

ASP.NET Core 3 and React

Hands-On full stack web development using ASP.NET Core,
React, and TypeScript 3

Carl Rippon

BIRMINGHAM - MUMBAI

ASP.NET Core 3 and React
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Pavan Ramchandani
Acquisition Editor: Reshma Raman
Content Development Editor: Divya Vijayan
Senior Editor: Mohammed Yusuf Imaratwale
Technical Editor: Jane Dsouza
Copy Editor: Safis Editing
Project Coordinator: Manthan Patel
Proofreader: Safis Editing
Indexer: Rekha Nair
Production Designer: Jyoti Chauhan

First published: December 2019

Production reference: 1261219

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78995-022-9

www.packt.com

http://www.packt.com

I'd like to thank Sarah, Ellie-Jayne, and Lily-Rose for all the encouragement and support
they've given me while writing this book. A special thanks to everyone in the Packt editorial
team for their hard work and great feedback, especially Arun Nadar, Divya Vijayan, and Jane
D'souza.

- Carl Rippon

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Carl Rippon has been involved in the software industry for over 20 years, developing a
complex line of business applications across various sectors. He has spent the last 8 years
building single-page applications using a wide range of JavaScript technologies, including
Angular, ReactJS, and TypeScript. Carl has written over 100 blog posts on various
technologies.

About the reviewers
Carlo Wahlstedt is a Jesus Follower, family man, and technologist. The latter leading to a
diverse interest in anything technology can affect. Name a technology and Carlo as tried it,
has it on his list to try, or is going to add what you mention to his list. He loves macOS and
tolerates Windows but loves the platform Microsoft provides. At work, he currently enjoys
all things web, being involved in software architecture, containers, kubernetes, and all
things automation. He is also a remote worker, an assistant high school boys basketball
coach, and non-profit board member.

Ed Spencer is a web focused contract software developer based in the Midlands in the UK.
He has over 15 years of delivering high performance, business critical applications for a
long list of well known brands.

Originally starting out as a database developer and on the Microsoft stack, he has
transitioned into a full stack developer well versed in numerous technologies, ranging from
.NET Core and Node.js on the server, to React and Angular on the client. Ed is also adept at
performance tuning web applications.

He has been blogging for 10 years at https:/ ​/​edspencer. ​me. ​uk, which is his way of giving
something back to the web development community.

Outside of development, Ed enjoys reading, exploring new places, and catching up with
friends.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

https://edspencer.me.uk
https://edspencer.me.uk
https://edspencer.me.uk
https://edspencer.me.uk
https://edspencer.me.uk
https://edspencer.me.uk
https://edspencer.me.uk
https://edspencer.me.uk
https://edspencer.me.uk
http://authors.packtpub.com

Table of Contents
Preface 1

Section 1: Getting Started
Chapter 1: Understanding the ASP.NET Core React Template 9

Technical requirements 10
SPA architecture 10
Understanding the backend 11

Creating an ASP.NET Core and React templated app 12
Understanding the backend entry point 15
Understanding the Startup class 16

The ConfigureServices method 16
The Configure method 17

Custom middleware 18
Understanding controllers 20

Understanding the frontend 22
Understanding the frontend entry point 23
Running in development mode 24
Publishing process 27
Understanding the frontend dependencies 29
Understanding how the single page is served 31
Understanding how components fit together 33
Understanding how components access the backend web API 36

Summary 40
Questions 41
Further reading 42

Chapter 2: Creating Decoupled React and ASP.NET Core Apps 43
Technical requirements 44
Creating an ASP.NET Core Web API project 44
Creating a React and TypeScript app 49

Understanding the benefits of TypeScript 49
Creating the app with CRA 50

Adding linting to React and TypeScript 52
Configuring Visual Studio Code to lint TypeScript code 52
Configuring linting rules 53

Adding automatic code formatting to React and TypeScript 55
Adding Prettier 56

Summary 57
Questions 58

Table of Contents

[ii]

58Further reading
Section 2: Building a Frontend with React and
TypeScript
Chapter 3: Getting Started with React and TypeScript 60

Technical requirements 61
Understanding JSX 61
Creating function-based components 64

Creating a Header component 64
Creating our first component 64
Adding elements to the Header component 66
Creating a HomePage component 68
Creating mock data 69

Styling components 72
Styling using CSS class references 73
Understanding the benefits of CSS in JS 73
Installing Emotion 75
Styling the document body 76
Styling components using Emotion 76

Styling the App component 77
Styling the Header component 80
Styling the HomePage component 83

Implementing component props 86
Creating HomePage child components 86

Creating the QuestionList component 87
Creating the Question component 90
Wiring up the components 91

Optional and default props 92
Children prop 96
Function props 98

Implementing component state 101
Changing getUnansweredQuestions so that it's asynchronous 101
Using useEffect to execute logic 103
Using useState to implement component state 105

Handling events 111
Handling a button click event 111
Handling an input change event 112

Rendering optimization 114
Summary 116
Questions 117
Further reading 118

Chapter 4: Routing with React Router 119
Technical requirements 120
Installing React Router with types 120

Table of Contents

[iii]

Declaring routes 121
Creating some blank pages 121
Creating a component containing routes 122
Redirecting a route 125

Handling routes not found 126
Implementing links 128

Using the Link component 128
Navigating programmatically 129

Using route parameters 130
Adding the question page route 130
Implementing more of the question page 133
Creating an AnswerList component 138

Using query parameters 141
Lazy loading routes 145
Summary 148
Questions 149
Further reading 151

Chapter 5: Working with Forms 152
Technical requirements 152
Understanding controlled components 153
Reducing boilerplate code with generic components 156

Creating a Form component 156
Creating a Field component 158
Sharing state with a React context 161

Understanding a React context 161
Creating a form context 162
Creating a form context provider 162
Consuming the form context 163

Implementing the ask form 167
Implementing the answer form 168

Implementing validation 169
Adding validation rules to the Form component 170
Tracking validation errors with state 172
Invoking validation rules 174
Rendering validation errors 177
Implementing validation on the ask and answer forms 178

Submitting forms 180
Handling form submission 181
Implementing form submission in the search, ask, and answer forms 185

Implementing form submission in the search form 185
Implementing form submission in the ask form 186
Implementing form submission in the answer form 187
Trying out our forms 189

Summary 191

Table of Contents

[iv]

Questions 192
Further reading 193

Chapter 6: Managing State with Redux 194
Technical requirements 195
Understanding the Redux pattern 195

Principles 195
Key concepts 196

Installing Redux and Redux Thunk 198
Creating the state 199
Creating actions 200
Creating action creators 201

Implementing an action creator for getting unanswered questions 202
Implementing an action creator for posting a question 205
Implementing an action creator for clearing the posted question 206

Creating a reducer 206
Creating the store 211
Connecting components to the store 212

Adding a store provider 212
Connecting the home page 213
Connecting the ask page 216

Summary 221
Questions 222
Further reading 223

Section 3: Building an ASP.NET Core Backend
Chapter 7: Interacting with the Database with Dapper 225

Technical requirements 226
Implementing the database 226

Creating the database 227
Creating database tables 229
Creating stored procedures 231

Understanding what Dapper is and its benefits 232
Installing and configuring Dapper 233
Reading data using Dapper 235

Creating the repository class 235
Creating a repository method to get questions 239
Creating a repository method to get questions by a search 241
Creating a repository method to get unanswered questions 242
Creating a repository method to get a single question 243
Creating a repository method to check whether a question exists 246
Creating a repository method to get an answer 246

Writing data using Dapper 247
Adding methods to write data to the repository interface 247

Table of Contents

[v]

Creating a repository method to add a new question 247
Creating a repository method to change a question 248
Creating a repository method to delete a question 249
Creating a repository method to add an answer 250

Managing migrations using DbUp 251
Installing DbUp into our project 251
Configuring DbUp to do migrations on app startup 252
Embedding SQL Scripts in our project 254
Performing a database migration 256

Summary 259
Questions 260
Further reading 261

Chapter 8: Creating REST API Endpoints 262
Technical requirements 262
Creating an API controller 263

Creating an API controller for questions 263
Injecting the data repository into the API controller 265

Creating controller action methods 267
Creating an action method for getting questions 268
Extending the GetQuestions action method for searching 270
Creating an action method for getting unanswered questions 272
Creating an action method for getting a single question 273
Creating an action method for posting a question 276
Creating an action method for updating a question 279
Creating an action method for deleting a question 282
Creating an action method for posting an answer 284

Adding model validation 286
Adding validation to posting a question 287
Adding validation to updating a question 289
Adding validation to posting an answer 291

Removing unnecessary request fields 292
Removing unnecessary request fields from posting a question 293
Removing unnecessary request fields from posting an answer 295

Summary 298
Questions 298
Further reading 300

Chapter 9: Creating a Real-Time API with SignalR 301
Technical requirements 302
Understanding the benefits of SignalR 302
Creating a SignalR hub 303
Pushing data to SignalR clients from an API controller 309
Creating the SignalR real-time API endpoint 311
Interacting with the SignalR real-time API from React 312

Table of Contents

[vi]

Installing the SignalR client 312
Setting up the client connection 312
Stopping the client connection 317
Adding CORS to our backend 319
Mapping a question from the real-time API to React state 322

Summary 325
Questions 326
Further reading 326

Chapter 10: Improving Performance and Scalability 327
Technical requirements 328
Reducing database round trips 328

N+1 problem 329
Using WebSurge to load test our endpoint 331
Using Dapper multi-mapping to resolve the N+1 problem 334
Using Dapper multi results 337

Paging data 339
Adding test questions for the load test 340
Load testing the current implementation 340
Implementing data paging 342

Making API controllers asynchronous 345
Testing the current implementation 346
Implementing an asynchronous controller action method 348
Mixing asynchronous and synchronous code 350

Caching data 350
Load testing the current implementation 351
Implementing a data cache 351
Using the data cache in an API controller action method 354

Reducing garbage collection 358
Load testing the current implementation 358
Implementing custom model binding 362

Summary 364
Questions 365
Further reading 366

Chapter 11: Securing the Backend 367
Technical requirements 368
Understanding OIDC 368
Setting up Auth0 with our ASP.NET Core backend 371

Setting up Auth0 372
Configuring our ASP.NET Core backend to authenticate with Auth0 375

Protecting endpoints 377
Protecting endpoints with simple authorization 377
Protecting endpoints with a custom authorization policy 380

Using the authenticated user when posting questions and answers 387

Table of Contents

[vii]

Summary 390
Questions 391
Further reading 392

Chapter 12: Interacting with RESTful APIs 393
Technical requirements 393
Using fetch to interact with unauthenticated REST API endpoints 394

Getting unanswered questions from the REST API 395
Extracting out a generic HTTP function 398
Getting a question from the REST API 402
Searching questions with the REST API 404

Interacting with Auth0 from the frontend 405
Installing the Auth0 JavaScript client 406
Recapping the sign-in and sign-out flow 406
Creating the sign-in and sign-out routes 407
Implementing a central authentication context 408
Implementing the sign-in process 413
Implementing the sign-out process 415
Configuring Auth0 settings in our frontend 416
Testing the sign-in and sign-out processes 417

Controlling authenticated options 420
Displaying the relevant options in the header 420
Only allowing authenticated users to ask a question 422
Only allowing authenticated users to answer a question 425

Using fetch to interact with authenticated REST API endpoints 427
Posting a question to the REST API 428
Posting an answer to the REST API 431
Testing protected endpoints with Postman 432

Stopping a data state being set if the user navigates away from the
page 435
Summary 436
Questions 437
Further reading 438

Section 4: Moving into Production
Chapter 13: Adding Automated Tests 440

Technical requirements 441
Understanding the different types of automated test 441

Unit tests 442
End-to-end tests 443
Integration tests 443

Implementing .NET tests with xUnit 443
Getting started with xUnit 444
Testing controller action methods 447

Table of Contents

[viii]

Testing the action method to implement GetQuestions 449
Testing the action method to get a single question 454

Implementing React tests with Jest 456
Getting started with Jest 456

Testing React components 458
Testing the Page component 458
Testing the Question component 460
Testing the HomePage component 462

Implementing end-to-end tests with Cypress 465
Getting started with Cypress 466
Testing asking a question 469

Summary 475
Questions 476
Further reading 477

Chapter 14: Configuring and Deploying to Azure 478
Technical requirements 479
Getting started with Azure 480

Signing up to Azure 480
Understanding the Azure services we are going to use 481

Configuring the ASP.NET Core backend for staging and production 484
Publishing our ASP.NET Core backend to Azure 488

Publishing to production 488
Publishing to staging 492

Configuring the React frontend for staging and production 494
Publishing the React frontend to Azure 496

Publishing to production 497
Publishing to staging 501

Summary 503
Questions 504
Further reading 505

Chapter 15: Implementing CI and CD with Azure DevOps 506
Technical requirements 507
Getting started with CI and CD 507

Understanding CI and CD 508
Enabling our tests to run in CI and CD 509
Creating an Azure DevOps project 511

Implementing CI 515
Implementing CD 522

Deploying to staging 522
Deploying to production 527

Summary 531
Questions 532
Further reading 533

Table of Contents

[ix]

Assessments 534

Other Books You May Enjoy 559

Index 562

Preface
ASP.NET Core is an open source and cross-platform web application framework built by
Microsoft. It follows on from the hugely popular ASP.NET version 4, with significant
architectural changes making it much leaner and much more modular. ASP.NET Core is a
great choice for building highly performant backends that interact with databases such as
SQL Server that are hosted in the cloud, such as in Microsoft's cloud platform, Azure.

React was built by Facebook in order to improve the scalability of their code base, and was
eventually open sourced in 2013. React is now a massively popular library for building
component-based frontends and works fantastically well with many backend technologies,
including ASP.NET Core.

This book will teach you how you can use both these technologies to create secure and
performant single-page applications (SPAs) on top of SQL Server databases hosted in
Microsoft Azure.

Who this book is for
This book is primarily aimed at developers with an understanding of C# and a basic
knowledge of JavaScript and who are interested in building SPAs with ASP.NET Core and
React.

What this book covers
Chapter 1, Understanding the ASP.NET Core React Template, covers the standard SPA
template that ASP.NET Core offers for React apps. It covers the programmatic entry points
for both the frontend and backend and how they work together in the Visual Studio
solution.

Chapter 2, Creating Decoupled React and ASP.NET Core Apps, explains how a more up-to-
date ASP.NET Core and React solution can be created. This chapter includes the use of
TypeScript, which is hugely beneficial when creating large-scale frontends.

Chapter 3, Getting Started with React and TypeScript, covers the fundamentals of React, such
as JSX, props, state, and events. The chapter also covers how to create strongly typed
components with TypeScript.

Preface

[2]

Chapter 4, Routing with React Router, introduces a library that enables apps with multiple
pages to be efficiently created. It covers how to declare all the routes in an app and how
these map to React components, including routes with parameters.

Chapter 5, Working with Forms, covers how to build forms efficiently in React. Generic form
and field components are built step by step, which includes validation and submission.
These components are then used to rapidly build forms in an app.

Chapter 6, Managing State with Redux, steps through how this popular library can help
manage state across an app. A strongly typed Redux store is built along with actions and
reducers with the help of TypeScript.

Chapter 7, Interacting with the Database with Dapper, introduces a library that enables us to
interact with SQL Server databases in a performant manner. Both reading and writing to a
database are covered, including mapping SQL parameters and results with C# classes.

Chapter 8, Creating REST API Endpoints, covers how to create a REST API that interacts
with a data repository. Along the way, dependency injection, model binding, and model
validation are also covered.

Chapter 9, Creating a Real-Time API with SignalR, starts by covering how these APIs differ
from REST APIs. The chapter then covers how a React frontend can connect to a SignalR
API and automatically receive updates on areas of the database without making an HTTP
request.

Chapter 10, Improving Performance and Scalability, covers several ways of improving the
performance and scalability of the backend, including reducing database round trips,
making APIs asynchronous, and data caching. Along the way, several tools are used to
measure the impact of the improvements.

Chapter 11, Securing the Backend, leverages ASP.NET identity along with JSON web tokens
in order to add authentication to an ASP.NET Core backend. This chapter also covers the
protection of REST API endpoints through the use of standard and custom authorization
policies.

Chapter 12, Interacting with RESTful APIs, covers how a React frontend can talk to an
ASP.NET Core backend using the JavaScript fetch function. This chapter also covers how
a React frontend can gain access to protected REST API endpoints with a JSON web token.

Chapter 13, Adding Automated Tests, covers how to create a unit test and integration tests
on the ASP.NET Core backend using xUnit. This chapter also covers how to create tests on
pure JavaScript functions, as well as React components, using Jest.

Preface

[3]

Chapter 14, Configuring and Deploying to Azure, introduces Azure and then steps through
deploying both the backend and frontend to separate Azure app services. This chapter also
covers the deployment of a SQL Server database to SQL Azure.

Chapter 15, Implementing CI and CD with Azure DevOps, introduces Azure DevOps, before
stepping through the creation of a build pipeline that automatically triggers when code is
pushed to a source code repository. This chapter then examines setting up a release
pipeline that deploys the artifacts from the build into Azure.

To get the most out of this book
You need to know the fundamentals of C#, including the following:

How to create variables and reference them, including arrays and objects
How to create classes and use them
How to create conditional statements with the if and else keywords

You need to know the basics of JavaScript, including the following:

How to create variables and reference them, including arrays and objects
How to create functions and call them
How to create conditional statements with the if and else keywords

You need to know the basics of HTML, including the following:

Basic HTML tags, such as div, ul, p, a, h1, and h2, and how to compose them
together to create a web page
How to reference a CSS class to style an HTML element

You need to have an understanding of basic CSS, including the following:

How to size elements and include margins and padding
How to position elements
How to color elements

An understanding of basic SQL is helpful, but not essential.

Preface

[4]

You will need the following technologies installed on your computer:

Google Chrome: This can be installed at https:/ ​/ ​www.​google. ​com/ ​chrome/ ​.
Visual Studio 2019: This can be download and installed from https:/ ​/
visualstudio. ​microsoft. ​com/ ​vs/​.
.NET Core 3: This can be downloaded and installed from https:/ ​/​dotnet.
microsoft. ​com/ ​download/ ​dotnet- ​core.
Visual Studio Code: This can be downloaded and installed from https:/ ​/​code.
visualstudio. ​com/ ​.
Node.js and npm: This can be download and installed from https:/ ​/​nodejs.
org/​. If you already have these installed, make sure that Node.js is at least
version 8.2 and that npm is at least version 5.2.
SQL Server 2017 Express Edition: This can be downloaded and installed
from https:/ ​/​www. ​microsoft. ​com/​en- ​gb/​sql- ​server/ ​sql- ​server- ​editions-
express.
SQL Server Management Studio: This can be downloaded and installed
from https:/ ​/​docs. ​microsoft. ​com/​en- ​us/​sql/ ​ssms/ ​download- ​sql- ​server-
management- ​studio- ​ssms? ​view= ​sql- ​server- ​2017.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the Support tab.2.
Click on Code Downloads.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

https://www.google.com/chrome/
https://www.google.com/chrome/
https://www.google.com/chrome/
https://www.google.com/chrome/
https://www.google.com/chrome/
https://www.google.com/chrome/
https://www.google.com/chrome/
https://www.google.com/chrome/
https://www.google.com/chrome/
https://www.google.com/chrome/
https://www.google.com/chrome/
https://www.google.com/chrome/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://www.microsoft.com/en-gb/sql-server/sql-server-editions-express
https://www.microsoft.com/en-gb/sql-server/sql-server-editions-express
https://www.microsoft.com/en-gb/sql-server/sql-server-editions-express
https://www.microsoft.com/en-gb/sql-server/sql-server-editions-express
https://www.microsoft.com/en-gb/sql-server/sql-server-editions-express
https://www.microsoft.com/en-gb/sql-server/sql-server-editions-express
https://www.microsoft.com/en-gb/sql-server/sql-server-editions-express
https://www.microsoft.com/en-gb/sql-server/sql-server-editions-express
https://www.microsoft.com/en-gb/sql-server/sql-server-editions-express
https://www.microsoft.com/en-gb/sql-server/sql-server-editions-express
https://www.microsoft.com/en-gb/sql-server/sql-server-editions-express
https://www.microsoft.com/en-gb/sql-server/sql-server-editions-express
https://www.microsoft.com/en-gb/sql-server/sql-server-editions-express
https://www.microsoft.com/en-gb/sql-server/sql-server-editions-express
https://www.microsoft.com/en-gb/sql-server/sql-server-editions-express
https://www.microsoft.com/en-gb/sql-server/sql-server-editions-express
https://www.microsoft.com/en-gb/sql-server/sql-server-editions-express
https://www.microsoft.com/en-gb/sql-server/sql-server-editions-express
https://www.microsoft.com/en-gb/sql-server/sql-server-editions-express
https://www.microsoft.com/en-gb/sql-server/sql-server-editions-express
https://www.microsoft.com/en-gb/sql-server/sql-server-editions-express
https://www.microsoft.com/en-gb/sql-server/sql-server-editions-express
https://www.microsoft.com/en-gb/sql-server/sql-server-editions-express
https://www.microsoft.com/en-gb/sql-server/sql-server-editions-express
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
http://www.packt.com
https://www.packtpub.com/support
http://www.packt.com

Preface

[5]

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​ASP. ​NET- ​Core- ​3- ​and- ​React- ​17. In case there's an update to the code, it
will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ ​/​static. ​packt- ​cdn. ​com/​downloads/
9781789950229_​ColorImages. ​pdf.

Code in Action
Visit the following link to check out videos of the code being run:

http:/​/​bit.​ly/​2sZjjlp

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Let's create a file called .eslintrc.json in the frontend folder with the
following code."

A block of code is set as follows:

{
 "extends": "react-app"
}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

const App: React.FC = () => {
 const unused = 'something';
 return (
 ...
);
};

https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781789950229_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789950229_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789950229_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789950229_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789950229_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789950229_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789950229_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789950229_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789950229_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789950229_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789950229_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789950229_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789950229_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789950229_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789950229_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789950229_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789950229_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789950229_ColorImages.pdf
http://bit.ly/2sZjjlp
http://bit.ly/2sZjjlp
http://bit.ly/2sZjjlp
http://bit.ly/2sZjjlp
http://bit.ly/2sZjjlp
http://bit.ly/2sZjjlp
http://bit.ly/2sZjjlp
http://bit.ly/2sZjjlp
http://bit.ly/2sZjjlp

Preface

[6]

Any command-line input or output is written as follows:

> cd frontend
> npm start

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Click on the Install button to install the extension and then the Reload button to complete
the installation."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

https://www.packtpub.com/support/errata
http://authors.packtpub.com/

Preface

[7]

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/

1
Section 1: Getting Started

This section provides a high-level introduction to ASP.NET Core and React and how to
create projects that enable them to work well together. We will create the project for the app
that we'll build throughout this book, which will allow users to submit questions and other
users to submit answers to them—a Q&A app.

This section comprises the following chapters:

Chapter 1, Understanding the ASP.NET Core React Template
Chapter 2, Creating Decoupled React and ASP.NET Core Apps

1
Understanding the ASP.NET

Core React Template
React was Facebook's answer to helping more people work on the Facebook code base and
deliver features quicker. React worked so well for Facebook that they eventually open
sourced it (https:/ ​/ ​github. ​com/ ​facebook/ ​react). Today, React is a mature library for
building component-based frontends (client-side code that runs in the browser); it is
extremely popular and has a massive community and ecosystem. At the time of writing,
React is downloaded over 5.8 million times per day, which has more than doubled in the
last year.

ASP.NET Core was first released in 2016 and is now a mature open source and cross-
platform web application framework. It's an excellent choice for building backends
(application code that runs on the server) that interact with databases such as SQL Server. It
also works well in cloud platforms such as Microsoft Azure.

In this first chapter, we'll start by learning about the single-page application (SPA)
architecture. Then, we'll create an ASP.NET Core and React app using the standard
template in Visual Studio. We will use this to review and understand the critical parts of a
React and ASP.NET Core app. We'll learn where the entry points of both the ASP.NET Core
and React apps are and how they integrate with each other. We'll also learn how Visual
Studio runs both the frontend and backend together in development mode, as well as how
it packages them up, ready for production. By the end of this chapter, we'll have gained
fundamental knowledge so that we can start building an app that uses both of these
awesome technologies, and that we'll gradually build throughout this book.

In this chapter, we'll cover the following topics:

SPA architecture
Understanding the backend
Understanding the frontend

https://github.com/facebook/react
https://github.com/facebook/react
https://github.com/facebook/react
https://github.com/facebook/react
https://github.com/facebook/react
https://github.com/facebook/react
https://github.com/facebook/react
https://github.com/facebook/react
https://github.com/facebook/react
https://github.com/facebook/react
https://github.com/facebook/react

Understanding the ASP.NET Core React Template Chapter 1

[10]

Technical requirements
We'll use the following tools in this chapter:

Visual Studio 2019: This can be downloaded and installed from https:/ ​/
visualstudio. ​microsoft. ​com/ ​vs/​. Make sure that the following features are
selected in the installer:

ASP.NET and web development
Azure development
Node.js development

.NET Core 3.0: This can be downloaded and installed from https:/ ​/​dotnet.
microsoft. ​com/ ​download/ ​dotnet- ​core.
Node.js and npm: These can be downloaded from https:/ ​/​nodejs. ​org/​.

All the code snippets in this chapter can be found online at https:/ ​/​github. ​com/
PacktPublishing/​ASP. ​NET- ​Core- ​3- ​and- ​React- ​17. In order to restore code from this
chapter, the source code repository should be downloaded and the project in the
Chapter01 folder should be opened in Visual Studio.

Check out the following video to see the code in action:

http:/​/​bit.​ly/​2ZpsqaZ

SPA architecture
An SPA is a web app that loads a single HTML page that is dynamically updated by
JavaScript as the user interacts with the app. Imagine a simple sign-up form where a user
can enter a name and an email address. Once the user fills out and submits the form, a
whole page refresh doesn't occur. Instead, some JavaScript in the browser handles the form
submission with an HTTP POST request and then updates the page with the result of the
request. Refer to the following diagram:

https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
http://bit.ly/2ZpsqaZ
http://bit.ly/2ZpsqaZ
http://bit.ly/2ZpsqaZ
http://bit.ly/2ZpsqaZ
http://bit.ly/2ZpsqaZ
http://bit.ly/2ZpsqaZ
http://bit.ly/2ZpsqaZ
http://bit.ly/2ZpsqaZ
http://bit.ly/2ZpsqaZ

Understanding the ASP.NET Core React Template Chapter 1

[11]

So, after the first HTTP request that returns the single HTML page, subsequent HTTP
requests are only for data and not HTML markup. All the pages are rendered in the client's
browser by JavaScript.

So, how are different pages with different URL paths handled? For example, if I enter
https://qanda/questions/32139 in the browser's address bar, how does it go to the
correct page in the app? Well, the browser's history API lets us change the browser's URL
and handle changes in JavaScript. This process is often referred to as routing and,
in Chapter 4, Routing with React Router, we'll learn how we can build apps with different
pages.

The SPA architecture is what we are going to use throughout this book. We'll use React to
render our frontend and ASP.NET Core for the backend API.

Now that we have a basic understanding of the SPA architecture, we'll take a closer look at
a SPA-templated app that Visual Studio can create for us.

Understanding the backend
In this section, we are going to start by creating an ASP.NET Core and React app using the
standard template in Visual Studio. This template is perfect for us to review and
understand basic backend components in an ASP.NET Core SPA.

Understanding the ASP.NET Core React Template Chapter 1

[12]

Creating an ASP.NET Core and React templated
app
Let's open Visual Studio and carry out the following steps to create our templated app:

In the start-up dialog, choose Create a new project:1.

Next, choose ASP.NET Core Web Application in the wizard that opens and click2.
the Next button:

Understanding the ASP.NET Core React Template Chapter 1

[13]

Give the project a name of your choice and choose an appropriate location to3.
save the project to. Click the Create button to create the project:

Understanding the ASP.NET Core React Template Chapter 1

[14]

Another dialog will appear that allows us to specify the version of ASP.NET Core4.
we want to use, as well as the specific type of project we want to create. Select
ASP.NET Core 3.0 as the version and React.js in the dialog, and then click the
Create button, which will create the project:

If ASP.NET Core 3.0 isn't listed, make sure the latest version of Visual
Studio is installed. This can be done by choosing the Check for Updates
option on the Help menu.

Now that the project has been created, let's press F5 to run the app. After a5.
minute or so, the app will appear in a browser:

Understanding the ASP.NET Core React Template Chapter 1

[15]

We'll find out later in the chapter why the app took so long to run the first
time. Great—we've created the ASP.NET Core React SPA. Now, let's inspect the backend
code.

Understanding the backend entry point
An ASP.NET Core app is a console app that creates a web server. The entry point for the
app is a method called Main in a class called Program, which can be found in the
Program.cs file in the root of the project:

public class Program
{
 public static void Main(string[] args)
 {
 CreateWebHostBuilder(args).Build().Run();
 }

 public static IWebHostBuilder CreateWebHostBuilder(string[] args)
 =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>();
}

Understanding the ASP.NET Core React Template Chapter 1

[16]

This method creates a web host using WebHost.CreateDefaultBuilder, which
configures items such as the following:

The location of the root of the web content
Where the settings are for items such as the database connection string
The logging level and where the logs are output

We can override the default builder using fluent APIs, which start with Use. For example,
to adjust the root of the web content, we can add the highlighted line in the following
snippet:

public static IWebHostBuilder CreateWebHostBuilder(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseContentRoot("some-path")
 .UseStartup<Startup>();

The last thing that is specified in the builder is the Startup class, which we'll look at in the
following section.

Understanding the Startup class
The Startup class is found in Startup.cs and configures the services that the app uses,
as well as the request/response pipeline.

The ConfigureServices method
Services are configured using a method called ConfigureServices. It is this method we
will use to register items such as the following:

Our authentication user model and password policy
Our authorization policies
Whether we want to use MVC to handle requests
Whether we want to enable CORS
Our own classes that need to be available in dependency injection

Services are added by calling methods on the services parameter and, generally, start
with Add. Notice the call to the AddSpaStaticFiles method in the following code
snippet:

public void ConfigureServices(IServiceCollection services)
{0

Understanding the ASP.NET Core React Template Chapter 1

[17]

 services.AddControllersWithViews();

 services.AddSpaStaticFiles(configuration =>
 {
 configuration.RootPath = "ClientApp/build";
 });
}

This is a key part of how the React app is integrated into ASP.NET Core in production
because this specifies the location of the React app.

It is important to understand that the ASP.NET Core app runs on the
server, with the React app running on the client in the browser. The
ASP.NET Core app simply serves the files in the ClientApp/Build
folder without any interpretation or manipulation.

The ClientApp/Build files are only used in production mode, though. Next, we'll find out
how the React app is integrated into ASP.NET Core in development mode next.

The Configure method
When a request comes into ASP.NET Core, it goes through what is called
the request/response pipeline, where some middleware code is executed. This pipeline is
configured using a method called Configure. It is this method we will use to define
exactly which middleware is executed and in what order. Middleware code is invoked by
methods that generally start with Use in the app parameter. So, we would typically specify
middleware such as authentication early in the Configure method, and MVC middleware
toward the end. The pipeline that the template created is as follows:

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
 ...
 app.UseStaticFiles();
 app.UseSpaStaticFiles();
 app.UseRouting();
 app.UseEndpoints(...);

 app.UseSpa(spa =>
 {
 spa.Options.SourcePath = "ClientApp";

 if (env.IsDevelopment())
 {
 spa.UseReactDevelopmentServer(npmScript: "start");
 }

Understanding the ASP.NET Core React Template Chapter 1

[18]

 });
}

Notice that a method called UseSpaStaticFiles is called in the pipeline, just before the
routing and endpoints are set up. This allows the host to serve the React app, as well as the
web API.

Also, notice that a UseSpa method is called after the endpoint middleware. This is the
middleware that will handle requests to the React app, which will simply serve the single
page in the React app. It is placed after UseEndpoints so that requests to the web API take
precedence over requests to the React app.

The UseSpa method has a parameter that is actually a function that executes when the app
is first run. This function contains a branch of logic that calls
spa.UseReactDevelopmentServer(npmScript: "start") if you're in development
mode. This tells ASP.NET Core to use a development server by running npm start. We'll
delve into the npm start command later in this chapter. So, in development mode, the
React app will be run on a development server rather than ASP.NET Core serving the files
from ClientApp/Build. We'll learn more about this development server later in this
chapter.

Custom middleware
We can create our own middleware using a class such as the following one. This
middleware logs information about every single request that is handled by the ASP.NET
Core app:

public class CustomLogger
{
 private readonly RequestDelegate _next;

 public CustomLogger(RequestDelegate next)
 {
 _next = next ?? throw new ArgumentNullException(nameof(next));
 }

 public async Task Invoke(HttpContext httpContext)
 {
 if (httpContext == null) throw new
 ArgumentNullException(nameof(httpContext));

 // TODO - log the request

 await _next(httpContext);

Understanding the ASP.NET Core React Template Chapter 1

[19]

 // TODO - log the response
 }
}

This class contains a method called Invoke, which is the code that is executed in the
request/response pipeline. The next method to call in the pipeline is passed into the class
and held in the _next variable, which we need to invoke at the appropriate point in our
Invoke method. The preceding example is a skeleton class for a custom logger. We would
log the request details at the start of the Invoke method and log the response
details after the _next delegate has been executed, which will be when the rest of the
pipeline has been executed.

The following diagram is a visualization of the request/response pipeline and shows how
each piece of middleware in the pipeline is invoked:

We make our middleware available as an extension method on the
IApplicationBuilder interface in a new source file:

public static class MiddlewareExtensions
{
 public static IApplicationBuilder UseCustomLogger(this
 IApplicationBuilder app)
 {
 return app.UseMiddleware<CustomLogger>();
 }
}

The UseMiddleware method in IApplicationBuilder is used to register the middleware
class. The middleware will now be available in an instance of IApplicationBuilder in a
method called UseCustomLogger.

Understanding the ASP.NET Core React Template Chapter 1

[20]

So, the middleware can be added to the pipeline in the Configure method in the Startup
class, as follows:

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
 app.UseCustomLogger();

 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseExceptionHandler("/Error");
 app.UseHsts();
 }

 app.UseHttpsRedirection();
 app.UseStaticFiles();
 app.UseSpaStaticFiles();

 app.UseMvc(...);

 app.UseSpa(...);
}

In the previous example, the custom logger is invoked at the start of the pipeline so that the
request is logged before it is handled by any other middleware. The response that is logged
in our middleware will have been handled by all the other middleware as well.

So, the Startup class allows us to configure how all requests are generally handled. How
can we specify exactly what happens when requests are made to a specific resource in a
web API? Let's find out.

Understanding controllers
Web API resources are implemented using controllers. Let's have a look at the controller
the template project created by opening WeatherForecastController.cs. This contains
a class called WeatherForecastController that inherits from ControllerBase with a
Route annotation:

[ApiController]
[Route("[controller]")]
public class WeatherForecastController : ControllerBase
{

Understanding the ASP.NET Core React Template Chapter 1

[21]

 ...
}

The annotation specifies the web API resource URL that the controller handles.
The [controller] object is a placeholder for the controller name, minus the word
Controller. This controller will handle requests to weatherforecast.

The method called Get in the class is called an action method. Action methods handle
specific requests to the resource for a specific HTTP method and subpath. We decorate the
method with an attribute to specify the HTTP method and subpath the method handles. In
our example, we are handling an HTTP GET request to the root path
(weatherforecast) on the resource:

[HttpGet]
public IEnumerable<WeatherForecast> Get()
{
 ...
}

Let's have a closer look at the web API at runtime by carrying out the following steps:

Run the app in Visual Studio by pressing F5.1.
When the app has opened in our browser, press F12 to open the browser2.
developer tools and select the Network panel.
Select the Fetch data option on the top navigation bar. An HTTP GET request to3.
weatherforecast will be shown:

Understanding the ASP.NET Core React Template Chapter 1

[22]

An HTTP response with a 200 status code is returned with JSON content:4.

If we look back at the Get action method, we are returning an object of
the IEnumerable<WeatherForecast> type. The MVC middleware automatically converts
this object into JSON and puts it in the response body with a 200 status code for us.

So, that was a quick look at the backend that the template scaffolded for us. In the next
section, we'll walk through the React frontend.

Understanding the frontend
It's time to turn our attention to the React frontend. In this section, we'll discover where the
single HTML page is that hosts the React app. We'll also understand why it took over a
minute to run the app for the first time.

Understanding the ASP.NET Core React Template Chapter 1

[23]

Understanding the frontend entry point
We have a good clue as to where the entry point is from our examination of
the Startup class in the ASP.NET Core backend. In the Configure method, the SPA
middleware is set up with the source path as ClientApp:

app.UseSpa(spa =>
{
 spa.Options.SourcePath = "ClientApp";

 if (env.IsDevelopment())
 {
 spa.UseReactDevelopmentServer(npmScript: "start");
 }
});

If we look in the ClientApp folder, we'll see a file called package.json. This is a file that
is often used in React apps and contains information about the project, its npm
dependencies, and the scripts that can be run to perform tasks.

npm is a popular package manager for JavaScript. The dependencies in
package.json reference packages in the npm registry.

If we open the package.json file, we will see react listed as a dependency:

"dependencies": {
 "react": "^16.0.0",
 "react-scripts": "^3.0.1",
 ...
},

So, we are definitely in the right place! The react-scripts dependency gives us a big clue
as to how exactly React was scaffolded. react-scripts is a set of scripts from the popular
Create React App (CRA) tool that was built by the developers at Facebook. This tool has
done a huge amount of configuration for us, including a development server, bundling,
linting, and unit testing. We'll learn more about CRA in the next chapter.

The root HTML page for an app scaffolded by CRA is index.html, which can be found in
the public folder in the ClientApp folder. It is this page that hosts the React app. The root
JavaScript file that is executed for an app scaffolded by CRA is index.js, which is in the
ClientApp folder. We'll examine both the index.html and index.js files later in this
chapter.

Understanding the ASP.NET Core React Template Chapter 1

[24]

Running in development mode
In the following steps, we'll examine the ASP.NET Core project file to see what happens
when the app runs in development mode:

We can open the project file by right-clicking on the web application project1.
in Solution Explorer and selecting the Edit Project File option:

This is an XML file that contains information about the Visual Studio project.

Let's look at the Target element, which has a Name attribute of2.
DebugEnsureNodeEnv:

<Target Name="DebugEnsureNodeEnv" BeforeTargets="Build" Condition="
'$(Configuration)' == 'Debug' And !Exists('$(SpaRoot)node_modules')
">
 <!-- Ensure Node.js is installed -->
 <Exec Command="node --version" ContinueOnError="true">
 <Output TaskParameter="ExitCode" PropertyName="ErrorCode" />
 </Exec>
 <Error Condition="'$(ErrorCode)' != '0'" Text="Node.js is

Understanding the ASP.NET Core React Template Chapter 1

[25]

required to
 build and run this project. To continue, please install Node.js
from
 https://nodejs.org/, and then restart your command prompt or
IDE."
 />
 <Message Importance="high" Text="Restoring dependencies using
'npm'.
 This may take several minutes..." />
 <Exec WorkingDirectory="$(SpaRoot)" Command="npm install" />
</Target>

This executes tasks when the ClientApp/node-modules folder doesn't exist and
the Visual Studio project is run in debug mode, which is the mode that's used
when we press F5.

The first task that is run in the Target element is the execution of the following3.
command via an Exec task:

> node --version

This command returns the version of Node that is installed. This may seem like
an odd thing to do, but its purpose is to determine whether node is installed. If
node is not installed, the command will error and be caught by the Error task,
which informs the user that Node needs to the installed and where to install it
from.

The next task in the Target element uses a Message command, which4.
outputs Restoring dependencies using 'npm'. This may take
several minutes... to the Output window. We'll see this message when
running the project for the first time:

The final task that is carried out when the project is run in debug mode is another5.
Exec task that executes the following npm command:

> npm install

Understanding the ASP.NET Core React Template Chapter 1

[26]

This command downloads all the packages that are listed as dependencies in
package.json into a folder called node_modules:

We can see this in Solution Explorer if the Show All Files option is on. Notice
that there are a lot more folders in node_modules than dependencies listed in
package.json. This is because the dependencies will have dependencies. So, the
packages in node_modules are all the dependencies in the dependency tree.

At the start of this section, we asked ourselves the question: Why did it take such a long
time for the project to run the app for the first time? The answer is that this last task takes a
while because there are a lot of dependencies to download and install. On subsequent runs,
node_modules will have been created, so these sets of tasks won't get invoked.

Earlier in this chapter, we learned that ASP.NET Core invokes an npm start command
when the app is in development mode. If we look at the scripts section in
package.json, we'll see the definition of this command:

"scripts": {
 "start": "rimraf ./build && react-scripts start",
 ...
}

Understanding the ASP.NET Core React Template Chapter 1

[27]

This command deletes a folder called build and runs a Webpack development server.

Webpack is a tool that transforms, bundles, and packages up files for use
in a browser. Webpack also has a development server. The CRA tool has
configured Webpack for us so that all the transformation and the
bundling configuration are already set up for us.

Why would we want to use the Webpack development server when we already have our
ASP.NET Core backend running in IIS Express? The answer is a shortened feedback loop
which will increase our productivity. Later, we'll see that we can make a change to a React
app running in the Webpack development server and that those changes are automatically
loaded. There is no stopping and restarting the application, and so there's a really
quick feedback loop and great productivity.

Publishing process
The publishing process is the process of building artifacts to run an application in a
production environment.

Let's carry on and inspect the XML ASP.NET Core project file and look at
the Target element, which has the following Name attribute: PublishRunWebPack. The
following code executes a set of tasks when the Visual Studio project is published:

<Target Name="PublishRunWebpack" AfterTargets="ComputeFilesToPublish">
 <!-- As part of publishing, ensure the JS resources are freshly built
 in production mode -->
 <Exec WorkingDirectory="$(SpaRoot)" Command="npm install" />
 <Exec WorkingDirectory="$(SpaRoot)" Command="npm run build" />

 <!-- Include the newly-built files in the publish output -->
 <ItemGroup>
 <DistFiles Include="$(SpaRoot)build**" />
 <ResolvedFileToPublish Include="@(DistFiles->'%(FullPath)')"
 Exclude="@(ResolvedFileToPublish)">
 <RelativePath>%(DistFiles.Identity)</RelativePath>
 <CopyToPublishDirectory>PreserveNewest</CopyToPublishDirectory>
 </ResolvedFileToPublish>
 </ItemGroup>
</Target>

Understanding the ASP.NET Core React Template Chapter 1

[28]

The first task that is run is the execution of the npm install command via an Exec task.
This will ensure that all the dependencies are downloaded and installed. Obviously, if
we've already run our project in debug mode, then the dependencies should already be in
place.

The next task is an Exec task that runs the following npm command:

> npm run build

This task will run an npm script called build. If we look in the package.json file again,
we'll see this script in the scripts section:

"scripts": {
 "start": "rimraf ./build && react-scripts start",
 "build": "react-scripts build",
 "test": "cross-env CI=true react-scripts test --env=jsdom",
 "eject": "react-scripts eject",
 "lint": "eslint ./src/"
}

This references the create-react-app scripts, which bundle the React app ready for
production, optimizing it for great performance, and outputting the content into a folder
called build.

The next set of tasks defined in the ItemGroup element take their content from the build
folder and place it in the publish location, along with the rest of the content to publish.

Let's give this a try and publish our app:

In Solution Explorer, right-click on the project and select the Publish... option.1.
Choose Folder as the target and enter a folder to output the content to.2.
Click the Publish drop-down menu and then choose the Publish3.
immediately option to start the publishing process:

Understanding the ASP.NET Core React Template Chapter 1

[29]

After a while, we'll see the content appear in the folder we specified, including a
ClientApp folder. If we look in this ClientApp folder, we'll see a build folder containing
the React app, ready to be run in a production environment. Notice that the build folder
contains index.html, which is the single page that will host the React app in production.

It is important to note that publishing from a developer's machine is not
ideal. Instead, it is good practice to carry out this process on a build
server to make sure that built applications are consistent, and code
committed to the repository goes into the build. We'll cover this in
Chapter 15, Implementing CI and CD in Azure DevOps.

Understanding the frontend dependencies
Earlier, we learned that frontend dependencies are defined in package.json. Why not just
list all the dependencies as script tags in index.html? Why do we need the extra
complexity of npm package management in our project? The answer is that a long list of
dependencies is hard to manage. If we used script tags, we'd need to make sure these are
ordered correctly. We'd also be responsible for downloading the packages, placing them
locally in our project, and keeping them up to date. We have a huge list of dependencies in
our scaffolded project already, without starting work on any functionality in our app. For
these reasons, managing dependencies with npm has become an industry standard.

Understanding the ASP.NET Core React Template Chapter 1

[30]

Let's open package.json again and look at the dependencies section:

"dependencies": {
 "bootstrap": "^4.1.3",
 "jquery": "3.4.1",
 "merge": "^1.2.1",
 "oidc-client": "^1.9.0",
 "react": "^16.0.0",
 "react-dom": "^16.0.0",
 "react-router-bootstrap": "^0.24.4",
 "react-router-dom": "^4.2.2",
 "react-scripts": "^3.0.1",
 "reactstrap": "^6.3.0",
 "rimraf": "^2.6.2"
},

We've already observed the react dependency, but what is the react-dom dependency?
Well, React doesn't just target the web; it also targets native mobile apps. This means
that react is the core React library that is used for both web and mobile, and react-dom is
the library that's specified for targeting the web.

The react-router-dom package is the npm package for React Router and helps us
to manage the different pages in our app in the React frontend without a round-trip to the
server. We'll learn more about React Router in Chapter 4, Routing with React
Router. The react-router-bootstrap package allows Bootstrap to work nicely with
React Router.

We can see that this React app has a dependency for Bootstrap 4.1 with the bootstrap npm
package. So, Bootstrap CSS classes and components can be referenced to build the frontend
in our project. The reactstrap package is an additional package that allows us to
consume Bootstrap nicely in React apps. Bootstrap 4.1 has a dependency on jQuery, which
is the reason for the jquery package dependency.

The merge package contains a function that merges objects together and oidc-client is a
package for interacting with OpenID Connect (OIDC) and OAuth2. We'll make use of the
oidc-client package in Chapter 11, Securing the Backend.

The final dependency that we haven't covered yet is rimraf. This simply allows files to be
deleted, regardless of the host operating system. We can see that this is referenced in the
start script:

"scripts": {
 "start": "rimraf ./build && react-scripts start",
 ...
}

Understanding the ASP.NET Core React Template Chapter 1

[31]

Earlier in this chapter, we learned that this script is invoked when our app is running in
development mode. So, rimraf ./build deletes the build folder and its contents before
the development server starts.

If we look further down, we'll see a section called devDependencies. These are
dependencies that are only used during development and not in production:

"devDependencies": {
 "ajv": "^6.9.1",
 "babel-eslint": "^10.0.1",
 "cross-env": "^5.2.0",
 "eslint": "^5.12.0",
 "eslint-config-react-app": "^4.0.1",
 "eslint-plugin-flowtype": "^2.0.0",
 "eslint-plugin-import": "^2.14.0",
 "eslint-plugin-jsx-a11y": "^6.2.1",
 "eslint-plugin-react": "^7.11.1"
},

The following is a brief description of these dependencies:

ajv allows us to validate JSON files.
cross-env allows us to set environment variables, regardless of the host
operating system. If you look at the test script in the scripts section of the
package.json file, it uses cross-env to set a CI environment variable.
The remaining dependencies are all designed to enable linting with ESLint. The
linting process checks for problematic patterns in code according to a set of rules.
We'll learn more about ESLint in Chapter 3, Getting Started with React and
TypeScript.

Let's move on and learn how the single page is served and how the React app is injected
into it.

Understanding how the single page is served
We know that the single page that hosts the React app is index.html, so let's examine this
file. This file is found in the public folder in the ClientApp folder. The React app will be
injected into the div tag that has an id of root:

<div id="root"></div>

Understanding the ASP.NET Core React Template Chapter 1

[32]

Let's run our app again in Visual Studio to confirm that this is the case by pressing F5. If we
open the developer tools in the browser page that opens and inspect the DOM in the
Elements panel, we'll see this div with the React content inside it:

Notice the script tag at the bottom of the body tag. This contains all the JavaScript code
for our React app, including the React library itself. However, this script tag doesn't exist
in the source index.html file, so how did it get there in the served page? Webpack added
it after bundling all the JavaScript together into bundle.js. If we look in
the ClientApp folder and subfolders, the static folder doesn't exist. The bundle.js file
doesn't exist either. What's going on? These are virtual files that are created by the Webpack
development server. Remember that, when we run the app with Visual Studio debugger,
the Webpack development server serves index.html. So, bundle.js is a virtual file that
the Webpack development server creates.

Understanding the ASP.NET Core React Template Chapter 1

[33]

Now, what happens in production mode when the Webpack development server isn't
running? Let's have a closer look at the app we published earlier in this chapter. Let's look
in the index.html file in the Build folder in the ClientApp folder. The script tag at the
bottom of the body tag will look something like the following:

<script src="/static/js/main.eebeebd5.js"></script>

The highlighted part of the filename will vary each time the app is published. The filename
is unique for each build in order to break browser caching. If we look for this JavaScript file
in our project, we'll find that it does exist. So, in production mode, the web server will serve
this physical JavaScript file.

If we open this JavaScript file, it contains all the JavaScript for our app. The JavaScript is
minified so that the file can be downloaded to the browser nice and quick.

Minification is the process of removing unnecessary characters in files
without affecting how it is processed by the browser. This includes code
comments and formatting, unused code, using shorter variable and
function names, and so on.

However, the file isn't small and contains a lot of JavaScript. What's going on here? Well,
the file contains not only our JavaScript app code but also the code from all the
dependencies, including React itself.

Understanding how components fit together
Now it's time to start looking at the React app code and how components are implemented.
Remember that the root JavaScript file is index.js in the ClientApp folder. Let's open this
file and look closely at the following block of code:

const rootElement = document.getElementById('root');

ReactDOM.render(
<BrowserRouter basename={baseUrl}>
 <App />
</BrowserRouter>,
rootElement);

The first statement selects the div tag we discovered earlier, which has the root ID and
stores it in a variable called rootElement.

Understanding the ASP.NET Core React Template Chapter 1

[34]

The next statement extends over multiple lines and calls the render function from the
React DOM library. It is this function that injects the React app content into the root div
tag. The rootElement variable, which contains a reference to the root div tag, is passed
into this function as the second parameter.

The first parameter that is passed into the render function is more interesting. In fact, it
doesn't even look like legal JavaScript! This is, in fact, JSX, which we'll learn about in detail
in Chapter 3, Getting Started with React and TypeScript.

JSX is transformed into regular JavaScript by Webpack using a tool called
Babel. This is one of many tasks that CRA configured for us when our app
was scaffolded.

So, the first parameter passes in the root React component called BrowserRouter, which
comes from the React Router library. We'll learn more about this component in Chapter 4,
Routing with React Router.

Nested inside the BrowserRouter component is a component called App. If we look at the
top of the index.js file, we can see that the App component is imported from a file called
App.js:

import App from './App';

import statement is used to import items that are exported by another
JavaScript module. The module is specified by its file location, with the js
extension omitted.

The import statements that import items from npm packages don't need
the path to be specified because CRA has configured a resolver in
Webpack to automatically look in the node_modules folder during the
bundling process.

So, the App component is contained in the App.js file. Let's have a look at this file. A class
called App is defined in this file:

export default class App extends Component {
 static displayName = App.name;

 render () {
 return (
 <Layout>
 <Route exact path='/' component={Home} />
 <Route path='/counter' component={Counter} />

Understanding the ASP.NET Core React Template Chapter 1

[35]

 <Route path='/fetch-data' component={FetchData} />
 </Layout>
);
 }
}

Notice the export and default keywords before the class keyword.

The export keyword is used to export an item from a JavaScript module.
The default keyword defines the export as the default export, which
means it can be imported without curly braces. So, a default export can be
imported as import App from './App' rather than import {App}
from './App'.

A method called render defines the output of the component. This method returns JSX,
which, in this case, references a Layout component in our app code and a Route
component from React Router.

So, we are starting to understand how React components can be composed together to form
a UI.

Let's now start to go through the React development experience by making a simple
change:

Run the app in Visual Studio by pressing F5 if it's not already running.1.
Open up the Home.js file, which can be found at ClientApp\src\components.2.
This contains the component that renders the home page.
With the app still running, in the render method, change the h1 tag in the JSX to3.
render a different string:

render () {
 return (
 <div>
 <h1>Hello, React!</h1>
 <p>Welcome to your new single-page application, built with:
 </p>
 ...
 </div>
);
}

Understanding the ASP.NET Core React Template Chapter 1

[36]

Save the file and look at the running app:4.

The app is automatically updated with our change. The Webpack development server
automatically updated the running app with the change when the file was saved. The
experience of seeing our changes implemented almost immediately gives us a really
productive experience when developing our React frontend.

Understanding how components access the
backend web API
The final topic in this chapter is how the React frontend consumes the backend web API. If
the app isn't running, then run it by pressing F5 in Visual Studio. If we click on the Fetch
data option in the top navigation bar in the app that opens in the browser, we'll see a page
showing weather forecasts:

Understanding the ASP.NET Core React Template Chapter 1

[37]

If we cast our minds back to earlier in this chapter, in the Understanding controllers section,
we looked at the ASP.NET Core controller that surfaced a web API that exposed this data
at weatherforecast. So, this is a great place to have a quick look at how a React app can
call an ASP.NET Core web API.

The component that renders this page is in FetchData.js. Let's open this file and look at
the constructor class:

constructor (props) {
 super(props);
 this.state = { forecasts: [], loading: true };
}

The constructor in a JavaScript class is a special method that
automatically gets invoked when a class instance is created. So, it's a great
place to initialize class-level variables.

The constructor initializes some component state which contains the weather forecast data
and a flag to indicate whether the data is being fetched. We'll learn more about component
state in Chapter 3, Getting Started with React and TypeScript.

Let's have a look at the componentDidMount method:

componentDidMount() {
 this.populateWeatherData();
}

This method gets invoked by React when the component is inserted into the tree and is the
perfect place to load data. This method calls a populateWeatherData method, so, let's
have a look at that:

async populateWeatherData() {
 const response = await fetch('weatherforecast');
 const data = await response.json();
 this.setState({ forecasts: data, loading: false });
}

Notice the async keyword before the populateWeatherData function name. Notice also
the await keywords within the function.

Understanding the ASP.NET Core React Template Chapter 1

[38]

An await keyword is used to wait for an asynchronous function to
complete. A function must be declared as asynchronous in order to use
the await keyword within. This is done by placing an async keyword in
front of the function name. This is very much like async and await in
.NET.

We can see that a function called fetch is used within this method.

The fetch function is a native JavaScript function for interacting with
web APIs. The fetch function supersedes XMLHttpRequest and works a
lot nicer with JSON-based web APIs.

The parameter that's passed into the fetch function is the path to the web API
resource: weatherforecast. A relative path can be used because the React app and web
API are in the same origin.

Once the weather forecast data has been fetched from the web API and the response has
been parsed, the data is placed in the component's state.

Hang on a minute, though—the native fetch function isn't implemented in Internet
Explorer (IE). Does that mean our app won't work in IE? Well, the fetch function isn't
available in IE, but CRA has set up a polyfill for this so that it works perfectly fine.

A polyfill is a piece of code that implements a feature we expect the
browser to provide natively. Polyfills allow us to develop against
features that aren't supported in all browsers yet.

Let's now turn our attention to the render method:

render () {
 let contents = this.state.loading
 ? <p>Loading...</p>
 : FetchData.renderForecastsTable(this.state.forecasts);

 return (
 <div>
 <h1 id="tabelLabel">Weather forecast</h1>
 <p>This component demonstrates fetching data from the server.</p>
 {contents}
 </div>
);
}

Understanding the ASP.NET Core React Template Chapter 1

[39]

The code may contain concepts you aren't familiar with, so don't worry if this doesn't make
sense to you at this point. I promise that it will make sense as we progress through this
book!

We already know that the render method in a React component returns JSX, and we can
see that JSX is returned in this render method as well. Notice the {contents} reference in
the JSX, which injects the contents JavaScript variable into the markup below the p tag at
the bottom of the div tag. The contents variable is set in the first statement in the render
method and is set so that Loading... is displayed while the web API request is taking place
along with the result of FetchData.renderForecastsTable when the request has
finished, which we'll have a quick look at now:

static renderForecastsTable (forecasts) {
 return (
 <table className='table table-striped' aria-labelledby="tabelLabel">
 <thead>
 <tr>
 <th>Date</th>
 <th>Temp. (C)</th>
 <th>Temp. (F)</th>
 <th>Summary</th>
 </tr>
 </thead>
 <tbody>
 {forecasts.map(forecast =>
 <tr key={forecast.dateFormatted}>
 <td>{forecast.dateFormatted}</td>
 <td>{forecast.temperatureC}</td>
 <td>{forecast.temperatureF}</td>
 <td>{forecast.summary}</td>
 </tr>
)}
 </tbody>
 </table>
);
}

This function returns JSX, which contains an HTML table with the data from the
forecasts data array injected into it. The map method on the forecasts array is used to
iterate through the items in the array and render tr tags in the HTML table containing the
data.

Understanding the ASP.NET Core React Template Chapter 1

[40]

The map method is a native JavaScript method that is available in an array.
It takes in a function parameter that is called for each array element. The
return values of the function calls then make up a new array.
The map method is commonly used in JSX when iteration is needed.

Notice that we have applied a key attribute to each tr tag. What is this for? This isn't a
standard attribute on an HTML table row, is it?

The key attribute helps React detect when an element changes, or is
added or removed. So, it's not a standard HTML table row attribute.
Where we output content in a loop, it is good practice to apply this
attribute and set it to a unique value within the loop so that React can
distinguish it from the other elements. Omitting keys can also lead to
performance problems on large datasets as React will unnecessarily re-
render the table when it doesn't need to.

Again, this is a lot to take in at this point, so don't worry if there are bits you don't fully
understand. This will all have become second nature by the end of this book.

Summary
In this chapter, we started off by learning that all pages in an SPA are rendered in
JavaScript with the help of a framework such as React, along with requests for data handled
by a backend API with the help of a framework such as ASP.NET Core. We now
understand that a class called Startup configures services that are used in the ASP.NET
Core backend, as well as the request/response pipeline. Requests to specific backend API
resources are handled by controller classes.

We also saw how CRA was leveraged by the ASP.NET Core React template to create the
React app. This tool did a huge amount of setup and configuration for us, including a
development server, bundling, linting, and even key polyfills for IE. We learned that the
React app lives in the ClientApp folder in an ASP.NET Core React templated project,
with a file called index.html being the single page. A file called package.json defines
key project information for the React app, including its dependencies and the tasks that are
used to run and build the React app.

Understanding the ASP.NET Core React Template Chapter 1

[41]

This chapter has given us a great overview of all the basic parts of an ASP.NET Core React
app and how they work together. We'll explore many of the topics we've covered in this
chapter in greater depth throughout this book.

With the knowledge from this chapter, we are now ready to start creating the app we are
going to build through this book, which we'll start to do in the next chapter.

Questions
Have a go at the following questions to test the knowledge that you have acquired in this
chapter:

What is the entry point method in an ASP.NET Core app?1.
What is the single HTML page filename in an ASP.NET Core React app that's2.
created by a template? What folder is this located in?
What file are React app dependencies defined in?3.
What npm command will run the React app in the Webpack development server?4.
What npm command builds the React app so that it's ready for production?5.
What is the method name in a React component class that renders the6.
component?
Have a look at the following code snippet, which configures the request/response7.
pipeline in an ASP.NET Core app:

public void Configure(IApplicationBuilder app, IHostingEnvironment
env)
{
 app.UseAuthentication();
 app.UseHttpsRedirection();
 app.UseMvc();
}

Which is invoked first in the request/response pipeline—authentication or the8.
MVC controllers?
Does the class that configures the services and request/response pipeline need to9.
be called Startup? Can we give it a different name?
What browsers are supported by a React app created by CRA?10.

Understanding the ASP.NET Core React Template Chapter 1

[42]

Further reading
The following are some useful links so that you can learn more about the topics that were
covered in this chapter:

ASP.NET Core
startup: https://docs.microsoft.com/en-us/aspnet/core/fundamentals/star
tup

ASP.NET Core web API controllers: https:/ ​/​docs. ​microsoft. ​com/ ​en-​us/
aspnet/​core/ ​web- ​api

Create React app: https:/ ​/ ​facebook. ​github. ​io/ ​create- ​react- ​app/ ​

WebPack development server: https:/ ​/​webpack. ​js.​org/ ​configuration/ ​dev-
server/​

npm: https:/ ​/ ​docs. ​npmjs. ​com/ ​

JSX: https:/ ​/​reactjs. ​org/ ​docs/​introducing- ​jsx. ​html

JavaScript module import: https:/ ​/​developer. ​mozilla. ​org/ ​en-​US/ ​docs/ ​Web/
JavaScript/ ​Reference/ ​Statements/ ​import

JavaScript module export: https:/ ​/​developer. ​mozilla. ​org/ ​en-​US/ ​docs/ ​Web/
JavaScript/ ​Reference/ ​Statements/ ​export

JavaScript fetch: https:/ ​/​developer. ​mozilla. ​org/​en- ​US/ ​docs/ ​Web/​API/ ​Fetch_
API

JavaScript array map: https:/ ​/​developer. ​mozilla. ​org/ ​en- ​US/​docs/ ​Web/
JavaScript/ ​Reference/ ​Global_ ​Objects/ ​Array/ ​map

React lists and keys: https:/ ​/ ​reactjs. ​org/ ​docs/ ​lists- ​and- ​keys. ​html

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/startup
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/startup
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://facebook.github.io/create-react-app/
https://facebook.github.io/create-react-app/
https://facebook.github.io/create-react-app/
https://facebook.github.io/create-react-app/
https://facebook.github.io/create-react-app/
https://facebook.github.io/create-react-app/
https://facebook.github.io/create-react-app/
https://facebook.github.io/create-react-app/
https://facebook.github.io/create-react-app/
https://facebook.github.io/create-react-app/
https://facebook.github.io/create-react-app/
https://facebook.github.io/create-react-app/
https://facebook.github.io/create-react-app/
https://facebook.github.io/create-react-app/
https://facebook.github.io/create-react-app/
https://facebook.github.io/create-react-app/
https://webpack.js.org/configuration/dev-server/
https://webpack.js.org/configuration/dev-server/
https://webpack.js.org/configuration/dev-server/
https://webpack.js.org/configuration/dev-server/
https://webpack.js.org/configuration/dev-server/
https://webpack.js.org/configuration/dev-server/
https://webpack.js.org/configuration/dev-server/
https://webpack.js.org/configuration/dev-server/
https://webpack.js.org/configuration/dev-server/
https://webpack.js.org/configuration/dev-server/
https://webpack.js.org/configuration/dev-server/
https://webpack.js.org/configuration/dev-server/
https://webpack.js.org/configuration/dev-server/
https://webpack.js.org/configuration/dev-server/
https://webpack.js.org/configuration/dev-server/
https://docs.npmjs.com/
https://docs.npmjs.com/
https://docs.npmjs.com/
https://docs.npmjs.com/
https://docs.npmjs.com/
https://docs.npmjs.com/
https://docs.npmjs.com/
https://docs.npmjs.com/
https://docs.npmjs.com/
https://docs.npmjs.com/
https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/docs/introducing-jsx.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/export
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/export
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/export
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/export
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/export
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/export
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/export
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/export
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/export
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/export
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/export
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/export
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/export
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/export
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/export
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/export
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/export
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/export
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/export
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/export
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/export
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/export
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/export
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/export
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://reactjs.org/docs/lists-and-keys.html
https://reactjs.org/docs/lists-and-keys.html
https://reactjs.org/docs/lists-and-keys.html
https://reactjs.org/docs/lists-and-keys.html
https://reactjs.org/docs/lists-and-keys.html
https://reactjs.org/docs/lists-and-keys.html
https://reactjs.org/docs/lists-and-keys.html
https://reactjs.org/docs/lists-and-keys.html
https://reactjs.org/docs/lists-and-keys.html
https://reactjs.org/docs/lists-and-keys.html
https://reactjs.org/docs/lists-and-keys.html
https://reactjs.org/docs/lists-and-keys.html
https://reactjs.org/docs/lists-and-keys.html
https://reactjs.org/docs/lists-and-keys.html
https://reactjs.org/docs/lists-and-keys.html
https://reactjs.org/docs/lists-and-keys.html
https://reactjs.org/docs/lists-and-keys.html

2
Creating Decoupled React and

ASP.NET Core Apps
Throughout this book, we are going to develop a question and answer app; we will refer to
it as the Q&A app. Users will be able to submit a question and other users will be able to
submit answers. They will also be able to search for previous questions and view the
answers that were given for them. In this chapter, we are going to start building this app by
creating the ASP.NET Core and React projects.

In the previous chapter, we learned how to create an ASP.NET Core and React app using
the template in Visual Studio. However, we'll create our app in a slightly different manner
in this chapter and understand the reasoning behind this decision.

Our React app will use TypeScript 3, so we'll learn about the benefits of TypeScript and
how to create a React and TypeScript app.

We'll cover the following topics in this chapter:

Creating an ASP.NET Core Web API project
Creating a React and TypeScript app
Adding linting to React and TypeScript
Adding automatic code formatting to React and TypeScript

Creating Decoupled React and ASP.NET Core Apps Chapter 2

[44]

Technical requirements
We'll use the following tools in this chapter:

Visual Studio 2019: We'll use this to edit our ASP.NET Core code. This can be
downloaded from https:/ ​/​visualstudio. ​microsoft. ​com/​vs/ ​.
.NET Core 3.0: This can be downloaded from https:/ ​/​dotnet. ​microsoft. ​com/
download/ ​dotnet- ​core.
Visual Studio Code: We'll use this to edit our React code. This can be
downloaded from https:/ ​/​code. ​visualstudio. ​com/​.
Node.js and npm: These can be downloaded from https:/ ​/​nodejs. ​org/​. If you
already have these installed, make sure that Node.js is at least version 8.2 and
that npm is at least version 5.2.

All the code snippets in this chapter can be found online at https:/ ​/​github. ​com/
PacktPublishing/​ASP. ​NET- ​Core- ​3- ​and- ​React- ​17. In order to restore code from a chapter,
the source code repository can be downloaded and the relevant folder opened in the
relevant editor. If the code is frontend code, then npm install can be entered in the
Terminal to restore the dependencies.

Check out the following video to see the code in action:

http:/​/​bit.​ly/​2SqFUSr

Creating an ASP.NET Core Web API project
We are going to create the ASP.NET Core and React projects separately in this chapter. In
Chapter 1, Understanding the ASP.NET Core React Template, we discovered that old versions
of React and create-react-app were used. Creating the React project separately allows us to
use a more recent version of React and create-react-app. Creating the React
project separately also allows us to use TypeScript with React, which will help us be more
productive as the code base grows.

https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
http://bit.ly/2SqFUSr
http://bit.ly/2SqFUSr
http://bit.ly/2SqFUSr
http://bit.ly/2SqFUSr
http://bit.ly/2SqFUSr
http://bit.ly/2SqFUSr
http://bit.ly/2SqFUSr
http://bit.ly/2SqFUSr
http://bit.ly/2SqFUSr

Creating Decoupled React and ASP.NET Core Apps Chapter 2

[45]

Let's open Visual Studio and carry out the following steps to create our ASP.NET Core
backend:

In the startup dialog, select Create a new project:1.

Creating Decoupled React and ASP.NET Core Apps Chapter 2

[46]

Choose ASP.NET Core Web Application in the wizard that opens and click2.
the Next button:

Create a folder called backend in an appropriate location.3.

Creating Decoupled React and ASP.NET Core Apps Chapter 2

[47]

Name the project QandA and choose the backend folder location to save the4.
project. Tick Place solution and project in the same directory and click
the Create button to create the project:

Creating Decoupled React and ASP.NET Core Apps Chapter 2

[48]

Now, another dialog will appear that will allow us to specify the version of5.
ASP.NET Core we want to use, as well as the specific type of project we want to
create. Select ASP.NET Core 3.0 as the version and API in the dialog and click
the Create button, which will create the project:

After the project is created, open Startup.cs and move the6.
app.UseHttpsRedirection() line of code so that it is not used while in
development:

public void Configure(IApplicationBuilder app, IWebHostEnvironment
env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }
 else
 {
 app.UseHttpsRedirection();

Creating Decoupled React and ASP.NET Core Apps Chapter 2

[49]

 }
 app.UseRouting();

 ...
}

We have made this change because, in development mode, our frontend will use
the HTTP protocol. By default, the Firefox browser doesn't allow network
requests for an app that has a different protocol to the backend. Due to this, we
want the frontend and backend to use the HTTP protocol in development mode.

That's the only change we are going to make to our backend in this chapter. In the next
section, we'll create the React frontend project.

Creating a React and TypeScript app
In Chapter 1, Understanding the ASP.NET Core React Template, we discovered that create-
react-app (CRA) was leveraged by the Visual Studio template to create the React app.
We also learned that CRA did a lot of valuable setup and configuration for us. We are going
to leverage CRA in this section to create our React app.

We are also going to leverage some additional tools for building our React app and look at
the benefits that each one brings, starting with TypeScript.

Understanding the benefits of TypeScript
TypeScript adds an optional static typing layer on top of JavaScript that we can use during
our development. Static types allow us to catch certain problems earlier in the development
process. For example, if we make a mistake when referencing a variable, TypeScript will
spot this immediately after we've mistyped the variable, as shown in the following
screenshot:

Creating Decoupled React and ASP.NET Core Apps Chapter 2

[50]

Another example is that, if we forget to pass a required attribute when referencing a React
component, TypeScript informs us of the mistake straight away:

This means we get a build-time error rather than a runtime error.

This also helps tools such as Visual Studio Code provide accurate IntelliSense; robust
refactoring features, such as renaming a class; and great code navigation.

As we start building our frontend, we'll quickly experience the types of benefits that make
us more productive.

Creating the app with CRA
Let's create the React and TypeScript app with CRA by carrying out the following steps:

Open Visual Studio Code in the QandA folder we created earlier. Note that we1.
shouldn't be inside the backend folder.
Open the Terminal in Visual Studio Code, which can be found in the View menu2.
or by pressing Ctrl + '. Execute the following command in the Terminal:

> npx create-react-app frontend --typescript

The npx tool is part of npm that temporarily installs the create-react-
app npm package and uses it to create our project.

The --typescript option will create our React project with TypeScript.

Creating Decoupled React and ASP.NET Core Apps Chapter 2

[51]

If we look in the src folder, we'll see that the App component has a tsx3.
extension. This means that this is a TypeScript component.
Let's verify whether the app runs okay by executing the following commands in4.
the Terminal:

> cd frontend
> npm start

The app will appear in our browser after a few seconds:5.

Press Ctrl + C to stop the running app and Y when asked to terminate the job.6.

So, why are we using Visual Studio Code to develop our React app and not Visual Studio?
Well, the overall experience is a little better and faster when developing frontend code
with Visual Studio Code.

So, we now have a React and TypeScript app using the latest version of CRA. In the next
section, we are going to add more automated checks to our code by introducing linting into
our project.

Creating Decoupled React and ASP.NET Core Apps Chapter 2

[52]

Adding linting to React and TypeScript
Linting is a series of checks that are used to identify code that is potentially problematic. A
linter is a tool that performs linting, and it can be run in our code editor as well as the
continuous integration (CI) process. So, linting helps us write consistent and high-quality
code as it is being written.

ESLint is the most popular linter in the React community and has already been installed
into our project for us by CRA. So, we will be using ESLint as our linting tool for our app.

TSLint has been a popular alternative to ESLint for linting TypeScript
code but is now deprecated. More information can be found at https:/ ​/
medium. ​com/ ​palantir/ ​tslint- ​in-​2019- ​1a144c2317a9.

In the following subsections, we will learn how to configure ESLints rules, as well
as configuring Visual Studio Code to highlight violations.

Configuring Visual Studio Code to lint TypeScript
code
CRA has already installed ESLint and configured it for us.

Note that ESLint doesn't appear in our package.json file. Instead, it is
part of the CRA package. This can be confirmed by opening the
package.json file in node_modules\react-scripts.

We need to tell Visual Studio Code to lint TypeScript code. Let's carry out the following
steps to do this:

First, let's reopen Visual Studio Code in the frontend folder. This is required for1.
an extension that we are going to install in a later step.
Create a new folder called .vscode.2.
Create a new file in the .vscode folder called settings.json. This file is the3.
Visual Studio Code settings file for this project.
Let's add the following content into the settings.json file:4.

{
 "eslint.validate": [
 "javascript",

https://medium.com/palantir/tslint-in-2019-1a144c2317a9
https://medium.com/palantir/tslint-in-2019-1a144c2317a9
https://medium.com/palantir/tslint-in-2019-1a144c2317a9
https://medium.com/palantir/tslint-in-2019-1a144c2317a9
https://medium.com/palantir/tslint-in-2019-1a144c2317a9
https://medium.com/palantir/tslint-in-2019-1a144c2317a9
https://medium.com/palantir/tslint-in-2019-1a144c2317a9
https://medium.com/palantir/tslint-in-2019-1a144c2317a9
https://medium.com/palantir/tslint-in-2019-1a144c2317a9
https://medium.com/palantir/tslint-in-2019-1a144c2317a9
https://medium.com/palantir/tslint-in-2019-1a144c2317a9
https://medium.com/palantir/tslint-in-2019-1a144c2317a9
https://medium.com/palantir/tslint-in-2019-1a144c2317a9
https://medium.com/palantir/tslint-in-2019-1a144c2317a9
https://medium.com/palantir/tslint-in-2019-1a144c2317a9
https://medium.com/palantir/tslint-in-2019-1a144c2317a9

Creating Decoupled React and ASP.NET Core Apps Chapter 2

[53]

 "javascriptreact",
 { "language": "typescript", "autoFix": true },
 { "language": "typescriptreact", "autoFix": true }
]
}

These settings tell Visual Studio Code to validate TypeScript code, as well as
JavaScript code, with ESLint.

Now, we can go to the Extensions area in Visual Studio Code (Ctrl + Shift + X)5.
and type eslint into the search box in the top-left corner. The extension we are
looking for is called ESLint and is published by Dirk Baeumer:

Click on the Install button to install the extension.6.

Now, Visual Studio Code will be using ESLint to validate our code.

Configuring linting rules
Now that Visual Studio Code is linting our code, let's carry out the following steps to
understand how we can configure the rules that ESLint executes:

Let's create a file called .eslintrc.json in the frontend folder with the1.
following code:

{
 "extends": "react-app"
}

This file defines the rules that ESLint executes. We have just told it to execute all
the rules that are configured in CRA.

Creating Decoupled React and ASP.NET Core Apps Chapter 2

[54]

Let's check that Visual Studio Code is linting our code by adding the2.
following highlighted line to App.tsx, just before the return statement:

const App: React.FC = () => {
 const unused = 'something';
 return (
 ...
);
};

We'll see that ESLint immediately flags this line as being unused:

That's great—this means our code is being linted.

Now, let's add a rule that CRA hasn't been configured to apply. In the3.
.eslintrc.json file, let's add the following highlighted lines:

{
 "extends": "react-app",
 "rules": {
 "no-debugger":"warn"
 }
}

We have told ESLint to warn us about the use of debugger statements.

The list of available ESLint rules is at https:/ ​/​eslint. ​org/​docs/ ​rules/ ​.

Let's add a debugger statement below our unused variable in App.tsx like so:4.

const App: React.FC = () => {
 const unused = 'something';
 debugger;
 return (

https://eslint.org/docs/rules/
https://eslint.org/docs/rules/
https://eslint.org/docs/rules/
https://eslint.org/docs/rules/
https://eslint.org/docs/rules/
https://eslint.org/docs/rules/
https://eslint.org/docs/rules/
https://eslint.org/docs/rules/
https://eslint.org/docs/rules/
https://eslint.org/docs/rules/
https://eslint.org/docs/rules/
https://eslint.org/docs/rules/

Creating Decoupled React and ASP.NET Core Apps Chapter 2

[55]

 ...
);
};

We will immediately see that ESLint flags this up:

Now that we understand how to configure the rules that are run by ESLint, let's5.
remove the unused line of code and debugger statement from App.tsx. Let's
also remove the no-debugger rule from the .eslintrc.json file.

Now, we have linting configured in our project. In the next section, we'll look at how we
can autoformat the code.

Adding automatic code formatting to React
and TypeScript
Enforcing a consistent code style improves the readability of the code base, but it can be a
pain, even if ESLint reminds us to do this. Wouldn't it be great if those semicolons we
forgot to add to the end of our statements were just automatically added for us? Well, that
is what automatic code formatting tools can do for us, and Prettier is one of these great
tools.

Creating Decoupled React and ASP.NET Core Apps Chapter 2

[56]

Adding Prettier
We are going to add Prettier to our project by following these steps in Visual Studio Code:

Make sure you are in the frontend directory and execute the following1.
command to install Prettier:

> npm install prettier --save-dev

Now, we want Prettier to take responsibility for the style rules of ESLint. Let's2.
install some npm packages that will do this:

> npm install eslint-config-prettier eslint-plugin-prettier --save-
dev

eslint-config-prettier disables ESLint rules that conflict with Prettier.
Here, eslint-plugin-prettier is an ESLint rule that formats code using
Prettier.

Now, let's tell ESLint to let Prettier take care of the code formatting by adding the3.
following highlighted changes to .eslintrc.json:

{
 "extends": ["react-app","prettier"],
 "plugins": ["prettier"],
 "rules": {
 "prettier/prettier": "error"
 }
}

Now, let's specify the formatting rules we want in a .prettierrc file in the4.
frontend folder. So, let's create this file with the following content:

{
 "printWidth": 80,
 "singleQuote": true,
 "semi": true,
 "tabWidth": 2,
 "trailingComma": "all"
}

These rules will result in lines over 80 characters long being sensibly wrapped,
double quotes being automatically converted into single quotes, semicolons being
automatically added to the end of statements, indentations automatically being
set to two spaces, and trailing commas being automatically added wherever
possible to items such as arrays on multiple lines.

Creating Decoupled React and ASP.NET Core Apps Chapter 2

[57]

Now, we can go to the Extensions area in Visual Studio Code (Ctrl + Shift + X)5.
and type prettier into the search box in the top-left corner. The extension we
are looking for is called Prettier – Code formatter and is published by Esben
Petersen:

Click on the Install button to install the extension.6.
We can get Prettier to format our code when a file is saved in Visual Studio Code7.
by adding the following highlighted line to the settings.json file in the
.vscode folder:

{
 "eslint.validate": [
 "javascript",
 "javascriptreact",
 { "language": "typescript", "autoFix": true },
 { "language": "typescriptreact", "autoFix": true }
],
 "editor.formatOnSave": true
}

So, that's Prettier set up. Whenever we save a file in Visual Studio Code, it will be
automatically formatted.

Summary
In this chapter, we have created our projects for the Q&A app that we are going to build
throughout this book. We created the backend using the API ASP.NET Core template and
the frontend using Create React App. We included TypeScript so that our frontend code is
strongly typed, which will help us catch problems earlier and will help Visual Studio Code
provide a better development experience.

Creating Decoupled React and ASP.NET Core Apps Chapter 2

[58]

We added linting to our frontend code to drive quality and consistency into our code base.
ESLint is our linter and its rules are configured in a file called .eslintrc.json. We also
added Prettier to our frontend code, which automatically formats our code. This is really
helpful in code reviews. We configured the formatting rules in a .prettierrc file and
used eslint-config-prettier to stop ESLint conflicting with Prettier.

So, we now have two separate projects for the frontend and backend, unlike what we have
with the SPA template. This makes sense, mainly because we'll be using Visual Studio to
develop the backend and Visual Studio Code to develop the frontend. So, there isn't any
need to start both the frontend and backend together from within Visual Studio.

In the next chapter, we are going to start to build the frontend in React and TypeScript.

Questions
Have a go at the following questions to test what you have learned in this chapter:

What class does an API controller need to inherit from in order for invalid1.
models to automatically return HTTP status code 400?
What option from create-react-app did we use to create a React with2.
TypeScript project?
What ESLint rule could we use to help prevent console.log statements being3.
added to our code?
What setting in .prettierrc could we set to use single quotes in our code? 4.
What file can we use to tell Visual Studio Code to validate TypeScript code using5.
ESLint and to automatically format code using Prettier?

Further reading
The following are some useful links for learning more about the topics that were covered in
this chapter:

ASP.NET Core API controllers: https:/ ​/​docs. ​microsoft. ​com/ ​en- ​us/​aspnet/
core/​web- ​api

npx: https:/ ​/​www. ​npmjs. ​com/ ​package/ ​npx

Create React app: https:/ ​/ ​facebook. ​github. ​io/ ​create- ​react- ​app/ ​

ESLint: https:/ ​/ ​eslint. ​org/ ​

Prettier: https:/ ​/ ​prettier. ​io/ ​

https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://www.npmjs.com/package/npx
https://www.npmjs.com/package/npx
https://www.npmjs.com/package/npx
https://www.npmjs.com/package/npx
https://www.npmjs.com/package/npx
https://www.npmjs.com/package/npx
https://www.npmjs.com/package/npx
https://www.npmjs.com/package/npx
https://www.npmjs.com/package/npx
https://www.npmjs.com/package/npx
https://www.npmjs.com/package/npx
https://www.npmjs.com/package/npx
https://www.npmjs.com/package/npx
https://facebook.github.io/create-react-app/
https://facebook.github.io/create-react-app/
https://facebook.github.io/create-react-app/
https://facebook.github.io/create-react-app/
https://facebook.github.io/create-react-app/
https://facebook.github.io/create-react-app/
https://facebook.github.io/create-react-app/
https://facebook.github.io/create-react-app/
https://facebook.github.io/create-react-app/
https://facebook.github.io/create-react-app/
https://facebook.github.io/create-react-app/
https://facebook.github.io/create-react-app/
https://facebook.github.io/create-react-app/
https://facebook.github.io/create-react-app/
https://facebook.github.io/create-react-app/
https://facebook.github.io/create-react-app/
https://eslint.org/
https://eslint.org/
https://eslint.org/
https://eslint.org/
https://eslint.org/
https://eslint.org/
https://eslint.org/
https://eslint.org/
https://prettier.io/
https://prettier.io/
https://prettier.io/
https://prettier.io/
https://prettier.io/
https://prettier.io/
https://prettier.io/
https://prettier.io/

2
Section 2: Building a Frontend

with React and TypeScript
In this section, we will build the frontend of our Q&A app using React and TypeScript,
which will interact with the RESTful API we built in the previous section.

This section comprises the following chapters:

Chapter 3, Getting Started with React and TypeScript
Chapter 4, Routing with React Router
Chapter 5, Working with Forms
Chapter 6, Managing State with Redux

3
Getting Started with React and

TypeScript
In this chapter, we are going to pick up where we left off and start coding the frontend of
the Q&A app.

We'll be focusing on building the home page of the app and implementing all the
components that make up the page. We'll start by gaining a good understanding of how to
create function-based components with JSX. We'll understand the different approaches we
can take in order to style our app and use one of these methods. Then, we'll learn how we
can implement properties on components in order to make them configurable. Finally, we'll
learn about what component state is and how it can help us implement an interactive
component, along with how to handle events in React.

By the end of this chapter, we'll have an understanding of when components are
rerendered and how we can optimize this process.

We'll cover the following topics in this chapter:

Understanding JSX
Creating function-based components
Styling components
Implementing component props
Implementing component state
Handling events
Rendering optimization

Getting Started with React and TypeScript Chapter 3

[61]

Technical requirements
We’ll use the following tools in this chapter:

Visual Studio Code: We'll use this to edit our React code. This can be
downloaded and installed from https:/ ​/​code. ​visualstudio. ​com/ ​.
Node.js and npm: These can be downloaded from https:/ ​/​nodejs. ​org/​. If you
already have these installed, make sure that Node.js is at least version 8.2 and
that npm is at least version 5.2
Babel REPL: We'll use this online tool briefly to explore JSX. This can be found at
https:/​/ ​babeljs. ​io/ ​repl.
Zondicons: We'll use one of these icons in our app. The icon we'll be using can be
downloaded from https:/ ​/​www. ​zondicons. ​com/ ​.
Q&A: We'll start with the Q&A frontend project we finished in Chapter
2, Creating Decoupled React and ASP.NET Core Apps. This is available on GitHub
at https:/ ​/​github. ​com/ ​PacktPublishing/ ​ASP. ​NET- ​Core- ​3-​and- ​React- ​17.

All the code snippets in this chapter can be found online at https:/ ​/​github. ​com/
PacktPublishing/​ASP. ​NET- ​Core- ​3- ​and- ​React- ​17. In order to restore code from a chapter,
the source code repository can be downloaded and the relevant folder can be opened in the
relevant editor. If the code is frontend code, then you can use npm install in the Terminal
to restore the dependencies.

Check out the following video to see the code in action:

http:/​/​bit.​ly/​34VCk5r

Understanding JSX
In this section, we're going to understand JSX, which we briefly touched on in Chapter 1,
Understanding the ASP.NET Core React Template. We already know that JSX isn't a valid
JavaScript and that we need a preprocessor step to convert it into JavaScript. We are going
to use the Babel REPL to play with JSX to get an understanding of how it maps to
JavaScript by carrying out the following steps:

Open a browser, go to https:/ ​/ ​babeljs. ​io/ ​repl, and enter the following JSX in1.
the left-hand pane:

Q and A

https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://babeljs.io/repl
https://babeljs.io/repl
https://babeljs.io/repl
https://babeljs.io/repl
https://babeljs.io/repl
https://babeljs.io/repl
https://babeljs.io/repl
https://babeljs.io/repl
https://babeljs.io/repl
https://www.zondicons.com/
https://www.zondicons.com/
https://www.zondicons.com/
https://www.zondicons.com/
https://www.zondicons.com/
https://www.zondicons.com/
https://www.zondicons.com/
https://www.zondicons.com/
https://www.zondicons.com/
https://www.zondicons.com/
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
http://bit.ly/34VCk5r
http://bit.ly/34VCk5r
http://bit.ly/34VCk5r
http://bit.ly/34VCk5r
http://bit.ly/34VCk5r
http://bit.ly/34VCk5r
http://bit.ly/34VCk5r
http://bit.ly/34VCk5r
http://bit.ly/34VCk5r
https://babeljs.io/repl
https://babeljs.io/repl
https://babeljs.io/repl
https://babeljs.io/repl
https://babeljs.io/repl
https://babeljs.io/repl
https://babeljs.io/repl
https://babeljs.io/repl
https://babeljs.io/repl

Getting Started with React and TypeScript Chapter 3

[62]

The following appears in the right-hand pane, which is what our JSX has
compiled down to:

React.createElement(
 "span",
 null,
 "Q and A"
);

We can see that it compiles down to a call to React.createElement, which has2.
three parameters:

The element type, which can be an HTML tag name (such as span), a
React component type, or a React fragment type
An object containing the properties to be applied to the element
The children of the element

Let's expand our example by putting a header tag around our span:3.

<header>Q and A</header>

This compiles down to two calls with React.createElement, with span being4.
passed in as a child to the header element that's created:

React.createElement(
 "header",
 null,
 React.createElement(
 "span",
 null,
 "Q and A"
)
);

Let's change the span tag to an anchor tag and add an href attribute:5.

<header>Q and A</header>

In the compiled JavaScript, we can see that the nested React.createElement6.
call has changed to have "a" passed in as the element type, along with a
properties object containing the href as the second parameter:

React.createElement(
 "header",
 null,
 React.createElement(
 "a",

Getting Started with React and TypeScript Chapter 3

[63]

 { href: "/" },
 "Q and A"
)
);

This is starting to make sense, but, so far, our JSX only contains HTML. Let's start7.
to mix in some JavaScript. We'll do this by declaring and initializing a variable
and referencing it inside the anchor tag:

var appName = "Q and A";
<header>{appName}</header>

We can see that this compiles to the following with the JavaScript code:

var appName = "Q and A";
React.createElement(
 "header",
 null,
 React.createElement(
 "a",
 { href: "/" },
 appName
)
);

So, the appName variable is declared in the first statement, exactly how we
defined it, and is passed in as the children parameter in the nested
React.createElement call.

The key point to note here is that we can inject JavaScript into HTML in JSX by8.
using curly braces. To further illustrate this point, let's add the word app to the
end of the appName:

const appName = "Q and A";
<header>{appName + " app"}</header>

Getting Started with React and TypeScript Chapter 3

[64]

This compiles down to the following:

var appName = "Q and A";
React.createElement(
 "header",
 null,
 React.createElement(
 "a",
 { href: "/" },
 appName + " app"
)
);

So, JSX can be thought of as HTML with JavaScript mixed in using curly braces. This makes
it incredibly powerful since regular JavaScript can be used to conditionally render
elements, as well as render elements in a loop.

Now that we have an understanding of JSX, we are going to start creating the components
for the home page in our app.

Creating function-based components
In this section, we are going to start by creating a component for the header of our app,
which will contain our app name and the ability to search for questions. Then, we'll
implement some components so that we can start to build the home page of the app, along
with some mock data.

Creating a Header component
If the frontend project isn't open in Visual Studio Code, open it. We are about to create our
first function-based component.

Creating our first component
We can create a basic Header component and reference it within our App component by
carrying out the following steps:

Create a new file called Header.tsx in the src folder.1.
Import React into the file with the following import statement:2.

import React from 'react';

Getting Started with React and TypeScript Chapter 3

[65]

Our component is just going to render the word header initially. So, enter the3.
following as our initial Header component:

export const Header = () => <div>header</div>;

Congratulations! We have implemented our first function-based React
component!

The preceding component is actually an arrow function that is set to the
Header variable.

An arrow function is an alternative function syntax that was introduced in
ES6. The arrow function syntax is a little shorter than the original syntax
and it also preserves the lexical scope of this. The function parameters
are defined in parentheses and the code that the function executes follows
a =>, which is often referred to as a fat arrow.

Notice that there are no curly braces or a return keyword. Instead, we just define
the JSX that the function should return directly after the fat arrow. This is called
an implicit return. We use the const keyword to declare and initialize the
Header variable.

The const keyword can be used to declare and initialize a variable where
its reference won't change later in the program. Alternatively, the
let keyword can be used to declare a variable whose reference can
change later in the program.

The export keyword allows the component to be used in other files. So, let's use4.
this in our App component by importing it into App.tsx:

import { Header } from './Header';

Now, we can reference the Header component in the App component's render5.
method. Let's replace the header tag that CRA created for us with our Header
component. Let's remove the redundant logo import as well:

import React from 'react';
import './App.css';
import { Header } from './Header';

const App: React:FC = () => {
 return (
 <div className="App">
 <Header />

Getting Started with React and TypeScript Chapter 3

[66]

 </div>
);
};

export default App;

In the Visual Studio Code Terminal, enter npm start to run the app. We'll see6.
that the word header appears at the top of the page, centered like so:

Congratulations again – we have just consumed our first React component!

So, the arrow function syntax is a really nice way of implementing function-based
components. The implicit return feature that arrow functions have reduces the number of
characters we need to type. We'll use arrow functions with implicit returns heavily
throughout this book.

Adding elements to the Header component
We're going to work on the Header component a little more so that it eventually looks as
follows:

So, the Header component will contain the app name, which will be Q & A, a search input,
and a Sign In link.

With the app still running, carry out the following steps to modify the Header component:

Add the app name inside an anchor tag inside the div tag by replacing the word1.
header, which was previously used inside the div:

export const Header = () => (
 <div>
 Q & A
 </div>
);

Getting Started with React and TypeScript Chapter 3

[67]

Notice that the implicit return statement containing the JSX is now
in parentheses.

When an implicit return statement is over multiple lines, parentheses are
required. When an implicit return is on just a single line, we can get away
without the parentheses.
Prettier automatically adds parentheses in an implicit return if they are
needed, so we don't need to worry about remembering this rule.

Add an input to allow the user to perform a search:2.

<div>
 Q & A
 <input type="text" placeholder="Search..." />
</div>

Add a link to allow users to sign in:3.

<div>
 Q & A
 <input type="text" placeholder="Search..." />
 Sign In
</div>

The Sign In link needs a user icon next to it. We're going to use the user.svg4.
icon from Zondicons. So, if you haven't downloaded these icons, do so and place
user.svg in our project's src folder.
We are going to create a component to host this icon, so create a file called5.
Icons.tsx and enter the following content into it:

import React from 'react';
import user from './user.svg';

export const UserIcon = () =>
 ;

Here, we have created a component called UserIcon that renders an img tag,
with the src attribute set to the svg file we imported from user.svg.

Let's go back to Header.tsx and import the icon component we just created:6.

import { UserIcon } from './Icons';

Getting Started with React and TypeScript Chapter 3

[68]

Now, we can place an instance of the UserIcon component in the Header7.
component inside the button, before the span:

export const Header = () => (
 <div>
 Q & A
 <input type="text" placeholder="Search..." />

 <UserIcon />
 Sign In

 </div>
);

Let's look at the running app:8.

Our header doesn't look great, but we can see the elements in the Header component we
just created. We'll tidy our Header component up later in this chapter, that is, when we
learn how to style components.

Creating a HomePage component
Let's create another component to get more familiar with the process. This time, we'll create
a component for the home page by carrying out the following steps:

Create a file called HomePage.tsx with the following content:1.

import React from 'react';

export const HomePage = () => (
 <div>
 <div>
 <h2>Unanswered Questions</h2>
 <button>Ask a question</button>
 </div>
 </div>
);

Getting Started with React and TypeScript Chapter 3

[69]

Our home page simply consists of a title containing the text, Unanswered
Questions, and a button to submit a question.

Open App.tsx and import our HomePage component:2.

import { HomePage } from './HomePage';

Now, we can add an instance of HomePage under the Header component in the3.
render method:

<div className="App">
 <Header />
 <HomePage />
</div>

If we look at the running app, we'll see the title and button under the content of4.
the Header component.

We are going to leave this component for now and come back and style it, as well as add a
list of unanswered questions, later in this chapter.

Creating mock data
We desperately need some data so that we can develop our frontend. In this section, we'll
create some mock data in our frontend that will expose a function to get data. We will use
this when we plug our real ASP.NET Core backend in. Follow these steps:

Create a new file in the src folder called QuestionsData.ts with the following1.
interface:

export interface QuestionData {
 questionId: number;
 title: string;
 content: string;
 userName: string;
 created: Date;
}

Before moving on, let's understand the code we have just entered because we
have just written some TypeScript.

Getting Started with React and TypeScript Chapter 3

[70]

An interface is a contract that defines a type with a collection of property
and method definitions without any implementation. Interfaces don't exist
in JavaScript, so they are purely used by the TypeScript compiler to
enforce the contract by type checking. We create an interface with the
interface keyword, followed by its name, followed by the bits that
make up the interface in curly braces.

So, our interface is called QuestionData and it defines the structure of the
questions we expect to be working with. We have exported the interface so that it
can be used throughout our app where we interact with question data.

Also, notice what appears to be a type after the property names in the interface.
These are called type annotations and are a TypeScript feature that doesn't exist
in JavaScript.

Type annotations let us declare variables, properties, and function
parameters with specific types. This allows the TypeScript compiler to
check that the code adheres to these types. In short, type annotations
allow TypeScript to catch bugs where our code is using the wrong type
much earlier than we would if we were writing our code in JavaScript.

Let's create another interface for the structure of the answers we expect:2.

export interface AnswerData {
 answerId: number;
 content: string;
 userName: string;
 created: Date;
}

Now, we can adjust the QuestionData interface so that it includes an array of3.
answers:

export interface QuestionData {
 questionId: number;
 title: string;
 content: string;
 userName: string;
 created: Date;
 answers: AnswerData[];
}

Getting Started with React and TypeScript Chapter 3

[71]

Notice the square brackets in the type annotation for the answers property.

Square brackets after a type denote an array of the type.

Let's create some mock questions below the interfaces:4.

const questions: QuestionData[] = [
 {
 questionId: 1,
 title: 'Why should I learn TypeScript?',
 content:
 'TypeScript seems to be getting popular so I wondered whether
 it is worth my time learning it? What benefits does it give
 over JavaScript?',
 userName: 'Bob',
 created: new Date(),
 answers: [
 {
 answerId: 1,
 content: 'To catch problems earlier speeding up your
 developments',
 userName: 'Jane',
 created: new Date(),
 },
 {
 answerId: 2,
 content:
 'So, that you can use the JavaScript features of
tomorrow,
 today',
 userName: 'Fred',
 created: new Date(),
 },
],
 },
 {
 questionId: 2,
 title: 'Which state management tool should I use?',
 content:
 'There seem to be a fair few state management tools around
for
 React - React, Unstated, ... Which one should I use?',
 userName: 'Bob',
 created: new Date(),

Getting Started with React and TypeScript Chapter 3

[72]

 answers: [],
 },
];

Notice that we typed our questions variable with an array of the
QuestionData interface we have just created. If we miss a property out or
misspell it, the TypeScript compiler will complain.

Let's create a function that returns unanswered questions:5.

export const getUnansweredQuestions = (): QuestionData[] => {
 return questions.filter(q => q.answers.length === 0);
};

This function returns the question array items we have just created that have no
answers by making use of the array.filter method.

The array.filter method in an array executes the function that was
passed into it for each array item and creates a new array with all the
elements that return truthy from the function. A truthy value is any value
other than false, 0, "", null, undefined, or NaN.

Notice that we defined the return type, QuestionData[], for the function after
the function parameters.

We are going to use this function in HomePage a little later in this chapter when we learn
about component properties. However, before this, we are going to learn how we can style
our app.

Styling components
In this section, we're going to make our app look a lot better by adding some styling.
Eventually, we're going to use a popular library called Emotion in order to style our app.
However, before we do this, we need to understand how we would style an app in a more
traditional way, as well as the benefits of using Emotion.

Getting Started with React and TypeScript Chapter 3

[73]

Styling using CSS class references
We could style our app in the traditional way by defining CSS classes in a CSS file and
referencing these within our components. In fact, this is what CRA did with the App
component. We have removed a lot of the content in App.tsx, but if we look at the JSX,
we'll see a reference to a CSS class called App:

<div className="App">
 <Header />
 <HomePage />
</div>

We'll also see a file called App.css, which has been imported into App.tsx:

import './App.css';

If we look in App.css, we'll see the App CSS class, along with lots of others that are now
redundant because we've replaced a lot of the content in the App component:

.App {
 text-align: center;
}

Why is a className attribute used to reference CSS classes? Shouldn't we use
the class attribute? Well, we already know that JSX compiles down to JavaScript, and
since class is a keyword in JavaScript, React uses a className attribute instead.

The React team is currently working on allowing class attributes to be
used instead of className. See https:/ ​/​github. ​com/ ​facebook/ ​react/
issues/ ​13525 for more information.

This is a traditional approach to styling that we could use and it is great if our team has
developers who only work in the CSS layer in our app with other developers implementing
the React components. However, there are downsides to the traditional approach.

Understanding the benefits of CSS in JS
CSS is global in nature. So, if we use a CSS class name called container within a Header
component, it would collide with another CSS class called container in a different CSS file
if a page references both CSS files:

https://github.com/facebook/react/issues/13525
https://github.com/facebook/react/issues/13525
https://github.com/facebook/react/issues/13525
https://github.com/facebook/react/issues/13525
https://github.com/facebook/react/issues/13525
https://github.com/facebook/react/issues/13525
https://github.com/facebook/react/issues/13525
https://github.com/facebook/react/issues/13525
https://github.com/facebook/react/issues/13525
https://github.com/facebook/react/issues/13525
https://github.com/facebook/react/issues/13525
https://github.com/facebook/react/issues/13525
https://github.com/facebook/react/issues/13525
https://github.com/facebook/react/issues/13525

Getting Started with React and TypeScript Chapter 3

[74]

As the app grows and new team members join the development team, the risk of CSS
changes impacting areas of the app we don't expect increases. We reduce this risk by being
careful when naming and structuring our CSS by using something such as BEM.

Reusability in CSS is also a challenge. CSS custom properties give us the ability to use
variables, but they are global variables and are not supported in IE. CSS preprocessors such
as SCSS can, of course, help us with this.

Ideally, we want to easily scope styles to a component. It would also be nice if local styles
were defined in the component code, so that we can see and understand the structure,
logic, and styling for a component without having to navigate through different files. This
is exactly what CSS in JS libraries do, and Emotion is a popular CSS in the JS library. The
syntax for defining the styling properties is exactly the same as defining properties in CSS,
which is nice if we already know CSS well. We can even nest CSS properties in a similar
manner to how we can do this in SCSS.

Getting Started with React and TypeScript Chapter 3

[75]

Later in this chapter, we'll see that Emotion will generate real CSS classes for the elements
on the page to reference so that we still get the performance gain of CSS. Emotion just helps
us scope the styles to specific components.

Installing Emotion
With our frontend project open in Visual Studio Code, let's install Emotion into our project
by carrying out the following steps:

Open the Terminal, make sure you are in the frontend folder, and execute the1.
following command:

> npm install @emotion/core @emotion/styled

There is a nice Visual Studio Code extension that will provide CSS syntax2.
highlighting and IntelliSense for Emotion. Open the Extensions area (Ctrl + Shift
+ X) and type styled components in the search box at the top-left. The
extension we are looking for is called vscode-styled-components and was
published by Julien Poissonnier:

This extension was primarily developed for the Styled Components CSS
in the JS library. CSS highlighting and IntelliSense works for Emotion as
well, though.

Click on the Install button to install the extension and then the Reload button to3.
complete the installation.

That's Emotion installed within our project and set up nicely in Visual Studio Code.

Getting Started with React and TypeScript Chapter 3

[76]

Styling the document body
We are going to use the traditional approach to style the document's body. Follow these
steps to do so:

We already have CSS in place for the body tag in the index.css file. Let's1.
remove everything apart from the margin and add a background color:

body {
 margin: 0;
 background-color: #f7f8fa;
}

Let's also remove the redundant code CSS class in index.css.2.
Let's remove the App.css file from our project and the references from within3.
the App.tsx file. Now, it should contain the following content:

import React, { Component } from 'react';
import { Header } from './Header';
import { HomePage } from './HomePage';

const App: React.FC = () => {
 return (
 <div>
 <Header />
 <HomePage />
 </div>
);
};

export default App;

That's tidied up the index.css and App.tsx files nicely.

Styling components using Emotion
Now, we are ready to start implementing styles in our components. We'll style the App,
Header, and HomePage components we created earlier.

Getting Started with React and TypeScript Chapter 3

[77]

Styling the App component
Let's start with the App component by carrying out the following steps:

In App.tsx, let's start by importing some functions from the Emotion library:1.

/** @jsx jsx */
import { css, jsx } from '@emotion/core';

The css function is what we'll use to style an HTML element. The jsx function is
used to transform the component into JavaScript by Babel. The comment above
the import statement tells Babel to use this jsx function to transform JSX into
JavaScript.

It is important to include the /** @jsx jsx */ comment; otherwise, the
transpilation process will error out.

Let's use the css function to style the component's div container:2.

const App: React.FC = () => {
 return (
 <div
 css={css`
 font-family: 'Segoe UI', 'Helvetica Neue', sans-serif;
 font-size: 16px;
 color: #5c5a5a;
 `}
 >
 <Header />
 <HomePage />
 </div>
);
};

So, we put the styles in a css attribute on an HTML element in what is called a
tagged template literal.

Getting Started with React and TypeScript Chapter 3

[78]

A template literal is a string enclosed by backticks (``) that can span
multiple lines and can include a JavaScript expression in curly braces,
prefixed with a dollar sign (${expression}). Template literals are great
when we need to merge static text with variables.

A tagged template literal is a template string that is executed through a
function that is specified immediately before the template literal string.
The function is executed on the template literal before the string is
rendered in the browser.

So, Emotion's css function is being used in a tagged template literal to render the
styles defined in backticks (``) on the HTML element.

We actually want to specify the font family, size, and color in various3.
components in our app. To do this, we are going to extract these values into
variables in a separate file. Let's create a file called Styles.ts that contains the
following variables:

export const gray1 = '#383737';
export const gray2 = '#5c5a5a';
export const gray3 = '#857c81';
export const gray4 = '#b9b9b9';
export const gray5 = '#e3e2e2';
export const gray6 = '#f7f8fa';

export const primary1 = '#681c41';
export const primary2 = '#824c67';

export const accent1 = '#dbb365';
export const accent2 = '#efd197';

export const fontFamily = "'Segoe UI', 'Helvetica Neue',sans-
serif";
export const fontSize = '16px';

Here, we have defined six shades of gray, two shades of the primary color for our
app, two shades of an accent color, as well as the font family we'll use with the
standard font size.

Let's import the variables we need into App.tsx:4.

import { fontFamily, fontSize, gray2 } from './Styles';

Getting Started with React and TypeScript Chapter 3

[79]

Now, we can use these variables inside the CSS template literal using5.
interpolation:

<div
 css={css`
 font-family: ${fontFamily};
 font-size: ${fontSize};
 color: ${gray2};
 `}
>
 <Header />
 <HomePage />
</div>

Congratulations – we have just styled our first component with Emotion!

Let's run the app (if it's not already running) by executing npm start in the6.
Terminal.
Let's inspect the DOM in the browser page by pressing F12:7.

We can see that the div we styled has a random-looking CSS class name that
references the CSS properties we defined. These CSS classes reference the styles
we defined in our styled-components. So, the styles aren't inline styles on the
elements as we might have thought. Instead, the styles are held in unique CSS
classes. If we look in the HTML header, we'll see the CSS class defined in a style
tag:

Getting Started with React and TypeScript Chapter 3

[80]

So, during the app's build process, Emotion has transformed the styles into a real CSS class.

Styling the Header component
We can style the Header component by carrying out the following steps:

Import the Emotion functions and some of the style variables we set up1.
previously into Header.tsx:

/** @jsx jsx */
import { css, jsx } from '@emotion/core';
import { fontFamily, fontSize, gray1, gray2, gray5 } from
'./Styles';

Remove the React import statement. We don't need it anymore since we aren't2.
importing anything from React and the @jsx comment is now telling Babel how
to transpile the JSX.
Now, we can define the following style on the div container element:3.

<div
 css={css`
 position: fixed;
 box-sizing: border-box;
 top: 0;
 width: 100%;
 display: flex;
 align-items: center;
 justify-content: space-between;
 padding: 10px 20px;
 background-color: #fff;
 border-bottom: 1px solid ${gray5};
 box-shadow: 0 3px 7px 0 rgba(110, 112, 114, 0.21);
 `}
>
 ...
</div>

Getting Started with React and TypeScript Chapter 3

[81]

We are fixing this element to the top of the page by taking the whole width of the
page up. We're also using a Flexbox layout, which will layout the app name,
search box, and Sign In link nicely. We are also using background color and a
nice box shadow to make the header pop out a bit.

Still in Header.tsx, we are going to move on to implementing styles on the4.
anchor tag:

<a
 href="./"
 css={css`
 font-size: 24px;
 font-weight: bold;
 color: ${gray1};
 text-decoration: none;
 `}
>
 Q & A

Here, we are making the app name fairly big, bold, and dark gray, and also
removing the underline.

Let's move on and style the search box:5.

<input
 type="text"
 placeholder="Search..."
 css={css`
 box-sizing: border-box;
 font-family: ${fontFamily};
 font-size: ${fontSize};
 padding: 8px 10px;
 border: 1px solid ${gray5};
 border-radius: 3px;
 color: ${gray2};
 background-color: white;
 width: 200px;
 height: 30px;
 :focus {
 outline-color: ${gray5};
 }
 `}
/>

Getting Started with React and TypeScript Chapter 3

[82]

Here, we are using the standard font family and size and giving the search box a
light gray rounded border. Notice the nested pseudo-class definitions for defining
the outline color when the search box has focus. This is very much like how we
can structure the CSS in SCSS.

The last change we'll make in the Header.tsx file is being done to style the Sign6.
In link:

<a
 href="./signin"
 css={css`
 font-family: ${fontFamily};
 font-size: ${fontSize};
 padding: 5px 10px;
 background-color: transparent;
 color: ${gray2};
 text-decoration: none;
 cursor: pointer;
 span {
 margin-left: 10px;
 }
 :focus {
 outline-color: ${gray5};
 }
 `}
>
 <UserIcon />
 Sign In

Next up is styling the UserIcon component in the Icons.tsx file. Let's import7.
the Emotion functions and remove the React import:

/** @jsx jsx */
import { css, jsx } from '@emotion/core';
import user from './user.svg';

Now, we can define the styles on the ImgIcon component on the img tag:8.

<img
 src={user}
 alt="User"
 css={css`
 width: 12px;
 opacity: 0.6;
 `}
/>

Getting Started with React and TypeScript Chapter 3

[83]

We've moved the width from the attribute on the img tag into its CSS style. Now,
the icon is a nice size and appears to be a little lighter in color.

If we look at the running app, we'll see that our app header is looking much nicer9.
now:

We are getting the hang of Emotion now. The remaining component to style is
HomePage– we'll look at that next.

Styling the HomePage component
It's time to style the HomePage component. Follow these steps to do so:

As usual, we start by importing the functions from Emotion and removing the1.
React import from HomePage.tsx:

/** @jsx jsx */
import { css, jsx } from '@emotion/core';

Let's style the container element in the HomePage component by placing the page2.
content in the center of the screen:

export const HomePage = () => (
 <div
 css={css`
 margin: 50px auto 20px auto;
 padding: 30px 20px;
 max-width: 600px;
 `}
 >
 <div>
 <h2>Unanswered Questions</h2>
 <button>Ask a question</button>
 </div>
 </div>
);

Getting Started with React and TypeScript Chapter 3

[84]

Next, we will style the div that wraps the page title and Ask a question button:3.

<div
 css={css`
 margin: 50px auto 20px auto;
 padding: 30px 20px;
 max-width: 600px;
 `}
>
 <div
 css={css`
 display: flex;
 align-items: center;
 justify-content: space-between;
 `}
 >
 <h2>Unanswered Questions</h2>
 <button>Ask a question</button>
 </div>
</div>

Now, let's style the page title:4.

<h2
 css={css`
 font-size: 15px;
 font-weight: bold;
 margin: 10px 0px 5px;
 text-align: center;
 text-transform: uppercase;
 `}
>
 Unanswered Questions
</h2>

This reduces the size of the page title and makes it uppercase, which will make
the page's content stand out more when we implement this.

Finally, we have the Ask a question button, which is the primary button on the5.
page. Eventually, we are going to have primary buttons on several pages, so let's
create a reusable PrimaryButton styled component in the Styles.ts file. First,
we need to import the styled function from Emotion:

import styled from '@emotion/styled';

Getting Started with React and TypeScript Chapter 3

[85]

Now, we can create the primary button styled component:6.

export const PrimaryButton = styled.button`
 background-color: ${primary2};
 border-color: ${primary2};
 border-style: solid;
 border-radius: 5px;
 font-family: ${fontFamily};
 font-size: ${fontSize};
 padding: 5px 10px;
 color: white;
 cursor: pointer;
 :hover {
 background-color: ${primary1};
 }
 :focus {
 outline-color: ${primary2};
 }
 :disabled {
 opacity: 0.5;
 cursor: not-allowed;
 }
`;

Here, we've created a styled component in Emotion by using a tagged template
literal. The function before the backticks (``) references a function within
Emotion's styled function and is the HTML element tag name we want to
render.

So, this styled component creates a flat, slightly rounded button with our chosen
primary color.

Let's import this into the HomePage.tsx file:7.

import { PrimaryButton } from './Styles';

Now, we can replace the button tag in the HomePage JSX with our8.
PrimaryButton styled component:

export const HomePage = () => (
 <div ... >
 <div ... >
 <h2 ... >
 Unanswered Questions
 </h2>
 <PrimaryButton>Ask a question</PrimaryButton>
 </div>

Getting Started with React and TypeScript Chapter 3

[86]

 </div>
);

If we look at the running app, we'll see that it's looking much nicer:9.

There is still work to do in terms of the home page's implementation, such as rendering the
list of unanswered questions. We need to learn about props in order to do this, which we'll
do in the next section.

Implementing component props
Components can have props to allow consumers to pass parameters into them, just like we
pass parameters into a JavaScript function.

The word props is short for properties.

In this section, we'll learn all about how to implement strongly-typed props, including
optional and default props. Then, we'll implement the rest of the home page to assist in our
learning.

Creating HomePage child components
We are going to implement some child components that the HomePage component will use.
We will pass the unanswered questions data to the child components via props.

Getting Started with React and TypeScript Chapter 3

[87]

Creating the QuestionList component
Let's go through the following steps to implement the QuestionList component:

Let's create a file called QuestionList.tsx and add the following import1.
statements:

import { FC } from 'react';
/** @jsx jsx */
import { css, jsx } from '@emotion/core';
import { gray5, accent2 } from './Styles';
import { QuestionData } from './QuestionsData';

Notice that we have imported FC from React.

A Functional Component (FC) is a generic TypeScript type we can use to
pass strongly-typed props to a function-based component. The syntax is
FC<Props>, where Props is the interface for the props.

Now, let's define the interface for the component props underneath the import2.
statements:

interface Props {
 data: QuestionData[];
}

We have called the props interface Props and it contains a single property to hold
an array of questions.

Let's start by implementing the QuestionList component:3.

export const QuestionList: FC<Props> = props => null;

We have defined props that can be passed into the component of the Props type.
This means we can pass a data prop into QuestionList when we reference it in
JSX.

At the moment, we aren't rendering anything in the QuestionList component.4.
We are going to render the questions in an unordered list:

export const QuestionList: FC<Props> = props => (
 <ul
 css={css`
 list-style: none;
 margin: 10px 0 0 0;

Getting Started with React and TypeScript Chapter 3

[88]

 padding: 0px 20px;
 background-color: #fff;
 border-bottom-left-radius: 4px;
 border-bottom-right-radius: 4px;
 border-top: 3px solid ${accent2};
 box-shadow: 0 3px 5px 0 rgba(0, 0, 0, 0.16);
 `}
 >

);

So, the unordered list will appear without the bullet points and with a rounded
border. The top border will be slightly thicker and in the accent color. We've
added a box shadow to make the list pop out a bit.

Now, let's start to create the list items:5.

export const QuestionList: FC<Props> = props => (
 <ul ...
 >
 <li
 css={css`
 border-top: 1px solid ${gray5};
 :first-of-type {
 border-top: none;
 }
 `}
 >

);

So, the list items will have a light gray line between them.

Now, we can inject the data into the list:6.

export const QuestionList: FC<Props> = props => (
 <ul ...
 >
 {props.data.map(question => (
 <li
 key={question.questionId}
 css={...}
 >

))}

);

Getting Started with React and TypeScript Chapter 3

[89]

Note that we're referencing the data prop and calling a map function nested
inside the List component. map iterates through the items in the array, calling
the function passed to it for each item. So, we iterate through the questions that
are passed into QuestionList and render a li HTML element for each array
item.

Notice the key prop we pass into the li element.

The key prop helps React detect when the element changes or is added or
removed. Where we output content in a loop, in React, it is good practice
to apply this prop and set it to a unique value within the loop so that
React can distinguish it from the other elements during the rendering
process. If we don't provide a key prop, React will unnecessarily rerender
this element, which makes the rendering process slower.

Our QuestionList component will work perfectly fine, but we are going to7.
make one small change that will arguably make the implementation a little
more succinct. The change is to destructure the props into a data variable in the
function parameter:

export const QuestionList: FC<Props> = ({ data }) => (
 <ul ... >
 {data.map(question => (
 <li ... >

))}

);

Destructuring is a special syntax that allows us to unpack objects or
arrays into variables.

Notice that we directly reference the data variable in the JSX and not through the
props variable, like we did in the previous example. This is a nice pattern to use,
particularly when there are more props.

Before we can complete the QuestionList component, we are going to create its child
component, Question, which we'll do next.

Getting Started with React and TypeScript Chapter 3

[90]

Creating the Question component
Follow these steps to implement the Question component:

Create a file called Question.tsx that contains the following import statements:1.

import { FC } from 'react';
/** @jsx jsx */
import { css, jsx } from '@emotion/core';
import { QuestionData } from './QuestionsData';
import { gray3 } from './Styles';

Let's create the props for the Question component, which will simply contain a2.
prop for the question data:

interface Props {
 data: QuestionData;
}

Now, we can create the component:3.

export const Question: FC<Props> = ({ data }) => (
 <div
 css={css`
 padding: 10px 0px;
 `}
 >
 <div
 css={css`
 padding: 10px 0px;
 font-size: 19px;
 `}
 >
 {data.title}
 </div>
 <div
 css={css`
 font-size: 12px;
 font-style: italic;
 color: ${gray3};
 `}
 >
 {`Asked by ${data.userName} on
 ${data.created.toLocaleDateString()}
${data.created.toLocaleTimeString()}`}
 </div>
 </div>
);

Getting Started with React and TypeScript Chapter 3

[91]

So, we are rendering the question title, who asked the question, and when it was
asked.

Notice that we use the toLocaleDateString and toLocaleTimeString
functions on the data.created Date object to output when the question was
asked, formatted in the browser's locale.

That completes our Question component nicely.

Wiring up the components
Now, we can wire up the components we have just created using the props so that we get
the unanswered questions rendered on the home page. Follow these steps to do so:

Let's go back to QuestionList.tsx and import the Question component we1.
just created:

import { Question } from './Question';

Now, we can place an instance of the Question component in the2.
QuestionList JSX nested within ListItem:

{data.map(question => (
 <li ... >
 <Question data={question} />

))}

Moving on to the HomePage component in HomePage.tsx, let's import the3.
QuestionList component. Let's also import
the getUnansweredQuestions function we created earlier, which returns some
mock questions:

import { QuestionList } from './QuestionList';
import { getUnansweredQuestions } from './QuestionsData';

Now, we can place an instance of QuestionList in the HomePage component4.
JSX inside the outermost div tag:

<div css={ ... } >
 <div css={ ... } >
 <h2 css={ ... } >
 Unanswered Questions
 </h2>
 <PrimaryButton>Ask a question</PrimaryButton>

Getting Started with React and TypeScript Chapter 3

[92]

 </div>
 <QuestionList data={getUnansweredQuestions()} />
</div>

Notice that we pass the array of questions into the data prop by calling
the getUnansweredQuestions function we created and imported earlier in this
chapter.

If we look at the running app now, we'll see one unanswered question nicely5.
rendered:

Our home page is looking nice now. We are going to finish this section on props by
understanding optional and default props, which can make our components more flexible
for consumers.

Optional and default props
A prop can be optional so that the consumer doesn't necessarily have to pass it into a
component. For example, we could have an optional prop in the Question component that
allows a consumer to change whether the content of the question is rendered or not. We'll
do this now:

First, let's import the gray2 color from our global styles into Question.tsx:1.

import { gray2, gray3 } from './Styles';

We need to add the content into the Question component, so add the following2.
code beneath the question title in the JSX:

export const Question: FC<Props> = ({ data }) => (
 <div ... >

Getting Started with React and TypeScript Chapter 3

[93]

 <div ... >
 {data.title}
 </div>
 <div
 css={css`
 padding-bottom: 10px;
 font-size: 15px;
 color: ${gray2};
 `}
 >
 {data.content.length > 50
 ? `${data.content.substring(0, 50)}...`
 : data.content}
 </div>
 <div ... >
 {`Asked by ${data.userName} on
 ${data.created.toLocaleDateString()}
${data.created.toLocaleTimeString()}`}
 </div>
 </div>
);

Here, we have used a JavaScript ternary operator to truncate the content if it is
longer than 50 characters.

A JavaScript ternary is a short way of implementing a conditional
statement that results in one of two branches of logic being executed. The
statement has three operands. The first operand is a condition, the second
is what is returned if the condition is true, and the third is what is
returned if the condition is false. The ternary operator is a popular way
of implementing conditional logic in JSX.

Create an additional property in the Props interface in Question.tsx regarding3.
whether the question's content is shown:

interface Props {
 data: QuestionData;
 showContent: boolean;
}

Let's destructure the showContent prop in the Question component parameter:4.

export const Question: FC<Props> = ({ data, showContent }) =>

Getting Started with React and TypeScript Chapter 3

[94]

Let's change where we render the question content to the following:5.

<div ... >
 {data.title}
</div>
{showContent && (
 <div ... >
 {data.content.length > 50
 ? `${data.content.substring(0, 50)}...`
 : data.content}
 </div>
)}
<div ...>
 {`Asked by ${data.userName} on
 ${data.created.toLocaleDateString()}
${data.created.toLocaleTimeString()}`}
</div>

We have just changed the component to only render the question content if the
showContent prop is true using the short-circuit operator, &&.

The short-circuit operator (&&) is another way of expressing conditional
logic. It has two operands, with the first being the condition and the
second being the logic to execute if the condition evaluates to true. It is
often used in JSX to conditionally render an element if the condition is
true.

If we go back to QuestionList.tsx, we'll see a TypeScript compilation error:6.

This is because showContent is a required prop in the Question component and
we haven't passed it in. It can be a pain to always have to update consuming
components when a prop is added. Couldn't showContent just default to false if
we don't pass it in? Well, this is exactly what we are going to do next.

Getting Started with React and TypeScript Chapter 3

[95]

Let's start by making the showContent prop optional by adding a question mark7.
after the name of the prop:

interface Props {
 data: QuestionData;
 showContent?: boolean;
}

Optional properties are actually a TypeScript feature. Function parameters
can also be made optional by putting a question mark at the end of the
parameter name before the type annotation, for example, (duration?:
number).

Now, the compilation error in QuestionList.tsx has gone away and the app
will render the unanswered questions without their content.

What if we wanted to show the question content by default and allow consumers
to suppress this if required? We'll do just this using two different approaches to
default props.

We can set a special object literal called defaultProps on the component to8.
define the default values:

export const Question: FC<Props> = ({ data, showContent }) => (
 ...
);
Question.defaultProps = {
 showContent: true,
};

If we look at the running app, we'll see the question content being rendered as we
expect:

Getting Started with React and TypeScript Chapter 3

[96]

There is another way of setting default props that's arguably neater. Let's remove9.
the defaultProps object literal and specify the default after the destructured
component's showContent parameter:

export const Question: FC<Props> = ({ data, showContent = true })
=> (...)

This arguably makes the code more readable because the default is right next to
its parameter and our eyes don't need to scan right down to the bottom of the
function to see that there is a default value for a parameter.

Destructuring is an ES6 feature and is commonly used in React apps. For
more information on destructuring, see https:/ ​/ ​developer. ​mozilla.
org/​en- ​US/ ​docs/ ​Web/ ​JavaScript/ ​Reference/ ​Operators/ ​Destructuring_
assignment.

So, our home page is looking good visually, as well as in terms of code structure. There are
a couple of components in HomePage.tsx that can be extracted so that we can reuse them
as we develop the rest of the app. We'll do this next.

Children prop
The children prop is a magical prop that all React components automatically have. It can
be used to render child nodes. It's magical because it's automatically there, without us
having to do anything, as well as being extremely powerful. In the following steps, we'll
use the children prop when creating Page and PageTitle components:

First, let's create a file called PageTitle.tsx with the following content: 1.

import styled from '@emotion/styled';

export const PageTitle = styled.h2`
 font-size: 15px;
 font-weight: bold;
 margin: 10px 0px 5px;
 text-align: center;
 text-transform: uppercase;
`;

Let's create a file called Page.tsx with the following content: 2.

import { FC } from 'react';
/** @jsx jsx */
import { css, jsx } from '@emotion/core';

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment

Getting Started with React and TypeScript Chapter 3

[97]

import { PageTitle } from './PageTitle';

interface Props {
 title?: string;
}
export const Page: FC<Props> = ({ title }) => (
 <div
 css={css`
 margin: 50px auto 20px auto;
 padding: 30px 20px;
 max-width: 600px;
 `}
 >
 {title && <PageTitle>{title}</PageTitle>}
 </div>
);

Here, the component takes in an optional title prop and renders this inside the
PageTitle component. The page component horizontally centers its content in a
600px space.

Now, it's time to use the children prop. First, let's destructure it in the3.
component parameters:

export const Page: FC<Props> = ({ title, children })

Notice that we didn't need to define children in our Props interface. This is
because it's already been made available via the FC type.

Now, we can reference the children prop after the title in the JSX:4.

export const Page: FC<Props> = ({ title, children }) => (
 <div ...>
 {title && <PageTitle>{title}</PageTitle>}
 {children}
 </div>
);

In the consuming component, the content nested within the Page component will
be rendered where we have just placed the children prop.

Let's move back to HomePage.tsx now and import the Page and PageTitle5.
components:

import { Page } from './Page';
import { PageTitle } from './PageTitle';

Getting Started with React and TypeScript Chapter 3

[98]

Let's use the Page and PageTitle components in the HomePage component:6.

export const HomePage = () => (
 <Page>
 <div
 css={css`
 display: flex;
 align-items: center;
 justify-content: space-between;
 `}
 >
 <PageTitle>Unanswered Questions</PageTitle>
 <PrimaryButton>Ask a question</PrimaryButton>
 </div>
 <QuestionList data={getUnansweredQuestions()} />
 </Page>
);

Notice that we aren't taking advantage of the title prop in the Page component in
HomePage. This is because this page needs to have the Ask a question button to the
right of the title, so we are rendering this within HomePage. However, other pages that
we implement will take advantage of the title prop we have implemented.

So, the children prop allows a consumer to render custom content within the component.
This gives the component flexibility and makes it highly reusable, as we'll discover as we
use the Page component throughout our app. Something you may not know, however, is
that the children prop is actually a function prop. We'll learn about function props in the
next section.

Function props
Props can consist of primitive types such as the boolean showContent prop we
implemented in the Question component. Props can also be objects and arrays as we have
experienced in the Question and QuestionList components. This in itself is powerful.
However, props can also be functions, which allows us to implement components that
are extremely flexible.

Getting Started with React and TypeScript Chapter 3

[99]

Using the following steps, we are going to implement a function prop on the
QuestionList component that allows the consumer to render the question as an
alternative to QuestionList rendering it:

In QuestionList.tsx, add a renderItem function prop to the Props interface,1.
as follows:

interface Props {
 data: QuestionData[];
 renderItem?: (item: QuestionData) => JSX.Element;
}

So, the renderItem prop is a function that takes in a parameter containing the
question and returns a JSX element. Notice that we have made this an optional
prop so that our app will continue to run just as it was before.

Let's destructure the function parameters into a renderItem variable:2.

export const QuestionList: FC<Props> = ({ data, renderItem }) => (
...)

Now, we can call the renderItem function prop in the JSX if it has been passed3.
and, if not, render the Question component:

{data.map(question => (
 <li ... >
 {renderItem ? renderItem(question) : <Question data={question}
/>}

))}

Notice that we use renderItem in the ternary condition, even though it isn't a
boolean.

Conditions in if statements and ternaries will execute the second operand
if the condition evaluates to truthy, and the third operand if the condition
evaluates to falsy. true is only one of many truthy values. In fact, false,
0, "", null, undefined, and NaN are falsy values and everything else is
truthy.

So, renderItem will be truthy and will execute if it has been passed as a prop.

Getting Started with React and TypeScript Chapter 3

[100]

Our app will render the unanswered questions, just like it did before, by4.
rendering the Question component. Let's try our renderItem prop out by
opening HomePage.tsx and adding the Question interface to the import
statement from Data:

import { getUnansweredQuestions, QuestionData } from
'./QuestionsData';

Next, let's create a function to render the question just above the HomePage5.
component:

const renderQuestion = (question: QuestionData) =>
 <div>{question.title}</div>;

Now, we can pass this function into the renderItem prop on QuestionList in6.
the HomePage JSX:

<QuestionList
 data={getUnansweredQuestions()}
 renderItem={renderQuestion}
/>

If we look at the running app, we'll see this in effect:

The pattern of implementing a function prop to allow consumers to
render an internal piece of the component is often referred to as a render
prop. It makes the component extremely flexible and useable in many
different scenarios.

This doesn't look quite a good as it did previously, so we won't pass the7.
renderItem prop. Let's have QuestionList take back control of rendering the
questions:

<QuestionList data={getUnansweredQuestions()} />

To complete this section, let's remove the renderQuestion function from8.
HomePage.tsx, as well as the imported QuestionData interface, now that we
aren't using them anymore.

Getting Started with React and TypeScript Chapter 3

[101]

We can already see that function props are extremely powerful. We'll use these again when
we cover handling events later in this chapter. Before we look at events, we are going to
cover another fundamental part of a component, which is state.

Implementing component state
Components can use what is called state to have the component rerender when a variable
in the component changes. This is crucial for implementing interactive components. For
example, when filling out a form, if there is a problem with a field value, we can use state to
render information about that problem. State can also be used to implement behavior when
external things interact with a component, such as a web API. We are going to do this in
this section after changing the getUnansweredQuestions function in order to simulate a
web API call.

Changing getUnansweredQuestions so that it's
asynchronous
The getUnansweredQuestions function doesn't simulate a web API call very well
because it isn't asynchronous. In this section, we'll change this. Follow these steps to do so:

Open QuestionsData.ts and create an asynchronous wait function that we1.
can use in our getUnansweredQuestions function:

const wait = (ms: number): Promise<void> => {
 return new Promise(resolve => setTimeout(resolve, ms));
};

This function will wait asynchronously for the number of milliseconds we pass
into it. The function uses the native JavaScript setTimeout function internally, so
that it returns after the specified number of milliseconds.

Notice the function returns a Promise object.

A promise is a JavaScript object that represents the eventual completion
(or failure) of an asynchronous operation and its resulting value.
The Promise type in TypeScript is like the Task type in .NET.

Getting Started with React and TypeScript Chapter 3

[102]

Notice the <void> after the Promise type in the return type annotation. Angle
brackets after a TypeScript type indicate that this is a generic type.

Generic types are a mechanism for allowing the consumer's own type to
be used in the internal implementation of the generic type. The angle
brackets allow the consumer type to be passed in as a parameter. Generics
in TypeScript is very much like generics in .NET.

We are passing a void type into the generic Promise type. But what is
the void type?

The void type is another TypeScript-specific type that is used to represent
a non-returning function. So, void in TypeScript is like void in .NET.

Now, we can use the wait function in our getUnansweredQuestions function2.
to wait half a second:

export const getUnansweredQuestions = async ():
Promise<QuestionData[]> => {
 await wait(500);
 return questions.filter(q => q.answers.length === 0);
};

Notice the await keyword before the call to the wait function and
the async keyword before the function signature.

async and await are two JavaScript keywords we can use to make
asynchronous code read almost identically to synchronous
code. await stops the next line from executing until the asynchronous
statement has completed, while async simply indicates that the function
contains asynchronous statements. So, these keywords are very much like
async and await in .NET.

We return a Promise<QuestionData[]> rather than QuestionData[] because
the function doesn't return the questions straight away. Instead, it returns the
questions eventually.

Getting Started with React and TypeScript Chapter 3

[103]

So, the getUnansweredQuestions function is now asynchronous. If we open3.
HomePage.tsx, which is where this function is consumed, we'll see a
compilation error:

This is because the return type of the function has changed and no longer matches
what we defined in the QuestionList props interface.

For now, let's comment the instance of QuestionList out so that our app4.
compiles:

{/* <QuestionList data={getUnansweredQuestions()} /> */}

Lines of code can be commented out in Visual Studio Code by
highlighting the lines and pressing CTRL+/ (forward slash).

Eventually, we're going to change HomePage so that we store the questions in the local state
and then use this value in the local state to pass to QuestionList. To do this, we need to
invoke getUnansweredQuestions when the component is first rendered and set the value
that's returned to state. We'll do this in the next section.

Using useEffect to execute logic
So, how do we execute logic when a function-based component is rendered? Well, we can
use a useEffect hook in React, which is what we are going to do in the following steps:

Let's add an import statement to import the useEffect function from React1.
into HomePage.tsx:

import { useEffect } from 'react';

Getting Started with React and TypeScript Chapter 3

[104]

We need to change HomePage so that it has an explicit return statement since we2.
want to write some JavaScript logic in the component, as well as return JSX:

export const HomePage = () => {
 return (
 <Page>
 ...
 </Page>
);
};

Now, we can call the useEffect hook before we return the JSX:3.

export const HomePage = () => {
 useEffect(() => {
 console.log('first rendered');
 }, []);
 return (
 ...
);
};

The useEffect hook is a function that allows a side effect, such as fetching
data, to be performed in a component. The function takes in two
parameters, with the first parameter being a function to execute. The
second parameter determines when the function in the first parameter
should be executed. This is defined in an array of variables that, if changed,
results in the first parameter function being executed. If the array is empty,
then the function is executed only when the component is mounted into the
DOM.

So, we output first rendered into the console when the HomePage component is
first rendered.

Getting Started with React and TypeScript Chapter 3

[105]

In the running app, let's open the browser developer tools and inspect the4.
console:

So, our code is executed when the component is first rendered, which is great.

Note that we shouldn't worry about the ESLint warnings about the
unused QuestionList component and getUnansweredQuestions variable because these
will be used when we uncomment the reference to the QuestionList component.

Using useState to implement component state
The time has come to implement state in the HomePage component so that we can store any
unanswered questions. But how do we do this in function-based components? Well, the
answer is to use another React hook called useState. Follow the steps listed in
HomePage.tsx to do this:

Add the useState hook to the React import and the QuestionData interface1.
to the QuestionsData import:

import { useEffect, useState } from 'react';
...
import {
 getUnansweredQuestions,
 QuestionData
} from './QuestionsData';

Getting Started with React and TypeScript Chapter 3

[106]

We'll use this hook just above the useEffect statement in the HomePage2.
component to declare the state variable:

const [questions, setQuestions]
 = useState<QuestionData[] | null>(null);

useEffect(() => {
 console.log('first rendered');
}, []);

The useState function returns an array containing the state variable in
the first element and a function to set the state in the second element. The
initial value of the state variable is passed into the function as a
parameter. The TypeScript type for the state variable can be passed to the
function as a generic type parameter.

Notice that we have destructured the array that's returned from useState into a
state variable called questions, which is initially null, and a function to set the
state called setQuestions.

We can destructure arrays to unpack their contents, just like we did
previously with objects.

Notice that we have also used a union type for the type of the questions state
variable.

A union type is a way of specifying that a type can be one of multiple
types. The different types in the union are separated by a pipe character
(|).

So, the type of the questions state variable is an array of QuestionData or
null.

Let's add a second piece of state called questionsLoading to indicate whether3.
the questions are being fetched:

const [questions, setQuestions] = useState<QuestionData[] |
null>(null);
const [questionsLoading, setQuestionsLoading] = useState(true);

Getting Started with React and TypeScript Chapter 3

[107]

We have initialized this state to true because the questions are being fetched
immediately in the first rendering cycle. Notice that we haven't passed a type in
the generic parameter. This is because, in this case, TypeScript can cleverly infer
that this is a boolean state from the default value, true, that we passed into the
useState parameter.

Now, we need to set these pieces of state when we fetch the unanswered4.
questions. First, we need to call the getUnansweredQuestions function
asynchronously in the useEffect hook. Let's add this and remove the
console.log statement:

useEffect(() => {
 const questions = await getUnansweredQuestions();
});

We immediately get a compilation error:

This error has occurred because the useEffect function callback isn't flagged as5.
async. So, let's try to make it async:

useEffect(async () => {
 const questions = await getUnansweredQuestions();
});

Unfortunately, we get another error:

Getting Started with React and TypeScript Chapter 3

[108]

Unfortunately, we can't specify an asynchronous callback in
the useEffect parameter.

Instead, we can create a function that calls 6.
getUnansweredQuestions asynchronously and call this function within the
useEffect callback function:

useEffect(() => {
 const doGetUnansweredQuestions = async () => {
 const unansweredQuestions = await getUnansweredQuestions();
 };
 doGetUnansweredQuestions();
});

Now, we need to set the questions and questionsLoading states when we7.
have retrieved the data:

useEffect(() => {
 const doGetUnansweredQuestions = async () => {
 const unansweredQuestions = await getUnansweredQuestions();
 setQuestions(unansweredQuestions);
 setQuestionsLoading(false);
 };
 doGetUnansweredQuestions();
}, []);

In the HomePage JSX, we can uncomment the QuestionList reference and pass8.
in our question state:

<Page>
 <div ... >
 ...
 </div>
 <QuestionList data={questions || []} />
</Page>

Notice that we have passed in questions || [] to the data prop.

|| is a logical OR operator and returns the operand before if it is truthy;
otherwise, it returns the operand after.

Getting Started with React and TypeScript Chapter 3

[109]

So, if the questions state is null (a falsy value), then an empty array is passed
into the data prop. Note that an alternative approach would have been to
initialize the questions state to an empty array, rather than null. If we look at
the running app, we'll see that the questions are being rendered nicely again.

We haven't made use of the questionsLoading state yet. So, let's change9.
the HomePage JSX to the following:

<Page>
 <div ... >
 ...
 </div>
 {questionsLoading ? (
 <div
 css={css`
 font-size: 16px;
 font-style: italic;
 `}
 >
 Loading...
 </div>
) : (
 <QuestionList data={questions || []} />
)}
</Page>

Here, we are rendering a Loading... message while the questions are being
fetched. Our home page will render nicely again in the running app and we
should see a Loading... message while the questions are being fetched.

Before we move on, let's take some time to start to understand when components10.
are rerendered. Still in HomePage.tsx, let's add the following statement before
the return statement:

useEffect(() => {
 ...
}, []);

console.log('rendered');
return ...

Getting Started with React and TypeScript Chapter 3

[110]

Every time the HomePage component is rendered, we'll see a rendered message in
the console:

So, the component is rerendered twice after the initial render. What is causing this
rerender to occur? React components are rerendered whenever their states
change. In the HomePage component, the state changes twice in the initial render
in the useEffect hook when the questions and questionsLoading states are
set. This results in the HomePage component being rendered three times when the
home page is loaded.

Let's remove the console.log statement before continuing.11.

So, we are starting to understand how we can use state to control what is rendered when
external things such as users or a web API interact with components. A key point that we
need to take away is that when we change state in a component, React will automatically
rerender the component.

The HomePage component is what is called a container component, with
QuestionList and Question being presentational components.
Container components are responsible for how things work, fetching any
data from a web API, and managing state. Presentational components are
responsible for how things look. Presentational components receive data
via their props and also have property event handlers so that their
containers can manage user interactions.

Structuring a React app into a container and presentational components often allows
presentation components to be used in different scenarios. Later in this book, we'll see that
we can easily reuse QuestionList on other pages in our app.

In the next section, we are going to learn how to implement logic when users interact with
components using events.

Getting Started with React and TypeScript Chapter 3

[111]

Handling events
JavaScript events are invoked when a user interacts with a web app. For example, when a
user clicks a button, a click event will be raised from that button. We can implement a
JavaScript function to execute some logic when the event is raised. This function is often
referred to as an event listener.

In JavaScript, event listeners are attached to an element using
its addEventListener method and removed using its
removeEventListener method.

React allows us to declaratively attach events in JSX using function props, without the need
to use addEventListener and removeEventListener. In this section, we are going to
implement a couple of event listeners in React.

Handling a button click event
In this section, we are going to implement an event listener on the Ask a question button in
the HomePage component. Follow these steps to do so:

Open HomePage.tsx and add a click event listener to the PrimaryButton1.
instance in the JSX:

<PrimaryButton onClick={handleAskQuestionClick}>
 Ask a question
</PrimaryButton>

Event listeners in JSX can be attached using a function prop that is named
with on before the native JavaScript event name in camel case. So, a native
click event can be attached using an onClick function prop. React will
automatically remove the event listener for us before the element is
destroyed.

Let's implement the handleAskQuestionClick function, just above the return2.
statement in the HomePage component:

const handleAskQuestionClick = () => {
 console.log('TODO - move to the AskPage');
};

return ...

Getting Started with React and TypeScript Chapter 3

[112]

If we click on the Ask a question button in the running app, we'll see the3.
following message in the console:

So, handling events in React is super easy! In Chapter 4, Routing with React Router, we'll
finish off the implementation of the handleAskQuestionClick function and navigate to
the page where a question can be asked.

Handling an input change event
In this section, we are going to handle the change event on the input element and interact
with the event parameter in the event listener. Follow these steps to do so:

Open Header.tsx and add a change event listener to the input element in the1.
JSX:

<input
 type="text"
 placeholder="Search..."
 onChange={handleSearchInputChange}
 css={ ... }
/>

Let's change the Header component so that it has an explicit return statement2.
and implement the handleSearchInputChange function just above it:

export const Header = () => {
 const handleSearchInputChange = (e:
ChangeEvent<HTMLInputElement>)
 => {
 console.log(e.currentTarget.value);
 };
 return (...);
};

Getting Started with React and TypeScript Chapter 3

[113]

Notice the type of annotation for the event parameter. This ensures the
interactions with the event parameter are strongly-typed.

To find a list of all the available events, along with their corresponding
types, take a look in the index.d.ts file, which can be found in the
node_modules/@types/react folder.

We need to import the ChangeEvent type from React for the app to compile:3.

import { ChangeEvent } from 'react';

If we type something into the search box in the running app, we'll see each4.
change in the console:

In this section, we've learned that we can implement strongly-typed event listeners, which
will help us avoid making mistakes when using the event parameter. We'll finish off the
implementation of the search input in Chapter 5, Working with Forms.

Before we finish this chapter, we are going to deepen our understanding of when
components are rendered and how we can optimize this.

Getting Started with React and TypeScript Chapter 3

[114]

Rendering optimization
Earlier in this chapter, we saw that a React component is rerendered when its state changes.
A component is also rerendered when its props change. It is important to understand that
child components are rerendered when their parent component re-renders. So, changing
some state could be an expensive change if there are lots of components that contain lots of
elements that get rerendered as a result.

In this section, we are going to force one of the components we have implemented to be
rendered multiple times unnecessarily. Then, we'll optimize it. Follow these steps to do so:

In QuestionList.tsx, change the QuestionList component so that it has an1.
explicit return statement and add a statement to output that the component is
rendering in the console:

export const QuestionList: FC<Props> = ({ data, renderItem }) => {
 console.log('Rendering QuestionList', data, renderItem);
 return (
 ...
);
};

If we refresh the running app, we'll see that this component is only rendered2.
once, which is great.
Let's implement some state and change it in its parent component, that3.
is, HomePage. We are going to implement a counter that increments when the
Ask a question button is clicked. Let's start in HomePage.tsx by implementing
the state for the counter:

const [questions, setQuestions] = useState<QuestionData[] |
null>(null);
const [questionsLoading, setQuestionsLoading] = useState(true);
const [count, setCount] = useState(0);

Now, we can increment the state when the Ask a question button is clicked:4.

const handleAskQuestionClick = () => {
 setCount(count + 1);
 console.log('TODO - move to the AskPage');
};

Getting Started with React and TypeScript Chapter 3

[115]

Let's go to the running app and click the Ask a question button. Here, we can see5.
that the QuestionList component has been rerendered:

So, the QuestionList component is being rerendered unnecessarily. How can6.
we prevent these unnecessary rerenders? Well, the answer is to use a React
function called memo. Let's give this a try by importing it into
QuestionList.tsx:

import { FC, memo } from 'react';

Now, we need to wrap the QuestionList component with the memo function:7.

export const QuestionList: FC<Props> = memo(({ data, renderItem })
=> {
 console.log('Rendering QuestionList', data, renderItem);
 return (
 ...
);
});

In the running app, click the Ask a question button a few times. We will see that8.
the QuestionList component is not being rerendered now:

Getting Started with React and TypeScript Chapter 3

[116]

The memo function ensures that the component that's passed into it only rerenders when its
props change.

So, given how simple this is, shouldn't we just wrap all our function components with
memo? No! There is a performance cost when memo determines whether a component has
changed. If the component doesn't actually do any unnecessary rendering, using memo
would result in the component being slower. So, memo should be used with care and
considered only if a component has some of the following traits:

The component returns the same output for a given set of props
The component renders often
The component outputs lots of elements

Before we finish this chapter, we are going to undo the changes we have made because we
don't need the counter when the Ask a question button is clicked and, therefore, don't need
to optimize QuestionList. Follow these steps in order to revert the changes we made in
this section:

In QuestionList.tsx, remove memo from the import statement and from being1.
wrapped around the QuestionList component.
In QuestionList.tsx, remove the console.log statement that informed us2.
that the component was rendering.
In HomePage.tsx, remove the count state declaration statement and the call to3.
setCount in the handleAskQuestionClick function so that it looks like this:

const handleAskQuestionClick = () => {
 console.log('TODO - move to the AskPage');
};

That completes our cleanup.

Summary
In this chapter, we learned that JSX compiles JavaScript nested calls into createElement
functions in React, which allows us to mix HTML and JavaScript. We learned that we can
create a React component using functions with strongly-typed props passed in as
parameters. Now, we know that a prop can be a function, which is how events are handled.

Getting Started with React and TypeScript Chapter 3

[117]

The component state is used to implement behavior when users or other external things
interact with it. Due to this, we understand that a component and its children are
rerendered when the state is changed and that the memo function can be used to prevent
components from rendering unnecessarily.

We also learned that components can be styled using traditional CSS approaches, such as
by using Emotion, which helps us scope styles to specific components and arguably helps
with component readability.

In the next chapter, we are going to add more pages to our app and learn how to
implement routing, which is managed on the client.

Questions
Try to answer the following questions to test your knowledge of this chapter:

Does a component rerender when its props change?1.
Does a component rerender when its parents props changes?2.
How can we ensure a component rerenders only when its props change?3.
What function prop would we use to add a keydown event listener?4.
A component has the following props interface:5.

interface Props {
 name: string;
 active: boolean;
}

How can we destructure the props parameter and default active to true?

Let's say we have a state called dateOfBirth. How can we type this so that it's6.
a Date?
How could we use the useEffect hook to call a synchronous function called7.
getItems when a piece of state called category changes while
passing category to getItems?

Getting Started with React and TypeScript Chapter 3

[118]

Further reading
The following are some useful links so that you can learn more about the topics that were
covered in this chapter:

React getting started: https:/ ​/ ​reactjs. ​org/ ​docs/ ​getting- ​started. ​html.
TypeScript: https:/ ​/​www. ​typescriptlang. ​org/ ​.
Arrow functions: https:/ ​/​developer. ​mozilla. ​org/ ​en-​US/ ​docs/ ​Web/
JavaScript/ ​Reference/ ​Functions/ ​Arrow_ ​functions.
const: https:/ ​/ ​developer. ​mozilla. ​org/ ​en-​US/ ​docs/ ​Web/ ​JavaScript/
Reference/ ​Statements/ ​const.
Emotion: https:/ ​/​emotion. ​sh/ ​docs/ ​introduction.
Components and Props: https:/ ​/ ​reactjs. ​org/ ​docs/ ​components- ​and- ​props.
html.
JavaScript array map: https:/ ​/​developer. ​mozilla. ​org/ ​en- ​US/​docs/ ​Web/
JavaScript/ ​Reference/ ​Global_ ​Objects/ ​Array/ ​map.
React lists and keys: https:/ ​/ ​reactjs. ​org/ ​docs/ ​lists- ​and- ​keys. ​html.
JavaScript ternary: https:/ ​/​developer. ​mozilla. ​org/​en- ​US/ ​docs/ ​Web/
JavaScript/ ​Reference/ ​Operators/ ​Conditional_ ​Operator.
useState hook: https:/ ​/ ​reactjs. ​org/​docs/ ​hooks- ​state. ​html.
useEffect hook: https:/ ​/​reactjs. ​org/ ​docs/ ​hooks- ​effect. ​html.
memo: https:/ ​/​reactjs. ​org/ ​docs/​react- ​api.​html#reactmemo.

https://reactjs.org/docs/getting-started.html
https://reactjs.org/docs/getting-started.html
https://reactjs.org/docs/getting-started.html
https://reactjs.org/docs/getting-started.html
https://reactjs.org/docs/getting-started.html
https://reactjs.org/docs/getting-started.html
https://reactjs.org/docs/getting-started.html
https://reactjs.org/docs/getting-started.html
https://reactjs.org/docs/getting-started.html
https://reactjs.org/docs/getting-started.html
https://reactjs.org/docs/getting-started.html
https://reactjs.org/docs/getting-started.html
https://reactjs.org/docs/getting-started.html
https://reactjs.org/docs/getting-started.html
https://reactjs.org/docs/getting-started.html
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/const
https://emotion.sh/docs/introduction
https://emotion.sh/docs/introduction
https://emotion.sh/docs/introduction
https://emotion.sh/docs/introduction
https://emotion.sh/docs/introduction
https://emotion.sh/docs/introduction
https://emotion.sh/docs/introduction
https://emotion.sh/docs/introduction
https://emotion.sh/docs/introduction
https://emotion.sh/docs/introduction
https://emotion.sh/docs/introduction
https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/components-and-props.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://reactjs.org/docs/lists-and-keys.html
https://reactjs.org/docs/lists-and-keys.html
https://reactjs.org/docs/lists-and-keys.html
https://reactjs.org/docs/lists-and-keys.html
https://reactjs.org/docs/lists-and-keys.html
https://reactjs.org/docs/lists-and-keys.html
https://reactjs.org/docs/lists-and-keys.html
https://reactjs.org/docs/lists-and-keys.html
https://reactjs.org/docs/lists-and-keys.html
https://reactjs.org/docs/lists-and-keys.html
https://reactjs.org/docs/lists-and-keys.html
https://reactjs.org/docs/lists-and-keys.html
https://reactjs.org/docs/lists-and-keys.html
https://reactjs.org/docs/lists-and-keys.html
https://reactjs.org/docs/lists-and-keys.html
https://reactjs.org/docs/lists-and-keys.html
https://reactjs.org/docs/lists-and-keys.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://reactjs.org/docs/hooks-state.html
https://reactjs.org/docs/hooks-state.html
https://reactjs.org/docs/hooks-state.html
https://reactjs.org/docs/hooks-state.html
https://reactjs.org/docs/hooks-state.html
https://reactjs.org/docs/hooks-state.html
https://reactjs.org/docs/hooks-state.html
https://reactjs.org/docs/hooks-state.html
https://reactjs.org/docs/hooks-state.html
https://reactjs.org/docs/hooks-state.html
https://reactjs.org/docs/hooks-state.html
https://reactjs.org/docs/hooks-state.html
https://reactjs.org/docs/hooks-state.html
https://reactjs.org/docs/hooks-state.html
https://reactjs.org/docs/hooks-state.html
https://reactjs.org/docs/hooks-effect.html
https://reactjs.org/docs/hooks-effect.html
https://reactjs.org/docs/hooks-effect.html
https://reactjs.org/docs/hooks-effect.html
https://reactjs.org/docs/hooks-effect.html
https://reactjs.org/docs/hooks-effect.html
https://reactjs.org/docs/hooks-effect.html
https://reactjs.org/docs/hooks-effect.html
https://reactjs.org/docs/hooks-effect.html
https://reactjs.org/docs/hooks-effect.html
https://reactjs.org/docs/hooks-effect.html
https://reactjs.org/docs/hooks-effect.html
https://reactjs.org/docs/hooks-effect.html
https://reactjs.org/docs/hooks-effect.html
https://reactjs.org/docs/hooks-effect.html
https://reactjs.org/docs/react-api.html#reactmemo
https://reactjs.org/docs/react-api.html#reactmemo
https://reactjs.org/docs/react-api.html#reactmemo
https://reactjs.org/docs/react-api.html#reactmemo
https://reactjs.org/docs/react-api.html#reactmemo
https://reactjs.org/docs/react-api.html#reactmemo
https://reactjs.org/docs/react-api.html#reactmemo
https://reactjs.org/docs/react-api.html#reactmemo
https://reactjs.org/docs/react-api.html#reactmemo
https://reactjs.org/docs/react-api.html#reactmemo
https://reactjs.org/docs/react-api.html#reactmemo
https://reactjs.org/docs/react-api.html#reactmemo
https://reactjs.org/docs/react-api.html#reactmemo
https://reactjs.org/docs/react-api.html#reactmemo
https://reactjs.org/docs/react-api.html#reactmemo

4
Routing with React Router

So far, our Q&A app only contains a single page and the time has come to add more pages
to the app. React Router is a great library that helps us manage navigating between
different pages, so we are going to bring it into our project in this chapter.

In this chapter, we will declaratively define the routes that are available in our app and
handle pages that aren't found. We'll implement a page that displays the details of a
question, along with its answers, where we will learn how to implement route parameters.
We'll begin by implementing the question search feature, where we will learn how to
handle query parameters. We will also start to implement the page for asking a question
and optimize this so that its JavaScript is loaded on demand rather than when the app
loads.

We'll cover the following topics in this chapter:

Installing React Router with types
Declaring routes
Handling routes not found
Implementing links
Using route parameters
Using query parameters
Lazy loading routes

Routing with React Router Chapter 4

[120]

Technical requirements
We’ll use the following tools in this chapter:

Visual Studio Code: We'll use this to edit our React code. This can be
downloaded from https:/ ​/​code. ​visualstudio. ​com/​.
Node.js and npm: These can be downloaded from https:/ ​/​nodejs. ​org/​. If you
already have these installed, make sure that Node.js is at least version 8.2 and
that npm is at least version 5.2.
Q&A: We'll start with the Q&A frontend project we finished in Chapter
3, Getting Started with React and TypeScript. This is available on GitHub at https:/
/​github. ​com/ ​PacktPublishing/ ​ASP. ​NET-​Core- ​3- ​and- ​React- ​17.

All the code snippets in this chapter can be found online at https:/ ​/​github. ​com/
PacktPublishing/​ASP. ​NET- ​Core- ​3- ​and- ​React- ​17. In order to restore code from a chapter,
the source code repository can be downloaded and the relevant folder opened in the
relevant editor. If the code is frontend code, then npm install can be entered in the
Terminal to restore the dependencies.

Check out the following video to see the code in action:

http:/​/​bit.​ly/​34XoKyz

Installing React Router with types
In this section, we are going to install React Router with the corresponding TypeScript
types by carrying out the following steps:

Make sure the frontend project is open in Visual Studio Code and enter the1.
following command to install React Router in the Terminal:

> npm install react-router-dom

Install the TypeScript types for React Router using the following command:2.

> npm install @types/react-router-dom --save-dev

That's it—nice and simple! We'll start to declare the routes in our app in the next section.

https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
http://bit.ly/34XoKyz
http://bit.ly/34XoKyz
http://bit.ly/34XoKyz
http://bit.ly/34XoKyz
http://bit.ly/34XoKyz
http://bit.ly/34XoKyz
http://bit.ly/34XoKyz
http://bit.ly/34XoKyz
http://bit.ly/34XoKyz

Routing with React Router Chapter 4

[121]

Declaring routes
We declare the pages in our app using the BrowserRouter and Route components.
BrowserRouter is the top-level component that looks for Route components beneath it to
determine all the different page paths.

We are going to start this section by creating blank pages that we'll eventually implement
throughout this book. Then, we'll declare these pages in our app using BrowserRouter
and Route.

Creating some blank pages
Let's create blank pages for signing in, asking a question, viewing search results,
and viewing a question with its answers by carrying out the following steps:

Create a file called SignInPage.tsx with the following content:1.

import React from 'react';
import { Page } from './Page';

export const SignInPage = () => <Page title="Sign In" />;

Here, we have used the Page component we created in the previous chapter to
create an empty page that has the title Sign In. We are going to use a similar
approach for the other pages we need to create.

Create a file called AskPage.tsx with the following content:2.

import React from 'react';
import { Page } from './Page';

export const AskPage = () => <Page title="Ask a question" />;

Create a file called SearchPage.tsx with the following content:3.

import React from 'react';
import { Page } from './Page';

export const SearchPage = () => <Page title="Search Results" />;

Routing with React Router Chapter 4

[122]

Create a file called QuestionPage.tsx with the following content:4.

import React from 'react';
import { Page } from './Page';

export const QuestionPage = () => <Page>Question Page</Page>;

The title on the question page is going to be styled differently, which is why we
are not using the title prop on the Page component. We have simply added
some text on the page for the time being so that we can distinguish this page from
the other pages.

So, that's our pages created. Now, it's time to define all the routes to these pages.

Creating a component containing routes
We are going to define all of the routes to the pages we created by carrying out the
following steps:

Open App.tsx and add the following import statements:1.

import { BrowserRouter, Route } from 'react-router-dom';
import { AskPage } from './AskPage';
import { SearchPage } from './SearchPage';
import { SignInPage } from './SignInPage';

In the App component's JSX, add BrowserRouter as the outermost element:2.

<BrowserRouter>
 <div css={ ... } >
 <Header />
 <HomePage />
 </div>
</BrowserRouter>

The BrowserRouter component will look for Route components nested within it
and render the component defined if the route matches the location in the
browser.

Routing with React Router Chapter 4

[123]

Let's define some Route components in the JSX by replacing the previous3.
reference to HomePage:

<BrowserRouter>
 <div css={ ... } >
 <Header />
 <Route path="/" component={HomePage} />
 <Route path="/search" component={SearchPage} />
 <Route path="/ask" component={AskPage} />
 <Route path="/signin" component={SignInPage} />
 </div>
</BrowserRouter>

Run the app by entering the npm start command in the Visual Studio Code4.
Terminal. We'll see that the home page renders just like it did before, which is
great.
Now, enter /search at the end of the browser location path:5.

Routing with React Router Chapter 4

[124]

Here, we can see that the HomePage component has rendered, as well as the
SearchPage component. Why has this happened? Well, BrowserRouter has
matched the browser location path to /, as well as /search rendering both the
HomePage and SearchPage components.

By default, BrowserRouter does the partial matching to the browser
location path and will match and render all the Route components it can
find.

So, how do we resolve this problem? Well, we can tell the Route component that6.
renders the HomePage component to do an exact match on the location in the
browser:

<Route exact path="/" component={HomePage} />

Here, we use the exact Boolean attribute on the Route component to only render
the specified component when there is an exact match on the path.

Unlike other attributes, you don't need to specify the value of a Boolean
attribute on an HTML element. Its presence on an element automatically
means the value is true and its absence means the value is false.

If we look at the running app, we'll see that the search results page renders as we7.
expect:

Feel free to visit the other pages as well – they will render fine now.

Routing with React Router Chapter 4

[125]

Redirecting a route
We'd like a /home path to render the HomePage component, as well as the / path. Let's
carry out the following steps to implement this by redirecting /home to /:

In App.tsx, let's import the Redirect and Switch components from React1.
Router:

import { BrowserRouter, Route, Redirect, Switch } from 'react-
router-dom';

Now, let's use the Redirect component to redirect the /home path to /:2.

<Redirect from="/home" to="/" />
<Route exact path="/" component={HomePage} />

The Redirect component needs to be nested inside a Switch component, along3.
with the Route components, in order for it to function correctly. So, let's do this:

<Switch>
 <Redirect from="/home" to="/" />
 <Route exact path="/" component={HomePage} />
 <Route path="/search" component={SearchPage} />
 <Route path="/ask" component={AskPage} />
 <Route path="/signin" component={SignInPage} />
</Switch>

The Switch component renders just the first Route or Redirect
component that matches the browser location path and doesn't render any
other matching routes.

In the running app, put the /home location path in the browser. We'll see that it4.
successfully redirects to / and renders the home page as we wanted. The other
paths will function just as they did before as well.

So, that's our basic routing configured nicely. What happens if the user enters a path in the
browser that doesn't exist in our app? We'll find out in the next section.

Routing with React Router Chapter 4

[126]

Handling routes not found
In this section, we'll handle paths that aren't handled by any of the Route components. By
following these steps, we'll start by understanding what happens if we put an unhandled
path in the browser:

Enter a path that isn't handled in the browser and see what happens: 1.

So, nothing is rendered beneath the header when we browse to a path that isn't
handled by a Route component. This makes sense if we think about it.

We'd like to improve the user experience of routes not found and inform the user2.
that this is the case. Let's add the following highlighted route inside the Switch
component:

<Switch>
 <Redirect from="/home" to="/" />
 <Route exact path="/" component={HomePage} />
 <Route path="/search" component={SearchPage} />
 <Route path="/ask" component={AskPage} />
 <Route path="/signin" component={SignInPage} />
 <Route component={NotFoundPage} />
</Switch>

In order to understand how this works, let's think about what the Switch
component does again – it renders the first Route or Redirect component that
matches the browser location. If we enter an invalid path, we already know that
the existing Route components won't catch it. So, the Route component at the
bottom of the Switch component with no path will catch an invalid path.

Routing with React Router Chapter 4

[127]

Note that it is important that we place the no- found route as the last route in the
Switch component. If we place it above any other route, that route will never be
rendered because the not-found route will always result in a match and the
Switch component only renders the first match.

The NotFoundPage hasn't been implemented yet, so let's create a file called3.
NotFoundPage.tsx with the following content:

import React from 'react';
import { Page } from './Page';

export const NotFoundPage = () => <Page title="Page Not Found" />;

Back in App.tsx, let's import the NotFoundPage component:4.

import { NotFoundPage } from './NotFoundPage';

Now, if we enter an /invalid path in the browser, we'll see that our5.
NotFoundPage component has been rendered:

So, once we understand how the Switch component works, implementing a not-found
page is very easy. We simply use a Route component with no path as the last element
inside a Switch component.

At the moment, we are navigating to different pages in our app by manually changing the
location in the browser. In the next section, we'll learn how to implement links to perform
navigation within the app itself.

Routing with React Router Chapter 4

[128]

Implementing links
In this section, we are going to use the Link component from React Router to declaratively
perform navigation when clicking the app name in the app header. Then, we'll move on to
programmatically performing navigation when clicking the Ask a question button to go to
the ask page.

Using the Link component
At the moment, when we click on Q and A in the top-left corner of the app, it is doing an
HTTP request that returns the whole React app, which, in turn, renders the home page. We
are going to change this by making use of the React Routers Link component so that
navigation happens in the browser without an HTTP request. We are also going to make
use of the Link component for the link to the sign-in page as well. We'll learn how to
achieve this by following these steps:

In Header.tsx, import the Link component from React Router:1.

import { Link } from 'react-router-dom';

Let's change the anchor tag around the Q and A text to a Link element. The2.
href attribute also needs to change to a to attribute:

<Link
 to="/"
 css={ ... }
>
 Q & A
</Link>

Let's also change the sign-in link to the following:3.

<Link
 to="/signin"
 css={ ... }
>
 <UserIcon />
 Sign In
</Link>

If we go to the running app and click the Sign In link, we'll see the sign-in page4.
rendered. Now, click on Q and A in the app header. We will be taken back to the
home page, just like we wanted.

Routing with React Router Chapter 4

[129]

Do step 4 again but this time with the browser developer tools open and look at5.
the Network tab. We'll find that, when clicking on the Sign In and Q and
A links, no network requests are made.

So, the Link component is a great way of declaratively providing client-side navigation
options in JSX. The task we performed in the last step confirms that all the navigation
happens in the browser without any server requests, which is great for performance.

Navigating programmatically
Sometimes, it is necessary to do navigation programmatically. Follow these steps to
programmatically navigate to the ask page when the Ask a question button is clicked:

Import RouteComponentProps from React Router into HomePage.tsx:1.

import { RouteComponentProps } from 'react-router-dom';

This will give us access to a history object, which can be used
to programmatically navigate.

The history object in React Router keeps track of the locations that have
been visited in the app and contains quite a few different properties and
methods. The push method pushes a new entry into the history stack and
performs navigation to the location that's passed in as a parameter.

We are going to use RouteComponentProps as the props type for HomePage, so2.
let's import the FC generic type from React:

import { useEffect, useState, FC } from 'react';

Now, we can specify RouteComponentProps as the props type for3.
HomePage and also destructure the history prop:

export const HomePage:FC<RouteComponentProps> = ({ history }) => {
... }

In handleAskQuestionClick, we can replace the console.log statement with4.
the navigation now:

const handleAskQuestionClick = () => {
 history.push('/ask');
};

Routing with React Router Chapter 4

[130]

In the running app, if we give this a try and click the Ask a question button, it5.
will successfully navigate to the ask page.

So, we can declaratively navigate by using the Link component and programmatically
navigate using the history object in React Router. In the next section, we are going to use
the Link component again to perform navigation to the question page when a question is
clicked on.

Using route parameters
In this section, we are going to define a Route component for navigating to the question
page. This will contain a variable called questionId at the end of the path, so we will need
to use what is called a route parameter. We'll implement more of the question page content
in this section as well.

Adding the question page route
Let's carry out the following steps to add the question page route:

In App.tsx, import the QuestionPage component we created earlier in this1.
chapter:

import { QuestionPage } from './QuestionPage';

In the App component's JSX, add a Route component for navigation to the2.
question page:

<Switch>
 <Redirect from="/home" to="/" />
 <Route exact path="/" component={HomePage} />
 <Route path="/search" component={SearchPage} />
 <Route path="/ask" component={AskPage} />
 <Route path="/signin" component={SignInPage} />
 <Route path="/questions/:questionId" component={QuestionPage} />
 <Route component={NotFoundPage} />
</Switch>

Routing with React Router Chapter 4

[131]

Note that the path we entered contains questionId at the end.

Route parameters are defined in the path with a colon in front of them.
The value of the parameter is then available in RouteComponentProps in
the params object, within a match object.

Let's go to QuestionPage.tsx and import RouteComponentProps from React3.
Router:

import { RouteComponentProps } from 'react-router-dom';

Import the FC generic type from React as well:4.

import React, { FC } from 'react';

Specify RouteComponentProps as the props type for QuestionPage and also5.
destructure the match prop:

interface RouteParams {
 questionId: string;
}
export const QuestionPage: FC<RouteComponentProps<RouteParams>> =
({
 match
}) => <Page>Question Page</Page>;

We have defined the type for the route parameters in a RouteParams interface
and passed this into the generic parameter for RouteComponentProps. We have
destructured the match property that React Router gives the component. This will
give us strongly typed access to the questionId route parameter.

For now, we are going to output the questionId on the page as follows in the6.
JSX:

<Page>Question Page {match.params.questionId}</Page>;

We access the questionId route parameter from the params property, which can
be found in the match property we destructured in the last step. We'll come back
and fully implement the question page in Chapter 5, Working with Forms. For
now, we are going to link to this page from the Question component.

Routing with React Router Chapter 4

[132]

So, in Question.tsx, add the following import statement to import the Link7.
component:

import { Link } from 'react-router-dom';

Now, we can wrap a Link around the title text in the Question JSX while8.
specifying the path to navigate to:

<div
 css={css`
 padding: 10px 0px;
 font-size: 19px;
 `}
>
 <Link
 css={css`
 text-decoration: none;
 color: ${gray2};
 `}
 to={`questions/${data.questionId}`}
 >
 {data.title}
 </Link>
</div>

Go to the running app and try clicking on an unanswered question. It will9.
successfully navigate to the question page, showing the correct questionId:

So, we implement routing parameters by defining variables in the route path with a colon
in front and then picking the variable up in the match.params object in
RouteComponentProps.

Routing with React Router Chapter 4

[133]

Implementing more of the question page
Let's carry out some more steps to implement the question page a little more:

In QuestionsData.ts, add a function that will simulate a web request to get a1.
question:

export const getQuestion = async (
 questionId: number
): Promise<QuestionData | null> => {
 await wait(500);
 const results
 = questions.filter(q => q.questionId === questionId);
 return results.length === 0 ? null : results[0];
};

We have used the array filter method to get the question for the passed-in
questionId.

Moving on to QuestionPage.tsx, let's import the function we just created,2.
along with the question interface:

import { QuestionData, getQuestion } from './QuestionsData';

We are going to store the question in the state when the component is initially3.
rendered, so let's also import some additional items from React. We're also going
to remove the React namespace because we will be using Emotion's jsx
function later:

import { FC, useState, Fragment, useEffect } from 'react';

Let's also import the css and jsx functions from Emotion and a couple of gray4.
colors from our standard colors:

/** @jsx jsx */
import { css, jsx } from '@emotion/core';
import { gray3, gray6 } from './Styles';

Let's change QuestionPage so that it has an explicit return statement and create5.
a state for the question:

export const QuestionPage: FC<RouteComponentProps<RouteParams>> =
({
 match
}) => {
 const [question, setQuestion]

Routing with React Router Chapter 4

[134]

 = useState<QuestionData | null>(null);

 return <Page>Question Page {match.params.questionId}</Page>;
};

Note that we are using a union type for the state because the state will be null by
default while the question is being fetched and also null if the question isn't
found.

We want to call the getQuestion function during the initial render, so let's call it6.
inside a call to the useEffect hook:

export const QuestionPage: FC<RouteComponentProps<RouteParams>> =
({
 match
}) => {
 const [question, setQuestion] = useState<QuestionData |
null>(null);

 useEffect(() => {
 const doGetQuestion = async (questionId: number) => {
 const foundQuestion = await getQuestion(questionId);
 setQuestion(foundQuestion);
 };
 if (match.params.questionId) {
 const questionId = Number(match.params.questionId);
 doGetQuestion(questionId);
 }
 }, [match.params.questionId]);

 return ...
};

So, when it's first rendered, the question component will fetch the question and
set it in the state that will cause a second render of the component. Note that we
use the Number constructor to convert match.params.questionId from a
string into a number. Also, note that the second parameter in the useEffect
function has match.params.questionId in an array. This is because the
function that useEffect runs (the first parameter) is dependent on
the match.params.questionId value and should rerun if this value changes.

Routing with React Router Chapter 4

[135]

Let's start to implement the JSX for the QuestionPage component by adding a7.
container element for the page and the question title:

<Page>
 <div
 css={css`
 background-color: white;
 padding: 15px 20px 20px 20px;
 border-radius: 4px;
 border: 1px solid ${gray6};
 box-shadow: 0 3px 5px 0 rgba(0, 0, 0, 0.16);
 `}
 >
 <div
 css={css`
 font-size: 19px;
 font-weight: bold;
 margin: 10px 0px 5px;
 `}
 >
 {question === null ? '' : question.title}
 </div>
 </div>
</Page>

We don't render the title until the question state has been set. The question
state is null while the question is being fetched and it remains null if the question
isn't found. Note that we use a triple equals (===) to check whether
the question variable is null rather than a double equals (==).

When using triple equals (===), we are checking for strict equality. This
means both the type and the value we are comparing have to be the same.
When using a double equals (==), the type isn't checked. Generally, it is
good practice to use the triple equals (===) to do a strict equality check.

Routing with React Router Chapter 4

[136]

If we look at the running app, we will see that the question title has been
rendered in a nice white card:

Let's implement the question content now:8.

<Page>
 <div ... >
 <div ... >
 {question === null ? '' : question.title}
 </div>
 {question !== null && (
 <Fragment>
 <p
 css={css`
 margin-top: 0px;
 background-color: white;
 `}
 >
 {question.content}
 </p>
 </Fragment>
)}
 </div>
</Page>

So, we output the content if the question state has been set. Note that this is
nested within a Fragment component—what is this for?

In React, a component can only return a single element. This rule applies
to conditional rendering logic where there can be only a single parent
React element being rendered. React Fragment allows us to work around
this rule because we can nest multiple elements within it without creating
a DOM node.

Routing with React Router Chapter 4

[137]

We can see the problem that Fragment solves if we try to return two elements
after the short circuit operator:

Let's add when the question was asked and who asked it into the Fragment:9.

{question !== null && (
 <Fragment>
 <p ... >
 {question.content}
 </p>
 <div
 css={css`
 font-size: 12px;
 font-style: italic;
 color: ${gray3};
 `}
 >
 {`Asked by ${question.userName} on
 ${question.created.toLocaleDateString()}
 ${question.created.toLocaleTimeString()}`}
 </div>
 </Fragment>
)}

Routing with React Router Chapter 4

[138]

Now, all the details of the question will render in a nice white card in the running
app on the question page:

So, the question page is looking nice now. We aren't rendering any answers yet though, so
let's look at that next.

Creating an AnswerList component
Follow these steps to create a component that will render a list of answers:

Create a new file called AnswerList.tsx with the following import statements:1.

import { FC } from 'react';
import { AnswerData } from './QuestionsData';
/** @jsx jsx */
import { css, jsx } from '@emotion/core';
import { Answer } from './Answer';
import { gray5 } from './Styles';

So, we are going to use an unordered list to render the answers without the bullet
points. We have referenced a component, Answer, that we'll create later in these
steps.

Let's define the interface so that it contains a data prop for the array of answers:2.

interface Props {
 data: AnswerData[];
}

Routing with React Router Chapter 4

[139]

Let's create the AnswerList component, which outputs the answers:3.

export const AnswerList: FC<Props> = ({ data }) => (
 <ul
 css={css`
 list-style: none;
 margin: 10px 0 0 0;
 padding: 0;
 `}
 >
 {data.map(answer => (
 <li
 css={css`
 border-top: 1px solid ${gray5};
 `}
 key={answer.answerId}
 >
 <Answer data={answer} />

))}

);

Each answer is output in an unordered list in an Answer component, which we'll
implement next.

Let's move on and implement the Answer component by creating a file called4.
Answer.tsx with the following import statements:

import { FC } from 'react';
/** @jsx jsx */
import { css, jsx } from '@emotion/core';
import { AnswerData } from './QuestionsData';
import { gray3 } from './Styles';

The interface for the Answer component is simply going to contain the answer5.
data:

interface Props {
 data: AnswerData;
}

Routing with React Router Chapter 4

[140]

Now, the Answer component will simply render the answer content, along with6.
who answered it and when it was answered:

export const Answer: FC<Props> = ({ data }) => (
 <div
 css={css`
 padding: 10px 0px;
 `}
 >
 <div
 css={css`
 padding: 10px 0px;
 font-size: 13px;
 `}
 >
 {data.content}
 </div>
 <div
 css={css`
 font-size: 12px;
 font-style: italic;
 color: ${gray3};
 `}
 >
 {`Answered by ${data.userName} on
 ${data.created.toLocaleDateString()}
 ${data.created.toLocaleTimeString()}`}
 </div>
 </div>
);

Let's go back to QuestionPage.tsx and import AnswerList:7.

import { AnswerList } from './AnswerList';

Now, we can add AnswerList to the Fragment element:8.

{question !== null && (
 <Fragment>
 <p ... >
 {question.content}
 </p>
 <div ... >
 {`Asked by ${question.userName} on
 ${question.created.toLocaleDateString()}
 ${question.created.toLocaleTimeString()}`}
 </div>
 <AnswerList data={question.answers} />

Routing with React Router Chapter 4

[141]

 </Fragment>
)}

If we look at the running app on the question page at questions/1, we'll see the
answers nicely rendered:

That completes the work we need to do on the question page in this chapter. However, we
need to allow users to submit answers to a question, which we'll cover in Chapter 5,
Working with Forms.

Next up, we'll look at how we can work with query parameters with React Router.

Using query parameters
A query parameter is part of the URL that allows additional parameters to be passed into a
path. For example, /search?criteria=typescript has a query parameter called
criteria with a value of typescript.

Routing with React Router Chapter 4

[142]

In this section, we are going to implement a query parameter on the search page called
criteria, which will drive the search. We'll implement the search page along the
way. Let's carry out these steps to do this:

We are going to start in QuestionsData.ts by creating a function to simulate a1.
search via a web request:

export const searchQuestions = async (
 criteria: string,
): Promise<QuestionData[]> => {
 await wait(500);
 return questions.filter(
 q =>
 q.title.toLowerCase().indexOf(criteria.toLowerCase()) >=
 0 ||
 q.content.toLowerCase().indexOf(criteria.toLowerCase()) >=
 0,
);
};

So, the function uses the array filter method and matches the criteria to any
part of the question title or content.

Let's import this function along with the other items we need into2.
SearchPage.tsx. We can also remove the React namespace from the existing
import statement:

import { FC, useState, useEffect } from 'react';
import { RouteComponentProps } from 'react-router-dom';
import { Page } from './Page';
import { QuestionList } from './QuestionList';
import { searchQuestions, QuestionData } from './QuestionsData';
/** @jsx jsx */
import { css, jsx } from '@emotion/core';

Let's add RouteComponentProps as the props type for the SearchPage3.
component and destructure the location object. We'll also change the
component so that it uses an explicit return statement:

export const SearchPage: FC<RouteComponentProps> = ({
 location,
}) => {
 return <Page title="Search Results" />;
};

Routing with React Router Chapter 4

[143]

We are going to create some state to hold the matched questions in the search:4.

export const SearchPage: FC<RouteComponentProps> = ({
 location,
}) => {
 const [questions, setQuestions] = useState<QuestionData[]>([]);
 return <Page title="Search Results" />;
};

Next, we are going to get the criteria query parameter from the browser: 5.

export const SearchPage: FC<RouteComponentProps> = ({ location })
=> {
 const [questions, setQuestions] = useState<QuestionData[]>([]);

 const searchParams = new URLSearchParams(location.search);
 const search = searchParams.get('criteria') || '';

 return <Page title="Search Results" />;
};

React Router gives us access to all the query parameters in a search
string inside the location object.

The search string from React Router for the /search?criteria=type path
is ?criteria=type. So, we need to parse this string in order to get the criteria
value. We use the native URLSearchParams JavaScript function to do this.

We are going to invoke the search when the component first renders and when6.
the search variable changes using the useEffect hook:

const searchParams = new URLSearchParams(props.location.search);
const search = searchParams.get('criteria') || '';

useEffect(() => {
 const doSearch = async (criteria: string) => {
 const foundResults = await searchQuestions(criteria);
 setQuestions(foundResults);
 };
 doSearch(search);
}, [search]);

Routing with React Router Chapter 4

[144]

We are going to render the search criteria under the page title:7.

<Page title="Search Results">
 {search && (
 <p
 css={css`
 font-size: 16px;
 font-style: italic;
 margin-top: 0px;
 `}
 >
 for "{search}"
 </p>
)}
</Page>

The last task is to use the QuestionList component to render the questions that8.
are returned from the search:

<Page title="Search Results">
 {search && (
 <p ... >
 for "{search}"
 </p>
)}
 <QuestionList data={questions} />
</Page>

Our QuestionList component is now used in both the home and search pages
with different data sources. The reusability of this component has been made
possible because we have followed the container pattern we briefly mentioned in
Chapter 3, Getting Started with React and TypeScript.

In the running app, enter /search?criteria=type in the browser. The search9.
will be invoked and the results will be rendered as we would expect:

Routing with React Router Chapter 4

[145]

So, we need to do a bit of work beyond what React Router provides in order to handle
query parameters, but this is still fairly straightforward with the help
of URLSearchParams.

In Chapter 5, Working with Forms, we'll wire up the search box in the header to our search
form.

In the next section, we'll learn how we can load components on demand.

Lazy loading routes
At the moment, all the JavaScript for our app is loaded when the app first loads. This is fine
for small apps, but for large apps, this can have a negative impact on performance. There
may be large pages that are rarely used in the app that we want to load the JavaScript for
on demand. This process is called lazy loading.

We are going to lazy load the ask page in this section. It isn't a great usage of lazy loading
because this is likely to be a popular page in our app, but it will help us learn how to
implement this. Let's carry out the following steps:

First, we are going to add a default export to the AskPage component in1.
AskPage.tsx:

export const AskPage = () => <Page title="Ask a question" />;
export default AskPage;

Routing with React Router Chapter 4

[146]

Let's open App.tsx and import the lazy function and the Suspense component2.
from React:

import React, { lazy, Suspense } from 'react';

Now, we are going to import the AskPage component differently after all the3.
other import statements:

const AskPage = lazy(() => import('./AskPage'));

We can remove the previous import statement for the AskPage component. It is
important that this is the last import statement in the file because, otherwise,
ESLint may complain that the import statements beneath it are in the body of the
module.

The lazy function in React lets us render a dynamic import as a regular
component. A dynamic import returns a promise for the requested
module that is resolved after it has been fetched, instantiated, and
evaluated.

So, the AskPage component is being loaded on demand now but the App4.
component is expecting this component to be loaded immediately. If we enter the
ask path in the browser's address bar and press the Enter key, we may receive an
error with a clue of how to resolve this:

As suggested by the error message, we are going to use the Suspense5.
component we imported into the App component JSX earlier. For the /ask
Route, we remove the component prop and nest the Suspense component as
the Route child with the AskPage component as the child of Suspense:

<Route path="/ask">
 <Suspense
 fallback={
 <div
 css={css`

Routing with React Router Chapter 4

[147]

 margin-top: 100px;
 text-align: center;
 `}
 >
 Loading...
 </div>
 }
 >
 <AskPage />
 </Suspense>
</Route>

The Suspense fallback prop allows us to render a component while the
AskPage is loading. So, we are rendering a Loading... message while the
AskPage component is being loaded.

Let's go to the running app on the home page and open the browser developer6.
tools by pressing F12.
On the Network tab, let's clear the previous network activity by clicking the no7.
entry icon. Then, if we click the Ask a question button, we will see confirmation
that additional JavaScript has been downloaded in order to render the AskPage
component:

Routing with React Router Chapter 4

[148]

The AskPage component loads so fast that we are unlikely to see the Loading8.
component being rendered. In the Chrome browser developer tools, there is an
option to simulate a Slow 3G network in the Network tab:

If we turn this on, load the app again by pressing F5 on the home page, and9.
click the Ask a question button, we will see the Loading... message being
rendered temporarily:

In this example, the AskPage component is small in size, so this approach doesn't really
positively impact performance. However, loading larger components on demand can really
help performance, particularly on slow connections.

Summary
React Router gives us a comprehensive set of components for managing the navigation
between pages in our app. We learned that the top-level component is BrowserRouter,
which looks for Route components beneath it where we define what components should be
rendered for certain paths. We can use the exact prop to instruct React Router to do a full
match rather than a partial match, which it does by default.

Routing with React Router Chapter 4

[149]

RouteComponentProps gives us access to route parameters and query parameters via
the match and location objects, respectively. We discovered that React Router doesn't
parse query parameters for us, but can use the native JavaScript URLSearchParams
function to do this for us. RouteComponentProps also gives us access to a history object,
where we can perform navigation programmatically. The Link component allows us to
link to different pages declaratively in JSX.

We learned that the React lazy function, along with its Suspense component, can be used
on large components that are rarely used by users to load them on demand. This helps the
performance of the startup time of our app.

In the next chapter, we are going to continue building the frontend of the Q&A app, this
time focusing on implementing forms.

Questions
The following questions will cement your knowledge of what you have just learned about
in this chapter:

We have the following routes defined:1.

<BrowserRouter>
 <Route path="/" component={HomePage} />
 <Route path="/search" component={SearchPage} />
</BrowserRouter>

Answer the following questions:

What component(s) will be rendered when the / location is entered in the
browser?
What about when the /search location is entered in the browser?

We have the following routes defined:2.

<BrowserRouter>
 <Switch>
 <Route path="/" component={HomePage} />
 <Route path="/search" component={SearchPage} />
 </Switch>
</BrowserRouter>

Routing with React Router Chapter 4

[150]

Answer the following questions:

What component(s) will be rendered when the / location is entered in the
browser?
What about when the /search location is entered in the browser?

We have the following routes defined:3.

<BrowserRouter>
 <Switch>
 <Route path="/search" component={SearchPage} />
 <Route path="/" component={HomePage} />
 </Switch>
</BrowserRouter>

Answer the following questions:

What component(s) will be rendered when the / location is entered in the
browser?
What about when the /search location is entered in the browser?

In our Q&A app, we want a /login path to navigate to the sign-in page, as well4.
as the /signin path. How can we implement this?
We have the following routes defined:5.

<BrowserRouter>
 <Switch>
 <Route path="/search" component={SearchPage} />
 <Route path="/" component={HomePage} />
 <Route component={NotFoundPage} />
 </Switch>
</BrowserRouter>

What component(s) will be rendered when the /signin location is entered in the
browser?

We have the following routes defined:6.

<BrowserRouter>
 <Switch>
 <Route path="/" component={HomePage} />
 <Route path="/search" component={SearchPage} />
 <Route component={NotFoundPage} />
 </Switch>
</BrowserRouter>

Routing with React Router Chapter 4

[151]

With the preceding implementation, when a user navigates to the /search path
or an invalid path such as /unknown, the HomePage component is rendered.

How can we change the code to render HomePage when only the / path is entered
in the browser?

We have the following route defined:7.

<Route path="/users/:userId" component={UserPage} />

How can we reference the userId route parameter in the UserPage component?

Further reading
The following are some useful links for learning more about the topics that were covered in
this chapter:

React Router: https:/ ​/​reacttraining. ​com/ ​react- ​router

JavaScript array filter: https:/ ​/​developer. ​mozilla. ​org/ ​en- ​US/​docs/ ​Web/
JavaScript/ ​Reference/ ​Global_ ​Objects/ ​Array/ ​filter

TypeScript union types: https:/ ​/​www. ​typescriptlang. ​org/ ​docs/ ​handbook/
advanced- ​types. ​html

React fragments: https:/ ​/​reactjs. ​org/ ​docs/ ​fragments. ​html

URLSearchParams: https:/ ​/ ​developer. ​mozilla. ​org/ ​en-​US/ ​docs/ ​Web/ ​API/
URLSearchParams

React lazy: https:/ ​/​reactjs. ​org/​docs/ ​code- ​splitting. ​html#reactlazy

https://reacttraining.com/react-router
https://reacttraining.com/react-router
https://reacttraining.com/react-router
https://reacttraining.com/react-router
https://reacttraining.com/react-router
https://reacttraining.com/react-router
https://reacttraining.com/react-router
https://reacttraining.com/react-router
https://reacttraining.com/react-router
https://reacttraining.com/react-router
https://reacttraining.com/react-router
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/filter
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://reactjs.org/docs/fragments.html
https://reactjs.org/docs/fragments.html
https://reactjs.org/docs/fragments.html
https://reactjs.org/docs/fragments.html
https://reactjs.org/docs/fragments.html
https://reactjs.org/docs/fragments.html
https://reactjs.org/docs/fragments.html
https://reactjs.org/docs/fragments.html
https://reactjs.org/docs/fragments.html
https://reactjs.org/docs/fragments.html
https://reactjs.org/docs/fragments.html
https://reactjs.org/docs/fragments.html
https://reactjs.org/docs/fragments.html
https://developer.mozilla.org/en-US/docs/Web/API/URLSearchParams
https://developer.mozilla.org/en-US/docs/Web/API/URLSearchParams
https://developer.mozilla.org/en-US/docs/Web/API/URLSearchParams
https://developer.mozilla.org/en-US/docs/Web/API/URLSearchParams
https://developer.mozilla.org/en-US/docs/Web/API/URLSearchParams
https://developer.mozilla.org/en-US/docs/Web/API/URLSearchParams
https://developer.mozilla.org/en-US/docs/Web/API/URLSearchParams
https://developer.mozilla.org/en-US/docs/Web/API/URLSearchParams
https://developer.mozilla.org/en-US/docs/Web/API/URLSearchParams
https://developer.mozilla.org/en-US/docs/Web/API/URLSearchParams
https://developer.mozilla.org/en-US/docs/Web/API/URLSearchParams
https://developer.mozilla.org/en-US/docs/Web/API/URLSearchParams
https://developer.mozilla.org/en-US/docs/Web/API/URLSearchParams
https://developer.mozilla.org/en-US/docs/Web/API/URLSearchParams
https://developer.mozilla.org/en-US/docs/Web/API/URLSearchParams
https://developer.mozilla.org/en-US/docs/Web/API/URLSearchParams
https://developer.mozilla.org/en-US/docs/Web/API/URLSearchParams
https://developer.mozilla.org/en-US/docs/Web/API/URLSearchParams
https://developer.mozilla.org/en-US/docs/Web/API/URLSearchParams
https://developer.mozilla.org/en-US/docs/Web/API/URLSearchParams
https://reactjs.org/docs/code-splitting.html#reactlazy
https://reactjs.org/docs/code-splitting.html#reactlazy
https://reactjs.org/docs/code-splitting.html#reactlazy
https://reactjs.org/docs/code-splitting.html#reactlazy
https://reactjs.org/docs/code-splitting.html#reactlazy
https://reactjs.org/docs/code-splitting.html#reactlazy
https://reactjs.org/docs/code-splitting.html#reactlazy
https://reactjs.org/docs/code-splitting.html#reactlazy
https://reactjs.org/docs/code-splitting.html#reactlazy
https://reactjs.org/docs/code-splitting.html#reactlazy
https://reactjs.org/docs/code-splitting.html#reactlazy
https://reactjs.org/docs/code-splitting.html#reactlazy
https://reactjs.org/docs/code-splitting.html#reactlazy
https://reactjs.org/docs/code-splitting.html#reactlazy
https://reactjs.org/docs/code-splitting.html#reactlazy

5
Working with Forms

Forms are an important topic because they are extremely common in the apps we build. In
this chapter, we'll learn how to build forms using React-controlled components and
discover that there is a fair amount of boilerplate code involved. So, we'll build generic
components to help us to build several forms in our app.

Client-side validation is critical to the user experience of the forms we build, so we'll also
cover this topic in a fair amount of depth. Submitting the form is also a critical
consideration. We'll cover how to handle submission errors as well as success.

We'll cover the following topics in this chapter:

Understanding controlled components
Reducing boilerplate code with generic components
Implementing validation
Submitting forms

Technical requirements
We'll use the following tools in this chapter:

Visual Studio Code: We'll use this to edit our React code. This can be
downloaded and installed from https:/ ​/​code. ​visualstudio. ​com/ ​.
Node.js and npm: These can be downloaded from https:/ ​/​nodejs. ​org/ ​. If you
already have these installed, make sure that Node.js is at least version 8.2 and
that npm is at least version 5.2.
Q and A: We'll start with the Q and A frontend project we finished in Chapter
4, Routing with React Router. This is available on GitHub at https:/ ​/​github. ​com/
PacktPublishing/ ​ASP. ​NET- ​Core- ​3-​and- ​React- ​17.

https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17

Working with Forms Chapter 5

[153]

All of the code snippets in this chapter can be found online at https:/ ​/​github. ​com/
PacktPublishing/​ASP. ​NET- ​Core- ​3- ​and- ​React- ​17. To restore code from a chapter, the
source code repository can be downloaded and the relevant folder opened in the relevant
editor. If the code is frontend code, then npm install can be entered in the Terminal to
restore the dependencies.

Check out the following video to see the code in action:

http:/​/​bit.​ly/​2PUrbNQ

Understanding controlled components
In React, we can use what is called controlled components to implement a form. A
controlled component has its value synchronized with the state in React. This will make
more sense when we've implemented our first controlled component.

Let's open our project in Visual Studio Code and change the search box in our app header
into a controlled component by carrying out the following steps:

Open Header.tsx and add the following imports:1.

import { ChangeEvent, FC, useState } from 'react';
import {
 Link,
 RouteComponentProps,
 withRouter,
} from 'react-router-dom';

Let's set the props type to RouteComponentProps and destructure the history2.
and location props in the Header component:

export const Header: FC<RouteComponentProps> = ({
 history,
 location,
}) => {
 const handleSearchInputChange = (
 e: ChangeEvent<HTMLInputElement>,
) => { ... }

https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
http://bit.ly/2PUrbNQ
http://bit.ly/2PUrbNQ
http://bit.ly/2PUrbNQ
http://bit.ly/2PUrbNQ
http://bit.ly/2PUrbNQ
http://bit.ly/2PUrbNQ
http://bit.ly/2PUrbNQ
http://bit.ly/2PUrbNQ
http://bit.ly/2PUrbNQ

Working with Forms Chapter 5

[154]

We need to wrap the component with the withRouter function to get these3.
props passed into it. So, let's do this at the bottom of the file as we export this
with the name HeaderWithRouter:

export const HeaderWithRouter = withRouter(Header);

In App.tsx, we now need to import this wrapped Header component:4.

import { HeaderWithRouter as Header } from './Header';

Back in Header.tsx, the default value for the search box is going to be the5.
criteria route query parameter. So, let's get this from the destructured
location object:

export const Header: FC<RouteComponentProps> = ({ history, location
}) => {
 const searchParams = new URLSearchParams(location.search);
 const criteria = searchParams.get('criteria') || '';

 const handleSearchInputChange = ...
}

Let's create some state to store the search value in, defaulting it to the criteria6.
variable we have just set:

const searchParams = new URLSearchParams(location.search);
const criteria = searchParams.get('criteria') || '';

const [search, setSearch] = useState(criteria);

Now, let's drive the search box value from this search state:7.

<input
 type="text"
 placeholder="Search..."
 value={search}
 onChange={handleSearchChange}
 css={ ... }
/>

Start the app by running the npm start command in Visual Studio Code's8.
Terminal.
Try to type something in the search box in the app header.9.

Working with Forms Chapter 5

[155]

Nothing seems to happen; something is preventing us from entering the value.

We have just set the value to some React state, so React is now controlling the
value of the search box. This is why we no longer appear to be able to type into it.

We are part-way through creating our first controlled input. However, controlled
inputs aren't much use if users can't enter anything into them. So, how can we
make our input editable again? The answer is that we need to listen to changes
to the input value and update the state accordingly. React will then render the
new value from the state.

We are already listening to changes with the handleSearchInputChange10.
function. So, all we need to do is update the state in this function, replacing the
previous console.log statement:

const handleSearchChange = (e: ChangeEvent<HTMLInputElement>) => {
 setSearch(e.currentTarget.value);
};

If we now go to the running app and enter something into the search box, this
time, it behaves as expected.

We are going to wrap input in form so that we can eventually invoke the search11.
when the user presses the Enter key:

<form>
 <input
 type="text"
 placeholder="Search..."
 onChange={handleSearchInputChange}
 value={search}
 css={ ... }
 />
</form>

We are going to leave the implementation there for now. We'll implement the form
submission later in this chapter in the Submitting forms section.

React-controlled components make sense once we understand what is going on. If we were
to implement a form with several controlled components, we would have to create the state
and a change event listener to update the state for each field. That's quite a lot of boilerplate
code to write. Can we not create an abstraction to reduce the amount of repetitive code?
Yes! We'll do just this in the next section.

Working with Forms Chapter 5

[156]

Reducing boilerplate code with generic
components
In this section, we are going to create generic Form and Field components that will take
care of the state management we implemented in the last section. This means that we
won't have to implement state management for each field in the forms we are going to
build. This will dramatically reduce the amount of code required to implement a form.

Creating a Form component
Let's perform the following steps to create a generic Form component:

Create a new file called Form.tsx with the following import statements:1.

import { FC, useState } from 'react';
import { PrimaryButton, gray5, gray6 } from './Styles';
/** @jsx jsx */
import { css, jsx } from '@emotion/core';

Let's define interface for the form field values:2.

export interface Values {
 [key: string]: any;
}

We haven't used an interface defined in this way before. This is called an
indexable type.

An indexable type is where the index signature is defined rather than
specific properties. The type in the square brackets defines the type for the
keys in the object and the type after the colon defines the return type
when indexed.

In our case, the key will be the field name, and the value will be the field value.
So, Values could be as follows:

{
 title: "Why should I learn TypeScript?",
 content: "TypeScript seems to be getting popular so I wondered
 whether it is worth my time learning it? What benefits does it
 give over JavaScript?"
}

Working with Forms Chapter 5

[157]

Let's move on to define the props interface, which is going to have a single prop3.
for the Submit button caption:

interface Props {
 submitCaption?: string;
}

Let's begin to implement the Form function component starting with4.
destructuring the props:

export const Form: FC<Props> = ({ submitCaption, children }) =>
 null;

Notice that we have included the children prop, which we are going to use later
to render content nested within the form.

Let's create some state for the field value, using the interface we created earlier:5.

export const Form: FC<Props> = ({ submitCaption, children }) => {
 const [values, setValues] = useState<Values>({});
 return null;
};

Notice that we set the initial state to an empty object literal.

Let's now define the JSX for the form:6.

return (
 <form noValidate={true}>
 <fieldset
 css={css`
 margin: 10px auto 0 auto;
 padding: 30px;
 width: 350px;
 background-color: ${gray6};
 border-radius: 4px;
 border: 1px solid ${gray5};
 box-shadow: 0 3px 5px 0 rgba(0, 0, 0, 0.16);
 `}
 >
 {children}
 <div
 css={css`
 margin: 30px 0px 0px 0px;
 padding: 20px 0px 0px 0px;
 border-top: 1px solid ${gray5};
 `}
 >

Working with Forms Chapter 5

[158]

 <PrimaryButton type="submit">
 {submitCaption}
 </PrimaryButton>
 </div>
 </fieldset>
 </form>
);

So, we have created a form tag that has a standard HTML form validation suppressed
because we are going to handle that ourselves later in this chapter.

The form contains a fieldset tag that will hold the form content along with a container
for our Submit button, which will have a faint horizontal line at the top.

We then render any nested child components before the Submit button using the
children prop.

That completes the Form component for the time being.

Creating a Field component
Let's perform the following steps to create a generic Field component:

Create a new file called Field.tsx with the following import statements:1.

import { FC } from 'react';
/** @jsx jsx */
import { css, jsx } from '@emotion/core';
import {
 fontFamily,
 fontSize,
 gray5,
 gray2,
 gray6,
} from './Styles';

Let's define the Field component Props interface:2.

interface Props {
 name: string;
 label?: string;
 type?: 'Text' | 'TextArea' | 'Password';
}

So, we have props for the name field, its label, and its type.

Working with Forms Chapter 5

[159]

Notice the TypeScript type for the type prop. This is a union type of string literals
and means that the type prop can only be Text, TextArea, or Password.

The different field types are going to have lots of CSS properties in common, so3.
we are going to put these in a baseCSS variable that we'll reference when we
render the field:

const baseCSS = css`
 box-sizing: border-box;
 font-family: ${fontFamily};
 font-size: ${fontSize};
 margin-bottom: 5px;
 padding: 8px 10px;
 border: 1px solid ${gray5};
 border-radius: 3px;
 color: ${gray2};
 background-color: white;
 width: 100%;
 :focus {
 outline-color: ${gray5};
 }
 :disabled {
 background-color: ${gray6};
 }
`;

Let's begin to define the Field component now with the props destructured:4.

export const Field: FC<Props> = ({
 name,
 label,
 type = 'Text',
}) => null;

Notice that we have defaulted the type prop to Text.

Let's render the Field container with the label inside:5.

export const Field: FC<Props> = ({
 name,
 label,
 type = 'Text',
}) => (
 <div
 css={css`
 display: flex;
 flex-direction: column;

Working with Forms Chapter 5

[160]

 margin-bottom: 15px;
 `}
 >
 {label && (
 <label
 css={css`
 font-weight: bold;
 `}
 htmlFor={name}
 >
 {label}
 </label>
)}
 </div>
);

Notice how we use the short-circuit syntax to only render the label if
the label prop is defined.

Let's move on to rendering the input field:6.

<div ... >
 {label && (...)}
 {(type === 'Text' || type === 'Password') && (
 <input type={type.toLowerCase()} id={name} css={baseCSS} />
)}
</div>

Notice how we have tied label to input using the htmlFor attribute, which will
help our field to be accessible.

Let's also render the textarea field:7.

<div ... >
 {label && (...)}
 {(type === 'Text' || type === 'Password') && (
 <input type={type.toLowerCase()} id={name} css={baseCSS} />
)}
 {type === 'TextArea' && (
 <textarea
 id={name}
 css={css`
 ${baseCSS};
 height: 100px;
 `}
 />
)}
</div>

Working with Forms Chapter 5

[161]

Notice how the textarea field composes the base CSS with the height of
100px with string literal interpolation.

That completes the Field component for the time being.

Sharing state with a React context
The state for field values lives in the Form component but is rendered and changed in the
Field component. How can the Form component share its state with the Field component
when Form doesn't directly reference Field? Well, we could use a React context.

Understanding a React context
A React context is a way to pass data through the component tree without passing it
through component props. A context is created and provided at the appropriate place in
the component tree for other components lower in the tree to consume:

Working with Forms Chapter 5

[162]

The preceding diagram shows several components in a tree. A context
called FormContext has been created and provided within the Form component via
the Provider component within FormContext. Every component beneath
FormContext.Provider in the component tree can consume FormContext via
the Consumer component within FormContext. Components A, B, C, D, E, and F cannot
consume FormContext because they are not beneath FormContext.Provider.

Creating a form context
Now that we understand the React context, we are going to create a context for our generic
form components. Let's carry out the following steps:

Let's start in Form.tsx by adding the createContext function to the React1.
import statement:

import { FC, useState, createContext } from 'react';

Next, we'll create interface for our context just below the Values interface:2.

interface FormContextProps {
 values: Values;
 setValue?: (fieldName: string, value: any) => void;
}

So, our context will contain the form values and a function to update them.

Let's create the context just below this:3.

export const FormContext = createContext<FormContextProps>({
 values: {},
});

Notice that we are required to pass in an initial value for the context, which is
why we made the setValue function prop optional.

That completes the creation of the form context.

Creating a form context provider
Now that the form context is created, let's use its Provider component to give the children
components of the form access to it:

export const Form: FC<Props> = ({ submitCaption, children }) => {
 const [values, setValues] = useState<Values>({});

Working with Forms Chapter 5

[163]

 return (
 <FormContext.Provider
 value={{
 values,
 setValue: (fieldName: string, value: any) => {
 setValues({ ...values, [fieldName]: value });
 },
 }}
 >
 <form noValidate={true}>
 ...
 </form>
 </FormContext.Provider>
);
};

Notice how we create the new values object using the spread syntax (...).

The spread syntax expands the properties in the object that is referenced
after the dots. It can also be used on arrays to expand the elements in the
array.

So, ...values will expand the values for each field and because we have put
[fieldName]: value at the end of the object literal, it will override the previous value
from the values object.

Consuming the form context
All of the components beneath the provider can access the context via
a Consumer component. Let's use this within the Field component:

First, let's import FormContext, useContext, and ChangeEvent from React in1.
the Field component:

import { FC, useContext, ChangeEvent } from 'react';
import { FormContext } from './Form';

We can then reference the context consumer in the JSX:2.

export const Field: FC<Props> = ({ name, label, type = 'Text' }) =>
(
 <FormContext.Consumer>
 {context => (
 <div

Working with Forms Chapter 5

[164]

 css={css`
 display: flex;
 flex-direction: column;
 margin-bottom: 15px;
 `}
 >
 ...
 </div>
)}
 </FormContext.Consumer>
);
);

At the moment, the value of the fields isn't being controlled. We now have3.
access to the value, so let's reference this from the context:

{(type === 'Text' || type === 'Password') && (
 <input
 type={type.toLowerCase()}
 id={name}
 value={
 context.values[name] === undefined
 ? ''
 : context.values[name]
 }
 css={baseCSS}
 />
)}
{type === 'TextArea' && (
 <textarea
 id={name}
 value={
 context.values[name] === undefined
 ? ''
 : context.values[name]
 }
 css={css`
 ${baseCSS};
 height: 100px;
 `}
 />
)}

Notice that we set the value to an empty string if the value from context is
undefined. This is so that the value is always controlled.

Working with Forms Chapter 5

[165]

We are going to clean this up a little by destructuring the values property4.
immediately from the context parameter:

<FormContext.Consumer>
 {({ values }) => (
 <div
 css={ ... }
 >
 {label && (...)}
 {(type === 'Text' || type === 'Password') && (
 <input
 type={type.toLowerCase()}
 id={name}
 value={values[name] === undefined ? '' : values[name]}
 css={baseCSS}
 />
)}
 {type === 'TextArea' && (
 <textarea
 id={name}
 value={values[name] === undefined ? '' : values[name]}
 css={css`
 ${baseCSS};
 height: 100px;
 `}
 />
)}
 </div>
)}
</FormContext.Consumer>

We, of course, need to handle changes to the field. We are going to eventually5.
create a change event handler to do this. First, let's get a reference to the context
outside of the JSX in the Field component code using the useContext function
we imported earlier:

export const Field: FC<Props> = ({ name, label, type = 'Text' }) =>
{
 const { setValue } = useContext(FormContext);
 return (
 ...
);
};

We've destructured the setValue function from the context.

Working with Forms Chapter 5

[166]

We can now add the change handler that will handle the onChange event and6.
call the setValue function in the context:

const { setValue } = useContext(FormContext);
const handleChange = (
 e: ChangeEvent<HTMLInputElement> |
 ChangeEvent<HTMLTextAreaElement>
) => {
 if (setValue) {
 setValue(name, e.currentTarget.value);
 }
};

Notice that we have used a union type for the event parameter so that a single
strongly typed handler can be used for both the input and textarea.

Notice also that we need to check that setValue isn't undefined before we call
it. This is because we declared it as optional in the context interface.

So, we can reference this handler in the JSX now:7.

{(type === 'Text' || type === 'Password') && (
 <input
 type={type.toLowerCase()}
 id={name}
 value={values[name] === undefined ? '' : values[name]}
 onChange={handleChange}
 css={baseCSS}
 />
)}
{type === 'TextArea' && (
 <textarea
 id={name}
 value={values[name] === undefined ? '' : values[name]}
 onChange={handleChange}
 css={css`
 ${baseCSS};
 height: 100px;
 `}
 />
)}

That completes our Form and Field components for now. Next, we'll use them to start
implementing some forms.

Working with Forms Chapter 5

[167]

Implementing the ask form
It's time to implement the form to ask a question. We'll do this by taking the following
steps, leveraging the Form and Field components we just created:

Open AskPage.tsx and import our Form and Field components:1.

import { Form } from './Form';
import { Field } from './Field';

Let's use these components to create a form:2.

<Page title="Ask a Question">
 <Form submitCaption="Submit Your Question">
 <Field name="title" label="Title" />
 <Field name="content" label="Content" type="TextArea" />
 </Form>
</Page>

So, the form will contain fields for the question title and content and the submit
button will have the caption Submit Your Question.

Let's give this a try in the running app by clicking the Ask a question button on3.
the home page:

Our form renders just as we expect.

Working with Forms Chapter 5

[168]

The generic Form and Field components really made that job pretty easy. Let's try
implementing another form next.

Implementing the answer form
Let's implement an answer form on the question page using the following steps:

Open QuestionPage.tsx and import our Form and Field components:1.

import { Form } from './Form';
import { Field } from './Field';

Let's create our form in the JSX just beneath the list of answers:2.

<Fragment>
 <p ... >
 {question.content}
 </p>
 <div ... >
 {`Asked by ${question.userName} on
${question.created.toLocaleDateString()}
${question.created.toLocaleTimeString()}`}
 </div>
 <AnswerList data={question.answers} />
 <div
 css={css`
 margin-top: 20px;
 `}
 >
 <Form submitCaption="Submit Your Answer">
 <Field name="content" label="Your Answer" type="TextArea" />
 </Form>
 </div>
</Fragment>

So, the form will contain a single field for the answer content and the submit
button will have the caption Submit Your Answer.

Working with Forms Chapter 5

[169]

Let's give this a try in the running app by clicking a question on the home page:3.

Our form renders just as we expect.

Our forms are looking good but there is no validation yet. For example, we could submit a
blank answer to a question. We will enhance our forms with validation in the next section.

Implementing validation
Including validation on a form improves the user experience, by giving them immediate
feedback on whether the information entered is valid. In this section, we are going to add
validation rules to our generic components for ensuring a field has a value as well as
ensuring a minimum number of characters have been entered. After we have enhanced our
generic components, we'll implement validation in our question and answer forms.

Working with Forms Chapter 5

[170]

Adding validation rules to the Form component
We are going to add validation rules to the Form component so that they can be consumed
like in the following example with a validationRules prop:

<Form
 validationRules={{
 title: [{ validator: required }, { validator: minLength, arg:
10
 }],
 content: [{ validator: required }, { validator: minLength, arg:
 50 }],
 }}
 ...
>
 ...
</Form>

The validationRules prop will allow consumers to define an array of validation rules for
each field in the form. A validation rule references a function that will do the necessary
check on the value in the field. We will refer to these functions as validators.

We'll carry out the following steps to implement the validationRules prop in the Form
component:

Let's start by creating a type for a validator just beneath FormContext in1.
Form.tsx:

type Validator = (value: any, args?: any) => string;

This is a TypeScript type alias.

In simple terms, a type alias creates a new name for a type. To define a
type alias, we use the type keyword, followed by the alias name,
followed by the type that we want to alias.

When we create our validators, we can use a Validator type annotation rather
than the more lengthy (fieldName: string, values: Values, args?:
any) => string.

So, a validator will be a function that takes in the field value as well as an optional
additional parameter. The validator will return an error message if the check fails
and an empty string if it passes.

Working with Forms Chapter 5

[171]

Let's create our first validator now for checking that a field is populated:2.

export const required: Validator = (value: any): string =>
 value === undefined || value === null || value === ''
 ? 'This must be populated'
 : '';

We use a JavaScript ternary to check whether the value is populated and return
the error message if it isn't.

Let's create another validator that checks whether the number of characters is a3.
value is beyond a certain amount:

export const minLength: Validator = (
 value: any,
 length: number,
): string =>
 value && value.length < length
 ? `This must be at least ${length} characters`
 : '';

Notice that we use the optional parameter for the minimum number of
characters.

Let's now add a prop to allow validation rules to be defined on the form:4.

interface Validation {
 validator: Validator;
 arg?: any;
}

interface ValidationProp {
 [key: string]: Validation | Validation[];
}

interface Props {
 submitCaption?: string;
 validationRules?: ValidationProp;
}

So, we can specify a single rule or an array of rules. A rule references a validator
function and an optional argument to be passed into it.

Working with Forms Chapter 5

[172]

Let's destructure the validationRules prop in the component function5.
parameter:

export const Form: FC<Props> = ({
 submitCaption,
 children,
 validationRules
}) => { ... }

That's the validationRules prop complete.

Next, we'll track the validation error messages in preparation for rendering them on the
page.

Tracking validation errors with state
We are going to track the validation error messages in the state as the user completes the
form and fields become valid or invalid. Later on, we'll be able to render the error messages
to the screen. We are going to store the validation errors in the Form component state as
follows:

Let's start by creating interface for the errors in Form.tsx after the Values1.
interface:

export interface Errors {
 [key: string]: string[];
}

This is an indexable type where an array of validation error messages is
associated with a field name.

We are only going to render a validation error if the field has been touched and2.
lost focus, so we need to track whether this is the case for each field. Let's create
an interface for this:

export interface Touched {
 [key: string]: boolean;
}

Working with Forms Chapter 5

[173]

Next, we'll add the validation errors and whether a field has been touched to the3.
form context along with functions to set them:

interface FormContextProps {
 values: Values;
 setValue?: (fieldName: string, value: any) => void;
 errors: Errors;
 validate?: (fieldName: string) => void;
 touched: Touched;
 setTouched?: (fieldName: string) => void;
}

export const FormContext = createContext<IFormContext>({
 values: {},
 errors: {},
 touched: {}
});

Let's add the field validation errors and whether fields have been touched to the4.
Form component state:

const [values, setValues] = useState<Values>({});
const [errors, setErrors] = useState<Errors>({});
const [touched, setTouched] = useState<Touched>({});

We can add the field validation errors and whether fields have been touched5.
to the context provider:

<FormContext.Provider
 value={{
 values,
 setValue: (fieldName: string, value: any) => {
 setValues({ ...values, [fieldName]: value });
 },
 errors,
 validate,
 touched,
 setTouched: (fieldName: string) => {
 setTouched({ ...touched, [fieldName]: true });
 }
 }}
>

Notice that we use a spread expression to update the new touched state.

Working with Forms Chapter 5

[174]

These additions to the context will allow the Field component to access the
validation errors and whether it has been touched. We'll need access to these later
when we render the validation errors.

For now, we'll add a skeleton validate function just below the state6.
declarations:

const [touched, setTouched] = useState<Touched>({});

const validate = (fieldName: string): string[] => {
 return [];
};

We'll finish implementing this later.

The validation errors are now in the Form component state and in the form context for the
Field component to access.

Invoking validation rules
We are going to execute validation rules when the field editor loses focus by carrying out
the following steps:

In Field.tsx, we are already handling field changes with the handleChange1.
function. Let's add a call to invoke the validation rules in this:

const { setValue, touched, validate } = useContext(
 FormContext,
);
const handleChange = (
 e: ChangeEvent<HTMLInputElement>
 | ChangeEvent<HTMLTextAreaElement>
) => {
 if (setValue) {
 setValue(name, e.currentTarget.value);
 }
 if (touched[name]) {
 if (validate) {
 validate(name);
 }
 }
};

So, we only invoke validation if the field has been touched.

Working with Forms Chapter 5

[175]

We need to tell the Form component when a Field has been touched. Let's create2.
a handler for the blur event to do this just beneath handleChange:

const { setValue, touched, setTouched, validate } = useContext(
 FormContext,
);

const handleChange = ...

const handleBlur = () => {
 if (setTouched) {
 setTouched(name);
 }
 if (validate) {
 validate(name);
 }
};

Notice that we also validate the field as well.

Let's wire this event handler up in the Field JSX:3.

{label && (
 <label
 css={ ... }
 htmlFor={name}
 >
 {label}
 </label>
)}
{(type === 'Text' || type === 'Password') && (
 <input
 type={type.toLowerCase()}
 id={name}
 value={
 values[name] === undefined ? '' : values[name]
 }
 onChange={handleChange}
 onBlur={handleBlur}
 css={baseCSS}
 />
)}
{type === 'TextArea' && (
 <textarea
 id={name}
 value={
 values[name] === undefined ? '' : values[name]
 }

Working with Forms Chapter 5

[176]

 onChange={handleChange}
 onBlur={handleBlur}
 css={ ... }
 />
)}

Let's now go back to Form.tsx and finish off implementing the validate4.
function. We'll start by returning an empty array if there are no rules to check:

const validate = (fieldName: string): string[] => {
 if (!validationRules) {
 return [];
 }
 if (!validationRules[fieldName]) {
 return [];
 }
};

The rules can either be a single Validation object or an array of Validation5.
objects. So, let's get ourselves into a uniform situation by always working with an
array of rules:

const validate = (fieldName: string): string[] => {
 if (!validationRules) {
 return [];
 }
 if (!validationRules[fieldName]) {
 return [];
 }
 const rules = Array.isArray(validationRules[fieldName])
 ? (validationRules[fieldName] as Validation[])
 : ([validationRules[fieldName]] as Validation[]);
};

Notice that we need to keep the TypeScript compiler happy by casting
validationRules[fieldName] in each branch of the ternary to
IValidation[] using the as keyword. This is because the TypeScript compiler
isn't smart enough yet to infer this.

We can now iterate through the rules, invoking the validator and collecting any6.
errors in a fieldErrors array:

const rules = Array.isArray(validationRules[fieldName])
 ? (validationRules[fieldName] as Validation[])
 : ([validationRules[fieldName]] as Validation[]);
const fieldErrors: string[] = [];
rules.forEach(rule => {

Working with Forms Chapter 5

[177]

 const error = rule.validator(values[fieldName], rule.arg);
 if (error) {
 fieldErrors.push(error);
 }
});

Our final task in this function is to update the errors state with new errors:7.

rules.forEach(rule => {
 const error = rule.validator(values[fieldName], rule.arg);
 if (error) {
 fieldErrors.push(error);
 }
});
const newErrors = { ...errors, [fieldName]: fieldErrors };
setErrors(newErrors);
return fieldErrors;

That completes the invoking of the validation rules.

Rendering validation errors
Let's render the validation errors in Field.tsx by going through the following steps:

In the Field component JSX, destructure the errors object from the form1.
context:

<FormContext.Consumer>
 {({ values, errors }) => (
 ...
)}
</FormContext.Consumer>

At the end of the div element, let's render the validation errors:2.

<div css={ ... } >
 ...
 {errors[name] &&
 errors[name].length > 0 &&
 errors[name].map(error => (
 <div
 key={error}
 css={css`
 font-size: 12px;
 color: red;
 `}

Working with Forms Chapter 5

[178]

 >
 {error}
 </div>
))}
</div>

We use the map function to iterate through all of the errors and render each one in
a div element.

This completes the rendering of any validation error messages.

Implementing validation on the ask and answer
forms
We are going to implement validation in both the ask and answer forms now in the
following steps:

In AskPage.tsx, we are going to make sure that the title and content fields are1.
populated by the user with a minimum number of characters. First, let's import
the required and minLength validators:

import { Form, required, minLength } from './Form';

Now, we can add the validation rules to the Form component in the AskPage2.
component JSX:

<Form
 submitCaption="Submit Your Question"
 validationRules={{
 title: [
 { validator: required },
 { validator: minLength, arg: 10 },
],
 content: [
 { validator: required },
 { validator: minLength, arg: 50 },
],
 }}

>
 ...
</Form>

Working with Forms Chapter 5

[179]

Let's give this a try. In the running app, let's go to the ask page by clicking on the3.
Ask a question button on the home screen.
If we tab through the title without filling it in and then enter content that is less4.
than 50 characters, we'll see the validation errors rendered:

We can still press the submit button because we haven't implemented any logic to
disable the submit button if there are any validation errors.

Let's move onto the answer form now in QuestionPage.tsx. We are going to5.
validate that the content is filled in with at least 50 characters. Let's
import the required and minLength validators:

import { Form, required, minLength } from './Form';

In the QuestionPage component JSX, let's add the validation rules to the Form6.
component:

<Form
 submitCaption='Submit Your Answer'
 validationRules={{
 content: [
 { validator: required },
 { validator: minLength, arg: 50 }

Working with Forms Chapter 5

[180]

]
 }}
>
 <Field name="content" label="Your Answer" type="TextArea" />
</Form>

In the running app, we can check that this is working as we expect by clicking on7.
a question on the home page and entering an answer:

That completes the implementation of validation on our forms. Our final task is to submit
the form, which we'll do in the next section.

Submitting forms
Submitting the form is the final part of the form implementation that we'll do in this
section. The consumer of the Form component will handle the actual submission. Our Form
component will revalidate the form and call a function in the consumer code when the form
is submitted.

Working with Forms Chapter 5

[181]

Handling form submission
We already have a submit button in the Form component that submits the form. We aren't
handling the form submission yet though. Let's handle form submission, which includes a
call to a function passed in by the consumer:

In Form.tsx, let's import the FormEvent type from React:1.

import { FC, useState, createContext, FormEvent } from 'react';

Let's add an event listener for the submit event in the Form component JSX:2.

<form noValidate={true} onSubmit={handleSubmit}>
 ...
</form>

When the submit button is clicked on the form, the submit event will be triggered
and a function called handleSubmit will be invoked.

Let's start to implement the handleSubmit function just beneath the validate3.
function:

const handleSubmit = async (e: FormEvent<HTMLFormElement>) => {
 e.preventDefault();
 if (validateForm()) {
 // TODO - set state to indicate submission is in progress
 // TODO - call the consumer submit function
 // TODO - set any errors in state
 // TODO - set state to indicate submission has finished
 }
};

So, we prevent the default form submission from happening using the
preventDefault method in the event parameter. We do this to prevent a full
page postback to the server that we don't want. We also call a function,
validateForm, to validate the whole form, which we still need to implement.

Notice that we have included the async keyword before the function parameters
to indicate that the function is asynchronous. This is because the consumers
submit a handler function that is likely to call a web service, which is
asynchronous.

Working with Forms Chapter 5

[182]

Let's implement the validateForm function beneath the handleSubmit4.
function:

const validateForm = () => {
 const newErrors: Errors = {};
 let haveError: boolean = false;
 if (validationRules) {
 Object.keys(validationRules).forEach(fieldName => {
 newErrors[fieldName] = validate(fieldName);
 if (newErrors[fieldName].length > 0) {
 haveError = true;
 }
 });
 }
 setErrors(newErrors);
 return !haveError;
};

So, we iterate through the validation rules for each field, invoking each rule and
updating the errors state. We also return whether any errors were found.

Let's create some additional state for the submission process:5.

const [values, setValues] = useState<Values>({});
const [errors, setErrors] = useState<Errors>({});
const [touched, setTouched] = useState<Touched>({});
const [submitting, setSubmitting] = useState(false);
const [submitted, setSubmitted] = useState(false);
const [submitError, setSubmitError] = useState(false);

The submitting state indicates whether the submission is in progress, the
submitted state indicates whether the form has been submitted, and the
submitError state indicates whether the submission failed.

Moving back to the handleSubmit function, let's set these state values:6.

const handleSubmit = async (e: FormEvent<HTMLFormElement>) => {
 e.preventDefault();
 if (validateForm()) {
 setSubmitting(true);
 setSubmitError(false);
 // TODO - call the consumer submit function
 // TODO - set any errors in state
 setSubmitting(false);
 setSubmitted(true);
 }
};

Working with Forms Chapter 5

[183]

We now need to call a function from the consumer that will do the actual form7.
submission. So, let's create a function prop called onSubmit for this purpose:

export interface SubmitResult {
 success: boolean;
 errors?: Errors;
}

interface Props {
 submitCaption?: string;
 validationRules?: ValidationProp;
 onSubmit: (values: Values) => Promise<SubmitResult>;
}

The function will be passed the field values from the form and will return an
object containing whether the submission was successful and any errors that
occurred.

Let's destructure the onSubmit prop in the Form component:8.

export const Form: FC<Props> = ({
 submitCaption,
 children,
 validationRules,
 onSubmit
}) => { ... }

Moving back to the handleSubmit function again, let's call the onSubmit9.
function that has been passed in:

const handleSubmit = async (e: FormEvent<HTMLFormElement>) => {
 e.preventDefault();
 if (validateForm()) {
 setSubmitting(true);
 setSubmitError(false);
 const result = await onSubmit(values);
 setErrors(result.errors || {});
 setSubmitError(!result.success);
 setSubmitting(false);
 setSubmitted(true);
 }
};

So, we asynchronously call the onSubmit function, update the errors state from
the submission result, and set the submitError state accordingly.

Working with Forms Chapter 5

[184]

In the Form components JSX, let's disable the form when submission is in10.
progress or the form has been successfully submitted:

<form noValidate={true} onSubmit={handleSubmit}>
 <fieldset
 disabled={submitting || (submitted && !submitError)}
 css={ ... }
 >
 ...
 </fieldset>
</form>

We want to inform the user of whether the submission has been successful or11.
not. We also want the consumer to be able to pass in the success and failure
messages. Let's add these to the props interface:

interface Props {
 submitCaption?: string;
 validationRules?: ValidationProp;
 onSubmit: (values: Values) => Promise<SubmitResult>;
 successMessage?: string;
 failureMessage?: string;
}

Destructure these in the Form component parameter with some sensible defaults:12.

export const Form: FC<Props> = ({
 submitCaption,
 children,
 validationRules,
 onSubmit,
 successMessage = 'Success!',
 failureMessage = 'Something went wrong'
}) => { ... }

We can now add these messages to the JSX with the appropriate conditions13.
under the submit button:

<fieldset ... >
 {children}
 <div ... >
 <PrimaryButton type="submit">{submitCaption}</PrimaryButton>
 </div>
 {submitted && submitError && (
 <p css={css`color: red;`}>
 {failureMessage}
 </p>
)}

Working with Forms Chapter 5

[185]

 {submitted && !submitError && (
 <p css={css`color: green;`}>
 {successMessage}
 </p>
)}
</fieldset>

That completes the submission logic in the Form component.

Implementing form submission in the search,
ask, and answer forms
We are going to implement form submission in our three forms starting with the search
form.

Implementing form submission in the search form
In Header.tsx, carry out the following steps to implement submission on the search form:

Import the FormEvent type from React:1.

import { ChangeEvent, FC, useState, FormEvent } from 'react';

Create a submit handler just beneath the handleSearchInputChange function:2.

const handleSearchSubmit = (e: FormEvent<HTMLFormElement>) => {
 e.preventDefault();
 history.push(`/search?criteria=${search}`);
};

So, this sets the browser location path to search with the appropriate criteria
query parameter.

Let's wire this handler up to the search form:3.

<form onSubmit={handleSearchSubmit}>
 <input ... />
</form>

Our project isn't compiling yet because we need to pass the onSubmit function prop into
the Form component from the ask and answer forms. So, we'll try the search form out later.

Working with Forms Chapter 5

[186]

Implementing form submission in the ask form
Let's carry out the following steps to implement submission on the ask form:

In QuestionsData.ts, let's create a function to simulate posting a question:1.

export interface PostQuestionData {
 title: string;
 content: string;
 userName: string;
 created: Date;
}

export const postQuestion = async (
 question: PostQuestionData,
): Promise<QuestionData | undefined> => {
 await wait(500);
 const questionId =
 Math.max(...questions.map(q => q.questionId)) + 1;
 const newQuestion: QuestionData = {
 ...question,
 questionId,
 answers: [],
 };
 questions.push(newQuestion);
 return newQuestion;
};

The function adds the question to the questions array using the Math.max
method to set questionId to the next number.

In AskPage.tsx, let's import the function we just created along with the values2.
interface from Form.tsx:

import { Form, required, minLength, Values } from './Form';
import { postQuestion } from './QuestionsData';

We can now implement the submit handler in the AskPage component:3.

export const AskPage = () => {
 const handleSubmit = async (values: Values) => {
 const question = await postQuestion({
 title: values.title,
 content: values.content,
 userName: 'Fred',
 created: new Date()
 });

Working with Forms Chapter 5

[187]

 return { success: question ? true : false };
 };
 return (
 ...
);
};

So, this calls the postQuestion function asynchronously, passing in the title and
content from the field values with a hardcoded user name and created date.

Let's pass this handler in the onSubmit prop as well as our required success and4.
failure messages to the Form component in the JSX:

<Form
 submitCaption="Submit Your Question"
 validationRules={{
 title: [{ validator: required }, { validator: minLength, arg:
10 }],
 content: [{ validator: required }, { validator: minLength, arg:
50 }]
 }}
 onSubmit={handleSubmit}
 failureMessage="There was a problem with your question"
 successMessage="Your question was successfully submitted"
>
 ...
</Form>

That completes the implementation of the ask form. We'll try it out after we've
implemented the answer form.

Implementing form submission in the answer form
Let's carry out the following steps to implement a submission on the answer form:

In QuestionsData.ts, let's create a function to simulate posting an answer:1.

export interface PostAnswerData {
 questionId: number;
 content: string;
 userName: string;
 created: Date;
}

export const postAnswer = async (
 answer: PostAnswerData,

Working with Forms Chapter 5

[188]

): Promise<AnswerData | undefined> => {
 await wait(500);
 const question = questions.filter(
 q => q.questionId === answer.questionId,
)[0];
 const answerInQuestion: AnswerData = {
 answerId: 99,
 ...answer,
 };
 question.answers.push(answerInQuestion);
 return answerInQuestion;
};

The function finds the question in the questions array and adds the answer to it.
The remainder of the preceding code contains straightforward types for the
answer to post and the function result.

In QuestionPage.tsx, let's import the function we just created along with the2.
values interface from Form.tsx:

import {
 QuestionData,
 getQuestion,
 postAnswer
} from './QuestionsData';
import { Form, required, minLength, Values } from './Form';

We can now implement the submit handler in the QuestionPage component3.
just above the return statement:

const handleSubmit = async (values: Values) => {
 const result = await postAnswer({
 questionId: question!.questionId,
 content: values.content,
 userName: 'Fred',
 created: new Date()
 });

 return { success: result ? true : false };
};

return (...)

Working with Forms Chapter 5

[189]

So, this calls the postAnswer function, asynchronously passing in the content
from the field values with a hardcoded user name and created date.

Notice ! after the reference to the question state variable. This is a non-null
assertion operator.

A non-null assertion operator (!) tells the TypeScript compiler that the
variable before it cannot be null or undefined. This is useful in
situations when the TypeScript compiler isn't smart enough to figure this
fact out itself.

So, ! in question!.questionId stops the TypeScript complaining that
question could be null.

Let's pass this handler in the onSubmit prop as well as our required success and4.
failure messages to the Form component in the JSX:

<Form
 submitCaption="Submit Your Answer"
 validationRules={{
 content: [
 { validator: required },
 { validator: minLength, arg: 50 }
]
 }}
 onSubmit={handleSubmit}
 failureMessage="There was a problem with your answer"
 successMessage="Your answer was successfully submitted"
>
 ...
</Form>

That's all of our forms complete now. We'll try them all out next.

Trying out our forms
Now that the hard work has been done, let's try out our forms in the running app:

In the search box, enter the word typescript and press Enter, like so: 1.

Working with Forms Chapter 5

[190]

The browser location query parameter is set as expected with the correct result
rendering in the search form.

Let's go back to the home page and click the Ask a question button and fill out2.
the question form and click the submit button:

The form is disabled during and after submission and we receive the expected
success message.

Working with Forms Chapter 5

[191]

Let's go back to the home page and click on a question and submit an answer:3.

Like the ask form, the answer form is disabled during and after submission and
we receive the expected success message.

So, that's our three forms complete and working nicely.

Summary
Controlled components are React's recommended method for handling form data entry.
With controlled components, React controls the field component values via the component
state.

Implementing many forms that contain lots of fields involves writing lots of repetitive
boilerplate code for the field value state and change event handlers. Implementing generic
form and field components that do the state management can significantly reduce the
amount of code needed to implement a form. The generic form and field components can
encapsulate validation and form submission as well.

Working with Forms Chapter 5

[192]

Our generic components only deal with very simple forms. For example, what if our next
form required a drop-down menu or a date picker? What if a validator function needed to
call a web service and therefore needed to be asynchronous? We can, of course, enhance
our generic component but not surprisingly, there are a fair number of well-established
form libraries already out in the wild. A popular choice is Formik, which is similar in some
ways to what we have just built but much more powerful.

In the next chapter, we are going to focus heavily on state management in our app and
leverage Redux.

Questions
Check whether all of that information about forms has stuck by answering the following
questions:

In our generic Form implementation, why did we make the onSubmit function1.
prop asynchronous?
When we implemented the generic Form and Field components, what was the2.
purpose of the touched state?
When we implement a form field as follows, why do we tie label to input3.
using the htmlFor attribute?

<label htmlFor={name}>{label}</label>
<input
 type="text"
 id={name}
 value={values[name] === undefined ? '' : values[name]}
 onChange={handleChange}
 onBlur={handleBlur}
/>

Why did we use the React context in our generic Form and Field4.
implementations?
Extend our generic Field component to include a number editor, using the5.
native number input.
Implement a validator in Form.tsx that will check that the field value is between6.
two numbers.

Working with Forms Chapter 5

[193]

Further reading
Here are some useful links to learn more about the topics covered in this chapter:

React forms: https:/ ​/​reactjs. ​org/​docs/ ​forms. ​html

React context: https:/ ​/​reactjs. ​org/ ​docs/ ​context. ​html

Spread syntax: https:/ ​/ ​developer. ​mozilla. ​org/ ​en-​US/ ​docs/ ​Web/ ​JavaScript/
Reference/ ​Operators/ ​Spread_ ​syntax

TypeScript type aliases: https:/ ​/​www. ​typescriptlang. ​org/​docs/ ​handbook/
advanced- ​types. ​html

Formik: https:/ ​/​github. ​com/ ​jaredpalmer/ ​formik

https://reactjs.org/docs/forms.html
https://reactjs.org/docs/forms.html
https://reactjs.org/docs/forms.html
https://reactjs.org/docs/forms.html
https://reactjs.org/docs/forms.html
https://reactjs.org/docs/forms.html
https://reactjs.org/docs/forms.html
https://reactjs.org/docs/forms.html
https://reactjs.org/docs/forms.html
https://reactjs.org/docs/forms.html
https://reactjs.org/docs/forms.html
https://reactjs.org/docs/forms.html
https://reactjs.org/docs/forms.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://reactjs.org/docs/context.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://github.com/jaredpalmer/formik
https://github.com/jaredpalmer/formik
https://github.com/jaredpalmer/formik
https://github.com/jaredpalmer/formik
https://github.com/jaredpalmer/formik
https://github.com/jaredpalmer/formik
https://github.com/jaredpalmer/formik
https://github.com/jaredpalmer/formik
https://github.com/jaredpalmer/formik
https://github.com/jaredpalmer/formik
https://github.com/jaredpalmer/formik

6
Managing State with Redux

So far, in our app, we have managed the state locally within our React components. We've
also used the React context when the state needs to be shared between different
components. This approach works well for many applications. React Redux helps us handle
complex state scenarios robustly. It shines when user interactions result in several changes
to state, perhaps some that are conditional, and mainly when the interaction results in web
service calls. It's also great when there's lots of shared state across the application.

We'll start this chapter by understanding the Redux pattern and the different terms, such as
actions and reducers. We'll follow the principles of Redux and the benefits it brings.

We are going to change the implementation of our app and use Redux to manage
unanswered questions. We'll implement a Redux store with a state containing
the unanswered questions and interact with the store in the home and ask pages. These
implementations will give us a good grasp of how to use Redux in a React app.

In this chapter, we'll cover the following topics:

Understanding the Redux pattern
Installing Redux and Redux Thunk
Creating the state
Creating actions
Creating action creators
Creating a reducer
Creating the store
Connecting components to the store

Managing State with Redux Chapter 6

[195]

Technical requirements
We'll use the following tools in this chapter:

Visual Studio Code: We'll use this to edit our React code. This can be
downloaded and installed from https:/ ​/​code. ​visualstudio. ​com/ ​

Node.js and npm: These can be downloaded from https:/ ​/​nodejs. ​org/​. If you
already have these installed, make sure that Node.js is at least version 8.2 and
that npm is at least version 5.2
Q and A: We'll start with the Q&A frontend project we finished in Chapter
5, Working with Forms. This is available on GitHub at https:/ ​/​github. ​com/
PacktPublishing/ ​ASP. ​NET- ​Core- ​3-​and- ​React- ​17.

All the code snippets in this chapter can be found online at https:/ ​/​github. ​com/
PacktPublishing/​ASP. ​NET- ​Core- ​3- ​and- ​React- ​17. In order to restore the code from a
chapter, the source code repository can be downloaded and the relevant folder opened
in the relevant editor. If the code is frontend code, then npm install can be entered in the
Terminal to restore the dependencies.

Check out the following video to see the code in action:

http:/​/​bit.​ly/​2PYYOOs

Understanding the Redux pattern
In this section, we'll start by going through the three principles in Redux before
understanding the benefits of Redux and the situations it works well in. Then, we will dive
into the core concepts so that we understand the terminology and the steps that happen as
the state is updated. By doing this, we will be well equipped to implement Redux in our
app.

Principles
Let's take a look at the three principles of Redux:

Single source of truth: This means that the whole application state is stored in a
single object. In a real app, this object is likely to contain a complex tree of nested
objects.

https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
http://bit.ly/2PYYOOs
http://bit.ly/2PYYOOs
http://bit.ly/2PYYOOs
http://bit.ly/2PYYOOs
http://bit.ly/2PYYOOs
http://bit.ly/2PYYOOs
http://bit.ly/2PYYOOs
http://bit.ly/2PYYOOs
http://bit.ly/2PYYOOs

Managing State with Redux Chapter 6

[196]

The state is read-only: This means that the state can't be directly changed. In
Redux, the only way to change the state is to dispatch what's called the action.
Changes are made with pure functions: The functions that are responsible for
changing the state are called reducers.

Redux shines when many components need access to the same data because the state and
its interactions are stored in a single place. Having the state read-only and only updatable
with a function makes the interactions easier to understand and debug. It is particularly
useful when many components are interacting with the state and some of the interactions
are asynchronous.

In the following sections, we'll dive into actions and reducers a little more, along with the
thing that manages them, which is called a store.

Key concepts
The whole state of the application lives inside what is called a store. The state is stored in a
JavaScript object like the following one:

{
 questions: {
 loading: false,
 unanswered: [{
 questionId: 1, title: ...
 }, {
 questionId: 2, title: ...
 }]
 }
}

In this example, the single object contains an array of unanswered questions, along with
whether the questions are being fetched from a web API.

The state won't contain any functions or setters or any getters. It's a simple JavaScript
object. The store also orchestrates all the moving parts in Redux. This includes pushing
actions through reducers to update the state.

So, the first thing that needs to happen in order to update the state in a store is to dispatch
an action. An action is another simple JavaScript object like the one in the following code
snippet:

{ type: 'GettingUnansweredQuestions' }

Managing State with Redux Chapter 6

[197]

The type property determines the kind of action that needs to be performed. The type
property is an important part of the action because the reducer won't know how to change
the state without it. In the previous example, the action doesn't contain anything else other
than the type property. This is because the reducer doesn't need any more information in
order to make changes to the state for this action. The following example is another
action:

{
 type: 'GotUnansweredQuestions',
 questions: [{
 questionId: 1, title: ...
 }, {
 questionId: 2, title: ...
 }]
}

This time, an additional bit of information is included in the action in a questions
property. This additional information is needed by the reducer to make the change to the
state for this kind of action.

Action creators, which are types of functions, are often used to create the action objects.
This is beneficial when a user interaction results in a number of store actions or the
interaction is asynchronous, such as fetching data from a server.

Reducers are pure functions that make the actual state changes.

A pure function always returns the same result for a given set of
parameters. So, these functions don't depend on any state outside the
scope of the function that isn't passed into the function. Pure functions
also don't change any state outside the scope of the function.

The following is an example of a reducer:

const questionsReducer = (state, action) => {
 switch (action.type) {
 case 'GettingUnansweredQuestions': {
 return {
 ...state,
 loading: true
 };
 }
 case 'GotUnansweredQuestions': {
 return {
 ...state,
 unanswered: action.questions,
 loading: false

Managing State with Redux Chapter 6

[198]

 };
 }
 }
};

Here are some key points about reducers:

Reducers take in two parameters for the current state and the action that is being
performed.
A switch statement is used on the action type and creates a new state object
appropriately for each action type in each of its branches.
To create the new state, we spread the current state into a new object and then
overwrite it with properties that have changed.
The new state is returned from the reducer.

You'll notice that the actions and reducer we have just seen didn't have TypeScript types.
Obviously, we'll include the necessary types when we implement these in the following
sections.

So, now that we have started to get an understanding of what Redux is, it's time to put this
into practice in our app.

Installing Redux and Redux Thunk
Before we can use Redux, we need to install it, along with the TypeScript types. We will
also install an additional library called Redux Thunk, which we need in order to implement
asynchronous actions. Let's look at the steps to install Redux:

If we haven't already, let's open our project in Visual Studio Code from where we1.
left off in the previous chapter. We can install the core Redux library via the
Terminal with the following command:

> npm install redux

Note that the core Redux library contains TypeScript types within it, so there is no
need for an additional install for these.

Now, let's install the React-specific bits for Redux in the Terminal with the2.
following command:

> npm install react-redux

Managing State with Redux Chapter 6

[199]

These bits allow us to connect our React components to the Redux store.

Let's also install the TypeScript types for React Redux:3.

> npm install @types/react-redux --save-dev

Let's install Redux Thunk as well:4.

> npm install redux-thunk

Redux Thunk contains its own TypeScript types, so there is no need for an additional install
for these.

With all the Redux bits now installed, we can start to build our Redux store.

Creating the state
In this section, we are going to implement the type for the state object in our store, along
with the initial value for the state. Follow these steps to do so:

Create a new file called Store.ts in the src folder with the following import1.
statement:

import { QuestionData } from './QuestionsData';

Let's create the TypeScript types for the state of our store:2.

interface QuestionsState {
 readonly loading: boolean;
 readonly unanswered: QuestionData[] | null;
 readonly postedResult?: QuestionData;
}

export interface AppState {
 readonly questions: QuestionsState;
}

So, our store is going to have a questions property that, in turn, contains an
array of unanswered questions or null in an unanswered property. The
questions property includes whether the unanswered questions are being
loaded from the server in a loading property. The questions property also
includes the result of posting a new question in a postedResult property.

Managing State with Redux Chapter 6

[200]

Let's define the initial state for the store so that it has an empty array of3.
unanswered questions and doesn't load questions from the server:

const initialQuestionState: QuestionsState = {
 loading: false,
 unanswered: null
};

So, defining the state is pretty straightforward. Let's move on and define our actions.

Creating actions
In this section, we are going to create actions that will initiate changes to our store state.
Let's get started:

We are going to create the actions in Store.ts. So, let's add the following import1.
statement at the top of this file:

import { Action } from 'redux';

The Action type is a base type from the core Redux library that contains a type
property that we can use to type in our actions.

Let's create an action interface that will indicate that unanswered questions are2.
being fetched from the server:

interface GettingUnansweredQuestionsAction
 extends Action<'GettingUnansweredQuestions'> {}

Notice that the interface uses the extends keyword.

Interfaces can inherit properties and methods from another interface using
the extends keyword. The interface that's being inherited from is
specified after the extends keyword.

We have extended the generic Action type by passing in the type for the type
property, which is the 'GettingUnansweredQuestions' string literal.

The action has no other properties, so the object will always be as follows:

{
 type: 'GettingUnansweredQuestions'
}

Managing State with Redux Chapter 6

[201]

The type property can only be 'GettingUnansweredQuestions' and no other
string value because we have typed it to that specific string literal.

Let's create an action for when the unanswered questions have been retrieved3.
from the server:

export interface GotUnansweredQuestionsAction
 extends Action<'GotUnansweredQuestions'> {
 questions: QuestionData[];
}

This time, the action contains a property called questions to hold
the unanswered questions, as well as the fixed type property.

Our last action is for when a question has been posted to the server and we have4.
the response:

export interface PostedQuestionAction extends
Action<'PostedQuestion'> {
 result: QuestionData | undefined;
}

The result property will hold the result of the question submission.

Now, we are going to combine all the action types in a union type:5.

type QuestionsActions =
 | GettingUnansweredQuestionsAction
 | GotUnansweredQuestionsAction
 | PostedQuestionAction;

We'll use this union type later in this chapter when we implement the reducer.

That's our actions defined. In the next section, we'll create functions that will dispatch these
actions.

Creating action creators
Action creators are functions that create actions. When the process of creating the action is
synchronous, the action creator will return the action object. However, when the process of
creating the action is asynchronous, the action creator will return a function that dispatches
the action. Asynchronous actions can also dispatch more than one action.

Managing State with Redux Chapter 6

[202]

In this section, we will create two asynchronous action creators for getting unanswered
questions and posting a question. We will also create an asynchronous action creator for
clearing the posted question result.

Implementing an action creator for getting
unanswered questions
The first action creator we will implement will be for getting unanswered questions. So,
let's get started by carrying out the following steps:

Let's start by importing the following additional types from the Redux core1.
library:

import { Action, ActionCreator, Dispatch } from 'redux';

Next, let's implement the action creator, which will gather unanswered2.
questions:

export const getUnansweredQuestionsActionCreator = () => {
 return async (dispatch: Dispatch) => {
 // TODO - dispatch the GettingUnansweredQuestions action
 // TODO - get the questions from server
 // TODO - dispatch the GotUnansweredQuestions action
 };
};

This is an asynchronous action creator and returns a function that will dispatch
two actions. So, the returned function has a dispatch parameter, which is used
to dispatch the actions.

Let's dispatch the GettingUnansweredQuestions action:3.

export const getUnansweredQuestionsActionCreator = () => {
 return async (dispatch: Dispatch) => {
 const gettingUnansweredQuestionsAction:
 GettingUnansweredQuestionsAction = {
 type: 'GettingUnansweredQuestions'
 };
 dispatch(gettingUnansweredQuestionsAction);
 // TODO - get the questions from server
 // TODO - dispatch the GotUnansweredQuestions action
 };
};

Managing State with Redux Chapter 6

[203]

Using the GettingUnansweredQuestionsAction type annotation helps us
ensure the action is defined correctly. We simply use the dispatch parameter to
dispatch the action.

Now, let's get the unanswered questions from the server by importing the4.
function that does this:

import { QuestionData, getUnansweredQuestions } from
'./QuestionsData';

Now, we can use this function to get the unanswered questions from the server5.
in our action creator:

export const getUnansweredQuestionsActionCreator = () => {
 return async (dispatch: Dispatch) => {
 const gettingUnansweredQuestionsAction:
 GettingUnansweredQuestionsAction = {
 type: 'GettingUnansweredQuestions'
 };
 dispatch(gettingUnansweredQuestionsAction);
 const questions = await getUnansweredQuestions();
 // TODO - dispatch the GotUnansweredQuestions action
 };
};

Let's dispatch the GotUnansweredQuestions action containing the unanswered6.
questions and return this action:

export const getUnansweredQuestionsActionCreator = () => {
 return async (dispatch: Dispatch) => {
 const gettingUnansweredQuestionsAction:
 GettingUnansweredQuestionsAction = {
 type: 'GettingUnansweredQuestions'
 };
 dispatch(gettingUnansweredQuestionsAction);
 const questions = await getUnansweredQuestions();
 const gotUnansweredQuestionAction: GotUnansweredQuestionsAction
 = {
 questions,
 type: 'GotUnansweredQuestions'
 };
 dispatch(gotUnansweredQuestionAction);
 };
};

Managing State with Redux Chapter 6

[204]

Our final task for this action creator is to add type annotation. First, we need to7.
import ThunkAction from the Redux Thunk core library:

import { ThunkAction } from 'redux-thunk';

We can use this type in our type annotation:8.

export const getUnansweredQuestionsActionCreator: ActionCreator<
 ThunkAction<
 Promise<void>,
 QuestionData[],
 null,
 GotUnansweredQuestionsAction
 >
> = () => {
 ...
};

ActionCreator is a generic type from the core Redux library that takes in a
parameter for the type of action that is created.

The type of action that's created isn't straightforward because the action creator is
asynchronous, so we use the ThunkAction type from the Redux Thunk library,
which is another generic type that has four parameters:

The first parameter is the return type for the inner function, which is
Promise<void> in this case.
The second parameter is the type of data within the last action, which
is QuestionData[] in this case.
The third parameter is the type for the parameter that is passed into the
nested function. In this case, this is null because there is no parameter.
The last parameter is the type of the last action to be dispatched, which
is GotUnansweredQuestionsAction in this case.

That completes the implementation of our first action creator.

Managing State with Redux Chapter 6

[205]

Implementing an action creator for posting a
question
Our second action creator will be for posting a question. Let's carry out the following steps
to implement this:

Let's implement the action creator for posting a question by importing the1.
function that posts the question to the server and the type for the posted
question:

import {
 QuestionData,
 getUnansweredQuestions,
 postQuestion,
 PostQuestionData
} from './QuestionsData';

Now, we can implement the action creator using the same pattern as the one we2.
have just implemented:

export const postQuestionActionCreator: ActionCreator<
 ThunkAction<
 Promise<void>,
 QuestionData,
 PostQuestionData,
 PostedQuestionAction
 >
> = (question: PostQuestionData) => {
 return async (dispatch: Dispatch) => {
 const result = await postQuestion(question);
 const postedQuestionAction: PostedQuestionAction = {
 type: 'PostedQuestion',
 result
 };
 dispatch(postedQuestionAction);
 };
};

This is very similar to the first action creator, except we are only dispatching a
single action after the response of the posted question has been received. The
nested function also takes in a parameter for the question to be posted, so this
appears in the ThunkAction generic type as the third parameter.

Managing State with Redux Chapter 6

[206]

Implementing an action creator for clearing the
posted question
Our final action creator is for clearing the posted question result. Let's implement this in
one step:

export const clearPostedQuestionActionCreator: ActionCreator<
 PostedQuestionAction
> = () => {
 const postedQuestionAction: PostedQuestionAction = {
 type: 'PostedQuestion',
 result: undefined,
 };
 return postedQuestionAction;
};

This action creator is much simpler because it is synchronous – we simply return a
PostedQuestion action with an undefined result property.

So, action creators are straightforward to implement but the type annotations are a little
tricky, particularly when they are asynchronous.

Our Redux store is shaping up nicely now. Let's move on and create a reducer.

Creating a reducer
In this section, we are going to implement a reducer, which is responsible for changing the
state in the store for a given action. Let's carry out the following steps:

We'll start by importing the Reducer type from Redux, along with the1.
combineReducers function:

import {
 Action,
 ActionCreator,
 Dispatch,
 Reducer,
 combineReducers
} from 'redux';

Managing State with Redux Chapter 6

[207]

Let's create the skeleton reducer function:2.

const questionsReducer: Reducer<QuestionsState, QuestionsActions> =
(
 state = initialQuestionState,
 action
) => {
 // TODO - Handle the different actions and return new state
 return state;
};

The reducer takes in two parameters: one for the current state and another for the
action that is being processed. The state will be undefined the first time the
reducer is called, so we default this to the initial state we created earlier.

The reducer needs to return the new state object for the given action. We're
simply returning the initial state at the moment.

We've used the Reducer generic type for the reducer, which takes in parameters
for the state type and actions type. Notice that we use the QuestionsActions
union type for the actions type.

Let's add a switch statement to handle the different actions:3.

const questionsReducer: Reducer<QuestionsState, QuestionsActions> =
(
 state = initialQuestionState,
 action
) => {
 switch (action.type) {
 case 'GettingUnansweredQuestions': {
 // TODO - return new state
 }
 case 'GotUnansweredQuestions': {
 // TODO - return new state
 }
 case 'PostedQuestion': {
 // TODO - return new state
 }
 }
 return state;
};

Managing State with Redux Chapter 6

[208]

Notice that the type property in the action parameter is strongly-typed and that
we can only handle the three actions we defined earlier.

Let's handle the GettingUnansweredQuestions question first:4.

switch (action.type) {
 case 'GettingUnansweredQuestions': {
 return {
 ...state,
 unanswered: null,
 loading: true
 };
 }
 case 'GotUnansweredQuestions': {
 // TODO - return new state
 }
 case 'PostedQuestion': {
 // TODO - return new state
 }
}

We use the spread syntax to copy the previous state into a new object, initialize
the unanswered state to null, and set the loading state to true.

Let's move on to the GotUnansweredQuestions action:5.

switch (action.type) {
 case 'GettingUnansweredQuestions': { ... };
 case 'GotUnansweredQuestions': {
 return {
 ...state,
 unanswered: action.questions,
 loading: false
 };
 }
 case 'PostedQuestion': {
 // TODO - return new state
 }
}

Managing State with Redux Chapter 6

[209]

Again, we use the spread syntax to copy the previous state into a new object and
set the unanswered and loading properties. Notice how we get IntelliSense only
for the properties in the GotUnansweredQuestions action:

TypeScript has smartly narrowed down the type in the switch branch from the
union type that was passed into the reducer for the action parameter.

Let's handle the last action:6.

switch (action.type) {
 case 'GettingUnansweredQuestions': { ... };
 case 'GotUnansweredQuestions': { ... };
 case 'PostedQuestion': {
 return {
 ...state,
 unanswered: action.result
 ? (state.unanswered || []).concat(action.result)
 : state.unanswered,
 postedResult: action.result
 };
 }
}

We create a new state from the old state using the spread syntax. If the question
has been successfully submitted, the result property in the action will contain
a question property, which is added to the unanswered array using the
array's concat function. We store the result of the question submission in the
postedResult property.

Managing State with Redux Chapter 6

[210]

We've handled all the different actions now but are going to do a little more7.
work that will help us remember to handle new actions in the reducer as our app
grows. To do this, we are going to add a default branch in the switch
statement:

switch (action.type) {
 case 'GettingUnansweredQuestions': { ... };
 case 'GotUnansweredQuestions': { ... };
 case 'PostedQuestion': { ... };
 default:
 neverReached(action);
}

This will inform the TypeScript compiler that the default branch should never
be reached. So, if we add a new action and it isn't handled in the reducer,
the default branch will be reached and a compiler error will be raised.

Let's implement the neverReached function we just referenced below the8.
reducer:

const neverReached = (never: never) => {};

The function takes in a parameter that is of the never type and returns an empty
object.

The never type is a TypeScript type that represents something that would
never occur and is typically used to specify unreachable areas of code.

So, if TypeScript can reach this function and the never parameter, it will throw
an error.

Now, we are going to use the combineReducers function in Redux to combine9.
all our reducers into a single reducer that returns AppState:

const rootReducer = combineReducers<AppState>({
 questions: questionsReducer
});

An object literal is passed into combineReducers that contains the properties in
our app state, along with the reducer that is responsible for that state. We only
have a single property in our app state called questions and a single reducer
managing changes to that state called questionsReducer.

Managing State with Redux Chapter 6

[211]

We will use the rootReducer in the next section when we create the store object.

That's the reducers complete. Now, we have all the different pieces implemented for our
Redux store, so we are going to create a function to create the store in the next section.

Creating the store
The final task in Store.ts is to create a function that creates the store. Let's do this by
carrying out the following steps:

First, let's import the Store type and createStore and applyMiddleware1.
functions from Redux, along with the thunk object from Redux Thunk:

import {
 Action,
 ActionCreator,
 Dispatch,
 Reducer,
 combineReducers,
 Store,
 createStore,
 applyMiddleware
} from 'redux';
import thunk, { ThunkAction } from 'redux-thunk';

Let's create a function to create the store:2.

export function configureStore(): Store<AppState> {
 const store = createStore(
 rootReducer,
 undefined,
 applyMiddleware(thunk)
);
 return store;
}

This function uses the createStore function from Redux by passing in the
combined reducers, undefined as the initial state, and the Thunk middleware
using the applyMiddleware function. Remember that Thunk is used to enable
asynchronous actions because, by default, Redux actions can't be asynchronous.

We use the generic Store type as the return type for the function passing in the
interface for our app state, which is AppState.

Managing State with Redux Chapter 6

[212]

That's all we need to do to create the store.

We have created all the bits and pieces in our store in a single file called
Store.ts. For larger stores, it may help maintainability to structure the
store across different files. Structuring the store by feature where you
have all the actions and the reducer for each feature in a file works well
because we generally read and write our code by feature.

In the next section, we will connect our store to the components we implemented in the
previous chapters.

Connecting components to the store
In this section, we are going to connect the existing components in our app to our store. We
will start by adding what is called a store provider to the root of our component tree, which
allows components lower in the tree to consume the store.

Adding a store provider
Let's provide the store to the root of our component tree:

In App.tsx, import the Provider component from React Redux and the1.
configureStore function we created in the previous section. Add these import
statements just after the React import statement:

import React, { lazy, Suspense } from 'react';
import { Provider } from 'react-redux';
import { configureStore } from './Store';

This is the first time we have referenced anything from React-Redux. Remember
that this library helps React components interact with a Redux store.

Just before the App component is defined, create an instance of our store using2.
our configureStore function:

const store = configureStore();

Managing State with Redux Chapter 6

[213]

In the App component's JSX, wrap a Provider component around3.
the BrowserRouter component by passing in our store instance:

return (
 <Provider store={store}>
 <BrowserRouter>
 ...
 </BrowserRouter>
 </Provider>
);

Components lower in the component tree can now connect to the store.

Connecting the home page
Let's connect the home page to the store:

In HomePage.tsx, let's add the following import statements:1.

import { connect } from 'react-redux';
import { ThunkDispatch } from 'redux-thunk';
import { AnyAction } from 'redux';

We've imported a function called connect from React Redux that will allow us to
connect the HomePage component to the store. We've also imported some useful
TypeScript types from Redux and Redux Thunk.

We are going to use the Redux store for the unanswered questions, so let's2.
import the action creator that will get these, along with the type for the store's
state:

import {
 getUnansweredQuestionsActionCreator,
 AppState
} from './Store';

Let's remove the getUnansweredQuestions function from the import statement3.
from QuestionsData.ts. We will eventually get this data from the Redux store.
This should leave this import statement as follows:

import { QuestionData } from './QuestionsData';

Managing State with Redux Chapter 6

[214]

The state in the Redux store, as well as the dispatched action creator, is going to4.
be accessible from the HomePage component via props. So, let's create a props
interface for what we expect:

interface Props extends RouteComponentProps {
 getUnansweredQuestions: () => Promise<void>;
 questions: QuestionData[] | null;
 questionsLoading: boolean;
}

The interface extends the RouteComponentProps type because this is the current
props type. We have added three props for getting and storing the unanswered
questions, as well as for whether they are in the process of being loaded.

Now, we can use this interface in the HomePage component and destructure the5.
props:

export const HomePage: FC<Props> = ({
 history,
 questions,
 questionsLoading,
 getUnansweredQuestions
}) => { ... }

We no longer need the questions and questionsLoading states, so let's6.
remove the useState statement inside the component. We need to remember to
remove useState from the React import statement as well. In addition, the
doGetUnansweredQuestions function is also redundant, so let's remove this as
well.
The first statement in the component is now the useEffect statement, which7.
gets the unanswered questions when the component is mounted. We need to
change this to call the action creator in our Redux store to get the questions:

useEffect(() => {
 if (questions === null) {
 getUnansweredQuestions();
 }
}, [questions, getUnansweredQuestions]);

So, if the questions state in the Redux store is null, we start the process of
getting the unanswered questions.

Notice that we include the questions and getUnansweredQuestions functions
as dependencies for the useEffect function so that it is executed if these ever
change.

Managing State with Redux Chapter 6

[215]

We still need to connect the component to the store. We do this using the8.
connect function we imported earlier into a default export statement at the
bottom of HomePage.tsx:

export default connect(
 mapStateToProps,
 mapDispatchToProps
)(HomePage);

This connects the component to our store, which is provided to us by the
Provider component, which is higher up in the component tree. The connect
function also invokes two mapper functions, mapStateToProps and
mapDispatchToProps, which map the state and action creators from the store
into the component props that we'll implement later.

Now that we have a default export for the HomePage component, let's remove its9.
named export. So, the HomePage component should now be defined as follows,
without the export keyword:

const HomePage: FC<Props> = ...

Let's define the mapStateToProps function above the default export statement:10.

const mapStateToProps = (store: AppState) => {
 return {
 questions: store.questions.unanswered,
 questionsLoading: store.questions.loading
 };
};

This function takes in the store state and returns the questions and
questionLoaded props that are required by our component. So, it maps state
from the store into the component props, as the name suggests.

Let's define the mapDispatchToProps function just11.
beneath the mapStateToProps function:

const mapDispatchToProps = (
 dispatch: ThunkDispatch<any, any, AnyAction>,
) => {
 return {
 getUnansweredQuestions: () =>
 dispatch(getUnansweredQuestionsActionCreator()),
 };
};

Managing State with Redux Chapter 6

[216]

This dispatches and maps the action creator to get unanswered questions into the
component props.

Notice that the TypeScript type for the dispatch parameter is ThunkDispatch.
This is a type from the Redux Thunk library that takes in three parameters for the
asynchronous function result type, asynchronous function parameter type, and
the last action created type, respectively. Although we are dispatching only one
action creator in this case, we could be dispatching different action creators,
which is why we pass in the any type and the AnyAction type in the generic
parameters.

Let's move on to the App.tsx file and change the import statement for12.
HomePage, so that it uses the default export:

import HomePage from './HomePage';

If the app isn't running, type npm start in the Terminal to start it. The app will13.
run fine and the unanswered questions will be rendered on the home page, just
as they were before we added the Redux store.

Congratulations—we have just connected our first component to a Redux store!

Connecting the ask page
We are going to follow a similar pattern to connect the ask page to our Redux store. Let's
get started:

In AskPage.tsx, let's change the import statements from React, that1.
is, Form.tsx and QuestionsData.tsx, so that they look as follows:

import React, { FC, useEffect } from 'react';
import {
 Form,
 required,
 minLength,
 Values,
 SubmitResult
} from './Form';
import { PostQuestionData, QuestionData } from './QuestionsData';

Managing State with Redux Chapter 6

[217]

Let's add the following import statements:2.

import { connect } from 'react-redux';
import { ThunkDispatch } from 'redux-thunk';
import {
 postQuestionActionCreator,
 AppState,
 clearPostedQuestionActionCreator
} from './Store';
import { AnyAction } from 'redux';

Add a props interface for the data and function coming from the store and use3.
this in the AskPage component. Also, remove the named export from the
function component:

interface Props {
 postQuestion: (
 question: PostQuestionData,
) => Promise<void>;
 postedQuestionResult?: QuestionData;
 clearPostedQuestion: () => void;
}

const AskPage: FC<Props> = ({
 postQuestion,
 postedQuestionResult,
 clearPostedQuestion,
}) => ...

We want to clear the question posted state when the AskPage component is4.
unmounted, so let's call the clearPostedQuestion action creator in a
useEffect cleanup function:

useEffect(() => {
 return function cleanUp() {
 clearPostedQuestion();
 };
}, [clearPostedQuestion]);

const handleSubmit = ...

Managing State with Redux Chapter 6

[218]

Now, the handleSubmit function in the AskPage component is going to call the5.
postQuestion dispatched action creator from the store. So, let's change this to
the following:

const handleSubmit = (values: Values) => {
 postQuestion({
 title: values.title,
 content: values.content,
 userName: "Fred",
 created: new Date()
 });
};

The function is no longer asynchronous, so the async keyword has been removed
from it.

The Form component expects handleSubmit to be asynchronous though, so let's6.
go to Form.tsx and change the interface so that no results can be returned from
the onSubmit function prop:

interface Props {
 ...
 onSubmit: (values: Values) => Promise<SubmitResult> | void;
 ...
}

Still in the Form component, we need to return from the handleSubmit function7.
if a result hasn't been received from onSubmit:

const handleSubmit = async (e: FormEvent<HTMLFormElement>) => {
 e.preventDefault();
 if (validateForm()) {
 setSubmitting(true);
 setSubmitError(false);
 const result = await onSubmit(values);

 // The result may be passed through as a prop
 if (result === undefined) {
 return;
 }

 setErrors(result.errors || {});
 setSubmitError(!result.success);
 setSubmitting(false);
 setSubmitted(true);
 }
};

Managing State with Redux Chapter 6

[219]

The submission result will be passed through the props if the submission is8.
handled via a Redux store, so let's add a submitResult prop:

interface Props {
 ...
 onSubmit: (values: Values) => Promise<SubmitResult> | void;
 submitResult?: SubmitResult;
 ...
}

export const Form: FC<Props> = ({
 ...
 onSubmit,
 submitResult,
 ...
}) =>

We are going to combine the data from submitResult with the submission state9.
so that our JSX can deal with the Redux store submission. Add the following
highlighted lines just before the return statement:

const handleSubmit = ...

const validateForm = ...

const disabled = submitResult
 ? submitResult.success
 : submitting || (submitted && !submitError);

const showError = submitResult
 ? !submitResult.success
 : submitted && submitError;

const showSuccess = submitResult
 ? submitResult.success
 : submitted && !submitError;

return (...)

The Form component's JSX can now be changed to the following:10.

<form noValidate={true} onSubmit={handleSubmit}>
 <fieldset disabled={disabled} css={ ... }>
 {children}
 <div css={ ... }>
 <PrimaryButton type="submit">{submitCaption}</PrimaryButton>
 </div>

Managing State with Redux Chapter 6

[220]

 {showError && <p css={ ... }>{failureMessage}</p>}
 {showSuccess && <p css={ ... }>{successMessage}</p>}
 </fieldset>
</form>

This allows the Form component to be used with a Redux store.

Back in AskPage.tsx, we can now pass the submission result to the Form11.
component:

<Form
 ...
 onSubmit={handleSubmit}
 submitResult={submitResult}
 ...
>
 ...
</Form>

We need to construct the submitResult variable we have just referenced from12.
the properties in postedQuestionResult, which comes from the store:

const handleSubmit = (values: Values) => {
 ...
};

let submitResult: SubmitResult | undefined;
if (postedQuestionResult) {
 submitResult = { success: postedQuestionResult !== undefined };
}
return (...)

Now, we can connect the component to the store and replace the previous export13.
statement with the following:

const mapStateToProps = (store: AppState) => {
 return {
 postedQuestionResult: store.questions.postedResult,
 };
};
const mapDispatchToProps = (
 dispatch: ThunkDispatch<any, any, AnyAction>,
) => {
 return {
 postQuestion: (question: PostQuestionData) =>
 dispatch(postQuestionActionCreator(question)),
 clearPostedQuestion: () =>
 dispatch(clearPostedQuestionActionCreator()),

Managing State with Redux Chapter 6

[221]

 };
};

export default connect(
 mapStateToProps,
 mapDispatchToProps,
)(AskPage);

This is a similar pattern to how we connected the HomePage component to the
store. A slight difference here is that we pass a parameter into the action creator
for the question being submitted.

If we go to the ask form in the app and submit a question, it will behave just as it14.
did previously, but via our Redux store.

That completes connecting the ask page to our Redux store.

Summary
In this chapter, we learned that the state in a Redux store is stored in a single place, is read-
only, and is changed with a pure function called a reducer. Our components don't talk
directly to the reducer; instead, they dispatch functions called action creators, which create
objects called actions that describe the change to the reducer.

Redux Thunk was used to allow the store to work with asynchronous actions, which are
crucial for an app that uses web services. We told Redux to use Redux Thunk in the Redux
createStore function. React components are connected to the store with
a connect function from React Redux, as well as a Provider component at the root of the
component tree.

There are lots of bits and pieces to get our heads around when implementing Redux within
a React app. It does shine in scenarios where the state management is complex because
Redux forces us to break the logic up into separate pieces that are easy to understand and
maintain. It is also very useful for managing global state such as user information because it
is easily accessible below the Provider component.

Managing State with Redux Chapter 6

[222]

In this chapter, we put the state from the home and ask pages into Redux. Putting the state
from the question and search pages into Redux follows a very similar pattern. The code for
this can be found at https:/ ​/​github. ​com/ ​PacktPublishing/ ​ASP. ​NET-​Core- ​3- ​and- ​React-
17/​tree/​master/​Chapter06/ ​frontend.

Now, we have built the majority of the frontend in our app, which means it's time to turn
our attention to the backend. In the next chapter, we'll focus on how we can interact with
the database in ASP.NET Core.

Questions
Before we end this chapter, let's test our knowledge with some questions:

When implementing an action object, how many properties can it contain?1.
Why did we need Redux Thunk in our Redux store?2.
How did we make the state in our store read-only?3.
In the questionsReducer function we implemented, why didn't we use the4.
array push method to add the new question to the state?

case 'PostedQuestion': {
 return {
 ...state,
 unanswered: action.result
 ? (state.unanswered || []).push(action.result.question)
 : state.unanswered,
 postedResult: action.result,
 };
}

Does the Provider component from React Redux need to be placed at the top of5.
the component tree?
As well as the Provider component, what is the other item from React Redux6.
that allows a component to consume data from the Redux store?
 Is a component that consumes the Redux store allowed to have local state?7.

https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/tree/master/Chapter06/frontend
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/tree/master/Chapter06/frontend
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/tree/master/Chapter06/frontend
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/tree/master/Chapter06/frontend
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/tree/master/Chapter06/frontend
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/tree/master/Chapter06/frontend
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/tree/master/Chapter06/frontend
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/tree/master/Chapter06/frontend
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/tree/master/Chapter06/frontend
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/tree/master/Chapter06/frontend
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/tree/master/Chapter06/frontend
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/tree/master/Chapter06/frontend
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/tree/master/Chapter06/frontend
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/tree/master/Chapter06/frontend
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/tree/master/Chapter06/frontend
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/tree/master/Chapter06/frontend
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/tree/master/Chapter06/frontend
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/tree/master/Chapter06/frontend
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/tree/master/Chapter06/frontend
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/tree/master/Chapter06/frontend
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/tree/master/Chapter06/frontend
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/tree/master/Chapter06/frontend
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/tree/master/Chapter06/frontend
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/tree/master/Chapter06/frontend
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/tree/master/Chapter06/frontend
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/tree/master/Chapter06/frontend
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/tree/master/Chapter06/frontend
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/tree/master/Chapter06/frontend
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/tree/master/Chapter06/frontend
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/tree/master/Chapter06/frontend

Managing State with Redux Chapter 6

[223]

Further reading
Here are some useful links so that you can learn more about the topics that were covered in
this chapter:

Getting Started with Redux: https:/ ​/​redux. ​js. ​org/​introduction/ ​getting-
started

React Redux: https:/ ​/​react- ​redux. ​js. ​org/​

Redux Thunk: https:/ ​/​github. ​com/ ​reduxjs/ ​redux- ​thunk

Never type:
https://www.typescriptlang.org/docs/handbook/basic-types.html

https://redux.js.org/introduction/getting-started
https://redux.js.org/introduction/getting-started
https://redux.js.org/introduction/getting-started
https://redux.js.org/introduction/getting-started
https://redux.js.org/introduction/getting-started
https://redux.js.org/introduction/getting-started
https://redux.js.org/introduction/getting-started
https://redux.js.org/introduction/getting-started
https://redux.js.org/introduction/getting-started
https://redux.js.org/introduction/getting-started
https://redux.js.org/introduction/getting-started
https://redux.js.org/introduction/getting-started
https://redux.js.org/introduction/getting-started
https://redux.js.org/introduction/getting-started
https://react-redux.js.org/
https://react-redux.js.org/
https://react-redux.js.org/
https://react-redux.js.org/
https://react-redux.js.org/
https://react-redux.js.org/
https://react-redux.js.org/
https://react-redux.js.org/
https://react-redux.js.org/
https://react-redux.js.org/
https://react-redux.js.org/
https://react-redux.js.org/
https://github.com/reduxjs/redux-thunk
https://github.com/reduxjs/redux-thunk
https://github.com/reduxjs/redux-thunk
https://github.com/reduxjs/redux-thunk
https://github.com/reduxjs/redux-thunk
https://github.com/reduxjs/redux-thunk
https://github.com/reduxjs/redux-thunk
https://github.com/reduxjs/redux-thunk
https://github.com/reduxjs/redux-thunk
https://github.com/reduxjs/redux-thunk
https://github.com/reduxjs/redux-thunk
https://github.com/reduxjs/redux-thunk
https://github.com/reduxjs/redux-thunk
https://www.typescriptlang.org/docs/handbook/basic-types.html

3
Section 3: Building an

ASP.NET Core Backend
In this section, we will build the backend of our Q & A app by creating a REST API for
interacting with questions and answers as well as a SignalR server that gives real-time
updates on answers. We'll use Dapper and Entity Framework Core behind the web API to
interact with the SQL Server database.

This section comprises the following chapters:

Chapter 7, Interacting with the Database with Dapper
Chapter 8, Creating REST API Endpoints
Chapter 9, Creating a Real-Time API with SignalR
Chapter 10, Improving Performance and Scalability
Chapter 11, Securing the Backend
Chapter 12, Interacting with RESTful APIs

7
Interacting with the Database

with Dapper
It's time to start work on the backend of our Q and A app. In this chapter, we are going to
build the database for the app and interact with it from ASP.NET Core with a library called
Dapper.

We'll start by understanding what Dapper is and the benefits it brings over Entity
Framework. We'll create the data access layer in our app by learning how to read data from
the database into model classes using Dapper. We'll then move on to writing to the
database from model classes.

Deploying database changes during releases of our app is an important and non-trivial
task. So, we'll set up the management of database migrations using a library called DbUp
toward the end of this chapter.

In this chapter, we'll cover the following topics:

Implementing the database
Understanding what Dapper is and its benefits
Installing and configuring Dapper
Reading data using Dapper
Writing data using Dapper
Managing migrations with DbUp

Interacting with the Database with Dapper Chapter 7

[226]

Technical requirements
We'll use the following tools in this chapter:

Visual Studio 2019: We'll use this to edit our ASP.NET Core code. This can be
downloaded and installed from https:/ ​/​visualstudio. ​microsoft. ​com/ ​vs/​.
.NET Core 3.0: This can be downloaded and installed from https:/ ​/​dotnet.
microsoft. ​com/ ​download/ ​dotnet- ​core.
SQL Server 2017 Express Edition: We'll use this for our database. This can be
downloaded and installed from https:/ ​/​www. ​microsoft. ​com/ ​en-​gb/ ​sql-
server/​sql- ​server- ​editions- ​express.
SQL Server Management Studio: We'll use this to create our database. This can
be downloaded and installed from https:/ ​/​docs. ​microsoft. ​com/ ​en- ​us/​sql/
ssms/​download- ​sql- ​server- ​management- ​studio- ​ssms? ​view= ​sql- ​server- ​2017.
Q and A: We'll start with the Q and A backend project we created and finished in
Chapter 2, Creating Decoupled React and ASP.NET Core Apps. This is available on
GitHub at https:/ ​/​github. ​com/​PacktPublishing/ ​ASP.​NET- ​Core- ​3- ​and-​React-
17.

All of the code snippets in this chapter can be found online at https:/ ​/​github. ​com/
PacktPublishing/​ASP. ​NET- ​Core- ​3- ​and- ​React- ​17. To restore code from a chapter, the
source code repository can be downloaded and the relevant folder opened in the relevant
editor. If the code is frontend code, then npm install can be entered in the Terminal to
restore the dependencies.

Check out the following video to see the code in action:

http:/​/​bit.​ly/​2EVDsv6

Implementing the database
In this section, we are going to create the database for our app containing the tables we
need along with stored procedures to interact with those tables.

https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://www.microsoft.com/en-gb/sql-server/sql-server-editions-express
https://www.microsoft.com/en-gb/sql-server/sql-server-editions-express
https://www.microsoft.com/en-gb/sql-server/sql-server-editions-express
https://www.microsoft.com/en-gb/sql-server/sql-server-editions-express
https://www.microsoft.com/en-gb/sql-server/sql-server-editions-express
https://www.microsoft.com/en-gb/sql-server/sql-server-editions-express
https://www.microsoft.com/en-gb/sql-server/sql-server-editions-express
https://www.microsoft.com/en-gb/sql-server/sql-server-editions-express
https://www.microsoft.com/en-gb/sql-server/sql-server-editions-express
https://www.microsoft.com/en-gb/sql-server/sql-server-editions-express
https://www.microsoft.com/en-gb/sql-server/sql-server-editions-express
https://www.microsoft.com/en-gb/sql-server/sql-server-editions-express
https://www.microsoft.com/en-gb/sql-server/sql-server-editions-express
https://www.microsoft.com/en-gb/sql-server/sql-server-editions-express
https://www.microsoft.com/en-gb/sql-server/sql-server-editions-express
https://www.microsoft.com/en-gb/sql-server/sql-server-editions-express
https://www.microsoft.com/en-gb/sql-server/sql-server-editions-express
https://www.microsoft.com/en-gb/sql-server/sql-server-editions-express
https://www.microsoft.com/en-gb/sql-server/sql-server-editions-express
https://www.microsoft.com/en-gb/sql-server/sql-server-editions-express
https://www.microsoft.com/en-gb/sql-server/sql-server-editions-express
https://www.microsoft.com/en-gb/sql-server/sql-server-editions-express
https://www.microsoft.com/en-gb/sql-server/sql-server-editions-express
https://www.microsoft.com/en-gb/sql-server/sql-server-editions-express
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
http://bit.ly/2EVDsv6
http://bit.ly/2EVDsv6
http://bit.ly/2EVDsv6
http://bit.ly/2EVDsv6
http://bit.ly/2EVDsv6
http://bit.ly/2EVDsv6
http://bit.ly/2EVDsv6
http://bit.ly/2EVDsv6
http://bit.ly/2EVDsv6

Interacting with the Database with Dapper Chapter 7

[227]

Creating the database
We are going to create the database using SQL Server Management Studio (SSMS) by
carrying out the following steps:

Open SSMS and connect to the SQL Server instance:1.

Interacting with the Database with Dapper Chapter 7

[228]

In Object Explorer, right-click on Databases and click on the New Database...2.
option.
Enter QandA for the name for the database and click OK:3.

After the database is created, we'll see it listed in Object Explorer:4.

Interacting with the Database with Dapper Chapter 7

[229]

Nice and easy!

Creating database tables
Let's create some tables for the users, questions, and answers in our new database in SSMS:

Copy the contents of the SQL Script at https:/ ​/​github. ​com/ ​PacktPublishing/1.
ASP.​NET- ​Core- ​3-​and- ​React- ​17/ ​blob/ ​master/ ​Chapter07/ ​backend/ ​SQLScripts/
01-​Tables. ​sql

In SSMS, with the QandA database highlighted, click New Query on the toolbar2.
to create a new SQL query and paste in the contents from the copied script.
Click the Execute option on the toolbar or press F5 to execute the query.3.
If we look under Tables in Object Explorer, we should see that several tables4.
have been created:

https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql

Interacting with the Database with Dapper Chapter 7

[230]

The following have been created:

The Question table contains the questions that have been asked and
contains the following fields:

An integer-based field called QuestionId, which is the primary key
Unicode-based Title and Content fields
UserId and UserName fields, which reference the user who asked the
question
A field called Created, which will hold the date and time the question
was asked

The Answer table contains answers to the questions and contains the
following fields:

An integer-based AnswerId field, which is the primary key
An integer-based QuestionId field, which references the question
being answered
A Unicode-based Content field
UserId and UserName fields, which reference the user who answered
the question
A field called Created, which will hold the date and time the answer
was submitted

The SQL Script has added some example data. If we right-click on the Question5.
table in Object Explorer and choose the Edit Top 200 rows option, we'll see the
data in our table:

So, we now have a database that contains our tables with some nice data to work with.

Interacting with the Database with Dapper Chapter 7

[231]

Creating stored procedures
Let's create some stored procedures that our app will use to interact with the database
tables:

Copy the contents of the SQL Script at https:/ ​/​github. ​com/ ​PacktPublishing/1.
ASP.​NET- ​Core- ​3-​and- ​React- ​17/ ​blob/ ​master/ ​Chapter07/ ​backend/ ​SQLScripts/
02-​Sprocs. ​sql.
Click New Query to create a new SQL query and paste in the contents from the2.
copied script.
Click the Execute option on the toolbar.3.
If we look under Stored Procedures under Programmability in Object Explorer,4.
we should see that several stored procedures have been created:

We'll be using these stored procedures to interact with the database from the
ASP.NET Core app.

Before we finish this section, let's try to run one of the stored procedures.5.
Click New Query to create a new SQL query and enter the following:

EXEC dbo.Question_GetMany_BySearch @Search = 'type'

https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql

Interacting with the Database with Dapper Chapter 7

[232]

So, this SQL command will execute the Question_GetMany_BySearch stored
procedure passing in the @Search parameter with a value of type. This stored
procedure returns questions that have the value of the @Search parameter in the
title or its content.

Click the Execute option on the toolbar and we should get the following results:6.

With our SQL Server database in place, we can now turn our attention to Dapper.

Understanding what Dapper is and its
benefits
Dapper is a performance-focused simple object mapper for .NET that helps to map SQL
query output to instances of a C# class. It is built and maintained by the StackOverflow
team and is released as open source and is a popular alternative to Microsoft's Entity
Framework.

So, why use Dapper rather than Entity Framework? The goal of Entity Framework is to
abstract away the database and so it trades learning SQL for Entity Framework-specific
objects such as DBSet and DataContext. We generally don't write SQL with Entity
Framework—instead, we write LINQ queries, which are translated into SQL by Entity
Framework.

If we are implementing a large database that serves a large number of users, Entity
Framework can be a challenge because the queries it generates can be inefficient. We need
to understand Entity Framework well to make it scale, which can be a significant
investment. When we find Entity Framework queries that are slow, we need to understand
SQL to properly understand the root cause. So, why wouldn't we just spend our time
learning SQL and use this directly rather than an abstraction? Also, if we have a team with
SQL skills, why would we want to abstract away the database and SQL?

Dapper is really simple. We'll see later in this chapter that we can read and write data from
a SQL database with just a few lines of C# code. It allows us to interact with stored
procedures in the database, automatically mapping C# class instances to SQL parameters
along with the results of the query. In the next section, we will install and start to use
Dapper to access our data.

Interacting with the Database with Dapper Chapter 7

[233]

Installing and configuring Dapper
In this section, we are going to install and configure Dapper. We will also install a
System.Data.SqlClient package that Dapper uses. Let's carry out the following steps:

Let's open the backend project in Visual Studio and go to the Tools menu and1.
then the NuGet Package Manager and choose Manage NuGet Packages for
Solution....

NuGet is a tool that downloads third-party and Microsoft libraries and
manages the references to them so that the libraries can easily be updated.

On the Browse tab, enter Dapper into the search box.2.
Select the Dapper package by Sam Saffron, Marc Gravell, and Nick Craver. Tick3.
our project and click the Install button with the latest stable version selected.
Refer to the following screenshot:

We may be asked to accept a licensing agreement before Dapper is downloaded
and installed into our project.

Interacting with the Database with Dapper Chapter 7

[234]

Still in the NuGet package manager, search for the System.Data.SqlClient4.
package and install the latest stable version. Refer to the following screenshot:

Note that Microsoft is developing a new SQL client library called
Microsoft.Data.SqlClient, which will eventually replace
System.Data.SqlClient. When this is released, and when Dapper
supports this new library, we'll need to install the
Microsoft.Data.SqlClient package instead of
System.Data.SqlClient in the preceding step.

Next, we are going to define a connection string in our ASP.NET Core project to5.
our database. In the Solution Explorer, open up a file called
appsettings.json to add a ConnectionStrings field that contains our
connection string:

{
 "ConnectionStrings": {
 "DefaultConnection":
"Server=localhost\\SQLEXPRESS;Database=QandA;Trusted_Connection=Tru
e;"
 },
 ...
}

Interacting with the Database with Dapper Chapter 7

[235]

The appsettings.json file is a JSON-formatted file that contains
various configuration settings for an ASP.NET Core app.

Obviously, change the connection string so that it references your SQL Server and
database.

So, that's Dapper installed along with a connection string to our database in place. Next up
is to read data from the database using Dapper.

Reading data using Dapper
We are going to write some C# code in this section to read data from the database.

We are going to use the popular repository design pattern to structure our data access code.
This will allow us to provide a nice centralized abstraction of the data layer.

We are going to start by creating a data repository class to hold all of the queries we are
going to make to the data. We are going to create C# classes to hold the data we get from
the database called models.

Creating the repository class
Let's create a class to hold all of the methods for interacting with the database:

In the Solution Explorer, right-click on the project, select the Add menu, and1.
then choose the New Folder option.
A new folder will be created in the solution tree. Name the folder Data.2.
Right-click on the Data folder and select the Add menu and then choose3.
the Class... option.
In the dialog box that appears, enter DataRepository for the name of the file to4.
create and click the Add button.

Interacting with the Database with Dapper Chapter 7

[236]

A skeleton DataRepository class will be created:5.

We are going to create an interface for the data repository so that it can be6.
mocked when writing unit tests. Right-click on the Data folder and select
the Add menu and then choose the Class... option.
This time, choose the Interface option in the dialog box that appears and name it7.
IDataRepository before pressing the Add button.
Change the modifier for the interface to be public and add the following8.
methods:

public interface IDataRepository
{
 IEnumerable<QuestionGetManyResponse> GetQuestions();

 IEnumerable<QuestionGetManyResponse>
 GetQuestionsBySearch(string search);

 IEnumerable<QuestionGetManyResponse>
 GetUnansweredQuestions();

 QuestionGetSingleResponse
 GetQuestion(int questionId);

 bool QuestionExists(int questionId);

 AnswerGetResponse GetAnswer(int answerId);
}

Interacting with the Database with Dapper Chapter 7

[237]

So, we are going to have six methods in the data repository to read different bits
of data from our database. Note that this won't compile yet because we are
referencing classes that don't exist.

Moving back to DataRepository.cs, specify that the class must implement the9.
interface we just created:

public class DataRepository: IDataRepository
{
}

If we click on the class name, a light bulb icon will appear. Click on the light bulb10.
menu and choose Implement interface:

Skeleton methods will be added to the repository class that satisfies the interface.

Create a class-level private variable called _connectionString to store the11.
database connection string:

public class DataRepository : IDataRepository
{
 private readonly string _connectionString;
 ...
}

Interacting with the Database with Dapper Chapter 7

[238]

The readonly keyword prevents the variable from being changed outside
of the class constructor, which is what we want in this case.

Let's create a constructor for the repository class that will set the value of the12.
connection string from the appsettings.json file:

public class DataRepository : IDataRepository
{
 private readonly string _connectionString;

 public DataRepository(IConfiguration configuration)
 {
 _connectionString =
 configuration["ConnectionStrings:DefaultConnection"];
 }

 ...
}

The configuration parameter in the constructor gives us access to items within
the appsettings.json file. The key we use when accessing the configuration
object is the path to the item we want from the appsettings.json file with
colons being used to navigate fields in the JSON.

How does the configuration parameter get passed into the constructor? The
answer is dependency injection, which we'll cover in the next chapter.

Our class doesn't recognize IConfiguration yet, so, let's click on it, click on the13.
light bulb menu that appears, and choose using
Microsoft.Extensions.Configuration:

Interacting with the Database with Dapper Chapter 7

[239]

We've made a good start on the repository class. We do have compile errors, but these will
disappear as we fully implement the methods.

Creating a repository method to get questions
Let's implement the GetQuestions method first:

Let's add a couple of using statements at the top of the file for the ADO.NET1.
SQL client library as well as Dapper:

using System.Data.SqlClient;
using Dapper;

Let's declare a new database connection:2.

public IEnumerable<QuestionGetManyResponse> GetQuestions()
{
 using (var connection = new SqlConnection(_connectionString))
 {

 }
}

Notice that we've used a using block to declare the database connection.

A using block automatically disposes of the object defined in the block
when the program exits the scope of the block. This includes whether a
return statement is invoked within the block as well as errors occurring
within the block.

So, the using statement is a convenient way of ensuring the connection is
disposed of. Notice that we are using an ADO.NET connection because this is
what the Dapper library extends.

Next, let's open the connection:3.

public IEnumerable<QuestionGetManyResponse> GetQuestions()
{
 using (var connection = new SqlConnection(_connectionString))
 {
 connection.Open();
 }
}

Interacting with the Database with Dapper Chapter 7

[240]

Now, we can execute the query:4.

public IEnumerable<QuestionGetManyResponse> GetQuestions()
{
 using (var connection = new SqlConnection(_connectionString))
 {
 connection.Open();
 return connection.Query<QuestionGetManyResponse>(
 @"EXEC dbo.Question_GetMany"
);
 }
}

We've used a Query extension method from Dapper on the connection object to
execute the Question_GetMany stored procedure. We then simply return the
results of this query from our method. Nice and simple!

Notice how we pass in a class, QuestionGetManyResponse, into the generic
parameter of the Query method. This defines the model class the query results
should be stored in. We'll define QuestionGetManyResponse in the next step.

In the Solution Explorer, right-click on the Data folder, choose Add, and then5.
choose the New Folder option. Enter Models as the name of the new folder. We
are going to place all of our models here.
In the Solution Explorer, right-click on the Models folder and select Add and6.
then choose the Class... option.
In the dialog that appears, enter QuestionGetManyResponse for the name of7.
the file to create and click the Add button. A skeleton class will be created for us.
Add the following properties to the class:8.

public class QuestionGetManyResponse
{
 public int QuestionId { get; set; }
 public string Title { get; set; }
 public string Content { get; set; }
 public string UserName { get; set; }
 public DateTime Created { get; set; }
}

Interacting with the Database with Dapper Chapter 7

[241]

The property names match the fields outputted from the Question_GetMany
stored procedure. This allows Dapper to automatically map the data from the
database to this class. The property types have also been carefully chosen so this
Dapper mapping process works.

Note that the class doesn't need to contain properties for all of the fields
output from the stored procedure. Dapper will ignore fields that don't
have corresponding properties in the class.

Moving back to DataRepository.cs, add a using statement so that the class9.
can get access to the models:

using QandA.Data.Models;

Let's also add this using statement in IDataRepository.cs:10.

using QandA.Data.Models;

Congratulations, we have implemented our first repository method! This consisted of just a
few lines of code that opened a database connection and executed a query. So, writing data
access code in Dapper is super simple.

Creating a repository method to get questions by
a search
Let's implement the GetQuestionsBySearch method, which is similar to the
GetQuestions method, but this time, the method and stored procedure have a parameter.
Let's carry out the following steps:

Start by creating and opening the connection in the same way as we did when we1.
implemented the last method:

public IEnumerable<QuestionGetManyResponse>
GetQuestionsBySearch(string search)
{
 using (var connection = new SqlConnection(_connectionString))
 {
 connection.Open();
 // TODO - execute Question_GetMany_BySearch stored procedure
 }
}

Interacting with the Database with Dapper Chapter 7

[242]

Now, we can execute the Question_GetMany_BySearch stored procedure:2.

public IEnumerable<QuestionGetManyResponse>
GetQuestionsBySearch(string search)
{
 using (var connection = new SqlConnection(_connectionString))
 {
 connection.Open();
 return connection.Query<QuestionGetManyResponse>(
 @"EXEC dbo.Question_GetMany_BySearch @Search = @Search",
 new { Search = search }
);
 }
}

Notice how we pass in the stored procedure parameter value.

Parameter values are passed into a Dapper query using an object with its
property names matching the parameter names. Dapper will then create
and execute a parameterized query.

In this case, we've used an anonymous object for the parameters to save us defining a class
for the object.

Why do we have to pass a parameter to Dapper? Why can't we just do the following:

return connection.Query<QuestionGetManyResponse>($"EXEC
dbo.Question_GetMany_BySearch '{search}'");

Well, there are several reasons, but the main one is that the preceding code is vulnerable to
a SQL injection attack. So, it's always best to pass parameters into Dapper rather than trying
to construct the SQL ourselves.

That's our second repository method complete. Nice and simple!

Creating a repository method to get unanswered
questions
Let's implement the GetUnansweredQuestions method, which is very similar to the
GetQuestions method:

public IEnumerable<QuestionGetManyResponse> GetUnansweredQuestions()
{

Interacting with the Database with Dapper Chapter 7

[243]

 using (var connection = new SqlConnection(_connectionString))
 {
 connection.Open();
 return connection.Query<QuestionGetManyResponse>(
 "EXEC dbo.Question_GetUnanswered"
);
 }
}

So, we open the connection, execute the Question_GetUnanswered stored procedure, and
return the results in the QuestionGetManyResponse class we have already created.

Creating a repository method to get a single
question
Let's implement the GetQuestion method now:

Start by opening the connection and executing the Question_GetSingle stored1.
procedure:

public QuestionGetSingleResponse GetQuestion(int questionId)
{
 using (var connection = new SqlConnection(_connectionString))
 {
 connection.Open();
 var question =
 connection.QueryFirstOrDefault<QuestionGetSingleResponse>(
 @"EXEC dbo.Question_GetSingle @QuestionId = @QuestionId",
 new { QuestionId = questionId }
);

 // TODO - Get the answers for the question

 return question;
 }
}

Interacting with the Database with Dapper Chapter 7

[244]

This method is a little different from the previous methods because we use the
QueryFirstOrDefault Dapper method to return a single record (or null if the
record isn't found) rather than a collection of records.

We need to execute a second stored procedure to get the answers for the2.
question, so let's do this:

public QuestionGetSingleResponse GetQuestion(int questionId)
{
 using (var connection = new SqlConnection(_connectionString))
 {
 connection.Open();
 var question =
 connection.QueryFirstOrDefault<QuestionGetSingleResponse>(
 @"EXEC dbo.Question_GetSingle @QuestionId = @QuestionId",
 new { QuestionId = questionId }
);
 question.Answers =
 connection.Query<AnswerGetResponse>(
 @"EXEC dbo.Answer_Get_ByQuestionId
 @QuestionId = @QuestionId",
 new { QuestionId = questionId }
);

 return question;
 }
}

The question may not be found and return null, so let's handle this case and3.
only add the answers if the question is found:

public QuestionGetSingleResponse GetQuestion(int questionId)
{
 using (var connection = new SqlConnection(_connectionString))
 {
 connection.Open();
 var question =
 connection.QueryFirstOrDefault<QuestionGetSingleResponse>(
 @"EXEC dbo.Question_GetSingle @QuestionId = @QuestionId",
 new { QuestionId = questionId }
);
 if (question != null)
 {
 question.Answers =
 connection.Query<AnswerGetResponse>(
 @"EXEC dbo.Answer_Get_ByQuestionId
 @QuestionId = @QuestionId",

Interacting with the Database with Dapper Chapter 7

[245]

 new { QuestionId = questionId }
);
 }
 return question;
 }
}

Let's create the QuestionGetSingleResponse class we referenced in the4.
method in a file called QuestionGetSingleResponse.cs in the Models folder:

public class QuestionGetSingleResponse
{
 public int QuestionId { get; set; }
 public string Title { get; set; }
 public string Content { get; set; }
 public string UserName { get; set; }
 public string UserId { get; set; }
 public DateTime Created { get; set; }
 public IEnumerable<AnswerGetResponse> Answers { get; set; }
}

These properties match up with the data returned from
the Question_GetSingle stored procedure.

Let's also create the AnswerGetResponse class we referenced in the method in a5.
file called AnswerGetResponse.cs in the Models folder:

public class AnswerGetResponse
{
 public int AnswerId { get; set; }
 public string Content { get; set; }
 public string UserName { get; set; }
 public DateTime Created { get; set; }
}

These properties match up with the data returned from the
Answer_Get_ByQuestionId stored procedure.

The GetQuestion method should compile fine now.

Interacting with the Database with Dapper Chapter 7

[246]

Creating a repository method to check whether a
question exists
Let's implement the QuestionExists method now, following the same approach as the
previous methods:

public bool QuestionExists(int questionId)
{
 using (var connection = new SqlConnection(_connectionString))
 {
 connection.Open();
 return connection.QueryFirst<bool>(
 @"EXEC dbo.Question_Exists @QuestionId = @QuestionId",
 new { QuestionId = questionId }
);
 }
}

We are using the Dapper QueryFirst method rather
than QueryFirstOrDefault because the stored procedure will always return a single
record.

Creating a repository method to get an answer
The last method to implement in this section is GetAnswer:

public AnswerGetResponse GetAnswer(int answerId)
{
 using (var connection = new SqlConnection(_connectionString))
 {
 connection.Open();
 return connection.QueryFirstOrDefault<AnswerGetResponse>(
 @"EXEC dbo.Answer_Get_ByAnswerId @AnswerId = @AnswerId",
 new { AnswerId = answerId }
);
 }
}

There is nothing new here—the implementation follows the same pattern as the previous
methods.

We have now implemented all of the methods in the data repository for reading data. In the
next section, we'll turn our attention to writing data.

Interacting with the Database with Dapper Chapter 7

[247]

Writing data using Dapper
In this section, we are going to implement methods in our data repository to write to the
database. We will start by extending the interface for the repository and then do the actual
implementation.

The stored procedures that perform the write operations are already in the database. We
will be interacting with these stored procedures using Dapper.

Adding methods to write data to the repository
interface
We'll start by adding the methods to the repository interface:

public interface IDataRepository
{
 ...
 QuestionGetSingleResponse
 PostQuestion(QuestionPostRequest question);

 QuestionGetSingleResponse
 PutQuestion(int questionId, QuestionPutRequest question);

 void DeleteQuestion(int questionId);

 AnswerGetResponse PostAnswer(AnswerPostRequest answer);
}

So, we are required to implement methods to add, change, and delete questions as well as
adding an answer.

Creating a repository method to add a new
question
Let's create the PostQuestion method in DataRepository.cs to add a new question:

public QuestionGetSingleResponse PostQuestion(QuestionPostRequest question)
{
 using (var connection = new SqlConnection(_connectionString))
 {
 connection.Open();
 var questionId = connection.QueryFirst<int>(

Interacting with the Database with Dapper Chapter 7

[248]

 @"EXEC dbo.Question_Post
 @Title = @Title, @Content = @Content,
 @UserId = @UserId, @UserName = @UserName,
 @Created = @Created",
 question
);

 return GetQuestion(questionId);
 }
}

This is a very similar implementation to the methods that read data. We use the
QueryFirst Dapper method because the stored procedure returns the ID of the new
question after inserting it into the database table. Our method returns the saved question by
calling the GetQuestion method with questionId that was returned from the
Question_Post stored procedure.

We've used a model class called QuestionPostRequest for Dapper to map to the SQL
parameters. Let's create this class in the models folder:

public class QuestionPostRequest
{
 public string Title { get; set; }
 public string Content { get; set; }
 public string UserId { get; set; }
 public string UserName { get; set; }
 public DateTime Created { get; set; }
}

Great stuff! That's our first write method created.

Creating a repository method to change a
question
Let's create the PutQuestion method in DataRepository.cs to change a question. This is
very similar to the PostQuestion method we have just implemented:

public QuestionGetSingleResponse PutQuestion(int questionId,
QuestionPutRequest question)
{
 using (var connection = new SqlConnection(_connectionString))
 {
 connection.Open();
 connection.Execute(

Interacting with the Database with Dapper Chapter 7

[249]

 @"EXEC dbo.Question_Put
 @QuestionId = @QuestionId, @Title = @Title, @Content = @Content",
 new { QuestionId = questionId, question.Title, question.Content }
);
 return GetQuestion(questionId);
 }
}

Notice that we use the Dapper Execute method because we are simply executing a stored
procedure and not returning anything.

We've created the SQL parameters from a model class called QuestionPutRequest and
the questionId parameters that were passed into the method. Let's create the
QuestionPutRequest class in the models folder:

public class QuestionPutRequest
{
 public string Title { get; set; }
 public string Content { get; set; }
}

That's another method implemented.

Creating a repository method to delete a question
Moving on, let's implement a method for deleting a question now:

public void DeleteQuestion(int questionId)
{
 using (var connection = new SqlConnection(_connectionString))
 {
 connection.Open();
 connection.Execute(
 @"EXEC dbo.Question_Delete
 @QuestionId = @QuestionId",
 new { QuestionId = questionId }
);
 }
}

We again use the Dapper Execute method because nothing is returned from the stored
procedure.

Interacting with the Database with Dapper Chapter 7

[250]

Creating a repository method to add an answer
The last method we are going to implement is for adding an answer to a question:

public AnswerGetResponse PostAnswer(AnswerPostRequest answer)
{
 using (var connection = new SqlConnection(_connectionString))
 {
 connection.Open();
 return connection.QueryFirst<AnswerGetResponse>(
 @"EXEC dbo.Answer_Post
 @QuestionId = @QuestionId, @Content = @Content,
 @UserId = @UserId, @UserName = @UserName,
 @Created = @Created",
 answer
);
 }
}

As well as inserting the answer into the database table, the stored procedure returns the
saved answer. So, we use the Dapper QueryFirst method to execute the stored procedure
and return the saved answer.

We also need to create the AnswerPostRequest model class in the models folder:

public class AnswerPostRequest
{
 public int QuestionId { get; set; }
 public string Content { get; set; }
 public string UserId { get; set; }
 public string UserName { get; set; }
 public DateTime Created { get; set; }
}

That completes our data repository. We've chosen to have a single method containing all of
the methods to read and write data. We can, of course, create multiple repositories for
different areas of the database, which would be a good idea if the app was larger.

As we add features to our app that involve database changes we'll need a mechanism of
deploying the database changes. We'll look at this in the next section.

Interacting with the Database with Dapper Chapter 7

[251]

Managing migrations using DbUp
DbUp is an open source library that helps us to deploy changes to SQL Server databases. It
keeps track of SQL Scripts embedded with an ASP.NET Core project along with which ones
have been executed on the database. It has methods that we can use to execute the SQL
Scripts that haven't been executed yet on the database.

In this section, we are going to add DbUp to our project and configure it to do our database
migrations when our app starts up.

Installing DbUp into our project
Let's start by installing DbUp by carrying out the following steps in our backend project, in
Visual Studio:

Go to the Tools menu and then the NuGet Package Manager and then1.
choose Manage NuGet Packages for Solution....
On the Browse tab, enter DbUp into the search box.2.
Select the dbup package by Paul Stovell, Jim Burger, Jake Ginnivan, and Damian3.
Maclennan. Tick our project and click the Install button with the latest stable
version selected:

Interacting with the Database with Dapper Chapter 7

[252]

We may be asked to accept a licensing agreement before DbUp is downloaded
and installed into our project.

Configuring DbUp to do migrations on app
startup
Now that we have DbUp installed into our project, let's get it to do database migrations
when the app starts up:

Open up Startup.cs. We know from Chapter 1, Understanding the ASP.NET1.
Core React Template, that code in this file executes when an ASP.NET Core app
runs up. We'll start by adding a using statement so that we can reference the
DbUp library:

using DbUp;

In the ConfigureServices method, add the following two lines:2.

public void ConfigureServices(IServiceCollection services)
{
 var connectionString =
 Configuration.GetConnectionString("DefaultConnection");
 EnsureDatabase.For.SqlDatabase(connectionString);

 // TODO - Create and configure an instance of the DbUp upgrader
 // TODO - Do a database migration if there are any pending SQL
 //Scripts

 services.AddControllers();
}

This gets the database connection from the appsettings.json file and creates
the database if it doesn't exist.

Let's create and configure an instance of the DbUp upgrader:3.

public void ConfigureServices(IServiceCollection services)
{
 var connectionString =
 Configuration.GetConnectionString("DefaultConnection");
 EnsureDatabase.For.SqlDatabase(connectionString);

 var upgrader = DeployChanges.To
 .SqlDatabase(connectionString, null)

Interacting with the Database with Dapper Chapter 7

[253]

 .WithScriptsEmbeddedInAssembly(
 System.Reflection.Assembly.GetExecutingAssembly()
)
 .WithTransaction()
 .Build();

 // TODO - Do a database migration if there are any pending SQL
 //Scripts

 services.AddControllers();
}

We've told DbUp where the database is and to look for SQL Scripts that have
been embedded in our project. We've also told DbUp to do the database
migrations in a transaction.

The final step is to get DbUp to do a database migration if there are any pending4.
SQL Scripts:

public void ConfigureServices(IServiceCollection services)
{
 var connectionString =
 Configuration.GetConnectionString("DefaultConnection");

 EnsureDatabase.For.SqlDatabase(connectionString);

 var upgrader = DeployChanges.To
 .SqlDatabase(connectionString, null)
 .WithScriptsEmbeddedInAssembly(
 System.Reflection.Assembly.GetExecutingAssembly()
)
 .WithTransaction()
 .LogToConsole()
 .Build();

 if (upgrader.IsUpgradeRequired())
 {
 upgrader.PerformUpgrade();
 }
 services.AddControllers();
}

We use the IsUpgradeRequired method in the DbUp upgrade to check whether
there are any pending SQL Scripts and the PerformUpgrade method to do the
actual migration.

Interacting with the Database with Dapper Chapter 7

[254]

Embedding SQL Scripts in our project
In the last subsection, we told DbUp to look for SQL Scripts that have been embedded in
our project. So, we are now going to embed SQL Scripts for the tables and stored
procedures in our project so that DbUp will execute them if they haven't already been
executed when our app loads:

In Solution Explorer, right-click on the project, and choose Add | New Folder.1.
Enter SQLScripts as the folder name.
Right-click on the SQLScripts folder and choose Add | New Item....2.
In the dialog box that appears, select the General tab and then Text File and3.
enter 01-Tables.sql as the filename:

Interacting with the Database with Dapper Chapter 7

[255]

Copy the contents of the script from https:/ ​/​github. ​com/​PacktPublishing/4.
ASP.​NET- ​Core- ​3-​and- ​React- ​17/ ​blob/ ​master/ ​Chapter07/ ​backend/ ​SQLScripts/
01-​Tables. ​sql and paste it into the file we just created.
Right-click on 01-Tables.sql in Solution Explorer and choose Properties to view5.
the properties of this file.
Change the Build Action property to Embedded resource:6.

This embeds the SQL Script in our project so that DbUp can find it.

Let's repeat this process for the stored procedures by first creating a file7.
called 02-Sprocs.sql in the SQLScripts folder with the content from https:/
/​github. ​com/ ​PacktPublishing/ ​ASP. ​NET-​Core- ​3- ​and- ​React- ​17/​blob/ ​master/
Chapter07/ ​backend/ ​SQLScripts/ ​02- ​Sprocs. ​sql. Let's not forget to embed this
file as a project resource.

DbUp will run SQL Scripts in name order, so it's important to have a
script naming convention that caters to this. In our example, we are
prefixing the script name with a two-digit number.

So, those are the SQL Scripts that make up our database saved within our project.

https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/01-Tables.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17/blob/master/Chapter07/backend/SQLScripts/02-Sprocs.sql

Interacting with the Database with Dapper Chapter 7

[256]

Performing a database migration
Let's now try a database migration by carrying out the following steps:

The database that we are working with already contains the tables and stored1.
procedures in our scripts, so we are going to be brave and delete our database. In
SSMS, in Object Explorer, right-click the database and choose Delete:

Interacting with the Database with Dapper Chapter 7

[257]

We are going to create the database again with the same name. So, in Object2.
Explorer, right-click on Databases and click on the New Database... option.
Enter QandA for the name of the database and click OK:

Interacting with the Database with Dapper Chapter 7

[258]

Back in Visual Studio, press F5 to run the app.3.
After the app has run up, go to SSMS, and in Object Explorer, we'll see that the4.
tables and stored procedures have been created. We'll also see a table called
SchemaVersions:

Right-click on dbo.SchemaVersions and choose Edit Top 200 Rows:5.

Interacting with the Database with Dapper Chapter 7

[259]

This is a table that DbUp uses to manage what scripts have been executed. So,
we'll see our two scripts listed in this table.

Back in Visual Studio, stop the app by pressing Shift + F5.6.
Run the app again. The app will run up just fine.7.
Inspect the database objects in Object Explorer in SSMS. The objects will be8.
unchanged.
Examine the contents of the SchemaVersions table. We'll find that no new9.
scripts have been added.
We can now stop the app again in Visual Studio.10.

So, our project is now set up to handle database migrations. All we need to do is to add the
necessary SQL Script files in the SQLScripts folder remembering to embed them as a
resource. DbUp will then do the migration when the app next runs.

Summary
We now understand that Dapper is a simple way of interacting with a database in a
performant manner. It's a great choice when our team already has SQL Server skills because
it doesn't abstract the database away from us.

We learned that Dapper adds various extension methods on the ADO.NET
SqlConnection object for reading and writing to the database. Dapper maps the results of
a query to instances of a C# class automatically by matching field names in the query result
to the class properties. Query parameters can be passed in using a C# class with Dapper
automatically mapping properties in the C# class to the SQL parameters.

We discovered that DbUp is a simple open source tool that can be used to manage database
migrations. We embed SQL Scripts within our project and write code that is executed when
our app loads to instruct DbUp to check and perform any necessary migrations.

In the next chapter, we are going to create the RESTful API for our app leveraging the data
access code we have written in this chapter.

Interacting with the Database with Dapper Chapter 7

[260]

Questions
Answer the following questions to test the knowledge we have gained in this chapter:

What Dapper method can be used to execute a stored procedure that returns no1.
results?
What Dapper method can be used to read a single record of data where the2.
record is guaranteed to exist?
What Dapper method can be used to read a collection of records?3.
What is wrong with the following statement that calls the Dapper Query4.
method?

return connection.Query<BuildingGetManyResponse>(
 @"EXEC dbo.Building_GetMany_BySearch
 @Search = @Search",
 new { Criteria = "Fred"}
);

We have the following stored procedure:5.

CREATE PROC dbo.Building_GetMany
AS
BEGIN
 SET NOCOUNT ON

 SELECT BuildingId, Name
 FROM dbo.Building
END

We have the following statement that calls the Dapper Query method:

return connection.Query<BuildingGetManyResponse>(
 "EXEC dbo.Building_GetMany"
);

We also have the following model that is referenced in the preceding statement:

public class BuildingGetManyResponse
{
 public int Id{ get; set; }
 public string Name { get; set; }
}

Interacting with the Database with Dapper Chapter 7

[261]

When our app is run, we find that the Id property within the
BuildingGetManyResponse class instances is not populated. Can you spot the
problem?

Can DbUp be used to deploy new reference data within a table?6.

Further reading
Here are some useful links to learn more about the topics covered in this chapter:

Creating a SQL Server
database: https://docs.microsoft.com/en-us/sql/relational-databases/dat
abases/create-a-database?view=sql-server-2017.
Creating SQL Server tables: https:/ ​/​docs. ​microsoft. ​com/ ​en- ​us/​sql/ ​t- ​sql/
statements/ ​create- ​table- ​transact- ​sql? ​view= ​sql-​server- ​2017.
Creating SQL Server stored procedures: https:/ ​/ ​docs. ​microsoft. ​com/​en- ​us/
sql/​relational- ​databases/ ​stored- ​procedures/ ​create- ​a- ​stored- ​procedure?
view=​sql- ​server- ​2017.
The C# using statement: https:/ ​/​docs. ​microsoft. ​com/ ​en- ​us/​dotnet/ ​csharp/
language- ​reference/ ​keywords/ ​using- ​statement.
Dapper: https:/ ​/​github. ​com/ ​StackExchange/ ​Dapper.
DbUp: https:/ ​/​dbup. ​readthedocs. ​io/ ​en/ ​latest/ ​.

https://docs.microsoft.com/en-us/sql/relational-databases/databases/create-a-database?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/databases/create-a-database?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/stored-procedures/create-a-stored-procedure?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/stored-procedures/create-a-stored-procedure?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/stored-procedures/create-a-stored-procedure?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/stored-procedures/create-a-stored-procedure?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/stored-procedures/create-a-stored-procedure?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/stored-procedures/create-a-stored-procedure?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/stored-procedures/create-a-stored-procedure?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/stored-procedures/create-a-stored-procedure?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/stored-procedures/create-a-stored-procedure?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/stored-procedures/create-a-stored-procedure?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/stored-procedures/create-a-stored-procedure?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/stored-procedures/create-a-stored-procedure?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/stored-procedures/create-a-stored-procedure?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/stored-procedures/create-a-stored-procedure?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/stored-procedures/create-a-stored-procedure?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/stored-procedures/create-a-stored-procedure?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/stored-procedures/create-a-stored-procedure?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/stored-procedures/create-a-stored-procedure?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/stored-procedures/create-a-stored-procedure?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/stored-procedures/create-a-stored-procedure?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/stored-procedures/create-a-stored-procedure?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/stored-procedures/create-a-stored-procedure?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/stored-procedures/create-a-stored-procedure?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/stored-procedures/create-a-stored-procedure?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/stored-procedures/create-a-stored-procedure?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/stored-procedures/create-a-stored-procedure?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/stored-procedures/create-a-stored-procedure?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/stored-procedures/create-a-stored-procedure?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/stored-procedures/create-a-stored-procedure?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/stored-procedures/create-a-stored-procedure?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/stored-procedures/create-a-stored-procedure?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/stored-procedures/create-a-stored-procedure?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/stored-procedures/create-a-stored-procedure?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/stored-procedures/create-a-stored-procedure?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/stored-procedures/create-a-stored-procedure?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/stored-procedures/create-a-stored-procedure?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/stored-procedures/create-a-stored-procedure?view=sql-server-2017
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/using-statement
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/using-statement
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/using-statement
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/using-statement
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/using-statement
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/using-statement
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/using-statement
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/using-statement
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/using-statement
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/using-statement
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/using-statement
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/using-statement
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/using-statement
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/using-statement
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/using-statement
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/using-statement
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/using-statement
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/using-statement
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/using-statement
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/using-statement
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/using-statement
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/using-statement
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/using-statement
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/using-statement
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/using-statement
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/using-statement
https://github.com/StackExchange/Dapper
https://github.com/StackExchange/Dapper
https://github.com/StackExchange/Dapper
https://github.com/StackExchange/Dapper
https://github.com/StackExchange/Dapper
https://github.com/StackExchange/Dapper
https://github.com/StackExchange/Dapper
https://github.com/StackExchange/Dapper
https://github.com/StackExchange/Dapper
https://github.com/StackExchange/Dapper
https://github.com/StackExchange/Dapper
https://dbup.readthedocs.io/en/latest/
https://dbup.readthedocs.io/en/latest/
https://dbup.readthedocs.io/en/latest/
https://dbup.readthedocs.io/en/latest/
https://dbup.readthedocs.io/en/latest/
https://dbup.readthedocs.io/en/latest/
https://dbup.readthedocs.io/en/latest/
https://dbup.readthedocs.io/en/latest/
https://dbup.readthedocs.io/en/latest/
https://dbup.readthedocs.io/en/latest/
https://dbup.readthedocs.io/en/latest/
https://dbup.readthedocs.io/en/latest/
https://dbup.readthedocs.io/en/latest/
https://dbup.readthedocs.io/en/latest/

8
Creating REST API Endpoints

In Chapter 1, Understanding the ASP.NET Core React Template, we learned that a RESTful
endpoint is implemented using an API controller in ASP.NET Core. In this chapter, we'll
implement an API controller for our Q & A app that will eventually allow the frontend to
read and write questions and answers. We'll implement a range of controller action
methods that handle different HTTP request methods returning appropriate responses.

We'll learn about dependency injection and use this to inject the data repository we created
in the previous chapter into the API controller. We'll validate requests so that we can be
sure the data is valid before it reaches the data repository.

At the end of the chapter, we'll ensure we aren't asking for unnecessary information in the
API requests. This will prevent potential security issues as well as improving the
experience for API consumers.

In this chapter, we'll cover the following topics:

Creating an API controller
Creating controller action methods
Adding model validation
Removing unnecessary request fields

Technical requirements
We'll use the following tools in this chapter:

Visual Studio 2019: We'll use this to edit our ASP.NET Core code. This can be
downloaded from https:/ ​/​visualstudio. ​microsoft. ​com/​vs/ ​.
.NET Core 3.0: This can be downloaded from https:/ ​/​dotnet. ​microsoft. ​com/
download/ ​dotnet- ​core.

https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core

Creating REST API Endpoints Chapter 8

[263]

Postman: We'll use this to try out the REST API endpoint we'll implement in this
chapter. This can be downloaded from https:/ ​/​www. ​getpostman. ​com/
downloads/ ​.
Q & A: We'll start with the Q & A backend project we finished in the previous
chapter. This is available on GitHub at https:/ ​/​github. ​com/ ​carlrip/ ​ASP. ​NET-
Core-​and- ​React- ​Book.

All the code snippets in this chapter can be found online at https:/ ​/​github. ​com/​carlrip/
ASP.​NET-​Core-​and- ​React- ​Book. In order to restore code from a chapter, the source code
repository can be downloaded and the relevant folder opened in the relevant editor. If the
code is frontend code then npm install can be entered in the Terminal to restore the
dependencies.

Check out the following video to see the code in action:

http:/​/​bit.​ly/​2PUriJg

Creating an API controller
In this section, we are going to create an API controller to handle requests to an
api/questions endpoint. The controller will call into the data repository we created in the
previous chapter. We'll also create an instance of the data repository in the API controller
using dependency injection.

Creating an API controller for questions
Let's create a controller for the api/questions endpoint. If we don't have our backend
project open in Visual Studio, let's do so and carry out the following steps:

In Solution Explorer, right-click on the Controllers folder, choose Add, and then1.
Class....
In the left-hand panel, find and select ASP.NET Core and then API Controller2.
Class in the middle panel. Enter QuestionsController.cs for the name of the
file and click Add:

https://www.getpostman.com/downloads/
https://www.getpostman.com/downloads/
https://www.getpostman.com/downloads/
https://www.getpostman.com/downloads/
https://www.getpostman.com/downloads/
https://www.getpostman.com/downloads/
https://www.getpostman.com/downloads/
https://www.getpostman.com/downloads/
https://www.getpostman.com/downloads/
https://www.getpostman.com/downloads/
https://www.getpostman.com/downloads/
https://github.com/carlrip/ASP.NET-Core-and-React-Book
https://github.com/carlrip/ASP.NET-Core-and-React-Book
https://github.com/carlrip/ASP.NET-Core-and-React-Book
https://github.com/carlrip/ASP.NET-Core-and-React-Book
https://github.com/carlrip/ASP.NET-Core-and-React-Book
https://github.com/carlrip/ASP.NET-Core-and-React-Book
https://github.com/carlrip/ASP.NET-Core-and-React-Book
https://github.com/carlrip/ASP.NET-Core-and-React-Book
https://github.com/carlrip/ASP.NET-Core-and-React-Book
https://github.com/carlrip/ASP.NET-Core-and-React-Book
https://github.com/carlrip/ASP.NET-Core-and-React-Book
https://github.com/carlrip/ASP.NET-Core-and-React-Book
https://github.com/carlrip/ASP.NET-Core-and-React-Book
https://github.com/carlrip/ASP.NET-Core-and-React-Book
https://github.com/carlrip/ASP.NET-Core-and-React-Book
https://github.com/carlrip/ASP.NET-Core-and-React-Book
https://github.com/carlrip/ASP.NET-Core-and-React-Book
https://github.com/carlrip/ASP.NET-Core-and-React-Book
https://github.com/carlrip/ASP.NET-Core-and-React-Book
https://github.com/carlrip/ASP.NET-Core-and-React-Book
https://github.com/carlrip/ASP.NET-Core-and-React-Book
https://github.com/carlrip/ASP.NET-Core-and-React-Book
https://github.com/carlrip/ASP.NET-Core-and-React-Book
https://github.com/carlrip/ASP.NET-Core-and-React-Book
https://github.com/carlrip/ASP.NET-Core-and-React-Book
https://github.com/carlrip/ASP.NET-Core-and-React-Book
https://github.com/carlrip/ASP.NET-Core-and-React-Book
https://github.com/carlrip/ASP.NET-Core-and-React-Book
https://github.com/carlrip/ASP.NET-Core-and-React-Book
https://github.com/carlrip/ASP.NET-Core-and-React-Book
https://github.com/carlrip/ASP.NET-Core-and-React-Book
https://github.com/carlrip/ASP.NET-Core-and-React-Book
https://github.com/carlrip/ASP.NET-Core-and-React-Book
https://github.com/carlrip/ASP.NET-Core-and-React-Book
https://github.com/carlrip/ASP.NET-Core-and-React-Book
https://github.com/carlrip/ASP.NET-Core-and-React-Book
https://github.com/carlrip/ASP.NET-Core-and-React-Book
https://github.com/carlrip/ASP.NET-Core-and-React-Book
https://github.com/carlrip/ASP.NET-Core-and-React-Book
https://github.com/carlrip/ASP.NET-Core-and-React-Book
http://bit.ly/2PUriJg
http://bit.ly/2PUriJg
http://bit.ly/2PUriJg
http://bit.ly/2PUriJg
http://bit.ly/2PUriJg
http://bit.ly/2PUriJg
http://bit.ly/2PUriJg
http://bit.ly/2PUriJg
http://bit.ly/2PUriJg

Creating REST API Endpoints Chapter 8

[264]

If the generated class doesn't inherit from ControllerBase, let's add this and3.
remove the example action methods:

public class QuestionsController : ControllerBase
{
}

ControllerBase will give us access to more API-specific methods in our
controller.

If the generated class isn't decorated with the Route4.
and ApiController attributes, let's add them:

[Route("api/[controller]")]
[ApiController]

Creating REST API Endpoints Chapter 8

[265]

public class QuestionsController : ControllerBase
{
}

The Route attribute defines the path that our controller will handle. In our case,
the path will be api/questions because [controller] is substituted with the
name of the controller minus the word controller.

The ApiController attribute includes behavior such as automatic model
validation, which we'll take advantage of later in this chapter.

Injecting the data repository into the API
controller
We want to interact with an instance of the data repository we created in the previous
chapter into our API controller. Let's carry out the following steps to do this:

We'll start by adding using statements to the QuestionsController.cs file so1.
that the data repository and its models can be referenced:

using QandA.Data;
using QandA.Data.Models;

Create a private class-level variable to hold a reference to our repository:2.

[Route("api/[controller]")]
[ApiController]
public class QuestionsController : ControllerBase
{
 private readonly IDataRepository _dataRepository;
}

We've used the readonly keyword to make sure the variable's reference doesn't
change outside the constructor.

Let's create the constructor as follows:3.

private readonly IDataRepository _dataRepository;

public QuestionsController()
{
 // TODO - set reference to _dataRepository
}

Creating REST API Endpoints Chapter 8

[266]

We need to set up the reference to _dataRepository in the constructor. We
could try the following:

public QuestionsController()
{
 _dataRepository = new DataRepository();
}

However, the DataRepository constructor requires the connection string to be
passed in. Recall that we used something called dependency injection in the
previous chapter to inject the configuration object into the data repository
constructor to give us access to the connection string. Maybe we could
use dependency injection to inject the data repository into our API controller?
Yes, this is exactly what we are going to do.

Dependency injection is the process of injecting an instance of a class into
another object. The goal of dependency injection is to decouple a class
from its dependencies so that the dependencies can be changed without
changing the class. ASP.NET Core has its own dependency injection
facility that allows class dependencies to be defined when the app starts
up. These dependencies are then available to be injected into other class
constructors.

Change the constructor to the following: 4.

public QuestionsController(IDataRepository dataRepository)
{
 _dataRepository = dataRepository;
}

So, our constructor now expects the data repository to be passed into the
constructor as a parameter. We then simply set our private class-level variable to
the data repository passed in.

Unlike the configuration object that was injected into the data repository, the
data repository isn't automatically available for dependency injection. ASP.NET
Core already sets up the configuration object for dependency injection for us
because it is responsible for this class. However, the DataRepository is our
class, so we must register this for dependency injection.

Let's go to startup.cs and add a using statement so that we can reference our5.
data repository:

using QandA.Data;

Creating REST API Endpoints Chapter 8

[267]

Enter the following at the bottom of the ConfigureServices class to make the6.
data repository available for dependency injection:

public void ConfigureServices(IServiceCollection services)
{
 ...
 services.AddScoped<IDataRepository, DataRepository>();
}

This tells ASP.NET Core that whenever IDataRepository is referenced in a
constructor, substitute an instance of the DataRepository class.

The AddScoped method means that only one instance of the
DataRepository class is created in a given HTTP request. This means the
lifetime of the class that is created lasts for the whole HTTP request.

So, if ASP.NET Core encounters a second constructor that
references IDataRepository in the same HTTP request, it will use the instance
of the DataRepository class it created previously.

As well as AddScoped, there are other methods for registering
dependencies that result in different lifetimes for the generated
class. AddTransient will generate a new instance of the class each time it
is requested. AddSingleton will generate only one class instance for the
lifetime of the whole app.

So, we now have access to our data repository in our API controller with the help of
dependency injection. Next, we are going to implement methods that are going to handle
specific HTTP requests.

Creating controller action methods
Action methods are where we can write code to handle requests to a resource. In this
section, we are going to implement action methods that will handle requests to the
questions resource. We will cover the GET, POST, PUT, and DELETE HTTP methods.

Creating REST API Endpoints Chapter 8

[268]

Creating an action method for getting questions
Let's implement our first action method, which is going to return an array of all the
questions:

Let's create a method called GetQuestions in our API controller class:1.

[HttpGet]
public IEnumerable<QuestionGetManyResponse> GetQuestions()
{
 // TODO - get questions from data repository
 // TODO - return questions in the response
}

We decorate the method with the HttpGet attribute to tell ASP.NET Core that
this will handle HTTP GET requests to this resource.

We use the specific IEnumerable<QuestionGetManyResponse> type as the
return type.

Let's get the questions from the repository using the _dataRepository class2.
variable:

[HttpGet]
public IEnumerable<QuestionGetManyResponse> GetQuestions()
{
 var questions = _dataRepository.GetQuestions();
 // TODO - return questions in the response
}

Let's return the questions in the response:3.

[HttpGet]
public IEnumerable<QuestionGetManyResponse> GetQuestions()
{
 var questions = _dataRepository.GetQuestions();
 return questions;
}

ASP.NET Core will automatically convert the questions object to JSON format
and put this in the response body. It will also automatically return 200 as the
HTTP status code. Nice!

Creating REST API Endpoints Chapter 8

[269]

Let's try this by first pressing F5 in Visual Studio to start our app.4.
In the browser that opens, change the path to end with api/questions rather5.
than weatherforecast:

We'll see the questions from our database output in JSON format. Great, that's our
first action method implemented!

We are going to change the default path that invokes when the app is run to the6.
api/questions path. Open up the launchSettings.json file in the
Properties folder in Solution Explorer and change the paths referenced to
api/questions:

...
"profiles": {
 "IIS Express": {
 "commandName": "IISExpress",
 "launchBrowser": true,
 "launchUrl": "api/questions",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 },
 "QandA": {
 "commandName": "Project",
 "launchBrowser": true,
 "launchUrl": "api/questions",
 "applicationUrl":
"https://localhost:5001;http://localhost:5000",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 }
}
...

If the Properties folder isn't visible in Solution Explorer, then switch Show All7.
Files on in the toolbar:

Creating REST API Endpoints Chapter 8

[270]

Press Shift + F5 to stop the app, and then F5 to start it again. Our api/questions8.
path will now be invoked by default in the browser.
Press Shift + F5 again to stop the app. Now, we are ready for implementing more9.
code in our next task.

That completes the action method that will handle GET requests to api/questions. We
will continue implementing more action methods in the following sub-sections.

Extending the GetQuestions action method for
searching
We don't always want all of the questions though. Recall that our frontend had a search
feature that returned questions that matched the search criteria. Let's extend our
GetQuestions method to handle a search request:

Add a search parameter to the GetQuestions method:1.

[HttpGet]
public IEnumerable<QuestionGetManyResponse>
 GetQuestions(string search)
{
 var questions = _dataRepository.GetQuestions();
 return questions;
}

Put a breakpoint on the statement that gets the questions from the repository and2.
press F5 to run the app:

Creating REST API Endpoints Chapter 8

[271]

We'll see that the search parameter is null. Press F5 to let the app continue.

With the breakpoint still in place, change the URL in the browser to end3.
with questions?search=type:

This time the search parameter is set to the value of the search query parameter
we put in the browser URL. This process is called model binding.

Model binding is a process in ASP.NET Core that maps data from HTTP
requests to action method parameters. Data from query parameters is
automatically mapped to action method parameters that have the same
name. We'll see later in this section that model binding can also map data
from the HTTP request body. So, a [FromQuery] attribute could be
placed in front of the action method parameter to instruct ASP.NET Core
to map only from the query parameter.

Let's stop the app running by pressing Shift + F5.4.
Let's branch our code on whether the search parameter contains a value and get5.
and return all the questions if it doesn't:

[HttpGet]
public IEnumerable<QuestionGetManyResponse>
 GetQuestions(string search)
{
 if (string.IsNullOrEmpty(search))
 {
 return _dataRepository.GetQuestions();
 }
 else
 {
 // TODO - call data repository question search
 }
}

If there is no search value, we get and return all the questions as we did before,
but this time in a single statement.

Creating REST API Endpoints Chapter 8

[272]

Let's add a call to the data repository question search method if we have a6.
search value:

[HttpGet]
public IEnumerable<QuestionGetManyResponse>
 GetQuestions(string search)
{
 if (string.IsNullOrEmpty(search))
 {
 return _dataRepository.GetQuestions();
 }
 else
 {
 return _dataRepository.GetQuestionsBySearch(search);
 }
}

Let's run the app and give this a try. All the questions will be returned in the7.
browser when it opens up. Let's add a search query parameter with a value of
type:

We'll see that the TypeScript question is returned as we would expect.

Stop our app running by pressing Shift + F5 so that we can write more code for8.
our next task.

We have started to take advantage of model binding in ASP.NET Core. We'll continue to
use it throughout this chapter.

Creating an action method for getting
unanswered questions
Recall that the home screen of our app, as implemented in Chapter 3, Getting Started with
React and TypeScript, shows the unanswered questions.

Creating REST API Endpoints Chapter 8

[273]

So, let's implement an action method that provides this functionality:

Let's fully implement the method:1.

[HttpGet("unanswered")]
public IEnumerable<QuestionGetManyResponse>
 GetUnansweredQuestions()
{
 return _dataRepository.GetUnansweredQuestions();
}

The implementation simply calls into the data repository
GetUnansweredQuestions method and returns the results.

Notice that the HttpGet attribute contains the string "unanswered". This is an
additional path to concatenate to the controller's root path. So, this action method
will handle GET requests to the api/questions/unanswered path.

Let's give this a try by running the app in a browser by entering the2.
api/questions/unanswered path:

We get the unanswered question about state management as expected.

Stop our app running by pressing Shift + F5 so that we can write another action3.
method.

That completes the implementation of the action method that handles GET requests to
api/questions/unanswered.

Creating an action method for getting a single
question
Let's move on to implementing the action method for getting a single question:

Add the following skeleton method:1.

[HttpGet("{questionId}")]
public ActionResult<QuestionGetSingleResponse>

Creating REST API Endpoints Chapter 8

[274]

 GetQuestion(int questionId)
{
 // TODO - call the data repository to get the question
 // TODO - return HTTP status code 404 if the question isn't
 found
 // TODO - return question in response with status code 200
}

Note the HttpGet attribute parameter.

The curly brackets tell ASP.NET Core to put the path after the controller
root path in a variable that can be referenced as a method parameter.

In this method, the questionId parameter will be set to whatever comes after the
controller root path. So, for the api/questions/3 path, questionId would be
set to 3.

Notice that the return type is ActionResult<QuestionGetSingleResponse>
rather than just QuestionGetSingleResponse. This is because our action
method won't return QuestionGetSingleResponse in all the return
paths—there will be a path that will return NotFoundResult when the question
can't be found. ActionResult gives us the flexibility to return these different
types.

Let's call into the repository to get the question:2.

[HttpGet("{questionId}")]
public ActionResult<QuestionGetSingleResponse>
 GetQuestion(int questionId)
{
 var question = _dataRepository.GetQuestion(questionId);
 // TODO - return HTTP status code 404 if the question isn't
 found
 // TODO - return question in response with status code 200
}

Creating REST API Endpoints Chapter 8

[275]

Next, we can check whether the question has been found and return HTTP status3.
code 404 if it hasn't been found:

[HttpGet("{questionId}")]
public ActionResult<QuestionGetSingleResponse> GetQuestion(int
questionId)
{
 var question = _dataRepository.GetQuestion(questionId);
 if (question == null)
 {
 return NotFound();
 }
 // TODO - return question in response with status code 200
}

If the question isn't found, the result from the repository call will be null. So, we
check for null and return a call to the NotFound method in ControllerBase,
which returns HTTP status code 404.

The last implementation step is to return the question that has been found:4.

[HttpGet("{questionId}")]
public ActionResult<QuestionGetSingleResponse> GetQuestion(int
questionId)
{
 var question = _dataRepository.GetQuestion(questionId);
 if (question == null)
 {
 return NotFound();
 }
 return question;
}

Let's give this a try by running the app and requesting question 1:5.

The question is returned as expected.

Creating REST API Endpoints Chapter 8

[276]

Let's try requesting a question that doesn't exist:6.

We can get confirmation that a 404 status code is returned by opening the Dev
Tools by pressing F12 and looking at the Network panel to see when the request
was made.

Stop our app running so that we are ready to implement another action method.7.

We've implemented a range of action methods that handle GET requests. It's time to
implement action methods for the other HTTP methods next.

Creating an action method for posting a question
Let's implement an action method for posting a question:

We'll start with the skeleton method:1.

[HttpPost]
public ActionResult<QuestionGetSingleResponse>
 PostQuestion(QuestionPostRequest questionPostRequest)
{
 // TODO - call the data repository to save the question
 // TODO - return HTTP status code 201
}

Creating REST API Endpoints Chapter 8

[277]

Note that we use an HttpPost attribute to tell ASP.NET Core that this method
handles HTTP POST requests.

Note that the method parameter type is a class. Earlier, in the Extending the
GetQuestions action method for searching section, we introduced ourselves to model
binding and explained how it maps data from an HTTP request to method
parameters. Well, model binding can map data from the HTTP body as well as
the query string. Model binding can also map to properties in parameters. This
means that the data in the HTTP request body will be mapped to properties in the
instance of the QuestionPostRequest class.

Let's call into the data repository to post the question:2.

[HttpPost]
public ActionResult<QuestionGetSingleResponse>
 PostQuestion(QuestionPostRequest questionPostRequest)
{
 var savedQuestion =
 _dataRepository.PostQuestion(questionPostRequest);
 // TODO - return HTTP status code 201
}

The last step in the implementation is to return status code 201 to signify that the3.
resource has been created:

[HttpPost]
public ActionResult<QuestionGetSingleResponse>
 PostQuestion(QuestionPostRequest questionPostRequest)
{
 var savedQuestion =
 _dataRepository.PostQuestion(questionPostRequest);
 return CreatedAtAction(nameof(GetQuestion),
 new { questionId = savedQuestion.QuestionId },
 savedQuestion);
}

We return a call to the CreatedAtAction from ControllerBase, which will
return status code 201 with the question in the response. In addition, it also
includes a Location HTTP header that contains the path to get the question.

Let's try this out by running the app. This time we'll use Postman, which is a4.
great tool for testing REST APIs. Open Postman, set the HTTP method to POST,
enter the path to the questions resource, and add an HTTP header called
Content-Type with a value of application/json:

Creating REST API Endpoints Chapter 8

[278]

Enter a request body and click the Send button to send the request:5.

The expected 201 HTTP status code is returned with the saved question in the
response.

Note how the question in the response has the generated questionId, which will
be useful for the consumer when interacting with the question.

Creating REST API Endpoints Chapter 8

[279]

If we look at the response headers, we can see that ASP.NET Core has also6.
included a Location HTTP header that contains the path to get the question:

 That's a nice touch.

Stop our app running so that we are ready to implement another action method.7.

That completes the implementation of the action method that will handle POST requests to
api/questions.

Creating an action method for updating a
question
Let's move on to updating a question:

We'll start with the skeleton action method:1.

[HttpPut("{questionId}")]
public ActionResult<QuestionGetSingleResponse>
 PutQuestion(int questionId,
 QuestionPutRequest questionPutRequest)
{
 // TODO - get the question from the data repository
 // TODO - return HTTP status code 404 if the question isn't
found
 // TODO - update the question model
 // TODO - call the data repository with the updated question
model to update the question in the database
 // TODO - return the saved question
}

Creating REST API Endpoints Chapter 8

[280]

We use the HttpPut attribute to tell ASP.NET Core that this method handles
HTTP PUT requests. We are also putting the route parameter for the question ID
in the questionId method parameter.

ASP.NET Core model binding will populate the QuestionPutRequest class
instance from the HTTP request body.

Let's get the question from the data repository and return HTTP status code 4042.
if the question isn't found:

[HttpPut("{questionId}")]
public ActionResult<QuestionGetSingleResponse>
 PutQuestion(int questionId,
 QuestionPutRequest questionPutRequest)
{
 var question =
 _dataRepository.GetQuestion(questionId);
 if (question == null)
 {
 return NotFound();
 }
 // TODO - update the question model
 // TODO - call the data repository with the updated question
 //model to update the question in the database
 // TODO - return the saved question
}

Now let's update the question model:3.

[HttpPut("{questionId}")]
public ActionResult<QuestionGetSingleResponse>
 PutQuestion(int questionId,
 QuestionPutRequest questionPutRequest)
{
 var question =
 _dataRepository.GetQuestion(questionId);
 if (question == null)
 {
 return NotFound();
 }
 questionPutRequest.Title =
 string.IsNullOrEmpty(questionPutRequest.Title) ?
 question.Title :
 questionPutRequest.Title;
 questionPutRequest.Content =
 string.IsNullOrEmpty(questionPutRequest.Content) ?
 question.Content :

Creating REST API Endpoints Chapter 8

[281]

 questionPutRequest.Content;
 // TODO - call the data repository with the updated question
 //model to update the question in the database
 // TODO - return the saved question
}

We use ternary expressions to update the request model with data from the
existing question if it hasn't been supplied in the request.

Not requiring the consumer to submit the full record, rather just the
information that needs to be updated, is a nice touch in making our API
easy to consume.

The final steps in the implementation are to call the data repository to update the4.
question and then return the saved question in the response:

[HttpPut("{questionId}")]
public ActionResult<QuestionGetSingleResponse>
 PutQuestion(int questionId,
 QuestionPutRequest questionPutRequest)
{
 var question =
 _dataRepository.GetQuestion(questionId);
 if (question == null)
 {
 return NotFound();
 }
 questionPutRequest.Title =
 string.IsNullOrEmpty(questionPutRequest.Title) ?
 question.Title :
 questionPutRequest.Title;
 questionPutRequest.Content =
 string.IsNullOrEmpty(questionPutRequest.Content) ?
 question.Content :
 questionPutRequest.Content;
 var savedQuestion =
 _dataRepository.PutQuestion(questionId,
 questionPutRequest);
 return savedQuestion;
}

Let's try this out by running the app and using Postman. Set the HTTP method5.
to PUT and enter the path to the questions resource. Add a Content-Type HTTP
header and enter an updated content field in the request body with the relevant
questionId. Click the Send button to send the request:

Creating REST API Endpoints Chapter 8

[282]

The question is updated just as we expect.

Stop our app running so that we are ready to implement another action method.6.

That completes the implementation of the action method that will handle PUT requests to
api/questions.

Creating an action method for deleting a question
Let's implement deleting a question. This follows a similar pattern to the previous methods:

We'll add the action method in a single step as it's similar to what we've done1.
before:

[HttpDelete("{questionId}")]
public ActionResult DeleteQuestion(int questionId)
{
 var question = _dataRepository.GetQuestion(questionId);
 if (question == null)
 {

Creating REST API Endpoints Chapter 8

[283]

 return NotFound();
 }
 _dataRepository.DeleteQuestion(questionId);
 return NoContent();
}

We use the HttpDelete attribute to tell ASP.NET Core that this method handles
HTTP DELETE requests. The method expects the question ID to be included at the
end of the path.

The method checks the question that exists before deleting it and returns an HTTP
404 status code if it doesn't exist.

The method returns HTTP status code 204 if the deletion is successful.

Let's try this out by running the app and using Postman. Set the HTTP method2.
to DELETE and enter the path to a question resource. Add the Content-Type
HTTP header set to application/json and click the Send button to send the
request:

Creating REST API Endpoints Chapter 8

[284]

A response with HTTP status code 204 is returned as expected.

Stop our app running so that we are ready to implement our final action method.3.

That completes the implementation of the action method that will handle DELETE requests
to api/questions.

Creating an action method for posting an answer
The final action method we are going to implement is a method for posting an answer to a
question:

This method will handle an HTTP POST to the api/question/answer path:1.

[HttpPost("answer")]
public ActionResult<AnswerGetResponse>
 PostAnswer(AnswerPostRequest answerPostRequest)
{
 var questionExists =
 _dataRepository.QuestionExists(answerPostRequest.QuestionId);
 if (!questionExists)
 {
 return NotFound();
 }
 var savedAnswer = _dataRepository.PostAnswer(answerPostRequest);
 return savedAnswer;
}

The method checks whether the question exists and returns a 404 HTTP status
code if it doesn't. The answer is then passed to the data repository to insert into
the database. The saved answer is returned from the data repository, which
is returned in the response.

Creating REST API Endpoints Chapter 8

[285]

Let's try this out by running the app and using Postman. Set the HTTP method2.
to POST and enter the api/questions/answer path. Add the Content-
Type HTTP header set to application/json and a request body containing the
answer and then click the Send button to send the request:

The answer will be saved and returned in the response as expected.

Let's try this again, but don't include the answer content:3.

Creating REST API Endpoints Chapter 8

[286]

An error occurs in the data repository when the request is sent:

This is because the stored procedures expect the content parameter to be passed
into it and protest if it is not.

Let's stop the app so that we're ready to resolve this issue in the next section.4.

An answer without any content is an invalid answer. Ideally, we should stop invalid
requests being passed to the data repository and return HTTP status code 400 to the client
with details about what is wrong with the request. How do we do this in ASP.NET Core?
Let's find out in the next section.

Adding model validation
In this section, we are going to add some validation checks on the request models.
ASP.NET Core will then automatically send HTTP status code 400 (bad request) with
details of the problem.

Validation is critical to preventing bad data from getting in the database or unexpected
database errors happening, as we experienced in the previous section. Giving the client
detailed information for bad requests also ensures the development experience is good
because this will help to correct mistakes.

Creating REST API Endpoints Chapter 8

[287]

Adding validation to posting a question
We can add validation to a model by adding validation attributes to properties in the model
that specify rules that should be adhered to. Let's add validation to the request for posting a
question:

Open QuestionPostRequest.cs and add the following using statement:1.

using System.ComponentModel.DataAnnotations;

This namespace gives us access to the validation attributes.

Add a Required attribute just above the Title property:2.

[Required]
public string Title { get; set; }

The Required attribute will check that the Title property is not an empty string
or null.

Before we try this out, put a breakpoint on the first statement within the3.
PostQuestion action method in QuestionsController.cs.
Let's run the app and try to post a question without a title in Postman:4.

Creating REST API Endpoints Chapter 8

[288]

We get a response with HTTP status code 400 as expected with great information
about the problem in the response.

Notice also that the breakpoint wasn't reached. This is because ASP.NET Core
checked the model, determined that it was invalid, and returned a bad request
response before the action method was invoked.

Let's stop the app from running and implement another validation check on the5.
title:

[Required]
[StringLength(100)]
public string Title { get; set; }

This check will ensure the title doesn't have more than 100 characters. A title
containing more than 100 characters would cause a database error, so this is a
valuable check.

A question must also have some content, so let's add a Required attribute to6.
this:

[Required]
public string Content { get; set; }

We can add a custom message to a validation attribute. Let's add a custom7.
message to the validation on the Content property:

[Required(ErrorMessage =
 "Please include some content for the question")]
public string Content { get; set; }

Creating REST API Endpoints Chapter 8

[289]

Let's run the app and try posting a new question without any content:8.

We get our custom message in the response as expected.

Let's stop the running app.9.

The UserId, UserName, and Created properties should really be required properties as
well. However, we aren't going to add validation attributes on them because we are going
to work on them later in this chapter.

Adding validation to updating a question
Let's add validation to the request for updating a question:

Open QuestionPutRequest.cs and add the following using statement:1.

using System.ComponentModel.DataAnnotations;

Creating REST API Endpoints Chapter 8

[290]

Add the following validation attributes:2.

public class QuestionPutRequest
{
 [StringLength(100)]
 public string Title { get; set; }
 public string Content { get; set; }
}

We are making sure that a new title doesn't exceed 100 characters.

Let's run the app and give this a try by updating a question to have a very long3.
title:

A validation error is returned as expected.

Stop the app running so that we're ready to add the next piece of validation.4.

That completes the implementation of model validation for PUT requests to
api/questions.

Creating REST API Endpoints Chapter 8

[291]

Adding validation to posting an answer
Let's add validation to the request for posting an answer:

Open AnswerPostRequest.cs and add the following using statement:1.

using System.ComponentModel.DataAnnotations;

Add the following validation attributes and make QuestionId nullable:2.

public class AnswerPostRequest
{
 [Required]
 public int? QuestionId { get; set; }
 [Required]
 public string Content { get; set; }
 ...
}

So, we require the QuestionId to be supplied along with the answer content.

Notice the ? after the int type on the QuestionId property.

The ? allows the property to have a null value as well as the declared
type. T? is shortcut syntax for Nullable<T>.

So, why does QuestionId need to be able to hold a null value? This is because
an int type defaults to 0 and so if there is no QuestionId in the request
body, AnswerPostRequest will come out of the model binding process with
QuestionId set to 0, which will pass the required validation check. This means
the Required attribute won't catch a request body with no QuestionId. If the
QuestionId type is nullable, then it will come out of the model binding
processing with a null value if it's not in the request body and fail the required
validation check, which is what we want.

We need to change the PostAnswer method in QuestionsController.cs to3.
now reference the Value property in QuestionId:

[HttpPost("answer")]
public ActionResult<AnswerGetResponse>
 PostAnswer(AnswerPostRequest answerPostRequest)
{
 var questionExists =

Creating REST API Endpoints Chapter 8

[292]

_dataRepository.QuestionExists(answerPostRequest.QuestionId.Value);
 if (!questionExists)
 {
 return NotFound();
 }
 var savedAnswer =
 _dataRepository.PostAnswer(answerPostRequest);
 return savedAnswer;

}

So, model validation is super easy to implement in our request models. The following are
some more validation attributes that are available in ASP.NET Core:

[Range]: Checks that the property value falls within the given range
[RegularExpression]: Checks that the data matches the specified regular
expression
[Compare]: Checks that two properties in a model match
[CreditCard]: Checks that the property has a credit card format
[EmailAddress]: Checks that the property has an email format
[Phone]: Checks that the property has a telephone format
[Url]: Checks that the property has a URL format

We haven't added any validation to the UserId, UserName, or Created properties in our
request models. In the next section, we are going to find out why and properly handle these
properties.

Removing unnecessary request fields
At the moment, we are allowing the consumer to submit all the properties that our data
repository requires, including userId, userName, and created. However, these properties
can be set on the server. In fact, the client doesn't need to know or care about the userId.

Exposing the client to more properties than it needs impacts the usability of the API and
can also cause security issues. For example, a client can pretend to be any user submitting
questions and answers with our current API.

In this section, we are going to tighten up the posting of new questions and answers.

Creating REST API Endpoints Chapter 8

[293]

Removing unnecessary request fields
from posting a question
Our QuestionPostRequest model is used both in the data repository to pass the data to
the stored procedure as well as in the API controller to capture the information in the
request body. This single model can't properly cater to both these cases, so we are going to
create and use separate models:

In the models folder, create a new model called QuestionPostFullRequest as1.
follows:

public class QuestionPostFullRequest
{
 public string Title { get; set; }
 public string Content { get; set; }
 public string UserId { get; set; }
 public string UserName { get; set; }
 public DateTime Created { get; set; }
}

This contains all the properties that are needed by the data repository to save a
question.

We can then remove the UserId, UserName, and Created properties from2.
the QuestionPostRequest class:

public class QuestionPostRequest
{
 [Required]
 [StringLength(100)]
 public string Title { get; set; }

 [Required(ErrorMessage =
 "Please include some content for the question")]
 public string Content { get; set; }
}

In the data repository interface, change the PostQuestion method to use3.
the QuestionPostFullRequest model:

QuestionGetSingleResponse
 PostQuestion(QuestionPostFullRequest question);

Creating REST API Endpoints Chapter 8

[294]

In the data repository, change the PostQuestion method to use4.
the QuestionPostFullRequest model:

public QuestionGetSingleResponse
 PostQuestion(QuestionPostFullRequest question)
{
 ...
}

We now need to map the QuestionPostRequest received in the API controller5.
to the QuestionFullPostRequest that our data repository expects:

[HttpPost]
public ActionResult<QuestionGetSingleResponse>
 PostQuestion(QuestionPostRequest questionPostRequest)
{
 var savedQuestion =
 _dataRepository.PostQuestion(new QuestionPostFullRequest
 {
 Title = questionPostRequest.Title,
 Content = questionPostRequest.Content,
 UserId = "1",
 UserName = "bob.test@test.com",
 Created = DateTime.UtcNow
 });
 return CreatedAtAction(nameof(GetQuestion),
 new { questionId = savedQuestion.QuestionId },
 savedQuestion);
}

We've hardcoded the UserId and UserName for now. In Chapter 11, Securing the
Backend, we'll get them from our identity provider.

We've also set the Created property to the current date and time.

Creating REST API Endpoints Chapter 8

[295]

Let's run our app and give it a try:6.

The user and created date are set and returned in the response as expected.

Let's stop the running app.7.

That completes the separation of the models for the HTTP request and data repository for
adding questions. This means we are only requesting the information that is necessary for
POST requests to api/questions.

Removing unnecessary request fields from
posting an answer
Let's tighten up posting an answer:

In the models folder, create a new model called AnswerPostFullRequest as1.
follows:

public class AnswerPostFullRequest
{

Creating REST API Endpoints Chapter 8

[296]

 public int QuestionId { get; set; }
 public string Content { get; set; }
 public string UserId { get; set; }
 public string UserName { get; set; }
 public DateTime Created { get; set; }
}

This contains all the properties that are needed by the data repository to save an
answer.

We can then remove the UserId and Created properties from2.
the AnswerPostRequest class:

public class AnswerPostRequest
{
 [Required]
 public int? QuestionId { get; set; }
 [Required]
 public string Content { get; set; }
}

In the data repository interface, change the PostAnswer method to use3.
the AnswerPostFullRequest model:

AnswerGetResponse PostAnswer(AnswerPostFullRequest answer);

In the data repository, change the PostAnswer method to use4.
the AnswerPostFullRequest model:

public AnswerGetResponse
 PostAnswer(AnswerPostFullRequest answer)
{
 ...
}

We now need to map the AnswerPostRequest received in the API controller to5.
the AnswerPostFullRequest that our data repository expects:

[HttpPost("answer")]
public ActionResult<AnswerGetResponse>
 PostAnswer(AnswerPostRequest answerPostRequest)
{
 var questionExists =
_dataRepository.QuestionExists(answerPostRequest.QuestionId.Value);
 if (!questionExists)
 {
 return NotFound();

Creating REST API Endpoints Chapter 8

[297]

 }
 var savedAnswer =
 _dataRepository.PostAnswer(new AnswerPostFullRequest
 {
 QuestionId = answerPostRequest.QuestionId.Value,
 Content = answerPostRequest.Content,
 UserId = "1",
 UserName = "bob.test@test.com",
 Created = DateTime.UtcNow
 }
);
 return savedAnswer;
}

Let's run our app and give it a try:6.

The user and created date are set and returned in the response as expected.

So, that's our REST API tightened up a bit.

In this section, we manually mapped the request model to the model used in the data
repository. For large models, it may be beneficial to use a mapping library such as
AutoMapper to help us copy data from one object to another. More information
on AutoMapper can be found at https:/ ​/ ​automapper. ​org/​.

https://automapper.org/
https://automapper.org/
https://automapper.org/
https://automapper.org/
https://automapper.org/
https://automapper.org/
https://automapper.org/
https://automapper.org/

Creating REST API Endpoints Chapter 8

[298]

Summary
In this chapter, we learned how to implement an API controller to create REST API
endpoints. We discovered that inheriting from ControllerBase and decorating the
controller class with the ApiController attribute gives us nice features such as automatic
model validation handling and a nice set of methods for returning HTTP status codes.

We used AddScoped to register the data repository dependency so that ASP.NET Core uses
a single instance of it in a request/response cycle. We were then able to inject a reference to
the data repository in the API controller class in its constructor.

We learned about the powerful model binding process in ASP.NET and how it maps data
from an HTTP request into action method parameters. We discovered that in some cases it
is desirable to use separate models for the HTTP request and the data repository because
some of the data can be set on the server, and requiring less data in the request helps
usability and, sometimes, security.

We used ASP.NET Core validation attributes to validate models. This is a super simple way
of ensuring that the database doesn't get infected with bad data.

In the next chapter, we are going to create a real-time API with SignalR.

Questions
Answer the following questions to test the knowledge we have gained in this chapter:

We have a class that we want to register for dependency injection and want a1.
new instance of it to be created when injected into a class. What method
in IServiceCollection should we use to register the dependency?
In a controller action method, if a resource can't be found, what method can we2.
use in ControllerBase to return status code 404?
In a controller action method to post a new building, we implement some3.
validation that requires a database call to check whether the building already
exists. If the building does already exist, we want to return HTTP status code
400:

[HttpPost]
public ActionResult<BuildingResponse>
PostBuilding(BuildingPostRequest buildingPostRequest)
{
 var buildingExists =
 _dataRepository.BuildingExists(buildingPostRequest.Code);

Creating REST API Endpoints Chapter 8

[299]

 if (buildingExists)
 {
 // TODO - return status code 400
 }
 ...
}

What method from ControllerBase can we use to return status code 400?

The model for the preceding action method is as follows:4.

public class BuildingPostRequest
{
 public string Code { get; set; }
 public string Name { get; set; }
 public string Description { get; set; }
}

We send an HTTP POST request to the resource with the following body:

{
 "code": "BTOW",
 "name": "Blackpool Tower",
 "buildingDescription": "Blackpool Tower is a tourist attraction
 in Blackpool"
}

The Description property in the model isn't getting populated during the
request. What is the problem?

In the preceding request model, we want to validate that the code and name5.
fields are populated. How can we do this with validation attributes?
What validation attribute could we use to validate that a number property is6.
between 1 and 10?
What Http attribute could we use to tell ASP.NET Core that an action method7.
handles HTTP PATCH requests?

Creating REST API Endpoints Chapter 8

[300]

Further reading
Here are some useful links for learning more about the topics covered in this chapter:

Create web APIs with ASP.NET Core: https:/ ​/​docs. ​microsoft. ​com/ ​en-​us/
aspnet/​core/ ​web- ​api

Dependency injection: https:/ ​/​docs. ​microsoft. ​com/ ​en-​us/ ​aspnet/ ​core/
fundamentals/ ​dependency- ​injection

Model binding: https:/ ​/​docs. ​microsoft. ​com/ ​en- ​us/​aspnet/ ​core/ ​mvc/​models/
model-​binding

Model validation: https:/ ​/ ​docs. ​microsoft. ​com/ ​en-​us/ ​aspnet/ ​core/ ​mvc/
models/​validation

Postman: https:/ ​/ ​learning. ​getpostman. ​com/ ​docs/ ​postman/ ​launching_
postman/ ​installation_ ​and_ ​updates/ ​

https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/web-api
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/model-binding
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/model-binding
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/model-binding
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/model-binding
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/model-binding
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/model-binding
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/model-binding
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/model-binding
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/model-binding
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/model-binding
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/model-binding
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/model-binding
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/model-binding
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/model-binding
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/model-binding
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/model-binding
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/model-binding
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/model-binding
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/model-binding
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/model-binding
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/model-binding
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/model-binding
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/model-binding
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/model-binding
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/validation
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/validation
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/validation
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/validation
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/validation
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/validation
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/validation
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/validation
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/validation
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/validation
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/validation
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/validation
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/validation
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/validation
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/validation
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/validation
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/validation
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/validation
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/validation
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/validation
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/validation
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/validation
https://learning.getpostman.com/docs/postman/launching_postman/installation_and_updates/
https://learning.getpostman.com/docs/postman/launching_postman/installation_and_updates/
https://learning.getpostman.com/docs/postman/launching_postman/installation_and_updates/
https://learning.getpostman.com/docs/postman/launching_postman/installation_and_updates/
https://learning.getpostman.com/docs/postman/launching_postman/installation_and_updates/
https://learning.getpostman.com/docs/postman/launching_postman/installation_and_updates/
https://learning.getpostman.com/docs/postman/launching_postman/installation_and_updates/
https://learning.getpostman.com/docs/postman/launching_postman/installation_and_updates/
https://learning.getpostman.com/docs/postman/launching_postman/installation_and_updates/
https://learning.getpostman.com/docs/postman/launching_postman/installation_and_updates/
https://learning.getpostman.com/docs/postman/launching_postman/installation_and_updates/
https://learning.getpostman.com/docs/postman/launching_postman/installation_and_updates/
https://learning.getpostman.com/docs/postman/launching_postman/installation_and_updates/
https://learning.getpostman.com/docs/postman/launching_postman/installation_and_updates/
https://learning.getpostman.com/docs/postman/launching_postman/installation_and_updates/
https://learning.getpostman.com/docs/postman/launching_postman/installation_and_updates/
https://learning.getpostman.com/docs/postman/launching_postman/installation_and_updates/
https://learning.getpostman.com/docs/postman/launching_postman/installation_and_updates/
https://learning.getpostman.com/docs/postman/launching_postman/installation_and_updates/
https://learning.getpostman.com/docs/postman/launching_postman/installation_and_updates/
https://learning.getpostman.com/docs/postman/launching_postman/installation_and_updates/
https://learning.getpostman.com/docs/postman/launching_postman/installation_and_updates/
https://learning.getpostman.com/docs/postman/launching_postman/installation_and_updates/

9
Creating a Real-Time API with

SignalR
12In this chapter, we are going to continue to develop our Q&A app. Wouldn't it be great if,
when a user was on the question page, any new answers were automatically added to the
page without the user having to manually refresh the page? Well, this is exactly what we
are going to do in this chapter.

We are going to use a technology called SignalR to implement this feature by creating a
real-time API. We'll start this chapter by understanding what SignalR is, how it differs from
a REST API, and the benefit it brings. Then, we'll add a real-time API to our ASP.NET
backend, thereby creating a SignalR hub. Toward the end of this chapter, we'll interact with
the SignalR real-time API from our frontend React app.

In this chapter, we'll cover the following topics:

Understanding the benefits of SignalR
Creating a SignalR hub
Pushing data to SignalR clients from an API controller
Creating the SignalR real-time API endpoint
Interacting with the SignalR real-time API from React

Creating a Real-Time API with SignalR Chapter 9

[302]

Technical requirements
We'll use the following tools in this chapter:

Visual Studio 2019: We'll use this to edit our ASP.NET Core code. This can be
downloaded and installed from https:/ ​/​visualstudio. ​microsoft. ​com/ ​vs/​.
.NET Core 3.0: This can be downloaded and installed from https:/ ​/​dotnet.
microsoft. ​com/ ​download/ ​dotnet- ​core.
Postman. We'll use this to test our SignalR code in this chapter. This can be
downloaded from https:/ ​/​www. ​getpostman. ​com/ ​downloads/ ​.
Q and A: We'll start with the backend Q&A project we finished in the previous
chapter and the frontend Q&A project we finished in Chapter 5, Working with
Forms. This is available on GitHub at https:/ ​/​github. ​com/ ​PacktPublishing/
ASP.​NET- ​Core- ​3-​and- ​React- ​17.

All the code snippets in this chapter can be found online at https:/ ​/​github. ​com/
PacktPublishing/​ASP. ​NET- ​Core- ​3- ​and- ​React- ​17. In order to restore code from a chapter,
the source code repository can be downloaded and the relevant folder opened in the
relevant editor. If the code is frontend code, then npm install can be entered in the
Terminal to restore the dependencies.

Check out the following video to see the code in action:

http:/​/​bit.​ly/​35YrOf2

Understanding the benefits of SignalR
SignalR is a feature in ASP.NET Core that we can use to create a real-time API. A real-time
API is where data is pushed to connected clients when the data arrives at the server.

An example use case of a real-time API is on Twitter, where new tweets automatically
appear in our feed as they are tweeted. Chat apps are another common example where we
can get messages from other users immediately after they send messages.

Real-time APIs are different from REST APIs. With a REST API, the client needs to make a
request to get new data that's available on the server. When there is no updated data, the
response data in this type of request isn't needed by the client because it already has a copy
of that data. So, this is an inefficient and slow approach to updating the client with new
data. SignalR solves this efficiency problem because new data can be pushed from the
server to clients.

https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://www.getpostman.com/downloads/
https://www.getpostman.com/downloads/
https://www.getpostman.com/downloads/
https://www.getpostman.com/downloads/
https://www.getpostman.com/downloads/
https://www.getpostman.com/downloads/
https://www.getpostman.com/downloads/
https://www.getpostman.com/downloads/
https://www.getpostman.com/downloads/
https://www.getpostman.com/downloads/
https://www.getpostman.com/downloads/
https://www.getpostman.com/downloads/
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
http://bit.ly/35YrOf2
http://bit.ly/35YrOf2
http://bit.ly/35YrOf2
http://bit.ly/35YrOf2
http://bit.ly/35YrOf2
http://bit.ly/35YrOf2
http://bit.ly/35YrOf2
http://bit.ly/35YrOf2
http://bit.ly/35YrOf2

Creating a Real-Time API with SignalR Chapter 9

[303]

So, the key feature that SignalR has that a REST API hasn't got is the ability to push data
from the server to the client. It uses web sockets as the transport mechanism, if available in
the browser and web server, and falls back on other mechanisms if not.

The Web sockets technology allows an open two-way interactive
communication session between the user's browser and a server using a
TCP socket. A TCP socket is a lower-level and faster mechanism than
HTTP. This technology is available in the latest versions of all modern
browsers, including IE.

It sounds like web sockets do everything that a REST API can do, as well as being faster.
Why wouldn't we use a real-time API for all communication with the server and not use a
REST API at all? Well, a few reasons are as follows:

There is nothing like an HTTP status code in a web socket message. So, how does
the client know that a form that has been submitted has invalid data? Or maybe
that the user isn't authorized to submit the form? In the web socket world, we'd
need to implement something such as an HTTP status code ourselves.
HTTP has other features such as caching and compression that aren't available as
standard for web sockets.
Web sockets are stateful and there is no standard way to scale them horizontally.
A REST API is stateless and therefore can be easily scaled across multiple web
servers.

So, in our app, we are going to use SignalR to create a real-time API where we need to push
data from the server to the client. We'll start this implementation in the next section.

Creating a SignalR hub
In this section, we are going to implement what is called a SignalR hub in our ASP.NET
core backend. A hub is a class on the server where we can interact with clients. We can
choose to interact with a single client, all connected clients, or just a subset of them.

Let's open our backend project in Visual Studio and carry out the following steps:

In Solution Explorer, create a new folder called Hubs at the root level.1.
In the Hubs folder, create a new class file called QuestionsHub.cs that contains2.
the following content:

using Microsoft.AspNetCore.SignalR;
using System;
using System.Threading.Tasks;

Creating a Real-Time API with SignalR Chapter 9

[304]

namespace QandA.Hubs
{
 public class QuestionsHub: Hub
 {
 }
}

Our class is called QuestionsHub and we inherit from the base Hub class in
SignalR. The base Hub class gives us the features we need to interact with clients.

Let's override a method in the base class that gets invoked when a client3.
connects:

public class QuestionsHub: Hub
{
 public override async Task OnConnectedAsync()
 {
 await base.OnConnectedAsync();
 }
}

So, when a client connects to this hub, this OnConnectedAsync method will be
called, which calls the base implementation of this method in the first statement.

Notice the async keyword in front of the method name and the await keyword
before the statement in the function. This denotes that the method is
asynchronous. We'll cover asynchronous methods later in this book in Chapter
10, Improving Performance and Scalability.

Let's push a message to the client to inform it that a connection has been4.
successfully made:

public override async Task OnConnectedAsync()
{
 await base.OnConnectedAsync();
 await Clients.Caller.SendAsync("Message",
 "Successfully connected");
}

Creating a Real-Time API with SignalR Chapter 9

[305]

We use the Clients object from the base client to interact with the client that has
just been connected using the Caller property. We use the SendAsync method
in the Caller object to push some data to the client. The first parameter in
SendAsync is the handler name in the JavaScript client we need to call, while the
second parameter is the data to pass in as a parameter to that handler. So, we are
invoking a handler called Message in our React client while passing a string
parameter with the "Successfully connected" value.

In reality, we don't need to inform the client that a connection has been
successfully made because SignalR does that for us already. We are purely using
this as an example of pushing data from the server to the client.

There is also an OnDisconnectedAsync method we can override that is invoked5.
when a client disconnects. Let's implement this method by sending a message to
the client:

public class QuestionsHub: Hub
{
 public override async Task OnConnectedAsync()
 {
 ...
 }

 public override async Task
 OnDisconnectedAsync(Exception exception)
 {
 await Clients.Caller.SendAsync("Message",
 "Successfully disconnected");
 await base.OnDisconnectedAsync(exception);
 }
}

So, a handler called Message with a parameter value of "Successfully
disconnected" will be called in our React client when it disconnects from the
SignalR API.

Now, we are going to expose a method that the client can call to subscribe to6.
updates for a particular question:

public class QuestionsHub: Hub
{
 public override async Task OnConnectedAsync()
 {
 ...
 }

Creating a Real-Time API with SignalR Chapter 9

[306]

 public override async Task
 OnDisconnectedAsync(Exception exception)
 {
 ...
 }

 public async Task SubscribeQuestion(int questionId)
 {
 // TODO - add the client to a group of clients interested in
getting updates on the question
 // TODO - send a message to the client to indicate that the
subscription was successful
 }
}

Our method is called SubscribeQuestion and has a parameter that contains the
question ID of the question to subscribe to. We will use this exact name when
invoking this function from our React frontend later in this chapter.

Notice that the method is declared as asynchronous with the async keyword.
This is because the SignalR methods that we are going to invoke next
are asynchronous.

We are going to store all the subscribers to the question in a group. So, let's add7.
the client to a group:

public async Task SubscribeQuestion(int questionId)
{
 await Groups.AddToGroupAsync(Context.ConnectionId,
 $"Question-{questionId}");
 // TODO - send a message to the client to indicate that the
subscription was successful
}

So, SignalR has a groups feature that we use to store all the subscribers to the
question in. These groups can be accessed via a Groups property in the base Hub
class. We use the AddToGroupAsync method in the Groups property to add the
client to the group while passing in the client connection ID, which we can get
from the Context property on the Hub base class. The second parameter that's
passed to the AddToGroupAsync method is the name of the group, which we set
to the word "Question", followed by a hyphen and then the question ID. If the
group doesn't exist, SignalR will automatically create the group, which will be the
case for the first client that subscribes to a question.

Creating a Real-Time API with SignalR Chapter 9

[307]

Let's finish the SubscribeQuestion method's implementation by sending a8.
message to the client to indicate that the subscription was successful:

public async Task SubscribeQuestion(int questionId)
{
 await Groups.AddToGroupAsync(Context.ConnectionId,
 $"Question-{questionId}");
 await Clients.Caller.SendAsync("Message",
 "Successfully subscribed");
}

The last method we are going to implement in the hub is a method to9.
unsubscribe from getting updates about a question:

public class QuestionsHub: Hub
{
 public override async Task OnConnectedAsync()
 {
 ...
 }

 public override async Task
 OnDisconnectedAsync(Exception exception)
 {
 ...
 }

 public async Task SubscribeQuestion(int questionId)
 {
 ...
 }

 public async Task UnsubscribeQuestion(int questionId)
 {
 await Groups.RemoveFromGroupAsync(Context.ConnectionId,
 $"Question-{questionId}");
 await Clients.Caller.SendAsync("Message",
 "Successfully unsubscribed");
 }
}

This implementation is very similar to the SubscribeQuestion method, except
that we call the RemoveFromGroupAsync method on the Groups property in the
base Hub class to remove the client from the group. When all the clients have been
removed from the group, SignalR will automatically remove the group.

Creating a Real-Time API with SignalR Chapter 9

[308]

That completes the implementation of our SignalR hub. Before finishing this section, let's
take some time to explore the different properties that we can use in the Clients property
in the base Hub class. In any method, we can type the property name, that is, Clients,
followed by a dot, to see all the methods that are available:

The following are descriptions of some useful methods:

AllExcept: This allows us to interact with clients, except for a list of clients we
supply by their connection ID.
Client: This allows us to interact with a specific client by passing their
connection ID.
Clients: This allows us to interact with a list of clients by passing a list of their
connection IDs.
Group: This allows us to interact with a group of clients by passing the group
name.
Groups: This allows us to interact with a list of groups by passing a list of group
names.

Don't forget to remove the Clients property we just explored before moving on.

We've made a great start on our real-time API, but we aren't pushing new answers to
subscribed clients yet. We'll implement this in the next section.

Creating a Real-Time API with SignalR Chapter 9

[309]

Pushing data to SignalR clients from an API
controller
Arguably the most valuable piece of our real-time API is pushing new answers to
subscribed clients. In this section, we are going to learn how to do this. If we think about it,
the ideal place to do this is in the questions API controller, which is where an answer is
posted. So, when an answer is posted, we want SignalR to push the updated question with
the saved answer to all the clients that are subscribed to the question. Let's implement this
by carrying out the following steps in QuestionsController.cs:

We'll start by referencing SignalR and our SignalR hub with using statements:1.

using Microsoft.AspNetCore.SignalR;
using QandA.Hubs;

We are going to inject the context of the hub into the API controller using2.
dependency injection:

[Route("api/[controller]")]
[ApiController]
public class QuestionsController : ControllerBase
{
 private readonly IDataRepository _dataRepository;
 private readonly IHubContext<QuestionsHub>
 _questionHubContext;

 public QuestionsController(
 IDataRepository dataRepository,
 IHubContext<QuestionsHub> questionHubContext)
 {
 _dataRepository = dataRepository;
 _questionHubContext = questionHubContext;
 }

 ...
}

We have a class-level variable that is set as a reference to the hub context in the
constructor. The IHubContext interface allows us to interact with SignalR clients.

Creating a Real-Time API with SignalR Chapter 9

[310]

Let's enhance the PostAnswer method so that it pushes the question with the3.
new answer to clients that have subscribed to the question:

[HttpPost("answer")]
public ActionResult<AnswerGetResponse>
 PostAnswer(AnswerPostRequest answerPostRequest)
{
 var questionExists =
 _dataRepository.QuestionExists(
 answerPostRequest.QuestionId.Value);
 if (!questionExists)
 {
 return NotFound();
 }
 var savedAnswer =
 _dataRepository.PostAnswer(new AnswerPostFullRequest
 {
 QuestionId = answerPostRequest.QuestionId.Value,
 Content = answerPostRequest.Content,
 UserId = "1",
 UserName = "bob.test@test.com",
 Created = DateTime.UtcNow
 });
 _questionHubContext.Clients.Group(
 $"Question-{answerPostRequest.QuestionId.Value}")
 .SendAsync(
 "ReceiveQuestion",
 _dataRepository.GetQuestion(
 answerPostRequest.QuestionId.Value));

 return savedAnswer;
}

We get access to the SignalR group through the Group method in the Clients
property in the hub context by passing in the group name. Remember that the
group name is the word "Question", followed by a hyphen and then the
question ID.

Then, we use the SendAsync method to push the question with the new answer
to all the clients in the group. A handler called ReceiveQuestion will be
invoked in the client, with the question being passed in as the parameter after we
have got it from the data repository.

Creating a Real-Time API with SignalR Chapter 9

[311]

That's all the changes we need to make to our API controller in order to push updated
questions to subscribed clients.

In the next section, we are going to define our real-time API endpoint.

Creating the SignalR real-time API endpoint
Before we can use our SignalR real-time API, we need to enable SignalR and define the path
for the endpoint. Let's carry out the following steps in Startup.cs:

We'll start by referencing our SignalR hub with the following using statement:1.

using QandA.Hubs;

Add SignalR to our ASP.NET app by using the AddSignalR method in the2.
services parameter in the ConfigureServices method:

public void ConfigureServices(IServiceCollection services)
{
 ...

 services.AddSignalR();
}

The next step is to configure the request pipeline so that we can pass SignalR3.
requests to our SignalR hub:

public void Configure(IApplicationBuilder app, IHostingEnvironment
env)
{
 ...
 app.UseEndpoints(endpoints =>
 {
 endpoints.MapControllers();
 endpoints.MapHub<QuestionsHub>("/questionshub");
 });
}

So, SignalR requests to the /questionshub path will be handled by our
QuestionHub class.

That's it—nice and simple! We are ready to interact with our SignalR real-time API from
our frontend React app, which we'll do in the next section.

Creating a Real-Time API with SignalR Chapter 9

[312]

Interacting with the SignalR real-time API
from React
In this section, we will work on our React frontend so that we can interact with the SignalR
real-time API we have just built. We will make changes to the question page so that we can
subscribe to new answers for the question on the page. We will use Postman to post an
answer to the question and hopefully receive the updated question in our React frontend.

Installing the SignalR client
Let's open our React frontend project in Visual Studio Code and install the SignalR client.
Enter the following command in the Terminal:

> npm install @aspnet/signalr

Check the version of the @aspnet/signalr package in package.json. If it is before
version 3, then run the following command in the Terminal to get a more up-to-date
version of this package:

> npm install @aspnet/signalr@next

Note that TypeScript types are included in this package, so there is no separate installation
process for these. After a few seconds, the SignalR client will be installed in our project.

Setting up the client connection
Let's carry out the following steps to create a function that sets up the SignalR client
connection object:

Open QuestionPage.tsx and import the following from the SignalR client:1.

import {
 HubConnectionBuilder,
 HubConnectionState,
 HubConnection,
} from '@aspnet/signalr';

Creating a Real-Time API with SignalR Chapter 9

[313]

We're going to create a function to set up the SignalR connection in the2.
QuestionPage component, just below where the question state is declared:

const [question, setQuestion] = useState<QuestionData |
null>(null);

const setUpSignalRConnection = async (questionId: number) => {
 // TODO - setup connection to real-time SignalR API
 // TODO - handle Message function being called
 // TODO - handle ReceiveQuestion function being called
 // TODO - start the connection
 // TODO - subscribe to question
 // TODO - return the connection
};

This asynchronous function simply takes in a question ID, which will eventually
be used to subscribe to changes to that question.

Let's set up the connection by using the HubConnectionBuilder we imported3.
earlier:

const setUpSignalRConnection = async (questionId: number) => {
 const connection = new HubConnectionBuilder()
 .withUrl('http://localhost:17525/questionshub')
 .withAutomaticReconnect()
 .build();
 // TODO - handle Message function being called
 // TODO - handle ReceiveQuestion function being called
 // TODO - start the connection
 // TODO - subscribe to question
 return connection
};

We need to specify the URL to our questions hub, so change the hostname and
port, if required, in the path.

Notice that we've also configured the client so that it reconnects if the connection
becomes disconnected using the withAutomaticReconnect method. The client
will wait for 0, 2, 10, and 30 seconds, respectively, before trying each reconnect
attempt, stopping after four failed attempts.

Creating a Real-Time API with SignalR Chapter 9

[314]

 With the connection object in place, we can now implement handlers for4.
functions that can be called. As you may recall, the first handler that our SignalR
server called was a function called Message when the client connects and
disconnects. Let's implement this:

const setUpSignalRConnection = async (questionId: number) => {
 const connection = new HubConnectionBuilder()
 .withUrl('http://localhost:17525/questionshub')
 .withAutomaticReconnect()
 .build();

 connection.on('Message', (message: string) => {
 console.log('Message', message);
 });

 // TODO - handle ReceiveQuestion function being called
 // TODO - start the connection
 // TODO - subscribe to question
 return connection
};

We use the on method in the connection object by passing the function name as
the first parameter and an arrow function that will handle the call. The message
parameter in the arrow function will contain the data that has been sent from the
server.

We simply log the message in the console in this case. Remember that, in practice,
we don't need this message function for what we are trying to do in our app. This
is purely to help us understand how SignalR can push data to clients.

The important handler is the one that receives the question with new answers.5.
Let's implement this:

const setUpSignalRConnection = async (questionId: number) => {
 const connection = new HubConnectionBuilder()
 .withUrl('http://localhost:17525/questionshub')
 .withAutomaticReconnect()
 .build();

 connection.on('Message', (message: string) => {
 console.log('Message', message);
 });
 connection.on('ReceiveQuestion', (question: QuestionData) => {
 console.log('ReceiveQuestion', question);
 setQuestion(question);
 });

Creating a Real-Time API with SignalR Chapter 9

[315]

 // TODO - start the connection
 // TODO - subscribe to question
 return connection
};

This follows the same pattern as the previous handler by using the on method on
the connection object. We log the question with the new answer to the console,
which will be useful when we test that this works later in this chapter. We also
update the question state so that the new answer is rendered on the page.

Next, let's start the connection:6.

const setUpSignalRConnection = async (questionId: number) => {
 const connection = new HubConnectionBuilder()
 .withUrl('http://localhost:17525/questionshub')
 .withAutomaticReconnect()
 .build();

 connection.on('Message', (message: string) => {
 console.log('Message', message);
 });
 connection.on('ReceiveQuestion', (question: QuestionData) => {
 console.log('ReceiveQuestion', question);
 setQuestion(question);
 });

 try {
 await connection.start();
 } catch (err) {
 console.log(err);
 }

 // TODO - subscribe to question
 return connection
};

We use the asynchronous connection start method to start the connection. If
this process errors out, we log the error in the console.

Now, let's subscribe to the question:7.

const setUpSignalRConnection = async (questionId: number) => {
 const connection = new HubConnectionBuilder()
 .withUrl('http://localhost:17525/questionshub')
 .withAutomaticReconnect()
 .build();

Creating a Real-Time API with SignalR Chapter 9

[316]

 connection.on('Message', (message: string) => {
 console.log('Message', message);
 });
 connection.on('ReceiveQuestion', (question: QuestionData) => {
 console.log('ReceiveQuestion', question);
 setQuestion(question);
 });

 try {
 await connection.start();
 } catch (err) {
 console.log(err);
 }

 if (connection.state === HubConnectionState.Connected) {
 connection
 .invoke('SubscribeQuestion', questionId)
 .catch((err: Error) => {
 return console.error(err.toString());
 });
 }

 return connection
};

First, we check that the connection is in the Connected state because it won't be if
the connection failed to start properly. Then, we use the invoke method on the
connection object to call the SubscribeQuestion method in the SignalR hub
on the server, which will subscribe the client to the question.

We can call this function in the QuestionPage component, as follows:8.

useEffect(() => {
 const doGetQuestion = ...
 let connection: HubConnection;
 if (match.params.questionId) {
 const questionId = Number(match.params.questionId);
 doGetQuestion(questionId);
 setUpSignalRConnection(questionId).then(con => {
 connection = con;
 });
 }
}, [match.params.questionId]);

We invoke the setupSignalRConnection function when the component has
mounted. We also store a reference to the connection object, which we'll use
when the user navigates away from the page to stop the connection.

Creating a Real-Time API with SignalR Chapter 9

[317]

Stopping the client connection
When the user navigates away from the question page, we want to unsubscribe the client
from the question and stop the connection. Let's look at the steps to do just that:

Let's start to implement a function that does this just below the1.
setUpSignalRConnection function:

const cleanUpSignalRConnection = async (
 questionId: number,
 connection: HubConnection,
) => {
 // TODO - unsubscribe from the question
 // TODO - stop the connection
};

So, our function is asynchronous and takes in the question ID and connection as
parameters.

Let's unsubscribe the client:2.

const cleanUpSignalRConnection = async (
 questionId: number,
 connection: HubConnection,
) => {
 if (connection.state === HubConnectionState.Connected) {
 try {
 await connection.invoke('UnsubscribeQuestion', questionId);
 } catch (err) {
 return console.error(err.toString());
 }
 } else {
 }
 // TODO - stop the connection
};

First, we check to see if the connection is connected and then invoke the
UnsubscribeQuestion function on the SignalR server hub. The invoke method
is asynchronous, so we use the await keyword at the start of the statement. We
also catch any errors and output them to the console.

Creating a Real-Time API with SignalR Chapter 9

[318]

Then, we can stop the connection:3.

const cleanUpSignalRConnection = async (
 questionId: number,
 connection: HubConnection
) => {
 if (connection.state === HubConnectionState.Connected) {
 connection
 try {
 await connection.invoke('UnsubscribeQuestion', questionId);
 } catch (err) {
 return console.error(err.toString());
 }
 connection.off('Message');
 connection.off('ReceiveQuestion');
 connection.stop();
 } else {
 connection.off('Message');
 connection.off('ReceiveQuestion');
 connection.stop();
 }
};

As well as stopping the connection, we need to remove the handlers for the
Message and ReceiveQuestion functions.

Now, we can use the cleanUpSignalRConnection function when the4.
component unmounts:

useEffect(() => {
 const doGetQuestion = ...
 let connection: HubConnection;
 if (match.params.questionId) {
 const questionId = Number(match.params.questionId);
 doGetQuestion(questionId);
 setUpSignalRConnection(questionId, setQuestion).then(con => {
 connection = con;
 });
 }

 return function cleanUp() {
 if (match.params.questionId) {
 const questionId = Number(match.params.questionId);
 cleanUpSignalRConnection(questionId, connection);
 }
 };
}, [match.params.questionId]);

Creating a Real-Time API with SignalR Chapter 9

[319]

We execute logic when a React component unmounts from the DOM in a function
that is returned from the useEffect hook. In this function, we get the question
ID from the URL and pass it to the cleanUpSignalRConnection function, along
with the connection object.

Now, we have our real-time API in place with our frontend interacting with it. In the next
section, we'll try this out.

Adding CORS to our backend
We are going to try our real-time API now and discover a problem with it because the
frontend is hosted in a different origin from the backend. Let's carry out the following steps
to expose this problem and then correct it:

Run the backend project by pressing F5 in Visual Studio.1.
Run the frontend project by entering npm start in the Terminal in Visual Studio2.
Code.
When the frontend app runs, press F12 to open the browser DevTools and select3.
the Console panel.
Click on a question to open the question page. This is where the SignalR4.
connection should be started and the client can subscribe to the question. We get
an error, though:

Creating a Real-Time API with SignalR Chapter 9

[320]

The request to start the SignalR connection has been blocked by a CORS policy.

CORS stands for Cross-Origin Resource Sharing and is a mechanism that
uses HTTP headers to tell a browser to let a web application run at certain
origins (domains) so that it has permission to access certain resources on a
server at a different origin.

So, we need to configure our ASP.NET backend to allow requests from our React
frontend because they are hosted in different origins.

Stop the backend from running by pressing SHIFT+F5 in Visual Studio Code and5.
enter the following statement inside the ConfigureServices method in
Startup.cs:

public void ConfigureServices(IServiceCollection services)
{
 ...
 services.AddCors(options =>
 options.AddPolicy("CorsPolicy", builder =>
 builder.AllowAnyMethod()
 .AllowAnyHeader()
 .WithOrigins("http://localhost:3000")
 .AllowCredentials()));

 services.AddSignalR();
}

This has defined a CORS policy that allows our frontend app hosted in
the localhost:3000 origin to access the backend. If the origin of your
frontend app is different, then simply change the origin in this statement as
required.

Creating a Real-Time API with SignalR Chapter 9

[321]

Now, we can enable the use of this policy in the Configure method. Let's add6.
the following statement as the first statement in the Configure method:

public void Configure(IApplicationBuilder app, IHostingEnvironment
env)
{
 app.UseCors("CorsPolicy");

 ...
}

Run the backend project again by pressing F5.7.
If we hit F5 to refresh the frontend app, we'll see that it now connects to the8.
SignalR server and subscribes to the question:

That's great!

Creating a Real-Time API with SignalR Chapter 9

[322]

Mapping a question from the real-time API to
React state
In this section, we are going to use Postman to submit an answer to a question that our
React frontend is subscribed to. Hopefully, we should see a new answer automatically
appear in our React frontend. Let's carry out the following steps to do so:

Make sure the React frontend is on the question page with DevTools open and1.
the Console panel selected.
Open Postman and send the following request, making sure we submit an2.
answer to the question that is open in the frontend:

Creating a Real-Time API with SignalR Chapter 9

[323]

Let's look at the React app:3.

We can see that the frontend received the question but, unfortunately, there was a
problem rendering it. The problem is that the created property in the answer
has been serialized as a string rather than a Date object.

Let's resolve this problem by creating interfaces for the question that comes from4.
the server in QuestionsData.ts, just beneath the QuestionData and
AnswerData interfaces:

export interface QuestionData {
 ...
}

export interface AnswerData {
 ...
}

export interface QuestionDataFromServer {
 questionId: number;
 title: string;
 content: string;
 userName: string;
 created: string;
 answers: AnswerDataFromServer[];
}

export interface AnswerDataFromServer {
 answerId: number;
 content: string;
 userName: string;
 created: string;
}

Creating a Real-Time API with SignalR Chapter 9

[324]

These interfaces have string-based dates, which means they properly model the
data that is received from the web server.

Let's create a function just beneath these interfaces to map a question that comes5.
from the server into the format our frontend expects to work with:

export const mapQuestionFromServer = (
 question: QuestionDataFromServer,
): QuestionData => ({
 ...question,
 created: new Date(question.created.substr(0, 19)),
 answers: question.answers.map(answer => ({
 ...answer,
 created: new Date(answer.created.substr(0, 19)),
 })),
});

We create a copy of the question and answer using the spread syntax and set
the created dates to Date objects from the string-based date using the Date
constructor.

Back in QuestionPage.tsx, let's import this mapping function and interface:6.

import {
 QuestionData,
 getQuestion,
 postAnswer,
 mapQuestionFromServer,
 QuestionDataFromServer
} from './QuestionsData';

Now, we can use this function and interface in the ReceiveQuestion handler7.
and overwrite the previous code:

connection.on(
 'ReceiveQuestion',
 (question: QuestionDataFromServer) => {
 console.log('ReceiveQuestion', question);
 setQuestion(mapQuestionFromServer(question));
 },
);

The frontend app will automatically refresh in the browser when we save these
changes.

Creating a Real-Time API with SignalR Chapter 9

[325]

Send the request in Postman once more and look at the frontend app in the8.
browser:

This time, the question with the new answer has been successfully received and
shown in the app. Note that we'll see both the answers we submitted to the server
because both were successfully saved into the database—the problem was that
initially the frontend couldn't show the first submitted answer.

That completes our real-time API, along with a React frontend that interacts with it. Well
done!

Summary
In this chapter, we learned that the key difference between a REST API and a SignalR real-
time API is that the latter has a two-way connection with the client and can, therefore, push
data to the client, as well as receive data from the client. We also learned that a SignalR real-
time API uses web sockets under the hood if the server and browser support it. Web
sockets are lower-level than HTTP and don't support features such as status codes and
caching like HTTP does. Web sockets also don't scale across multiple servers as easily as a
REST API, so REST APIs are still preferable over a real-time API for one-way
communication between the client and server.

Creating a Real-Time API with SignalR Chapter 9

[326]

Then, we learned that the Hub base class in ASP.NET Core makes it super-easy to interact
with clients. It allows us to create and interact with groups of clients, which we found very
useful in our scenario. We also discovered that we can reference the hub from an API
controller so that we can interact with clients when REST API requests are received. We
define the endpoint for the hub in the Startup class in the Configure method in the
UseEndpoints method, which is where we define the REST API controllers.

SignalR provides many client libraries for interacting with a SignalR server, including a
JavaScript client that we used in our React app. After using HubConnectionBuilder to
create a HubConnection object, we used this to send and receive data from the SignalR
server.

In the next chapter, we are going to turn our attention back to our REST API. This time, we
will focus on performance and scalability.

Questions
Answer the following questions to check what you've learned in this chapter:

In a SignalR hub class, what method can we use to push data to a group of1.
connected clients?
In a SignalR hub class, what method can we use to push data to all clients except2.
for the client that has made the request?
Why did we need a CORS policy for our React app to be able to interact with our3.
SignalR real-time API?
In our React frontend, why did we check whether the connection was in a4.
connected state before subscribing to the question?
Why do we stop the connection when the user navigates away from the question5.
page?

Further reading
The following are some useful links if you want to learn more about the topics that were
covered in this chapter:

ASP.NET Core SignalR: https:/ ​/​docs. ​microsoft. ​com/ ​en-​us/ ​aspnet/ ​core/
signalr/ ​introduction

ASP.NET Core CORS: https:/ ​/ ​docs.​microsoft. ​com/ ​en- ​us/​aspnet/ ​core/
security/ ​cors

https://docs.microsoft.com/en-us/aspnet/core/signalr/introduction
https://docs.microsoft.com/en-us/aspnet/core/signalr/introduction
https://docs.microsoft.com/en-us/aspnet/core/signalr/introduction
https://docs.microsoft.com/en-us/aspnet/core/signalr/introduction
https://docs.microsoft.com/en-us/aspnet/core/signalr/introduction
https://docs.microsoft.com/en-us/aspnet/core/signalr/introduction
https://docs.microsoft.com/en-us/aspnet/core/signalr/introduction
https://docs.microsoft.com/en-us/aspnet/core/signalr/introduction
https://docs.microsoft.com/en-us/aspnet/core/signalr/introduction
https://docs.microsoft.com/en-us/aspnet/core/signalr/introduction
https://docs.microsoft.com/en-us/aspnet/core/signalr/introduction
https://docs.microsoft.com/en-us/aspnet/core/signalr/introduction
https://docs.microsoft.com/en-us/aspnet/core/signalr/introduction
https://docs.microsoft.com/en-us/aspnet/core/signalr/introduction
https://docs.microsoft.com/en-us/aspnet/core/signalr/introduction
https://docs.microsoft.com/en-us/aspnet/core/signalr/introduction
https://docs.microsoft.com/en-us/aspnet/core/signalr/introduction
https://docs.microsoft.com/en-us/aspnet/core/signalr/introduction
https://docs.microsoft.com/en-us/aspnet/core/signalr/introduction
https://docs.microsoft.com/en-us/aspnet/core/signalr/introduction
https://docs.microsoft.com/en-us/aspnet/core/security/cors
https://docs.microsoft.com/en-us/aspnet/core/security/cors
https://docs.microsoft.com/en-us/aspnet/core/security/cors
https://docs.microsoft.com/en-us/aspnet/core/security/cors
https://docs.microsoft.com/en-us/aspnet/core/security/cors
https://docs.microsoft.com/en-us/aspnet/core/security/cors
https://docs.microsoft.com/en-us/aspnet/core/security/cors
https://docs.microsoft.com/en-us/aspnet/core/security/cors
https://docs.microsoft.com/en-us/aspnet/core/security/cors
https://docs.microsoft.com/en-us/aspnet/core/security/cors
https://docs.microsoft.com/en-us/aspnet/core/security/cors
https://docs.microsoft.com/en-us/aspnet/core/security/cors
https://docs.microsoft.com/en-us/aspnet/core/security/cors
https://docs.microsoft.com/en-us/aspnet/core/security/cors
https://docs.microsoft.com/en-us/aspnet/core/security/cors
https://docs.microsoft.com/en-us/aspnet/core/security/cors
https://docs.microsoft.com/en-us/aspnet/core/security/cors
https://docs.microsoft.com/en-us/aspnet/core/security/cors
https://docs.microsoft.com/en-us/aspnet/core/security/cors
https://docs.microsoft.com/en-us/aspnet/core/security/cors

10
Improving Performance and

Scalability
In this chapter, we are going to improve the performance and scalability of our REST API.
When we make each improvement, we'll use load testing and performance tools to verify
that there has been an improvement.

We'll start by focusing on database calls and how we can reduce the number of calls to
improve performance. We'll then move on to requesting less data with data paging. We'll
also look at the impact that caching data in memory has on performance.

Then, we'll learn how to make our API controllers and data repository asynchronous. We'll
eventually understand whether this makes our REST API more performant or perhaps
more scalable.

We'll also learn how the garbage collection process can harm performance and why it's best
to let ASP.NET Core handle binding requests to models.

In this chapter, we'll cover the following topics:

Reducing database round trips
Paging data
Making API controllers asynchronous
Caching data
Reducing garbage collection

Improving Performance and Scalability Chapter 10

[328]

Technical requirements
We'll use the following tools in this chapter:

Visual Studio 2019: We'll use this to edit our ASP.NET Core code. This can be
downloaded and installed from https:/ ​/​visualstudio. ​microsoft. ​com/ ​vs/​.
.NET Core 3.0: This can be downloaded and installed from https:/ ​/​dotnet.
microsoft. ​com/ ​download/ ​dotnet- ​core.
SQL Server Management Studio: We'll use this to execute a stored procedure in
our database. This can be downloaded and installed from https:/ ​/​docs.
microsoft. ​com/ ​en- ​us/ ​sql/ ​ssms/ ​download- ​sql- ​server- ​management- ​studio-
ssms?​view= ​sql- ​server- ​2017.
Postman. We'll use this to try out changes we make to our REST API endpoints.
This can be downloaded from https:/ ​/​www. ​getpostman. ​com/ ​downloads/ ​.
WebSurge: This is a load testing tool that we can download from https:/ ​/
websurge. ​west- ​wind. ​com/ ​.
PerfView: We are going to use this to monitor garbage collection. This can be
downloaded from https:/ ​/​www. ​microsoft. ​com/ ​en-​us/ ​download/ ​details. ​aspx?
id=​28567.
Q and A: We'll start with the Q and A backend project we finished in the
previous chapter. This is available on GitHub at https:/ ​/​github. ​com/
PacktPublishing/ ​ASP. ​NET- ​Core- ​3-​and- ​React- ​17

All of the code snippets in this chapter can be found online at https:/ ​/​github. ​com/
PacktPublishing/​ASP. ​NET- ​Core- ​3- ​and- ​React- ​17. To restore code from a chapter, the
source code repository can be downloaded and the relevant folder opened in the relevant
editor. If the code is frontend code, then npm install can be entered in the Terminal to
restore the dependencies.

Check out the following video to see the code in action:

http:/​/​bit.​ly/​37awJtm

Reducing database round trips
Database round trips are expensive. The greater the distance between the web API and the
database, the more expensive the round trip is. So, we want to keep the trips from the web
API to the database to a minimum in order to gain maximum performance.

https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017
https://www.getpostman.com/downloads/
https://www.getpostman.com/downloads/
https://www.getpostman.com/downloads/
https://www.getpostman.com/downloads/
https://www.getpostman.com/downloads/
https://www.getpostman.com/downloads/
https://www.getpostman.com/downloads/
https://www.getpostman.com/downloads/
https://www.getpostman.com/downloads/
https://www.getpostman.com/downloads/
https://www.getpostman.com/downloads/
https://www.getpostman.com/downloads/
https://websurge.west-wind.com/
https://websurge.west-wind.com/
https://websurge.west-wind.com/
https://websurge.west-wind.com/
https://websurge.west-wind.com/
https://websurge.west-wind.com/
https://websurge.west-wind.com/
https://websurge.west-wind.com/
https://websurge.west-wind.com/
https://websurge.west-wind.com/
https://websurge.west-wind.com/
https://www.microsoft.com/en-us/download/details.aspx?id=28567
https://www.microsoft.com/en-us/download/details.aspx?id=28567
https://www.microsoft.com/en-us/download/details.aspx?id=28567
https://www.microsoft.com/en-us/download/details.aspx?id=28567
https://www.microsoft.com/en-us/download/details.aspx?id=28567
https://www.microsoft.com/en-us/download/details.aspx?id=28567
https://www.microsoft.com/en-us/download/details.aspx?id=28567
https://www.microsoft.com/en-us/download/details.aspx?id=28567
https://www.microsoft.com/en-us/download/details.aspx?id=28567
https://www.microsoft.com/en-us/download/details.aspx?id=28567
https://www.microsoft.com/en-us/download/details.aspx?id=28567
https://www.microsoft.com/en-us/download/details.aspx?id=28567
https://www.microsoft.com/en-us/download/details.aspx?id=28567
https://www.microsoft.com/en-us/download/details.aspx?id=28567
https://www.microsoft.com/en-us/download/details.aspx?id=28567
https://www.microsoft.com/en-us/download/details.aspx?id=28567
https://www.microsoft.com/en-us/download/details.aspx?id=28567
https://www.microsoft.com/en-us/download/details.aspx?id=28567
https://www.microsoft.com/en-us/download/details.aspx?id=28567
https://www.microsoft.com/en-us/download/details.aspx?id=28567
https://www.microsoft.com/en-us/download/details.aspx?id=28567
https://www.microsoft.com/en-us/download/details.aspx?id=28567
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
http://bit.ly/37awJtm
http://bit.ly/37awJtm
http://bit.ly/37awJtm
http://bit.ly/37awJtm
http://bit.ly/37awJtm
http://bit.ly/37awJtm
http://bit.ly/37awJtm
http://bit.ly/37awJtm
http://bit.ly/37awJtm

Improving Performance and Scalability Chapter 10

[329]

N+1 problem
The N+1 problem is a classic query problem where there is a parent-child data model
relationship that results in separate database queries for each child record, as well as the
query for the parent record.

We are going to add the ability to return answers as well as questions in a GET request to
the questions REST API endpoint. We are going to fall into the N+1 trap with our first
implementation. Let's open our backend project in Visual Studio and carry out the
following steps:

First, let's add an Answers property to the QuestionGetManyResponse model:1.

public class QuestionGetManyResponse
{
 public int QuestionId { get; set; }
 public string Title { get; set; }
 public string Content { get; set; }
 public string UserName { get; set; }
 public DateTime Created { get; set; }
 public List<AnswerGetResponse> Answers { get; set; }
}

Let's add a new method to our data repository interface:2.

public interface IDataRepository
{
 IEnumerable<QuestionGetManyResponse> GetQuestions();
 IEnumerable<QuestionGetManyResponse> GetQuestionsWithAnswers();
 ...
}

This method will get all of the questions in the database, including the answers
for each question.

Now, we can add the implementation for the GetQuestionsWithAnswers3.
method in the data repository:

public IEnumerable<QuestionGetManyResponse>
GetQuestionsWithAnswers()
{
 using (var connection = new SqlConnection(_connectionString))
 {
 connection.Open();

 var questions =
 connection.Query<QuestionGetManyResponse>(

Improving Performance and Scalability Chapter 10

[330]

 "EXEC dbo.Question_GetMany");
 foreach (var question in questions)
 {
 question.Answers =
 connection.Query<AnswerGetResponse>(
 @"EXEC dbo.Answer_Get_ByQuestionId
 @QuestionId = @QuestionId",
 new { QuestionId = question.QuestionId })
 .ToList();
 }
 return questions;
 }
}

So, this makes a database call to get all of the questions and then additional calls
to get the answer for each question. We have fallen into the classic N+1 trap!

Let's move on to the QuestionsController now and add the ability to include4.
answers with the questions:

[HttpGet]
public IEnumerable<QuestionGetManyResponse>
 GetQuestions(string search, bool includeAnswers)
{
 if (string.IsNullOrEmpty(search))
 {
 if (includeAnswers)
 {
 return _dataRepository.GetQuestionsWithAnswers();
 } else
 {
 return _dataRepository.GetQuestions();
 }
 }
 else
 {
 return _dataRepository.GetQuestionsBySearch(search);
 }
}

We've added the ability to have an includeAnswers query parameter that, if set,
will call the GetQuestionsWithAnswers data repository method we just added.
A fuller implementation would allow answers to be included if a search query
parameter is defined, but this implementation will be enough for us to see the
N+1 problem and how we can resolve it.

Improving Performance and Scalability Chapter 10

[331]

Let's run the REST API by pressing F5.5.
In Postman, let's try requesting questions with answers:6.

The answers are returned with each question, as we expected.

This doesn't seem like much of a problem though. The request took only 225 ms to
complete. Well, we only have a couple of answers in our database at the moment. If we had
more questions, the request would slow down a fair bit. Also, the test we have just done is
for a single user. What happens when multiple users make this request? We'll find out next.

Using WebSurge to load test our endpoint
We must load test our API endpoints to verify that they perform appropriately under load.
It is far better to find a performance issue in the development process before our users do.
WebSurge is a simple load testing tool that we are going to use to test our questions
endpoint with the N+1 problem. We are going to perform the load test in our development
environment, which is fine for us to see the impact the N+1 problem has. Obviously, the
load testing results we are going to see would be a lot faster in a production environment:

Run the REST API by pressing F5 if it's not already running.1.

Improving Performance and Scalability Chapter 10

[332]

Open WebSurge and click the New option on the Session tab. Fill in the request2.
details on the Request tab in the right-hand pane for a GET request to
api/questions/includeanswers=true:

To check that the request is correct, press the Test button at the bottom of the3.
right-hand pane. We'll see the response we expect:

We are nearly ready to do the load test now. Let's specify that the test will run for4.
30 seconds with 5 threads by filling in the relevant boxes under the toolbar:

Improving Performance and Scalability Chapter 10

[333]

Let's run the load test by clicking the Start button. We'll immediately see requests5.
being made in the Output tab in the right-hand pane:

When the test has finished, we'll see the test results in the Output tab in the right-6.
hand pane:

So, we managed to get 9.47 requests per second with this implementation of
getting questions with answers. Obviously, the result you get will be different.

Stop the ASP.NET Core app from running by pressing Shift + F5 so that you're7.
ready to make the implementation more efficient.

Keep a note of the results—we'll use these in a comparison with an implementation that
resolves the N+1 problem next.

Improving Performance and Scalability Chapter 10

[334]

Using Dapper multi-mapping to resolve the N+1
problem
Wouldn't it be great if we could get the questions and answers in a single database query
and then map this data to the hierarchical structure we require in our data repository? Well,
this is exactly what we can do with a feature called multi-mapping in Dapper. Let's look at
how we can use this:

In the data repository, let's change the implementation of the1.
GetQuestionsWithAnswers method to the following:

public IEnumerable<QuestionGetManyResponse>
 GetQuestionsWithAnswers()
{
 using (var connection = new SqlConnection(_connectionString))
 {
 connection.Open();

 return connection.Query<QuestionGetManyResponse>(
 "EXEC dbo.Question_GetMany_WithAnswers");
 }
}

This is a good start but the Question_GetMany_WithAnswers stored procedure
returns tabular data and we require this to be mapped to the questions and
answers hierarchical structure we have in our QuestionGetManyResponse
model:

This is where Dapper's multi-mapping feature comes in handy.

Improving Performance and Scalability Chapter 10

[335]

Change the implementation to the following:2.

public IEnumerable<QuestionGetManyResponse>
GetQuestionsWithAnswers()
{
 using (var connection = new SqlConnection(_connectionString))
 {
 connection.Open();

 var questionDictionary =
 new Dictionary<int, QuestionGetManyResponse>();
 return connection
 .Query<
 QuestionGetManyResponse,
 AnswerGetResponse,
 QuestionGetManyResponse>(
 "EXEC dbo.Question_GetMany_WithAnswers",
 map: (q, a) =>
 {
 QuestionGetManyResponse question;

 if (!questionDictionary.TryGetValue(q.QuestionId, out
question))
 {
 question = q;
 question.Answers =
 new List<AnswerGetResponse>();
 questionDictionary.Add(question.QuestionId,
question);
 }
 question.Answers.Add(a);
 return question;
 },
 splitOn: "QuestionId"
)
 .Distinct()
 .ToList();
 }
}

In the Dapper Query method, we provide a lambda function that helps Dapper
map each question. The function takes in the question and answers that Dapper
has mapped from the stored procedure result and we map it to the structure we
require. We use a Dictionary called questionDictionary to keep track of the
questions we've already created so that we can create an instance of new
List<AnswerGetResponse> for the answers for new questions.

Improving Performance and Scalability Chapter 10

[336]

We tell Dapper what models to map to with the first two generic parameters in
the Query method, which are QuestionGetManyResponse and
AnswerGetResponse, but how does Dapper know which fields that have been
returned from the stored procedure map to which properties in the models? The
answer is that we tell Dapper using the splitOn parameter by saying everything
before QuestionId goes into the QuestionGetManyResponse model and
everything after and including QuestionId goes into the AnswerGetResponse
model.

We tell Dapper what model the end result should map to with the last generic
parameter in the Query method, which is QuestionGetManyResponse in this
case.

We use the Distinct method on the results we get from Dapper to remove
duplicate questions and then the ToList method to turn the results into a list.

With our revised implementation complete, let's run the app by pressing F5.3.
In WebSurge, let's run the same load test as we did before by clicking4.
the Start button. After 30 seconds, we'll see the results:

This time, our REST API managed to take 13.27 requests per second, which is
much better than before.

Improving Performance and Scalability Chapter 10

[337]

So, Dapper's multi-mapping feature can be used to resolve the N+1 problem and generally
achieve better performance. We do need to be careful with this approach, though, as we are
requesting a lot of data from the database because of the duplicate parent records.
Processing large amounts of data in the web server can be inefficient and lead to garbage
collection issues, as we'll see later in this chapter.

Using Dapper multi results
There is another feature in Dapper that helps us reduce the amount of database round trips
called multi results. We are going to use this feature to improve the performance of the
endpoint that gets a single question, which, at the moment, is making two database calls:

First, let's load test the current implementation using WebSurge. We can use the1.
Edit option on the Session tab to change the request so that it gets a single
question:

We'll leave the duration of the test at 30 seconds with 5 threads. Press the Start2.
option to run the load test. When the test has finished, we'll get our results:

Improving Performance and Scalability Chapter 10

[338]

So, the current implementation can take 10.30 requests per second.

Now, stop the app from running and start to revise the implementation by3.
adding the following reference to the data repository:

using static Dapper.SqlMapper;

Now, we can change the implementation of QuestionGetSingleResponse to4.
the following:

public QuestionGetSingleResponse GetQuestion(int questionId)
{
 using (var connection = new SqlConnection(_connectionString))
 {
 connection.Open();
 using (GridReader results =
 connection.QueryMultiple(
 @"EXEC dbo.Question_GetSingle
 @QuestionId = @QuestionId;
 EXEC dbo.Answer_Get_ByQuestionId
 @QuestionId = @QuestionId",
 new { QuestionId = questionId }
)
)
 {
 var question =
 results.Read<QuestionGetSingleResponse>().FirstOrDefault();
 if (question != null)
 {
 question.Answers =
 results.Read<AnswerGetResponse>().ToList();
 }
 return question;
 }
 }
}

We use the QueryMultiple method in Dapper to execute our two stored
procedures in a single database round trip. The results are added into a results
variable and can be retrieved using the Read method by passing the appropriate
type in the generic parameter.

Let's start the app again in Visual Studio and carry out the same load test:5.

Improving Performance and Scalability Chapter 10

[339]

Our improved API can now take 14 requests per second.

Multi-mapping and multi results are two features in Dapper that we can use to reduce
database round trips. However, as we mentioned in the multi-mapping example,
processing large amounts of data can be problematic. How can we reduce the amount of
data we read from the database and process on the web server? We'll find out in the next
section.

Paging data
In this section, we are going to force the consumers of our questions endpoint to specify
the page of data when executing the request with the search query parameter. So, we'll
only be returning a portion of the data rather than all of it.

Paging helps with performance and scalability in the following ways:

The number of the page read I/Os is reduced when SQL Server grabs the data.
The amount of data that's transferred from the database server to the web server
is reduced.
The amount of memory that's used to store the data on the web server in our
model is reduced.
The amount of data that's transferred from the web server to the client is
reduced.

Improving Performance and Scalability Chapter 10

[340]

This all adds up to a potentially significant positive impact—particularly for large
collections of data.

Adding test questions for the load test
Let's carry out the following steps to add lots of questions to our database. This will allow
us to see the impact of data paging:

Let's open SQL Server Management Studio, right-click on the QandA database in1.
Object Explorer, and choose New Query.
In the query window that opens, add the following command:2.

EXEC Question_AddForLoadTest

This will execute a stored procedure that will add 10,000 questions to our
database.

Press F5 to run the stored procedure, which will take a few seconds to complete.3.

Now that we have our questions in place, let's test out the current implementation.

Load testing the current implementation
Before we implement data paging, let's see how the current implementation performs
under load:

Let's start our REST API by pressing F5 in Visual Studio, if it's not already1.
running.
Now, we can load test the current implementation using WebSurge. Let's set the2.
request URL path to /api/questions?search=question and stick to a
duration of 30 seconds with 5 threads.
Before running the load test, check that the request works okay by clicking the3.
Test option. We may get an error in the response body like the following one:

Improving Performance and Scalability Chapter 10

[341]

This error can be resolved by changing the MaxResponseSize setting to 0:

Improving Performance and Scalability Chapter 10

[342]

Start the test. When the test has finished, we'll get our results:4.

So, the requests per second to beat is 9.40.

Let's stop the REST API from running so that we can revise the implementation of the
questions endpoint.

Implementing data paging
Now, let's revise the implementation of the questions endpoint with the search query
parameter so that we can use data paging:

Let's start by adding a new method that will search with paging to our data1.
repository interface:

public interface IDataRepository
{
 ...
 IEnumerable<QuestionGetManyResponse>
 GetQuestionsBySearch(string search);
 IEnumerable<QuestionGetManyResponse>
 GetQuestionsBySearchWithPaging(
 string search,
 int pageNumber,
 int pageSize);
 ...
}

Improving Performance and Scalability Chapter 10

[343]

So, the method will take in the page number and size as parameters.

Now, we can add the method implementation in the data repository:2.

public IEnumerable<QuestionGetManyResponse>
 GetQuestionsBySearchWithPaging(
 string search,
 int pageNumber,
 int pageSize
)
{
 using (var connection = new SqlConnection(_connectionString))
 {
 connection.Open();
 var parameters = new
 {
 Search = search,
 PageNumber = pageNumber,
 PageSize = pageSize
 };
 return connection.Query<QuestionGetManyResponse>(
 @"EXEC dbo.Question_GetMany_BySearch_WithPaging
 @Search = @Search,
 @PageNumber = @PageNumber,
 @PageSize = @PageSize", parameters
);
 }
}

So, we are calling a stored procedure called
Question_GetMany_BySearch_WithPaging to get the page of data passing in
the search criteria, page number, and page size as parameters.

Let's change the implementation of the GetQuestions action method in our API3.
controller so that we can call this repository method:

[HttpGet]
public IEnumerable<QuestionGetManyResponse>
 GetQuestions(
 string search,
 bool includeAnswers,
 int page = 1,
 int pageSize = 20
)
{
 if (string.IsNullOrEmpty(search))
 {

Improving Performance and Scalability Chapter 10

[344]

 if (includeAnswers)
 {
 return _dataRepository.GetQuestionsWithAnswers();
 }
 else
 {
 return _dataRepository.GetQuestions();
 }
 }
 else
 {
 return _dataRepository.GetQuestionsBySearchWithPaging(
 search,
 page,
 pageSize
);
 }
}

Notice that we also accept query parameters for the page number and page size,
which are defaulted to 1 and 20, respectively.

Let's start our REST API by pressing F5 in Visual Studio.4.
Now, we can load test the current implementation using WebSurge. Let's change5.
the request URL path
to /api/questions?search=question&page=1&pagesize=20 and stick to a
duration of 30 seconds with 5 threads.
Start the test. When the test has finished, we'll get our results:6.

Improving Performance and Scalability Chapter 10

[345]

We get the performance improvement we hoped for, with the endpoint now able
to take 15.30 requests per second.

Data paging is well worth considering for APIs that return collections of data, particularly
if the collection is large.

In the next section, we are going to tackle the subject of asynchronous code and how this
can help with scalability.

Making API controllers asynchronous
In this section, we are going to make the unanswered questions endpoint asynchronous to
make it more scalable.

At the moment, all of our API code has been synchronous. For synchronous API code,
when a request is made to the API, a thread from the thread pool will handle the request. If
the code makes an I/O call (such as a database call) synchronously, the thread will block
until the I/O call has finished. The blocked thread can't be used for any other work—it
simply does nothing and waits for the I/O task to finish. If other requests are made to our
API while the other thread is blocked, different threads in the thread pool will be used for
the other requests. The following diagram is a visualization of synchronous requests in
ASP.NET Core:

Improving Performance and Scalability Chapter 10

[346]

There is some overhead in using a thread—a thread consumes memory and it takes time to
spin a new thread up. So, really, we want our API to use as few threads as possible.

If the API was to work in an asynchronous manner, when a request is made to our API, a
thread from the thread pool handles the request (as in the synchronous case). If the code
makes an asynchronous I/O call, the thread will be returned to the thread pool at the start
of the I/O call and can be used for other requests. The following diagram is a visualization
of asynchronous requests in ASP.NET Core:

So, if we make our API asynchronous, it will be able to handle requests more efficiently and
increase scalability. It is important to note that making an API asynchronous won't make it
more performant because a single request will take roughly the same amount of time. The
improvement we are about to make is so that our API can use the server's resources more
efficiently.

Testing the current implementation
Before we change the unanswered questions endpoint, let's do a load test on the current
implementation. We are interested in the number of threads that are being used. Therefore,
we are going to do a load test where the API struggles and look at the number of threads
being used. Follow these steps to do just that:

Let's start our REST API by pressing F5 in Visual Studio.1.

Improving Performance and Scalability Chapter 10

[347]

Now, we can load test the current implementation using WebSurge. Let's set the2.
request URL path to /api/questions/unanswered and change the duration to
60 seconds, which will allow us to see requests timing out when the API is
struggling to cope with the load.
We'll need to experiment with the number of the threads, but let's start with 203.
threads and then start the load test.
We need to watch for the API struggling by looking at the status bar in the4.
bottom-right corner of WebSurge. The status will turn red when the API is
struggling with requests that are starting to fail:

If the load test completes without any failed requests, then increase the thread5.
count and try again until we get a test that overloads the API.
When you see the API struggle, switch to Visual Studio and pause the REST API6.
by pressing Ctrl + Alt + Break and then look at the Threads window by
pressing Ctrl + Alt + H. We'll see that a lot of threads are being used:

Now that we've seen that the current implementation uses a high number of7.
threads when struggling, stop the REST API from running by pressing Shift + F5.

Our goal is for our API to use fewer threads, so make a note of the number of threads the
current implementation uses.

Improving Performance and Scalability Chapter 10

[348]

Implementing an asynchronous controller action
method
Now, we are going to change the implementation of the unanswered questions endpoint so
that it's asynchronous:

We are going to start by creating an asynchronous version of the data repository1.
method that gets unanswered questions. So, let's create a new method in the data
repository interface:

public interface IDataRepository
{
 ...
 IEnumerable<QuestionGetManyResponse>
 GetUnansweredQuestions();
 Task<IEnumerable<QuestionGetManyResponse>>
 GetUnansweredQuestionsAsync();
 ...
}

A key difference of an asynchronous method is that it returns a Task of the type
that will eventually be returned.

Let's create the data repository method implementation:2.

public async Task<IEnumerable<QuestionGetManyResponse>>
 GetUnansweredQuestionsAsync()
{
 using (var connection = new SqlConnection(_connectionString))
 {
 await connection.OpenAsync();
 return await
 connection.QueryAsync<QuestionGetManyResponse>(
 "EXEC dbo.Question_GetUnanswered");
 }
}

The async keyword before the return type signifies that the method is
asynchronous. The implementation is very similar to the synchronous version,
except that we use the asynchronous Dapper version of opening the connection
and executing the query with the await keyword.

Improving Performance and Scalability Chapter 10

[349]

When making code asynchronous, all the I/O calls in the calling stack
must be asynchronous. If any I/O call is synchronous, then the thread will
be blocked rather than returning to the thread pool and so threads won't
be managed efficiently.

Let's change the API controller action method:3.

[HttpGet("unanswered")]
public async Task<IEnumerable<QuestionGetManyResponse>>
 GetUnansweredQuestions()
{
 return await _dataRepository.GetUnansweredQuestionsAsync();
}

We mark the method as asynchronous with the async keyword and return
a Task of the type we eventually want to return. We also call
the asynchronous version of the data repository method with the await keyword.

Our unanswered questions endpoint is now asynchronous.

Start the REST API running by pressing F5 in Visual Studio.4.
Let's load test this in WebSurge with the same configuration we used to test the5.
synchronous implementation. Start the load test.
When the REST API is struggling or we are toward the end of the duration,6.
switch to Visual Studio and pause the REST API by pressing Ctrl + Alt +
Break and then look at the Threads window by pressing Ctrl + Alt + H. We'll see
that only a few threads are being used:

This shows that asynchronous code uses the web server's resources more efficiently under
load. When writing asynchronous code, it is really important that all the I/O calls
are asynchronous; otherwise, the code will behave as synchronous code, thus using the
thread pool inefficiently.

Improving Performance and Scalability Chapter 10

[350]

Mixing asynchronous and synchronous code
An easy mistake to make is to mix asynchronous code with synchronous code. In fact, we
have made this mistake in our PostAnswer action method because the method
is synchronous but the call to the SignalR hub is asynchronous:

[HttpPost("answer")]
public ActionResult<AnswerGetResponse>
 PostAnswer(AnswerPostRequest answerPostRequest)
{
 ...
 _questionHubContext.Clients.Group(
 $"Question-{answerPostRequest.QuestionId.Value}")
 .SendAsync(
 "ReceiveQuestion",
 _dataRepository.GetQuestion(answerPostRequest.QuestionId.Value)
);

 return savedAnswer;
}

The code functions correctly but is suboptimal because not only is the thread that handles
the request blocked from handling other requests, but we also have all of the overhead of
handling asynchronous code.

The resolution is to make all of the code asynchronous, which includes following the same
pattern that we have just followed. The code for this can be found in this book's GitHub
repository at https:/ ​/​github. ​com/ ​PacktPublishing/ ​ASP. ​NET- ​Core- ​3-​and- ​React- ​17 in the
Chapter10 folder. In fact, all of the code has been made asynchronous in this repository.

In the next section, we are going to look at how we can optimize requests for data by
caching data.

Caching data
In this section, we are going to cache requests for getting a question. At the moment, the
database is queried for each request to get a question. If we cache a question and can get
subsequent requests for the question from the cache, this should be faster and reduce the
load on the database. We will prove this with load tests.

https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17

Improving Performance and Scalability Chapter 10

[351]

Load testing the current implementation
Before we implement caching, we are going to load test the current implementation of
getting a single question using the following steps:

Let's start our REST API by pressing F5 in Visual Studio.1.
Now, we can load test the current implementation using WebSurge. Let's set the2.
request URL path to /api/questions/1 and change the duration to 30 seconds
with 5 threads.
Start the test. When the test has finished, we'll get our results:3.

So, we are getting 15.1 requests per second without caching.

Stop the REST API from running so that we can implement and use a data cache.

Implementing a data cache
We are going to implement a cache for the questions using the memory cache in ASP.NET
Core:

First, let's create an interface in the Data folder called IQuestionCache:1.

using QandA.Data.Models;

namespace QandA.Data

Improving Performance and Scalability Chapter 10

[352]

{
 public interface IQuestionCache
 {
 QuestionGetSingleResponse Get(int questionId);
 void Remove(int questionId);
 void Set(QuestionGetSingleResponse question);
 }
}

So, we need the cache implementation to have methods for getting, removing,
and updating an item in the cache.

Now, we can create a class in the Data folder called QuestionCache:2.

using Microsoft.Extensions.Caching.Memory;
using QandA.Data.Models;

namespace QandA.Data
{
 public class QuestionCache: IQuestionCache
 {
 // TODO - create a memory cache
 // TODO - method to get a cached question
 // TODO - method to add a cached question
 // TODO - method to remove a cached question
 }
}

Notice that we have referenced Microsoft.Extensions.Caching.Memory so
that we can use the standard ASP.NET Core memory cache.

Let's create a constructor that creates an instance of the memory cache:3.

public class QuestionCache: IQuestionCache
{
 private MemoryCache _cache { get; set; }
 public QuestionCache()
 {
 _cache = new MemoryCache(new MemoryCacheOptions
 {
 SizeLimit = 100
 });
 }

 // TODO - method to get a cached question
 // TODO - method to add a cached question
 // TODO - method to remove a cached question
}

Improving Performance and Scalability Chapter 10

[353]

Notice that we have set the cache limit to be 100 items. This is to limit the amount
of memory the cache takes up on our web server.

Let's implement a method to get a question from the cache:4.

public class QuestionCache: IQuestionCache
{
 ...

 private string GetCacheKey(int questionId) =>
 $"Question-{questionId}";

 public QuestionGetSingleResponse Get(int questionId)
 {
 QuestionGetSingleResponse question;
 _cache.TryGetValue(
 GetCacheKey(questionId),
 out question);
 return question;
 }

 // TODO - method to add a cached question
 // TODO - method to remove a cached question
}

We have created an expression to give us a key for a cache item, which is the
word Question with a hyphen, followed by the question ID.

We use the TryGetValue method within the memory cache to retrieve the cached
question. So, null will be returned from our method if the question doesn't exist
in the cache.

Now, we can implement a method to add a question to the cache. We can add an5.
item to the cache using the Set method in the ASP.NET Core memory cache:

public class QuestionCache: IQuestionCache
{
 ...

 public void Set(QuestionGetSingleResponse question)
 {
 var cacheEntryOptions =
 new MemoryCacheEntryOptions().SetSize(1);
 _cache.Set(
 GetCacheKey(question.QuestionId),
 question,
 cacheEntryOptions);

Improving Performance and Scalability Chapter 10

[354]

 }

 // TODO - method to remove a cached question
}

Notice that we specify the size of the question in the options when setting the
cache value. This ties in with the size limit we set on the cache so that the cache
will start to remove questions from the cache when there are 100 questions in it.

The last method we need to implement is a method to remove questions from the6.
cache:

public class QuestionCache: IQuestionCache
{
 ...

 public void Remove(int questionId)
 {
 _cache.Remove(GetCacheKey(questionId));
 }
}

Note that if the question doesn't exist in the cache, nothing will happen and no
exception will be thrown.

That completes the implementation of our question cache.

Using the data cache in an API controller action
method
Now,we are going to make use of the questions cache in the GetQuestion method in our
API controller:

First, we need to make the cache available for dependency injection so that we1.
can inject it into the API controller. So, let's register this in the Startup class:

public void ConfigureServices(IServiceCollection services)
{
 ...

 services.AddMemoryCache();
 services.AddSingleton<IQuestionCache, QuestionCache>();
}

Improving Performance and Scalability Chapter 10

[355]

We enable the ASP.NET Core memory cache and then register our cache as a
singleton in the dependency injection system. This means that a single instance of
our class will be created for the lifetime of the app. So, separate HTTP requests
will access the same class instance and, therefore, the same cached data. This
is exactly what we want for a cache.

In QuestionsController, let's inject the cache:2.

...
private readonly IQuestionCache _cache;

public QuestionsController(..., IQuestionCache questionCache)
{
 ...
 _cache = questionCache;
}

Let's change the implementation of GetQuestion to the following:3.

[HttpGet("{questionId}")]
public ActionResult<QuestionGetSingleResponse>
 GetQuestion(int questionId)
{
 var question = _cache.Get(questionId);
 if (question == null)
 {
 question = _dataRepository.GetQuestion(questionId);
 if (question == null)
 {
 return NotFound();
 }
 _cache.Set(question);
 }
 return question;
}

When a question changes, we need to remove the item from the cache if it exists4.
in the cache. This is so that subsequent requests for the question get the updated
question from the database:

[HttpPut("{questionId}")]
public ActionResult<QuestionGetSingleResponse>
 PutQuestion(int questionId, QuestionPutRequest
questionPutRequest)
{
 ...

Improving Performance and Scalability Chapter 10

[356]

 _cache.Remove(savedQuestion.QuestionId);

 return savedQuestion;
}

Similarly, when a question is deleted, we need to remove it from the cache if it5.
exists in the cache:

HttpDelete("{questionId}")]
public ActionResult DeleteQuestion(int questionId)
{
 ...

 _cache.Remove(questionId);

 return NoContent();
}

We also need to remove the question from the cache when an answer is being6.
posted:

[HttpPost("answer")]
public ActionResult<AnswerGetResponse>
 PostAnswer(AnswerPostRequest answerPostRequest)
{
 ...

 _cache.Remove(answerPostRequest.QuestionId.Value);

 _questionHubContext.Clients.Group(
 $"Question-{answerPostRequest.QuestionId.Value}")
 .SendAsync(
 "ReceiveQuestion",
_dataRepository.GetQuestion(answerPostRequest.QuestionId.Value));

 return savedAnswer;
}

Let's start our REST API by pressing F5 in Visual Studio.7.
Let's load test the /api/questions/1 endpoint again with our improved8.
implementation, keeping the duration and number of threads in the test the
same.
When the test has finished, we'll get our results, confirming the improvement:9.

Improving Performance and Scalability Chapter 10

[357]

Stop the REST API in Visual Studio by pressing Shift + F5.10.

This completes our implementation of the question endpoint with data caching.

It is important to remember to invalidate the cache when the data changes. In our example,
this was straightforward, but it can be more complex, particularly if there are other
processes outside of the REST API that change the data. So, if we don't have full control of
the data changes in the REST API, a cache may not be worth implementing.

Another consideration for whether to use a cache is if the data changes very frequently. In
this case, the caching process can actually negatively impact performance because lots of
the requests will result in database calls anyway and we have all of the overhead of
managing the cache.

However, if the data behind an endpoint changes infrequently and we have control over
these changes, then caching is a great way to positively impact performance.

What if the REST API is distributed across several servers? Well, because the memory cache
is local to each web server, this could result in database calls where the data is cached on a
different server. A solution to this is to implement a distributed cache
with IDistributedCache in ASP.NET Core, which would have a very similar
implementation to our memory cache. The complexity is that this needs to connect to a
third-party cache such as Redis, which adds financial costs and complexity to the solution.
For high-traffic REST APIs, a distributed cache is well worth considering, though.

Improving Performance and Scalability Chapter 10

[358]

The last topic we are going to look at is garbage collection and how this can negatively
impact performance.

Reducing garbage collection
Each time we create a new object in .NET, it allocates memory for the object from what is
called the managed heap. Eventually, a process called garbage collection kicks in, which is
responsible for freeing memory. When the garbage collector performs a collection, it checks
for objects in the managed heap that are no longer being used by the app and performs the
necessary operations to reclaim their memory.

Memory allocation is very cheap but unfortunately, collecting the memory isn't. Allocating
objects over 85 KB in size in a single allocation will result in the object ending up on the
large object heap, which is expensive to collect.

So, creating large objects in our .NET code can hurt performance and an area where we can
fall into this trap in REST APIs is when dealing with large requests. In this section, we are
going to look at the post question endpoint as an example that doesn't have a garbage
collection issue with our current implementation. We are going to revise the
implementation, introduce a garbage collection issue, and observe the problem using the
PerfView tool.

Load testing the current implementation
Let's load test the post question endpoint and measure the garbage collection
using PerfView. In this load test, we are going to have different requests hitting the
endpoint that will challenge the garbage collection process more than the same request
being repeated. Let's look at the steps:

Start the REST API in Visual Studio.1.
Let's run the PerfView tool and choose the Collect option from the Collect menu.2.
Tick the GC Collect Only and GC Only options in the Advanced Options3.
section:

Improving Performance and Scalability Chapter 10

[359]

Unfortunately, we can't create a large request directly in WebSurge because the4.
Content text box has a character limit. However, we can create a large request in
Postman and then capture this in WebSurge. So, create a large request to post a
question in Postman that includes at least 50,000 characters in the content:

Improving Performance and Scalability Chapter 10

[360]

In WebSurge, on the Session tab, click the Capture option and then click5.
on the Capture option in the window that appears.
Go back to Postman and send the request.6.
Still in Postman, change the question content and send the request again. Repeat7.
this so that we have at least 20 different requests.
Flip back to WebSurge to see the request in the Capture window:8.

Click Stop Capture in the Capture window. Then, click Save and choose a file9.
location for the file.
Close the Capture window. Now, we'll see our large request in the session tab,10.
ready to be load tested:

Improving Performance and Scalability Chapter 10

[361]

Set the load test duration to 60 seconds with 5 threads and start the load test.11.
Quickly move to PerfView and click the Start Collection button so that it starts to12.
collect data about garbage collection as the load test runs.
When the load test finishes, click the Stop Collection button in PerfView.13.
PerfView will take a few more seconds to finish collecting the data.
In the left-hand pane in PerfView, double-click on GCStats, which is under14.
Memory Group in PerfViewData.etl.zip:

We need to find the process for our Q and A app in the list that appears, which is
the first one in the following screenshot:

Improving Performance and Scalability Chapter 10

[362]

Clicking on this process will give us the data that was collected in that process:15.

We are interested in the last row in the preceding table, which is what happened
in the generation 2 garbage collection heap. There was just a single pause due to
garbage collection, which lasted 39.8 milliseconds.

So, the current implementation didn't really suffer any significant impact with garbage
collection. Make sure the REST API has been stopped before we rework this
implementation.

Implementing custom model binding
Now, we are going to rework the implementation of the post question endpoint so that we
have a naive implementation of custom model binding:

First, let's install Newtonsoft.Json via NuGet. We are going to use this library1.
to deserialize the request body.
Now, add the following using statements in QuestionsController.cs:2.

using System.IO;
using Newtonsoft.Json;

In the PostQuestion action method, remove the parameters and manually3.
create the questionPostRequest model using JSON.NET:

[HttpPost]
public async Task<ActionResult<QuestionGetSingleResponse>>
PostQuestion()
{
 var json =
 await new StreamReader(Request.Body).ReadToEndAsync();
 var questionPostRequest =
 JsonConvert.DeserializeObject<QuestionPostRequest>(json);

Improving Performance and Scalability Chapter 10

[363]

 var savedQuestion = _dataRepository.PostQuestion(...);
 ...
}

We also need to flag the method as asynchronous with the async keyword and
return Task because reading the response body is asynchronous. We should, of
course, make the call to the data repository asynchronous as well, but the change
we have made will be fine to demonstrate the garbage collection problem.

This implementation is inefficient for large requests. This is because it will be
processing large string objects that could be placed on the large object heap,
which will be expensive to collect.

Start the REST API in Visual Studio.4.
Set up a PerfView collection to collect garbage collection data, exactly like we did5.
before.
Start the same load test again in WebSurge and start the collection in PerfView.6.
When the load test has finished, stop the collection and look at the data that was7.
collected:

There were 65 objects added to generation 2 in this test, resulting in a total pause
of 1,087 milliseconds. So, there was just over 1 second of a delay due to the
garbage collection process.

Before we finish this section, let's clean a few things up. First, let's revert8.
the PostQuestion action method implementation to the previous version:

[HttpPost]
public ActionResult<QuestionGetSingleResponse>
 PostQuestion(QuestionPostRequest questionPostRequest)
{
 var savedQuestion =
 _dataRepository.PostQuestion(new QuestionPostFullRequest
 {

Improving Performance and Scalability Chapter 10

[364]

 Title = questionPostRequest.Title,
 Content = questionPostRequest.Content,
 UserId = "1",
 UserName = "bob.test@test.com",
 Created = DateTime.UtcNow
 });
 return CreatedAtAction(nameof(GetQuestion), new
 {
 questionId = savedQuestion.QuestionId
 }, savedQuestion);
}

Let's remove the System.IO and Newtonsoft.Json using statements, as well9.
as the Newtonsoft.Json NuGet dependency.
Let's also remove the questions that were generated by the load tests. Open SQL10.
Server Management Studio, right-click on the QandA database in Object
Explorer, and choose New Query. In the query window that opens, add the
following command:

DELETE FROM dbo.Question WHERE QuestionId > 2

Press F5 to run the command, which will take a few seconds to complete.11.

There are two morals to this story. The first is to avoid processing large strings to keep the
garbage collection process nice and efficient. The second is to try to stick to the standard
model binding process because it is very efficient!

Summary
In this chapter, we learned that we can use Dapper's multi-mapping and multi result
features to reduce database round trips to positively impact performance and allow our
REST API to accept more requests per second. We learned also that forcing the client to
page through the data they need to consume helps with performance as well.

We learned how to make controller action methods asynchronous and how it positively
impacts the scalability of a REST API built in ASP.NET Core. We also understood that all of
the I/O calls in a method and child methods need to be asynchronous to achieve scalability
benefits.

We also learned how to cache data in memory to reduce the number of expensive database
calls. We understand that data that is read often and rarely changed is a great case for using
a cache.

Improving Performance and Scalability Chapter 10

[365]

Toward the end of this chapter, we learned how large objects can negatively impact
performance in the garbage collection process. In terms of a web API, it is best to let
ASP.NET Core handle model binding because it is very efficient.

We will continue to focus on the backend in the next chapter and turn our attention to the
topic of security.

Questions
Try to answer the following questions to check the knowledge that you have gained in this
chapter:

We have the following code in a data repository that uses Dapper's multi result1.
feature to return a single order with the many related detail lines in a single
database call:

using (var connection = new SqlConnection(_connectionString))
{
 connection.Open();
 using (GridReader results = connection.QueryMultiple(
 @"EXEC dbo.Order_GetHeader @OrderId = @OrderId;
 EXEC dbo.OrderDetails_Get_ByOrderId @OrderId = @OrderId",
 new { OrderId = orderId }))
 {

 // TODO - Read the order and details from the query result

 return order;
 }
}

What are the missing statements that will read the order and its details from the
results putting the details in the order model? The order model is of the
OrderGetSingleResponse type and contains a Details property of
the IEnumerable<OrderDetailGetResponse> type.

What is the downside of using Dapper's multi-mapping feature when reading2.
data from a many to one-related table in a single database call?
How does data paging help performance?3.
Does making code asynchronous make it faster?4.

Improving Performance and Scalability Chapter 10

[366]

What is the problem with the following asynchronous method?5.

public async AnswerGetResponse GetAnswer(int answerId)
{
 using (var connection = new SqlConnection(_connectionString))
 {
 connection.Open();
 return await connection
 .QueryFirstOrDefaultAsync<AnswerGetResponse>(
 "EXEC dbo.Answer_Get_ByAnswerId @AnswerId = @AnswerId",
 new { AnswerId = answerId });
 }
}

Why it is a good idea to have a size limit on a memory cache?6.
In our QuestionCache implementation, when adding a question to the cache,7.
how can we invalidate that item in the cache after 30 minutes?
When we registered our QuestionCache class for dependency injection, why8.
did we use the AddSingleton method and not the AddScoped method like in
the following code?

services.AddScoped<QuestionCache>();

Further reading
Here are some useful links if you want to learn more about the topics that were covered in
this chapter:

Dapper multi-mapping: https:/ ​/​dapper- ​tutorial. ​net/ ​result- ​multi- ​mapping

Dapper multi results: https:/ ​/​dapper- ​tutorial. ​net/ ​result- ​multi- ​result

Asynchronous programming with async and await: https:/ ​/​docs. ​microsoft.
com/​en- ​us/ ​dotnet/ ​csharp/ ​programming- ​guide/ ​concepts/ ​async/ ​

ASP.NET Core memory cache: https:/ ​/​docs. ​microsoft. ​com/ ​en-​us/ ​aspnet/
core/​performance/ ​caching/ ​memory

ASP.NET Core distributed cache: https:/ ​/ ​docs. ​microsoft. ​com/​en- ​us/ ​aspnet/
core/​performance/ ​caching/ ​distributed

.NET garbage
collection: https://docs.microsoft.com/en-us/dotnet/standard/garbage-col
lection/

David Fowler's ASP.NET Core diagnostic scenarios: https:/ ​/ ​github. ​com/
davidfowl/ ​AspNetCoreDiagnosticScenarios/ ​blob/ ​master/ ​AsyncGuidance. ​md

https://dapper-tutorial.net/result-multi-mapping
https://dapper-tutorial.net/result-multi-mapping
https://dapper-tutorial.net/result-multi-mapping
https://dapper-tutorial.net/result-multi-mapping
https://dapper-tutorial.net/result-multi-mapping
https://dapper-tutorial.net/result-multi-mapping
https://dapper-tutorial.net/result-multi-mapping
https://dapper-tutorial.net/result-multi-mapping
https://dapper-tutorial.net/result-multi-mapping
https://dapper-tutorial.net/result-multi-mapping
https://dapper-tutorial.net/result-multi-mapping
https://dapper-tutorial.net/result-multi-mapping
https://dapper-tutorial.net/result-multi-mapping
https://dapper-tutorial.net/result-multi-mapping
https://dapper-tutorial.net/result-multi-mapping
https://dapper-tutorial.net/result-multi-result
https://dapper-tutorial.net/result-multi-result
https://dapper-tutorial.net/result-multi-result
https://dapper-tutorial.net/result-multi-result
https://dapper-tutorial.net/result-multi-result
https://dapper-tutorial.net/result-multi-result
https://dapper-tutorial.net/result-multi-result
https://dapper-tutorial.net/result-multi-result
https://dapper-tutorial.net/result-multi-result
https://dapper-tutorial.net/result-multi-result
https://dapper-tutorial.net/result-multi-result
https://dapper-tutorial.net/result-multi-result
https://dapper-tutorial.net/result-multi-result
https://dapper-tutorial.net/result-multi-result
https://dapper-tutorial.net/result-multi-result
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/memory
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/memory
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/memory
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/memory
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/memory
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/memory
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/memory
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/memory
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/memory
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/memory
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/memory
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/memory
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/memory
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/memory
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/memory
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/memory
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/memory
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/memory
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/memory
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/memory
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/memory
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/memory
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/distributed
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/distributed
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/distributed
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/distributed
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/distributed
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/distributed
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/distributed
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/distributed
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/distributed
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/distributed
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/distributed
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/distributed
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/distributed
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/distributed
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/distributed
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/distributed
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/distributed
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/distributed
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/distributed
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/distributed
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/distributed
https://docs.microsoft.com/en-us/aspnet/core/performance/caching/distributed
https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/
https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/
https://github.com/davidfowl/AspNetCoreDiagnosticScenarios/blob/master/AsyncGuidance.md
https://github.com/davidfowl/AspNetCoreDiagnosticScenarios/blob/master/AsyncGuidance.md
https://github.com/davidfowl/AspNetCoreDiagnosticScenarios/blob/master/AsyncGuidance.md
https://github.com/davidfowl/AspNetCoreDiagnosticScenarios/blob/master/AsyncGuidance.md
https://github.com/davidfowl/AspNetCoreDiagnosticScenarios/blob/master/AsyncGuidance.md
https://github.com/davidfowl/AspNetCoreDiagnosticScenarios/blob/master/AsyncGuidance.md
https://github.com/davidfowl/AspNetCoreDiagnosticScenarios/blob/master/AsyncGuidance.md
https://github.com/davidfowl/AspNetCoreDiagnosticScenarios/blob/master/AsyncGuidance.md
https://github.com/davidfowl/AspNetCoreDiagnosticScenarios/blob/master/AsyncGuidance.md
https://github.com/davidfowl/AspNetCoreDiagnosticScenarios/blob/master/AsyncGuidance.md
https://github.com/davidfowl/AspNetCoreDiagnosticScenarios/blob/master/AsyncGuidance.md
https://github.com/davidfowl/AspNetCoreDiagnosticScenarios/blob/master/AsyncGuidance.md
https://github.com/davidfowl/AspNetCoreDiagnosticScenarios/blob/master/AsyncGuidance.md
https://github.com/davidfowl/AspNetCoreDiagnosticScenarios/blob/master/AsyncGuidance.md
https://github.com/davidfowl/AspNetCoreDiagnosticScenarios/blob/master/AsyncGuidance.md
https://github.com/davidfowl/AspNetCoreDiagnosticScenarios/blob/master/AsyncGuidance.md
https://github.com/davidfowl/AspNetCoreDiagnosticScenarios/blob/master/AsyncGuidance.md
https://github.com/davidfowl/AspNetCoreDiagnosticScenarios/blob/master/AsyncGuidance.md

11
Securing the Backend

In this chapter, we'll implement authentication and authorization in our Q and A app. We
will use a popular service called Auth0, which implements OpenID Connect (OIDC), to
help us to do this. We will start by understanding what OIDC is and why it is a good choice
before getting our app to interact with Auth0.

At the moment, our web API is accessible by unauthenticated users, which is a security
vulnerability. We will resolve the vulnerability by protecting the necessary endpoints with
simple authorization. This will mean that only authenticated users can access protected
resources.

Authenticated users shouldn't have access to everything though. We will learn how to
ensure authenticated users only get access to what they are allowed to by using custom
authorization policies.

We'll also learn how to get details about the authenticated user so that we can include these
when questions and answers are saved to the database.

In this chapter, we'll cover the following topics:

Understanding OpenID Connect
Setting up Auth0 with our ASP.NET Core backend
Protecting endpoints
Using the authenticated user when posting questions and answers

Securing the Backend Chapter 11

[368]

Technical requirements
We'll use the following tools and services in this chapter:

Visual Studio 2019: We'll use this to edit our ASP.NET Core code.
.NET Core 3.0: This can be downloaded and installed from https:/ ​/​dotnet.
microsoft. ​com/ ​download/ ​dotnet- ​core.
Auth0: We will use this to authenticate and manage users. The service is free to
try and do some testing with, and an account can be created at https:/ ​/​auth0.
com/​signup.
Postman: We'll use this to try out the changes to our REST API in this chapter.
This can be downloaded from https:/ ​/​www. ​getpostman. ​com/ ​downloads/ ​.
Q and A: We'll start with the Q and A backend in the Chapter10 folder in the
GitHub repository at https:/ ​/​github. ​com/ ​PacktPublishing/ ​ASP. ​NET- ​Core- ​3-
and-​React- ​17. This is the project we finished in the last chapter in addition to all
our asynchronous action methods. You must start from this project rather than
the one you completed in the last chapter.

All of the code snippets in this chapter can be found online at https:/ ​/​github. ​com/
PacktPublishing/​ASP. ​NET- ​Core- ​3- ​and- ​React- ​17. To restore code from a chapter, the
source code repository can be downloaded and the relevant folder opened in the relevant
editor. If the code is frontend code, then npm install can be entered in the Terminal to
restore the dependencies.

Check out the following video to see the code in action:

http:/​/​bit.​ly/​2EPQ8DY

Understanding OIDC
Before we understand OIDC, let's make sure we understand authentication and
authorization. Authentication verifies that the user is who they say they are. In our app, the
user will enter their email and password to prove who they are. Authorization decides
whether a user has permission to access a resource. In our app, some of the REST API
endpoints, such as posting a question, will eventually be protected by authorization checks.

https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://auth0.com/signup
https://auth0.com/signup
https://auth0.com/signup
https://auth0.com/signup
https://auth0.com/signup
https://auth0.com/signup
https://auth0.com/signup
https://auth0.com/signup
https://www.getpostman.com/downloads/
https://www.getpostman.com/downloads/
https://www.getpostman.com/downloads/
https://www.getpostman.com/downloads/
https://www.getpostman.com/downloads/
https://www.getpostman.com/downloads/
https://www.getpostman.com/downloads/
https://www.getpostman.com/downloads/
https://www.getpostman.com/downloads/
https://www.getpostman.com/downloads/
https://www.getpostman.com/downloads/
https://www.getpostman.com/downloads/
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
http://bit.ly/2EPQ8DY
http://bit.ly/2EPQ8DY
http://bit.ly/2EPQ8DY
http://bit.ly/2EPQ8DY
http://bit.ly/2EPQ8DY
http://bit.ly/2EPQ8DY
http://bit.ly/2EPQ8DY
http://bit.ly/2EPQ8DY
http://bit.ly/2EPQ8DY

Securing the Backend Chapter 11

[369]

OIDC is an industry-standard way of handling both authentication and authorization as
well as other user-related operations. This works well for a wide variety of architectures
including single-page applications (SPAs) such as ours where there is a JavaScript client
and a server-side REST API that need to be secured.

The following diagram shows the high-level flow of a user of our app being authenticated
and then gaining access to protected resources in the REST API:

Here are some more details of the steps that take place:

The client makes an authorization request to an identity provider because it1.
wants to get access to a protected resource in the REST API.
The client is redirected to the identity provider so that the user can enter their2.
credentials to prove who they are.
The identity provider then generates a code and redirects back to the client with3.
the code.
The client then makes a web API request containing the generated code to get an4.
access code. The identity provider validates the code and responds with an
access token.
The client can then access protected resources in the REST API by including the5.
access token in the requests.

Securing the Backend Chapter 11

[370]

Notice that our app never handles user credentials. When user authentication is required,
the user will be redirected to the identity provider to carry out this process. Our app only
ever deals with a secure token, which is referred to as an access token, which is a long
encoded string. This token is in JSON Web Token (JWT) format, which again is industry
standard. The content of a JWT can be inspected using the following website: https:/ ​/​jwt.
io/​:

There are three parts to a JWT separated by dots and they appear as different colors in
jwt.io:

HEADER
PAYLOAD
SIGNATURE

The header usually contains the type of the token in a typ field and the signing algorithm
being used in an alg field. So, the preceding token is a JWT that uses an RSA signature
with the SHA-256 asymmetric algorithm. There also is a kid field in the header, which is
an opaque identifier that can be used to identify the key that was used to sign the JWT.

https://jwt.io/
https://jwt.io/
https://jwt.io/
https://jwt.io/
https://jwt.io/
https://jwt.io/
https://jwt.io/

Securing the Backend Chapter 11

[371]

The payload of JWTs vary but the following fields are often included:

iss: This is the identity provider that issued the token.
sub: This is short for subject and is the user's identifier. This will be UserId for
our app.
aud: This is the intended audience. For our app, this will contain the name of our
REST API.
iat: This is when the JWT was issued. This is in Unix epoch time format, which
is the seconds that have passed since January 1, 1970.
exp: This is when the token expires and again is in Unix epoch time format.
azp: This is the party to which the token was issued, which is a unique identifier
for the client using the JWT. This will be the client ID of our React app in our
case.
scope: This is what the client can get access to. For our app, this is the REST API
as well as user profile information and their email address.
The openid scope allows the client to verify a user's identity.

OIDC deals with securely storing passwords, authenticating users, generating access
tokens, and much more. Being able to leverage an industry-standard technology such as
OIDC not only saves us lots of time but also gives us the peace of mind that the
implementation is very secure and will receive updates as attackers get smarter.

What we have just learned is implemented by Auth0. We'll start to use Auth0 in the next
section.

Setting up Auth0 with our ASP.NET Core
backend
Auth0 is a service that implements OpenID Connect. In this section, we are going to set up
Auth0 and integrate it into our ASP.NET Core backend.

Securing the Backend Chapter 11

[372]

Setting up Auth0
Let's carry out the following steps to set up Auth0 as our identity provider:

If you haven't already got an Auth0 account, sign up at https:/ ​/ ​auth0. ​com/1.
signup.
Once we have an Auth0 account and have logged in, we need to change2.
the default audience in our tenant settings. To get to our tenant settings, click on
the user avatar and choose Settings:

The Default Audience option is in the API Authorization Settings section.3.
Change this to https://qanda:

https://auth0.com/signup
https://auth0.com/signup
https://auth0.com/signup
https://auth0.com/signup
https://auth0.com/signup
https://auth0.com/signup
https://auth0.com/signup
https://auth0.com/signup

Securing the Backend Chapter 11

[373]

This tells Auth0 to add https://qanda to the aud payload field in the JWT it
generates. This setting triggers Auth0 to generate access tokens in JWT
format. Our ASP.NET Core backend will also check that access tokens contain this
data before granting access to protected resources.

Next, we are going to tell Auth0 about our React frontend. On the left-hand4.
navigation menu, click Applications and then click the Create Application
button.
Select the Single Page Web Applications application type and click the5.
CREATE button:

Our SPA client configuration will then be created.

We need to change a few settings in the SPA client configuration, so select the6.
Settings tab and set the following settings:

The Name will appear on the login screen, so change it to QandA.
We need to specify the origin of the frontend in the Allowed Web
Origins setting. So, let's set this to http://localhost:3000.

Securing the Backend Chapter 11

[374]

We need to specify the page Auth0 will redirect back to after a
successful login in the Allowed Callback URLs setting. So, set this
to http://localhost:3000/signin-callback. We will implement
the signin-callback page in our frontend in Chapter 12, Interacting
with RESTful APIs.
Similarly, we need to specify the page Auth0 will redirect back to after
a successful logout in the Allowed Logout URLs setting. So, set this
to http://localhost:3000/signout-callback. We will
implement the signout-callback page in our frontend in Chapter
12, Interacting with RESTful APIs.
Don't forget to scroll to the bottom of the page and click the Save
Changes button after entering these settings.

We now need to tell Auth0 about our ASP.NET Core backend. On the left-hand7.
navigation menu, click APIs and then click the Create API button:

Securing the Backend Chapter 11

[375]

The Name can be anything we choose, but the Identifier setting must match the
default audience we set on the tenant. Make sure the Signing Algorithm is RS256
and then click the CREATE button.

That completes the setup of Auth0.

Configuring our ASP.NET Core backend to
authenticate with Auth0
We can now change our ASP.NET Core backend to authenticate with Auth0. Let's open the
backend project in Visual Studio and carry out the following steps:

Install the following NuGet package:1.

Microsoft.AspNetCore.Authentication.JwtBearer

Add the following using statement to the Startup class:2.

using Microsoft.AspNetCore.Authentication.JwtBearer;

Make sure the version of the package you select is supported by the
version of .NET Core you are using. So, for example, if you are targeting
.NET Core 3.0, then select the package version 3.0.0.

Add the following lines to the ConfigureServices method in the Startup3.
class:

public void ConfigureServices(IServiceCollection services)
{
 ...
 services.AddAuthentication(options =>
 {
 options.DefaultAuthenticateScheme =
 JwtBearerDefaults.AuthenticationScheme;
 options.DefaultChallengeScheme =
 JwtBearerDefaults.AuthenticationScheme;
 }).AddJwtBearer(options =>
 {
 options.Authority = Configuration["Auth0:Authority"];
 options.Audience = Configuration["Auth0:Audience"];
 });
}

Securing the Backend Chapter 11

[376]

This adds JWT-based authentication specifying the authority and expected
audience as the appsettings.json settings.

Let's add the authentication middleware in the Configure method. It needs to4.
be placed between the routing and authorization middleware:

public void Configure(IApplicationBuilder app, IWebHostEnvironment
env)
{
 ...
 app.UseRouting();
 app.UseAuthentication();
 app.UseAuthorization();
 ...
}

This will validate the access token in each request if one exists. If the check
succeeds, the user on the request context will be set.

The final step is to add the settings in appsettings.json, which we have5.
referenced:

{
 ...,
 "Auth0": {
 "Authority": "https://your-tenant-id.auth0.com/",
 "Audience": "https://qanda"
 }
}

We will need to substitute our Auth0 tenant ID into the Authority field. The
tenant ID can be found in Auth0 to the left of the user avatar:

So, Authority for the preceding tenant is
https://your-tenant-id.auth0.com/. The Audience field needs to match
the audience we specified in Auth0.

Now that our web API is validating access tokens in the requests, we are going to start
protecting some endpoints in the next section.

Securing the Backend Chapter 11

[377]

Protecting endpoints
We are going to start this section by protecting the questions endpoint for adding,
updating, and deleting questions as well as posting answers so that only authenticated
users can do these operations. We will then move on to implement and use a custom
authorization policy so that only the author of the question can update or delete it.

Protecting endpoints with simple authorization
Let's protect the questions endpoint for the POST, PUT, and DELETE HTTP methods by
carrying out these steps:

Open QuestionsController and add the following using statements:1.

using Microsoft.AspNetCore.Authorization;

To secure the actions, we decorate them with an Authorize attribute:2.

[Authorize]
[HttpPost]
public async ... PostQuestion(QuestionPostRequest
questionPostRequest)
...

[Authorize]
[HttpPut("{questionId}")]
public async ... PutQuestion(int questionId, QuestionPutRequest
questionPutRequest)
...

[Authorize]
[HttpDelete("{questionId}")]
public async ... DeleteQuestion(int questionId)
...

[Authorize]
[HttpPost("answer")]
public async ... PostAnswer(AnswerPostRequest answerPostRequest)
...

Run the Visual Studio project by pressing F5. We'll notice, as the browser opens3.
with the api/questions path, that the data is successfully returned. This means
that the GetQuestions action method is unprotected, as we expected.

Securing the Backend Chapter 11

[378]

Open Postman now and try to post a question:4.

We receive a response with status code 401 Unauthorized. This shows that
this action method is now protected.

We can obtain a test access token from Auth0 to check that we can post a5.
question with a valid token. In Auth0, click on APIs in the left-hand navigation
menu and then our QandA API.
Click on the Test tab and we will see a token that we can use for testing6.
purposes.
Click the COPY TOKEN option to copy the access token to the clipboard:7.

Securing the Backend Chapter 11

[379]

Back in Postman, we need to add this token in an Authorization HTTP header8.
after the word bearer and the space:

If we send the request, it will now be successful:9.

Press Shift + F5 to stop the Visual Studio project from running so that we can add10.
more code.

Securing the Backend Chapter 11

[380]

So, once the authentication middleware is in place, the Authorize attribute protects action
methods. If a whole controller needs to be protected, the Authorize attribute can decorate
the controller class:

[Authorize]
[Route("api/[controller]")]
[ApiController]
public class QuestionsController : ControllerBase

All of the action methods in the controller will then be protected without having to specify
the Authorize attribute. We can also unprotect action methods in a protected controller by
using the AllowAnonymous attribute:

[AllowAnonymous]
[HttpGet]
public IEnumerable<QuestionGetManyResponse> GetQuestions(string search,
bool includeAnswers, int page = 1, int pageSize = 20)

So, in our example, we could have protected the whole controller using
the Authorize attribute and unprotected the GetQuestions, GetUnansweredQuestions,
and GetQuestion action methods with the AllowAnonymous attribute to achieve the
behavior we want.

Protecting endpoints with a custom authorization
policy
At the moment, any authenticated user can update or delete questions. We are going to
implement and use a custom authorization policy and use it to enforce that only the author
of the question can do these operations. Let's carry out the following steps:

In the Startup class, let's add the following using statements:1.

using Microsoft.AspNetCore.Http;
using Microsoft.AspNetCore.Authorization;
using QandA.Authorization;

Note that the reference to the QandA.Authorization namespace doesn't
exist yet. We'll implement this in a later step.

Securing the Backend Chapter 11

[381]

We'll need to eventually call an Auth0 web service, so let's make the HTTP client2.
available in the ConfigureServices method. Let's also add an authorization
policy called MustBeQuestionAuthor:

public void ConfigureServices(IServiceCollection services)
{
 ...
 services.AddHttpClient();
 services.AddAuthorization(options =>
 options.AddPolicy("MustBeQuestionAuthor", policy =>
 policy.Requirements
 .Add(new MustBeQuestionAuthorRequirement())));
}

The authorization policy has its requirements defined in a class called
MustBeQuestionAuthorRequirement, which we'll implement in a later
step.

We also need to have a handler for the requirement, so let's register this for3.
dependency injection:

public void ConfigureServices(IServiceCollection services)
{
 ...
 services.AddHttpClient();
 services.AddAuthorization(...);
 services.AddScoped<
 IAuthorizationHandler,
 MustBeQuestionAuthorHandler>();
}

So, the handler for MustBeQuestionAuthorRequirement will be
implemented in a class called MustBeQuestionAuthorHandler.

Our MustBeQuestionAuthorHandler class will need access to the HTTP4.
requests to find out the question that is being requested. We need to register
HttpContextAccessor for dependency injection to get access to the HTTP
request information in a class. Let's do this now:

public void ConfigureServices(IServiceCollection services)
{
 ...
 services.AddHttpClient();
 services.AddAuthorization(...);
 services.AddScoped<
 IAuthorizationHandler,

Securing the Backend Chapter 11

[382]

 MustBeQuestionAuthorHandler>();
 services.AddSingleton<
 IHttpContextAccessor,
 HttpContextAccessor>();
}

We are going to create the MustBeQuestionAuthorRequirement class now.5.
Let's create a folder called Authorization in the root of the project and then
create a class called MustBeQuestionAuthorRequirement containing the
following:

using Microsoft.AspNetCore.Authorization;

namespace QandA.Authorization
{
 public class MustBeQuestionAuthorRequirement :
 IAuthorizationRequirement
 {
 public MustBeQuestionAuthorRequirement()
 {
 }
 }
}

Next, we'll create the handler class for this requirement. Create a class called6.
MustBeQuestionAuthorHandler with the following content:

using System;
using System.Security.Claims;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Authorization;
using Microsoft.AspNetCore.Http;
using QandA.Data;

namespace QandA.Authorization
{
 public class MustBeQuestionAuthorHandler :
 AuthorizationHandler<MustBeQuestionAuthorRequirement>
 {
 private readonly IDataRepository _dataRepository;
 private readonly IHttpContextAccessor _httpContextAccessor;

 public MustBeQuestionAuthorHandler(
 IDataRepository dataRepository,
 IHttpContextAccessor httpContextAccessor)
 {
 _dataRepository = dataRepository;

Securing the Backend Chapter 11

[383]

 _httpContextAccessor = httpContextAccessor;
 }

 protected async override Task
 HandleRequirementAsync(
 AuthorizationHandlerContext context,
 MustBeQuestionAuthorRequirement requirement)
 {
 // TODO - check that the user is authenticated
 // TODO - get the question id from the request
 // TODO - get the user id from the name identifier claim
 // TODO - get the question from the data repository
 // TODO - if the question can't be found go to the next piece
of middleware
 // TODO - return failure if the user id in the question from
the data repository is different to the user id in the request
 // TODO - return success if we manage to get here
 }
 }
}

This inherits from the AuthorizationHandler class, which takes in the
requirement it is handling as a generic parameter. We have injected the data
repository and the HTTP context into the class.

We now need to implement the HandleRequirementAsync method. The first7.
task is to check that the user is authenticated:

protected async override Task
 HandleRequirementAsync(
 AuthorizationHandlerContext context,
 MustBeQuestionAuthorRequirement requirement)
{
 if (!context.User.Identity.IsAuthenticated)
 {
 context.Fail();
 return;
 }
 // TODO - get the question id from the request
 // TODO - get the user id from the name identifier claim
 // TODO - get the question from the data repository
 // TODO - if the question can't be found go to the next piece of
middleware
 // TODO - return failure if the user id in the question from the
data repository is different to the user id in the request
 // TODO - return success if we manage to get here
}

Securing the Backend Chapter 11

[384]

The context parameter in the method contains information about the user's
identity in an Identity property. We use the IsAuthenticated property
with the Identity object to determine whether the user is authenticated or
not. We call the Fail method on the context argument to tell it that the
requirement failed.

Next, we need to get questionId from the request path:8.

protected async override Task
 HandleRequirementAsync(
 AuthorizationHandlerContext context,
 MustBeQuestionAuthorRequirement requirement)
{
 if (!context.User.Identity.IsAuthenticated)
 {
 context.Fail();
 return;
 }

 var questionId =
 _httpContextAccessor.HttpContext.Request
 .RouteValues["questionId"];
 int questionIdAsInt = Convert.ToInt32(questionId);
 // TODO - get the user id from the name identifier claim
 // TODO - get the question from the data repository
 // TODO - if the question can't be found go to the next piece of
middleware
 // TODO - return failure if the user id in the question from the
data repository is different to the user id in the request
 // TODO - return success if we manage to get here
}

We use the RouteValues dictionary within the HTTP context request to get
access to this.

Next, we need to get userId from the user's identity claims:9.

protected async override Task
 HandleRequirementAsync(
 AuthorizationHandlerContext context,
 MustBeQuestionAuthorRequirement requirement)
{
 ...
 var questionId =
 _httpContextAccessor.HttpContext.Request
 .RouteValues["questionId"];
 int questionIdAsInt = Convert.ToInt32(questionId);

Securing the Backend Chapter 11

[385]

 var userId =
 context.User.FindFirst(ClaimTypes.NameIdentifier).Value;
 // TODO - get the question from the data repository
 // TODO - if the question can't be found go to the next piece of
middleware
 // TODO - return failure if the user id in the question from the
data repository is different to the user id in the request
 // TODO - return success if we manage to get here
}

userId is stored in the name identifier claim.

A claim is information about a user from a trusted source. A
claim represents what the subject is, not what the subject can do. The
ASP.NET Core authentication middleware automatically puts userId in a
name identifier claim for us.

We have used the FindFirst method on the User object from the context
parameter to get the value of the name identifier claim. The User object is
populated with the claims by the authentication middleware earlier in the
request pipeline after it has read the access token.

We can now get the question from the data repository. If the question isn't found,10.
we want to pass the requirement because we want to return HTTP status code
404 (not found) rather than 401 (unauthorized). The action method in the
controller will then be able to execute and return the 404 HTTP status code:

protected async override Task
 HandleRequirementAsync(
 AuthorizationHandlerContext context,
 MustBeQuestionAuthorRequirement requirement)
{
 ...
 var userId =
 context.User.FindFirst(ClaimTypes.NameIdentifier).Value;

 var question =
 await _dataRepository.GetQuestion(questionIdAsInt);
 if (question == null)
 {
 // let it through so the controller can return a 404
 context.Succeed(requirement);
 return;
 }
 // TODO - return failure if the user id in the question from the
data repository is different to the user id in the request

Securing the Backend Chapter 11

[386]

 // TODO - return success if we manage to get here
}

We can then check that userId in the request matches the question in the11.
database and return Fail if not:

protected async override Task
 HandleRequirementAsync(
 AuthorizationHandlerContext context,
 MustBeQuestionAuthorRequirement requirement)
{
 ...

 var question =
 await _dataRepository.GetQuestion(questionIdAsInt);
 if (question == null)
 {
 // let it through so the controller can return a 404
 context.Succeed(requirement);
 return;
 }

 if (question.UserId != userId)
 {
 context.Fail();
 return;
 }

 context.Succeed(requirement);
}

The final task is to add the policy we have just created to the Authorize12.
attribute on the relevant action methods in the question controller:

[Authorize(Policy = "MustBeQuestionAuthor")]
[HttpPut("{questionId}")]
public ... PutQuestion(int questionId, QuestionPutRequest
questionPutRequest)
...

[Authorize(Policy = "MustBeQuestionAuthor")]
[HttpDelete("{questionId}")]
public ... DeleteQuestion(int questionId)
...

We have now applied our authorization policy to updating and deleting a
question.

Securing the Backend Chapter 11

[387]

Unfortunately, we can't use the test access token that Auth0 gives us to try this
out but we will circle back to this and confirm that it works in Chapter 12,
Interacting with RESTful APIs.

Custom authorization policies give us lots of flexibility and power to implement
complex authorization rules. As we have just experienced in our example, a single policy
can be implemented centrally and used on different action methods.

Using the authenticated user when posting
questions and answers
Now that our REST API knows about the user interacting with it, we can use this to post
the correct user against questions and answers. Let's carry out the following steps:

We'll start by adding the following using statements in1.
QuestionsController.cs:

using System.Security.Claims;
using Microsoft.Extensions.Configuration;
using System.Net.Http;
using System.Text.Json;

Let's focus on posting a question first and by posting it with the authenticated2.
user's ID:

public async ...
 PostQuestion(QuestionPostRequest questionPostRequest)
{
 var savedQuestion =
 await _dataRepository.PostQuestion(new QuestionPostFullRequest
 {
 Title = questionPostRequest.Title,
 Content = questionPostRequest.Content,
 UserId = User.FindFirst(ClaimTypes.NameIdentifier).Value,
 UserName = "bob.test@test.com",
 Created = DateTime.UtcNow
 });
 ...
}

ControllerBase contains a User property that gives us information about
the authenticated user including the claims. So, we use the FindFirst
method to get the value of the name identifier claim.

Securing the Backend Chapter 11

[388]

Unfortunately, the username isn't in the JWT, so we are going to need to get this3.
from Auth0. Let's create a model that will represent an Auth0 user. Create a new
class called User in the Models folder with the following content:

namespace QandA.Data.Models
{
 public class User
 {
 public string Name { get; set; }
 }
}

Note that there is more user information that we can get from Auth0 but we are
only interested in the username in our app.

Now, inject the HTTP client as well as the path to get information about the user4.
from Auth0 into QuestionsController:

...
private readonly IHttpClientFactory _clientFactory;
private readonly string _auth0UserInfo;

public QuestionsController(
 ...,
 IHttpClientFactory clientFactory,
 IConfiguration configuration)
{
 ...
 _clientFactory = clientFactory;
 _auth0UserInfo = $"{configuration["Auth0:Authority"]}userinfo";
}

Let's create a method that will call Auth0 to get the username:5.

private async Task<string> GetUserName()
{
 var request = new HttpRequestMessage(
 HttpMethod.Get,
 _auth0UserInfo);
 request.Headers.Add(
 "Authorization",
 Request.Headers["Authorization"].First());

 var client = _clientFactory.CreateClient();

 var response = await client.SendAsync(request);

Securing the Backend Chapter 11

[389]

 if (response.IsSuccessStatusCode)
 {
 var jsonContent =
 await response.Content.ReadAsStringAsync();
 var user =
 JsonSerializer.Deserialize<User>(
 jsonContent,
 new JsonSerializerOptions
 {
 PropertyNameCaseInsensitive = true
 });
 return user.Name;
 }
 else
 {
 return "";
 }
}

We make a GET HTTP request to the Auth0 user information endpoint with
the Authorization HTTP header from the current request to the ASP.NET
Core backend. This HTTP header will contain the access token that will give
us access to the Auth0 endpoint.

If the request is successful, we parse the response body into our User model.
Notice that we use the new JSON serializer in .NET Core 3.0. Notice also that
we specify case-insensitive property mapping so that the camel case fields in
the response map correctly to the title case properties in the class.

Use the username in the PostQuestion method now:6.

public async ... PostQuestion(QuestionPostRequest
questionPostRequest)
{
 var savedQuestion = await _dataRepository.PostQuestion(new
QuestionPostFullRequest
 {
 Title = questionPostRequest.Title,
 Content = questionPostRequest.Content,
 UserId = User.FindFirst(ClaimTypes.NameIdentifier).Value,
 UserName = await GetUserName(),
 Created = DateTime.UtcNow
 });
 ...
}

Securing the Backend Chapter 11

[390]

Do the same in the PostAnswer action method:7.

[Authorize]
[HttpPost("answer")]
public ActionResult<AnswerGetResponse> PostAnswer(AnswerPostRequest
answerPostRequest)
{
 ...
 var savedAnswer = _dataRepository.PostAnswer(new
AnswerPostFullRequest
 {
 QuestionId = answerPostRequest.QuestionId.Value,
 Content = answerPostRequest.Content,
 UserId = User.FindFirst(ClaimTypes.NameIdentifier).Value,
 UserName = await GetUserName(),
 Created = DateTime.UtcNow
 });
 ...
}

Unfortunately, we can't use the test access token that Auth0 gives us to try this
out because it doesn't have a user associated with it. However, we will circle back
to this and confirm that it works in Chapter 12, Interacting with RESTful APIs.

Our question controller is interacting with the authenticated user nicely now.

Summary
Auth0 is an OIDC identity provider that we can leverage to authenticate and authorize
clients. An access token in JWT format is available from an identity provider when a
successful sign in has been made. An access token can be used in requests to access
protected resources.

ASP.NET Core can validate JWTs by first using the AddAuthentication method in
the ConfigureServices method in the Startup class and then UseAuthentication in
the Configure method.

Once authentication has been added to the request pipeline, REST API resources can be
protected by decorating the controller and action methods using the Authorize attribute.
Protected action methods can then be unprotected by using the AllowAnonymous attribute.
We can access information about a user, such as their claims, via a controller's User
property.

Securing the Backend Chapter 11

[391]

Custom policies are a powerful way to allow a certain set of users get access to protected
resources. Requirement and handler classes must be implemented that define the policy
logic. The policy can be applied to an endpoint using the Authorize attribute by passing in
the policy name as a parameter.

Our backend is close to completion now. In the next chapter, we'll turn our attention back
to the frontend and start to interact with the backend we have built.

Questions
Let's answer the following questions to practice what we have learned in this chapter:

In the Configure method in the Startup class, what is wrong with the1.
following:

public void Configure(...)
{
 ...
 app.UseEndpoints(...);
 app.UseAuthentication();
}

What attribute can be added to a protected action method to allow2.
unauthenticated users to access it?
We are building an app with an ASP.NET Core backend and using an identity3.
provider to authenticate users. The default audience has been set to
http://my-app in the identity provider, and we have configured the
authentication service in our ASP.NET Core backend as follows:

services.AddAuthentication(options =>
{
 options.DefaultAuthenticateScheme =
 JwtBearerDefaults.AuthenticationScheme;
 options.DefaultChallengeScheme =
 JwtBearerDefaults.AuthenticationScheme;
}).AddJwtBearer(options =>
{
 ...
 options.Audience = "https://myapp";
});

When we try to access protected resources in our ASP.NET Core backend,
we receive an HTTP status code 401. What is the problem here?

Securing the Backend Chapter 11

[392]

A JWT has the following decoded payload data. What date and time does it4.
expire:

{
 "nbf": 1559876843,
 "auth_time": 1559876843,
 "exp": 1559900000,
 ...
}

We have a valid access token from an identity provider and are using it to access5.
a protected resource. We have set the following HTTP header in the request:

Authorisation: bearer some-access-token

We receive an HTTP status code 401 from the request though. What is the
problem?

How can we access HTTP request information in a class outside of an API6.
controller?
In an API controller, how can we access an authenticated user ID?7.

Further reading
Here are some useful links to learn more about the topics covered in this chapter:

Open ID Connect: https:/ ​/​openid. ​net/ ​connect/ ​

ASP.NET Core Security and Identity: https:/ ​/​docs. ​microsoft. ​com/ ​en-​us/
aspnet/​core/ ​security

JSON Web Tokens: https:/ ​/​jwt.​io/ ​introduction/ ​

Auth0: https:/ ​/ ​auth0. ​com/ ​docs

https://openid.net/connect/
https://openid.net/connect/
https://openid.net/connect/
https://openid.net/connect/
https://openid.net/connect/
https://openid.net/connect/
https://openid.net/connect/
https://openid.net/connect/
https://openid.net/connect/
https://openid.net/connect/
https://docs.microsoft.com/en-us/aspnet/core/security
https://docs.microsoft.com/en-us/aspnet/core/security
https://docs.microsoft.com/en-us/aspnet/core/security
https://docs.microsoft.com/en-us/aspnet/core/security
https://docs.microsoft.com/en-us/aspnet/core/security
https://docs.microsoft.com/en-us/aspnet/core/security
https://docs.microsoft.com/en-us/aspnet/core/security
https://docs.microsoft.com/en-us/aspnet/core/security
https://docs.microsoft.com/en-us/aspnet/core/security
https://docs.microsoft.com/en-us/aspnet/core/security
https://docs.microsoft.com/en-us/aspnet/core/security
https://docs.microsoft.com/en-us/aspnet/core/security
https://docs.microsoft.com/en-us/aspnet/core/security
https://docs.microsoft.com/en-us/aspnet/core/security
https://docs.microsoft.com/en-us/aspnet/core/security
https://docs.microsoft.com/en-us/aspnet/core/security
https://docs.microsoft.com/en-us/aspnet/core/security
https://docs.microsoft.com/en-us/aspnet/core/security
https://jwt.io/introduction/
https://jwt.io/introduction/
https://jwt.io/introduction/
https://jwt.io/introduction/
https://jwt.io/introduction/
https://jwt.io/introduction/
https://jwt.io/introduction/
https://jwt.io/introduction/
https://jwt.io/introduction/
https://jwt.io/introduction/
https://auth0.com/docs
https://auth0.com/docs
https://auth0.com/docs
https://auth0.com/docs
https://auth0.com/docs
https://auth0.com/docs
https://auth0.com/docs
https://auth0.com/docs
https://auth0.com/docs

12
Interacting with RESTful APIs

Having completed the REST API, it's now time to interact with it in our React frontend app.
We will start by interacting with the unauthenticated endpoints to get questions by using
the browser's fetch function. We will deal with the situation when a user navigates away
from a page before data is fetched, preventing state errors.

We will leverage the Auth0 tenant we set up in the last chapter to securely sign users in and
out of our app. We will then use the access token from Auth0 to access protected
endpoints. We will also make sure that only authenticated users are able to see options that
they have permission to perform.

At the end of this chapter, our frontend will be fully interacting with the backend securely
and robustly.

In this chapter, we'll cover the following topics:

Using fetch to interact with unauthenticated REST API endpoints
Interacting with Auth0 from the frontend
Controlling authenticated options
Using fetch to interact with authenticated REST API endpoints
Stopping a data state being set if the user navigates away from the page

Technical requirements
We'll use the following tools and services in this chapter:

Visual Studio Code: We'll use this to edit our React code. This can be
downloaded and installed from https:/ ​/​code. ​visualstudio. ​com/ ​.
Node.js and npm: These can be downloaded from https:/ ​/​nodejs. ​org/​. If you
already have these installed, make sure that Node.js is at least version 8.2 and
that npm is at least version 5.2.

https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/

Interacting with RESTful APIs Chapter 12

[394]

Visual Studio 2019: We'll use this to run our ASP.NET Core code backend. This
can be downloaded and installed from https:/ ​/​visualstudio. ​microsoft. ​com/
vs/​.
.NET Core 3.0: This can be downloaded and installed from https:/ ​/​dotnet.
microsoft. ​com/ ​download/ ​dotnet- ​core.
Auth0: We will use the tenant we set up in the last chapter to authenticate and
manage users.
Q and A: We'll start with the Q and A frontend project that is available
at https:/ ​/​github. ​com/ ​PacktPublishing/ ​ASP. ​NET- ​Core- ​3-​and- ​React- ​17, in the
Start, folder in the Chapter12 folder. It is important to start from this project
for all of the code to work correctly in this chapter.

All of the code snippets in this chapter can be found online at https:/ ​/​github. ​com/
PacktPublishing/​ASP. ​NET- ​Core- ​3- ​and- ​React- ​17. To restore code from a chapter, the
source code repository can be downloaded and the relevant folder opened in the relevant
editor. If the code is frontend code, then npm install can be entered in the Terminal to
restore the dependencies.

Check out the following video to see the code in action:

http:/​/​bit.​ly/​35XyLgv

Using fetch to interact with unauthenticated
REST API endpoints
In this section, we are going to use the native fetch function to get unanswered questions
from our real REST API. We are then going to use a wrapper function over fetch to make
interacting with our backend a little easier. This approach will also centralize our code that
interacts with the REST API, which is beneficial when we want to make improvements to it.
We'll then move on to using the real REST API to get a single question and search for
questions.

https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
http://bit.ly/35XyLgv
http://bit.ly/35XyLgv
http://bit.ly/35XyLgv
http://bit.ly/35XyLgv
http://bit.ly/35XyLgv
http://bit.ly/35XyLgv
http://bit.ly/35XyLgv
http://bit.ly/35XyLgv
http://bit.ly/35XyLgv

Interacting with RESTful APIs Chapter 12

[395]

Getting unanswered questions from the REST
API
We are going to start interacting with the REST API on the home page when displaying the
list of unanswered questions. The HomePage component won't actually change, but
the getUnansweredQuestions function in QuestionsData.ts will.
In getUnansweredQuestions, we'll leverage the native browser fetch function to interact
with our REST API. If you haven't already, let's open Visual Studio Code and carry out the
following steps:

Open QuestionsData.ts, find the getUnansweredQuestions function, and1.
replace the implementation with the following content:

export const getUnansweredQuestions = async ():
Promise<QuestionData[]> => {
 let unansweredQuestions: QuestionData[] = [];

 // TODO - call api/questions/unanswered
 // TODO - put response body in unansweredQuestions

 return unansweredQuestions;
};

The function takes exactly the same parameters and returns the same type as
before, so the components that consume this function shouldn't be impacted
by the changes we are about to make.

Let's call fetch to request unanswered questions from our backend:2.

export const getUnansweredQuestions = async ():
Promise<QuestionData[]> => {
 let unansweredQuestions: QuestionData[] = [];

 await fetch('http://localhost:17525/api/questions/unanswered')

 // TODO - put response body in unansweredQuestions
 return unansweredQuestions;
};

So, for a GET request, we simply put the path we are requesting in the fetch
argument. If your REST API is running on a different port, then don't forget
to change the path so that it calls your REST API.

Interacting with RESTful APIs Chapter 12

[396]

Notice the await keyword before the fetch call. This is because it is an
asynchronous function and we want to wait for its promises to be resolved
before the next statement is executed.

fetch is promise-based and has a then method that is called when the HTTP3.
response arrives. Let's implement this:

export const getUnansweredQuestions = async ():
Promise<QuestionData[]> => {
 let unansweredQuestions: QuestionData[] = [];

 await fetch('http://localhost:17525/api/questions/unanswered')
 .then(res => res.json())
 // TODO - put response body in unansweredQuestions
 return unansweredQuestions;
};

The then method allows us to interact with items in the response body. Here
are some useful properties we could interact with:

ok: Whether the response was successful (in other words, whether
the HTTP status code is in the range 200-299)
status: The HTTP status code for the response
headers: An object that gives access to the headers in the HTTP
response

Notice that we have used a method called json to request the parsed JSON
body.

The json method is promised-based, so we need another then method to get the4.
parsed JSON:

export const getUnansweredQuestions = async ():
Promise<QuestionData[]> => {
 let unansweredQuestions: QuestionData[] = [];

 await fetch('http://localhost:17525/api/questions/unanswered')
 .then(res => res.json())
 .then(body => {
 unansweredQuestions = body;
 })
 return unansweredQuestions;
};

Interacting with RESTful APIs Chapter 12

[397]

We can catch any network errors in a catch method:5.

export const getUnansweredQuestions = async ():
Promise<QuestionData[]> => {
 let unansweredQuestions: QuestionData[] = [];

 await fetch('http://localhost:17525/api/questions/unanswered')
 .then(res => res.json())
 .then(body => {
 unansweredQuestions = body;
 })
 .catch(err => {
 console.error(err);
 });
 return unansweredQuestions;
};

We simply output any errors to the console.

It is important to note that requests that contain HTTP error codes are not
handled by the catch method. HTTP errors must be handled in the first
then method by looking at the ok or status properties on the response
parameter.

Let's give this a try then. First, let's open the backend project in Visual Studio and6.
run it. We'll leave this running for the whole of this chapter.
Back in Visual Studio Code, start our frontend by typing npm start in the7.
Terminal. When the app runs, we get the following error:

Interacting with RESTful APIs Chapter 12

[398]

The problem here is that the created property is deserialized as a string and
not a Date object like the Question component expects.

Let's resolve this by mapping the created property to a Date object:8.

export const getUnansweredQuestions = async ():
Promise<QuestionData[]> => {
 let unansweredQuestions: QuestionData[] = [];

 await fetch('http://localhost:17525/api/questions/unanswered')
 .then(res => res.json())
 .then(body => {
 unansweredQuestions = body;
 })
 .catch(err => {
 console.error(err);
 });
 return unansweredQuestions.map(question => ({
 ...question,
 created: new Date(question.created),
 }));
};

We use the array map function to iterate through all of the questions
returning a copy of the original question (using the spread syntax) and then
overwriting the created property with a Date object from the string date.

If we save the file and look at the running app, we'll see the unanswered9.
questions rendered correctly.

Great stuff; our React app is now interacting with our REST API!

Extracting out a generic HTTP function
We'll need to use the fetch function in every function that needs to interact with the REST
API. So, we are going to create a generic http function that we'll use to make all of our
HTTP requests. This will nicely centralize the code that calls the REST API. Let's carry out
the following steps:

Create a new file called http.ts with the following content:1.

import { webAPIUrl } from './AppSettings';

export interface HttpRequest<REQB> {
 path: string;

Interacting with RESTful APIs Chapter 12

[399]

}
export interface HttpResponse<RESB> extends Response {
 parsedBody?: RESB;
}

We've started by importing the root path to our REST API from
AppSettings.ts, which was set up in our starter project. The
AppSettings.ts file is where we will build all of the different paths that
will vary between development and production. Make sure webAPIUrl
contains the correct path for your REST API.

We have also defined interfaces for the request and response. Notice that the
interfaces contain a generic parameter for the type of the body in the request
and response.

Let's use these interfaces to implement a generic http function that we'll use to2.
make HTTP requests:

export const http = <REQB, RESB>(
 config: HttpRequest<REQB>,
): Promise<HttpResponse<RESB>> => {
 return new Promise((resolve, reject) => {
 // TODO - make the HTTP request
 // TODO - resolve the promise with the parsed body if a
successful request
 // TODO - reject the promise if the request is unsuccessful
 });
};

We've created and returned a new Promise object, which we'll resolve or
reject in the subsequent steps. This will allow us to use async and await
nicely when consuming the http function.

Use fetch to invoke the request:3.

export const http = <REQB, RESB>(
 config: HttpRequest<REQB>,
): Promise<HttpResponse<RESB>> => {
 return new Promise((resolve, reject) => {
 const request = new Request(`${webAPIUrl}${config.path}`);
 let response: HttpResponse<RESB>;
 fetch(request);

 // TODO - resolve the promise with the parsed body if a
 successful request
 // TODO - reject the promise if the request is unsuccessful

Interacting with RESTful APIs Chapter 12

[400]

 });
};

Notice that we create a new instance of a Request object and pass that into
fetch rather than just passing the request path into fetch. This will be
useful later in this chapter as we expand this function for different HTTP
methods and authentication.

We'll finish off our first implementation of the http function by adding the4.
parsed body to the response and using this in the resolved Promise if the
response is successful. We reject the Promise if the request is unsuccessful or a
network error occurs:

export const http = <REQB, RESB>(
 config: HttpRequest<REQB>,
): Promise<HttpResponse<RESB>> => {
 return new Promise((resolve, reject) => {
 const request = new Request(`${webAPIUrl}${config.path}`);
 let response: HttpResponse<RESB>;
 fetch(request)
 .then(res => {
 response = res;
 return res.json();
 })
 .then(body => {
 if (response.ok) {
 response.parsedBody = body;
 resolve(response);
 } else {
 reject(response);
 }
 })
 .catch(err => {
 console.error(err);
 reject(err);
 });
 });
};

Interacting with RESTful APIs Chapter 12

[401]

Go back to QuestionData.ts and leverage the http function we have just5.
implemented in getUnansweredQuestions. First, we need to import it:

import { http } from './http';

We can now refactor getUnansweredQuestions:6.

export const getUnansweredQuestions = async (): Promise<
 QuestionData[]
> => {
 try {
 const result = await http<
 undefined,
 QuestionDataFromServer[]
 >({
 path: '/questions/unanswered',
 });
 if (result.parsedBody) {
 return result.parsedBody.map(mapQuestionFromServer);
 } else {
 return [];
 }
 } catch (ex) {
 console.error(ex);
 return [];
 }
};

We pass undefined into the http function as the request body type
because there isn't one and QuestionDataFromServer[] as the expected
response body type. QuestionDataFromServer is an interface that was
added to our starter project for this chapter that has the created date as a
string—exactly how it arrives from the REST API.

We use a mapping function to return the parsed response body with the
created property set as a proper date if there is a response body. Otherwise,
we return an empty array. The mapQuestionFromServer mapping
function was added to our starter project for this chapter.

Interacting with RESTful APIs Chapter 12

[402]

This renders the unanswered questions when we save these changes, like it
did before:

Our revised implementation of getUnansweredQuestions is a little better because the
root path to our REST API isn't hardcoded within it and we are handling HTTP
errors better. We'll continue to use and expand our generic http function throughout this
chapter.

Getting a question from the REST API
Let's use our http function to get a single question from our REST API:

We'll start by clearing out the current implementation, like so:1.

export const getQuestion = async (
 questionId: number,
): Promise<QuestionData | null> => {
 // TODO - make the request
 // TODO - return null if the request fails or there is a network
 error
 // TODO - return response body with correctly typed dates if
 request is successful
};

Interacting with RESTful APIs Chapter 12

[403]

Let's make the request and then return null if the request fails or there is a2.
network error:

export const getQuestion = async (
 questionId: number,
): Promise<QuestionData | null> => {
 try {
 const result = await http<undefined, QuestionDataFromServer>({
 path: `/questions/${questionId}`,
 });
 if (result.ok && result.parsedBody) {
 // TODO - return response body with correctly typed dates if
 request is successful
 } else {
 return null;
 }
 } catch (ex) {
 console.error(ex);
 return null;
 }
};

Return the response body with correctly typed dates if the request is successful:3.

export const getQuestion = async (
 questionId: number,
): Promise<QuestionData | null> => {
 try {
 const result = await http<undefined, QuestionDataFromServer>({
 path: `/questions/${questionId}`,
 });
 if (result.ok && result.parsedBody) {
 return mapQuestionFromServer(result.parsedBody);
 } else {
 return null;
 }
 } catch (ex) {
 console.error(ex);
 return null;
 }
};

Interacting with RESTful APIs Chapter 12

[404]

When we save the changes and go to the question page in the running app, we4.
will see the question correctly rendered on the screen:

We didn't have to make any changes to any of the frontend components. Nice!

Searching questions with the REST API
Let's interact with the REST API to search for questions using our http function. This is
very similar to what we have just done, so, we'll do this in one go:

export const searchQuestions = async (
 criteria: string,
): Promise<QuestionData[]> => {
 try {
 const result = await http<undefined, QuestionDataFromServer[]>({

Interacting with RESTful APIs Chapter 12

[405]

 path: `/questions?search=${criteria}`,
 });
 if (result.ok && result.parsedBody) {
 return result.parsedBody.map(mapQuestionFromServer);
 } else {
 return [];
 }
 } catch (ex) {
 console.error(ex);
 return [];
 }
};

We make a request to the questions endpoint with the search query parameter containing
the criteria. We return the response body with created Date objects if the request is
successful or an empty array if the request fails.

The searchQuestions parameter and return type haven't changed. So, when we save the
changes and search for a question in the running app, the matched questions will render
correctly:

In the next section, we will take a break from implementing our generic http function and
implement code to sign users in to our app via our Auth0.

Interacting with Auth0 from the frontend
In this section, we will fully implement the sign-in and sign-out processes from our React
frontend. We are going to interact with Auth0 as a part of these processes.

Interacting with RESTful APIs Chapter 12

[406]

Installing the Auth0 JavaScript client
There is a standard Auth0 JavaScript library for single-page applications that we can
leverage that will interact nicely with Auth0. The npm package for the library is
called @auth0/auth0-spa-js. Let's install this by running the following command in the
Visual Studio Code Terminal:

> npm install @auth0/auth0-spa-js

TypeScript types are included in this library, so the Auth0 client library for single-page
applications is now installed into our project.

Recapping the sign-in and sign-out flow
Let's quickly recap the sign-in flow between our app and Auth0:

Our app redirects to Auth0 to allow the user to enter their credentials.1.
After the user has successfully signed in, Auth0 redirects back to our app with a2.
code.
Our app can then request an access token from Auth0 with the code.3.

The sign-out flow is as follows:

Our app redirects to Auth0 to perform the logout.1.
A redirect then occurs back to our app.2.

So, we will have the following routes in our frontend app:

/signin: Our app will navigate to this page to start the sign-in process. This
page will call a method in the Auth0 client, which will redirect to a page in
Auth0.
/signin-callback: This is the page in our app that Auth0 will redirect back to
with the code.
/signout: Our app will navigate to this page to start the sign-out process. This
page will call a method in the Auth0 client, which will redirect to a page in
Auth0.
/signout-callback: This is the page in our app that Auth0 will redirect back to
after the logout has completed.

Interacting with RESTful APIs Chapter 12

[407]

Creating the sign-in and sign-out routes
We now understand that we need four routes in our app to handle the sign-in and sign-out
processes. The SignInPage component will handle both of the signin and signin-
callback routes. The SignOutPage component will handle both
the signout and signout-callback routes.

Our app already knows about the SignInPage component with the route we have
declared in App.tsx. However, it is not handling the sign-in callback from the Auth0. Our
app also isn't handling signing out. Let's implement all of this in App.tsx by following
these steps:

We'll start by importing the SignOutPage component into App.tsx:1.

import { SignOutPage } from './SignOutPage';

We will start with the sign-in route. Instead of just referencing2.
the SignInPage component, we need to render it and pass 'signin' in
the action prop:

<Switch>
 <Redirect from="/home" to="/" />
 <Route exact path="/" component={HomePage} />
 <Route path="/search" component={SearchPage} />
 <Route path="/ask">
 ...
 </Route>
 <Route
 path="/signin"
 render={() => <SignInPage action="signin" />}
 />
 <Route path="/questions/:questionId" component={QuestionPage} />
 <Route component={NotFoundPage} />
</Switch>

The action prop doesn't exist yet on the SignInPage component; hence,
our app will not compile at the moment. We'll implement the action prop
later.

Next, let's implement the sign-in callback route:3.

<Switch>
 ...
 <Route
 path="/signin"
 render={() => <SignInPage action="signin" />}

Interacting with RESTful APIs Chapter 12

[408]

 />
 <Route
 path="/signin-callback"
 render={() => <SignInPage action="signin-callback" />}
 />
 ...
</Switch>

Lastly, we'll implement the routes for the sign-out process:4.

<Switch>
 ...
 <Route
 path="/signin"
 render={() => <SignInPage action="signin" />}
 />
 <Route
 path="/signin-callback"
 render={() => <SignInPage action="signin-callback" />}
 />
 <Route
 path="/signout"
 render={() => <SignOutPage action="signout" />}
 />
 <Route
 path="/signout-callback"
 render={() => <SignOutPage action="signout-callback" />}
 />
 ...
</Switch>

All of the routes are in place now for the sign-in, sign-up, and sign-out processes.

Implementing a central authentication context
We are going to implement a context that contains state and functions for authentication
that we'll provide to all of the components in our app. Let's carry out the following steps:

Create a new file in the src folder called Auth.tsx with the following import1.
statements:

import React, {
 useState,
 useEffect,
 useContext,
 createContext,

Interacting with RESTful APIs Chapter 12

[409]

 FC,
} from 'react';
import createAuth0Client from '@auth0/auth0-spa-js';
import Auth0Client from '@auth0/auth0-spa-
js/dist/typings/Auth0Client';
import { authSettings } from './AppSettings';

We'll start the implementation by creating a context that our app components2.
will use to get access to authentication-related information and functions:

interface Auth0User {
 name: string;
 email: string;
}
interface IAuth0Context {
 isAuthenticated: boolean;
 user?: Auth0User;
 signIn: () => void;
 signOut: () => void;
 loading: boolean;
}
export const Auth0Context = createContext<IAuth0Context>({
 isAuthenticated: false,
 signIn: () => {},
 signOut: () => {},
 loading: true
});

So, our context provides properties for whether the user is authenticated, the
user's profile, and whether the context is loading as well as functions for
signing in and out.

Let's provide a custom Hook that returns the authentication context for3.
components to use:

export const useAuth = () => useContext(Auth0Context);

Next, we'll implement a provider component for the context:4.

export const AuthProvider: FC = ({ children }) => {
 const [isAuthenticated, setIsAuthenticated] = useState<
 boolean
 >(false);
 const [user, setUser] = useState<Auth0User | undefined>(
 undefined,
);
 const [auth0Client, setAuth0Client] = useState<Auth0Client>();
 const [loading, setLoading] = useState<boolean>(true);

Interacting with RESTful APIs Chapter 12

[410]

 return (
 <Auth0Context.Provider
 value={{
 isAuthenticated,
 user,
 signIn: () =>
 getAuth0ClientFromState().loginWithRedirect(),
 signOut: () => getAuth0ClientFromState().logout({
 client_id: authSettings.client_id,
 returnTo: window.location.origin + '/signout-callback'
 }),
 loading,
 }}
 >
 {children}
 </Auth0Context.Provider>
);
};

This returns the context's Provider component from React with the value
object wrapped around any child components. The properties for the user
profile, whether the user is authenticated, and whether the context is loading
are stored in state. We also have a state called auth0Client for the instance
of the Auth0 client. The functions for signing in and out simply call the
relevant functions in the Auth0 client.

We have referenced a function called getAuth0ClientFromState in the5.
provider, which isn't implemented. Let's implement this:

export const AuthProvider: FC = ({ children }) => {
 ...

 const getAuth0ClientFromState = () => {
 if (auth0Client === undefined) {
 throw new Error('Auth0 client not set');
 }
 return auth0Client;
 };

 return (
 <Auth0Context.Provider
 ...
 </Auth0Context.Provider>
);
};

Interacting with RESTful APIs Chapter 12

[411]

So, this function returns the Auth0 client from the state but throws an error if
it is undefined.

When the provider is loaded, we want to create the instance of the Auth0 client6.
and set the state values. Let's implement this using a useEffect Hook:

export const AuthProvider: FC = ({ children }) => {
 ...

 useEffect(() => {
 const initAuth0 = async () => {
 setLoading(true);
 const auth0FromHook = await createAuth0Client(authSettings);
 setAuth0Client(auth0FromHook);

 const isAuthenticatedFromHook = await
auth0FromHook.isAuthenticated();
 if (isAuthenticatedFromHook) {
 const user = await auth0FromHook.getUser();
 setUser(user);
 }
 setIsAuthenticated(isAuthenticatedFromHook);
 setLoading(false);
 };
 initAuth0();
 }, []);

 ...

 return (
 <Auth0Context.Provider
 ...
 </Auth0Context.Provider>
);
};

We've put the logic in a nested initAuth0 function and invoked this
because the logic is asynchronous.

We use the createAuth0Client from Auth0 to create the Auth0 client
instance. We pass in some settings using an authSettings variable, which
is located in a file called AppSettings.ts. We'll change these settings later
in this chapter to reference our specific Auth0 instance.

Interacting with RESTful APIs Chapter 12

[412]

We call the isAuthenticated function in the Auth0 client to determine
whether the user is authenticated and set our isAuthenticated state
value. If the user is authenticated, we call the getUser function in the Auth0
client to get the user profile and set our user state.

We want to handle the sign-in callback when the provider loads, so let's add a7.
branch of code to do that:

const initAuth0 = async () => {
 setLoading(true);
 const auth0FromHook = await createAuth0Client(authSettings);
 setAuth0Client(auth0FromHook);

 if (
 window.location.pathname === '/signin-callback' &&
 window.location.search.indexOf('code=') > -1
) {
 await auth0FromHook.handleRedirectCallback();
 window.location.replace(window.location.origin);
 }

 const isAuthenticatedFromHook = await
auth0FromHook.isAuthenticated();
 if (isAuthenticatedFromHook) {
 const user = await auth0FromHook.getUser();
 setUser(user);
 }
 setIsAuthenticated(isAuthenticatedFromHook);
 setLoading(false);
};

We call the Auth0 client handleRedirectCallback function, which will
parse the URL, extract the code, and store it in a variable internally. We also
redirect the user to the home page after this has been completed.

That's our authentication provider component complete.

The last item we are going to implement in Auth.tsx is a function that gets the8.
access token:

export const getAccessToken = async () => {
 const auth0FromHook = await createAuth0Client(authSettings);
 const accessToken = await auth0FromHook.getTokenSilently();
 return accessToken;
};

Interacting with RESTful APIs Chapter 12

[413]

This calls the Auth0 client getTokenSilently function, which will, in turn,
make a request to the Auth0 token endpoint to get the access token securely.

We will use our getAccessToken function later in this chapter to make
REST API requests to protected resources.

Let's move to App.tsx and import our authentication provider component:9.

import { AuthProvider } from './Auth';

Now, we'll provide the authentication context to all of the components in our10.
app:

const App: React.FC = () => {
 return (
 <AuthProvider>
 <BrowserRouter>
 ...
 </BrowserRouter>
 </AuthProvider>
);
};

That's our central authentication context complete. We'll use this extensively throughout
this chapter.

The App component still isn't compiling because of the missing action prop on the
SignInPage and SignOutPage components. We'll resolve these issues next.

Implementing the sign-in process
Let's implement the sign-in page in SignInPage.tsx:

 We'll start by adding the following import statements:1.

import React, { FC } from 'react';
import { Page } from './Page';
import { StatusText } from './Styles';
import { useAuth } from './Auth';

StatusText is a shared style we are going to use when we inform the user
that we are redirecting to and from Auth0. useAuth is the custom Hook we
implemented earlier that will give us access to the authentication context.

Interacting with RESTful APIs Chapter 12

[414]

Let's define the Props type for the page component:2.

type SigninAction = 'signin' | 'signin-callback';

interface Props {
 action: SigninAction;
}

The component takes in an action prop that gives the current stage of the
sign-in process.

We can start to implement the component now:3.

export const SignInPage: FC<Props> = ({ action }) => {

};

Let's get the signIn function from the authentication context:4.

export const SignInPage: FC<Props> = ({ action }) => {
 const { signIn } = useAuth();
};

We can now call the signIn function if we are in the process of signing in:5.

export const SignInPage: FC<Props> = ({ action }) => {
 const { signIn } = useAuth();

 if (action === 'signin') {
 signIn();
 }
};

Our final task is to render the JSX:6.

export const SignInPage: FC<Props> = ({ action }) => {
 const { signIn } = useAuth();

 if (action === 'signin') {
 signIn();
 }

 return (
 <Page title="Sign In">
 <StatusText>Signing in ...</StatusText>
 </Page>
);
};

Interacting with RESTful APIs Chapter 12

[415]

We render the page informing the user that the sign-in process is taking place.

Implementing the sign-out process
Let's implement the sign-out page in SignOutPage.tsx, which is similar in structure to
the SignInPage component:

import React, { FC } from 'react';
import { Page } from './Page';
import { StatusText } from './Styles';
import { useAuth } from './Auth';

type SignoutAction = 'signout' | 'signout-callback';

interface Props {
 action: SignoutAction;
}

export const SignOutPage: FC<Props> = ({ action }) => {
 let message = 'Signing out ...';

 const { signOut } = useAuth();

 switch (action) {
 case 'signout':
 signOut();
 break;
 case 'signout-callback':
 message = 'You successfully signed out!';
 break;
 }

 return (
 <Page title="Sign out">
 <StatusText>{message}</StatusText>
 </Page>
);
};

A slight difference is that when the component receives the callback, this component will
stay in view with a message informing them that they have been successfully signed out.

Interacting with RESTful APIs Chapter 12

[416]

Configuring Auth0 settings in our frontend
We are nearly ready to give the sign-in and sign-out processes a try. First, we need to
configure our frontend to interact with the correct Auth0 tenant. These are configured in
AppSettings.ts:

export const authSettings = {
 domain: 'your-tenantid.auth0.com',
 client_id: 'your-clientid',
 redirect_uri: window.location.origin + '/signin-callback',
 scope: 'openid profile QandAAPI email',
 audience: 'https://qanda',
};

We need to substitute our specific tenantid and clientid in this settings file.

We have already discovered where to find our Auth0 tenant in the last chapter but, as a
reminder, it is to the left of our user avatar:

The domain setting doesn't include https:// at the front.

The client ID can be found in the Applications section in our Q and A single-page
application:

We are now ready to try the sign-in and sign-out processes.

Interacting with RESTful APIs Chapter 12

[417]

Testing the sign-in and sign-out processes
All of the bits are in place now to give the sign-in and sign-out processes a try. Let's carry
out the following steps:

First, we need to create an Auth0 user to sign in with. In Auth0, on the left-hand1.
navigation menu, choose Users & Roles | Users and then click the Create User
button. Fill in the form with the user we want to create and click the
CREATE button:

Interacting with RESTful APIs Chapter 12

[418]

Let's make sure both the backend and frontend are running. Then, we can click2.
the Sign In button in the header of the frontend. We are redirected to Auth0 to
log in:

After entering the user's credentials, click the LOG IN button. We are then asked3.
to authorize the Q and A app to access the profile and email data:

Interacting with RESTful APIs Chapter 12

[419]

This authorization process happens because this is the first login for this
user.

After clicking on the tick icon, we will then be successfully logged in and 4.
redirected back to our frontend.
Now, let's click the Sign Out button. The browser briefly navigates to Auth0 to5.
log the user out and then redirects to our sign-out callback page:

That completes the sign-in and sign-out process implementations.

Interacting with RESTful APIs Chapter 12

[420]

At the moment, all of the options in our app are visible regardless of whether the user is
authenticated. However, certain options will only function correctly if the user is signed in.
For example, if we try submitting a question while not signed in, it will fail. We'll clean this
up in the next section.

Controlling authenticated options
In this section, we are going to only make relevant options visible for authenticated users.
We are going to store user authentication information in a context that components can
consume and use to show and hide options.

Displaying the relevant options in the header
At the moment, the Header component shows the Sign Up and Sign Out options, but
the Sign In option is only relevant if the user hasn't signed in. The Sign Out option is only
relevant if the user is authenticated. Let's clean this up in Header.tsx in the following
steps:

We'll start by importing the authentication context Hook:1.

import { useAuth } from './Auth';

Let's Hook into the authentication context and return the user object, whether2.
the user is authenticated, and whether the context has loaded just before the JSX
is returned:

export const Header: FC<RouteComponentProps> = (...) => {
 ...
 const { isAuthenticated, user, loading } = useAuth();

 return (
 ...
);
};

We can use the loading and isAuthenticated properties to show the relevant3.
options in the JSX:

<div ...>
 <Link ...>
 Q & A
 </Link>

Interacting with RESTful APIs Chapter 12

[421]

 <form onSubmit={handleSearchSubmit}>
 ...
 </form>
 <div>
 {!loading &&
 (isAuthenticated ? (
 <div>
 {user!.name}
 <Link
 to={{ pathname: '/signout', state: { local: true } }}
 css={buttonStyle}
 >
 <UserIcon />
 Sign Out
 </Link>
 </div>
) : (
 <Link to="/signin" css={buttonStyle}>
 <UserIcon />
 Sign In
 </Link>
))}
 </div>
</div>

We use a short circuit expression to ensure the Sign In and Sign Out buttons
can't be accessed while the context is loading. We use a ternary expression to
show the username and the Sign Out button if the user is authenticated
and the Sign In button if not.

Let's give this a try by first making sure the frontend and backend are running.4.
We should see the Sign In and Sign Up buttons before the user has signed in:

Click the Sign In button and authenticate as a user. We should see the username5.
and a Sign Out button after the user has been authenticated:

That completes the changes needed in the Header component.

Interacting with RESTful APIs Chapter 12

[422]

Only allowing authenticated users to ask a
question
Let's move to the HomePage component and only show the Ask a question button if the
user is authenticated:

We'll start by importing the authentication Hook:1.

import { useAuth } from './Auth';

Let's Hook into the authentication context and return whether the user is2.
authenticated just before the JSX is returned:

export const HomePage: FC<Props> = (...) => {
 ...

 const { isAuthenticated } = useAuth();

 return (
 ...
);
};

We can then use the isAuthenticated property from the auth variable and a3.
short-circuit operator to only render the Ask a question button if the user is
signed in:

<Page>
 <div
 ...
 >
 <PageTitle>Unanswered Questions</PageTitle>
 {isAuthenticated && (
 <PrimaryButton onClick={handleAskQuestionClick}>
 Ask a question
 </PrimaryButton>
)}
 </div>
 ...
</Page>

That completes the change to the home page. However, the user could still
get to the ask page by manually putting the relevant path in the browser.

Interacting with RESTful APIs Chapter 12

[423]

Let's stop unauthenticated users from manually navigating to the ask page and4.
asking a question in AskPage.tsx. We are going to create an AuthorizedPage
component to help us to do this that will only render its child components if the
user is authenticated. Let's create a file called AuthorizedPage.tsx in the src
folder with the following content:

import React, { FC, Fragment } from 'react';
import { Page } from './Page';
import { useAuth } from './Auth';

export const AuthorizedPage: FC = ({ children }) => {
 const { isAuthenticated } = useAuth();
 if (isAuthenticated) {
 return <Fragment>{children}</Fragment>;
 } else {
 return <Page title="You do not have access to this page" />;
 }
};

We use our useAuth Hook and render the child components if the user is
authenticated. If the user isn't authenticated, we inform them that they don't
have access to the page.

Let's move to App.tsx and import AuthorizedPage:5.

import { AuthorizedPage } from './AuthorizedPage';

We can then wrap the AuthorizedPage component around the AskPage6.
component in the App component JSX:

<Route path="/ask">
 <Suspense
 ...
 >
 <AuthorizedPage>
 <AskPage />
 </AuthorizedPage>
 </Suspense>
</Route>

Interacting with RESTful APIs Chapter 12

[424]

Let's give this all a try in the running app. Make sure the user is signed out and7.
go to the home page:

We'll see that there is no button to ask a question, as we expected.

Let's try to go to the ask page by manually putting the path into the browser:8.

We are informed that we don't have permission to view the page, as we
expected.

Interacting with RESTful APIs Chapter 12

[425]

Let's sign in now:9.

The Ask a question button is now available, as we expected.

That concludes the changes we need to make for asking a question.

Only allowing authenticated users to answer a
question
Let's focus on the QuestionPage component now and only allow an answer to be
submitted if the user is authenticated:

We'll start by importing the authentication Hook in QuestionPage.tsx:1.

import { useAuth } from './Auth';

Let's Hook into the authentication context and return whether the user is2.
authenticated just before the JSX is returned:

export const QuestionPage: ... = (...) => {
 ...

 const { isAuthenticated } = useAuth();

 return (
 ...
);
};

Interacting with RESTful APIs Chapter 12

[426]

We can then use the isAuthenticated property and a short-circuit operator to3.
only render the answer form if the user is signed in:

<AnswerList data={question.answers} />
{isAuthenticated && (
 <div
 ...
 >
 <Form
 submitCaption="Submit Your Answer"
 ...
 >
 ...
 </Form>
 </div>
)}

Let's give this all a try in the running app. Make sure the user is signed out and4.
go to the question page:

There is no answer form, as we expect.

Let's sign in and go to the question page again:5.

Interacting with RESTful APIs Chapter 12

[427]

The answer form is available, as we expect.

That completes the changes to the question page.

In the next section, we are going to interact with the REST API endpoints that require an
authenticated user to perform tasks such as submitting a question.

Using fetch to interact with authenticated
REST API endpoints
In this section, we'll properly wire up posting questions and answers to our REST API. All
of our changes will be in QuestionsData.ts—our user interface components will be
unchanged.

Interacting with RESTful APIs Chapter 12

[428]

Posting a question to the REST API
We are going to change the implementation for posting a question to use an access token
from Auth0:

Let's start by importing the function that gets the access token from Auth01.
into QuestionsData.ts:

import { getAccessToken } from './Auth';

Let's revise the implementation of the postQuestion function to the following:2.

export const postQuestion = async (
 question: PostQuestionData,
): Promise<QuestionData | undefined> => {
 const accessToken = await getAccessToken();
 try {
 const result = await http<
 PostQuestionData,
 QuestionDataFromServer
 >({
 path: '/questions',
 method: 'post',
 body: question,
 accessToken,
 });
 if (result.ok && result.parsedBody) {
 return mapQuestionFromServer(result.parsedBody);
 } else {
 return undefined;
 }
 } catch (ex) {
 console.error(ex);
 return undefined;
 }
};

We get the access token from Auth0 and pass it into the generic http
function. If the request was successful, we return the question from the
response body with the correct type for the created dates; otherwise, we
return undefined.

Interacting with RESTful APIs Chapter 12

[429]

The ability to do POST requests in our http function is not supported yet. Access3.
tokens aren't supported as well. So, let's move to http.ts and start to implement
these features:

export interface HttpRequest<REQB> {
 path: string;
 method?: string;
 body?: REQB;
 accessToken?: string;
}

We've started by adding the HTTP method, body, and access token to the
request interface.

Let's move on to the changes we need to make in the http function:4.

export const http = <REQB, RESB>(
 config: IHttpRequest<REQB>,
): Promise<IHttpResponse<RESB>> => {
 return new Promise((resolve, reject) => {
 const request = new Request(`${webAPIUrl}${config.path}`, {
 method: config.method || 'get',
 headers: {
 'Content-Type': 'application/json',
 },
 body: config.body
 ? JSON.stringify(config.body)
 : undefined,
 });
 ...
 });
};

We are providing a second argument to the Request constructor that defines
the HTTP request method, headers, and body.

Notice that we convert the request body into a string using
JSON.stringify. This is because the fetch function doesn't convert the
request body into a string for us.

Now, let's add support for the access token:5.

export const http = <REQB, RESB>(
 config: IHttpRequest<REQB>,
): Promise<IHttpResponse<RESB>> => {
 return new Promise((resolve, reject) => {
 const request = new Request(`${rootUrl}${config.path}`, {

Interacting with RESTful APIs Chapter 12

[430]

 method: config.method || 'get',
 headers: {
 'Content-Type': 'application/json',
 },
 body: config.body ? JSON.stringify(config.body) : undefined,
 });
 if (config.accessToken) {
 request.headers.set(
 'authorization',
 `bearer ${config.accessToken}`
);
 }
 ...
 });
};

If the access token is provided, we add it to an HTTP request header called
authorization after the word bearer and the space.

authorization is a standard HTTP header that contains credentials to
authenticate a user. The value is set to the type of authentication followed
by a space, followed by the credentials. So, the word bearer in our case
denotes the type of authentication.

The final addition to the http function is to handle responses that don't have a6.
payload:

export const http = <REQB, RESB>(
 config: IHttpRequest<REQB>,
): Promise<IHttpResponse<RESB>> => {
 return new Promise((resolve, reject) => {
 ...
 fetch(request)
 .then(res => {
 response = res;
 if (
 res.headers.get('Content-Type') ||
 ''.indexOf('json') > 0
) {
 return res.json();
 } else {
 resolve(response);
 }
 })
 ...
 });
};

Interacting with RESTful APIs Chapter 12

[431]

Let's give this a try by first making sure the frontend and backend are running.7.
Let's sign in as a user, open up the browser's DevTools and go to the Network
panel. Let's submit a new question:

The question is saved successfully, as we expected. We can also see the
access token sent in the HTTP authorization header with the request.

One of the things we couldn't check in the last chapter was whether the
correct user was being saved against the question. If we have a look at the
question in the database, we'll see the correct user ID and username stored
against the question:

That completes posting a question. No changes are required to the AskPage component.

Posting an answer to the REST API
We are going to change the implementation for posting an answer to use the access token
and our generic http function. Let's revise the implementation of the postAnswer function
to the following:

export const postAnswer = async (
 answer: PostAnswerData,
): Promise<AnswerData | undefined> => {
 const accessToken = await getAccessToken();

Interacting with RESTful APIs Chapter 12

[432]

 try {
 const result = await http<PostAnswerData, AnswerData>({
 path: '/questions/answer',
 method: 'post',
 body: answer,
 accessToken,
 });
 if (result.ok) {
 return result.parsedBody;
 } else {
 return undefined;
 }
 } catch (ex) {
 console.error(ex);
 return undefined;
 }
};

This follows the same pattern as the postQuestion function, getting the access token from
Auth0 and making the HTTP POST request with the JWT using the http function.

That completes the changes needed for posting an answer.

We can now remove the questions array mock data from QuestionsData.ts as this is
no longer used. The wait function can also be removed.

Testing protected endpoints with Postman
Before we finish this chapter, we are going to learn how to use the access token from our
app to test a protected REST API endpoint. In the last chapter, we never checked the
custom authorization policy that protects questions from being deleted by users other than
the author of the question. Let's carry out the following steps to do this with both the
frontend and backend running:

Open DevTools in the browser with our frontend app running. Sign in as a user1.
and go to the Network panel in DevTools:

Interacting with RESTful APIs Chapter 12

[433]

Find the request to the Auth0 token endpoint and find the access token in the2.
response. Copy the access token to the clipboard.
Open Postman and create a DELETE request that the user hasn't authored. Create3.
an Authorization HTTP header by pasting in the access token from the
clipboard in the value:

Interacting with RESTful APIs Chapter 12

[434]

If we send the request, we an get HTTP status code 403 (forbidden), indicating4.
the user isn't authorized to make this request:

If we change the request to delete a question that the user did author, the5.
requests succeed as we expect:

Using Postman to check protected REST API endpoints without the frontend is handy
when diagnosing problems in the app to help to determine whether the problem is in the
frontend or backend code.

This completes this section on interacting with protected REST API endpoints.

Interacting with RESTful APIs Chapter 12

[435]

Stopping a data state being set if the user
navigates away from the page
There is a slight problem in the page components at the moment when they request data
and set this in the state. The problem is if the user navigates away from the page while the
data is still being fetched, the state will attempt to be set on a component that no longer
exists. We are going to resolve this issue on the HomePage, QuestionPage, and
SearchPage components by carrying out the following steps:

In HomePage.tsx, let's change the useEffect call to the following:1.

 useEffect(() => {
 let cancelled = false;
 const doGetUnansweredQuestions = async () => {
 const unansweredQuestions = await getUnansweredQuestions();
 if (!cancelled) {
 setQuestions(unansweredQuestions);
 setQuestionsLoading(false);
 }
 };
 doGetUnansweredQuestions();
 return () => {
 cancelled = true;
 };
 }, []);

We use a cancelled variable to track whether the user has navigated away
from the page and don't set any state if this is true. We know whether the
user has navigated away from the page because the return function will be
called, which sets the cancelled flag.

Let's follow the same pattern for the QuestionPage component:2.

useEffect(() => {
 let cancelled = false;
 const doGetQuestion = async (questionId: number) => {
 const foundQuestion = await getQuestion(questionId);
 if (!cancelled) {
 setQuestion(foundQuestion);
 }
 };
 ...
 return function cleanUp() {
 cancelled = true;
 ...

Interacting with RESTful APIs Chapter 12

[436]

 };
}, [match.params.questionId]);

Lastly, let's follow the same pattern for the SearchPage component:3.

useEffect(() => {
 let cancelled = false;
 const doSearch = async (criteria: string) => {
 const foundResults = await searchQuestions(criteria);
 if (!cancelled) {
 setQuestions(foundResults);
 }
 };
 doSearch(search);
 return () => {
 cancelled = true;
 };
}, [search]);

This completes the changes to the page components. The data fetching process within the
page components is now a little more robust.

Summary
In this chapter, we learned that the browser has a handy fetch function that allows us to
interact with REST APIs. This allows us to specify HTTP headers such as authorization,
which we use to supply the user's access token in order to access the protected endpoints.

Leveraging the standard Auth0 JavaScript library allows single-page
applications to interact with the Auth0 identity provider. It makes all of the required
requests and redirects to Auth0 in a secure manner.

Using the React context to share information about the user to components allows them to
render information and options that are only relevant to the user. The AuthProvider
and AuthorizedPage components we built in this chapter are generic components that
could be used in other apps to help to implement frontend authorization logic.

Our app is very nearly complete now. In the next chapter, we are going to put the frontend
and backend through its paces with some automated tests.

Interacting with RESTful APIs Chapter 12

[437]

Questions
The following questions will test our knowledge of what we have just learned:

What is wrong with the following HTTP POST request using the fetch function?1.

fetch('http://localhost:17525/api/person', {
 method: 'post',
 headers: {
 'Content-Type': 'application/json',
 },
 body: {
 firstName: 'Fred'
 surname: 'Smith'
 }
})

What is wrong with the following request using the fetch function?2.

fetch('http://localhost:17525/api/person/1')
 .then(res => {
 console.log('firstName', res.body.firstName);
 })

What is wrong with the following request using the fetch function?3.

fetch('http://localhost:17525/api/person/21312')
 .then(res => res.json())
 .catch(res => {
 if (res.status === 404) {
 console.log('person not found')
 }
 });

We have an endpoint for deleting users that only administrators have access to4.
use. We have the user's access token in a variable called jwt. What is wrong with
the following request?

fetch('http://localhost:17525/api/person/1', {
 method: 'delete',
 headers: {
 'Content-Type': 'application/json',
 'authorization': jwt
 });

Interacting with RESTful APIs Chapter 12

[438]

In this chapter, we implemented a AuthorizedPage component that we could5.
wrap around a page component so that it is only rendered for authenticated
users. We could implement a similar component to wrap around components
within a page so that they are only rendered for authenticated users. Have a go at
implementing this.

Further reading
Here are some useful links to learn more about the topics covered in this chapter:

The Fetch API: https:/ ​/​developer. ​mozilla. ​org/ ​en- ​US/​docs/ ​Web/ ​API/ ​Fetch_
API

Auth0: https:/ ​/ ​auth0. ​com/ ​docs

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://auth0.com/docs
https://auth0.com/docs
https://auth0.com/docs
https://auth0.com/docs
https://auth0.com/docs
https://auth0.com/docs
https://auth0.com/docs
https://auth0.com/docs
https://auth0.com/docs

4
Section 4: Moving into

Production
In this last section, we will add automated tests to both the ASP.NET Core and React apps
and deploy them to Azure.

This section comprises the following chapters:

Chapter 13, Adding Automated Tests
Chapter 14, Configuring and Deploying to Azure
Chapter 15, Implementing CI and CD with Azure DevOps

13
Adding Automated Tests

Now, it's time to get our Q and A app ready for production. In this chapter, we are going to
add automated tests to the frontend and backend of our app, which will give us the
confidence to take the next step: moving our app into production.

First, we will focus on the backend and use xUnit to implement unit tests on pure functions
with no dependencies. Then, we'll move on to test controllers and mock out their
dependencies using Moq.

Next, we will turn our attention to testing frontends with the popular Jest tool. We will
learn how to implement unit tests on pure functions and integration tests on React
components by leveraging the fantastic React Testing Library.

Then, we will learn how to implement end-to-end tests with Cypress. We'll use this to test a
key path through the app where the frontend and backend will be working together.

In this chapter, we'll cover the following topics:

Understanding the different types of automated test
Implementing .NET tests with xUnit
Implementing React tests with Jest
Testing React components
Implementing end-to-end tests with Cypress

Adding Automated Tests Chapter 13

[441]

Technical requirements
We'll use the following tools and services in this chapter:

Visual Studio 2019: We'll use this to write tests for our ASP.NET Core code
backend. This can be downloaded and installed from https:/ ​/​visualstudio.
microsoft. ​com/ ​vs/ ​.
.NET Core 3.0: This can be downloaded and installed from https:/ ​/​dotnet.
microsoft. ​com/ ​download/ ​dotnet- ​core.
Visual Studio Code: We'll use this to implement tests on our React code. This
can be downloaded and installed from https:/ ​/​code. ​visualstudio. ​com/​.
Node.js and npm: These can be downloaded from https:/ ​/​nodejs. ​org/​. If you
already have these installed, make sure that Node.js is at least version 8.2 and
that npm is at least version 5.2.
Q and A: We'll start with the Q and A frontend and backend projects we finished
in the previous chapter, which are available at https:/ ​/​github. ​com/
PacktPublishing/ ​ASP. ​NET- ​Core- ​3-​and- ​React- ​17.

All the code snippets in this chapter can be found online at https:/ ​/​github. ​com/
PacktPublishing/​ASP. ​NET- ​Core- ​3- ​and- ​React- ​17. In order to restore code from a chapter,
the source code repository can be downloaded and the relevant folder opened in the
relevant editor. If the code is frontend code, then npm install can be entered in the
Terminal to restore the dependencies.

Check out the following video to see the code in action:

http:/​/​bit.​ly/​37kqqUr

Understanding the different types of
automated test
A robust suite of automated tests helps us deliver software faster without sacrificing its
quality. There are various types of test, though, with each type having benefits and
challenges. In this section, we are going to understand the different types of test and the
benefits they bring to a single-page application.

https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
http://bit.ly/37kqqUr
http://bit.ly/37kqqUr
http://bit.ly/37kqqUr
http://bit.ly/37kqqUr
http://bit.ly/37kqqUr
http://bit.ly/37kqqUr
http://bit.ly/37kqqUr
http://bit.ly/37kqqUr
http://bit.ly/37kqqUr

Adding Automated Tests Chapter 13

[442]

The following diagram shows the three different types of test:

In the following subsections, we will examine each type of test and its pros and cons.

Unit tests
Unit tests verify that individual and isolated parts of an app work as expected. These tests
generally execute very fast, thus giving us a very tight feedback loop so that we know the
part of the app that we are developing is working correctly.

These tests can be quick to implement but this is not necessarily the case if we need to mock
out the dependencies of the unit we are testing. This is often the case when unit-testing a
React frontend because a true unit test on a component needs to mock out any child
components that are referenced in its JSX.

Perhaps the biggest downside of these tests is that they give us the least amount of
confidence that the app as a whole is working correctly. We can have a large unit test suite
that covers all the different parts of our app, but this is no guarantee that all the parts work
together as expected.

Adding Automated Tests Chapter 13

[443]

End-to-end tests
End-to-end tests verify that key paths work together as expected. No parts of the app are
isolated and mocked away. These tests run a fully functioning app just like a user would
and so it gives us the maximum amount of confidence that our app is functioning correctly.

These tests are slow to execute, though, which can delay the feedback loop during
development; they're also the most expensive to write and maintain. This is because
everything that the tests rely on, such as the data in the database, needs to be consistent
each time the tests are executed, which is a challenge when we implement multiple tests
that have different data requirements.

Integration tests
Integration tests verify that several parts of an app work together correctly and give us
more confidence than unit tests in terms of ensuring that the app as a whole is working as
expected. These tests provide the most scope in terms of what is tested because of the many
app part combinations that we can choose to test.

These tests are generally quick to execute because slow components such as database and
network requests are often mocked out. The time it takes to write and maintain these
tests is also short.

For single-page applications, the return on investment (ROI) of integration tests is
arguably greater than the other two testing types if we choose our tests wisely. This is why
the relevant box in the preceding diagram is bigger than other testing types.

Now that we understand the different types of test, we are going to start implementing
them on our Q and A app. We'll start by unit-testing the .NET backend.

Implementing .NET tests with xUnit
In this section, we are going to implement some backend unit tests on our question
controller using a library called xUnit. Before we do this, we are going to become familiar
with xUnit by implementing some unit tests on a class with no dependencies.

Adding Automated Tests Chapter 13

[444]

Getting started with xUnit
In this section, we are going to create a new project in our backend Visual Studio solution
and start to implement simple unit tests to get comfortable with xUnit, which is the tool we
are going to use to run our backend tests. So, let's open our backend ASP.NET Core project
and carry out the following steps:

Open up the Solution Explorer, right-click on Solution, choose Add, and then1.
choose New Project....
Select xUnit Test Project (.NET Core) from the dialog box that opens and click2.
on the Next button:

Enter BackendTests as the project name and set Location to the folder that the3.
solution is in. Click Create to create the project.
We are going to create a simple class so that we can write some unit tests for it.4.
This will get you comfortable with xUnit. Create a static class in our unit test
project called Calc with the following content:

using System;

namespace BackendTests
{

Adding Automated Tests Chapter 13

[445]

 public static class Calc
 {
 public static decimal Add(decimal a, decimal b)
 {
 return a + b;
 }
 }
}

The class contains a method called Add, which simply adds two numbers together
that are passed in its parameters. Add is a pure function, which means the return
value is always consistent for a given set of parameters and it doesn't give any
side-effects. Pure functions are super-easy to test, as we'll see next.

We are going to create some unit tests for the Add method in the Calc class. Let's5.
create a new class in the unit test project called CalcTests with the following
content:

using Xunit;

namespace BackendTests
{
 public class CalcTests
 {
 [Fact]
 public void Add_When2Integers_ShouldReturnCorrectInteger()
 {
 // TODO - call the Calc.Add method with 2 integers
 // TODO - check the result is as expected
 }
 }
}

We have named our test method
Add_When2Integers_ShouldReturnCorrectInteger.

It is useful to have a good naming convention for tests so that, when we
look at a failed test report, we can start to get an understanding of the
problem immediately. In this case, the name starts with the method we
are testing, followed by a brief description of the conditions for the test.
The last part of the name is what we expect to happen.

Note that the test method is decorated with the Fact attribute.

Adding Automated Tests Chapter 13

[446]

The Fact attribute denotes that the method is a unit test for xUnit.
Another attribute that denotes a unit test is called Theory. This can be
used to feed the method a range of parameter values.

Let's implement the unit test:6.

[Fact]
public void Add_When2Integers_ShouldReturnCorrectInteger()
{
 var result = Calc.Add(1, 1);
 Assert.Equal(2, result);
}

We call the method we are testing and put the return value in a result variable.
Then, we use the Assert class from xUnit and its Equal method to check that the
result is equal to 2.

Let's run our test by right-clicking inside the test method and choosing Debug7.
Tests(s) from the menu:

Adding Automated Tests Chapter 13

[447]

After a few seconds, the test will run and the result will appear in the Test8.
Explorer:

As we expected, the test passes. Congratulations—you have just created our first
unit test!

We used the Equal method in the Assert class in this test. The following are globally some
other useful methods in this class:

True: Checks that a value is true
NotNull: Checks that a value isn't null
Contains: Checks that the value is in a string
InRange: Checks that the value is within a range
Throws: Checks that an exception is raised

Now, we are starting to understand how to write unit tests. We haven't written any tests on
our Q and A app yet, but we will do so next.

Testing controller action methods
In this section, we are going to create tests for some question controller actions. Let's get
started:

First, we need to reference the QandA project from the Tests project. We do this1.
by right-clicking on the Dependencies node in the Solution Explorer in the
Tests project and choosing Add Reference...:

Adding Automated Tests Chapter 13

[448]

Then, we need to tick the QandA project and click the OK button:2.

Adding Automated Tests Chapter 13

[449]

Our controller has dependencies for a cache, a data repository, and a SignalR3.
hub. Due to this, we'll need to mock these out in our tests. We are going to use a
library called Moq to help us set up mocks in our tests. Let's install Moq into our
test project using the NuGet Package Manager:

Great stuff—that's the first test on our web API completed!

Testing the action method to implement GetQuestions
Follow these steps to implement a couple of tests on the GetQuestions method:

We'll start by creating a new class called QuestionsControllerTests in the1.
Tests project with the following content:

using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;
using Microsoft.Extensions.Configuration;
using Xunit;
using Moq;
using QandA.Controllers;
using QandA.Data;
using QandA.Data.Models;

namespace BackendTests
{
 public class QuestionsControllerTests
 {
 }
}

Adding Automated Tests Chapter 13

[450]

We are going to verify that calling GetQuestions with no parameters returns all2.
the questions. Let's create the test method for this and 10 mock questions:

[Fact]
public async void
 GetQuestions_WhenNoParameters_ReturnsAllQuestions()
{
 var mockQuestions = new List<QuestionGetManyResponse>();
 for (int i = 1; i <= 10; i++)
 {
 mockQuestions.Add(new QuestionGetManyResponse
 {
 QuestionId = 1,
 Title = $"Test title {i}",
 Content = $"Test content {i}",
 UserName = "User1",
 Answers = new List<AnswerGetResponse>()
 });
 }
}

Notice that the method is flagged as asynchronous with the async keyword
because the action method we are testing is asynchronous.

Let's create a mock data repository definition using Moq:3.

[Fact]
public async void
 GetQuestions_WhenNoParameters_ReturnsAllQuestions()
{
 ...
 var mockDataRepository = new Mock<IDataRepository>();
 mockDataRepository
 .Setup(repo => repo.GetQuestions())
 .Returns(() => Task.FromResult(mockQuestions.AsEnumerable()));
}

We create a mock object from the IDataRepository interface using the Mock
class from Moq. Now, we can use the Setup and Returns methods on the mock
object to define that the GetQuestions method should return our mock
questions. The method we are testing is asynchronous, so we need to wrap the
mock questions with Task.FromResult in the mock result.

Adding Automated Tests Chapter 13

[451]

We need to mock the configuration object that reads appsettings.json. This is4.
what the controller depends on:

[Fact]
public async void
 GetQuestions_WhenNoParameters_ReturnsAllQuestions()
{
 ...
 var mockConfigurationRoot = new Mock<IConfigurationRoot>();
 mockConfigurationRoot.SetupGet(config =>
 config[It.IsAny<string>()]).Returns("some setting");
}

 The preceding code will return any string when appsettings.json is read,
which is fine for our test.

Next, we need to create an instance of the controller by passing in an instance of5.
the mock data repository and mock configuration settings:

[Fact]
public async void
 GetQuestions_WhenNoParameters_ReturnsAllQuestions()
{
 ...
 var questionsController = new QuestionsController(
 mockDataRepository.Object, null,
 null, null, mockConfigurationRoot.Object);
}

The Object property on the mock data repository definition gives us an instance
of the mock data repository to use.

Notice that we can pass in null for cache, SignalR hub, HTTP client factory, and
configuration dependencies. This is because they are not used in the action
method implementation we are testing.

Now, we can call the action method we are testing:6.

[Fact]
public void async
 GetQuestions_WhenNoParameters_ReturnsAllQuestions()
{
 ...
 var result = await questionsController.GetQuestions(null, false);
}

Adding Automated Tests Chapter 13

[452]

We pass null in as the search parameter and false as
the includeAnswers parameter. The other parameters are optional, so we don't
pass these in.

Now, we can check the result is as expected:7.

[Fact]
public void async
 GetQuestions_WhenNoParameters_ReturnsAllQuestions()
{
 ...

 Assert.Equal(10, result.Count());
 mockDataRepository.Verify(
 mock => mock.GetQuestions(), Times.Once());
}

We have checked that 10 items are returned.

We have also checked that the GetQuestions method in the data repository is
called once.

Let's give this a try by right-clicking the test in Test Explorer and selecting Run8.
Selected Tests:

The test passes, as we expected.

Adding Automated Tests Chapter 13

[453]

Now, we are going to create a second test to verify that calling GetQuestions9.
with a search parameter calls the GetQuestionsBySearchWithPaging method
in the data repository:

[Fact]
public async void
 GetQuestions_WhenHaveSearchParameter_ReturnsCorrectQuestions()
{
 var mockQuestions = new List<QuestionGetManyResponse>();
 mockQuestions.Add(new QuestionGetManyResponse
 {
 QuestionId = 1,
 Title = "Test",
 Content = "Test content",
 UserName = "User1",
 Answers = new List<AnswerGetResponse>()
 });

 var mockDataRepository = new Mock<IDataRepository>();
 mockDataRepository
 .Setup(repo =>
 repo.GetQuestionsBySearchWithPaging("Test", 1, 20))
 .Returns(() =>
 Task.FromResult(mockQuestions.AsEnumerable()));

 var mockConfigurationRoot = new Mock<IConfigurationRoot>();
 mockConfigurationRoot.SetupGet(config =>
 config[It.IsAny<string>()]).Returns("some setting");

 var questionsController = new QuestionsController(
 mockDataRepository.Object, null,
 null, null, mockConfigurationRoot.Object);

 var result =
 await questionsController.GetQuestions("Test", false);

 Assert.Single(result);
 mockDataRepository.Verify(mock =>
 mock.GetQuestionsBySearchWithPaging("Test", 1, 20),
 Times.Once());
}

This follows the same pattern as the previous test, but this time we're mocking
the GetQuestionsBySearchWithPaging method in the data repository and
checking that this is called. If we run the test, it will pass as expected.

That completes the tests on the GetQuestions method.

Adding Automated Tests Chapter 13

[454]

Testing the action method to get a single question
Follow these steps to implement a couple of tests on the GetQuestion method:

Let's add the following test in the QuestionsControllerTests class to verify1.
that we get the correct result when the question isn't found:

[Fact]
public async void GetQuestion_WhenQuestionNotFound_Returns404()
{
 var mockDataRepository = new Mock<IDataRepository>();
 mockDataRepository
 .Setup(repo => repo.GetQuestion(1))
 .Returns(() =>
Task.FromResult(default(QuestionGetSingleResponse)));

 var mockQuestionCache = new Mock<IQuestionCache>();
 mockQuestionCache
 .Setup(cache => cache.Get(1))
 .Returns(() => null);

 var mockConfigurationRoot = new Mock<IConfigurationRoot>();
 mockConfigurationRoot.SetupGet(config =>
 config[It.IsAny<string>()]).Returns("some setting");

 var questionsController = new QuestionsController(
 mockDataRepository.Object, null, mockQuestionCache.Object,
 null, mockConfigurationRoot.Object);

 var result = await questionsController.GetQuestion(1);
 var actionResult =
 Assert.IsType<
 ActionResult<QuestionGetSingleResponse>
 >(result);
 Assert.IsType<NotFoundResult>(actionResult.Result);
}

We need to mock the cache in this test because this is used in the GetQuestion
method.

Here, we check that the result is of the NotFoundResult type.

Let's add another test to verify a question is returned when the one that's2.
requested does exist:

[Fact]
public async void GetQuestion_WhenQuestionIsFound_ReturnsQuestion()

Adding Automated Tests Chapter 13

[455]

{
 var mockQuestion = new QuestionGetSingleResponse
 {
 QuestionId = 1,
 Title = "test"
 };

 var mockDataRepository = new Mock<IDataRepository>();
 mockDataRepository
 .Setup(repo => repo.GetQuestion(1))
 .Returns(() => Task.FromResult(mockQuestion));

 var mockQuestionCache = new Mock<IQuestionCache>();
 mockQuestionCache
 .Setup(cache => cache.Get(1))
 .Returns(() => mockQuestion);

 var mockConfigurationRoot = new Mock<IConfigurationRoot>();
 mockConfigurationRoot.SetupGet(config =>
 config[It.IsAny<string>()]).Returns("some setting");

 var questionsController = new QuestionsController(
 mockDataRepository.Object, null, mockQuestionCache.Object,
 null, mockConfigurationRoot.Object);

 var result = await questionsController.GetQuestion(1);

 var actionResult =
 Assert.IsType<
 ActionResult<QuestionGetSingleResponse>
 >(result);
 var questionResult =
 Assert.IsType<QuestionGetSingleResponse>(actionResult.Value);
 Assert.Equal(1, questionResult.QuestionId);
}

This time, we check that the result is of the QuestionGetSingleResponse type
and that the correct question is returned by checking the question ID.

That completes the tests we are going to perform on our GetQuestion action method.

The same approach and pattern can be used to add tests for controller logic we haven't
covered yet. We can do this using Moq, which mocks out any dependencies that the
method relies on. In the next section, we'll start to implement tests on the frontend.

Adding Automated Tests Chapter 13

[456]

Implementing React tests with Jest
In this section, we are going to turn our attention to creating automated tests for the
frontend with Jest. We are going to start by testing a simple function so that we can get
familiar with Jest before moving on to testing a React component.

Getting started with Jest
Jest is the de-facto testing tool in the React community and is maintained by Facebook. Jest
is included in Create React App (CRA) projects, which means that it is already installed
and configured in our project. We'll start to get familiar with Jest by adding some unit tests
on the required function in the Form component. So, let's open our frontend project in
Visual Studio Code and carry out the following steps:

Create a new file called Form.test.ts in the src folder that contains the1.
following content:

import { required } from './Form';

test('When required is called with empty string, an error should be
returned', () => {
 // TODO - call required passing in an empty string
 // TODO - check that an error is returned
});

Notice that the extension of the file is test.ts.

The test.ts extension is important because Jest automatically looks for
files with this extension when searching for tests to execute. Note that if
our tests contained JSX, we would need to use the test.tsx extension.

The test function in Jest takes in two parameters:

The first parameter is a description of the test that will be shown in the test
output.
The second parameter is an arrow function, which will contain our test.

So, the test is going to check that the require function returns an error when an
empty string is passed into it.

Adding Automated Tests Chapter 13

[457]

Let's call the required function with an empty string and check the result:2.

test('When required is called with empty string, an error should be
returned', () => {
 const result = required('');
 expect(result).toBe('This must be populated');
});

We pass the result variable we are checking into the Jest expect function. Then,
we chain a toBe matcher function onto this, which checks that the result from the
expect function is the same as the parameter that was supplied to the toBe
function.

toBe is one of many Jest matcher functions we can use to check a variable
value. The full list of functions can be found at https:/ ​/​jestjs. ​io/​docs/
en/​expect.

Let's create another test on the required function for when a non-empty string3.
is passed into it:

test('When required is called with a value, an empty string should
be returned', () => {
 const result = required('test');
 expect(result).toBe('');
});

So, we expect an empty string to be returned when a non-empty string is passed
into the required function.

It's time to check that our tests pass. Enter the following command in the4.
Terminal:

> npm test

Jest will run the tests that it finds in our project and output the results:

https://jestjs.io/docs/en/expect
https://jestjs.io/docs/en/expect
https://jestjs.io/docs/en/expect
https://jestjs.io/docs/en/expect
https://jestjs.io/docs/en/expect
https://jestjs.io/docs/en/expect
https://jestjs.io/docs/en/expect
https://jestjs.io/docs/en/expect
https://jestjs.io/docs/en/expect
https://jestjs.io/docs/en/expect
https://jestjs.io/docs/en/expect
https://jestjs.io/docs/en/expect

Adding Automated Tests Chapter 13

[458]

So, Jest finds our two tests, and the example test on the App component that came
with CRA. All three tests pass—that's great news!

The require function is straightforward to test because it has no dependencies. How do
we test a React component that has lots of dependencies, such as the browser's DOM and
React itself? We'll find out in the next section.

Testing React components
In this section, we are going to implement tests on the Page, Question, and HomePage
components. React component tests can be challenging because they have dependencies,
such as the browser's DOM and sometimes HTTP requests. Due to this, we are going to
leverage the React Testing Library and Jest's mocking functionality to help us implement
our tests.

Testing the Page component
Carry out the following steps to test that the Page component renders correctly:

Create a file for the tests called Page.test.tsx with the following content:1.

import React from 'react';
import { render, cleanup } from '@testing-library/react';
import { Page } from './Page';

test('When the Page component is rendered, it should contain the
correct title and content', () => {
});

We imported React with our Page component, along with some useful functions
from the React Testing Library.

The React Testing Library was installed by Create React App when we created the
frontend project. This library will help us select elements that we want to check
without using internal implementation details such as element IDs or CSS class
names.

Let's render the Page component:2.

test('When the Page component is rendered, it should contain the
correct title and content', () => {
 const { getByText } = render(

Adding Automated Tests Chapter 13

[459]

 <Page title="Title test">
 Test content
 </Page>,
);
});

We use the render function from the React Testing Library to render the Page
component by passing in JSX.

The render function returns various useful items. One of these items is the
getByText function, which will help us select elements that we'll use and
understand in the next step.

Now, we can check that the page title has been rendered:3.

test('When the Page component is rendered, it should contain the
correct title and content', () => {
 const { getByText } = render(
 <Page title="Title test">
 Test content
 </Page>,
);
 const title = getByText('Title test');
 expect(title).not.toBeNull();
});

We use the getByText function from the React Testing Library that was returned
from the render function to find the element that has "Title test" in the text's
content. Notice how we are using something that the user can see (the element
text) to locate the element rather than any implementation details. This means
that our test won't break if implementation details such as the DOM structure or
DOM IDs change.

Having located the title element, we then use Jest's expect function to check that
the element was found by asserting that it is not null.

We can do a similar check on the page content:4.

test('When the Page component is rendered, it should contain the
correct title and content', () => {
 const { getByText } = render(
 <Page title="Title test">
 Test content
 </Page>,
);
 const title = getByText('Title test');

Adding Automated Tests Chapter 13

[460]

 expect(title).not.toBeNull();
 const content = getByText('Test content');
 expect(content).not.toBeNull();
});

The last thing we need to do is clean up the DOM after the test was executed. We5.
can do this for all the tests in a file by using the afterEach function from Jest
and the cleanup function from the React Testing Library. Let's add this after the
import statements:

afterEach(cleanup);

If Jest is still running after we save the file, our new test will run. If we have6.
killed Jest, then we can start it again by executing npm test in the Terminal:

Our tests pass as expected, which makes four passing tests in total.

Testing the Question component
Carry out the following steps to test that the Question component renders correctly:

Let's start by creating a new file called Question.test.tsx with the following1.
content:

import React from 'react';
import { render, cleanup } from '@testing-library/react';
import { QuestionData } from './QuestionsData';
import { Question } from './Question';
import { BrowserRouter } from 'react-router-dom';

afterEach(cleanup);

test('When the Question component is rendered, it should contain
the correct data', () => {
});

Adding Automated Tests Chapter 13

[461]

This imports all the items we need for our test. We have also implemented the
cleanup function, which will run after the test.

Now, let's try to render the component:2.

test('When the Question component is rendered, it should contain
the correct data', () => {
 const question: QuestionData = {
 questionId: 1,
 title: 'Title test',
 content: 'Content test',
 userName: 'User1',
 created: new Date(2019, 1, 1),
 answers: [],
 };
 const { getByText } = render(
 <Question data={question} />,
);
});

We render the Question component using the render function by passing in a
mocked data prop value.

There's a problem, though. If we run the test, we will receive an error message
that includes Invariant failed: You should not use <Link> outside a
<Router>. The problem here is that the Question component uses a Link
component, which expects the Router component to be higher up in the
component tree. However, it isn't present in our test.

The solution is to include BrowserRouter in our test:3.

test('When the Question component is rendered, it should contain
the correct data', () => {
 const question: QuestionData = {
 ...
 };
 const { getByText } = render(
 <BrowserRouter>
 <Question data={question} />
 </BrowserRouter>,
);
});

Adding Automated Tests Chapter 13

[462]

Now, we can assert that the correct data is being rendered:4.

test('When the Question component is rendered, it should contain
the correct data', () => {
 const question: QuestionData = {
 ...
 };
 const { getByText } = render(
 <BrowserRouter>
 <Question data={question} />
 </BrowserRouter>,
);

 const titleText = getByText('Title test');
 expect(titleText).not.toBeNull();

 const contentText = getByText('Content test');
 expect(contentText).not.toBeNull();

 const userText = getByText(/User1/);
 expect(userText).not.toBeNull();

 const dateText = getByText(/2019/);
 expect(dateText).not.toBeNull();
});

We use the getByText method again to locate rendered elements and check that the
element that's been found isn't null. Notice that, when finding the element that contains
the username and date, we pass in a regular expression to do a partial match.

Testing the HomePage component
The final component we are going to implement tests for is the HomePage component.
Carry out the following steps to do so:

Let's create a file called HomePage.test.tsx with the following content:1.

import React from 'react';
import { render, cleanup, waitForElement } from '@testing-
library/react';
import { HomePage } from './HomePage';
import { BrowserRouter } from 'react-router-dom';

afterEach(cleanup);

test('When HomePage first rendered, loading indicator should show',

Adding Automated Tests Chapter 13

[463]

() => {
 const { getByText } = render(
 <BrowserRouter>
 <HomePage />
 </BrowserRouter>,
);

 const loading = getByText('Loading...');
 expect(loading).not.toBeNull();
});

The test verifies that a Loading... message appears in the HomePage component
when it is first rendered.

There is a problem, though, because the HomePage component expects the
history, location, and match props to be passed into it:

We are going to create a mock property and pass this into the history,2.
location, and match props:

test('When HomePage first rendered, loading indicator should show',
() => {
 let mock: any = jest.fn();
 const { getByText } = render(
 <BrowserRouter>
 <HomePage history={mock} location={mock} match={mock} />
 </BrowserRouter>,

Adding Automated Tests Chapter 13

[464]

);

 const loading = getByText('Loading...');
 expect(loading).not.toBeNull();
});

We create the mock property using jest.fn(). Now, the test will execute and
pass as expected.

Let's implement another test to check that unanswered questions are rendered3.
okay:

test('When HomePage data returned, it should render questions',
async () => {
 let mock: any = jest.fn();
 const { getByText } = render(
 <BrowserRouter>
 <HomePage history={mock} location={mock} match={mock} />
 </BrowserRouter>,
);

 await waitForElement(() => getByText('Title1 test'));

 const question2TitleText = getByText('Title2 test');
 expect(question2TitleText).not.toBeNull();
});

This test is similar to our first test on the HomePage component except that we
wait for the first question to render using the waitForElement function from the
React Testing Library.

However, the test fails. This is because the HomePage component is making an
HTTP request to get the data but there is no REST API to handle the request.

We are going to mock the getUnansweredQuestions function with a Jest mock.4.
Let's add the following code above our test:

jest.mock('./QuestionsData', () => ({
 getUnansweredQuestions: jest.fn(() => {
 return Promise.resolve([
 {
 questionId: 1,
 title: 'Title1 test',
 content: 'Content2 test',
 userName: 'User1',
 created: new Date(2019, 1, 1),
 answers: [],

Adding Automated Tests Chapter 13

[465]

 },
 {
 questionId: 2,
 title: 'Title2 test',
 content: 'Content2 test',
 userName: 'User2',
 created: new Date(2019, 1, 1),
 answers: [],
 },
]);
 }),
}));

test('When HomePage first rendered, loading indicator should show',
() => ...

The mock function returns two questions that we use in the test assertions.

Now, the test will pass when it runs.

That completes our component tests. It's worth noting that the tests on the Page and
Question components are unit tests, whereas those on the HomePage component are
integration tests because the test renders the QuestionList and Question components
rather than mocking them out.

As we've seen, tests on components are more challenging to write than tests on pure
functions, but the React Testing Library and Jest mocks make life fairly straightforward.

In the next section, we are going to complete our test suite by implementing an end-to-end
test.

Implementing end-to-end tests with Cypress
Cypress is an end-to-end testing tool that works really well for single-page applications
(SPAs) like ours. In this section, we are going to implement an end-to-end test for signing
in and asking a question.

Adding Automated Tests Chapter 13

[466]

Getting started with Cypress
Cypress executes in our frontend, so let's carry out the following steps to install and
configure Cypress in our frontend project:

We'll start by installing cypress from the Terminal:1.

> npm install cypress --save-dev

We are going to add an npm script to open Cypress by adding the following line2.
to package.json:

"scripts": {
 ...,
 "cy:open": "cypress open"
},

Let's open Cypress by executing our npm script in the Terminal:3.

> npm run cy:open

After a few seconds, Cypress will open, showing a list of example test files that
have just been installed:

These examples can be found in the cypress/integration/examples folder in
our project. If we open one of these test files, we'll see that they're are written in
JavaScript. These examples are a great reference source as we learn and get up to
speed with Cypress.

Adding Automated Tests Chapter 13

[467]

Click the actions.spec.js item. This will open this test and execute it:4.

We can see the tests on the left and check whether they have passed or failed with
the app that is being tested on the right.

If we click the submit() - submit a form test, we'll see all the steps in the test. If5.
we click on a step, we'll see the app on the right in the state it was in at that
juncture:

Adding Automated Tests Chapter 13

[468]

This is really useful when debugging test failures.

Let's close Cypress for now and return to the Terminal to install the Cypress6.
Testing Library:

> npm install @testing-library/cypress --save-dev

The Cypress Testing Library is similar to the React Testing Library in that it helps
us select elements to check without using internal implementation details.

To add Cypress Testing Library commands, we need to insert the following line7.
at the top of the commands.js file, which can be found in the support folder of
the cypress folder:

import '@testing-library/cypress/add-commands';

Let's add some Cypress configuration settings by opening the cypress.json file8.
in the root of the project and adding the following settings:

{
 "baseUrl": "http://localhost:3000",
 "chromeWebSecurity": false
}

The baseUrl setting is the root URL of the app we are testing.

Our test will be using Auth0 and our app, so it will be working on two different
origins. We need to disable Chrome security using the chromeWebSecurity
setting to allow the test to work across different origins.

Adding Automated Tests Chapter 13

[469]

Cypress runs our app and Auth0 in an IFrame. To prevent clickjacking attacks,9.
running in an IFrame is disabled by default in Auth0. So, let's disable clickjacking
protection in Auth0 by selecting the Settings option under our user avatar menu
and then selecting the Advanced tab. An option called Disable clickjacking
protection for Classic Universal Login can be found toward the bottom of the
Advanced tab. We need to turn this option on:

When we write our tests, we will be accessing a global cy object from Cypress.10.
Let's tell ESLint that cy is okay by adding the following to the .eslintrc.json
file:

{
 ...,
 "globals": {
 "cy": true
 }
}

Now, Cypress has been installed and configured so that we can implement a test on our Q
and A app.

Testing asking a question
We are going to implement a test on our app using Cypress; the test signs in and then asks
a question. Carry out the following steps to do so:

Let's create a new file called qanda.js in the integration folder in the1.
cypress folder with the following content:

describe('Ask question', () => {
 beforeEach(() => {
 cy.visit('/');

Adding Automated Tests Chapter 13

[470]

 });
 it('When signed in and ask a valid question, the question should
successfully save', () => {
 });
});

The describe function allows us to group a collection of tests on a feature. The
first parameter is the title for the group, while the second parameter is a function
that contains the tests in the group.

The it function allows us to define the actual test. The first parameter is the title
for the test and the second parameter is a function that contains the steps in the
test.

The beforeEach function allows us to define steps to be executed before each
test runs. In our case, we are using the visit command to navigate to the root of
the app. Remember that the root URL for the app is defined in the baseUrl
setting in the cypress.json file.

 Let's add the following step in our test:2.

it('When signed in and ask a valid question, the question should
successfully save', () => {
 cy.contains('Q & A');
});

We are checking that the page contains the Q & A text using the contains
Cypress command. We can access Cypress commands from the global cy object.

Cypress commands are built to fail if they don't find what they expect to find.
Due to this, we don't need to add an assert statement. Neat!

Let's give the test a try. We'll need to run our backend in our Visual Studio3.
project. We'll also need to run our frontend by executing npm start in the
Terminal. In an additional Terminal window, enter the following to open
Cypress:

> npm run cy:open

Adding Automated Tests Chapter 13

[471]

Cypress will detect our test and list it underneath the example tests:4.

Click on the test to execute it:5.

The test successfully executes and passes. We'll leave the test runner open because
it will automatically rerun as we implement and save our test.

Let's add the following additional step in our test:6.

cy.contains('UNANSWERED QUESTIONS');

Here, we are checking that the page contains the correct title. If we save the test
and look at the test runner, we'll see that the test has failed:

This is because the title's text isn't actually in capitals – a CSS rule transformed the
text into capitals.

Adding Automated Tests Chapter 13

[472]

Notice the message Cypress uses to inform us of the failing test: Timed out
retrying. Cypress will keep trying commands until they pass or a timeout occurs.
This behavior is really convenient for us because it allows us to write
synchronous style code, even though the operations we are testing are
asynchronous. Cypress abstracts this complexity from us.

We'll correct step 6:7.

cy.contains('Unanswered Questions');

Let's add code to go to the sign-in page:8.

cy.contains('Sign In').click();
cy.url().should('include', 'auth0');

Here, we use the Cypress contains command to locate the Sign In button and
chain a click command on this to click the button.

Then, we use the url command to get the browser's URL and chain a should
command on this statement to verify that it contains the correct path.

If we look at the test runner, we'll see that the test managed to navigate to Auth0
correctly.

Let's think about these steps that Cypress is executing. The navigation to Auth0 is
an asynchronous operation but our test code doesn't appear to be asynchronous.
We haven't added a special wait function to wait for the page navigation to
complete. Cypress makes testing single-page apps that have asynchronous user
interfaces a breeze because it deals with this complexity for us!

Next, we'll implement some steps so that we can fill in the sign-in form:9.

cy.findByLabelText('Email')
 .type('your username')
 .should('have.value', 'your username');

cy.findByLabelText('Password')
 .type('your password')
 .should('have.value', 'your password');

Adding Automated Tests Chapter 13

[473]

Here, we use the findByLabelText command from the Cypress Testing Library
to locate the input. It does this by finding the label containing the text we
specified and then finding the associated input (referenced in the label's for
attribute). This is another neat function that frees the tests from implementation
details such as element IDs and class names.

We chain the Cypress type command so that we can enter characters into the
input and then the should command to verify that the input's value property
has been set correctly.

Substitute your test username and password appropriately.

Let's submit the sign-in form and check that we are taken back to the Q and A10.
app:

cy.get('form').submit();

cy.contains('Unanswered Questions');

We use the Cypress get command to locate the form and then submit it. Then, we
check that the page contains the Unanswered Questions text to verify we are
back in the Q and A app. Cypress takes care of the asynchronicity of these steps
for us.

Next, we'll click the Ask a question button to go to the ask page:11.

cy.contains('Ask a question').click();
cy.contains('Ask a Question');

Then, we'll fill in the ask form:12.

var title = 'title test';
var content = 'Lots and lots and lots and lots and lots of content
test';
cy.findByLabelText('Title')
 .type(title)
 .should('have.value', title);
cy.findByLabelText('Content')
 .type(content)
 .should('have.value', content);

Adding Automated Tests Chapter 13

[474]

We fill in the title and content fields by using the same commands that we did on
the sign-in form. The title must be at least 10 characters, and the content must be
at least 50 characters, to satisfy the validation rules.

Next, we'll submit the question and check that the submission is okay:13.

cy.contains('Submit Your Question').click();
cy.contains('Your question was successfully submitted');

To complete the test, we are going to sign out and check we've been redirected to14.
the correct page:

cy.contains('Sign Out').click();
cy.contains('You successfully signed out!');

If we look at the test runner, we'll discover that our test runs and passes
successfully:

Adding Automated Tests Chapter 13

[475]

That completes our end-to-end test and all the tests we are going to create in this chapter.
Now that we've written the appropriate unit tests, integration tests, and end-to-end tests,
we have a feel for the benefits and challenges of each type, and how to implement them.

Summary
End-to-end tests with Cypress allows us to quickly cover areas of our app. However, they
require a fully operational frontend and backend, including the database. Cypress abstracts
away the complexity of the asynchronous nature of single-page applications, making our
tests nice and easy to write.

Unit tests can be written using xUnit in .NET and can be placed in a xUnit project, separate
from the main app. xUnit test methods are decorated with the Fact attribute and we use
the Assert class to carry out checks on the item that we are testing.

Unit tests can be written using Jest for React apps and are contained in files with test.ts
or test.tsx extensions. Jest's expect function gives us many useful matcher functions,
such as toBe, that we can use to make test assertions.

Unit tests often require dependencies to be mocked. Moq is a popular mocking tool in the
.NET community and has a Mock class, which can be used to mock dependencies. On the
frontend, Jest has a range of powerful mocking capabilities that we can use to mock out
dependencies, such as REST API calls.

A page is often composed of several components and sometimes it is convenient to just
write integration tests on the page component without mocking the child components. We
can implement these tests using Jest in exactly the same way as we can implement a unit
test.

The React Testing Library and the Cypress Testing Library help us write robust tests by
allowing us to locate elements in a way that doesn't depend on implementation details. This
means that, if the implementation changes while its features and the behavior remain the
same, the test is unlikely to break. This approach reduces the maintenance cost of our test
suite.

Now that our app has been built and we've covered automated tests, it's time to deploy it to
Azure. We'll do this in the next chapter.

Adding Automated Tests Chapter 13

[476]

Questions
The following questions will test your knowledge of the topics that were covered in this
chapter:

We have the following xUnit test method, but it isn't being picked up by the test1.
runner. What's wrong?

public void Minus_When2Integers_ShouldReturnCorrectInteger()
{
 var result = Calc.Add(2, 1);
 Assert.Equal(1, result);
}

We have a string variable called successMessage in a xUnit test and we need2.
to check that it contains the word "success". What method in the Assert class
could we use?
We have created some Jest unit tests on a List component in a file called3.
ListTests.tsx. However, when the Jest test runner runs, the tests aren't picked
up. Why is this happening?
We are implementing a test in Jest and we have a variable called result that we4.
want to check isn't null. Which Jest matcher function can we use?
Let's say we have a variable called person that is of the Person type:5.

interface Person {
 id: number;
 firstName: string;
 surname: string
}

We want to check that the person variable is { id: 1, firstName: "Tom",
surname: "Smith" }. What Jest matcher function can we use?

We are writing an end-to-end test using Cypress for a page. The page has a6.
heading called Sign In. What Cypress command can we use to check that this
has rendered okay?
We are writing an end-to-end test using Cypress for a page that renders some7.
text, Loading..., while data is being fetched. How can we assert that this text is
being rendered and then disappears when the data has been fetched?

Adding Automated Tests Chapter 13

[477]

Further reading
The following resources are useful if you want to find out more about testing with xUnit
and Jest:

Unit testing in .NET
Core: https://docs.microsoft.com/en-us/dotnet/core/testing/unit-testin
g-with-dotnet-test

xUnit: https:/ ​/​xunit. ​net/ ​

Moq: https:/ ​/​github. ​com/ ​moq/ ​moq

Jest: https:/ ​/ ​jestjs. ​io/ ​

React Testing Library: https:/ ​/​github. ​com/ ​kentcdodds/ ​react- ​testing-
library

Cypress: https:/ ​/​docs. ​cypress. ​io

Cypress Testing Library: https:/ ​/​github. ​com/ ​testing- ​library/ ​cypress-
testing- ​library

https://docs.microsoft.com/en-us/dotnet/core/testing/unit-testing-with-dotnet-test
https://docs.microsoft.com/en-us/dotnet/core/testing/unit-testing-with-dotnet-test
https://xunit.net/
https://xunit.net/
https://xunit.net/
https://xunit.net/
https://xunit.net/
https://xunit.net/
https://xunit.net/
https://xunit.net/
https://github.com/moq/moq
https://github.com/moq/moq
https://github.com/moq/moq
https://github.com/moq/moq
https://github.com/moq/moq
https://github.com/moq/moq
https://github.com/moq/moq
https://github.com/moq/moq
https://github.com/moq/moq
https://github.com/moq/moq
https://github.com/moq/moq
https://jestjs.io/
https://jestjs.io/
https://jestjs.io/
https://jestjs.io/
https://jestjs.io/
https://jestjs.io/
https://jestjs.io/
https://jestjs.io/
https://github.com/kentcdodds/react-testing-library
https://github.com/kentcdodds/react-testing-library
https://github.com/kentcdodds/react-testing-library
https://github.com/kentcdodds/react-testing-library
https://github.com/kentcdodds/react-testing-library
https://github.com/kentcdodds/react-testing-library
https://github.com/kentcdodds/react-testing-library
https://github.com/kentcdodds/react-testing-library
https://github.com/kentcdodds/react-testing-library
https://github.com/kentcdodds/react-testing-library
https://github.com/kentcdodds/react-testing-library
https://github.com/kentcdodds/react-testing-library
https://github.com/kentcdodds/react-testing-library
https://github.com/kentcdodds/react-testing-library
https://docs.cypress.io
https://docs.cypress.io
https://docs.cypress.io
https://docs.cypress.io
https://docs.cypress.io
https://docs.cypress.io
https://docs.cypress.io
https://docs.cypress.io
https://docs.cypress.io
https://github.com/testing-library/cypress-testing-library
https://github.com/testing-library/cypress-testing-library
https://github.com/testing-library/cypress-testing-library
https://github.com/testing-library/cypress-testing-library
https://github.com/testing-library/cypress-testing-library
https://github.com/testing-library/cypress-testing-library
https://github.com/testing-library/cypress-testing-library
https://github.com/testing-library/cypress-testing-library
https://github.com/testing-library/cypress-testing-library
https://github.com/testing-library/cypress-testing-library
https://github.com/testing-library/cypress-testing-library
https://github.com/testing-library/cypress-testing-library
https://github.com/testing-library/cypress-testing-library
https://github.com/testing-library/cypress-testing-library
https://github.com/testing-library/cypress-testing-library
https://github.com/testing-library/cypress-testing-library

14
Configuring and Deploying to

Azure
In this chapter, we'll deploy our app into production in Microsoft Azure so that all of our
users can start to use it. We will focus on the backend to start with, making the necessary
changes to our code so that it can work in production and staging environments in Azure.
We will then deploy our backend APIs, along with the SQL database, to both staging and
production from within Visual Studio. After the first deploy, subsequent deploys will be
able to be done with the click of a button in Visual Studio.

We will then turn our attention to the frontend, again making changes to our code to
support development, staging, and production environments. We will then deploy our
frontend to Azure to both the staging and production environments.

In this chapter, we'll cover the following topics:

Getting started with Azure
Configuring the ASP.NET Core backend for staging and production
Publishing our ASP.NET Core backend to Azure
Configuring the React frontend for staging and production
Publishing the React frontend to Azure

Configuring and Deploying to Azure Chapter 14

[479]

Technical requirements
We'll use the following tools and services in this chapter:

Visual Studio 2019: We'll use this to edit our ASP.NET Core code. This can be
downloaded and installed from https:/ ​/​visualstudio. ​microsoft. ​com/ ​vs/​.
.NET Core 3.0: This can be downloaded and installed from https:/ ​/​dotnet.
microsoft. ​com/ ​download/ ​dotnet- ​core.
Visual Studio Code: We'll use this to edit our React code. This can be
downloaded and installed from https:/ ​/​code. ​visualstudio. ​com/ ​.
Node.js and npm: These can be downloaded from https:/ ​/​nodejs. ​org/​. If you
already have these installed, make sure that Node.js is at least version 8.2, and
that npm is at least version 5.2
Microsoft Azure. We will use several Azure app services and SQL databases for
our app. An account can be created at https:/ ​/​azure. ​microsoft. ​com/ ​en- ​us/
free/​.
Q and A: We'll start with the Q and A frontend and backend projects we finished
in the last chapter, which are available at https:/ ​/​github. ​com/
PacktPublishing/ ​ASP. ​NET- ​Core- ​3-​and- ​React- ​17.

All of the code snippets in this chapter can be found online at https:/ ​/​github. ​com/
PacktPublishing/​ASP. ​NET- ​Core- ​3- ​and- ​React- ​17. To restore code from a chapter, the
source code repository can be downloaded and the relevant folder opened in the relevant
editor. If the code is frontend code, then npm install can be entered in the Terminal to
restore the dependencies.

Check out the following video to see the code in action:

http:/​/​bit.​ly/​2MvYu7M

https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/vs/
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://dotnet.microsoft.com/download/dotnet-core
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
http://bit.ly/2MvYu7M
http://bit.ly/2MvYu7M
http://bit.ly/2MvYu7M
http://bit.ly/2MvYu7M
http://bit.ly/2MvYu7M
http://bit.ly/2MvYu7M
http://bit.ly/2MvYu7M
http://bit.ly/2MvYu7M
http://bit.ly/2MvYu7M

Configuring and Deploying to Azure Chapter 14

[480]

Getting started with Azure
In this section, we are going to sign up for Azure if we haven't already got an account. We'll
then have a quick look around the Azure portal and understand the services we are going
to use to run our app.

Signing up to Azure
If you already have an Azure account, there's never been a better time to sign up and give
Azure a try. At the time of writing this book, you can sign up to Azure and get 12 months
of free services at the following link: https:/ ​/ ​azure. ​microsoft. ​com/ ​en-​us/ ​free/ ​.

We'll need a Microsoft account to sign up for Azure, which is free to create if you haven't
already got one. You are then required to complete a sign-up form that contains the
following personal information:

Country of origin
Name
Email address
Phone number

You then need to go through two different verification processes. The first is verification via
a text message or call on your phone. The second is to verify your credit card details.

Note that your credit card won't be charged unless you upgrade from the free
trial.

The last step in the sign-up process is to agree to the terms and conditions.

https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/

Configuring and Deploying to Azure Chapter 14

[481]

Understanding the Azure services we are going
to use
After we have an Azure account, we can sign in to the Azure portal using our Microsoft
account. The URL for the portal is https:/ ​/​portal. ​azure. ​com.​

When we log in to the Azure portal, we'll see that it contains a wide variety of services:

We are going to use just a couple of these fantastic services:

App services: We will use this service to host our ASP.NET Core backend API as
well as our React frontend.
SQL database: We will use this service to host our SQL Server database.

If our frontend React didn't contain multiple client-side pages, we could
host it using the static website option in Azure Storage, which is nice and
cheap. For multiple client-side page apps, we need a URL rewrite rule so
that deep links to the pages work. The URL rewrite rule requires IIS,
which is available in an Azure App Service but, unfortunately, not
in Azure Storage.

https://portal.azure.com
https://portal.azure.com
https://portal.azure.com
https://portal.azure.com
https://portal.azure.com
https://portal.azure.com
https://portal.azure.com
https://portal.azure.com
https://portal.azure.com
https://portal.azure.com

Configuring and Deploying to Azure Chapter 14

[482]

We are going to put all of these resources into what's called a resource group. Let's create
the resource group now:

Click on the Resource groups option. A list of resource groups appears, which of1.
course will be empty if we have just signed up to Azure. Click on the Create
resource group button:

Configuring and Deploying to Azure Chapter 14

[483]

Fill in the form that opens. Choose an appropriate name for the resource group.2.
We'll need to use this name later in this chapter, so make sure you remember
it. Click the Review + Create button:

Click on the Create button on the review screen that opens. Our resource group3.
will eventually be shown in the resource group list:

Configuring and Deploying to Azure Chapter 14

[484]

If the resource group doesn't show after a few seconds, click the Refresh
option to refresh the resource groups.

Our resource group is now ready for the other services to be provisioned. Before we
provision any other services, we'll configure our backend for production in the next section.

Configuring the ASP.NET Core backend for
staging and production
In this section, we are going to change our CORS configuration to reference
appsettings.json so that it's not hardcoded. We are then going to create separate
appsettings.json files for staging and production as well for working locally in
development. Let's open our backend project in Visual Studio and carry out the following
steps:

In the StartUp class in the ConfigureServices method, let's change our call to1.
the AddCors method to the following:

services.AddCors(options => options.AddPolicy("CorsPolicy",
 builder => builder
 .AllowAnyMethod()
 .AllowAnyHeader()
 .AllowCredentials()
 .WithOrigins(Configuration["Frontend"])));

Configuring and Deploying to Azure Chapter 14

[485]

We have simply changed the origin to reference a Frontend configuration setting
instead of being hardcoded. We will add this setting in a later step.

Let's now go to the Solution Explorer: 2.

Notice that two settings files start with the word appsettings.

We can have different settings files for different environments. The
appsettings.json file is the default settings file and can contain
settings common to all environments. appsettings.Development.json
is used during development when we run the backend in Visual Studio
and overrides any duplicate settings that are in
the appsettings.json file. The middle part of the filename needs to
match an environment variable called ASPNETCORE_ENVIRONMENT, which
is set to Development in Visual Studio by default and Production by
default in Azure. So, appsettings.Production.json can be used for
settings specific to the production environment in Azure.

At the moment, all of our settings are in the default appsettings.json file.3.
Let's add our ConnectionStrings setting and also a frontend setting
to the appsettings.Development.json file:

{
 "ConnectionStrings": {
 "DefaultConnection":
"Server=localhost\\SQLEXPRESS;Database=QandA;Trusted_Connection=Tru

Configuring and Deploying to Azure Chapter 14

[486]

e;"
 },
 "Frontend": "http://localhost:3000"
}

We will leave the Auth0 settings in the default appsettings.json file
because these will apply to all environments.

Let's add an appsettings.Production.json file now by right-clicking the4.
QandA project in Solution Explorer, choosing Add | New Item..., selecting the
App Settings File item, and then clicking the Add button:

Configuring and Deploying to Azure Chapter 14

[487]

Change the content in the appsettings.Production.json file to the5.
following:

{
 "ConnectionStrings": {
 "DefaultConnection": "Server=tcp:your-
server.database.windows.net,1433;Initial Catalog=your-db;Persist
Security Info=False;User ID=qanda;Password=your-
password;MultipleActiveResultSets=False;Encrypt=True;TrustServerCer
tificate=False;Connection Timeout=30;"
 },
 "Frontend": "https://your-frontend.azurewebsites.net"
}

So, this contains references to the production database and app services we are
going to create in Azure. Choose your own server name, database name,
username, and password. Also, choose a name for your frontend website. Take
note of these settings because we will need these when we provision the services
in Azure.

Similarly, let's add an appsettings.Staging.json file with the following6.
content:

{
 "ConnectionStrings": {
 "DefaultConnection": "Server=tcp:your-
server.database.windows.net,1433;Initial Catalog=your-db-
staging;Persist Security Info=False;User ID=qanda;Password=your-
password;MultipleActiveResultSets=False;Encrypt=True;TrustServerCer
tificate=False;Connection Timeout=30;"
 },
 "Frontend": "https://your-frontend-staging.azurewebsites.net"
}

We are now ready to start to create Azure services and deploy our backend. We'll do this in
the next section.

Configuring and Deploying to Azure Chapter 14

[488]

Publishing our ASP.NET Core backend to
Azure
In this section, we are going to deploy our database and backend API to Azure using Visual
Studio. We are going to deploy to a production environment first and then a staging
environment.

Publishing to production
Let's carry out the following steps to deploy our backend to production:

In Solution Explorer, right-click on the QandA project and select Publish....1.
The Publish screen opens. Select the Publish section and then click the Start2.
button:

Configuring and Deploying to Azure Chapter 14

[489]

We are then prompted to choose a publish target. Choose Create New and click3.
the Create Profile button:

The next step is to specify our Microsoft account and name the production app4.
service. Note down the name you choose because we'll eventually reference
this in the frontend project:

Configuring and Deploying to Azure Chapter 14

[490]

We can also create a SQL database on this screen. Let's do this by clicking the5.
Create a SQL Database option.
In the dialog that opens, enter the database name to match what we have6.
specified in the connection string in the appsettings.Production.json file.
We need to create a new database server, so click the New... option to the right of7.
the Database server field.
Let's use the server name and credentials we specified in the connection string8.
in the appsettings.Production.json file.
Click the OK button to confirm the server details and then the OK button on the9.
database screen beneath it.
We are taken back to the Azure App Service dialog with the details that we have10.
just specified in the bottom-right corner.
Click the Create button to create the services in Azure. This will take a few11.
minutes to complete.

Configuring and Deploying to Azure Chapter 14

[491]

Notice the warning at the bottom of the screen:

This is a reminder that there is a SignalR Service in Azure that we could use for
our real-time API. Implementing this is beyond the scope of this chapter, so we'll
continue to use the real-time API within our app service.

We can then publish our code to the Azure services by clicking the Publish12.
button. Again, this will take a few minutes to complete.
Just before deployment is complete, the following prompt may appear:13.

Choose Yes to turn web sockets on in our app service.

Eventually, a browser window will open containing the path to our deployed14.
backend. Add /api/questions to the path in the browser:

We will see the default questions from our database. Congratulations! We
have just deployed our first SQL database and ASP.NET Core app in Azure!

Configuring and Deploying to Azure Chapter 14

[492]

Let's go to the Azure portal by navigating to https:/ ​/​portal. ​azure. ​com. Select15.
the All resources option:

As expected, we see the services that we have just provisioned.

Excellent! We have just successfully deployed our backend in Azure!

Publishing to staging
Let's carry out the following steps to deploy our backend to a staging environment:

In Solution Explorer, right-click on the QandA project and select Publish...1.
Select the New option to create a new publish profile:2.

Select Create New on the App Service tab and click Create Profile.3.
In the dialog that appears, enter the name for the app service. This is going to be4.
the service to host our backend in the staging environment. Note down the name
you choose because we'll eventually reference this in the frontend project.

https://portal.azure.com
https://portal.azure.com
https://portal.azure.com
https://portal.azure.com
https://portal.azure.com
https://portal.azure.com
https://portal.azure.com
https://portal.azure.com
https://portal.azure.com

Configuring and Deploying to Azure Chapter 14

[493]

Click on the Create a SQL Database option. We are going to use the database5.
server we have already provisioned, but create a new database within it for the
staging environment. Remember that these settings need to be reflected in
the DefaultConnection setting in appsettings.Staging.json.
We then click on the Create button to create the new app service and database,6.
which will take a few minutes.
We can then publish our code to the Azure services by clicking7.
the Publish button. Again, this will take a few minutes to complete.
A browser window will eventually open that points to the new app service.8.
However, our app service will be referencing the production database at the
moment because this is the default environment if not specified.
We need to tell our new app service that it is the staging environment. Let's go to9.
the Azure portal and select the staging app service in the App Services area.
In the Settings area, select Configuration and go to the Application settings tab.10.
Under Application settings, click the New application setting option and11.
enter ASPNETCORE_ENVIRONMENT as the name and Staging as the value, and
then click the OK button followed by the Save button. This creates an
environment variable called ASPNETCORE_ENVIRONMENT with
the Staging value. ASP.NET Core will look at this variable and then use the
appsettings.Staging.json file for its configuration settings:

Configuring and Deploying to Azure Chapter 14

[494]

That completes the deployment of our app to a staging environment.

That's great progress! Azure works beautifully with Visual Studio. In the next section, we
are going to turn our attention to the frontend and make changes so that it will work in the
Azure staging and production environments as well as in development.

Configuring the React frontend for staging
and production
In this section, we are going to change our frontend so that it makes requests to the correct
backend APIs in staging and production. At the moment, both the REST API and SignalR
API have hardcoded paths set to the localhost. We are going to make use of environment
variables like we did in our backend to differentiate between the different environments.
Let's open our frontend project in Visual Studio Code and carry out the following steps:

First, we are going to install a library called cross-env that will allow us to set1.
environment variables. Let's execute the following command in the Terminal:

> npm install cross-env --save-dev

Let's add the following scripts in package.json to execute staging and2.
production builds:

"scripts": {
 ...,
 "build": "react-scripts build",
 "build:production": "cross-env REACT_APP_ENV=production npm run
build",
 "build:staging": "cross-env REACT_APP_ENV=staging npm run build",
 ...
},

These scripts use the cross-env library to set an environment variable
called REACT_APP_ENV to staging and production before doing an
optimized build.

So, npm run build:staging will execute a staging build and npm run
build:production will execute a production build.

Configuring and Deploying to Azure Chapter 14

[495]

Let's make use of the REACT_APP_ENV environment variable when setting the3.
server variable in the AppSettings.ts file:

export const server =
 process.env.REACT_APP_ENV === 'production'
 ? 'https://your-backend.azurewebsites.net'
 : process.env.REACT_APP_ENV === 'staging'
 ? 'https://your-backend-staging.azurewebsites.net'
 : 'http://localhost:17525';

We use a ternary expression to set the correct backend location depending on
the environment the app is running in. The production server is set
to https://your-backend.azurewebsites.net, and the staging server is
set to https://your-backend-staging.azurewebsites.net.

Make sure the staging and production locations you enter match the
location of your deployed backends.

 For deep links to work in Azure, we need to specify a URL rewrite rule to 4.
redirect all requests to the frontend to our index.html file. We can do this by
adding a web.config file to the public folder with the following content:

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <system.webServer>
 <rewrite>
 <rules>
 <rule name="React Routes" stopProcessing="true">
 <match url=".*" />
 <conditions logicalGrouping="MatchAll">
 <add input="{REQUEST_FILENAME}" matchType="IsFile"
negate="true" />
 </conditions>
 <action type="Rewrite" url="/" appendQueryString="true"
/>
 </rule>
 </rules>
 </rewrite>
 </system.webServer>
</configuration>

Configuring and Deploying to Azure Chapter 14

[496]

Now, let's do one final thing in preparation for deploying our frontend. Let's5.
change the app to render the environment we are in. Let's open Header.tsx and
add the environment name after the link to the home page:

<div css={...}>
 <div>
 <Link to="/" css={...}>Q & A</Link>
 <span
 css={css`
 margin-left: 10px;
 font-size: 16px;
 color: ${gray2};
 `}
 >
 {process.env.REACT_APP_ENV || 'development'}

 </div>
 ...
</div>

If the environment variable isn't populated, we assume we are in the development
environment.

That completes the changes we need to make to our frontend. In the next section, we are
going to deploy the frontend to Azure.

Publishing the React frontend to Azure
In this section, we are going to deploy our React frontend to Azure to both staging and
production environments.

Configuring and Deploying to Azure Chapter 14

[497]

Publishing to production
Let's carry out the following steps to publish our frontend to a production environment:

We'll start by provisioning an Azure App Service. So, let's go to the Azure portal1.
in a browser and go to the App Services area and click the Add option.
Complete the form that opens by choosing the existing resource group, choosing2.
an app name, and selecting .NET Core 3.0 as the runtime stack and Windows
as the operating system. Note that the app name we choose needs to be reflected
in the Frontend setting in the appsettings.Production.json file in our
backend project. Click the Review + create button and then the Create button to
create the app service.
Let's move to Visual Studio Code now and create a production build by running3.
the following command in the Terminal:

> npm run build:production

After the build has finished, the production build will consist of all of the files in
the build folder.

We are going to use the Azure App Service extension to perform the Azure4.
deployment. So, let's install this:

Configuring and Deploying to Azure Chapter 14

[498]

Click the Azure icon in the left-hand navigation options and then the Sign in to5.
Azure... option:

We are prompted to enter our Microsoft account credentials, so let's enter these.6.

Configuring and Deploying to Azure Chapter 14

[499]

We should see the frontend app service listed in the tree. Right-click on this and7.
choose the Deploy to Web App... option:

We should select our build folder when prompted for the folder to deploy.8.

Configuring and Deploying to Azure Chapter 14

[500]

We are then asked to confirm the deployment, which we do by clicking the9.
Deploy button:

Deployment will take a minute or so before we get confirmation that it is10.
complete:

If we click on the Browse Website option, our frontend in Azure will display in a11.
browser:

Our frontend is now deployed nicely to the production environment. We won't be able to
sign in successfully yet—we'll resolve this after we have published our frontend to the
staging environment.

Configuring and Deploying to Azure Chapter 14

[501]

Publishing to staging
Let's carry out the following steps to deploy our frontend to a staging environment:

We'll start by provisioning another Azure App Service. So, let's go to the Azure1.
portal in a browser and go to the App Services area and click the Add option.
Enter an app name and choose the existing resource group. Remember that the2.
app name we choose needs to be reflected in the Frontend setting of
the appsettings.Staging.json file in our backend project. Remember also
that the runtime stack should be .NET Core 3.0 and Windows should be the
operating system. Click the Review + Create button and then the Create button
to create the app service.
Let's move to Visual Studio Code now and create a staging build by running the3.
following command in the Terminal:

> npm run build:staging

After the build has finished, the staging build will consist of all of the files in
the build folder overwriting the production build.

In the Azure App Service section in Visual Studio Code, we should see the4.
frontend staging app service listed in the tree. Note that we might need to click
the Refresh toolbar option for it to appear. Right-click on the frontend staging
app service and choose the Deploy to Web App... option:

Configuring and Deploying to Azure Chapter 14

[502]

We should select our build folder when prompted for the folder to deploy and5.
then confirm the deployment when prompted.
After a minute or so, we'll get confirmation that the deployment is complete. If6.
we click on the Browse Website option, our staging frontend in Azure will show
in a browser:

Next, let's tell Auth0 about the Azure staging and production URLs it should7.
trust. In Auth0, we need to update the following settings against our Q and A
application:

Allowed Callback URLs: This is shown in the following screenshot:

Configuring and Deploying to Azure Chapter 14

[503]

Allowed Web Origins: This is shown in the following screenshot:

Allowed Logout URLs: This is shown in the following screenshot:

We can find these settings by clicking on the Applications item in the left-
hand navigation menu and then clicking on the Q and A application. We add
the additional URLs for both the staging and production environments after
the development environment URLs. The URLs for the different
environments need to be separated by a comma.

We should now be able to sign in to our production and staging Q and A8.
apps successfully.

That completes the deployment of our frontend to both production and staging
environments.

Summary
Azure works beautifully with both React and ASP.NET Core apps. In ASP.NET Core, we
can have different appsettings.json files to store the different settings for the different
environments, such as database connection strings and the frontend location for CORS. In
our React code, we can use an environment variable to make requests to the appropriate
backend. We also need to include a web.config file in our React app so that deep links are
redirected to the index.html page and then handled by React Router. The environment
variable can be set in specific build npm scripts for each environment. We used three
environments in this chapter, but both the frontend and backend could easily be configured
to support more environments.

Configuring and Deploying to Azure Chapter 14

[504]

Azure has integration from both Visual Studio and Visual Studio Code that makes
deploying React and ASP.NET Core apps a breeze. We use the built-in Publish... option
in Visual Studio to provision the SQL database with App Services and then perform the
deployment. We can also provision App Services in the Azure Portal, which we did for our
frontend. We can then use the Azure App Services Visual Studio Code extension to deploy
the frontend to an App Service.

Although deploying our app to Azure was super easy, we can make it even easier by
automating the deployment when we check code into source control. We'll do this in the
next chapter.

Questions
The following questions will test what we have learned in this chapter:

In ASP.NET Core, what is the name of the file where we store any settings1.
specific to the production environment?
What were the reasons for our ASP.NET Core backend needing the Frontend2.
setting?
Let's pretend we have introduced a QA environment and have created the3.
following npm script to execute a build for this environment:

"build:qa": "cross-env REACT_APP_ENV=qa npm run build"

What npm command would we use to produce a QA build?

What would be broken if we didn't include the web.config file with our React4.
frontend?
Why didn't we use Azure Storage to host our frontend instead of Azure App5.
Service?

Configuring and Deploying to Azure Chapter 14

[505]

Further reading
The following resources are useful for finding more information on deploying ASP.NET
Core and React apps to Azure:

Using multiple environments in ASP.NET Core: https:/ ​/​docs. ​microsoft. ​com/
en-​us/ ​aspnet/ ​core/ ​fundamentals/ ​environments

Deploying ASP.NET Core apps to Azure: https:/ ​/​docs. ​microsoft. ​com/ ​en- ​us/
aspnet/​core/ ​host- ​and- ​deploy/ ​azure- ​apps

Deploy a static website to Azure from VS Code: https:/ ​/​code. ​visualstudio.
com/​tutorials/ ​static- ​website/ ​getting- ​started

Azure SignalR Service: https:/ ​/​docs. ​microsoft. ​com/ ​en-​us/ ​azure/ ​azure-
signalr/ ​signalr- ​concept- ​scale- ​aspnet- ​core

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/environments
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/environments
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/environments
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/environments
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/environments
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/environments
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/environments
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/environments
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/environments
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/environments
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/environments
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/environments
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/environments
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/environments
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/environments
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/environments
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/environments
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/environments
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/environments
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/environments
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/azure-apps
https://code.visualstudio.com/tutorials/static-website/getting-started
https://code.visualstudio.com/tutorials/static-website/getting-started
https://code.visualstudio.com/tutorials/static-website/getting-started
https://code.visualstudio.com/tutorials/static-website/getting-started
https://code.visualstudio.com/tutorials/static-website/getting-started
https://code.visualstudio.com/tutorials/static-website/getting-started
https://code.visualstudio.com/tutorials/static-website/getting-started
https://code.visualstudio.com/tutorials/static-website/getting-started
https://code.visualstudio.com/tutorials/static-website/getting-started
https://code.visualstudio.com/tutorials/static-website/getting-started
https://code.visualstudio.com/tutorials/static-website/getting-started
https://code.visualstudio.com/tutorials/static-website/getting-started
https://code.visualstudio.com/tutorials/static-website/getting-started
https://code.visualstudio.com/tutorials/static-website/getting-started
https://code.visualstudio.com/tutorials/static-website/getting-started
https://code.visualstudio.com/tutorials/static-website/getting-started
https://code.visualstudio.com/tutorials/static-website/getting-started
https://code.visualstudio.com/tutorials/static-website/getting-started
https://docs.microsoft.com/en-us/azure/azure-signalr/signalr-concept-scale-aspnet-core
https://docs.microsoft.com/en-us/azure/azure-signalr/signalr-concept-scale-aspnet-core
https://docs.microsoft.com/en-us/azure/azure-signalr/signalr-concept-scale-aspnet-core
https://docs.microsoft.com/en-us/azure/azure-signalr/signalr-concept-scale-aspnet-core
https://docs.microsoft.com/en-us/azure/azure-signalr/signalr-concept-scale-aspnet-core
https://docs.microsoft.com/en-us/azure/azure-signalr/signalr-concept-scale-aspnet-core
https://docs.microsoft.com/en-us/azure/azure-signalr/signalr-concept-scale-aspnet-core
https://docs.microsoft.com/en-us/azure/azure-signalr/signalr-concept-scale-aspnet-core
https://docs.microsoft.com/en-us/azure/azure-signalr/signalr-concept-scale-aspnet-core
https://docs.microsoft.com/en-us/azure/azure-signalr/signalr-concept-scale-aspnet-core
https://docs.microsoft.com/en-us/azure/azure-signalr/signalr-concept-scale-aspnet-core
https://docs.microsoft.com/en-us/azure/azure-signalr/signalr-concept-scale-aspnet-core
https://docs.microsoft.com/en-us/azure/azure-signalr/signalr-concept-scale-aspnet-core
https://docs.microsoft.com/en-us/azure/azure-signalr/signalr-concept-scale-aspnet-core
https://docs.microsoft.com/en-us/azure/azure-signalr/signalr-concept-scale-aspnet-core
https://docs.microsoft.com/en-us/azure/azure-signalr/signalr-concept-scale-aspnet-core
https://docs.microsoft.com/en-us/azure/azure-signalr/signalr-concept-scale-aspnet-core
https://docs.microsoft.com/en-us/azure/azure-signalr/signalr-concept-scale-aspnet-core
https://docs.microsoft.com/en-us/azure/azure-signalr/signalr-concept-scale-aspnet-core
https://docs.microsoft.com/en-us/azure/azure-signalr/signalr-concept-scale-aspnet-core
https://docs.microsoft.com/en-us/azure/azure-signalr/signalr-concept-scale-aspnet-core
https://docs.microsoft.com/en-us/azure/azure-signalr/signalr-concept-scale-aspnet-core
https://docs.microsoft.com/en-us/azure/azure-signalr/signalr-concept-scale-aspnet-core
https://docs.microsoft.com/en-us/azure/azure-signalr/signalr-concept-scale-aspnet-core
https://docs.microsoft.com/en-us/azure/azure-signalr/signalr-concept-scale-aspnet-core
https://docs.microsoft.com/en-us/azure/azure-signalr/signalr-concept-scale-aspnet-core
https://docs.microsoft.com/en-us/azure/azure-signalr/signalr-concept-scale-aspnet-core
https://docs.microsoft.com/en-us/azure/azure-signalr/signalr-concept-scale-aspnet-core

15
Implementing CI and CD with

Azure DevOps
In this chapter, we are going to implement Continuous Integration (CI) and Continuous
Delivery (CD) for our Q and A app using Azure DevOps. We'll start by understanding
exactly what CI and CD are before getting into Azure DevOps.

In Azure DevOps, we'll implement CI for the frontend and backend using a build pipeline.
The CI process will be triggered when developers push code to our source code repository.
Then, we'll implement CD for the frontend and backend using a release pipeline that will
be automatically triggered when a CI build completes successfully. The release pipeline
will do a deployment to the staging environment automatically, run our backend
integration tests, and then promote the staging deployment to production.

By the end of this chapter, we'll have a robust process of delivering features to our users
incredibly fast with a great level of reliability, thus making our team very productive.

In this chapter, we'll cover the following topics:

Getting started with CI and CD
Implementing CI
Implement CD

Implementing CI and CD with Azure DevOps Chapter 15

[507]

Technical requirements
We'll use the following tools and services in this chapter:

GitHub: This chapter assumes that the source code for our app is hosted on
GitHub. An account and repository can be set up for free at https:/ ​/​github. ​com.
Azure DevOps: We will use this to implement and host our CI and CD
processes. This can be found at https:/ ​/​dev. ​azure. ​com/ ​.
Microsoft Azure: We will use the Azure app services and SQL databases that we
set up in the previous chapter. The Azure portal can be found at https:/ ​/
portal.​azure. ​com.
Visual Studio Code: This can be downloaded and installed from https:/ ​/​code.
visualstudio. ​com/ ​.
Node.js and npm: These can be downloaded from https:/ ​/​nodejs. ​org/​. If you
already have these installed, make sure that Node.js is at least version 8.2 and
that npm is at least version 5.2.
Q and A: We'll start with the Q and A frontend and backend projects we finished
in the previous chapter, which are available at https:/ ​/​github. ​com/
PacktPublishing/ ​ASP. ​NET- ​Core- ​3-​and- ​React- ​17.

All the code snippets in this chapter can be found online at https:/ ​/​github. ​com/
PacktPublishing/​ASP. ​NET- ​Core- ​3- ​and- ​React- ​17. In order to restore code from a chapter,
the source code repository can be downloaded and the relevant folder opened in the
relevant editor. If the code is frontend code, then npm install can be entered in the
Terminal to restore the dependencies.

Check out the following video to see the code in action:

http:/​/​bit.​ly/​2rphsFQ

Getting started with CI and CD
In this section, we'll start by understanding what CI and CD are before making a change in
our frontend code to allow the frontend tests to work in CI. Then, we'll create our Azure
Devops project, which will host our build and release pipelines.

https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://dev.azure.com/
https://dev.azure.com/
https://dev.azure.com/
https://dev.azure.com/
https://dev.azure.com/
https://dev.azure.com/
https://dev.azure.com/
https://dev.azure.com/
https://dev.azure.com/
https://dev.azure.com/
https://portal.azure.com
https://portal.azure.com
https://portal.azure.com
https://portal.azure.com
https://portal.azure.com
https://portal.azure.com
https://portal.azure.com
https://portal.azure.com
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://nodejs.org/
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
https://github.com/PacktPublishing/ASP.NET-Core-3-and-React-17
http://bit.ly/2rphsFQ
http://bit.ly/2rphsFQ
http://bit.ly/2rphsFQ
http://bit.ly/2rphsFQ
http://bit.ly/2rphsFQ
http://bit.ly/2rphsFQ
http://bit.ly/2rphsFQ
http://bit.ly/2rphsFQ
http://bit.ly/2rphsFQ

Implementing CI and CD with Azure DevOps Chapter 15

[508]

Understanding CI and CD
CI is when developer working copies are merged to a shared master branch of code in a
source code system several times a day, automatically triggering what is called a build. A
build is the process of automatically producing all the artifacts that are required to
successfully deploy, test, and run our production software. The benefit of CI is that it
automatically gives the team feedback on the quality of the changes that are being made.

CD is the process of getting changes that developers make to the software into production,
regularly and safely, in a sustainable way. So, it is the process of taking the build from CI
and getting that deployed to the production environment. The CI build may be deployed to
a staging environment where the end-to-end tests are executed and passed before
deployment is made to the production environment. At its most extreme, the CD is fully
automated and triggered when a CI build finishes. Often, a member of the team has to
approve the final step of deploying the software to production, which should have already
passed a series of automated tests in staging. CD is also not always triggered automatically
when a CI build finishes; sometimes, it is automatically triggered at a particular time of
day. The benefit of CD is that the development team deliver value to the users of the
software faster and more reliably.

The following diagram shows the high-level CI and CD flow that we are going to set up:

When code is pushed to our source code repository, we are going to build all the backend
and frontend artifacts and execute the xUnit and Jest tests. If the builds and tests are
successful, this will automatically kick off a staging deployment. The Cypress tests will
execute on the staging deployment and, if they pass, a production deployment will be
triggered.

Implementing CI and CD with Azure DevOps Chapter 15

[509]

Enabling our tests to run in CI and CD
We need to make some changes to the configuration of the frontend tests and end-to-end
tests so that they execute correctly in the build and deployment pipelines. Let's open the
frontend project in Visual Studio Code and make the following changes:

First, we'll add a script named test:ci in the package.json file, which will1.
run the Jest tests in CI mode:

...
"scripts": {
 ...
 "test": "react-scripts test",
 "test:ci": "cross-env CI=true react-scripts test",
 ...
},
...

This script sets an environment variable called CI to true before running the Jest
tests.

Our Cypress tests are going to execute in the deployment pipeline on the staging2.
app after it has been deployed. We need to do a few things to ensure that our
Cypress tests run in the deployment pipeline. First, let's create a cypress.json
file in the cypress folder with the following content:

{
 "baseUrl": "https://your-frontend-staging.azurewebsites.net",
 "integrationFolder": "integration",
 "pluginsFile": "plugins/index.js",
 "supportFile": "support/index.js"
}

This is going to be the cypress.json file that runs the tests on the staging app
after it has been deployed. Here's an explanation of the settings we have added:

baseUrl: This is the root path for the app, which should be the URL of our
staging app. Change this appropriately for the staging app that you have
deployed.

Implementing CI and CD with Azure DevOps Chapter 15

[510]

integrationFolder: This is the folder where our end-to-end tests are
located, relative to the cypress.json file. In our case, this is a folder
called integration.
pluginsFile: This is a file that contains any plugins that are relative to
the cypress.json file. In our case, this is a file called index.js, which can be
found in the plugins folder.
supportFile: This is a file that's relative to the cypress.json file that
contains code to execute before the tests run. In our case, this is a file
called index.js, which can be found in the support folder.

Next, let's create a package.json file in the cypress folder with the following3.
content:

{
 "name": "cypress-app-tests",
 "version": "0.1.0",
 "private": true,
 "scripts": {
 "cy:run": "cypress run"
 },
 "devDependencies": {
 "@testing-library/cypress": "^4.0.4",
 "cypress": "^3.3.1"
 }
}

The key items in this file are declaring Cypress and the Cypress Testing Library as
development dependencies and the cy:run script, which we'll use later to run the
Cypress tests.

Next, we are going to remove all the example tests that Cypress originally 4.
installed for us. So, let's delete the examples folder from the integration
folder, which can be found in the cypress folder. Now, the only file in the
integration folder should be our qanda.js file.

Now, our Jest and Cypress tests will be able to execute during a build and deployment.

Implementing CI and CD with Azure DevOps Chapter 15

[511]

Creating an Azure DevOps project
Let's carry out the following steps to create our Azure DevOps project:

Azure DevOps can be found at https:/ ​/​dev. ​azure. ​com/ ​. We can create an1.
account for free if we haven't got one already. To create a new project, click the
New project button on the home page and enter a name for the project in the
panel that appears. We can choose to make our project public or private before
clicking the Create button:

https://dev.azure.com/
https://dev.azure.com/
https://dev.azure.com/
https://dev.azure.com/
https://dev.azure.com/
https://dev.azure.com/
https://dev.azure.com/
https://dev.azure.com/
https://dev.azure.com/
https://dev.azure.com/

Implementing CI and CD with Azure DevOps Chapter 15

[512]

Azure DevOps contains several areas, but we are focused on its pipeline feature.2.
So, let's click on Pipelines in the left-hand navigation menu and then click on
New pipeline.
We will be asked to specify where our code repository is hosted:3.

Click on the appropriate option. Azure DevOps will go through an authorization
process to allow Azure DevOps to access our repositories.

Implementing CI and CD with Azure DevOps Chapter 15

[513]

Then, we will be prompted to choose a specific repository for our code and4.
authorize access to it:

Azure DevOps will inspect the code in the repository so that it can suggest an5.
appropriate CI template for the technology in play. Let's select the ASP.NET
Core template:

Implementing CI and CD with Azure DevOps Chapter 15

[514]

Don't choose the ASP.NET Core (.NET Framework) template. You may need to
click the Show more button to find the ASP.NET Core template.

Then, a build pipeline is created for us from the template. The steps in the6.
pipeline are defined in an azure-pipelines.yml file, which will be added to
our source code repository. We will make changes to this file in the next section,
Implementing CI, but, for now, let's click the Save and run button:

 Click on the Save and run button in the confirmation panel that appears. The7.
pipeline will be saved and a build will be triggered. The build will fail, but don't
worry about that—we'll resolve this in the next section, Implementing CI.

Implementing CI and CD with Azure DevOps Chapter 15

[515]

Click on the Builds navigation option in the Pipelines section. We'll see the build8.
history, along with an Edit option, which we can use to change build steps. There
is also a Queue option, which allows us to manually trigger a build:

That's our Azure DevOps project created. It contains a build pipeline from the ASP.NET
Core template. In the next section, we'll fully implement the build pipeline.

Implementing CI
In this section, we are going to complete the implementation of the CI build. We'll also
observe the build trigger when code is pushed to our source code repository. Let's carry out
the following steps:

In our Azure DevOps project, in the pipeline builds section, click the Edit button1.
to edit the build configuration. The build configuration is defined in a YAML file
called azure-pipelines. Azure DevOps lets us edit this file in its YAML editor.

YAML Ain't Markup Language (YAML) is commonly used for
configuration files because it is a little more compact than JSON and can
contain comments.

The following YAML file was generated by the ASP.NET Core build pipeline
template:

ASP.NET Core
Build and test ASP.NET Core projects targeting .NET Core.
Add steps that run tests, create a NuGet package, deploy, and
more:
#

Implementing CI and CD with Azure DevOps Chapter 15

[516]

https://docs.microsoft.com/azure/devops/pipelines/languages/dotnet-
core

trigger:
- master

pool:
 vmImage: 'Ubuntu-latest'

variables:
 buildConfiguration: 'Release'

steps:
- script: dotnet build --configuration $(buildConfiguration)
 displayName: 'dotnet build $(buildConfiguration)'

The steps in a build are defined after the steps: keyword. Each step is
defined after a hyphen (-). The script: keyword allows a command to
be executed, while the displayName: keyword is the description of the
step that we'll see in the log file. The variables that are used in the steps
are declared after the variables: keyword. The trigger: keyword
determines when a build should be started.

So, the build contains a single step, which executes the dotnet build command
with Release passed into the --configuration parameter.

The reason our build failed was that the agent couldn't find a .NET solution to2.
build because it isn't in the root directory in our source code repository – it is in a
folder called backend. So, let's change this step to the following:

steps:
- script: dotnet build --configuration $(buildConfiguration)
 workingDirectory: backend
 displayName: 'backend build'

We have specified that the working directory is the backend folder and changed
the step name slightly.

Implementing CI and CD with Azure DevOps Chapter 15

[517]

Let's click the Save button to save the build configuration. A build will3.
automatically be triggered because the azure-pipelines.yml file will be
changed in our repository. The build should succeed this time:

We need to do more work in our build configuration before it is complete. So,4.
let's edit the configuration again and run the .NET tests:

steps:
- script: dotnet build --configuration $(buildConfiguration)
 workingDirectory: backend
 displayName: 'backend build'

- script: dotnet test
 workingDirectory: backend
 displayName: 'backend tests'

Here, we use the dotnet test command to run the automated tests.

Next, let's add a step so that we can publish the .NET backend:5.

steps:
...

- script: dotnet publish --configuration $(buildConfiguration)
 workingDirectory: backend
 displayName: 'backend publish'

Here, we use the dotnet publish command in order to publish the code.
What's the difference between dotnet build and dotnet publish? Well, the
dotnet build command just outputs the artifacts from the code we have
written and not any third-party libraries such as Dapper.

Implementing CI and CD with Azure DevOps Chapter 15

[518]

Now, we need to zip up the published files using the ArchiveFile@2 task:6.

steps:
...

- task: ArchiveFiles@2
 inputs:
 rootFolderOrFile: 'backend/bin/Release/netcoreapp3.0/publish'
 includeRootFolder: false
 archiveType: zip
 archiveFile:
'$(Build.ArtifactStagingDirectory)/backend/$(Build.BuildId).zip'
 replaceExistingArchive: true
 displayName: 'backend zip files'

The last step for our backend build is to publish the ZIP file we have just created7.
to the pipeline so that it can be picked up by the release pipeline, which we'll
configure in the next section:

steps:
...

- task: PublishBuildArtifacts@1
 inputs:
 pathtoPublish: '$(Build.ArtifactStagingDirectory)/backend'
 artifactName: 'backend'
 displayName: 'backend publish to pipeline'

Here, we use the PublishBuildArtifacts@1 task to publish the ZIP to the
pipeline. We named it backend.

This completes the build configuration for the backend. Let's move on to the frontend now:

In the same YML file, add the following command to install the frontend1.
dependencies:

steps:
...

- script: npm install
 workingDirectory: frontend
 displayName: 'frontend install dependencies'

Here, we use the npm install command to install the dependencies. Notice that
we have set the working directory to frontend, which is where our frontend
code is located.

Implementing CI and CD with Azure DevOps Chapter 15

[519]

The next step is to run the frontend tests:2.

steps:
...

- script: npm run test:ci
 workingDirectory: frontend
 displayName: 'frontend tests'

Here, we use the npm run test:ci command to run the tests rather than npm
run test, because the CI environment variable is set to true, meaning that the
tests will run correctly in our build.

In the next block of steps, we will produce a frontend build for the staging3.
environment, zip up the files in this build, zip up the Cypress tests, and then
publish this to the pipeline:

steps:
...

- script: npm run build:staging
 workingDirectory: frontend
 displayName: 'frontend staging build'

- task: ArchiveFiles@2
 inputs:
 rootFolderOrFile: 'frontend/build'
 includeRootFolder: false
 archiveType: zip
 archiveFile: '$(Build.ArtifactStagingDirectory)/frontend-
staging/build.zip'
 replaceExistingArchive: true
 displayName: 'frontend staging zip files'

- task: ArchiveFiles@2
 inputs:
 rootFolderOrFile: 'frontend/cypress'
 includeRootFolder: false
 archiveType: zip
 archiveFile: '$(Build.ArtifactStagingDirectory)/frontend-
staging/tests.zip'
 replaceExistingArchive: true
 displayName: 'frontend cypress zip files'

- task: PublishBuildArtifacts@1
 inputs:
 pathtoPublish: '$(Build.ArtifactStagingDirectory)/frontend-

Implementing CI and CD with Azure DevOps Chapter 15

[520]

staging'
 artifactName: 'frontend-staging'
 displayName: 'frontend staging publish to pipeline'

Here, we use the npm run build:staging command to produce the staging
build, which sets the REACT_APP_ENV environment variable to staging. We use
the ArchiveFiles@2 task we used previously to zip up the frontend build and
Cypress tests, and then the PublishBuildArtifacts@1 task to publish the ZIP
to the pipeline.

Next, we'll produce a build for the production environment, zip it up, and then4.
publish this to the pipeline:

steps:
...

- script: npm run build:production
 workingDirectory: frontend
 displayName: 'frontend production build'

- task: ArchiveFiles@2
 inputs:
 rootFolderOrFile: 'frontend/build'
 includeRootFolder: false
 archiveType: zip
 archiveFile: '$(Build.ArtifactStagingDirectory)/frontend-
production/build.zip'
 replaceExistingArchive: true
 displayName: 'frontend production zip files'

- task: PublishBuildArtifacts@1
 inputs:
 pathtoPublish: '$(Build.ArtifactStagingDirectory)/frontend-
production'
 artifactName: 'frontend-production'
 displayName: 'frontend production publish to pipeline'

Here, we use the npm run build:production command to produce the build,
which sets the REACT_APP_ENV environment variable to production. We use
the ArchiveFiles@2 task we used previously to zip up the build and
the PublishBuildArtifacts@1 task to publish the ZIP to the pipeline.

Implementing CI and CD with Azure DevOps Chapter 15

[521]

That completes the build configuration. So, let's save the configuration by5.
clicking the Save button. The build will trigger and succeed:

Let's click on the most recent build history item to view the details of the build so6.
that we can see how long each step took. We can also see all the artifacts that
were published to the pipeline by going to the Artifacts menu:

We will use the published build artifacts in the next section when we deploy these to Azure
using CD.

Implementing CI and CD with Azure DevOps Chapter 15

[522]

Implementing CD
In this section, we are going to implement a release pipeline in Azure DevOps by
implementing a continuous delivery process for our app. This process will consist of
deploying to the staging environment, followed by the Cypress end-to-end tests being
executed before the deployment is promoted to production.

Deploying to staging
Carry out the following steps in the Azure DevOps portal to deploy a build to the staging
environment:

On the most recent build screen, click the Release button:1.

We will be prompted to select a template for the release pipeline. Let's choose the2.
Azure App Service deployment template:

Implementing CI and CD with Azure DevOps Chapter 15

[523]

A nice visual representation of the release pipeline will appear, along with a3.
panel to the right, where we can set some properties of the first stage. Let's call
the stage Staging since this is where we will deploy our app to the staging
environment and execute the automated integration tests. We can close the right-
hand panel by clicking the cross icon at the top right of the panel:

Let's click on the Tasks tab. We are deploying to two different app services, so4.
we are going to remove the parameters by clicking the Unlink all option:

We already have a task from the template to deploy to Azure App Service, but5.
we need to specify some additional information.
We are going to use this task to deploy the backend, so let's change the display6.
name to Backend App Service.
We'll need to specify our Azure subscription and then authorize it.7.

Implementing CI and CD with Azure DevOps Chapter 15

[524]

We also need to specify the service name, which is qanda-backend-staging.8.
Lastly, we need to specify where the build ZIP file is, which9.
is $(System.DefaultWorkingDirectory)/**/backend/*.zip:

Click the Save option to save the changes to the task.10.

Implementing CI and CD with Azure DevOps Chapter 15

[525]

Click the + icon at the top of the task list to add a new task. Select the Azure App11.
Service Deploy task and click Add:

Now, we need to set the different properties of the task, just like we did in the12.
backend service. This time, we'll call the task Frontend App Service and set
the App Service and the build ZIP to the frontend staging ones:

Implementing CI and CD with Azure DevOps Chapter 15

[526]

Click the Save option to save the changes to the task.13.
Click the + icon at the top of the task list to add a new task. Select the Extract14.
Files task and click Add.
This task is going to extract the Cypress test files so that they're ready for when15.
the tests are executed in the next task. So, let's call the task Extract Cypress
test files and set the ZIP file patterns
to $(System.DefaultWorkingDirectory)/**/frontend-
staging/tests.zip and set the destination folder
to $(System.DefaultWorkingDirectory)/cypress:

Click the Save option to save the changes to the task.16.
Click the + icon at the top of the task list to add a new task. Select the Command17.
Line task and click Add.
This task is going to execute the Cypress tests, so let's call it Run Cypress18.
tests. The script to execute is as follows:

> npm install
> npm run cy:run

Implementing CI and CD with Azure DevOps Chapter 15

[527]

We need to make sure that the working directory
is $(System.DefaultWorkingDirectory)/cypress:

Click the Save option to save these changes to the task.19.

That completes the staging deployment configuration.

Deploying to production
Carry out the following steps in the Azure DevOps portal to deploy a build to the
production environment:

Here, we are going to add a stage for the production deployment. So, let's go1.
back to the visual diagram, hover over the Staging card, and click on the Clone
option:

Implementing CI and CD with Azure DevOps Chapter 15

[528]

Let's click on the stage we have just created and call it Production:2.

Click on the tasks for the Production stage. The last two tasks can be removed3.
because we don't need to run any tests. To remove a task, click on it and click the
Remove option.

Implementing CI and CD with Azure DevOps Chapter 15

[529]

We need to change the Backend App Service task so that we can deploy to the4.
production App Service:

We also need to change the Frontend App Service task so that we can deploy to5.
the production App Service from the production ZIP:

Implementing CI and CD with Azure DevOps Chapter 15

[530]

That completes the production deployment configuration.

If we make a code change and push it to our source code repository, we'll find6.
that a build is automatically triggered. When the build has finished, a staging
deployment will be automatically triggered.
Finally, when the staging deployment completes successfully, the production7.
deployment is triggered. The successful release will appear in the release history:

Implementing CI and CD with Azure DevOps Chapter 15

[531]

Our CD configuration is fully automated at the moment. Often, we'll want to8.
trigger the production deployment manually. We can do this by clicking on the
Pre-deployment conditions option on the left edge of the Production card and
changing the trigger to Manual only. Then, some options will appear so that you
can choose who can perform the deployment:

The trusted user will need to approve the production deployments.

That completes our continuous delivery pipeline.

Summary
In this final chapter, we learned that CI and CD are automated processes that get code
changes that developers make into production. Implementing these processes improves the
quality of our software and helps us deliver value to the users of the software extremely
fast.

Implementing CI and CD with Azure DevOps Chapter 15

[532]

Implementing CI and CD processes in Azure DevOps is ridiculously easy. CI is
implemented using a build pipeline and Azure DevOps has loads of great templates for
different technologies to get us started. The CI process is scripted in a YAML file where we
execute a series of steps, including command-line commands and other tasks such as
zipping up files. The steps in the YAML file must include tasks that publish the build
artifacts to the build pipeline so that they can be used in the CD process.

The CD process is implemented using a release pipeline and a visual editor. Again, there
are lots of great templates to get us started. We define stages in the pipeline, which execute
tasks on the artifacts that are published from the build pipeline. We can have multiple
stages deploying to our different environments. We can make each stage automatically
execute or execute only when a trusted member of the team approves it. There are many
task types that can be executed, including deploying to an Azure service such as an App
Service and running .NET tests.

So, we have reached the end of this book. We've created a performant and secure REST API
that interacts with a SQL Server database using Dapper. Our backend also has a Real-Time
API that we implemented with SignalR. Our React frontend interacts beautifully with both
of these APIs and has been structured so that it scales in complexity by using TypeScript
throughout.

We've learned how to manage simple as well as complex frontend state requirements
and learned how to build reusable components to help speed up the process of building
frontends. We completed the development of our app by adding automated tests and
deployed it to Azure with CI and CD processes using Azure DevOps.

Questions
The following questions will test your knowledge of the topics that were covered in this
chapter:

What environment variable needs to be set for Jest tests to work well in a1.
continuous integration environment?
When we change the azure-pipelines.yml file, why does this trigger a build?2.
What YML step task can be used to execute npm commands?3.
What YML step task can be used to publish artifacts to the pipeline?4.
Why do we have several builds of a React frontend for different environments? 5.
What task type in a release pipeline stage can be used to deploy build artifacts to6.
Azure App Service?
What task type in a release pipeline stage can be used to run SQL Server scripts?7.

Implementing CI and CD with Azure DevOps Chapter 15

[533]

Further reading
The following resource is useful if you want to find out more about implementing CI and
CD with Azure DevOps: https:/ ​/ ​docs. ​microsoft. ​com/ ​en- ​us/​azure/ ​devops/ ​pipelines/ ​?
view=​azure-​devops.

https://docs.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops

Assessments

Answers
Here, we have answered all of the questions asked at the end of each chapter. You can use
these questions to review what you have learned throughout this book.

Chapter 1 – Understanding the ASP.NET Core
React Template

What is the entry point method in an ASP.NET Core app?1.

A method called Main in the Program class

What is the single HTML page filename in an ASP.NET Core React app created2.
by the template, and what folder is this located in?

A file called index.html, which is located in the public folder with
the ClientApp folder

What file are the React app dependencies defined in?3.

A file called package.json in the ClientApp folder

What npm command will run the React app in the WebPack development server?4.

npm start

What npm command builds the React app ready for production?5.

npm run build

What is the method name in a React component class that renders the6.
component?

render

Assessments

[535]

Have a look at the following snippet of code, which configures the7.
request/response pipeline in an ASP.NET Core app:

public void Configure(IApplicationBuilder app, IHostingEnvironment
env)
{
 app.UseAuthentication();
 app.UseHttpsRedirection();
 app.UseMvc();
}

Which is invoked first in the request/response pipeline, authentication or the
MVC controllers?

Authentication

Does the class that configures the services and request/response pipeline need to8.
be called Startup? Or can we give it a different name?

We can give this class a different name by defining this class in
IWebHostBuilder that is created, as in the following example:

public static IWebHostBuilder CreateWebHostBuilder(string[]
args) =>
 WebHost.CreateDefaultBuilder(args).UseStartup<MyStartup>();

What browsers are supported by a React app created by CRA?9.

All modern browsers, including IE

Chapter 2 – Creating Decoupled React and
ASP.NET Core Apps

What class does an API controller need to inherit from for invalid models to1.
automatically return HTTP status code 400?

ControllerBase

What option on create-react-app did we use to create a React with a2.
TypeScript project?

--typescript

Assessments

[536]

What ESLint rule could we use to help to prevent console.log statements being3.
added to our code?

no-console

What setting in .prettierrc could we set to use single quotes in our code? 4.

"singleQuote": true

What file can we use to tell Visual Studio Code to validate TypeScript code using5.
ESLint and to automatically format code using Prettier?

settings.json in a .vscode folder

Chapter 3 – Getting Started with React and
TypeScript

Does a component re-render when its props change?1.

Yes

Does a component re-render when a parent's props change?2.

Yes

How can we ensure a component re-renders only when its props change?3.

Wrap the component in the memo function

What function prop would we use to add a keydown event listener?4.

onKeyDown

A component has the following props interface:5.

interface Props {
 name: string;
 active: boolean;
}

Assessments

[537]

How can we destructure the props parameter and default active to true?

We can do the following:

export const myComponent: FC<Props> = ({ name, active = true })
=> (...)

Let's say we have a state called dateOfBirth. How can we type this to be Date?6.

We can do the following:

const [dateOfBirth, setDateOfBirth] =
useState<Date>(undefined);

How could we use the useEffect hook to call a synchronous function7.
called getItems when a piece of state called category changes, passing
in category to getItems?

We can do the following:

useEffect(() => {
 getItems(category);
}, [category]);

Chapter 4 – Routing with React Router
We have the following routes defined:1.

<BrowserRouter>
 <Route path="/" component={HomePage} />
 <Route path="/search" component={SearchPage} />
</BrowserRouter>

What component(s) will be rendered when the / location is entered in the
browser?

HomePage

What about when the /search location is entered in the browser?

Both HomePage and SearchPage

Assessments

[538]

We have the following routes defined:2.

<BrowserRouter>
 <Switch>
 <Route path="/" component={HomePage} />
 <Route path="/search" component={SearchPage} />
 </Switch>
</BrowserRouter>

What component(s) will be rendered when the / location is entered into the
browser?

HomePage

What about when the /search location is entered into the browser?

HomePage

We have the following routes defined:3.

<BrowserRouter>
 <Switch>
 <Route path="/search" component={SearchPage} />
 <Route path="/" component={HomePage} />
 </Switch>
</BrowserRouter>

What component(s) will be rendered when the / location is entered in the
browser?

HomePage

What about when the /search location is entered in the browser?

SearchPage

In our Q and A app, we want a /login path to navigate to the sign-in page as4.
well as the /signin path. How can we implement this?

We can do the following:

<Redirect from="/login" to="/signin" />

Assessments

[539]

We have the following routes defined:5.

<BrowserRouter>
 <Switch>
 <Route path="/search" component={SearchPage} />
 <Route path="/" component={HomePage} />
 <Route component={NotFoundPage} />
 </Switch>
</BrowserRouter>

What component(s) will be rendered when the /signin location is entered in the
browser?

HomePage

We have the following routes defined:6.

<BrowserRouter>
 <Switch>
 <Route path="/" component={HomePage} />
 <Route path="/search" component={SearchPage} />
 <Route component={NotFoundPage} />
 </Switch>
</BrowserRouter>

With the preceding implementation, when a user navigates to the /search path
or an invalid path such as /unknown, the HomePage component is rendered.

How can we change the code to render HomePage when only the / path is entered
in the browser?

We can do the following:

<Route exact path="/" component={HomePage} />

We have the following route defined:7.

<Route path="/users/:userId" component={UserPage} />

How can we reference the userId route parameter in the UserPage component?

If we make the props type for UserPage RouteComponentProps<{
userId: string }>, then props.match.params.userId will hold
the userId route parameter.

Assessments

[540]

Chapter 5 – Working with Forms
In our generic Form implementation, why did we make the onSubmit function1.
prop asynchronous?

The onSubmit function prop is likely to call a web service asynchronously
and so needs to be asynchronous.

When we implemented the generic Form and Field components, what was the2.
purpose of the touched state?

The touched state allowed us to prevent validation checks when the user
first enters the field, which can be annoying for the user. Generally, it is
better to do the validation checks when the field loses focus and if the user
comes back to the field and changes it.

When we implement a form field like the following, why do we3.
tie label to input using the htmlFor attribute?

<label htmlFor={name}>{label}</label>
<input
 type="text"
 id={name}
 value={values[name] === undefined ? '' : values[name]}
 onChange={handleChange}
 onBlur={handleBlur}
/>

This makes the field accessible, which means a screen reader will read
label when input gains focus. Clicking on label will also set focus to
input.

Why did we use the React context in our4.
generic Form and Field implementations?

We used the React context to allow Field to access state such as the field
value from Form. We couldn't pass the state via props because Form doesn't
directly reference Field—it indirectly references it via the children prop.

Assessments

[541]

Extend our generic Field component to include a number editor, using the5.
native number input.

Here, we extend the type prop in Form:

interface Props {
 name: string;
 label?: string;
 type?: "Text" | "TextArea" | "Password" | "Number";
}

In Form, JSX allows FieldInput to be rendered if type is Number:

{(type === "Text" || type === "Password" || type === "Number")
&& (
 <FieldInput
 type={type.toLowerCase()}
 id={name}
 value={values[name]}
 onChange={handleChange}
 onBlur={handleBlur}
 />
)}

Implement a validator in Form.tsx that will check that the field value is between6.
two numbers:

export const between: Validator = (
 value: any,
 bounds: { lower: number; upper: number }
): string =>
 value && (value < bounds.lower || value > bounds.upper)
 ? `This must be between ${bounds.lower} and ${bounds.upper}`
 : "";

Chapter 6 – Managing State with Redux
When implementing an action object, how many properties can it contain?1.

As many as we like! It needs to include at least one for the type property. It
can then include as many other properties as we need for the reducer to
change the state, but this is generally lumped in one additional property. So,
generally, an action will have one or two properties.

Assessments

[542]

Why did we need Redux Thunk in our Redux store?2.

By default, a Redux store can't manage asynchronous action creators.
Middleware needs to be added to the Redux store to facilitate asynchronous
action creators. Redux Thunk is the middleware we added to do this.

How did we make the state in our store read-only?3.

We used the readonly keyword in the properties in the interface for the
state.

In the questionsReducer function we implemented, why didn't we use the4.
array push method to add the new question to the state?

case 'PostedQuestion': {
 return {
 ...state,
 unanswered: action.result
 ? (state.unanswered || []).push(action.result.question)
 : state.unanswered,
 postedResult: action.result,
 };
}

The push method would mutate the product's state directly, which would
make the function impure. This is because we have changed the state
argument, which lives outside the scope of our function.

Does the Provider component from React Redux need to be placed at the top of5.
the component tree?

The Provider component needs to be placed above the components that
need access to the store. So, it doesn't need to be right at the top of the tree.

As well as the Provider component, what is the other item from React Redux6.
that allows a component to consume data from the Redux store?

The other key item from React Redux is a function called connect, which
wraps a component, giving it access to the store.

 Is a component that consumes the Redux store allowed to have a local state?7.

Yes, it is. If the state is not useful outside the component, then it is perfectly
acceptable to have this state local within the component.

Assessments

[543]

Chapter 7 – Interacting with the Database with
Dapper

What Dapper method can be used to execute a stored procedure that returns no1.
results?

Execute

What Dapper method can be used to read a single record of data where the2.
record is guaranteed to exist?

QueryFirst

What Dapper method can be used to read a collection of records?3.

Query

What is wrong with the following statement that calls the4.
Dapper Query method?

return connection.Query<BuildingGetManyResponse>(
 @"EXEC dbo.Building_GetMany_BySearch
 @Search = @Search",
 new { Criteria = "Fred"}
);

The query expects a parameter called Search but we have passed it a
parameter called Criteria. So, Dapper won't be able to map the SQL
parameter.

We have the following stored procedure:5.

CREATE PROC dbo.Building_GetMany
AS
BEGIN
 SET NOCOUNT ON

 SELECT BuildingId, Name
 FROM dbo.Building
END

Assessments

[544]

We have the following statement that calls the Dapper Query method:

return connection.Query<BuildingGetManyResponse>(
 "EXEC dbo.Building_GetMany"
);

We also have the following data model that is referenced in the preceding
statement:

public class BuildingGetManyResponse
{
 public int Id{ get; set; }
 public string Name { get; set; }
}

When our app is run, we find that the Id property within
the BuildingGetManyResponse class instances is not populated. Can you spot
the problem?

The problem is that the stored procedure returns a field called BuildingId,
which won't automatically get mapped to the Id property in the class
because the names are different.

Can DbUp be used to deploy new reference data within a table?6.

Yes! DbUp can execute any SQL script.

Chapter 8 – Creating REST API Endpoints
We have a class that we want to register for dependency injection and want a1.
new instance of it to be created when injected into a class. What method
in IServiceCollection should we use to register the dependency?

AddTransient

In a controller action method, if a resource can't be found, what method can we2.
use in ControllerBase to return status code 404?

NotFound()

Assessments

[545]

In a controller action method to post a new building, we implement some3.
validation that requires a database call to check whether the building already
exists. If the building does already exist, we want to return HTTP status code 400:

[HttpPost]
public ActionResult<BuildingResponse>
PostBuilding(BuildingPostRequest buildingPostRequest)
{
 var buildingExists =
_dataRepository.BuildingExists(buildingPostRequest.Code);
 if (buildingExists)
 {
 // TODO - return status code 400
 }
 ...
}

What method from ControllerBase can we use to return status code 400?

BadRequest()

The model for the preceding action method is as follows:4.

public class BuildingPostRequest
{
 public string Code { get; set; }
 public string Name { get; set; }
 public string Description { get; set; }
}

We send an HTTP POST request to the resource with the following body:

{
 "code": "BTOW",
 "name": "Blackpool Tower",
 "buildingDescription": "Blackpool Tower is a tourist attraction
in Blackpool"
}

The Description property in the model isn't getting populated during the
request. What is the problem?

The buildingDescription in the request doesn't match the name of
the Description property in the model. If the request is changed to have
a description field, then this will resolve the problem.

Assessments

[546]

In the preceding request model, we want to validate that the code and name5.
fields are populated. How can we do this with validation attributes?

We can do the following:

public class BuildingPostRequest
{
 [Required]
 public string Code { get; set; }
 [Required]
 public string Name { get; set; }
 public string Description { get; set; }
}

What validation attribute could we use to validate that a number property is6.
between 1 and 10?

[Range(0, 10)]

What Http attribute could we use tell ASP.NET Core that an action method7.
handles HTTP PATCH requests?

HttpPatch

Chapter 9 – Creating a Real-Time API with
SignalR

In a SignalR hub class, what method can we use to push data to a group of1.
connected clients?

We can use the following:

Clients.Group("GroupName").SendAsync()

In a SignalR hub class, what method can we use to push data to all clients except2.
for the client that has made the request?

We can use the following:

Clients.AllExcept(Context.ConnectionId).SendAsync()

Assessments

[547]

Why did we need a CORS policy for our React app to be able to interact with our3.
SignalR real-time API?

A CORS policy is required because the frontend and backend were hosted in
different domains.

In our React frontend, why did we check whether the connection was in a4.
connected state before subscribing to the question?

If starting the connection failed, the connection would be in an unconnected
state and not able to make the request for the subscription.

Why did we stop the connection when the user navigates away from the question5.
page?

The user is unsubscribed from question updates when navigating away from
the question page and so there is no requirement to interact with the SignalR
server anymore. So, we stop the connection to save resources.

Chapter 10 – Improving Performance and
Scalability

We have the following code in a data repository that uses Dapper's multi1.
recordset feature to return a single order with many related detail lines in a
single database call:

using (var connection = new SqlConnection(_connectionString))
{
 connection.Open();
 using (GridReader results = connection.QueryMultiple(
 @"EXEC dbo.Order_GetHeader @OrderId = @OrderId;
 EXEC dbo.OrderDetails_Get_ByOrderId @OrderId = @OrderId",
 new { OrderId = orderId }))
 {

 // TODO - Read the order and details from the query result

 return order;
 }
}

Assessments

[548]

What are the missing statements that will read the order and its details from the
results putting the details in the order model? The order model is of
the OrderGetSingleResponse type, which contains a Details property of
the IEnumerable<OrderDetailGetResponse> type.

We can use the following:

using (var connection = new SqlConnection(_connectionString))
{
 connection.Open();
 using (GridReader results = connection.QueryMultiple(
 @"EXEC dbo.Order_GetHeader @OrderId = @OrderId;
 EXEC dbo.OrderDetails_Get_ByOrderId @OrderId = @OrderId",
 new { OrderId = orderId }))
 {
 var order =
results.Read<OrderGetSingleResponse>().FirstOrDefault();
 if (order != null)
 {
 order.Details =
results.Read<OrderDetailGetResponse>().ToList();
 }
 return order;
 }
}

What is the downside of using Dapper's multi-mapping feature when reading2.
data from many-to-one related tables in a single database call?

The trade-off is that more data is transferred between the database and web
server and then processed on the web server, which can hurt performance.

How does data paging help performance?3.

The number of the page read I/Os is reduced when SQL Server grabs the
data.
The amount of data transferred from the database server to the web server is
reduced.
The amount of memory used to store the data on the web server in our
model is reduced.
The amount of data transferred from the web server to the client is reduced.

Assessments

[549]

Does making code asynchronous make it faster?4.

No, it makes it more scalable by using the thread pool more efficiently.

What is the problem with the following asynchronous method:5.

public async AnswerGetResponse GetAnswer(int answerId)
{
 using (var connection = new SqlConnection(_connectionString))
 {
 connection.Open();
 return await connection
 .QueryFirstOrDefaultAsync<AnswerGetResponse>(
 "EXEC dbo.Answer_Get_ByAnswerId @AnswerId = @AnswerId",
 new { AnswerId = answerId });
 }
}

Opening the connection is synchronous, which will mean the thread is
blocked and not returned to the thread pool until the connection is opened.
So, the whole code will have the same thread pool inefficiency
as synchronous code but will have the overhead of asynchronous code as
well.

Here is the corrected implementation:

public async AnswerGetResponse GetAnswer(int answerId)
{
 using (var connection = new SqlConnection(_connectionString))
 {
 await connection.OpenAsync();
 return await connection
 .QueryFirstOrDefaultAsync<AnswerGetResponse>(
 "EXEC dbo.Answer_Get_ByAnswerId @AnswerId = @AnswerId",
 new { AnswerId = answerId });
 }
}

Why it is a good idea to set a size limit on a memory cache?6.

This is to prevent the cache from taking up too much memory on the web
server.

Assessments

[550]

In our QuestionCache implementation, when adding a question to the cache,7.
how can we invalidate that item in the cache after 30 minutes?

We can do the following:

public void Set(QuestionGetSingleResponse question)
{
 var cacheEntryOptions =
 new MemoryCacheEntryOptions()
 .SetSize(1)
 .SetSlidingExpiration(TimeSpan.FromMinutes(30));
 _cache.Set(GetCacheKey(question.QuestionId), question,
cacheEntryOptions);
}

When we registered our QuestionCache class for dependency injection, why8.
did we use the AddSingleton method and not the AddScoped method like in
the following?

services.AddScoped<QuestionCache>();

AddScoped would create a new instance of the cache for every request,
which means the cache would be lost after each request.
Using AddSingleton means that the cache lasts for the lifetime of the app.

Chapter 11 – Securing the Backend
In the Configure method in the Startup class, what is wrong with the1.
following?

public void Configure(IApplicationBuilder app, IHostingEnvironment
env)
{
 ...
 app.UseEndpoints(...);
 app.UseAuthentication();
}

The problem is that authentication comes after the endpoints are handled in
the request pipeline, which means that the user will always be
unauthenticated in controller action methods even if the request has a valid
access token. This means that protected resources will never be able to be
accessed. UseAuthentication should come before UseEndpoints in
the Configure method.

Assessments

[551]

What attribute can be added to a protected action method to allow2.
unauthenticated users to access it?

AllowAnonymous

We are building an app with an ASP.NET Core backend and using an identity3.
provider to authenticate users. The default audience has been set to
http://my-app in the identity provider and we have configured the
authentication service as follows in our ASP.NET Core backend:

services.AddAuthentication(options =>
{
 options.DefaultAuthenticateScheme =
 JwtBearerDefaults.AuthenticationScheme;
 options.DefaultChallengeScheme =
 JwtBearerDefaults.AuthenticationScheme;
}).AddJwtBearer(options =>
{
 ...
 options.Audience = "https://myapp";
});

When we try to access protected resources in our ASP.NET Core backend, we
receive HTTP status code 401. What is the problem here?

The problem is that the ASP.NET Core backend validates that the audience
in the JWT is https://myapp, but the identity provider has been configured
to set the audience to http://my-app. This results in the request being
unauthorized.

A JWT has the following decoded payload data. What date and time does it4.
expire?

{
 "nbf": 1559876843,
 "auth_time": 1559876843,
 "exp": 1559900000,
 ...
}

The exp field gives the expiry date, which is 1559900000 seconds after 1 Jan
1970, which, in turn, is 7 Jun 2019 9:33:20 (GMT).

Assessments

[552]

We have a valid access token from an identity provider and are using it to access5.
a protected resource. We have set the following HTTP header in the request:

Authorisation: bearer some-access-token

We receive HTTP status code 401 from the request though. What is the problem?

The problem is that the HTTP header name needs to
be Authorization—that is, we have spelled it with an s rather than a z.

How can we access HTTP request information in a class outside of an API6.
controller?

The request can be accessed by injecting IHttpContextAccessor into the
class as follows:

private readonly IHttpContextAccessor _httpContextAccessor;

public MyClass(IHttpContextAccessor httpContextAccessor)
{
 _httpContextAccessor = httpContextAccessor;
}

public SomeMethod()
{
 var request = _httpContextAccessor.HttpContext.Request;
}

The HttpContextAccessor service must be added in the
ConfigureServices method in the Startup class as follows:

services.AddSingleton<IHttpContextAccessor,
HttpContextAccessor>();

In an API controller, how can we access an authenticated user ID?7.

We can access the user ID via the sub claim in the controller's User property
as follows:

User.FindFirst(ClaimTypes.NameIdentifier).Value

Assessments

[553]

Chapter 12 – Interacting with RESTful APIs
What is wrong with the following HTTP POST request using the fetch function?1.

fetch('http://localhost:17525/api/person', {
 method: 'post',
 headers: {
 'Content-Type': 'application/json',
 },
 body: {
 firstName: 'Fred'
 surname: 'Smith'
 }
})

The problem is that the fetch function expects the body to be
in string format. The corrected call is as follows:

fetch('http://localhost:17525/api/person', {
 method: 'post',
 headers: {
 'Content-Type': 'application/json',
 },
 body: JSON.stringify({
 firstName: 'Fred'
 surname: 'Smith'
 })
})

What is wrong with the following request using the fetch function?2.

fetch('http://localhost:17525/api/person/1')
 .then(res => {
 console.log('firstName', res.body.firstName);
 })

The problem is that the response body cannot be accessed directly in the
response like this. Instead, the response's json asynchronous method should
be used:

fetch('http://localhost:17525/api/person/1')
 .then(res => res.json())
 .then(body => {
 console.log('firstName', body.firstName);
 });

Assessments

[554]

What is wrong with the following request using the fetch function?3.

fetch('http://localhost:17525/api/person/21312')
 .then(res => res.json())
 .catch(res => {
 if (res.status === 404) {
 console.log('person not found')
 }
 });

The problem is that the catch method is for network errors and not HTTP
request errors. HTTP request errors can be dealt with in the then method:

fetch('http://localhost:17525/api/person/21312')
 .then(res => {
 if (res.status === 404) {
 console.log('person not found')
 } else {
 return res.json();
 }
 });

We have an endpoint for deleting people that only administrators have access to4.
use. We have the users' access token in a variable called jwt. What is wrong with
the following request?

fetch('http://localhost:17525/api/person/1', {
 method: 'delete',
 headers: {
 'Content-Type': 'application/json',
 'authorization': jwt
 });

The problem is that the word bearer followed by a space is missing from
the authorization HTTP header. The corrected call is as follows:

fetch('http://localhost:17525/api/person/1', {
 method: 'delete',
 headers: {
 'Content-Type': 'application/json',
 'authorization': `bearer ${jwt}`
 });

Assessments

[555]

In this chapter, we implemented an AuthorizedPage component that we could5.
wrap around a page component so that it is only rendered for authenticated
users. We could implement a similar component to wrap around components
within a page so that they are only rendered for authenticated users. Have a go at
implementing this.

The component implementation is as follows:

import React, { FC, Fragment } from 'react';
import { useAuth } from './Auth';

export const AuthorizedElement: FC = ({ children }) => {
 const auth = useAuth();
 if (auth.isAuthenticated) {
 return <Fragment>{children}</Fragment>;
 } else {
 return null;
 }
};

The component would be consumed as follows:

<AuthorizedElement>
 <PrimaryButton ...>
 Ask a question
 </PrimaryButton>
</AuthorizedElement>

Chapter 13 – Adding Automated Tests
We have the following xUnit test method but it isn't being picked up by the test1.
runner. What is wrong?

public void Minus_When2Integers_ShouldReturnCorrectInteger()
{
 var result = Calc.Add(2, 1);
 Assert.Equal(1, result);
}

The Fact attribute is missing.

Assessments

[556]

We have a string variable called successMessage in an xUnit test and we2.
need to check that it contains the word "success". What method in
the Assert class could we use?

Assert.Contains

We have created some Jest unit tests on a List component in a file3.
called ListTests.tsx. However, when the Jest test runner runs, the tests aren't
picked up. Why is this so?

The test filename needs to end with .test.tsx. So, if we rename the
file List.test.tsx, then the test will get picked up.

We are implementing a test in Jest and we have a variable called result, which4.
we want to check isn't null. Which Jest matcher function can we use?

expect(result).not.toBeNull();

Let's say we have a variable called person that is of the, Person type:5.

interface Person {
 id: number;
 firstName: string;
 surname: string
}

We want to check that the person variable is { id: 1, firstName: "Tom",
surname: "Smith" }. What Jest matcher function can we use?

We can use the toEqual function to compare objects:

expect(person).toEqual({ id: 1, firstName: "Tom", surname:
"Smith" });

We are writing an end to end test using Cypress for a page. The page has a6.
heading: Sign In. What Cypress command can we use to check that this is
rendered okay?

We can use the following:

cy.contains('Sign In');

Assessments

[557]

We are writing an end-to-end test using Cypress for a page that renders the7.
text Loading... while data is being fetched. How can we assert that this text is
rendered and then disappears when the data has been fetched?

We can use the following:

cy.contains('Loading...');
cy.contains('Loading...').should('not.exist');

The first command will check that the page renders Loading... on the
initial render. The second command will wait until the
Loading... disappears—that is, the data has been fetched.

Chapter 14 – Configuring and Deploying to Azure
In ASP.NET Core, what is the name of the file where we store any settings1.
specific to the production environment?

appsettings.Production.json

What were the reasons for our ASP.NET Core backend needing2.
the Frontend setting?

Firstly, to set up the allowed origin in a CORS policy and secondly, to build
correct links in the sign-up and forgotten password emails

Let's pretend we have introduced a QA environment and have created the3.
following npm script to do a build for this environment:

"build:qa": "cross-env REACT_APP_ENV=qa npm run build"

What npm command would we use to produce a QA build?

npm run build:qa

What would be broken if we didn't include the web.config file with our React4.
frontend?

We wouldn't be able to deep-link into our app. For example, putting the path
to a question, such as
https://qandafrontend.z19.web.core.windows.net/questions/1,
directly in the browser's address bar and pressing Enter will result in a Page
not found error being returned.

Assessments

[558]

Why didn't we use Azure Storage to host our frontend rather than Azure App5.
Service?

Azure Storage has no facility to let the React index.html handle deep links
into the app.

Chapter 15 – Implementing CI and CD with Azure
DevOps

What environment variable needs to be set for Jest tests to work well in a1.
continuous integration environment?

An environment variable called CI needs to be set to true.

When we change the azure-pipelines.yml file, why does this trigger a build?2.

The azure-pipelines.yml file is committed and pushed to our source
code repository and the build is triggered when any code is pushed to
the repository.

What YML step task can be used to execute npm commands?3.

-script

What YML step task can be used to publish artifacts to the pipeline?4.

PublishBuildArtifacts@1

Why do we have several builds of a React frontend for the different5.
environments?

The build sets the environment variable called REACT_APP_ENV, which the
code uses to determine which environment it is in.

What task type in a release pipeline stage can be used to deploy build artifacts to6.
Azure App Service?

Azure App Service Deploy

What task type in a release pipeline stage can be used to run SQL Server scripts?7.

Azure App Database Deployment

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

React Projects
Roy Derks

ISBN: 978-1-78995-493-7

Create a wide range of applications using various modern React tools and
frameworks
Discover how React Hooks modernize state management for React apps
Develop progressive web applications using React components
Build test-driven React applications using the Jest and Enzyme frameworks
Understand full stack development using React, Apollo, and GraphQL
Perform server-side rendering using React and React Router
Design gestures and animations for a cross-platform game using React Native

https://www.packtpub.com/programming/react-js-projects

Other Books You May Enjoy

[560]

Hands-On Mobile Development with .NET Core
Can Bilgin

ISBN: 978-1-78953-851-9

Implement native applications for multiple mobile and desktop platforms
Understand and use various Azure Services with .NET Core
Make use of architectural patterns designed for mobile and web applications
Understand the basic Cosmos DB concepts
Understand how different app models can be used to create an app service
Explore the Xamarin and Xamarin.Forms UI suite with .NET Core for building
mobile applications

https://www.packtpub.com/application-development/hands-mobile-development-net-core

Other Books You May Enjoy

[561]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

.

.NET tests
 implementing, with xUnit 443

A
access token 370
action creator
 about 197
 creating 201
 implementation, for clearing posted question 206
 implementation, for posting question 205
 implementing, for unanswered questions 202,

203, 204
action method
 about 21
 creation, for deleting question 282, 284
 creation, for getting questions 268, 270
 creation, for getting single question 273, 275,

276

 creation, for getting unanswered questions 273
 creation, for posting answer 284, 285, 286
 creation, for posting question 276, 277, 278
 creation, for updating question 279, 280, 281,

282

actions
 creating 200, 201
answer form
 form submission, handling 187, 189
 implementing 168, 169
 validation, implementing 178, 180
AnswerList component
 creating 138, 139, 140, 141
API controller action method
 data cache, using 354, 356, 357
API controller
 creating 263

 creating, for questions 263, 264, 265
 data repository, injecting into 265, 266, 267
 implementation, testing 346, 347
 making asynchronous 345, 346
API endpoint
 used, for load testing WebSurge 331, 332, 333
App component
 styling 77, 78, 80
app database
 creating 227, 228
 implementing 226
 stored procedures, creating 231, 232
 tables, creating 229, 230
app
 styling 72
 styling, CSS class references used 73
ask form
 form submission, handling 187
 form submission, implementing 186
 implementing 167, 168
 validation, implementing 178, 180
ASP.NET Core backend
 Auth0, setting up with 371
 configuring, for production 484, 485, 487
 configuring, for staging 484, 485, 487
 configuring, to authenticate with Auth0 375, 376
 publishing, to Azure 488
 publishing, to production environment 488, 489,

490, 491, 492
 publishing, to staging 492, 493, 494
ASP.NET Core SPA
 backend 11
ASP.NET Core Web API Project
 creating 44, 45, 46, 47, 48
ASP.NET Core
 creating 12, 14, 15
asynchronous code

[563]

 combining, with synchronous code 350
asynchronous controller action method
 implementing 348, 349
Auth0 account
 sign up, URL 372
Auth0 JavaScript client
 installing 406
Auth0, interacting from React frontend
 about 405
 Auth0 JavaScript client, installing 406
 central authentication context, implementing

408, 409, 410, 412, 413
 sign-in flow, recapping 406
 sign-in process, implementing 413, 414, 415
 sign-in processes, testing 417, 418, 419, 420
 sign-in routes, creating 407, 408
 sign-out flow, recapping 406
 sign-out process, implementing 415
 sign-out processes, testing 417, 418, 419, 420
 sign-out routes, creating 407, 408
Auth0
 ASP.NET Core backend, configuring to

authenticate with 375, 376
 setting up 372, 373, 374, 375
 setting up, with ASP.NET Core backend 371
 settings, configuring in frontend 416
authenticated options
 authenticated users, allowing to answer question

425, 426, 427
 authenticated users, allowing to ask question

422, 423, 424, 425
 controlling 420
 relevant options, displaying in header 420, 421
authenticated REST API endpoints
 interacting, fetch used 427
authenticated user
 using, for posting questions and answers 387,

388, 389, 390
automated tests
 end-to-end tests 443
 integration tests 443
 types 441
 unit tests 442
automatic code formatting tool
 adding, to React app 55

 adding, to TypeScript app 55
 Prettier tool, adding 57
Azure DevOps portal
 build, deploying to production environment 527,

529, 531
 build, deploying to staging environment 522,

523, 525
Azure DevOps project
 creating 511, 512, 514
 reference link 511
Azure, free services
 URL 480
Azure
 app services 481
 ASP.NET Core backend, publishing 488
 React frontend, publishing 496
 services, using 481, 482, 483, 484
 signing up 480
 SQL database 481
 working with 480

B
Babel 34
backend entry point 15, 16
blank pages
 creating 121, 122
boilerplate code
 reducing, with generic components 156
Bootstrap 4.1 30
button click event
 handling 111, 112

C
central authentication context
 implementing 408, 409, 410, 412, 413
children prop 96, 98
component props
 children prop 96, 97, 98
 default props 92
 function props 98
 HomePage child components, creating 86
 implementing 86
 optional props 92
component state
 getUnansweredQuestions function, modifying

[564]

101, 102, 103
 implementing 101
 implementing, with useState hook 105, 106,

108, 109, 110
 useEffect hook, used for logic execution 103,

105

component tree
 store provider, adding 212
component, containing routes
 creating 122, 123, 124
components
 connecting, to store 212
 styling, Emotion used 76
constructor 37
container component 110
Continuous Delivery (CD)
 about 508
 build, deploying to staging environment 527
 implementing 522
 starting with 507
 tests, executing 509, 510
Continuous Integration (CI)
 about 508
 implementing 515, 516, 518, 521
 starting with 507
 tests, executing 509, 510
controlled components 153, 154, 155
controller action methods
 creating 267
 testing 447, 449
 testing, for obtaining questions 449, 451, 452,

453

 testing, for obtaining single question 454, 455
controllers 20, 22
Create React App (CRA) 23, 49, 456
CSS class references
 used, for styling 73
CSS
 using, in JS 73, 75
custom middleware 18, 19, 20
custom model binding
 implementing 362, 363, 364
Cypress
 starting with 466, 468, 469
 test, implementing 469, 471, 472, 474, 475

 used, for implementing end-to-end tests 465

D
Dapper multi mapping
 used, for resolving N+1 problem 334, 335, 337
Dapper multi results
 using 337, 338, 339
Dapper, used for reading data
 about 235
 GetAnswer method, implementing 246
 GetQuestion method, implementing 243, 245
 GetQuestions method, implementing 239, 240,

241

 GetQuestionsBySearch method, implementing
241, 242

 GetUnansweredQuestions method,
implementing 242

 QuestionExists method, implementing 246
 repository class, creating 235, 237, 238
Dapper, used for writing data
 about 247
 DeleteQuestion method, implementing 249
 methods, adding to repository interface 247
 PostAnswer method, implementing 250
 PostQuestion method, creating 247
 PutQuestion method, creating 248
Dapper
 about 232
 benefits 232
 configuring 233, 234
 installing 233, 234
 used, for reading data 235
data cache
 implementing 351, 353, 354
 using, in API controller action method 354, 356,

357

data caching
 about 350
 implementation, load testing 351
data paging
 about 339
 current implementation, load testing 340, 342
 implementing 342, 343, 345
 test questions, adding for load test 340
data repository

[565]

 injecting, into API controller 265, 266, 267
data state
 terminating 435, 436
data
 pushing, to SignalR clients from API controller

309, 310
 reading, with Dapper 235
 writing, with Dapper 247
database migration
 performing 256, 257, 258, 259
database round trips
 reducing 328
 reducing, with N+1 problem 329
DbUp
 configuration, for performing migrations on app

startup 252, 253
 installing 251, 252
 used, for managing migrations 251
default props 92, 94, 95, 96
dependency injection 266
destructuring
 about 89
 reference link 96
document body
 styling 76

E
Emotion
 about 72, 74
 installing 75
 used, for styling components 76
end-to-end tests
 about 443
 implementing, with Cypress 465
 pros 443
endpoints
 protecting 377
 protecting, with custom authorization policy 380,

381, 382, 383, 384, 385, 386
 protecting, with simple authorization 377, 378,

379, 380
ESLint 31
event listener 111
events
 button click event, handling 111

 handling 111
 input change event, handling 112, 113

F
fetch
 used, for interacting with authenticated REST API

endpoints 427
 used, for interacting with unauthenticated REST

API endpoints 394
Field component
 creating 158, 159, 160
Form component
 creating 156, 157, 158
 validation rules, adding 170, 172
form context provider
 creating 162, 163
form context
 consuming 163, 164, 166
 creating 162
form submission
 handling 181
 handling, in ask form 186, 187
 implementing 185
 implementing, in answer form 187, 189
 implementing, in search form 185
forms
 submission, handling 181, 182, 183, 184
 submitting 180
 trying out 189, 191
frontend
 about 22
 backend web API, consuming 36, 37, 38, 39, 40
 components, implementing 33, 35, 36
 dependencies 29, 30, 31
 entry point 23
 publishing process 27, 28, 29
 running, in development mode 24, 25, 26, 27
 single page, serving 31, 33
function props 98, 100
function-based components
 creating 64
 Header component, creating 64
Functional Component (FC) 87

[566]

G
garbage collection
 about 358
 custom model binding implementation 362
 implementation, load testing 358, 360, 362
 reducing 358
generic components
 used, for reducing boilerplate code 156
generic http function
 extracting out 398, 399, 401, 402
GetQuestions action method
 extending, for searching 270, 271, 272
getUnansweredQuestions function
 modifying 101, 102, 103

H
Header component
 creating 64, 65, 66
 elements, adding 66, 67, 68
 HomePage component, creating 68, 69
 mock data, creating 69, 70, 72
 styling 80, 82, 83
HomePage child components
 creating 86
 Question component, creating 90, 91
 QuestionList component, creating 87, 88, 89
 wiring up 91, 92
HomePage component
 styling 83, 84, 86
 testing 462, 463, 465
hub 303

I
implicit return 65
import statement 34
indexable type 156
input change event
 handling 112, 113
integration tests
 cons 443
 pros 443
interface 69
Internet Explorer (IE) 38

J
JavaScript ternary 93
Jest matcher functions
 reference link 457
Jest
 React tests, implementing with 456
 starting with 456, 457
JS
 CSS, using 73
JSON Web Token (JWT)
 about 370
 URL 370
JSX 61, 62, 64

L
lazy loading routes 145, 146, 147, 148
Link component
 implementing 128
 navigating, programmatically 129, 130
 using 128, 129
linting
 adding, to React app 52
 adding, to TypeScript app 52
 rules, configuring 53, 54
 Visual Studio Code, configuring to lint TypeScript

code 52

M
migrations
 managing, DbUp used 251
 performing, on app startup with DbUp 252, 253
model binding 271
model validation
 adding 286
multi results 337

N
N+1 problem
 about 329, 330, 331
 resolving, with Dapper multi mapping 334, 335,

337

non-null assertion operator 189
npm dependencies 23

[567]

O
OpenID Connect (OIDC) 30, 368, 369, 370, 371
optimization
 rendering 114, 115, 116
optional props 94, 95, 96

P
Page component
 testing 458, 459, 460
paging
 features 339
polyfill 38
Postman
 protected endpoints, testing with 432, 433, 434
presentational component 110
Prettier tool
 about 55
 adding 56, 57
production environment
 ASP.NET Core backend, publishing 488, 489
 React frontend, publishing 497, 498, 499, 500
production
 ASP.NET Core backend, configuring 484, 485,

487

 ASP.NET Core backend, publishing 489, 490,
491, 492

 React frontend, configuring 494, 495, 496
props 86
protected endpoints
 testing, with Postman 432, 433, 434
pure function 197

Q
query parameters
 using 141, 143, 144, 145
Question component
 testing 460, 462
question page route
 adding 130, 131, 132
question page
 adding 134, 135, 136, 137, 138
 implementing 133

R
React app
 automatic code formatting tool, adding 55
 creating 49
 creating, with CRA 50, 51
React components
 HomePage component, testing 462
 Page component, testing 458
 Question component, testing 460
 testing 458
React context
 about 161, 162
 used, for sharing state 161
React frontend
 configuring, for production 494, 495, 496
 configuring, for staging 494, 495, 496
 publishing, to Azure 496
 publishing, to production environment 497, 498,

499, 500
 publishing, to staging environment 501, 502,

503

React Router
 about 30
 installing, with TypeScript types 120
React state
 SignalR real-time API, question mapping 322,

324, 325
React templated app
 creating 12, 14, 15
React tests
 implementing, with Jest 456
React
 interacting, with SignalR real-time API endpoint

312

real-time APIs 302
reducer
 about 197
 creating 206, 208, 210
 example 197
 key points 198
Redux pattern
 about 195
 key concepts 196, 198
 principles 195
Redux Thunk

[568]

 installing 198
Redux
 installing 198
request fields
 removing 292
 removing, from posting answer 295, 297
 removing, from posting question 293, 294, 295
request/response pipeline 17
resource group 482
REST API
 answer, posting to 431, 432
 question, obtaining from 402, 403, 404
 question, posting to 428, 429, 430, 431
 questions, searching with 404, 405
 unanswered questions, obtaining from 395, 396,

397, 398
return on investment (ROI) 443
route parameters
 AnswerList component, creating 138, 139, 140,

141

 question page route, adding 130, 131, 132
 question page, adding 134, 135, 136, 137, 138
 question page, implementing 133
 using 130
route
 declaring 121
 redirecting 125
routes not found
 handling 126, 127

S
search form
 form submission, implementing 185
sign-in flow
 recapping 406
sign-in process
 implementing 413, 414, 415
 testing 417, 418, 419, 420
sign-in routes
 creating 407, 408
sign-out flow
 recapping 406
sign-out process
 implementing 415
 testing 417, 418, 419

sign-out routes
 creating 407, 408
SignalR client connection object
 setting up 312, 313, 314, 315, 316
SignalR client connection
 stopping 317, 319
SignalR client
 installing 312
SignalR CORS
 adding, to backend 319, 321
SignalR hub
 creating 303, 304, 305, 307, 308
SignalR real-time API endpoint
 creating 311
 interacting, with React 312
SignalR real-time API
 question, mapping to React state 322, 324, 325
SignalR
 about 302
 benefits 303
Single Page Application (SPA)
 architecture 10, 11
spread syntax 163
SQL Scripts
 embedding 254, 255
SQL Server Management Studio (SSMS) 227
staging environment
 React frontend, publishing 501, 502, 503
staging
 ASP.NET Core backend, configuring 484, 485,

487

 ASP.NET Core backend, publishing 492, 493,
494

 React frontend, configuring 494, 495, 496
Startup class
 about 16
 configure method 17
 ConfigureServices method 16
state 101
state object
 creating 199
store provider
 adding, to component tree 212
store
 ask page, connecting 216, 218, 219, 221

 components, connecting 212
 creating 211
 home page, connecting 213, 215, 216
stored procedures
 creating 231, 232

T
tagged template literal 77
TCP socket 303
template literal 78
test questions
 adding, for load test 340
toBe function 457
type alias 170
type annotations 70
TypeScript app
 automatic code formatting tool, adding 55
 benefits 49, 50
 creating 49
 creating, with CRA 50, 51
TypeScript types
 React Router, installing with 120

U
unauthenticated REST API endpoints
 interacting, fetch used 394
union type 106
unit tests
 cons 442
 pros 442
useEffect hook
 used, for logic execution 103, 105
useState hook
 used, for implementing component state 105,

106, 108, 109

V
validation error messages
 tracking, with state 172, 173, 174
validation errors
 rendering 177
validation rules
 invoking 174, 175, 177
validation
 adding, to post answer 291, 292
 adding, to post question 287, 288, 289
 adding, to updating question 289, 290
 implementing 169
 implementing, on answer form 178, 179, 180
 implementing, on ask form 178, 179, 180
 rules, adding to Form component 170, 171
Visual Studio Code
 configuring, to TypeScript code 52

W
web sockets 303
WebPack 27
WebPack development server
 using 27
WebSurge
 used, for load testing API endpoint 331, 332,

333

X
xUnit
 .NET tests, implementing with 443
 starting with 444, 446, 447

Y
YAML Ain't Markup Language (YAML) 515

	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1: Getting Started
	Chapter 1: Understanding the ASP.NET Core React Template
	Technical requirements
	SPA architecture
	Understanding the backend
	Creating an ASP.NET Core and React templated app
	Understanding the backend entry point
	Understanding the Startup class
	The ConfigureServices method
	The Configure method

	Custom middleware
	Understanding controllers

	Understanding the frontend
	Understanding the frontend entry point
	Running in development mode
	Publishing process
	Understanding the frontend dependencies
	Understanding how the single page is served
	Understanding how components fit together
	Understanding how components access the backend web API

	Summary
	Questions
	Further reading

	Chapter 2: Creating Decoupled React and ASP.NET Core Apps
	Technical requirements
	Creating an ASP.NET Core Web API project
	Creating a React and TypeScript app
	Understanding the benefits of TypeScript
	Creating the app with CRA

	Adding linting to React and TypeScript
	Configuring Visual Studio Code to lint TypeScript code
	Configuring linting rules

	Adding automatic code formatting to React and TypeScript
	Adding Prettier

	Summary
	Questions
	Further reading

	Section 2: Building a Frontend with React and TypeScript
	Chapter 3: Getting Started with React and TypeScript
	Technical requirements
	Understanding JSX
	Creating function-based components
	Creating a Header component
	Creating our first component
	Adding elements to the Header component
	Creating a HomePage component
	Creating mock data

	Styling components
	Styling using CSS class references
	Understanding the benefits of CSS in JS
	Installing Emotion
	Styling the document body
	Styling components using Emotion
	Styling the App component
	Styling the Header component
	Styling the HomePage component

	Implementing component props
	Creating HomePage child components
	Creating the QuestionList component
	Creating the Question component
	Wiring up the components

	Optional and default props
	Children prop
	Function props

	Implementing component state
	Changing getUnansweredQuestions so that it's asynchronous
	Using useEffect to execute logic
	Using useState to implement component state

	Handling events
	Handling a button click event
	Handling an input change event

	Rendering optimization
	Summary
	Questions
	Further reading

	Chapter 4: Routing with React Router
	Technical requirements
	Installing React Router with types
	Declaring routes
	Creating some blank pages
	Creating a component containing routes
	Redirecting a route

	Handling routes not found
	Implementing links
	Using the Link component
	Navigating programmatically

	Using route parameters
	Adding the question page route
	Implementing more of the question page
	Creating an AnswerList component

	Using query parameters
	Lazy loading routes
	Summary
	Questions
	Further reading

	Chapter 5: Working with Forms
	Technical requirements
	Understanding controlled components
	Reducing boilerplate code with generic components
	Creating a Form component
	Creating a Field component
	Sharing state with a React context
	Understanding a React context
	Creating a form context
	Creating a form context provider
	Consuming the form context

	Implementing the ask form
	Implementing the answer form

	Implementing validation
	Adding validation rules to the Form component
	Tracking validation errors with state
	Invoking validation rules
	Rendering validation errors
	Implementing validation on the ask and answer forms

	Submitting forms
	Handling form submission
	Implementing form submission in the search, ask, and answer forms
	Implementing form submission in the search form
	Implementing form submission in the ask form
	Implementing form submission in the answer form
	Trying out our forms

	Summary
	Questions
	Further reading

	Chapter 6: Managing State with Redux
	Technical requirements
	Understanding the Redux pattern
	Principles
	Key concepts

	Installing Redux and Redux Thunk
	Creating the state
	Creating actions
	Creating action creators
	Implementing an action creator for getting unanswered questions
	Implementing an action creator for posting a question
	Implementing an action creator for clearing the posted question

	Creating a reducer
	Creating the store
	Connecting components to the store
	Adding a store provider
	Connecting the home page
	Connecting the ask page

	Summary
	Questions
	Further reading

	Section 3: Building an ASP.NET Core Backend
	Chapter 7: Interacting with the Database with Dapper
	Technical requirements
	Implementing the database
	Creating the database
	Creating database tables
	Creating stored procedures

	Understanding what Dapper is and its benefits
	Installing and configuring Dapper
	Reading data using Dapper
	Creating the repository class
	Creating a repository method to get questions
	Creating a repository method to get questions by a search
	Creating a repository method to get unanswered questions
	Creating a repository method to get a single question
	Creating a repository method to check whether a question exists
	Creating a repository method to get an answer

	Writing data using Dapper
	Adding methods to write data to the repository interface
	Creating a repository method to add a new question
	Creating a repository method to change a question
	Creating a repository method to delete a question
	Creating a repository method to add an answer

	Managing migrations using DbUp
	Installing DbUp into our project
	Configuring DbUp to do migrations on app startup
	Embedding SQL Scripts in our project
	Performing a database migration

	Summary
	Questions
	Further reading

	Chapter 8: Creating REST API Endpoints
	Technical requirements
	Creating an API controller
	Creating an API controller for questions
	Injecting the data repository into the API controller

	Creating controller action methods
	Creating an action method for getting questions
	Extending the GetQuestions action method for searching
	Creating an action method for getting unanswered questions
	Creating an action method for getting a single question
	Creating an action method for posting a question
	Creating an action method for updating a question
	Creating an action method for deleting a question
	Creating an action method for posting an answer

	Adding model validation
	Adding validation to posting a question
	Adding validation to updating a question
	Adding validation to posting an answer

	Removing unnecessary request fields
	Removing unnecessary request fields from posting a question
	Removing unnecessary request fields from posting an answer

	Summary
	Questions
	Further reading

	Chapter 9: Creating a Real-Time API with SignalR
	Technical requirements
	Understanding the benefits of SignalR
	Creating a SignalR hub
	Pushing data to SignalR clients from an API controller
	Creating the SignalR real-time API endpoint
	Interacting with the SignalR real-time API from React
	Installing the SignalR client
	Setting up the client connection
	Stopping the client connection
	Adding CORS to our backend
	Mapping a question from the real-time API to React state

	Summary
	Questions
	Further reading

	Chapter 10: Improving Performance and Scalability
	Technical requirements
	Reducing database round trips
	N+1 problem
	Using WebSurge to load test our endpoint
	Using Dapper multi-mapping to resolve the N+1 problem
	Using Dapper multi results

	Paging data
	Adding test questions for the load test
	Load testing the current implementation
	Implementing data paging

	Making API controllers asynchronous
	Testing the current implementation
	Implementing an asynchronous controller action method
	Mixing asynchronous and synchronous code

	Caching data
	Load testing the current implementation
	Implementing a data cache
	Using the data cache in an API controller action method

	Reducing garbage collection
	Load testing the current implementation
	Implementing custom model binding

	Summary
	Questions
	Further reading

	Chapter 11: Securing the Backend
	Technical requirements
	Understanding OIDC
	Setting up Auth0 with our ASP.NET Core backend
	Setting up Auth0
	Configuring our ASP.NET Core backend to authenticate with Auth0

	Protecting endpoints
	Protecting endpoints with simple authorization
	Protecting endpoints with a custom authorization policy

	Using the authenticated user when posting questions and answers
	Summary
	Questions
	Further reading

	Chapter 12: Interacting with RESTful APIs
	Technical requirements
	Using fetch to interact with unauthenticated REST API endpoints
	Getting unanswered questions from the REST API
	Extracting out a generic HTTP function
	Getting a question from the REST API
	Searching questions with the REST API

	Interacting with Auth0 from the frontend
	Installing the Auth0 JavaScript client
	Recapping the sign-in and sign-out flow
	Creating the sign-in and sign-out routes
	Implementing a central authentication context
	Implementing the sign-in process
	Implementing the sign-out process
	Configuring Auth0 settings in our frontend
	Testing the sign-in and sign-out processes

	Controlling authenticated options
	Displaying the relevant options in the header
	Only allowing authenticated users to ask a question
	Only allowing authenticated users to answer a question

	Using fetch to interact with authenticated REST API endpoints
	Posting a question to the REST API
	Posting an answer to the REST API
	Testing protected endpoints with Postman

	Stopping a data state being set if the user navigates away from the page
	Summary
	Questions
	Further reading

	Section 4: Moving into Production
	Chapter 13: Adding Automated Tests
	Technical requirements
	Understanding the different types of automated test
	Unit tests
	End-to-end tests
	Integration tests

	Implementing .NET tests with xUnit
	Getting started with xUnit
	Testing controller action methods
	Testing the action method to implement GetQuestions
	Testing the action method to get a single question

	Implementing React tests with Jest
	Getting started with Jest

	Testing React components
	Testing the Page component
	Testing the Question component
	Testing the HomePage component

	Implementing end-to-end tests with Cypress
	Getting started with Cypress
	Testing asking a question

	Summary
	Questions
	Further reading

	Chapter 14: Configuring and Deploying to Azure
	Technical requirements
	Getting started with Azure
	Signing up to Azure
	Understanding the Azure services we are going to use

	Configuring the ASP.NET Core backend for staging and production
	Publishing our ASP.NET Core backend to Azure
	Publishing to production
	Publishing to staging

	Configuring the React frontend for staging and production
	Publishing the React frontend to Azure
	Publishing to production
	Publishing to staging

	Summary
	Questions
	Further reading

	Chapter 15: Implementing CI and CD with Azure DevOps
	Technical requirements
	Getting started with CI and CD
	Understanding CI and CD
	Enabling our tests to run in CI and CD
	Creating an Azure DevOps project

	Implementing CI
	Implementing CD
	Deploying to staging
	Deploying to production

	Summary
	Questions
	Further reading

	Assessments
	Other Books You May Enjoy
	Index

