as a remote repository, as shown in the following screenshot:

Git - The Version Control System Chapter 13

[238]

If you want to see a little more detail about the remote repository, you can execute the
following command:

git remote -v

This will display the URLs of the remote repositories that you have added, as shown in the
following screenshot:

Git push
When you want to upload or push your local commits to the remote server, you can use the
following command:

git push <remote-repo-name> <local-branch-name>

The following is an example of how to use this command:

git push origin master

After you execute this command, should the push be successful, you will see a message that
looks as follows:

Git - The Version Control System Chapter 13

[239]

Git pull
The git pull command is used when you want to get the latest code from the remote
repository. As Git is a distributed version control system and multiple people can work on
a project, there is the possibility that someone else has updated the remote server with the
latest code. To access the latest code, run the following command:

git pull <remote-repo-name> <local-branch-name>

The following is an example of how to use this code:

git pull origin master

If we run this code, the message that pops up is as follows:

This means that our local repository is up to date with the remote repository. If there were
new commits in the remote repository, the git pull command would pull those changes
to our local repository and indicate that changes have been pulled.

Git fetch
The git fetch command is a very similar command to git pull, but, when you use git
fetch, the code will be fetched from the remote repository to the local repository, but it
won't be merged with your code. After checking the remote code, if you feel like you want
to merge it with your local code, you have to explicitly run a git merge command. The
command to do this is as follows:

git fetch <remote-repo>

Git - The Version Control System Chapter 13

[240]

If you run the preceding command, all the branches from the remote repository will be
updated. If you specify a local branch, only that branch will be updated:

git fetch <remote-repo> <local-branch>

Let's try to execute a git fetch command in our example code:

git fetch origin master

You will see the following output:

Branching in Git
Branching is often thought of as one of the best features of Git. Branching has made Git
distinct from all other version control systems. It is very powerful and easy to use. Before
we learn about the different branching commands, let me explain briefly how Git deals
with commits, because that will help you understand Git branches. In Git, we already know
that every commit has a unique hash, and that that hash is stored in the Git database. With
the hash, every commit stores the hash of the earlier commit, which is known as the parent
of that commit. As well as this, another hash that stores the files that were staged on that
commit is also stored, along with the commit message and information about the committer
and the author. For the first ever commit of a repository, the parent commit is empty.

Git - The Version Control System Chapter 13

[241]

The following diagram shows an example of hashing in Git:

We call all the information in a commit a snapshot. If we have made three commits, we can
say that we have Snapshot A, Snapshot B, and Snapshot C, one after another, as shown in
the following diagram:

Git - The Version Control System Chapter 13

[242]

By default, when you initialize a local Git repository, a branch called master is created.
This is the branch that most developers treat as the main branch in a Git tree. This is
optional; you can treat any branch as your main branch or production branch, as all
branches have the same capacity and power. If you create a branch from Snapshot C
(Commit 3, or C3 for short) and name it feature, a branch will start from C3 (Commit 3)
and the next commit on the testing branch will treat C3 as the parent commit.

The following diagram shows the branching:

HEAD is a pointer that points to the active commit or branch. This is an indicator for the
developer, as well as for Git version control. When you make a new commit, the HEAD
moves to the latest commit, as that is the snapshot that will be created as a parent for the
next commit.

Creating a branch
Let's now take a look at the command to create a branch in Git. Creating a branch is very
easy, because it doesn't copy the whole code base to a new place, but only keeps a
relationship with the Git tree. There are a few ways to create a branch, but the most general
way is as follows:

git branch feature

This should look as follows on the command line:

Git - The Version Control System Chapter 13

[243]

Viewing available branches
To view which branches are available in the local Git repository, you can write the
following command:

git branch

After executing the preceding code, you should see the following output:

We can see that we have two branches in our local repository. One is the master branch
and the other is the feature branch. The * character indicates where the HEAD is
pointing.

Changing branches
In the previous example, we saw that, even after creating the feature branch, the HEAD is
still pointing to the master. The command to switch to another branch is as follows:

git checkout <branch-name>

In our example, if we want to change from the master to the feature branch, we have to
write the following command:

git checkout feature

The output is as follows:

Git - The Version Control System Chapter 13

[244]

After running the command, we can see that Git has switched to the feature branch. Now
we can run the git branch command again to see where the HEAD is pointing, as shown
in the following screenshot:

The likelihood is that, when you create a branch, you will want to work on that branch
straight away, so there is a shortcut to create a branch and then switch to it, as shown in the
following code:

git checkout -b newFeature

Deleting a branch
To delete a branch, you have to execute the following command:

git branch -d feature

If the branch is deleted successfully, you should see a message similar to the one shown in
the following screenshot:

Merging in Git
To merge one branch with another, you have to use the merge command. Remember that
you need to be on the branch that you are going to merge the code with, not the branch that
is going to be merged, or any other branch. The command is as follows:

git merge newFeature

Git - The Version Control System Chapter 13

[245]

The output should be as follows:

Summary
In this chapter, we have learned about a concept that is not directly related to the C#
programming language, but which is nonetheless an essential tool for C# developers.
Microsoft has recently purchased GitHub, the biggest remote code repository website based
on Git, and integrated most of the Microsoft IDEs/editors with it, including the newest code
editor, Visual Code. This shows just how important Git has become to our industry. I
believe that every developer, new or senior, should use version control for their code. If you
don't use Git, you can use any other version control system on the market. Git, however, is
the best, even if you are not using Git in your workplace, I would recommend that you use
it in your personal projects. Git commands are very simple, so you'll only need to practice
with it a few times before you understand it completely.

The next chapter is a little different. We will look at some questions that are commonly
asked in job interviews.

14
Prepare Yourself - Interviews

and the Future
This is an unusual chapter in an Object-oriented programming (OOP) book. Job interviews
are an important part of a software developer’s career. An interview is like a test of your
knowledge. It gives you an idea of how much you know and what you should learn more
about. It’s also a way to learn from experienced developers in other companies.

The main purpose of this chapter is to give you a glimpse into the types of question that are
asked in a job interview and how you can prepare yourself for them. Bear in mind that job
interview questions depend on the position you have applied for, the company, the
interviewer’s knowledge, and the technology stacks the company is using. While not all of
these questions will be asked, there is a high possibility that some might be, as these
determine your basic OOP and C# knowledge.

Let's review the topics we will be covering in this chapter:

Interview questions
Interview and career tips
Things to learn next
Importance of reading

Prepare Yourself - Interviews and the Future Chapter 14

[247]

Interview questions
In this section, we are going to discuss some of the most common interview questions for a
beginner to mid-level developer. As this book is about C#, we will also have questions that
directly relate to the C# programming language.

What are the fundamental principles of object-
oriented programming?
Object-oriented programming has four fundamental principles:

Inheritance
Encapsulation
Abstraction
Polymorphism

What is inheritance?
Inheritance means that a class can inherit the attributes and methods of another class. For
example, Dog is a class, but it is also a subclass of Animal. An Animal class is a more
general class that has the basic attributes and methods that all animals have. As a dog is
also an animal, a Dog class can inherit the Animal class, so that all the attributes and
methods of the Animal class also become available in the Dog class.

What is encapsulation?
Encapsulation means hiding the data of a class. Access modifiers in C# are mainly used for
the purpose of encapsulation. If we make a method or field private, that method or field is
not accessible outside the class. This means we are hiding that data from the outside world.
The main reason for having encapsulation is that we want to hide more complicated
implementations and only show simple interfaces to the outside world for easy usage.

Prepare Yourself - Interviews and the Future Chapter 14

[248]

What is abstraction?
Abstraction is an idea, something that is not real. Abstraction means providing the idea of
a certain object to the outside world but not it's implementation. Interfaces and abstract
classes are examples of abstraction. When we create an interface, we don't implement the
methods in it, but when a class implements the interface, it has to implement the method as
well. This means the interface is actually giving an abstract impression of the class.

What is polymorphism?
Polymorphism means many forms. In OOP, we should have the option of creating one
thing in many forms. For example, you can have an addition method that might have
different implementations, depending on the input it receives. An addition method that
receives two integers and returns the sum of those integers could be one implementation.
There could be another form of addition method, which might take two double values
and return the sum of those double values.

What is an interface?
An interface is an entity or feature of the C# programming language that is used to apply
abstraction in a program. It’s like a contract between a class and the interface itself. The
contract is that the class that will inherit the interface must implement the method
signatures that the interface has within itself. An interface can’t be instantiated, it can only
be implemented by a class or struct.

What is an abstract class?
An abstract class is a special kind of class that can’t be initialized. No object can be created
from an abstract class. Abstract classes can have concrete methods as well as non-concrete
methods. If a class implements an abstract class, the class must implement the abstract
methods. It can override non-abstract methods if necessary.

What is a sealed class?
A sealed class is a class that can’t be inherited. It is mainly used to stop the inheritance
feature in C#.

Prepare Yourself - Interviews and the Future Chapter 14

[249]

What is a partial class?
A partial class is a class that has its source in separate files. Normally, one class has all its
fields and methods in the same file. In a partial class, you can separate the class code in
different files. When compiled, all the code from the separate files is treated as a single
class.

What are the differences between interfaces and
abstract classes?
The following are the major differences between an interface and an abstract class:

A class can implement any number of interfaces but can only implement one
abstract class.
An abstract class can have abstract methods as well as non-abstract methods,
whereas an interface can’t have non-abstract methods.
In an abstract class, data members are private by default, whereas, in an
interface, all data members are public and this can't be changed.
In an abstract class, we need to use the abstract keyword to make a method
abstract, whereas this is not needed in an interface.

What is the difference between method-
overloading and method-overriding?
Method-overloading is when a method with the same name has different input
parameters. For example, let's say we have a method called Sum that takes two integer type
input and returns an integer type output. An overloaded method of Sum could take two
double type input and return a double output.

Method-overriding is when a method with the same name, the same parameters, and the
same return type is implemented in a subclass for a different kind of implementation. For
example, imagine we have a method called Discount in a class called Sales, where the
discount is calculated as 2% of the total purchase. If we have another subclass of Sales
called NewYearSales, in which the discount is calculated as 5%, using method-overriding,
the NewYearSales class can easily apply the new implementation.

Prepare Yourself - Interviews and the Future Chapter 14

[250]

What are access modifiers?
Access modifiers are used to set the security levels of different entities in a programming
language. By setting access modifiers, we can hide data for classes of different levels.

In C#, there are six types of access modifier:

Public
Private
Protected
Internal
Protected Internal
Private Protected

What is boxing and unboxing?
Boxing is the process of converting a value type to an object. Unboxing is when the value
type is extracted from an object. Boxing may be done implicitly, but unboxing has to be
explicit in the code.

What are the differences between a struct and a
class?
Structs and classes are very similar concepts with some differences:

Structs are of the value type and classes are of the reference type.
Structs are usually used for small amounts of data, whereas classes are used for
large amounts of data.
Structs can’t be inherited by other types, whereas classes can be inherited by
other classes.
A struct can’t be abstract, whereas a class can be abstract.

Prepare Yourself - Interviews and the Future Chapter 14

[251]

What is an extension method in C# and how do
we use it?
An extension method is a method that is added to an existing type without creating a new
derived type or compiling or changing the existing type. It works like an extension. For
example, by default, we get the string type from .NET frameworks. If we want to add
another method to this string type, either we have to create a derived type that will extend
this string type and place the method there, or we add the code in the .NET framework and
compile and rebuild the library. However, with extension methods, we can easily extend a
method in the existing type. To do that, we have to create a static class and then create an
extension method that is static as well. This method should take the type as a parameter,
but the this keyword should be placed before the string. Now this method will work as an
extension method for that type.

What is managed and unmanaged code?
Code that is developed in the .NET framework is called managed code. Common Language
Runtime (CLR) can directly execute this code. Unmanaged code is not developed in the
.NET framework.

What is a virtual method in C#?
A virtual method is a method that is implemented in a base class, but that also can be
overridden in child classes. Virtual methods cannot be abstract, static, private, or
overridden.

What do you understand by value types and
reference types in C#.NET?
In C#, there are two types of data. One is called value type and another is called reference
type. Value types are types that hold the value directly in the memory location. If the value
is copied, a new memory location holds the same value, and both are independent of each
other. A reference type is when the value is not directly placed in the memory location but
a reference to the value is set instead. Another major difference between value types and
reference types is that value types are located in stacks and reference types are located in
heaps. An example of a value type is int, whereas an example of a reference type is
string.

Prepare Yourself - Interviews and the Future Chapter 14

[252]

What are design principles?
There are five design principles that make up the acronym SOLID:

The single responsibility principle
The Open/Closed Principle
The Liskov substitution principle
The interface segregation principle
The dependency inversion principle

What is the single responsibility principle?
"A class should have one, only one reason to change."

– Robert C. Martin

This means that one class should have only one responsibility. If a class is doing multiple
things, this is a violation of the Single Responsibility Principle (SRP). For example, if we
have a class named Student, it should only be responsible for student-related data. If the
Student class needs to be modified when changing anything in the Teacher class, the
Student class is violating the SRP.

What is the Open/Closed principle?
Software components should be open for extensions but closed for modifications. This
means that a component should be designed in such a way that, if you need to add a new
rule or functionality, you shouldn’t have to modify the existing code. If you have to modify
the existing code to add new functionality, this means the component is violating
the Open/Closed principle.

What is the Liskov substitution principle?
Derived types must be completely substitutable for their base types. This means that if you
have an instance of a base class used somewhere, you should be able to replace the base
class instances with the child class instances of that base class. For example, if you have a
base class called Animal and a child class called Dog, you should be able to replace your
Animal class instances with Dog class instances without breaking any functionality.

Prepare Yourself - Interviews and the Future Chapter 14

[253]

What is the interface segregation principle?
Clients should not be forced to depend upon interfaces that they don’t use. Sometimes,
interfaces contain a lot of information that might not be used by the classes that implement
them. The interface segregation principle suggests that you keep the interfaces small.
Instead of classes implementing one big interface, they should implement multiple small
interfaces, where all the methods in the class are needed.

What is the dependency inversion principle?
High-level modules should not depend on low-level modules; both should depend on
abstraction. This means that, when you develop modular software code, high-level
modules should not directly depend on low-level modules, but should depend on an
interface or abstract class that the low-level module has implemented. By doing this, the
modules in the system are independent and, in the future, if you replace your low-level
module with another module, the high-level module isn't affected.

There is another part of this principle, which is abstraction should not depend on details, details
should depend on abstractions. This means that interfaces or abstract classes should not
depend on classes, but the classes that implement interfaces and abstract classes should
depend on the interface or abstract class.

Interview and career tips
Now that we have covered some of the most common questions that you can be asked in an
interview, I also have a couple of tips to help you to perform better in the interview and in
your career.

Improving your communication skills
It is commonly believed that software developers are unsociable and not good at
communication. The reality, however, is very different. All successful developers have to be
good at communication.

Prepare Yourself - Interviews and the Future Chapter 14

[254]

As a software developer, there will be times when you have to explain technical ideas or
situations to non-technical people. To be able to do so, you have to communicate in such a
way that makes the information accessible and understandable to everyone. This may
include both verbal (meetings or discussions) and written communication (documentation
or emails).

At the beginning of your career, you might not necessarily understand the importance of
communication as you will simply be given tasks to complete. However, as you gain
experience and get ahead in your career, you will appreciate the importance of
communicating effectively.

As a senior developer, you might have to communicate with your junior developers to
explain problems or solutions, or with the business team to ensure that you fully
understand the business requirements. You might also have to conduct technical sessions
for knowledge-sharing purposes.

Therefore, ensure that you keep interacting with people and read up on resources that will
help you to communicate effectively and teach you how to address your audience. Good
communication skills will not only help you to ace that interview but will also be valuable
to you throughout your career.

Keep practicing
While no software developer is perfect, by practicing regularly, you can become a
knowledgeable and experienced software developer.

Computer programming is an art. By making mistakes, you will develop a sense of what is
wrong and what is right. The more you code, the more you will experience different
situations. These situations will help you gain experience as you will likely encounter them
again in future projects.

And the best way to learn or master programming is to practice it.

Try to apply the concepts you have learned in this book in your real-life projects. If this is
not possible in your current projects, create demonstration projects and apply them there.
Technical concepts are very practical; if you're doing practical implementations, the
concepts will become crystal clear to you.

Prepare Yourself - Interviews and the Future Chapter 14

[255]

Things to learn next
After reading this book, you should have a better understanding of OOP and the C#
programming language. However, this isn't enough. You must push yourself to learn more
about software development. You should learn the other language features of C# and how
to use them to get your job done. You should also learn data structures and algorithms for
your professional work. In the following list, I have suggested a number of topics and
technologies to look into next:

C# programming language features such as operators, control statements, arrays,
lists, operator overloading, Lambda expressions, LINQ, string formatting, and
threading
Data structures and algorithms such as linked lists, binary trees, sorting, and
searching algorithms.
Web/desktop frameworks such as ASP.NET MVC, ASP.NET Web API, WPF, and
WCF
Frontend technologies such as HTML, CSS, and JavaScript, as well as Javascript
frameworks such as reactjs/angular
Database technologies such as MS SQL Server, Oracle, and MySQL
Design patterns and their implications
Software architecture and design
Clean code, code refactoring, and code optimization

There are many other things to learn, but I have covered the topics I believe every software
developer should know. This list is quite long and the topics are quite technical, so plan
your learning carefully.

Building the habit of reading
My last tip is to become an avid reader. Reading is super important for software
developers. Information is normally distributed to people by text or speech. While video
tutorials are a good way to learn, reading gives you time to think and provides you with
access to millions of resources.

Prepare Yourself - Interviews and the Future Chapter 14

[256]

The following are a few of my must-read books:

The Pragmatic Programmer: From Journeyman to Master by Andrew Hunt and
David Thomas
Clean Code by Robert Cecil Martin
Code Complete 2 by Steve McConnell
Refactoring by Martin Fowler and Kent Beck
Introduction to Algorithms by Charles E. Leiserson, Clifford Stein, Ronald Rivest,
and Thomas H. Cormen
Design Patterns: Elements of Reusable Object-Oriented Software by the Gang of Four
C# 7.0 in a Nutshell: The Definitive Reference by Joseph Albahari
C# in Depth by Jon Skeet

Summary
Software development is a very interesting field. You can develop amazing applications
that can change the world. Apps such as Facebook and Maps, and the myriad products of
digital giants, such as Google and Windows, have had a significant impact on our lives.
Programs can make people's lives easier by increasing productivity.

My request to you as a software developer is to write good code and develop amazing
apps. If you have the right intentions, a passion for software development, and a strong
work ethic, you will surely become successful in your career.

Let's make this world a great place by creating amazing software that can aid the progress
of human civilization.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

The Modern C# Challenge
Rod Stephens

ISBN: 9781789535426

Perform statistical calculations such as finding the standard deviation
Find combinations and permutations
Search directories for files matching patterns using LINQ and PLINQ
Find areas of polygons using geometric operations
Randomize arrays and lists with extension methods
Explore the filesystem to find duplicate files
Simulate complex systems and implement equality in a class
Use cryptographic techniques to encrypt and decrypt strings and files

https://www.packtpub.com/application-development/modern-c-challenge-0

Other Books You May Enjoy

[258]

C# Data Structures and Algorithms
Marcin Jamro

ISBN: 9781788833738

How to use arrays and lists to get better results in complex scenarios
Implement algorithms like the Tower of Hanoi on stacks of C# objects
Build enhanced applications by using hashtables, dictionaries and sets
Make a positive impact on efficiency of applications with tree traversal
Effectively find the shortest path in the graph

https://www.packtpub.com/application-development/c-data-structures-and-algorithms-0

Other Books You May Enjoy

[259]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

.

.NET framework
 class libraries 11
 Common Language Runtime (CLR) 11
 Common Type System 11
 just-in-time compiler 11
.NET
 architecture 10
 event guidelines 112, 114

A
abstract classes
 about 48, 54, 248
 versus interfaces 249
abstract factory pattern 217
abstract methods 54
abstraction 48, 248
access modifiers
 about 250
 types 250
access specifiers, for classes
 about 59
 internal access specifier 60
 private access specifier 60
 protected access specifier 61
 protected internal 62
 public access specifier 59
accessors 58
adapter pattern 220
ADO.NET
 fundamentals 181
aggregation relationship 72, 73, 135
association relationship 71, 135
async streams 205, 207
Async/Await 9
Atomic, Consistent, Isolated, and Durable (ACID)

199

B
base class constraints 122
behavioral design patterns
 about 221, 222
 command pattern 222
 observer pattern 222
 strategy pattern 223
boxing 250
branches
 changing 243, 244
 creating 242
 deleting 244
 merging 244
 viewing 243
branching 240, 242
breakpoint 170, 171
breakpoints window 165, 166
builder pattern 217, 218

C
C# 8 9
C# program
 writing, in console application 19, 21
C#.NET
 reference types 251
 value types 251
C#
 Async/Await 9
 conditions 15
 data types 12
 dynamics 8
 evolution 7
 exception filters 9
 exception handling 81
 fundamentals 12

[261]

 generics 8
 Language Integrated Query (LINQ) 8
 literals 13
 loops 16
 managed code 8
 nullable types 12
 syntax 12
 variables 41, 42
 virtual method 251
Call Stack Trace 169, 171
Carriage Return, Line Feed (CR+LF) 234
catch keyword 82
characteristics, object-oriented programming
 abstraction 48
 encapsulation 47, 48
 inheritance 46
 polymorphism 49, 50
child classes 46
class diagrams
 about 133, 134
 aggregation relationship 135
 association relationship 135
 composition relationship 135
 dependency relationship 136
 example 136, 138
 inheritance relationship 134
class libraries 11
class-creational patterns 216
classes, object-oriented programming
 about 38
 general form 38, 39
 writing 39, 40
classes
 access specifiers 59
 constructor 44, 45
 methods 43
code-first approach 196
code-optimization techniques 175
command pattern 222
Common Language Runtime (CLR) 11, 251
Common Type System 11
communication link 140
compiler
 using, as service 9
components, data providers

 command object 182, 184, 186
 connection object 181
 DataAdapter 188
 DataReader object 187, 188
composition relationship 74, 76, 135
conditions, C#
 goto statements 16
 if-else construct 15
 switch-case construct 15
console application
 C# program, writing 19, 21
constraints types, generics
 about 122
 base class constraints 122
 interface constraints 123
 multiple constraints 124
 reference type constraints 124
 value type constraints 124
constructor 44, 45
contravariance 105, 106, 107
covariance 105, 107
create, read, update, and delete (CRUD) 213
creational design patterns
 about 216
 abstract factory pattern 217
 builder pattern 217, 218
 factory method pattern 218
 prototype pattern 218
 singleton pattern 219

D
data providers 181
DataAdapters
 about 188, 192
 working with 190
database-first approach 196, 197
databases
 connecting to 189
 Oracle database, connecting to 190
 SQL Server, connecting to 189
DataReader object 187, 188
DataReaders
 about 191
 working with 190
debugging windows

[262]

 about 164
 breakpoints window 165, 166
 Diagnostic Tools window 168
 Exception Settings window 166
 Immediate window 169
 Output window 167
 Python debugger window 169
decorator pattern 220
delegates
 about 97, 98
 creating 98, 100
 using 98, 100
Dependency Inversion Principle 216, 253
dependency relationship 68, 69, 71, 136
design diagrams
 significance 132
 UML diagrams 132
Design Principles
 about 214, 252
 Dependency Inversion Principle 216, 253
 Interface Segregation Principle 215, 253
 Liskov Substitution Principle 252
 Open Close Principle 215, 252
 Single Responsibility Principle (SRP) 214, 252
Diagnostic Tools window 168
dynamic link library (dll) 21
dynamic polymorphism 49, 50
dynamics 8

E
Editor window 156, 158, 159, 161
encapsulation 47, 48, 247
Entity Framework (EF)
 entity 194
 used, for code-first approach 196
 used, for database-first approach 197
 using 197, 199
 working with 194
Entity Framework Core 198
Entity properties
 types 195
European Computer Manufactures Association

(ECMA) 6
event guidelines
 from .NET 112, 114

events
 about 108, 109
 multicast event 110, 112
exception class 90, 91
exception filters 9, 94, 95
exception handling
 about 79, 81
 best practices 95
 in C# 81
 need for 80, 82, 83
Exception Settings window 166
extension method
 about 251
 using 251

F
facade pattern 220, 221
factory method pattern 218
features, delegate
 contravariance 105, 108
 covariance 105, 108
features, refactoring
 Encapsulate Field 177
 Extract Method 178
 method signature, changing 176
 Rename 175
finally block
 working 87, 89
fundamental principles, OOP
 abstraction 248
 encapsulation 247
 inheritance 247
 polymorphism 248
fundamentals, ADO.NET
 data providers 181

G
generic methods
 about 124, 125
 type-inferencing 126, 127
generics
 about 8, 115, 117, 118, 120
 constraints 121
 contravariance 127, 128, 130
 covariance 127

[263]

 need for 120
git add command 233, 234, 235
git clone command 232
git commit command 235
git config command 231, 232
git fetch command 239, 240
git init command 232
git log command 236
git pull command 239
git push command 238
git remote command 237
git status command 233
Git
 about 231
 branching 240, 242
 in Visual Studio 173, 174
 installing, on Windows 229, 230, 231
 working 227

I
Immediate window 169
indices 207, 208, 209
inheritance 46, 247
inheritance relationship 76, 77
instance methods
 using, as delegates 101
Integrated Development Environment (IDE) 151
interface 248
interface constraints 123
interface members
 implementation 209, 210
Interface Segregation Principle 215, 253
interfaces
 about 52, 53
 versus abstract classes 249
internal access specifier 60
International Standards Organization (ISO) 6, 132
interview
 tips 253, 254

J
Java Database Connectivity (JDBC) 181
just-in-time compiler 11

L
Language Integrated Query (LINQ) 8, 198
line feed (LF) 234
Liskov Substitution Principle 252
literals, C#
 Boolean 13
 character 14
 Integer 13
 real values 14
 string 14
loops, C#
 break statements 18
 continue statements 18, 19
 do-while construct 17
 for construct 17
 foreach construct 18
 while construct 17

M
managed code 8, 251
method group conversion
 about 100
 instance methods, using as delegates 101
 static methods, using as delegates 101
method-overloading
 about 249
 versus method-overriding 249
method-overriding 249
methods
 about 43
 creating 43
Microsoft Intermediate Language (MSIL) 11
Model-View-Controller (MVC) pattern
 about 152, 213, 224
 Controller 224
 Model 224
 View 224
multicast event 110, 112
multicasting 102, 105
multiple catch blocks 83, 86
multiple constraints 124

[264]

N
nullable reference types 203, 204

O
object collaboration
 about 64
 case study 66, 67
 examples 64, 65
 types 65, 66
Object Linking and Embedding, Database (OLE

DB) 181
Object Management Group (OMG) 132
Object Relational Mapper (ORM) 194
object-creational patterns 216
object-oriented programming (OOP)
 about 36, 246
 characteristics 46
 classes 37, 38
 fundamental principles 247
 objects 40
objects, OOP
 about 41
 creating 41
observer pattern 222
Open Close Principle 215, 252
Open Database Connectivity (ODBC) 181
Output window 163, 167

P
parent class 46
partial class 55, 56, 249
parts, use case diagrams
 about 139
 actor 139
 communication link 140
 system boundaries 141
 use case 140
Plain Old CLR Object (POCO) class 198
polymorphism
 about 49, 50, 248
 dynamic polymorphism 49
 static polymorphism 49
private access specifier 60
properties 58, 59

properties, transactions in SQL
 about 199
 atomic 200
 consistent 200
 durable 200
 isolated 200
protected access specifier 61
protected internal 62
prototype pattern 218
proxy pattern 221
public access specifier 59
Python debugger window 169

R
ranges 207, 208, 209
refactoring 175
reference type constraints 124
reference types data 204
repository 227

S
sealed class 56, 248
sequence diagram
 about 143
 activation 144
 actor 143
 call message 145
 create message 147
 destroy message 147
 duration message 148
 example 148, 149
 lifeline 143
 note 148
 recursive message 146
 return message 145
 self message 146
Single Responsibility Principle (SRP) 214, 252
singleton pattern 219
SOLID 252
Solution Explorer 161, 162
SQL
 transactions 199
states, Git
 about 227
 committed 228

[265]

 modified 228
 staged 228
static methods
 using, as delegates 101
static polymorphism
 about 49
 method overloading 49
 operator overloading 49
stored procedures
 about 193, 194
 working with 193, 194
strategy pattern 223
structs
 versus classes 250
structural design patterns
 about 219
 adapter pattern 220
 decorator pattern 220
 facade pattern 220, 221
 proxy pattern 221
switch expressions 210, 211
system boundaries 141

T
target-typed new expressions 212
templates, Visual Studio 2017
 about 155
 ASP.NET Core Web Application 155
 ASP.NET Web Application 156
 Class Library 155
 Console App 155
 Unit Test Project 156
 WCF Server Application 156
 WPF App 156
throw keyword
 using 86, 87
try keyword 82
tuples 57
type-inferencing 126, 127
type-safety 120
types, association relationship
 about 72
 aggregation relationship 72, 73
 composition relationship 74, 76
types, collaboration types

 about 66
 association relationship 71
 dependency relationship 67, 69, 71
 inheritance relationship 76, 77
types, Entity properties
 navigation properties 196
 scalar properties 195

U
unboxing 250
Unified Modeling Language (UML) diagram
 about 71, 131, 132
 types 132
unmanaged code 251
use case 140
use case diagrams
 about 139
 example 142
user-defined exceptions 92, 93

V
value type constraints 124
value types data 204
version control 226, 227
Visual Studio 2019
 setting up 203
Visual Studio Code 23
Visual Studio Community 22
Visual Studio Editor 156
Visual Studio Enterprise 23
Visual Studio IDE project
 about 23, 25
 Command window 29
 Immediate windows 29
 main workspace area 27
 output window 29
 search option 30
 Solution Explorer window 25, 27
Visual Studio Professional 22
Visual Studio program
 debugging 33
 debugging, through code 34, 35
 writing 31, 33
Visual Studio project
 templates 152, 153, 154

 types 152, 153, 154
Visual Studio windows
 about 156
 Editor window 156, 158, 159, 161
 Output window 163
 Solution Explorer 161, 162
Visual Studio
 evolution 22
 Git 173, 174
 types 22

 using, as editor 21
 versions, comparing 22

W
Watch 169
Watch window 172
Windows Communication Foundation (WCF) 156
Windows Presentation Foundation (WPF) 156
Windows
 Git, installing 229, 230, 231

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Overview of C# as a Language
	Evolution of C#
	Managed code
	Generics
	LINQ
	Dynamics
	Async/await
	Compiler as a service
	Exception filters
	C# 8 and beyond

	Architecture of .NET
	Common Language Runtime
	Common Type System
	.NET framework class libraries
	Just-in-time compiler

	Fundamentals and syntax of C# language
	Data types
	Nullable types
	Literals
	Boolean
	Integer
	Real
	Character
	String

	Programming syntax – conditions
	If-else construct
	Switch-case construct
	goto statements

	Programming syntax – loops
	The while construct
	The do-while construct
	The for construct
	The foreach construct
	Contextual – break and continue statements
	Break
	Continue

	Writing your first C# program in a console application
	Visual Studio as an editor
	Evolution of Visual Studio
	Types of Visual Studio
	Visual Studio Community
	Visual Studio Professional
	Visual Studio Enterprise
	Visual Studio Code

	Introduction to the Visual Studio IDE
	New Project
	Solution Explorer
	Main workspace area
	Output window
	The Command and Immediate windows
	Search option in IDE

	Writing your first program in Visual Studio
	How to debug
	Debugging through code

	Summary

	Chapter 2: Hello OOP - Classes and Objects
	Classes in OOP
	The general form of a class
	Writing a simple class

	Objects in OOP
	How to create objects

	Variables in C#
	Methods in a class
	Creating a method
	Constructor of a class

	Characteristics of OOP
	Inheritance
	Encapsulation
	Abstraction
	Polymorphism

	Summary

	Chapter 3: Implementation of OOP in C#
	Interfaces
	The abstract class
	The partial class
	The sealed class
	Tuples
	Properties
	Access specifiers for classes
	Public
	Private
	Internal
	Protected
	Protected internal

	Summary

	Chapter 4: Object Collaboration
	Examples of object collaboration
	Different types of object collaboration in C#
	Case study
	Dependency
	Association
	Aggregation
	Composition

	Inheritance

	Summary

	Chapter 5: Exception Handling
	Why we need exception handling in programming
	Exception handling in C# programming

	Basics of exception handling
	Try and catch
	What happens if you don't handle exceptions?
	Multiple catch blocks
	Using the throw keyword
	What does the finally block do?
	Exception class
	Some common exception classes

	User-defined exceptions
	The exception filter
	Exception handling best practices
	Summary

	Chapter 6: Events and Delegates
	What is a delegate?
	How to create and use delegates

	Method group conversion
	Using the static and instance methods as delegates

	Multicasting
	Covariance and contravariance
	Events
	Multicasting events
	Event guidelines from .NET

	Summary

	Chapter 7: Generics in C#
	What are generics?
	Why do we need generics?
	Different constraints of generics
	Base class constraints
	Interface constraints
	Reference type and value type constraints
	Multiple constraints

	Generic methods
	Type-inferencing

	Covariance and contravariance in generics
	Covariance
	Contravariance

	Summary

	Chapter 8: Modeling and Designing Software
	The importance of design diagrams
	Different UML diagrams

	Class diagrams
	Inheritance
	Association
	Aggregation
	Composition
	Dependency
	An example of a class diagram

	Use case diagrams
	The actor
	The use case
	The communication link
	The system boundaries
	An example of a use case diagram

	A sequence diagram
	An actor
	A lifeline
	An activation
	A call message
	A return message
	A self message
	A recursive message
	A create message
	A destroy message
	A duration message
	A note
	An example of a sequence diagram

	Summary

	Chapter 9: Visual Studio and Associated Tools
	Visual Studio project types and templates
	Visual Studio Editor and different windows
	Editor window
	Solution Explorer
	Output window

	Debugging windows
	Breakpoints window
	Exception Settings
	Output
	Diagnostic Tools
	Immediate window
	Python debugger window

	Breakpoints, Call Stack Trace, and Watch
	Breakpoint
	Call Stack Trace
	Watch window

	Git in Visual Studio
	Refactoring and code-optimization techniques
	Rename
	Changing the method signature
	Encapsulate Field
	Extract Method

	Summary

	Chapter 10: Exploring ADO.NET with Examples
	The fundamentals of ADO.NET
	Data providers
	Connection objects
	The Command object
	The DataReader object
	DataAdapter

	Connecting to various databases
	SQL Server
	The Oracle database

	Working with DataReaders and DataAdapters
	DataReaders
	DataAdapters

	Working with stored procedures
	Working with the Entity Framework
	What is an entity in the Entity Framework?
	Different types of Entity properties
	Scalar properties
	Navigation properties

	The code-first approach
	The database-first approach
	Using the Entity Framework

	Transactions in SQL
	Atomic
	Consistent
	Isolated
	Durable

	Summary

	Chapter 11: New Features in C# 8
	Environment Setup
	Nullable reference types
	Async streams
	Ranges and indices
	Default implementation of interface members
	Switch expressions
	Target-typed new expressions
	Summary

	Chapter 12: Understanding Design Patterns and Principles
	Design principles
	The single responsibility principle
	The open-closed principle
	The Liskov substitution principle
	The interface segregation principle
	The dependency inversion principle

	Creational design patterns
	The abstract factory pattern
	The builder pattern
	The factory method pattern
	The prototype pattern
	The singleton pattern

	Structural design patterns
	The adapter pattern
	The decorator pattern
	The facade pattern
	The proxy pattern

	Behavioral design patterns
	The command pattern
	The observer pattern
	The strategy pattern

	The MVC pattern
	Summary

	Chapter 13: Git - The Version Control System
	What is version control?
	How Git works
	Modified
	Staged
	Committed

	Installing Git on Windows
	The basics of Git
	Git config
	Git init
	Git clone
	Git status
	Git add
	Git commit
	Git log
	Git remote
	Git push
	Git pull
	Git fetch

	Branching in Git
	Creating a branch
	Viewing available branches
	Changing branches
	Deleting a branch
	Merging in Git

	Summary

	Chapter 14: Prepare Yourself - Interviews and the Future
	Interview questions
	What are the fundamental principles of object-oriented programming?
	What is inheritance?
	What is encapsulation?
	What is abstraction?
	What is polymorphism?
	What is an interface?
	What is an abstract class?
	What is a sealed class?
	What is a partial class?
	What are the differences between interfaces and abstract classes?
	What is the difference between method-overloading and method-overriding?
	What are access modifiers?
	What is boxing and unboxing?
	What are the differences between a struct and a class?
	What is an extension method in C# and how do we use it?
	What is managed and unmanaged code?
	What is a virtual method in C#?
	What do you understand by value types and reference types in C#.NET?
	What are design principles?
	What is the single responsibility principle?
	What is the Open/Closed principle?
	What is the Liskov substitution principle?
	What is the interface segregation principle?
	What is the dependency inversion principle?

	Interview and career tips
	Improving your communication skills
	Keep practicing

	Things to learn next
	Building the habit of reading
	Summary

	Other Books You May Enjoy
	Index

