

Hands-On Mobile Development
with .NET Core

Build cross-platform mobile applications with Xamarin, Visual
Studio 2019, and .NET Core 3

Can Bilgin

BIRMINGHAM - MUMBAI

Hands-On Mobile Development with .NET
Core
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Kunal Choudhari
Acquisition Editor: Devanshi Doshi
Content Development Editor: Keagan Carneiro
Technical Editor: Leena Patil
Copy Editor: Safis Editing
Project Coordinator: Kinjal Bari
Proofreader: Safis Editing
Indexer: Manju Arasan
Graphics: Alishon Mendonsa
Production Coordinator: Shraddha Falebhai

First published: May 2019

Production reference: 1310519

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78953-851-9

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Can Bilgin currently works with Authority Partners Inc. as a Solution Architect. He has
been working in the software industry, primarily with Microsoft technologies, for over a
decade and has been recognized as a Microsoft Most Valuable Professional for his technical
contributions between 2014 and 2018. In this period, he took key roles in projects for high
profile clients using technologies such as BizTalk, SharePoint, Dynamics CRM, Xamarin,
WCF, Azure Serverless and other web/cloud technologies. He is passionate about mobile
and IoT development using the modern tools available for developers.

He shares his experience on his blog, social media and through speaking engagements in
local and international community events.

Dedicated to my beloved wife, Sanja Grebovic Bilgin.

About the reviewer
Ahmed Ilyas is a BENG degree holder from Napier University, Edinburgh, Scotland. He is
a major in software development with 19 years of professional experience. After leaving
Microsoft, currently focusing on his consultancy company, Sandler Ltd, and Sandler
Software LLC, offering the best possible real-world solutions for issues faced by a plethora
of industries. Using the Microsoft stack, his venture focuses on suggesting and applying
best practices, patterns, and software solutions to meet their clients' needs, targeting long-
term stability and compliance in the dynamic software industry. He has been awarded with
an MVP in C# by Microsoft on three occasions for providing excellent real-world solutions
to problems faced by developers.

I would like to thank the author and publisher of this book for giving me the great honor
and privilege of reviewing it. I would also like to thank my client base, and especially
Microsoft Corporation and my colleagues over there, for enabling me to become a reputable
leader as a software developer in the industry, which is my passion.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Section 1: .NET Core and Cross-Platform Philosophy
Chapter 1: Getting Started with .NET Core 9

Cross-platform development 10
Developing fully native applications 10
Hybrid applications 11
Native cross-platform frameworks 11

Introduction to .NET Core 12
.NET Foundation 14

Notable .NET Foundation projects 14
.NET Core 14
ASP.NET Core 15
Roslyn 15
Reactive Extensions for .NET 15
Entity Framework 15
IdentityServer 15
ML.NET 16
Xamarin and Xamarin.Forms 16
xUnit.net 16

Developing with .NET Core 16
Creating a runtime agnostic application 18
Defining a runtime and self-contained deployment 20
Defining a framework 22

Summary 23

Chapter 2: Xamarin, Mono, and .NET Standard 24
Introduction to Xamarin 25
Creating your first Xamarin application 25
Xamarin on iOS – Mono Touch 29
Xamarin on Android – Mono Droid 31
Xamarin.Forms 33
Using .NET Standard with Xamarin 36
Extending the reach 39
Summary 39

Chapter 3: Universal Windows Platform 40
Universal Windows Platform 40
Creating UWP applications 41
XAML Standard 45

Table of Contents

[ii]

.NET Standard and .NET Native 48
Platform extensions 49
Summary 51

Section 2: Xamarin and Xamarin.Forms
Chapter 4: Developing Mobile Applications with Xamarin 53

Xamarin versus Xamarin.Forms 53
Xamarin application anatomy 55
Selecting the presentation architecture 56

Model-View-Controller (MVC) implementation 56
Model-View-ViewModel (MVVM) implementation 60

Useful architectural patterns 67
Inversion of Control 67
Event aggregator 68
Decorator 69

Summary 70

Chapter 5: UI Development with Xamarin 71
Application layout 72

Consumer expectations 72
Platform imperatives 75
Development cost 77

Implementing navigation structure 78
Single-page view 79
Simple navigation 81
Multi-page views 83
Master/detail view 86

Using Xamarin.Forms and native controls 88
Layouts 88
Xamarin.Forms view elements 94
Native components 97

Creating data-driven views 98
Data-binding essentials 98
Value converters 100
Triggers 103
Visual states 105

Summary 107

Chapter 6: Customizing Xamarin.Forms 108
Xamarin.Forms development domains 108
Xamarin.Forms shared domain 110

Using styles 110
Creating behaviors 114
Attached properties 118
XAML markup extensions 119

Table of Contents

[iii]

Customizing native domains 121
Platform specifics 121
Xamarin.Forms effects 122
Composite customizations 125

Creating custom controls 127
Creating a Xamarin.Forms control 127
Creating a custom renderer 129
Creating a custom Xamarin.Forms control 135

Summary 138

Section 3: Azure Cloud Services
Chapter 7: Azure Services for Mobile Applications 140

An overview of Azure services 140
An introduction to distributed systems 141
Cloud architecture 144

Gateway aggregation 145
Backends for frontends 146
A materialized view 147
The cache-aside pattern 148
Queue-based load leveling 149
Competing consumers 150
The publisher/subscriber pattern 151
The circuit breaker and retry patterns 151

Azure service providers and resource types 152
Data stores 154

Relational database resources 155
Azure storage 155

Azure blobs 156
Azure files 157
Azure queues 157
Azure tables 157

Cosmos DB 157
Azure Cache for Redis 158

Azure serverless 158
Azure functions 159
Azure Logic Apps 161
Azure Event Grid 162

Development services 162
Azure DevOps 163
Visual Studio App Center 165

Summary 166

Chapter 8: Creating a Datastore with Cosmos DB 167
The basics of Cosmos DB 167

Global distribution 169
Consistency spectrum 170

Table of Contents

[iv]

Pricing 172
Data access models 173

SQL API 173
MongoDB API 174
Others 176

Modeling data 177
Creating and accessing documents 177
Denormalized data 184
Referenced data 186

Cosmos DB in depth 187
Partitioning 188
Indexing 190
Programmability 192
Change feed 195

Summary 195

Chapter 9: Creating Microservices Azure App Services 196
Choosing the right app model 196

Azure virtual machines 197
Containers in Azure 198

Azure Container Services with Kubernetes 198
Service Fabric Mesh 198

Microservices with Azure Service Fabric 199
Azure App Service 200

Creating our first microservice 200
Initial setup 201
Implement retrieval actions 204
Implementing patch updates 210
Implementing a soft delete 213

Integrating with Redis cache 214
Hosting the services 218

Azure Web App for App Service 218
Containerizing services 220

Securing the application 223
ASP.NET Core Identity 225
Azure AD 226
Azure AD B2C 231

Summary 232

Chapter 10: Using .NET Core for Azure Serverless 233
Understanding Azure Serverless 234
Developing Azure Functions 234

Implementing Azure Functions 235
Function triggers and bindings 240
Configuring functions 241
Hosting functions 242

Table of Contents

[v]

Creating our first Azure function 243
Developing a Logic App 246

Implementing Logic Apps 247
Using connectors 250
Creating our first Logic App 251
Workflow execution control 256

Integration with Azure services 258
Repository 259
Queue-based processing 260
Event aggregation 260

Summary 261

Section 4: Advanced Mobile Development
Chapter 11: Fluid Applications with Asynchronous Patterns 263

Utilizing tasks and awaitables 263
Task-based execution 265
Synchronization context 270
Single execution guarantee 271
Logical tasks 273
The command pattern 274
Creating producers/consumers with blocking collections 276

Asynchronous execution patterns 277
Service initialization pattern 278
Asynchronous event handling 279
The asynchronous command 281

Native asynchronous execution 283
Android services 283
iOS backgrounding 284

Summary 286

Chapter 12: Managing Application Data 287
Improving HTTP performance with transient caching 287

Client cache aside 288
Entity tag (ETag) validation 290
Key/value store 292

Persistent data cache using SQLite 293
SQLite.NET 294
Entity Framework Core 295

Data access patterns 296
Implementing the repository pattern 297
Observable repository 299
Data resolver 300

Understanding Realm 303
Summary 305

Table of Contents

[vi]

Chapter 13: Engaging Users with Notifications and the Graph API 306
Understanding Native Notification Services 306

Notification providers 307
Sending notifications with PNS 307
General constraints 308

Azure Notification Hub 308
Notification Hub infrastructure 309

Notification hub 309
Notification namespace 310

Notifications using Azure Notification Hub 312
Registration 312
Notification 313

Creating a notification service 313
Defining the requirements 314
Device registration 315
Transmitting notifications 318
Broadcasting to multiple devices 320
Advanced scenarios 320

Push to pull 320
Rich Media for push messages 321

The Graph API and Project Rome 322
The Graph API 322
Project Rome 323

Device relay 323
User activities 324
Notifications 324
Remote Sessions 324
Nearby sharing 325

Summary 325

Chapter 14: Introducing Cognitive Services 326
Understanding Cognitive Services 327
Speech APIs 329

Speech to text 329
Language Understanding Service 331

Computer vision 335
Search API 337

Search query completion 337
Web Search API 338
Image search 339
Other 340

Summary 340

Section 5: Application Life Cycle Management
Chapter 15: Azure DevOps and Visual Studio App Center 342

Using Azure DevOps and Git 343

Table of Contents

[vii]

Creating a Git repository with Azure DevOps 343
Branching strategy 345
Managing development branches 347

Creating Xamarin application packages 351
Using Xamarin build templates 351

Xamarin.Android build 352
Xamarin.iOS pipeline 355

Environment-specific configurations 358
Creating and utilizing artifacts 358

App Center for Xamarin 359
Integration with the source repository and builds 360
Setting up distribution rings 362

Distribution with AppCenter 364
AppCenter releases 364
AppCenter distribution groups 365
App Center distribution to production 366

App Center telemetry and diagnostics 367
Summary 369

Chapter 16: Application Telemetry with Application Insights 370
Collecting insights for Xamarin applications 370

Telemetry data model 371
Advanced application telemetry 375
Exporting App Center telemetry data to Azure 379

Collecting telemetry data for Azure Service 382
Application Insights data model 382
Collecting telemetry data with ASP.NET Core 383
Collecting telemetry with Azure Functions 388

Analyzing data 389
Summary 393

Chapter 17: Automated Testing 394
Maintaining application integrity with tests 395

Arrange, Act, and Assert 395
Creating unit tests with mocks 399
Fixtures and data-driven tests 403

Maintaining cross-module integrity with integration tests 405
Testing the client-server communication 406
Implementing platform tests 408

Automated UI tests 409
Xamarin.UITests 410
Page Object Pattern 412

Summary 415

Chapter 18: Deploying Azure Modules 416
Creating an ARM template 416

Table of Contents

[viii]

ARM template concepts 422
Using Azure DevOps for ARM templates 425
Deploying .NET Core applications 429
Summary 433

Chapter 19: CI/CD with Azure DevOps 434
Introducing CI/CD 434
CI/CD with GitFlow 436

Development 437
Pull request/merge 438
The CI phase 440
Release branch 443
Hotfix branches 444
Production 444

The QA process 444
Code review 445
Testing 446
Static code analysis with SonarQube 447

Local analysis with SonarLint 448
CI analysis 449
External Roslyn analyzers 451

Creating and using release templates 452
Azure DevOps releases 452

Release artifacts 452
Release stages 453
Release gates and triggers 454

Xamarin release template 457
Azure web application release 458

Summary 460

Other Books You May Enjoy 461

Index 464

Preface
In this book, you will learn how to design and develop highly attractive, maintainable, and
robust mobile applications for multiple platforms, including iOS, Android, and UWP, with
the toolset provided by Microsoft using Xamarin, .NET Core, and Azure Cloud Services.

Who this book is for
This book is for mobile developers who wish to develop cross-platform mobile
applications. Programming experience with C# is required. Some knowledge and
understanding of core elements and of cross-platform application development with .NET
is required.

What this book covers
Chapter 1, Getting Started with .NET Core, gives you a brief introduction to .NET Core while
explaining the different tiers of the .NET Core infrastructure. Languages, runtimes, and
extensions that can be used together with .NET Core will be discussed and analyzed.

Chapter 2, Xamarin, Mono, and .NET Standard, tries to explain the relationship between
.NET Core and Xamarin. You will learn about how the Xamarin source code is executed
with MonoTouch on iOS and Mono Runtime on Android.

Chapter 3, Universal Windows Platform, discusses the components that allow UWP apps to
be portable within the Windows 10 ecosystem and how they are associated with .NET Core.

Chapter 4, Developing Mobile Applications with Xamarin, explains Xamarin and
Xamarin.Forms development strategies, and we will create a Xamarin.Forms application
that we will develop throughout the remainder of the book. We will also discuss the
architectural models that might help us along the way.

Chapter 5, UI Development with Xamarin, takes a look at certain UI patterns that allow
developers and UX designers to create a compromise between the user expectations and
product demands in order to create a platform and product with a consistent user
experience across platforms.

Preface

[2]

Chapter 6, Customizing Xamarin.Forms, goes through the steps and procedures of
customizing Xamarin.Forms without compromising the performance or user experience.
Some of the features that will be analyzed include effects, behaviors, extensions, and
custom renderers.

Chapter 7, Azure Services for Mobile Applications, discusses the fact that there are a number
of services that are offered as services (SaaS), platform (PaaS), or infrastructure (IaaS), such
as Notification Hub, Cognitive Services, and Azure Functions, that can change the
impressions of the users regarding your application with little or no additional
development hours. This chapter will give you a quick overview of using some of these
services while developing .NET Core applications.

Chapter 8, Creating a Datastore with Cosmos DB, explains that Cosmos DB offers a multi-
model and multi-API paradigm that allows applications to use multiple data models while
storing application data with the most suitable API for the application, such as SQL,
JavaScript, Gremlin, and MongoDB. In this chapter, we will create the data store for our
application and implement the data access modules.

Chapter 9, Creating Microservices Azure App Services, goes through the basics of Azure App
Services, and we will create a simple data-oriented backend for our application using
ASP.NET Core with authentication provided by Azure Active Directory. Additional
implementation will include offline sync and push notifications.

Chapter 10, Using .NET Core for Azure Serverless, shows how to incorporate Azure
Functions into our infrastructure to process data on different triggers, and integrate Azure
Functions with a Logic App that will be used as a processing unit in our setup.

Chapter 11, Fluid Applications with Asynchronous Patterns, explains that when developing
Xamarin applications and ASP.NET Core applications, both the task's framework and the
reactive modules can help distribute the execution threads and create a smooth and
uninterrupted execution flow. This chapter will go over some of the patterns associated
with these modules and apply them to various sections of the application.

Chapter 12, Managing Application Data, explains that, in order to avoid data conflicts and
synchronization issues, developers must be diligent regarding the procedures implemented
according to the type of data at hand. This chapter will discuss the possible data
synchronization and offline storage scenarios using products such as SQLite and Realm, as
well as the out-of-the-box offline support provided by Azure App Services.

Preface

[3]

Chapter 13, Engaging Users with Notifications and the Graph API, briefly explains how
notifications and the graph API can be used to improve user engagement by taking
advantage of push notifications and the graph API. We will create a notification
implementation for cross-platform applications using Azure Notification Hub. We will also
create so-called activity entries for our application sessions so that we can create a timeline
that is accessible on multiple platforms.

Chapter 14, Introducing Cognitive Services, adds speech recognition to our application using
the speech API. Additionally, we will be creating a computer vision training set to
categorize user-uploaded images. After the Xamarin tasks for Android and iOS are
completed, we will be creating a simple machine learning example using the client SDK
that's available for UWP.

Chapter 15, Azure DevOps and Visual Studio App Center, shows how to use Visual Studio
Team Service and App Center to set up a complete automated pipeline for Xamarin
applications that will connect the source repository to the final store submission.

Chapter 16, Application Telemetry with Application Insights, explains how Application
Insights is a great candidate for collecting telemetry from Xamarin applications that use an
Azure-hosted web service infrastructure because of its intrinsic integration with Azure
modules, as well as the continuous export functionality for App Center telemetry.

Chapter 17, Automated Testing, discusses how to create unit and coded UI tests, and the
architectural patterns that revolve around them. Data-driven unit tests, mocks, and
Xamarin UI tests are some of the concepts that will be discussed.

Chapter 18, Deploying Azure Modules, demonstrates how to configure the ARM template for
the Azure web service implementation, as well as other services (such as Cosmos DB and
Notification Hub) that we used previously so that we can create deployments using the
Visual Studio Team Services build and release pipeline. Introducing configuration values
into the template and preparing it to create staging environments are our primary focus of
this chapter.

Chapter 19, CI/CD with Azure DevOps, explains how developers can create fully automated
templates for builds, testing, and deployments using the toolset provided with Visual
Studio Team Services. In this chapter, we will set up the build and release pipeline for
Xamarin in line with the Azure deployment pipeline.

Preface

[4]

To get the most out of this book
The book is primarily aimed at .NET developers with slim to moderate experience with
Xamarin and .NET Core. The cloud infrastructure-related sections heavily use various
services in the Azure cloud infrastructure. However, familiarity with basic management
concepts of Azure portal should be enough for the more advanced topics.

For the code samples, a combination of Windows and macOS development environments
are used throughout the book. The ideal setup to utilize the samples would be to use
macOS together with a Windows 10 virtual machine. This way, samples from both
environments can be used.

The IDE of choice for implementing the code walk-throughs is Visual Studio 2019 on
Windows, and Visual Studio for Mac on macOS. Visual Studio Code, which supports both
platforms, can be used to create the scripting and Python examples.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

http://www.packt.com
http://www.packt.com/support
http://www.packt.com

Preface

[5]

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Hands-On-Mobile-Development-with-.NET-Core. In case there's an
update to the code, it will be updated on the existing GitHub repository. Refer GitHub
README for more details on prerequisites of services.

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https://www.packtpub.com/sites/default/files/
downloads/9781789538519_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Mount the downloaded WebStorm-10*.dmg disk image file as another disk in
your system."

A block of code is set as follows:

namespace FirstXamarinFormsApplication
{
 public partial class MainPage : ContentPage
 {
 public MainPage()
 {
 InitializeComponent();
 BindingContext = new MainPageViewModel();
 }
 }
}

https://github.com/PacktPublishing/Hands-On-Mobile-Development-with-.NET-Core
https://github.com/PacktPublishing/Hands-On-Mobile-Development-with-.NET-Core
https://github.com/PacktPublishing/Hands-On-Mobile-Development-with-.NET-Core
https://github.com/PacktPublishing/Hands-On-Mobile-Development-with-.NET-Core
https://github.com/PacktPublishing/Hands-On-Mobile-Development-with-.NET-Core
https://github.com/PacktPublishing/Hands-On-Mobile-Development-with-.NET-Core
https://github.com/PacktPublishing/Hands-On-Mobile-Development-with-.NET-Core
https://github.com/PacktPublishing/Hands-On-Mobile-Development-with-.NET-Core
https://github.com/PacktPublishing/Hands-On-Mobile-Development-with-.NET-Core
https://github.com/PacktPublishing/Hands-On-Mobile-Development-with-.NET-Core
https://github.com/PacktPublishing/Hands-On-Mobile-Development-with-.NET-Core
https://github.com/PacktPublishing/Hands-On-Mobile-Development-with-.NET-Core
https://github.com/PacktPublishing/Hands-On-Mobile-Development-with-.NET-Core
https://github.com/PacktPublishing/Hands-On-Mobile-Development-with-.NET-Core
https://github.com/PacktPublishing/Hands-On-Mobile-Development-with-.NET-Core
https://github.com/PacktPublishing/Hands-On-Mobile-Development-with-.NET-Core
https://github.com/PacktPublishing/Hands-On-Mobile-Development-with-.NET-Core
https://github.com/PacktPublishing/Hands-On-Mobile-Development-with-.NET-Core
https://github.com/PacktPublishing/Hands-On-Mobile-Development-with-.NET-Core
https://github.com/PacktPublishing/Hands-On-Mobile-Development-with-.NET-Core
https://github.com/PacktPublishing/Hands-On-Mobile-Development-with-.NET-Core
https://github.com/PacktPublishing/Hands-On-Mobile-Development-with-.NET-Core
https://github.com/PacktPublishing/Hands-On-Mobile-Development-with-.NET-Core
https://github.com/PacktPublishing/Hands-On-Mobile-Development-with-.NET-Core
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/9781789538519_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789538519_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789538519_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789538519_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789538519_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789538519_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789538519_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789538519_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789538519_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789538519_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789538519_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789538519_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789538519_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789538519_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789538519_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789538519_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789538519_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789538519_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789538519_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789538519_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789538519_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789538519_ColorImages.pdf

Preface

[6]

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

public App ()
{
 InitializeComponent();
 MainPage = new NavigationPage(new ListItemView());
}

Any command-line input or output is written as follows:

 docker run -p 8000:80 netcore-usersapi

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Both the ALM process and the version control options are available under the Advanced
section of the project settings."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

http://www.packt.com/submit-errata

Preface

[7]

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://authors.packtpub.com/
http://www.packt.com/

1
Section 1: .NET Core and

Cross-Platform Philosophy
.NET Core, .NET Standard, and Xamarin make up the cross-platform toolset for .NET
developers. Using these sets of frameworks, developers are able to create applications for
various platforms, including but not limited to, iOS, Android, and Universal Windows
Platform, as well as IoT devices and Tizen. Understanding how these runtime and
framework references work hand in hand and core concepts of cross-platform application
will help you to better craft mobile projects.

The following chapters will be covered in this section:

Chapter 1, Getting Started with .NET Core
Chapter 2, Xamarin, Mono, and .NET Standard
Chapter 3, Universal Windows Platform

1
Getting Started with .NET Core

.NET Core (previously known as .NET vNext) is the general umbrella term used for
Microsoft's cross-platform toolset that aims to solve the shortcomings of
centralized/machine-wide frameworks (NET framework) by creating a portable, platform
agnostic, modular runtime and framework. This decentralized and modular development
platform allows developers to create applications for multiple platforms using the common
.NET base class libraries (NET standard), as well as various runtimes and application
models, depending on the target platforms. This chapter will give you a brief introduction
to .NET Core while explaining different tiers of .NET Core infrastructure. Languages and
runtimes, as well as extensions that can be used together with .NET Core will be discussed
and analyzed.

The combination of.NET Core, .NET Standard, and Xamarin is the key to cross platform
projects, and opens many doors that were previously for Windows-only developers.
Creating web applications that can run on Linux machines and containers, and the
implementation of mobile applications that target iOS, Android, Universal Windows
Platform (UWP), and Tizen are just a couple of examples to emphasize the capabilities of
this cross-platform approach.

In this chapter, the following sections will guide you through getting started with .NET
Core:

Cross-platform development
Introduction to .NET Core
.NET foundation
Developing with .NET Core

Getting Started with .NET Core Chapter 1

[10]

Cross-platform development
The term cross-platform application development refers to the process of creating a
software application that can run on multiple operating systems. In this book, we will not
try to answer the question of why, but how – more specifically, will try to create a cross-
platform application using the toolset provided by Microsoft and .NET Core.

Before we start talking about .NET Core, let's take a look at the process of developing an
application for multiple platforms. Faced with the cross-platform requirement, the product
team can choose multiple paths that will lead the developers through different application
life cycles.

Throughout this book, we will have hypothetical user stories defined for various scenarios.
We will start with an overall user story that underlines the importance of .NET Core:

"I, as a product owner, would like to have the client ShopAcross application running on
iOS, Android mobile platforms, as well as Windows, Linux, and macOS desktop runtimes,
so that I can increase my reach and user base."

In order to meet these demands, we can choose to implement the application in several
different ways:

Fully native applications
Hybrid applications
Cross platform

Developing fully native applications
Following this path would create probably the most performant application, with increased
accessibility to the platform APIs for the developers. However, the development team for
this type of development would require specific know-how and skill sets so that the same
application can be created on multiple platforms, also increasing the developer hours that
need to be invested in the application.

Considering the platform set we mentioned previously, we would potentially need to
develop the client application in Cocoa and CocoaTouch (macOS and iOS), Java (Android),
.NET (Windows), or C++ (Linux), and finally build a web service infrastructure in another
language of our choice. In other words, this approach is, in fact, implementing a multi-
platform application rather than a cross-platform one.

Getting Started with .NET Core Chapter 1

[11]

Hybrid applications
Native hosted web applications (also known as hybrid applications) are another popular
choice for (especially mobile) developers. In this architecture, a responsive web application
would be hosted on a thin native harness on the target platform. The native web container
would also be responsible for providing access to the web runtime on native platform APIs.
These hybrid applications wouldn't even need to be packaged as application packages, but
as Progressive Web Apps (PWAs) so that users can access them right from their web
browsers. While the development resources are even more efficiently used than the native
cross-platform framework approach, this type of application is generally prone to
performance issues.

In reference to the business requirements at hand, we would probably develop a web
service layer and a small Single Page Application (SPA), part of which is packaged as a
hybrid application. The other parts can be hosted as a web application.

Native cross-platform frameworks
Development platforms such as React Native, Xamarin, and .NET Core provide the much-
required abstraction for the target platforms, so that development can be done using one
framework and development language for multiple runtimes. In other words, the
developers are still using the APIs provided by the native platform (for example, Android
or iOS SDK), but the development is executed in a single language and framework. This
approach not only decreases the development resources, but also saves you from the
burden of managing multiple source repositories for multiple platforms. This way, the
same source is used to create multiple application heads.

For instance, using .NET Core, the development team can implement all target platforms
using the same development suite and language, thus creating multiple client applications
for each target platform, as well as the web service infrastructure.

In a cross-platform implementation, architecturally speaking, the application is made up of
three distinct tiers:

Application model (implementation layer for the consumer application)
Framework (the toolset available for developers)
Platform abstraction (the harness or runtime to host the application)

Getting Started with .NET Core Chapter 1

[12]

In this context, we, in essence, are in pursuit of creating a platform-agnostic application
layer that will be catered for on a platform abstraction layer. The platform abstraction layer,
whether it's on the native web host or the native cross-platform framework, is responsible
for providing the bridge between the single application implementation and the
polymorphic runtime component.

.NET Core and Mono provide the runtime, while the .NET Standard provides the
framework abstraction, which means that cross-platform applications can be implemented
and distributed on multiple platforms. Using Xamarin with the .NET Standard framework
on mobile applications and .NET Core on the web infrastructure, sophisticated cloud-
supported native mobile applications can be created.

Introduction to .NET Core
In order to understand the roots of and motivation for let us start with a quote:

"Software producers who maximize their product's potential for useful combination with
other software, while at the same time minimizing any restrictions upon its further re-
combination, will be the survivors within a software industry that is in the process of
reorganizing itself around the network exchange of commodity data."

-- David Stutz – General Program Manager for Shared Source Common Language
Infrastructure, Microsoft, 2004.

.NET Core dates back as early as 2001 when Shared Source Common Language
Infrastructure (SSCLI) was shared sourced (not for commercial use) under the code name
Rotor. This was the ECMA 335, that is, the Common Language Infrastructure (CLI)
standard implementation. Rotor could be built on FreeBSD (version 4.7 or newer) and
macOS X 10.2. It was designed in such a way that a thin Platform Abstraction Layer (PAL)
was the only thing that was needed to port the CLI to a different platform. This release
constitutes the initial steps to migrate .NET to a cross-platform infrastructure.

2001 was also the year the Mono project was born as an open source project that ports parts
of .NET to the Linux platform as a development platform infrastructure. In 2004, the initial
version of Mono was released for Linux, which would lead to ports on other platforms such
as iOS (MonoTouch) and Android (MonoDroid), and would eventually be merged into the
.NET ecosystem under the Xamarin name.

Getting Started with .NET Core Chapter 1

[13]

One of the driving factors for this approach was the fact that the .NET framework was
designed and distributed as a system-wide monolithic framework. Applications that are
dependent on only a small portion of the framework required the complete framework to
be installed on the target operating system. It did not support application-only scenarios
where different applications can be run on different versions without having to install a
system-wide upgrade. However, more importantly, applications that were developed with
.NET were implicitly bound to Windows because of the tight coupling between the .NET
framework and Windows API components. .NET Core was born out of these incentives and
opened up the doors of various platforms for .NET developers.

Semantically speaking, .NET Core describes the complete infrastructure for the whole set of
cross-development tools that rely on a common language infrastructure and multiple
runtimes, including .NET Core runtime, .NET, also known as Big CLR, Mono runtime, and
Xamarin:

Adapted from: Soumyasch [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0/)]

In this setup, the .NET Core CLI is made up of the base class library implementation, which
defines the standards that need to be provided by the supported runtimes. The base class
library is responsible for providing the PAL, which is provided by the hosting runtime
under the name of the Adaption Layer. This infrastructure is supported by compiler
services such as Roslyn and Mono Compiler (MCS), as well as Just-In-Time (JIT)
and Ahead-of-Time (AOT) compilers such RyuJIT (.NET Core), mTouch, and LLVM (for
Xamarin.iOS) in order to produce and execute the application binaries for the target
platform.

Getting Started with .NET Core Chapter 1

[14]

Overall, .NET Core is a rapidly growing ecosystem with various dynamic frameworks,
runtimes, and tools. Most of these components can be found on GitHub as open source
projects under the supervision of the .NET Foundation.

.NET Foundation
The .NET Foundation is an independent organization that supports open source
development and collaboration within the .NET ecosystem. The .NET foundation supports
the development of active projects within the ecosystem by evangelizing the technologies
through organizing/sponsoring meetups and by active involvement in community-driven
projects.

The .NET Foundation portfolio grew especially large due to the projects that were brought
in by the acquisition of Xamarin.

Notable .NET Foundation projects
Some of the most notable projects that are generally used in modern .NET applications, as
well as cross-platform mobile applications, are as follows:

.NET Core
ASP.NET Core
Roslyn
Reactive Extensions
Entity Framework
Identity Server
ML.NET
Xamarin and Xamarin.Forms
xUnit.NET

.NET Core
The .NET Core project is composed of the .NET framework implementation and the
common language runtime for .NET Core (CoreFX and CoreCLR). Additionally .NET Core
tools such as the .NET Core command-line interface can also be found as separate
repositories. The community is free to make contributions, as well as submit issue reports.

Getting Started with .NET Core Chapter 1

[15]

ASP.NET Core
ASP.NET Core is the cross-platform implementation of ASP.NET. As a platform agnostic
web development framework, applications created with it can be hosted on multiple
platforms, as well as on Windows using classic .NET. ASP.NET MVC, Web API, web pages,
and SignalR are some of the repositories under the ASP.NET Core project.

Roslyn
Complete implementation of Roslyn (.NET compiler platform for C# and Visual Basic) can
be found on GitHub as part of the .NET Foundation group. Roslyn is the implementation of
the compiler as a service paradigm and has various extensibility points, including
customizable code analyzers.

Reactive Extensions for .NET
Reactive Extensions for .NET is a library that provides developers with event-based
asynchronous observable sequences and LINQ style query operators. Extensions can be
used in .NET applications using the system's reactive namespaces and its children.

Entity Framework
The Entity Framework is the recommended data access technology for modern .NET
applications. The newest version of the Entity Framework was built from scratch using
.NET, Core so that it can be used in cross-platform applications, from ASP.NET Core
applications to device-specific scenarios such Xamarin and UWP.

IdentityServer
OpenID Connect and the OAuth 2.0 Framework for Katana and ASP.NET Core are the
components of identity server project. They provides tools that developers can use to
enable authentication as a service, Single Sign-on (SSO), and federation gateways in their
applications.

Getting Started with .NET Core Chapter 1

[16]

ML.NET
This project allows developers to include cognitive functions and AI-related
implementations in their applications with .NET. The same open-source is used by the
Hello feature on Windows 10. Developers can use this framework to integrate custom
machine learning features into their applications without any prior knowledge about neural
networks, artificial intelligence, or machine learning. This library also allows integration
with other machine learning libraries such as TensorFlow, ONNX, and Infer.NET.

Xamarin and Xamarin.Forms
Miguel de Icaza, part of the board of directors of the .NET Foundation, publicly announced
that Xamarin, Xamarin.SDK, and Xamarin.Forms, as well as the Mono runtime ports for
iOS and Android, are to be part of the .NET foundation and open sourced in Evolve 2016.
Even though these projects are not listed on the Foundation site, they can be found on
GitHub under the common MIT license.

xUnit.net
This is a free, open source, community-based unit testing tool for the .NET Framework.
This testing framework is used in many of the aforementioned repositories and projects as
the main testing tool. It has strong integration with newer versions of Visual Studio and
Team Foundation Server.

Developing with .NET Core
.NET Core applications can be developed with Visual Studio on the Windows platform and
Visual Studio for Mac (inheriting from Xamarin Studio) on macOS. Visual Studio Code (an
open source project) and Rider (JetBrain's development IDE) provide support for both of
these platforms, as well as Unix-based systems. While these platforms provide the desired
user-friendly development UI, technically, .NET core applications can be written with a
simple text editor and compiled using the .NET Core command-line toolset:

Getting Started with .NET Core Chapter 1

[17]

As we mentioned previously, the only intrinsic runtime in the .NET Core CLI is the .NET
Core runtime, which is primarily used for creating console applications with access to the
complete base class library.

Without further ado, let's create our first cross-platform application with the CLI tools and
see how it behaves on multiple target platforms.

Getting Started with .NET Core Chapter 1

[18]

Creating a runtime agnostic application
To begin with, we will create our console application on macOS that has .NET Core
installed:

$ mkdir demo && cd $_
$ dotnet --version
2.1.301
$ dotnet new console
The template "Console Application" was created successfully.

Processing post-creation actions...
Running 'dotnet restore' on /demo/demo.csproj...
 Restoring packages for /demo/demo.csproj...
 Generating MSBuild file /demo/obj/demo.csproj.nuget.g.props.
 Generating MSBuild file /demo/obj/demo.csproj.nuget.g.targets.
 Restore completed in 236.91 ms for /demo/demo.csproj.

Restore succeeded.

In this example, we have used the console template, but there are many
other templates available out of the box, such as class library, unit test
project, asp.net core, as well as more specific templates, such as razor page
or MVC ViewStart.

Now, the helloworld console application should have been created in the folder that you
specified in the first step.

In order to restore the NuGet packages associated with any project, you can use the dotnet
restore command in a command line or Terminal window, depending on your operating
system.

Generally, you don't need to use the restore command, as the compilation
already does this for you. In the case of template creation, the last step
actually restores the NuGet packages.

Getting Started with .NET Core Chapter 1

[19]

Now that our application project is ready (after editing the program.cs file), we can build
and run the console application:

Here, we used the run command to compile and run our application in the current
platform (macOS). If you were to navigate to the build folder, you would notice that,
instead of an executable, the CLI actually created a Dynamic Link Library (DLL) file. The
reason for this is that, since no other compilation option was defined, the application was
created as a framework-dependent application. We can try running the application with the
dotnet command, which is called the driver:

$ cd bin/Debug/netcoreapp2.1/
$ ls
demo.deps.json demo.pdb demo.runtimeconfig.json
demo.dll demo.runtimeconfig.dev.json
$ dotnet demo.dll
Hello .NET Core

Getting Started with .NET Core Chapter 1

[20]

Here, it is important to note that we used the description framework-dependent (in this
case, the NETCore.App 2.1 runtime). If we were discussing the .NET framework prior to
.NET Core, this would strictly refer to the Windows platform. In this context, however, it
refers to an application that is only dependent on the framework itself while being
platform-agnostic. In order to test our application on Windows, we can copy the bin folder
to a Windows machine with the target framework installed and try running our
application:

In order to verify that the required framework is installed on the target
machine, you can use the dotnet --info or dotnet --list-
sdks commands, which will list the installed runtimes on the target
machine.

In order to test the runtime independence of the created demo.dll file, we can try running
it with the mono runtime. On macOS, you can try the following command to execute our
application:

$ cd bin/Debug/netcoreapp2.1/
$ mono demo.dll
Hello .NET Core

Defining a runtime and self-contained
deployment
In the previous example, we created a console application that is operating system-agnostic.
However, it had a dependency on the NETCore.App runtime. What if we want to deploy
this application to a target system that doesn't have .NET Core runtime and/or SDK
installed?

Getting Started with .NET Core Chapter 1

[21]

When the .NET Core applications need to be published, you can include the dependencies
from the .NET Core framework and create a so-called self-contained package. However, by
going down this path, you would need to define the target platform (operating system and
CPU architecture) using a Runtime Identifier (RID) so that the .NET CLI can download the
required dependencies and include them in your package.

The runtime can be defined either as part of the project file or as a parameter
during publish execution:

Here, we have edited the project file to target Windows 10 with the x64 architecture. Now,
if we were to publish the application (note that the publishing process is going to take place
on macOS), it would create an executable for the defined target platform:

$ nano demo.csproj
$ dotnet publish
Microsoft (R) Build Engine version 15.7.179.6572 for .NET Core
Copyright (C) Microsoft Corporation. All rights reserved.

Restoring packages for /demo/demo.csproj...
 Installing runtime.win-x64.Microsoft.NETCore.DotNetAppHost 2.1.1.
 Installing runtime.win-x64.Microsoft.NETCore.DotNetHostResolver 2.1.1.
 Installing runtime.win-x64.Microsoft.NETCore.DotNetHostPolicy 2.1.1.
 Installing runtime.win-x64.Microsoft.NETCore.App 2.1.1.
 Generating MSBuild file /demo/obj/demo.csproj.nuget.g.props.
 Generating MSBuild file /demo/obj/demo.csproj.nuget.g.targets.

Getting Started with .NET Core Chapter 1

[22]

 Restore completed in 18.81 sec for /demo/demo.csproj.
 demo -> /demo/bin/Debug/netcoreapp2.1/win10-x64/demo.dll
 demo -> /demo/bin/Debug/netcoreapp2.1/win10-x64/publish/

The publish folder, in this case, would include all the necessary packages from the .NET
Core runtime and framework targeting the Windows 10 runtime:

Notice that, once the deployment target platform is defined, an executable file is created
and there is no more need for the driver. In fact, the executable's sole purpose here is to act
as the access point (host) to the dynamic class library that is created by .NET Core.

Some of the most notable runtimes include Windows 7 to Windows 10 on three different
architectures (x86, x64, and arm), multiple macOS versions, and various distributions and
versions of Linux, including OpenSuse, Fedora, Debian, Ubuntu, RedHat, Tizen, and so on.

Getting Started with .NET Core Chapter 1

[23]

Defining a framework
In the previous examples, we have been using netcoreapp2.1 as the target framework.
While, for the self-contained deployment for this console application, this proves to be
sufficient, if we were preparing a Xamarin application or a UWP. Net Standard, we would
have been better off using target platform frameworks such as Xamarin.iOS.

The target platform framework can be changed using the <TargetFrameworks> project
property. We would have to use the moniker assigned to the desired framework:

Target framework
Latest
stable

version
Moniker .NET Standard

.NET Standard 2.0 netstandard2.0 N/A
.NET Core 2.1 netcoreapp2.1 2.0

.NET Framework 4.7.2 net472 2.0

Summary
The .NET ecosystem is growing at an exponential velocity with the new, open-source
oriented approach being adopted by Microsoft. Various runtimes and frameworks are part
of community-driven projects that cover bigger portions of the original .NET framework
which was, ironically, destined to be part of Windows itself.

Using the .NET Core infrastructure and the provided runtimes, developers can, nowadays,
develop applications for mobile platforms such as iOS, Android, and UWP, as well as micro
runtimes such as Windows IoT Core, Raspbian, and Tizen. Setting device-specific runtimes
aside, Azure and web development can also be accomplished using .NET Core.

In the remainder of this book, we will be implementing a Xamarin.Forms application using
the Mono runtime and creating a web infrastructure composed of Serverless (Logic Apps
and Functions) components, as well as ASP.NET Core using the .NET Core infrastructure.
We will also take a look at additional projects that are closely related to the .NET
ecosystem, such as cognitive services and machine learning, and how they can be used to
enhance the user experience.

2
Xamarin, Mono, and .NET

Standard
Xamarin is the app model implementation for the .NET Core infrastructure. As part of the
cross-platform infrastructure, Xamarin uses the Mono runtime, which in return acts as the
adaption layer for the .NET Standard base class library/libraries. By means of the
abstraction provided by Mono runtime (MonoTouch and MonoDroid), Xamarin can target
mobile platforms such as iOS and Android. This chapter will try to venture the relationship
between .NET Core and Xamarin. You will learn about how the Xamarin source code is
executed with MonoTouch on iOS and Mono runtime on Android.

The following sections will help you create your first Xamarin application:

Introduction to Xamarin
Creating your first Xamarin application
Xamarin on Android – Mono Droid
Xamarin on iOS – Mono Touch
Xamarin.Forms
Using .NET Standard with Xamarin
Extending the reach

Xamarin, Mono, and .NET Standard Chapter 2

[25]

Introduction to Xamarin
Where native cross-platform development is concerned, especially on mobile platforms,
Xamarin is one the main technologies that's used. Xamarin as a platform can be identified
as the legacy of the Mono project, which was an open source project that was led by some
of the key people that later on established the Xamarin group. Mono was initially a
Common Language Infrastructure (CLI) implementation of .NET for Linux that allowed
developers to create Linux applications using the .NET (2.0) framework modules. Later on,
Mono's runtime and compiler implementation was ported to other platforms until Xamarin
took its place within the Microsoft .NET Core ecosystem. The Xamarin suite is one of the
flagships of .NET Core and the key technologies for cross-platform development.

Creating your first Xamarin application
As a developer planning to create native mobile applications using Xamarin, you have
several options for setting up your development environment. In terms of development,
both macOS and Windows can be utilized, using either Visual Studio or Rider IDEs.

As a .NET developer, if you are looking for a familiar environment and IDE, the best option
would be to use Visual Studio on Windows.

In order to use the Xamarin-related templates and available SDKs, the first step would be to
install the required components using the Visual Studio installer:

Xamarin, Mono, and .NET Standard Chapter 2

[26]

Chapters

When you install the Mobile Development with .NET component, the required SDKs (for
Android and iOS) are automatically installed so that the developers don't need to do any
additional prerequisite installation.

https://cdp.packtpub.com/hands_on_cross_platform_mobile_development_with__net_core_2/wp-admin/admin.php?page=cdp-organize

Xamarin, Mono, and .NET Standard Chapter 2

[27]

Once the setup is complete, various project templates become available under the Cross
Platform App section, as well as platform-specific sections, namely Android and iOS. The
multi-project template for the cross-platform Xamarin app is to guide you through the
project creation process using Xamarin.Forms, while the available Android App and iOS
App templates create application projects using the classic Xamarin infrastructure:

Using this template, Visual Studio will create a common project (shared or .NET Standard)
and a project for each selected platform (selected platforms out of iOS, Android, and UWP).
For this example, we will be using the Shared Project code sharing strategy and selecting
iOS and Android as target platforms.

It is important to note that if you are developing on a Windows machine,
a macOS build service (a macOS device with Xamarin.iOS and Xcode
installed) is required to be able to compile and use the simulator with the
iOS project.

If you, in the first compilation of the iOS project, receive an error pointing
to missing Xcode components or frameworks, you need to make sure that
the Xcode IDE is run at least once manually so that you can agree on the
terms and conditions. This allows Xcode can complete the setup by
installing additional components.

In this solution, you will have platform-specific projects, along with the basic boilerplate
code and a shared project that contains the Main.xaml file, which is a simple XAML view.
While the platform-specific projects are used to host the views that are created using the
declarative XAML pages, the MainActivity.cs file on an Android project and
the Main.cs file on an iOS project, are used to initialize the Xamarin.Forms UI framework
and render the views.

Xamarin, Mono, and .NET Standard Chapter 2

[28]

In the Main.xaml file, the code that is used to create a label and center it both vertically and
horizontally would look similar to the following:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
xmlns:local="clr-namespace:FirstXamarinFormsApplication"
x:Class="FirstXamarinFormsApplication.MainPage">
 <StackLayout>
 <!-- Place new controls here -->
 <Label Text="Welcome to Xamarin.Forms!"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand" />
 </StackLayout>
</ContentPage>

This XAML view tree is rendered on the target platforms using the designated renderers. It
uses the page, layout, and view hierarchy:

Xamarin, Mono, and .NET Standard Chapter 2

[29]

Xamarin on iOS – Mono Touch
The project that we created in the previous section used the Xamarin.Forms UI rendering.
While this can be the most efficient way to implement a cross-platform application, in some
cases, you might need to implement a very platform-specific application (this includes
many platform APIs and specialized UI components). In these type of situations, you can
resort to creating a classic Xamarin.iOS and/or Xamarin.Android application.

In a classic Xamarin application, views are created using native SDK components and
toolsets. In the case of Xamarin.iOS, developers can create the application views either
using an iOS namespace and UI elements using code or using XIBs or storyboards with
backing controllers.

In order to recreate the implementation that was done on Xamarin.Forms for Xamarin.iOS,
you can use the iOS application template listed under the iOS section.

This template will create a simple Xamarin.iOS application with a single view, an
associated storyboard, and a controller for the main view that was created.

With either Visual Studio on Windows or macOS, you can make use of the designer, create
the label control, and align it to be centered both horizontally and vertically with
constraints referring to the containing view. In order to add the label, you can drag and
drop the label control from the toolbox. Once the toolbox is added, constraints can be
added using the designer. The iOS designer has two available modes, one of which is the
constraint mode. In this mode, you can hold the center pin and drag it to the superview
vertical center. You can repeat this process for the horizontal center:

Xamarin, Mono, and .NET Standard Chapter 2

[30]

Now, if we compile and run the application, you will get the same view that was rendered
by Xamarin.Forms in the previous section:

During the compilation process, the project that we created with C# and .NET (standard)
modules is first compiled into a Microsoft Intermediate Language (MSIL), just like any
other .NET Core project, and is then compiled into native code with AOT compilation. At
this point, one of the most crucial components is the monotouch runtime, which acts as the
adaption layer that sits on top of the iOS kernel, allowing the .NET Standard libraries access
to the system-level functions. During compilation, just like the application code, the
monotouch runtime libraries, together with the .NET Standard packages, are linked and
trans(com)piled into native code.

The AOT compilation is only a requirement when the compiled package is
being deployed to a real device because of the code generation restrictions
on iOS. For other platforms or when running the application on an iOS
simulator, a JIT compiler is used to compile MSIL into native code – not at
compile-time, but at runtime.

Xamarin, Mono, and .NET Standard Chapter 2

[31]

The following screenshot outlines the transcompilation process of APT and LLVM for
Xamarin.iOS applications:

Xamarin on Android – Mono Droid
Following the same methodology, we can recreate the Xamarin.Forms view we created
using Xamarin.Android using a native project template. In order to do this, we can reuse
the existing Xamarin classic project that we used for iOS and add an Android application
project instead:

Xamarin, Mono, and .NET Standard Chapter 2

[32]

This will create a standard boilerplate application project for Xamarin.Android with a
single view and associated layout file. If you open the created Main.axml file, the designer
view will be loaded, which can be used to create our welcome view:

When handling the Android XML layout files, developers are given the option to either use
the designer or the source view. By using the designer view to create the welcome view,
you would have to drag and drop the text view control and adjust the alignment, layout,
and gravity properties for the label.

Using the source view, you can also paste the following layout declaration to see what the
application looks like when run on the Android platform:

 <?xml version="1.0" encoding="utf-8"?>
 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:minWidth="25px"
 android:minHeight="25px">
 <TextView
 android:textAppearance="?android:attr/textAppearanceMedium"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:id="@+id/textView1"
 android:text="Welcome to Xamarin!"

Xamarin, Mono, and .NET Standard Chapter 2

[33]

 android:gravity="center_vertical"
 android:textAlignment="center" />
 </LinearLayout>

When we finally compile and run our first Xamarin.Android application, you will see the
welcome view that was created on Xamarin.Forms and Xamarin.iOS.

The Xamarin.Android platform functions a little more like .NET Core. Unlike Xamarin.iOS,
there are no restrictions on code generation, so the Mono Droid runtime execution is done
using the JIT compiler, which is responsible for providing the IL packages that are part of
the application package. The Mono Droid runtime exists in the application package in the
form of native code that replaces the .NET Core runtime:

For Xamarin.Forms applications, the same compilation and runtime procedures, such as
AOT and JIT, apply, depending on the targeted platform.

Xamarin.Forms
In the previous examples, you can easily see that Xamarin.Forms greatly simplifies the
process of creating UI mobile applications on two complete different platforms using the
same declarative view tree, even though the native approaches on these platforms are, in
fact, almost completely different.

From a UI renderer perspective, Xamarin.Forms provides the native rendering with two
different ways of using the same toolset at compile-time (compiled XAMLs) and at runtime
(runtime rendering). In both scenarios, page-layout-view hierarchies that are declared in
XAML layouts are rendered using renderers. Renderers can be described as the
implementations of the view abstractions on target platforms. For instance, the renderer for
the label element on iOS is responsible for translating label control (as well as its layout
attributes) into a UILabel control.

Xamarin, Mono, and .NET Standard Chapter 2

[34]

Nevertheless, Xamarin.Forms can't just be categorized as a UI framework, since it provides
various modules out of the box which are essential to most mobile application projects,
such as dependency services and messenger services. Being among the main patterns for
creating SOLID applications, these components provide the tools to create abstractions on
platform-specific implementations, thus unifying the cross-platform architecture in order to
create application logic that spans across multiple platforms.

Additionally, the Data Binding concept, which is the heart and soul of any Model-View-
ViewModel (MVVM) implementation, can be directly introduced in the XAML level,
saving the developers from having to create their own data synchronization logic.

For instance, if we were to expand the implementation from the previous example by
creating a ViewModel for our main view, we could make use of our shared project, which
was created as part of the multi-project template.

The first step here would be to create the MainPageViewModel class under the shared
project that contains the view that was created previously. Inside this class, we will create a
single (get-only) property, which we will use in our view:

 namespace FirstXamarinFormsApplication
 {
 public class MainPageViewModel
 {
 public MainPageViewModel()
 {
 }

 public string Platform
 {
 get

 {
 #if __IOS__
 return "iOS";
 #elif __ANDROID__
 return "Android";
 #endif
 }
 }
 }
 }

Now, let's assign this view model as our binding context on the main view:

 namespace FirstXamarinFormsApplication
 {

Xamarin, Mono, and .NET Standard Chapter 2

[35]

 public partial class MainPage : ContentPage
 {
 public MainPage()
 {
 InitializeComponent();

 BindingContext = new MainPageViewModel();
 }
 }
 }

Then, we will update our XAML to use the bound view model data:

In this example, our binding of the label view looks similar to the following:

 <Label Text="{Binding Platform, StringFormat='Welcome to {0}!'}"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand" />

Using data bindings can substantially decrease the complexity of your applications,
creating highly robust and maintainable mobile applications.

Xamarin, Mono, and .NET Standard Chapter 2

[36]

Using .NET Standard with Xamarin
Even though the Xamarin and/or .NET Core target platforms (Platform APIs) are treated as
if they have the same setup, capabilities, and functionalities as a platform-agnostic
framework (.NET Standard), each of these target platforms are different from each other.
The adaption layer (implementation of .NET Standard) allows us, developers, to treat these
platforms in the same way.

Before the unification and standardization of .NET modules, together with shared projects,
cross-platform compatibility was maintained by common denominators of implemented
functionality on target platforms. In other words, the available APIs on each selected
platform made up a profile that determined the subset of functionality that could be used
for these platforms. These platform-agnostic projects that were used to implement the
application logic were then packaged into so-called Portable Class Libraries (PCLs). PCLs
were an essential part of cross-platform projects, since they could create and share
application code that would be executed on multiple platforms:

Nowadays, since .NET API implementations on various platforms have all converged into
(almost) the same subset, a standard set of .NET APIs were defined as the common
implementation ground for cross-platform implementation – .NET Standard. As a simple
analogy, .NET Standard can be considered the interface that's used to access the platform
APIs which are implemented by target platform runtimes.

Xamarin, Mono, and .NET Standard Chapter 2

[37]

Using .NET Standard, we can replace the shared projects in our previous examples for both
Xamarin.Forms and Xamarin classic applications. This would allow us to create a testable
set of platform-agnostic interfaces which can be tested as a standalone library, unlike the
shared projects, which are simply made up of a bundle of linked source code files. While
shared source code files are directly compiled into the target platform projects, .NET
Standard libraries are simply assigned as reference assemblies.

In order to replace the shared project with a NET Standard library in the Xamarin.Forms
application, we would have to do the following:

Create a .NET Standard Library project.1.
Add the Xamarin.Forms NuGet package with the same version as the platform2.
projects.
Copy the App.xaml (and App.xaml.cs) file and added views to the Standard3.
library.
Reference the Standard library instead of the shared one:4.

Xamarin, Mono, and .NET Standard Chapter 2

[38]

Once these steps are completed, our Xamarin.Forms application would be using .NET
Standard to share code between the platforms. However, this would be problematic for the
conditional compilation symbols we introduced in our ViewModel, which return the
platform string according to the application we are compiling (iOS or Android):

What's happening here is that iOS and Android compilation symbols are only applicable to
the platform-specific projects, so, unless you manually introduce these into platform-
specific build configurations, they will not be available in .NET Standard projects. In order
to remedy this, we can use a simple conditional to check the current runtime.
(Alternatively, we can introduce an interface that will be used to inject the platform-specific
implementations.):

 public string Platform
 {
 get

 {
 if(Device.RuntimePlatform.Equals(Device.Android))
 {
 return "Android";
 }
 else
 {
 return "iOS";
 }
 }
 }

Xamarin, Mono, and .NET Standard Chapter 2

[39]

Extending the reach
Finally, since we are talking about Xamarin, it is important to mention that Xamarin and/or
Xamarin.Forms do not bind the developers onto Android and iOS phone or tablet devices.
By using Xamarin and Xamarin.Forms, developers can target devices, varying from simple
wearables such as smart watches, to IoT devices and home appliances.

When developing applications for iOS or Android-based appliances, exactly the same
toolset can be used, while more specialized platforms (such as Tizen) can constitute a target
platform, given that the .NET Standard implementation exists natively:

https://developer.tizen.org/development/training/overview#type / [CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0)]

Tizen implementation is also a nice example of .NET Core being used by Xamarin.Forms
and the Linux kernel.

Summary
In this chapter, we learned about Xamarin, one of the main supported runtimes of .NET
Standard, and how to use it to create mobile applications for multiple platforms. UWP,
being the most mature member of the cross platform .NET initiative, can provide
developers with a completely separate market for development.

In the next chapter, we will have a deeper look into UWP and how it can contribute to .NET
developers who are executing cross-platform development projects.

3
Universal Windows Platform

Universal Windows Platform (UWP) is a common API layer that allows developers to
create applications for various platforms, from desktop PCs to niche devices such as
HoloLens. In comparison with the Xamarin setup, UWP applications are a little more
involved with .NET framework and runtime components. UWP makes use of two
completely different sets of .NET Framework: .NET Native and .NET Core. Here, .NET
Core acts as the BCL library, while .NET Native is part of the application model. This
chapter will discuss the components that allow UWP apps to be portable within the
Windows 10 ecosystem and how they are associated with .NET Core.

The following sections will help you create your first Xamarin application:

Universal Windows Platform
Creating UWP applications
XAML Standard
.NET Standard and .NET Native
Platform extensions

Universal Windows Platform
Windows, prior to the release of Windows 8 (and Windows runtime), exposed a flat set of
Windows APIs and COM extensions, allowing developers to access system-level functions.
.NET modules that rely on these functions, included the invokes to this API layer in order
to make use of the operating system-level functionality.

Windows Runtime (WinRT) provided a more accessible and managed development
interface that is available for a wide range of development languages. WinRT can be used
in common .NET languages (C# and VB), as well as C++ and JavaScript.

Universal Windows Platform Chapter 3

[41]

Using the common ground WinRT created, UWP provided the much needed convergence
of multiple platforms within the Microsoft ecosystem. Developers were able to create
applications using the same SDK for various devices, which were esoteric targets. Using the
UWP development tools, applications with shared modules and user interfaces can target
desktop devices, game consoles, and augmented reality devices, as well as mobile and IoT
implementations:

Each device family allows a subset of APIs that are available within the UWP, and it is up
to the developer to decide the platform he or she wants to implement. Additionally, each
platform brings in extension APIs that are only available for that platform. These
differences between the device families are handled with platform extensions that can be
included in your projects at compile time, as well as possible device family checks that can
be executed at runtime.

UWP should not only be evaluated as a set of development tools, but truly an application
platform. As a platform, it imposes certain security policies on how the applications should
be handled by the runtime environment. More specifically, the application sandbox model,
which is a common concept on other mobile platforms, is also imposed by UWP. Even
desktop applications written for UWP should abide by the installation and execution
policies to standardize the installation process for the users and protect the runtime by
compartmentalizing the applications. Finally, as a result of this platform standardization,
the common application store can be used for multiple platforms.

Creating UWP applications
In a cross-platform and .NET Core context, UWP relies on the .NET Framework itself.
However, the .NET Framework does implement .NET Standard and, as a result, the
portable modules of cross-platform applications can be consumed by UWP applications. In
other words, similar to the Xamarin implementation, shared (possibly platform-agnostic)
application code can be extracted from UWP applications to leave only the native UI
implementation as a UWP-specific module. In return, UWP projects can be included as part
of any mobile development endeavour involving .NET Standard and/or Xamarin.

Universal Windows Platform Chapter 3

[42]

When implementing the native UI, developers have two inherently similar options;
depending on the existing project architecture in a Xamarin project, they can create the
UWP UI using the native XAML approach (that is, create the user interface within the
platform-specific project and share only the business logic) or using Xamarin.Forms and
reserving the platform-specific project only for platform dependencies.

Using our previous Xamarin and Xamarin.Forms applications, we can add the UWP project
so that we can deploy our application to Windows 10 devices:

Once the project is created, we can now reference the shared (or .NET standard) platform-
agnostic project and reuse the business logic. For Xamarin.Forms, we can choose to include
the forms project and bootstrap the Xamarin.Forms application. Bootstrapping the
Xamarin.Forms application is as simple as installing the Xamarin.Forms NuGet package for
UWP and loading the Xamarin.Forms application that was created previously.

Universal Windows Platform Chapter 3

[43]

First, we install the Xamarin.Forms package and make sure that all the target platform
projects have the same version installed:

Once the forms package is installed, we can now modify the MainPage.xaml file, as well as
MainPage.xaml.cs. First, we will convert the MainPage view into a forms page:

<forms:WindowsPage
 x:Class="FirstXamarinFormsApplication.Uwp.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:forms="using:Xamarin.Forms.Platform.UWP"
 xmlns:local="using:FirstXamarinFormsApplication.Uwp"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 Background="{ThemeResource ApplicationPageBackgroundThemeBrush}"
mc:Ignorable="d">
 <Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}"
/>
</forms:WindowsPage>

Universal Windows Platform Chapter 3

[44]

Then, we will load the Xamarin.Forms application:

public sealed partial class MainPage
{
 public MainPage()
 {
 this.InitializeComponent();
 LoadApplication(new FirstXamarinFormsApplication.App());
 }
}

Running the application now may result in an exception, stating that Xamarin.Forms
should have been initialized. The initialization can be included in the OnLaunched event
override method that can be found in the App.xaml.cs file.

Finally, we need to modify our view model so that it returns the correct information about
the current runtime:

public string Platform
{
 get
 {
 if (Device.RuntimePlatform.Equals(Device.Android))
 {
 return "Android";
 }
 else if (Device.RuntimePlatform.Equals(Device.iOS))
 {
 return "iOS";
 }
 else if (Device.RuntimePlatform.Equals(Device.UWP))
 {
 return "Universal Windows Platform";
 }
 else
 {
 return "Unknown";
 }
 }
}

Universal Windows Platform Chapter 3

[45]

Now, running the application would display the same UI as on the previous platforms, but
as a UWP application:

As you can see, with a minimal amount of platform code, we were able to include the
Windows platform as one of the targets for our application. The same could have been
done either using the Xamarin classic approach and only using the view-model, as well as
by creating a native UI using the UWP toolset.

XAML Standard
Both Xamarin.Forms and UWP can utilize declarative UI pages with the EXtensible
Application Markup Language (XAML). It was initially introduced as part of Windows
Presentation Foundation and has been extensively used in .NET applications, starting with
.NET 3.0.

While both development platforms offer similar UI elements, they use a slightly different
set of controls and layouts, which might cause UI inconsistencies while you are creating
cross-platform applications that target iOS/Android (with Xamarin.Forms) and UWP.

Universal Windows Platform Chapter 3

[46]

Let's take a look at the layout structures:

UWP Xamarin.Forms Notes
StackPanel StackLayout Left-to-right or top-to-bottom infinite stacking

Grid Grid Tabular format (rows and columns)
Canvas AbsoluteLayout Pixel/coordinate positioning

WrapPanel FlexLayout Wrapping stack
RelativePanel RelativeLayout Relative rule-based positioning
UniformGrid n/a Provides a tabular grid of uniform size
ScrollViewer ScrollView Provides scrolling container for content

Similar to layouts are controls. By looking at the controls that are used on these platforms,
you can easily spot the subtle differences:

UWP Xamarin.Forms Notes
RichTextBox Editor Editor does not support rich text

TextBlock Label N/A
TextBox Entry N/A

ToggleSwitch Switch N/A
RadioButton n/a Switch is used in most scenarios/or custom controls

Slider Slider Provides a tabular grid of uniform size

If we were to recreate the MainPage XAML on UWP, the difference between the two
platforms would be apparent.

On Xamarin.Forms, we have the following XAML structure:

<StackLayout>
 <Label Text="{Binding Platform, StringFormat='Welcome to {0}!'}"
 HorizontalOptions="Center"
 VerticalOptions="CenterAndExpand" />
</StackLayout>

This would have to be translated to the following (using a new page that we created in the
UWP application – MainPageAlternative.xaml):

<StackPanel VerticalAlignment="Center">
 <TextBlock
 HorizontalAlignment="Center"
 VerticalAlignment="Center"
 Text="{Binding Platform,
 Converter={StaticResource FormatConverter},
 ConverterParameter='Welcome to {0}!'}" />
</StackPanel>

Universal Windows Platform Chapter 3

[47]

Notice that StackLayout was translated into StackPanel, while TextBlock was
translated into TextBlock. Additionally, the HorizontalOptions and
VerticalOptions attributes were changed to the HorizontalAlignment and
VerticalAlignment attributes. Another big difference is the fact that the StringFormat
property of the Binding markup extension is not supported on UWP. In order to support
the string formatting, we would need to create our own value converter.

The Window Community Toolkit is a collection of helper functions and
custom controls that simplify a developer's tasks in regards to creating
UWP apps. The toolkit already contains commonly used converters, one
of which is called StringFormatConverter.

Now, if we set the DataContext of MainPageAlternative to MainPageViewModel and
assign this page as the first navigation page instead of the MainPage that was used to
harness Xamarin.Forms, the resulting view would be the same:

rootFrame.Navigate(typeof(MainPageAlternative), e.Arguments);

In order to diminish the subtle differences between the two platforms, a new
standardization initiative was introduced that aims to create a XAML standard, which can
then be used on multiple development platforms (Xamarin.Forms and UWP).

Our current control mappings are as follows:

Xamarin.Forms XAML Standard
Frame Border
Picker ComboBox

ActivityIndicator ProgressRing
StackLayout StackPanel

Label TextBlock
Entry TextBox

Switch ToggleSwitch
ContentView UserControl

Universal Windows Platform Chapter 3

[48]

At the moment, in order to use the XAML standard, you can introduce the
Xamarin.Forms.Alias preview module for Xamarin.Forms and use the XAML Standard
references while creating your views. After this introduction, our MainPage (we created a
copy called MainPageAlternative) in the Xamarin.Forms project would look like this:

 <?xml version="1.0" encoding="utf-8" ?>
 <ContentPage
 x:Class="FirstXamarinFormsApplication.MainPageAlternative"
 xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:alias="clr-
namespace:Xamarin.Forms.Alias;assembly=Xamarin.Forms.Alias"
 xmlns:local="clr-namespace:FirstXamarinFormsApplication">
 <alias:StackPanel>
 <!-- Place new controls here -->
 <alias:TextBlock
 HorizontalOptions="Center"
 Text="{Binding Platform, StringFormat='Welcome to {0}!'}"
 VerticalOptions="CenterAndExpand" />
 </alias:StackPanel>
 </ContentPage>

Following this initial phase of implementation and alignment, UWP and Xamarin.Forms
are expected to continue to converge on both control and attribute levels.

.NET Standard and .NET Native
As we saw previously, UWP using the .NET Framework utilizes .NET Standard. .NET
Standard is used as the common BCL (base class library), while the Core Common
Language Runtime (Core CLR) is responsible for executing the modules that are
implemented by .NET Standard. Besides .NET Core and .NET Standard, another .NET
concept is invaluable for Universal Windows Applications: .NET Native.

.NET Native provides a set of tools that are responsible for generating native code from

.NET applications for UWP, bypassing the intermediate language. Using the .NET Native
toolchain, .NET Standard class libraries, as well as the common language runtime
infrastructure modules such as garbage collection, are linked to smaller, dynamic link
libraries (similar to the Xamarin build process for iOS and Android).

Universal Windows Platform Chapter 3

[49]

In order to enable the native compilation, you need to enable the .NET Native tool chain for
the current configuration (for example, Release x64), which will be used for preparing the
appx package in the application, as well as the appx bundle that will need to be created for
the supported architectures (ARM, x86, and x64):

During the linking process, several actions are executed:

Certain code paths that utilize reflection and metadata are replaced with static
native code
Eliminates all metadata (where applicable)
Links out the unused third-party libraries, as well the .NET Framework class
libraries
Replaces the full common language runtime with a refactored version that
primarily includes the garbage collector

As a result, similar to .NET Core runtime applications (with a specified platform target),
UWP applications can be cleaned up from direct dependencies to the .NET Framework by
means of converting these dependencies into local references for the application itself. This,
in turn, reflects on the application as performance and portability enhancements.

Platform extensions
As we mentioned previously, UWP supports a wide range of devices. Each of these devices
executes its own implementation of .NET Standard and the UWP app model.

Universal Windows Platform Chapter 3

[50]

Nevertheless, the surface area of this complete API layer might not always apply to the
target platform. The UWP app model contains certain APIs that are specific to only a subset
of these devices. These types of API modules are in fact left as placeholder methods in the
core UWP SDK, while the actual implementation is included in extension modules that can
be referenced in your UWP applications:

Without adding the specific SDK, the developers are confined to only universal APIs.
Without adding the extension modules, it is highly likely that certain platform-specific
methods would throw NotImplementedException or similar, since the actual
implementation of these methods only exists in the platform extensions libraries.

After including the target platform extension, the developers are also responsible for
executing runtime checks for the methods and events to see whether these APIs are
supported in the current device runtime. Developers can make use of various
ApiInformation methods, such as IsTypePresent, IsEventPresent,
IsMethodPresent, and IsPropertyPresent.

For instance, in order to check whether the current device supports the CameraPressed
event (it might be present on a mobile device, though unlikely to be supported on a
desktop PC), we would need to resort to IsEventPresent:

 bool isHardwareButtons_CameraPressedAPIPresent =
Windows.Foundation.Metadata.ApiInformation.IsEventPresent
("Windows.Phone.UI.Input.HardwareButtons", "CameraPressed");

Universal Windows Platform Chapter 3

[51]

This runtime check can also be executed at the contract level to see whether a group of
events, or other class members that are used to execute a certain action, are supported or
not:

 bool isWindows_Devices_Scanners_ScannerDeviceContract_1_0Present =
Windows.Foundation.Metadata.ApiInformation.IsApiContractPresent
("Windows.Devices.Scanners.ScannerDeviceContract", 1, 0);

This way, developers can avoid situations where the application behavior and compliance
with requirements is neither predetermined nor predictable.

Summary
As you can see, UWP is one of the most sophisticated members of the .NET Core family.
While being quite similar to the Xamarin.Forms architecture in nature and utilizing a
similar compilation/execution process, it differs in certain fundamental aspects. However, it
can easily be included in, and executed with, Xamarin and Xamarin.Forms projects without
increasing development timeline or maintenance costs, with the added benefit of you being
able to deliver your applications to various UWPs.

Over the next few chapters, we will concentrate on Xamarin and Xamarin.Forms by
creating our own Xamarin.Forms application. We will reference UWP where necessary.

2
Section 2: Xamarin and

Xamarin.Forms
Xamarin and the contained Mono runtime variants for iOS and Android, as well as .NET
Core for UWP, implement the .NET Standard to create the operating system abstraction for
creating native mobile applications for target platforms using the familiar Microsoft stack.
Xamarin.Forms, on the other hand, is a UI framework that allows developers to use
common declarative user interfaces for the target platforms.

The following chapters will be covered in this section:

Chapter 4, Developing Mobile Applications with Xamarin
Chapter 5, UI Development with Xamarin
Chapter 6, Customizing Xamarin.Forms

4
Developing Mobile Applications

with Xamarin
 When you're dealing with cross-platform development with Xamarin, it is important to
understand that the application source cannot be completely cross-platform. Platform-
agnostic modules of a Xamarin application vary, depending on the application's content, as
well as the development approach that's used. Xamarin classic and Xamarin.Forms are two
different approaches to creating native applications for (mainly) iOS and Android
platforms. While Xamarin classic uses a more native approach, literally migrating the
native platform implementation strategy to the .NET ecosystem, Xamarin.Forms delivers an
additional abstraction layer for the native UI implementation.

In this chapter, we will learn about Xamarin and Xamarin.Forms development strategies
and create a Xamarin.Forms application that we will develop throughout the remainder of
this book. We will also discuss architectural models that might help us along the way.

The following sections will guide you through implementing a cross-platform native
mobile application using the Xamarin framework and toolset:

Xamarin versus Xamarin.Forms
Xamarin application anatomy
Selecting the presentation architecture
Useful architectural patterns

Xamarin versus Xamarin.Forms
Xamarin, as a runtime and framework, provides developers with all the necessary tools to
create cross-platform applications. In this quest, one of the key goals is to create a code base
with a minimal amount of resources and time; another is to decrease the maintenance costs
of the project. This is where Xamarin.Forms comes into the picture.

Developing Mobile Applications with Xamarin Chapter 4

[54]

As we explained previously, by using the Xamarin classic approach, developers can create
native applications. In this approach, we aren't really worried about creating a cross-
platform application since we are creating an application, for all the target platforms using
the same development tools and language. The shared components between the target
platforms would, in this case, be limited to the business logic (that is, view-models) and the
data access layer (models). However, in a modern mobile application, the actual business
logic would have been migrated to a service-oriented implementation. The application is
generally responsible for executing simple service calls through a gateway API facade on
the bundle of downstream microservices, as shown in the following diagram:

In an infrastructure setup similar to this, where each client can benefit from a tailored
mobile API gateway, the platform implementations diverge from each other, mostly
because of the separate UI layer. Moreover, shared business logic and the data access layer
cannot really increase the amount of shared code.

As a general rule of thumb, Xamarin classic applications are advised to be used with
applications with key features that are dependent on the platform they are running on
(peripheral APIs, intrinsic UI components, performance requirements, and so on).
However, for a general purpose mobile application with a cloud-base service backend, it
might be a better option to use Xamarin.Forms.

The Xamarin.Forms framework aims to standardize the UI implementation process while
preserving the nativity of the application on multiple platforms. In essence, applications
that are created with Xamarin.Forms are rendered with native UI elements from the target
platform. As a matter of fact, once compiled and linked, a Xamarin application is not any
different than a Xamarin.Forms application for any given target platform.

Developing Mobile Applications with Xamarin Chapter 4

[55]

Xamarin application anatomy
When developing a Xamarin.Forms application, the essentials of the application includes
the target platform projects – which act as a harness to initialize the Xamarin.Forms
framework and application, as well as the native rendering or API implementations – and a
platform-agnostic project that contains the Xamarin.Forms views, as well as the
abstractions, so that the custom components can be implemented on platform-specific
projects.

As the project grows in size, developers will need to create a separate project that would
only contain the view-model and platform-agnostic services implementation. In this case,
the project would become the main target of the unit testing process, since this layer does
not depend on the UI elements or platform services directly. Additionally, a separate
project can be used to share data transfer object (DTO) models between the services layer
and the client applications. In a setup like this, the overall architectural layout will look
similar to the following:

In some implementations where platform-specific APIs need to be tested, platform-specific
unit tests are used, which are executed on the target platform rather than the development
platform itself.

Developing Mobile Applications with Xamarin Chapter 4

[56]

Selecting the presentation architecture
When developing a cross-platform mobile application, it is perhaps one of the most crucial
decisions to select the presentation architecture. The view and the business logic
implementation should be factoring in the architectural concepts that the selected pattern
entails.

Model-View-Controller (MVC) implementation
Both iOS and Android platforms are inherently designed to be used with a derivative of
the Model-View-Controller (MVC) pattern. If we were dealing with a native application, it
would have been the most logical path to use MVC for iOS and Model-View-Presenter
(MVP) or a slightly derived version, the Model-View-Adapter (MVA), pattern, for
Android:

The MVC pattern was born as a reaction to the single responsibility principle. In this
pattern, the View (UI implementation) component is responsible for presenting the data
that's received from the Model (service layer) and delegating the user input to the
Controller so that the data changes can be propagated to the Model.

While it is being used widely with web applications, generally, a derived version is used for
mobile and desktop applications. Derivatives of this pattern include MVA and MVP.

Developing Mobile Applications with Xamarin Chapter 4

[57]

In an MVA architecture (or Mediating Controller), the Adapter acts as a mediator between
the View and Model, and is responsible for defining the strategy for one or more view
components, as well as acting as the observer for these UI components:

In an MVC implementation, while using both classic and mediator patterns, the
Controller becomes the heart and soul of the application. It needs to be aware of the Model,
as well as the View (which is tightly coupled), since it implements a strategy for the view
events (user input) that are acting as both the strategy implementer and observer.

Let's demonstrate this pattern while implementing a login view for our application:

First, we need to create the view. Create a content page with a XAML design1.
component:

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
x:Class="FirstXamarinFormsApplication.LoginView">
 <ContentPage.ToolbarItems>
 <ToolbarItem x:Name="signUpButton" Text="Sign Up" />
 </ContentPage.ToolbarItems>
 <ContentPage.Content>
 <StackLayout VerticalOptions="CenterAndExpand"
 Padding="20">
 <Label Text="Username" />
 <Entry x:Name="usernameEntry" Placeholder="username"/>
 <Label Text="Password" />
 <Entry x:Name="passwordEntry" IsPassword="true"
 Placeholder="password" />
 <Button x:Name="loginButton" Text="Login" />
 <Label x:Name="messageLabel" />
 </StackLayout>
 </ContentPage.Content>
 </ContentPage>

Developing Mobile Applications with Xamarin Chapter 4

[58]

Next, create the two entries (that is, username and password), two buttons (that2.
is, for login and signup), and finally a label field, which we will use to display the
result of the login function.

In order to support the implementation of a controller for this view that will3.
handle the field validations, as well as the login and signup actions, expose the
entry and button components to the associated controller:

 public partial class LoginView : ContentPage
 {
 // private LoginViewController _controller;

 public LoginView()
 {
 InitializeComponent();

 // _controller = new LoginViewController(this);
 }

 internal Entry UserName { get { return this.usernameEntry; }}

 internal Entry Password { get { return this.passwordEntry; }}

 internal Label Result { get { return this.messageLabel; }}

 internal Button Login { get { return this.loginButton; }}

 internal ToolbarItem SignUp { get { return this.signUpButton;
}}
 }

Developing Mobile Applications with Xamarin Chapter 4

[59]

Now, create the controller that will define the strategies for various events that4.
we will need to handle:

 public class LoginViewController
 {
 private LoginView _loginView;

 public LoginViewController(LoginView view)
 {
 _loginView = view;

 _loginView.Login.Clicked += Login_Clicked;

 _loginView.SignUp.Clicked += SignUp_Clicked;

 _loginView.UserName.TextChanged += UserName_TextChanged;
 }

 void Login_Clicked(object sender, EventArgs e)
 {
 // TODO: Login
 _loginView.Result.Text = "Successfully Logged In!";
 }

 void SignUp_Clicked(object sender, EventArgs e)
 {
 // TODO: Navigate to SignUp
 }

 void UserName_TextChanged(object sender,
 TextChangedEventArgs e)
 {
 // TODO: Validate
 }
 }

As you can see, even though we can further refactor our code so that we can insert
abstraction layer(s) between the controller and the view, there is a strong coupling between
the two. In order to remedy this bound, we can resort to a Model–View–ViewModel
(MVVM) setup.

Developing Mobile Applications with Xamarin Chapter 4

[60]

Model-View-ViewModel (MVVM) implementation
In response to the tight-coupling problem, another derivative of MVC was born with the
release of the Windows Presentation Foundation (WPF). The idea that was coined by
Microsoft was the concept of outlets being exposed by a controller (or ViewModel, in this
case) and the outlets being coupled by the view elements. The concept of these outlets and
their coupling is called the binding:

Source: https://commons.wikimedia.org/wiki/File:MVVMPattern.png

Using bindings, we can decrease the amount of knowledge of the view-model about the
inner workings of the view elements and let the application runtime handle the
synchronization on the outlets on View and ViewModel fronts.

In addition to bindings, the concept of command becomes invaluable so that we can
delegate the user actions to the ViewModel. A command is a stateful single execution unit
that represents a function and the related data to execute this function.

Using our previous example, we can create a view-model to demonstrate the benefits of
using MVVM:

Let's start by creating a class that represents the user interaction points on our1.
view (that is, two string fields for username and password, and two functions for
login and signup):

 public class LoginViewModel
 {
 private string _userName;

Developing Mobile Applications with Xamarin Chapter 4

[61]

 private string _password;

 private string _result;

 public LoginViewModel()
 {

 }

 public string UserName
 {
 get
 {
 return _userName;
 }
 set
 {
 if (_userName != value)
 {
 _userName = value;
 }
 }
 }

 public string Password
 {
 get
 {
 return _password;
 }
 set
 {
 if (_password != value)
 {
 _password = value;
 }
 }
 }

 public string Result
 {
 get
 {
 return _result;
 }
 set
 {
 if (_result != value)

Developing Mobile Applications with Xamarin Chapter 4

[62]

 {
 _result = value;
 }
 }
 }

 public void Login()
 {
 //TODO: Login
 Result = "Successfully Logged In!";
 }

 public void Submit()
 {
 // TODO:
 }
 }

At this stage of implementation, we can bind the Entry fields from our view to2.
the view-model. In order to assign the view-model to the view, use the
BindingContext of our view:

public partial class LoginView : ContentPage
 {
 public LoginView()
 {
 InitializeComponent();
 BindingContext = new LoginViewModel();
 }
 }

We can now set up the bindings for the Entry fields:3.

<Label Text="Username" />
 <Entry x:Name="usernameEntry" Placeholder="username"
Text="{Binding UserName}" />
 <Label Text="Password" />
 <Entry x:Name="passwordEntry" IsPassword="true"
Placeholder="password" Text="{Binding Password}" />
 <Button x:Name="loginButton" Text="Login" />
 <Label x:Name="messageLabel" Text="{Binding Result}" />

When executing this sample, you will notice that the values for the entries with
unidirectional data flow (that is, the UserName and Password fields are only propagated
from the View to the view-model) are behaving as expected; the values that are entered in
the associated fields are pushed to the properties, as expected.

Developing Mobile Applications with Xamarin Chapter 4

[63]

The view to view-model binding context setup can also be done in XAML
as well. <ContentPage.BindingContext> can be used to set the binding
context to the view-model, which is initialized using the correct clr
namespace (for example, <local:LoginViewModel />). In order for this
to work as expected, the view-model class needs to have a parameterless
constructor.

In order to increase the binding's performance and decrease the resources that are used for
a certain binding, it is important to define the direction for the binding. There are various
BindingMode available, as follows:

OneWay: This is used when the ViewModel updates a value. It should be
reflected on the view.
OneWayToSource: This is used when the view changes a value. The value
change should be pushed to the view-model.
TwoWay: The data flow is bi-directional.
OneTime: The synchronization of data occurs only once when the binding
context is bound, and data is propagated from the view-model to the view.

With this information at hand, the username and password fields should be using the
OneWayToSource binding, whereas the message label should use a OneWay binding
mode, since the result is only updated by the view-model.

The next step would be to set up the commands for the functions to be executed (that is,
login and signup). Semantically, a command is composed of a method (with its enclosed
data and/or arguments) and a state (whether it can be executed or not). This structure is
described by the ICommand interface:

public interface ICommand
{
 void Execute(object arg);
 bool CanExecute(object arg);
 event EventHandler CanExecuteChanged;
}

In Xamarin.Forms, there are two implementations of this interface: Command and
Command<T>. Using either of these classes, command bindings can be accomplished. For
instance, in order to expose the Login method as a command, follow these steps:

First, declare our Command property:1.

 private Command _loginCommand;

 public ICommand LoginCommand { get { return _loginCommand; } }

Developing Mobile Applications with Xamarin Chapter 4

[64]

In order to initialize _loginCommand, use the constructor:2.

public LoginViewModel()
 {
 _loginCommand = new Command(Login, Validate);
 }

Note that we used two actions to initialize the command. The first action is the
actual method execution, while the second function is a method that returns a
Boolean indicating whether the method can be executed.

The Validate method's implementation could look like this:3.

 public bool Validate()
 {
 return !string.IsNullOrEmpty(UserName) &&
!string.IsNullOrEmpty(Password);
 }

Finally, in order to complete the implementation, send the CanExecuteChanged4.
event whenever the UserName or Password fields are changed:

 public string UserName
 {
 get
 {
 return _userName;
 }
 set
 {
 if (_userName != value)
 {
 _userName = value;
 _loginCommand.ChangeCanExecute();
 }
 }
 }

 public string Password
 {
 get
 {
 return _password;
 }
 set
 {
 if (_password != value)

Developing Mobile Applications with Xamarin Chapter 4

[65]

 {
 _password = value;
 _loginCommand.ChangeCanExecute();
 }
 }
 }

Now, if we were to run the application, you would see how the disabled and5.
enabled states of the command are reflected on the UI.

The same setup can be used with methods that require an input argument using
the Command<T> class:

Developing Mobile Applications with Xamarin Chapter 4

[66]

Once the command setup is complete, we only have the result message binding,6.
which is still not working as expected. At this point, tapping the login button will
update the view-model data, and yet the user interface will not reflect this data
change.The reason for this is the fact that this field should be bound with a
OneWay binding (changes in the source should be reflected on the target) and
the main requirement for this is that the source (view-model) should be
implementing the INotifyPropertyChanged interface.
INotifyPropertyChanged is the essential mechanism for propagating the
changes on the binding context to the view elements:

/// <summary>Notifies clients that a property value has
changed.</summary>
public interface INotifyPropertyChanged
{
 /// <summary>Occurs when a property value changes.</summary>
 event PropertyChangedEventHandler PropertyChanged;
}

A simple implementation would require the invocation of the PropertyChanged
event with the property that is currently being changed.

If the change of a property is affecting multiple data points (for
example, assigning a list data source changes the item count property),
then the view-model is responsible for firing the same event for all the
properties that the UI needs to invalidate.

Finally, by including the event trigger on the setter of the Result property, we7.
should able to see the outcome of the Login command:

 public string Result
 {
 get
 {
 return _result;
 }
 set
 {
 if (_result != value)
 {
 _result = value;
 PropertyChanged?.Invoke(this, new
 PropertyChangedEventArgs(nameof(Result))); ;
 }
 }
 }

Developing Mobile Applications with Xamarin Chapter 4

[67]

This finalizes the view and view-model setup for the login page. In this example, we have
created a setup where the view is responsible for creating the view-model; however, by
using an implementation of Inversion of Control (IoC), such as dependency injection or
the service locator pattern, the view can be dismissed of this duty.

Useful architectural patterns
Xamarin.Forms as a framework contains modules that help developers implement well-
known architectural patterns so that they can create maintainable and robust applications.

Inversion of Control
IoC is a design principle in which the responsibility of selecting concrete implementations
for dependencies of a class is delegated to an external component or source. This way, the
classes are decoupled from their dependencies so that they can be replaced/updated
without much hassle.

The most common implementation of this principle is using the service locator pattern,
where a container is created to store the concrete implementations, often registered via an
appropriate abstraction, as shown in the following diagram:

Xamarin.Forms offers DependencyService, which can be especially helpful when you're
creating platform-specific implementations for platform-agnostic requirements. We must
also remember that it should only be used in Xamarin.Forms platform projects; otherwise,
we would be creating an unnecessary dependency on Xamarin.Forms libraries.

Developing Mobile Applications with Xamarin Chapter 4

[68]

Event aggregator
An event aggregator (also known as publisher/subscriber or Pub-Sub) is a messaging
pattern where senders of messages/events, called publishers, do not program the messages
to be sent directly to a single/specific receiver, called subscribers, but, instead, categorize
published messages into classes without knowledge of which subscribers, if any, there may
be. Messages are then funneled through a so-called aggregator and delivered to the
subscribers. This approach provides a complete decoupling between the publishers and
subscribers while maintaining an effective messaging channel.

Event aggregator implementation within the Xamarin.Forms framework is done
via MessagingCenter. MessagingCenter exposes a simple API that is composed of two
methods for subscribers (that is, subscribe and unsubscribe) and one method for publishers
(send).

We can demonstrate the application of the event aggregator pattern by creating a simple
event sink for service communication or authentication issues in our application. In this
event sink (which will be our subscriber), we can subscribe to error messages that are
received from various view-models (given that they all implement the same base type) and
alert the user with a friendly dialog:

MessagingCenter.Subscribe<BaseViewModel> (this, "ServiceError", (sender,
arg) =>
 {
 // TODO: Handler the error
 });

We would have the following in the event of an unhandled exception on our view-model:

 public void Login()
 {
 try
 {
 //TODO: Login
 Result = "Successfully Logged In!";
 }
 catch(Exception ex)
 {
 MessagingCenter.Send(this, "ServiceError", ex.Message);
 }
 }

Developing Mobile Applications with Xamarin Chapter 4

[69]

Decorator
The decorator pattern is a design pattern that allows behavior to be added to an
individual object dynamically, without affecting the behavior of other objects from the
same class. Xamarin.Forms makes use of this pattern to use platform-agnostic visual
elements (the views used in XAML) and attaches renderers to these elements that define the
way they are rendered (creating native platform-specific controls) on target platforms. The
composition of Xamarin.Forms elements does not in any way change the behavior of the
renderers and vice versa, allowing the developers to create custom renderers and attach
them to views without affecting other visual elements. The following diagram shows the
abstraction of renderer class's interaction with the decorator pattern:

A similar approach is used to create so-called effects, which are simple behavioral modifiers
that are attached to existing visual elements, as well as their native counterparts.

Developing Mobile Applications with Xamarin Chapter 4

[70]

Summary
In this chapter, we had a deep dive into the architectural aspects of implementing a
Xamarin application, and set up the foundation for a MVVM application. We implemented
the login view using both the MVC and MVVM patterns to demonstrate the architectural
differences between the two. We have also briefly browsed through several other patterns
that we might need in order to implement Xamarin applications.

In the next chapter, we will implement the initial views of our application with standard
Xamarin.Forms components. In the remainder of this book, we will try to implement the
components of the application that were discussed in this chapter.

5
UI Development with Xamarin

Material Design, which is the most prominent UI pattern for Android applications; Apple's
human interface guidelines; and finally, UWP's Fluid UI language, can make it
overwhelming for UX designers and developers to decide on an application design. Factors
to consider include, but are not limited to, user expectations of the target platform and
branding-related product owners requirements regardless of the platform.

In this chapter, we will take a look at certain UI patterns that allow developers and UX
designers to create a compromise between user expectations and product demands to
create a product with a consistent UX across all platforms. The following topics will walk
you through creating the skeleton of our sample application:

Application layout
Implementing navigation structure
Using Xamarin.Forms and native controls
Creating data-driven views

UI Development with Xamarin Chapter 5

[72]

Application layout
For designers, as well as developers, probably one of the most exciting phases of the
application life cycle is the design phase. In this phase, there are multiple factors that need
to be carefully considered, avoiding any rash decisions. An application's design, in simple
terms, should satisfy the following:

The consumers' expectations
The platform imperatives
Development costs

Consumer expectations
The feature-set of an application should really correlate with customers' expectations.
Layout options and navigation hierarchy should serve the purpose of the application.
According to the requirements, an application can be designed as a single-page application
or with a complex hierarchy of navigation pages; the content can be text-only or rich media
elements can be used; and context actions can provide access to user actions or the
interaction can be laid over multiple application pages.

On the view level, in general terms, an application view contains three different types of
elements: content, navigation, and actions. It is the developers' and designers' responsibility
to create the optimal blend of these elements. In most modern applications, these elements
can take on multiple functionalities, where the content elements become user actions as
well as navigation elements.

For instance, if we had a list of items defined with an image, a simple title, and a
description (that is, a simple two-column, two-row template) and we were to implement
actions related to use content items, then the design, the flow, and the behavior of the
elements would really depend on the type of those actions.

As a user, I would like to see a list of items and interact with them so that I can execute
certain actions on those items.

UI Development with Xamarin Chapter 5

[73]

Interaction models for the list view and the complimenting pages can differ greatly:

This list could be a common item list view used for detail navigation, where the
item detail page exhibits the actions available for an item. In this case, we are
assuming that the user needs to see the details of an item before they can execute
the necessary action on an item (for example, if the items are hard to distinguish
just using the listing):

In this case, the content items in the list view are behaving as navigation items,
and on the details screen, the user is able to execute the actions that are related to
those specific items. However, for a simple action, the user would need to change
the view and would lose the context of the list.

UI Development with Xamarin Chapter 5

[74]

If an action can be executed on the list view, we do not need to take the user to a
secondary view, and can allow them to execute the actions by directly interacting
with the list:

In this implementation, the list view acts as the single interaction context and
actions are executed on items directly. In other words, content elements are used
as action elements instead of using them for navigation.

Finally, if there are actions available for execution on multiple content elements,
for the economical use of design space, content items themselves could be used
with additional styling (for example, an overlay of a checkmark on the image
element) to replace the possible use of checkboxes or radio buttons. This would
further improve the user experience, since we would, again, be allowing the user
to interact with the content itself rather than the user input elements.

UI Development with Xamarin Chapter 5

[75]

Additionally, to decrease the amount of unnecessary control elements and
embellishments, the iOS and Windows platforms in particular emphasize
the use of calligraphy while creating content elements. Using font
variations, the visual priority of certain content elements can be adjusted
to provide the correct information. For instance, in the previous examples,
the title of the element was created using a smaller font, emphasizing the
description.

Platform imperatives
Dealing with cross-platform mobile applications, developers need to create applications
that will satisfy multiple design surfaces, as well as guidelines for multiple operating
systems and idioms. Platform imperatives refer to the guidelines that developers and
designers need to find a compromise between.

An idiom is how the form factor is defined in Xamarin.Forms
applications. It can be used to create specific views for various phone form
factors, as well as tablet, desktop, TV, and even for design surfaces for
wearables such as Tizen watch.

When dealing with different idioms, target device capabilities, design surfaces, and input
methods should be taken into consideration.

In order to make best use of the space available for web applications on desktop and mobile
devices, developers often use responsive design techniques that can also be applied to
Xamarin applications:

Fluid layout: In a fluid layout, items are stacked in a horizontal list and can take
as many rows as required to list them, depending on the horizontal space
available:

UI Development with Xamarin Chapter 5

[76]

Orientation change: Items listed in a horizontal list on a device with a wider
screen can be stacked vertically on devices with smaller screens with a greater
height relative to the width.
Restructure: Elements' general layout can completely be restructured according
to the available space. For instance, a view can use three segments in a horizontal
setup in landscape mode, whereas for the portrait mode, two of these segments
can be merged into one:

Resize: Rich media content elements, as well as text content, can be resized to
make the best use of the design space available:

UI Development with Xamarin Chapter 5

[77]

Additionally, as previously mentioned, device capabilities can play a big role in how an
application should react to user input. For instance, the hardware back button is a nice
example of this design consideration. If we were designing a mobile application that
targeted the Android, iOS, and UWP platforms, we would need to remember that only
Android offers a hardware or software back button. This capability, or lack of it on other
platforms, makes it crucial to include a back navigation element on a second-tier
application view. Similarly, if we were designing an application to be used on mobile
devices (let's say, on iOS and Android), but at the same time the application should run on
TVs with Tizen or Android operating systems, the input method and how the user
navigates through the screens would become a crucial design factor.

Development cost
Finally, technical feasibility is another important aspect of objectively analyzing the design
requirements of an application. In some cases, the development costs of creating a custom
control to mimic a web application outweighs the business or platform value added to the
native counterpart of the same application.

Each mobile platform that Xamarin and Xamarin.Forms target offers a different user
experience and a different set of controls. Xamarin.Forms create an abstraction on top of
this set of native controls so that the same abstraction is rendered using native views on a
specific platform. In this context, trying to introduce new design elements or customize
controls that are inherently different in appearance and behave like each other can have
costly repercussions.

UI Development with Xamarin Chapter 5

[78]

For instance, if the web counterpart of the application uses a checkbox for a certain
preference, the mobile view to use in this case would be a toggle switch. Insisting on a
checkbox would mean additional development hours, as well as an undesirable user
experience on the target platform. Similarly, using checkboxes for (multi) selection rather
than highlighting the selected content can lead to UX degradation for the specific mobile
platform and platform users:

Implementing navigation structure
One of the main decisions to make before starting development is to decide on the
navigation hierarchy of your application. Generally, this decision should have been taken
care of during the UX design phase.

According to the requirements and target audience of your application, the navigation
hierarchy can be designed in different ways. Some of these navigation strategies can be
summarized as follows:

Single-page view
Simple navigation
Multi-page views
Master/detail view

UI Development with Xamarin Chapter 5

[79]

Single-page view
In a single-page view, as the name suggests, a single view is used for the content and
possible user interaction, and actions are either executed on this view or on action sheets.
Depending on the design requirements, this view can be implemented using either
ContentPage or TemplatedPage:

ContentPage is among the most commonly used page definitions. Using this page
structure, developers are free to include any layout and view elements within the content
definition of a content page.

In order to create the item list view that was previously demonstrated, we start by creating
our content page:

 <?xml version="1.0" encoding="UTF-8"?>
 <ContentPage
 Title="List"
 xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="FirstXamarinFormsApplication.Client.ListItemView">
 <ContentPage.ToolbarItems>
 <!-- Removed for brevity -->
 </ContentPage.ToolbarItems>
 <ContentPage.Content>
 <!-- Removed for brevity -->
 </ContentPage.Content>
 </ContentPage>

Here, the content containers that are used are the Content and Toolbar items, to create a
list view of items and the toolbar action buttons respectively.

UI Development with Xamarin Chapter 5

[80]

ContentPage is a derivative of TemplatedPage, which is another page type that can be
used with Xamarin.Forms applications. TemplatedPage allows developers to create a base
style for TemplatePage (that is, ContentPage) so that certain global level customizations
can be applied to these pages.

For instance, if we were to expand our previous implementation with a footer, we would
need to define a style for this page (in App.xaml):

 <Application.Resources>
 <ResourceDictionary>
 <ControlTemplate x:Key="PageTemplate">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition Height="25" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <ContentPresenter Grid.Row="0" />
 <BoxView Grid.Row="1" Color="Navy" />
 <Label
 Grid.Row="1"
 Margin="10,0,0,0"
 Text="(c) Hands-On Cross Platform 2018"
 TextColor="White"
 VerticalOptions="Center" />
 </Grid>
 </ControlTemplate>
 </ResourceDictionary>
 </Application.Resources>

In this template, notice that ContentPresenter is used as the placeholder for the
ContentPage that is to be used. We would apply this template in the ListItemView (and
ItemView) pages with the following code:

 <ContentPage
 Title="List"
 ControlTemplate="{StaticResource PageTemplate}"
 xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="FirstXamarinFormsApplication.Client.ListItemView">

UI Development with Xamarin Chapter 5

[81]

This would result in the footer appearing on both pages:

Simple navigation
Within the Xamarin ecosystem, each platform has its own intrinsic navigation stack and
applications are built around those stacks. Developers are responsible for maintaining these
stacks in order to create the desired UX flow for users.

In order to navigate between pages, Xamarin.Forms exposes a Navigation service, which
can be used together with the NavigationPage abstract page implementation. In other
words, NavigationPage cannot be categorized as a page type to provide content for users,
however, it is a crucial component to maintain the navigation stack, as well as the
navigation bar, within Xamarin.Forms applications.

UI Development with Xamarin Chapter 5

[82]

In our sample, we are navigating from ListItemView to ItemView. After this navigation,
on iOS, you will notice that the title of the first page is inserted as back-button text in the
navigation bar. Additionally, since the Title property is used for the ListItemView (that
is, List), the text is additionally displayed in the navigation bar.

The creation of this navigation infrastructure is achieved by creating a NavigationPage
and passing the desired page as the root of the navigation stack (looking at App.xaml.cs):

 public App ()
 {
 InitializeComponent();

 MainPage = new NavigationPage(new ListItemView());
 }

 The navigation from one page to the next is handled within the ItemTapped event handler
for ListView:

 private void Handle_ItemTapped(object sender,
Xamarin.Forms.ItemTappedEventArgs e)
 {
 var itemView = new ItemView();
 itemView.BindingContext = e.Item;
 Navigation.PushAsync(itemView);
 }

Prior to Xamarin.Forms 3.2, the only way to customize what and how the navigation bar
was displayed was using some form of native customization (for example, a custom
renderer for NavigationPage). Nevertheless, you can now add custom elements to the
navigation bar using the TitleView dependency property of a navigation page.

Using the ListItemView page for this illustration, we can add the following XAML section
to our ContentPage:

 <NavigationPage.TitleView>
 <StackLayout Orientation="Horizontal" VerticalOptions="Center"
Spacing="10">
 <Image Source="Xamarin.png"/>
 <Label
 Text="Custom Title View"
 FontSize="16"
 TextColor="Black"
 VerticalTextAlignment="Center" />
 </StackLayout>
 </NavigationPage.TitleView>

UI Development with Xamarin Chapter 5

[83]

The resulting view will have the defined StackLayout instead of the List title that was
previously displayed:

Multi-page views
CarouselPage and TabbedPage are two Xamarin.Forms page implementations that
derive from the MultiPage abstraction. These pages can each host multiple pages with
unique navigation between them.

To illustrate the usage of MultiPage implementations, we can utilize our previously
implemented pages:

 <?xml version="1.0" encoding="UTF-8"?>
 <CarouselPage
 xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 xmlns:local="using:FirstXamarinFormsApplication.Client"
 x:Class="FirstXamarinFormsApplication.Client.ItemsCarousel">
 <CarouselPage.Children>
 <local:ListItemView BindingContext="{Binding .}"
Icon="Xamarin.png"/>
 <local:ItemView BindingContext="{Binding Items[0]}" Title="First"
Icon="Xamarin.png"/>
 <local:ItemView BindingContext="{Binding Items[1]}" Title="Second"
Icon="Xamarin.png"/>
 <local:ItemView BindingContext="{Binding Items[2]}" Title="Third"
Icon="Xamarin.png"/>
 </CarouselPage.Children>
 </CarouselPage>

UI Development with Xamarin Chapter 5

[84]

In a similar fashion, we can create our tabbed page using the list and item details view
pages:

 <?xml version="1.0" encoding="UTF-8"?>
 <TabbedPage
 xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:local="using:FirstXamarinFormsApplication.Client"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="FirstXamarinFormsApplication.Client.ItemsTabbed">
 <TabbedPage.Children>
 <local:ListItemView BindingContext="{Binding .}"
Icon="Xamarin.png"/>
 <local:ItemView BindingContext="{Binding Items[0]}" Title="First"
Icon="Xamarin.png"/>
 <local:ItemView BindingContext="{Binding Items[1]}" Title="Second"
Icon="Xamarin.png"/>
 <local:ItemView BindingContext="{Binding Items[2]}" Title="Third"
Icon="Xamarin.png"/>
 </TabbedPage.Children>
 </TabbedPage>

The resulting pages would, in fact, host all the children in their respective layout and
navigation methods (tabs versus swipe gestures):

UI Development with Xamarin Chapter 5

[85]

It is important to note that, on iOS, the title and icon properties of children
are used to create tabbed navigation items. In order for icons to display
properly, the image that is used should be 30x30 for normal resolution,
60x60 for high resolution, and 90x90 for iPhone 6 resolution. On Android,
the title is used to create tab items.

In particular, TabbedPage is one of the fundamental controls used in iOS applications at
the top of the navigation hierarchy. TabbedPage implementation can be extended by
creating a navigation stack for each of the tabs separately. This way, navigating between
tabs preserves the navigation stack for each tab independently, with support for navigating
back and forth:

UI Development with Xamarin Chapter 5

[86]

Master/detail view
On Android and UWP, the prominent navigation pattern and the associated page type is
master/detail, using a so-called navigation drawer. In this pattern, jumping (across the
different tiers of the hierarchy) or cross-navigating (within the same tier) across the
navigation structure is maintained with ContentPage, which is known as the master page.
User interaction with the master page, which is displayed in the navigation drawer, is
propagated to the Detail view. In this setup, the navigation stack exists for the detail view,
whilst the master view is static.

In order to replicate the tab structure in the previous example, we can create
MasterDetailPage, which will host the list of menu items. MasterDetailPage will
consist of the Master content page and the Detail page, which will host NavigationPage
to create the navigation stack.

The Master page could look as follows:

 <MasterDetailPage.Master>
 <ContentPage Title="Main" Padding="0,60,0,0" Icon="slideout.png">
 <StackLayout>
 <ListView
 x:Name="listView"
 ItemsSource="{Binding .}"
 SeparatorVisibility="None">
 <ListView.ItemTemplate>
 <DataTemplate>
 <ViewCell>
 <Grid Padding="5,10">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="30"/>
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>
 <Image Source="{Binding Icon}" />
 <Label Grid.Column="1" Text="{Binding
 Title}" />
 </Grid>
 </ViewCell>
 </DataTemplate>
 </ListView.ItemTemplate>
 </ListView>
 </StackLayout>
 </ContentPage>
 </MasterDetailPage.Master>

UI Development with Xamarin Chapter 5

[87]

Notice that the Master page simply creates a ListView with the menu item entries. It is
also important to note that the so-called hamburger menu icon needs to be added as the
Icon property for the Master page (see slideout.png), otherwise the title of the master
page is used instead of the menu icon.

The details page assignment would then look as follows:

<MasterDetailPage.Detail>
 <NavigationPage Title="List">
 <x:Arguments>
 <local:ListItemView />
 </x:Arguments>
 </NavigationPage>
 </MasterDetailPage.Detail>

Now, running the application would create the navigation drawer and the contained
Master page:

To complete the implementation, we also need to handle the ItemTapped event from the
master list:

 private void Handle_ItemTapped(object sender,
Xamarin.Forms.ItemTappedEventArgs e)
 {
 if(e.Item is NavigationItem item)
 {
 Page detailPage = null;

UI Development with Xamarin Chapter 5

[88]

 // Removed for brevity - Initialization of detailPage
 this.Detail = new NavigationPage(detailPage);

 this.IsPresented = false;
 }
 }

Now, the implementation is complete. Every time a menu item is used, the navigation
category is changed and a new navigation stack is created; however, within a navigation
category, the navigation stack is intact. Also, note that the IsPresented property of the
MasterDetailPage is set to false to dismiss the master page immediately after a new
detail view is created.

Using Xamarin.Forms and native controls
Now that we are more familiar with the different page types and navigation patterns, we
can move on to creating the actual UI for our pages. Creating a UX that is flexible enough
for Xamarin target platforms can be dreadfully complicated; especially if the stakeholders
involved are not familiar with the aforementioned UX design factors. Nevertheless,
Xamarin.Forms offers various layouts and views that help developers to find the optimal
solution for a project's needs.

In Xamarin.Forms, the visual tree is composed of three layers: pages,
layouts, and views. Layouts are used as containers for views, which are
the user controls to create pages, which are the main interactive surfaces
for users.

Let's take a closer look at the UI components.

Layouts
Layouts are container elements used to allocate user controls across a design surface. In
order to satisfy platform imperatives, layouts can be used to align, stack, and position view
elements. The different types of layouts are as follows:

StackLayout: This is one of the most overused layout structures in
Xamarin.Forms. It is used to stack various view and other layout elements with
prescribed requirements. These requirements are defined through various
dependency or instance properties, such as alignment options and dimension
requests.

UI Development with Xamarin Chapter 5

[89]

For instance, on the ItemView page, we use the StackLayout to combine the
Image of the given item with the title and description:

 <StackLayout Padding="10" Orientation="Vertical">
 <Image Source="{Binding Image}"
HorizontalOptions="FillAndExpand"/>
 <Label Text="{Binding Title}" FontSize="Large" />
 <Label Text="{Binding Description}" />
 </StackLayout>

In this setup, the important declarations are the Orientation, which defines that
the stacking should occur vertically. HorizontalOptions is defined for the
Image element, which allows the Image to expand both horizontally and
vertically, depending on the available space. StackLayout can be employed to
create orientation-change-responsive behavior.

FlexLayout: This can be used to create fluid and flexible arrangements of view
elements that can adapt to the available surface. FlexLayout has many available
directives that developers can use to define alignment directions. In order to
demonstrate just a few of these, let's assumeItemView requires an
implementation of a horizontal layout, where certain features are listed in a
floating stack that can wrap into as many rows as required:

 <StackLayout Padding="10" Orientation="Vertical" Spacing="10">
 <Label Text="{Binding Title}" FontSize="Large" />
 <Image Source="{Binding Image}"
HorizontalOptions="FillAndExpand" />
 <FlexLayout Direction="Row" Wrap="Wrap">
 <Label Text="Feature 1" Margin="4"
VerticalTextAlignment="Center" BackgroundColor="Gray" />
 <Label Text="Feat. 2" Margin="4"
VerticalTextAlignment="Center" BackgroundColor="Lime"/>
 <!-- Additional Labels -->
 </FlexLayout>
 <Label Text="{Binding Description}" />
 </StackLayout>

UI Development with Xamarin Chapter 5

[90]

This would create a design structure similar to the one described in the fluid
layout responsive UI pattern:

Grid: If it is not desired for the views in a layout to expand and trigger layout
cycles—in other words, if a certain page requires a more top-down layout
structure (that is, with the parent element determining the layout)—then Grid
would be the most suitable control. Using the Grid layout, controls can be laid
out in accordance with column and row definitions, which can be adjusted to
respond to control size changes or the overall size of the Grid.

While creating the control template for our page, we used a Grid to create a rigid
structure to place the footer with an absolute height value, while allowing the rest
of the screen to be covered by the content presenter:

 <ControlTemplate x:Key="PageTemplate">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition Height="25" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <ContentPresenter Grid.Row="0" />
 <BoxView Grid.Row="1" Color="Navy" />
 <Label Grid.Row="1" Margin="10,0,0,0" Text="(c) Hands-On
 Cross Platform 2018" TextColor="White"
 VerticalOptions="Center" />
 </Grid>
 </ControlTemplate>

UI Development with Xamarin Chapter 5

[91]

Note that we used a margin value for the label. To avoid using the margin, we
could have created a column definition with a fixed value and, according to the
desired outcome, set that margin column to apply to the content presenter as well:

 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition Height="25" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="10 />
 <ColumnDefinition />
 <ColumnDefinition Width="10" />
 </Grid.ColumnDefinitions>
 <ContentPresenter Grid.Column="1" Grid.Row="0" />
 <BoxView Grid.Row="1" Grid.ColumnSpan="3" Color="Navy" />
 <Label Grid.Row="1" Grid.Column="1" Text="(c) Hands-On Cross
 Platform 2018" TextColor="White" VerticalOptions="Center" />
 </Grid>

With this setup, the BoxView will expand on three columns, while the footer text
and the actual content will be isolated to the second column, Column-1, with
Column-0 and Column-2 acting as the margins.

Grid can also be used only to structure a certain segment of a view. For instance,
if we were to add a specifications section in our ItemView page, it would look
similar to the following:

 <StackLayout Padding="10" Orientation="Vertical" Spacing="10">
 <!-- Removed for Brevity -->
 <Label Text="{Binding Description}" />
 <Label Text="Specifications" Font="Bold" />
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="3*" />
 <ColumnDefinition Width="5*" />
 </Grid.ColumnDefinitions>
 <Label Text="Specification 1"
 Grid.Column="0" Grid.Row="0"/>
 <Label Text="Value for Specification"

UI Development with Xamarin Chapter 5

[92]

 Grid.Column="1" Grid.Row="0" TextColor="Gray"/>
 <Label Text="Another Spec."
 Grid.Column="0" Grid.Row="1" />
 <Label Text="Value for Specification that is a little
 longer"
 Grid.Column="1" Grid.Row="1" TextColor="Gray"/>
 <!-- Additional Specs go here -->
 </Grid>
 </StackLayout>

Notice the columns are set to use 3/8th and 5/8th of the screen to result in the
optimal use of the space available. This would create a view similar to the
following:

After adding this last element to the screen, you might notice that the screen space
is exhausted vertically, so the final grid element might overflow out of the view
port, depending on the screen size.

ScrollView: In order to allow the scrolling of the screen so that the whole
content is visible to the user, we can introduce ScrollView. ScrollView is
another prominent layout element, which acts as a scrollable container for the
contained view elements.

In order to enable the scrolling of the screen so that all the specifications are
visible, we can simply wrap the main layout in ItemView.xaml in a
ScrollView:

 <ContentPage.Content>
 <ScrollView>
 <StackLayout Padding="10" Orientation="Vertical"
 Spacing="10">

UI Development with Xamarin Chapter 5

[93]

 <!-- Removed for brevity -->
 </StackLayout>
 </ScrollView>
 </ContentPage.Content>

An additional use of ScrollView comes into the picture when Entry fields are
involved. When the user taps on an Entry field, the behavior on a mobile device
is that the keyboard slides up from the bottom of the screen, creating a vertical
offset and decreasing the design space. In the view that the Entry is contained in,
the keyboard might overlap with the Entry that is currently in focus. This would
create an undesirable user experience. In order to remedy this behavior, the form
content should be placed in ScrollView so that the appearance of the keyboard
does not push the Entry in question out of the bounds of the screen.

AbsoluteLayout and RelativeLayout: These are the other layout options that
we have not covered so far. Both of these layouts, generally speaking, treat the
view almost like a canvas and allow items to be placed on top of each other,
using either the current screen (in the case of AbsoluteLayout) or the other
controls (in the case of RelativeLayout) as a reference for positioning.

For instance, if we were to place a floating action button (FAB), from Material
Design on our ListItemView, we could easily achieve that using an absolute
layout, by placing the button in the bottom-right corner of the screen (that is,
position proportional) and adding a margin on our FAB:

 <AbsoluteLayout>
 <ListView
 ItemsSource="{Binding Items}"
 ItemTapped="Handle_ItemTapped"
 SeparatorVisibility="None" >
 <ListView.ItemTemplate>
 <DataTemplate>
 <!-- Removed for brevity -->
 </DataTemplate>
 </ListView.ItemTemplate>
 </ListView>
 <Image
 Source="AddIcon.png"
 HeightRequest="60"
 WidthRequest="60"
 AbsoluteLayout.LayoutFlags="PositionProportional"
 AbsoluteLayout.LayoutBounds="1.0,1.0"
 Margin="10"/>
 </AbsoluteLayout>

UI Development with Xamarin Chapter 5

[94]

This would create a view where the FAB (that is, the image used instead of a FAB)
is displayed over the list view items:

Additionally, RelativeLayout, in similar fashion, allows developers to create
proportional calculations between elements, as well as for the view itself.

Xamarin.Forms view elements
The main view elements used in our application up until now have been Label and Image
(while creating the list and details views). Additionally, on the login screen, we used the
Entry and Button views. The main difference between these two sets of controls is the fact
that, whilst Label and Image are used to display (generally) read-only content, Entry and
Button are elements used for user input.

If we take a closer look at Label, there are various properties used to create a customized
display of text content to accentuate the calligraphy/typography (referring to the platform
imperatives of iOS and UWP) in our design. Developers can not only customize the look
and feel of text content, but also create rich text content using Span elements. Spans
are analogous to Run elements in WPF and web elements that share the same name (that is,
Span). In later versions of Xamarin.Forms, Span are able to recognize gestures, enabling
developers to create interactive regions within a single block of text content. In order to
utilize Spans, the FormattedText attribute of the label can be used.

In order to further customize (and perhaps apply branding to) an application, custom fonts
can also be introduced. In order to include a custom font, each platform requires a different
step to be executed.

UI Development with Xamarin Chapter 5

[95]

As a first step, the developer needs to have access to the TFF file for the font, and this file
needs to be copied to the platform-specific projects. On iOS, the file(s) need to be set as
BundleResource, and on Android as AndroidAsset. On iOS only, custom fonts should
be declared as part of the fonts provided by the application entry in the Info.plist file:

At this point, the custom font already used can be added with the FontFamily attribute to
the target label; however, the declarations for the font family differ for Android and iOS:

 <Label Text="{Binding Description}">
 <Label.FontFamily>
 <OnPlatform x:TypeArguments="x:String">
 <On Platform="iOS" Value="Ubuntu-Light" />
 <On Platform="Android" Value="Ubuntu-Light.ttf#Ubuntu-
 Light" />
 <On Platform="UWP" Value="Assets/Fonts/Ubuntu-
 Light.ttf#Ubuntu-Light" />
 </OnPlatform>
 </Label.FontFamily>
 </Label>

In order to make it easier to use the font or even apply it to all the labels in the application,
the App.xaml file can be used to add it to the application's resources:

 <Application.Resources>
 <ResourceDictionary>
 <!-- Removed for brevity -->
 <OnPlatform x:Key="UbuntuBold" x:TypeArguments="x:String">
 <On Platform="iOS">Ubuntu-Bold</On>
 <On Platform="Android">Ubuntu-Bold.ttf#Ubuntu-Bold</On>
 </OnPlatform>
 <OnPlatform x:Key="UbuntuItalic" x:TypeArguments="x:String">
 <On Platform="iOS">Ubuntu-Italic</On>
 <On Platform="Android">Ubuntu-Italic.ttf#Ubuntu-
 Italic</On>

UI Development with Xamarin Chapter 5

[96]

 </OnPlatform>

 <!-- Additional Fonts and Styles -->
 </ResourceDictionary>
 </Application.Resources>

Now we can define either implicit or explicit styles for certain targets:

<Style x:Key="BoldLabelStyle" TargetType="Label">
 <Setter Property="FontFamily" Value="{StaticResource UbuntuBold}" />
</Style>
<!-- Or an implicit style for all labels -->
<!--
<Style TargetType="Label">
 <Setter Property="FontFamily" Value="{StaticResource UbuntuRegular}"
/>
 </Style>
-->

This can be taken one step further to include a font that includes glyphs
(for example, FontAwesome) to use labels as menu icons. A simple
implementation would be to create a custom control that derives from
Label and set up a global implicit style that targets this custom control.

The interactive counterparts of Label are Entry and Editor, which both derive from
the InputView abstraction. These controls can be placed in user forms to handle single-line
or multi-line text input, respectively. In order to improve the user experience, both of these
controls expose the Keyboard property, which can be used to set the appropriate type of
software keyboard for user entries (for example, Chat, Default, Email, Numeric,
Telephone, and so on).

The rest of the user input controls are more scenario-specific, such as BoxView, Slider,
Map, and WebView.

It is also important to mention that there are three additional user input controls,
namely, Picker, DatePicker, and TimePicker. The pickers represent the combination of
the data field that is displayed on the form and the picker dialog used once the data field
comes into focus.

If the customization of these controls does not satisfy the UX requirements, Xamarin.Forms
allows developers to reference and use native controls.

UI Development with Xamarin Chapter 5

[97]

Native components
In some cases, developers need to resort to using native user controls; especially when a
certain control only exists for a certain platform (that is, no Xamarin.Forms abstraction
exists for that specific UI element). In these types of situations, Xamarin enables users to
declare native views within Xamarin.Forms XAML and set/bind the properties of these
controls.

In order to include native views, first the namespaces for the native views should be
declared:

xmlns:ios="clr-namespace:UIKit;assembly=Xamarin.iOS;targetPlatform=iOS"
xmlns:androidWidget="clr-
namespace:Android.Widget;assembly=Mono.Android;targetPlatform=Android"
xmlns:formsandroid="clr-
namespace:Xamarin.Forms;assembly=Xamarin.Forms.Platform.Android;targetPlatf
orm=Android"

Once the namespace is declared, we can, for instance, replace Label in our
ItemView.xaml and use its native counterpart directly:

<!-- <Label Text="{Binding Description}" /> -->
<ios:UILabel Text="{Binding Description}" View.HorizontalOptions="Start"/>
<androidWidget:TextView Text="{Binding Description}" x:Arguments="{x:Static
formsandroid:Forms.Context}" />

Now the view will include a different native control for each platform. Additionally, the
UILabel.Text and TextView.Text properties now carry the binding to the
Description field.

It is important to note that, for native view references to work, the view in
question should not be included in XamlCompilation. In other words,
the view should carry
the [XamlCompilation(XamlCompilationOptions.Skip)] attribute.

It is also possible to further customize the native fields using native types and properties.
For instance, in order to add a drop-shadow on the UILabel item, we can use the
ShadowColor and ShadowOffset values:

<ios:UILabel
 Text="{Binding Description}"
 View.HorizontalOptions="Start"
 ShadowColor="{x:Static ios:UIColor.Gray}">
 <ios:UILabel.ShadowOffset>
 <iosGraphics:CGSize>

UI Development with Xamarin Chapter 5

[98]

 <x:Arguments>
 <x:Single>1</x:Single>
 <x:Single>2</x:Single>
 </x:Arguments>
 </iosGraphics:CGSize>
 </ios:UILabel.ShadowOffset>
 </ios:UILabel>

The outcome of this declaration is as follows (compare this to the Xamarin.Forms Label
field defined earlier):

Creating data-driven views
MVVM architecture, as you saw in the Chapter 4, Developing Mobile Applications with
Xamarin, mainly concentrates on data and how to decouple data from views. However, this
decoupling does not mean the views and controls created should not respond to data
content changes, either as a result of user input or state data being updated. In order to
facilitate the propagation of data models, from the view model to view, as well as between
views, data bindings and other data-related Xamarin.Forms mechanisms are crucial tools.

Data-binding essentials
The simplest data binding in Xamarin.Forms is comprised of the path of the property we
want to link to the current view property. In this type of declaration, we assume that the
BindingContext of the whole and/or the parent view is set to use the target source view
model.

UI Development with Xamarin Chapter 5

[99]

If we take a look at the navigation implementation from our ListItemView to ItemView,
you will notice that the selected item from the list is set as the binding context for the
ItemView:

private void Handle_ItemTapped(object sender,
Xamarin.Forms.ItemTappedEventArgs e)
 {
 var itemView = new ItemView();
 itemView.BindingContext = (ItemViewModel) e.Item;
 Navigation.PushAsync(itemView);
 }

Once BindingContext is set, we can move on to using the property model of
ItemViewModel, given that ItemViewModel is set to trigger PropertyChangedEvent
(from INotifyPropertyChanged) for the Title property:

<Label Text="{Binding Title}" FontSize="Large" />

Data binding does not always need to be related to a value property (for example, Text,
SelectedItem, and so on) but it can also be used to identify the visual properties of a
view.

For instance, the chips that we previously added to ItemView define whether certain
features are supported for the currently selected item. Let's assume that we have Boolean
properties on the view model side to show or hide these values. The bindings would look
similar to the following:

<Label x:Name="Feat1" Text="Feature 1" IsVisible="{Binding HasFeature1}"
BackgroundColor="Gray" />
 <Label x:Name="Feat2" Text="Feat. 2" IsVisible="{Binding HasFeature2}"
BackgroundColor="Lime"/>

In both of these binding scenarios, we are binding a value from the view model to a specific
view element. Another valid scenario is where the change of view affects another view (that
is, View-to-View binding). Let's assume that, on ItemView, the visibility of our specs
depends on the visibility of the label, with x:Name set to Feat1:

<Grid IsVisible="{Binding Path=IsVisible,Source={x:Reference Feat1}}">

It is important to note that, in a real-world project, the View-to-View binding would
generally be utilized to reflect the user input in one view on another view. In this example,
it would be much more appropriate for the binding to use the same view model property
(that is, HasFeature1).

UI Development with Xamarin Chapter 5

[100]

The bindings we have outlined so far do not really depend on any change being reflected in
the UI once the visual tree is created. In such a setup, it would be an avoidable performance
compromise to listen for any change event on the view model properties. In order to
remedy this overhead, we could have set the binding mode to OneTime:

<Label Text="{Binding Title, Mode=OneTime}" FontSize="Large" />

This way, the binding is executed only when the BindingContext changes. If we wanted
the changes in the ViewModel (generally referred to as the source) to be reflected in the
View (referred to as the target), we could have used OneWay binding. If the direction of
this unidirectional data flow provided by the OneWay binding is other way round, we
could also utilize OneWayToSource. TwoWay bindings provide the infrastructure to support
the bi-directional flow of data.

Although the runtime tries to convert the source type to the target type while establishing a
binding, the outcome might not always be desirable (for example, the ToString method of
a different type might not provide the correct display value). In these types of situations,
developers can resort to using value converters.

Value converters
Value converters can be described as simple translation tools that implement the
IValueConverter interface. This interface provides two methods, which allow the
translation of the source to the target, as well as from the target to the source to support
various binding scenarios.

For instance, if we were to display the release date of an item from our inventory, we
would need to bind to the respective property on ItemViewModel. However, once the page
is rendered, the result is less than satisfactory:

In order to format the date, we can create a value converter, which is responsible for
converting the DateTime value to a string:

 public class DateFormatConverter : IValueConverter
 {
 public object Convert(object value, Type targetType, object

UI Development with Xamarin Chapter 5

[101]

 parameter, CultureInfo culture)
 {
 if(value is DateTime date)
 {
 return date.ToShortDateString();
 }

 return null;
 }

 public object ConvertBack(object value, Type targetType, object
 parameter, CultureInfo culture)
 {
 // No Need to implement ConvertBack for OneTime and OneWay
 bindings.
 throw new NotImplementedException();
 }
 }

And it is also responsible for declaring this converter in our XAML:

 <ContentPage
 ...

xmlns:converters="using:FirstXamarinFormsApplication.Client.Converters"
 x:Class="FirstXamarinFormsApplication.Client.ItemView">
 <ContentPage.Resources>
 <ResourceDictionary>
 <converters:DateFormatConverter x:Key="DateFormatConverter" />
 </ResourceDictionary>
 </ContentPage.Resources>
 <ContentPage.Content>
 <!-- Removed for brevity -->
 <Label Text="{Binding ReleaseDate, Converter={StaticResource
DateFormatConverter}}" />
 <!-- Removed for brevity -->
 </ContentPage.Content>
 </ContentPage>

Now, the display would use the short date format, which is culture-dependent (for
example, M/d/yyyy for the EN-US region):

UI Development with Xamarin Chapter 5

[102]

We can take this implementation one step further by using a binding to pass the date
format string (for example, M/d/yyyy) to use a fixed date format.

Xamarin.Forms also provides the use of formatted strings to handle simple string
conversions, so that simple converters such as DateFormatConverter could be avoided.
The same implementation with a fixed date format could have been set up as follows:

<Label Text="{Binding ReleaseDate, StringFormat='Release {0:M/d/yyyy}'}}"
/>

The outcome would look like this:

Additionally, we may like to handle scenarios where the release date is set to null (that is,
when the ReleaseDate property is set to Nullable<DateTime> or simply DateTime). For
this scenario, we can resort to the use of TargetNullValue:

<Label Text="{Binding ReleaseDate, StringFormat='Release {0:M/d/yyyy}',
TargetNullValue='Release Unknown'}" />

TargetNullValue, as the name suggests, is a replacement value when the binding target is
resolved but the value found was null. Similarly, FallbackValue could be used when the
runtime cannot resolve the target property on the binding context.

Expanding this implementation, we may want to display the Label with a different color if
the release date is unknown. In order to achieve this, we could potentially create a
converter to return a certain color depending on the release value, but we could also use a
property trigger to set the font color depending on the label's Text property value. In this
situation, the use of a trigger is a better choice, since using the converter would mean
hardcoding the color value, whereas the trigger can use dynamic or static resources and can
be applied with styles for the target view.

UI Development with Xamarin Chapter 5

[103]

Triggers
Triggers can be defined as declarative actions that need to be executed. The different types
of triggers are as follows:

Property trigger: Property changes for a view
Data trigger: Data value changes for a binding
Event trigger: The occurrence of certain events on the target view
Multi-trigger: Using this, it's also possible to implement a combination of triggers

To illustrate the use of triggers, we can use our previous example, where ReleaseDate for
a certain item does not exist. In this scenario, because of TargetNullValue attribute being
defined, the text of the label would be set to Release Unknown. Here, we can make use of
a property trigger, which set the font color:

<Label x:Name="ReleaseDate" Text="{Binding ReleaseDate,
StringFormat='Release {0:M/d/yyyy}', TargetNullValue='Release Unknown'}">
 <Label.Triggers>
 <Trigger TargetType="Label" Property="Text" Value="Release
 Unknown">
 <Setter Property="TextColor" Value="Red" />
 </Trigger>
 </Label.Triggers>
 </Label>

Here, the target type defines the containing element (that is, the target of the trigger action),
and the property and value define the cause of the trigger. Multiple setters then can be
applied to the target modifying the values of the view.

In a similar fashion, we could have created a data trigger to set the color of the title
depending on the release date label's value:

<Label Text="{Binding Title, Mode=OneTime}" FontSize="Large">
 <Label.Triggers>
 <DataTrigger TargetType="Label"
 Binding="{Binding Source={x:Reference ReleaseDate},
 Path=Text}"
 Value="Release Unknown">
 <Setter Property="TextColor" Value="Red" />
 </DataTrigger>
 </Label.Triggers>
</Label>

UI Development with Xamarin Chapter 5

[104]

Here, we are setting the binding context of the DataTrigger to another view (that is, View-
to-View) binding. If we were using the view model as the binding context, we could have
used the ReleaseDate as well.

Finally, if we have don't have a release date but we have the data to support that an item is,
in fact, already released to the public, we can use MultiTrigger:

<MultiTrigger TargetType="Label">
 <MultiTrigger.Conditions>
 <PropertyCondition Property="Text" Value="Release Unknown" />
 <BindingCondition Binding="{Binding IsReleased}" Value="false"/>
 </MultiTrigger.Conditions>
 <Setter Property="TextColor" Value="Red" />
</MultiTrigger>

Event triggers are odd members of the trigger family, since they rely on events being
triggered on the target view instead of Setters; they use the so-called Action.

For instance, in order add a little UX enhancement, we can add a fade animation to the
image in the item view. In order to use this animation, we first need to implement it as part
of an Action:

 public class AppearingAction : TriggerAction<VisualElement>
 {
 public AppearingAction() { }

 public int StartsFrom { set; get; }

 protected override void Invoke(VisualElement visual)
 {
 visual.Animate("FadeIn",
 new Animation((opacity) => visual.Opacity = opacity, 0, 1),
 length: 1000, // milliseconds
 easing: Easing.Linear);
 }
 }

After TriggerAction is created, we can now define an event trigger on the image (that is,
using the BindingContextChanged event):

<Image Source="{Binding Image}" HorizontalOptions="FillAndExpand">
 <Image.Triggers>
 <EventTrigger Event="BindingContextChanged">
 <actions:AppearingAction />
 </EventTrigger>
 </Image.Triggers>
</Image>

UI Development with Xamarin Chapter 5

[105]

This will create a subtle fade-in effect, which should coincide with the loading of the image,
hence a more pleasant user experience.

Actions can also be used with property and data triggers using EnterAction and
ExitAction, defining the two states according to the trigger condition(s). However, in the
context of property and data triggers, in order to create more generalized states, as well as
modifying the common states for a control, Visual State Manager (VSM) can also be
utilized. This way, multiple setters can be unified in a single state, decreasing the clutter
within the XAML tree, creating a more maintainable structure.

Visual states
Visual states and VSM will be familiar concepts for WPF and UWP developers; however,
they were missing from Xamarin.Forms' runtime until recently. Visual states define various
conditions that a control can be rendered according to certain conditions. For instance, an
Entry element can be in Normal, Focused, or Disabled states and each state defines a
different visual setter for the element. Additionally, custom states can also be defined for a
visual element and, depending on triggers or explicit calls to VisualStateManager, can
manage the visual state of elements.

In order to demonstrate this, we can create three different states for our label (for example,
Released, UnReleased, and Unknown) and deal with states using our triggers.

First, we need to define states for our label control (which can then be moved to a resource
dictionary as part of a style):

 <Label x:Name="ReleaseDate" ...>
 <Label.Triggers>
 <!-- Removed for Brevity -->
 </Label.Triggers>
 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name="CommonStates">
 <VisualState x:Name="Released">
 <VisualState.Setters>
 <Setter
 Property="BackgroundColor"
 Value="Lime" />
 <Setter
 Property="TextColor"
 Value="Black" />
 </VisualState.Setters>
 </VisualState>
 <VisualState x:Name="UnReleased">
 <VisualState.Setters>

UI Development with Xamarin Chapter 5

[106]

 <Setter Property="TextColor" Value="Black" />
 </VisualState.Setters>
 </VisualState>
 <VisualState x:Name="Unknown">
 <VisualState.Setters>
 <Setter Property="TextColor" Value="Red" />
 </VisualState.Setters>
 </VisualState>
 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>
 </Label>

As you can see, one of the defined states is Unknown, and it should set the text color to red.
In order to change the state of the label using a trigger, we can implement a trigger action:

 public class ChangeStateAction : TriggerAction<VisualElement>
 {
 public ChangeStateAction() { }

 public string State { set; get; }

 protected override void Invoke(VisualElement visual)
 {
 if(visual.HasVisualStateGroups())
 {
 VisualStateManager.GoToState(visual, State);
 }
 }
 }

And we can use this action as our EnterAction for the previously defined multi-trigger:

<MultiTrigger TargetType="Label">
 <MultiTrigger.Conditions>
 <!-- Removed for brevity -->
 </MultiTrigger.Conditions>
 <MultiTrigger.EnterActions>
 <actions:ChangeStateAction State="Unknown" />
 </MultiTrigger.EnterActions>
</MultiTrigger>

We can achieve the same result as using setters. However, it is important to mention that,
without defining an ExitAction once the label is set to the given state, it will not revert to
the previous state.

UI Development with Xamarin Chapter 5

[107]

Summary
In this chapter, we implemented some simple views using the intrinsic controls of the
Xamarin.Forms framework. With the extensive set of layouts, views, and customization
options available, developers can create attractive and intuitive user interfaces. Moreover,
the data-driven UI options can help developers separate (decouple) and business domain
implementation from these views, which in return will improve the maintainability of any
mobile development project.

Nevertheless, at times, standard controls might not be enough to meet project
requirements. In the next chapter, we will take a closer look at customizing the existing UI
views and implementing custom native elements.

6
Customizing Xamarin.Forms

Xamarin.Forms allows developers to modify the UI-rendering infrastructure in various
ways. The customizations that are introduced by developers may target a certain platform
feature on a certain control element or create a completely new view control. These
customizations can be made on the Xamarin.Forms tier or on the target native platform.

This chapter will go through the steps and procedures for customizing Xamarin.Forms
without compromising the performance and user experience. Some of the features that will
be analyzed include effects, behaviors, extensions, and custom renderers.

The following sections will cover different development domains for Xamarin.Forms
customizations:

Xamarin.Forms development domains
Xamarin.Forms shared domains
Customizing the native domains
Creating custom controls

Xamarin.Forms development domains
As we have seen so far in this book, application development using the Xamarin.Forms
framework is executed on multiple domains. While the Xamarin.Forms layer creates a
shared development domain that will be used to target native platforms, the target
platforms can still be utilized for platform-specific implementation.

Customizing Xamarin.Forms Chapter 6

[109]

If we were to separate a Xamarin.Forms application into four quadrants by development
strategy and application domain category, it will look like this:

In this setup, quadrant I (that is, the shared business logic) would represent the core logic
implementation of the application. This domain will contain the view models, domain data
descriptions, and service client implementation. Most importantly, the abstractions for
platform-specific APIs (that is, the interfaces that will be implemented on the native
platform) should be created in this domain so that each other domain, as well as the view
models within this domain, can make use of them.

Quadrant II and III represent the UI customizations that we will need to implement to
create the desired UX for the application. Up until now, we have been creating our visual
trees using only quadrant II. Simple data-driven applications and line of business (LOB)
applications can solely utilize this domain. However, if we were to create a consumer-
facing application, complying with the branded UX requirements and creating an intuitive
UI should be our main goals. In this case, we can resort to creating customizations for
Xamarin.Forms views with quadrant III.

In this paradigm, quadrant I only connects with quadrant II using data binding and
converter implementations. Quadrant II is responsible for propagating the delivered data to
quadrant III.

In quadrant II, the customization options for developers are mostly related to using the
extensibility options provided by the out-of-the-box views offered by the Xamarin.Forms
framework. Compositions of these views and behavioral modifications can provide highly
maintainable cross-platform source code. By using styling options, visual states, and data-
driven templates, the UX can meet these requirements.

Customizing Xamarin.Forms Chapter 6

[110]

Moving from the shared to the native platform (that is, crossing from quadrant II to
quadrant III), the developers are blessed with platform specifics, as well as Xamarin.Forms
effects. Using these extensibility points, we, as developers, can modify the behavior of
native controls, as well as modify the rendered native UI, creating a bridge between the
Xamarin.Forms view abstractions and the target native controls. A combination of these
extensibility features with Xamarin.Forms behaviors can improve the maintainability of the
application.

Quadrant-III-specific development is comprised of custom renderers and native controls.
Native controls can be created and combined under Xamarin.Forms compositions, thereby
decreasing the complexity of the Xamarin.Forms XAML trees (that is, the composite
controls).

Finally, quadrant IV represents the platform-specific APIs, such as geolocation, the usage of
peripherals, such as Bluetooth or NFC, or SaaS integrations/SDKs that require native
implementation.

Xamarin.Forms shared domain
In the previous chapters, we used intrinsic Xamarin.Forms controls and their styling
attributes to create our user interface. By using data binding and data triggers, we created
data-driven views. The extensibility options are of course not limited to the control
attributes that are available on this layer. Both the behavior and the look and feel of
rendered controls can be modified using standard customization and extensibility options.
Let's take a look at the different customization options in the shared Xamarin.Forms
domain.

Using styles
Previously, we created a simple chips container to display the various features of an item
that is currently being offered through our application.

Customizing Xamarin.Forms Chapter 6

[111]

In the previous setup, we were only utilizing the Margin property
and VerticalTextAlignment for the labels:

<FlexLayout Direction="Row" Wrap="Wrap">
 <Label Text="Feature 1" Margin="4"
VerticalTextAlignment="Center" BackgroundColor="Gray" />
 <Label Text="Feat. 2" Margin="4" VerticalTextAlignment="Center"
BackgroundColor="Lime"/>
 <!-- Additional Labels -->
</FlexLayout>

The background property is specific for each feature element, and so
we will not be modifying it for now.

Let's modify the look of these items to make the labels look more like chips in order to
improve the user experience:

We will start by wrapping up the label in a frame and styling the frame:1.

 <Frame
 IsVisible="{Binding HasFeature1}"
 BackgroundColor="Gray"
 CornerRadius="7"
 Padding="3"
 Margin="4"
 HasShadow="false">
 <Label x:Name="Feat1" Text="Feature 1"
 VerticalTextAlignment="Center"
 HorizontalTextAlignment="Center" />
 </Frame>

While this creates a more desirable look, adding these properties to each feature
would create a completely redundant XAML structure:

Customizing Xamarin.Forms Chapter 6

[112]

We can now create create two styles (that is, one for the feature label and one for2.
the frame itself) that will be applied to each element, thereby decreasing the
redundancy:

<Style TargetType="Frame">
 <Setter Property="HasShadow" Value="false" />
</Style>
<Style TargetType="Frame" x:Key="ChipContainer">
 <Setter Property="CornerRadius" Value="7" />
 <Setter Property="Padding" Value="3" />
 <Setter Property="Margin" Value="3" />
 </Style>
 <Style TargetType="Label" x:Key="ChipLabel">
 <Setter Property="VerticalTextAlignment" Value="Center" />
 <Setter Property="HorizontalTextAlignment" Value="Center" />
 <Setter Property="TextColor" Value="White" />
 </Style>

Next, we need to apply these implicit (that is, the HasShadow="false" setter3.
will be applied to all the frames on the application level) and explicit styles (note
the x:Key declaration on the ChipContainer and ChipLabel styles):

<FlexLayout Direction="Row" Wrap="Wrap" FlowDirection="LeftToRight"
AlignItems="Start">
 <Frame IsVisible="{Binding HasFeature1}"
 BackgroundColor="Gray" Style="{StaticResource
 ChipContainer}">
 <Label x:Name="Feat1" Text="Feature 1" Style="
 {StaticResource ChipLabel}" />
 </Frame>
 <Frame IsVisible="{Binding HasFeature2}"
BackgroundColor="Lime"
 Style="{StaticResource ChipContainer}">
 <Label x:Name="Feat2" Text="Feat. 2"
Style="{StaticResource
 ChipLabel}" />
 </Frame>
 <!-- Additional Labels -->
 </FlexLayout>

In doing so, we will be decreasing the clutter and redundancy in our XAML tree.
Styles can be declared at the application level (as in this case) as global styles
using App.xaml. Additionally, they can also be declared at page and view levels
using local resource dictionaries.

Customizing Xamarin.Forms Chapter 6

[113]

Another approach to styling controls would be to use CSS style sheets. While the style
sheets currently do not support the full extent of the XAML control styles, can prove
powerful, especially when utilizing the CSS selectors. Let's get started:

If we were to recreate the styles for our chip views, the style declarations would1.
be similar to the following:

 .ChipContainerClass {
 border-radius: 7;
 padding: 3;
 margin: 3;
 }

 .ChipLabelClass {
 text-align: center;
 vertical-align: central;
 color: white;
 }

For those of you who are not familiar with CSS, here, we have created two style
classes named ChipContainerClass and ChipLabelClass.

Now, we can use these classes with our controls using the StyleClass attribute:2.

 <Frame IsVisible="{Binding HasFeature1}"
 BackgroundColor="Gray" StyleClass="ChipContainerClass">
 <Label x:Name="Feat1" Text="Feature 1"
 StyleClass="ChipLabelClass" />
 </Frame>

We can take our style declaration one step further and apply the style directly to3.
the child label within the frame with the ChipContainerClass style class (that
is, we will remove the style class from the Label element):

 .ChipContainerClass {
 border-radius: 7;
 padding: 3;
 margin: 3;
 }

 .ChipContainerClass>^label {
 text-align: center;
 vertical-align: central;
 color: white;
 }

Customizing Xamarin.Forms Chapter 6

[114]

The difference between .ChipContainerClass>label and
.ChipContainerClass>^label is that by using the ^ (base class)
notation, we can make sure that even if we modify the view using a
custom control deriving from label, we can make sure that the styles are
applied in the same way.

Styles can also be used in conjunction with Xamarin.Forms behaviors to not only modify
the visualization, but also the behavior of elements.

Creating behaviors
Behaviors are an eloquent use of the decorator pattern, allowing the developers to modify
the Xamarin.Forms controls without having to create derived controls.

A simple example of creating a behavior would be to implement a validation behavior in
our LoginView. As you may remember, we actually used the Command.CanExecute
delegate to validate our fields. In this example, we will separate the validators for the email
field and the password field. This way, we can allow the UI to give feedback to the user as a
result of an incorrect entry. This would be more user-friendly than only disabling the login
window. To set this up, follow these steps:

First, we need to create a validation rule infrastructure, starting with the1.
validation interface:

 public interface IValidationRule<T>
 {
 string ValidationMessage { get; set; }
 bool Validate (T value);
 }

A simple implementation of this rule would be required so that we can check2.
whether we have a short validation message stating that the field is a required
field:

 public class RequiredValidationRule : IValidationRule<string>
 {
 public string ValidationMessage { get; set; } = "This field is
 a required field";
 public bool Validate (string value)
 {
 return !string.IsNullOrEmpty(value);
 }
 }

Customizing Xamarin.Forms Chapter 6

[115]

Now, we can create our validation behavior for the Entry field, which will make3.
use of any given validation rule (starting with RequiredValidationRule,
which we just implemented):

 public class ValidationBehavior : Behavior<Entry>
 {

 protected override void OnAttachedTo(Entry bindable)
 {
 base.OnAttachedTo(bindable);

 bindable.TextChanged += ValidateField;
 }

 protected override void OnDetachingFrom(Entry bindable)
 {
 base.OnDetachingFrom(bindable);

 bindable.TextChanged -= ValidateField;
 }

 private void ValidateField(object sender, TextChangedEventArgs
 args)
 {
 if (sender is Entry entry)
 {
 // TODO:
 }
 }
 }

In this implementation, the OnAttachedTo and OnDetachingFrom methods are
the crucial access points and the teardown logic implementations. In this case,
when the behavior is attached to a target control, we are subscribing to the
TextChanged event, and when the behavior is removed, we are unsubscribing
from the event so that undesired memory leak issues are avoided.

The next order of business will be to implement a bindable property for the4.
validation rule so that the validation rules are dictated by the view model (or
another business logic module), decoupling it from the view:

public static readonly BindableProperty ValidationRuleProperty =
 BindableProperty.CreateAttached("ValidationRule",
typeof(IValidationRule<string>), typeof(ValidationBehavior), null);

public static readonly BindableProperty HasErrorProperty =

Customizing Xamarin.Forms Chapter 6

[116]

 BindableProperty.CreateAttached("HasError", typeof(bool),
typeof(ValidationBehavior), false, BindingMode.TwoWay);

public IValidationRule<string> ValidationRule
{
 get { return this.GetValue(ValidationRuleProperty) as
IValidationRule<string>; }
 set { this.SetValue(ValidationRuleProperty, value); }
}

public bool HasError
{
 get { return (bool) GetValue(HasErrorProperty); }
 set { SetValue(HasErrorProperty, value); }
}

Now that we have an outlet for the validation rule and an output field (so that5.
we can attach additional UX logic to it), we can implement the validate
method:

 private void ValidateField(object sender, TextChangedEventArgs
 args)
 {
 if (sender is Entry entry && ValidationRule != null)
 {
 if (!ValidationRule.Validate(args.NewTextValue))
 {
 entry.BackgroundColor = Color.Crimson;
 HasError = true;
 }
 else
 {
 entry.BackgroundColor = Color.White;
 HasError = false;
 }
 }
 }

Customizing Xamarin.Forms Chapter 6

[117]

After adding the appropriate rule to the view model property (in this6.
case, UserNameValidation), we can bind the behavior to the validation rule
that's exposed from the view model and observe the entry field behavior
according to the text input:

<Entry x:Name="usernameEntry" Placeholder="username" Text="{Binding
UserName, Mode=OneWayToSource}" >
 <Entry.Behaviors>
 <behaviors:ValidationBehavior x:Name="UserNameValidation"
 ValidationRule="{Binding
 BindingContext.UserNameValidation,
 Source={x:Reference RootView}}" />
 </Entry.Behaviors>
 </Entry>

Here, the main benefit is that we do not have to modify the Entry field, and the
implemented behavior can be maintained as a separate module.

It is important to note that the binding context for a behavior is not the
same as the page layout or the view, which is why the source of the
binding value for the validation rule has to reference the page itself and
use BindingContext as part of the binding path.

To extend this implementation, we can add a validation error message label that7.
will display in accordance with the HasError bindable property (anywhere on
the page layout, as long as the UserNameValidation element is accessible):

<Label Text="UserName is required" FontSize="12" TextColor="Gray"
 IsVisible="{Binding HasError, Source={x:Reference
UserNameValidation}}"/>

The outcome would look similar to the following:8.

Customizing Xamarin.Forms Chapter 6

[118]

Attached properties
Another way to implement behaviors in order to modify default control behavior is to use
attached properties to declare a bindable extension to existing controls. This approach is
generally used for small behavioral adjustments, such as enabling/disabling other
behaviors, as well as adding/removing effects. Let's get started:

In order to implement such a behavior, we need to create a bindable property1.
that will be used on other controls:

 public static class Validations
 {
 public static readonly BindableProperty
ValidateRequiredProperty =
 BindableProperty.CreateAttached(
 "ValidateRequired",
 typeof(bool),
 typeof(RequiredValidation),
 false,
 propertyChanged: OnValidateRequiredChanged);

 public static bool GetValidateRequired(BindableObject view)
 {
 return (bool)view.GetValue(ValidateRequiredProperty);
 }

 public static void SetValidateRequired(BindableObject view,
 bool value)
 {
 view.SetValue(ValidateRequiredProperty, value);
 }

 private static void OnValidateRequiredChanged(
 BindableObject bindable, object oldValue, object
 newValue)
 {
 // TODO:
 }
 }

In the case of attached behaviors, the static class can be directly accessed so that it2.
sets the attached property on the current control (instead of creating and adding
a behavior):

 <Entry x:Name="usernameEntry" Placeholder="username"
 Text="{Binding UserName, Mode=OneWayToSource}"
 behaviors:Validations.ValidateRequired="true" >

Customizing Xamarin.Forms Chapter 6

[119]

By implementing the ValidateRequired property changed handler, we can3.
have the attached property insert and remove the required validation to various
Entry views:

 private static void OnValidateRequiredChanged(
 BindableObject bindable,
 object oldValue,
 object newValue)
 {
 if(bindable is Entry entry)
 {
 if ((bool)newValue)
 {
 entry.Behaviors.Add(new ValidationBehavior()
 {
 ValidationRule = new RequiredValidationRule()
 });
 }
 else
 {
 var behaviorToRemove = entry.Behaviors
 .OfType<ValidationBehavior>()
 .FirstOrDefault(
 item => item.ValidationRule is
 RequiredValidationRule);

 if (behaviorToRemove != null)
 {
 entry.Behaviors.Remove(behaviorToRemove);
 }
 }
 }
 }

XAML markup extensions
Up until now, when we created XAML views, we resorted to several markup extensions
that are supported either by the Xamarin.Forms framework or the XAML namespace itself.
Some of these extensions are as follows:

x:Reference: Used to refer to another view on the same page
Binding: Used throughout the view model implementations
StaticResource: Used to refer to styles

Customizing Xamarin.Forms Chapter 6

[120]

These are all markup extensions that are resolved by the associated service implementation
within the Xamarin.Forms framework.

For specific needs in your application, custom markup extensions can be implemented to
create a more maintainable XAML structure. In order to create a markup extension,
the IMarkupExtension<T> class needs to be implemented. This depends on the type that
needs to be provided.

For instance, in our previous example, the error label and the field descriptors were hard
coded into the XAML view. This would create issues if the application needs to support
multiple localizations. This can be resolved by doing the following:

First, we need to create a markup extension that will translate the associated text1.
values:

 [ContentProperty("Text")]
 public class TranslateExtension : IMarkupExtension<string>
 {
 public string Text { get; set; }

 public string ProvideValue(IServiceProvider serviceProvider)
 {
 // TODO:
 }

 object IMarkupExtension.ProvideValue(IServiceProvider
 serviceProvider)
 {
 return (this as
 IMarkupExtension<string>).ProvideValue(serviceProvider);
 }
 }

Note that the Text property is set as ContentProperty, which allows2.
developers to provide a value for this extension simply by adding a value for the
extension. Let's incorporate it into the XAML structure:

<Label Text="{behaviors:Translate LblUsername}" />
<Entry x:Name="usernameEntry" Placeholder="username"
 Text="{Binding UserName, Mode=OneWayToSource}" >
 <Entry.Behaviors>
 <behaviors:ValidationBehavior x:Name="UserNameValidation"
ValidationRule="{Binding BindingContext.UserNameValidation,
Source={x:Reference RootView}}" />
 </Entry.Behaviors>
</Entry>

Customizing Xamarin.Forms Chapter 6

[121]

<Label Text="{behaviors:Translate LblRequiredError}"
 FontSize="12" TextColor="Gray"
 IsVisible="{Binding HasError, Source={x:Reference
UserNameValidation}}"/>

ProvideValue method would therefore need to translate the LblUsername and3.
LblRequiredError keys:

 public string ProvideValue(IServiceProvider serviceProvider)
 {
 switch (Text)
 {
 case "LblRequiredError":
 return "This a required field";
 case "LblUsername":
 return "Username";
 default:
 return Text;
 }
 }

This completes the quadrant II customizations. Now, we will move on to quadrant III and
the customize native controls.

Customizing native domains
Native customizations of UI controls can vary from simple platform-specific adjustments to
completely creating a custom native control to replace the existing platform renderer.

Platform specifics
While the UI controls offered by Xamarin.Forms are customizable enough for most UX
requirements, additional native behaviors may be needed. For certain native control
behaviors, platform-specific configuration can be accessed using the
IElementConfiguration interface implementation of the target control. For instance, in
order to change the UpdateMode picker (that is, Immediately or WhenFinished), you can
use the On<iOS> method to access the platform-specific behavior:

 var picker = new Xamarin.Forms.Picker();
 picker.On<iOS>().SetUpdateMode(UpdateMode.WhenFinished);

Customizing Xamarin.Forms Chapter 6

[122]

The same can be implemented in XAML using the
Xamarin.Forms.PlatformConfiguration.iOSSpecific namespace:

<ContentPage
 ...
 xmlns:ios="clr-
namespace:Xamarin.Forms.PlatformConfiguration.iOSSpecific;assembly=Xamarin.
Forms.Core">
 <!-- ... -->
 <Picker ios:Picker.UpdateMode="WhenFinished">
 <!-- Removed for brevity -->
 </Picker>
 <!-- ... -->
</ContentPage>

Similar platform configurations are available for other controls and platforms within the
same namespace (that is, Xamarin.Forms.PlatformConfiguration).

Xamarin.Forms effects
Xamarin.Forms effects are an elegant bridge between the cross-platform domain and the
native domain. Effects are generally used to expose a certain platform behavior or
implementation of a given native control through the shared domain so that a completely
new custom native control is not needed for the implementation.

Similar to the Xamarin.Forms views/controls, effects exist on both the shared domain and
the native domain with their abstraction and implementation, respectively. While the
shared domain is used to create a routing effect, the native project is responsible for
consuming it.

For instance, let's assume the details that we receive for our product items actually contain
some HTML data that we would like to present within the application. In this case, we are
aware of the fact that the Label element on Xamarin.Forms is rendered with a UILabel in
iOS and TextView in Android. While UILabel provides the AttributedString property
(which can be created from HTML), the Android platform offers the intrinsic module for
parsing HTML. We can expose these platform-specific features using an effect and enable
the Xamarin.Forms abstraction to accept HTML input. Let's get started:

Create the routing effect that will provide the data for the platform effects:1.

 public class HtmlTextEffect: RoutingEffect
 {
 public HtmlTextEffect():
base("FirstXamarinFormsApplication.HtmlTextEffect")

Customizing Xamarin.Forms Chapter 6

[123]

 {
 }

 public string HtmlText { get; set; }
 }

Now, we can use this effect in our XAML:2.

 <Label Text="{Binding Description}">
 <Label.Effects>
 <effects:HtmlTextEffect
 HtmlText="Here is some
 <u>HTML</u>" />
 </Label.Effects>
 </Label>

Without the platform implementation of this routing effect, the label will still
display the binding data (in this case, encoded HTML text).

Now, we need to implement the iOS effect that will parse the HtmlText property3.
of our effect. Platform effects are mainly composed of two main components:
registration and implementation:

 [assembly: ResolutionGroupName("FirstXamarinFormsApplication")]
 [assembly: ExportEffect(typeof(HtmlTextEffect), "HtmlTextEffect")]
 namespace FirstXamarinFormsApplication.iOS.Effects
 {
 public class HtmlTextEffect: PlatformEffect
 {
 protected override void OnAttached()
 {
 }

 protected override void OnDetached()
 {
 }
 }
 }

The effect that's registered with ResolutionGroupName of the ExportEffect
attributes will be used in the runtime environment to resolve the routing effect
that was implemented in the first step. In order to modify the native control, you
can use the Control property of PlatformEffect. The Element property refers
to the Xamarin.Forms control that requires this effect.

Customizing Xamarin.Forms Chapter 6

[124]

Now, we need to implement the OnAttached method (which will be executed4.
when PlatformEffect is resolved):

 protected override void OnAttached()
 {
 var htmlTextEffect = Element.Effects
 .OfType<Client.Effects.HtmlTextEffect>
 ().FirstOrDefault();

 if(htmlTextEffect != null && Control is UILabel label)
 {
 var documentAttributes = new
NSAttributedStringDocumentAttributes();
 documentAttributes.DocumentType = NSDocumentType.HTML;
 var error = new NSError();

 label.AttributedText = new
NSAttributedString(htmlTextEffect.HtmlText, documentAttributes, ref
error);
 }
 }

A similar implementation for the Android platform will create the HTML5.
rendering of the controls:

 protected override void OnAttached()
 {
 var htmlTextEffect = Element.Effects
 .OfType<Client.Effects.HtmlTextEffect>
 ().FirstOrDefault();

 if (htmlTextEffect != null && Control is TextView label)
 {
 label.SetText(
 Html.FromHtml(htmlTextEffect.HtmlText,
 FromHtmlOptions.ModeLegacy),
 TextView.BufferType.Spannable);
 }
 }

While we have managed to display HTML content on our Xamarin.Forms view, the value
we have used is still not bindable. With a little restructuring, and by using attached
properties (that is, attached behavior), we can use the data binding and effects together.

Customizing Xamarin.Forms Chapter 6

[125]

Composite customizations
Behaviors and effects, when used together, can create eloquent solutions to common native
element requirements without having to resort to custom controls and renderers. Let's see
how we can do this:

Picking up from where we left off with the HtmlText effect, let's create an1.
attached behavior that will allow us to switch the HTML rendering on/off:

 public static class HtmlText
 {
 public static readonly BindableProperty IsHtmlProperty =
 BindableProperty.CreateAttached("IsHtml",
 typeof(bool), typeof(HtmlText), false,
 propertyChanged: OnHtmlPropertyChanged);

 private static void OnHtmlPropertyChanged(
 BindableObject bindable, object oldValue, object newValue)
 {
 var view = bindable as View;
 if (view == null)
 {
 return;
 }

 if (newValue is bool isHtml && isHtml)
 {
 view.Effects.Add(new HtmlTextEffect());
 }
 else
 {
 var htmlEffect = view.Effects.FirstOrDefault(e => e is
 HtmlTextEffect);

 if (htmlEffect != null)
 {
 view.Effects.Remove(htmlEffect);
 }
 }
 }
 }

The behavior will be the addition or removal of the HTML effect, depending on
the IsHtml property declaration.

Customizing Xamarin.Forms Chapter 6

[126]

Now, we will modify our HTML effect so that it uses the existing text assignment2.
on the forms view to create NSAttributedText and ISpannable for iOS and
Android platforms, respectively:

 public class HtmlTextEffect: PlatformEffect
 {
 protected override void OnAttached()
 {
 SetHtmlText();
 }

 protected override void OnDetached()
 {
 // TODO: Remove formatted text
 }

 protected override void
OnElementPropertyChanged(PropertyChangedEventArgs args)
 {
 base.OnElementPropertyChanged(args);

 if (args.PropertyName == Label.TextProperty.PropertyName)
 {
 SetHtmlText();
 }
 }

 // Removed for brevity
 }

Note that we have also used the OnElementPropertyChanged method to listen
for Text property value changes. This would be the main access point for binding
data.

Now, we will add the behavior to our XAML:3.

 <Label Text="{Binding Description}"
effects:HtmlText.IsHtml="{Binding IsHtml}" />

We can now control the displayed text attributes on both platforms using the
IsHtml attached property.

If none of these customization options provide what really required for the desired UI, a
complete custom control implementation can be considered an option.

Customizing Xamarin.Forms Chapter 6

[127]

Creating custom controls
Just like any other development platform, it is also possible to create custom views/controls
that look, behave, and render differently compared to the out-of-the-box Xamarin.Forms
controls; however, creating a custom control doesn't mean that the complete
Xamarin.Forms render infrastructure needs to be implemented for target platforms as well
as the shared domain. Depending on the UX and platform requirements, the following
can occur:

Custom controls can be created solely as a composition of other Xamarin.Forms
controls
Existing Xamarin.Forms controls can be modified with custom renderers on
different platforms
Custom Xamarin.Forms controls can be created with custom renderers

Creating a Xamarin.Forms control
A Xamarin.Forms control can be created for various reasons, one of which is to decrease the
clutter in your XAML tree and create reusable view blocks. Let's begin:

First, we will take a step back and take a look at the validatable entries we1.
created previously for the login screen:

<Label x:Name="lblUserName" Text="..." />
<Entry x:Name="txtUserName" Placeholder=".." Text="..." >
 <Entry.Behaviors>
 <behaviors:ValidationBehavior x:Name="UserNameValidation"
 ValidationRule="..." />
 </Entry.Behaviors>
</Entry>
<Label x:Name="errUserName" Text="..." IsVisible="..."/>

The control block is composed of a label that is associated with the entry and the
error label, which is only visible if there is a validation error within the label. A
similar structure is used with the password field.

Just by exposing a couple of the binding data points, this block can easily be2.
converted into a custom control. In order to create the base control, we will
use ContentView :

 <ContentView
 xmlns="http://xamarin.com/schemas/2014/forms"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

Customizing Xamarin.Forms Chapter 6

[128]

 xmlns:behaviors="clr-
namespace:FirstXamarinFormsApplication.Client.Behaviors"

x:Class="FirstXamarinFormsApplication.Client.Controls.ValidatableEn
try"
 x:Name="RootView">
 <ContentView.Content>
 <StackLayout>
 <!-- TODO: // Insert Controls -->
 </StackLayout>
 </ContentView.Content>
 </ContentView>

Here, it is important to note that a name declaration is used to create a reference
to the control itself, since we will create bindable properties on the control and
bind them to the children values we previously identified.

Now, we will create our bindable properties within the3.
ValidatableEntry.xaml.cs file:

public static readonly BindableProperty LabelProperty =
 BindableProperty.CreateAttached("Label", typeof(string),
 typeof(ValidatableEntry), string.Empty);

public static readonly BindableProperty PlaceholderProperty =
 BindableProperty.CreateAttached("Placeholder", typeof(string),
 typeof(ValidatableEntry), string.Empty);

public static readonly BindableProperty ValueProperty =
 BindableProperty.CreateAttached("Value", typeof(string),
 typeof(ValidatableEntry), string.Empty, BindingMode.TwoWay);

public static readonly BindableProperty ValidationRuleProperty =
 BindableProperty.CreateAttached("ValidationRule",
typeof(IValidationRule<string>),
 typeof(ValidationBehavior), null);

We can also create accessors for these properties, like so:4.

 public string Label
 {
 get
 {
 return (string)GetValue(LabelProperty);
 }
 set
 {
 SetValue(LabelProperty, value);

Customizing Xamarin.Forms Chapter 6

[129]

 }
 }

Next, we will wire up these properties to the children attributes:5.

<StackLayout>
 <Label Text="{Binding Label, Source={x:Reference RootView}}" />
 <Entry Placeholder="{Binding Placeholder, Source={x:Reference
RootView}}" Text="{Binding Value, Mode=OneWayToSource,
Source={x:Reference RootView}}" >
 <Entry.Behaviors>
 <behaviors:ValidationBehavior
x:Name="ValidationBehavior"
 ValidationRule="{Binding ValidationRule,
Source={x:Reference RootView}}" />
 </Entry.Behaviors>
 </Entry>
 <Label Text="{Binding ValidationRule.ValidationMessage,
Source={x:Reference RootView}}" FontSize="12" TextColor="Gray"
IsVisible="{Binding HasError, Source={x:Reference
ValidationBehavior}}"/>
</StackLayout>

Finally, we will replace the original LoginView.xaml file:6.

<controls:ValidatableEntry
 Label="{behaviors:Translate LblUsername}"
 Placeholder="{behaviors:Translate LblUsername}"
 ValidationRule="{Binding UserNameValidation}"
 Value="{Binding UserName, Mode=OneWayToSource}"/>

Here, we have created our custom ContentView, which will bundle a node of the visual
tree in a single control. This control can also be used for other entry fields that require
validation.

Next, we will look at how we can create a custom renderer for Android so that we can
make use of the built-in validation displays, as well as the floating label design concept.

Creating a custom renderer
At times, a target platform can offer out-of-the-box functionality that exceeds the expected
requirements via the use of customized controls from Xamarin.Forms. In these types of
situations, it could be a good idea to replace the Xamarin.Forms implementation on a
specific platform.

Customizing Xamarin.Forms Chapter 6

[130]

For instance, the form entry fields that we were trying to achieve with our custom
implementation in the previous section would look much more platform appropriate if
they were implemented with a TextInputLayout that followed material design
guidelines:

In this layout, we can bind the label to the floating label and the error text to the helper text
area of the floating label edit text; however, by default, Xamarin.Forms
uses FormsEditText (a derivative of EditText) rather than TextInputLayout for
Android. In order to remedy this, we can implement our own custom renderer. Let's see
how we can do this:

The first step of creating a renderer is to decide whether to create a renderer1.
deriving from ViewRenderer<TView,TNativeView>, or the actual render
implementation. For EntryRenderer, the Xamarin.Forms base class is
ViewRenderer<Entry, FormsEditText>. Unfortunately, this means that we
won't be able to make use of the base class implementation since our renderer
will need to return TextInputLayout. Therefore, the renderer declaration will
look similar to the following:

public class FloatingLabelEntryRenderer : ViewRenderer<Entry,
TextInputLayout>
 {
 public FloatingLabelEntryRenderer(Context context) :
 base(context)
 {
 }

 private EditText EditText => Control.EditText;

 protected override TextInputLayout CreateNativeControl()
 {
 var textInputLayout = new TextInputLayout(Context);
 var editText = new EditText(Context);
 editText.SetTextSize(ComplexUnitType.Sp,
 (float)Element.FontSize);
 textInputLayout.AddView(editText);
 return textInputLayout;

Customizing Xamarin.Forms Chapter 6

[131]

 }

 protected override void OnElementPropertyChanged(object
sender,
 PropertyChangedEventArgs e)
 {
 // TODO:
 }

 protected override void
OnElementChanged(ElementChangedEventArgs<Entry> e)
 {
 base.OnElementChanged(e);

 if (e.OldElement == null)
 {
 var textView = CreateNativeControl();
 // TODO:
 SetNativeControl(textView);
 }

 // TODO:
 }
 }

In this declaration, we should be initially be dealing with several override
methods:

CreateNativeControl: Responsible for creating the native control using the
Element properties
OnElementChanged: Similar to the OnAttached method on behaviors and
effects
OnElementPropertyChanged: Used to synchronize changes from the
Xamarin.Forms element to the native element

Customizing Xamarin.Forms Chapter 6

[132]

As a first step, we are interested in the Placeholder property and the2.
associated OneWay binding (that is, from Element to Native). Therefore, we
will be using the Placeholder value as the hint text for the EditText field:

protected override void OnElementPropertyChanged(object sender,
PropertyChangedEventArgs e)
{
 if (e.PropertyName == Entry.PlaceholderProperty.PropertyName)
 {
 Control.Hint = Element.Placeholder;
 }
}

Secondly, we want to update the placeholder when the Element is attached to3.
the renderer (the initial synchronization):

protected override void
OnElementChanged(ElementChangedEventArgs<Entry> e)
 {
 base.OnElementChanged(e);

 if (e.OldElement == null)
 {
 var textView = CreateNativeControl();
 // textView.EditText.AddTextChangedListener(this);
 SetNativeControl(textView);
 }

 Control.Hint = Element.Placeholder;
 EditText.Text = Element.Text;
 }

Another value we would like to keep in sync is the actual Text value; however,
the synchronization in this case should be able to support TwoWay binding.

In order to listen for input text changes, we will implement the ITextWatcher4.
interface:

void ITextWatcher.AfterTextChanged(IEditable @string)
{
}

void ITextWatcher.BeforeTextChanged(ICharSequence s, int start, int
count, int after)
{
}

Customizing Xamarin.Forms Chapter 6

[133]

void ITextWatcher.OnTextChanged(ICharSequence s, int start, int
before, int count)
{
 if (string.IsNullOrEmpty(Element.Text) && s.Length() == 0)
 {
 return;
 }

 ((IElementController)Element)
 .SetValueFromRenderer(Entry.TextProperty, s.ToString());
}

Once the renderer is complete, we will also need to register the renderer so that5.
the Xamarin.Forms runtime is aware of the association between the Entry
control and this new renderer:

[assembly: ExportRenderer(typeof(Entry),
typeof(FloatingLabelEntryRenderer))]
 namespace FirstXamarinFormsApplication.Droid.Renderers

Now that the renderer is going to be handling both the label and the placeholder,6.
we won't need the additional label within ValidatableEntry, so we will be
using them only for iOS:

<ContentView>
 <OnPlatform x:TypeArguments="View">
 <On Platform="iOS">
 <Label Text="{Binding Label, Source={x:Reference
RootView}}" />
 </On>
 </OnPlatform>
</ContentView>
<Entry Placeholder="{Binding Placeholder, Source={x:Reference
RootView}}" Text="{Binding Value, Mode=OneWayToSource,
Source={x:Reference RootView}}" >
 <Entry.Behaviors>
 <behaviors:ValidationBehavior x:Name="ValidationBehavior"
 ValidationRule="{Binding ValidationRule,
Source={x:Reference RootView}}" />
 </Entry.Behaviors>
</Entry>

The reason why we have wrapped the OnPlatform declaration is that
even though it's syntactically correct, adding a view to a parent with
multiple children cannot be rendered because of the way reflection is
implemented. In order to remedy this issue, the platform-specific
declaration needs to be wrapped into a benign view with a single child.

Customizing Xamarin.Forms Chapter 6

[134]

This is what the final outcome looks like:7.

Customizing Xamarin.Forms Chapter 6

[135]

We can further expand this implementation to include the error indicator within the custom
control, though this would mean that we would need to create a custom control and attach
the custom renderer to it.

Creating a custom Xamarin.Forms control
For a completely custom control, the implementation starts with the Xamarin.Forms view
abstraction. This abstraction provides the integration with XAML, as well as the view
models (that is, the business logic) that are associated with that specific view.

For the floating label entry, we would, therefore, need to create a control with the required
bindable properties exposed. For our use case, in addition to the Entry control attributes,
we would need the validation error description and a flag identifying whether there is such
an error. Let's begin the implementation of our custom control:

We will start by deriving our custom control from the Entry itself and adding1.
the additional properties:

 public class FloatingLabelEntry : Entry
 {
 public static readonly BindableProperty ErrorMessageProperty =
 BindableProperty.CreateAttached("ErrorMessage",
typeof(string), typeof(FloatingLabelEntry), string.Empty);

 public static readonly BindableProperty HasErrorProperty =
 BindableProperty.CreateAttached("HasError", typeof(bool),
typeof(FloatingLabelEntry), false);

 public string ErrorMessage
 {
 get
 {
 return (string)GetValue(ErrorMessageProperty);
 }
 set
 {
 SetValue(ErrorMessageProperty, value);
 }
 }

 public bool HasError
 {
 get
 {
 return (bool)GetValue(HasErrorProperty);

Customizing Xamarin.Forms Chapter 6

[136]

 }
 set
 {
 SetValue(HasErrorProperty, value);
 }
 }
 }

We can now modify our FloatingLabelRenderer to use the new control as the2.
TElement type parameter:

[assembly: ExportRenderer(typeof(FloatingLabelEntry),
typeof(FloatingLabelEntryRenderer))]
 namespace FirstXamarinFormsApplication.Droid.Renderers
 {
 public class FloatingLabelEntryRenderer :
ViewRenderer<FloatingLabelEntry, TextInputLayout>, ITextWatcher

In the renderer, we would need to listen for HasErrorProperty changes and set3.
the error description and error indicator accordingly:

protected override void OnElementPropertyChanged(object sender,
PropertyChangedEventArgs e)
 {

 else if (e.PropertyName ==
FloatingLabelEntry.HasErrorProperty.PropertyName)
 {
 if (!Element.HasError ||
string.IsNullOrEmpty(Element.ErrorMessage))
 {
 EditText.Error = null;
 Control.ErrorEnabled = false;
 }
 else
 {
 Control.ErrorEnabled = true;
 EditText.Error = Element.ErrorMessage;
 }
 }

 }

Customizing Xamarin.Forms Chapter 6

[137]

Using this control within ValidatableEntry instead of the Entry control4.
would create a pleasant material design layout:

Customizing Xamarin.Forms Chapter 6

[138]

It is important to note that, even though we have created and used this
custom control for both Android and iOS, since the iOS renderer is not
implemented, iOS would still display the next best thing from the
inheritance tree (that is, EntryRenderer).

Summary
Overall, Xamarin.Forms has many extensibility points for various scenarios. Nevertheless,
we, as developers, should be careful about using these extensibility points sensibly in order
to create robust, simple, yet sophisticated user interfaces. In this chapter, in order to
understand the customization options, we identified the implementation
domains/quadrants of our Xamarin.Forms application and went over different
customization options for each quadrant. Finally, we created a custom control to
demonstrate the complete implementation of a user control in both shared and native
domains.

This chapter finalizes the Xamarin side of the development effort of our project. In the next
few chapters, we will continue developing a cloud infrastructure using .NET Core for our
mobile application.

3
Section 3: Azure Cloud

Services
Creating a modern mobile application generally requires a robust service backend and
infrastructure. Azure Cloud infrastructure provides a wide spectrum of services and
development platforms for developers to create .NET Core components that can be used
with mobile applications. These services vary from simple Platform as a Service (PaaS)
hosting components to sophisticated multi-model persistence stores.

The following chapters will be covered in this section:

Chapter 7, Azure Services for Mobile Applications
Chapter 8, Creating a Datastore with Cosmos DB
Chapter 9, Creating Microservices Azure App Services
Chapter 10, Using .NET Core for Azure Serverless

7
Azure Services for Mobile

Applications
Whether you are dealing with a small startup application or handling lots of data for an
enterprise application, Microsoft Azure is always a convenient choice because of its cost-
effective subscription model and the scalability that it offers. There are a number of services
on offers such as Software as a Service (SaaS), Platform as a Service (PaaS), and
Infrastructure as a Service (IaaS). These include Notification Hubs, Cognitive Services, and
Azure Functions, which can change the impression of the user regarding your application
with few or no additional development hours. This chapter will give you a quick overview
on how to use some of these services whilst developing .NET Core applications.

In this chapter, we will be designing our service backend using the available service
offerings on the Azure platform:

An overview of Azure services
Data store
Azure serverless
Development services

An overview of Azure services
We are living in the age of cloud computing. Many of the software paradigms that we
learned and applied to our applications 10 years ago are now completely obsolete. The
good old n-tier applications and development team simplicity have been replaced with
distributed modules for the sake of maintainability and performance.

Without further ado, let's start preparing the scope of our application by setting up the
architecture and exploring the concepts of the Azure platform.

Azure Services for Mobile Applications Chapter 7

[141]

An introduction to distributed systems
We have started the development of our client application; it will require some additional
views and modifications. In order to continue with the development, we first need to set up
our backend. For our application, we will need a service backend that will do the following:

Provide static metadata about products
Manage user profiles and maintain user-specific information
Allow users to upload and publicly share data
Index and search user uploads and shares
Notify a set of users with real-time updates

Now, putting these requirements and our goal of creating a cloud infrastructure aside, let's
try to imagine how we could implement a distributed system with an on-premise n-tier
application setup:

In this setup, we have a web tier that exposes the closed logical n-tier structure to the client.
Notice that the system is divided into logical tiers and there is no over-the-wire
communication involved. We will maintain this structure with an on-premise server.
Multiple servers with a load-balanced implementation could still work if there is a need for
scaling. In most cases, synchronization and normalization will occur in the data tier. From a
deployment and management perspective, each deployment will result in a complete
update (on multiple servers). Additionally, each logical module's requirements will have to
be maintained separately even though it is a monolith implementation, and applying
updates to the on-premise server should not be taken lightly because of these requirements.
Deployments to distinct servers will also have to be handled with care.

Azure Services for Mobile Applications Chapter 7

[142]

Knight Capital Group was an American global financial services firm
specializing in the electronic execution of sales and trading. In August
2012, the company went from $400 million in assets to bankruptcy
overnight because of a new deployment that was only released on seven
of the eight servers that the company operated. The 45-minute nightmare,
where the correct deployments were competing with the old code on a
single server, resulted in a $460 million loss.

We can easily move the complete web application to a cloud IaaS virtual machine (VM).
However, this migration will only help with maintenance, and scaling would still have to
be on the system level rather than the component level; the bottleneck, in this case, would
most likely be the data tier.

For this n-tier setup, we would use a SQL database for data storage, a message queue such
as Rabbit MQ or MSMQ, and an ASP.NET web API implementation for the web tier.
Identity management would probably be an integrated solution such as ASP.NET Identity.
Notifications could be a polling implementation from the client side or, alternatively, a
SignalR implementation can be considered within the ASP.NET web application. Search
functionality would probably be have to be on the SQL Server level for better performance.
All of this is with the assumption that we are using the Microsoft .NET stack and the target
hosting platform is a Microsoft IIS server on a Windows host.

Next, let's break down our logical modules into smaller services that can communicate with
each other within a Service-Oriented Architecture (SOA) ecosystem:

Azure Services for Mobile Applications Chapter 7

[143]

This setup is a little lighter, where each component can be independently developed and
deployed (that is, decoupled from the other elements in the system). From a maintenance
perspective, each service can be deployed onto separate servers or VMs. In return, they can
be scaled independently from each other. Moreover, each of these services can now be
containerized so that we can completely decouple our services from the operating system.
After all, we only need to have a web server in which our set of services can be hosted and
served to the client. At this point, .NET Core will turn our application into a cross-platform
web module, allowing us to use both Windows and Unix containers. This whole
endeavor could be label as migrating from an IaaS strategy to a PaaS approach.
Additionally, the application can now implement an Infrastructure as Code (IaC) structure,
where we don't need to worry about the current state of the servers that the application is
running on.

Well, this sounds great, but how does it relate to cloud architecture and Azure? The main
purpose of creating a cloud-ready application is to create an application with functionally
independent modules that can be hosted by appropriate, maintainable, and scalable cloud
resources. At this point, we are no longer talking about a single application, but a group of
resources working hand-in-hand for various application requirements:

Azure Services for Mobile Applications Chapter 7

[144]

In this distributed model, each component is made up of simple PaaS services where there
is no direct dependency among them. The components are completely scalable, and are
replaceable as long as the system requirements are satisfied. For instance, if we begin with a
small web API application service, it would probably reside within an application service
plan. However, if the requirements are satisfied, then we can replace this microservice with
an Azure function implementation that would change the deployment model and the
execution runtime, but still keep the system intact. Overall, in a cloud model, the
replaceable nature of individual components (as long as the overall system is in check)
minimizes risks and the effort of maintenance.

Going back to our requirements, we are free to choose between a relational database such
as a SQL Server PaaS or a NoSQL setup with Cosmos DB. Additionally, we can improve
performance by using a Redis Cache between the data stores and the web gateway. Search
functions could be executed using Azure Search indices, and App Services and Azure
Functions can be employed for the API layer. Additionally, a simple ESB implementation or
Azure Durable Functions can help with the long-running asynchronous operations. Finally,
notifications can be done by using Azure SignalR or Notification Hubs.

Of course, the choice of resources will largely depend on the architectural approach that is
chosen.

Cloud architecture
In the cloud platform, the design of the system consists of individual components. While
each component should be designed and developed separately, the way in which these
components are composed should follow certain architectural patterns that will allow the
system to provide resilience, maintainability, scalability, and security.

Particularly for mobile applications, some of the following compositional models can help
to contribute to the success of the application.

Azure Services for Mobile Applications Chapter 7

[145]

Gateway aggregation
In a microservices setup, the application is made up of multiple domains, and each domain
implements its own microservice counterpart. Since the domain is segregated, the data that
is required for the client application view can be constructed by executing multiple calls for
the backend services. In an evolving application ecosystem, this will, in time, push all the
complexities of the business tier into the client application. While this could still be
acceptable for a web application, a mobile application's performance will degrade in time as
the complexity of the system grows. In order to avoid this problem, a gateway service
facade can be placed in between the client application and the microservices:

Let's consider applying the same logic within our application. Let's assume that an
auctioned vehicle data is handled by one API (business item), the vehicle metadata is
handled by another API (static data), the user information is served through yet another
API, and, finally, we have a bidding API. While this setup provides the necessary
segregation for a microservice setup, it requires the client application to execute multiple
service calls to view and/or create a single posting. In such a scenario, the gateway can be
used to orchestrate the microservices so that the client application can be relieved of this
responsibility.

Azure Services for Mobile Applications Chapter 7

[146]

If, in fact, we are planning to support a web application as a client, then the data models
and service orchestration might differ from the mobile application. In this case, we would
consider creating separate gateways for each client app, thus decreasing the maintainability
costs of a single super gateway.

Backends for frontends
In a multiclient system, each client might require the data to be aggregated in a certain way.
This will depend on the target platform resources, technical feasibility, and use cases. In
this type of a scenario, the gateway API would be required to expose multiple service
endpoints for different microservice and data compositions. Instead, each client app can be
served data through a separate gateway, decreasing the complexities of supporting
multiple client applications through a single facade:

For instance, let's assume that our application development team implements a UWP
application on top of an original mobile application that is targeting iOS and Android
platforms. In this case, UWP views would be viewed on a larger design real estate and the
data requirements would be different than the mobile applications. For a simple solution,
gateway API endpoints can now be extended with parameters to limit or extend the object
tree that is returned in the response (that is, info, normal, or extended), or additional
Get{Entity}Extended endpoints can be introduced. Nevertheless, in this way, while
minimizing the complexity of the client applications, we are causing the gateway to grow
and are decreasing the maintainability of this tier. If we introduce separate gateways, we
will be separating the life cycle of these APIs for clients that already have separate
application life cycles. This could help in creating a more maintainable system.

Azure Services for Mobile Applications Chapter 7

[147]

However, what if we have certain compositions or aggregations that repeat throughout the
execution of client applications? These repeating patterns can be construed as data design
problems, where the segregation of data results in a degradation of performance. If the
microservice setup, in fact, requires these domain separations, we will need to come up
with a data composition on the data store level.

A materialized view
The aggregation of certain data dimensions can be done on the data store level. In fact, as
developers with a SQL background, we are familiar with SQL views that can be composed
of multiple relational tables and can be indexed on the data store level. Similar strategies
can be applied to NoSQL databases such as Cosmos.

For instance, this data denormalization process can be executed on Cosmos DB using the
Azure Cosmos DB change feed. Changes on one document collection can be synchronized
across multiple collections, which are optimized for executing various searches or
aggregating data operations:

Azure Services for Mobile Applications Chapter 7

[148]

For instance, going back to our auction functionality, when we are dealing with the search
function, we will be executing a search on multiple document collections; that is, the user
will need to search by vehicle, auction data, bids, and profile data. In other words, the data
points on different dimensions should all be available through an inner-join for the search
execution. This can be achieved using a summary table for the vehicle posts, allowing
searchable fields to be synchronized across collections.

The cache-aside pattern
Caching is yet another factor that can help improve the performance of the application, that
is, the type of data we are caching and the application layers that we are caching this
information on. The cache-aside pattern is the implementation of a multiplexer that will
handle data consistency between the cache store and the data store depending on the
incoming requests and the data lifespan:

In this setup, an incoming request, branded with a certain unique identifier (for example,
{EntityName}_{EntityId}), is first searched for within the cache store and, if not there,
it is retrieved from the data store and inserted into the cache. In this way, the next request
will be able to retrieve the data from the cache.

Azure Services for Mobile Applications Chapter 7

[149]

In a to-cache or not-to-cache dilemma, data entropy can be a fundamental decision factor.
For instance, caching data for static reference items can be beneficial; however, caching the
auction information, where the data is impure and the recurrence of requests for the same
data points is less likely than static references, will not provide added value to the system.

The cache-aside strategy can also be implemented on the client side using local storage such
as SQLite. At times, a certain document collection that it would not make sense to cache on
the server side can beneficially be cached on the client side. For instance, the vehicle
metadata for a certain make and model for the current user might be a repeating request
pattern; however, considering the entropy of this data and the access frequency of other
users to the same item, it would not be a server cache dimension.

Queue-based load leveling
Message queues are neither a new concept nor exclusive to the cloud architecture.
However, in a distributed system with microservices, they can help with the decoupling of
services and allow you to throttle resource utilization. Serverless components that are
designed for scalability and performance, such as Azure Functions, can provide excellent
consumers for work queues within the cloud infrastructure.

For instance, let's consider an application use case where the registered user is creating an
auction item. They have selected the make and model, added additional information, and
have even added several photos for the vehicle. At this point, if we allow the posting of this
auction item to be a synchronous request, we will be locking certain modules in the
pipeline to a single request. Primarily, the request would need to create a document in the
data store; however, additional functions would also be triggered within the system to
process images, notify subscribed users, and even start an approval process for the content
administrator. Now, imagine this request is executed by multiple users of the application
(for example, multiple registered users creating multiple posts). This would result in
resource utilization peaks which, in turn, would put the resilience and availability of the
application at risk.

As a solution to this problem, we can create a message queue that will be consumed by an
Azure function, which will orchestrate the creation of the auction data. The message queue
can be either an Enterprise Service Bus or an Azure storage queue:

Azure Services for Mobile Applications Chapter 7

[150]

Well, this sounds great, but how does this implementation a effect the client
implementation? Well, the client application will need to implement either a polling
strategy to retrieve the status of the asynchronous job, or it can be notified using a push-
pull mechanism, where the server would first send the auction ID before the process is even
queued. Then, when it is finalized, the server can notify the client with the same ID,
allowing it to pull the completed server data. At this point, the local version of the data can
be stored and served to the user until the actual server data is available. For this type of
notification, notification mechanisms such as Azure SignalR or Notifications Hub can be
employed.

Competing consumers
In the previous example, we used Azure functions as the consumers of a message queue.
This approach could already be accepted as an implementation of competing consumers
where the provided message queue is handled by multiple worker modules.

While this would provide scaling requirements and allow for performant execution, as a
product owner we would not have any control over the function instances created to
consume the events from the message queue. In order to be able to throttle and manage the
queue, a message broker mechanism can be introduced, which will control the flow of
messages into the queue. Once the messages are pushed into the queue, multiple
consumers can retrieve, process, and complete the messages.

Azure Services for Mobile Applications Chapter 7

[151]

The publisher/subscriber pattern
Let's assume that we have completed our brokered queue implementation and dispatched a
consumer to finalize a long-running operation. At this point, as previously mentioned, our
application is expecting a done signal so that it can get rid of any transient data.

In an open system, like the one we are in the process of implementing, where each service
can communicate with each other (rather than a closed system where the execution is done
sequentially down the stream), we are no longer dealing with a deterministic synchronous
model, and yet the consumers of the system still expect results. In order to allow the source
system (that is, the publisher) to propagate the output of an operation to the interested
parties (that is, the subscribers), an output channel can be established. This implementation
pattern can be attributed to the publisher/subscriber pattern (which is also known as the
pub/sub pattern)

Going back to our asynchronous web request, the output channel would then deliver the
result to the notification module and deliver the results to the client application.

The same pattern implementation can be established with another message queue using
Service Bus or the actual implementation of the pub/sub pattern on the Azure
infrastructure; EventGrid. Either of these services can allow the output from a long-running
process to be fanned out to interested parties, such as an Azure function, which will push
the notification message or trigger a message on Azure SignalR.

The circuit breaker and retry patterns
In a cloud system, where there are multiple moving pieces involved, it is hard to avoid
failure. In this context, the resilience of a system is determined by how fast and how often it
can recover from a failure. The circuit breaker and retry patterns are complementary
patterns that are generally introduced in a microservice ecosystem. The circuit break
pattern can be used to decrease the time and resources of a system if a failure is imminent.
In these types of situations, it is better to allow the system to fail sooner rather than later so
that the failure can be handled by a secondary process or a failover mechanism can be
initiated.

Azure Services for Mobile Applications Chapter 7

[152]

For instance, if we have a service that is prone to timeouts (for example, under heavy load
or due to an external service failure), a circuit breaker can be implemented to continuously
monitor the incoming requests in the closed circuit state. Failures can be retried seamlessly
with regard to the client application. When consequent failures occur, the circuit can be put
into a half-open or open state temporarily, so that the following requests are immediately
dropped without trying the execution (knowing that it will probably fail until the issue is
fixed). In this state, the client app can disable the feature or, if there is a
failover/workaround implemented, then this implementation can be used. Once the circuit
open state expires, the system can reintroduce this endpoint, first, in a half-open state and,
finally, in a closed state, and the system is said to be healed.

Built-in Azure-monitoring functions accompanied by application telemetry can provide
alerts and notifications, which can help with the maintenance of Azure applications.

Azure service providers and resource types
The Azure ecosystem, along with the ever-growing set of services it provides, allows
developers to create various distributed cloud applications with ease. As we have seen in
the Cloud architecture section, many PaaS and SaaS offerings create a catalog of solutions for
everyday problems by designing scalable and resilient applications.

By quickly looking at the (incomplete) catalog of services, you will notice that each service
is provided as part of a provider category:

Azure Services for Mobile Applications Chapter 7

[153]

The services in each category are provided by one or multiple service providers. Each
service in these catalogs is versioned so that the provisioning of these services can be
handled by Azure Resource Manager.

In order to visualize the number of providers available under the same roof, you can use
the Az PowerShell module:

Get-AzResourceProvider -ListAvailable | Select-Object ProviderNamespace,
RegistrationState

This will return a set of providers that are available for your subscription. These providers
can be Microsoft-provided modules or third-party offers:

Microsoft Azure Documentation provides helpful Azure PowerShell
commands, which can be directly executed in the Cloud Shell without
having to use PowerShell (on Windows) or bash (on Linux or macOS).
Additionally, a cross-platform version, PowerShell (Core), which utilizes
.NET Core, is available on non-Windows operating systems.

If you dive into a specific namespace, for instance, the Microsoft.Compute provider
namespace, you can get a better overview of the services offered and the geographical
regions these resources are available at:

Azure Services for Mobile Applications Chapter 7

[154]

In an Azure resource group, the Resource type defines which resource we are really after
as well as the version of this resource. These resource definitions, if prepared as part of a
resource group Azure Resource Manager (ARM) template, make up our declarative IaC.

ARM is the platform service that allows provisioning resources within a subscription. It
exposes a web API that can be consumed using PowerShell, Azure CLI, and CloudShell, as
well as the Azure portal itself. The declarative syntax used in resource manager templates
provides a consistent, idempotent deployment experience, which allows developers and
automation engineers to manage the infrastructure life cycle with confidence.

Data stores
Defining domains, and creating the architecture that our distributed system is going to be
built upon, inherently starts with deciding on the persistence store. In return, data domains
can be defined and access models can be designated. In most cases, this decision does not
need to be limited to a single data store, but the system can make use of multiple data types
and different data stores. The Azure platform offers various resources with different data
management concepts and feature sets. It is important to choose a data store model that is
best suited to the application requirements and take account of cost and management. Let's
take a look at these different models and when to use them.

Azure Services for Mobile Applications Chapter 7

[155]

Relational database resources
Relational databases are probably the most prominent applications of a data store.
Transactional consistency that implements the Atomic, Consistent, Isolated, Durable
(ACID) principles offers developers a strong consistency guarantee. Nevertheless, from a
scalability and performance perspective, common SQL implementations such as MSSQL or
MySQL are, in most scenarios, outperformed by NoSQL databases such as Mongo and
Cosmos DB. Azure SQL Database, Azure Database for MySQL, and PostgreSQL are
available both as IaaS and PaaS offerings on the Azure platform.

In the PaaS resource model, the operational costs and scalability of the databases are
handled through a unit called Database Transaction Unit (DTU). This unit is an abstract
benchmark that is calculated using the of CPU, memory, and data I/O measures . In other
words, DTU is not an exact measure but a normalized value depending on the
aforementioned measures. Microsoft offers a DTU Calculator, which can provide estimates
on DTU usage based on performance counters collected on a live database.

From a security perspective, several advanced features are available for Azure SQL
Databases. These security features are available on various levels of data accessibility:

Network security is maintained by firewalls and access is granted explicitly by
using IP and Virtual Network firewall rules.
Access management implementation consists of SQL Authentication and Azure
Active Directory authentication. The security permissions can be as granulized as
data tables and rows.
Threat protection is available through log analytics and data auditing as well as
threat detection services.
Information protection through data masking and encryption on various levels
protects the data itself.

Azure storage
The Azure storage model is one of the oldest services in the cloud ecosystem. It is a NoSQL
store and provides developers with a durable and scalable persistence layer. Azure storage
is made up of four different data services, and each of these services is accessed over
HTTP/HTTPS with a well-established REST API.

Let's take a closer look at these data services available within Azure storage.

Azure Services for Mobile Applications Chapter 7

[156]

Azure blobs
Azure blob storage is the cloud storage offering for unstructured data. Blobs can be used to
store any kind of data chunks such as text or binary data. Azure blob storage can be
accessed through the URL provided for the storage account created:

http://{storageaccountname}.blob.core.windows.net

Each storage account contains at least one container, which is used to organize the blobs
that are created. Three types of blobs are used for different types of data chunk to be
uploaded:

Block blobs: These are designed for large binary data. The size of a block blob
can go up to 4.7 TB. Each block blob is made up of smaller blocks of data, which
can be individually managed. Each block can hold up to 100 MB of data. Each
block should define a block ID, which should conform to a specific length within
the blob. Block blobs can be considered as discrete storage objects such as files in
a local operating system. They are generally used for storing individual files such
as media content.
Page blobs: These are used when there is a need for random read/write
operations. These blobs are made up of pages of 512 bytes. A page blob can store
up to 8 TB of data. In order to create a page blob, a maximum size should be
designated. Then, the content can be added in pages by specifying an offset and a
range that aligns with the 512-byte page boundaries. VHDs stored in the cloud
are a perfect fit for page blob usage scenarios. In fact, the durable disks provided
for Azure VM are page blob-based (that is, they are Azure IaaS disks).
Append blobs: As the name suggests, these are append-only blobs. They cannot
be updated or deleted and the management of individual blocks is not
supported. They are frequently used for for logging information. An append blob
can grow up to 195 GB.

As you can see, blob storage, especially block blobs, are ideal for storing image content for
our application. Azure Storage Client library methods provide access to CRUD operations
for blobs and can be directly used in the client application. However, it is generally a
security-aware approach to use a backend service to execute the actual upload to blob
storage so that the Azure security keys can be kept within the server rather than the client.

Azure Services for Mobile Applications Chapter 7

[157]

Azure files
Azure files can be considered a cloud-hosted file sharing system. It is accessible through the
Server Message Block (SMB), also known as Samba, and allows storage resources to be
used on hybrid (that is, on-premise and cloud) scenarios. Legacy applications that are using
network shared folders (or even local files) can be easily pointed to the Azure files network
storage. Azure files, just like other Azure storage data service, are accessible through the
REST API and Azure storage client libraries.

Azure queues
In order to implement asynchronous processing patterns, if you are not after advanced
functionalities and queue consistency, Azure queues can be a cost-effective alternative to
Service Bus. Azure queues can be larger and easier to implement and manage for simpler
use cases. Similar to Service Bus, Azure queue messages can also be used with Azure
Functions, where each message triggers an Azure function that handles the processing. If
triggers are not used, then only a polling mechanism can handle the message queue. This is
because, unlike Service Bus, they don't provide blocking access or an event trigger
mechanism such as OnMessage on Service Bus.

Azure tables
Azure tables are a NoSQL-structured cloud data store solution. The implementation of
Azure Table storage follows a key-value pair (KVP) approach, where structured data
without a common schema can be stored in a table store. Azure Table storage data can be
easily visualized on the Azure portal and data operations are supported through Azure
Storage client libraries such as other Azure storage services. Nevertheless, Azure Table
storage is now part of Azure Cosmos DB and can be accessed using the Cosmos DB table
API and SDK.

Cosmos DB
Cosmos DB is the multifacade, globally distributed database service offering of Microsoft
on the Azure cloud. With its key benefits being scalability and availability, Azure Cosmos
DB is a strong candidate for any cloud-based undertaking. Being a write-optimized
database engine, it guarantees less than 10 ms latency on read/write queries at the 99th

percentile globally.

Azure Services for Mobile Applications Chapter 7

[158]

Cosmos DB provides developers with five different consistency models to allow for an
optimal compromise between performance and availability, depending on requirements.
The so-called consistency spectrum defines various levels between strong consistency and
eventual consistency or, in other words, higher availability and higher throughput.

In spite of the fact that it was designed as NoSQL storage, it does support various storage
model protocols including SQL. These storage protocols support the use of existing client
drivers and SDKs, and can replace existing NoSQL data stores seamlessly. Each API model
can also be accessed through the use of the available REST API:

API Model Containers Items
SQL API Document Collections Documents

MongoDB Document Collections Documents
Gremlin Graph Graphs Nodes and Edges

Cassandra Column Family Table Rows
Azure Table Storage KVP Store Table Items

Azure Cache for Redis
The Azure Cache for Redis resource is a provider that implements an in-memory data
structure store that is similar to Redis. It helps improve the performance and scalability of
distributed systems by decreasing the load on the actual persistence store. With Redis, data
is stored as KVPs, and because of its replicated nature, it can also be used as a distributed
queue. Redis supports the execution of transactions in an atomic manner.

We will be using the cache-aside pattern with the help of Azure Cache for Redis to
implement in our application backend.

Azure serverless
As you might have noticed, in modern cloud applications, PaaS components are more
abundant than IaaS resources. Here, application VMs are replaced with smaller application
containers, and the database as a platform replaces the clustered database servers. Azure
Serverless takes infrastructure and platform management one step further. In a serverless
resource model, such as Azure Functions, event-driven application logic is executed on-
demand on a platform that is provisioned, scaled, and managed by the platform itself. In
the Azure serverless platform, event triggers can vary from message queues to Webhooks,
with intrinsic integration into various resources within the ecosystem.

Azure Services for Mobile Applications Chapter 7

[159]

Azure functions
Azure functions are managed event-driven logic implementations that can provide
lightweight ad hoc solutions for the cloud architecture. In Azure functions, the engineering
team is oblivious not only of the execution infrastructure but also of the platform, since
Azure functions are implemented cross-platform with .NET Core, Java, and Python.

The execution of an Azure function starts with the trigger. Various execution models are
supported for Azure functions, including the following:

Data triggers: CosmosDBTrigger and BlobTrigger
Periodic triggers: TimerTrigger
Queue triggers: QueueTrigger, ServicesBusQueueTrigger, and
ServiceBusTopicTrigger
Event triggers: EventGridTrigger and EventHubTrigger

The trigger for an Azure function is defined within the function
manifest/configuration: function.json.

Once the trigger is realized, the function runtime executes the run block of an Azure
function. The request parameters (that is, the input bindings) that are passed to the run
block are determined by the trigger that was used.

For instance, the following function implementation is triggered by a message entry in an
Azure storage queue:

public static class MyQueueSample
{
 [FunctionName("LogQueueMessage")]
 public static void Run(
 [QueueTrigger("%queueappsetting%")] string queueItem,
 ILogger log)
 {
 log.LogInformation($"Function was called with: {queueItem}");
 }
}

Azure Services for Mobile Applications Chapter 7

[160]

The output parameters (that is, the output binding) can also be defined as an out parameter
within the function declaration:

public static class MyQueueSample
{
 [FunctionName("LogQueueMessage")]
 public static void Run(
 [QueueTrigger("%queueappsetting%")] string queueItem,
 [Queue("%queueappsetting%-out")] string outputItem
 ILogger log)
 {
 log.LogInformation($"Function was called with: {queueItem}");
 }
}

Note that the [Queue] attribute is used from the queue storage bindings for Azure
functions as an output binding, which will create a new message entry in another queue.
Further similar binding types are available out-of-the-box for Azure functions.

We have used C# and .NET Standard in these examples for creating
compiled Azure functions. Script-based C#, Node.js, and Python are also
options for creating functions using a similar methodology.

Conceptually, Azure functions can be treated as per-call web services. Nevertheless,
Durable Functions, an extension of Azure Functions, allows developers to create durable
(that is, stateful) functions. These functions allow you to write stateful functions with
checkpoints, where the orchestrator function can dispatch stateless functions and execute a
workflow.

Azure functions can be used either as individual modules executing business logic on
certain triggers or as a bundle of imperative workflows (using durable functions);
alternatively, they can be used as processing units of Azure Logic Apps.

Azure Services for Mobile Applications Chapter 7

[161]

Azure Logic Apps
Azure Logic Apps are declarative workflow definitions, which are used to orchestrate
tasks, processes, and workflows. Similar to functions, they can be integrated with many
other Azure resources as well as external resources. Logic Apps are created, versioned, and
provisioned using a JSON app definition schema. Designers are available both on the
Azure portal as well as Visual Studio:

Logic Apps tasks are not only limited to Azure functions but also include so-called
commercial and/or third-party connectors (for example, sending an SMS with Twilio, using
SendGrid to send an email, posting a Tweet). In addition to this, the Enterprise Integration
Pack (EIP) provides industry-standard messaging protocols.

Just like with Azure functions, the execution of a logic app starts with the trigger, and each
step output is stored within the execution context. Processing blocks such as conditionals,
switches, and foreach loops are available within the app flow. Additionally, logic app
workflows can be dispatched by Azure Event Grid events.

Azure Services for Mobile Applications Chapter 7

[162]

Azure Event Grid
Azure Event Grid is a cloud-based event aggregate implementation that supports the
pub/sub event routing strategy. An event grid consists of Event Sources (that is, the
publishers) and Event Subscriptions (that is, the consumers):

Similar to Azure function triggers, various event sources are available for developers and
Azure Event Grid can be used to route or multicast certain events from one Azure resource
to another. Events do not need to be triggered by a system resource but can also be created
using an HTTP request, allowing custom modules to send events to consumers.

Development services
Azure resources are not just limited to application requirements that are provisioned and
maintained with the application life cycle. They also include certain platform services that
are used to implement the application life cycle and development pipeline, such as Azure
DevOps and Visual Studio App Center. We will be using these resources to manage our
application development and deployments throughout the remainder of the book.

Azure Services for Mobile Applications Chapter 7

[163]

Azure DevOps
Azure DevOps (previously known as TFS Online or Visual Studio Team Services), which
started as the Microsoft Application Lifecycle Management (ALM) suite for on-premise
product TFS, is now the most utilized freemium management portal. Azure DevOps
instances can be created from Azure Portal as well as through the Azure DevOps portal.
Let's take a look at how to do this:

This process of procurement starts with creating a DevOps organization:1.

Azure Services for Mobile Applications Chapter 7

[164]

Once the organization is created, we can now create a new project to create2.
source control repositories and the backlog. Both the ALM process and the
version control options are available under the Advanced section of the project
settings:

It is important to mention that the TFVC and Git repositories are available at the same time.
A single Azure DevOps project may contain multiple repositories. Because of cross-
platform support and integration with IDEs (such as Visual Studio Code and Visual Studio
for Mac), as well as native IDEs (such as Android Studio), Git is generally the repository
type of choice for Xamarin and native mobile developers.

Azure Services for Mobile Applications Chapter 7

[165]

An extensive feature set is available for DevOps implementations on Azure DevOps. The
Azure portal (apart from the overview) is divided into five main sections, as follows:

Boards (project management)
Repos (source control)
Pipelines (CI/CD)
Test plans (test management)
Artifacts (package management)

According to the freemium subscription model, up to five contributors can be included in a
project for free. Additional team members will need to have either a valid Visual Studio or
Microsoft Developer Network (MSDN) license, or they will be assigned to a read-only
stakeholder role.

Visual Studio App Center
Visual Studio App Center is a suite of tools that bundles various development services used
by mobile developers (such as Xamarin, Native, and Hybrid) into a single management
portal. App Center has tight integration with Azure DevOps and they can be used in
conjunction with one another. Multiple application platforms are supported by App Center
and various features are available for these platforms:

From a CI/CD perspective, App Center allows mobile application builds to be executed
with source artifacts from various repository systems such as Azure DevOps and GitHub.
Applications can be compiled using out-of-the-box build templates and application
packages can be distributed to designated groups, without having to use any other store.

The prepared application packages can also be put through automated acceptance tests by
means of UI tests. Multiple testing runtimes are supported for automated UI tests, such as
Xamarin.UITest and Appium.

Finally, application telemetry and diagnostic data can be collected both from beta and
production versions of mobile applications, and valuable application feedback can be
reintroduced into the backlog. Push notifications are another valuable feature that can be
used to engage application users.

Azure Services for Mobile Applications Chapter 7

[166]

App Center also uses a freemium subscription model, where the build and test hours are
limited by the subscription; however, limited usage of the CI/CD features and unlimited
distribution features are available for free.

Summary
Overall, developing a distributed application development is now much easier with tightly
integrated Azure modules. Both cloud and hybrid applications can be created using the
available resources and modules implemented with the .NET Core stack. It is also
important to remember that resources should not define application requirements; rather,
an optimal solution should be devised, bearing in mind the available modules,
requirements, and costs.

In this chapter, we browsed through available Azure resources that will used in the
following chapters to create our application backend. In the next chapter, we will start by
creating our data store using Cosmos DB.

8
Creating a Datastore with

Cosmos DB
Creating a data store is an essential part of both mobile and web application projects.
Scalability, cost-effectiveness, and performance are three key factors that determine which
database is appropriate for your application. Cosmos DB, with its wide range of scalability
options and subscription models, can provide an ideal solution for mobile applications.
Cosmos DB offers a multi-model and multi-API paradigm that allows applications to use
multiple data models while storing application data with the most suited API and model
for the application, such as SQL, Cassandra, Gremlin, or MongoDB. In this chapter, we will
create the data store for our application and implement the data access modules.

In this chapter, we will cover the following topics:

The basics of Cosmos DB
Data access models
Modeling data
Learning Cosmos DB in depth

The basics of Cosmos DB
From a cloud-based application perspective, Cosmos DB is yet another persistence store
that's available that you can include in your resource group. As we discussed previously,
the biggest advantages of Cosmos DB also make up the unique feature set of Cosmos DB,
namely global distribution, the multi-model, and high availability.

Creating a Datastore with Cosmos DB Chapter 8

[168]

In our example app, we will be using Cosmos DB and creating our data model around the
available persistence models. Let's start by adding a Cosmos DB instance to our resource
group:

In this screen, we are going to set up the resource group, the account name (which also
defines the access URL), and additional parameters related to the data access model, as well
as global distribution.

Creating a Datastore with Cosmos DB Chapter 8

[169]

Global distribution
Global distribution is an available option that deals with the global reach of your
application. If you are planning to make your application globally available and you expect
to have the same latency in each market, it is possible to select Geo-Reduncy to allow
distribution on multiple regions. Once the Cosmos DB resource is created, this can be done
using the Replicate data globally blade:

Great! Now, we have the application present on five different data centers across four
continents. In other words, we have enabled multi-homing for our persistence store.

In addition to Geo-Redundancy, you can enable multiple write regions. Multiple write
regions allow you to set multiple masters for your distributed data store. This data will not
only be replicated across different regions, but will also provide the same write
throughput.

When the global distribution regions are configured, you can set one of the read regions,
that is, its failover region.

Creating a Datastore with Cosmos DB Chapter 8

[170]

Consistency spectrum
Once data persistence becomes a globally distributed, multi-homed operation, the
consistency concept becomes a fundamental subject. In Cosmos DB, there are five well-
defined consistency levels that allow the developers to optimize, in simple terms, the trade-
off between consistency and performance:

The default consistency level can be set on the database level, as well as within the client
session that's consuming the data. However, the client set's consistency cannot be set to a
stronger consistency than the default consistency level.

In order to understand this consistency, we will be using the baseball analogy that's used
by the Microsoft research paper. In this example, we are considering the various
stakeholders in a baseball game and how they read and write the score.

Without a doubt, the person who needs the strongest consistency is the official scorekeeper.
They would read the current score and increment the score when any of the teams score.
Then, they would like to have the assurance that the data they are reading is the latest
version. However, since the score keeper is the only person who will be executing a write
operation, we might be able to get away with a less consistent read level, such as session
consistency, which provides the monotonic reads, monotonic writes, read-your-writes and
write-follows-reads guarantees given that there is a single writer session.

Following the official scorekeeper, another stakeholder with a strong consistency
requirement is the umpire, the person who officiates the baseball game behind the home
plate. The umpire's decision to end the game in the second half of the ninth inning depends
on whether the home team is ahead (that is, if the visiting team has no way of equalizing
the score, there is no need for the home team to bat). In this decision, they would require a
linearizability guarantee (that is, they will be reading the latest version of any given data
point). From their perspective, each operation should be happening atomically, and there is
a single global state (that is, the source of truth). In this setup, the performance (that is, low
latency) is compromised in exchange for a quorum state in a distributed cluster.

Creating a Datastore with Cosmos DB Chapter 8

[171]

Unlike the umpire, a periodic reporter (for example, for 30 minutes) would just like
assurance of a consistent prefix; in other words, they just rely on the consistent state of the
data up until the returned write operation. For them, the data state consistency is more
important than the latency of the result since the operation is executed periodically to give
an overall update.

Another stakeholder that doesn't care much about the latency but cares about the consistent
state would be the sports writer. The writer can receive the final result of the game and
provide their commentary the next day, as long as the result they received is the correct
one. In a scenario similar to this, eventual consistency would probably return the correct
final result, but when you want to limit the eventual consistency promise with a delay
period, bounded staleness can be a solution. In fact, the umpire could have used a similar
strategy for their read operations with a shorter delay.

By applying these concepts to our application model, we can decide for ourselves which
modules would require which type of a consistence.

Let's assume that our users receive a review or rating from the participants once the
transaction is completed. In this scenario, the rating system does not really require an
ordered set of writes, nor is the consistency of much importance. We would be able to get
away with each review for the same user if we had written and read with the promise of
eventual consistence.

Next up is the notification system, which sends out the highest bids for an auction item in
certain intervals to only interested parties. Here, the read operation only needs to be
performed with the promise so that the order in which the bids have been written to our
data store is preserved; in other words, with a consistent prefix. This becomes especially
crucial if we are sending statistics similar to the value of the item has raised by 30% in the last
hour. Similarly, the period for this consistence can be defined by the read system, making it
a bounded staleness consistency.

Now, let's assume, that the user would like to keep a set of auctions in a watch list. This
watch list would only be written by the user themselves, and the important read assurance
would be to read-your-writes. This can be handled by session consistence. Additionally, the
creation of a new auction item or updates would again be only session consistent.

Finally, probably the most consistent process in the setup would be the actual bidding (that
is, strong consistence). Here, in order to bid for an auction item, as well as announce the
results of an auction, we rely on strong consistency since bidding on the items is a multi-
actor operation and we would like to make sure that the incoming bids are executed in a
consistent manner.

Creating a Datastore with Cosmos DB Chapter 8

[172]

This, of course, is just a presumptuous setup where the costs and implementation is
completely left out of the equation. In a real-world implementation, session consistence
would provide the best trade-off between consistency and performance while decreasing
costs.

Pricing
The pricing model for Cosmos DB is rather complicated. This calculation involves many
factors, such as the global availability, consistence, and another abstract unit called
the Request Unit (RU). Similar to the Data Transaction Unit (DTU), it is a measure of the
system resources that are used (for example, CPU, memory, and IO) to read a 1 KB item.
The number of factors can effect the RU's usage, such as item size, complexity, indexing,
consistency level, and executed queries. It is possible to keep track of the RU consumption
by using the request charge headers that are returned by the DB.

Let's take a look at the following document DB client execution:

var query = client.CreateDocumentQuery<Item>(
 UriFactory.CreateDocumentCollectionUri(DatabaseId, CollectionId),
 new FeedOptions { MaxItemCount = -1 })
 .Where(item => !item.IsCompleted)
 .AsDocumentQuery();

This would translate into a SQL query as follows:

select * from Items where Items.isCompleted = false

We can retrieve the request charge by using the Query Stats tab on the Data Explorer
blade:

Creating a Datastore with Cosmos DB Chapter 8

[173]

According to the datasets and application execution, request charges become more and
more important. The Cosmos DB costs can be optimized for your application's needs by
analyzing the provided telemetry.

Data access models
Probably the most important option to select before creating the Cosmos DB instance is the
access model (that is, the API). In our application, we will be using the SQL API since it is
inherently the only native access model and allows the usage of additional features such as
triggers. Nevertheless, let's take a quick look at the other options that are available.

SQL API
Previously a standalone offer known as Azure Document DB, the SQL API allows
developers to query a JSON-based NoSQL data structure with a SQL dialect. Similar to
actual SQL implementations, the SQL API supports the use of stored procedures, triggers
(that is, change feeds), and user-defined functions. Support for SQL queries allows for the
(partial) use of LINQ and existing client SDKs, such as the entity framework.

Creating a Datastore with Cosmos DB Chapter 8

[174]

MongoDB API
The MongoDB API that's provided by Cosmos DB provides a wide range of support for the
MongoDB query language (at the time of writing, the MongoDB 3.4 wire protocol is in
preview). Cosmos DB instances that are created with the MongoDB API type can be
accessed using existing data managers, such as Studio 3T, RoboMongo, and Mongoose.
This level of comprehensive support for MongoDB provides developers with the option of
seamless migration from existing MongoDB stores. Azure portal data provides both shell
and query access to MongoDB resources in order to visualize and analyze the data. In order
to demonstrate this, let's execute several MongoDB queries from the MongoDB
documentation library:

Given that we have a collection called survey, we will start by inserting the1.
collection of survey results:

db.survey.insert([
 { "_id": 1, "results": [{ "product": "abc", "score": 10 }, {
"product": "xyz", "score": 5 }]},
 { "_id": 2, "results": [{ "product": "abc", "score": 8 }, {
"product": "xyz", "score": 7 }]},
 { "_id": 3, "results": [{ "product": "abc", "score": 7 }, {
"product": "xyz", "score": 8 }]}
])

This will result in an error message similar to the following:

ERROR: Cannot deserialize a 'BsonDocument' from BsonType 'Array'.

This is because the insert command is not fully supported on the web shell. In2.
order to have proper command execution, we need to move on to a local terminal
(given that the Mongo toolset is installed):

Cans-MacBook-Pro:~ can.bilgin$ mongo
handsoncrossplatformmongo.documents.azure.com:10255 -u
handsoncrossplatformmongo -p {PrimaryKey} --ssl --
sslAllowInvalidCertificates
MongoDB shell version v4.0.3
connecting to:
mongodb://handsoncrossplatformmongo.documents.azure.com:10255/test
WARNING: No implicit session: Logical Sessions are only supported
on server versions 3.6 and greater.
Implicit session: dummy session
MongoDB server version: 3.2.0
WARNING: shell and server versions do not match
globaldb:PRIMARY> show databases
sample 0.000GB

Creating a Datastore with Cosmos DB Chapter 8

[175]

globaldb:PRIMARY> use sample
switched to db sample
globaldb:PRIMARY> db.survey.find()
globaldb:PRIMARY> db.survey.insert([{"_id":1,
"results":[{"product":"abc", "score":10}, { "product":"xyz",
"score":5}]}, { "_id":2, "results":[{"product":"abc", "score":8}, {
"product":"xyz", "score":7}]}, { "_id":3,
"results":[{"product":"abc", "score":7}, { "product":"xyz",
"score":8}]}])
BulkWriteResult({
 "writeErrors" : [],
 "writeConcernErrors" : [],
 "nInserted" : 3,
 "nUpserted" : 0,
 "nMatched" : 0,
 "nModified" : 0,
 "nRemoved" : 0,
 "upserted" : []
})
globaldb:PRIMARY> db.survey.find()
{"_id":1, "results":[{"product":"abc", "score":10},
{"product":"xyz", "score":5}]}
{"_id":2, "results":[{"product":"abc", "score" : 8},
{"product":"xyz", "score":7}]}
{"_id":3, "results":[{ "product":"abc", "score" : 7},
{"product":"xyz", "score":8}]}

The Mongo server and the client, Mongo.exe, can be downloaded from
the MongoDB website. On macOS, the brew install mongo command
will install Mongo. The personalized connection string or the complete
shell connect command can be copied from the Quick Start section on the
Cosmos DB resource.

Next, we can continue our execution back on the cloud shell or local mongo shell.3.
We will now execute a find query where the product should be "xyz" and the
score should be greater or equal to 8:

db.survey.find(
 { results: { $elemMatch: { product: "xyz", score: { $gte: 8 } }
} }
)

Next, we will find all the survey results that contain the product "xyz":4.

db.survey.find(
 { "results.product": "xyz" }
)

Creating a Datastore with Cosmos DB Chapter 8

[176]

Finally, we will increment the first score where the product is "abc":5.

db.survey.update({
 "results.product" : "abc"
 },
 {
 $inc : {'results.0.score' : 1}
 });

You can visualize the results on the shell window of the data explorer:6.

Others
Gremlin, which is a graph data model and Cassandra, which is a column family model,
both have wire protocol support. These APIs allow integration with cluster computing and
big data analysis platforms such as Spark (GraphX). Apache Spark clusters can be created
within Azure HDInsight to analyze streaming and historical data.

Creating a Datastore with Cosmos DB Chapter 8

[177]

The final member of the Cosmos DB, as we mentioned previously, is Azure Table storage,
which provides access to a key/value pair store that supports the automatic sharding of
data, as well as indexing.

Modeling data
The best way to get accustomed with various data models offered by Cosmos DB would be
to implement inherently relational domain models using the provided NoSQL data access
APIs. This way, it is easier to grasp the benefits of different data models.

For this exercise, let's create a relational data model for our auction applications.

In this setup, we have three big clusters of data:

Vehicles, which includes the manufacturer, model, year, engine specifications,
and some additional attributes describing the car
Users, which consists of the sellers and buyers of the cars sold through auctions
Auctions, which consists of some metadata about the sale that's provided by the
selling user, as well as the vehicles and bids provided by the users

We will describe this data using the SQL API.

Creating and accessing documents
The most trivial way of considering the data model design, when dealing with a NoSQL
database, would be to imagine the Data Transformation Object (DTO) models required for
the application. In the case of a non-RBMS data platform, it is important to remember that
we are not bound by references, unique keys, or many-2-many relationships.

For instance, let's take a look at the simplest model, namely User. User will have basic
profile information, which can be used in the remainder of the application. Now, let's
imagine what the DTO for the user object would look like:

{
 "id": "efd68a2f-7309-41c0-af52-696ebe820199",
 "firstName": "John",
 "lastName": "Smith",
 "address": {
 "addressTypeId": 4000,
 "city": "Seattle",
 "countryCode": "USA",
 "stateOrProvince": "Washington",

Creating a Datastore with Cosmos DB Chapter 8

[178]

 "street1": "159 S. Jackson St.",
 "street2": "Suite 400",
 "zipCode": "98101"
 },
 "email": {
 "emailTypeId": 1000,
 "emailAddress": "john.smith@test.com"
 },
 "isActive": true,
 "phone": {
 "phoneTypeId": 1000,
 "number": "+1 121-212-3333"
 },
 "otherPhones": [{
 "phoneTypeId": 3000,
 "number": "+1 111-222-3333"
 }],
 "signUpDate": "2001-11-02T00:00:00Z"
}

Let's create our collection with the name UsersCollection and with the partition key set
to /address/countryCode.

Next, import this data into our database:

Creating a Datastore with Cosmos DB Chapter 8

[179]

OK; now, we have our first document created. But what are these additional fields that
were added by the system? These are references to the container and item that holds the
document data for our collection:

_rid System generated Unique identifier of container
_etag System generated Entity tag used for optimistic concurrency control
_ts System generated Last updated timestamp of the container
_self System generated Addressable URI of the container

Out of these fields, the most important ones are _etag and _ts, both of which define the
state of an entity at a given point in time. Notice that the descriptions do not refer to
document, but rather item and entity. The main reason for this is that on Cosmos DB,
storage buckets are referred to as containers, and the entities stored within these containers
are referred to as items. Collection, table, or graph are the realization of these containers,
depending on the API type that is being used.

Creating a Datastore with Cosmos DB Chapter 8

[180]

Now, we can start creating our data access layer, which will be part of the User API, to
provide the required data to our mobile application. Let's begin:

Create a generic interface that will allow us retrieve the user feed, as well as a1.
single user:

 public interface IRepository<T> where T : class
 {
 Task<T> GetItemAsync(string id);
 Task<IEnumerable<T>> GetItemsAsync();
 //Task<Document> AddItemAsync(T item);
 //Task DeleteItemAsync(string id);
 //Task<Document> UpdateItemAsync(string id, T item);
 }

Create our implementation for Cosmos DB:2.

 public class CosmosCollection<T> : IRepository<T> where T : class
 {
 // ...Removed for brevity

 private DocumentClient _client;

 public CosmosCollection(string collectionName)
 {
 CollectionId = collectionName;

 _client = new DocumentClient(new Uri(Endpoint), Key);
 }

 // ... Removed for brevity
 }

Implement our repository methods:3.

 public class CosmosCollection<T> : IRepository<T> where T : class
 {
 // ...Removed for brevity

 public async Task<T> GetItemAsync(string id)
 {
 try
 {
 Document document = await _client.ReadDocumentAsync(
 UriFactory.CreateDocumentUri(DatabaseId,
 CollectionId, id));
 return (T)(dynamic)document;
 }

Creating a Datastore with Cosmos DB Chapter 8

[181]

 catch (DocumentClientException e)
 {
 // ...Removed for brevity
 }
 }

 public async Task<IEnumerable<T>> GetItemsAsync()
 {
 IDocumentQuery<T> query = _client.CreateDocumentQuery<T>(
 UriFactory.CreateDocumentCollectionUri(DatabaseId,
 CollectionId),
 new FeedOptions { MaxItemCount = -1})
 .AsDocumentQuery();

 List<T> results = new List<T>();

 while (query.HasMoreResults)
 {
 var response = await query.ExecuteNextAsync<T>();
 results.AddRange(response);
 }

 return results;
 }
 }

Now, we are ready to load the document(s) we have imported into our document4.
collection:

var cosmosCollection = new
CosmosCollection<User>("UsersCollection");

var collection = await cosmosCollection.GetItemsAsync()

This execution would, in fact, result in the following exception:5.

Cross partition query is required but disabled. Please set x-ms-
documentdb-query-enablecrosspartition to true, specify x-ms-
documentdb-partitionkey, or revise your query to avoid this
exception.
ActivityId: c0adcf18-3ea6-4a4a-b033-d946f2000c17,
Microsoft.Azure.Documents.Common/2.2.0.0, Darwin/10.14 documentdb-
netcore-sdk/2.2.2

The reason for this is that the collection is set up to use the countryCode as the
partition key, but the query isn't executed as a cross-partition query.

Creating a Datastore with Cosmos DB Chapter 8

[182]

We can either pass the partition key (that is, countryCode) or we can execute it6.
as a cross-partition request (a less performant option):

 IDocumentQuery<T> query = _client.CreateDocumentQuery<T>(
 UriFactory.CreateDocumentCollectionUri(DatabaseId,
CollectionId),
 new FeedOptions { MaxItemCount = -1, EnableCrossPartitionQuery
 = true })
 //, PartitionKey = new
PartitionKey("USA") })
 .AsDocumentQuery();

Now, we will load the complete set of entries for the given collection. However,7.
in most scenarios, we would use a predicate to load the set that is needed. So,
let's add a Where clause to our query:

 public async Task<IEnumerable<T>> GetItemsAsync(Expression<Func<T,
 bool>> predicate)
 {
 IDocumentQuery<T> query = _client.CreateDocumentQuery<T>(
 UriFactory.CreateDocumentCollectionUri(DatabaseId,
 CollectionId),
 new FeedOptions { MaxItemCount = -1,
 EnableCrossPartitionQuery = false })
 .Where(predicate)
 .AsDocumentQuery();

 // ...
 }

Now, we will create the add, update, and remove methods accordingly, which8.
will provide the complete set of CRUD operations for the collections:

 public async Task<T> AddItemAsync(T item)
 {
 return (T)(dynamic)await _client.CreateDocumentAsync(
 UriFactory.CreateDocumentCollectionUri(DatabaseId,
 CollectionId), item);
 }

 public async Task<T> UpdateItemAsync(string id, T item)
 {
 return (T)(dynamic)await _client.ReplaceDocumentAsync(
 UriFactory.CreateDocumentUri(DatabaseId, CollectionId, id),
 item);
 }

Creating a Datastore with Cosmos DB Chapter 8

[183]

 public async Task DeleteItemAsync(string id)
 {
 await _client.DeleteDocumentAsync(
 UriFactory.CreateDocumentUri(DatabaseId, CollectionId,
id));
 }

Finally, following the code first approach, in order to avoid having the document9.
collection created manually every time, let's initialize the document collection if it
does not exist when the client is first created:

 private async Task CreateCollectionIfNotExistsAsync()
 {
 try
 {
 await _client.ReadDocumentCollectionAsync(
 UriFactory.CreateDocumentCollectionUri(DatabaseId,
 CollectionId));
 }
 catch (DocumentClientException e)
 {
 if (e.StatusCode == System.Net.HttpStatusCode.NotFound)
 {
 await _client.CreateDocumentCollectionAsync(
 UriFactory.CreateDatabaseUri(DatabaseId),
 new DocumentCollection { Id = CollectionId,
 PartitionKey = _partitionKey },
 new RequestOptions { OfferThroughput = 400 });
 }
 else
 {
 throw;
 }
 }
 }

We have now created a complete document collection and basic CRUD functions. Now, we
will continue and further extend our domain model via data denormalization.

Creating a Datastore with Cosmos DB Chapter 8

[184]

Denormalized data
Data normalization is the process of structuring a database model by decomposing existing
structures and creating replacement references to decrease the redundancy and improve
data integrity. However, data normalization inherently applies to relational databases. In
the case of a document collection, embedded data is preferred over referential integrity. In
addition, data views that cross the boundaries of a single collection should also be
replicated on different pivots according to the design requirements.

Let's continue with our data model design with vehicles and auctions. These two data
domains are going to be handled with separate APIs and will have separate collections.
However, in a general feed (for example, latest auctions), we would need to retrieve data
about the auctions, as well as the cars on the auction and bids provided by users for that
specific auction. Let's see how we can do this:

For the vehicle's declaration, we will need the main product information:1.

{
 "id" : "f5574e12-01dc-4639-abeb-722e8e53e64f",
 "make" : "Volvo",
 "model": "S60",
 "year": 2018,
 "engine": {
 "displacement" : "2.0",
 "power" : 150,
 "torque" : 320,
 "fuelType": { "id": "11", "name": "Diesel" }
 },
 "doors": 4,
 "driveType": { "id" : "20", "name" : "FWD" },
 "primaryPicture" : "",
 "pictures" : [],
 "color": "black",
 "features": ["Heated Seats", "Automatic Mirrors",
"Windscreen Defrost", "Dimmed Mirrors", "Blind Spot Detection"]

Notice that the features array contains a list of features that have been selected
from a list of reference values, but instead of creating a many-2-many relational
table, we chose to embed the data here, which is compromise of the normal form.
A similar approach could have been used for the fuelType and driveType
references, but conceptually speaking, we have a many-2-one relationship on
these data points, so they are embedded as reference data objects themselves.

Creating a Datastore with Cosmos DB Chapter 8

[185]

Moving forward, let's create our auction data:2.

{
 "id" : "7ad0d2d4-e19c-4715-921b-950387abbe50",
 "title" : "Volvo S60 for Sale",
 "description" : "..."
 "vehicle": {
 "id" : "f5574e12-01dc-4639-abeb-722e8e53e64f",
 "make" : "Volvo",
 "model": "S60",
 "year": 2018,
 "engine": {
 "displacement" : "2.0",
 "power" : 150,
 "torque" : 320,
 "fuel": { "id": "11", "name": "Diesel" }
 },
 "primaryPicture" : "",
 "color": "black"
 },
 "startingPrice": {
 "value" : 25000,
 "currency" : {
 "id" : "32",
 "name" : "USD",
 "symbol" : "$"
 }
 },
 "created": "2019-03-01T10:00Z",
 "countryCode": "USA"
 "user": {
 "id" : "efd68a2f-7309-41c0-af52-696ebe820199",
 "firstName": "John",
 "lastName": "Smith"
 }
}

If this was a relational model, this data would have been enough for identifying3.
an auction. Nevertheless, it would decrease the amount of round trips to load
additional data if we embedded the highest bid (or even the most recent or
highest bids) within the same structure:

 "highestBids":[
 {
 "id" : "5d669390-2ba4-467a-b7f9-26fea2d6a129",
 "offer" : {
 "value" : 26000,
 },

Creating a Datastore with Cosmos DB Chapter 8

[186]

 "user": {
 "id" : "f50e4bd2-6beb-4345-9c30-18b3436e7766",
 "firstName": "Jack",
 "lastName": "Lemon",
 },
 "created" : "2019-03-12T11:00Z"
 }
],

In this scenario, we could have also embedded the complete bid's
structure within the auction model. While this would decrease the
redundancy and dispersement of data across collections, bids is not a finite
collection like the feature set we saw in the vehicle object, and each new
bid would have required a complete document replacement on the
auction collection.

We can say that the Auction table is acting as a Materialized View for the listing, while
vehicle and bids provide easy access to the required data points for the application views.
Here, the responsibility of data integrity falls on the client application rather than the
database itself.

Referenced data
In the previous examples, we have used embedding extensively to create an optimized data
structure. This, of course, does not mean we haven't used any references. Most of the
embedded objects that are used are actually reference descriptions.

In order to visualize the referential data points, let's normalize our Auction data:

{
 "id" : "7ad0d2d4-e19c-4715-921b-950387abbe50",
 "description" : "Volvo S60 for Sale",
 "vehicleId": "f5574e12-01dc-4639-abeb-722e8e53e64f",
 "startingPrice": {
 "value" : 25000,
 "currencyId" : "32"
 },
 "highestBids":[
 "5d669390-2ba4-467a-b7f9-26fea2d6a129"
],
 "created": "2019-03-01T10:00Z",
 "countryCode": "USA",
 "userId": "efd68a2f-7309-41c0-af52-696ebe820199"
}

Creating a Datastore with Cosmos DB Chapter 8

[187]

Here, we have a 1-* relation between the Vehicle and the Auction, a 1-* relation
between the currency and the starting price value, a 1-* relation between the Auction and
Bids, and a 1-* relation between User and Auctions. All of these references are embedded
into the auction object, but what about the reciprocal references? For instance, if we were
implementing a user profile view, we might want to show how many bids he/she was
involved in and possibly a feedback value from the winning buyer or the seller:

{
 "id": "efd68a2f-7309-41c0-af52-696ebe820199",
 "firstName": "John",
 "lastName": "Smith",
 "numberOfAuctions" : 1,
 "auctions" : [
 {
 "auctionId": "7ad0d2d4-e19c-4715-921b-950387abbe50",
 "role" : { "roledId" : "20", "roleName": "seller" },
 "auctionReview" : 1,
 "auctionState" : { "stateId" : "10", "stateName" : "Closed" }
 }
]
 ...
}

These types of situations completely depend on the application use cases. As we have
mentioned previously, we are not bound to foreign keys and constraints in the NoSQL
setup, and the design should not necessarily dictate embedding or referencing. Cosmos DB
provides features such as stored procedures and triggers to assign the responsibility of data
integrity back into the database. Additionally, indexing and partitioning strategies can
improve the overall performance of the application.

Cosmos DB in depth
Cosmos DB as a platform is much more than a simple database. The design of your data
model, as well as the implementation of the data access layer, depends greatly on the
feature being utilized. Partition and indexing setup can help improve performance, while
also providing the roadmap for query strategies. Data triggers, stored procedures, and the
change feed are extensibility points that allow developers to implement language-
integrated transactional JavaScript blocks, which can greatly decrease the system's overall
complexity and also compensate for the write transaction compromise in favor of
denormalized data.

Creating a Datastore with Cosmos DB Chapter 8

[188]

Partitioning
Cosmos makes use of two types of partitions – namely physical and logical partitions – in
order to scale individual containers (that is, collections) in a database. The partition key
that's defined at the time of the creation of a container defines the logical partitions. These
logical partitions are then distributed into groups to physical partitions with a set of
replicas to be able to horizontally scale the database.

In this scheme, the selection of the partition key becomes an important decision that will
determine the performance of your queries. With a properly selected partition key, the data
would be sharded (that is, data sharding) uniformly so that the distributed system will not
show so-called hot partitions (that is, request peaks on certain partitions, while the rest of
the partitions are idle). Hot partitions would ultimately result in performance degradation.

In the UsersCollection, we have used /address/countryCode as the partition key.
This means that we are expecting a set of users with a normal distribution across the
countries. However, in a real life implementation, the number of users from a certain
market really depends on the size of that market. To put it in layman's terms, the number of
users from Turkey or Germany could not be the same as Bosnia and Herzegovina, if we
were to think about the population count and demand.

Once a container is created in Cosmos DB, changing other properties of a
collection such as the ID or the partition key are not supported. Only the
indexing policy can be updated.

The partition key does not necessarily need to be a semantic dissection of data. For instance,
in the UsersCollection scenario, the partition key could easily be defined according to
the first letter of the name or the month that they signed up, as well as a synthetic partition
key, such as a generated value from a range (for example, 1-100) that is assigned at the time
of creation. Nevertheless, since the ID of an item within a container is only unique in that
container, the container and ID combination defines the index of that item. In order to
achieve higher throughputs, the queries should be executed within a specific container. In
other words, if the partition key can be calculated before a query on the client side, the
application would perform better than executing cross-partition queries:

 IDocumentQuery<T> query = _client.CreateDocumentQuery<T>(
 UriFactory.CreateDocumentCollectionUri(DatabaseId, CollectionId),
 new FeedOptions { MaxItemCount = -1, EnableCrossPartitionQuery =
 true })
 //, PartitionKey = new PartitionKey("USA")
})
 .AsDocumentQuery();

Creating a Datastore with Cosmos DB Chapter 8

[189]

For instance, let's take a look at the following execution on this collection:

var cosmosCollection = new CosmosCollection<User>("UsersCollection");

await cosmosCollection.GetItemsAsync((item) =>
item.FirstName.StartsWith("J"));

// Calling with the partition key
await cosmosCollection.GetItemsAsync((item) =>
item.FirstName.StartsWith("J"), "USA");

The results from this query (on a collection with only two entries per partition), when using
the previous expression, are as follows:

Executing Query without PartitionKey
Query: {"query":"SELECT VALUE root FROM root WHERE
STARTSWITH(root[\"firstName\"], \"J\") "}
Request Charge : 2.96 RUs
Partition Execution Duration: 218.08ms
Scheduling Response Time: 26.67ms
Scheduling Run Time: 217.45ms
Scheduling Turnaround Time: 244.65ms

Executing Query with PartitionKey
Query: {"query":"SELECT VALUE root FROM root WHERE
STARTSWITH(root[\"firstName\"], \"J\") "}
Request Charge : 3.13 RUs
Partition Execution Duration: 136.37ms
Scheduling Response Time: 0.03ms
Scheduling Run Time: 136.37ms
Scheduling Turnaround Time: 136.41ms

Even with the smallest dataset, the execution results show quite an improvement on the
total time required to execute.

In order to retrieve additional metrics for a query execution, you can
enable the PopulateQueryMetrics flag on the FeedOptions. In the
FeedResponse<T> object, the QueryMetrics collection can be used to
retrieve advanced execution metrics information.

In a similar fashion, we can expand our data models for vehicle and auction, and we can
create the collections with the car make or color so that we have evenly distributed
partitions.

Creating a Datastore with Cosmos DB Chapter 8

[190]

Indexing
Azure Cosmos DB, by default, assumes that each property in an item should be indexed.
When a complex object is pushed into the collection, the object is treated as a tree with
properties that make up the nodes and values, as well as the leaves. This way, each
property on each branch of the tree is queryable. Each consequent object either uses the
same index tree or expands it with additional properties.

This indexing behavior can be changed at any time for any collection. This can help with
the costs and performance of the dataset. Index definition uses wildcard values to define
which paths should be included and/or excluded.

For instance, let's take a look at the indexing policy of our AuctionsCollection:

/* declaration includes the complete object tree, except for the excluded _etag field. These
indexes can be optimized using more specialized index types and paths.

Creating a Datastore with Cosmos DB Chapter 8

[191]

For instance, let's exclude all paths and introduce an index of our own:

"includedPaths": [
 {
 "path": "/description/?",
 "indexes": [
 {
 "kind": "Hash",
 "dataType": "String",
 "precision": -1
 }
]
 },
 {
 "path": "/vehicle/*",
 "indexes": [
 {
 "kind": "Hash",
 "dataType": "String",
 "precision": -1
 },
 {
 "kind": "Range",
 "dataType": "Number",
 "precision": -1
 }
]
 }
],
 "excludedPaths": [
 {
 "path": "/*"
 }
]

Here, we have added two indexes: one hash index for the scalar value of the description
field (that is, /?), and one range and/or hash index to the vehicle path and all the nodes
under it (that is, /*). The hash index type is the index that's used for equality queries, while
the range index type is used for comparison or sorting.

By using the correct index paths and types, query costs can be decreased and scan queries
can be avoided. If the indexing mode is set to None instead of Consistent, the database
returns an error on the given collection. The queries can still be executed using the
EnableScanInQuery flag.

Creating a Datastore with Cosmos DB Chapter 8

[192]

Programmability
One of the most helpful features of Cosmos is its server-side programmability, which
allows developers to create stored procedures, functions, and database triggers. These
concepts are not too foreign for developers that have created applications on SQL
databases, and yet the ability to create stored procedures on NOSQL databases, and what's
more, on a client-side scripting language such as JavaScript, is quite unprecedented.

As a quick example, let's implement a trigger to calculate the aggregate value(s) on a user's
profile:

As you may remember, we added the following reference values to1.
UserProfile for the cross-collection partition:

 public class User
 {
 [JsonProperty("id")]
 public string Id { get; set; }

 [JsonProperty("firstName")]
 public string FirstName { get; set; }

 //...

 [JsonProperty("numberOfAuctions")]
 public int NumberOfAuctions { get; set; }

 [JsonProperty("auctions")]
 public List<BasicAuction> Auctions { get; set; }

 //...
 }

Now, let's create an aggregate update function that will update the number of
auctions whenever there is an update on the user profile. We will use this
function to intercept the update requests to the collection (that is, a pre-execution
trigger) and modify the object's content.

The function should first retrieve the current collection and the document from2.
the execution context:

function updateAggregates(){
 // HTTP error codes sent to our callback function by server.
 var ErrorCode = {
 RETRY_WITH: 449,
 }

Creating a Datastore with Cosmos DB Chapter 8

[193]

 var collection = getContext().getCollection();
 var collectionLink = collection.getSelfLink();
 // Get the document from request (the script runs as trigger,
 // thus the input comes in request).
 var document = getContext().getRequest().getBody();

Now, let our function count the auctions that the update is pushing:3.

if(document.auctions != null) {
 document.numberOfAuctions = document.auctions.length;
}

getContext().getRequest().setBody(document);

We can now add this trigger to the UsersCollection as a Pre trigger on4.
Replace calls:

However, the trigger function will still not execute until we explicitly add the5.
trigger to the client request:

var requestOption = new RequestOptions();
requestOption.PreTriggerInclude = new []{ "updateAggregates"};
await _client.ReplaceDocumentAsync(
 UriFactory.CreateDocumentUri(DatabaseId, CollectionId, id),
 item,
 requestOption);

Great! The number of auctions the user has participated in is being calculated
every time the user's profile is updated. However, in order to insert a new auction
(for example, when the user is actually creating an auction, or bidding on one),
we would need to update the whole user profile (that is, partial updates are
currently not supported on the SQL API).

Creating a Datastore with Cosmos DB Chapter 8

[194]

Let's create a stored procedure that will insert an auction item on a specific user6.
profile to push partial updates:

function insertAuction(id, auction) {
 var collection = getContext().getCollection();
 var collectionLink = collection.getSelfLink();
 var response = getContext().getResponse();

Next, retrieve the user profile object that we have to insert the auction into:7.

var documentFilter = 'Select * FROM r where r.id = \'' + id + '\'';
var isAccepted = collection.queryDocuments(
 collectionLink,
 documentFilter,
 function (err, docs, options) {
 if (err) throw err;
 var userProfile = docs[0];

 // TODO: Insert Auction
 });

Now, we can update the document with the new auction:8.

userProfile.auctions[userProfile.auctions.length] = auction;
collection.replaceDocument(userProfile._self, userProfile, function
(err) {
 if (err) throw err;
});

Finally, we will create an additional function for the UserProfileRepository:9.

public async Task InsertAuction(string userId, Auction auction)
{
 try
 {
 RequestOptions options = new RequestOptions { PartitionKey
=
 new PartitionKey("USA") };
 var spLink = UriFactory.CreateStoredProcedureUri(
 DatabaseId,
 CollectionId,
 "insertAuction");

 var result = await
_client.ExecuteStoredProcedureAsync<User>
 (spLink, options, userId, (dynamic)auction);

Creating a Datastore with Cosmos DB Chapter 8

[195]

 }
 catch (DocumentClientException e)
 {
 throw;
 }
 }

Now, the auctions are inserted into the user profile and the aggregate column is
updated when the stored procedure is called.

Triggers, functions, and stored procedures are all limited to the collection they are created
in. In other words, one collection trigger cannot execute any changes on another collection.
In order to execute such an update, we would need to use an external process such as the
caller application itself or an Azure Function that's triggered with the change feed on
Cosmos DB.

Change feed
Azure Cosmos DB continuously monitors changes in collections, and these changes can be
pushed to various services through the change feed. The events that are pushed through
the change feed can be consumed by Azure Functions and App Services, as well as stream
processing and data management processes.

Insert, update, and soft-delete operations can be monitored through the change feed, with
each change appearing exactly once in the change feed. If there are multiple updates being
made to a certain item, only the latest change is included in the change feed, thus making it
a robust and easy-to-manage event processing pipeline.

Summary
Cosmos DB provides a new perspective to the NOSQL database concept, with a wide range
of services for various scenarios. This globally distributed and extremely throughput-
oriented data store might be costly for simple applications, but the multi-API access model,
as well as server-side programmability, are strong suits of Cosmos DB over other modern
persistence stores. Additionally, with Cosmos DB access models, in comparison to
relational data models, consumer applications have more responsibility over the referential
data integrity. The weak links between the data containers can be used as an advantage by
a microservice architecture.

In the next chapter, we will be creating the service layer for our application suite.

9
Creating Microservices Azure

App Services
Azure App Services is a platform as a service offering for both mobile and app developers
that can host a number of different application models and services. While the developers
can create a simple mobile app service to act as a data store access layer within minutes
without writing a single line of code, intricate and robust .NET Core applications can also
be implemented with intrinsic integration to other Azure Services. In this chapter, we will
go through the basics of Azure App Services and create a simple data-oriented backend for
our application using ASP.NET Core, with authentication provided by Azure Active
Directory (Azure AD).

The following sections will guide you through the process of creating our service backend:

Choosing the right app model
Creating our first Microservice
Integrating with Redis cache
Hosting the services
Securing the application

Choosing the right app model
The Azure stack offers multiple ways to host web applications, varying from simple
Infrastructure as a Service (IaaS) offerings such as VMs to completely managed PaaS
hosting services such as App Services. Because of the platform-agnostic nature of .NET
Core and ASP.NET Core, even Linux containers and container orchestration services such
as Kubernetes are available options.

Creating Microservices Azure App Services Chapter 9

[197]

Azure compute offers can be categorized according the separation of responsibilities in
three main categories, namely IaaS, PaaS, and CaaS, as shown in the following diagram:

Besides IaaS and PaaS, there are various hosting options, each with their own advantages
and use cases. We will now take a closer at these offerings.

Azure virtual machines
Virtual machines (VMs), are one of the oldest IaaS offerings on Microsoft Azure Cloud. In
simple terms, this offering provides a hosting server on the cloud with complete control.
Azure Automation services provides you with the much required tools to manage these
servers with Infrastructure as Code (IaC) principles using PowerShell Desired State
Configuration (DSC) and scheduled runbooks. You can scale and monitor them with ease
according to your application requirements.

With both Windows and Linux variants available, Azure VMs can be an easy shallow cloud
migration path for already existing applications.

Scaling of VMs is done by adjusting the system configuration (for example, CPU, virtual
disk, RAM, and so on) at the VM level or by introducing additional VMs to the
infrastructure.

Creating Microservices Azure App Services Chapter 9

[198]

Containers in Azure
If VMs are the virtualization of hardware, containers virtualize the OS. Containers create
isolated sandboxes for applications that share the same operating system kernel. This way,
application containers that are composed of the application, as well as its dependencies, can
be easily hosted on any environment that meets the container demands. Container images
can be executed as multiple application containers, and these container instances can be
orchestrated with orchestration tools such as Docker Swarm, Kubernetes, and Service
Fabric.

Azure currently has two managed container orchestration offerings: Azure Kubernetes
Services and Service Fabric Mesh.

Azure Container Services with Kubernetes
Azure Container Services (ACS) is one of the managed container orchestration
environments where developers can deploy containers without much hassle and enjoy the
automatic recovery and scaling experience.

Kubernetes is an open source container orchestration system that was originally designed
and developed by Google. Azure Kubernetes is a managed implementation of this service
where most the configuration and management responsibilities are delegated to the
platform itself. In this setup, as a consumer of this PaaS offering, you are only responsible
for managing and maintaining the agent nodes.

AKS provides support for Linux containers as well as Windows operating system virtual
containers. Windows container support is currently in private preview.

Service Fabric Mesh
Azure Service Fabric Mesh is a fully managed container orchestration platform where the
consumers do not have any direct interaction with the configuration or maintenance of the
underlying cluster. So-called polyglot services (that is, any language, any OS) are run in
containers. In this setup, developers are just responsible for specifying the resources that
the application requires, such as the number of containers and their sizes, networking
requirements, and autoscale rules. Once the application container is deployed, Service
Fabric Mesh hosts the container in a mesh consisting of clusters of thousands of machines,
and cluster operations are completely hidden from the developers. Intelligent message
routing through Software Defined Networking (SDN) enables service discovery and
routing between microservices.

Creating Microservices Azure App Services Chapter 9

[199]

Service Fabric Mesh, even though it shares the same underlying platform, differs
significantly from Azure Service Fabric. While Service Fabric Mesh is a managed hosting
solution, Azure Service Fabric is a complete microservice platform that allows developers
to create containerized or otherwise cloud-native applications.

Microservices with Azure Service Fabric
Azure Service Fabric is a hosting and development platform that allows developers to
create enterprise grade applications composed of microservices. Service Fabric provides a
comprehensive runtime and life cycle management capabilities, as well as a durable
programming model that makes use of mutable state containers, such as reliable
dictionaries and queues.

Service Fabric applications can be made up of three different hosted service models:
containers, services/actors, and guest executables.

Similar to its managed counterpart (that is, Service Fabric Mesh) and Azure Kubernetes,
Service Fabric is capable of running containerized applications that are targeting both Linux
and Windows containers. Containers can easily be included in Service Fabric Application
that are bundled together with other components and scaled across high density shared
compute pools, called clusters, with predefined nodes.

Reliable services and reliable actors are truly cloud-native services that make use of the
Service Fabric programming model. Ease of development on local development clusters
and available SDKs for .NET Core, as well as Java, allow developers to create both stateful
and stateless microservices in a platform-agnostic manner.

Development environments are available for Windows, Linux, and OSX.
Linux and OSX development setup relies on running the Service Fabric
itself in a container. .NET Core is the preferred language for creating
applications that target each of these platforms. The available Visual
Studio Code extensions makes it easy to develop .NET Core Service Fabric
applications on each operating system.

Finally, guest executables can be an application that's been developed on a variety of
languages/frameworks, such as Node.js, Java, or C++. Guest executables are managed and
treated as stateless services and can be placed on cluster nodes, side by side with other
Service Fabric services.

Creating Microservices Azure App Services Chapter 9

[200]

Azure App Service
Azure App Service is a fully managed web application hosting service. App Service can be
used to host applications, regardless of the development platform or operating system. App
Services provide first-class support for ASP.NET (Core), Java, Ruby, Node.js, PHP, and
Python. It has out of the box continuous integration and deployment with DevOps
platforms such as Azure DevOps, GitHub, and BitBucket. Most of the management
functionality of a usual hosting environment is integrated into the Azure Portal on the App
Service blade, such as scaling, CORS, application settings, SSL, and so on. Additionally,
WebJobs can be used to create background processes that can be executed periodically as
part of your application bundle.

Web App for Containers is another Azure App Service that allows containerized
applications to be deployed as App Services, and orchestrated with Kubernetes.

App Mobile Services is/was an easy way to integrate all the necessary functionality for a
simple mobile application, such as authentication, push notifications, and offline
synchronization. Nevertheless, App Mobile Services are currently being transitioned to
App Center and do not support ASP.NET Core.

Finally, Azure Functions provide a platform to create code snippets or stateless on-demand
functions and host them without having to explicitly provision or manage infrastructure.
Now that we have covered our basics in regards to choosing a model, we will now look at
how to create our first microservice.

Creating our first microservice
For our mobile application, we previously created a simple data access proxy that retrieves
data from Cosmos DB. In this exercise, we will be creating small web API components that
will expose various methods for CRUD operations on our collections.

Creating Microservices Azure App Services Chapter 9

[201]

Initial setup
Let's begin our implementation:

 First, create an ASP.NET Core project:1.

Once the project is created, do a quick test to check whether the dotnet core2.
components are properly set up. Open a console window and navigate to the
project folder. The following commands will restore the referenced packages and
compile the application:

dotnet restore
dotnet build

Once the application is built, we can use the run command and execute a GET call3.
to the api/values endpoint:

Creating Microservices Azure App Services Chapter 9

[202]

This should result in the output of the values from the ValuesController.Get
method.

In the previous example, we used curl to execute a quick HTTP request.
Client URL (curl) is a utility program that is available on Unix-based
systems, macOS, as well as Windows 10.

Creating Microservices Azure App Services Chapter 9

[203]

Next, we will set up the Swagger endpoint, so that we have a metadata endpoint,4.
as well as a UI to execute test requests. For this purpose, we will be using the
Swashbuckle NuGet packages to generate the API endpoint metadata. A basic
setup of Swashbuckle requires three packages, and we can reference them together
by adding the Swashbuckle.AspNetCore meta package:

After adding the meta package and the dependencies, we will modify our startup5.
class to declare the services:

public class Startup
{
 //... <Removed>

 public void ConfigureServices(IServiceCollection services)
 {
 //... <Removed>
 services.AddSwaggerGen(c =>
 {
 c.SwaggerDoc("v1", new Info{Title = "Auctions
Api", Version = "v1"});
 });
 }

 public void Configure(IApplicationBuilder app,
IHostingEnvironment env)
 {
 //... <Removed>
 app.UseSwagger();
 app.UseSwaggerUI(c =>

Creating Microservices Azure App Services Chapter 9

[204]

 {
 c.SwaggerEndpoint("/swagger/v1/swagger.json",
"Auctions Api");
 });
 }
}

Now, when we run the application and navigate to the {dev host}/swagger6.
endpoint, we will see the generated Swagger UI and method declarations:

We now have our boilerplate API project ready, which means that we can move on to
implementing our services.

Implement retrieval actions
Considering the auctions dataset, since we have created our MVC application, we should
include two GET methods in our controller, one for retrieving the complete collection of
auctions, and one that will retrieve a specific auction.

Creating Microservices Azure App Services Chapter 9

[205]

Let's see how we can do this:

We can simply initialize our repository and return the results for the first GET1.
method:

[HttpGet]
public async Task<IEnumerable<Auction>> Get()
{
 var result = Enumerable.Empty<Auction>();

 try
 {
 result = await _cosmosCollection.GetItemsAsync(item =>
 true);
 }
 catch (Exception ex)
 {
 // Log the error or throw depending on the requirements
 }

 return result;
}

Notice that the predicate we are using here is targeting the complete set of
auctions. We can expand this implementation with query parameters that are
filtering the set with additional predicates.

The GET method for retrieving a specific item would not be much different:2.

[HttpGet("{id}")]
public async Task<User> Get(string id)
{
 User result = null;

 try
 {
 result = await _cosmosCollection.GetItemAsync(id);
 }
 catch (Exception ex)
 {
 // Log or throw error depending on the requirements
 }

 return result;
}

Creating Microservices Azure App Services Chapter 9

[206]

This would suffice the requirements, but to improve the interaction between our
mobile application and the cosmos collection, we can also enable oData queries and
create a transparent query pipeline to the datastore. To do this, we can implement an
oData controller using the available .NET Core packages, or we can enable the queries
on our current MVC controller.

It is important to note that the Swashbuckle package that we used to
generate the Swagger UI, currently does not support oData controllers, so
these APIs would not be available on the Swagger interface.

We begin by setting up our infrastructure in our startup class:3.

public void ConfigureServices(IServiceCollection services)
{
 services.AddOData();
 services.AddODataQueryFilter();
 // ... Removed
}

We also need to set up the routes for the MVC controller:4.

public void Configure(IApplicationBuilder app, IHostingEnvironment
env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 app.UseMvc(builder =>
 {
builder.Count().Filter().OrderBy().Expand().Select().MaxTop(null);
 builder.EnableDependencyInjection();
 });

 // ... Removed
}

We should also create a new method on the Cosmos repository client, which will5.
be returning a queryable set rather than a result set:

public IQueryable<T> GetItemsAsync()
{
 var feedOptions = new FeedOptions {
 MaxItemCount = -1, PopulateQueryMetrics = true,
EnableCrossPartitionQuery = true };

Creating Microservices Azure App Services Chapter 9

[207]

 IOrderedQueryable<T> query = _client.CreateDocumentQuery<T>(
 UriFactory.CreateDocumentCollectionUri(DatabaseId,
CollectionId), feedOptions);

 return query;
}

Finally, we need to implement our query action:6.

[HttpGet]
[EnableQuery(AllowedQueryOptions = AllowedQueryOptions.All)]
public ActionResult<IQueryable<Auction>>
Get(ODataQueryOptions<Auction> queryOptions)
{
 var items = _cosmosCollection.GetItemsAsync();
 return Ok(queryOptions.ApplyTo(items.AsQueryable()));
}

Now, simple oData queries can be executed on our collection (for example, first tier oData
filter queries). For instance, if we were executing a query on the Users endpoint, a simple
filter query to retrieve users with one or more auctions would look like this:

http://localhost:20337/api/users?$filter=NumberOfAuctions ge 1

In order to be able to expand the query options and execute queries on related entities, we
would need to create an entity data model (EDM) and register respective oData
controllers.

Another, more appropriate, option to enable an advanced search would
be to create an Azure search index and expose the Azure search
functionality on top of this index.

For an in-memory EDM and data context, we will be using
Microsoft.EntityFrameworkCore's features and functionality. Let's begin with the
implementation:

Create a DbContext that will define our main data model and the relationships1.
between the entities:

public class AuctionsStoreContext : DbContext
{
 public
AuctionsStoreContext(DbContextOptions<AuctionsStoreContext>
options)
 : base(options)
 {

Creating Microservices Azure App Services Chapter 9

[208]

 }

 public DbSet<Auction> Auctions { get; set; }

 public DbSet<User> Users { get; set; }

 protected override void OnModelCreating(ModelBuilder
 modelBuilder)
 {
 modelBuilder.Entity<User>().OwnsOne(c => c.Address);
 modelBuilder.Entity<User>().HasMany<Auction>(c =>
 c.Auctions);
 }
}

Now, let's register this context within the ConfigureServices method:2.

public void ConfigureServices(IServiceCollection services)
{
 servics.AddDbContext<AuctionsStoreContext>(option =>
 option.UseInMemoryData("AuctionsContext"));
 services.AddOData();
 services.AddODataQueryFilter();
 // ... Removed
}

Now, we will create our EDM:3.

private static IEdmModel GetEdmModel()
{
 ODataConventionModelBuilder builder = new
 ODataConventionModelBuilder();
 var auctionsSet = builder.EntitySet<Auction>("Auctions");
 var usersSet = builder.EntitySet<User>("Users");
 builder.ComplexType<Vehicle>();
 builder.ComplexType<Engine>();
 return builder.GetEdmModel();
}

Creating Microservices Azure App Services Chapter 9

[209]

Finally, register an oData route so that entity controllers can be served through4.
this route:

app.UseMvc(builder =>
 {
builder.Count().Filter().OrderBy().Expand().Select().MaxTop(null);
 builder.EnableDependencyInjection();
 builder.MapODataServiceRoute("odata", "odata",
GetEdmModel());
 });

Now that the infrastructure is ready, you can navigate to the $metadata5.
endpoint to take a look at the EDM that was generated:

Now, by implementing a quick ODataController, we can expose the complete6.
set to oData queries:

public class AuctionsController : ODataController
{
 private readonly CosmosCollection<Auction> _cosmosCollection;

 public AuctionsController()
 {
 _cosmosCollection = new

Creating Microservices Azure App Services Chapter 9

[210]

CosmosCollection<Auction>("AuctionsCollection");
 }

 // GET: api/Users
 [EnableQuery]
 public IActionResult Get()
 {
 var items = _cosmosCollection.GetItemsAsync();
 return Ok(items.AsQueryable());
 }

 [EnableQuery]
 public async Task<IActionResult> Get(string key)
 {
 var auction = await _cosmosCollection.GetItemsAsync(item =>
item.Id == key);
 return Ok(auction.FirstOrDefault());
 }
}

With the given ODataController in place and the additional implementation7.
for the users collection, various entity filter expressions can be executed, such as
the following:

http://localhost:20337/odata/auctions?$filter=Vehicle/E
ngine/Power%20gt%20120

http://localhost:20337/odata/users?$filter=Address/City
%20eq%20'London'

http://localhost:20337/odata/users?$filter=startswith(F
irstName,%20'J')

http://localhost:20337/odata/auctions('7ad0d2d4-e19c-47
15-921b-950387abbe50')

With this, we have successfully exposed an oData endpoint for a Cosmos Document DB,
using ASP.NET Core and EntityFrameworkCore.

Implementing patch updates
Implementing the update endpoint would in fact be different, to say the least, when we are
dealing with a NoSQL data store that doesn't support partial updates. According to the
application requirements, we can choose two distinct patterns.

Creating Microservices Azure App Services Chapter 9

[211]

In the classic concurrency model, we would be receiving a PUT request with the complete
object body and checking whether the update is being executed on the latest version of the
object. This concurrency check can be done on the _ts property collection items. The
timestamp property is also used by the Cosmos DB containers themselves for handling
concurrency issues. Let's begin:

In this model, the incoming object body would be verified to check whether it1.
carries the latest timestamp, and, if not, a 409 response signifying a conflict will
be sent back as a response. If the timestamp matches the one in the repository,
then we are free to upsert the entity:

[EnableQuery]
[HttpPut]
public async Task<IActionResult> Put([FromODataUri]string key,
[FromBody] Auction auctionUpdate)
{
 var cosmosCollection = new
CosmosCollection<Auction>("AuctionsCollection");
 var auction = (await cosmosCollection.GetItemsAsync(item =>
item.Id == key)).FirstOrDefault();
 if (auction == null)
 {
 return NotFound();
 }

 if (auction.TimeStamp != auctionUpdate.TimeStamp)
 {
 return Conflict();
 }

 await cosmosCollection.UpdateItemAsync(key, auctionUpdate);
 return Accepted(auction);
}

However, with this approach, as the object tree grows in size, and the complexity
increases on our container items, the update's requests would get bigger and
harder to execute (for example, higher probability of conflicts, unintentional
removal of properties, and so on). The following screenshot shows a request that's
been sent to update only the description field of an Auction document:

Creating Microservices Azure App Services Chapter 9

[212]

In order to decrease the impact of an update call, at least for the client, we can
utilize PATCH methods. In a patch method, only a part of the object tree is
delivered as a Delta, or only the partial update operations are delivered as patch
operations.

Let's implement a PATCH action for the same Auction service and check out the2.
request:

[EnableQuery]
[HttpPatch]
public async Task<IActionResult> Patch(
 string key,
 [FromBody] JsonPatchDocument<Auction> auctionPatch)
{
 var cosmosCollection = new
CosmosCollection<Auction>("AuctionsCollection");
 var auction = (await cosmosCollection.GetItemsAsync(item =>
item.Id == key)).FirstOrDefault();

 if (auction == null)
 {

Creating Microservices Azure App Services Chapter 9

[213]

 return NotFound();
 }

 auctionPatch.ApplyTo(auction);
 await cosmosCollection.UpdateItemAsync(key, auction);
 return Accepted(auction);
}

The request for the given endpoint would look similar to the following:

PATCH /odata/auctions('3634031a-1f45-4aa0-9385-5e2c86795c49')

[
 {"op" : "replace", "path" : "description", "value" : "Updated
Description"}
]

The same optimistic concurrency control mechanism we have implemented with3.
the timestamp value can be implemented with the Test operation:

PATCH /odata/auctions('3634031a-1f45-4aa0-9385-5e2c86795c49')

[
 { "op": "test", "path": "_ts", "value": 1552741629 },
 { "op" : "replace", "path" : "vehicle/year", "value" : 2017},
 { "op" : "replace", "path" : "vehicle/engine/displacement",
"value" : "2.4"}
]

In this example, if the timestamp value does not match the value in the request, the
consequent update operations would not be executed.

Implementing a soft delete
If you're planning on integrating the storage-level operations with triggers and/or change
feed, a soft-delete implementation can be used instead of implementing the complete
removal of objects. In the soft-delete approach, we can extend our entity model with a
specific property (for example, isDeleted) that will define that the document is deleted by
the consuming application.

In this setup, the consuming application can make use of the PATCH method that was
implemented or an explicit DELETE method, which can be implemented for our entity
services.

Creating Microservices Azure App Services Chapter 9

[214]

Let's take a look at the following PATCH request:

PATCH /odata/auctions('3634031a-1f45-4aa0-9385-5e2c86795c49')

[
 { "op": "test", "path": "_ts", "value": 1552741629 },
 { "op" : "replace", "path" : "isDeleted", "value" : true},
 { "op" : "replace", "path" : "ttl", "value" : "30"}
]

With this request, we are indicating that the auction entity with the given ID should be
marked for deletion. Additionally, by setting the Time To Live (TTL) property, we are
triggering an expiry on that given entity. This way, both the triggers and the change feed
will be notified about this update and, within the given TTL, the entity will be removed
from the data store.

TTL is an intrinsic feature of Cosmos DB. The time to live can be set on the
container level, as well as at the item level. If no value has been set on the
container level, the value set of the items will be ignored by the platform.
However, the container can have -1 default expiry and the items that we
want to expire after a certain period can declare a value greater than 0.
Time to live does not consume resources and is not calculated as part of
the consumed RUs.

With the delete implementation, we have the complete set of functions to create the basic
CRUD structure for a microservice in accordance with the Cosmos collections.

Integrating with Redis cache
In a distributed cloud application with a fine-grained microservice architecture, distributed
caching can provide much desired data coherence, as well as performance improvements.
Generally speaking, the distribution of the infrastructure, the data model, as well as costs,
are deciding factors regarding whether to use a distributed cache implementation.

ASP.NET Core offers various caching options, one of which is distributed caching. The
available distributed cache options are as follows:

Distributed memory cache
Distributed SQL server cache
Distributed Redis caches

Creating Microservices Azure App Services Chapter 9

[215]

While the memory cache is not a production-ready strategy, SQL and Redis can be viable
options for a cloud application that's been developed with .NET Core. However, in the case
of a NoSQL database and semi-structured data, Redis would be an ideal choice. Let's see
how we can introduce a distributed cache and make it ready for use:

In order to introduce a distributed cache that can be used across controllers, we1.
would need to use the available extensions so that we can inject an appropriate
implementation of the IDistributedCache interface. IDistributedCache
would be our main tool for implementing the cache, aside from the pattern we
mentioned previously:

public interface IDistributedCache
{
 byte[] Get(string key);

 Task<byte[]> GetAsync(string key, CancellationToken token =
default(CancellationToken));

 void Set(string key, byte[] value, DistributedCacheEntryOptions
options);

 Task SetAsync(string key, byte[] value,
DistributedCacheEntryOptions options, CancellationToken token =
default(CancellationToken));

 void Refresh(string key);

 Task RefreshAsync(string key, CancellationToken token =
default(CancellationToken));

 void Remove(string key);

 Task RemoveAsync(string key, CancellationToken token =
default(CancellationToken));
}

As you can see, using the injected instance, we would be able to set and get data
structures as byte arrays. The application would first reach out to the distributed
cache to retrieve the data. If the data we require does not exist, we would retrieve
it from the actual data store (or a service) and store the result in our cache.

Before we can implement the Redis cache in our application, we can head over to2.
the Azure Portal and create a Microsoft Azure Redis Cache resource within the
same resource group we have been using up until now:

Creating Microservices Azure App Services Chapter 9

[216]

Once the Redis cache instance is created, we would need to note one of the3.
available connection strings. Connection strings can be found under the Manage
Keys blade, which is accessed by using the Show access keys option on the
Overview screen. We can now continue with our implementation.

Creating Microservices Azure App Services Chapter 9

[217]

We will start our implementation by installing the required Redis extension:4.

After the extension and its dependencies have been installed, we will need to5.
configure our distributed cache service using the extension method:

 services.AddDistributedRedisCache(
 option =>
 {
 option.Configuration =
Configuration.GetConnectionString("AzureRedisConnection");
 option.InstanceName = "master";
 });

We can now insert the connection string we retrieved from the Azure Portal in6.
the appsettings.json file, and head over to our controller to set up the
constructor injection for the IDistributedCache instance:

private readonly IDistributedCache _distributedCache;

public UsersController(IDistributedCache distributedCacheInstance)
{
 _distributedCache = distributedCacheInstance;
}

And that's about it – the distributed cache is ready to use. We can now insert serialized data
items as a key/value (where value is a serialized byte array) into our cache without having
to communicate with the actual data source.

Creating Microservices Azure App Services Chapter 9

[218]

Combined with the backend for the frontend pattern, the Redis cache can deliver the
cached data to the application gateway service without having to contact multiple
microservices, providing a simple cost-cutting solution, as well as the promised
performance enhancements.

Hosting the services
Since our web implementation makes use of ASP.NET Core, we are blessed with multiple
deployment and hosting options that span over Windows and Linux platforms.

Azure Web App for App Service
At this point, without any additional implementation or configuration, our microservices
are ready for deployment and they can already be hosted on Azure Cloud as fully managed
App Services. In order to deploy the service as an App Service, you can use Visual Studio
Azure extensions, which allows you to create a publish profile, as well as the target hosting
environment.

Let's see how we can do this::

Right-click on the project to be deployed. You will see the Pick a publish target1.
selection window:

Creating Microservices Azure App Services Chapter 9

[219]

For a complete managed hosting option, we can choose App Service or App
Service Linux options and continue to create a new App Service.

If we were to choose the App Service option, the application would be hosted on2.
the Windows platform with a full .NET Framework profile, whereas the Linux
option would use Linux operating systems with .NET Core runtime. Selecting
the Create New option allows us to select/create the resource group we want the
App Service instance to be added to:

Once published, you can copy the URL from the site URL field and execute a3.
query using curl:

Microsoft Windows [Version 10.0.17134.590] (c) 2018 Microsoft
Corporation. All rights reserved.

Creating Microservices Azure App Services Chapter 9

[220]

C:\Users\can.bilgin>curl
https://netcoreuserapi-dev.azurewebsites.net/odata/users?$filter=Fi
rstName%20eq%20%27Jane%27

{"@odata.context":"https://netcoreuserapi-dev.azurewebsites.net/oda
ta/$metadata#Users","value":[{"Id":"7aa0c870-cb90-4f02-
bf7e-867914383190","FirstName":"Jane","LastName":"Doe","NumberOfAuc
tions":1,"Auctions":[],"Address":{"AddressTypeId":4000,"City":"Seat
tle","Street1":"23 Pike St.","CountryCode":"USA"}}]}

C:\Users\can.bilgin>

Containerizing services
Another option for hosting would be to containerize our application(s), which would come
with the added benefit of configuration as code principles. In a container setup, each
service would be isolated within its own sandbox and easily migrated from one
environment to the next with a high level of flexibility and performance. Containers can
also provide cost savings compared to web apps if they are deployed to the aforementioned
container registries and platforms such as ACS, AKS, Service Fabric, and Service Fabric
Mesh.

Containers are isolated, managed, and portable operating environments.
They provide a location where an application can run without affecting
the rest of the system, and without the system affecting the application.
Compared to virtual machines, they provide much higher server density
since, instead of sharing the hardware, they share the operating system
kernel.

Docker is a container technology that has become almost synonymous with containers
themselves in recent years. The Docker container hosting environment can be created on
Windows and macOS using the provided free software. Let's get started:

In order to prepare a Windows development machine for Docker1.
containerization, we would need to make sure that we have installed the
following:

Docker for Windows (for hosting Windows and Linux containers)
Docker Tools for Visual Studio (opt-in installation for Visual Studio
2017 v15.8+)

Creating Microservices Azure App Services Chapter 9

[221]

Now that we have the prerequisites, we can add a Docker container image2.
definition into each microservice project using the Add | Docker Support menu
item:

This would create a multistage Docker file that will, in simple terms, do the3.
following:

Copy the source code for the application into the container image
Restore the required .NET Core runtime components, depending on
the type of the container (Windows or Linux)
Compile the application
Create a final container image with the compiled application
components

Here, the Docker file we have created for UsersApi looks like this:4.

FROM microsoft/dotnet:2.2-aspnetcore-runtime AS base
WORKDIR /app
EXPOSE 80
EXPOSE 443

FROM microsoft/dotnet:2.2-sdk AS build
WORKDIR /src
COPY ["NetCore.Web.UsersApi/NetCore.Web.UsersApi.csproj",
"NetCore.Web.UsersApi/"]
COPY ["NetCore.Data.Cosmos/NetCore.Data.Cosmos.csproj",
"NetCore.Data.Cosmos/"]

Creating Microservices Azure App Services Chapter 9

[222]

COPY ["NetCore.Data/NetCore.Data.csproj", "NetCore.Data/"]
RUN dotnet restore
"NetCore.Web.UsersApi/NetCore.Web.UsersApi.csproj"
COPY . .
WORKDIR "/src/NetCore.Web.UsersApi"
RUN dotnet build "NetCore.Web.UsersApi.csproj" -c Release -o /app

FROM build AS publish
RUN dotnet publish "NetCore.Web.UsersApi.csproj" -c Release -o /app

FROM base AS final
WORKDIR /app
COPY --from=publish /app .
ENTRYPOINT ["dotnet", "NetCore.Web.UsersApi.dll"]

As you can see, the first stage that defines the base is a reference to Microsoft
managed container images in the public Docker registry. The build image is
where we have the source code for our ASP.NET Core application. Finally, the
build and final images are the last stages where the application is compiled (that
is, dotnet publish) and set up as an entry point on our container.

In other words, the created container image has the final application code, as well
as the required components, regardless of the host operating system and other
containers running on that host.

Now, if you navigate to the parent directory of the UsersApi project on a5.
console or Terminal (depending on the operating system that Docker is installed
on) and execute the following command, Docker will build the container image:

docker build -f ./NetCore.Web.UsersApi/Dockerfile -t netcore-
usersapi .

Once the container image is built by the docker daemon, you can check whether6.
the image is available to start as a container using the following command:

docker image ls

If the image is on the list of available container images, you can now run the7.
container, either using the exposed port of 80 or 443 (the following command
maps the container port 80 to host port 8000):

docker run -p 8000:80 netcore-usersapi

Creating Microservices Azure App Services Chapter 9

[223]

The container development is, naturally, more integrated with Visual Studio on8.
the Windows platform. In fact, ASP.NET Core applications, once containerized,
contain a run/debug profile for Docker that can be directly started from the
Visual Studio user interface:

At this stage, our container configuration is ready to be used, and it can already be
deployed to Azure Web Applications for containers. Container orchestration support can
be added using the available tools on Visual Studio.

Securing the application
In a microservice setup with a client-specific backend, multiple authentication strategies
can be used to secure web applications. ASP.NET Core provides the required OWIN
middleware components to support most of these scenarios.

Depending on the gateway and downstream services architecture,
authentication/authorization can be implemented on the gateway and the user identity can
be carried over to the backend services:

Creating Microservices Azure App Services Chapter 9

[224]

Another approach would be where each service can utilize the same identity provider in a
federated setup. In this setup, a dedicated security token service (STS) would be used by
client applications, and a trust relationship would need to be established between the STS
and the app services:

Creating Microservices Azure App Services Chapter 9

[225]

While choosing the authentication and authorization strategy, it is important keep in mind
that the identity consumer in this setup will be a native mobile client. When mobile
applications are involved, the authentication flow of choice is generally the oAuth2
authorization code flow:

Again, depending on the application you are building, multiple OpenID Identity Connect
(OIDC) providers, such as Microsoft Live, Facebook, and Google, can be introduced to
allow users to choose their preferred identity.

ASP.NET Core Identity
ASP.NET Core Identity is the default membership system that can provide a relatively
trivial and yet extensive implementation of an STS as well as login, registration, and
management user interfaces. Compared to its predecessor, ASP.NET Core Identity provides
developers with a wider range of authentication scenarios, such as oAuth, Two-Factor
Authentication, QR Code for Time-based One-Time Password (TOTP), and so on.

Creating Microservices Azure App Services Chapter 9

[226]

ASP.NET Core Identity uses the SQL database as a persistence store by default and can be
replaced with other repository implementations. Entity Framework Core is used to
implement the standard repository functionality.

External OIDC providers that are supported by ASP.NET Core Identity are Facebook,
Twitter, Google, and Microsoft. Additional provider implementations can be found on
third-party or community provided packages.

Using ASP.NET Core Identity, the created STS can then be consumed by the Xamarin
application through a simple set of HTTP request to register, authenticate, and authorize
users. Additionally, Xamarin applications can utilize available identity provider SDKs, as
well as cross-provider packages.

While this identity management should suffice, since the requirements are for a solely
ASP.NET Core-based solution, once additional Azure resources are included in a
distributed application such as Azure Serverless components, a cloud-based identity
management could prove to be a better choice.

Azure AD
Azure AD is a cloud-based identity as a service (IDaaS) offering and, hitherto, the only
authentication and identity management process that's integrated with the resource
manager for distributed applications developed on the Azure infrastructure. Azure AD is
used to manage access to any SaaS/PaaS resources in resource groups. It supports protocols
such as OpenID Connect, oAuth, and SAML to provide SSO and access control to resources
within a directory.

The authorization for access to and between resources can be set up using the identity
principles defined within the directory. The principle can represent a user with a single
organization (possibly with an associated on-premise Active Directory), an application (a
resource that's set up within the directory or external application, such as a native mobile
app), or an external identity from a different Azure directory or from an external identity
provider.

Generally speaking, this setup where user identities are defined within an organization unit
and users from other directories are introduced as guests, is referred to as Azure AD
Business to Business (B2B).

Creating Microservices Azure App Services Chapter 9

[227]

In order to set up an application wide-authentication scheme using Azure AD B2B, follow
these steps:

Create a directory that will define the organization that will be using the1.
application suite (that is, mobile application and associated services).

Any Azure subscription is accompanied with, at a minimum, free tier
Azure AD (depending on the subscription type) and, in most cases, the
creation of a new directory is not necessary.

You can create a new directory by using the Create a Resource interface on Azure
Portal. Once you have selected Azure AD, you will need to declare an
organization name and initial domain name (for example:
netcorecrossplatform.onmicrosoft.com).

Additional custom domains can be added to this declaration at a later time:2.

Once the directory is created, the organization should be available as a domain3.
option, so that you can set up the authentication for an ASP.NET Core web
application using Visual Studio:

Creating Microservices Azure App Services Chapter 9

[228]

Once the application project is created, it will automatically add an
application registry to the Azure AD and add/configure the required
middleware for application authentication. The configuration for Azure AD
in application startup would look similar to the following:

services.AddAuthentication(AzureADDefaults.BearerAuthenticationSche
me)
 .AddAzureADBearer(options => Configuration.Bind("AzureAd",
options));

The configuration that was created (matching the Azure AD application
registration) is as follows:

"AzureAd": {
 "Instance": "https://login.microsoftonline.com/",
 "Domain": "netcorecrossplatform.onmicrosoft.com",
 "TenantId": "f381eb86-1781-4732-9543-9729eef9f843",
 "ClientId": "ababb076-abb9-4426-b7df-6b9d3922f797"
},

Creating Microservices Azure App Services Chapter 9

[229]

For Azure AD, authentication on the client application (considering we are using
Xamarin and Xamarin.Forms as the development platforms) can be implemented
using the Microsoft Authentication Library (MSAL).

In order for the client application to be able to use the identity federation within4.
this organization, we would need to register (yet) another application on Azure
AD. However, this registration should be declared for a native application:

Creating Microservices Azure App Services Chapter 9

[230]

After the application registration is created, you can use the current directory5.
(that is, tenant) and the client application (that is, application registration) to set
up the authentication library. In this setup, the identity flow can be defined
simply as follows:

The native application retrieving an access token using the
authorization code flow
The native application executing an HTTP request to the gateway
service (that is, our ASP.NET Core service exposing mobile app-
specific endpoints)
The gateway service verifying the token and retrieving an on-behalf-of
token to call the downstream stream services

This way, the user identity can be propagated to each layer and the required
authorization procedures can be implemented using the claim principle.

In order to allow identity propagation, the gateway service application6.
registration (that is, service principle) should be given the required identity
delegation permissions to the downstream service registrations:

Now, the user identity can access the resources, given that his/her identity exists7.
within the target organization and has the required permissions.

Creating Microservices Azure App Services Chapter 9

[231]

For a business-facing application (that is, a line of business (LOB) application), Azure AD
B2B can provide a secure identity management solution with ease, and no additional
custom implementation. However, if the application needs to be client-facing, we would
need a more flexible solution with additional support for registration. Azure B2C can
provide the required support for individual user accounts.

Azure AD B2C
Azure AD B2C is an identity management service for consumer-facing scenarios with the
option to customize and control how customers sign up, sign in, and manage their profiles
when using your applications. This targets various platforms.

B2C is a modern federated identity management service where the consumer applications
(that is, the relying parties) can consume multiple identity providers and verification
methods.

In the B2C realm, the user flows for sign-up and sign-in are referred to as user journeys.
User journeys can be customized with policies if required. The Identity Experience
Framework consumes these policies to achieve the desired user flows. The Identity
Experience Framework is the underlying platform that establishes multi-party trust and
completes the steps in a user journey.

Similar to Azure AD itself, a tenant describes a user domain where certain relations
between the users and applications can be defined. However, in B2C, the domain is
customer-specific, not organization-specific. In other words, a tenant defines an access
group that is governed by the policy descriptions and the linked identity providers.

In this setup, multiple applications can be given access to multiple tenants, making B2C a
perfect fit for development companies with a suite of applications that they want to publish
to consumers. Consumers, once they sign up using one of the linked OIDC identity
providers, can get access to multiple consumer-facing applications.

Creating Microservices Azure App Services Chapter 9

[232]

Summary
In this chapter, we have browsed through the PaaS platforms, as well as the architectural
approaches that are available for hosting and implementing ASP.NET Core web services.
Using the flexible infrastructure offered by ASP.NET Core, it is a relief for developers to
implement microservices that consume data from Cosmos DB collections. The services that
contain CRUD operations on domain objects can be optimized and improved with Redis, as
well as containerization, and hosted on multiple platforms and operating systems. Security,
being one of our main concerns in a distributed cloud architecture, can be ensured using
the available identity infrastructure and Identity as a Service offerings such as Azure Active
Directory and Azure AD B2C on Azure cloud stack.

In the next chapter, we will move on to Azure Serverless, which is yet another service
platform that .NET Core can prove to be vital.

10
Using .NET Core for Azure

Serverless
Azure Functions are serverless compute modules that take advantage of various triggers,
including HTTP requests. Using Azure Functions, developers can create business logic
containers, completely isolated from the problems brought by monolithic web application
paradigms and infrastructure. They can be used as simple HTTP request processing units
and so-called microservices, as well as for orchestrating complex workflows. Azure
Functions come in two flavors (compiled or script-based) and can be written in different
languages, including C# with .NET Core modules.

In this chapter, we will incorporate Azure Functions into our infrastructure so that we can
process data on different triggers. We will then integrate Azure Functions with a Logic
App, which will be used as a processing unit in our setup.

The following topics will be covered throughout this chapter:

Understanding Azure Serverless
Implementing Azure Functions
Creating logic applications
Integrating Azure services to functions

Using .NET Core for Azure Serverless Chapter 10

[234]

Understanding Azure Serverless
In the previous chapters, we created a document structure as a repository and implemented
ASP.NET Core services as containerized microservices so that we could cover our main
application use cases. These use cases can be considered the primary data flow through the
application, and our main concern for performance is concentrated around these data
paths. Nevertheless, the secondary use cases, such as keeping track of the statuses of
auctions for a user that he/she has previously got involved in, or creating a feed to inform
users about new vehicles up for auction, are the features that could increase the return rate
of the users and maintain the user base. Therefore, we would need a steadfast, event-driven
strategy that will not interfere with the primary functionality and should be able to scale
without having to interfere with the infrastructure.

Azure Functions and other Azure Serverless components are tailor-made Azure offerings
for these type of event-driven scenarios where one or more Azure infrastructure services
would need to be orchestrated.

Developing Azure Functions
We can use multiple development environments to develop Azure Functions:

Using Azure portal
Using the Azure CLI with Azure Functions Core Tools
Using Visual Studio or Visual Studio Code
Using other IDEs such as Eclipse or IntelliJ IDEA

We can also use multiple languages and platforms to create our functions:

Java/Maven
Python
C# (.NET Core and Scripts)
JavaScript/Node
F# (.NET Core)

As you can see, multiple platform and development environment combinations can be used
to create Azure Functions. This means that any operating system including Windows,
macOS, and Linux can be used as a development station.

Using .NET Core for Azure Serverless Chapter 10

[235]

Implementing Azure Functions
Let's demonstrate the cross-platform development toolset using macOS by creating our
example functions using the Azure function's core tools:

In order to install the platform runtime, we will first register the1.
azure/functions repository:

brew tap azure/functions

Once the functions repository has been registered, we can continue with the2.
installation of the Azure Functions core tools:

brew install azure-functions-core-tools

Once the installation is complete, we can continue with the development of our
sample functions:

To demonstrate functions, we will create a simple calculator function (that is, x +3.
y = z). This function could be initialized as follows on Python. First, we will
initialize a virtual work environment:

Cans-MacBook-Pro:python can.bilgin$ python3 -V
Python 3.6.4
Cans-MacBook-Pro:python can.bilgin$ python3 -m venv .env
Cans-MacBook-Pro:python can.bilgin$ ls
.env
Cans-MacBook-Pro:python can.bilgin$ source .env/bin/activate
(.env) Cans-MacBook-Pro:python can.bilgin$

At the time of writing, python runtime is still in public preview and
versions of python newer than 3.6 are not supported.

Using .NET Core for Azure Serverless Chapter 10

[236]

Once the environment is created and activated, we can continue with the4.
initialization of our function project:

(.env) Cans-MacBook-Pro:python can.bilgin$ func init
myazurefunctions
Select a worker runtime:
1. dotnet
2. node
3. python (preview)
Choose option: 3
python
Writing .funcignore
Writing .gitignore
Writing host.json
Writing local.settings.json
Writing
/Volumes/Data/book/functions/python/myazurefunctions/.vscode/extens
ions.json

Now that the project has been created, we can create a new function called add:5.

(.env) Cans-MacBook-Pro:python can.bilgin$ cd myazurefunctions/
(.env) Cans-MacBook-Pro:myazurefunctions can.bilgin$ func new
Select a template:
1. Azure Blob Storage trigger
...
9. Timer trigger
Choose option: 5
HTTP trigger
Function name: [HttpTrigger] add
Writing
/Volumes/Data/book/functions/python/myazurefunctions/add/sample.dat
Writing
/Volumes/Data/book/functions/python/myazurefunctions/add/__init__.p
y
Writing
/Volumes/Data/book/functions/python/myazurefunctions/add/function.j
son
The function "add" was created successfully from the "HTTP trigger"
template.

Using .NET Core for Azure Serverless Chapter 10

[237]

Now that the function has been created, you can use any editor to edit the6.
__init__.py file in order to implement the function, as follows:

Using .NET Core for Azure Serverless Chapter 10

[238]

Within the project directory, executing the following command would run the7.
local function server:

func host start

Now, the function server is running and executing a get query to the given port8.
that is displayed on the Terminal window. This would trigger the HTTP request
and return the result:

curl 'http://localhost:7071/api/add?x=5&y=8'
Addition result is 13

If, in the creation step, we had chosen the first option, that is, 1. dotnet, the project would
have been created with a compiled C# function template:

Cans-MacBook-Pro:dotnet can.bilgin$ func init myazurefunctions
Select a worker runtime:
1. dotnet
2. node
3. python (preview)
Choose option: 1
dotnet
Writing
/Volumes/Data/book/functions/dotnet/myazurefunctions/.vscode/extens
ions.json
Cans-MacBook-Pro:dotnet can.bilgin$ cd myazurefunctions
Cans-MacBook-Pro:myazurefunctions can.bilgin$ func new
Select a template:
1. QueueTrigger
2. HttpTrigger
...
12. IotHubTrigger
Choose option: 2
Function name: add
add
The function "add" was created successfully from the "HttpTrigger"
template.
Cans-MacBook-Pro:myazurefunctions can.bilgin$ ls
add.cs host.json local.settings.json myazurefunctions.csproj
Cans-MacBook-Pro:myazurefunctions can.bilgin$ nano add.cs
Cans-MacBook-Pro:myazurefunctions can.bilgin$ func host start

Using .NET Core for Azure Serverless Chapter 10

[239]

Our source code for the add function would look similar to the following:

Of course, while this works for demonstration purposes, development with Visual Studio
(for both macOS and Windows) as well as Visual Studio Code would provide the comfort
of an actual .NET development environment.

Using .NET Core for Azure Serverless Chapter 10

[240]

Function triggers and bindings
The function projects and the functions that we created in the previous section, in spite of
the fact that they are implemented and executed on completely separate runtimes, carry
function manifests that adhere to the same schema (that is, function.json). While the
manifest for Python implementation can be found in the folder carrying the same name as
the function, the dotnet version is only generated (can be found in the
bin/output/<function> folder) at compile time from the attributes used within the
implementation. Comparing the two manifests, we can immediately identify the respective
sections where the input, output, and triggering mechanisms are defined for these
functions:

As we mentioned earlier, Azure Functions are event-triggered Azure resources. These
trigger mechanisms define not only when the function is going to be executed, but also the
input and output data types and/or connected services. For instance, a blob storage entry
can be used as a trigger, as well as input and output. Similarly, HttpTrigger can define
the execution method, as well as the input and out mechanisms (like in the previous
examples). This way, additional service integrations can be included within the function as
declarative attributes rather than functional implementations.

Using .NET Core for Azure Serverless Chapter 10

[241]

Some of these binding types are as follows:

In addition to the listed items, there are other extensions available via Azure Core Tools or
NuGet packages and, by default, only timer and HTTP extensions are registered in a
function runtime.

Configuring functions
Azure Functions use the same configuration infrastructure as ASP.NET Core applications,
hence utilizing the Microsoft.Extensions.Configuration module.

Using .NET Core for Azure Serverless Chapter 10

[242]

While the application is running on the local runtime during development, in order to read
the configuration values from the local.settings.json file, a configuration builder
needs to be created and the AddJsonFile extension method needs to be used. After the
configuration instance is created, the configuration values, as well as the connection strings,
can be accessed through the indexer property of the configuration instance.

During deployment to the Azure infrastructure, the settings file is used as a template to
create the app settings that will be governed through the Azure portal, as well as the
resource manager. These values can also be accessed with the same principle, but they are
added as environment variables.

In order to support both scenarios, we can use the extension methods that are available
during the creation of the configuration instance:

var config = new ConfigurationBuilder()
 .SetBasePath(context.FunctionAppDirectory)
 .AddJsonFile("local.settings.json", optional: true,
 reloadOnChange: true)
 .AddEnvironmentVariables()
 .Build();

Hosting functions
Azure Functions, once deployed, are hosted on the App Service infrastructure. In an App
Service, as you saw in the previous examples, only the compute and other resources that
are used are accumulated toward your bill. In addition, Azure Functions, in a consumption
plan, are active only when they are triggered by one of the events that has been configured;
hence, Azure Functions can be extremely cost-effective in mission critical integration
scenarios. Function resources can also be scaled out and down, depending on the load they
are handling.

The second plan that's available for functions is the premium plan. In the premium plan,
you have the option to set up always running functions to avoid cold starts, as well as
unlimited execution duration. Unlimited duration can come in handy on longer running
processes since, by default, Azure Functions have a hard limit of five minutes, which can be
extended to 10 minutes with additional configuration.

Using .NET Core for Azure Serverless Chapter 10

[243]

Creating our first Azure function
One of the patterns that was mentioned previously in the Azure context was the
materialized view. For instance, in our initial structure, we have basic information about
the auctions that are embedded within the user documents. This way, the auctions can be
included as part of the user profile and users can be rated based on their involvement with
successful auctions. In this setup, since the auction data on the user profile is just the
denormalized data chunks from the main auction table, the services would not need to
directly interact with the auctions table.

Let's take a look at the following user story and see how we can implement this solution:

"As a solution architect, I would like to implement an Azure Function that will update the
Cosmos DB Users Collection with modified auctions data so that the Auctions API can be
decoupled from the Users API."

Our task here would be to implement an Azure function that will be triggered when an
auction document is modified. The changes on this document should be propagated to the
Users Collection:

Using .NET Core for Azure Serverless Chapter 10

[244]

In this setup, we will start by doing the following:

First, we will create our Azure Functions project, which will be hosted as a1.
functions app in our resource group:

This will create our first function with the following declaration:2.

[FunctionName("Function1")]
public static void Run(
 [CosmosDBTrigger(
 databaseName: "ProductsDb",
 collectionName: "AuctionsCollection",
 ConnectionStringSetting = "DbConnection",
 LeaseCollectionName = "leases")]
 IReadOnlyList<Document> input, ILogger log)

By using CosmosDBTrigger here, we are instructing the Azure Functions
runtime to create a lease so that we can connect to the Cosmos DB change feed on
the given database (that is, ProductsDb) and collection (that is,
AuctionsCollection) using the set connection string setting (that is,
DbConnection).

Using .NET Core for Azure Serverless Chapter 10

[245]

Now, let's expand our configuration to include the given connection string3.
setting:

{
 "ConnectionStrings": {
 "DbConnection":
"AccountEndpoint=https://handsoncrossplatform.documents.azure.com:4
43/;AccountKey=...;"
 }
}

Now, we will create a lease collection that will record the triggers that are4.
registered by our Azure Functions. In order to use a single lease collection, on top
of the LeaseCollectionName option, we can also add the LeasePrefix
property to our declaration. This way, each lease entry will receive a prefix value,
depending on the function declaration. Now, with the additional lease settings,
our trigger declaration would look like this:

[CosmosDBTrigger(
 databaseName: "ProductsDb",
 collectionName: "AuctionsCollection",
 ConnectionStringSetting = "DbConnection",
 LeaseCollectionPrefix = "AuctionsTrigger",
 LeaseCollectionName = "LeasesCollection")]

After this, we can already run our function in debug mode and see whether our5.
trigger is working as expected. After updating a document on the
AuctionsCollection collection, you will receive the updated data almost
immediately:

Using .NET Core for Azure Serverless Chapter 10

[246]

We are now receiving the modified document. If the modifications are based on6.
the incoming data alone, we could have added an output binding with a single
document or an async collector to modify or insert documents into a specific
collection. However, we would like to update a list of auctions that the user is
involved in. Therefore, we will get a Cosmos client instance using the attribute
declaration:

[CosmosDBTrigger(
 databaseName: "ProductsDb",
 collectionName: "AuctionsCollection",
 ConnectionStringSetting = "DbConnection",
 LeaseCollectionPrefix = "AuctionsTrigger",
 LeaseCollectionName =
"LeasesCollection")]IReadOnlyList<Document> input,
[CosmosDB(
 databaseName: "ProductsDb",
 collectionName: "UsersCollection",
 ConnectionStringSetting = "DbConnection")] DocumentClient
client,

Now, using the client, we can execute the necessary updates on the Users Document
collection.

Developing a Logic App
When tasked with implementing a Logic App, in theory, a developer would not necessarily
need anything else other than a text editor since Logic Apps are an extension of ARM
resource templates. The manifest for a Logic App consists of four main ingredients:

Parameters
Triggers
Actions
Outputs

Parameters, triggers, and outputs, similar to the binding concept of Azure Functions, define
when and how the application is going to be executed. Actions define what the application
should do.

Logic Apps can be created using an IDE with an additional schema and/or visual support,
such as Visual Studio, or can be developed solely on Azure portal using the web portal.

Using .NET Core for Azure Serverless Chapter 10

[247]

Implementing Logic Apps
In order to create a Logic App with Visual Studio, we need to do the following:

We would need to use the Azure Resource Group project template and select the1.
Logic App template from the screen that follows:

This will create a resource group manifest that contains the Logic App definition.
The Logic App can now be modified using the Logic App designer within Visual
Studio, given that the Azure Logic Apps Tools extension is installed (right-click
on the resource group JSON file and choose Open with Logic App Designer).

Using .NET Core for Azure Serverless Chapter 10

[248]

The first step to implementing a Logic App is to select the trigger, which will be2.
the initial step in our workflow. For this example, let's select When a HTTP
request is received.
Now that the Logic App flow has been created, let's expand the HTTP request3.
and paste a sample JSON payload as the body of a request we are expecting for
this application trigger:

This will generate a Request Body JSON Schema. Now, we can send our
requests, just like in the sample JSON payload.

Next, we will add an action to send an email (there are many email solutions; for4.
this example, we will be using the Send an email action using Outlook):

Using .NET Core for Azure Serverless Chapter 10

[249]

As you can see, we are in fact using the email, subject, and message parameters
defined in our trigger to populate the email action.

Finally, we can add a Response action and define the response header and body.5.
Now, our application is ready to execute:

After the Logic App is deployed, you can retrieve the request URL, as well as the integrated
security token from the Azure portal designer. Executing a simple POST call with the
required parameters would trigger the logic application and trigger actions:

curl -H "Content-Type:application/json" -X POST -d
'{"email":"can.bilgin@authoritypartners.com", "title":"Test",
"subject":"Test", "message" : "Test Message"}'

Using .NET Core for Azure Serverless Chapter 10

[250]

"https://prod-00.northcentralus.logic.azure.com:443/workflows/5bb--
--------/triggers/manual/paths/invoke?api-
version=2016-10-01&sp=%2Ftriggers%2Fmanual%2Frun&sv=1.0&sig=eOB----
------------"

Successfully sent the email to can.bilgin@authoritypartners.com

As you can see, using Logic Apps, these types of simple or even more intricate business
workflows can be declaratively converted into web services, as well as executed on triggers
such as queues, feeds, and web hooks. Connectors are the key components in this setup that
serve these actions and the triggers that are available for logic apps.

Using connectors
In the previous example, we were using the HTTP trigger and response actions, as well as
the Outlook Send Email action. These actions and triggers are packaged in so-called
connectors for the Logic App infrastructure. Connectors are essentially part of a bigger SaaS
ecosystem that also involves Microsoft Flow and PowerApps, as well as Logic Apps.
Connectors can be described as encapsulated connectivity components for various SaaS
offers (for example, email, social media, release management, HTTP requests, file transfer,
and so on).

On top of the standard free set of connectors (including third-party connectors), the
Enterprise Integration Pack (EIP), which is a premium offering, provides building blocks
for B2B enterprise integration services. These integration scenarios generally revolve
around the supported industry standards, that is, Electronic Data Interchange
(EDI) and Enterprise Application Integration (EAI).

It is also possible to create custom Logic Apps connectors in order to implement additional
custom use cases that cannot be realized with the available set of connectors.

If/when the actions provided through the available connectors do not satisfy the
requirements, Azure Functions can be integrated as tasks into Logic Apps. This way, any
custom logic can be embedded into the workflow using .NET Core and simple HTTP
communication between Logic Apps and functions.

Using .NET Core for Azure Serverless Chapter 10

[251]

Creating our first Logic App
The main service application, so far, is built to accommodate the main application use cases
and provide data for users so that they can create auctions and user profiles, as well as bid
on auctions. Nevertheless, we need to find more ways to engage users by using their
interests. For this type of engagement model, we can utilize various notifications channels.
The most prominent of these channels is a periodic notification email setup.

The user story we will use for this example is as follows:

"As a product owner, I would like to send out periodic emails to registered users if there
are new auctions available, depending on their previous interests, so that I can engage the
users and increase the return rate."

Before we start implementing our Logic App, in spite of the fact that it is possible to use the
Cosmos DB connector to load data, let's create two more Azure Functions to load the users
and latest auctions for email targets and content, respectively. Both of these functions
should use HttpTrigger and should return JSON data as a response. Let's get started:

The function that will return the list of users that we will send the notifications to1.
is as follows:

[FunctionName("RetrieveUsersList")]
public static async Task<IActionResult> Run(
 [HttpTrigger(AuthorizationLevel.Function, "get", "post", Route
= null)] HttpRequest req,
 ILogger log)
{
 // TODO: Retrieve users from UsersCollection
 var users = new List<User>();
 users.Add(new User{ Email = "can.bilgin@authoritypartners.com",
FirstName = "Can"});

 return (ActionResult)new OkObjectResult(users);
}

Using .NET Core for Azure Serverless Chapter 10

[252]

Next, we will need the data for the latest auctions:2.

[FunctionName("RetrieveLatestAuctionsList")]
public static async Task<IActionResult> Run(
 [HttpTrigger(AuthorizationLevel.Function, "get", "post", Route
= null)] HttpRequest req,
 ILogger log)
{
 // TODO: Retrieve latest auctions from AuctionsCollection
 var auctions = new List<Auction>();
 auctions.Add(new Auction
 {
 Brand = "Volvo",
 Model = "S60",
 Year = 2017,
 CurrentHighestBid = 26000,
 StartingPrice = 25000
 });

 return (ActionResult)new OkObjectResult(auctions);
}

Now that we have our data feeds ready, we can start implementing our Logic
App.

In this example, we have used Azure Functions to retrieve a set of DTOs
in order to be cost-efficient. It it also possible to create a change feed
function that will prepare the daily notification feed as soon as the data
store is updated with a new user or auction/bid. This way, the Logic App
could directly load the data from the daily feed document collection or
table storage.

In our previous example, we created a Logic App using an HTTP trigger. For this3.
example, let's start with a recurrence trigger so that we can process our data and
prepare a periodic feed:

Using .NET Core for Azure Serverless Chapter 10

[253]

Next, let's retrieve the set of users using our Azure function. In order to select a4.
function from the available actions, you should locate the Azure Functions action
in the Choose an action dialog, then select the target function app that contains
your functions, and finally, select the desired function:

Using .NET Core for Azure Serverless Chapter 10

[254]

Once we have retrieved the results from the Azure function, it will be in JSON5.
format. In order to ease the design and access properties of the contained data
items, it would be good to include a data parse action with a predefined schema.
At this point, you can have a simple run and copy the results:

Using .NET Core for Azure Serverless Chapter 10

[255]

After repeating the same actions for the auctions list data, we can start building
out email content. Our current workflow should look similar to the following:

Before we continue with preparing the email content and sending it to each user6.
on the list, let's structure the flow a little bit so that the data retrieval actions for
users and auctions are not executed sequentially:

Now, we can continue with additional control statements and the preparation of the email
content.

Using .NET Core for Azure Serverless Chapter 10

[256]

Workflow execution control
By definition, being an orchestration tool, Logic Apps utilities control statements such as
foreach, switch, and conditionals in order to compose a controlled workflow using
available actions. These control statements can be used as actions within the workflow
using the input and output values of other actions within the Logic App context. The
available set of control statements are as follows:

Condition: Used to evaluate a condition and define two separate paths,
depending on the result
Foreach: Used to execute a path of dependent actions for each item in a sequence
Scope: Used to encapsulate a block of actions
Switch: Used to execute multiple separate action blocks, depending on the
switch input
Terminate: Terminates the current execution of the Logic App
Until: Used as a while loop, where a block of actions are executed until a defined
condition evaluates to true

These statements can be accessed using the Control action within the Logic App Designer:

Using .NET Core for Azure Serverless Chapter 10

[257]

In our example, we are supposed to send an email to each user with the latest auctions list.
We can achieve this with a for each action on the list of users:

Using .NET Core for Azure Serverless Chapter 10

[258]

As you can see, we are using the body of the UsersList action (that is, body(UsersList),
using Logic App notation), and for each item in the list, we are retrieving the email (that is,
items('For_each')['email']) and firstName. In a similar manner, we can prepare the
auction's email body and assign the result as the body of the subject. In addition to this
simple setup, the content can be filtered according to the interest of the user using the data
operations that are available:

Now, we will be periodically sending auction updates to users without having to
compromise or add additional complexity to our current service infrastructure.

Integration with Azure services
So far, we have only utilized Cosmos DB in the context of Logic Apps and Azure Functions
among the many Azure services that we can integrate with Azure Serverless components.

As you have seen, these integrations are available through bindings for Azure Functions
and through connectors for Logic Apps. Using this integrated business model, multiple
architectural patterns can be composed and event-driven scenarios can be accomplished.

Using .NET Core for Azure Serverless Chapter 10

[259]

Let's take a deeper look at some of these integrated services.

Repository
In the Azure Serverless context, it is fair to say that almost all Azure repository models are
tightly integrated with the infrastructure. Let's take a look at the following models:

Cosmos DB: This has an available binding for Azure Functions. This is a
connector with various available actions to execute mainstream CRUD actions, as
well as advanced scenarios to create, retrieve, and execute stored procedures.
Cosmos DB can also be used to trigger Azure Functions.
SQL server: This is another repository service that can be integrated into the
Logic Apps with the available connector, hence allowing triggers such as an item
being created or modified. Logic Apps can also use the SQL and Azure SQL
Data Warehouse connectors to execute both raw and structured queries on SQL
instances. Additionally, SQL connections can be initialized within the Azure
Functions using nothing but the native SQL client that's available as part of .NET
Core.
Azure table storage: This is another repository model that can be integrated with
Azure Serverless components. Table storage tables can be used as input
parameters and can be the receivers of new entities as part of an output
configuration within the Azure Function infrastructure. The available connector
for the Logic Apps can be utilized to execute various actions on a table storage:

Using .NET Core for Azure Serverless Chapter 10

[260]

Azure blob storage: This can be used as trigger for both functions and Logic
Apps. The available function binding and app connector provide a variety of
tasks and binding elements that can be utilized within the serverless app model.

Queue-based processing
In order to implement the aforementioned queue-based load leveling pattern, Azure
distributed systems can utilize Azure queues, as well as the Azure Service Bus. In this way,
various asynchronous processing patterns can be implemented.

Azure queues can be configured to trigger functions and Logic Apps. Both the binding and
the connector have available actions so that they can listen to a specific queue. The
connector contains actions for executing basic operations, including but not limited to the
creation of message queues, the insertion of messages, and the retrieval of messages. An
Azure message queue can also be used as an output target of an Azure function to create a
message in the configured queue.

The connector and binding for the Azure Service Bus have an extended set of available
actions and various triggers. Queues and topics are both available for listening for new
messages as part of the trigger setup. Logic Apps can also execute almost all possible
actions that a managed client can achieve through operations related to managing basic
messages, dead-letter queues, locks, topics, and subscriptions.

Event aggregation
The citizen of the Azure Serverless ecosystem, Event Grid, is the most appropriate
candidate for implementing the classic publisher/subscriber model between distributed
service components, especially when Azure Functions and Logic Apps are involved. In
addition to Event Grid, Event Hub is the best choice for big data pipelines that involve
event streaming rather than discreet event distribution.

Event Grid aggregates the events that are collected from various so-called Event Sources,
such as container registries, resource groups, service bus, and storage. Event Grid can also
consume and deliver custom topics that are posted by capable components. Aggregated
events are then dispersed to the registered consumers or so-called event handlers. Event
handlers for Event Grid include, but are not limited to, the following:

Azure automation
Azure Functions
Event Hubs

Using .NET Core for Azure Serverless Chapter 10

[261]

Hybrid connections
Logic Apps
Microsoft flow
Queue storage
WebHooks

This infrastructure means that developers aren't limited by the available triggers for
functions and Logic Apps as the initial point of a certain mission critical scenario. They can
also create a complete event-driven subscription model.

Event hubs can be integrated as a consumer for Event Grid events and used as triggers and
output for Azure Functions. A connector is available for Logic Apps with trigger and
actions. The event hub, when used together with Azure Functions, can create an extremely
agile scaling model for processing big data streams.

Summary
Overall, Azure Functions and Logic Apps, as part of the Azure Serverless platform,
provide ad hoc, event-based solutions to fill in the gaps in any distributed cloud
application. In this chapter, we have analyzed the available development options for Azure
Functions. We have implemented simple Azure Functions to denormalize data on a
Cosmos DB setup. Finally, we created Logic Apps by utilizing the out of the box connector
tasks, as well as Azure Functions with HTTP and periodic triggers.

This chapter finalizes the Azure cloud services-related topics. In the following chapters, we
will take a look at more advanced topics to improve the integration between Xamarin
applications and the cloud-based service backend.

4
Section 4: Advanced Mobile

Development
For developers who are not satisfied with the bare minimum, terms such as responsive,
engaging, and asynchronous become the differentiating factors for a mobile application.
Providing the patterns and tools to create an application that will provide a fast and fluid
user interface and engage the user with a personalized approach is one of the goals of the
upcoming chapters.

The following chapters will be covered in this section:

Chapter 11, Fluid Applications with Asynchronous Patterns
Chapter 12, Managing Application Data
Chapter 13, Engaging Users with Push Notifications and Graph APIs
Chapter 14, Introducing Cognitive Services

11
Fluid Applications with

Asynchronous Patterns
One of the key attributes of an attractive mobile application is its responsiveness.
Applications that do not interfere with the interaction of the user and, instead, maintain the
rendering and execution of user gestures in a smooth manner are more desirable by users.
In order to achieve fast and fluid application norms, together with performance,
asynchronous execution patterns come to the rescue. When developing Xamarin
applications, as well as ASP.NET Core, both the task's framework and reactive modules can
help distribute the execution threads and create a smooth and uninterrupted execution
flow. This chapter will go over some of the patterns associated with these modules and
apply them to various sections of the application.

The following sections will walk you through some key implementation scenarios for
asynchronous execution:

Utilizing tasks and awaitables
Asynchronous execution patterns
Native asynchronous execution

Utilizing tasks and awaitables
User experience (UX) is a term that is used to describe the composition of UI components
and how the user interacts with the UI components. In other words, UX is not only how the
application is designed, but rather the impression of the user about the application. In this
context, the responsiveness of the application is one of the key factors that defines the
quality of the application.

Fluid Applications with Asynchronous Patterns Chapter 11

[264]

In general terms, a simple interaction use case starts with user interaction. This interaction
can be a tap on a certain area on the screen, a certain gesture on a canvas, or an actual user
input in an editable field on the screen. Once the user interaction triggers the execution
flow, the application business logic is responsible for updating the UI to notify the user
about the result of their input.

As you can see, in the asynchronous version of the simple interaction model, the
application starts the execution of the designated business flow and doesn't wait for it to
complete. In the meantime, the user is free to interact with other sections of the UI. Once the
result is available, the application UI is notified about the completion.

While this interaction model defines and satisfies simple execution scenarios (for example,
validating an email field with a regular expression, or displaying a fly out to show the
desired details on an item), since the interaction model as well as the business logic get
more complex and additional dependencies come into the picture, such as web services, we
should keep the user appraised about the work the application is doing (for example, a
progress bar while downloading a remote resource). For this purpose, we can extend our
interaction model to provide continuous updates to the user:

Fluid Applications with Asynchronous Patterns Chapter 11

[265]

Now, the UI is continuously receiving updates from the background process. These
updates can be as simple as a busy signal for a loader ring or data updates for sophisticated
completion percentage components. However, this pattern raises another question as to
how the application UI is going to handle multiple updates coming in from background
processing. Before we can answer this question, let's take a closer look at the application UI
infrastructure and task-based execution.

Task-based execution
An application UI, regardless of the platform it is implemented on, always follows a single-
threaded model. Even if the underlying platform or the hardware supports multithreading,
the runtime is responsible for providing a single dispatcher to render the UI in order to
avoid multiple threads trying to update the same section of the screen at the same time.

In this single-threaded model, it is the application's responsibility to lay off the background
processing to child threads and synchronize back to the UI thread.

The .NET Framework introduced the task-based threading model, also referred to as
the Task Asynchronous Programming (TAP) model, in .NET 4.0, and since then it has
become a norm for asynchronous execution – especially on mobile platforms such as
Xamarin.

In simple terms, TAP provides an abstraction over the classic threading model. In this
approach, the developer and, implicitly, the application, are not directly responsible for
handling the thread's creation, execution, and synchronization; but simply for the creation
of asynchronous work blocks (that is, tasks), allowing the underlying runtime to handle the
heavy lifting. Especially considering the fact that .NET Standard is a complete abstraction
for various runtimes, such as .NET Core and Mono, this abstraction allows each platform to
implement the platform-appropriate handling of multithreading. This is one of the main
reasons why the Thread class is not available in cross-platform modules, whereas
platform-specific framework modules (for example, Xamarin.iOS and Xamarin.Android)
provide access to the classic threading model.

A simple asynchronous block can be created using the static helper methods that are
available in the Task class:

Task.Run(() =>
{
 // Run code here
})

Fluid Applications with Asynchronous Patterns Chapter 11

[266]

In this example, we are wrapping a synchronous block of code inside a task. Now, the
declaring method can return the created task block. Alternatively, if there are other
asynchronous blocks, it should execute this block with an await keyword, thus creating an
async method:

public Task SimpleyAsyncChain()
{
 return Task.Run(...);
}

public async Task MyAsyncMethod()
{
 var result = await Task.Run(...);
 await OtherAsyncMethod(result);
 // example async method
 await Task.Delay(300);
}

Either implementation in this example creates an asynchronous chain of methods that can
be awaited on the top level. Exception handling can also be introduced using simple
try/catch blocks, which is no different than using synchronous code:

public async Task<MyEntity> MyAsyncMethodWithExceptionHandling()
{
 MyEntity result = null;

 try
 {
 result = await Task.Run(...);
 }
 catch(Exception ex)
 {
 // TODO: Log the exception
 }

 return result;
}

While tasks can be executed sequentially, which is done in the MyAsyncMethod method, if
there are no dependencies between the asynchronous blocks, they can also be executed in
parallel, allowing the runtime to utilize multithreading as much as possible:

public async Task MyParallelAsyncMethod()
{
 var result = await Task.Run(...);
 await Task.WhenAll(OtherAsyncMethod(result), Task.Delay(300));
}

Fluid Applications with Asynchronous Patterns Chapter 11

[267]

Using this foundation provided by the TAP model, let's take a look at the following user
story:

"As a registered user, I would like to have a view dedicated for my profile so that I can see
and verify my public information within the application."

Perhaps the most prominent use of task-based methods is when the application needs to
interact with a remote backend (for example, a RESTful web service). However, tasks are
deeply integrated and the .NET Framework is the de facto way of handing multithreading.
For instance, the starting point of a service proxy client would be to create a simple REST
client that would execute various HTTP methods against the target API endpoint.

Before we implement our rest client, we need to define the client interface:

public interface IRestClient
{
 Task<TResult> GetAsync<TResult>(string resourceEndpoint, string id)
 where TResult : class;

 Task<TEntity> PostAsync<TEntity>(string resourceEndpoint, TEntity
 entity) where TEntity : class;

 Task<TEntity> PutAsync<TEntity>(string resourceEndpoint, string id,
 TEntity entity) where TEntity : class;

 Task<TResult> DeleteAsync<TResult>(string resourceEndpoint, string
 id) where TResult : class; }

We can extend this interface with more specialized methods, such as the GetListAsync
method, which can be helpful for serializing a list of items:

Task<IEnumerable<TResult>> GetListAsync<TResult>(string resourceEndpoint)
where TResult : class;

Now, the implementation of these methods can use the simple HttpClient method to
execute the remote call and some type of serialization/deserialization:

public async Task<TResult> GetAsync<TResult>(string resourceEndpoint,
string id)
 where TResult : class
{
 var request = new HttpRequestMessage(HttpMethod.Get, $"
 {resourceEndpoint}/{id}");
 var response = await _client.SendAsync(request);

 if (response.IsSuccessStatusCode)
 {

Fluid Applications with Asynchronous Patterns Chapter 11

[268]

 var content = await response.Content.ReadAsStringAsync();
 return JsonConvert.DeserializeObject<TResult>(content);
 }

 // TODO: Throw Exception?
 return null;
}

Here, the client member field is initialized in the constructor of RestClient, possibly with
a base URL declaration, as well as with additional HTTP handlers:

public RestClient(string baseUrl)
{
 // TODO: Insert the authorization handler?
 _client = new HttpClient();
 _client.BaseAddress = new Uri(baseUrl);
}

Using RestClient, we can then create another level of abstraction to implement the API-
specific method calls that will convert the data transformation objects into the domain
entities:

public async Task<User> GetUser(string userId)
{
 User result = null;

 // Should we initialize the client here? Is UserApi client going to
 //be singleton?
 var client = new RestClient(_configuration["serviceUrl"]);

 try
 {
 var dtoUser = await client.GetAsync<User>
 (_configuration["usersApi"], userId);
 result = User.FromDto(dtoUser);
 }
 catch (Exception ex)
 {
 // TODO:
 }

 return result;
}

Fluid Applications with Asynchronous Patterns Chapter 11

[269]

As you can see, we have a chain of asynchronous methods finally executing a remote call.
We now have to connect the user API retrieval call to our view model, which should
immediately load the associated user data to be displayed on the target view. In this use
case, the user interaction that triggers the business flow is possibly the user tapping on the
user profile link. The application responded by navigating to the target view, which
initialized the view model. The view model, in turn, requested the remote data for the user
profile:

public async Task RetrieveUserProfile()
{
 if (string.IsNullOrEmpty(NavigationParameter))
 {
 // TODO: Error/Exception
 }

 var userId = NavigationParameter;
 var userResult = await _usersApi.GetUser(userId);

 CurrentUser = userResult;
}

Once the CurrentUser property is set, the view would be notified and updated to display
the retrieved information.

This implementation would work in a simple asynchronous chain since the async/await
construct provided by the language is converted into a state machine during the
compilation process that ensures that the asynchronous threads yield back into the UI
thread so that the view model updates can be propagated back to the UI.

If we want to make sure that the execution of the user data assignment takes place on the
UI thread, we can use the InvokeOnMainThread method, instructing the runtime to
execute a block of asynchronous code on the main UI thread:

Device.BeginInvokeOnMainThread (() => {
 CurrentUser = userResult;
});

The main thread invocation becomes an essential part of the asynchronous chain when
we're dealing with multiple synchronization contexts.

Fluid Applications with Asynchronous Patterns Chapter 11

[270]

Synchronization context
When dealing with asynchronous method calls using TAP, it is important to understand
that async and await are language constructs provided by C# and that the actual
multithreaded execution is the injected compiler-generated code that's used to replace the
async/await blocks. If the compiler-generated asynchronous state machine is closely
observed and the async method builder is analyzed, you will notice that at the start of any
asynchronous await call, the current synchronization context is captured and, later on,
when the asynchronous operation is completed, it is used again to execute the continuation
action.

In a Xamarin application, the synchronization context – which is similar to the execution
context – refers to the thread that the current asynchronous block is being called from, as
well as the target thread that the current asynchronous block should yield to. If an
ASP.NET core application is under the magnifying glass, the synchronization context
would be referring to the current HttpRequest object. In certain cases, the thread pool
might be acting in the synchronization context.

As we have mentioned, the previous asynchronous example for UserProfile would, in
fact, be used in the UI thread, since the captured context at the beginning of the execution
would probably be for the main UI thread. Once the retrieve operation is completed, the
continuation actions (that is, the assignment of the result to the view-model) would be
executed on the main thread. Nevertheless, yielding the asynchronous methods back to the
UI could cause performance penalties and even deadlocks if the await chains are not
handled properly. In a catastrophic scenario, the UI thread might end up waiting for an
asynchronous block, which, in turn, waits for the UI thread to yield back to. In order to
avoid such occurrences, it is highly advised to utilize explicit control of the captured
context and yield the target context using the ConfigureAwait method. Moreover,
especially in native mobile applications, free the UI thread from any long-running task
synchronization using ConfigureAwait(false) (that is, do not yield back to the captured
context). This ensures that the asynchronous methods are not merged back to the UI thread
and that the asynchronous compositions are handled within a separate thread pool. For
instance, let's say we were to add an additional asynchronous method to the async chain
from the previous example:

var userResult = await _usersApi.GetUser(userId).ConfigureAwait(false);
var additionalUserData =
_usersApi.GetUserDetails(userId).ConfigureAwait(false);

CurrentUser = userResult;

Fluid Applications with Asynchronous Patterns Chapter 11

[271]

Unlike the previous example, the last statement in this method (the continuation action)
would be executed on a different thread than the UI thread. The first asynchronous call
would not yield back to the UI thread because of the ConfigureAwait creating a
secondary synchronization context. This secondary context would then be used as the
captured context for the second asynchronous call, to which it would yield back to. Finally,
the statement to assign the result would be executed on this secondary context. This would
mean that without the BeginInvokeOnMainThread helper execution, the UI would likely
not be updated with the incoming data.

Single execution guarantee
Another popular area of implementation for asynchronous tasks are the commands that are
exposed through the view models throughout the mobile application. If the business flow
that is to be executed as a response to a user input (for example, a submit button executing
an update call on the user profile) depends on an asynchronous code block, then the
command should be implemented in such a way that you can invoke the asynchronous
function properly.

Let's demonstrate this with our existing view model. First, we would need to implement
our internal execution method:

public async Task ExecuteUpdateUserProfile()
{
 try
 {
 await _usersApi.UpdateUser(CurrentUser);
 }
 catch (Exception ex)
 {
 // TODO:
 }
}

Now, let's declare our command:

public ICommand UpdateUserCommand
{
 get
 {
 if (_updateUserCommand == null)
 {
 _updateUserCommand = new Command(async () => await
 ExecuteUpdateUserProfile());
 }

Fluid Applications with Asynchronous Patterns Chapter 11

[272]

 return _updateUserCommand;
 }
}

At this point, if the command is bound to a user control such as a button, multiple taps on
the button would result in multiple executions of the same command. While this might not
cause any issues on the business flow (that is, the user will be updated with the current
data multiple times), it could cause performance degradation and unnecessary resource
consumption on the service side.

Locks and monitors as well as mutex implementations, which we are familiar with from
classical threading, can also be implemented in task-based asynchronous code blocks using
SemaphoreSlim. The main usage of SemaphoreSlim can be summarized as throttling one
or more asynchronous blocks.

For this scenario, we can initialize a semaphore with only one available slot:

private static readonly SemaphoreSlim Semaphore = new SemaphoreSlim(1);

In the execution block of the command method, we can check whether there is any lease on
the current semaphore. If there isn't, we put a lease on one slot, and release it once the
command's execution is complete:

public async Task ExecuteUpdateUserProfile()
{
 if (Semaphore.CurrentCount == 0)
 {
 return;
 }

 await Semaphore.WaitAsync().ConfigureAwait(false);

 try { ... } catch { ... }
 Semaphore.Release();
}

This way, the command cannot be executed more than once at the same time, thus avoiding
any data conflicts. It is important to note here that since the semaphore count is released
after the command's execution, it is a must to use a try/catch block in order to avoid the
semaphore being locked after an error occurs.

Fluid Applications with Asynchronous Patterns Chapter 11

[273]

Logical tasks
In the retrieve example, we executed the view-model data assignment block within a
BeginInvokeOnMainThread block. While this actually guaranteed that the view-model
change will be propagated to the UI thread, with this type of an execution, we cannot really
say that once the asynchronous method that's awaiting the execution is complete, and that
the view-model has been updated. Moreover, the UI execution block could have used
another asynchronous code block (for example, to show a popup once the data is retrieved).
In this type of a situation, we can utilize a task completion source so that we have more
stricter control over when the asynchronous code block is truly completed:

public async Task RetrieveUserProfile()
{
 // Removed for brevity
 TaskCompletionSource<int> tcs = new TaskCompletionSource<int>();

 var userResult = await _usersApi.GetUser(userId);

 Device.BeginInvokeOnMainThread(async () => {
 CurrentUser = userResult;
 await ShowPopupAsync(); // async method
 tcs.SetResult(0);
 });

 await tcs.Task.ConfigureAwait(false);
}

In this example, we are using TaskCompletionSource, which represents the
asynchronous state machine and accepts a result or an exception. This state machine gets a
result only when the UI block execution is completed and the RetrieveUserProfile
method is finalized.

TaskCompletionSource can also prove useful for describing native UI flows in terms of
asynchronous blocks. For instance, the complete UI flow for a user to pick a media file from
available content providers can be described as an asynchronous block. In this case, the
completion source would be initialized once the user opens the file picker dialog, and the
result would be set once the user picks a certain file from the selected content source. The
implementation can be extended to throw an exception if the user taps on the cancel button
on a certain dialog. This way, user flows that are composed of multiple screens and
interactions can be abstracted into asynchronous methods so that they can be easily used by
the view or the view model of the application.

Fluid Applications with Asynchronous Patterns Chapter 11

[274]

The command pattern
The command pattern is a derivation of the flux pattern for reactive mobile applications. In
the Android world, this pattern is implemented in a similar way under the name Model
View Intent (MVI), whose sole purpose is creating a unidirectional flow of data and
decreasing the complexities that stem from the duplex nature
of Model–View–ViewMode (MVVM).

In this pattern, each view is equipped with multiple commands that are self-contained
execution blocks with references to the underlying application infrastructure (similar to a
unit of work). The user interaction in this case is routed to the respective command, and the
command result is propagated to the concerned controls through broadcasts (for example,
using the BroadcastReceiver implementation).

The task infrastructure in .NET Standard and the implemented runtimes like .NET Core
allow developers to implement awaitable context elements, which can easily represent
commands and can be awaited using the Task syntax.

In order for a class instance to be awaitable, it should implement the GetAwaiter method,
which, in return, is used by the .NET task infrastructure. In a command pattern
implementation, we can start by creating a base abstract class that we will use for
dependency injection, and also implement the awaitable method:

public abstract class BaseCommand
{
 protected BaseCommand(IConfiguration configurationInstance, IUserApi
userApi)
 {
 ConfigurationService = configurationInstance;
 UserApi = userApi;
 }

 protected IConfiguration ConfigurationService { get; private set; }

 protected IUserApi UserApi { get; private set;}

 public virtual TaskAwaiter GetAwaiter()
 {
 return InternalExecute().GetAwaiter();
 }

 protected virtual async Task InternalExecute()
 {
 }
}

Fluid Applications with Asynchronous Patterns Chapter 11

[275]

We can also extend the command implementation to actually return a result:

public abstract class BaseCommand<TResult> : BaseCommand
{
 protected TResult Result { get; set; }

 public new TaskAwaiter<TResult> GetAwaiter()
 {
 return ProcessCommand().GetAwaiter();
 }

 protected override async Task InternalExecute()
 {
 Result = await ProcessCommand().ConfigureAwait(true);
 await base.InternalExecute().ConfigureAwait(true);
 }

 protected virtual async Task<TResult> ProcessCommand()
 {
 // To be implemented by the deriving classes
 return default(TResult);
 }
}

Now, the implementation of an actual command, for instance, to update a user profile,
would look similar to the following:

public class UpdateUserCommand : BaseServiceCommand<User>
{
 User _userDetails;

 public UpdateProfileCommand(IConfiguration configuration, IUsersApi
 usersApi, User user):
 base(configuration, usersApi)
 {
 _userDetails = user;
 }
 protected async override Task<string> ProcessCommand()
 {
 try
 {
 Result = await _usersApi.UpdateUser(CurrentUser);
 return Result;
 }
 catch (Exception ex)
 {
 // TODO:
 }

Fluid Applications with Asynchronous Patterns Chapter 11

[276]

 }
}

Finally, the implemented command can be initialized and executed like so:

var result = await new UpdateUserCommand(configuration, usersApi, user);

Here, the base command can also utilize a service locator or some type of property injection
so that the set of services would not need to be injected together with the command
parameters. Additionally, the messenger service can also be utilized to broadcast the
successful execution of the command to multiple user controls.

Creating producers/consumers with blocking
collections
Thread-safe collections are an invaluable member of the asynchronous toolset in .NET
Core, just like they were in the full .NET Framework. Using blocking collections, concurrent
models can be implemented to provide a common ground for asynchronous tasks on
multiple threads. The most prominent of these models is, without a doubt, the
producer/consumer pattern implementation. In this paradigm, a method executing on a
parallel thread/task will produce the data items that will be consumed by another parallel
operation, called the consumer, until a bounding limit is reached or production is
completed. The two methods will be sharing the same blocking collection, where the
blocking collection would act as a broker between the two asynchronous blocks.

Let's illustrate this pattern with a small implementation:

We will start by creating the blocking collection that will be used as storage for,1.
let's say, Auction items:

BlockingCollection<Auction> auctions = new BlockingCollection(100);

We can now add the Auction items to the blocking collection using a2.
background task. Here, the GetNewAuction method will be retrieving/creating
auction instances and pushing them down to the pipeline:

Task.Run(() =>
{
 while(hasMoreAuctions)
 {
 auctions.Add(GetNewAuction);
 }

Fluid Applications with Asynchronous Patterns Chapter 11

[277]

 auctions.CompleteAdding();
});

Similar to the producer, we can start a separate consumer thread that will be3.
processing the items that are delivered:

 Task.Run(() =>
{
 while (!auctions.IsCompleted)
 {
 Process(auctions.Take());
 }
}

Taking this implementation one step further, we can use the4.
GetConsumingEnumerable method to create a blocking enumerable:

Take.Run(() =>
{
 foreach(var auction in auctions.GetConsumingEnumerable())
 {
 Process(auction);
 }
}

Finally, by utilizing Parallel.ForEach, we can add even more consumers5.
without having to go through non-trivial synchronization implementations:

Parallel.Foreach(auctions.GetConsumingEnumerable(), Process);

Now, the data that's produced by the producer will be consumed by multiple consumers
until the auction's collection sends the IsCompleted signal, which will cause the
consuming enumerable to break and continue with the rest of the code execution.

Asynchronous execution patterns
Tasks are generally used to create an easy sequential execution of asynchronous blocks.
Nevertheless, in certain scenarios, waiting for a task to complete might be unnecessary or
not possible. We can enumerate a couple of scenarios where awaiting a task is not possible
or required:

If we are executing the asynchronous block, similar to the update user command,
we would simply bind the command to the control and execute it in a throw-and-
forget manner

Fluid Applications with Asynchronous Patterns Chapter 11

[278]

If our asynchronous block needs to be executed in a constructor, we would have
no easy way to await the task
If the asynchronous code needs to be executed as part of an event handler

Multiple examples can be listed here with common concerns, such as the following:

Method declaration should not exhibit the async and void return types
Methods should not be forced to execute synchronously with the Wait method
or the Result property
Methods that are dependent on the result of an asynchronous block; race
conditions should be avoided

These not-to-be-awaited scenarios can be circumvented with various patterns. Next, we
will take a closer look at some of them.

Service initialization pattern
In the constructor scenario we described previously, let's assume that the constructor of a
view-model should retrieve a certain amount of data that will then be used by the methods
or commands of the same view-model. If we execute the method without awaiting the
result, there is no guarantee that, when the command is executed, the async constructor
execution would have completed.

Let's demonstrate this with an abstract example:

public class MyViewModel
{
 public MyViewModel()
 {
 // Can't await the method;
 MyAsyncMethod();
 }
 private async Task MyAsyncMethod()
 {
 // Load data from service to the ViewModel
 }

 public async Task ExecuteMyCommand()
 {
 // Data from the MyAsyncMethod is required
 }
}

Fluid Applications with Asynchronous Patterns Chapter 11

[279]

When the ExecuteMyCommand method is called immediately after the view-model is
initialized, there is a big chance that we will have a race condition and a possible bug that
would elude the development for a while.

In a so-called service initialization pattern, in order to verify that the MyAsyncMethod
execution is successfully executed, we can, in fact, assign the resultant task to a field and
use this field to await the previously started task:

public class MyViewModel
{
 private Task _myAsyncMethodExecution = null;

 public MyViewModel()
 {
 _myAsyncMethodExecution = MyAsyncMethod();
 }

 // ...

 public async Task ExecuteMyCommand()
 {
 await _myAsyncMethodExecution;
 // Data from the MyAsyncMethod is required
 }
}

This way, the asynchronous race condition is avoided and the command execution will
need to ensure the completion of the task reference.

Asynchronous event handling
As we mentioned earlier, if the chain of calls demand asynchronous execution, the async
chain should in fact be propagated all the way to the top of the call hierarchy. Deviating
from this setup may cause threading issues, race conditions, and possibly deadlocks.
Nevertheless, it is also important that the methods should not deviate from the async Task
declaration, ensuring that the async stack and generated results and errors are preserved.

Event handlers with asynchronous code are a good example of where we would not have
much to say about the signature of a method. For instance, let's take a look at the button
click handler that should execute an awaitable method:

public async void OnSubmitButtonTapped(object sender, EventArgs e)
{
 var result = await ExecuteMyCommand();

Fluid Applications with Asynchronous Patterns Chapter 11

[280]

 // do additional work
}

Once this event handler is subscribed to the button's clicked event, the asynchronous code
would be executed properly and we would not notice any issues with it. However, the
method declaration that's using void as the return type would bypass the error handling
infrastructure of the runtime and, in the case of an error, regardless of the exception source,
the application would crash without leaving any trace as to what has gone wrong. We
should also mention that the compiler warnings associated with this type of declaration
would be added to the technical debt of the project.

Here, we can, in fact, create a TAP to Asynchronous Programming Model (APM)
conversion, which can convert the asynchronous chain into a callback method, as well as
introduce an error handler. This way, the OnSubmitButtonTapped method would not
need to be declared with an asynchronous signature. We can easily introduce an extension
method that will execute the asynchronous task with callback functions:

public static class TaskExtensions
{
 public static async void WithCallback<TResult>(
 this Task<TResult> asyncMethod,
 Action<TResult> onResult = null,
 Action<Exception> onError = null)
 {
 try
 {
 var result = await asyncMethod;
 onResult?.Invoke(result);
 }
 catch (Exception ex)
 {
 onError?.Invoke(ex);
 }
 }
}

Another extension method can be introduced to convert tasks without any returned data:

public static async void WithCallback(
 this Task asyncMethod,
 Action onResult = null,
 Action<Exception> onError = null)
{
 try
 {
 await asyncMethod;
 onResult?.Invoke();

Fluid Applications with Asynchronous Patterns Chapter 11

[281]

 }
 catch (Exception ex)
 {
 onError?.Invoke(ex);
 }
}

Now, our asynchronous event handler can be rewritten to utilize the extension method:

public void OnSubmitButtonTapped(object sender, EventArgs e)
{
 ExecuteMyCommand()
 .WithCallback((result) => {
 //do additional work
 });
}

This way, we will break the asynchronous chain gracefully without jeopardizing the task
infrastructure.

The asynchronous command
In an asynchronous UI implementation, it is almost impossible to avoid command
declarations and bindings that handle asynchronous tasks. The general approach here
would be to create an async delegate and pass it as an action for the command. However,
this type of promise-based execution diminishes our capacity to see through the complete
life cycle of the asynchronous block. This makes it harder to create unit test for these blocks
and avoid scenarios where a terminal event, such as the navigation to a different view or
closing the application, can interrupt the execution.

Let's look at UpdateUserCommand, which we implemented previously:

_updateUserCommand = new Command(async () => await
ExecuteUpdateUserProfile());

Here, the command is simply responsible for initiating the user profile update. However,
once the execution of the command is completed, there is absolutely no guarantee that the
complete execution of the ExecuteUpdateUserProfile method took place.

In order to remedy the asynchronous execution monitoring, or lack thereof, we can
implement an asynchronous command that follows the task's execution within the
command itself. Let's start by declaring our asynchronous command interface:

public interface IAsyncCommand : ICommand
{

Fluid Applications with Asynchronous Patterns Chapter 11

[282]

 Task ExecuteAsync(object parameter);
}

Here, we have declared the asynchronous version of the main execute method, which will
be used by the actual command method. Let's implement the AsyncCommand class:

public class AsyncCommand : IAsyncCommand
{
 // ...

 public AsyncCommand(
 Func<object, Task> execute,
 Func<object, bool> canExecute = null,
 Action<Exception> onError = null)
 {
 // ...
 }

 // ...
}

This command will be receiving an asynchronous task and an error callback
function. async will then use the asynchronous delegate, as follows:

public async Task ExecuteAsync(object parameter)
{
 if (CanExecute(parameter))
 {
 try
 {
 await _semaphore.WaitAsync();

 RaiseCanExecuteChanged();

 await _execute(parameter);
 }
 finally
 {
 _semaphore.Release();
 }
 }
 RaiseCanExecuteChanged();
}

Fluid Applications with Asynchronous Patterns Chapter 11

[283]

Notice that we have now successfully integrated our one-time-execute fix that we
previously implemented in the asynchronous command block. Each time the semaphore is
leased, we will be raising an event propagating the CanExecute change event to the bound
user control.

Finally, the actual ICommand interface will use the ExecuteAsync method using the
callback conversion extension method:

void ICommand.Execute(object parameter)
{
 ExecuteAsync(parameter).WithCallback(null, _onError);
}

Now, the application unit tests can directly use the ExecuteAsync method, whereas the
bindings would still use the Execute method. We can even extend this implementation
further by exposing a Task-typed property, like we did in the service initialization pattern,
allowing consecutive methods to check for method completion.

Native asynchronous execution
Other than the asynchronous infrastructure provided by .Net Core, Xamarin target
platforms also offer some background execution procedures that might assist developers
who are implementing modules to do work when the app is actually not working. In
return, various business processes are executed separately from the main application UI,
creating a lightweight and responsive UX.

Android services
On the Android platform, the background process can be implemented as services. Services
are execution modules that can be initiated on demand or with a schedule. For instance, a
started service can be initiated with an intent. This would run until it is requested to be
terminated (or self-terminates). Here, it is important to note that there is no direct
communication between the process that initiated the service and the service itself, once the
intent is actualized.

In order to implement a simple started service, you would need to implement the Service
class and decorate the started service's ServiceAttribute attribute so that it can be
included in the application manifest:

[Service]
public class MyStartedService : Service

Fluid Applications with Asynchronous Patterns Chapter 11

[284]

{
 public override IBinder OnBind(Intent intent)
 {
 return null;
 }

 public override StartCommandResult OnStartCommand(
 Intent intent, StartCommandFlags flags, int startId)
 {
 // DO Work, can reference common core modules
 return StartCommandResult.NotSticky;
 }
}

Once the service is created, you can initiate the service with an Intent, as follows:

var intent = new Intent (this, typeof(MyStartedService));
StartService(intent);

You can also use AlarmManager to initiate the service periodically.

Another option for service implementations is the so-called bound service. Bound services,
unlike started services, keep an open channel of communication through the usage of a
binder. The binder service methods can be called by the initiating process, such as an
activity.

iOS backgrounding
The iOS platform also provides background mechanisms for fetching additional data from
remote servers, even though the application or even the device is inactive. While it is not as
reliable as the alarm manager on Android, these background tasks are highly optimized for
preserving battery. These background tasks can be executed as a response to certain system
events, such as geolocation updates or on certain nominal intervals. We have used the word
nominal here since the periods a background task is executed in are not deterministic and
could change over time according to the execution performance of the background task, as
well as the system resources that are available.

Fluid Applications with Asynchronous Patterns Chapter 11

[285]

For instance, in order to perform a background fetch, you would first need to enable the
background fetch from the Background Modes section:

Once the background fetch is enabled, we can introduce our fetch mechanism, which will
be executed periodically. The fetch mechanism would generally make a remote service call
to update the data to be displayed so that once the application foregrounds, it would not
need to repeat these refresh data calls. A perform fetch can be set up in AppDelegate:

public override bool FinishedLaunching(UIApplication app, NSDictionary
options)
{
 global::Xamarin.Forms.Forms.Init();
 LoadApplication(new App());
 UIApplication.SharedApplication
.SetMinimumBackgroundFetchInterval(UIApplication.BackgroundFetchIntervalMin
imum);

 return base.FinishedLaunching(app, options);
}

Now, the iOS runtime will be calling the PerformFetch method on regular intervals, so we
can inject our retrieval code here:

public override void PerformFetch(
 UIApplication application, Action<UIBackgroundFetchResult>
 completionHandler)
{

Fluid Applications with Asynchronous Patterns Chapter 11

[286]

 // TODO: Perform fetch

 // Return the correct status according to the fetch execution
 completionHandler(UIBackgroundFetchResult.NewData);
}

The returned result status is important since the runtime utilizes the result to optimize the
fetch interval. The result status can be one of the following three statuses:

UIBackgroundFetchResult.NewData: Called when new content has been
fetched, and the application has been updated
UIBackgroundFetchResult.NoData: Called when the fetch for new content
went through, but no content is available
UIBackgroundFetchResult.Failed: Useful for error handling; this is called
when the fetch was unable to go through

In addition to the background fetch, NSUrlSession, coupled with the background transfer
infrastructure, can provide background retrieval mechanisms that can be incorporated into
the background fetch operations. This way, the application content can be kept up to date,
even though it is in an active state.

Summary
In short, mobile applications should not be designed to undertake long-running tasks on
the user interaction tier, but rather user asynchronous mechanisms to execute these
workflows. The UI, in this case, would just be responsible for keeping the user informed
about the background execution status. While in the past, background tasks were handled
through classic .NET threading model, nowadays, the TAP model provides a rich set of
functionality, which releases the developers from the burden of creating, managing, and
synchronizing the threads and thread pools. In this chapter, we have seen that there are
various patterns that would allow for the creation of background tasks that would yield
back to the UI thread so that the asynchronous process results can be propagated to the UI.
We also discussed different strategies for synchronous mechanisms, together with Tasks,
thus avoiding deadlocks and race conditions. Additionally, we have looked into the native
background procedures on iOS and Android.

Overall, asynchronous tasks, as well as background techniques, are mostly used for one
common goal: to keep the data up to date within the application domain. In the next
chapter, we will take a closer look at different techniques for managing the application data
effectively.

12
Managing Application Data

Most mobile applications are coupled with certain datasets that are either downloaded
through a service backend or bundled into the application. These datasets can vary from
simple static text data that's used throughout the application to real-time updates related to
a certain context. In this context, the developers are tasked with creating the optimal
balance between remote interaction and data caching. Moreover, offline support is
becoming the norm in the mobile application development world. In order to avoid data
conflicts and synchronization issues, developers must be diligent about the procedures that
are implemented according to the type of data at hand. In this chapter, we will discuss
possible data synchronization and offline storage scenarios using products such as SQLite
and Realm, as well as the new .NET Core modules, such as the Entity Framework Core.

The following sections will give you insights into how to manage application data:

Improving HTTP performance with transient caching
Persistent data cache using SQLite
Data access patterns
Understanding Realm

Improving HTTP performance with transient
caching
In our previous examples, the client application held a direct service communication line
with the service infrastructure. This way, the mobile application would load fresh data
that's required to display a certain view on every view-model creation. While this provides
an up-to-date context for the application, it might not be the most desirable experience for
the user since, when we're dealing with mobile applications, we would need to account for
bandwidth and network speed issues.

Managing Application Data Chapter 12

[288]

When developing a mobile application, it is a common mistake to assume that the
application running on the simulator would behave the same once deployed to a physical
device. In other words, it is quite naive to assume that the high-speed internet connection
that is used on the development machine would be the same as the possible 3G network
connection that you will have on the mobile device.

Fortunately, developers can emulate various network scenarios on device
simulator/emulators for iOS and Android. On Android, the emulator features a valuable
emulation option for the network type. The Network type option allows you to select
various network types, from Global System for Mobile Communications (GSM) to Long
Term Evolution (LTE), as well as the signal strength (that is, poor, moderate, good, great).
On iOS, the easiest way to emulate various network connections is to install the Network
Link Conditioner tool, which can be found within the Additional Tools for Xcode
developer download package. Once the package has been installed, the network connection
of the host computer and implicitly the connectivity of the iOS simulated device can be
adjusted.

Now that we can emulate network connectivity issues, let's take a look at ways we can
improve the responsiveness of our application, even under subpar network conditions.

Client cache aside
We have already utilized server-side caching by implementing a simple cache-aside pattern
using the Redis cache. However, this cache only helps us to improve the service
infrastructure's performance. In order to be able to create and display view-model data
with cached data, we would need to implement a caching store on the mobile application
side.

The easiest way to implement this pattern would be to create simple caching store(s) for
different entities that we are retrieving from the server. For instance, if we were to retrieve
the details of a certain auction, we could first check that the data exists in our caching store.
If the data item does not exist, we could retrieve it from the remote server and update our
local store with the entity.

In order to demonstrate this scenario, let's start by creating a simple cache store interface
that will exhibit only to methods for setting and retrieving a certain entity type:

public interface ICacheStore<TEntity>
{
 Task<TEntity> GetAsync(string id);
 Task SetAsync(TEntity entity);
}

Managing Application Data Chapter 12

[289]

This implementation assumes that the entities that it will handling will all have a string
typed identifier.

Next, we will implement the constructor for our Auctions API:

public class AuctionsApi : IAuctionsApi
{
 private readonly IConfiguration _configuration;
 private readonly ICacheStore<Auction> _cacheStore;
 public AuctionsApi(IConfiguration configurationInstance,
ICacheStore<Auction> cacheStore)
 {
 _configuration = configurationInstance;
 _cacheStore = cacheStore;
 }
}

It is important to note that we are intentionally skipping the implementation of the cache
store. A simple in-memory cache or a sophisticated local storage cache would both satisfy
the interface requirements in this case.

Now that we have created our IAuctionsApi implementation, we can go ahead and
implement the get method using the cache store as the first address to check for the target
auction:

public async Task<Auction> GetAuction(string auctionId)
{
 // Try retrieve the auction from cache store
 Auction result = await _cacheStore.GetAsync(auctionId);
 // If the auction exists in our cache store we short-circuit
 if (result != null) { return result; }

 // ...
}

We have the data entity that was returned from the cache store. Now, we will implement
the remote retrieval procedure in case the data item does not exist in the local store:

var client = new RestClient(_configuration["serviceUrl"]);

try
{
 result = await client.GetAsync<Auction>(_configuration["auctionsApi"],
auctionId);
 await _cacheStore.SetAsync(result);
}
catch (Exception ex)

Managing Application Data Chapter 12

[290]

{
 // TODO:
}

return result;

This finalizes a simple cache-aside pattern implementation. Nevertheless, our work is not
finished with the caching store since this implementation assumes that, once the entity is
cached in our local store, we won't need to retrieve the same entity from the remote server.

Entity tag (ETag) validation
Naturally, in most cases, our previous assumption about static data would fail us,
especially when dealing with an entity like Auction, where the data entropy is relatively
high. When the view-model is created, we would need to make sure that the application
presents the latest version of the entity. This would not only avoid incorrect data being
displayed on our view, but also avoid conflict errors (that is, referring to timestamp
integrity checks on Cosmos DB).

In order to achieve this, we would need a validation procedure to verify that the entity at
hand is the latest one and that we don't need to retrieve a newer version. The Entity tag
(ETag) is part of the HTTP protocol definition. It is used as part of the available web cache
validation mechanisms. Using ETag, the client application can make conditional requests
that return the complete dataset if there is a more recent version of the entity that is being
retrieved. Otherwise, the web server should respond with the 304 (not modified) status
code. One of the ways for the client to execute the conditional requests is by using the If-
None-Match header, accompanied by the existing ETag value.

Now, let's take a step back and take a look at the auctions controller that we implemented
in our RESTful facade:

public async Task<IActionResult> Get(string key)
{
 var cosmosCollection = new
CosmosCollection<Auction>("AuctionsCollection");
 var resultantSet = await cosmosCollection.GetItemsAsync(item => item.Id
== key);
 var auction = resultantSet.FirstOrDefault();

 if(auction == null)
 {
 return NotFound();
 }

Managing Application Data Chapter 12

[291]

 return Ok(auction);
}

Since we have used the Timestamp field that is retrieved from Cosmos DB for validating
whether the entity we are trying to push to the document collection is the latest version, it
is fair to use the same field to identify the current version of a specific entity. In other
words, the timestamp field, in addition to the ID of that specific entity, would define a
specific version of an entity. Let's utilize the If-None-Match header to check whether
there were any changes made on the given entity since it was loaded by the client
application. First, we will check whether the client has sent the conditional header:

// Get the version stamp of the entity
var entityTag = string.Empty;

if (Request.Headers.ContainsKey("If-None-Match"))
{
 entityTag = Request.Headers["If-None-Match"].First();
}

Regardless of the entity tag value, we will retrieve the latest version of the entity from the
document collection. Nevertheless, once the entity is retrieved, we will be comparing the
ETag header value to the timestamp that's retrieved from the Cosmos DB collection:

if (int.TryParse(entityTag, out int timeStamp) && auction.TimeStamp ==
timeStamp)
{
 // There were no changes with the entity
 return StatusCode((int)HttpStatusCode.NotModified);
}

This completes the server-side setup. Now, we will modify our client application so that it
sends the conditional retrieval header:

// Try retrieve the auction from cache store
Auction result = await _cacheStore.GetAsync(auctionId);

Dictionary<string, string> headers = null;

// If the auction exists we will add the If-None-Match header
if (result != null)
{
 headers = new Dictionary<string, string>();
 headers.Add(HttpRequestHeader.IfNoneMatch.ToString(),
result.Timestamp.ToString());
}

var client = new RestClient(_configuration["serviceUrl"], headers);

Managing Application Data Chapter 12

[292]

At this point, every time we are retrieving an auction entity, we would try to load it from
the local cache. However, instead of short-circuiting the method call, we will be just adding
the conditional retrieval header to our RestClient. We can, of course, further refactor this
to create an HttpHandler that we can pass as a behavior to the HttpClient, or even
introduce a behavior on the RestClient to handle the caching in a generic manner.

Additionally, we will also need to modify RestClient so that it can handle the
NotModified response that will be returned by the server. Open source implementations
of a caching strategy using the standard web caching control mechanisms can be another
solution for these modifications.

Key/value store
Akavache is another one of the available caching solutions in the open source scene.
Technically, Akavache is a .NET Standard implementation for various caching stores. In the
words of the author himself, it's an asynchronous persistent key-value store. Having been
implemented on the .NET Standard framework, it can be utilized on both Xamarin and .Net
Core applications.

In Akavache, cache stores are implemented as blob storage on various mediums, such as in-
memory, local machine, or user account. While these stores do not refer to a specific system
location across platforms, each has a respective translation, depending on the target
platform. For instance, the user account and secure stores refer to shared preferences on
iOS, and they would be backed up to the iTunes cloud, whereas on the UWP platform,
these two would refer to user settings and/or roaming user data and they would be stored
on the cloud associated with the user's Microsoft account. Because of this, each platform
imposes their own restrictions on these local blob storages.

Making use of these stores is also quite easy using the extensions methods available for the
blob cache storage abstraction. The extension method that pertains to the retrieval of data
using the cache-aside pattern is outlined as follows:

// Immediately return a cached version of an object if available, but
always
// also execute fetchFunc to retrieve the latest version of an object.
IObservable<T> GetAndFetchLatest<T>(this IBlobCache This,
 string key,
 Func<IObservable<T>> fetchFunc,
 Func<DateTimeOffset, bool> fetchPredicate = null,
 DateTimeOffset? absoluteExpiration = null,
 bool shouldInvalidateOnError = false,
 Func<T, bool> cacheValidationPredicate = null)

Managing Application Data Chapter 12

[293]

As you can see, the data is retrieved using fetchFunc and is put into the current
IBlobCache object. Generally, the key that's used for local caching is the resource URL
itself. Additionally, a cache validation predicate can be included to verify that the retrieved
cache data is still valid (for example, not expired).

It is also important to note that Akavache makes heavy use of reactive extensions and that
the return types are generally observables rather than simple tasks. Therefore, the returned
data should be handled mostly with event subscriptions. The completion might be fired
multiple times, depending on the status of the cached data (that is, once for the cached
version of the data and once for the remote retrieval).

The transient cache can be a life-saver in low bandwidth connectivity scenarios, but, at
times, you might need to store the data in a relational model, especially if the data you are
retrieving does not have too much entropy. In these type of situations, you would need a
little more than a key/value store.

Persistent data cache using SQLite
In the previous examples, we didn't use a relational data store for local data. In most cases,
especially if we are dealing with a NoSQL database, the relational data paradigm loses its
appeal and data denormalization replaces the data consistency concerns in favor of
performance. Nevertheless, in certain scenarios, in order to find the optimal compromise
between the two, we might need to resort to relational data mappings.

In the relational data management world, the most popular data management system for
mobile applications is without a doubt SQLite. SQLite is, at its core, a relational database
management system contained in a C programming library. What differentiates SQLite
from other relational data management systems is the fact that the SQLite engine does not
use or require a standalone process that the consuming application communicates with.
The SQLite data store and the engine is, in any application scenario, an integral part of the
application itself. In simple terms, SQLite is not a client-server engine, but rather an
embedded data store.

SQLite has various implementations that span a wide set of platforms, such as native
mobile platforms and web and desktop applications, as well as embedded systems. Even
though certain browsers still do not and will probably never support SQLite, it still remains
the norm as the local store for Xamarin applications and targeted mobile platforms.

Managing Application Data Chapter 12

[294]

SQLite.NET
SQLite.NET was one of the earliest implementations of SQLite on the Portable Class
Library (PCL) platform, and it still remains one of the most popular cross-platform
implementations (now targeting .NET Standard).

The implementation patterns with SQLite.NET are based on domain model entity attributes
that define the entity indexes and other data columns:

public class Vehicle
{
 [PrimaryKey, AutoIncrement]
 public int Id { get; set; }
 [Indexed]
 public string RemoteId { get; set; }
 public string Color { get; set; }
 public string Model { get; set; }

 public int Year { get; set; }

 public string AuctionId { get; set; }
}

Relationships between entities can be introduced using the attributes (for example,
ForeignKey, OneToMany, and ManyToOne) that are included in the SQLite.NET
Extensions module, which allows developers to create the ORM model and helps with
data retrieval and update processes.

After the entity model is prepared, the db connection can be created using various file path
combinations:

// Path to the db file
var dbPath =
Path.Combine(Environment.GetFolderPath(Environment.SpecialFolder.MyDocument
s), "Auctions.db");

var db = new SQLiteAsyncConnection(dbPath);

With the db connection, various actions can be executed using the LINQ syntax and
familiar table interaction context:

await db.CreateTableAsync<Vehicle>();

var query = db.Table<Vehicle>().Where(_ => _.Year == 2018);

var auctionsFor2018 = await query.ToListAsync();

Managing Application Data Chapter 12

[295]

Sqlite.NET also supports text-based queries without resorting to LINQ-2-Entity syntax.

SQLCipher is another extension that can be used to create encrypted database stores for
sensitive data scenarios.

Entity Framework Core
Entity Framework Core combines the years of accumulated ORM structure with SQLite
support, making it a strong candidate for local storage implementations. Similar to the
classic .NET version of Entity Framework, data contexts can be created and queried using
the UseSqlite extension with a file path for DbContextOptionsBuilder:

public class AuctionsDatabaseContext : DbContext
{
 public DbSet<Auction> Auctions { get; set; }

 protected override void OnConfiguring(DbContextOptionsBuilder
optionsBuilder)
 {
 var dbPath = string.Empty;

 switch (Device.RuntimePlatform)
 {
 case Device.Android:
 dbPath = Path.Combine(
 Environment.GetFolderPath(
 Environment.SpecialFolder.MyDocuments),
 "Auctions.db");

 // removed for brevity
 }

 optionsBuilder.UserSqlite($"Filename={dbPath});
 }
}

Now, the DbSet<TEntity> declarations can be used to construct LINQ queries, which are
used to retrieve data, while the context itself can be used to push updates.

In addition to the extensive relational functionality, Entity Framework Core also offers
InMemory database support. By using an InMemory database instead of the application
storage, developers can easily mock the local cache implementation to create unit and
integration tests.

Managing Application Data Chapter 12

[296]

Data access patterns
So far, we have defined various data stores that will be used within the client boundaries as
a secondary source of data to help with offline scenarios, as well as when network
connectivity is problematic. This way, the user interface does not appear blank—or worse,
goes into an infinite loading loop. Instead, a previous version of the dataset is displayed to
the user immediately while remote retrieval takes place.

Before we can dive into the different architectural patterns to coordinate the local and
remote data, let's try to describe the meaning of coordination by means of identifying the
types of data that we have in our application. According to the life cycle and entropy of the
specific data element, we can categorize the data types into the following groups:

Transient data: These data elements will constantly be changing and the local
storage should be continuously invalidated. When dealing with this data type,
the application should first load the local cache to respond to user input as fast as
possible, but each time, we should execute a remote call to update the local cache
and the view-model data. Examples of this would be auctions information and
bidding entries.
Reference data: These data elements will change from time to time, but it is
acceptable to use cache storage as a source of truth (if it exists) with a reasonable
time-to-live period. User profiles and vehicle data might be good examples of
this data type. When dealing with reference data, the view-model should try to
load the entities from the cache. If it does not exist or the data has expired, the
application should reach out to the remote server and update the local cache with
the remote data.
Static data: There are certain data elements in an application that will probably
never change. These static data elements, such as the list of countries or internal
enumerator descriptions, would, under normal circumstances, be loaded only
once and served from local storage.

Other than these data types, we should also mention volatile entity types, which should not
be cached by the application at all unless there is a clear indication for it. For instance,
imagine a search query with an arbitrary set of query parameters on vehicles or auctions
sets returning a paginated list of entries. It is quite unreasonable to even try to cache this
data and server through the view-model. On the other hand, the most recent entries list that
we might want to display on the main dashboard can, in fact, be categorized as transient
data.

Now, let's take a look at some simple implementation patterns that might help with
implementing a fluid data flow and user experience.

Managing Application Data Chapter 12

[297]

Implementing the repository pattern
Naturally, while talking about data stores, the foremost abundant pattern in development
work is the repository pattern. In the context of local and remote data, we could create
small repositories that implement the same exact repository interface and create a manager
class to coordinate the repositories.

Let's start with a transient data repository, such as Auctions. For the Auctions API, let's
assume that we have three methods to retrieve:

A list of auctions
The details of a specific auction
A method to update a specific auction

Let's define our interface for these methods:

public interface IAuctionsApi
{
 Task<IEnumerable<Auction>> GetAuctions();

 Task<Auction> GetAuction(string auctionId);

 Task UpdateAuction(Auction auction);
}

We will now have two competing repositories that implement the same interface:

public class RemoteAuctionsApi : IAuctionsApi
{
 // ...
}

public class LocalAuctionsApi : IAuctionsApi
{
 // ...
}

Here, the simplest way to handle the data would be to implement a wrapper that will keep
the local cache up to date and pass the wrapper instance, as well as the local repository
instance, to the view-model so that the view-model can handle the initial cache load
scenario, thus utilizing the local repository and then calling the wrapper instance.

Let's go ahead and implement the wrapper class, which we will call the manager:

public class ManagerAuctionsApi : IAuctionsApi
{

Managing Application Data Chapter 12

[298]

 private readonly IAuctionsApi _localApi;
 private readonly IAuctionsApi _remoteApi;
 // ...
 public async Task<Auction> GetAuction(string auctionId)
 {
 var auction = await _remoteApi.GetAuction(auctionId);
 await _localApi.UpdateAuction(auction);
 return auction;
 }
}

The view-model load strategy will make the local API call, update the view model data,
and call the remote API with a ContinueWith action to update the model:

Action<Auction> updateViewModel = (auction) => {
 Device.BeginInvokeOnMainTread(() => this.Auction = auction)
};

var localResult = await _localApi.GetAuction(auctionId);

updateViewModel(localResult);

// Not awaited
_managerApi.GetAuction(auctionId).ContinueWith(task =>
updateViewModel(task.Result));

The implementation for a reference repository would utilize a different strategy:

public async Task<User> GetUser(string userId)
{
 var user = await _localApi.GetUser(userId);
 if (user != null) { return user; }

 user = await _remoteApi.GetUser(userId);
 await _localApi.UpdateUser(user);

 return user;
}

A static data load would adhere to the same strategy as the reference repository, but it is
also possible to initialize the static cache when the application is first run using a
background task, or embed the static data with a JSON file or with a seeded SQLite
database file into the application package.

Managing Application Data Chapter 12

[299]

Observable repository
In the previous example, the responsibility of choosing between the remote data and the
local data fell onto the view model. If we could actually notify the view-model about the
changing result (that is, local and remote data), we would need to pass the local repository
instance to the view-model. By using reactive extensions, we could implement a notifying
observable and subscribe to various events on the view-model:

OnNext: We would update the data within the view model, which would be
fired twice
OnCompleted: We would hide any progress indicator we have been showing up
until this point

Before we can implement the view-model subscriptions, let's implement the GetAuction
method in a reactive manner:

public IObservable<Auction> GetAuction(string auctionId)
{
 var localAuction = _localApi.GetAuction(auctionId).ToObservable();
 var remoteAuction = _remoteApi.GetAuction(auctionId).ToObservable();
 // Don't forget to update the local cache
 remoteAuction.Subscribe(auction => _localApi.UpdateAuction(auction));

 return localAuction.Merge(remoteAuction);
}

Now that we have our observable result, we can implement the subscription model in our
view model:

var auctionsObservable = _managerAuctionsApi.GetAuction(auctionId);
auctionsObservable.Subscribe(auction => updateViewModel(localResult));

await auctionsObservable();

IsBusy = false;

With the conversions from observable results to the task or vice-versa, it is important to be
careful with cross thread issues. As a general rule of thumb, all of the code that updates
elements on the UI thread should be executed with Device.BeginInvokeOnMainTread.

Managing Application Data Chapter 12

[300]

Data resolver
The aforementioned static data elements—especially the data points that are attached to the
main collections with an ID reference—would probably never change, and yet they would
be carried over the wire together with the main data elements. In order to decrease the
payload size, we can in fact dismiss these data objects on the DTO models and represent
them only by ID. However, in such an implementation, we would need to find a way to
resolve these ID references into real data elements.

For instance, let's take a look at the engine entity that we are transferring as part of a vehicle
description:

public class Engine
{
 [JsonProperty("displacement")]
 public string Displacement { get; set; }

 [JsonProperty("fuel")]
 public FuelType Fuel { get; set; }

 // ...
}

The same DTO object is used on the client side. Here, the Fuel type is returned as a
complex object rather than a single identifier (the available options are diesel or gas).
Assuming that the static data for the fuel type is initialized on the client application, we do
not really need to retrieve from the server. Let's replace the property with an identifier (that
is, of the string type).

On the client side, let's extend our model so that it has a reference ID, as well as an entity:

public class Engine
{
 [JsonProperty("displacement")]
 public string Displacement { get; set; }

 [JsonProperty("fuelId")]
 public string FuelId { get; set; }
 [JsonIgnore]
 public KeyIdentifier Fuel { get; set; }
}

With the ignore attribute, the reference ID will not be omitted during the serialization
phase. We will, however, still need to resolve this entry every time an Engine instance is
retrieved from the server.

Managing Application Data Chapter 12

[301]

Additionally, we have represented similar key/value pairs, such as the FuelType complex
object, with a generic entity:

public class KeyIdentifier
{
 public string KeyGroup { get; set; } // for example, "FuelType"

 public string Key { get; set; } // for example, "1"

 public string Value { get; set; } // for example, "Diesel"
}

The easiest way for the runtime to identify the properties that will need to be resolved and
the Target property that the data will be assigned to is to create a custom data annotation
attribute:

[AttributeUsage(AttributeTargets.Property)]
public class ReferenceAttribute : Attribute
{
 public ReferenceAttribute(string keyType, string field)
 {
 KeyType = keyType;
 Field = field;
 }

 public string KeyType { get; set; }
 public string Field { get; set; }
}

Now, using the annotation we have just created, the engine DTO class would look like this:

public class Engine
{
 [JsonProperty("displacement")]
 public string Displacement { get; set; }

 [Reference("FuelType", nameof(Fuel))]
 [JsonProperty("fuelId")]
 public string FuelId { get; set; }
 [JsonIgnore]
 public KeyIdentifier Fuel { get; set; }
}

We are now declaring that the FuelId field is a reference to a KeyIdentifier object of
the FuelType type and that the resolved data should be assigned to a property called Fuel.

Managing Application Data Chapter 12

[302]

Assuming that the static data about FuelType is stored in local storage and can be
retrieved as a KeyIdentifier object, we can now implement a generic translator for the
static data:

public async Task TranslateStaticKeys<TEntity>(TEntity entity)
{
 var entityType = typeof(Entity);

 var properties = entityType.GetRuntimeProperties();

 foreach(var property in properties)
 {
 var refAttribute =
 property.CustomAttributes.FirstOrDefault(item =>
 item.AttributeType == typeof(ReferenceAttribute));

 if(customAttribute == null) { continue; }
 var keyParameters = refAttribute.ConstructorArguments;
 // e.g FuelType => Fuel
 var keyType = keyParameters.Value.ToString();
 var propertyName = keyParameters.Value.ToString();
 targetProperty = properties.FirstOrDefault(item => item.Name ==
 propertyName);

 try
 {
 await TranslateKeyProperty(property, targetProperty,
 entity, keyType);
 }
 catch(Exception ex)
 {
 // TODO:
 }
 }
}

The TranslateStaticKeys method iterates through the properties of an entity and if it
identifies a property with ReferenceAttribute, it invokes the TranslateKeyProperty
method.

The actual translation method would follow a similar implementation path, hence
retrieving the set of key/value pairs for the given type, resolving the key ID
into KeyIdentifier, and finally assigning the data to the target property:

public async Task TranslateKeyProperty<TEntity>(
 PropertyInfo sourceProperty,
 PropertyInfo targetProperty,

Managing Application Data Chapter 12

[303]

 TEntity entity,
 string keyType)
{
 IEnumerable<KeyIdentifier> keyIdentifiers = await
_api.GetStaticValues(keyType);

 if(targetProperty != null)
 {
 var sourceValue = sourceProperty.GetValue(entity)?.ToString();
 if(!string.IsNullOrEmpty(sourceValue))
 {
 var keyIdentifier = keyIdentifiers.FirstOrDefault(item =>
 item.Id == sourceValue);
 targetProperty.SetValue(entity, keyIdentifier);
 }
 }
}

Now, after retrieving an entity, we can simply invoke the translate method to resolve all
outstanding data points:

var auction = await _managerAuctionsApi.Get(auctionId);
await Translator.TranslateReferences(auction.Vehicle.Engine);

The implementation can be extended to collections and to walk the complete object tree.

Understanding Realm
Throughout this chapter, our main goal was to create an infrastructure that will
synchronize and coordinate the data flow between the local and remote storages so that a
pleasant user experience can be provided to the users. The Realm platform, which is
composed of database and server components, coupled with the live objects concept, is
created with offline data first scenarios in mind.

The Realm database provides a relational data store that should be used as a local
persistence store for various runtimes, including Xamarin target platforms. The Realm
database is a feature-rich, lightweight, and highly performant implementation that's
provided with native implementation on all of the supported platforms.

Managing Application Data Chapter 12

[304]

The Realm database is referred to as object-oriented, mainly because of the query
structures. In Realm, the relationships are handled through natural class declarations,
without the need for annotations or relational model descriptions. If we were to create an
auction entity, a simple skeleton might look like this:

public class Auction : RealmObject
{
 public string Id { get; set; }
 public string Description { get; set; }
 public Vehicle Vehicle { get; set; }
}

Now, if we were to create a new auction, we would simply use the CreateObject method
within a Write block:

var realm = Realm.GetInstance();

realm.Write(()=>
{
 var vehicle = realm.CreateObject<Vehicle>();
 vehicle.Make = "Volvo";
 vehicle.Model = "S60";

 var auction = realm.CreateObject<Auction>();
 auction.Id = Guid.NewGuid().ToString();
 auction.Description = "Family Car for Sale";
 auction.Vehicle = vehicle;
});

The Realm Object Server is the complimentary component to the Realm database, enabling
simultaneous data synchronization across devices and platforms. This synchronization is
propagated to the owners of the so-called live objects through standard events, which
makes this platform an ideal candidate for Model-View-ViewModel-based
implementations. The server is offered as a hosted solution or as a platform that can be
hosted on-premise or on managed cloud environments, including Microsoft Azure, AWS,
and Google Cloud.

Realm offers an extensive set of features that might help to remove the service layer
interaction completely for some applications.

Managing Application Data Chapter 12

[305]

Summary
In this chapter, we implemented and employed different patterns and technologies to
create offline capable and responsive applications. Initially, we used used the cache-aside
pattern and utilized standard HTTP protocol definitions to cache and validate the cached
data. We also analyzed technologies such as SQLite, Entity Framework Core, and
Akavache. Finally, we briefly looked at the Realm components and how they can be used to
manage cross-device and platform data. Overall, there are so many technologies available
for developers that have been conceived within the community, and it is important to
choose the correct patterns and technology stack for your specific use cases to achieve the
best user experience and satisfaction.

In the next chapter, we will take a look at the Graph API, push notifications, and additional
ways to engage the customer.

13
Engaging Users with

Notifications and the Graph API
Push notifications are the primary tools for an application infrastructure to deliver a
message to the user. They are used to broadcast updates to users, send notifications based
on certain actions, and engage them for customer satisfaction or according to metrics. On
the other hand, the Microsoft Graph API is a service that provides a unified gateway to data
that's accumulated through Office 365, Windows 10, and other Microsoft services. This
chapter will explain, in short, how notifications and the Graph API can be used to improve
user engagement by taking advantage of push notifications. We will be creating a
notification implementation for cross-platform applications using Azure Notification Hub.
We will also create so-called activity entries for our application sessions so that we can
create a timeline that is accessible on multiple platforms.

The following sections will drive the discussion about user engagement:

Understanding Native Notification Services
Configuring Azure Notification Hub
Creating a Notification Service
The Graph API and Project Rome

Understanding Native Notification Services
Push notifications, as it can be deduced from the name, is the generalized name for the
messages that are pushed from the backend server applications to the target application
user interface. Push notifications can be targeting a specific device, or they can target a
group of users. They can vary from a simple notification message to a user-invisible call to
the application backend on the target platform.

Engaging Users with Notifications and the Graph API Chapter 13

[307]

Notification providers
Push notifications are, in general terms, sent from the application backend service to the
target devices. The notification delivery is handled by platform-specific notification
providers, which are referred to as Platform Notification Systems (PNS). In order to be
able to send push notifications to iOS, Android, and UWP applications, as a developer, you
would need to create notification management suites/infrastructure for the following:

Apple Push Notification Service (APNS)
Firebase Cloud Messaging (FCM)
Windows Notification Service (WNS)

Each of these notification providers implement different protocols and data schemas to
send notifications to users. The main issues with this model for a cross-platform application
are as follows:

Cross-Platform Push Notifications: Each push service (APNS for iOS, FCM for
Android, and WNS for Windows) has different protocols
Different Content Templates: Notification templates, as well as the data
structure, are completely different on all major platforms
Segmentation: This is based on interest and location for outing only the most
relevant content to each segment
Maintaining Accurate Device Registry: Dynamic user base, done by adding
registration upon startup, updating tags, and pruning
High Volume with Low-Latency: Application requirements in high-volume with
low latency hard to meet with cross platform implementation

Sending notifications with PNS
Using the native notification providers, the application backend can send notifications to
target devices if the target device has already opened a notification channel. While the
implementation of this process highly depends on the platform at hand, at a high level, the
registration and notification flow are very similar on all of the PNSes.

The device should start this flow by registering itself with the PNS and retrieving a so-
called PNS handle. This handle can be a token (for example, APNS) or a simple URI (for
example, WNS). Once the PNS is retrieved, it should be delivered to the backend service as
a calling card, as shown in step 2 of the following diagram:

Engaging Users with Notifications and the Graph API Chapter 13

[308]

When the backend service wants to send a notification to this specific device, it contacts the
PNS with the saved PNS handle for the device so that the PNS can deliver the notification.

General constraints
The Apple Push Notification Service (APNS) and Firebase Cloud Messaging (FCM)
infrastructure both make use of certain manifest declarations that are very specific to the
application that's installed on the target device.

APNS mandates that the application ID (and certificate) used to sign the application
package have a non-wildcard bundle declaration (that is, the com.mycompany.* type of
certificates cannot be used for this implementation).

The device handle (an alphanumeric token or a URL, depending on the platform) is the
only piece of device information that is required and used in the notification process. In
contrast, the notification service should support multiple applications and platforms.

Azure Notification Hub
In an environment where multiple platforms and multiple service providers exist, Azure
Notification Hub acts as a broker between backend services that creates the notification
requests and the provider services that deliver these notification requests to target devices.

Engaging Users with Notifications and the Graph API Chapter 13

[309]

Notification Hub infrastructure
Considering the release environments for an application (that is, alpha, beta, and prod) and
the notification hubs, each environment should be set up as a separate hub on the Azure
infrastructure. Nevertheless, notification hubs can be united with a so-called namespace so
that application environments for each platform can be managed in one place.

Notification hub
Semantically, a notification hub refers to the smallest resource in the Azure Notification
Hub infrastructure. It maps directly to the application running on a specific environment
and holds one certificate for each Platform Notification System (PNS). The application can
be hybrid, native, or cross-platform. Each notification hub has configuration parameters for
different notification platforms to support the cross-platform messaging infrastructure:

Engaging Users with Notifications and the Graph API Chapter 13

[310]

Notification namespace
A namespace, on the other hand, is a collection of hubs. Notification namespaces can be
used to manage different environments, as well as create clustered of notification hubs for
bigger target audiences. Using the namespace, developers or the configuration
management team can track the notification hub status and use it as the main hub for
dispatching notifications, as shown in the following screenshot:

Engaging Users with Notifications and the Graph API Chapter 13

[311]

In an ideal setup, an application-specific notification service would communicate with the
specific hubs, while a namespace would be used to configure and manage these hubs:

In this configuration, the application-specific notification service never directly
communicates with the platform-specific notification services; instead, notifications would
deliver the messages to the target platforms. In a similar approach, multiple applications
that share a common target user group can also be unified under a namespace and use the
same notification namespace.

In order to understand the application registration process, we should take a closer look at
the notification hub registration and notification process.

Engaging Users with Notifications and the Graph API Chapter 13

[312]

Notifications using Azure Notification Hub
Similar to the PNS process, the Azure Notification Hub flow can be defined in two parts:

Registration
Notification

Registration
Azure Notification Hub supports two types device registration, client and backend
registration:

In the client registration scenario, the application calls the Azure Notification
Hub with the device handle that's received on the native platform. In this
scenario, only the device handle can be used to identify the user. In order for the
backend services to send notification messages to the target device, the device
should pass on the notification information to the backend service.
In a backend registration scenario, the backend service handles registration with
the Azure Notification Hub. This scenario allows the backend service to insert
additional information to the registration data, such as user information (for
example, user ID, email, role, and group), application platform information (for
example, application runtime, release version, and release stage), and other
identifiers for the application and/or user. This type of registration process is
more suited for implementations where multiple applications might be receiving
notifications from multiple sources so that the notification service can act as an
event aggregator.

The registration of the target device with a notification provider using the notification hub
is done either using data packages, called registrations, or with extended device
information sets, called installations. While the registration package contains the
notification handle or the notification URI for a device, installation contains additional
device-specific information.

During the registration process, the client application (or the backend notification service)
can also register notification templates associated with tags to personalize the notifications
and create notification targets. The tags can be used later to broadcast notifications to
groups of devices that belong to a single user, or groups of users with multiple devices,
hence enabling a broadcast-ready infrastructure.

Engaging Users with Notifications and the Graph API Chapter 13

[313]

Notification
Once the device is registered with the backend service and the notification hub, the
backend service can send notifications using the PNS handle of the device that's targeting a
specific platform. With this type of notification, the backend server should identify what is
the target platform, prepare a notification message using the target platform's schema, and
finally send the notification message to the given handle.

Another approach for sending notifications to users is to use notification tags. A specific
user tag can be used with an associated template to target multiple platforms. In this case,
during registration, the device would be registered with a specific template (depending on
the platform) and a user tag identifying the user (for example, username: can.bilgin).
This way, any notification message that is sent to the notification hub with the given tag
will be routed to the target devices that has this registration.

Finally, broadcast messages using various tags that define a certain interest of a user can be
employed with notifications. In this notification scenario, the application interface would
expose certain notification settings, and these notification settings would then be translated
into registration tags. Each time the user updates these settings, the device registration with
the backend service would need to be updated with the updated set of tags. For instance, in
our application, if we were to include a notification setting that allows the user to receive
notifications when a new auction is created for a specific make or model of a car, we could
use this tag to send notifications to similar users as soon as a new entry is created in the
application data store.

Creating a notification service
Depending on the granularity of the notification target group, the application design can
include a notification service; otherwise, another option would be to have a setup where the
notification infrastructure can be integrated into either one of the existing services. For
instance, if the application does not require a user-specific messaging scenario, there is no
need to track device registrations. In this case, the client-side registration mechanism can be
implemented so that notification categories are created and the backend services can send
the notifications to target tags.

Engaging Users with Notifications and the Graph API Chapter 13

[314]

As part of our auctions application, let's use the following user story to start the
implementation of our notification service:

"As a product owner, I would like to have a notification service created so that I can have
an open channel to my user group through which I can engage them individually or as a
group to increase the return rate."

In light of this request, we can start analyzing different use cases and implementation
patterns.

Defining the requirements
Since the notification service will be supporting incoming notifications from various
modules, the architectural design and implementation would need to adhere to certain
guidelines, as well as satisfy registration and notification requirements:

The notification service should be designed to support multiple notification hubs
for different application versions (for example, alpha, beta, and prod)
The notification service should be designed to receive notification requests for a
specific device, specific user, or a group of users (for example, interest groups,
certain roles, and people involved in a certain activity)
Different notification events should be assignable with different notification
templates
Users should be registered with different templates according to their language
preferences
Users should be able to opt in or out of certain notifications

Overall, the notification service implementation should implement an event aggregator
pattern, where the publishers are the source of the notification and are responsible for
determining the notification specifications, as well as a definition for the target, while the
subscribers are the native mobile applications that submit registration requests defining
their addressing parameters. Once a notification that meets the criteria for a target comes
down the pipeline, the notification is routed to the associated target.

Engaging Users with Notifications and the Graph API Chapter 13

[315]

Device registration
Device registration is the first use case to be implemented and tested by the development
team. In this scenario, the user would open (or install) the Auctions application and
authenticate through one of the available identity providers. At this stage, we have the
device information as well as the user identity, which we can use for registration. Let's see
how this is done:

The notification channel will need to be opened as soon as the user opens the1.
application (in the case of a returning user—that is, an existing identity), or once
registration/authentication is completed. On iOS, we can use the
UserNotificationCenter module to authorize for notifications:

UNUserNotificationCenter.Current.RequestAuthorization(
 UNAuthorizationOptions.Alert |
 UNAuthorizationOptions.Sound |
 UNAuthorizationOptions.Sound,
 (granted, error) =>
{
 if (granted)
 {
 InvokeOnMainThread(UIApplication.SharedApplication
 .RegisterForRemoteNotifications);
 }
});

Once the registration is invoked, the override method in the2.
AppDelegate.cs file can be used to retrieve the device token:

public override void RegisteredForRemoteNotifications(
 UIApplication application,
 NSData deviceToken)

We can now send this token using the authorization token for identifying the3.
user to the notification service device registration controller using a registration
data object:

public class DeviceRegistration
{
 public string RegistrationId { get; set; } // Registration Id
 public string Platform { get; set; } // wns, apns, fcm
 public string Handle { get; set; } // token or uri
 public string[] Tags { get; set; } // any additional tags
}

Engaging Users with Notifications and the Graph API Chapter 13

[316]

Before we begin interacting with the notification hub, we would need to
install the Microsoft.Azure.NotificationHubs NuGet package,
which will provide the integration methods and data objects. The same
package can, in fact, be installed on the client side to easily create the
notification channel and retrieve the required information to be sent to the
backend service.

Once the device registration is received on our service, depending on whether it4.
is a new registration or an update of a previous registration, we can formulate
the process to clean up previous registrations and create a notification hub
registration ID for the device:

public async Task<IActionResult> Post(DeviceRegistration device)
{
 // New registration, execute cleanup
 if (device.RegistrationId == null && device.Handle != null)
 {
 var registrations = await
 _hub.GetRegistrationsByChannelAsync(device.Handle, 100);
 foreach (var registration in registrations)
 {
 await _hub.DeleteRegistrationAsync(registration);
 }

 device.RegistrationId = await
_hub.CreateRegistrationIdAsync(); }

 // ready for registration
 // ...
}

We can now create our registration description with the appropriate (that is,5.
platform-specific) channel information, as well as the registration ID we have just
created:

RegistrationDescription deviceRegistration = null;

switch(device.Platform)
{
 // ...
 case "apns":
 deviceRegistration = new
 AppleRegistrationDescription(device.Handle);
 break;
 //...

Engaging Users with Notifications and the Graph API Chapter 13

[317]

}

deviceRegistration.RegistrationId = device.RegistrationId;

We will also need the current user identity as a tag during the registration. Let's6.
add this tag, as well as the other ones that are sent by the user:

deviceRegistration.Tags = new HashSet<string>(device.Tags);

// Get the user email depending on the current identity provider
deviceRegistration.Tags.Add($"username:{GetCurrentUser()}");

Finally, we can complete the registration by passing the registration data to our7.
hub:

await _hub.CreateOrUpdateRegistrationAsync(deviceRegistration);

Here, if we were using installation-based registration rather than device registration, we
would have a lot more control over the registration process. One of the biggest advantages
is the fact that device installation registration offers customized template associations:

var deviceInstallation = new Installation();
// ... populate fields
deviceInstallation.Templates = new Dictionary<string,
InstallationTemplate>();

deviceInstallation.Templates.Add(
 "type:Welcome",
 new InstallationTemplate
 {
 Body = "{\"aps\": {\"alert\" : \"Hi ${FullName} welcome to
Auctions!\" }}"
 });

To take this one step further, during the registration process, the template can be loaded
according to the preferred language of the user:

var template = new InstallationTemplate()
template.Body = "{\"aps\": {\"alert\": \"
 + GetMessage("Welcome", user.PreferredLanguage) + "\" }}";

This is how a user registers the device. Now, we will move on to transmitting notifications.

Engaging Users with Notifications and the Graph API Chapter 13

[318]

Transmitting notifications
Now that the user has registered a device, we can implement a send notification method on
the server. We would like to support free text notifications, as well as templated messages
with data. Let's begin:

Let's start by creating a base notification method that will define the destination1.
and the message:

public class NotificationRequest
{
 public BaseNotificationMessage Message { get; set; }

 public string Destination { get; set; }
}

For the simple message scenario, the calling service module is not really aware of2.
the target platform—it just defines a user and a message item. Therefore, we
need to generate a message for all three platforms, hence covering all possible
devices the user might have:

public class SimpleNotificationMessage : BaseNotificationMessage
{
 public string Message { get; set; }

 public IEnumerable<(string, string)> GetPlatformMessages()
 {
 yield return ("wns", @"<toast><visual><binding
 template=""ToastText01""><text id=""1"">"
 + Message + "</text></binding></visual></toast>");
 yield return ("apns", "{\"aps\":{\"alert\":\"" + Message +
 "\"}}");
 yield return ("fcm", "{\"data\":{\"message\":\"" + Message
+
 "\"}}");
 }
}

For the templated version, the message looks a little simpler since we assume3.
that the device already registered a template for the given tag and so we don't
need to worry about the target platform. Now, we just need to provide the
parameters that are required for the template:

public class TemplateNotificationMessage : BaseNotificationMessage
{
 public string TemplateTag { get; set; }

Engaging Users with Notifications and the Graph API Chapter 13

[319]

 public Dictionary<string, string> Parameters { get; set; }
}

It is generally a good idea to create a generic message template that will be
used to send simple text messages and register this template as a simple
message template so that we don't need to create a separate message for
each platform and push it through all of the available device channels.

Now, we can process our notification request on the notification service and4.
deliver it to the target user:

if (request.Message is SimpleNotificationMessage simpleMessage)
{
 foreach (var message in simpleMessage.GetPlatformMessages())
 {
 switch (message.Item1)
 {
 case "wns":
 await _hub.SendWindowsNativeNotificationAsync(
 message.Item2,
 $"username:{request.Destination}");
 break;
 case "aps":
 await _hub.SendAppleNativeNotificationAsync(
 message.Item2,
 $"username:{request.Destination}");
 break;
 case "fcm":
 await _hub.SendFcmNativeNotificationAsync(
 message.Item2,
 $"username:{request.Destination}");
 break;
 }
 }
}
else if(request.Message is TemplateNotificationMessage
templateMessage)
{
 await _hub.SendTemplateNotificationAsync(
 templateMessage.Parameters,
$"username:{request.Destination}");
}

We have successfully sent our message to the target user using the username:<email>
tag. This way, the user will be receiving the push notification on their device. It is up to the
platform-specific implementation to handle the message.

Engaging Users with Notifications and the Graph API Chapter 13

[320]

Broadcasting to multiple devices
In the previous example, we used the username tag to define a specific user as the target of
the notification message. In addition to single tags, tag expressions can also be used to
define a larger group of users that subscribed to a specific notification category. For
instance, in order to send the notification to all of the users that accepted auction updates
on new auctions and who are also interested in a specific auto manufacturer, the tag may
look as follows:

notification:NewAuction && interested:Manufacturer:Volvo

Another scenario would be to send a notification about a new highest bid on an auction:

notification:HighestBid && auction:afabc239-a5ee-45da-9236-37abc3ca1375 &&
!username:john.smith@test.com

Here, we have combined three tags, the last of which is the tag that ensures that the user
with the highest bid does not get the message that was sent to the rest of the users who are
involved in the auction so that they can receive a more personalized Congratulations type of
message.

Advanced scenarios
The notification messages demonstrated here are only simple models of notifications and
do not require extensive implementation, neither on the client application nor on the server
side.

Now, we will take a look at some more advanced usage scenarios.

Push to pull
Notification hubs customers in banking, healthcare, and government segments cannot pass
sensitive data via public cloud services such as APNS, FCM, or WNS. In order to support
these types of scenarios, we can utilize a scheme where the notification server is only
responsible for sending a message ID and the client application only retrieves the target
message using the given message ID. This pattern is generally referred to as the Push-2-Pull
pattern, and it is a great way to migrate the communication channel from the notification
hubs and PNSes to the common web service channel.

Engaging Users with Notifications and the Graph API Chapter 13

[321]

Rich Media for push messages
Notification messages sent by the native notifications provider (PNS) can also be
intercepted and processed before they are presented to the user. On the iOS platform, the
Notification Extension framework allows us to create extensions that can modify mutable
notification messages.

In order to create a notification extension, you can add a new project and select one of the
Notification Extensions that suits your requirements the most:

With the context extension, it is possible to create interactive notification views that can
display rich media content, while the service extension can be used to intercept and process
the notification payload (for example, decrypt the secure payload).

Engaging Users with Notifications and the Graph API Chapter 13

[322]

Android has similar mechanisms that allow you to modify the notification content before it
reaches the user. The toast messages can also exhibit a reply control, which accepts in-place
user interaction. While this engagement model increases the usability of the application, it
does not contribute to the return rate.

Overall push notifications are powerful developer tools that attract users back to the
application and keep them engaged, even when the application is not running.

The Graph API and Project Rome
Since we're discussing cross-platform engagement, this is a great time to talk about the
Graph API and Project Rome. These interwoven infrastructure services that are available in
the Microsoft Cloud infrastructure allow developers to create application experiences that
span across platform and device boundaries.

The Graph API
The Graph API is a collection of Microsoft cloud services that are used to interact with the
data that is collected through various platforms, including Microsoft Office 365 and
Microsoft Live. The data elements in this web of data are structured around the currently
signed in user. Interactions with certain applications (for example, a meeting that's been
created, an email that's been sent, or a new contact being added to the company director) or
devices (for example, a sign-in on a new device) are created as new nodes in the
relationship graph.

These nodes can then be used to create a more immersive experience for the user, who is
interacting with the application data from various sources.

For instance, simply by using the Microsoft Identity within the application, after the user
authorizes to access the resources, the application downloads documents, creates
thumbnails, retrieves destination users, and creates a complete email before sending it to a
group of users. Other than Microsoft-based applications, third-party applications can also
create graph data to increase engagement with the user.

Engaging Users with Notifications and the Graph API Chapter 13

[323]

Project Rome
Project Rome, which is built upon the premises of the Graph API, can be defined as a device
runtime for connecting and integrating Windows-based and cross-platform devices to the
Project Rome infrastructure services. This runtime is the bridge between the infrastructure
services in the Microsoft Cloud and the APIs that are delivered as a programming model
for Windows, Android, iOS, and Microsoft Graph, hence enabling client and cloud apps to
build experiences using Project Rome's capabilities.

Project Rome exposes several key APIs, most of which can be used in cross-platform
application implementations. The current API set is composed of the following:

Device relay
User activities
Notifications
Remote Sessions
Nearby sharing

Some of these features are available only for the Windows platform, but all of them require
a Microsoft identity to be present within the application domain. One important note is that
all of these features can be consumed through the Graph API using the REST interface.

Let's take a closer look at these features and work out different use cases.

Device relay
The device relay is a set of modules that allows device to device communication and
handover functionality. Semantically, the feature set resembles the previously available
application services and URI launch functionalities on the UWP platform. However, with
the device relay, an application can essentially communicate with another application on
another device or even on another platform (for example, using the SDK, it is possible to
launch an application on a Windows device from an Android phone).

Engaging Users with Notifications and the Graph API Chapter 13

[324]

User activities
User activities is one of the closest integrations with the Graph API. Using the user
activities and the activity feeds, it is possible for an application to create a history feed with
relevant actions when the application was last used. These feeds are fed into the Graph API
and synchronized across devices. For instance, using the activity feeds, we can create a
history of the auctions/vehicles that the user viewed in a certain session. Then, once these
items are synchronized through the same live ID over to a Windows device, the user can
easily click on an item from the feed and get back to their previous session. If the Windows
device does not have the application installed, the operating system will advise the user to
install the same application on the Windows platform. This way, the penetration of your
application will increase on multiple platforms. In simple terms, this feature is solely
dedicated to the continuity of user experience across devices and platforms.

A user activity might contain deep links, visualizations, and metadata about the activity
that is created as an entry in activity history.

Notifications
Project Rome notifications, also known as Microsoft Graph Notifications, are another way
of notifying users. What differentiates Graph Notifications from other platform-specific
notification providers is the fact that Graph Notifications target users that are specifically
agnostic to the platform they are using. In other words, the destination of the Graph
Notifications is not devices, but users. In addition to the user-based notification model, the
notification state within Graph Notification infrastructure is synchronized across devices so
that the application itself does not need to anything more to set a certain message as
dismissed or similar to reflect the user interaction on multiple devices.

Remote Sessions
The Remote Sessions API is a Windows-only API, and it allows devices to create shared
sessions, join the sessions, and create an interactive messaging platform between different
users. The created sessions can be used to send messages across devices, as well as keep
shared session data within the joint session.

Engaging Users with Notifications and the Graph API Chapter 13

[325]

Nearby sharing
Nearby sharing allows apps to send files or websites to nearby devices using Bluetooth or
Wi-Fi. This API can be used on Windows as well as native Android runtimes. During a
share operation, nearby sharing functionality is also intelligent enough to pick up on the
quickest path between the two devices by selecting either a Bluetooth or network
connection. The discovery function that is part of the sharing module allows the application
to discover the possible targets for the share operation via Bluetooth.

Summary
In this chapter, we have taken a look at ways to improve user engagement using push
notifications and Microsoft Graph API implementations. Keeping user engagement alive is
the key factor to maintaining the return rate of your application. Push notifications is an
excellent tool that you can use engage your users, even when your application is not active.
Azure Notification Namespaces and Hubs make this engagement a lot easier to implement
by creating an abstraction layer between the PNSes and the target device runtimes. On top
of the push notifications, we analyzed various APIs that are available on the Graph API
through Project Rome and RESTful APIs that are readily available.

We have successfully engaged our user, so in the next chapter, we will try to surprise them
with machine learning and cognitive services gimmicks to create not only a responsive and
fluid application user interface, but also an intelligent one.

14
Introducing Cognitive Services

Azure Cognitive Services are a set of machine learning algorithms that are used to solve
most common AI programming tasks. Azure Cognitive Services streamlines complex
algorithms and turns them into trivial tasks, such as executing a simple remote query. It is
composed of five distinct categories of algorithms, namely, vision, speech, language,
knowledge, and search. In this chapter, we will be adding speech recognition to our
application using the speech API.

The following sections will walk you through how you can introduce cognitive services
into your projects:

Understanding Cognitive Services
Speech APIs
Computer vision
Search APIs

Introducing Cognitive Services Chapter 14

[327]

Understanding Cognitive Services
AI and machine learning have always been attractive topics for computer scientists and
software developers. Nevertheless, these topics require a deep understanding of complex
subjects, such as neural networks, convolutions, ane clustering. In addition to the
complexities of these machine learning concepts, the applications of these concepts can
become even more complex and time-consuming. For developers that do not posses the
skillset or the time to introduce complex machine learning algorithms to their projects,
Azure Cognitive Services is a reasonable alternative.

Azure Cognitive Services is a set of APIs that can help developers to create intelligent
applications with minimal knowledge of artificial intelligence and machine learning. These
APIs can be used as part of the Azure cloud infrastructure and are grouped under five
categories:

Vision APIs: The Vision API consists of several APIs that deal with image
processing and pattern recognition. Computer vision, face detection, and the ink
recognizer are only a few of the APIs that are available in this category.
Speech APIs: The Speech API services deal with audio and natural language
processing. Speech Services is the main service bundle that deals with natural
language processing and synthesized speech. The speaker recognition API, on
the other hand, is the vocal recognition service offered within this category.
Language APIs: Natural language processing and translation services offered
under this category can provide valuable assets for processing lexical data.
Search APIs: The Search API bundle exposes a wide spectrum of API endpoints
that expose various features from Bing search.
Decision APIs: The Decision API services are most apparent in the
implementation of pattern recognition. The personalizer API can be of great use
for identifying user patterns and anticipating user behavior to customize
application content.

As a complete package, Azure Cognitive Services can be introduced to your Azure
subscription via the Azure Portal:

Introducing Cognitive Services Chapter 14

[328]

Similarly, standalone services can also be created within a resource group instead of us
having to select the complete set of services.

At the time of writing, there is no complete SDK available for all of the cognitive services.
Hence, once the services are created within a resource group, the services can be accessed
through the service APIs. The more straightforward way of authentication and/or
authorization is to use the Ocp-Apim-Subscription-Key header to define the specific API
subscription that is desired. Additionally, access tokens that are trusted by Azure Active
Director can also be used to execute RESTful calls.

Introducing Cognitive Services Chapter 14

[329]

Speech APIs
The Speech API is the unified version of the speech-to-text and text-to-speech services, and
is the successor of the Bing Speech API. In addition to recognizer and synthesizer, speech
translation provides real-time, multi-language translation capabilities.

Speech to text
Azure Speech Services provides a very competent alternative to the native speech
recognition features of mobile platforms. Azure Speech Services is a proven technology that
is also used for Cortana and supports multiple languages. Speech to text uses the universal
language model that was trained by Microsoft-owned data, but it can also be trained
further for custom acoustics, language, and pronunciation.

Speech services are available through various SDKs and the RESTful API. Unfortunately,
the Xamarin SDK is currently not available (only native versions are available for Java and
Objective-C). Nevertheless, .NET Core SDK is ready to use and can be used with UWP
applications.

Some of the key features of this transcription service are as follows:

Short utterance: It can transcribe a short utterance (that is, less than 15 seconds).
This functionality is available through the SDK and the REST API.
Continuous transcription: This feature provides a transcription of longer
utterances, as well as continuous streaming audio. It is only available through the
SDK.
Intent recognition: Using the language services provided by LUIS, the speech
SDK can identity intents and entities. The REST API does not have direct
integration with this feature.
Batch transcription: The REST API can process multiple audio files
asynchronously.

Here, the most used speech to text features are the short utterance and the batch
transcription since these two features provide an easy way to convert short user commands
into application commands.

In order to implement speech recognition, we would need to use the cognitive services
REST—more specifically, the speech services. Let's begin with the implementation.

Introducing Cognitive Services Chapter 14

[330]

The implementation process starts by authenticating with the identity provider using the
subscription key:

public AuthenticationService(string apiKey)
{
 subscriptionKey = apiKey;
 httpClient = new HttpClient();
 httpClient.DefaultRequestHeaders.Add(
 "Ocp-Apim-Subscription-Key", apiKey);
}

public async Task<string> FetchTokenAsync(string fetchUri)
{
 UriBuilder uriBuilder = new UriBuilder(fetchUri);
 uriBuilder.Path += "/issueToken";
 var result = await
 httpClient.PostAsync(uriBuilder.Uri.AbsoluteUri, null);
 return await result.Content.ReadAsStringAsync();
}

Once the authentication token is received, it should be included in the consequent requests
as an authorization token with bearer schema. The recognition API is exposed though the
following endpoint:

https://speech.platform.bing.com/speech/recognition/

Now, we can execute the recognition request with a POST method call with a steam content
type:

pulic async Task<string> SendRequestAsync(
 Stream fileStream, string contentType)
{
 if (httpClient == null)
 {
 httpClient = new HttpClient();
 }

 httpClient.DefaultRequestHeaders.Authorization = new
 AuthenticationHeaderValue("Bearer", bearerToken);

 var content = new StreamContent(fileStream);
 content.Headers.TryAddWithoutValidation(
 "Content-Type", contentType);

 var response = await httpClient.PostAsync(url, content);
 return await response.Content.ReadAsStringAsync();
}

Introducing Cognitive Services Chapter 14

[331]

The language that's used during the recognition can be adjusted with the language
parameter.

Once the recognized text is returned by the recognition API, our application can start
processing it. The most convenient way to parse the recognized text into lexical
components and execute commands would be to use the language API.

Language Understanding Service
Audio processing, combined with Language APIs, can provide even more structured data
that our application can process. The Language Understanding Service (LUIS) allows
applications to understand what a person really wants. In other words, using LUIS, your
application can receive audio input in complete sentences and convert it into commands
and execution procedures.

In order to be able to utilize LUIS, we need to create an application registration on the LUIS
portal (that is, https://www.luis.ai):

https://www.luis.ai
https://www.luis.ai
https://www.luis.ai
https://www.luis.ai
https://www.luis.ai
https://www.luis.ai
https://www.luis.ai
https://www.luis.ai
https://www.luis.ai

Introducing Cognitive Services Chapter 14

[332]

After the application is created, we will need to define the schema that the application will
adhere to in order to identify the commands requested by the users similar to the example
schema provided by the LUIS portal:

In order to be able to execute queries using the application ID and the private key, we
would need to train and publish the application. This can be done on the application
dashboard:

Introducing Cognitive Services Chapter 14

[333]

The REST queries can be executed on the developer portal, as well as by using an HTTP
request tool such as CURL or postman. The URL we will be using for LUIS applications
with the application ID and private key is as follows:

https://westus.API.cognitive.microsoft.com/luis/v2.0/apps/84d54230-f80d-41b
3-862b-343183f36411?q=I am looking for a red volvo s60 from 2018

Without any schema definition about intents and entities, the result to any query will be
empty:

{
 "query": "I am looking for a red volvo s60 from 2018",
 "topScoringIntent": {
 "intent": "None",
 "score": 0.823669851
 },
 "entities": []
}

Now, let's define our main entity in this sentence (that is, volvo, which is a vehicle brand):

Introducing Cognitive Services Chapter 14

[334]

We are using the list type to create a predefined list of values for auto manufacturers. These
data points will be used to determine the make of the vehicle that the users will be uttering
during the voice search. Other entity type options are as follows:

Simple: A simple entity describes a single concept. For example, if the user's
intent is GetWeather, you can use City as a simple entity to capture the city for
the weather report.
Composite: You can use a composite entity to represent an object that has parts.
The composite entity is made up of entities that form the whole. For example, a
composite entity called TicketsOrder in a travel app can be composed of three
child entities that describe attributes of the tickets to order, that is, Number,
PassengerCategory, and TravelClass.
Regex: A regex entity is an entity that matches based on the regular expression
defined. Regex entities are not machine learned entities.
Pattern: A pattern entity is a variable-length placeholder that's used only in a
pattern's template utterance to mark where the entity begins and ends.

We will now move on and create an intent for the verb look:

As you can see from the preceding screenshot, the sentences started to make much more
sense to LUIS.

Introducing Cognitive Services Chapter 14

[335]

After adding color as a list entity and training the application, the results for the same
sentence are much more reliable:

Training the LUIS application with additional entities and other intents would give better
matches and classified data that can be used as requests in our search queries.

Computer vision
Computer vision is another intelligent services that allows applications to identify various
entities. Applications of this feature can vary from simple image recognition on a picture to
face recognition with training data:

Introducing Cognitive Services Chapter 14

[336]

The item identifications can be improved with domain-specific models and additional
tagging.

The implementation of this API is done through the REST API, as shown in the following
code:

 static async Task MakeAnalysisRequest(string imageFilePath)
 {
 try
 {
 HttpClient client = new HttpClient();
 // Request headers.
 client.DefaultRequestHeaders.Add(
 "Ocp-Apim-Subscription-Key", subscriptionKey);

 string requestParameters =
 "visualFeatures=Categories,Description,Color";
 string uri = uriBase + "?" + requestParameters;

 HttpResponseMessage response;
 byte[] byteData = GetImageAsByteArray(imageFilePath);

 using (ByteArrayContent content = new
 ByteArrayContent(byteData))
 {
 content.Headers.ContentType;
 new MediaTypeHeaderValue("application/octet-stream");
 // Asynchronously call the REST API method.
 response = await client.PostAsync(uri, content);
 }
 // Asynchronously get the JSON response.
 string contentString = await

Introducing Cognitive Services Chapter 14

[337]

 response.Content.ReadAsStringAsync();
 // Display the JSON response.
 Console.WriteLine("\nResponse:\n\n{0}\n",
 JToken.Parse(contentString).ToString());
 }
 catch (Exception e)
 {
 Console.WriteLine("\n" + e.Message);
 }
}

Search API
The Bing Search API, as its name suggests, is the exposed service version of Bing search.
Using the Search API, you can create customized/tailored search queries and serve content
to your users through your application. These search queries are highly customizable, just
like the result set.

The Search API offers a rich set of features that help you to integrate web content into
mobile apps. Each of these features can abide the custom configuration you have set up,
hence defining the search scope and restricting the results to certain criteria.

In order to execute the queries outlined in the following topics, you would
need to retrieve a subscription key either from your paid subscription or
the trial account that can be created. The subscription key should be
added using the Ocp-Apim-Subscription-Key header. The API
management console and documentation that is available to developers
on an API basis can be used to executed these queries.

Search query completion
The most attractive of these features for any developer looking to create a search dialog is
the custom real-time search suggestions. We do so, using the suggestions API, possibly
combining it with a custom configuration. In order to utilize custom suggestions, you
would need to subscribe to the BingCustomSearch API. For autocomplete, you can use the
REST API with the following endpoint:

https://api.cognitive.microsoft.com/bingcustomsearch/v7.0/suggestions/searc
h?customconfig=0&q=<myqueryparameter>

Introducing Cognitive Services Chapter 14

[338]

The response will display the result set with additional metadata, such as the display name
and search type, as well as the original query string.

Web Search API
The custom search API is technically the service oriented implementation of Bing search. In
addition to the complete search result metadata pertaining to the result type (for example,
news, web page, and image), the result set is also categorized according to the available
content-specific search result types.

The resultant metadata can be further improved by using the textDecorations query
parameter. This way, the result content would have highlighted sections using specific
unicode characters (that is, U+E000 marks the beginning of the query term and U+E001
marks the end of the query term).

Looking at the data model, we can understand the data structure and how this data can be
used within the application. In the following example, you can see that the webPages
property is populated with web page results:

"webPages": {
 "webSearchUrl": "https:\/\/www.bing.com\/search?q=volvo+s60",
 "totalEstimatedMatches": 1700000,
 "value": [{
 "id":
"https:\/\/api.cognitive.microsoft.com\/api\/v7\/#WebPages.0",
 "name": "2019 All-New S60 Luxury Sport Sedan | Volvo Car USA",
 "url": "https:\/\/www.volvocars.com\/us\/cars\/new-models\/s60",
 "isFamilyFriendly": true,
 "displayUrl": "https:\/\/www.volvocars.com\/us\/cars\/new-
models\/s60",
 "snippet": "The S60 offers a choice of Drive Modes, so you can
tailor your driving experience to your mood. There are three default
settings for the engine, automatic gearbox, steering, brakes and stability
control system that put the focus on driving, comfort or fuel economy and
emissions.",
 "dateLastCrawled": "2019-05-12T02:30:00.0000000Z",
 "language": "en",
 "isNavigational": false
 },
...
]

Introducing Cognitive Services Chapter 14

[339]

The result is returned as a response to the following query:

https://api.cognitive.microsoft.com/bing/v7.0/search?q=volvo
s60&count=10&offset=0&mkt=en-us&safesearch=Moderate

Specialized search APIs are available through dedicated API endpoints, and each of these
APIs have more content-specific search query parameters.

Image search
Image search is another feature that can help developers with search queries that target the
image content. Image search is also available through the Bing Image Search API, and the
result sets are comparable. However, the Bing Image Search API also offers parameters that
can narrow down the image set with additional criteria, such as aspect, color, height, width,
and size.

The Bing Image Search API is available through the following URL:

https://api.cognitive.microsoft.com/bing/v7.0/images/search

Using the Image Search API, the application can generate image content on the fly, creating
a more pleasant and rich experience for the user. If you are planning to use these images as
part of the user content, it is important to execute the search with the licensing options so
that the returned content does not violate any restrictions. The available licensing options
and associated explanation from the official provider are Any

Any
Public
Share
ShareCommercially
ModifyCommercially
All

In order to demonstrate the search results for images, we can execute a quick query by
utilizing the query and color parameters:

https://api.cognitive.microsoft.com/bing/v7.0/images/search?q=volvo s60
2019&count=10&offset=0&mkt=en-us&safeSearch=Moderate&color=blue

As you can see, the market parameter in this query is set to en-us, which will return results
that are more relevant to this market.

Introducing Cognitive Services Chapter 14

[340]

Other
In addition to web pages and images, Bing can execute search queries on additional content
types, which can help to create connected applications and provide rich media content. The
following additional specialized APIs are available through the Bing API services:

Entity search: The Bing Entity Search API returns search results containing
entities, which can be people, places, and so on. Depending on the query, the API
will return one or more entities that satisfy the search query. The search query
can include noteworthy individuals, local businesses, landmarks, destinations,
and more.
News search: The Bing News Search API lets you find news stories similar to
Bing.com/news. The API returns news articles from either multiple sources or
specific domains. You can search across categories to get trending articles, top
stories, and headlines.
Video search: The Bing Video Search API lets you find videos across the web.
Here, you can get trending videos, related content, and thumbnail previews.
Visual search: Here, you can upload an image or use a URL for the image, to get
insightful information about it, such as visually similar products, images, and
related searches.
Local business search: The Bing Local Business Search API lets your applications
find contact and location information about local businesses based on search
queries.

These content types are available through the custom search API results, as well as the
specialized endpoints.

Summary
Cognitive Services can provide a wide variety of tools that add intelligence to your
application and create a more intuitive and easy to interact with the user experience. As we
have seen in this chapter, services such as speech recognition and language processing
allow the users to interact with your application in a more natural way. Using computer
vision, applications can anticipate user needs and act on them without the user interacting
with the application in conventional terms. In addition, the Search API makes it easier to
bring in additional content and provide a richer experience.

This chapter finalizes our application development process. Now, we will continue with
application lifecycle management (ALM) with Azure DevOps in order to create CI/CD
pipelines for .NET Core and Xamarin applications.

5
Section 5: Application Life

Cycle Management
Azure DevOps and Visual Studio App Center are the two pillars of application life cycle
management when we talk about .NET Core and Xamarin. Azure DevOps, previously
known as Visual Studio Online or Team Services, provide the complete suite for
implementing DevOps principles, whereas App Center acts as a command center for
mobile application development, testing, and deployment. Using these tools, developers
and operations teams can implement robust and productive delivery pipelines that can take
the application source from the repository to production environments.

The following chapters will be covered in this section:

Chapter 15, Azure DevOps and Visual Studio App Center
Chapter 16, Application Telemetry with Application Insights
Chapter 17, Automated Testing
Chapter 18, Deploying Azure Modules
Chapter 19, CI/CD with Azure DevOps

15
Azure DevOps and Visual

Studio App Center
Visual Studio App Center is an all-in-one service provided by Microsoft, and is mainly used
by mobile application developers. Both Xamarin platforms as well as UWP applications are
among the supported platforms. The primary goal of App Center is to create an automated
Build-Test-Distribute pipeline for mobile projects. App Center is also invaluable for iOS
and Android developers since it is the only platform that offers a unified beta distribution
for both target runtimes that support telemetry collection and crash analytics. Using Azure
DevOps (previously known as Visual Studio Team Service) and App Center, developers
can set up a completely automated pipeline for Xamarin applications that will connect the
source repository to the final store submission.

This chapter will demonstrate the fundamental features of Azure DevOps and App Center,
and how to create an efficient application development pipeline suited to individual
developers, as well as development teams.

The following topics will be covered in this chapter:

Using Azure DevOps and Git
Creating Xamarin application packages
App Center for Xamarin
Distribution with AppCenter
App Center telemetry and diagnostics

Azure DevOps and Visual Studio App Center Chapter 15

[343]

Using Azure DevOps and Git
The first and foremost crucial module of Azure DevOps that is utilized by developers is the
available source control options. Developers can choose to use either Team Foundation
Version Control (TFVC) or Git to manage the source code (or even both at the same time).
Nevertheless, with the increasing popularity of decentralized source control management,
because of the flexibility and integration that the development toolset offers, Git is the more
favorable choice to many. Git is natively integrated with both Visual Studio and Visual
Studio for Mac.

Creating a Git repository with Azure DevOps
Multiple Git repositories can be hosted under the same project collection in Azure DevOps,
depending on the project structure that is required. Each of these repositories can be
managed with different security and branch policies.

In order to create a Git repository, we will use the Repos section of Azure DevOps. Once a
DevOps project is created, an empty Git repository is created for you that needs to be
initialized. The other options here would be to import an existing Git repository (not
necessarily from another Azure DevOps project or organization) or push an existing local
repository from your workstation:

Azure DevOps and Visual Studio App Center Chapter 15

[344]

The repository type choice used to be an initial decision while creating the
Visual Studio Team Services project that couldn't be changed. However,
with Azure DevOps, it is possible to create Git repositories even after the
initial project's creation, side by side with a TFVC repository.

It's important to note that the clone option offers the generation of Git credentials in order
to authenticate with this Git instance. The main reason for this is that Azure DevOps
utilizes federated live identity authentication (possibility two factor), which Git doesn't
support by itself. Thus, the users of this repository would need to generate a Personal
Access Token (PAT) and use it as a password. The Git for Windows plugin automatically
handles this authentication issue by creating the PAT automatically (and renewing it once it
is expired). PAT is currently the only solution to be able to use Git with Visual Studio for
Mac.

In the initialize option, we can also select the .gitignore file (similar to
TFVC's .tfignore file) type to be created so that undesired user data from the project
folders isn't uploaded to the source repository.

Azure DevOps and Visual Studio App Center Chapter 15

[345]

Branching strategy
Using Git and the Git flow methodology/pattern, a development team can base their local
and remote branches on two main branches: development and master.

The development branch is used as the default branch (also known as the trunk) and
represents the next release source code until the set of features (branches) are completed
and signed off by the development team. At this point, a release branch is created, and the
final stabilization phase on the next release package uses the release branch as the base for
all hot-fix branches for development. Each pull request from a hot-fix branch that changes
the release version will need to be merged back into the development branch.

A general flow of the feature, development, and release branches is shown in the following
diagram:

Azure DevOps and Visual Studio App Center Chapter 15

[346]

This general flow of the branches is as follows:

To safeguard the development branch as well as release branches, developers,1.
whether working on local or feature branches, will need to create a pull request
that will be verified per the branch policies.

Pull requests promote the peer review process, as well as additional static
analysis that needs to be executed in order to contribute to the
development or release branches.

In this setup, the development branch will have a continuous integration build2.
and deployment to the fast ring of the AppCenter distribution so that the dev
and QA team can verify the features that are merged into the branch
immediately.
Once the current release branch is ready for regression, it can be merged into the3.
master branch. This merge is generally verified with automated UI tests (that is,
automated regression). The master branch is used as the source repository for the
Visual Studio App Center slow ring deployments (that is, the staging
environment).
Feature branches that go stale (see the outer feature branch) span across multiple4.
releases and need to be rebased so that the development branch history is added
to the feature branch. This allows the development team to have cleaner
metadata about the commits.
The hot-fix branch is used to rectify either failed store submissions or regression5.
bugs that are reported on release branches. Hot-fix branches can be tested by
automated UI tests (fully automated regression) and manually using slow ring
releases.
Once the master branch is ready for release, a new tag is created as part of a code6.
freeze, and a manually triggered build will prepare the submission package for
iOS and Android versions of the application.

This methodology can also be modified to use the release branches for staging and store
deployments, rather than using the master branch. This approach provides a little more
flexibility for the development team and is a little easier than managing a single release
branch (that is, the master branch).

Azure DevOps and Visual Studio App Center Chapter 15

[347]

Managing development branches
During the development phase, it is important—especially if you are working with a bigger
team—to keep a clean history on the development and feature branches.

In an agile-managed project life cycle, the commits on a branch (either local or remote) state
that tasks belong to a user story or a bug, while the branch itself may correlate with the user
story or bug. Bigger, shared branches among team members can also represent a full
feature. In this context, in order to decrease the amount of commits while still keeping the
source code safe, instead of creating a new commit each time a change set push occurs, you
can make use of the amend commit feature:

Azure DevOps and Visual Studio App Center Chapter 15

[348]

Once the commit is amended with the changes, the local commit would need to be merged
to the remote version. Here, the key to avoiding the merge commit between the remote and
local branch (since the remote branch has the older version of the commit, hence a different
commit) would be to use the --force or --force-with-lease options with the push command.
This way, the local commit (the amended one) will overwrite the remote version:

It is important to note that it is highly discouraged to amend commits and overwrite remote
branches when multiple developers are working on the same branch. This can create
inconsistent history for a branch on local repositories of involved parties. In order to avoid
such scenarios, the feature branch should be branched out and rebased onto the latest
version of the feature branch once it's ready to be merged.

Azure DevOps and Visual Studio App Center Chapter 15

[349]

Let's assume that you create a local branch from the remote feature branch and pushed
several commits. Meanwhile, your teammates pushed several updates to the feature
branch:

Source: (https://www.atlassian.com/git/tutorials/merging-vs-rebasing / CC BY 2.5 AU)

With a conventional sync (pull and push), there will be a merge commit created, and the
history for the feature branch would look similar to the following:

Azure DevOps and Visual Studio App Center Chapter 15

[350]

Source: (https://www.atlassian.com/git/tutorials/merging-vs-rebasing / CC BY 2.5 AU)

However, if the local branch is rebased onto the latest version of the remote branch prior to
the push, the history would look like this:

Source: (https://www.atlassian.com/git/tutorials/merging-vs-rebasing / CC BY 2.5 AU)

Azure DevOps and Visual Studio App Center Chapter 15

[351]

A rebase strategy should be employed before you create a pull request to the development
or the release branches so that the clean history of the branch can be preserved, thus
avoiding complex merge conflicts.

Creating Xamarin application packages
Once our application is ready to be tested on real devices, we can start preparing the
pipeline so that we can compile and package the application to be deployed to our alpha
and beta environments on App Center. Azure DevOps provides out-of-the-box templates
for both Xamarin.Android and Xamarin.iOS applications. These pipelines can be extended
to include additional testing and static analysis.

Using Xamarin build templates
Creating a build and release template for Xamarin applications is as trivial as using the
Xamarin template for iOS and Android. Additionally, the UWP (if your application
supports this platform) template can also be used to create a UWP build:

Azure DevOps and Visual Studio App Center Chapter 15

[352]

After the pipeline is created, we will need to make several small adjustments to both
platforms to be able to prepare the application so that we can put it on real devices.

Xamarin.Android build
Let's have a look at the steps to build the Android project:

We have to identify the correct Android project to be built using the wildcard1.
designation and the target configuration:

Note that the configuration and output directory are using pipeline
variables. These parameters can be defined in the variables section of the
pipeline configuration page.

Azure DevOps and Visual Studio App Center Chapter 15

[353]

Select a keystore file so that you can sign the application package. Unsigned2.
application packages cannot be run on real Android devices. Keystore is a store
that contains certificate(s) that will be used for singing the application package. If
you are using Visual Studio for development (on Mac or Windows), the easiest
way to generate an ad hoc distribution certificate would be to use the Archive
Manager:

Once the store is created, the keystore file can be found in the following folder3.
on Mac:

~/Library/Developer/Xamarin/Keystore/{alias}/{alias}.keystore

It can be found in the following folder on Windows:

C:\Users\{Username}\AppData\Local\Xamarin\Mono for
Android\Keystore\{alias}\{alias}.keystore

You can now use the .keystore file to complete the signing step of our Android4.
build pipeline:

Azure DevOps and Visual Studio App Center Chapter 15

[354]

Note that the .keystore file is used by the pipeline as a secure file. In a similar
fashion, the keystore password can (should) be stored as a secure variable string.

The pipeline, as it is right now, is ready to compile the Android version of the5.
application in order to create an APK package.

Next, we will need to prepare a similar pipeline for the iOS platform.

Azure DevOps and Visual Studio App Center Chapter 15

[355]

Xamarin.iOS pipeline
Similar to its Android counterpart, the Xamarin.iOS template creates the full pipeline to
compile the iOS project. We will need to modify the parameters for the created tasks so that
we can successfully prepare the application package. Let's get started:

Before we start the pipeline configuration, head over to the Apple Developer site1.
to generate a distribution certificate, Application ID, and an ah hoc provisioning
profile:

Once the distribution certificate option is selected, the developer site will take2.
you through the steps of generating a CSR and generating the signing certificate.
After the certificate is created, you will need to download and install the3.
certificate so that you can export it as a public/private key pair (.p12). You will
need to use the following steps in order to do this:

Open the Keychain Access tool.1.
Identify the distribution certificate that we have downloaded and2.
installed.

Azure DevOps and Visual Studio App Center Chapter 15

[356]

Expand the certificate revealing the private key.3.
Select both the public certificate and private key so that you can use4.
the Export option.

Once we have the distribution certificate, we will need an app ID to be able to4.
generate a provisioning profile. When generating the app ID, the important
decision is to decide whether to use a wildcard certificate (this might be a good
option to use with multiple applications in the prerelease versions) or a full
resource identifier.
The final step in the application provisioning process is to create the application5.
provisioning profile for ad hoc distribution. The ad hoc distribution is the most
appropriate distribution option for prerelease distribution through App Center.
With the p12 certificate export and the mobile provisioning profile that we have6.
generated and downloaded from the Apple developer site, we can head over to
Azure DevOps and modify the Install an Apple Certificate and Install an Apple
Provisioning Profile tasks:

Azure DevOps and Visual Studio App Center Chapter 15

[357]

Finally, it is important to make sure that the application package is created for7.
real devices, and not a simulator. This configuration will need to be corrected in
the Xamarin.iOS build tasks:

Here, the Signing identity and Provisioning profile UUID can be left blank as these
elements will be installed by the pipeline. If multiple profiles or certificates exist in the
pipeline, you will need to define the specific one to use.

The Apple ad hoc distribution profile requires the UUID of the devices
that are allowed to use the distributed version of the application. In
simple terms, any device involved in using and testing this version of the
application should be registered in this provisioning profile, and the
application should be signed with it.

Azure DevOps and Visual Studio App Center Chapter 15

[358]

Environment-specific configurations
Native applications differ from web applications from a configuration perspective since the
application CI pipeline should embed the configuration parameters into the application
package. While the configuration parameters for different environments can be managed
with various techniques, such as separate JSON files, compile constants, and so on, the
common denominator in these implementations is that each of them uses conditional
compilation or compilation constants to determine which configuration parameters are to
be included in the application package. In other words, without recompiling the
application, it isn't possible to change the environment-specific configurations for an
application.

In order to create multiple distribution rings that are pointing to different service
endpoints, the application will need to have different single pipelines with multiple
configurations to build, or we would need to create multiple pipelines to build the
application for a specific platform and configuration.

Creating and utilizing artifacts
In order to increase cross project reusability, the package management extension of Azure
DevOps can be employed. UI components across Xamarin projects, as well as DTO models
shared between Azure projects and the client application, can be merged into NuGet
packages with their own life cycle: develop-merge-compile-deploy.

Storing these modules in a separate project/solution in a separate Git repository within the
same Azure DevOps project would make the integration into previously created builds
easier.

Once the NuGet project is ready to be compiled and packaged with a defined .nuspec file,
a separate DevOps pipeline can be setup to create this package and push it into an internal
feed within the same team project.

Azure DevOps and Visual Studio App Center Chapter 15

[359]

A sample NuGet build pipeline would look similar to the following:

In order to include this feed in the Xamarin iOS and Android pipelines, the NuGet Restore
step would need to be configured to include the internal feed, as well as the Nuget.org
source. Additionally, Nuget.org can be set as an upstream source for the internal feed so
that the public packages can be cached in the internal feed.

App Center for Xamarin
Visual Studio App Center, which expands on its predecessor, HockeyApp, and its feature
set, is a mobile application life cycle management platform that's used to easily build, test,
distribute, and collect telemetry from iOS, Android, Windows, and macOS applications. Its
intrinsic integration with various repository options and build capabilities can even be used
to migrate the development and release pipeline from Azure DevOps. Visual Studio App
Center, just like Azure DevOps, follows a freemium subscription model, where the
developers can access the majority of the functionality with a free subscription and would
have to have a paid subscription for quota enhancements on certain features.

Azure DevOps and Visual Studio App Center Chapter 15

[360]

Integration with the source repository and builds
Even though we have already set up our source repository on Azure DevOps and
associated build pipelines, AppCenter can be used for the same purpose.

For instance, if we were to set up the iOS build pipeline, we would follow these steps:

We would start by creating an application within our organization. An1.
application on App Center also represents a distribution ring:

Azure DevOps and Visual Studio App Center Chapter 15

[361]

After the application is created, in order to create a build, we will need to connect2.
the App Center application to the target repository. Just like Azure DevOps
pipelines, you are free to choose between Azure DevOps, GitHub,
and Bitbucket:

Once the repository is connected, we can start creating a build that will retrieve3.
the branch content from the source repository and compile our iOS package:

Once the build is set up, it can be built either manually or configured to be a CI4.
build that will be triggered every time there is a push on the source branch (in
this case, the master branch).

Azure DevOps and Visual Studio App Center Chapter 15

[362]

Setting up distribution rings
We have been mentioning distribution rings in regards to App Center since we started
setting up the ALM pipeline for our applications. As we have already seen, a distribution
ring refers to an app that's created on your personal or organization account. This ring
represents an environment-specific (for example, Dev) compilation or a certain platform
(for example, iOS) of our application.

An AppCenter application is represented through what is called an application slug. An
application slug can be extracted from the URL of the app center page:

https://appcenter.ms/users/{username}/apps/{application}:

App Slug: {username}/{application}

https://appcenter.ms/orgs/{orgname}/apps/{application}:

App Slug: {orgname}/{application}

If we go back to our Azure DevOps pipeline, we can use this value to set up the
deployment to AppCenter. However, before we can do this, we will need to create an App
Center service connection with an API token that you can retrieve from App Center so that
Azure DevOps can authorize with App Center and push application packages:

Azure DevOps and Visual Studio App Center Chapter 15

[363]

Let's complete the rest of the configuration parameters:

Repeating the same steps for the Android version using another App Center application
would complete the initial CI setup for our application. This build can be, similar to the
App Center build, set up to be triggered with each merge to the develop or master
branches.

Azure DevOps and Visual Studio App Center Chapter 15

[364]

It is extremely convenient to store a markdown sheet (for example,
ReleaseNotes.md) within the solution folder (that is, in the repository)
to record the changes to the application. In each pull request, when
developers enter the updates to this file, the release notes about the
changes being deployed can easily be pushed to the alpha and beta
distribution channels.

Distribution with AppCenter
Aside from the build, test, and telemetry collection features of App Center, the main feature
of App Center is to manage the distribution of prerelease applications, as well as automate
submissions to public and private App Stores.

AppCenter releases
Once the application package is pushed from the build pipeline to AppCenter, an
application release is created. This release represents a version of the application package.
This package can be distributed to a distribution group within the current distribution ring
or an external distribution target:

Azure DevOps and Visual Studio App Center Chapter 15

[365]

When a release is created, this release is accessible by the collaborators group (that is,
developers who have management access to AppCenter).

AppCenter distribution groups
Distribution groups are group of developers and testers that an application release
(environment and platform-specific versions of the app) can be distributed to:

Azure DevOps and Visual Studio App Center Chapter 15

[366]

Distribution groups are extremely valuable since they provide additional staging of
different distribution rings. For instance, once a release version is pushed to App Center
from Azure DevOps, the first distribution group can verify the application before allowing
the second distribution group access to this new release. This way, the automated releases
from various pipelines can be delivered to certain target groups on both alpha and beta
channels.

Additionally, if you navigate to the collaborators group details on an iOS application ring,
you can identify which devices are currently included in the provisioning profile:

In order to register devices, App Center offers the automatic provisioning of devices for iOS
releases. In this setup, each time a new device is registered within a distribution group
(given that automatic provisioning is configured), App Center will update the provisioning
profile on the Apple Developer Portal and resign the release package with the new
provisioning profile.

App Center distribution to production
Once the application is certified on lower rings (that is, alpha and beta), the App Center
release can be pushed to the production stage. The production stage can be the target public
App Store (for example, iTunes Store, Google Play Store, and so on), or the application can
be published to users using Mobile Device Management or Mobile Application
Management (for example, Microsoft Intune).

Azure DevOps and Visual Studio App Center Chapter 15

[367]

In order to set up the iTunes Store as the target store, you will need to add an Apple
Developer account to App Center. Similarly, if your target is going to be InTune, an
administrator account should be added to App Center integration:

It is important to note that App Store Connect submissions will not bypass the Apple store
verification of the application package—it is simply a hand-over process that is normally
handled through Xcode.

App Center telemetry and diagnostics
App Center offers advanced telemetry and diagnostic options. In order to start using these
monitoring features, App Center SDK needs to be installed on the application and
initialized for all target platforms. Follow these steps to learn how:

NuGet package installation can be done from the public NuGet store. Using the1.
package manager context:

PM> Install-Package Microsoft.AppCenter.Analytics
PM> Install-Package Microsoft.AppCenter.Crashes

Azure DevOps and Visual Studio App Center Chapter 15

[368]

In this case, we are creating a Xamarin.Forms application, so the initialization2.
does not need to be platform-specific:

AppCenter.Start("ios={AppSecret};android={AppSecret};uwp={AppSecret
}", typeof(Analytics), typeof(Crashes));

Once the App Center SDK is initialized, default telemetry information as well as3.
crash tracking is enabled for the application. The telemetry information can be
extended with custom metrics and event telemetry using the available
functionality within the SDK:

On top of the telemetry information, App Center allows you to track two types of error
information: app crashes and errors. App crash information is logged together with the
telemetry events that lead to the crash of the application, allowing the developers to easily
troubleshoot problems.

Moreover, telemetry information can be pushed to Application Insights so that it can be
analyzed on the Azure Portal.

Azure DevOps and Visual Studio App Center Chapter 15

[369]

Summary
In this chapter, we set up the initial build pipeline, which will be expanded on in the
upcoming chapters. We have also discussed the available ALM features on Azure DevOps
and Visual Studio App Center, and how to effectively use these two platforms together.
Depending on the team's size and the application type, many different configurations can
be implemented on these platforms, providing the developers with an automated and easy-
to-use development pipeline.

In the next chapter, we will see how we can monitor our mobile application, as well as the
Azure resources that are used with Azure Application Insights.

16
Application Telemetry with

Application Insights
Agile application life cycle management dictates that after an application's release,
performance and user feedback should be introduced back into the development cycle.
Feedback information can provide vital clues to how to improve your application from
both the business and technical perspectives. Application Insights can be a great candidate
for collecting telemetry data from Xamarin applications that use an Azure-hosted web
service infrastructure because of its intrinsic integration with Azure modules, as well as its
continuous export functionality for App Center telemetry.

In this chapter, we will cover the following topics:

Collecting insights for Xamarin applications
Collecting telemetry data for Azure Service
Analyzing data

Collecting insights for Xamarin applications
As we have previously discussed and set up, application telemetry within Xamarin
applications is collected with the App Center SDK. This application data, while providing
crucial information about the usage patterns of the application, cannot be further analyzed
in App Center. We first need to export the App Center standard as well as the custom
telemetry to an Azure Application Insights resource so that further analysis can be executed
with a query language.

Application Telemetry with Application Insights Chapter 16

[371]

Telemetry data model
By using the App Center SDK, telemetry information can be collected along with events,
which can contain additional information about a specific user action or application
execution pattern. These additional data points, also known as dimensions, are generally
used to give the user a quick snapshot of the data that is used to execute the function that
triggered the telemetry event. In simple terms, a telemetry event can be described as the
event name and the additional dimensions for this event. Let's begin by creating our
telemetry model:

First, we will create our telemetry event, as follows:1.

 public abstract class TelemetryEvent
 {
 public TelemetryEvent()
 {
 Properties = new Dictionary<string, string>();
 }

 public TelemetryEvent(string eventName) : this()
 {
 Name = eventName;
 }

 public string Name { get; private set; }

 public virtual Dictionary<string, string> Properties { get;
 set; }
 }

Any custom event will contain standard tracking metadata, such as the OS
version, the request's geographical region, the device model, application
version, and so on. These properties don't need to be logged as additional
dimensions. Properties should be used for event-specific data.

Now, we will implement our telemetry writer using the App Center SDK:2.

public class AppCenterTelemetryWriter
{
 public void Initialize()
 {
 AppCenter.Start("{AppSecret}", typeof(Analytics),
 typeof(Crashes));
 AppCenter.SetEnabledAsync(true).ConfigureAwait(false);
 Analytics.SetEnabledAsync(true).ConfigureAwait(false);

Application Telemetry with Application Insights Chapter 16

[372]

 Crashes.SetEnabledAsync(true).ConfigureAwait(false);
 }

 public void TrackEvent(TelemetryEvent event)
 {
 Analytics.TrackEvent(event.Name, event.Properties);
 }
}

In order to expand our event definition to include an Exception property, we3.
can add an additional event for errors. In other words, we can track the handled
exceptions within the application:

 public void TrackEvent(TelemetryEvent @event)
 {
 if(@event.Exception != null)
 {
 TrackError(@event);
 return;
 }

 Analytics.TrackEvent(@event.Name, @event.Properties);
 }

 public void TrackError(TelemetryEvent @event)
 {
 Crashes.TrackError(@event.Exception, @event.Properties);
 }

Now, we can start creating our custom events and start logging telemetry data.4.
Our initial event might be the login event, which is generally the starting location
for a user session:

public class LoginEvent: TelemetryEvent
{
 public LoginEvent() : base("Login")
 {
 Properties.Add(nameof(Result), string.Empty);
 }

 public string Result
 {
 get
 {
 return Properties[nameof(Result)];
 }

Application Telemetry with Application Insights Chapter 16

[373]

 set
 {
 Properties[nameof(Result)] = value;
 }
 }
}

After logging in, the user will navigate to the main dashboard, so we will log our5.
dashboard appearing event in a similar fashion:

 protected override void OnAppearing()
 {
 base.OnAppearing();

 App.Telemetry.TrackEvent(new HomePageEvent()
 {
 LoadedItems = ViewModel.Items.Count.ToString()
 });
 }

Additionally, we will have to define a navigation to the details view, where6.
various actions can be executed by the user:

 protected override void OnAppearing()
 {
 base.OnAppearing();

 App.Telemetry.TrackEvent(new DetailsPageEvent()
 {
 SelectedItem = viewModel.Title
 });
 }

There are certain limitations on event structures that the App Center can
track. The maximum number of custom event names cannot exceed 200.
Additionally, the length of event names is limited to 256 characters,
whereas property names cannot exceed 125 characters.

Application Telemetry with Application Insights Chapter 16

[374]

The resultant metadata can now be visualized on App Center Dashboards:7.

Application Telemetry with Application Insights Chapter 16

[375]

Advanced application telemetry
In the previous examples, we used a static accessor for our telemetry writer instance.
However, this implementation can cause serious architectural problems, the most
important of which is that we would be coupling our application class with a concrete
implementation of the App Center SDK.

In order to remedy architectural issues that may arise, let's create a proxy telemetry
container that will divert telemetry requests to target telemetry writers. To do so, follow the
following steps:

We will start by creating an ITelemetryWriter interface to abstract our App1.
Center telemetry handler:

 public interface ITelemetryWriter
 {
 string Name { get; }

 void TrackEvent(TelemetryEvent @event);

 void TrackError(TelemetryEvent @event);
 }

Now, we will create our proxy container:2.

 public class AppTelemetryRouter : ITelemetryWriter
 {
 // Removed for Brevity

 public static AppTelemetryRouter Instance
 {
 get
 {
 if(_instance == null)
 {
 _instance = new AppTelemetryRouter();
 }

 return _instance;
 }
 }

 public void RegisterWriter(ITelemetryWriter telemetryWriter)
 {
 if(_telemetryWriters.Any(tw=>tw.Name ==
 telemetryWriter.Name))
 {

Application Telemetry with Application Insights Chapter 16

[376]

 throw new InvalidOperationException($"Already
 registered Telemetry Writer for
 {telemetryWriter.Name}");
 }

 _telemetryWriters.Add(telemetryWriter);
 }

 public void RemoveWriter(string name)
 {
 if(_telemetryWriters.Any(tw => tw.Name == name))
 {
 var removalItems = _telemetryWriters.First(tw =>
 tw.Name == name);

 _telemetryWriters.Remove(removalItems);
 }
 }

 public void TrackEvent(TelemetryEvent @event)
 {
 _telemetryWriters.ForEach(tw => tw.TrackEvent(@event));
 }

 public void TrackError(TelemetryEvent @event)
 {
 _telemetryWriters.ForEach(tw => tw.TrackError(@event));
 }
 }

It is also important to note that the container should be created on a cross-
platform project where the view models are defined, since most of the diagnostic
telemetry will in fact be collected on the view models rather than the views
themselves. Another advantage of this implementation is the fact that we can now
define multiple telemetry writers for different platforms, such as Firebase, Flurry
Analytics, and so on.

While the abstract telemetry event class provides the basic data, it does not
provide any metrics about the execution time. For instance, if we are executing a
remote service call, or a long-running operation, the execution time can be a
valuable dimension.

In order to collect this specific metric, let's create an additional telemetry object:3.

 public abstract class ChronoTelemetryEvent : TelemetryEvent
 {
 public ChronoTelemetryEvent()

Application Telemetry with Application Insights Chapter 16

[377]

 {
 Properties.Add(nameof(Elapsed), 0.ToString());
 }

 public double Elapsed
 {
 get
 {
 return double.Parse(Properties[nameof(Elapsed)]);
 }

 set
 {
 Properties[nameof(Elapsed)] = value.ToString();
 }
 }
 }

Now, let's create our tracker object, which will track the execution time for events4.
that require the execution time metric:

 public class TelemetryTracker<TEvent> : IDisposable
 where TEvent : ChronoTelemetryEvent
 {
 private readonly DateTime _executionStart = DateTime.Now;

 public TelemetryTracker(TEvent @event)
 {
 Event = @event;
 }

 public TEvent Event { get; }

 public void Dispose()
 {
 var executionTime = DateTime.Now - _executionStart;
 Event.Elapsed = executionTime.TotalMilliseconds;

 // The submission of the event can as well be moved out of
 //the tracker
 AppTelemetryRouter.Instance?.TrackEvent(Event);
 }
 }

Application Telemetry with Application Insights Chapter 16

[378]

Now, using our tracker object, we can collect valuable information about time-5.
sensitive operations within the application:

 public async Task LoadProducts()
 {
 using (var telemetry = new
TelemetryTracker<ProductsRequestEvent>(new ProductsRequestEvent()))
 {
 try
 {
 var result = await _serviceClient.RetrieveProducts();

 Items = new ObservableCollection<ItemViewModel>(
 result.Select(item => ItemViewModel.FromDto(item)));
 }
 catch (Exception ex)
 {
 telemetry.Event.Exception = ex;
 }
 }
 }

The results of the service call are measured with the Elapsed metric, which can6.
be observed on the LogFlow on App Center:

8092425a STARTSESSION - 7b106777-f07c-4312-9b53-5f2930c101db 14:11:03
8092425a STARTSERVICE 14:11:03
8092425a EVENT - Login - {"result":"Successfully Logged In!"} 14:11:08
8092425a EVENT - HomeView - {"loadedItems":"16"} 14:11:09
8092425a EVENT - ProductsServiceRequest - {"elapsed":"659.583"} 14:11:12
8092425a EVENT - DetailsView - {"selectedItem":"First Item"} 14:11:57
8092425a EVENT - HomeView - {"loadedItems":"16"} 14:11:59
8092425a EVENT - ProductsServiceRequest - {"elapsed":"633.312"} 14:12:04

Similarly, tracker objects can be created on the OnAppearing events of certain7.
views and disposed of with the OnDisappearing event so that we can track how
much time the user spent on a certain view.

Application Telemetry with Application Insights Chapter 16

[379]

Exporting App Center telemetry data to Azure
At this point, the application is collecting telemetry data and pushing it to App Center.
However, as we discussed earlier, you won't be able to analyze this data – especially the
custom event dimensions – any further.

In order to do this, we will need to create a new Application Insights resource and set up a
continuous export so that App Center telemetry can be exported as Application Insights
data. Let's begin:

We will start this process by creating the Application Insights resource:1.

Application Telemetry with Application Insights Chapter 16

[380]

Notice that, for the Application Type, we have selected App Center application.
As a resource group, we will be using the same resource group as the previously
created Azure services so that the complete Azure infrastructure can be deployed
together.

Once the resource is created, go to the Overview section to find the2.
instrumentation key. This key is the only requirement for setting up the
continuous export process:

On App Center, in order to set up the export, you will need to navigate to3.
the Settings section and select Export and Application Insights on the data
export window.

In this view, you can use the Set up standard export option, which is used when
an Azure subscription is configured to be used with App Center. Selecting the
standard export will require Admin access to the Azure subscription and will
create a new resource. You can also select Customize and paste in the
instrumentation key that we have from the Azure Portal.

Application Telemetry with Application Insights Chapter 16

[381]

After this setup, the event telemetry will be pushed periodically to Application4.
Insights, which can be analyzed within the Azure Portal either using the
standard analysis sections or using the query language:

Now that the telemetry data from our application has been collected and exported to
Application Insights, we can start creating the Application Insights infrastructure for our
remaining modules on Azure.

Application Telemetry with Application Insights Chapter 16

[382]

Collecting telemetry data for Azure Service
Application Insights is a little more tightly integrated into Azure-based services than
mobile applications. In addition to various standard, out-of-the-box, telemetries that can be
collected for services such as Azure App Services and serverless components such as Azure
Functions, custom telemetry, trace, and metric collection implementations are possible.

Application Insights data model
Application Insights telemetry collection can be grouped into three major groups: trace,
event, and metric.

Trace: Trace can be recognized as the simplest form of telemetry. Trace elements
generally give a nominal description of an event and are used as a diagnostic log,
similar to other flat file diagnostic log implementations. In addition to the main
telemetry message, a severity level and additional properties can be defined.
Trace message size limits are much larger than other telemetry types, and
provide a convenient way of providing large amounts of diagnostic data.
Events: Application Insights events are very similar to App Center telemetry
items and are treated the same way once the App Center data is exported to
Application Insights. In addition to the nominal dimensions, additional metrics
data can be sent to Application Insights. Once the data is collected,
the customProperties collection provides access to the descriptive dimensions,
while the customMeasurements dictionary is used to access metrics.
Metrics: They are generally pre-aggregated scalar measurements. If you're
dealing with custom metrics, it is the application's responsibility to keep them
up-to-date. The Application Insights client provides standardized access
methods for both standard and custom metrics.

In addition to event-specific telemetry data types, operation-specific data types can also be
traced and tracked with Application Insights, such as requests, exceptions, and
dependencies. These are classed as more generalized, macro-level telemetry data, which
can provide valuable information as to the health of the application infrastructure. Request,
exception, and dependency data is generally tracked by default, but custom/manual
implementation is also possible.

Application Telemetry with Application Insights Chapter 16

[383]

Collecting telemetry data with ASP.NET Core
Application Insights can easily be initialized using Visual Studio for any ASP.NET Core
web application. In our case, we will be configuring the web API layer to use Application
Insights. Let's see how we can do this:

If you right-click on the web application project, select Add | Application1.
Insights Telemetry, and then click the Get Started link, Visual Studio
automatically loads the resources that your account(s) are associated with,
allowing you to choose a subscription, as well as the resource/resource group
pair.
The Configure Settings... option on this page should be used to assign an2.
already existing resource group; otherwise the application insights instance will
be created on a default Application Insights resource group:

Application Telemetry with Application Insights Chapter 16

[384]

After the Application Insights configuration is complete, we can see how the3.
telemetry data is collected without deploying the web API to the Azure App
Service resource.
In order to see the collected telemetry data, you can start a debugging session. By4.
using the View | Other Windows | Application Insights option, you can open
the live Application Insights data that is collected within the debug session:

It is important to note that the data is set to use Debug session telemetry. The
Application Insights Search toolset can also be used to read remote telemetry and
execute quick search queries on live data.

Another useful tool window is Application Insights Trends, which is a quick
reporting tool for various application telemetry data types, such as requests, page
views, exceptions, events, and dependencies.

Application Telemetry with Application Insights Chapter 16

[385]

The same telemetry set, even if this is a debugging session, should already be
available on Azure Portal as well. In other words, Application Insights does not
require an Azure deployment for a server resource to be profiled and its telemetry
tracked. If you navigate to the Application Insights overview page, you will
notice the incoming data and collected telemetry data about the requests.

Additionally, the live metrics screen can provide information about the server's5.
performance and aggregated metrics data. In order to to use profiling and
performance data, the Application Insights SDK should be updated to a version
higher than 2.2.0:

Now that the Application Insights infrastructure is set up, we can start creating6.
custom telemetry and trace data. First, let's create a new operation context for the
product retrieval API operation and include some additional telemetry data:

using (var operationContext =
_telemetryClient.StartOperation<RequestTelemetry>("getProducts"))
{
 var result = Enumerable.Empty<Product>();
 _telemetryClient.TrackTrace("Creating Document Client",
 SeverityLevel.Information);

Application Telemetry with Application Insights Chapter 16

[386]

 using (var document = GetDocumentClient())
 {
 try
 {
 _telemetryClient.TrackTrace("Retrieving Products",
 SeverityLevel.Information);
 result = await document.Retrieve();
 }
 catch (Exception ex)
 {
 _telemetryClient.TrackException(ex);
 operationContext.Telemetry.ResponseCode = "500";
 throw ex;
 }
 }

 operationContext.Telemetry.ResponseCode = "200";
 return Ok(result);
}

Now, the resultant telemetry collection that contains trace entries is automatically7.
grouped to the operation context, thus providing more meaningful information:

Application Telemetry with Application Insights Chapter 16

[387]

We can further granulize this telemetry data by separating the dependency8.
telemetry. For instance, in this implementation we call the data provider client to
load all the products. Using the telemetry client can create a dependency
telemetry for this request:

using (var document = GetDocumentClient())
{
 var callStartTime = DateTimeOffset.UtcNow;

 try
 {
 _telemetryClient.TrackTrace("Retrieving Products",
 SeverityLevel.Information);
 result = await document.Retrieve();
 }
 finally
 {
 var elapsed = DateTimeOffset.UtcNow - callStartTime;
 _telemetryClient.TrackDependency(
 "DataSource", "ProductsDB", "Retrieve", callStartTime,
 elapsed, result.Any());
 }
}

Now, the application telemetry is tracked separately for the document source.9.
This dependency is even created on the application map on Azure Portal:

Application Telemetry with Application Insights Chapter 16

[388]

Under normal circumstances, dependency calls to resources such as Cosmos DB and SQL
are automatically detected and tracked separately. The preceding implementation suits
external dependencies or legacy systems.

Collecting telemetry with Azure Functions
When we talk about custom traces, collecting Application Insights telemetry data from
Azure Functions is no different from using any other .NET application. When we created
our Azure Functions, we injected a TraceWriter instance into our methods. TraceWriter
logs are the main source of diagnostic telemetry and is collected within an Azure Function.
These log entries can be filtered according to the log level using the host.json settings:

{
 "logger": {
 "categoryFilter": {
 "defaultLevel": "Information",
 "categoryLevels": {
 "Host.Results": "Error",
 "Function": "Error",
 "Host.Aggregator": "Information"
 }
 },
 "aggregator": {
 "batchSize": 1000,
 "flushTimeout": "00:00:30"
 }
 },
 "applicationInsights": {
 "sampling": {
 "isEnabled": true,
 "maxTelemetryItemsPerSecond" : 5
 }
 }
}

Application Telemetry with Application Insights Chapter 16

[389]

The function section in the category levels refers to the traces that are collected within the
function. Host.Results are automatically collected request/result telemetry data pairs,
whereas aggregator data is full of aggregated metrics that the Functions host collects by
default, either every 30 seconds or 1,000 results. This is then used to calculate the
aggregated metrics, such as count, success rate, and so on.

In addition to the basic telemetry implementation, you can also modify default telemetry
data using the Application Insights telemetry client. In this context, the telemetry client is
used to modify the operation context rather than creating a new TrackRequest.

As you can see, the telemetry client acts more like middleware rather than the source of
truth in this implementation, simply modifying the existing operation context and creating
additional event data.

Analyzing data
Now that we have set up Application Insights telemetry collection on both the server side
and the application side, we can try and make sense of this data.

While the Azure Portal provides quick insights into application telemetry data, if we want
to really dive into application data, the Application Insights portal should be used for
analysis. In the Application Insights portal, data can be analyzed using the query language.
The query language, also known as the Kusto language, provides advanced read-only
querying features that can help organize data from multiple sources and render valuable
insights into the performance and usage patterns of your application.

For instance, let's take a look at the following simple query, which is executed on our
Xamarin telemetry data:

We are returning the first 50 custom events that are exported from AppCenter:1.

customEvents
| limit 50

Application Telemetry with Application Insights Chapter 16

[390]

These telemetry entries contain general telemetry-related data in the root:2.

Application Telemetry with Application Insights Chapter 16

[391]

Whereas the customDimensions object provides more Xamarin-specific data:

Finally, the Properties node of customDimensions provides the actual custom
telemetry data that was sent using the AppCenter telemetry client.

Before we can dig into event-specific data, we need to filter telemetry events3.
using the telemetry event name:

customEvents
| where name == "ProductsServiceRequest"

Then, we order the table by timestamp:4.

| order by timestamp desc nulls last

Application Telemetry with Application Insights Chapter 16

[392]

Finally, by deserializing the properties data into a dynamic field, we can use this5.
data in our queries:

| extend Properties =
todynamic(tostring(customDimensions.Properties))

In order to flatten the table structure, we can assign the properties data into their6.
own fields:

| extend Duration = todouble(Properties.elapsed), OperatingSystem =
customDimensions.OsName

Finally, we will project the data into a new table so that we can present it in a7.
simpler structure:

| project OperatingSystem, Duration, timestamp

Now, the data from our telemetry events is structured and can be presented in8.
reports and troubleshooting:

To take this one step further, we can also draw a chart using the final table:9.

| render timechart

Application Telemetry with Application Insights Chapter 16

[393]

This would draw a line chart with the duration values. You can also sort data by10.
using the summarize function with numerous aggregate functions, such as by
grouping events into hourly bins and drawing a time-based bar chart:

customEvents
| order by timestamp desc nulls last
| extend Properties =
todynamic(tostring(customDimensions.Properties))
| summarize event_count=count() by bin(timestamp, 1h)
| render barchart

Application Insights data and available query operators and methods provide countless
ways for developers to act proactively on the application telemetry by gathering invaluable
application data from staging environments or production and feeding it back to the
application life cycle.

Summary
Application telemetry data that is collected from both the server- and the client-side can
provide information that's required to improve and mould your application according to
user needs. In a way, by collecting application telemetry data from various modules of the
application on live environments, live application testing is executed with actual user data.
This telemetry data can provide insights into the application that no other automated
testing can provide. Regardless of the reality and the synthetic nature of the data, unit tests,
as well as automated UI tests, should still be part of the application life cycle.

In the next chapter, we will look into various ways of testing and how we can include these
tests in the development pipeline.

17
Automated Testing

Unit and coded UI tests are generally perceived by most developers as the most
monotonous part of the application project life cycle. However, improving the unit test
code coverage and creating automated UI tests can help to save an extensive amount of
developer hours that would otherwise be spent on maintenance and regression. Especially
on application projects with a longer life cycle, the stability of the project directly correlates
with the level of test automation. This chapter will discuss how to create unit and coded UI
tests and the architectural patterns that revolve around them. Data-driven unit tests, mocks,
and Xamarin UI tests are some of the concepts that will be discussed.

The following topics will walk you through the implementation of an automatically
verified application development pipeline:

Maintaining application integrity with tests
Maintaining cross-module integrity with integration tests
Automated UI tests

Automated Testing Chapter 17

[395]

Maintaining application integrity with tests
Regardless of the development or runtime platform, unit tests are an integral part of the
development pipeline. In fact, nowadays, Test-Driven Development (TDD) is the most
prominent development methodology and is the choice of any agile development team. In
this paradigm, developers are responsible, even before the first line of actual business logic
implementation is written, for creating unit tests that are appropriate for the current unit
that is under development.

Arrange, Act, and Assert
Without further ado, let's take a look at the first view model in our application and
implement some unit tests for it. The products view model is a simple view model that, on
initialization, loads the products data using the available service client. It exposes two
properties, namely, the Items collection and the ItemTapped command. Using this
information, we can identify the units.

The units of the application, can be identified by implementing simple stubs as shown in
the following code:

 public class ListItemViewModel : BaseBindableObject
 {
 public ListItemViewModel(IApiClient apiClient, INavigationService
 navigationService)
 {
 //...Load products and initialize ItemTapped command
 }

 public ObservableCollection<ItemViewModel> Items { get; set; }

 public ICommand ItemTapped { get; }

 internal async Task LoadProducts()
 {
 // ...
 var result = await _serviceClient.RetrieveProductsAsync();
 // ...
 }

 internal async Task NavigateToItem(ItemViewModel viewModel)
 {
 // ...
 }
 }

Automated Testing Chapter 17

[396]

Our initial unit test will set up the mock for apiClient, construct the view model, verify
that RetrieveProductsAsync on the service client is called, and verify that the
ItemTapped command is initialized properly. An additional check can be done to see
whether the PropertyChanged event has been triggered on the Items property. In the
context of unit testing, these three steps of a simple unit test are generally called the triple-
A or AAA, Arrange, Act, Assert:

In the Arrange section, we will prepare a set of results data and return the data1.
with a mock client:

#region Arrange

var expectedResults = new List<Product>();
expectedResults.Add(new Product { Title = "testProduct",
Description = "testDescription" });

// Using the mock setup for the IApiClient
_apiClientMock.Setup(client =>
client.RetrieveProductsAsync()).ReturnsAsync(expectedResults);

#endregion

Now, let's Act by constructing the view model:2.

#region Act

var listViewModel = new ListItemViewModel(_apiClientMock.Object);

#endregion

Finally, we will execute the assertions on the view model target:3.

#region Assert

// Just checking the resultant count as an example
// Foreach with checking each expected product has a
// matching domain entity would improve the robustness of the test.
listViewModel.Items.Should().HaveCount(expectedResults.Count());
listViewModel.ItemTapped.Should().NotBeNull()
 .And.Subject.Should().BeOfType<Command<ItemViewModel>>();
_apiClientMock.Verify(client => client.RetrieveProductsAsync());

#endregion

Automated Testing Chapter 17

[397]

With this simple unit test implementation, we have already reached ~80% of unit4.
test code coverage:

The xUnit.Net framework was used to implement this unit test, or so-
called fact. Additionally, the FluentAssertions and Moq frameworks were
utilized in order to ease the implementation and assertions. The feature
sets of these frameworks are beyond the scope of this book.

The implementation is good enough for checking the initialization of the5.
constructor. The constructor implementation we are testing looks similar to this:

public ListItemViewModel(IApiClient apiClient)
{
 _serviceClient = apiClient;
 ItemTapped = new Command<ItemViewModel>(async _ => await
 NavigateToItem(_));
 if (_serviceClient != null)
 {
 LoadProducts().ConfigureAwait(false);
 }
}

However, notice that the LoadProducts method is in fact called without await,
and it does not merge back into the initial synchronization context. In a multi-
threaded environment, when executing multiple unit tests in parallel, it might
happen that the constructor is executed; however, before the asynchronous task
can complete, the assertions start. This can be worked around with a poor man's
thread synchronization—Task.Delay or Thread.Sleep.

Automated Testing Chapter 17

[398]

However, this implementation is nothing more than a temporary workaround.6.
Since we cannot and should not really wait for the task to complete in this
scenario within the constructor, we can utilize the service initialization pattern:

public ListItemViewModel(IApiClient apiClient)
{
 _serviceClient = apiClient;
 ItemTapped = new Command<ItemViewModel>(async _ => await
 NavigateToItem(_));
 if (_serviceClient != null)
 {
 (Initialized = LoadProducts()).ConfigureAwait(false);
 }
}

internal Task Initialized { get; set; }

And now our Act implementation would look similar to this:7.

#region Act

var listViewModel = new ListItemViewModel(_apiClientMock.Object);
await listViewModel.Initialized;

#endregion

Note that we were not able to verify the PropertyChanged event trigger
on the view model level for the Items property. The main reason for this
is the fact that the ListItemsViewModel instance immediately executes
the LoadProducts method, and before we even have a chance to
subscribe to the target event, the execution is finalized. This can also be
remedied with a circuit flag within the mock object we have implemented,
releasing the task once the monitor is attached to the view model.

In order to execute these unit tests, as well as the IDE extensions, you can use8.
the dotnet console command:

dotnet test --collect "Code Coverage"

Automated Testing Chapter 17

[399]

This command will execute the available unit tests and generate a coverage file9.
that can be viewed in Visual Studio:

Creating unit tests with mocks
When implementing unit tests, it is important to isolate the units we are currently testing.
By isolation, we are of course referring to the process of mocking the dependencies of the
current subject under test. The mocks can be introduced in various ways, depending on the
implementation of the Inversion of Control pattern. If the implementation involves
constructor injection, we can mock our dependency interfaces in the first A of our test and
pass it on to our target. Otherwise, frameworks such as NSubstitute can replace interfaces
as well as concrete classes that are used by the subject.

Taking a look back at our view model and the unit test that was implemented, you might
notice that we used the Moq framework to create a mock interface implementation for our
IApiClient object. Let's now see how to create the unit tests using Moq:

Extend the constructor to take the INavigationService instance that will be1.
used to navigate to the details view of the selected item; in other words, isolate
our ItemTapped command implementation:

public ListItemViewModel(IApiClient apiClient, INavigationService
navigationService)
{

Automated Testing Chapter 17

[400]

 _serviceClient = apiClient;
 _navigationService = navigationService;
 ItemTapped = new Command<ItemViewModel>(async _ => await
 NavigateToItem(_));
 if (_serviceClient != null)
 {
 (Initialized = LoadProducts()).ConfigureAwait(false);
 }
}

Our navigation command will be as follows:2.

internal async Task NavigateToItem(ItemViewModel viewModel)
{
 if (viewModel != null && _navigationService != null)
 {
 if (await
_navigationService.NavigateToViewModel(viewModel))
 {
 // Navigation was successful
 return;
 }
 }

 throw new InvalidOperationException("Target view model or
 navigation service is null");
}

In this example, we are throwing an exception, just for demonstration
purposes. In a real-life implementation, it is probably a better choice to
track errors internally and/or throw an exception only in debug mode.
Moreover, it is not quite SOLID to throw the same type of exception of the
scenarios.

Let's now implement our unit test:3.

[Trait("Category", "ViewModelTests")]
[Trait("ViewModel", "ListViewModel")]
[Fact(DisplayName = "Verify ListViewModel navigates on
ItemTapped")]
public async Task
ListItemViewModel_ItemTapped_ShouldNavigateToItemViewModel()
{
 #region Arrange

 _navigationServiceMock.Setup(nav => nav.NavigateToViewModel(
 It.IsAny<BaseBindableObject>()))
 .ReturnsAsync(true);

Automated Testing Chapter 17

[401]

 var listViewModel = new ListItemViewModel(
 _apiClientMock.Object,
 _navigationServiceMock.Object);
 await listViewModel.Initialized;
 var expectedItemViewModel = new ItemViewModel() { Title = "Test
 Item" };

 #endregion

 #region Act

 listViewModel.ItemTapped.Execute(expectedItemViewModel);

 #endregion

 #region Assert

 _navigationServiceMock.Verify(
 service =>
service.NavigateToViewModel(It.IsAny<ItemViewModel>()));

 #endregion
}

We have implemented the unit test to check the so-called happy path. We can4.
also take this implementation one step further by checking whether the
navigation service was called with expectedItemViewModel:

Func<ItemViewModel, bool> expectedViewModelCheck = model =>
 model.Title == expectedItemViewModel.Title;

_navigationServiceMock.Verify(
 service => service.NavigateToViewModel(
 It.Is<ItemViewModel>(_ => expectedViewModelCheck(_))));

In order to cover the possible outcomes (remember, we are dealing with the view
model as if it was a deterministic finite automaton), we will need to implement
two more scenarios where the navigation service is null and where
the command parameter is null, both of which will throw
InvalidOperationException.

Let's modify the Arrange section of the initial set:5.

var listViewModel = new ListItemViewModel(_apiClientMock.Object,
null);

Automated Testing Chapter 17

[402]

In this specific case, the command (that is, ICommand) is constructed from an6.
asynchronous task (that is, NavigateToItem), and simply calling the Execute
method on the command will swallow the exception, and we will not be able to
verify the exception. Therefore, we will modify our execution to use the actual
view model method so that we can assert the exception:

#region Act
// Calling the execute method cannot be asserted.
// Action command = () =>
listViewModel.ItemTapped.Execute(expectedItemViewModel);
Func<Task> command = async () => await
listViewModel.NavigateToItem(expectedItemViewModel);
#endregion

#region Assert
await command.Should().ThrowAsync<InvalidOperationException>();
#endregion

Notice that, in both test cases, we are still using the the same IApiClient mock
without a setup method. The execution of this mock is still possible, since the
mock is created with loose mock behavior, which returns an empty collection for
collection return types instead of throwing an exception for methods without a
proper setup.

This brings the tally to ~90% unit test code coverage on ListViewModel, as7.
shown in the following screenshot:

All of the tests so far have been implemented for the view models. These modules in an
application are, by definition, decoupled from the UI and platform runtime. If we were to
write unit tests that are targeting a Xamarin.Forms view specifically, or the targeted view
model specifically requires a runtime component, the runtime and runtime features would
need to be mocked because the application will not actually be executed on a mobile
runtime, but rather on .NET Core runtime. The Xamarin.Forms.Mocks package fills this
gap by providing a mock runtime that the Xamarin.Forms views can initialize and test.

Automated Testing Chapter 17

[403]

Fixtures and data-driven tests
As you might have noticed in the previous tests we have implemented, one of the most
time-consuming parts of writing a unit test is implementing the arrange portion of the
implementation. In this portion, we are essentially setting up the system under test that will
be used by the test target. In this setup, our goal is to bring the system to a known state so
that the results can be compared with the expected results. This known state is also known
as a fixture.

In this context, a fixture can be as simple as a mock container that contains the determinate
set of components that defines the System Under Test (SUT), or a factory that is driven
with a predictable behavioral pattern.

For instance, if we were to create a SUT factory for our ListItemViewModel object, we can
do so by registering the two dependencies with the fixture. Let's begin:

We will start the implementation by initializing our fixture and adding1.
AutoMoqCustomization:

_fixture = new Fixture();
_fixture.Customize(new AutoMoqCustomization());

Let's now set up our mocks for the two service interfaces and freeze them (that is,2.
register them to have a singleton life cycle):

// Generating 9 random product items
_expectedProductData = _fixture.CreateMany<Product>(9);

_apiClientMock = _fixture.Freeze<Mock<IApiClient>>();
_apiClientMock.Setup(service => service.RetrieveProductsAsync())
 .ReturnsAsync(_expectedProductData);

_navigationServiceMock =
_fixture.Freeze<Mock<INavigationService>>();
_navigationServiceMock.Setup(nav =>
nav.NavigateToViewModel(It.IsAny<BaseBindableObject>()))
 .ReturnsAsync(true);

Automated Testing Chapter 17

[404]

After the mocks are set up, let's take a look at the Arrange block of our3.
navigation test:

#region Arrange

var listViewModel = _fixture.Create<ListItemViewModel>();
var expectedItemViewModel = _fixture.Create<ItemViewModel>();

#endregion

As we can see, the injection of mock interfaces is already taken care of by4.
AutoMoqCustomization and the registered frozen specimens are used for the
instances.

However, what if the data object we were using to execute the test target actually
affected outcome in a way that required an additional test case? For instance, the
navigation method could have two different routes depending on the data
contained in the view-model:

if (viewModel.IsReleased)
{
 if (await _navigationService.NavigateToViewModel(viewModel))
 {
 return;
 }
}
else
{
 await _navigationService.ShowMessage("The product has not been
released yet");
 return;
}

In this case, we will need at least two states of the ItemViewModel object (that is,5.
released and not). The easiest way to achieve this is to use inline data rather than
the fixture, using the provided the inline data attributes:

[Trait("Category", "ViewModelTests")]
[Trait("ViewModel", "ListViewModel")]
[Theory(DisplayName = "Verify ListViewModel navigates on
ItemTapped")]
[InlineData(true, "Navigate")]
[InlineData(false, "Message")]
public async Task
ListItemViewModel_ItemTapped_ShouldNavigateToItemViewModel(
 bool released,
 string expectedAction)

Automated Testing Chapter 17

[405]

Using the inline feed of data, we can create a composer that will create the6.
ItemViewModel data items using the inline data feed:

var expectedItemComposer = _fixture.Build<ItemViewModel>()
 .With(item => item.IsReleased, released);
var expectedItemViewModel = expectedItemComposer.Create();

Now, we should just make sure that we are verifying the correct7.
navigationService method:

if (expectedAction == "Navigate")
{
 _navigationServiceMock.Verify(
 service => service.NavigateToViewModel(
 It.IsAny<ItemViewModel>()));
}
else
{
 _navigationServiceMock.Verify(service =>
service.ShowMessage(It.IsAny<string>()));
}

This way, both outcomes of the ItemTapped command are, in fact, covered by unit tests.

Maintaining cross-module integrity with
integration tests
Most of the time, when we are dealing with a mobile application, there are multiple
platforms involved, such as the client app itself, maybe local storage on the client
application, and multiple server components. These components may very well be
implemented in the most robust fashion and have deep code coverage with unit tests.
Nevertheless, if the components cannot work together, then the effort put into individual
components will be in vain.

In order to make sure that two or more components work well together, the developers can
implement end-to-end or integration tests. While end-to-end scenarios are generally
covered by automated UI tests, integration tests are implemented as a pair of permutations
of the target system. In other words, we isolate two systems that depend on one another
(for example, a mobile application and the web API facade) and prepare a fixture that will
prepare the rest of the components to be in a known state. Once the fixture is ready for the
integration pair, the implementation of integration tests is no different than the unit tests.

Automated Testing Chapter 17

[406]

In order to demonstrate the value of integration tests, let's take a look at a couple of
examples.

Testing the client-server communication
Let's assume we have a suite of unit tests testing the view models of our client app. We
have also implemented unit tests that control the integrity of the IApiClient
implementation, which is our main line of communication with the service layer. In the first
suite, we will be mocking IApiClient, and in the latter suite, we will be mocking the
HTTP client. In these two suites, we have covered all of the tiers from the core logic
implementation down until the request is sent over the transport layer.

At this point, the next order of business is to write integration tests that will use the actual
implementation of IApiClient to send service requests to the service API facade (also
known as the gateway). However, we cannot really use the actual gateway deployment
since multiple modules on the server side would be involved in this communication and
the system under test would be too unpredictable.

In this scenario, we have two options:

Create a fixture controller that will maintain the database and other moving parts
involved in a known state (for example, a pre-test execution that will clean a
sample database and insert the required data to be retrieved from it).
Create a rigged deployment of the complete gateway, possibly with mocked
modules as dependencies, and execute the integration tests on this system.

For the sake of simplicity, let's go with the first option and assume we have a completely
empty document collection deployed to run the integration tests. In this case, we can adapt
our fixture to register a set of products into a predetermined document collection (that is,
the one that the server side is expecting to find), execute our retrieve calls from the
application client, and finally, clean up the database.

We will start by implementing our custom fixture:

public class DataIntegrationFixture : Fixture
{
 public async Task RegisterProducts(IEnumerable<Product> products)
 {
 var dbRepository = this.Create<IRepository<Product, string>>();
 foreach (var product in products)
 {
 await dbRepository.AddItemAsync(product);
 }

Automated Testing Chapter 17

[407]

 this.Register(() => products);
 }

 public async Task Reset()
 {
 var dbRepository = this.Create<IRepository<Product, string>>();
 var items = this.Create<IEnumerable<Product>>();
 foreach (var product in items)
 {
 await dbRepository.DeleteItemAsync(product.Id);
 }
 }
}

We have two initial methods, RegisterProducts and Reset:

RegisterProducts is used for inserting the testing data and additionally
registering the product data within the fixture.
Reset is used to clear the inserted test data. This way, the test execution will
yield the same results, at least, at the database level; in other words, the
execution of the tests will be idempotent.

Note that the repository creation is done using the Create method so that we can delegate
the responsibility of injecting the correct repository client to the test schedule.

Now, let's start working on our tests:

We will start by creating the test initialization (that is, the constructor in xUnit)1.
and test tear-down (that is, the Dispose method in xUnit).
In the constructor, we will register the repository client implementation that the2.
fixture will be using and register the products using this client:

public ClientIntegrationTests()
{
 _fixture.Register<IRepository<Product, string>>(() =>
_repository);
 var products = _fixture.Build<Product>().With(item => item.Id,
string.Empty).CreateMany(9);
 _fixture.RegisterProducts(products).Wait();
}

Automated Testing Chapter 17

[408]

And here's the implementation of the IDisposable interface member:3.

public void Dispose()
{
 _fixture.Reset().Wait();
}

Now that test initialization and tear-down is ready, we can implement our first4.
test:

[Fact(DisplayName = "Api Client Should Retrieve All Products")]
[Trait("Category", "Integration")]
public async Task ApiClient_GetProducts_RetrieveAll()
{
 #region Arrange
 var expectedCollection =
_fixture.Create<IEnumerable<Product>>();
 #endregion

 #region Act
 var apiClient = new ApiClient();
 var actualResultSet = await apiClient.RetrieveProductsAsync();
 #endregion

 #region Assert
 actualResultSet.Should().HaveCount(expectedCollection.Count());
 #endregion
}

Similar tests can be implemented to test the interaction between the server and the database
or other components of the system. The key is to control the modules that are not under test
and make sure the tests are executed for the target interaction.

Implementing platform tests
As mentioned earlier, integration tests don't necessarily need to be the assertion of two
separate runtimes interacting with each other. They can also be used to test two distinct
modules of an application in a controlled environment. For instance, when dealing with
mobile applications, certain features are implemented that require interaction with the
mobile platform (for example, the local storage API implementation would use the native
platform filesystem; even the core SQLite implementation is abstracted to .NET Core).

Automated Testing Chapter 17

[409]

For integration tests that have to be executed on a specific mobile platform (such as iOS,
Android, and UWP), the Devices.xUnit framework can be used. The Devices.xUnit
framework is managed by the .NET Foundation. The multi-project template included as
part of the SDK creates test harness projects for the target platform and the library projects.
Once the execution starts, the tests are executed on the test harness application, providing
the real or emulated target platform, hence allowing the developers to execute integration
tests on platform-specific features.

Automated UI tests
Arguably one of the most painstaking and costly stages of the development cycle is manual
certification testing, also called acceptance testing. In a usual non-automated verification
cycle, certification testing can take up to 2-3 times longer than the development of a certain
feature. Additionally, if previously implemented features are at risk, regression in those
areas would have to be executed. In order to increase the release cadence and decrease the
development cycles, it is essential that automated UI (or end-to-end) tests are
implemented. This way, the automated pipeline can be verified once and reused to verify
the application's UI and integration with other systems, rather than executing manual
testing in each release cycle.

App Center allows us to execute these automated tests on a number of real devices and
include the automated runs in the development pipeline:

Automated Testing Chapter 17

[410]

Xamarin.UITests is one of the supported automation frameworks that can be used to create
these automated acceptance tests.

Xamarin.UITests
Xamarin.UITests is an automated UI test framework that integrates tightly with Xamarin
target platforms. In addition to applications created using the Xamarin framework, it can
also be used to create automated tests for mobile applications created with Java and
Objective-C/Swift. NUnit is used together with the automation framework to execute the
assertions and create test fixtures.

The framework allows developers to interact with mobile platforms using queries and
actions. A query can described as a select command that is executed on the current
instance of an IApp interface, whereas the actions are simulated user interactions with the
selected elements (that is, as a result of the query). The IApp interface, which makes this
interaction possible, provides the required abstraction among the target platforms and
facilitates the user interaction with them.

The initialization of an implementation of the IApp interface (in other words, the simulated
interaction platform) can be done in various ways, depending on the target device and
platform.

Here are some examples:

Initializing the app using an iOS app bundle can be done as follows:

IApp app = ConfigureApp .iOS .AppBundle("/path/to/iosapp.app")
.StartApp();

Initializing it to be run on an iOS simulator with an already-installed
application can be done as follows:

IApp app = ConfigureApp.iOS
 .DeviceIdentifier("ABF03EF2-64FF-4206-899E-
FB945ACEA4F2").StartApp();

Initializing it for an Android device that is currently connected to ADB can be
done as follows:

IApp app = ConfigureApp.Android.ApkFile("/path/to/android.apk")
 .DeviceSerial("03f80ddae07844d3") .StartApp();

Once the IApp instance is initialized, the simulated user interaction can be executed with
the aforementioned queries and actions.

Automated Testing Chapter 17

[411]

Queries can be written using the various available selectors. The most prominent queries
are as follows:

Marked: This refers to the x:Name of a Xamarin.Forms element, or an element
with the given AutomationId object. It's in a similar fashion on native UI
implementations, AccessibilityIdentifies or AccessibilityLabel on
iOS and a view's Id, ContentDescription, and Text on Android are used for
this query.
Class: This queries the current UI for a specified class name. It's generally used
with nameof(MyClass).
Id: This refers to the Id of the element that we are trying to locate.
Text: This is any element that contains the given text.

For instance, if we were looking to tap on an element marked with ProductsView and
select the first child in this list, we'd use this code:

app.Tap(c =>
c.Marked("ProductsView").Class("ProductItemCell").Index(0));

It is important to note the fluent execution style of the queries, where each query returns an
AppQuery object, whereas the app actions in fact use a Func<AppQuery, AppQuery>
delegate.

The easiest way to create structured queries for a certain view is to use the Read-Eval-Print-
Loop (REPL) provided by the Xamarin.UITests framework. In order to start the REPL, you
can make use of the associated IApp method:

app.Repl();

Once the REPL is initialized on the terminal session, the tree command can provide the
complete view tree. You can additionally execute app queries and actions using the same
IApp instance:

App has been initialized to the 'app' variable.
Exit REPL with ctrl-c or see help for more commands.

>>> tree
[UIWindow > UILayoutContainerView]
 [UINavigationTransitionView > ... > UIView]
 [UITextView] id: "CreditCardTextField"
 [_UITextContainerView]
 [UIButton] id: "ValidateButton"
 [UIButtonLabel] text: "Validate Credit Card"
 [UILabel] id: "ErrorrMessagesTestField"

Automated Testing Chapter 17

[412]

 [UINavigationBar] id: "Credit Card Validation"
 [_UINavigationBarBackground]
 [_UIBackdropView > _UIBackdropEffectView]
 [UIImageView]
 [UINavigationItemView]
 [UILabel] text: "Credit Card Validation"
>>>

The actions differ depending on the selected view element, but the most commonly used
actions are as follows:

Tap: This is used for simulating the user tap gesture.
EnterText: This enters the text in the selected view. It is important to note that,
on iOS, a soft keyboard is used to enter text, while on Android, data is directly
passed onto the target view. This might at times cause issues when interacting
with elements that are hidden under or offset by the keyboard.
WaitForElement: This waits for the element defined by the query to appear on
the screen. At times, with a shorter timeout period, this method can be used as
part of the assertion of the element.
Screenshot: This takes a screenshot with the given title. This represents a step
in the App Center execution.

Page Object Pattern
Implementing UI tests within a certain test method can become quite tedious. The
automation platform queries and actions would, in fact, become closely coupled and
unmaintainable. In order to avoid such scenarios, it is advised to use the Page Object
Pattern (POP).

In POP, each view or distinct view element on the screen implements their own page class,
which implements the interaction with this specific page as well as the selectors for the
view components within this page. These interactions are implemented in a simplified,
lexical manner so that the complex automation implementation behind the scenes is not
reflected in the actual test implementation. In addition, for interactions and queries, the
page object is also responsible for providing a method of navigation to and from another
page.

Automated Testing Chapter 17

[413]

Let's see how to implement our POP structure:

Let's start by creating our BasePage object:1.

public abstract class BasePage<TPage> where TPage : BasePage<TPage>
{
 protected abstract PlatformQuery Trait { get; }

 public abstract TPage NavigateToPage();
 internal abstract Dictionary<string, Func<AppQuery, AppQuery>>
 Selectors { get; set;}

 protected BasePage() {}
 // ,..
 // Additional Utility Methods for ease of execution
}

The base class dictates that each implementation should implement a
Trait object that defines the page itself (in order to verify that the application has
navigated to the target view) and a navigation method that will take the user
(from the home screen) to the implementing view.

Let's now implement a page object for the About view:2.

 public class AboutPage : BasePage<AboutPage>
 {
 public AboutPage()
 {
 Selectors = new Dictionary<string, Func<AppQuery,
AppQuery>>()

 Selectors.Add("SettingsMenuItem", x =>
 x.Marked("Settings"));
 Selectors.Add("SettingsMenu", x =>
 x.Marked("CategoryView"));
 Selectors.Add("AboutPageMenuItem", x =>
 x.Marked("Information"));
 Selectors.Add("Title", x => x.Marked("Title"));
 Selectors.Add("Version", x => x.Marked("Version"));
 Selectors.Add("PrivacyPolicyLink", x =>
 x.Marked("PrivacyPolicyLink"));
 Selectors.Add("TermsOfUseLink", x =>
 x.Marked("TermsOfUseLink"));
 Selectors.Add("Copyright", x => x.Marked("Copyright");
 }

 internal override Dictionary<string, Func<AppQuery, AppQuery>>

Automated Testing Chapter 17

[414]

 Selectors { get; set;}

 protected override PlatformQuery Trait => new PlatformQuery
 {
 Android = x => x.Marked("AboutPage"),
 iOS = x => x.Marked("AboutPage")
 };

 public override AboutPage NavigateToPage()
 {
 // Method implemented in the base page using the App
 OpenMainMenu();
 App.WaitForElement(Selectors["SettingsMenuItem"],
 "Timed out waiting for 'Settings' menu item");

 App.Tap(Selectors["SettingsMenuItem"]);
 App.WaitForElement(Selectors["SettingsMenuItem"],
 "Timed out waiting for 'Settings' menu");
 App.Screenshot("Settings menu appears.");

 App.Tap(Selectors["AboutPageMenuItem"]);

 if(!App.Query(Trait).Any())
 {
 throw new Exception("Navigation Failed");
 }

 App.Screenshot("About page appears.");

 return this;
 }

 public AboutPage TapOnTermsOfUseLink()
 {
 App.WaitForElement(Selectors["TermsOfUseLink"],
 "Timed out waiting for 'Terms Of Use' link");

 App.Tap(Selectors["TermsOfUseLink"]);
 App.Screenshot("Terms of use link tapped");
 return this;
 }
}

Automated Testing Chapter 17

[415]

So now, using the AboutPage implementation and executing actions3.
on AboutPage is as easy as initializing the Page class and navigating to it:

 new AboutPage()
 .NavigateToPage()
 .TapOnTermsOfUseLink()

The community is divided on including the assertions within the page itself, or simply
exposing the selectors so that the assertions are implemented as part of the tests. Either
way, it is certain that implementing POP helps developers and QA teams create easily
maintainable tests in a short time with ease.

Summary
In this chapter, we have taken a look at various testing strategies for automating the testing
and verification process. Creating automated tests helps us to control the technical debt
created throughout the development life cycle and keep the source code in check, hence
increasing the quality of the code and the pipeline. As you have seen, some of these tests
are as simple as unit tests that are implemented at the beginning of the application life cycle
and executed almost at every code checkpoint, while some are elaborate, such as the
integration and coded UI tests, which are generally written at end of the development stage
and executed only at certain checkpoints (that is, nightly builds or pre-release checks).
Regardless, the goal should always be to create a certifiable pipeline for code rather than to
create code for certification.

In the upcoming chapters, we will discuss the creation of the release pipelines and various
tasks that should be included at different stages.

18
Deploying Azure Modules

Azure services are bundled into so-called resource groups for easy management and
deployment. Each resource group can be represented with an Azure Resource Manager
(ARM) template, which, in turn, can be used for multiple configurations and specific
environment deployments. In this chapter, we will be configuring the ARM template for
Azure-hosted web services, as well as other cloud resources (such as Cosmos DB,
Notification Hubs, and others) that we have previously used, so that we can create
deployments using the Azure DevOps build-and-release pipeline. Introducing
configuration values into the templates and preparing them to create staging environments
is our main focus in this chapter.

The following sections will take you through the creation of a parameterized, environment-
specific resource group template:

Creating an ARM template
ARM template concepts
Using Azure DevOps for ARM templates
Deploying .NET Core apps

Creating an ARM template
One of the cornerstones of the modern DevOps approach is the ability to manage and
provision the infrastructure for a distributed application with a declarative or even
procedural set of definition files that can be versioned and stored together with the
application source code. In this Infrastructure-as-Code (IaC) approach, these files should
be created in such a way that whatever the current state of the infrastructure is, executing
these resources should always lead to the same desired state (that is, idempotency).

Deploying Azure Modules Chapter 18

[417]

In the Azure stack, the infrastructure resources created within a subscription are managed
by a service called ARM. ARM provides a consistent management tier that allows the
developers to interact with it to execute infrastructure configuration tasks using Azure
PowerShell, the Azure portal, and the available REST API. Semantically speaking, ARM
provides the bridge between numerous resources providers and developer subscriptions.

The resources that we manage using ARM are grouped using resource groups, which are
logical sets to identify application affinity groups. ARM templates, which define the set of
resources in a resource group, are declarative definitions of this infrastructure as well as
configurations that can be used for provisioning the application environment.

If we go back to our application and take a look at the resource group we have been using
for this application, you can see the various types of Azure resources that were introduced
in previous chapters:

While all of these resources could be created using a set of Azure PowerShell or CLI scripts,
it would be quite difficult to maintain them without compromising the idempotency of
these scripts.

Deploying Azure Modules Chapter 18

[418]

Fortunately, we can export this resource group as an ARM template and manage our
infrastructure using the generated JSON manifest and environment-specific configuration
parameters. In order to create the initial ARM template, do the following:

Navigate to the target resource group and select the Export template blade on1.
the Azure portal:

Once the resource group template is created, we can head back to Visual Studio2.
and create an Azure Resource Group project and paste the exported template.
When prompted to select an Azure Template, select the Blank Template option
to create an empty template.

It is important to understand that the templates can be created using the
provided schema. The export of the template does produce quite a
number of redundant parameters and resource attributes that would not
occur if the template was created manually, or if we used a base template
available on GitHub.

Deploying Azure Modules Chapter 18

[419]

When the blank ARM template is created, it has the following schema, which3.
defines the main outline of an ARM template:

{
 "$schema":
"https://schema.management.azure.com/schemas/2015-01-01/deploymentT
emplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {},
 "variables": {},
 "resources": [],
 "outputs": {}
}

In this schema, while the parameters and outputs define the input and output
parameters of the Azure deployment, the variables define the static data that we
will be constructing and referencing throughout the deployment template.

Finally, the resources array will be used to define the various Azure resources4.
that will be included in our resource group.

While dealing with ARM templates, Visual Studio provides the JSON
outline view, which can help in navigating through the sections of the
template, as well as in adding and removing new resources.

Without further ado, let's start by copying our first resource from the exported5.
template into our Visual Studio project. We will start by importing the Redis
cache resource:

{
 "type": "Microsoft.Cache/Redis",
 "apiVersion": "2017-10-01",
 "name": "[parameters('Redis_handsoncore_name')]",
 "location": "Central US",
 "properties": {
 "sku": {
 "name": "Basic",
 "family": "C",
 "capacity": 0
 },
 "enableNonSslPort": false,
 "redisConfiguration": {
 "maxclients": "256",
 "maxmemory-reserved": "2",
 "maxfragmentationmemory-reserved": "12",

Deploying Azure Modules Chapter 18

[420]

 "maxmemory-delta": "2"
 }
 }
}

In this resource, the name attribute is referencing a parameter called
the Redis_handsoncore_name parameter, which we will need to add to the
parameters section. Other than the name, some basic resource metadata is
defined, such as apiVersion, type, and location. Additionally, resource-
specific configuration values are defined in the properties attribute.

Let's continue with adding the parameter to the parameters section with some6.
modifications:

"resourceNameCache": {
 "defaultValue": "handsoncore",
 "type": "string",
 "minLength": 5,
 "maxLength": 18,
 "metadata": {
 "description": "Used as the resource name for Redis cache
resource"
 }
}

We have added the metadata, which in some sense helps us to document the
resource template so that it is more maintainable. In addition to the metadata, we
have defined the minLength and maxLength attributes so that the parameter
value has some validation (if we decide to use a generated or calculated value).
Additionally, for a string type parameter, we could have defined allowed values.

Finally, let's add an output parameter that outputs the Redis resource connection7.
string as an output parameter:

"redisConnectionString": {
 "type": "string",
 "value": "[concat(parameters('resourceNameCache'),
'.redis.cache.windows.net:6380,abortConnect=false,ssl=true,password
=', listKeys(resourceId('Microsoft.Cache/Redis',
parameters('resourceNameCache')), '2017-10-01').primaryKey)]"
}

Deploying Azure Modules Chapter 18

[421]

Here, we are creating the Redis connection string using an input parameter, as
well as a reference to an attribute of the given resource (that is, the primary access
key of the Redis cache instance). We will take a closer look at ARM functions and
references in the next section.

Now that our basic template for the resource group (that is, only the partial8.
implementation that includes the Redis cache resource) is ready, we can try
deploying the template using Visual Studio.
After you create a new deployment profile and designate the target subscription9.
and resource group, you can try to edit the parameters and see how the
parameter metadata that we have added reflects on the user interface:

Once the deployment is complete, you can see the output parameters on the10.
deployment details:

09:27:19 - DeploymentName : azuredeploy-0421-0713
09:27:19 - CorrelationId : 4ec72df5-00d3-4194-9181-161a5967235b
09:27:19 - ResourceGroupName : NetCore.Web
09:27:19 - ProvisioningState : Succeeded
09:27:19 - Timestamp : 4/21/2019 7:27:20 AM
09:27:19 - Mode : Incremental
09:27:19 - TemplateLink :
09:27:19 - TemplateLinkString :
09:27:19 - DeploymentDebugLogLevel :
09:27:19 - Parameters : {[resourceNameCache,
09:27:19 -
Microsoft.Azure.Commands.ResourceManager.Cmdlets.SdkModels.Deployme
ntVariable]} 09:27:19 - ParametersString :
09:27:19 - Name Type Value
09:27:19 - =============== ========================= ==========

Deploying Azure Modules Chapter 18

[422]

09:27:19 - resourceNameCache String
handsoncore123
09:27:19 -
09:27:19 - Outputs : {[redisConnectionString,
09:27:19 -
Microsoft.Azure.Commands.ResourceManager.Cmdlets.SdkModels.Deployme
ntVariable]} 09:27:19 - OutputsString :
09:27:19 - Name Type Value
09:27:19 - =============== ========================= ==========
09:27:19 - redisConnectionString String
handsoncore123.redis.cache.windows.net:6380
09:27:19 - ,abortConnect=false,ssl=true,password=JN6*******kg=
09:27:19 -
09:27:20 -
09:27:20 - Successfully deployed template 'azuredeploy.json' to
resource group 'NetCore.Web'.

In a template deployment, one of the key parameters is the deployment mode. In the
preceding example, we were using the default deployment mode, namely Incremental. In
this type of deployment, Azure resources that exists in the resource group but not in the
template will not be removed from the resource group, and only the items in the template
will be provisioned or updated, depending on their previous deployment state. The other
deployment option available is the so-called complete deployment mode. In this mode, any
resource that exists in the resource group but not in the template is removed automatically.

The resources that exist in the template, but are not deployed because of a
condition, would not be removed from the resource group.

ARM template concepts
So, now that we have successfully deployed our first resource, let's continue with
expanding our template to other resources:

In order to demonstrate the dependencies between the resources, let's introduce1.
next the App Service instance, which will be hosting the users API. Technically,
this App Service only has a single dependency—the App Service Plan—that will
be hosting the App Service (that is, the ServerFarm resource type):

{
 "type": "Microsoft.Web/serverfarms",
 "name": "[parameters('resourceNameServicePlan')]",
 "kind": "app",

Deploying Azure Modules Chapter 18

[423]

 // removed for brevity
},
{
 "type": "Microsoft.Web/sites",
 "name": "[parameters('resourceNameUsersApi')]",
 "dependsOn": [
 "[resourceId('Microsoft.Web/serverfarms',
parameters('resourceNameServicePlan'))]"
],
 "kind": "app",
 "properties": {
 "enabled": true,
 "serverFarmId": "[resourceId('Microsoft.Web/serverfarms',
parameters('resourceNameServicePlan'))]",
 // removed for brevity
 }
}

In this setup, the sites resource has a dependency on the serverfarms
resource type (that is, deployment order will be evaluated depending on these
dependencies). Once the serverfarms resource is deployed, the resourceId of
the created resource is going to be used as the serverFarmId for the sites
resource.

Additionally, the users API, from an architectural perspective, has two main
dependencies: Redis Cache and Cosmos DB. The resultant resource instances
should produce values that should be added to the application configuration of
the App Service (that is, connection strings).

Since we have already created an output parameter for the Redis Cache instance,2.
let's create a dependency and add the connection string. The connection string
can be added as part of the siteConfig attribute of a sites resource or by
creating an additional resource specifically for the site configuration:

"properties": {
 "enabled": true,
 // removed for brevity
 "siteConfig": {
 "connectionStrings": [{
 "name": "AzureRedisCache",
 "type": "custom",
 "connectionString":
"[concat(parameters('resourceNameCache'),
'.redis.cache.windows.net:6380,abortConnect=false,ssl=true,password
=', listKeys(resourceId('Microsoft.Cache/Redis',
parameters('resourceNameCache')), '2017-10-01').primaryKey)]"

Deploying Azure Modules Chapter 18

[424]

 }]
 }
}

Now when the site is deployed, the Redis cache connection string is3.
automatically added to the site configuration:

Notice that when preparing the connection string, we are making use of the concat
function to compose the value, and we use the listKeys function to get a list of values
from the resource instance that is retrieved according to type and name using the
resourceId function.

These functions and other user-defined functions can be used throughout the resource
template, either while constructing reference values or defining conditions. Some of these
functions according to the parameter type are listed here:

String

base64, base64ToJson, base64ToString, concat, contains, dataUri,
dataUriToString, empty, endsWith, first, format, guid, indexOf, last,
lastIndexOf, length, newGuid, padLeft, replace, skip, split,
startsWith, string, substring, take, toLower, toUpper, trim,
uniqueString, uri, uriComponent, uriComponentToString, utcNow

Array
array, coalesce, concat, contains, createArray, empty, first,
intersection, json, last, length, max, min, range, skip, take, union

Comparison equals, greater, greaterOrEquals, less, lessOrEquals
Deployment deployment, parameters, variables
Logical and, bool, if, not, or
Numeric add, copyIndex, div, float, int, max, min, mod, mul, sub

Resource
listAccountSas, listKeys, listSecrets, list*, providers, reference,
resourceGroup, resourceId, subscription

Deploying Azure Modules Chapter 18

[425]

Using these functions, complex variables can be constructed and reused using parameters
and references to deployed resources. These constructs can then be exposed as functions so
that they can be reused throughout the template declarations.

As you might have noticed, every time we deploy the ARM template, according to the
parameters we define, the azuredeploy.parameters.json file is updated. These are the
parameters that are provided to the template, and in a multi-stage environment (that is,
DEV, QA, UAT, PROD), you would expect to have multiple parameters files assigning
environment-specific values to these resources:

{
 "$schema":
"https://schema.management.azure.com/schemas/2015-01-01/deploymentP
arameters.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "environment": { "value": "DEV" },
 "resourceNameCache": { "value": "dev-handsoncoreCache" },
 "resourceNameServicePlan": { "value": "dev-handsoncorePlan"
},
 "resourceNameUsersApi": { "value": "dev-handsoncoreusers" }
 }
}

With multiple parameters files, unique resource names and addresses can be constructed so
that during the deployment, duplicate resource declarations can be avoided. Another
method that is generally used to avoid resource name/address clashes is to include the
current resource group identifier as part of the resource names, making sure that the
resources are specific and unique.

Using Azure DevOps for ARM templates
Once the template is ready and we are sure that all Azure resources that are required by
our application are created, we can continue with setting up automated builds and
deployments.

In order to be able to use Azure DevOps for cloud deployments, our first action would be
to create a service principal that will be used to deploy the resources. A service principal
can be described as a service identity that has access to Azure resources within a certain
subscription and/or resource group.

Deploying Azure Modules Chapter 18

[426]

So, let's begin:

A service principal can be created by adding a new ARM service connection1.
within the Azure DevOps Project settings:

Creating the connection will create an application registration for Azure DevOps2.
and assign this service principal the contributor role on the selected subscription.

Deploying Azure Modules Chapter 18

[427]

The service creation process can also be executed using the Authorize button3.
when creating an Azure Deployment task. The Authorize button becomes
available if an Azure subscription is selected, instead of a service principal:

Once the service principal is created, we can continue with setting up the4.
deployment for the resource group. Azure DevOps offers multiple deployment
options for deploying Azure resource group templates, such as the following:

Azure PowerShell: To execute in-line or referenced Azure PowerShell
scripts
Azure CLI: To execute in-line or referenced Azure CLI scripts
Azure Resource Group Deployment: To deploy ARM templates with
associated parameters

For this example, we will be using the Azure Resource Group Deployment task:

Deploying Azure Modules Chapter 18

[428]

For this task, other than the service principal settings, the Template section5.
provides the main configuration area. Here, we will be selecting the ARM
template and providing the parameters file designated for this environment:

Additionally, we can define configuration values such as deployment name and6.
deployment outputs.

The Azure Resource Group Deployment task allows the selection of three
deployment modes. On top of the Azure deployment modes (that is,
complete, and incremental), the Validate option provides the ability only
to validate the template. The Validate option can be used to validate pull
requests and can only execute during continuous integration builds.

Deploying Azure Modules Chapter 18

[429]

Now, the ARM deployment can be triggered whenever an update is merged into7.
the master branch that keeps the development (or higher) environment up to
date with the ARM template definition:

Deploying .NET Core applications
After the ARM template is deployed and the Azure resources are created, our next step
would be to deploy .NET Core applications (that is, microservice applications as well as our
functions app).

Azure DevOps provides all the necessary tasks to build and create the deployment package
for an app service/web app. The trifecta of creating a .NET Core web deployment package
is composed of restore, build, and publish. All these dotnet CLI commands can be executed
using the built-in tasks within the build-and-release pipeline. So, let's begin:

We will start by restoring the NuGet packages for our users API microservice:1.

Deploying Azure Modules Chapter 18

[430]

The next step is to build the application using a specific build configuration (a2.
pipeline variable can be used for this):

Deploying Azure Modules Chapter 18

[431]

After the project is built, we can prepare our web deployment package to be able3.
to push it to the app service resource that was created in the ARM deployment
step. In order to prepare the deployment package, we will use the publish
command:

Finally, for the deployment, we can make use of the Azure App Service Deploy4.
task:

Deploying Azure Modules Chapter 18

[432]

In the deployment step, it is imperative that the package or folder parameter
matches the folder that was used as the output directory in the publishing step
(that is, $(build.artifactstagingdirectory)).

In the last task, we have used a hardcoded name for the App Service name
parameter. This would mean that each time the ARM parameter file is modified,
we would need to update the build definition; or, if we were using a YAML file
for the build definition, the YAML definition. This could prove to be a
maintenance nightmare, since every time a new environment is created, the build
and release definitions would need to be updated.

One possible solution to integrating the ARM deployment with the actual5.
application deployment would be to output the target application name from the
ARM template and use it as the App Service name parameter:

"outputs": {
 "redisConnectionString": { //... },
 "userApiAppResource": {
 "type": "string",
 "value": "[parameters('resourceNameUsersApi')]"
 }
}

Next, we will assign the output from the ARM deployment to a variable named6.
armOutputVariables, using the Deployment outputs option from the Azure
Resource Group Deployment task:

Deploying Azure Modules Chapter 18

[433]

Next, we can add a PowerShell script task (that is, not Azure PowerShell) to7.
parse the output into JSON format and assign the required App Service name to
a pipeline variable:

$outputs = ConvertFrom-Json $($env:armOutputVariables)

Write-Host "##vso[task.setvariable
variable=UsersApiAppService]$($outputs.userApiAppResource.value)"

At this point, the App Service resource name can be accessed like other pipeline8.
variables (that is, with $(UsersApiAppService)) and can be assigned to the
Azure App Service Deploy step.

The rest of the build templates can be created in same manner, using the same or similar
.NET Core and Azure tasks.

Summary
In this chapter, we have gone through the basic steps of creating an ARM template so that
the cloud infrastructure required for our application can be provisioned and managed in
line with IaC concepts. Having set up our cloud resources as a declarative JSON manifest,
we can easily version and keep track of our environment(s) without environment drift and
infrastructure-related deployment issues. The .NET Core build and publish steps that are
part of the Azure DevOps services are then used to create the deployment artifacts, which
seamlessly integrate with the Azure cloud infrastructure.

We have managed to prepare our build-and-release pipeline for one of the .NET Core
services in this chapter. However, what we are actually after is to create the deployment
artifacts during the continuous integration build and use a release pipeline to deploy the
infrastructure, followed by the deployment of the App Service artifacts. We will create the
release pipeline in the next chapter.

19
CI/CD with Azure DevOps

Continuous Integration (CI) and Continuous Delivery (CD) are two concepts that are
deeply rooted in the Agile project life cycle definition. In the agile methodology, the
DevOps effort is mostly spent on decreasing the CD cycle so that smaller sprints and
smaller change sets can be periodically delivered to the users. In return, the smaller the
change, the smaller the risks, and the easier adoption will be for the users. In order to
minimize the length of delivery cycles, an automated delivery pipeline is vital. Using the
toolset provided with Azure DevOps, developers can create fully automated templates for
builds, testing, and deployments. In this chapter, we will set up the build and release
pipeline for Xamarin in line with the Azure deployment pipeline.

In this chapter, we'll look at the following topics:

Introducing CI/CD
CI/CD with GitFlow
Quality Assurance (QA) of branches
Creating and using release templates

Introducing CI/CD
In the previous chapters, we set up various build definitions to create application binaries
and packages that can be used as deployment artifacts. While preparing these artifacts, we
implemented automated tests that can be included in automated build definitions. This
process of automating the build and testing of code every time a team member introduces
changes to version control is generally referred to as CI. CI, coupled with a mature version
control system and a well-defined branching strategy, is the primary factor in encouraging
developers to be bolder and more agile with their commits, contributing a high release
cadence.

CI/CD with Azure DevOps Chapter 19

[435]

On the other hand, CD is the (generally) automated process of building, testing, and
configuring your application and finally deploying that specific version of your application
to a staging environment. Multiple testing or staging environments are generally used, with
automated creation of infrastructure and deployment, right up until the production stage.
In a healthy CD pipeline, the success of the sequential set of environments is measured by
progressively longer-running activities of integration, load, and user acceptance testing. CI
starts the CD process and the pipeline stages each successive environment upon successful
completion of the previous round of tests.

In CD, a release definition is composed of a collection of environments. An environment is
a logical container that represents where you want to deploy your application. Physically,
an environment can refer to a cluster of servers, a resource group on cloud infrastructure,
or a mobile application distribution ring. Each environment (sometimes referred to as
stage) has its purpose, and a subset of the stakeholders from the development pipeline are
assigned as owners for that specific environment:

The configuration of the web services and mobile application for each environment could
differ depending on the purpose of that specific environment. Nevertheless, it is important
to keep in mind that the environments should, at any point in the CI/CD pipeline, host the
same application release version and binaries. This way, we can make sure that, once the
application is promoted to a higher environment (that is, closer to production), it will
function as it did in the previous stage.

CI/CD with Azure DevOps Chapter 19

[436]

As you can see, in DevOps terms, deployment does not always mean release or production.
As part of CD, various deployment pipelines are triggered by commits from the
development team. If the committed code is verified by unit tests and integration builds,
the artifacts from these branches are deployed to the staging environments. In staging
environments, smoke and acceptance tests are executed. If the application integrity and
new features are verified by these tests on various stages, the new release can be rolled out
across the production environment.

In Azure DevOps terms, as you have seen from the previous examples, CI is implemented
using Git and Azure DevOps Build templates. CD, on the other hand, is handled by release
definitions using the build artifacts prepared with the triggered CI builds.

CI/CD pipelines can, in fact, be prepared to use TFVC and associated
branching strategies; however, Git and its associated branching strategies
such as GitFlow provide a more flexible and agile setup.

Using Azure DevOps, the transition between the environments (that is, the promotion
process) can be controlled with pre-deployment and post-deployment gates. These gates
can be set up to require approval from specific stakeholders in the development pipeline
(for example, the environment owner). In addition to manual approval, remote services can
be used for gate approvals. For instance, it is possible to synchronize the release of a
module for an application with another dependent module, or delay a deployment stage
until certain tests are executed.

The examples provided here are only one of the possible designs, and the version control
implementation, branching strategy, and the associated release pipeline setup should be
designed and executed according to the needs of the development team and business
requirements. In our example application, for creating the pipeline, we will be using Git
and GitFlow as our version control and branching strategy, respectively. For the release
pipeline, we will create a development release that will be automatically deployed with
each commit/merge to the development branch (that is, the next version), whereas QA,
UAT, and production environments will be deployed from release branches (that is, the
current version).

CI/CD with GitFlow
The easiest way to illustrate CI/CD would be walk through the policies and procedures,
starting with GitFlow. Here, we are dealing with two separate repositories, namely, web
and application, and each of these repositories have their own life cycle.

CI/CD with Azure DevOps Chapter 19

[437]

In other words, while it is not advised, it is possible to have unsynchronized releases and
versions of our web application (that is, the service infrastructure) and application (that is,
mobile platform releases); hence, it is important to create backward-compatible modules
and communicate releases to development team members.

Development
Development of the application or web modules start with the creation of a feature branch
(for example, feature/12345). The feature branch can be shared between multiple
developers or handled by a single developer. If the feature branch is being worked on by
multiple developers, user branches can be created following a similar convention along the
lines of user/<user identifier>/<feature id> (for example,
user/cbilgin/12345). Once each developer is done with their implementation, a pull
request can be executed on the main feature branch.

An important factor for determining the health of a feature branch is the commit differences
between the development branch and the feature branch. Ideally, the feature branch should
always be ahead of the development branch, regardless of the number of pull requests
completed on the development branch while the feature branch is being worked on. In
order to achieve this, the feature branch should be periodically rebased on the current
development tree, retrieving the latest commits from other features.

The work done on a feature branch can be tested locally by developers with locally running
the web application and running the mobile application on the desired emulator/simulator.
While iOS and UWP simulators can use the localhost prefix, since the local machine
network is shared by the simulator, Android emulators use their own NAT table, where
localhost refers the mobile device, not the host machine. In order to access a hosted web
service on the host machine, you should use 10.0.2.2 IP interface. The following table
shows the different IP address and how they can be used in the context of Android
emulator:

Network address Description
10.2.2.1 Router/gateway address
10.2.2.2 Special alias to your host loopback interface (that is, 127.0.0.1 on the host machine)
10.0.2.3 First DNS server
10.0.2.4-6 Optional additional DNS servers
10.0.2.15 The emulated device network/Ethernet interface
127.0.0.1 The emulated device loopback interface

CI/CD with Azure DevOps Chapter 19

[438]

If the application and web services are handled on separate repositories with their own
release cycles, the local web server instance should use the latest commit on development
(or master) branch, making sure that the development is done with the latest service
infrastructure.

Once the feature is ready to be integrated into the next release, the developer is responsible
for creating a pull request with the associated work item that this feature branch represents.

Pull request/merge
In an ideal setup, the only way a feature branch is merged into the development branch,
should be through a pull request. Pull requests are also used to execute quick sanity checks
and code reviews.

The quality of the code that is delivered by the developers can be verified by the branch
policies of the target branch (that is, the development branch). In this example, for the
development branch, we will make use of four policies:

Work items to be attached to the pull request (feature and/or user story or bug):
The tasks and user stories are generally attached to the commits within the
feature branch. The feature, user story and/or bug work items (these are parent
work items to the tasks) have to be attached to the pull request so that, once the
release pipeline is created, these work items can be determined from the release
build.

Review by two team members: To encourage the peer review process, a
minimum of two members are responsible for reviewing the pull request. One of
these team members is generally the team lead, who is a mandatory reviewer of
any pull request targeting either the development or release branches. Each
reviewer is responsible for commenting the code changes, which then are
corrected by the owner of the pull request.

Review by team lead (included in the minimum count): The architect or team
lead is generally the person ultimately responsible for the quality of the code
introduced into the development or release branches, hence he/she is a
mandatory reviewer for the pull requests.

Branch evaluation build: For the mobile project, the branch evaluation build can
be a build of the Android project (since Android builds can be executed on a
Windows build agent, as opposed to the iOS builds having to be executed on a
Mac agent). This build should execute the unit tests and run static code analysis
using a platform such as SonarQube or NDepend.

CI/CD with Azure DevOps Chapter 19

[439]

In such a setup, it is wise to allow team leads or other accountable
stakeholders to have override authority over the policies in cases of
emergency, bypassing the evaluation build (rarely) and the review
requirements (more common).

Using Azure DevOps, in order to set up policies and enforce developers to create pull
requests, the target branch (that is, the development branch) should be configured with the
respective branch policies:

CI/CD with Azure DevOps Chapter 19

[440]

Any policy requirement on the target branch should enforce the use of pull requests when
updating a branch.

Once the policy validations are satisfactory (that is, all required policies are met), the code
is ready to be merged to the development branch. Azure DevOps allows the selection of a
merge strategy during completion. This merge strategy should be in line with the
branching strategy and design. In our example, we will be using Rebase; however, any of
the other three merge options can be used:

Once the pull request is merged into the development branch, the CI phase can commence.

The CI phase
Any update on a CI-enabled branch triggers the build(s) to build the application and/or
web services package. For instance, for the mobile application development pipeline,
multiple builds can be triggered for target mobile platforms with development stage
configurations (for example, DevDroid and DeviOS configurations). These builds can
prepare the application packages as build artifacts and publish it with the next application
version and minor revision.

CI/CD with Azure DevOps Chapter 19

[441]

The trigger for the CI build can be set up in the build properties:

In addition to the triggering branch, path filters can be set so that, depending on the
changes introduced to the application code base, different CI builds can be triggered and
artifacts prepared.

Additionally, the CI build should execute any available unit tests, along with simple
integration tests, that can be run on the build agent, and these results can be published with
code coverage to the pipeline. Another round of static code analysis with the current
artifact version annotation can be executed and published on the static analysis platform
(for example, a SonarQube server). This would help to correlate the source code delta and
possible issues occurring with this version of the application.

When the CI build is successfully completed, depending on trigger setup, a release pipeline
can be created, deploying the prepared artifact(s) to the target environment (that is, the
development environment in this case):

CI/CD with Azure DevOps Chapter 19

[442]

This example deploys the microservice packages prepared by the CI build and deploys
them to the development environment. The environment is updated by the Azure Resource
Manager (ARM) deployment to target the resource group. It is common practice to have
the development environment release setup without any pre-approval gate so that any
code integrated into the development branch is automatically deployed to the development
environment.

Azure DevOps offers two tasks to publish the build pipeline artifacts, and created artifacts
can be used as the trigger or a secondary artifact for a release pipeline:

The general rule of thumb for artifact publishing is to use the staging directory for the
build:

CI/CD with Azure DevOps Chapter 19

[443]

Before the artifact publishing task, for the web application, a .NET publishing task can be
used with the same output directory. For the Xamarin packages, a copy task can be created,
copying the application package(s) to the staging directory.

Release branch
Once the development branch is verified and the current feature set matches the
predetermined release scope, a release branch is created (for example, release/1.8). The
creation of the release branch goes hand in hand with the triggering of the release build that
will prepare the complete set of artifacts required for the release of a certain environment.
The associated release pipeline will, in return, be triggered by the builds on this branch.

We should dedicate a paragraph here for Xamarin application packages because of the
environment-specific configuration structure and multiple application artifacts. As
previously mentioned, for a native app to support multiple configurations, we would need
to create multiple application packages. If you consider a minimal support scenario, such as
only supporting the iOS platform, in order to have QA, staging, and production
environments in our release pipeline, we would need to have three separate application
packages that are created from the same source code version. If we also want to support
Android, this would mean for a single environment (for example, QA), we would need to
deploy an IPA and an APK to Visual Studio App Center (two separate application rings)
and verify these applications using the same web infrastructure. The synchronization of
these builds and release stages should be carefully designed and executed. Multi-
configuration builds for a single platform can be used in conjunction with multi-agent build
templates to create a single artifact with multiple packages, so that the release pipeline is
triggered only after all of the required builds are finalized.

Finally, the build template for the release artifacts can also be used to check the quality and
process the scope introduced by the release to be created. Release pipelines also support the
execution of automated tests so that the validation process can be automated within a
release environment. For instance, after a certain service API package is deployed, it would
be a good idea to execute functional tests against the deployment URL to verify the success
of the deployment. In similar fashion, before the application package is deployed to a
certain App Center ring (for example, staging), Xamarin Test Cloud tests can be executed to
verify the application features.

CI/CD with Azure DevOps Chapter 19

[444]

Hotfix branches
After the release pipeline is used to deploy the application to either the fast or slow ring
(QA or UAT), depending on the testing agreement, the QA team can start testing the
application.

At this phase, any bugs created or additional feature requests that are pulled into the
current release scope should be introduced by the development team using hotfix branches.
Hotfix branches originate from the current release branch and are merged back into the
release branch (for example, release/1.8 -> hotfix/12324 -> release/1.8) with
the user of pull requests. Once the hotfix is merged back into release branch (that is, it has
passed the validation), it will need to be merged back to development branch as well to
propagate the code changes and avoid regression in the following releases.

The merges and pull requests to the release branch follow a similar (although not identical)
methodology as that in the development branch. This way, we can push the hotfix
modifications through the same quality validation process.

Production
In the release pipeline, a certain version of the artifact(s) can be promoted from one
environment to higher ones until the production release is complete and the new version of
the application is delivered to the end users.

According to the pipeline design, production environment can also utilize a staging or
phased release strategy with release rings using deployment slots (that is, on Azure App
Services), native staging with TestFlight (that is, for iOS applications), or even incremental
releases, which both Apple and and the Google Play Store support. This way, application
telemetry from the release environments can be collected from beta users and introduced
back into the development pipeline.

The QA process
In each phase of a CD process, the quality of the features should be verified preferably with
an automated process or, at the very least, with proper code reviews. This is where the pull
request creation and validation process becomes even more important. Nevertheless, as
mentioned, the QA of an artifact or a branch is not limited to the CI phases of the process,
but runs throughout the CI/CD pipeline.

CI/CD with Azure DevOps Chapter 19

[445]

Code review
A healthy development team should be driven by collaboration. In this context, the concept
of peer review is extremely important, since it gives the chance for the development team to
suggest and advice improvements of a colleague's work. Azure DevOps have two branch
policies that directly encourage or even enforce the peer review process. One of these
policies is the minimum number of reviewers, and the second one is the automatic code
reviewer policy:

Using the Automatic Code Reviewer policy, multiple optional and/or mandatory reviewers
can be automatically added to the pull request review process for different source paths.

This allows the developers to collaborate on the Azure DevOps web portal, creating
comments on certain lines, sections, or even files from the commits included in the pull
request.

The review process is not only limited to manual developers' feedback, but some partial
automation can even be introduced. If included as part of a validation build policy,
SonarQube and the Sonar C# plugin can detect that the containing build is executed on a
pull request, and the code issues, found as the result of static analysis on the new code, are
added to the pull request as comments to be resolved before the pull request is completed.

The review comments added by peers or automated tools can be enforced (that is, they
must be resolved before the pull request is complete) using the comment resolution policy:

Overall, it is fair to say that code review makes up an important part of code quality
maintenance in a CI/CD pipeline.

CI/CD with Azure DevOps Chapter 19

[446]

Testing
As you have seen in Chapter 17, Automated Testing, various tests can be automated and
introduced into the CD pipeline. The tests executed on any CI build can be displayed in the
build results summary in a separate section with aggregated report values (taking the
previous runs into consideration), giving developers the chance to identify issues before the
application artifacts are deployed to the target environment.

Any (failed) test can be used as the starting point to create a work item (e.g. a bug or an
issue depending on the process template used) in the product backlog with any associated
debugging information, if available. Moreover, automated tests can be associated with
actual work items such as features or user stories, allowing the CI process to create
meaningful correlations with the project management metadata:

As a result, automated tests can be used not only to identify problems early on, but can also
help with the analysis and triage processes. This way, the development team can improve
two important DevOps KPIs: Mean Time To Detect (MTTD) and Mean Time To Restore
(MTTR), creating and maintaining a healthy CD pipeline.

CI/CD with Azure DevOps Chapter 19

[447]

Static code analysis with SonarQube
Because of the compiled nature of C# and .NET Core, static analysis and quality metrics of
the source code can help the development team to maintain a healthy development
pipeline. Similar to older tools such as StyleCop, and more popular Visual Studio
extensions such as ReSharper, SonarQube is an open source static analysis platform
providing valuable KPIs and history about the application source. Using SonarQube,
certain traits and trends on quality metrics such as complexity, code smells, and
duplications can be used to identify issues early on in the development cycle, helping the
development team to steer the application in the right direction.

SonarQube supports a number of platforms and languages, including C#, and is deeply
integrated with MSBuild and Azure DevOps infrastructure, which makes it an ideal choice
for any .NET Core development project. The server component can be hosted on-premise or
as part of a cloud setup. On the other hand, SonarCloud is offered as a hosted version of the
Java-based platform.

Once the SonarQube server is set up and the required plugins installed (namely,
SonarCSharp), the quality profile for a given project can be set up. A quality profile is
composed of the quality rules that the source code should abide by, and each rule defines
various warning and error levels:

CI/CD with Azure DevOps Chapter 19

[448]

Using the quality profile, a so-called quality gate could be defined, identifying which type
of change in source code would trigger gate failure, alerting the development team to
possible issues. A quality gate is generally defined on the new code that is introduced into
the repository within the leak period (that is, the period in which you calculate the new
code); however, some aggregate values throughout the project can also be included.

Here, it is important to mention that SonarQube uses a Git extension to access the source
code revision history and annotates the code tree so that the code delta and the owner of
the commits can be easily identified. A simple quality gate might look similar to the
following:

Execution of SonarQube analysis can take place during the CI phase, as well as the CD
phase. Whilst the Azure DevOps SonarScanner extension provides a convenient integrated
build and analysis experience, SonarLint and the associated Roslyn analyzers provide
insight and assistance to the developers within the Visual Studio IDE.

Local analysis with SonarLint
SonarLint is a Visual Studio extension that allows developers to bind a local project to the
designated SonarQube server and its associated quality profile. Once the source is
associated with a SonarQube project, it downloads the ruleset and these rules are applied to
the source using Roslyn analyzers, providing a fully integrated editor experience with
highlighting and issue solution options.

Using SonarLint together with SonarQube allows the central management of coding
conventions and rules and helps to maintain the code quality within bigger development
teams. While the rule definitions are provided by the aforementioned analyzers, the
severities defined by the quality profile are included in the project using the ruleset files:

<?xml version="1.0" encoding="utf-8"?>
<RuleSet Name="SonarQube - App Sonar way" Description="This rule set was
automatically generated from SonarQube.
http://****.northeurope.cloudapp.azure.com:9000/profiles/show?key=cs-sonar-

CI/CD with Azure DevOps Chapter 19

[449]

way-35075" ToolsVersion="15.0">
 <Rules AnalyzerId="SonarAnalyzer.CSharp"
 RuleNamespace="SonarAnalyzer.CSharp">
 <Rule Id="S100" Action="Warning" />
 <Rule Id="S1006" Action="Warning" />

 <!-- Removed for brevity -->

 <Rule Id="S103" Action="Warning" />
 <Rule Id="S4027" Action="None" />
 <Rule Id="S907" Action="Warning" />
 <Rule Id="S927" Action="Warning" />
 </Rules>
</RuleSet>

These rules are periodically synced with the SonarQube server and can be combined with
ruleset files that might be defined for other analyzers, such as StyleCop analyzers.

CI analysis
Once the developer commits their changes and creates a pull request, SonarScanner for
CSharp can be executed using the Azure DevOps extensions available in the marketplace.

After the extension is installed on your Azure DevOps instance, the setup of the extension
is quite straightforward. The initial step is to create an access token on a SonarQube server
of your choice (that is, SonarQube or SonarCloud depending on the variant used), and
create a service connection on Azure DevOps using this token:

CI/CD with Azure DevOps Chapter 19

[450]

The integrated build tasks will then be included in the desired pull request validation build
(or the CI build) as a pair of tasks: Prepare Analysis and Run Analysis.

The Prepare Analysis task downloads the required analysis configuration and prepares the
integrated MSBuild execution targets. The Run Analysis task, on the other hand, collects the
results that are gathered during the build execution and uploads them to the server. It is
important to place the preparation task before any compilation takes place so that the Sonar
configuration is ready while the compilation is being executed. A simple build sequence
might look like the following:

Finally, the optional Publish Analysis task can wait for the analysis results and then publish
them within the current pipeline.

.NET Core projects do not require a ProjectGuid property, unlike the
classic .NET projects. However, the Sonar scanner uses ProjectGuid to
identify the projects and execute analysis on them. In order to make sure
the Sonar scanner can be executed successfully, the ProjectGuid
property should be manually created on each .csproj file and set to a
random Guid.

CI/CD with Azure DevOps Chapter 19

[451]

External Roslyn analyzers
In addition to the built-in set of analysis rules, SonarQube can also consume the warnings
and errors that are identified by other Roslyn analyzers, such as the available StyleCop
analyzers.

In order to include StyleCop rules into a .NET Core project, it is enough to reference the
publicly available NuGet package:

<ItemGroup>
 <PackageReference Include="StyleCop.Analyzers" Version="1.1.118"
PrivateAssets="All" />
</ItemGroup>

At this point, the coding convention-related issues would be identified and flushed through
the build output as warnings. Additionally, the IDE would provide annotations and
solutions using the Roslyn infrastructure.

Finally once the project is put through SonarQube server analysis, the issues identified by
StyleCop.Analyzers would also be stored and included into the quality gate
calculations. For instance, the following issues are identified by StyleCop rules but are
included in SonarQube:

Overall, SonarQube provides a complete code quality management platform that, coupled
with Azure DevOps and .NET Core, provides an ideal automated development pipeline
and secure the CI process.

CI/CD with Azure DevOps Chapter 19

[452]

Creating and using release templates
As previously discussed, once the CI is complete, published build artifacts should ideally
be transferred into the release pipeline, starting the CD phase. Azure DevOps release
templates and infrastructure provide a complete release management solution, which,
without the need for any additional platform such as Jenkins, Octopus, or TeamCity, can
handle the CI/CD pipeline.

Azure DevOps releases
A release definition is made up of two main components: artifacts and stages. Using
triggers and gates, the deployment of artifacts to target stages is organized and managed.

Release artifacts
Release artifacts are the elements that provide the components for the release tasks. These
artifacts can vary from simple compiled application libraries to source code retrieved
directly from the application repositories:

Let's take a closer look at these artifact types:

Azure Pipelines: This is the most commonly used artifact type, which allows the
build pipelines to pass the compilation results as packaged components to the
release pipeline. Using this artifact type allows the release pipeline to detect the
work items that are introduced with the artifacts, creating a direct relationship
between project work items and release details. The creation of the new version
of an artifact can be used as the trigger for the release.

CI/CD with Azure DevOps Chapter 19

[453]

TFVC, Git, and GitHub: If static content from the source code repository, such
as configuration files or media content, or the source code itself, are required for
the release pipeline tasks, various repositories can be used as artifacts. Incoming
commits to the repository can be used as triggers for the release.
Jenkins: If multiple build and release pipelines are involved in a setup, a service
connection can be created for a Jenkins deployment and Jenkins build artifacts
can be consumed by Azure DevOps release pipelines.
Azure Container Registry, Docker, and Kubernetes: When dealing with
containerized application packages, the images prepared can be pushed to a
private container registry and these images can then be retrieved during the
release process.
Azure Artifacts (NuGet, Maven, and npm): Azure Package management
artifacts can be retrieved and used to trigger new releases using this source,
allowing various packaged components to be included in the release pipeline.
External or on-premises TFS: On-premise TFS infrastructure can also be
included in an Azure DevOps release pipeline. In order for this type of
integration to work, the on-premise TFS server should be equipped with an on-
premises automation agent.

Additional artifacts such as TeamCity can be introduced into release pipelines using the
Azure DevOps extensions available on the market place.

In our application pipelines, we would be using the build artifact type that will contain the
ARM definition, web API service packages, and the multiple configuration application
packages for various environments.

Release stages
In layman terms, release stages roughly translates to the environment in which we want
the application to be deployed. It is important to emphasize the fact that a stage is only a
logical container and does not need to refer to a single server environment. It can refer to
various environment infrastructures, as well as a managed distribution ring for mobile
applications.

A release stage contains the release jobs that will be executed on release agents. For
instance, if we are deploying a build artifact to Azure Stack or a mobile application package
to App Center, we can use an agent job on a hosted agent. Nevertheless, if the deployment
target is an on-premise server, we would need to use a specific deployment agent or a
deployment group.

CI/CD with Azure DevOps Chapter 19

[454]

As mentioned, a release stage can contain multiple release jobs, which can be executed in
parallel or sequentially, depending on the dependencies between the components. For
instance, in order to deploy the iOS component to the QA distribution ring simultaneously
with the Android or UWP packages, we can utilize parallel agent jobs that would select the
specific artifacts to download and release. Each job can define which specific artifact it
requires. Another example for a multi-job release setup could be a microservice package
deployment setup where each service is deployed independently:

In this example, the API deployments could have been configured so that the services are
deployed to related to app services only after the main ARM deployment takes place.

Release gates and triggers
In an Azure DevOps release, the transition between stages is controlled by triggers and
gates. The release train, as well as manual or external service gates, can be configured using
these components.

The main trigger for a release is set up through the artifacts introduced in a release. As
mentioned, a build artifact can be set up to trigger a new release with each new version.

CI/CD with Azure DevOps Chapter 19

[455]

The following trigger will be executed every time a build artifact is created from a source
branch matching the given wildcard expression (that is, /release/*):

This scenario can be extended to include build tags and additional exclude expressions.

On top of the main release trigger, each stage can define a separate trigger. These triggers
can refer to the actual release trigger or the completion of another stage. Manual
deployment is also included to separate a stage from the main release train. The following
trigger defines the QA stage as the trigger for the UAT stage, chaining the two releases:

CI/CD with Azure DevOps Chapter 19

[456]

This automatic transition between the stages can be set to expect input from a specific user
(manual approval) or an external server. These so-called gates can be defined as pre-
deployment or post-deployment gates, with one verifying the availability of an
environment to receive the release, and the other verifying the success of the deployment.

Most common application of gates is the manual approval pre-deployment configuration
for higher environments, so that on going testing or actual public web application is not
jeopardized. Manual approval can be done by any user within the Azure DevOps
organization. Approval can be set to expire after a certain time and the selected approvers
can delegate to other users.

External gates can be various service endpoints such as Azure Functions, external web
services, or even a custom work item query within the same Azure DevOps project:

Using the intrinsic trigger and gate capabilities, complex release workflows can be set up
and executed on demand or in an automated manner.

CI/CD with Azure DevOps Chapter 19

[457]

Xamarin release template
In the Xamarin release pipeline, we would be receiving multiple application packages for
multiple platforms and environments as build artifacts. For instance, consider the following
CI build setup for Xamarin Android, in which we would receive three packages for QA,
UAT, and PROD, respectively:

If we were to create a similar multi-agent build for iOS and set these builds to trigger on
incoming commits to any release branch, we would be creating a new application for each
deployment environment with every new push:

CI/CD with Azure DevOps Chapter 19

[458]

The release pipeline for the App Center releases can now reference these artifacts and
deploy them to a specific App Center ring. App Center is capable of pushing the
application package to target the App Store, so we can create a production ring on App
Center and deploy the package to production from App Center.

The deployment to parallel rings for different mobile platforms can be parallelized as
parallel jobs or as parallel stages converging on synchronization stages:

Gates on the synchronization stages (for example, Beta-Start and Beta-Finish) can be used
to control the deployment to certain distribution rings.

Azure web application release
For Azure infrastructure, we would also be receiving multiple packages. The foremost
important package of the Azure deployment pipeline is the ARM template and the
associated configuration parameters files defining our application configuration. These
resources can be retrieved directly from the source repository or they can be packaged
during the CI build using the basic utility tasks used to copy files and package them
(optionally) in a ZIP container.

CI/CD with Azure DevOps Chapter 19

[459]

Another useful tool that can be used during the CI build is the validation
mode of the Azure Resource Group Deployment task. This way, the CI
build can validate the ARM template changes introduced at least against
one of the available environments.

The API services, depending on the hosting option selected (that is, containerized,
or packaged as a web deployment, and so on), would also be created as deployment
artifacts.

The release pipeline would then deploy the ARM template to the target resource group(s).
Once the resource manager deployment is completed, the web application packages can be
released to the target app service instances or app service slots, depending on the
deployment strategy.

Similar to the Xamarin deployment, the release pipeline can be configured to use multiple
stages to define an environment or multi-agent stage with multiple deployments. For
instance, a sample release pipeline with deployment components separated into stages
would look like the following:

In either scenario, the release management flow should be the same: deploy the
infrastructure and configuration, then continue with service package deployments.

CI/CD with Azure DevOps Chapter 19

[460]

Summary
In this chapter, we completed the CI/CD pipelines for both the Xamarin repository and the
Azure Web infrastructure. We have seen that the toolset offered by Azure DevOps is
perfectly suitable for implementing a GitFlow branching strategy. This toolset is also used
for managing the application life cycle by implementing branch policies and setting up CI
triggers. Additionally, we have seen how the CI phase should also be used to maintain the
code quality and technical debt. Finally, we discussed strategies for implementing release
pipelines for both distributed Azure and native mobile applications.

With this final chapter, we have reached the end of the development of our project. In the
beginning of the book, after refreshing our knowledge about various .NET concepts,
runtimes, frameworks as well as platforms, we moved on to Xamarin development. We
have created and customized Xamarin applications using the .NET Standard framework
and Xamarin platform runtimes. Hopefully, we have learned where to use which type of
customization on Xamarin.Forms framework. Once we have completed the Xamarin
project, our focus shifted to the Azure cloud stack and how we can utilize .NET Core on
various Azure services that can be used in junction with Xamarin mobile applications. The
Azure stack discussion mainly focused on Platform as a Service offerings such as App
Services, Serverless components and finally data storage services such as Cosmos DB. In
addition, we have learned how we can engage our users in betters ways with the help of
external services such as push notifications, Graph API and Cognitive Services. As we have
slowly created the mobile application as well as the backend infrastructure, the last section
was about how to effectively manage the lifecycle of our projects using Microsoft Azure
DevOps and Microsoft Visual Studio App Center. Using Azure DevOps we have tried to
realize modern DevOps concepts by creating automated CI/CD pipelines.

While the implementations and practical examples were quite generalized, the hands on
concepts we have discussed throughout the book would be good starting point for any
cross platform development project you and your team are planning to undertake. For any
.NET developer, understanding .NET Core and other implementations of .NET Standard is
the key to unlock multiple platforms and create user experiences that span across
platforms.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Hands-On Domain-Driven Design with .NET Core
Alexey Zimarev

ISBN: 978-1-78883-409-4

Discover and resolve domain complexity together with business stakeholders
Avoid common pitfalls when creating the domain model
Study the concept of Bounded Context and aggregate
Design and build temporal models based on behavior and not only data
Explore benefits and drawbacks of Event Sourcing
Get acquainted with CQRS and to-the-point read models with projections
Practice building one-way flow UI with Vue.js
Understand how a task-based UI conforms to DDD principles

https://www.packtpub.com/catalog/product/view/id/55713/s/application-development%2Fhands-domain-driven-design-net/

Other Books You May Enjoy

[462]

Xamarin.Forms Projects
Johan Karlsson, Daniel Hindrikes

ISBN: 978-1-78953-750-5

Set up a machine for Xamarin development
Get to know about MVVM and data bindings in Xamarin.Forms
Understand how to use custom renderers to gain platform-specific access
Discover Geolocation services through Xamarin Essentials
Create an abstraction of ARKit and ARCore to expose as a single API for the
game
Learn how to train a model for image
classification with Azure Cognitive Services

https://www.packtpub.com/application-development/xamarinforms-projects

Other Books You May Enjoy

[463]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

.

.NET Core applications
 deploying 429, 431, 432, 433
.NET Core
 about 12, 13, 14, 22, 23
 developing with 16, 17
 runtime agnostic application, creating 18, 19, 20
 runtime, defining 20, 22
 self-contained deployment, defining 20, 22
.NET Foundation 14
.NET Foundation projects
 .NET Core 14
 about 14
 ASP.NET Core 15
 entity Framework 15
 IdentityServer 15
 reactive Extensions, for .NET 15
 Roslyn 15
 Xamarin 16
 Xamarin.Forms 16
 xUnit.net 16
.NET Native 48
.NET Standard
 about 48
 using, with Xamarin 36, 37, 38
.NET
 reactive Extensions for 15

A
Additional Tools for Xcode 288
advanced scenarios
 about 320
 push to pull 320
 rich Media for push messages 321, 322
Ahead-of-Time (AOT) 13
Android services 283

Android
 Xamarin on 31, 32, 33
App Center distribution to production 366, 367
App Center telemetry data
 exporting, to Azure 379, 380, 381
App Center, for Xamarin
 about 359
 distribution rings, setting up 362, 363
 integration, with source repository and builds

360, 361
App Center
 telemetry and diagnostic options 367, 368
app model
 Azure virtual machines 197
 containers, in Azure 198
 selecting 196
AppCenter distribution groups 365, 366
AppCenter releases 364
Apple Push Notification Service (APNS) 308
application Insights data model
 about 382
 events 382
 metrics 382
 trace 382
Application Insights telemetry data
 collecting, with Azure Functions 388, 389
application integrity, with tests
 data-driven tests 403, 404, 405
 fixtures tests 403, 404, 405
 maintaining 395
 unit test, implementing 397, 398
 unit tests, creating with mocks 399, 400, 401,

402

 unit tests, implementing 395
application layout
 about 72
 consumer expectations 72, 73, 74

[465]

 development cost 77
 platform imperatives 75, 76, 77
Application Lifecycle Management (ALM) 163
architectural patterns
 using 67
ARM template
 Azure DevOps, using for 425, 427, 429
 concepts 422, 423, 425
 creating 416, 418, 419, 420, 422
Arrange, Act, Assert (AAA) 395, 397, 398
artifact, types
 about 452
 Azure Artifacts (NuGet, Maven, and npm) 453
 Azure Container Registry 453
 Azure Pipelines 452
 Docker 453
 external or on-premises TFS 453
 Git 453
 GitHub 453
 Jenkins 453
 Kubernetes 453
 TFVC 453
ASP.NET Core Identity 225
ASP.NET Core
 about 15
 telemetry data, collecting with 383, 384, 386,

387

asynchronous execution patterns
 about 277
 asynchronous command 281, 283
 asynchronous event, handling 279, 280
 service initialization pattern 278, 279
Asynchronous Programming Model (APM) 280
Atomic, Consistent, Isolated, Durable (ACID) 155
awaitables
 utilizing 263, 264, 265
Azure Active Directory (Azure AD) 196, 226, 231
Azure AD B2C 231
Azure App Service 200
Azure blobs
 types 156
Azure Cache
 for Redis 158
Azure Container Services (ACS)
 about 198

 with Kubernetes 198
Azure DevOps releases
 about 452, 459
 release artifacts 452, 453
 release gates 454, 456
 release stages 453, 454
 triggers 454, 456
Azure DevOps
 about 163, 164, 165
 Git repository, creating with 343, 344
 sections 165
 using 343
 using, for ARM templates 425, 427, 429
Azure Event Grid 162
Azure functions
 about 159, 160
Azure Functions
 Application Insights telemetry data, collecting

with 388, 389
 bindings 240, 241
 configuring 241, 242
 creating 243, 244, 245, 246
 developing 234
Azure functions
 execution models 159
Azure Functions
 hosting 242
 implementing 235, 236, 238, 239
 triggers 240, 241
Azure Logic Apps 161
Azure Notification Hub, used for Azure Notification

Hubations
 notification 313
 registration 312
Azure Notification Hub
 about 308, 309
 infrastructure 309
 notification namespace 310, 311
 used, for notifications 312
Azure Pipelines 452
Azure repository models 259
Azure Resource Manager (ARM)
 about 154, 416
 CI phase 442
Azure Serverless 234

[466]

Azure serverless
 about 158
 Azure Event Grid 162
 Azure functions 159, 160
 Azure Logic Apps 161
Azure Service Bus 260
Azure Service Fabric Mesh 198
Azure Service Fabric
 microservices 199
Azure service
 overview 140
 providers 152, 153, 154
 resource types 152, 153, 154
Azure Service
 telemetry data, collecting for 382
Azure storage
 about 155
 Azure blobs 156
 Azure files 157
 Azure queues 157
 Azure tables 157
Azure virtual machines 197
Azure Web App
 for App Service 218, 219
Azure web application release 458, 459
Azure
 App Center telemetry data, exporting to 379,

380, 381

B
BindingMode 63
branch policies 438
branches
 workflow 346
branching strategy 345, 346
Business to Business (B2B) 226

C
CI/CD 434, 435, 436
CI/CD, with GitFlow
 about 436
 CI phase 440, 441, 443
 development 437, 438
 feature branch, merging in development branch

through pull request 438, 439, 440

 hotfix branches 444
 production 444
 release branch 443
cloud architecture
 about 144
 backends for frontends 146, 147
 cache-aside pattern 148
 circuit breaker 151
 competing consumers 150
 gateway aggregation 145
 materialized view 147, 148
 publisher pattern 151
 queue-based load leveling 149, 150
 retry patterns 151
 subscriber pattern 151
Cognitive Services
 about 327, 328
 Decision API 327
 language APIs 327
 Search APIs 327
 Speech API 327
 Vision API 327
command pattern 274, 275, 276
Common Language Infrastructure (CLI) 12, 25
computer vision 335, 336
consistency spectrum 170
consumer expectations 72, 73, 74
consumers
 creating, with blocking collections 276, 277
Continuous Delivery (CD) 434
Continuous Integration (CI) 434
Core Common Language Runtime (Core CLR) 48
Cosmos DB
 about 157
 change feed 195
 consistency spectrum 170
 fundamentals 167, 168
 global distribution 169
 in depth 187
 indexing 190, 191
 partitioning 188, 189
 pricing model 172
 programmability 192, 193, 195
cross-module integrity, with integration tests
 client-server communication, testing 406, 407,

[467]

408

 maintaining 405
 platform tests, implementing 408
cross-platform application
 development 10
 fully native applications, developing 10
 hybrid applications 11
 native cross-platform frameworks 11
custom controls
 creating 127
custom renderer
 creating 129, 131, 133, 135
custom Xamarin.Forms control
 creating 135, 137

D
data access models
 about 173
 MongoDB API 174, 176
 others 176
 SQL API 173
data access patterns
 about 296
 data resolver 300, 301, 302, 303
 observable repository 299
 reference data 296
 repository pattern, implementing 297, 298
 static data 296
 transient data 296
Data Binding 34
data cache
 using, SQLite 293
data clusters
 auctions 177
 users 177
 vehicles 177
data store model
 about 154
 Azure Cache, for Redis 158
 Azure storage 155
 Cosmos DB 157
 relational database resources 155
data transfer object (DTO) 55
Data Transformation Object (DTO) 177
data-binding essentials 98, 99, 100

data-driven views
 creating 98
 data-binding essentials 98, 99, 100
 triggers 103, 104, 105
 value converters, using 100, 101, 102
 visual states 105, 106
data
 analyzing 389, 392, 393
 denormalized 184, 185
 documents, accessing 177, 179, 182
 documents, creating 177, 179, 182
 modeling 177
 referenced data 186
Database Transaction Unit (DTU) 155, 172
Decision API 327
decorator pattern 69
design techniques
 about 75
 fluid layout 75
 orientation change 76
 resize 76
 restructure 76
development branches
 managing 347, 348, 349, 350
development cost 77
development services 162
distributed systems 141, 142, 144
distribution
 with AppCenter 364
Dynamic Link Library (DLL) 19

E
Electronic Data Interchange (EDI) 250
Enterprise Application Integration (EAI) 250
Enterprise Integration Pack (EIP) 161, 250
entity data model (EDM) 207
entity Framework 15
Entity Framework Core 295
Entity tag (ETag) 290
event aggregator pattern 68
Event Grid 260
event hubs 261
eventual consistency 171
execution method 271, 272

[468]

F
Firebase Cloud Messaging (FCM) 307, 308
fixture 403
floating action button (FAB) 93
framework-dependent 20
fully native applications
 developing 10

G
Git repository
 creating, with Azure DevOps 343, 344
Git
 using 343
global distribution 169
Global System for Mobile Communications (GSM)

288

Graph API 322

H
HTTP performance, with transient caching
 cache-aside pattern, implementing 288, 290
 Entity tag (ETag), validating 290, 291
 improving 287
 key-value store, implementing 292, 293
hybrid applications 11

I
identity as a service (IDaaS) 226
IdentityServer 15
Infrastructure as a Service (IaaS) 140, 196
Infrastructure as Code (IaC) 143, 197, 416
insights
 collecting, for Xamarin applications 370
integration tests
 cross-module integrity, maintaining with 405
integration, with Azure services
 about 258
 event aggregation 260
 queue-based processing 260
 repository 259
Inversion of Control (IoC) 67
iOS
 backgrounding 284, 285, 286
 Xamarin on 29, 30, 31

J
Just-In-Time (JIT) 13

K
key-value pair (KVP) 157

L
language API 327
Language Understanding Service (LUIS) 331,

332, 333, 334, 335
layouts 88, 90, 91, 92, 94
Line of Business (LOB) 109
line of business (LOB) application 231
Logic App
 connectors, using 250
 creating 251, 252, 254, 255
 developing 246
 implementing 247, 248, 250
 workflow, execution control 256, 257, 258
logical tasks 273
Long Term Evolution (LTE) 288

M
master/detail view 86, 87, 88
Mean Time To Detect (MTTD) 446
Mean Time To Restore (MTTR) 446
microservice
 creating 200
 patch updates, implementing 210, 212
 retrieval actions, implementing 204, 206, 207,

209

 setting up 201, 203, 204
 soft delete, implementing 213
Microsoft Authentication Library (MSAL) 229
Microsoft Developer Network (MSDN) 165
Microsoft Intermediate Language (MSIL) 30
Model View Intent (MVI) 274
Model-View-Adapter (MVA) 56
Model-View-Controller (MVC)
 implementing 56, 57, 59
Model-View-Presenter (MVP) 56
Model-View-ViewModel (MVVM)
 about 34, 59, 274
 implementing 60, 62, 63, 65, 66, 67

[469]

MongoDB API 174, 176
Mono Compiler (MCS) 13
multi-page views 83, 85

N
native asynchronous execution
 about 283
 Android services 283
 iOS, backgrounding 284, 285, 286
native components 97, 98
native controls
 using 88
native cross-platform frameworks 11
native domains
 composite, customizations 125, 126
 customizing 121
 platform-specifics, configuration 121
 Xamarin.Forms effects 122, 124
Native Notification Services
 about 306
 general constraints 308
 notification providers 307
 notifications, sending with PNS 307, 308
navigation structure
 implementing 78
 master/detail view 86, 87, 88
 multi-page views 83, 85
 simple navigation 81, 83
 single-page view 79, 80, 81
notification providers 307
notification service
 advanced scenarios 320
 creating 313, 314
 device registration 315, 316
 multiple devices, broadcasting 320
 notifications, transmitting 318, 319
 requirements, defining 314

O
OpenID Identity Connect (OIDC) 225

P
Page Object Pattern (POP) 412, 415
Personal Access Token (PAT) 344
Platform Abstraction Layer (PAL) 12

Platform as a Service (PaaS) 140
platform extensions 49
platform imperatives 75, 76, 77
Platform Notification System (PNS)
 about 307, 309
 notification, sending with 308
 notifications, sending with 307
portable class library (PCL) 294
PowerShell Desired State Configuration (DSC)

197

presentation architecture
 Model-View-Controller (MVC), implementing 56,

57, 59
 Model-View-ViewModel (MVVM), implementing

60, 62, 63, 65, 66, 67
 selecting 56
pricing model 172
producers
 creating, with blocking collections 276, 277
Progressive Web Apps (PWAs) 11
Project Rome
 about 322, 323
 device relay 323
 nearby sharing 325
 notifications 324
 remote Sessions 324
 user activities 324

Q
QA process
 about 444
 code review 445
 static code, analyzing with SonarQube 447, 448
 testing 446

R
Read-Eval-Print-Loop (REPL) 411
Realm 303, 304
Redis cache
 integrating 214, 216
Redis
 Azure Cache for 158
relational database resources 155
release artifacts 452
release gates 454, 456

[470]

release stages 453, 454
release templates
 Azure DevOps releases 452
 Azure web application release 458, 459
 creating 452
 using 452
 Xamarin release template 457, 458
Request Unit (RU) 172
Roslyn 15
Rotor 12
Runtime Identifier (RID) 21

S
Search API
 about 327, 337
 entity search 340
 image search 339
 local business search 340
 news search 340
 search query completion 337, 338
 video search 340
 visual search 340
 Web Search API 338, 339
security token service (STS) 224
self-contained 21
Server Message Block (SMB) 157
Service-Oriented Architecture (SOA) 142
services
 Azure Web App, for App Service 218, 219
 containerizing 220, 222
 hosting 218
session consistency 170
Shared Source Common Language Infrastructure

(SSCLI) 12
signal strength 288
simple navigation 81, 83
Single Page Application (SPA) 11
single-page view 79, 80, 81
Software as a Service (SaaS) 140
Software Defined Networking (SDN) 198
SonarLint
 used, for analyzing local 448
Speech API
 about 327, 329
 Language Understanding Service (LUIS) 331,

332, 333, 334, 335
 speech to text 329, 330
speech to text 329, 330
SQL API 173
SQLite.NET 294, 295
SQLite
 used, for data cache 293
static code, analyzing with SonarQube
 about 447, 448
 CI analysis 449, 450
 external Roslyn analyzers 451
 SonarLint, used for analyzing local 448
strong consistency 170
synchronization context 270, 271
System Under Test (SUT) 403

T
Task Asynchronous Programming (TAP) model

265

task-based execution 265, 266, 267, 268, 269
tasks
 utilizing 263, 264, 265
Team Foundation Version Control (TFVC) 343
telemetry data model
 application, coupling 375, 376, 378
 collecting, App Center SDK used 371, 372, 374
 collecting, for Azure Service 382
 collecting, with ASP.NET Core 383, 384, 386,

387

Test-Driven Development (TDD) 395
TFS Online 163
Time To Live (TTL) 214
Time-based One-Time Password (TOTP) 226
transcription service, features
 batch transcription 329
 continuous transcription 329
 intent recognition 329
 short utterance 329
triggers
 about 103, 104, 105, 454, 456
 types 103

U
UI components
 layouts 88, 90, 91, 92, 94

 native components 97, 98
 Xamarin.Forms, view elements 94, 95, 96
UI test
 automating 409, 410
 Page Object Pattern (POP) 412, 415
 Xamarin.UITests 410, 411, 412
Universal Windows Platform (UWP)
 about 9, 40
 application, creating 41, 42, 43, 44, 45
user experience (UX) 263

V
Validate 428
value converters
 using 100, 101, 102
Virtual machines (VMs) 142, 197
Vision API 327
Visual State Manager (VSM) 105
visual states 105, 106
Visual Studio App Center 165, 342
Visual Studio Team Services 163

W
web application
 ASP.NET Core Identity 225
 Azure Active Directory (Azure AD) 226, 229,

231

 Azure AD B2C 231
 securing 223, 225
Windows Notification Service (WNS) 307
Windows Presentation Foundation (WPF) 60
Windows Runtime (WinRT) 40

X
Xamarin application packages
 artifacts, creating 358

 artifacts, utilizing 359
 creating 351
 environment-specific configurations 358
Xamarin application
 creating 25, 26, 27, 28
 insights, collecting for 370
Xamarin build template
 using 351, 352
Xamarin release template 457, 458
Xamarin.Android build 352, 353, 354
Xamarin.Forms application
 anatomy 55
Xamarin.Forms control
 creating 127, 128, 129
Xamarin.Forms domain
 about 110
 behaviors, creating 114, 115, 117
 properties, attaching 118
 using, styles 110, 112, 114
 XAML markup extensions 119, 121
Xamarin.Forms
 about 16, 33, 34, 35
 used, for creating development domains 108,

110

 using 88
 versus Xamarin 53, 54
 view elements 94, 95, 96
Xamarin.iOS pipeline 355, 357
Xamarin.UITests 410, 411, 412
Xamarin
 .NET Standard, using with 36, 37, 38
 about 16, 25
 on Android 31, 32, 33
 on iOS 29, 30, 31
 versus Xamarin.Forms 53, 54
XAML Standard 45, 47
xUnit.net 16

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1: .NET Core and Cross-Platform Philosophy
	Chapter 1: Getting Started with .NET Core
	Cross-platform development
	Developing fully native applications
	Hybrid applications
	Native cross-platform frameworks

	Introduction to .NET Core
	.NET Foundation
	Notable .NET Foundation projects
	.NET Core
	ASP.NET Core
	Roslyn
	Reactive Extensions for .NET
	Entity Framework
	IdentityServer
	ML.NET
	Xamarin and Xamarin.Forms
	xUnit.net

	Developing with .NET Core
	Creating a runtime agnostic application
	Defining a runtime and self-contained deployment
	Defining a framework

	Summary

	Chapter 2: Xamarin, Mono, and .NET Standard
	Introduction to Xamarin
	Creating your first Xamarin application
	Xamarin on iOS – Mono Touch
	Xamarin on Android – Mono Droid
	Xamarin.Forms
	Using .NET Standard with Xamarin
	Extending the reach
	Summary

	Chapter 3: Universal Windows Platform
	Universal Windows Platform
	Creating UWP applications
	XAML Standard
	.NET Standard and .NET Native
	Platform extensions
	Summary

	Section 2: Xamarin and Xamarin.Forms
	Chapter 4: Developing Mobile Applications with Xamarin
	Xamarin versus Xamarin.Forms
	Xamarin application anatomy
	Selecting the presentation architecture
	Model-View-Controller (MVC) implementation
	Model-View-ViewModel (MVVM) implementation

	Useful architectural patterns
	Inversion of Control
	Event aggregator
	Decorator

	Summary

	Chapter 5: UI Development with Xamarin
	Application layout
	Consumer expectations
	Platform imperatives
	Development cost

	Implementing navigation structure
	Single-page view
	Simple navigation
	Multi-page views
	Master/detail view

	Using Xamarin.Forms and native controls
	Layouts
	Xamarin.Forms view elements
	Native components

	Creating data-driven views
	Data-binding essentials
	Value converters
	Triggers
	Visual states

	Summary

	Chapter 6: Customizing Xamarin.Forms
	Xamarin.Forms development domains
	Xamarin.Forms shared domain
	Using styles
	Creating behaviors
	Attached properties
	XAML markup extensions

	Customizing native domains
	Platform specifics
	Xamarin.Forms effects
	Composite customizations

	Creating custom controls
	Creating a Xamarin.Forms control
	Creating a custom renderer
	Creating a custom Xamarin.Forms control

	Summary

	Section 3: Azure Cloud Services
	Chapter 7: Azure Services for Mobile Applications
	An overview of Azure services
	An introduction to distributed systems
	Cloud architecture
	Gateway aggregation
	Backends for frontends
	A materialized view
	The cache-aside pattern
	Queue-based load leveling
	Competing consumers
	The publisher/subscriber pattern
	The circuit breaker and retry patterns

	Azure service providers and resource types

	Data stores
	Relational database resources
	Azure storage
	Azure blobs
	Azure files
	Azure queues
	Azure tables

	Cosmos DB
	Azure Cache for Redis

	Azure serverless
	Azure functions
	Azure Logic Apps
	Azure Event Grid

	Development services
	Azure DevOps
	Visual Studio App Center

	Summary

	Chapter 8: Creating a Datastore with Cosmos DB
	The basics of Cosmos DB
	Global distribution
	Consistency spectrum
	Pricing

	Data access models
	SQL API
	MongoDB API
	Others

	Modeling data
	Creating and accessing documents
	Denormalized data
	Referenced data

	Cosmos DB in depth
	Partitioning
	Indexing
	Programmability
	Change feed

	Summary

	Chapter 9: Creating Microservices Azure App Services
	Choosing the right app model
	Azure virtual machines
	Containers in Azure
	Azure Container Services with Kubernetes
	Service Fabric Mesh

	Microservices with Azure Service Fabric
	Azure App Service

	Creating our first microservice
	Initial setup
	Implement retrieval actions
	Implementing patch updates
	Implementing a soft delete

	Integrating with Redis cache
	Hosting the services
	Azure Web App for App Service
	Containerizing services

	Securing the application
	ASP.NET Core Identity
	Azure AD
	Azure AD B2C

	Summary

	Chapter 10: Using .NET Core for Azure Serverless
	Understanding Azure Serverless
	Developing Azure Functions
	Implementing Azure Functions
	Function triggers and bindings
	Configuring functions
	Hosting functions
	Creating our first Azure function

	Developing a Logic App
	Implementing Logic Apps
	Using connectors
	Creating our first Logic App
	Workflow execution control

	Integration with Azure services
	Repository
	Queue-based processing
	Event aggregation

	Summary

	Section 4: Advanced Mobile Development
	Chapter 11: Fluid Applications with Asynchronous Patterns
	Utilizing tasks and awaitables
	Task-based execution
	Synchronization context
	Single execution guarantee
	Logical tasks
	The command pattern
	Creating producers/consumers with blocking collections

	Asynchronous execution patterns
	Service initialization pattern
	Asynchronous event handling
	The asynchronous command

	Native asynchronous execution
	Android services
	iOS backgrounding

	Summary

	Chapter 12: Managing Application Data
	Improving HTTP performance with transient caching
	Client cache aside
	Entity tag (ETag) validation
	Key/value store

	Persistent data cache using SQLite
	SQLite.NET
	Entity Framework Core

	Data access patterns
	Implementing the repository pattern
	Observable repository
	Data resolver

	Understanding Realm
	Summary

	Chapter 13: Engaging Users with Notifications and the Graph API
	Understanding Native Notification Services
	Notification providers
	Sending notifications with PNS
	General constraints

	Azure Notification Hub
	Notification Hub infrastructure
	Notification hub
	Notification namespace

	Notifications using Azure Notification Hub
	Registration
	Notification

	Creating a notification service
	Defining the requirements
	Device registration
	Transmitting notifications
	Broadcasting to multiple devices
	Advanced scenarios
	Push to pull
	Rich Media for push messages

	The Graph API and Project Rome
	The Graph API
	Project Rome
	Device relay
	User activities
	Notifications
	Remote Sessions
	Nearby sharing

	Summary

	Chapter 14: Introducing Cognitive Services
	Understanding Cognitive Services
	Speech APIs
	Speech to text
	Language Understanding Service

	Computer vision
	Search API
	Search query completion
	Web Search API
	Image search
	Other

	Summary

	Section 5: Application Life Cycle Management
	Chapter 15: Azure DevOps and Visual Studio App Center
	Using Azure DevOps and Git
	Creating a Git repository with Azure DevOps
	Branching strategy
	Managing development branches

	Creating Xamarin application packages
	Using Xamarin build templates
	Xamarin.Android build
	Xamarin.iOS pipeline

	Environment-specific configurations
	Creating and utilizing artifacts

	App Center for Xamarin
	Integration with the source repository and builds
	Setting up distribution rings

	Distribution with AppCenter
	AppCenter releases
	AppCenter distribution groups
	App Center distribution to production

	App Center telemetry and diagnostics
	Summary

	Chapter 16: Application Telemetry with Application Insights
	Collecting insights for Xamarin applications
	Telemetry data model
	Advanced application telemetry
	Exporting App Center telemetry data to Azure

	Collecting telemetry data for Azure Service
	Application Insights data model
	Collecting telemetry data with ASP.NET Core
	Collecting telemetry with Azure Functions

	Analyzing data
	Summary

	Chapter 17: Automated Testing
	Maintaining application integrity with tests
	Arrange, Act, and Assert
	Creating unit tests with mocks
	Fixtures and data-driven tests

	Maintaining cross-module integrity with integration tests
	Testing the client-server communication
	Implementing platform tests

	Automated UI tests
	Xamarin.UITests
	Page Object Pattern

	Summary

	Chapter 18: Deploying Azure Modules
	Creating an ARM template
	ARM template concepts
	Using Azure DevOps for ARM templates
	Deploying .NET Core applications
	Summary

	Chapter 19: CI/CD with Azure DevOps
	Introducing CI/CD
	CI/CD with GitFlow
	Development
	Pull request/merge
	The CI phase
	Release branch
	Hotfix branches
	Production

	The QA process
	Code review
	Testing
	Static code analysis with SonarQube
	Local analysis with SonarLint
	CI analysis
	External Roslyn analyzers

	Creating and using release templates
	Azure DevOps releases
	Release artifacts
	Release stages
	Release gates and triggers

	Xamarin release template
	Azure web application release

	Summary

	Other Books You May Enjoy
	Index

