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INTRODUCTION

This book is written to give interested readers or fi rst year under-
graduates a comprehensive understanding of the theory of special 
relativity. It cannot do that using only the mathematics that fi rst year 
undergraduates accumulate before their second year, and so the 
necessary extra mathematics is included in the book. This makes the 
book more than just a book on the theory of special relativity. The 
book is also an introduction to some of the mathematics that stu-
dents will meet in the later years of their studies. The book does not 
give a detailed, and dry, exposition of the mathematics, but chooses 
only the bits of the mathematics necessary to understand the theory 
of special relativity. In so doing, the book gives an overview of the 
mathematics that students will fi nd particularly useful when they 
come to study the mathematics in detail. Thus, although the book 
was originally intended to present only the theory of special relativ-
ity, it has turned out to also be a presentation of a little of the math-
ematics of physics.

The theory of special relativity is a theory of the nature of space 
and time and of motion through space and time. With this in mind, 
this book delves into the nature of empty space and the mathematics 
of empty space. The book introduces the reader to the geometric 
spaces that are derived from the mathematical objects known as the 
fi nite groups.1 Space-time is not what mathematicians call a metric 
space2, and we do not consider the metric spaces. In looking at the 
fi nite group spaces, we take the reader to the frontiers of research 
into the nature of space and time. We use the fi nite group spaces 
to derive the special theory of relativity from no more than the real 
numbers and the fi nite groups. We also derive Maxwell’s equations 
of electromagnetism from the fi nite groups and the real numbers. At 
those frontiers of human knowledge, we go on to derive a 4-dimen-

1. The finite groups will be defined later. 
2. A metric space is a mathematical function that defines the distance between two point in 
such a way that:

 a. The distance between points A & B is the same as the distance between B & A.
 b. The distance from A to A is zero.
 c.  The distance between A & B via another point C is greater than or equal to the distance 

between A & B. This is known as the triangle axiom; it is the failure to satisfy this axiom 
that disqualifies space-time from being a metric space. 
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x • The Special Theory of Relativity

sional space-time that matches what we observe and which is more 
often expressed as the Lorentz group.

The fi rst two chapters cover much of what is called special rela-
tivity without need for the mathematics. From these two chapters 
alone, the reader will gain a quite deep knowledge of the theory of 
special relativity.

The book generally follows Minkowski’s geometrical approach 
to the theory of special relativity. Minkowski space is often absent 
from modern presentations of the theory of special relativity, and 
your author feels that those presentations are lesser presentations 
because of this omission. The book does, however, not rely solely on 
Minkowski and presents special relativity in a variety of ways. In par-
ticular, Minkowski used 4-vectors to formulate special relativity; we 
use 4-vectors, and we then cover the same material using matrices.

There is much repetition in the book. The same aspect of spe-
cial relativity is presented in different ways and from different view-
points. The important points are emphasised and re-emphasised. 
Sometimes, what has already been said once is said again when it is 
needed later in the book thereby ensuring that the student is ready 
to grasp the later material. 

Of necessity in a book about special relativity, we cover the math-
ematics of the Lorentz transformation for which we need matrices 
and the hyperbolic trigonometric functions, and so we introduce the 
mathematics of matrices and trigonometry. The book includes the 
vector calculus of electromagnetism, which is normally not taught 
until the second year in many universities. We need the vector cal-
culus to understand 4-vectors, which are a central part of a conven-
tional exposition of special relativity. Having covered 4-vectors, the 
electromagnetic 4-potential and the electromagnetic 4-tensor follow 
with only a little more effort. Don’t panic – all will be revealed; it is 
not as diffi cult as it sounds.

This book adopts the view of space as being derived from the 
fi nite groups rather than it being just n copies of the real numbers 
fi xed together. To do that, we need an introduction to fi nite groups, 
which we present with matrices in a way different from, and sim-
pler than, the usual presentation. This leads naturally to the Lorentz 
transform and also to quaternions. The “quaternion axiom” postulates 
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Introduction • xi

that space-time is a quaternion structure, and there is evidence for 
this, and so we look at quaternions. To understand quaternions, we 
need to understand numbers, and so we include an understanding of 
division algebras and of non-commutativity. Quaternions are becom-
ing more fashionable in physics than they once were, but, simple as 
they are, very few western universities teach them as standard, and 
so we give a brief introduction to them. We then derive the 4-dimen-
sional structure of the space-time we see around us and electromag-
netism from the fi nite groups.

We give a brief introduction to cosmology leading to the cosmic 
microwave background and the implications of this being a univer-
sal, but not absolute, reference frame.

Throughout the book, there are scattered “asides” which are 
comments that are not part of the main theme of the book but that 
link the main theme to other areas of physics and maths. Some of 
these asides are historical or biographical, some are simple com-
ments, and some are of central importance to other areas of physics 
such as particle physics. In many ways, the asides indicate the unity 
of physics and mathematics. The reader need not digest the asides, 
and can ignore them completely without loss of understanding of the 
theory of special relativity, but they do add breadth to the subject.

The book contains a little of the history of the theory of special 
relativity and of physics and mathematics in general. This is included 
to lighten the load and to deepen the reader’s understanding of sci-
ence and of how it progresses humankind’s understanding of the 
universe.

The book does not skimp on the mathematics, but, your author 
hopes, it does not bury the physics under an obscurity of technicali-
ties. Even so, it is unlikely that a reader will digest all that is in this 
book in a single reading. Three readings are more normal for aca-
demic books.

As physicists and mathematicians, we quest to fi nd a “grand uni-
fi ed theory of everything.” We are closer to a unifi ed fi eld theory 
of the particles and forces in the universe than we have ever been, 
but that alone cannot be a theory of everything for it contains no 
understanding of the empty space and time that clearly exist in our 
universe. Historically, progress in this direction has been stubbornly 
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xii • The Special Theory of Relativity

slow, and, perhaps for lack of any idea how to proceed, mathemati-
cians and physicists have directed their efforts, very profi tably and 
very understandably, elsewhere. Recent developments lead us to 
think that it is possible that humankind will come to understand 
space and time in the near future, and we hope to take a step towards 
that understanding of space and time with this book. 

Your author hopes he has produced an enjoyable book. He hopes 
the book will be easy to read and deeply interesting to the curious 
reader. Your author also hopes that this book will engender within 
the reader a life-time interest in the nature of the empty space that 
surrounds us and its relationship to the particles and forces of the 
universe. 

Dennis Morris
May 2016
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CHAPTER 1
AN OVERVIEW OF THE 
THEORY OF SPECIAL 
RELATIVITY

1.1 PHYSICS IS INVARIANT UNDER ROTATION

If we take a kettle full of water and point the kettle’s spout west-
ward, the water in the kettle boils at 100 centigrade. If we then 
turn the kettle to point its spout northward, the water in the kettle 
still boils at 100 centigrade. The temperature at which a kettle boils 
water does not change with the spatial direction in which its spout 
points. (We ignore extraneous effects such as air pressure.) It would 
astound us if physical effects did differ with change in spatial direc-
tion of the physical system. Imagine how weird a car would seem 
if its engine worked only when the car pointed northward or how 
weird sugar would be if it sweetened tea only if the teacup handle 
was pointed westward. We believe, both from observation and for 
good theoretical reasons, that the physics of the universe is inde-
pendent of direction in space. This is not only true upon the surface 
of the Earth; this is true, we believe, everywhere in the universe. 
We say that, “the boiling point of water is invariant under rota-
tion in space”. The universe is the same in all directions – it is 
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2 • The Special Theory of Relativity

isotropic in space. We say that physics is invariant under rotation in 
space. We mean that the way things work - the physical laws of the 
universe - do not change when we alter the direction in space of the 
physical system. This (blindingly obvious) understanding is central 
to the special theory of relativity. Indeed, apart from the details, this 
understanding is the special theory of relativity. The remainder of 
this book is just the details. We repeat and embolden:

The physics of the universe is invariant under rotation.

1.2  SPACE AND TIME ARE NOT 
SEPARATE THINGS

To Isaac Newton (1642–1727), as to all humankind except mod-
ern theoretical physicists and modern philosophers, time was a thing 
separate from space. Time is different from space. Time never stops 
fl owing, and we never stop moving through time, but it is easy for 
us to stop moving through space. Newton saw time as a single entity 
complete on its own and entirely separate from space. Newton saw 
space as a thing in its own right that was separate from time. Newton 
lived a good while ago. Since then, due to Albert Einstein (1879–
1955) and others, our understanding of time and space has changed. 
We now see time as a dimension in space-time; we see space as a 
dimension (or three1) in space-time. We are of the view that space 
and time are a single entity. Space and time are as Romeo and Juliet 
in Shakespeare’s play “Romeo and Juliet”. Without time, there would 
be no space-time, and, without space, there would be no space-time. 
Without Romeo, there would be no Romeo and Juliet, and, without 
Juliet, there would be no Romeo and Juliet. Space and time are not 
separate entities but are tied together into a single (2-dimensional 
to start with) space-time. Perhaps this statement should be repeated 
and emboldened:

Space and time are not separate entities but are joined 
together into a single space-time.

1. For the first part of this book, we will treat space-time as being 2-dimensional. We 
will adapt to it being 4-dimensional in the latter part of the book.
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An Overview of the Theory of Special Relativity • 3

1.3 MASS DIMENSIONS

If space-time is one entity, then time must be the same stuff 
as space; even though the two things appear to be different to we 
humans. We say that the mass-dimensions of space and time are the 
same. We write this as:

 [T] = [L] (1.1)

What we are saying here is that, if space is measured in meters, then 
time must be measured in meters. Alternatively, if time is measured in 
seconds, then space must be measured in seconds (think light-second 
or light year). Instead of saying that the sun is 93 million miles from 
Earth, we say the sun is 8 seconds from Earth. A consequence of this 
is that the mass-dimension of velocity is just a number:

 
[ ] [ ] [ ]

[ ] 1
[ ] [ ] [ ]
Space Meters Secs

Velocity
Time Meters Secs

     (1.2)

It is normal in theoretical physics to set the velocity of light, which, 
being a velocity, is just a number, equal to unity (one). They do this 
because it is easier to put c = 1 in formulae and then not worry about 
factors of c. The factors of c are easily recovered when needed. Such 
units with c = 1 are sometimes called geometrical units by relativists. 

The concept of mass-dimension appears almost everywhere in 
theoretical physics. The equivalence of space and time is the basis of 
this concept of mass-dimension. 

1.4 DIRECTIONS IN SPACE-TIME

Different directions in space-time are different velocities. Since 
space-time is a single (2-dimensional for us to start with) entity, it 
has one space dimension and one time dimension. A direction in 
any type of space is a ratio of one dimension to another dimension. 

(Think 
y

gradient
x

  on a sheet of graph-paper.) A ratio of space to 

time is a velocity, like meters per second. In space-time, different 
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4 • The Special Theory of Relativity

slopes (gradients) correspond to different directions which corre-
spond to different velocities. 

The reader might like to picture a 2-dimensional fl at sheet of 
paper with two axes drawn upon it.

One axis is the time axis and the other axis is the space axis. This 
is space-time. The slope (gradient) of the lines from the origin is 

given by the ratio of the two axes, Space
Time

, but this is velocity. Differ-

ent slopes are different directions, both on the sheet of paper, and 
in space-time. These different directions are different ratios of the 
space dimension and the time dimension. A ratio of space to time is a 
velocity, and so the different directions in space-time are just differ-
ent velocities. We see that what appears to us to be different veloci-
ties are no more than different directions (like East or South-east) in 
space-time. Perhaps this should be repeated and emboldened. 

Different velocities are no more than different 
directions in space-time.

If we take a kettle full of water that is stationary before us, it boils 
at 100 centigrade2. If we then put the kettle on to a train traveling 
at 100,000 kilometers per second, the kettle still boils at 100 cen-
tigrade. The temperature at which a kettle boils water does not vary 
with the velocity at which the kettle moves. A particular velocity is just 
a particular direction in space-time, and so, a kettle moving at 100,000 
kilometers per second is just a kettle with its spout pointing in a 

2. That the boiling point of water varies with height above sea level or other effects 
is irrelevant to this discussion.
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An Overview of the Theory of Special Relativity • 5

different direction in space-time to the direction pointed by the spout 
of a kettle that is stationary. We say that, “the boiling point of water is 
invariant under rotation in space-time”, this is just a way of saying that 
the physics of the universe is the same at all velocities – space-time is 
isotropic. We will repeat and embolden this statement also.

The physics of the universe is invariant under rotation in space-time.
The physics of the universe is the same at all velocities.

We mean that the way things work - the physical laws of the universe 
- do not change when we alter the velocity at which a physical system 
travels. As your author writes, the Voyager space-craft, launched by 
NASA in the 1970s, is moving away from Earth at approximately 
61,400 km/hr and all the electronic systems within it are working 
exactly as they did when it was stationary here on Earth in the early 
1970’s. Astronomers can detect stars moving very rapidly away from 
the Earth. These stars still shine in the same way that our own sun 
shines. Everything works the same regardless of the velocity at which 
a physical system moves. This is the special theory of relativity, and 
that deserves emboldening.

Everything works the same regardless of the velocity 
at which a system moves.

In essence, the special theory of relativity is no more than a state-
ment that space-time is a single entity (space and time are not two 
things) and that space-time is isotropic.

The Special Theory of Relativity

Space-time is a single entity. Space and time are not separate. 
Space-time is isotropic

Kettles boil at the same temperature regardless of the direction in which 
they are pointed (in space-time). Kettles boil at the same temperature 
regardless of the velocity at which they are moving.

1.5 THE CONSTANCY OF THE SPEED OF LIGHT

The temperature at which water boils depends upon the strength 
of the electromagnetic forces that hold the water molecules close to 
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6 • The Special Theory of Relativity

each other. The strength of the electromagnetic force depends upon 
the electrical permittivity, 0, and the magnetic permeability, 0, of 
empty space. The speed of light also depends upon these two physi-
cal constants; it is given by:

 
0 0

1
speed of light c

e m
   (1.3) 

Thus, the temperature at which water boils depends upon the speed 
of light; or the speed of light depends upon the temperature at which 
water boils; or they both depend upon how easily electric fi elds and 
magnetic fi elds can penetrate empty space, or they are all just a dif-
ferent view of the same thing. Thus, since kettles boil at the same 
temperature at all velocities, the speed of light is the same at all 
velocities. That’s simple enough! The speed of light is just a law of 
physics, and so it should be the same at all velocities.

Aside: 0 is also called the vacuum permeability, the permeability 
of free space, or the magnetic constant. It is derived from Ampere’s 
law, and its value was fixed in 1948 by the definition of the ampere. 
That value is 6 1

0 1.257 10  Hmm     (Henrys per meter) in SI units. 
0 is a measure of how easily magnetic fields can penetrate empty 
space. 

0 relates units of electrical charge to mechanical quantities. It 

is defined to be 12 1
0 2

0

1
8.85 10  Fm

c
e

m
     (Farads per meter) 

in SI units. 0 is a measure of how easily electrical fields can pen-
etrate empty space. Each type of substance has its own measure of 
how easily electrical fields can penetrate it; this measure is called the 
relative permittivity. For olive oil, the relative electrical permittivity 
is 13 r Fme  . For ice (2C), the relative electrical permittivity is 

194 r Fme  .

Now imagine a physics student on a railway platform making 
a cup of tea and shining a torch along the railway line towards an 
oncoming train that is moving towards the platform at 100,000 kilo-
meters per second. The physics student on the platform watches the 
water for his tea boil at 100 centigrade and measures the velocity 
of the light leaving his torch to be 300,000 kilometers per second 
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An Overview of the Theory of Special Relativity • 7

away from him. On the train, there is a mathematics student who 
is also making a cup of tea. The mathematics student watches the 
water for her tea boil at 100 centigrade and measures the light from 
the physics student’s torch to be moving at 300,000 kilometers per 
second towards her. (If her kettle boils at 100o centigrade, light must 
move at 300,000 kilometers per second. We’ve just worked that out.) 
What happened to the 100,000 kilometer per second velocity of the 
train? Ought not the mathematics student to measure the light from 
the physics student’s torch to move at the’s velocity of 400,000 kilo-
meters per second? No, she ought not to because, if she did, her 
kettle would have to boil at 175 centigrade to match the change in 
the values of the electrical permittivity, 0, and the magnetic perme-
ability, 0. 

An old Sioux Indian once told your author that this “loss of 
100,000 kilometers per second” seems counter-intuitive. Your author 
is of the opinion that it actually is counter-intuitive. None-the-less, 
it is true. In 1968, Farley, Bailey, & Picasso measured the speed of 
radiation emitted when -mesons decay. Although the mesons were 
moving at close to the speed of light through the laboratory, the light 
emitted by them was measured to be c in the laboratory3. Both the 
mathematics student on the train and the physics student on the 
platform measure the beam of light to be moving at the same veloc-
ity because the laws of physics (of which the speed of light is one) are 
the same in all directions in space-time – that is the laws of physics 
are the same at all velocities.

Let us suppose that the mathematics student on the train did 
measure the speed of light from the physics student’s torch to be 
400,000 kilometers per second, and, at the same time, she also mea-
sured the speed of light traveling across the carriage, from a lamp 
in the carriage, to be 300,000 kilometers per second. Would not this 
mean that the kettle boils at different temperatures depending upon 
whether its spout points across the carriage or its spout points along 
the carriage? Suppose the train goes around a bend in the track. 
Suppose the mathematics student measures, from the lamp in the 
carriage, the speed of light in the direction of her travel and gets 
300,000 kilometers per second; together with the 400,000 kilome-

3. Farley, Bailey, & Picasso in Nature, 217, 17 (1968).
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8 • The Special Theory of Relativity

ters per second result from the light of the physics student’s torch, 
there would be two different values for the speed of light in the same 
direction. The poor kettle would not know which way to turn. 

Imagine two observers both measuring the speed of light in 
both northward and westward directions. Spatial isotropy means 
that the speed of light in both directions is the same. Now suppose 
the observers are moving relative to each other in the northward 
direction but are stationary relative to each other in the westward 
direction. Because they are stationary relative to each other in the 
westward direction, they will agree on the speed of the westward 
moving light. Since they agree on the speed of the westward mov-
ing light, they must agree (they each have spatial isotropy) on the 
speed of the northward moving light – if they do not so agree, then 
we have lost spatial isotropy. We see that invariance of physics under 
rotation in space necessitates invariance of physics under rotation in 
space-time. If light is to move at the same speed northward as it does 
westward for all observers, then that speed must be independent of 
the relative northward velocities of those observers. 

Many authors of books on the theory of special relativity start 
from the constancy of the speed of light under change of velocity. 
Indeed, this is part of what led Einstein to special relativity (the other 
part is magnetic fi elds caused by moving electric charges). From the 
constancy of the speed of light, those authors deduce many of the 
counter-intuitive aspects of special relativity. We will follow their rea-
soning later in this book. However, in spite of the constancy of the 
speed of light being the starting point for many authors, it is not basic 
to the theory of special relativity. In fact, as we will see later, the speed 
of light is not unique to light; we will see later that all things, includ-
ing we humans, travel through space-time at the speed of light. The 
invariance of the speed of light with velocity is no more than the gen-
eral invariance of physical phenomena under rotation in space-time. 

Your author has rattled on about physics being invariant under 
rotation in space-time (and space-space), but he has said nothing 
about invariance under translation in space and in time. We believe 
that the physics of the universe is the same ten billion light-years 
from Earth as is here on Earth; we believe that kettles boil at 100C 
in distant galaxies just as they do on Earth. This is the invariance of 
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physics under translation in space. We also believe that the physics 
of the universe was the same ten billion years ago as it is now and 
that it will be the same ten billion years into the future as it is now; 
we believe that kettles will boil at 100C in ten billion years time 
just as they do today. This does not mean that the universe was the 
same ten billion years ago as it is now; it means only that the universe 
works in the same way now as it did ten billion years ago. This is 
invariance under translation in time. Such translational invariance  
it is a belief and not a fact; it might be that the speed of light was 
infi nite at the start of the universe and has lessened since then; only 
observation can decide, and no-one has been ten billion years into 
the future or ten billion light-years into space. 

Your author has written of the unity of space and time. Later in 
this book, we will see that within special relativity we also have the 
unity of many other concepts such as momentum and energy, force 
and power, and electric fi elds and magnetic fi elds. However, your 
author must now point out that this unity breaks for the stationary 
observer. For the stationary observer, space and time are separate 
things, as are momentum and energy, and force and power, and elec-
tricity and magnetism. It is only when we consider systems in motion 
relative to ourselves that we see the unity of these things. We need to 
accept the unifi cation of these things when we deal with the physics 
of systems that are in motion relative to ourselves. We do not need to 
accept this unifi cation when dealing with systems that are stationary 
relative to ourselves. Think about it; is it not obvious to you, as you sit 
there, that space is separate from time as far as you are concerned?

Having said all the above about time being a dimension in space-
time, let us remember that time is not space. We can, and will, treat 
time mathematically as if it is were a dimension in space. This works, 
but it does not mean that time is space. Every color in the world is 
a mixture of three primary colors, red, blue, and green. I can thus 
specify any color by just three ordered numbers; these numbers 
being the proportions of each of the primary colours in the color that 
I am specifying. Similarly, I can specify any position in a 3-dimen-
sional space by three ordered numbers (a vector), but, even though 
color is mathematically identical to 3-dimensional space, this does 
not mean that color is a 3-dimensional geometric space. The same 
is true about including time as one number in a set of four numbers 
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10 • The Special Theory of Relativity

that specifi es a position in the universe. Just because the math 
works like a 4-dimensional space does not mean that it is a 4-dimen-
sional space. We will see later that the trigonometric functions 
of 2-dimensional Euclidean space are the cos( ) and the sin( ) func-
tions and that other than a displacement of 90, these two functions 
are identical. We will see later that the trigonometric functions of 
2-dimensional space-time are the cosh( ) and the sinh( ) functions. 
These functions are very different from each other; this is why time is 
different from space.

We’ve been a little repetitive in this chapter. We have repeated 
the same concepts several times. It is partly because of the impor-
tance of understanding these concepts that we have been so repeti-
tive. It is partly because of the diffi culty of understanding the con-
sequences of these concepts that we have been so repetitive. Within 
this chapter, there are all the diffi cult basic concepts of the theory of 
special relativity. There are other concepts in special relativity that 
are diffi cult, but they are not basic concepts. We repeat: 

Space and time are just two different dimensions in one 
type of space called space-time.

Different velocities are no more than different directions 
in space-time.

The physics of the universe is invariant under rotation 
(change of direction) in space-time (and space-space).

Aside: To be acceptable, any theory of particle physics must be invari-
ant under “Lorentz transformations”. Lorentz transformations are just 
rotations in space-time, and so, to be acceptable, any theory of particle 
physics must be invariant under rotation in space-time (the same in all 
directions in space-time – the same at all velocities). We knew that. 

However, the particle physics theory must also be invariant 
under three other types of transformations known as {U(1), SU(2), 

SU(3)}. These transformations are, respectively, rotation in 1 space 
(the complex plane), rotation in 2 spa (two copies of the complex 
plane fitted together like 2), and rotation in 3 space (three copies 
of the complex plane fitted together like 3).
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1.6 SYMMETRY AND NOETHER’S THEOREM

In the fi rst paragraph of this chapter, we assumed that a kettle 
boils at the same temperature regardless of the direction in which its 
spout is pointing. The reader did not question this “blindingly obvi-
ous” fact, but why is it true? In the fi rst half of the 20th century, Emmy 
Noether, an outstanding mathematician, was able to prove the truth 
of this mathematically. In doing so, she was also able to show why 
some things (energy, angular momentum,...) are conserved quanti-
ties in physics. The mathematics of what she did is beyond the remit 
of this book, but we will briefl y overview what she achieved. 

Physicists defi ne a symmetry as being a change in perspective 
that leaves the equations of physics unchanged. Rotation in space-
time is such a change in perspective, as is rotation in space – thus 
rotation in space-time is a symmetry. Another example is translation 
in space which just moves the origin of the co-ordinate system. Yet 
another is translation in time. Mathematically, a symmetry is a varia-
tion to the fi elds in the Lagrangian (the Lagrangian is a mathemati-
cal expression) that leaves the equations of motion invariant. This is 
a precise, but diffi cult, way of saying the laws of a physical system do 
not change under a symmetry. The form of the Lagrangian stays the 
same under a symmetry (a rotation or a translation, say).

Aside: Lagrangian mechanics is a reformulation of classical mechanics 
based upon the concept of a stationary action, A. This reformulation 
was introduced by Joseph-Louis Lagrange (1736–1813) in 1788. It 
applies to systems whether or not they conserve energy and momen-
tum and it gives the conditions under which energy and momentum 
are conserved in those systems. The Lagrangian, L, is the difference 
between the total kinetic energy and the total potential energy:

 L = T  V (1.4)
Where T is the total kinetic energy and V is the total potential energy. 
From the Lagrangian, we can calculate the equations of motion of the 
system that describe how the system will evolve through time. The 
path integral of the Lagrangian, L, is called the action, A:

  A dt L  (1.5)
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12 • The Special Theory of Relativity

Symmetry transformations (for example, rotations) leave A 
unchanged (invariant). Such rotations form a group of infinite order 
that is called a Lie group.

Symmetries are associated with conservation laws. The conservation 
of momentum is associated with physics being unchanged by a transla-
tion in space. The conservation of momentum is a statement that space 
is homogeneous. The conservation of energy is associated with physics 
being unchanged by a translation in time – kettles boiled at 100 centi-
grade for Euclid in 300BC. The conservation of energy is a statement 
that time is homogeneous. The conservation of angular momentum is 
associated with physics being unchanged by a rotation in space. This 
states that space is isotropic. All of the above was proven mathematically 
by Emmy Noether and is expressed in Noether’s theorem.

NOTE

In the paragraph above, we have said that conserva-
tion of momentum is associated with translation in 
space and that conservation of energy is associated 
with translation in time as if space and time were sep-
arate things. We will see later that, in special relativ-
ity, we actually have the single law of conservation of 
momenergy. Momenergy is momentum and energy. 
This is associated with translation in space-time. In 
the theory of special relativity, the two conservation 
laws are united into one conservation law as space 
and time are united into one space-time.

1.7 NOETHER’S THEOREM4

For every continuous symmetry of the Lagrangian, there is a 
conserved current given by:

 
L

Jm

m

dj
j




   
 (1.6) 

4. This theorem was published by Noether in Invariante Variations probleme in 
1918 and was presented by Felix Klein to the Royal Society of Gottingen. Noether 
could not present it herself because women were not allowed membership of that 
society in those days.
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And there is a conserved charge associated with the conserved 
current given by:

 3 0 Q d x J  (1.7) 

You do not need to understand this theorem to understand the the-
ory of special relativity, but you will meet it later in your studies. It 
is one of the most important results of theoretical physics. It can be 
seen as the mathematical proof that a kettle boils at the same tem-
perature regardless of the direction of its spout. 

Aside: Emmy Noether was born into a family of eminent mathe-
maticians on March 23rd 1882 in Erlangen, Bavaria. She finished 
school at the age of 15, but was not allowed to attend university 
because she was a woman – yes humankind really was that back-
ward only a few decades ago! However, her father, Max Noether, was 
the professor of mathematics at the University of Erlangen, and, it 
seems, together with, Paul Gordan, that he allowed Emmy to attend 
the lectures there. In 1903, exceptionally, and with the support of 
the mathematicians there, she was allowed to attend lectures at Got-
tingen given by Minkowski, Klein, and Hilbert, and, in 1904, very 
exceptionally, she was allowed to enrol as a student at Gottingen 
university. It is a matter of which mathematicians and physicists may 
be proud that through history many of their number have strongly 
opposed discrimination based on both gender and race. As long as 
the mathematics is correct, the mathematician can hail from the 
Andromeda galaxy, be bright green with yellow dots, have six heads, 
and be of three different genders at the same time as far as we are 
concerned. 

In 1908, Emmy produced a doctoral thesis on invariance5, fol-
lowing which she continued to do research at Erlangen on a more 
abstract approach to the theory of invariants but, being a woman, 
was unpaid for her work. She was eventually invited to join Hilbert 
at Gottingen, but the university refused to allow her to teach because 
she was a woman. It was this that led to Hilbert’s famous, “..this is 
after all an academic institution not a bath-house” outburst. Hilbert 

5. On Complete Systems of Invariants for Ternary Biquadratic Forms.

special.indb   13 28-04-2016   20:40:20
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got around the problem from 1916 to 1919 by letting her deliver 
lectures in his name advertised as being delivered by him, but she 
remained unpaid. From 1919 to 1923, she was allowed to lecture in 
her own name, but was unpaid, and, in 1923, she was finally allowed 
to take a bona fide, but still unpaid, university position. She was dis-
missed from this position in 1933 by the Nazis because she was Jew-
ish. She fled to the USA where she died from infection following 
minor surgery in 1935. The theorem above, which is widely recog-
nised as possibly the most important theorem in theoretical physics, 
carries her name.

WORKED EXAMPLES

 1. Taking time to be of the same mass-dimensions as space, 
what are the mass-dimensions of velocity?

  Ans: We have: 
L

v
T

 . With [L] = [T], this gives [v] = , 

which means that the mass-dimension of velocity (like the 
velocity of light for example) is just a number. Velocity is 
without mass-dimensions.

 2. Taking time to be of the same mass-dimensions as space, 
what are the mass-dimensions of energy?

  Ans: We have: 21
2

E mv . With [L] = [T], this gives 

[E] = [M2] = [M], which means that the mass-dimension 

of energy is mass.

EXERCISES

1. What are the mass-dimensions of acceleration?

2. What are the mass-dimensions of force?
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CHAPTER 2
THE RESULTS OF 
SPECIAL RELATIVITY 
WITHOUT DETAILED 
EXPLANATION

The fact that all laws of physics are the same at all velocities has 
many consequences. We will study the details later. For now, we will 
merely list the more important consequences. The reader should 
note that an observer does not have to be a human being but could 
be an inanimate object such as a photographic plate or an electron. 
We point out that a stationary observer is stationary – they are not 
moving – they are stood still. A moving observer is moving relative 
to a stationary observer.

Special relativity is essentially a 2-dimensional theory. Many 
text books dress it up as being 4-dimensional so that it fi ts into the 
4-dimensional space-time that we observe around us and because this 
is necessary to fi t with the electromagnetic fi eld tensor. Such dress-
ing up is done by adding two inert spatial dimensions into the math-
ematics and then taking them along for the ride. The reader will lose 
nothing if she thinks of special relativity in two dimensions only. The 
4-dimensional space we observe is described by a different theory 
known as the Lorentz group, which is compatible with special relativ-
ity. We consider the Lorentz group towards the end of this book.
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16 • The Special Theory of Relativity

 1. Velocity is Relative: All observers can, and do, consider 
themselves to be stationary. A math student on a railway plat-
form watching a physics student on a train passing through 
the station can take the view that she, the math student, is 
stationary and that the physics student on the train is moving. 
A physics student on a train that is passing through a station 
can take the view that he, the physics student on the train, is 
stationary and that the math student standing on the platform 
is moving. Both views are correct physics. The difference is 
simply the arbitrary way (direction) in which the different 
observers align their space-time axes. 

  The time axes of the two students are not aligned. The origins 
coincide, but their axes are at an angle (a space-time angle) 
to each other. The size of the angle is the magnitude of their 
relative velocity, and the greater the space-time angle between 
their time axes, the greater the velocity difference between the 
two students – space-time angle is relative velocity. The phys-
ics student thinks he has aligned his time axis “horizontally” 
and that the time axis of the mathematics student is at an angle 
to his “horizontal”. The mathematics student thinks she has 
aligned her time axis “horizontally” and that the time axis of 
the physics student is at an angle to her “horizontal”. 

Time for Math student
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  Relative velocity is no more than this non-alignment of 
space-time axes.

 2. The Relative Velocity Difference Between Observers is 
Agreed by the Observers: If a math student on a railway 
platform measures the velocity of a physics student on a train 
to be v relative to herself, then the physics student on a train 
will measure the velocity of the math student standing on 
the platform to also be v relative to himself. They both agree 
that the velocity at which they pass each other is v. That is to 
say that they both agree on the magnitude of the space-time 
angle between their time axes.

 3. A.  Time Dilation: The rate at which things happen in moving 
spaceships (say the heart-beats of the spaceship’s crew) 
appears to the stationary observer to lessen (the heart-
beats of the spaceship’s crew appear to the stationary 
observer to slow down). What is really happening is that 
the time between heart-beats is being stretched. We call 
this time dilation. We have:

 0 02

2

1

1

t t t
v
c

g    



  (2.1)

      Where t0 is the length of time taken for a process (say a 
stationary person’s heart-beat) in the “stationary world” as 
seen by the stationary observer and t is the correspond-
ing length of time taken for the same process (a moving 
person’s heart-beat) in the “moving world” also as seen by 
the stationary observer. The relative velocity of the two 
observers is v, and c is the speed of light. The expression 
with the square root is known as gamma:

 2

2

1

1
v
c

g 


  (2.2)

      When v = 0.9c and .t0 = 1., we have:
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  (2.3)
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18 • The Special Theory of Relativity

      So, when the stationary observer sees a heart-beat take 
one second in the “stationary world” according to the sta-
tionary clock, she sees a heart-beat in the “moving world 
traveling at v = 0.9c” take 2.29 seconds according to the 
stationary clock. We emphasize “according to the station-
ary clock” in the previous sentence. As judged by station-
ary observers, processes proceed more slowly when they 
proceed in moving spaceships (or trains, or ships, or cars, 
or planes, or…). To an observer moving with the space-
ship, everything seems normal aboard the spaceship.

      The mass media often present this phenomenon as “Time 
slows down in moving spaceships”. It is the processes of 
the universe that slow down in moving spaceships, and so 
it takes more “stationary time” from the start of the mov-
ing process to the end of that moving process as seen by a 
stationary observer. Thus, it seems to a stationary observer 
that the “moving world” slows down. A part of this “mov-
ing world” is the mechanism of the moving clock, and so 
the moving clock appears, to the stationary observer, to 
slow down; there is more stationary time between the 
ticks of a moving clock than between the ticks of a station-
ary clock. This is more than only appearance; the moving 
clock really does slow down compared to the stationary 
clock. We emphasize that what is really happening is that 
the time between the ticks of a moving clock is stretched 
(dilated). We repeat, to an observer moving with the 
spaceship, everything seems normal aboard the spaceship.

      For all practical purposes, all we need to know is that the 
processes of the universe slow down in moving reference 
frames.

      Since two observers moving relative to each other can 
both consider themselves to be stationary, time dilation 
seems contradictory since both observer’s clocks will each 
run slower than the other. Each observer has their own 
clock and each thinks that the other’s clock is running 
slowly. Each is correct. Think of it as a female observer 
having her (right-angled) co-ordinate axes horizontal and 
vertical while a male observer has his (right-angled) axes 
at 45 to the horizontal and at 45 to the vertical. 
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Now imagine a meter stick along the (female) horizontal 
axis. The female observer will say that the stick is one me-
ter long in the x-direction while the male observer will say 

the stick is only 1

2
 meter long in the (his) x-direction. If 

the male observer lays a meter stick along his x-axis (at 45 
to the horizontal), he will say the stick is one meter long 
in the x-direction but the female observer will say that his 

stick is only 1

2
 meter long in her x-direction. They are 

both correct, and each stick is shorter than the other.

      Only if one of the observers adjusts their co-ordinate 
system (rotates it by 45 to match the co-ordinate system 
of the other observer) will they be able to agree on the 
lengths of the sticks – but there is no contradiction. In 
space-time, such a rotation is a change of velocity. The 
observers will agree only if one changes their velocity to 
be the same as the velocity of the other. Any necessary 
adjustments are made when one or both of the observ-
ers alter their velocity to match the velocity of the other 
– when one or both rotate in space-time until they both 
point in the same direction in space-time. The seeming 
contradiction is a consequence of using differently orien-
tated space-time co-ordinate systems. There will be more 
on this later; it is the source of a lot of seeming paradoxes 
in special relativity theory.
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  B.  Clocks slow down when they are in gravitational fields: 
This is a result of general relativity and nothing to do with 
special relativity. Clocks near to the center of the Earth 
(stronger gravity) run slower than clocks that are far from 
the center of the Earth1 (weaker gravity)2.

   C.  Non-gravitational acceleration does not cause time dila-
tion: Thinking of velocity as rotation in space-time, we 
would expect acceleration by itself not to cause time 
dilation. This is verified by experiments that have shown 
acceleration does not have any time dilation effects other 
than the time dilation that results from relative velocity. 
CERN have shown that an acceleration of 1018g experi-
enced by muons circulating in a storage ring does not add 
to the time dilation that muons experience due to their 
relative velocity. Vessot3 el al used hydrogen maser clocks 
in rockets to determine the velocity dependent time dila-
tion of special relativity and the time dilation of a grav-
ity field and any time dilation due to non-gravitational 
acceleration to an accuracy of 104. They found no time 
dilation due to the non-gravitational acceleration of the 
rocket. Thus, gravity does cause time dilation but non-
gravitational acceleration does not.

 4. Length Contraction: The length of a moving object appears 
to the stationary observer to be less than the length of the 
same object when it is stationary. We call this length contrac-
tion. We have:

 
2

0
0 21

lv
l l

c g


       (2.4)

  Where l0 is the length in the “stationary world” as seen by 
the stationary observer and l is the corresponding length in 
the “moving world” also as seen by the stationary observer. 

1. This is not quite true. The sea level at the poles is closer to the Earth’s center that 
the sea level at the equator, but clocks run at the same rate at sea level throughout 
the world. This is because sea level is a gravitational equipotential surface.
2. If this effect was ignored, the GPS system would not work.
3. R.F.C. Vessot et al Phys. Rev. Lett. 45, 2081 (1980).
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The relative velocity of the two observers is v, and c is the 
speed of light. When v = 0.9c and l0 = 1, we have:

 1 0.81 0.436l      (2.5)

  So, what the stationary observer sees as a rod of length one 
meter in the “stationary world’, he sees as a rod of length 
0.436 meters in the “moving world traveling at v = 0.9c’. 

  Imagine that light travels at one meter per second; it is only 
a matter of which units humankind chooses to use. If, in the 
stationary observer’s view, the process of light traveling from 
one end of a meter rod to the other end of the meter rod takes 
one second in the “stationary world”, then, because of the time 
dilation effect, the same process will take 2.29 seconds in the 

“moving at v = 0.9c world’, as seen by the stationary observer, 

and so the light will travel only 1
0.436

2.29
  moving meter 

in one stationary second – that is 0.436 moving meters per 
stationary second. But light always travels at one meter per 
second. Therefore, the 0.436 meter length must correspond to 
one meter of stationary length, and so, length in the “moving 
world” must appear to the stationary observer to be less than 
it is in the “stationary world” (0.436 meters to one meter at v = 
0.9c). Time dilation plus constancy of the speed of light equals 
length contraction. This length contraction is also known as 
Lorentz-Fitzgerald contraction or Lorentz contraction. 

  Length contraction is most evident in the length contraction 
of a wire carrying an electrical current (moving electrons). 
The distance between the electrons contracts and thus in-
creases the electron density in the wire and thus the elec-
tromagnetic force from the wire. This increased bit of the 
electromagnetic force is the magnetic force that emanates 
from an electrical current. Thus, without length contraction, 
we would have no magnetic fi elds and so no electric power 
generators.

 5. Limiting Velocity: There is a finite velocity (it is the velocity 
of light) that is the upper bound of the velocity at which any 
object can move through space (not space-time). Nothing 
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can move faster through space than this greatest velocity 
within space-time. Since increase in velocity is just rotation in 
space-time, this means there is a limiting asymptote towards 
which we rotate and past which we cannot rotate. This is very 
different from the more familiar rotation in the Euclidean 
plane which is completely unfettered. 

  Without a limiting velocity, objects could move infi nitely 
quickly from place to place and thereby be in two, or many, 
places at the same time. This is called non-locality and it 
does seem to occur in quantum theory regarding the spin of 
photons. General non-locality of everything would produce a 
radically different universe from the one we observe. Hence, 
it is commonly thought to be a good thing that we have a 
limiting velocity.

 6. Addition of Velocities is Counter-Intuitive: If a math student 
is moving relative to a stationary biology student at veloc-
ity u1, and a physics student is moving in the same direction 
as and relative to the math student at velocity, u2, then the 
stationary biology student will see the velocity of the physics 
student to be less than the sum u1 + u2. We have:

 1 2

1 2
21

u u
v

u u
c

 


  (2.6)

  Where v is the velocity at which the physics student moves 
relative to the stationary biology student. Since we have a 
limiting velocity, we must not be able to simply add velocities 
for this would enable us to exceed the limiting velocity. 

 7. Acceleration is Non-Newtonian: In Newtonian mechanics 
(the mechanics we are used to and the mechanics that en-
gineers use), if a rocket engine causes a rocket to accelerate 
at a particular rate when the rocket is moving slowly, it will 
drive acceleration of the rocket at the same rate when the 
rocket is moving rapidly. This invariance of acceleration with 
velocity, together with the invariance of force with velocity, 
and the invariance of mass with velocity are basic to Newto-
nian mechanics. In special relativity mechanics, this is not so; 
acceleration varies with velocity. Because there is a limiting 
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velocity in the universe, acceleration has to “weaken” as the 
velocity approaches that limiting value. There are two 
different cases. 

  For acceleration parallel to velocity, we have:
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 
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 (2.7)  

  Where v is the acceleration in the “stationary world” as seen 
by the stationary observer and a¢ is the corresponding 
acceleration in the “moving world” also as seen by the 
stationary observer. a0 is the acceleration that a person on 
a moving spaceship would feel. a is the acceleration that a 
stationary observer would see the moving observer feel. The 
relative velocity of the two observers is v, and c is the speed 
of light. When v = 0.9c, we have the case:

 i) acceleration parallel to velocity:
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 For acceleration perpendicular to velocity, we have:
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 (2.9)

 There is a  difference. When v = 0.9c, we have the case:

 ii) acceleration perpendicular to velocity:
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 8. Newtonian Vectors are replaced by 4-vectors: In special rela-
tivity, space and time are stuck together and so we use a type 
of vector that incorporates both space and time components. 
Such vectors are called 4-vectors. In doing this, we are taking 
a “God’s eye view” of the universe rather than a stationary 
observer’s point of view. There is no accepted notational con-
vention for 4-vectors; we choose to write them with two lines 
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atop a capital letter. 4-vectors have four components and a 
4-vector inner product (the dot product) calculated as: 

 X X X X1 2 1 2 1 2 1 2 1 2 1 2, t t x x y y z z        (2.11)

  Notice the minus signs. 
  Almost all the laws of physics are expressible using scalars 

(real-numbers), 4-vectors, and 4-tensors. The only exceptions 
are in particle physics where we use spinors as well, but that 
is not our concern in this book.4 

Aside: The Dirac equation that describes a relativistic electron with 
spin is Lorentz invariant but is expressed using spinors not 4-tensors 
or 4-vectors or scalars. Spinors are needed because the wave func-
tion is written with complex numbers. 

Spinors are objects that define a 2 (two complex dimensions) 
sub-space of the 3 space (three complex dimensions)5.

 9. We do not Differentiate with Respect to Time:  In Newtonian 
mechanics, we differentiate distance with respect to time to 
get velocity and acceleration:

 
2

2      
ds d s

v a
dt dt

    (2.12)

  Since time varies (dilates) from one velocity to another, it 
would introduce complications to differentiate with respect 
to time. Instead, in the standard presentation of special 
relativity mechanics, we differentiate with respect to the 
invariant interval, . This is for convenience rather than for 
some great mathematical reason. The invariant interval is 
the square root of the norm of the algebra (the length of a 
vector). With R  representing the displacement 4-vector, this 
gives the 4-velocity as:

 
RU d

dt
   (2.13)

4. See: Dennis Morris - The Naked Spinor  ISBN: 978-1-507817995
5.Elie Cartan. The Theory of Spinors. 1966 – First published as “Lecons sur la 
theorie des spineurs’. 1937
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and the 4-acceleration as:

 
UA d

dt
   (2.14)

Since the length of a vector is unchanged by rotation of that vec-
tor, the invariant interval is invariant under rotation in space-time 
(change of velocity), which is why it is called invariant. In two dif-
ferent reference frames, which are just different rotational orienta-
tions, the invariant interval is the same, and we have:

 2 2 2 2 2 2 2 2 2 2t x y z t x y zt t               (2.15)

At zero velocity,  = t, and we get the Newtonian mechanics.

 10. Force is Non-Newtonian: Force, like acceleration, also varies 
with velocity. In Newtonian mechanics, force is defined in 
two different but equivalent ways. One way is as mass mul-
tiplied by acceleration – F = ma; the other way is as the rate 

of change of momentum with respect to time - dp
F

dt
 . In 

special relativity, force is defined in only one way. That way 
is based upon the rate of change of momentum, but we use 
4-vectors and we differentiate with respect to the invariant 
interval, , rather than with respect to time:

 PF d
dt

  (1.16)

  It might be better to define force as rate of change of energy 
with respect to space-time so that the force 4-vector would 
be:

 F dE dE dE dE
dx dy dz dt

 
    

  (1.17)

  We will see later that this is consistent with momentum being 
seen as a spatial type of energy and thus no more than a dif-
ferent way of writing the standard definition.

 11. Electric Charge is Invariant under Change of Velocity: Elec-
tric charge, say the charge of an electron, is invariant with 
velocity (the same at all velocities). If the electric charge of 
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electrons were different at different velocities, then elec-
trons orbiting in different orbits would have different electric 
charges and the whole universe would fall to bits. This does 
not mean that the electric field of an electron is the same at 
all velocities. There are time dilation and length contraction 
effects that cause the electric field to change with velocity.

 12. The Unification of Electric Force with Magnetic Force: 
Although electric charge is invariant under change of veloc-
ity, an electric field turns into an electric and magnetic field 
when it is moving. In special relativity, the electromagnetic 
field is expressed as a single 4-tensor. The electromagnetic 
4-force is calculated by multiplying this 4-tensor by the 
4-velocity and the (scalar) electric charge, q. When the 
spatial part of the 4-velocity vector is zero, we have pure 
electric field. 

 13. E = mc2 leads to QFT and we have to reject Quantum Me-
chanics: One of the results of special relativity is that energy 
can be converted into mass and vice-versa. This means that 
particles like electrons can be created out of nothing more 
than energy or can be annihilated into energy. Thus, particles 
can be created and destroyed. The Schrödinger equation 
of quantum mechanics cannot handle this, and we have to 
reject quantum mechanics in favour of quantum field theory, 
QFT. It also means that an amount of energy has a mass 
equivalent to it. 

 14. Mass Increase: We tend to think of mass as inertial charge, 
but, unlike electric charge, mass increases with velocity. We 
have:
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g  


  (1.18)

  Where m0 is the mass of an object in the “stationary world” 
as seen by the stationary observer and m is the correspond-
ing mass in the “moving world” also as seen by the station-
ary observer. It is not the rest-mass, m0, that is increasing; 
it is the sum of the rest-mass and the mass equivalent to the 
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kinetic energy that is increasing. We are used to the idea that 
a rapidly moving canon ball has more kinetic energy than a 
slowly moving canon ball of the same mass. Thus, given that 
energy is equivalent to mass, mass increase is not that mys-
terious. We emphasize: the rest mass, m0, of a particle is the 
same at all velocities. Like the electric charge, the rest mass 
of a particle is invariant under change of velocity. 

Aside: Mass can be converted into energy. Because of the energy 
needed to bind an atomic nucleus together (binding energy), the 
mass of an atomic nucleus is not equal to the sum of the masses of its 
parts. This does not happen with electric charge. The electric charge 
of an atomic nucleus is equal to the sum of the electric charges of 
its parts6.

 15 A.  Breakdown of Simultaneity: Spatially separated events 
that are simultaneous for one observer are not simultane-
ous for another observer who is moving relative to the 
first observer. To put it another way, observers who are 
pointing in different directions in space-time do not agree 
on the simultaneity of spatially separated events.

  B.  Events are Ordered: Although two observers moving at 
different velocities will not agree that two spatially sepa-
rated events are simultaneous, they will agree on the order 
of those events up to simultaneity – which was cause and 
which was effect. All observers at all velocities will agree 
that the first event happened first or was simultaneous 
with the second event (one velocity only) and that the sec-
ond event happened second or was simultaneous with the 
first event (same one velocity). No observer will think that 
the second event happened first. This is because the rota-
tions in space-time are restricted. (Roughly, and wrongly, 
but pedagogically picturesquely, to being only 90 out of 
the 360 we have in Euclidean space). This restriction is 
the finite limiting velocity (the speed of light). Without the 
limiting velocity, we would not have ordered events and 
cause and effect would be meaningless.

6. This is called the principle of superposition.
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       Thus, only observers moving in unison at one particular 
velocity will agree that two spatially separated events hap-
pened at the same time - simultaneously. If the two events 
are separated in time, then only observers moving in 
unison at zero velocity (stationary) will see two temporally 
separated events as happening at the same place. All other 
observers see two events that happen at different positions 
in space-time as being separated by some space and some 
time. 

 16. The Unification of the Building Blocks of the Universe: With-
in the Newtonian theory, space is a thing separate from time. 
In special relativity, these two separate things are combined 
into a single entity that we call space-time. The same is true 
of momentum and energy which are combined into 
momenergy; of force and power; of electricity and magne-
tism, which are combined into electromagnetism; and of 
current density and charge density. Instead of two conserva-
tion laws, conservation of momentum and conservation of 
energy, within special relativity, we have only the conser-
vation of momenergy. There seems to be a problem here. 
Energy is measured in KgM2S2 whereas momentum is mea-
sured in KgMS1. The resolution of this seeming problem is 
that, within special relativity, length is taken to have the same 
mass-dimensions as time: 

 [L] = [T]  (1.19)

  This means that both energy and momentum are measured in 
kilograms – think e = mc2. So, because space-time is one entity, 
space has the same mass-dimension as time; because space has 
the same mass-dimension as time, momentum is measured 
in the same units (mass-dimensions) as energy. It two things 
are measured in the same units (mass-dimensions), they must 
effectively be the same stuff. It is the unification of space with 
time that “causes” the unification of energy with momentum 
(and all the other unifications as well). 

  It is important to realize that a stationary observer viewing 
a physical system that is stationary with respect to her will 
always see the divided version of the unification. For the 
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stationary observer, there will always be both the conserva-
tion of energy and the conservation of momentum for 
co-stationary systems. 

 17. Special Relativity Approaches the Newtonian Theory at Low 
Velocities: Although Newtonian mechanics is not perfectly 
accurate except when the velocity is zero, it is still very ac-
curate, even at quite high velocities. NASA uses Newtonian 
mechanics to calculate the trajectories of interplanetary 
space missions because it is accurate enough at the veloci-
ties of these space missions and it is difficult to calculate with 
general relativity. Newtonian mechanics is correct at zero 
velocity, and so special relativity mechanics must, and does, 
approach Newtonian mechanics, also known as the Newto-
nian limit, as the velocity approaches zero. This is expressed 
by the mathematical fact that, when the velocity is zero, 
gamma is unity:
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c

g   


  (1.20)

EXERCISES

1. Draw a set of space-time axes such that the time axis is in the 
horizontal direction and the space axis is in the vertical direc-
tion. Put two separate dots on the positive half of the time 
axis. What is the spatial separation of the two dots? The dots 
are separate in time but not in space. Super-impose another 
set of space-time axes on to the drawing with the time axis at 
45 to the horizontal. What is the spatial separation of the two 
dots in the new axes?

2. A photon of light is emitted from the big bang at the start of 
the universe. 13.8 billion years later, an astronomy student 
captures the photon in a telescope on Earth. Assuming that 
the time dilation formula applies to photons of light: 

 a.  How old is the universe as measured by the photon of light 
(not the astronomy student)? 
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 b.  How much time has the photon of light travelled through 
in its own view? 

 c.  How much space has the photon of light travelled through 
in its own view? 

 d.  What is the distance (interval) in space-time that the pho-
ton has travelled through in its own view?

 e.  How much time has the photon travelled through in the 
astronomy student’s view?

3. Does mass increase depend upon the direction of the veloc-
ity? Does time dilation depend upon the direction of the 
velocity? Does length contraction depend upon the direction 
of the velocity?

4. A distant galaxy of mass MGal is receding from the Earth at a 
velocity of 0.9c. Assuming that the mass increase formula ap-
plies to distant galaxies, what is the mass of the distant galaxy 
as seen from Earth? 

5. The mass-dimensions of energy are 
2

2[ ]
ML

E
T

  (think 

E = mc2). The mass-dimensions of force are 
2[ ]

ML
F

T
  (think 

F = ma). What are the mass-dimensions of ?
dE
dr

6. A star with a single orbiting planet passes the Earth at 0.8c. 
In the view of the star, its planet’s orbit is perfectly circular. 
Use the length contraction formula to calculate the 
eccentricity of the planet’s orbit as seen from Earth. 

Note: 
2

21
b

e
a

  . 

7. There are three students traveling in the same direction. The 
biology student passes the physics student at 0.8c. At the 
same time, the physics student passes the mathematics stu-
dent at 0.9c. At what velocity does the biology student pass 
the mathematics student? 

8. a)  What is the inner product of the two 4-vectors: 
[4 1 1 2] & [3 2 1 1]?
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 b)  What is the inner product of the two 4-vectors: 
[3 2 1 2] & [3 2 2 2]

9. A rocket moves perpendicularly away from the Earth at 0.5c. 
As it does so, it accelerates at a rate which its own instru-
ments declare to be 0.4c per second. What is the rocket’s 
acceleration as seen by an Earth-bound observer? 

10. A star moves away from Earth at 0.9c. In its own reference 
frame, the star is burning 4  106 metric tons of mass per 
second (that is 4  106 of its own metric tons in one of its 
own seconds). What amount of mass is the star burning per 
second in the Earth’s reference frame?

11. An art student traveling at 0.9c hits her thumb with a ham-
mer. There is a stationary math student watching her. Given 
that force is not invariant with velocity, which student feels 
the most pain? How does time dilation affect this? 
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CHAPTER 3
SPECIAL RELATIVITY
IN PHYSICS

Special relativity is one theory of physics; general relativity is 
another completely different theory of physics. It is confusing that 
they both share the appellation “relativity”. They were both devel-
oped by Albert Einstein. Special relativity deals with space in which 
there is no gravitational fi eld. General relativity deals with a gravi-
tational fi eld. Special relativity is a universal theory in that there is 
no limit on the distance between observers – but see the cosmology 
chapter later. General relativity is a local theory in that it applies 
only over an infi nitesimally small area of the universe. In the original 
German, Einstein initially called special relativity “Invariant theory”, 
which would have avoided the confusion.

We inhabit only one universe. Clearly, this only one universe 
ought to be explained by only one theory. Rather embarrassingly, 
modern physics has two theories. Those two theories are quantum 
fi eld theory (QFT) and general relativity. Between them, these two 
theories explain the four forces of nature. QFT is the theory of 
particle physics that covers the strong, weak, and electromagnetic 
forces. General relativity is a theory of the gravitational force. QFT 
contains within it special relativity. Special relativity has been com-
pletely unifi ed with particle physics into QFT. There is no unifi ca-
tion of general relativity and QFT. The two theories of QFT and 
general relativity are philosophically and mathematically distinct. It 
is remarkable that both these two very different theories are both 
extremely accurate descriptions of reality; their correctness has been 
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verifi ed by many precise experiments. In spite of the fundamental 
difference of QFT and general relativity, much theoretical work has 
been, and is being, undertaken to try and unify these two theories 
together into one grand unifi ed theory that describes the one real 
universe. String theory’s raison d’etre is this quest for the unifi cation 
of QFT and general relativity.

We seek to build the universe in such a way that the physical 
laws of that universe are invariant under change of velocity. We call 
this Lorentz invariant physics. To do this, we need the Lorentz trans-
formation; this is a convoluted way of saying we need the space-time 
rotation matrix. We have that and will reveal it shortly. To build the 
universe, we also need 4-tensors, which we will meet later. There 
are three types of 4-tensor that we need; these are scalars (rank zero 
4-tensors), 4-vectors (rank one 4-tensors), and rank two 4-tensors. 
These mathematical objects are enough to build special relativity.

3.1 THE HISTORY OF SPECIAL RELATIVITY

In 1861–62, James Clerk Maxwell (1831–1879) unifi ed electric-
ity and magnetism into electromagnetism. One of the consequences 
of this unifi cation is the wave equations of the electric and magnetic 
fi elds:

 
2 2

2 2
0 0 0 02 2      :       

B E
B E

t t
e m e m 

   
 

 (3.1)

From these, it is deduced that the velocity at which these electro-
magnetic waves propagate is given by:

 
0 0

1
~ 300,000 km/secc

e m
  (3.2)

This equation tells us that electromagnetic waves propagate at the 
speed of light, but it does not tell us to what that speed is relative. It 
left the Victorian physicists with questions: 

 1. Does light travel at 300,000 km/sec relative to the emitting 
source or relative to the receiving observer or relative to the 
center of the universe or relative to what? 
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 2. Further, if light is a wave, it must surely need an undulating 
medium to carry  it. What is this medium? Surely, empty 
space is no such medium.

Experiments had convinced physicists that the speed of light was a 
physical constant. However, the idea that all observers, including 
ones that were in relative motion to each other, should each measure 
the speed of the same beam of light and each get the same answer 
seemed ridiculous because it meant losing the relative velocity of the 
observers. Literally, the sums did not add properly! 

Thus, without being able to fi nd a shred of evidence to substan-
tiate the idea, physicists felt themselves forced to invent a luminif-
erous aether that fi lled empty space. The aether was postulated to 
be the undulatory medium that carried light waves. Think about it; 
everyone knows that waves are an undulation in a medium; to propa-
gate, electromagnetic waves must have a medium. Is there anyone 
out there who can explain to your author how waves propagate with-
out a medium in which to undulate? Given Maxwell’s calculation of 
the velocity of light, the universe needed a reference frame against 
which to measure this velocity. If there was an undulatory medium 
for light waves, then this medium would provide a fi xed reference 
frame against which the speed of light could be measured and 
against which it would be constant. Even if waves could propagate 
without a medium, surely this reference frame was needed. Indeed, 
one can interpret Maxwell’s calculation as being the prediction of 
the existence of such a reference frame. The aether was postulated 
to be the reference frame relative to which the velocity of light was 
the constant 300,000 kilometers per second.

This aether was strange stuff. It provided a medium for the 
propagation of light waves, and empty space was full of it; yet empty 
space was still empty. The aether weighed nothing. It did not gravi-
tate. It did not shine. In fact, it was completely undetectable. Even 
so, it had to exist and, seemingly, had been predicted to exist.

It is easy for we with hindsight to decry the idea of the aether, 
but put yourself into the shoes of the physicists of the time. Would 
water waves exist if there was no water. To repeat, a wave, after all, 
is an undulation of a medium; it is surely nonsense to think a wave 
could exist without a medium in which to undulate, and in 1887 

special.indb   35 28-04-2016   20:40:29



36 • The Special Theory of Relativity

Heinrich Hertz (1857–1894) detected the electromagnetic waves 
traveling through space. Of course, today, we know that the vacuum 
is a seething mass of virtual particles. Is this not just another version 
of the aether?

Aside: The orbital speed of the Earth around the sun is circa 30 
kilometers per second.

The orbital speed of the sun around the center of the Milky Way 
is circa 300 kilometers per second. Thus, if the aether existed, the 
Earth would plough through it at a goodly rate.

In 1887, Albert Michelson (1852–1931) and Edward Morley 
(1838–1923) attempted to measure the Earth’s motion through the 
aether. Unless the aether was fi xed to the Earth (an unlikely and 
ugly scenario), the Earth would move through the aether. Since the 
velocity of light was presumed to be measured against the aether, 
by measuring the velocity of light in different directions, one could 
detect the Earth’s motion through the aether as being in the direc-
tion in which the velocity of light was the least.  In practice, it was 
possible to measure only a difference in the velocity of light in dif-
ferent directions using interference, but this would be suffi cient 
to detect the aether. Not only did Michelson and Morely compare 
this the velocity of light relative to the Earth in different directions, 
but they repeated the measurements several times throughout the 
year as the Earth orbited around the sun thereby changing its direc-
tion through the aether. This was known as the Michelson-Morley 
experiment. 

Michelson & Morley did not detect any difference in the veloc-
ity of light in different directions or at different times of the year, 
and so they did not detect the aether, and today we know that it 
does not exist, or, at least, it cannot be detected. It certainly is not 
a fi xed reference frame against which we can measure the speed 
of light. Modern versions of Michelson and Morley’s experiment1 
to detect the aether have confi rmed its non-existence to an accu-
racy of one part in 1015. The modern GPS navigation system itself 
proves to great accuracy that the aether does not exist because the 

1. A. Brillet & J. L. Hall Phys. Rev. Lett. 42 549 (1979).
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GPS system relies on accurately timed electromagnetic communi-
cation whose timing must be the same at any time of the year. Sim-
ilarly, the “Temps Atomique International” international atomic 
time relies on accurately timed electromagnetic communication 
whose timing must be the same at all times. Thus, not only do 
light waves seemingly not require an undulatory medium through 
which to propagate, but the speed of light is 300,000 km/sec for all 
observers.

In 1905, following the enunciation of the relativity principle by 
Poincare (1854–1912) in 1904, Albert Einstein, accepting the fi nd-
ings of Michelson and Morley at face value, started from the simple 
statement that the speed of light is the same for all observers, includ-
ing observers in relative motion to each other. From this, he deduced 
the special theory of relativity. He published his work in the paper 
“Zur electrodynamik bewegter korper” in the annallen der physic 
17 891. In English, the paper is called “On the electro-dynamics of 
moving bodies”. The mathematics of the special theory of relativity 
includes the expression:

 2

2

1

1
v
c

g 


 (3.3)

This had previously been written by both George Fitzgerald (1851–
1901) and Hendrik Lorentz2 (1853–1928) as a means of explaining 
the failure of Michelson and Morley to detect the aether. It is known 
as the Lorentz-Fitzgerald contraction, or, more often, as just the 
Lorentz contraction. Mathematically, Fitzgerald and Lorentz were 
very close to special relativity; conceptually, they were a universe 
away from it. 

Note that:

 1g   (3.4)

at all velocities greater than zero and less than c.

In 1907, Hermann Minkowski (1863–1909), a former tutor of 
Albert Einstein, re-wrote Einstein’s special theory of relativity as 

2. Einstein said of Lorentz, “I admire this man as no other”.
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4-dimensional space-time in which change of velocity is just rotation 
in space and in which invariance of the laws of physics under 
change of velocity was no more than the isotropy of space-time. 
It was Minkowski that unifi ed space and time into a single space-
time entity, and it is Minkowski’s work that is the basis of this book, 
albeit that we also use matrices where Minkowski used only 4-vec-
tors. It was in his address to the 80th Assembly of German Nat-
ural Scientists and Physicians in 1908 that Minkowski declared, 
the now famous, words, “… Henceforth, space by itself, and time 
by itself, are doomed to fade away into mere shadows, and only 
a kind of union of the two…”. It is often the case that a physical 
theory is fi rst roughly hacked from experimental results by a genius 
who sees the theory within the results as a sculptor sees the statue 
within the boulder. Most often, the genius leaves the theory rough 
and blemished, and it is for others to come along and do the labori-
ous polishing. So it was that Einstein’s rough hacking was turned 
into a beautiful theory by Minkowski. 4-dimensional space-time is 
now often referred to as Minkowski space-time in honor of him.  

In 1912, Ludwik Silberstein (1872–1948) published work in 
which he used complexifi ed quaternions (bi-quaternions) to rewrite 
the theory of special relativity3. Silberstein did much to promote the 
teaching of special relativity in universities.

In 1925, Paul Dirac (1902–1984) combined special relativity and 
quantum theory in his famous Dirac equation and founded Quan-
tum Field theory. Dirac’s deduction of the existence of anti-matter 
derives from special relativity, as does Sommerfi eld’s fi ne structure 
of atomic spectra, and Pauli’s explanation of the connection between 
spin and statistics.

Today, following Minkowski, we see special relativity as no more 
than the isotropy of space-time. The invariance of the speed of light 
is a useful pedagogic tool to us, but it is not a central part of special 
relativity; it is merely a consequence. None-the-less the invariance 
of the speed of light was a force majeure that drove physics to the 
theory of special relativity.

3. Phil. Mag. S. 6, Vol. 23, No. 137 (May 1912), 790–809.
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Prior to the twentieth century, there were two failings of New-
tonian mechanics. The fi rst was a 43 seconds of arc error in the 
predicted orbit of the planet Mercury4 which special relativity did 
not correct. (It was general relativity which, in 1915, solved this prob-
lem.) The second failing of Newtonian physics was that Maxwell’s 
theory of electromagnetism was not invariant under Newtonian 
transformations. The electromagnetic force, given by F E v B  

r ur r ur
,

increases with velocity, and Newtonian forces do not change with 
velocity. It was this that drove the need for a mechanics to replace 
Newtonian mechanics. The advent of special relativity was the advent 
of that new type of mechanics, and it solved the problem with Max-
well’s theory of electromagnetism. By 1925, the new mechanics had 
replaced Newtonian mechanics in theoretical physics even though, 
except for very high energy particle physics, Newtonian mechanics is 
still used today for all practical physics and engineering. 

Relativity, both the special theory and the general theory, were 
not taught as part of an undergraduate degree until the 1950s, and 
not widely so then. It is interesting to speculate why. Was it because 
the established individuals in the universities did not believe in rela-
tivity? There is some, but not much, evidence of this. Was it because 
the established individuals in the universities could not understand 
relativity? There is some, but not much, evidence of this. Was it 
because the established individuals in the universities were too lazy 
to bother learning relativity – you can’t teach old dogs new tricks? 
There is some, but not much, evidence of this. Was it because phys-
ics was primarily studied for practical purposes in most universities 
and relativity did not seem to have any practical consequences? It 
is your author’s opinion that this was the main reason, and this is a 
good reason. Practical things feed people! None-the-less, it seems 
always to take a generation for science to take a major step forward, 
and it does appear as if the old wood needs to be pruned out to let 
the young wood bear fruit. 

4. The 43 seconds or arc error was first detected by Leverrier in 1859. It was postu-
lated that this error was caused by the presence of a yet undiscovered planet nearer 
to the sun than Mercury. The postulated planet was named Vulcan, which is where 
Mr. Spock comes from.
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Could special relativity have been discovered earlier than 1905? 
It was certainly an opinion of Lord Cherwell (1886–1957) that, “…
if scientists had had their wits about them, they ought to have been 
able to reach relativity theory by pure logic soon after Isaac New-
ton, and not have to wait for the stimulus given to them by cer-
tain empirical observations that were inconsistent with the classical 
theory”5. Historians of science will give a hundred similar examples 
of the unnecessary slowness of progress. It was the opinion of the 
mathematician Carl Friedrich Gauss (1777–1855) that scientifi c 
theories are like fl owers that do not bloom until their springtime has 
come and then all related theories bloom together. In 1905, both 
special relativity and quantum mechanics sprouted, and both were 
gardened by Einstein. Perhaps 1905 was the Gaussian springtime 
for which special relativity waited.

The invention of the aether is an example to us of how easily 
we can mislead ourselves, but it made perfect sense at the time. 
People felt that there could be no other explanation. The physics 
text-books of late Victorian times are full of calculations of vortices 
and swirls within the aether that explain the result of the Michelson 
Morley experiment. In 1927, there were still conferences discuss-
ing the aether, and, in 1928, Lorentz himself died still believing in 
the aether. Physicists will not let that kind of thing happen to them 
again. They wouldn’t believe in virtual particles if such things did 
not really exist, would they? They wouldn’t believe in higher dimen-
sional spaces curled up into extremely small tubes if such things did 
not really exist, would they? Can higher dimensions be curled up 
as string theorists tell us or is this an even bigger whopper than the 
aether?

What tangled webs we achieve
In the theories we conceive

5. Lucas & Hodgson. Space-time and electromagnetism. pg. 293.
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CHAPTER 4
THE NATURE 
OF SPACE

Humankind does not properly understand the nature of empty 
space. Humankind has observed only one type of space1. We seem to 
live in, and thus have experience of, what seems to be only one type 
of space. This is the 4-dimensional space-time in which your author 
is currently sitting. Humankind has never observed a 5-dimensional 
space or a 3-dimensional space. Humankind has never observed 
a spatial (or temporal) dimension attached to our 4-dimensional 
space-time to form 5-dimensional space, and humankind has never 
observed a dimension being ripped from this 4-dimensional space-
time to form 3-dimensional space. Indeed, based on observations, 
it seems that dimensions cannot be ripped from, or added to, 
space-time. Many books tell us that a fl at plane of zero thickness is 
2-dimensional space, but no one has ever actually seen a fl at plane 
of zero thickness. It is a product of the mathematician’s imagination. 
The same books will describe a spatial volume as being 3-dimen-
sional, but no one has ever stopped time to see if this is correct, 
and it seems that it is not possible to stop time (that is to set time to 
zero). Nor do we know from observation whether our 4-dimensional 
space-time is four identical 1-dimensional spaces fi xed together, two 

1. It is possible, and your author thinks sensible, to interpret quantum field theory 
as being based on symmetries in different types of “internal” spaces. Thus, it might 
be inferred that humankind has observed these different types of space, based on 
unitary Lie groups, in particle physics.
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2-dimensional spaces fi xed together, one 3-dimensional space and 
one 1-dimensional space fi xed together (as opposed to Newton’s 
view that space and time were not fi xed together), or one 4-dimen-
sional space that stands alone. Indeed, might it be several types of 
4-dimensional space laying over each other and sharing the same 
axes? We actually know very little about space.2 Most of what we 
think we know is no more than the invention of mathematicians.

If 4-dimensional empty space is just four 1-dimensional spaces 
fi tted together, from where do angles come and why is time different 
from space? Why do we observe two types of trigonometric func-
tions (the Euclidean, {cos( ), sin( )}, and the hyperbolic, {cosh( ), 
sinh( )}) in our 4-dimensional space-time.

Aside: Lie group theory is about rotations in different types of space. 
The types of space it considers are formed from n copies of either 
 (called the orthogonal groups) or n copies of  (called the unitary 
groups) or n copies of the quaternions, , (called the symplectic 
groups) or five oddball spaces formed from copies of the octonians.

4.1 POSSIBLE TYPES OF DISTANCE FUNCTIONS

A normed algebra is a type of numbers (like the real numbers, 
, or the complex numbers, () together with the concept of the 
“length” of a number. The “length” of the number is called its norm. 
In the real numbers, this concept of length (norm) is just the value 
of the real number – its distance from the origin; in the complex 
numbers, , this concept of length is the modulus of the complex 
number – its distance from the origin. A normed algebra is thought 
of as being a type of empty space. The concept of length in a normed 
algebra brings with it the requirement that the norm of a product 
of two numbers be of the same form as the norm of each of the two 
numbers – we calculate the “length” of each number with the same 
form of mathematical expression. In the complex numbers, a + ib, 
this expression is Norm = a2 + b2.

2. See: Dennis Morris : The Physics of Empty Space – ISBN: 978-1507707005
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With a 3-dimensional quadratic distance function (norm), it is 
not possible to form a normed algebra in which the form of the norm 
of a product of two numbers is the same as the form of the norms 
of the two numbers. It is possible for such algebras to exist in two 
dimensions and in four dimensions. This is because:

 2 2 2 2 2 2 2 2( )( ) ( ) ( )a b c d ac bd ad bc X Y         (4.1)
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But

 2 2 2 2 2 2 2 2 2( )( )a b c e f g X Y Z        (4.3)

Aside: The reader might want to try setting one of the variables to 
zero in the 4-dimensional expression above. The reader will then see 
that, in 3-dimensions, this does not give a normed algebra. These 
algebraic facts are based on the determinants of multiplicatively 
closed sets of matrices derived from finite groups – see later. Ulti-
mately, 3-dimensional algebras with quadratic norms are impossible 
because order four groups do not have order three sub-groups. In 
3-dimensions, we have (based on the group C3):

3 3 3 3 3 3 3 3 3( 3 )( 3 ) 3a b c abc d e f def X Y Z XYZ           (4.4)

Of particular interest to us is:

 2 2 2 2 2 2 2 2 2 2 2 2( )( )a b c d e f g h W X Y Z           (4.5)

Notice the not-equal-to sign. Two rotation matrices multiplied 
together make a rotation matrix. A rotation matrix is a rotation 
because it holds invariant the distance function (from the origin). 
The only multiplicative invariant (a thing that is preserved by multi-
plication) of a matrix is the determinant of that matrix. Thus, the form 
of the distance function of a space is the form of the determinant of 
the rotation matrix. For any two matrices, we have det(A)det(B) = 
det(AB). Because of (4.5), there cannot be a proper 4-dimensional 
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rotation matrix in a space-time with this distance function. Which 
means that the space-time in which we seem to sit is not really a 
space - Hm! 

We can do 2-dimensional rotations in the space in which we sit, 
but we cannot do a 4-dimensional (or a 3-dimensional) rotation in 
this space3. It makes you think that we are sitting in a mixture of 
2-dimensional spaces rather than in a single 4-dimensional space, 
but why do these spaces not collapse on to each other? What holds 
them in the 4-dimensional form we observe? Later in this book, 
we will see that modern physics takes the view that 4-dimensional 
space-time is represented by the Lorentz group which is a seen as 
a set of (commutation relations between) 2-dimensional rotations.  
In spite of the Lorentz group being based on a set of 2-dimensional 
rotations, it contains 4-dimensional rotations in which the commuta-
tor of two 2-dimensional space-time rotations (also called boosts) is 
not another space-time rotation but is a purely spatial rotation. This 
is usually phrased as “the commutator of two boosts is a rotation’.

4.2 WHAT IS EMPTY SPACE?

Empty space is amazing stuff. It is widely believed to be noth-
ingness. We take empty space to be empty; we take it to be nothing. 
Empty space has nothing in it and it is nothing itself. Yet, still, amaz-
ingly, this nothingness has properties.

Magnitude: There is more empty space between the planet Earth 
and the planet Pluto than there is between the planet Earth and the 
planet Mars. How can there be more of nothing? Presumably, there 
are just more virtual particles between us and Pluto than there are 
between us and Mars.

Homogeneity:  Empty space is the same everywhere. The properties 
of this nothingness are the same everywhere. Of course, the concept 
of “everywhere” is a concept associated with space.

Isotropy: Empty space is the same in all directions.

3. Actually, as well as 2-dimensional rotations, there are 4-dimensional rotations in 
our space, but the complications are such that we have not space for them here. 
We deal with them much later in this book when we look at the A3 algebras and the 
Lorentz group.
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Dimension: It seems that the empty space of our universe is 4-dimen-
sional (3 spatial dimensions and one time dimension). If empty space 
is nothing, how can it have dimension? We will later meet spaces of 
dimension other than four.

The central understanding of physics is that physical laws are 
invariant under certain changes such as rotation in space-time. 
Ought not one of these changes be the dimensionality of the space? 
It seems not. If a central force is proportional to rn, then circular 
orbits (of planets say) are stable4 only if n < 3. There are symmetries 
in Maxwell’s equations and in Dirac’s equations of the electron that 
are not present in space-times of dimension other than four5. 

Electrical permittivity and magnetic permeability: Empty space 
allows electromagnetic fi elds to penetrate it with a particular strength 
to distance ratio. It is the value of this ratio that determines the par-
ticular value of the speed of light. So, why that particular value? Why 
not half of that value, or why not a random value? We will see later 
that light travels at exactly the speed that is necessary to keep events 
in order in the universe and therefore keep cause and effect. So, it is 
the values of electrical permittivity and magnetic permeability that 
“cause” cause and effect to exist – that’s weird!

Different types: Empty space comes in different types – this alone 
is utterly amazing. Special relativity is about space-time. Distance 
in 2-dimensional space-time is calculated as 2 2d t z  , while dis-
tance in 2-dimensional Euclidean space is calculated as 2 2 .d x y 
We wonder why one of the dimensions in space-time is a time 
dimension and the other one is a space dimension. Time fl ows inex-
orably forward, but it is easy to be stationary in space. We observe 
that x2 + y2 = y2 + x2 but that t2  z2  z2  t2; perhaps this is why the 
two dimensions of space-time are different from each other. More 
likely, the difference between the cosh( ) function and the sinh( ) 
function is the root of the difference between space and time. Later 
in this book, we will introduce the reader to other different kinds 
of empty space. Empty space comes in different types - there are 
different types of nothingness! 

4. Dynamics by H. Lambe Cambridge University Press (1914) pp. 256–258.
5. C.Lanczos “The splitting of the Riemann tensor” Reviews of Modern Physics, 34, 
379–389 (1962).
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Extent: Empty space seems to be infi nite. If it was fi nite, would there 
be something outside of it?
Fields of empty space hold momentum and energy: Picture a mag-
net that acts at a distance through empty space to attract a ferrous 
object. It does not extend a physical hand to grab the object or touch 
it in anyway, and yet it still attracts it. We invent the concept of 
magnetic fi eld6 (and electric fi eld and gravitational fi eld) to “explain” 
the magnetic attraction, but what is a fi eld? A fi eld is just as myste-
rious a concept as is the “action at a distance” that it was invented 
to explain. The concept of fi eld explains nothing, but we fi nd that 
fi elds can hold momentum and energy. If we release two electri-
cally charged objects into space, they accelerate towards (or away 
from) each other; from where comes the kinetic energy? Fields are 
no more than empty space – nothingness – yet they hold energy.
Knowledge of rotation: The Earth spins, and, as a result of that spin-
ning, it bulges at the equator. How does the Earth know that it is 
spinning, and, hence, that it should bulge? Why does the Earth not 
think that the universe about it is spinning while the Earth itself 
does not spin? Imagine a universe containing nothing more than two 
buckets of water. One of the buckets is spinning clockwise; or is it 
the other bucket that is spinning counterclockwise? The surface of 
the water of the spinning bucket will be curved by the centrifugal 
force associated with the spinning. How does the water in the spin-
ning bucket know that it is in the spinning bucket rather than in the 
stationary bucket and thus curve its surface? Empty space seems to 
know that the Earth is spinning.
Motion: Empty space allows objects to move relative to each other 
at a particular velocity – that is the ratio of a particular amount of 
space to a particular amount of time. This is just a particular direc-
tion in space-time, but why does space have direction? Why doesn’t 
the universe just stay motionless?
Knowledge of inertia: Empty space “feels” acceleration just like it 
feels rotation. Empty space does not “feel” velocity; why should it 
“feel” acceleration?
Orientabilty: Within empty space, we can tell the difference 
between a left hand and a right hand. We cannot manoeuvre one 

6. Actually, it was Michael Faraday (1791–1867) who invented the concept of a field.
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into the shape of the other. Nothingness, that is empty space, has 
this permanent property that prevents us from turning a right-hand 
into a left hand.

Locality: If it were possible to move at infi nite speed, the difference 
in time between being in one place and being in lots of other places 
would be zero. An object would be in all these places at the same 
time, or, in two places at once, if you prefer. Because our universe 
has a limiting fi nite velocity (the speed of light), an object cannot 
be in two places at the same time and we have the phenomenon of 
locality. So, empty space has a structure. This structure becomes 
more apparent in the particular nature of the trigonometric func-
tions of a particular space. 

Linearity: All the types of space we meet in this book, and all the 
basic types of space that are within mathematics have the prop-
erty of linearity. Linearity means that when we rotate a straight 
line, it remains straight rather than becoming curved and its length 
remains unchanged. This means that, if one observer sees an object 
to be moving without acceleration, another observer moving without 
acceleration relative to the fi rst observer will also see that object to 
be moving without acceleration. This is important if we are going to 
insist on the invariance of a physical system under rotation in space-
time, or any other type of space. Matrices are often referred to as lin-
ear algebra because they are the algebraic expression of movement 
in linear space. Normal differentiation is also a linear operation.

NOTE

A linear space can be thought of as a “flat’ space rath-
er than a “curved” space. General relativity is non-
linear. We often think of the space of general rela-
tivity as being “curved” space, and we need to use a 
special type of differentiation (covariant differentia-
tion) to work with general relativity.

4.3 VIEWS OF THE NATURE OF SPACE

Poincare’s view: The physicist is free to ascribe to physical space any 
one of a number of mathematically possible geometric structures 
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provided she makes suitable adjustments to the laws of mechanics 
and optics and to the rules for measuring length7. Of the possible 
geometries, Poincare thought that we should choose a Euclidean 
geometry because it is the simplest. Good idea! but then Einstein 
produced general relativity, which uses non-Euclidean geometry 
and which is simpler than the Euclidean geometry. Poincare’s view 
is that there are two ways to construct physics; one way is to specify 
the rules for measuring length and angle (the nature of space) and 
then adjust the physical laws to fi t with these rules; the other way is 
to specify the physical laws and then adjust the nature of space to fi t 
with these laws. General relativity adjusts the nature of space to fi t 
the physical law of gravity. Newton adjusted the law of gravity to fi t 
his view of space. To Newton, space and time are uniform and so a 
body in a gravitational fi eld changes its velocity - it accelerates. To 
Einstein, a body in a gravitational fi eld moves at a uniform velocity 
(a free-fall geodesic) but space and time are not uniform – space is 
“squashed up” and this appears as acceleration of the body moving 
through it.

Poincare’s view asks whether it is the task of physics to single out 
the one type of geometric space that puts physical laws in their sim-
plest form or is it the task of physics to single out the physical laws 
that put space into its simplest form? What if space is a phenomenon 
of electromagnetism and not a thing separate from the physical laws 
of the universe? 

Mach’s view: Would empty space exist if there were no objects in it 
to mark its extent? It was the opinion of Ernst Mach (1838–1916) 
that it was the nature of empty space that empty space would not 
exist if objects did not exist to mark its extent. He opined that empty 
space was just a set of relations (distances apart) between objects. He 
opined that rotation and inertia were measured against the average 
motion and average inertia of objects in the universe. If there were 
no objects in the universe, there would be nothing against which to 
specify zero acceleration and zero rotation and thus no such thing 
as rotation or a straight line – straight lines are the paths followed 
by inertial bodies. With no straight lines, there is no space. The idea 
was that an object somehow “knows” about every other object in the 

7. The Philosophy of Space & Time – Hans Reichenbach.
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universe and measures its inertia and rotation against all those other 
objects. Mach pointed out that if I stand up and spin around, two 
things happen; the stars above me rotate relative to me and my arms 
lift due to centrifugal force; the two things must be connected, but 
how? In general, Mach took the view that space is not a thing and 
that empty space does not exist in its own right. 

If we are to reject Mach’s view of space, how do we explain the 
seemingly absolute nature of acceleration and rotation? It is often 
said within texts on special relativity that Einstein did away with 
Newton’s absolute space. Einstein did away with absolute velocity; 
he did not do away with absolute acceleration and absolute rotation. 
Unless we accept a Machian type of view, we still have to accept 
absolute space, all-be-it without absolute velocity. 

Mach’s view of space was and still is taken very seriously by theo-
retical physicists. On one hand, Ozvath and Schucking have shown 
that general relativity fails to exclude solutions that contradict Mach’s 
view8. On the other hand, Dicke9 and Brans10 have shown that by 
treating gravitation as a scalar-tensor fi eld (general relativity treats 
gravity as a tensor fi eld), Mach’s view is fully incorporated into the 
theory of gravity. Further, in 1970, Solomon Schwebel formulated 
a relational theory of mechanics and conservation laws without any 
reference to absolute space11. Yet further, it has been discovered12 
that there are also other problems with non-Machian views.  

Kant’s view: Immanuel Kant (1724–1804) wrote “Critique of Pure 
Reason’, and his fame is as a philosopher13. None-the-less, he was 
the fi rst to suggest that the Milky Way (via lactea) galaxy was rotat-
ing14, and he had views upon the nature of empty space. He was 

8. I. Ozvath & E. Schucking “Finite rotating universes” Nature 193 1168–1169 
(1962).
9. R.H.Dicke “Mach’s principle and equivalence” in Evidence for gravitational theo-
ries – Academic press, New York, 1962.
10. C.Brans & R.H.Dicke “Mach’s principle and a relativistic theory of gravitation’, 
Physical review 124, 925–935 (1961).
11. S.L.Schwebel “Mach’s principle and Newtonian mechanics” International Jour-
nal of theoretical physics, 3, 145–152 (1970).
12. J.Stachel “Einstein’s search for general covariance” – Pub. in Einstein and the 
history of general relativity, Birkhauser, Boston. pp. 62–100 (1989).
13. He also wrote the much less famous “Critique of Practical Reason’.
14. Theory of the Heavens, Immanuel Kant (1755).
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of the view that, although empty space exists “a priori’, what we 
observe is the product of the way our perceptions and our minds 
are “wired up” and that, if our minds (brains) were “wired up” in 
a different way, or if we perceived the universe through different 
means, then we would perceive a different type of empty space. 
Today’s philosophers are more likely to take the view that our mind 
is manifestation of our brain and that our brain exists in empty space. 
None-the-less, Kant unsettles our feelings of certainty about space 
and time. We observe that we live in a universe that has three spatial 
dimensions and one time dimension, but can we trust our observa-
tions. Is it possible that our minds are deceiving us and that space is 
something other than as it appears?

Aside: Animal psychologists tell us that turkeys have no sense of 
time. Apparently, turkeys live their entire lives in the present. Seem-
ingly, a sense of time is associated with the mammalian part of the 
brain. This must be why turkeys do not look forward to Christmas.

We simply assume that what we see is empty space because it 
seems that way. Perhaps what we observe is several spaces all shar-
ing the same axes, and they add together to form what we see – see 
later.15 

The conventional mathematician’s view: Within mathematics, the 
usual view of empty space is that it is n copies of the real numbers, 
, fi xed together to form a n-dimensional space. On to this con-
struction, the mathematician installs a distance function (often of 
a quadratic form) and a concept of angle (often with trigonometric 
functions copied from the complex plane, ). We will not adopt this 
view in this book.

Aside: Metric spaces are viewed as being geometric spaces with a 
distance function. The mathematician may choose any function to be 
the distance function provided that it satisfies three requirements:

 i.  The distance from point A to itself is zero
 ii. The distance from A to B is the same as the distance from B 

to A

15. See: Dennis Morris : The Physics of Empty Space – ISBN: 978-1507707005
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 iii. The distance directly from A to B is less than or equal to the 
distance from A to B via C – the triangle inequality. 

Space-time is not a metric space16 and we have no interest in 
them.

Within a metric space, all of the nature of that space is “inside” 
the distance function because that is the only thing from which the 
space is constructed. Of course, this does not include the concept 
of angle. It is possible to construct a space from nothing more than 
2-dimensional rotations, and we will see this when we look at the 
Lorentz group towards the end of this book. However, it is not obvi-
ous from where the distance function of such a space derives. 

Aside: Riemannian spaces are metric spaces with a distance function 
that is a sum (plus or minus) of  squared variables (think Pythagoras). 
These spaces are such that, by setting a variable to zero, we can “rip 
away” one of the dimensions or by adding another variable we can 
“stick on” another dimension. General relativity and string theory 
are both formulated in Riemannian type spaces17.

The view taken by this book: In this book, the theory of special rela-
tivity will be deduced from the fi nite group C2, and the book will 
go on to deduce electromagnetism and something similar to the 
Lorentz group and the space in which we sit from the fi nite group 
C2  C2. This book will not use n as the concept of space. This 
book disagrees with Mach, and we take it that space is a thing that 
exists in its own right. This book assumes that space is like numbers. 
Empty space truly is amazing stuff, whether it does or does not really 
exist, but it is very similar to numbers, which also do or do not really 
exist18. A mathematics student cannot drop a number upon her toe, 
no matter how big the number (or how big her toe). She cannot eat 
it nor do anything materially useful with it. However, numbers have 
magnitude. They are also homogeneous, and they have dimension. 
The complex numbers are 2-dimensional numbers, whereas the 

16. Technically, space-time is not a metric space, but it is often spoken of as being a 
metric space because it is associated with a metric tensor. 
17. Technically, space-time is not a Riemannian space because it has minus signs in 
the distance function.
18. Perhaps we need to expand our concept of existence.
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real numbers are 1-dimensional numbers, and the quaternions are 
4-dimensional numbers. Within these dimensions, numbers are iso-
tropic. Numbers come in different types (, , , ,…), as we will 
see in due course, and they are infi nite in extent. The quaternions 
and anti-quaternions are oriented differently. We can even lay one 
type of number over another type and produce what appears to be 
a fi eld by comparing the different norms (lengths) of those different 
types of numbers.

Numbers have many, and, in your author’s opinion, all, of the 
same properties as empty space. We see this in that mathematicians 
will say that 1-dimensional space is isomorphic to the real num-
bers, , and that 2-dimensional Euclidean space is isomorphic to 
the complex numbers, . We will soon meet the hyperbolic com-
plex numbers, . These are isomorphic to 2-dimensional space-
time. Mathematicians insist that types of empty space and types of 
numbers are not the same things even though they do have all the 
same properties. However, this book holds the opinion that types 
of numbers and types of empty space are the same thing, and that 
this means that we can understand empty space if we understand 
numbers. This book’s view is that the different types of empty space 
correspond to different types of numbers, and that these different 
types of numbers “grow” out of the different fi nite groups (which we 
will introduce shortly). In the conventional view of space, each axis 
is a real axis, 1. In this book’s view, there is one real axis in a space 
and the other axes are imaginary axes. The complex plane, , is an 
example of this kind of space. The quaternion space, which has one 
real axis and three imaginary axes, is another example. 

It is remarkable that the theory of special relativity, and Maxwell’s 
electromagnetism, and, subject to interpretation, the Lorentz group 
which represents the space we observe around us, can be derived 
from nothing more than the existence of the fi nite groups {C1, C2 
C2  C2} and the real numbers. C1 is the foundation of the real num-
bers, which is the only 1-dimensional space19. C2 is the foundation of 
the hyperbolic complex numbers, , which is space-time, and C2 is also 
the foundation of the complex numbers, , which is 2-dimensional 
Euclidean space. C2 is obviously the foundation of C2  C2. 

19. C1 is a sub-group of C2, of course.
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This book will base special relativity in the kind of space that 
derives from the fi nite group C2. We will make no prior assumptions 
that space is formed from n copies of  fi xed together, and we do 
not need, nor wish to use, this construction of space. The theory of 
special relativity is an understanding of the nature of empty space. 
In this book’s view, it is also an understanding of the nature of the 
type of numbers that derive from the fi nite group C2.

So, to sum-up the important paragraphs: We will deduce special 
relativity from the fi nite group C2. We will not use n as our concept 
of space. 

EXERCISES

1. Why is space-time, with distance function 2 2d t z   not a 
metric space?

2. The Lorentz group is effectively a set of six 2-dimensional ro-
tation matrices. Three of these are spatial rotations and three 
are space-time rotations. Is this a valid way to describe the 
4-dimensional space in which we seem to live? Do we need a 
distance function to fully specify a type of space? 

3. Would it be more sensible to specify a space by a rotation 
matrix rather than a distance function?
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CHAPTER 5
PHYSICAL 
CONSTANTS

As we study the physical nature of the universe, we discover that 
there are particular numbers that enter our equations. For example, 
the equation e = mc2 includes the number c = 299, 792, 458, which 
is the speed of light. Other examples are the gravitational constant 

in 2

GMm
F

r
  , or the charge of the electron, or the mass of the 

electron.

Aside: In 1967, the General Conference of Weights and Mea-
sures (CGPM-1967) defined the second as “…the duration of 
9,192,631,770 periods of the radiation corresponding to the tran-
sition between the two hyperfine levels of the ground state of the 
caesium-133 atom.” In 1983, the CGPM-1983 defined the meter 
as the distance travelled by light in a vacuum in a time interval of 

1
299,792,458

 of a second. Thus, the speed of light, by definition, is 

exactly 299,792,458 meters per second. Thus the speed of light is set 
by definition, and the length of the meter is measured against the 
speed of light. This is the opposite to the meter being set by defini-
tion and the speed of light being measured against the length of the 
meter.
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In particle physics, we have a theory called the standard model 
that describes the physics of atomic particles. The standard model 
is the central understanding that we have of physics at very small 
distances (inside of protons). The standard model requires nineteen 
numbers (parameters) to be fed into it before it works. These are 
numbers like the charge of the electron – physical constants. 

This book is about special relativity. It is central to special rela-
tivity that physical constants, as with all laws of physics, are the same 
regardless of the direction in which the measuring apparatus points 
in space-time – that is regardless of the velocity of the measuring 
apparatus. The invariance of the physical constant that is the speed 
of light is most often associated with special relativity, but the invari-
ance of all such physical constants is included in special relativity.

Why these physical constants have the values that they do have is 
one of the central mysteries of modern physics. True, the actual val-
ues change with the size of the units (meters, seconds, coulomb…) 
that we use, and we could set the speed of light equal to 1 by chang-
ing the length of the meter or the duration of the second, but this 
does not explain why there are such numbers or why these numbers 
have the values relative to each other that they do. Why should the 
electron be the mass that it is? Why should gravity be the strength 
it is and not a million times stronger? Where do these physical con-
stants come from?

Aside: Theoretical physicists often set Planck’s constant and the 
speed of light equal to unity, 1c h . The mass-dimensions of these 
constants are:

 
2

[ ]                       [ ] h
L Lc M
T T

  (5.1)

If the physical constants are to be unity, then time, T, must be the 
same stuff as length, L, and mass, M, must be the inverse of length, 
L1.

 
1

[ ] [L]                     [ ]
[ ]

T M
L

    (5.2)
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Physically, M1 is the Compton wavelength of a particle of mass 
M. As well as length, we need a mass dimension for electric charge, 
[C].

It might be that physical constants come directly from math-
ematics. There are special numbers in mathematics. The number 
 = 3.1415… is one such number; another such number, and a more 
important one, is e = 2.71828…. It might be that we will eventu-
ally have a “Theory of Everything” that starts with no more than 
the proposition that numbers exist and, from this, we can calculate 
the physical constants of nature as special numbers like  or e or 
sin(sin(1)). 

Aside: In the novel “The Hitchhiker’s Guide to the Galaxy’, a com-
puter is asked to produce such a theory of everything. It does as it is 
asked. The theory it produces is the number 42. At the frontiers of 
research into the nature of empty space (and everything else while 
we are at it), we are starting to think that the theory of everything 
might be the number e = 2.718281.

If the physical constants are from “special” numbers within 
mathematics, we are now no closer to understanding this or know-
ing where to fi nd those numbers than we were 1,000,000 pints of 
water before. 

It might be that the values of the physical constants are from ini-
tial conditions at the start of the universe. Perhaps they were set (by 
accident almost) when the big bang occurred 13.8 billion years ago 
and have remained unchanged since then. If this is so, it is unlikely 
that any theory we develop will enable us to calculate the values 
of the physical constants and the “theory of everything” will be a 
“theory of almost everything”.

It might be that the values of the physical constants are from 
boundary conditions in the present day universe. It might be that the 
charge of the electron is 1 divided by the number of electrons in the 

1. The idea is that exponentiation of finite groups of permutation matrices generates 
all the different types of space, and the different types of space generate everything 
in the universe. The universe is no more than interacting types of empty space.
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universe. It might be that the gravitational constant is determined 
for each galaxy group by the mass of that galaxy group – there’s a 
Machian view.

The physical constants might not be constant. Perhaps they vary 
with the age of the universe, or perhaps they vary from place to place 
in the universe, or perhaps they vary with respect to some other 
parameter. All of these seem unlikely. The magnetic moment of the 
electron has been shown not to have varied by more than 1 part in 
a 1000 over the entire history of the universe; by modern stand-
ards, this is not very precise, but it is there. Observations of the Crab 
Nebula2 pulsar show that the speed of light is constant (at visible fre-
quencies) to within 5 parts in 1018. The speed of light is also the same 
for different frequencies of electromagnetic radiation. Experiments 
at the two-mile linear accelerator at Stanford3 in the USA show that 
visible light and gamma rays move at the same speed to within 6 
parts in 106, and observations of radio waves and visible light from 
stellar fl ares4 have shown that these two frequencies to travel at the 
same speed to within 1 part in 106. If the constants of nature were to 
change over time, then a stationary observer would see them change 
more slowly for a moving observer than for himself. After a while, 
the physics of the moving world would be different from the physics 
of the stationary world, and we would be in a right mess, unless the 
constants change in a way correlated to avoid such a mess, of course. 

It might be that the physical constants are all tied together in 
some way whereby, if one varies, the others all vary to compensate, 
and any attempt to measure the variation of the one is cloaked by 
the compensatory variation of the others. In this scenario, the values 
of the physical constants can randomly vary in both space and time 
without this variation being detectable. If it is not detectable, is it 
meaningful?

The physical constants are numbers; they are not vectors or 
spinors or rank-two tensors; further, they are real numbers rather 
than complex numbers. Why are physical constants not complex 

2. B. Warner & R.E. Nather (1969) Nature London, 222, 157.
3. B.C. Brown et al. Physical Review letters, 30, 763 (1973).
4. B. Lovel et al Nature, London, 202, 377 (1964).
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numbers? – there’s a question. As we will see later, the components 
of a vector are different when the vector is viewed in different co-
ordinate systems. This does not happen with real numbers which are 
the same in all co-ordinate systems. Complex numbers cannot be 
physical constants because the components of the complex number 
change with a change in co-ordinate system, like a rotation – there’s 
an answer. When dealing with changes of co-ordinate systems (and 
rotation in space or in space-time is a change of co-ordinate axes), 
single numbers are called scalars (as opposed to vectors or tensors). 
Physical constants have to be scalars (real numbers) if they are not 
to change under rotation of co-ordinate axes.

When we study 4-vectors, we will see that 4-acceleration in 
space-time is “perpendicular” to 4-velocity for stationary observ-
ers. Thus the velocity 4-vector is pulled to the side (rotated) by the 
4-acceleration but not lengthened. Thus it is that magnitude of the 
4-velocity through space-time cannot be changed (this is not veloc-
ity through space). The value of that 4-velocity through space-time 
is the speed of light. It is constant because the nature of space-time 
is such that 4-acceleration is “perpendicular” to 4-velocity. This 
explains why the speed of light  constant, but thisit does not explain 
the particular value.

Aside: In 1913, Max Planck combined the constants of nature, 
 , ,G c h  together to create natural units of length, time, and mass. 

The Planck length is: 

1
2* 35

3 2 10  Meters.
G

a
c

 
    
 

h
 The Planck 

mass is: 

1
2* 82 10  Kilograms.

c
m

G
 

    
 
h

 The Planck time is: 

*
* 4310  Seconds.

a
t

c
 
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CHAPTER 6
NUMBERS

What is a number? We have just considered the physical con-
stants that have the same value when the axes of the co-ordinate 
system are changed (rotated perhaps), and we have said that these 
physical constants are (real) numbers, but what is a number? 

The reader will be aware of at least two different types of num-
bers: the real numbers, , and the complex numbers, . What is it 
that these two different types of mathematical objects have in com-
mon so that we call them both numbers? What is it about blue stars 
and red stars that persuades us to call them both stars? Both blue 
and red stars have certain properties in common: they come out at 
night and they twinkle. So it is with numbers. As any mathemat-
ics student will tell you, a set of numbers is a division algebra. To a 
mathematics student, this means that the set (of numbers) satisfi es 
thirteen of the fourteen axioms of an algebraic fi eld. 

It is outside of the subject matter of this book to discuss the 
details of the abstract algebra of algebraic fi elds. However, we give a 
fl avour of what these axioms are like: 

 1. Multiplicative closure – a number multiplied by a number 
produces a number. It need not be this way. A vector dotted 
with a vector produces a number, not a vector. 

 2. Absence of zero-divisors – if the multiplicative product of 
two numbers is zero, then one, or both, of these numbers 
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must be zero. There are mathematical constructions that do 
not have this property; Clifford algebras are an example.

 3. A most important algebraic field axiom is the one that insists 
that all the numbers, except zero, have a multiplicative in-

verse. The multiplicative inverse of 5 is 1
5

 because 
1

5 1.
5

 

A set of mathematical objects that have the property of each 
having a multiplicative inverse is called a division algebra 
(because we can do division inside it). 

The fourteenth algebraic fi eld axiom that need not be satisfi ed by a 
division algebra is multiplicative commutativity. Multiplicative com-
mutativity is that two numbers produce the same number regard-
less of the order in which they are multiplied: 5  3 = 3  5. Not all 
mathematical objects do this. Matrices are not generally commuta-
tive, but, more importantly for us, quaternions (see later) are not 
multiplicatively commutative. It is generally accepted that a division 
algebra is a type of numbers. So, in short, a type of numbers is a set 
of mathematical objects that satisfy the specifi c thirteen of the four-
teen algebraic fi eld axioms that form a division algebra. This is a pre-
cise way of saying we can do the mathematical operations of addition 
and multiplication within the division algebra without any problems.

A division algebra is almost the same thing as an algebraic fi eld. 
The only difference is that algebraic fi elds are multiplicatively com-
mutative whereas division algebras might or might not be multipli-
catively commutative. Division algebras are often referred to as non-
commutative algebraic fi elds. 

Examples of division algebras are:

Commutative algebraic fi elds: 

  The real numbers, .

  The complex numbers, .

  The hyperbolic complex numbers, .
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Non-commutative algebraic fi elds: 

  The quaternions, .

  The anti-quaternions, Anti.

  The A3 algebras.
Now, matrices in general satisfy only seven of the fourteen alge-

braic fi eld axioms, but special sets of matrices satisfy either all the 
axioms of an algebraic fi eld or all the axioms of an algebraic fi eld 
except multiplicative commutativity. These special sets are each a 
division algebra and thus each set is a type of numbers. It is much 
easier to work with matrices than with other notations for the various 
types of numbers. We will therefore write our numbers as matrices. 
Examples are:

  ,    ,    exp
a b a b

a
b a b a

a b c d

b a d c

c d a b

d c b a

    
               

 
 
  
 
  
 
   

  



 (6.1)

Which are respectively, the real numbers, the (Euclidean) complex 
numbers, the hyperbolic complex numbers, and the quaternions.

The reader will soon discover that we will be writing fi nite 
groups as sets of matrices. There is a very close connection between 
the fi nite groups and the types of numbers, and this connection is 
made patent by the use of matrix notation.

EXERCISES

1. Using the usual notation, first calculate (a + ib)(c + id)  and 

secondly calculate a b c d

b a d c

   
   
       

.
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2. Is 0 1
1 0

 
 
  

 a square root of plus unity?

3. Is the matrix form 
0

0
0

a b

a b

b a

 
 
 
 
  

 multiplicatively closed - do 

two of them multiplied together make another of them?

4. What is the determinant of 
2 2
2 2

 
 
  

? Can we form a division 

algebra with these matrices?

5. Can the matrix exp
a b

b a

  
      

 ever have a zero determinant?
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CHAPTER 7
COMMENTS ON 
MATRICES

Imagine a co-ordinate system (a 2-dimensional Cartesian system 
is easiest) and a point, (x, y), in that co-ordinate system. If we wish 
to relate this point to another point, (a, b), in the co-ordinate system, 
then we must write, (x, y), in terms of (a, b). We do not have to make 
the relationship linear, but, if we do not make it linear, then we can-
not use matrices to express the relationship, and so we will assume 
that the relationship is going to be linear. That is, we are going to 
assume that the relationship is of the form:

 
x ka lb

y ma nb

 
 

 (7.1)

where {k, l, m, n}   are just real numbers. It seems that linearity 
is central to the nature of geometric space1. The reader might wish 
to try constructing a relationship between two points in space that 
cannot be expressed as linear relations to each other. If the reader 
does so attempt, she will understand why we think geometric spaces 
are basically linear.

Linearity is dealt with mathematically by the use of matrices. 
If the reader is unfamiliar with matrices, she is directed to the 
many texts upon this area of math. In the next paragraph, we skimp 
through matrix mathematics. 

1. Non-linear space, such as the curved space of general relativity, is a distortion of 
a linear space.
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Matrices are “boxes of numbers’. Matrices are added compo-
nent-wise, as you would expect them to be, but matrix multiplication 
is not component-wise. Instead, matrix multiplication is linear multi-
plication (a row multiplies a column). Some examples:

 

a b c d a c b d

a b e f a e b f

c d g h c g d h

             

      
      
           

  (7.2)

 

[ ] [ ]
c

a b ac bd
d

a b e f ae bg af bh

c d g h ce dg cf dh

k l a ka lb x

m n b ma nb y

 
   
  

      
     
           

       
        
              

 (7.3)

Notice how, in the last example, we have “moved” the point (a, b) 
to the point (x, y) mentioned above. We can think of matrices as 
movements in space. (There are different types of space, of course.) 
A matrix moves a point in space to another point in space. However, 
for this to make sense, we need both the starting point and the end-
ing point to be in the same type of space. In the last example, we 
moved the point (a, b) in 2-dimensional space to the point (x, y) in 
2-dimensional space, but, as we will see later, there is more than 
one type of 2-dimensional space. (There are two different types of 
2-dimensional space, {, }, in the fi nite groups.) How do we ensure 
that the point is moved into the same type of space? The answer is 
that the movement itself has to be part of the particular space. This 
is a convoluted way of saying that the whole set of matrices, both 
the points and the movement need to be in the same algebra – the 
matrices need to be of the same form. Consider:

 
 
ac bd ad bca b c d

ad bc ac bdb a d c

      
     
             

 (7.4)

All three matrices in this are of the same form. In fact, this is the 
complex numbers, . The space associated with this matrix form is 
the complex plane which is the 2-dimensional Euclidean space. 
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The different elements in a matrix are related to each other. In 
the example above, we have the relationship between the off-diago-
nal element and the diagonal element:

 
2

2

0 0 0
0 0 0

b b b

b b b

                      
 (7.5)

where the off-diagonal element is the square root of minus the diag-
onal element. This is more familiar as 1.i  

It is possible to put complex numbers into matrices rather than 
real numbers, but this is just a notational shortcut. Unfortunately, it 
is a notational shortcut that might lead the student astray. We have:

 

a b c d

b a d ca ib c id

c id a ib c d a b

d c b a

a b c d

b a d c

c d a b

d c b a

    
    
                                      
 
 
  
 
  
 
   

 (7.6)

We can always expand a matrix with complex elements into a matrix 
with real elements. The block multiplication properties of matrices 
guarantee this. 

7.1  SYMMETRIC MATRICES AND ANTI-
SYMMETRIC MATRICES

The transpose of a matrix is where the elements of the matrix 
have their line and column indices swapped, rc → cr, for example:

 

Transpose
a b c a d g

d e f b e h

g h j c f j

   
   
   
   
      

 (7.7)
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Transposing matrices is not a proper algebraic operation; it is a 
notational shortcut. It works, “by accident” when we are working in 
n-dimensional spaces that can be divided into (n  1) 2-dimensional 
sub-spaces by combining any imaginary axis with the real axis. It also 
works in n spaces. The reader will see it often. Since we will be 
concerned with only the spaces that derive from the fi nite group C2 
and its cross products, and since these are spaces that can be divided 
into (n  1) 2-dimensional sub-spaces by combining any imaginary 
axis with the real axis, it will work for us. It allows us to deal with 
the 2-dimensional form of symmetry easily. Symmetry and anti-sym-
metry (the 2-dimensional form) will be important later in this book 
when we consider 4-dimensional space-time and the Lorentz group. 
Be warned; matrix transposition does not work generally in spaces of 
more than two dimensions.

Aside: The finite group C3 contains 3-dimensional symmetries 
which are very different from the 2-dimensional concept of sym-
metry to which we are accustomed. The same is true of all the other 
finite groups that are not products of C2. Symmetry and anti-sym-
metry mean different things in different types of space.

Aside: A matrix is called unitary if the product of the matrix with its 
transpose is equal to the identity matrix (the matrix with 1s on the 
leading diagonal and zeros everywhere els. E.g.:

 
0 1 0 1 1 0
1 0 1 0 0 1

     
     
          

 (7.8)

Unitary matrices play a central role in quantum fi eld theory, and the 
reader is sure to meet them in later studies.

We say that a matrix is symmetric (again we mean 2-dimension-
ally anti-symmetric) if it is equal to its transpose. For example:

 

a b c d

b a d c
Symmetric

c d a b

d c b a

 
 
 
 
 
 
  

  (7.9)
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We say that a matrix is anti-symmetric (again we mean 2-dimen-
sionally anti-symmetric) if it is equal to minus its transpose. For 
example:

 

0
0

0
0

b c d

b d c
Anti symmetric

c d b

d c b

 
 
  
  
  
 
   

 (6.10)

(This anti-symmetric matrix is a quaternion with zero real part.), 

Aside: Symmetry and anti-symmetry are a very important part of 
our present understanding of the univeese. Electromagnetism is 
an anti-symmtrices force. The Maxwell equations of electromag-
netism are later derived from the quaternions which are an anti-
symmetric algebra based on anti-symmetric variables. It seems to be 
that because electromagnetism is an anti-symmetric force, we have 
electromagnetic forces that are both attractive and repulsive. Gen-
eral relativity uses tensors written as symmetric matrices. Gravity 
is a symmetric force, and this, it seems, is why gravitational force is 
attractive only. Within particle physics, much of the current under-
standing, for example the Higgs mechanism that gives mass to par-
ticles, is based upon the idea of symmetry being broken.  Within 
cosmology, the phase transitions postulated to have happened at 
the birth of the universe are similarly associated with symmetry 
breaking.

7.2 ROTATION MATRICES

We form rotation matrices by taking the exponential of the non-
real variable(s) of an algebra. If these variables are 2-dimensionally 
anti-symmetric, we get a Euclidean type rotation matrix contain-
ing Euclidean trigonometric functions and we refer to this as an 
anti-symmetric rotation. If these variables are symmetric, we get a 
hyperbolic type (space-time) rotation matrix containing hyperbolic 
trigonometric functions and we refer to this as a symmetric rotation. 
Rotation in space is done with a rotation matrix that is anti-symmet-
ric in the angle. Rotation in space-time is done with a rotation matrix 
that is symmetric in the angle. 
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It is possible to get a rotation matrix in higher dimensional spaces 
that is formed by exponentiating both anti-symmetric variables and 
symmetric variables. Such a rotation is then a mixed symmetric and 
anti-symmetric rotation. We will meet such algebras later (the A3 
algebras). In such a rotation matrix, we get that the commutator of 
two consecutive different symmetric rotations are equivalent to an 
anti-symmetric rotation. In the conventional parlance, “two space-
time boosts make a space rotation’. This cannot happen in 2-dimen-
sional space where two space-time boosts make a third space-time 
boost. 

We end this chapter with a couple of asides that the reader does 
not need to know in order to understand special relativity. They are 
included because they are interesting. There is more to life than 
special relativity.

Aside: Unitary2 matrices are usually written with complex elements. 
Symplectic3 matrices are usually written with quaternion elements. 
Both types of matrix can be written using real elements, and doing 
so simplifies everything in the universe. 

Aside: By choosing the appropriate basis, a unitary matrix can be 
written with zeros everywhere except on the leading diagonal. For 
example:

 

0 0 0
0 0 0
0 0 0
0 0 0

a ib

c id

e if

g ih

 
 
 
 
 
 

  

 (7.11)

This matrix is a movement in 4 space. Symplectic matrices have 
the “same” property but with quaternions on the leading diagonal 
instead of complex numbers. 

2. A unitary matrix is a matrix set in n space.
3. A symplectic matrix is a matrix set in n space.
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EXERCISES

1. Is the rotation matrix 
cosh sinh
sinh cosh

c c
c c

 
 
  

 an anti-symmetric 

matrix? 

2. Is the rotation matrix 
cos sin
sin cos

q q
q q

 
 
  

 an anti-symmetric 

matrix? What about when ?
2
pq 

3. Is the rotation matrix 
cos sin
sin cos

q q
q q

 
 
  

 an anti-symmetric in 
the variable ? 
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CHAPTER 8
INTRODUCTION TO 
FINITE GROUPS

Finite groups, together with the real numbers and the expo-
nential function (and arguably the concept of linearity), are the 
basis of mathematics. Except for areas of mathematics invented by 
humankind, all of algebra, geometry, calculus, and much other stuff 
is based on no more than these three things. Like numbers, and 
unlike 3-dimensional Riemannian space or Clifford algebras1, in the 
same way that numbers really exist, fi nite groups really exist. We fi nd 
them lying about in the universe, as we do with real numbers and 
the exponential function. Since mathematics is essential to physics, 
fi nite groups, the real numbers, and the exponential function, are of 
the essence of physics. 

Since fi nite groups really exist, the geometric spaces within 
them, the fi nite group spaces, really exist, and any theory of the uni-
verse must include an understanding of these spaces. It turns out 
that the fi nite group spaces derived from the cyclic group C2 and its 
cross-product groups like C2  C2 are the spaces of the observable 
universe. The space-time of special relativity is no more than a space 
from the fi nite group C2, and special relativity derives directly from 
this group (we have to add in the concepts of mass and of electric 

1. Actually Clifford algebras really exist but not as they are usually presented. See: 
Dennis Morris: The Naked Spinor – a Rewrite of Clifford algebra ISBN: 978-
1507817995.
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charge). The group C2 is no more than the numbers {1, 1}; it is 
hard to think of anything more simple and amazing that space and 
time are within only these two numbers. So, let us proceed to build 
the universe from no more than C2.

Aside: Finite groups were discovered by Evariste Galois. Galois was 
born at Bourg-la-Reine near Paris on 25th October 1811. For the 
first twelve years of his life, he was educated by his mother who 
had a considerable knowledge of both religion and the classics. He 
entered the Lycee Louis-le-Grand in 1823 where he immediately 
found himself in the center of rebelling students refusing to chant in 
chapel; a hundred of them, not including Galois, were expelled. In 
this period, it is said of him that he read Legendre’s “Elements de 
Geometrie” like a novel and mastered it in one reading; it is a degree 
level text and equivalent to three years of normal university study. 
At the age of fifteen, he was reading mathematical research papers. 
Although Galois failed the entrance examination for the Ecole Poly-
techique, Terquem (editor of Nouvelles Annals des Mathematiques) 
puts it down to “… A candidate of superior intelligence is lost with 
an examiner of inferior intelligence…”. His second attempt to gain 
entrance to the Ecole Polytechnique failed when he upset the exam-
iner, Dinet, by correcting him on his understanding of the nature of 
logarithms.  

8.1 HOW TO FIND FINITE GROUPS

Take square matrices and put 1s into them in such a way that 
there is only a single 1 in each row and only a single 1 in each col-
umn. There is only one such 1  1 matrix; it is just [1]; this is the 
group C1. There are two, and only two, such 2  2 matrices:

 
1 0 0 1

,   
0 1 1 0

   
   
      

  (8.1)
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These are the group C2. With 3  3 matrices, we get:

 

1 0 0 0 1 0 0 0 1
0 1 0 ,   0 0 1 ,   1 0 0
0 0 1 1 0 0 0 1 0

1 0 0 0 1 0 0 0 1
0 0 1 ,   1 0 0 ,   0 1 0
0 1 0 0 0 1 1 0 0

     
     
     
     
          
     
     
     
     
          

  (8.2)

There are six such matrices. Multiplying these sets of matrices 
together, we discover that they form a multiplicatively closed sets – 
that is they all multiply into one-another. Each such set also contains 
the multiplicative inverses (a matrix multiplied by its multiplicative 
inverse produces the multiplicative identity matrix) of every element 
of the set, and the set contains the multiplicative identity (the equiv-
alent of the number 1). We demonstrate:

 
2 2

1 0 0 1 0 1
0 1 1 0 1 0

1 0 1 0 0 1 1 0
,   

0 1 0 1 1 0 0 1

     
     
          

       
        
              

  (8.3)

 

2 3
0 1 0 0 0 1 0 0 1 1 0 0
0 0 1 1 0 0 ,   1 0 0 0 1 0 ,   ...
1 0 0 0 1 0 0 1 0 0 0 1

       
       
        
       
              

 (8.4)

The reader might want to complete the set of 3  3 multiplications. 
These n  n matrices with a single 1 on every row and a single 1 in 
every column are called permutation matrices. They are so named 
because they correspond one-to-one with the possible ways of per-
muting n objects. 

The important point is that each set of permutation matrices is 
a multiplicatively closed set that includes multiplicative inverses and 
the identity. (The identity is the matrix with all the 1s on the lead-
ing diagonal). Each of the above individual sets of (multiplicatively 
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closed) n  n permutation matrices a fi nite group. Finite group are 
common called just groups2. 

Although we represent a group with permutation matrices, a 
group is really a set of (multiplicative) relations that are (multiplica-
tively) closed. I’ll say that again: A group is a particular set of relations 
between objects. For the group of 2  2 matrices above, these rela-
tions are {a2  a, b2  a, ab  ba  b}. These relations are exactly the 
same multiplicative relations as the multiplicative relations between 
the numbers {1, 1} which are {(1)2  1, (1)2  1, (1)(1)  (1)
(1)  1}. It is the differences in the multiplicative relations between 
the objects in a group that distinguishes one group from another and 
not the nature of the objects that are being multiplied together.

Mathematicians refer to the objects (matrices) in a group as being 
a group when they really mean that the relations between the objects 
are the group. This happens because the objects bring with them the 
relations between them. A complete set of n  n permutation matrices 
represents a group, and a complete set of permutations of n objects 
also represents the same group because they have the same relations 
between them. It is because there is a fi nite number of objects (per-
mutations or matrices) in the group, that they are called fi nite groups. 
Having rattled on about relations between things, your author admits 
that he thinks of groups as sets of permutation matrices because it is 
easier than thinking of them as sets of abstract relations. No-harm will 
come from the reader doing the same. 

It is also possible to think of the cyclic group C2 as the two square 
roots of plus-one and to think of the cyclic group C3 as the three 
cube roots of plus-one and the cyclic group C4 as the four fourth 
roots of plus-one and so on for all the cyclic groups. 

The order of the group is the number of objects (matrices) in the 
group. There is at least one group of every order, and there is often 
more than one group of a given order. There are different types of 
groups – different structures of the multiplicative relations between 
the permutation matrices. If the group order is a prime number, 

2. There are infinite groups that contain an infinite number of objects. The unit 
circle in the complex plane is one. It is known as U(1).
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there is only one group of that order and that is of a type of group 
known as a cyclic group.

8.2 SUB-GROUPS AND TYPES OF ROTATION

Within the six 3  3 permutation matrices above, there are three 
matrices which are a multiplicatively closed set on their own:

 
1 0 0 0 1 0 0 0 1
0 1 0 ,   0 0 1 ,   1 0 0
0 0 1 1 0 0 0 1 0

     
     
     
     
          

  (8.5)

These too are a group. As well as being a group in their own right, 
these three permutation matrices are also a sub-group of the six 
3  3 permutation matrices. The multiplicative relations of this order 
3 group are:

{a2  a3  a, b3  c3  a, ab  b, ac  c, 
 bc  cb  a, b2  c, c2  b} (8.6)

The sub-groups of a group correspond to sub-spaces of the geomet-
ric space from the whole group. For example, the order four group 
C2  C2 contains three order two sub-groups. Because of this, the 
4-dimensional spaces from this group contain three 2-dimensional 
sub-spaces. This means that it is possible to perform 2-dimensional 
rotations in three different planes within the spaces from this group. 
It is not possible to perform a 2-dimensional rotation in any 3-dimen-
sional space because the only order three group, C3, has no order two 
sub-group. We can 2-dimensionally rotate in three different planes 
within the space in which we sit because the space in which we sit 
is from the group C2  C2. If it were that the space in which we sit 
was from the group C4, we would be able to perform 2-dimensional 
rotation in only one of the three possible planes because C4 has only 
one order two sub-group.
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8.3 GEOMETRIC SPACES FROM FINITE GROUPS

Now, since groups can be represented by multiplicatively closed 
sets of matrices, they can also be thought of as multiplicatively 
closed sets of linear transformations. Linear transformations are 
movements in geometric space. Since these movements are closed 
(matrix multiplication) and, it turns out, independent of each other 
basis of a geometric space. We will see the details later.

8.4 MORE ON GROUPS

Groups come in families, and each fi nite group has a name. The 
set of 2  2 permutation matrices is called the cyclic group of order 2 
and is denoted as C2. This is the group of central interest to us. The 
set of six 3  3 permutation matrices is called the symmetric group 
of order 3 and is denoted as S3. The multiplicatively closed set of 
three 3  3 permutation matrices shown above is called the cyclic 
group of order 3 and is denoted as C3. The cyclic group of order 
2 is sometimes also known as the symmetric group of order 2 and 
denoted as S2. Note that the symmetric groups, Sn, are the complete 
sets of permutations of n objects. There are n! such permutations for 
each n and so the group Sn is of order n!. For example: S3 is the set 
of permutations of three objects but it has order six. Another family 
of groups is the alternating groups, An, which are the sets of even 
permutations and thus of order !

.
2
n

8.5  NON-COMMUTATIVITY AND THE SPACE IN 
WHICH WE SIT

Being like matrices, some groups are multiplicatively commuta-
tive - ab ba - and some groups are not multiplicatively commutative
– ab  ba. We call the commutative groups abelian groups and we 
call the non-commutative groups non-abelian groups. The 4-dimen-
sional space in which we sit is a non-commutative space as is the 
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quaternion space that holds electromagnetism. It is remarkable that 
these non-commutative spaces come out of the commutative group 
C2  C2.

The First Finite Groups

Abelian 
Groups

Non-A
Groups

Abelian
Groups

Non-A
Groups

C1 C9, C3  C3

C2,  S2 C10 D5

C3 C11

C4, C2  C2 C12, C2 × C6 A4, D6 × T

C5 C13

C6 D3  S3 C14 D7

C7 C15

C8, C2  C4, 
C2  C2  C2

D3, Q

There are too many groups of order 16 to fi t in the table.

8.6 THE FINITE GROUP MATRIX

The group of six 3  3 matrices, S3, can also be written as six 6  6 
matrices – it is of order 6. If we do this, we can fi t all the six elements 
of the group into one matrix where we represent each permutation 
matrix by a different letter:

 3

a b c d e f

c a b e f d

b c a f d e
S

d e f a b c

e f d c a b

f d e b c a

 
 
 
 
 
 
 
 
 
 
  

 (8.7)
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Notice that all the a s are on the leading diagonal. This can be done 
with any fi nite group3. Other examples are:

 2 3,   
a b c

a b
C C c a b

b a
b c a

 
  
   
      

  (8.8)

Thus, any fi nite group of order n can be written as a n  n matrix. 
We call such a matrix the fi nite group matrix. Furthermore, any such 
matrix, with each particular element appearing once and only once 
in each row and in each column and with all the a s on the leading 
diagonal, is a way of representing some group. It is by exponentiat-
ing the fi nite group matrix that we get a geometric space from that 
group. There’s a bit more to it because a fi nite group contains many 
geometric spaces.

If we try to do this with 4  4 matrices, we fi nd there are four 
such matrices. However, there are not four different order four 
groups here. There are just two different order four groups that are 
known as C2  C2 and C4. One of the 4  4 matrices is the C2  C2 
group, which is of interest to us. The other three 4  4 matrices are 
different ways of writing the group C4, which is not of interest to us. 
Different groups are different because they have different multipli-
cative relations between their elements. In the C2  C2 group, the 
three {b, c, d} elements all square to the a element.

In the C4 group, only one of the {b, c, d} elements squares to the 
a element.

There is only one group with fi ve elements (it is C5), but there 
are many ways of writing this group as a 5  5 matrix.

8.7 SPECIAL RELATIVITY IS IN C2

The reader has now earned a little taste of what is to come. This 
is out of sequence within this book, and it will be explained in more 
detail later in the book, but here goes. Start with the group C2 written 

3. This is an easy way of constructing the Cayley table (multiplication table) of the 
group. We do not need to know about Cayley tables in this book.
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as one matrix; consider each element to be a real number; exponen-
tiate the matrix; and voila:

 
0 cosh sinh

exp
0 sinh cosh

a b h b b

b a h b b

      
                  

 (7.9)

This is the space-time (2-dimensional) of special relativity. Within this 
is the phenomena of time dilation, length-contraction etc. The deter-
minant of the matrix gives the distance function of space-time. We will 
shortly have the special theory of relativity from no-more than the group 
C2 and real numbers! (We have to add in mass and electric charge.) 
Further, we can think of C2 as no more than the numbers {1, 1}.

The element of the group on the leading diagonal (the a ele-
ment) is called the identity element of the group because when a  
1 the product of it and any other element is that other element. It is 
the same thing to a group as the number 14 is to the real numbers. 
This becomes (after exponentiation) the radial co-ordinate of the (in 
polar co-ordinates) space.

Within the different algebras we will meet, we sometimes have 
elements that square to the identity, plus-one, and we sometimes 
have elements that square to minus the identity, minus-one. The 
complex numbers, , have the element i2  1. The hyperbolic com-
plex numbers have the element r2  1. The quaternions have the 
elements {i, j, k} which all square to minus-one. The A3 algebra that 
we will meet later has two imaginary elements that square to plus-
one and one imaginary element that squares to minus-one. Such 
relations are an expression of the 2-dimension symmetry (the ele-
ments that square to plus-one) and the 2-dimensional anti-symmetry 
(the elements that square to minus-one) of the algebra. Thus, looked 
at this way, (look at the matrices), the (Euclidean) complex num-
bers are an anti-symmetric 2-dimensional algebra, and the hyper-
bolic complex numbers are a symmetric 2-dimensional algebra. The 
anti-symmetric variables (those that square to minus-one) become 
trigonometric functions within a spatial rotation matrix. The sym-
metric variables (those that square to plus-one) become trigonomet-
ric functions within a space-time rotation matrix.

4. The number 1 is the multiplicative identity of the real numbers (and the complex 
numbers ….)
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There is much more to fi nite group theory than mentioned 
above, but there is neither space for it, or need of it, in this book. 
However, I cannot speak of group theory without mention of the 
classifi cation theorem. This is not part of what we need to under-
stand special relativity, but and then add knowing about it is a useful 
fact for the reader.

8.8  THE CLASSIFICATION OF THE FINITE 
GROUPS

Within the real numbers, there are prime numbers (like: 2, 3, 
5, 7, 11, 13, 17 …) and composite numbers that are products of the 
prime numbers. Within the fi nite groups, there are “prime” groups 
called simple fi nite groups. The simple fi nite groups are the same 
to groups as prime numbers are to real numbers, but there is more 
than one type of simple fi nite group whereas there is only one type 
of prime number. There are three infi nite families of simple fi nite 
groups and 26 one-offs.

Aside: 
The Classifi cation of Finite Simple Groups theorem

The simple fi nite groups are:

Infi nite family:  The cyclic groups of prime order

Infi nite family:   The alternating groups A3 and all higher orders5

Infi nite family:   The Chevalley, Twisted Chevalley, and the 
Tits group

Sporadics: 26 individual groups

The largest of the sporadic groups is called “the monster”; it is 
something to do with string theory – see the “monster moonshine 
theorem”. The cataloguing of the fi nite simple groups took over 150 
years. It is seen as the crowning achievement of 20th century math-
ematics.

5. A5 is of order 60.
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Since fi nite groups underlie geometric spaces, we now have a 
classifi cation of all the possible types of geometric space, and, thus, 
of all possible universes!

Aside: The Odd Order Theorem, also known as the Feit-Thompson 
Theorem, says that:

except for the prime order cyclic groups, the order of every 
simple fi nite group must be even. 

This theorem is an extremely important theorem in finite group 
theory. It took the efforts of many people over many decades to 
prove it. None-the-less, Feit and Thompson had to spend several 
years trying to find a journal in which to publish the proof because 
the proof was so long (255 pages). They eventually published in the 
little known Pacific Journal of Mathematics wherein the proof took a 
whole issue. So, the reader ought not to expect to find it easy to pub-
lish just because she produces the biggest breakthrough in human 
understanding that the world has ever seen. 

EXERCISES

1. Calculate: 
0

exp .
0
b

b

  
      

2. Calculate: 
0 0

exp 0 0 .
0 0

b

b

b

  
  
  
      
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CHAPTER 9
TRIGONOMETRIC 
FUNCTIONS

We are concerned with the geometric spaces that arise from the 
fi nite groups. We are not concerned with the geometric spaces of 
the form n made by fi tting copies of  together. Although there are 
similarities between the spaces that arise from the fi nite group C2 
and the spaces based on 2, they are not the same thing. There are 
no such similarities in 3-dimensions, but there are some similarities 
in some cases in 4-dimensions.

Consider a circle of unit radius in the Euclidean plane and 
consider a point on that circle:
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The cosine of the angle is the horizontal distance from the verti-
cal axis (of a unit circle) to the point on the circle. The sine of the 
angle is the distance in the vertical direction from the horizontal 
axis to the point on the unit circle. Thus, the unit circle is the set of 
points parameterized by (x, y)  (cos, sin). Clearly, 

 cos2  sin2  x2  y2  1 (9.1)

The sine and cosine were fi rst defi ned this way in 6th century India. 

The sine and cosine are the trigonometric functions of 2-dimen-
sional Euclidean space. We will see later that they are associated 
with the complex plane, . In this work, we will meet other types of 
trigonometric functions that are associated with other types of space 
(space-time for example). Each of these trigonometric functions 
will be a projection on to an axis of that space. The trigonometric 
functions of 2-dimensional space-time are the cosh( ) and sinh( ) 
functions. The cosh( ) function is a projection on to the time axis of 
space-time, and the sinh( ) function is a projection on to the space 
axis of space-time. Clearly, 3-dimensional spaces, which have three 
axes, have sets of three trigonometric functions and 4-dimensional 
spaces, which have four axes, have sets of four trigonometric func-
tions - these spaces are not the {3, 4} spaces. 1-dimensional space 
has one trigonometric function.

9.1 CIRCLES DEFINED

It is normal to defi ne a unit circle as the locus of a point that is 
distance 1 from the origin. Obscurely, there is another, but equiva-
lent, way of defi ning a unit circle. It is the locus of a point whose x 
co-ordinate is the rate of change of its y co-ordinate with respect to 
the angle made with the horizontal axis and whose y co-ordinate is 
the rate of change of its x co-ordinate with respect to the angle made 
with the horizontal axis. This says that the projections from a point 
on a unit circle, the trigonometric functions, must differentiate into 

each other (or perhaps the minus of each other), like sin cos .
d

d
q q

q
  

Thinking of a circle in this way, with a lot of thought, the reader will 
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perhaps understand why the trigonometric functions are related to 
the exponential function, which differentiates into itself.

Trigonometric functions are based on “splittings” of the series 
of the exponential function. This is seen most clearly in the series 
expansions of the 2-dimensional hyperbolic trigonometric functions. 
We have:

 
2 3 4 5 6 7 8 9

2 4 6 8

3 5 7 9

exp( ) 1 ...
1! 2! 3! 4! 5! 6! 7! 8! 9!

cosh( ) 1 ...
2! 4! 6! 8!

sinh( ) ...
1! 3! 5! 7! 9!

x x x x x x x x x
x

x x x x
x

x x x x x
x

          

     

     

  (9.2)

The sine and cosine functions are the same but with some minus 
signs thrown in:

 
2 4 6 8

3 5 7 9

cos( ) 1 ...
2! 4! 6! 8!

sin( ) ...
1! 3! 5! 7! 9!

x x x x
x

x x x x x
x

     

     

  (9.3)

Now go back and re-read the paragraph above beginning “It is nor-
mal…”. It is important to understand the relationship between the 
exponential function and circles (in different types of space). 

When we defi ne a circle in the obscure way, we are defi ning the 
trigonometric functions to be splittings of the series of the exponen-
tial function because only by splitting the exponential function series 
can we get functions that differentiate into each other. Those split-
tings of the exponential function series are the co-ordinates of the 
point on the circle and so are the projections from that point on to 
the axes of the space. Starting with the exponential function, we get 
trigonometric functions, which give us circles; this is another way of 
saying that we get rotation from the exponential function. Rotation 
brings with it space. Special relativity is about rotation in space-time, 
and so special relativity is about the exponential function – there’s a 
thought!

There are only two ways of splitting the exponential function 
series into two functions that differentiate into each other. One 
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way is the straight-forward splitting of the hyperbolic trigonomet-
ric functions, {cosh( ), sinh( )}. The other way is to throw a minus 
sign in before every second term of the two-way splittings of the 
exponential series and thereby produce the Euclidean trigonometric 
functions {cos( ), sin( )}. 

Aside: If we were to split the exponential series into three, we would 
get three functions that differentiated into each other. If we were 
to throw in a minus sign before every second term in the three-
way splittings of the exponential series, we would again get three 
functions that differentiate into each other; this is the basis of the 
3-dimensional trigonometric functions of the C3 geometric spaces.

Aside: In 1-dimensional space, the angle, x, is zero, and the 1-dimen-
sional trigonometric function is 1, since exp(0)  1, which is obvi-
ously a projection on to the axis from the unit circle of 1-dimensional 
space.

Aside: In 3-dimensional space (derived from the finite group C3), 
the trigonometric functions are matrix products of 3-way splittings 
of the exponential:

 
3 6 2

2 5 8

4 7 2

3 6 2

4 7 2

2 5

1 ... ... ...
3! 6! 1! 2!

... 1 ... ...
2! 5! 8! 1!

... ... 1 ...
1! 4! 7! 2!

1 ... ... ...
3! 6! 2! 1!

                    ... 1 ... ...
1! 4! 7! 2!

2! 5

x x x x

x x x x

x x x x

y y y y

y y y y

y y

 
     
 
 
 

     
 
 
      
 

    

    


8

... ... 1 ...
! 8! 1!

y y

 
 
 
 
 
 
 
 
     
  

  (9.4)
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The exponential “splittings” are more complicated for non-commu-
tative groups.

9.2 ROTATION MATRICES

Every type of geometric space has associated with it a matrix 
(linear transformation) that “moves” a point (it moves the point by 
multiplying the matrix representing the point) in that space in such 
a way that the point is the same distance from the origin after the 
movement as the point was before that movement. Such a move-
ment (linear transformation) is called a rotation. So, a rotation is just 
a movement that preserves the distance from the origin. The par-
ticular matrix that does the “rotational movement” is called a rota-
tion matrix.

The rotation matrix of a space is calculated by exponentiating 
the fi nite group matrix that underlies the space. We demonstrate 
with the fi nite group C2.

 

2 4 3 5

3 5 2 4

1 ... ...0 2! 4! 3! 5!exp
0

... 1 ...
3! 5! 2! 4!

0 cosh sinh
0 sinh cosh

a

a

b b b b
ba b e

b a e b b b b
b

h b b

h b b

 
                                  
 

   
   
      

  
(9.5)

The matrix containing the {cosh b, sinh b} functions is the rotation 
matrix of 2-dimensional space-time. As well as a matrix that rotates 
a point, we have a matrix {h} that moves the point toward or away 
from the origin, and so every point in space-time can be denoted 
by values of {h, b}. This polar form is simply space-time (hyperbolic 
complex numbers).

Aside: The hyperbolic complex numbers, , are a handed algebraic 
field. A handed algebraic field is an algebraic field which has no addi-
tive inverses on the real axis. They are the same thing as space-time 
in the same way that the Euclidean complex numbers, , are the same 
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thing as the Euclidean plane. Note that the Cartesian form of the 
hyperbolic complex numbers is not a handed algebraic field (it con-
tains singular matrices); only the polar form is a handed algebraic field. 
We could be rid of the handedness by putting a ± in front of the polar 
form, but the mathematics does not give us this, and so we go with the 
math. We cannot travel backwards in time, and so the math is right.

Now, each hyperbolic angle, , corresponds to a velocity through 
space-time. The hyperbolic complex numbers (space-time num-

bers) do not include the matrix 1 1
1 1

 
 
  

 as this would mean that cosh 

 sinh  for some hyperbolic angle, , which cannot be the case. 
This means that the hyperbolic angle that corresponds to the veloc-
ity of light is not part of the hyperbolic complex number algebra. 
Thus, it seems, light is outside of space-time.

Aside: The hyperbolic complex numbers, , were first discovered by 
Cockle1 (1819–1895) in 1848 (who was later to become the president 
of the London Mathematical Society 1886–1888). They have since 
been independently discovered at least thirfifteen times and have 
been given at lst thirteenen different names. It is remarkable that, 
although the Euclidean complex numbers, , are widely taught, 
the hyperbolic complex numbers are taught hardly anywhere. The 
various names are:

Tessarines Cockle2 1848
Algebraic motors Clifford3 1882
Hyperbolic complex numbers Vignaux4 1935
 Sobczyk5 1995
 Guo Chun Wen 2002

1. On certain functions resembling quaternions and on new imaginary algebra. Phil. 
Mag. (3), 33, pp. 435–439.
And On a new imaginary in algebra Phil. Mag. (3), 34, pp. 37–47.
2. On the symbols of algebra, and on the theory of tessarines Phil. Mag. (3), 34, 
pp. 406–410
3. Clifford, W.K. Mathematical Works (1882) pp. 392 “Further notes on biquaternions”.
4. Sobre el numero complejo hiperbolico y su relacion con la geometria de Borel. 
Universidad Nacional de la plata Republica Argentina
5. Sobczyk, G (1995) Hyperbolic number plane College Mathematics journal 
26:268–80.
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Bireal numbers Bencivenga6 1946
Approximate numbers Warmus7 1956
Double mbers Yaglornm8 1968
 Hazewinkle9 1990
Anormal complex numbers Benz10 1973
Perplex numbers Fjelstad11 1986
Lorentz numbers Harvey 1990
Dual numbers Hucks 1993
Split-complex numbers Rosenfi eld12 1997
Study numbers Lounesto13 2001
Twocomplex numbers Olariu14 2002

It is a fact that the complex numbers, , are most easily written as a 
2  2 matrix:

 
a b

a ib
b a

 
  
  

  (9.6)

This is the origin of the “weird” multiplication operation of the com-
plex numbers. Note:

 2

 

0 1 1 0
& 

1 0 0 1

a b c d ac bd ad bc

b a d c ad bc ac bd

      
     
             

   
   
       

 
  (9.7)

Also note that, when the real part, a  0, the  matrix is an anti-
symmetric matrix. (The off-diagonal elements are the negatives of 
the transpose.)

6. Sulla rappresentazione geometrica della algebra doppie dotate di modulo. Uldrico 
Bencivenga (1946).
7. Calculus of Approximations. Bulletin de L’Academie Polonaise de Sciences (1956) 
Vol. 4 No.5 pp. 253–257.
8. Complex numbersin geometry. Academic Press N.Y. pp. 18–20.
9. Double and Dual numbers – Encyclopedia of Mathematics Soviet/AMS/Kluwer, 
Dordrect.
10. Benz, W. Vorlesungen uber geometrie der algebren, Springer (1973).
11. Extending Special Relativity with Perplex numbers. American Journal of Physics 
54:416 (1986).
12. Geometry of Lie groups, Kluwer academic publishers.
13. Clifford Algebras and Spinors ISBN: 0-521-00551-5
14. Complex numbers in n-dimensions ISBN: 0-444-51123-7
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Throwing a minus sign into the C2 matrix gives us the rotation 
matrix of 2-dimensional Euclidean space:

2 4 3 5

3 5 2 4

1 ... ...0 2! 4! 3! 5!exp
0

... 1 ...
3! 5! 2! 4!

0 cos sin
0 sin cos

a

a

b b b b
ba b e

b a e b b b b
b

r b b

r b b

 
                                  
 

   
   
      

  (9.8)

Actually, the “throwing in” of a minus sign is a little more than just 
“throwing in”. The Euclidean complex numbers, , and the hyper-
bolic complex numbers, , (the space-time numbers) are essentially 
the only algebraic fi elds based on the fi nite group C2, but the details 
are too far from the subject of this book to concern us. We now have 
the complex numbers, , and thus the 2-dimensional Euclidean 
space that is the complex plane (not 2) in addition to the hyperbolic 
complex numbers (2-dimensional space-time). There are no more 
geometric spaces inside C2.

9.3 THE TWO TYPES OF 2-DIMENSIONAL SPACE

Because there are two and only two possible two-way splittings 
of the exponential series that differentiate into each other (the all 
pluses and the minus every second term splittings), there are two 
and only two types of 2-dimensional space – Euclidean and hyper-
bolic (space-time). This is why we have only two types of 2-dimen-
sional rotations, spatial and space-time rotations. This is also why, in 
2-dimensions, we have 2-way symmetry and anti-symmetry rather 
than some form of 3-way or 4-way symmetry.

So, from the fi nite group C2, we have two 2-dimensional spaces. 
Our understanding of the 4-dimensional space-time which we 
seem to inhabit is that it contains three copies of each of these two 
2-dimensional spaces. The six 2-dimensional rotations are perpen-
dicular to each other. We call that construction of six 2-dimensional 
rotations the Lorentz group. Thus, the Lorentz group is made of 
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two types of 2-dimensional rotations, rather than three or four types 
of 2-dimensional rotation, because of the nature of the exponential 
function. We will examine the Lorentz group in later chapters. 

One might expect that an object moving through these two differ-
ent spaces might be manifest in two different ways. One might expect 
that every object would have a kind of “duality” in how it is observed 
and that the observer would be able to infl uence how it is observed by 
changing the observing apparatus. Such “uncanny” behavior has been 
observed by physicists; they call it wave-particle duality. 

Motion through the  plane is not motion through time – there is 
no time in the  plane. Thus, an object in the  plane can be at lots of 
different places at the same time. This is called non-locality. Non-local-
ity is part of the uncanny nature of quantum mechanical phenomena.

Aside: It is by insisting on U(1) local invariance that particle phys-
icists derive the existence of the electromagnetic potential whose 
boson is the photon field (light). U(1) invariance is invariance under 
rotation in the (Euclidean) complex plane. Can we conclude that 
light is a phenomenon of the Euclidean space that is the (Euclidean) 
complex plane? Of course, light proceeds at a speed that is outside 
of the hyperbolic complex number algebra (space-time).

9.4 TRIGONOMETRIC IDENTITIES

We have15:

 
0 0

exp exp exp
0 0

a b a b

b a a b

          
                              

  (9.9)

and that the determinate of the exponential of a matrix with zero 
trace is unity16. Thus

 

2 2

0 cos sin
det exp det

0 sin cos

cos sin 1

b b b

b b b

b b

                             
  

  (9.10)

15. We can do this with matrices only if they commute, which these do.
16. This is a standard result (eigenvalues).
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Which is our fi rst trigonometric identity. Similarly:

 

2 2

0 cosh sinh
det exp det

0 sinh cosh

cosh sinh 1

b b b

b b b

b b

                            
  

  (9.11)

Notice the similarity

 
2 2

2 2

cos sin 1

cosh sinh 1

b b

b b

 

 
  (9.12)

between these two identities from two different types of space. The 
types of distances in these spaces are very different. One is what 
we normally call space, and the other is space-time. The angles in 
these spaces are very different. One is what we normally think of 
as an angle; the other is a change of velocity. Yet, there is a marked 
similarity between these spaces trigonometrically. Of course there 
is; they both derive from the group C2, and, trigonometrically, they 
are both connected to two-way splittings of the exponential series. 

Within 2-dimensional Euclidean space, we calculate the dis-
tance between two points by using the Pythagoras theorem. The 
Pythagoras theorem is not really anything to do with triangles; it is 
really the way that distance is calculated in 2-dimensional Euclidean 
space. There is a similar theorem, not necessarily quadratic, for each 
type of space. We have that the polar form of a complex number can 
be written in a Cartesian form. Thus:

 
0 cos sin

0 sin cos
r b b x y

r b b y x

     
     
           

  (9.13)

Taking the determinant of both sides gives:

 

2 2 2

0 cos sin
det det

0 sin cos
r b b x y

r b b y x

r x y

        
                         

 

  (9.14)

Which is the Pythagoras theorem (in Euclidean space). Further:

 

2 2 2

0 cosh sinh
det det

0 sinh cosh
h b b t z

h b b z t

h t z

        
                        

 

  (9.15)
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Which is the Pythagoras theorem (distance function) of space-time.

The product of two rotation matrices is the single matrix of a 
larger rotation:

 

 
   
   

cos sin cos sin
sin cos sin cos

cos cos sin sin cos sin sin cos
cos sin sin cos cos cos sin sin

cos sin
sin cos

q q f f
q q f f

q f q f q f q f
q f q f q f q f

q f q f
q f q f

   
   
       

  
 
    

   
    

  (9.16)

This is the origin of trigonometric identities like:

  cos cos cos sin sinq f q f q f     (9.17)

And:

 
   
   

cosh sinh cosh sinh
sinh cosh sinh cosh

cosh sinh
sinh cosh

q q f f
q q f f

q f q f
q f q f

   
   
      

   
   

  (9.18)

Leading to:

  cosh cosh cosh sinh sinhq f q f q f     (9.19)

and other similar hyperbolic trigonometric identities including:

  sinh sinh cosh cosh sinhq f q f q f     (9.20)

The (Euclidean) tangent of an angle is the gradient of the line from 
the origin to the point on the circle. It is calculated as: 

 
sin

tan
cos

gradient
qq
q

    (9.21)

There is a similar trigonometric function in space-time (the hyper-
bolic complex numbers). It is:

 
sinh

tanh
cosh

cc
c

   (9.22)
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NOTE   tanh tanh
tanh

1 tanh tanh
q fq f

q f


 


But, in space-time, the cosh( ) function is the projection on to the 
time axis and the sinh( ) function is the projection on to the space 
axis, and so:

 
sinh distance

tanh
cosh time

velocity
cc
c

     (9.24)

That tanh   velocity is an essential part of special relativity. Now:

 

tanh

sinh
cosh

cosh

cosh

 
  (9.25)

It follows that:

 
2

sinh
1

v

v
c 


  (9.26)

9.5 GAMMA

There is a minor complication that arises because we humans 
measure space and time in different units. We need to multiply 
space (the sinh( ) part) by the velocity of light, c, to balance the 
units of measurement that we humans use. When we do this, we get:

 

2

2

2

2

1
cosh

1

sinh

1

gamma
v
c

v
v

v
c

c g

c g

  



 



  (9.27)
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The expression with the square root is universally17 known as 
gamma, and is denoted by the Greek letter gamma. It occurs all over 
the place in special relativity. Now, cosh( ) is the projection from a 
unit circle (hyperbola) in space-time on to the time axis. Multiplying 
in space-time by cosh( ) effectively picks out the time part – this will 
become much clearer in the next chapter where it will be repeated. 
sinh( ) picks out the space part.

We have a plot of velocity against gamma (that passes through 1 
on the vertical axis) and against the product of velocity and gamma 
(that passes through 0 on the vertical axis):

What we have done in space-time with the hyperbolic complex num-
bers, we can do in Euclidean space with the complex numbers. In 

this case, the ratio of the trigonometric functions sin
tan

cos
qq
q

  is the 

gradient of the line from the origin to the point on the circle and not 
the velocity:

 
2

2
2

2

tan

1 cos
cos

1
cos

1

g

g

g

q

q
q

q









  (9.28)

17. That is universally on Earth.
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It follows that:

 
2

sin
1

g

g
q 


  (9.29)

Because we measure horizontal space in the same way as we mea-
sure vertical space, there is no c2 in this expression. We place the 
results side-by-side for the reader to cogitate upon:

 
2 2

2 2

1 1
cos    :    cosh

1 1

sin    :     sinh
1 1

g v

g v

g v

q c

q c

 
 

 
 

  (9.30)

We can now express our rotation matrices for Euclidean space and 
for space-time respectively as:

 
2 2

1 11 1
     :      

1 11 1

g v v

g v vg v

g g
g g

     
     
            

  (9.31)

Since time and space are the same things, we ought to balance the 
nature of the elements of the space-time rotation matrix as:

 

v
c

v
c

g g

g g

 
 
 
 
 
  

 (9.32)

The determinant of these rotation matrices is unity; of course it is – 
they are rotation matrices:

 2 2 2 2 2

2

2

2

det (1 )

1
(1 ) 1

1

v
v v

v

v
v

g g
g g g

g g

  
          

 
     

  (9.33)

This means that, since, for matrices in general det(A)det(B)  
det(AB), multiplying a matrix by the rotation matrix will leave the 
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determinant unchanged. The determinant is an invariant of the 
rotation. The determinant is the distance function. It is the distance 
from the origin that is invariant. That is what rotation is!

Aside: Within general relativity, within a gravitational field, we have:

 2

2

1

1
v a

rc

g 

 
  (9.34)

The 
a
r

 term is the gravitational potential term.

9.6  THE GRAPHS OF THE TRIGONOMETRIC 
FUNCTIONS

The nature of the Euclidean trigonometric functions is that the 

sin( ) function is just the cos( ) function displaced by .
2
p The graphs 

of these functions are:

It is because these functions repeat themselves every 2 that we 
are able to rotate all the way round to where we started after 2. 

Because sin cos( )
2
pq q

 
   

 
, the two axes of the complex plane are 
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of the same spatial nature, but rotated by .
2
p  There is no such rela-

tion between the hyperbolic trigonometric functions. The hyperbolic 
trigonometric functions do not repeat themselves. The graphs of 
{cosh( ), sinh( )} are:

wherein the graphs fl y off to ± infi nity in the vertical direction. The 
cosh( ) graph is the one that does not cross the horizontal axis. Note 
that, in contradistinction to the cosine function of Euclidean space, 
cosh 1c g  .

Although it is diffi cult to see, we have that sinh( ) is less than 
cosh( ) for all values. This is important because it means that the 
hyperbolic complex numbers are a (handed) division algebra. The 
matrix:

 0 cosh sinh
0 sinh cosh
h b b

h b b

   
   
      

  (9.35)

will never have a zero determinant, and so every such matrix has a 
multiplicative inverse. That sinh( ) < cosh( ) also means that the 

velocity, sinh
cosh

v
c
c

  will always be less than 1 (that is always less 

than the speed of light). It is the limiting velocity of space-time 
that ensures the order of events is conserved (cause and effect) – 
see later. This limiting velocity exists because of the nature of the 
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hyperbolic trigonometric functions. They inherit this nature from 
the exponential function. Thus, we have the exponential function to 
thank for our living in a “cause and effect” universe.

If the universe allowed the sinh( ) function to equal the cosh( ) 
function, then the hyperbolic complex numbers would not be a divi-
sion algebra (singular matrices would be possible). If the universe 
allowed the sinh( ) function to exceed the cosh( ) function, then 
there would be no ordering of events in the universe and thus no 
cause and effect in the universe. The universe does exactly as much 
as is possible without upsetting folk. 

Note that the cosh( ) function is never zero (look at the series 
expansion above). Thus the projection from space-time on to the 
time axis can never be zero. This is why time never stops fl owing. 
It seems that it might also be why we have non-zero rest mass and 
non-zero electric charge (electrons).

To repeat: Inspection of the series expansions of the cosh( ) and 
sinh( ) functions will show a differentiation cycle:

 cosh sinh ,     sinh cosh
d d

x x x x
dx dx

    (9.36)

Similarly for {cos( ), sin( )}

 cos sin ,     sin cos
d d

x x x x
dx dx

     (9.37)

Since these functions are projections on to the different axes, the 
differentiation cycle “defi nes” a unit circle to be such that the hori-
zontal co-ordinate is the rate of change with respect to the angle of 
the vertical co-ordinate (up to a sign) and the vertical co-ordinate 
is the rate of change of the horizontal co-ordinate with respect to 
the angle. This coincides with the geometric defi nition of a circle as 
being a set of points at unit distance from the origin.

Let us differentiate the rotation matrix with respect to the angle. 
We use the off-diagonal matrix element because it is this that we 
exponentiate to get the rotation matrix. The reader might be unfa-
miliar with matrix differentiation; we cover it later:
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cosh sinh cosh sinh
sinh cosh sinh cosh

0 0 1 0
0 1 0 0

sinh cosh1
0 1 cosh sinh
1 0

0 1 sinh cosh
1 0 cosh sinh

cosh sinh
sinh cosh

d d

d d

c c c c
c c c c

c c
c c

c c
c c

c c
c c

c c
c

   
   
      

     
     
          

 
 

     
  
   
   
      


c

 
 
  

  (9.38)

And so, the rotation matrix differentiated with respect to the angle 
is the rotation matrix. Note that the rotation matrix is derived from 

the 
0

0
z

z

 
 
  

 part of the hyperbolic complex number, and so we have 

to take account of this when we differentiate.

Note to sci-fi  writers: To construct a universe, fi rst construct, 
or discover, a space. Calculate the rotation matrix in that space and 
then fi nd the physical laws that would be invariant under rotation 
in that space. You now have the basis for a well founded sci-fi  story! 

PS: The fi nite group C3 or, for the ambitious, A5 will give you some 
true sci-fi . 

EXERCISES

1. Force from empty spaces: Use the Euclidean distance func-
tion (Pythagoras) to draw a straight line passing through 
three points in the Euclidean plane (that is on a flat piece of 
paper). Now, and this is not easy, draw the same line passing 
through the same points in space-time (with the space-time 
distance function). Is the line is space-time straight? (It is 
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not straight.) Now, an observer in Euclidean space watching 
an object move in a straight line through Euclidean space 
will say that no force acts upon that object. Will an observer 
in space-time, who sees the same object move in a curved 
trajectory, see a force acting upon that object? 

2. Calculate to three terms sin
4
p 

  
 

 from the series (9.3) .

3. Calculate to three terms cosh(ix) from the series (9.2) and 
compare it to the series for the cos( ) function.

4. Calculate to three terms sinh(ix) from the series (9.2)  and 
compare it to the series for the sin( ) function.

5. Differentiate the infinite series 
2 5 8

...
2! 5! 8!
x x x

    with respect 
to x and compare it to (9.4).

6. (Just for fun) Sum the series in (9.4) and calculate the prod-
uct of the two matrices. The answer will surprise you!
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CHAPTER 10
INTRODUCTION 
TO VECTORS

The temperature at each position in a room is a real number 
associated with that position. We say that the temperature at the 
point whose co-ordinates are, say, (1, 2, 3) is the number, say, 35. 
This means that, at that point, the temperature is 35C. At a differ-
ent point, the number might be 32. Such a distribution of real num-
bers, one for each point in the room, is called a scalar fi eld. A scalar 
fi eld is just a single real number at each point.

Now, some things, and a magnetic fi eld is one of these things, 
have, not only a numerical value at each point in a room, but also a 
direction – think direction pointed by a compass needle. The mag-
netic fi eld might have strength 2 in the down direction at one point 
in the room and strength 5 in the up direction at a different point 
in the room. Such a fi eld is called a vector fi eld. A vector fi eld is a 
strength and a direction at each co-ordinate point. We visualise a 
vector fi eld as being a set of little arrows with one little arrow being 
at each point in the space. The direction of each arrow indicates 
the direction of the vector fi eld at that point, and the length of each 
arrow is equal to the fi eld strength at that point.

Aside: Vectors were first introduced by Hermann Grassman (1809–
1877), but vector calculus was invented by Josiah Willard Gibbs 
(1839–1903) and Oliver Heaviside (1850–1925) in 1888 when they 
rewrote Maxwell’s quaternion formulation of electromagnetism in 
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vector form. The dot product and the cross product were invented 
by Gibbs in 1903.

A vector in a space (or space-time) is a set of ordered real numbers. 
There is one number for each dimension of the space (or space-
time). The ratios of the numbers give the direction of the vector and 
the values of the numbers allow us to calculate the length (strength) 
of the vector. For example: conventionally, a vector in 2-dimensional 
space looks like:

 2
1
 
 
 

 (10.1)

The top number (the 2) is the length of the vector in the horizontal 
direction (the x co-ordinate), and the bottom number is the length 
of the vector in the vertical direction (the y co-ordinate). The whole 
vector is the arrow starting at the origin and ending at the point (2, 1):

Vectors are often written in the form: 1 2ae be
uur uur

 where  1 2,e e
uur uur

 are 
the orthogonal unit basis vectors along each axis of length one in the 
different directions. The above vector would be written in this form 
as: 1 22 .e e

uur uur

We can work out the length of the vector using the Pythagoras 
theorem. In Euclidean space, this is:

 2 2 2 22 1 5length x y      (10.2)

In space-time, the Pythagorean like theorem is:

 2 2 2 22 1 3length t z      (10.3)
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It is important to realize that each type of space has its own type 
of distance function (Pythagoras type theorem). However, in all 
types of space, a vector is just an ordered set of real numbers that are 
the co-ordinates of the head of the arrow representing the vector.

Above, we have chosen a co-ordinate system that has the x-axis 
horizontal and the y-axis vertical. We need not have chosen them 
this way. We might have chosen that the x-axis was at 45 to the 
horizontal and the y-axis similarly adjusted. However, the vector 
represents a thing, like a magnetic fi eld, that really exists. Magnetic 
fi elds do not adjust themselves to suit how we arbitrarily choose to 
align our co-ordinate axes. The vector does not change its direction 
because we have changed our co-ordinate system. If we did choose 
our co-ordinate system such that the x-axis pointed at 45 to the hor-
izontal, then, in 2-dimensional Euclidean space, the vector would be 
the “rotated” numbers:

 

3
cos sin 2.cos 1.sin2 24 4 4 4

1 1
sin cos 2.sin 1.cos

4 4 4 4 2

p p p p

p p p p

          
      
                 

 (10.4)

Note that the 2-dimensional Euclidean rotation matrix changes the 
components of the vector appropriately. The components of the 
vector change when we change the co-ordinate system, which ought 
not to surprise the reader, but the (Euclidean) length of the vector 
stays the same:

 

2 2

2 2 2 2

2.cos 1.sin 2.sin 1.cos
4 4 4 4

4 cos sin 1 cos sin
4 4 4 4

5

length
p p p p

p p p p

   
          

   

   
         

   



  (10.5)

Which ought not to surprise the reader until they think about how 
remarkable it really is that a rotation matrix from the fi nite group C2 
preserves the length of a vector under rotation of co-ordinate sys-
tem. It works because cos2  sin2  1, and this is the case because 
the determinant of the exponential of a matrix with zero trace is 
always unity; it is by exponentiating such a matrix that we derived 
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the rotation matrix, and it is from C2 that we have such a matrix. 
Does it not fi t together well?

In space-time:

 
cosh sinh 2.cosh 1.sinh24 4 4 4

1
sinh cosh 2.sinh 1.cosh

4 4 4 4

p p p p

p p p p

       
    

    
      

 (10.6)

With length:

2 2

2 2 2 2

2.cosh 1.sinh 2.sinh 1.cosh
4 4 4 4

4 cosh sinh 1 cosh sinh
4 4 4 4

3

length
p p p p

p p p p

         
   

         
   



 (10.7)

We have written earlier in this book about the physics of the uni-
verse being invariant under change of direction. We pointed out that 
kettles boil at the same temperature regardless of the direction in 
which their spouts point or the speed at which they move. We have 
just seen that the length of a vector, which is the strength of the vec-
tor (magnetic) fi eld, does not vary when we rotate our co-ordinate 
system. This is the same thing as the invariance under rotation of 
physical phenomena, but we are rotating the co-ordinate system 
rather than the physical apparatus.

Now, how we orientate our co-ordinate system, and whether we 
choose a Cartesian co-ordinate system or some other co-ordinate 
system like a polar co-ordinate system for example, is an arbitrary 
choice made by humankind. It seems reasonable that the physical 
phenomena of the universe should be the same regardless of how 
we choose our co-ordinate system. So, what is there about a vec-
tor fi eld that is invariant under change of co-ordinate system? The 
components of a vector vary with the co-ordinate system chosen, 
but the length of the vector stays the same regardless of how we 
change the co-ordinate system. Since vector length corresponds to 
the fi eld strength, this means that the fi eld strength stays the same 
under change of co-ordinate system.
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As well as the length of a vector, there is one other thing about a 
vector fi eld that is invariant under change of co-ordinates. This is the 
angle between two vectors; this effectively means that the direction 
of the vector fi eld stays the same under change of co-ordinate system. 

We have written a vector above in the conventional way as a 
column matrix of two components. We then multiplied this column 
matrix by a (square) rotation matrix1. The reader will have been taught 
that it is okay to multiply a column matrix by a square matrix, and 
mathematicians and physicists do this all the time, but, to a pedant, 
this is wrong. To be perfectly correct, one cannot multiply a dog by a 
cat, and one cannot multiply a square matrix by a not-square matrix. 
This is not a problem to us because we are now going to write our 
vectors as square matrices. A vector in 2-dimensional Euclidean space 
(the complex plane, ) is just a complex number and is written as:

 0 cos sin
0 sin cos

u u v r

v v u r

q q
q q

       
                

 (10.8)

We note that the length of the vector: 

 
2 1
1 2

 
 
  

 (10.9)

is just the square root of the determinant: 2 22 1 5.   Of course, 
the determinant of a matrix is invariant under change of basis of the 
matrix (similarity transformation).

A vector in 2-dimensional space-time is just a hyperbolic com-
plex number and is written as:

 
0 cosh sinh

0 sinh cosh
t t z h

z z t h

c c
c c

       
        
              

  (10.10)

We note that the length of the vector: 

 
2 1
1 2

 
 
  

  (10.11)

is just the square root of the determinant:

 
2 22 1 3    (10.12)

1. All rotation matrices are square – it is not hard to square a circle.
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It is now much easier for us to calculate the angle between two vec-
tors. Let us take two vectors in the  plane. Let the angle between 
them be . In polar form, these vectors are:

 
   
   

0 cos sin
  &   

0 sin cos

0 cos sin
0 sin cos

r

r

s

s

q q
q q

q f q f
q f q f

   
      

   
        

   (10.13)

First we normalize these vectors by dividing by {r, s} respectively. 
Then we take the conjugate of one (either will do – watch the minus 
sign) and multiply the two together.

 
   
   

   
   

cos sin cos sin
sin cos sin cos

cos sin
sin cos

cos sin
sin cos

q q q f q f
q q q f q f

f f
f f

f f
f f

      
        

    
   
 
 
  

  (10.14)

We have an expression for the angle, , between the two vectors. We 
will do exactly the same with the Cartesian forms of the vectors. Let 
the two vectors in Cartesian form be:

   &   
a b c d

b a d c
   
       

  (10.15)

Normalizing, taking the conjugate of the leftmost, and multiplying 
gives:

 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

a b c d

a b a b c d c d
b a d c

a b a b c d c d

ac bd ad bc

a b c d a b c d

ad bc ac bd

a b c d a b c d

   
   

         
      
         

  
 
                  

  (10.16)
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Putting these two together gives:

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

cos sin
sin cos

ac bd ad bc

a b c d a b c d

ad bc ac bd

a b c d a b c d

f f
f f

  
 

                       

  (10.17)

And so, we can calculate the angle between the two vectors as either 
the cos( ) of the angle or the sin( ) of the angle from the Cartesian 
components. The expression:

 ,
a c a c

ac bd
b d b d

       
          
              

  (10.18)

is called the dot product of the two vectors in Euclidean space. It is 
also called the inner product of the vectors. Note that:

 
a c c a

b d d b
       

         
       

  (10.19)

This is because the angle  between two vectors is the same when 
measured “clockwise” as it is when measured “counterclockwise”. 
This “obvious” fact would not be the case if it were not that the 
cos( ) function is symmetrical about the vertical axis (see graph). 
For this, we thank the exponential function; without it, an angle 
measured in the clockwise direction would be different from the 
same angle measured in the counterclockwise direction. 

The expression:

 
a c

ad bc
b d
   

     
   

  (10.20)

is called the cross-product, or outer product, of the two vectors in 
Euclidean space. The cross-product of two vectors is often thought 
of as an axial vector in 3-dimensional space. The idea is that the 
cross-product of two vectors in 3-dimensional space is a vector that 
is perpendicular to the plane that contains the two vectors that are 
crossed together to form the cross-product. There is no place for such 
a notion in 2-dimensional space. We are working in the 2-dimen-
sional spaces that are derived from the fi nite group C2. These spaces 
cannot “grow” another dimension to accommodate the notion of 
the cross-product any more than the fi nite group C2 can transmute 
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into the fi nite group C3. In these spaces, the cross-product is simply 
another way to calculate the angle between two vectors. However, 
the cross-product does occur often in classical physics (the electro-
magnetic force law), and the reader will need to know of it, and of 
its interpretation as a vector perpendicular to the plane of the two 
component vectors that form it in 3 space.

Aside: Since Grassman’s first work with vectors, mathematicians 
have sought to introduce a way of multiplying two vectors together 
to give a vector. Grassman introduced the exterior product and Wil-
liam Kingdon Clifford (1845–1879) introduced the Clifford prod-
uct2, neither of which really work. The Grassman algebras have non-
zero numbers that square to zero, and the Clifford product is a scalar 
and a vector. In two dimensions, cl2, the Clifford product is based on:

 
   

     

2 2
1 2 1 2 2 1

2 2 2
1 2 1 2 1 2 1 2

1     &        

1

e e e e e e

e e e e e e e e

   

    

r r r r r r

r r r r r r r r
  (10.21)

Thus:

   
    

 
 

2
1 2 1 2 1 1 21 2 1 2 1 1 1 2

2
2 1 22 1 2 2

1 21 1 2 2 1 2 2 1

a e a e b e b e a b e a b e e

a b e e a b e

a b a b a b a b e e

   

 

   

r r r r r r r

r r r

r r

  (10.22)

Wherein we effectively have both the dot product and the cross 
product. We note that we have two square roots of plus one and one 
square root of minus one. The reader might think we have a type of 
complex number. With a minor change, we do have a type of com-
plex number; this is an A3 algebra.3

Aside: The cross-product of two vectors is dual to a vector in only 
3 space and 7 space. This notion has its origin in the Clifford alge-
bras. This is connected to the existence of the quaternions and the 
octonians. The cross-product in 4 is seen as a 2-dimensional plane, 
and the cross product in 5 is seen as a 3-dimensional volume.

2. Applications of Grassman’s extensive algebra American J., 1, 350–358 M. P. 266–276.
3. See:  Dennis Morris : The Naked Spinor – a rewrite of Clifford algebra ISBN: 
978-1507817995
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If we use the dot product to calculate the angle between a vector and 
itself (which is zero), we get:

 

2 2

2 2 2 2 2 2 2 2

2 2

2 2 2 2 2 2 2 2

cos0 sin 0
sin 0 cos0

1 0
0 1

a b ab ba

a b a b a b a b

ab ba a b

a b a b a b a b

  
 

                       
 

  
 

   (10.23)

But if we do not normalize the vector, we get:

 2 2 2 ,
a a a a

r a b
b b b b
       

           
       

  (10.24)

Thus, the dot product of a vector with itself is the length (squared in 
2-dimensional space) of the vector.

To calculate the angle between two vectors in space-time, we do 
the same as above but adjusted for the different type of space.

     

   
   

   
   

   
   

   
   

cosh sinh cosh sinh
sinh cosh sinh cosh

cosh sinh cosh sinh
  

sinh cosh sinh cosh

a b c d a b c d

b a d c b a d c

j j j c j c
j j j c j c

j j j c j c
j j j c j c

    
       

     
         

       
               

  (10.25)

This leads to:

   
2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

cosh sinh
sinh cosh

ac bd ad bc

a b c d a b c d
ad bc ac bd

a b c d a b c d

c c
c c

  
            
 

    

 (10.26)

Of course, the space-time angle, , between two vectors is a differ-
ence in velocities. The length of a vector is given by the dot product 
of the vector with itself:

 2 2 2 ,
a a a a

h a b
b b b b
       

           
       

  (10.27)
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In the case of space-time, the algebra of the hyperbolic complex 
numbers demands that the real part of a vector be greater than the 
imaginary part (except for the zero vector) to avoid singular matri-
ces, and so the length of the vector must be positive.

We can see that the dot product of two vectors is different for 
each type of space, but the notation is, conventionally, the same. We 
will have to be careful.

10.1 ORTHOGONALITY AND PERPENDICULARITY

In the Euclidean space, the cosine function is zero when the 
angle is 90. Since the normalized dot product of two vectors is equal 
to the cosine of the angle between them, when the dot product of 
two vectors is zero, the angle between the vectors is 90 – the two 
vectors are perpendicular to each other. In Euclidean space, when 
the dot product of two vectors is zero, we say that the two vectors 
are orthogonal. In Euclidean space, orthogonal means the same as 
perpendicular.

It is also conventional to say that two vectors in space-time are 
orthogonal if their dot product is zero; however, this is not without a 
diffi culty. We have:

 
cosh sinh
sinh cosh

a b c d a b c d

b a d c b a d c

ac bd bc ad

bc ad ac bd

c c
c j

       
               

    
       

  (10.28)

The cosh( ) function can never be zero, and so the dot product is 
never zero (unless the vector is of zero length, which doesn’t count) 
– that’s the diffi culty. Like the cos( ) function is unity if the angle 
is zero, so too the cosh( ) function is unity if the angle is zero, but 
there is no angle in space-time that makes the cosh( ) function zero. 
This fi ts with the algebraic requirement that, except for the zero 
matrix, the absolute value of the real part of a hyperbolic complex 
number must be greater than the absolute value of the imaginary 
part – in the above we have:  , 0.a b c d ac bd      Thus, the 
convention of saying two vectors are orthogonal in space-time if 
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their dot product is zero is nonsense – that’s the diffi culty, again. 
This does not mean that the concept of perpendicularity is meaning-
less in space-time. 

In Euclidean space, perpendicular means being at 90. We can 
take the view that “perpendicular in a general sense” means “inde-
pendent of”. In which case, perpendicular means that the x-direction 
is independent of the y-direction, and the same applies to space-
time with the time-axis being independent of the space-axis. 

We will later fi nd that we must adopt the view that orthogonal 
means “in an independent direction in some basis”. Only with this 
view is it sensible to say that, for Euclidean space, the x-axis is orthog-
onal to the y-axis, and, for space-time, the time-axis is orthogonal to 
the space-axis. It is “accidental” that within Euclidean space the dot 
product is zero exactly when the argument of the cos( ) function is 
90. Such an “accident” cannot happen in space-time. 

10.2 DIFFERENTIATION (THE STANDARD VIEW)

In Newtonian mechanics, when we want to know the velocity of 
an object, we differentiate its distance with respect to time:

 
ds

v
dt

   (10.29)

If we want to know the object’s acceleration, we differentiate its 
velocity with respect to time:

 
2

2

dv d s
a

dt dt
    (10.30)

This works in Newtonian mechanics because we assume that the 
processes of the universe fl ow at the same rate for both the station-
ary observer and the moving object being observed. Except for very 
high velocities, this is very close to being true. However, since, as 
we will see in more detail later, the processes of the universe fl ow 
at a slower rate for a moving object than for a stationary observer, 
when we differentiate with respect to time, we are differentiat-
ing with respect to something that is itself varying. We can do this 
provided we know how the variable with respect to which we are 
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differentiating is varying, but it is conceptually easier to differentiate 
with respect to something that is invariant. For a single vector, the 
only invariant is its length, which is the determinant of the matrix 
that represents it. Thus, we need to differentiate with respect to 
the determinant. We will do this for space-time; we will denote the 
determinant by the squared Greek letter . We have:

 2 2 2 det   :   
t z

t z t z
z t

t
  
         

  (10.31)

We take the differentials:

 

     2 2 2

2
2

2

1 1

1

1

d dt dz

d dz
v

dt dt
dt
d v

t

t

t

 

      
 

 


  (10.32)

Inserting the velocity of light, c, to adjust the units of space to time, 
gives:

 2

2

1
cosh

1

dt
d v

c

g c
t
  


   (10.33)

It’s that gamma thing again!

Again, we take the differentials:

 

     2 2 2

2
2

2

2

1 1
1 1 1

1

d dt dz

d dt
v

dz dz vv
dz v
d v

t

t

t

 

        
 

 


  (10.34)

Inserting the velocity of light, c, to adjust the units of space to time, 
gives:

 2

2

sinh

1

dz v
v

d v
c

g c
t
  


   (10.35)

This is that sinh( ) thing again.
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We do the same as above with Euclidean space. This time we 
will denote the determinant by the squared Greek letter .

 2 2 2 det
x y

x y
y x

s
  

       
  (10.36)

We take the differentials:

 

2 2 2

2
2

2

( ) ( ) ( )

1 1

1
cos

1

d dx dy

dyd
g

dx dx

dx
d g

s

s

q
s

 

      
 

  


  (10.37)

We have no need to adjust the units. Similarly, we have:

 
2

sin
1

dy g
d g

q
s
 


  (10.38)

10.3 DIFFERENTIATION WITH MATRICES

We begin with the space-time matrix in 2-dimensional space-
time. This is:

     :     
t z

t z
z t
 

 
 

  (10.39)

We differentiate it with respect to the invariant interval, . Now  is 
a real number, and so it is of the form:

 
0

0
t

t
 
 
 

  (10.40)

Differentiating with respect to this matrix is just differentiation with 
respect to a real number. We have:

 cosh sinh
0 sinh cosh

0

t z dt dzd
vz t d d

dz dt v
d

d d

g g c ct t
t g g c c

t tt

                         
     

  (10.41)
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We have calculated the rotation matrix without having to exponenti-
ate the matrix. Remember, each trigonometric function measures 
the rate of change of the other trigonometric functions with respect 
to the angle. What we have above is the measuring of the rate of 
change of the projection on to the axis of the unit vector as it rotates 
– this is the trigonometric functions.

Aside: An alternative definition of the exponential function:

Differentiate a C2 space-time vector with respect to the length of 
that vector and add the two resulting trigonometric functions to get:

 
2 3

cosh sinh 1 ... ... exp
2! 1! 3!
c c cc c c          (10.42)

Thus, the exponential function (which is the god of all things) comes 
from the finite group, C2. It would work, in a more complicated way, 
with any finite group, actually.

10.4  DIFFERENTIATION OF VECTOR FIELDS AND 
SCALAR FIELDS

A vector fi eld has two derivatives known as {Div, Curl}. A scalar 
fi eld has one derivative known as {grad}. We show how to derive 
these in the fi nite group spaces. In general, when working in the 
geometric spaces that are derived from the fi nite groups, we take 
the differential when we differentiate. Consider the vector fi eld in 
Euclidean space:

 
( , ) ( , ) ( , )

( , ) ( , )
( , ) ( , ) ( , )

u x y u x y v x y
F u x y iv x y

v x y v x y u x y
   

         
   (10.43)

We take the differential as:

 

( , ) ( , )
( , ) ( , ) ( , ) ( , )
( , ) ( , )

u x y v x y

u x y v x y v x y u x y
d

x yv x y u x y

y x

 
             

  (10.44)
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We cannot differentiate directly with respect to the imaginary part 
of a complex number, and so we have to do it indirectly. We can dif-
ferentiate with respect to the real part of a complex number, and so 
we need to make a few arithmetic adjustments:

 
( , ) ( , )

( , ) ( , ) ( , ) ( , )
0( , ) ( , )

0

( , ) ( , )
( , ) ( , )1

0 1 0
1 0 0

0 1
1 0

u x y v x y

u x y v x y v x y u x y
d

xv x y u x y

x

u x y v x y

v x y u x y
y

y

u vu v
y yx x

v u v u
x x y y

 
            

 
 

   
   

      
    

                         

   
   

u v v u
x y x y

v u u v
x y x y

Div F Curl F

Curl F Div F





                
    

      
 

   

  

(10.45)

The expressions within the matrix are known as the divergence and 
the curl of the vector fi eld. With a scalar fi eld, we get the gradient of 
the scalar fi eld:

 
00( , ) 0 0 1

0 ( , ) 1 0
0 0

uu
u x y yxd

u x y u u
x y

  
                    
      

  (10.46)

                  

 

u u
x y

Grad F
u u
y x

      
  
   

  (10.47)
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We will use this method of differentiation in the later chapters of 
this book, and we will prefer it to the standard way of differentiating 
with respect to the invariant interval.

If we do the above with space-time, we get:

 

   
   

( , ) ( , )
( , ) ( , ) ( , ) ( , )

0( , ) ( , )
0

( , ) ( , )
( , ) ( , )1

0 1 0
1 0 0

u t z v t z

u t z v t z v t z u t z
d

tv t z u t z

t

u t z v t z

v t z u t z
z

z

u v v u
t z t z
v u u v
t z t z

Div F Curl F

Curl F Div F

 
            

 
 

  
 

   
   

   
           
     
     
 

 


   : Div F Curl F






  (10.48)

Notice that the divergence and curl in space-time are not quite 
the same as in Euclidean space. In particular it is brought to the 
reader’s notice that the curl in space-time is symmetric in that 

v u u v
t z z t
   

  
   

 while the curl in Euclidean space is anti-symmet-

ric in that .
v u u v
x y y x

    
    

    
 We normally associate the curl of 

a vector fi eld with the “force” of that fi eld. Thus, we see that space-
time has symmetric forces whereas Euclidean space has anti-sym-
metric forces. Notice also that the determinant of the above matrix is:

 
2 2

det

u v v u
u v v ut z t z

v u u v t z t z
t z t z

                                                

  (10.49)
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The determinant of a matrix is invariant under change of basis (rota-
tion is one such change of basis). Thus we have that, in space-time:

 2 2( ) ( ) constant 0Div F Curl F     (10.50)

for vector fi elds over space-time (other types of space have a similar 

result). For a stationary observer, 0.
u v
z z
 

 
 

 It is only by taking 

a “God’s eye view” that we get the above relationship between the 
divergence and curl of a vector fi eld in space-time. 

10.5 POTENTIALS

A potential is something that we differentiate to get a fi eld. 
Within electromagnetism, we have two potentials; one is a scalar 
potential, , and the other is a vector potential, .A


 (We will do more 

on this later.) We get the electric fi eld, E,


 and the magnetic fi eld, B,


 
by differentiating these potentials as:

 

 

B A

AE

( )curl

grad
t

f




  



 


  (10.51)

We get the gravitational fi eld by differentiating the gravitational 
potential, , as:

 a  
r

  (10.52)

Aside: It used to be thought, and to some extent still is, that poten-
tials do not really exist and that only the fields that we get from 
them actually exist. It was thought that potentials did not produce 
any observable effects to confirm their existence. The potential 
was thought of as only a mathematical artifice. However, in 1959, 
Aharonov (1932– ) and Bohm4 (1917–1992) proposed an experi-
ment that would be capable of detecting the potential. This experi-
ment was done by Chambers5 in 1960 and showed that potentials do 

4. Y. Aharonov & D.Bohm, Phys. Rev. 115, 485 (1959).
5. R.G. Chambers, Phys. Rev. Lett. 5, 3, (1960).
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exist and are detectable. The effect is known as the Aharonov-Bohm 
effect. It compels us to take the view that the potential does exist 
and has to be thought of as a physical field that really exists and is 
directly observable6. The Aharonov-Bohm effect is concerned with 
the direction of a unit vector in the 2-dimensional Euclidean com-
plex plane. This direction is known as “the phase” of the vector. It 
seems that an electromagnetic potential is nothing more than a vec-
tor in the Euclidean complex plane, one at each point in space-time, 
that points in a different direction in the Euclidean complex plane 
at each different point in space-time. Thus, it seems, we are laying 
one type of space, the Euclidean complex plane, over another type 
of space, space-time, and the potential is just how the axes of the 
two spaces are oriented relative to each other at each point in space-
time. The phases form the Lie group U(1). We will meet potentials 
when we consider electromagnetism.

10.6 FIVE FUNDAMENTAL VECTORS

Within mechanics, there are fi ve fundamental vectors. Although 
this is true in space-time, and other types of space, the reader will be 
more familiar with the 3-dimensional spatial vectors together with 
time in the Newtonian world view. We use this scenario to illustrate 
the fi ve fundamental vectors. The fi rst is the displacement (position) 
vector:

 r [ ]x y z
r

  (10.53)

Differentiating this with respect to time gives the velocity vector:

 
rv

dyd dx dt
dt dt dt dt

     

r
r

  (10.54)

Differentiating this with respect to time gives the acceleration vector:

 va
22 2

2 2 2

d yd d x d t
dt dt dt dt

 
   

  

r
r

  (10.55)

6. Interested readers are directed to H. Erlichson, Amer. Jour. Phys, 38, 162 (1970). 
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Multiplying the velocity vector by the mass gives the momentum 
vector, and multiplying the acceleration vector by the mass gives the 
force vector:

 
p v

f a

m

m





r r

r r   (10.56)

These fi ve vectors are the basis of mechanics in any space7. They 
are not the only vectors. When we look at electromagnetism we will 
introduce the electric fi eld vector and the magnetic fi eld vector.

This has been quite a heady chapter. We summarize it. The 
physically measurable quantities of a vector fi eld are its strength 
(length of vector) and its direction (angles between vectors). These 
physically measurable quantities are invariant under change of co-
ordinate system, which includes rotation of the observer’s point of 
view. These physical things are calculated by the dot product of one 
vector with itself and by the dot product of two vectors. The dot 
product of a vector with itself is called the norm of the algebra.

The main point is that the dot product of a vector fi eld is invari-
ant under rotational transformation. Worth emphasis, methinks!

The dot product (also called the inner product) is 
invariant under rotation.

Rotation does not change the length of the vector or the angle 
between two vectors.

Change of velocity is rotation in space-time. If we change the 
velocity of a vector fi eld (an electric fi eld say by setting an electric 
charge in motion) the dot product of that vector fi eld (the electro-
magnetic fi eld) will be unchanged even as the components of the 
vector fi eld (the electric fi eld and the magnetic fi eld) do change. In 
mathematics:

 

det det

det

v E B E v B B v E

v B E B v E E v B

E B

B E

g g g g g g
g g g g g g

         
                 

  
   

  

 (10.57)

7. Some authors posit six fundamental vectors. They include a vector that is tangent 
to a moving object, but we have no need of this.
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EXERCISES

1. What is the length of the space-time vector 
5 4

?
4 5
 
 
 

2. What is the length of the space-time vector 
cosh sinh

?
sinh cosh

c c
c c

 
 
 

3. What is the space-time angle (cosh( ) equals dot-product) 

between the space-time vectors 
5 4 2 1

& ?
4 5 1 2
   
   
   

4. Differentiate the space-time vector field to get the space-
time divergence and the space-time curl of the space-time 

vector field 
2 3

3 2

2
.

2

x y y

y x y

 
 

  
5. Differentiate the space-time scalar field to get the space-time 

gradient of: 
3 2

3 2

2 0
.

0 2

x y

x y

 
 

  
6. What is the cross product of the 3 vectors: {[1 2 0], 

[4 8 0]}?
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CHAPTER 11
THE NATURE OF 
VELOCITY

Within special relativity, there is not a special reference frame 
that can consider itself to be absolutely stationary. Two observers 
who are in motion relative to each other may both take the view that 
they are the observer at rest and that it is the other observer who is 
moving. This is the reason for the word “relativity” in the name of 
the theory of special relativity. The special is that it applies to a “spe-
cial” space without gravitational distortions.

11.1 ACCELERATION

Contrast this with acceleration. There seems to be an absolute 
zero acceleration reference frame against which anybody can be 
compared to see if it is accelerating. It seems that this acceleration 
reference frame is either absolute space or we must take a Machian 
view of space. However, this “absolute acceleration” is not like New-
ton’s absolute velocity; each observer has her own absolute accelera-
tion. Two observers in relative motion to each other will disagree 
about the magnitude of the acceleration of a third observer. It is not 
the case that the acceleration of a body is measured to be the same 
against an absolute space for all observers. 
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That any observer can consider themselves to be stationary (that 
is moving at zero velocity) corresponds to the ability of any observer 
to draw their space-time co-ordinate system at an orientation that 
aligns the time axis with the horizontal. We can arbitrarily choose 
the “horizontal” time axis to point in any direction we wish, and we 
usually choose it to point horizontal with respect to ourselves (which 
makes us stationary). Acceleration is rotating that co-ordinate system 
(or rotating the whole universe) so that the horizontal axis points in 
a different direction. Why does space-time rotation require a force 
proportional to the mass of the body being accelerated? Rotation in 
Euclidean space does not require a force; once a body is rotating in 
Euclidean space, it takes no force to keep it rotating. 

Euclidean rotation is effectively morphing the cos( ) function 
into the sin( ) function. These functions are identical except for a 
90 displacement (see graphs). Space-time rotation is effectively 
morphing the cosh( ) function into the sinh( ) function. These func-
tions are not identical. Perhaps this is the reason space-time rotation 
requires a force.

11.2  A CLOCKWISE ANGLE EQUALS AN 
COUNTERCLOCKWISE ANGLE

Although observers may disagree over who is at rest and who is 
moving, they will both agree on the value of the velocity difference 
between them. That is, they will both agree on the space-time angle 
between their velocity vectors in space-time. If observer A thinks 
that observer B is moving at 0.5c while he is stationary, then observer 
B will think that observer A is moving at 0.5c while she is stationary. 

Why should it be that the two observers agree about their mutual 
velocity? It is because a “clockwise” rotation through the space-time 
angle  is equivalent to an “counterclockwise” rotation through the 
same space-time angle, . Ultimately, this is because the graph of 
the cosh( ) function is symmetric about the vertical axis (see earlier 
graphs); or, perhaps, the graph of the cosh( ) function is symmetric 
about the vertical axis because a clockwise space-time angle is equal 
to an counterclockwise space-time angle; or, perhaps, it is all down 
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to the form of the exponential function. Let us look at that in terms 
of rotation matrices. We have:

 

   
   

cosh sinh cosh sinh
sinh cosh sinh cosh

cosh sinh cosh sinh
sinh cosh sinh cosh

c c c c
c c c c

c c c c
c c c c

   
       

   
   
   

 (11.1)

 

2 2

2 2

cosh sinh 0

0 cosh sinh

1 0
0 1

c c

c c

 
  

  
 

  
 

 (11.2)

This says that if we rotate through angle  and then rotate back 
through the same angle , we get back to where we started (the 
unit matrix is the identity). It seems entirely reasonable; it is entirely 
reasonable; but it would not happen unless cosh()  cosh  and 
sinh()  sinh . The reader should look at the graphs of {cosh( ), 
sinh( )} and see how they are symmetrical/anti-symmetrical about 
the vertical axis. This symmetry of the trigonometric functions is 
called evenness and oddness. The cosh( ) function is an even func-
tion, and the sinh( ) function is an odd function. 

Let us do the calculation above again, but let us pretend that 
both the trigonometric functions are odd. We get:

 

   
   

2 2

2 2

cosh sinh cosh sinh
sinh cosh sinh cosh

cosh sinh cosh sinh
sinh cosh sinh cosh

cosh sinh 2cosh sinh

2cosh sinh cosh sinh

c c c c
c c c c

c c c c
c c c c

c c c c

c c c c

   
       

    
        

   
  

    

 (11.3)

If it were the case that both trigonometric functions were odd, a 
“clockwise” rotation through  followed by an “counterclockwise” 
rotation through  would not get us back to where we started. The 
reason that observers agree on the value of their mutual velocity is 
because the cosh( ) function is an even function, and the sinh( ) 
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function is an odd function. Yet again, thank you to the exponential 
function. 

The symmetry of the cos( ) function can be thought of as the 
symmetry of the circle. The cos( ) function is the length along the 
horizontal axis corresponding to a particular angle. Thinking of start-
ing two vectors at the vertical axis and moving one clockwise and the 
other counterclockwise away from the vertical axis, one can see that 
the projections on to the horizontal axis are equal for equal angles. 
This is the even symmetry of the cos( ) function. The even symme-
try of the cosh( ) function is the same, but, in the hyperbolic case, it 
is harder for the reader to envisage.

Aside: The 2-dimensional trigonometric functions are no more than 
two-way splittings of the exponential function. It is a property of all 
trigonometric functions in all types of space derived from the finite 
groups that they have symmetry/anti-symmetry like this oddness/even-
ness property. However, in higher dimensional spaces derived from 
the finite groups, this oddness/evenness is not two-way. In 3-dimen-
sional C3 space, the symmetry/anti-symmetry is three-way and cannot 
properly be called oddness/evenness. In the 4-dimensional C4 space, 
the symmetry/anti-symmetry is four-way. In the 5-dimensional C5 
space, the symmetry/anti-symmetry is five-way, and so on…

In the 4-dimensional C2  C2 space, which will be of great inter-
est to us later, the symmetry/anti-symmetry is also two-way and can 
properly be called oddness/evenness. This is the case for all spaces 
derived from fi nite groups formed by crossing C2 with itself – C2  
C2  C2  ….

EXERCISES

1. Assume that both the Euclidean trigonometric functions 
{cos( ), sin( )} are even and calculate a rotation through  
followed by a rotation through . 
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CHAPTER 12
SIMULTANEITY

Two spatially separated events (crosses) are simultaneous if they 
happen at the same time; that is, two spatially separated events are 
simultaneous to an observer if the straight line drawn through them 
is perpendicular to the time axis of that observer. 

Note that the line connecting the two events (crosses) is steeper 
than the 45 lines we have drawn on the diagram.

Of course, observers moving at different velocities will have their 
time axes oriented in different directions (rotated), and so what is a 
straight line through two spatially separated events perpendicular to 
one observer’s time axis will not be a straight line that is perpendicular 
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to the time axis of an observer who is moving relative to the fi rst 
observer. 

Thus, two spatially separated events that are simultaneous for 
one observer are not simultaneous to any observer who is moving 
relative to the fi rst observer. That was easy! 

12.1 ANOTHER VIEW

A train is moving along a railway track at half the speed of light. 
At midnight, it passes a stationary observer on the station platform. 
At that very instant, two bolts of lightning strike the railway track. 
One strikes exactly two light seconds in front of the train; the other 
strikes exactly two light seconds behind the train. After two sec-
onds, the fl ashes from the lightning strikes simultaneously reach the 
stationary observer. In the stationary observer’s view, the lightning 
strikes were simultaneous. However, by the time the light from the 
fl ashes has travelled along the railway line to the stationary observer, 
the train has moved towards the front fl ash and is now only one light 
second away from that front fl ash but is three light seconds away 
from the rear fl ash. The light from the rear fl ash has further to travel 
than the light from the front fl ash, and so it will reach an observer on 
the train later than the light from the front fl ash. To the observer on 
the train, the two lightning fl ashes are not simultaneous. This expla-
nation dates back to Einstein.
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If the two events are not spatio-temporally separated, then the 
straight line drawn through them is just a dot, and every observer 
will be able to draw a line to this dot that is perpendicular to their 
time axis, and so the two coincident events will be simultaneous for 
every observer. 

The two different crosses on the paper represent two events that 
are separated in space-time. They could be separated in only space, 
or they could be separated in only time, or they could be separated 
in a mixture of space and time depending upon how one rotates 
one’s space-time axes. Simultaneity of two events is just a special 
orientation of the space-time axes that gives a zero amount of time 
between two events.

12.2 CAUSE AND EFFECT – ORDERED EVENTS

The limiting velocity of space-time is a limit on rotation in space-
time. Consider a sheet of paper with the time and space axes drawn 
upon it at 90 to each other. Draw two small crosses anywhere on 
the paper to represent two events and draw a line through these two 
events (crosses). 

If the rotations in space-time available to us were not restricted, it 
would be possible to rotate the space-time axes fi rst to a position where 
the time axis is perpendicular to the straight line through the crosses 
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and then to continue the rotation until the temporal order of the two 
events (crosses) was reversed (as measured along the time axis). These 
rotations of axes would be different velocities. So, if the rotations in 
space-time available to us were not restricted, by putting our foot on 
the accelerator, we would be able to reverse the time-order of any two 
spatio-temporally separate events in space-time; if the events infl u-
enced each other (one caused the other), then, by accelerating, we 
would be able to change cause into effect and effect into cause. 

It gives one pause, does it not, to think that by changing his 
velocity your author could make his death precede his birth (leaving 
no time to write these words). Well, not quite. If your author could 
travel at the speed of light, then your author’s birth and his death 
would be simultaneous (in the stationary observer’s view) because 
the time interval experienced by a traveller moving at the speed of 
light is zero (in the stationary observer’s view), but your author is 
restricted from moving at or greater than the speed of light. The 
rotations (velocities) available to us in space-time are restricted. 
They are restricted to those velocities between ±c.

Upon a piece of paper draw the space-time axes and two lines at 
45 to the horizontal. The lines represent the limiting velocities ±c. 
They are the asymptotes, on Euclidean paper, of the hyperbola, which 
is the circle of hyperbolic space (see next chapter). Now place two 
crosses anywhere in the area between these lines on the positive time 
side of the paper. Initially, we will place them so that the line connect-
ing them is less steep than the asymptotes (see diagram below).
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In the diagram, the cross (event) nearest to the origin is the fi rst 
event because it happens at an earlier time, and the cross furthest 
from the origin is the later event. The game is to try and reverse the 
time-order of the events by rotating the axes (leaving the crosses 
unmoved). You will fi nd that you can alter the time-order of the 
events only if: 

 a. you rotate the time axis outside of the 45 lines – that is go to 
a velocity faster than the speed of light, or if: 

 b. the line connecting the two crosses is steeper than the 
asymptotes (which it is in the next diagram). 

If the line connecting the crosses is steeper than the asymptotes, 
then the events (crosses) are at such a distance from each other in 
space and at such proximity to each other in time that they cannot 
be both visited by anything traveling less than, or equal to, the speed 
of light – they are effectively in parts of the universe so distant from 
each other in space and yet so close to each other in time that they 
can never cause each other because nothing can travel at a speed 
greater than the speed of light between them. Thus one of them 
cannot be the cause of the other. Looking back to the fi rst diagram 
of this chapter, the two simultaneous events are so spatially distant 
from each other that they cannot infl uence each other (say by send-
ing a message) in the time (zero) between them. 

The mathematics of the limiting velocity is the ratio of the 
sinh( ) function to the cosh( ) function. It is because this ratio tends 
to unity as the space-time angle increases that rotation beyond 45 in 
space-time is impossible. (That’s Euclidean degrees not space-time 
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degrees, but you get the idea.) This is why we have cause and effect 
(ordered events) in the universe. It is remarkable that this ratio 
is such that we can rotate all the way to the point of making your 
author’s birth simultaneous with his death but not beyond that point 
to where his death precedes his birth. What would it do to the laws 
of physics if kettles sometimes boiled before they were fi lled with 
water? 

Since the time-order of events is due to the nature of the hyper-
bolic trigonometric functions {cosh( ), sinh( )}, history cannot be 
reversed because of the nature of those functions. Those functions 
are splittings of the exponential function – the god of all things. 

12.3 BACK TO SIMULTANEITY

Two events cannot be simultaneous for any observers if the 
line connecting them is less steep than the 45 asymptotes. Such 
events are just too far separate in time. This means that, within a lim-
ited spatial area, some events will happen after other events for all 
observers. In the extreme, that is for a stationary observer, the spatial 
area is of zero extent, and so, for a stationary observer, all events will 
follow in a defi nite sequence. We are all stationary observers, and we 
call this sequence of events history.

If, within a limited spatial area, some events happen after, or 
before, (in time) other events for all observers, then there are events 
in the universe that everyone agrees are in the past and there are (or 
will be) events in the universe that no observer has yet seen and are 
agreed by all observers to be in the future. Thus, within a limited 
spatial area, the universe has a defi nite history (in the distant past) 
and a defi nite future (in the distant future) and a fuzzy bit around the 
present. How extensive is the limited spatial area? It is the observ-
able universe. If the universe is 13.8 billion years old, the limited 
spatial area is a sphere of 13.8 billion light years radius around the 
observer.
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12.4 COMPARISON OF OBSERVATIONS

If two observers want to compare their observations, they must 
fi rst set their axes in the same orientation or know how to adjust 
their data to take account of the difference in co-ordinate system ori-
entation. Thus, meaningful comparisons must be done at the same 
velocity (with the space-time axes in the same orientation) or must 
be done taking account of the different orientations. The theory of 
special relativity is the understanding we have of how to take such 
account of the different orientations of the axes.

If an observer changes the orientation of her axes in space-time 
(she changes her velocity), then the data that she collected from 
observing the universe in her fi rst orientation will have to be changed 
to suit the new orientation of the axes. However, pencil strokes in a 
notebook do not change when we change velocity. Thus there will 
seem to be a confl ict between the data in the notebook and the data 
adjusted to the new axes orientation. Such confl icts are known as 
seeming paradoxes; the most famous of these paradoxes is the twin 
paradox that we will address later in this book. 

The rejection of simultaneity for all observers is the rejection 
of the Newtonian concepts of absolute space (as far as velocity is 
concerned) and absolute time for all observers, but this rejection 
alone would allow the re-ordering of events in any way. The theory 
of special relativity rejects the Newtonian concepts of absolute space 
and absolute time but imposes, or rather the exponential function 
imposes, a limitation upon such re-ordering. Thus, the rejection of 
absolute space and time is conditional. It is the limiting velocity that 
leads to the order of events being preserved for all observers. The 
limiting velocity derives from the nature of the hyperbolic trigono-
metric functions. Thus, because the order of events is preserved, 
cause and effect is preserved. A marvellous thing is the exponential 
function! 
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WORKED EXAMPLES

 1. Relative to a stationary observer with time axis in the hori-
zontal direction, what is the slope of the time axis of an ob-
server moving at half the speed of light?

  Ans: The time axis of the moving observer will intersect the 
unit invariant interval hyperbola (space-time circle – see next 
chapter) at a particular point – just like a sloping radius of a 
Euclidean circle intersects the circle. When we know that 
point, we can calculate the slope of the moving observer’s 
time axis. The time co-ordinate of that point is given by the 
Lorentz transformation of the point on the stationary observ-
er’s time axis corresponding to t0 = 1:

 

0
2

2

2
1.15

3

21

t
t

c

c

   
 
 
 

 (12.1)

  We get the space co-ordinate from the equation of the hyper-
bola – which is the invariant interval.

 2 2 4 1
1 1

3 3
t z z       (12.2)

  Thus, the point of intersection of the moving observer’s time 

axis with the hyperbola is 2 1
, .

3 3
 
 
 

 The moving observer’s 

time axis is a straight line that passes through the origin. 
Hence it is described by the function: z = mt. This implies 

1
.

2
m   This is the slope of the moving observer’s time axis 

relative to the horizontal time axis of the stationary observer.
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 1. An observer sees two events that occur at [2, 0.5] and [2, 0] 
in space-time to be simultaneous. How far apart in time are 
these two events for an observer moving at half the speed of 
light relative to the first observer?

  Ans: We draw the space-time axes on a sheet of paper with the 
time axis horizontal and the space axis vertical. We can impose 
the 45 asymptotes on to the paper if we wish. From A1 above, 
we have that the observer traveling at half the velocity of light 
has a time axis that is at 22.5 to the time axis of the stationary 
observer; we draw this on the paper. We place a dot at each of 
the given space-time positions. All we have to do is drop lines 
perpendicular to the moving observer’s time axis from each 
dot and calculate (with simple triangles) the distance along the 
moving observer’s time axis between where the perpendicular 
lines cut the moving observer’s time axis.
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EXERCISES

1. Playing with crosses as above can very much deepen the 
reader’s understanding of why the universe is ordered and 
with cause and effect. The reader is urged to re-read this 
chapter and to play with the crosses. Try putting two crosses 
such that the line joining them is vertical.

2. Taking the units of space to be the same as the units of time, 
two events occur at [2, 1] & [2.25, 0]. At what velocity need 
an observer travel to see these events as simultaneous? – It’s 
just simple Euclidean geometry with triangles. 

3. a.  Calculate a general formula for the slope of a moving 
observer’s time axis relative to a horizontal stationary 
observer’s time axis – enter velocity as a fraction of c.

 b.  Calculate a general formula for the line perpendicular to 
the moving observer’s time-axis that intersects a particular 
given point.

 c.  Given the co-ordinates of two events (points in space-
time), use the above formulae to calculate the time differ-
ence (distance along the moving observer’s time axis) be-
tween the two events – the Euclidean Pythagoras theorem 
might be useful. 
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CHAPTER 13
THE LORENTZ 
TRANSFORMATION

Special relativity is Lorentz invariant physics. It is the physics of 
a universe that is the same in all directions in space-time – the same 
at all velocities. We call a change of velocity a Lorentz transforma-
tion, and, if the physics is the same at both velocities, we say that the 
physics is Lorentz invariant (or that the physics is invariant under 
Lorentz transformations, or, sometimes, that the physics is invariant 
under the transformations of the Lorentz group – but see later).

13.1 CIRCLES

The circle is the set of points that correspond to the end of a 
rotating unit vector. In Euclidean space, this is easy to see. 
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In space-time, it is not so easy to see this because the circle in space-
time appears to be a hyperbola when it is drawn on Euclidean paper 
– there is a distorting vertical compression in our diagram below.

The cosh( ) function is the projection from the hyperbola on to the 
horizontal axis. It is always greater than one. The sinh( ) function is 
the projection from the hyperbola on to the vertical axis. The reader 
might want to look back at the graphs of the hyperbolic trigonomet-
ric functions in chapter nine.

In space-time, a rotating vector appears, when drawn on Euclid-
ean paper, to get longer as it rotates. It does get longer if we measure 

its length using the Euclidean distance function, 2 2
euclideand x y  , 

but this is not the case if we use the distance function of space-time, 
which is, 2 2 .space timed t z    If the reader takes the co-ordinates 
from the axes of any point on the “hyperbola” drawn above and cal-
culates the distance from the origin to that point using the space-
time distance function, the reader will fi nd that the distance from 
the origin to the “hyperbola” is indeed one (just like a Euclidean 
circle). The hyperbola is the set of points that are distance one from 
the origin in space-time – a space-time circle. 

Notice how the space-time circle (hyperbola) does not rotate 
all the way through 360 but is confi ned to the 45 asymptotes. The 
asymptotes correspond to the limiting velocity (speed of light).

Consider the distance function of Euclidean space. It is:

 2 2
euclideand x y    (13.1)
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We set it equal to unity to get the equation of the circle in 
Euclidean space:

 2 2 1x y   (13.2)

To satisfy this, we must have: 1,   1x y  . We see that increas-
ing x will mean decreasing y. Now consider the distance function of 
space-time. It is:

 2 2
space timed t z    (13.3)

We set it equal to unity to get the equation of the circle in space-
time (which looks like a hyperbola):

 2 2 1t z   (13.4)

Now, we see that, since 2 0z  , the equation of the hyperbolic circle 
requires 2 1.t  |z| can take any value provided |t| takes a “slightly 
bigger” one - think cosh( ) and sinh( ) - think about just beneath the 
45 asymptote. The biggest “slightly” is when z = 0; at which point |t| 
= 1. We see that increasing t will mean increasing z.

Rotation in the Euclidean space:   as one co-ordinate increases, 
the other decreases. 

Rotation in space-time:   as one co-ordinate increases, 
the other increases.

The reader’s attention is drawn to the fact that the determinant of 
a space-time matrix, which is the distance function of space-time, is 
always positive because cosh( ) > sinh( ).

13.2 THE LORENTZ TRANSFORMATION

The Lorentz transformation1 is just a rotation of a vector in 
space-time. Writing the rotation matrix in terms of the velocity and 
gamma and the co-ordinates of the end of the (horizontal) vector as 
{t0, x0}, we have:

1. Is it the homogeneity of space that ensures any transformation must be linear (i.e.: 
matrices); or, is it because space is closed linear transformations (finite groups of 
matrices) that space is homogeneous?
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Notice the commingling of time and space. This leads to:
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    (13.6)

Where {t, x} are the “new” co-ordinates of the end of the rotated 
vector. We are rotating from the horizontal (time) axis in an 
“counterclockwise” direction (it could be “clockwise” if we reversed 
the velocity) through the space-time angle .

13.3 TIME DILATION

The time interval between two events, event A and event B, t, 
is given by tA  tB. After rotation, it is:
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0 0 0 0
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t vz t vz
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g
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   
 (13.7)

In general, this is:

 
0 0

0 0cosh( ) sinh( )
t t v z

t z

g g
c c

    
     (13.8)

Now, for a stationary observer, the two events take place at the same 
place in space and so z0A = z0B.This gives:

  0 0A B A Bt t t tg     (13.9)
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Which is:

 0

0

 
cosh( )

t t

t

g
c

  
 

 (13.10)

Note that, in contradistinction to the Euclidean cosine function 
where we have cos 1  q q  , in space-time, we have cosh 1  .c c 
So:

 0t t    (13.11)

The time interval has increased as we have rotated.

This says that the duration of the time interval between two 
events on a moving spaceship is greater than it would be on a station-
ary spaceship as seen by the stationary observer. The processes of 
the universe appear to the stationary observer to go slower on mov-
ing spaceships. This is the famous time dilation of special relativity. 
We could have rotated “counterclockwise” instead of “clockwise” to 
get:
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 (13.12)

Leading to:
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The time interval, t, is given by tA  tB. After rotation, it is:
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 (13.14)

Leading to the same result:
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Note that cosh() = cosh().

The time dilation formula is normally written as:

 0
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t

v
c

 



 (13.16)

This is a little confusing because it is the time interval that has 
dilated, and the formula ought properly to be written with  0 , .t t   
Again, we have introduced the c2 factor to adjust the units to those 
most often used:

 
0

2

21

t
t

v
c

 


 (13.17)

This formula says that, if the stationary observer ages by one second, 
the stationary observer will see the moving observer age by less than 
one second. 

The moving spaceship is moving through space and time; the 
stationary observer is moving through only time. However, the rate 
at which they move through space-time (the space-time length of 
the vector – the distance from the origin to the hyperbola) is the 
same for both objects; it is one. The only difference between them is 
a rotation, and so they have to be the same distance from the origin. 
Because an increase in the space-co-ordinate, z, requires an increase 
in the time co-ordinate, t, to keep the space-time length of the vec-
tor equal to unity (one), as the moving object moves through space, 
it must move through more time than the stationary observer. The 
“more time” is the time dilation. There is more time between two 
events, and so the processes of the universe seem to go slowly on a 
moving spaceship. Hyperbolic rotation, which is moving the tip of 
the vector along the hyperbola, increases both the time co-ordinate 
and the space co-ordinate. This contrasts with Euclidean rotation in 
which rotation increases one co-ordinate and decreases the other. 
We repeat this.  

Hyperbolic rotation is such that, as the amount of space trav-
elled through increases, so the amount of time travelled through 
increases. It must do this to keep the (space-time) length of the vec-
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tor equal to unity. This is because of the minus sign in the distance 
function.

The (hyperbolic) rotation has taken a vector in space-time that 
was wholly time (zero space) and changed it to a vector that is part 
time and part space. Starting with a vector, whose tip was on the 
hyperbola, and that was lying along the time axis with only a horizon-
tal component, the rotation has rotated this horizontal vector into a 
vector, whose tip is still on the hyperbola, but that now has both hori-
zontal and vertical components. The vector is the same length (that 
is space-time length) after rotation as before rotation because the 
length of a vector is invariant under rotation – constancy of length 
is, after all, exactly what rotation is about. Hyperbolic rotation is the 
vector’s tip moving along the hyperbola. 

Therefore, it ought not to surprise us that the time component 
is different in the rotated vector than in the non-rotated vector. The 
surprise we feel comes from the fact that, as one rotates in space-
time, both co-ordinates increase whereas we are accustomed, in 
Euclidean space, to one co-ordinate decreasing as the other increases 
during rotation. It’s all down to that minus sign in the space-time dis-
tance function.

Another way, being careful of the units, to write the time dilation 
formula is:

 0 cosht t c    (13.18)

Where:
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 (13.19)

This is just projecting out the time (horizontal in our diagram) com-
ponent of a non-horizontal vector (whose tip is on the hyperbola). It 
compares with:

 0 cosx x q    (13.20)

in the Euclidean complex plane. That is what trigonometric func-
tions do – project out the components on to an axis. So, the station-
ary observer moves through space-time in the only time direction – 
no motion through space, which is why he is stationary. We “drop” 
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the moving observer’s time component down on to the stationary 
observer’s time axis by using the cosh( ) trigonometric function, and 
we get the time component of the moving observer as measured 
on the time axis of the stationary observer. This is just the same as 
“dropping” the x-component of a vector on to the x-axis in Euclidean 
space by using the cos( ) function. The reader should look at the 
hyperbola above and imagine dropping a vertical projection on to 
the horizontal time axis – the position it drops to on the time axis is 
greater than one; this is time dilation. That’s probably worth empha-
sizing:

Time dilation is no more than using the cosh( ) function to drop the time 
component of a space-time vector on to the time axis.

It is perhaps the most famous result of special relativity that the pro-
cesses of the universe appear to the stationary observer to slow on a 
moving spaceship. This has given science fi ction writers the way to get 
heroes and heroines of humankind over the great distances between 
the stars and out into the cosmos before they grow too old to do any-
thing heroic. To the reader who has not before met relativity theory, 
the idea of the processes of the universe slowing down might seem 
unfamiliar. If so, it is unfamiliar because our normal everyday expe-
riences involve things moving at only very small velocities relative to 
ourselves. Einstein once said, “You never understand relativity, you 
just get used to it”. Your author is not sure Einstein was correct on 
that point. We are a generation that has been familiarized with time 
dilation by science fi ction, both in books and in fi lms. We are aware 
that the Apollo astronauts who went to the moon in the 1960s and 
1970s are three seconds younger than the rest of us because of the 
time dilation associated with their velocity on the moon trip.

13.4  WE ALL MOVE THROUGH SPACE-TIME AT 
THE SPEED OF LIGHT

We are less familiar with the idea that even as we stand still, 
we are moving through space-time. Standing still is moving through 
time but not through space. When we are moving, we move through 
both space and time. The rate at which we move through space-time 
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is the “length” of the velocity vector, and this does not change as we 
begin to move through space – it just rotates. The velocity at which a 
stationary object travels through space-time is the same as the veloc-
ity at which a moving object travels through space-time – which 
takes a bit of grasping. Ultimately, it is because cosh(0) = 1 that the 
velocity vector is length one for a stationary observer and thus we 
move through time as we stand still. Thus, time never stops fl owing 
because the series expansion of the exponential function begins with 
a one – exp(x) = 1 + ….

This takes a bit of grasping mathematically too. The hyperbolic 
complex numbers (the space-time numbers) are of the form:
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c c
c c
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 (13.21)

The {h} matrix extends or contracts the length of the vector while 
the rotation matrix just rotates the vector. We, that are humankind, 
are stuck with h = 1. The rate at which we travel through space-time 
is unchanging as we change our velocity through space. Compare 
this with the Euclidean complex numbers as represented by the fl at 
sheet of paper before you. We have:

 
0 cos sin

0 sin cos
r
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q q
q q

   
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 (13.22)

There are, for humankind, no restrictions on the value of {r}. We 
can get anywhere we want on the sheet of paper by a rotation and 
an extension or contraction of the radial co-ordinate. There are no 
obvious algebraic reasons for the value of {h} being stuck at 1. It is 
a mystery, but see later, why h = 1 for, seemingly, everything in the 
universe. However, if it were not so, then the concept of the age of 
the universe being 13.8 billion years would be completely meaning-
less! Light travels at velocity h = 1, and so it seems that {h} is an 
electromagnetic constant of nature.

If we could contract the length of the vector, {h}, then perhaps 
we could contract it all the way through zero and out of the other 
side. This would be traveling backwards in time – just think of the 
fun one could have messing with the past. The universe would be a 
much messier place if we were not stuck with h = 1. 
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13.5 THE FEYNMAN CLOCK

Let us approach time dilation from a different direction, for 
which we thank Richard Feynman. Imagine a train passing through 
a station at velocity, say v = 0.5c. On the station platform is a physics 
student with a watch. On the train, is a mathematics student with a 
pair of mirrors facing each other across the train at right angles to 
the direction of motion of the train. Between the two mirrors, there 
is a photon of light bouncing back and forth as it is refl ected from 
each mirror on to the other mirror. According to the mathematics 
student on the moving train, the light travels a distance of one coach 
width between the mirrors. However, according to the physics stu-
dent on the platform, the light not only moves across the train car-
riage but also moves along the platform with the train.

To the mathematics student on the train, who sees herself as the 
stationary observer, the width of the carriage is given by ct0. To the 
physics student on the platform (who, to the math student on the train, 
appears to be a moving observer), the light traverses a “hypotenuse” 
distance of ct while the train moves through a distance of vt:

Now the velocity of light, c, being a physical constant, is the 
same for both students. By (Euclidean) Pythagoras, we have:
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 (13.23)

This derivation comes from, and depends upon, the constancy of the 
velocity of light, c which must be assumed.

13.6 TIME DILATION BY DISTANCE FUNCTION

The length of a vector is unchanged by rotation in space-time. 
That length for a stationary observer is just (the determinant of the 
C2 matrix):
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 0 0length t    (13.24)

Since z0 = 0, this is just vt0 for a stationary observer. For a moving 
observer, that length is:
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These two lengths are the same because the length is unchanged by 
rotation. Thus:
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 (13.26)

Straight from the group C2!

If we do this in Euclidean space, starting from the horizontal 
x-axis ( y0 = 0), with the gradient being denoted by g, we get:
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

 (13.27)

13.7 EXPERIMENTAL EVIDENCE

Time dilation has been experimentally verifi ed on many occa-
sions. The fi rst experimental verifi cation was done by Ives and 
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Sitwell2 in 1938. Ives and Sitwell used the to and fro motion of vibrat-
ing ions to measure time dilation to within less than fi ve percent3. 
The experiment was done again, slightly differently, in 19854 which 
again verifi ed time dilation. In 1971, Hafele and Keating simply took 
very accurate caesium clocks around the world on commercial airlin-
ers and recorded the time dilation5. The Concorde airliner fl ying at 
2,000 kilometers per hour loses 108 seconds per hour. 

Between ten and sixty kilometers above the Earth’s surface, 
cosmic rays striking oxygen and nitrogen atoms produce muons 
(elementary particles with mass 207 times the electron mass). The 
muons decay with a half-life of 1.5  10-6 seconds. Muons cannot 
travel faster than the speed of light (300,000 km/sec) and hence 
cannot travel more than 0.5 km before half of them have decayed. 
Clearly, not many will travel 50 km before decaying, but many do. 
In 1941, Rossi and Hall timed muons traveling from the summit to 
the foot of Mount Washington and found that their half-lives had 
been dilated in accordance with the predictions of special relativ-
ity6. In 1975, CERN timed muon decay using muons in a storage 
ring moving at velocities very near to the speed of light (  29) and 
again verifi ed the time dilation of special relativity with an accuracy 
of 2  10-3.

The muon experiments at CERN subjected muons to centrip-
etal accelerations of 1018g. Such acceleration has no effect on the 
fl ow of time. However, gravitational fi elds affect the fl ow of time. 
This is an effect that is explained by general relativity not by special 
relativity. Clocks at the Royal Greenwich Observatory at an altitude 
of 80 feet above sea level lose 5 microseconds a year compared with 
clocks at the National Bureau of Standards at Boulder, Colorado at 
an altitude of 5,400 feet above sea level. Because the Earth’s gravi-
tational fi eld at Greenwich is stronger than at Boulder, the clocks at 
Greenwich run slower – time is dilated by gravity. Time is not dilated 
by acceleration.

2. Ives & Sitwell did not accept special relativity and preferred the aether theory.
3. Ives & Sitwell Opt Soc Am 28 215–226 (1938).
4. M. Kaivolo et al Phys. Rev. Lett. 54, 255 (1985).
5. J.C. Hafele & R. Keating, Science 177,166 (1972).
6. Rossi & Hall Phys Rev 59, 223 (1941).
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13.8 LENGTH CONTRACTION

Length contraction is not as “obvious” as time dilation. We 
reproduce the complications below, but, fi rst, we repeat the explana-
tion given earlier in this book. Imagine that light travels at one meter 
per second; it is only a matter of which units humankind chooses to 
use. We take the moving world to have velocity 0.9c. If, in the sta-
tionary observer’s view, the process of light traveling from one end 
of a meter rod to the other end of the meter rod takes one second in 
the “stationary world”, then the same process will take 2.29 seconds 
in the “moving world”, as seen by the stationary observer, and so the 

light will travel only 1
0.436

2.29
  moving meter in one stationary 

second – that is 0.436 moving meters per stationary second. But light 
always travels at one meter per second. Therefore, the 0.436 meter 
of moving length must correspond to one meter of stationary length, 
and so, length in the “moving world” must appear to the stationary 
observer to be less than it is in the “stationary world” (0.436 meters 
to one meter at v = 0.9c). Time dilation plus constancy of the speed 
of light equals length contraction.

Length contraction is concerned with the length of a moving 
rod as seen by a stationary observer. A stationary observer travels 
through no space. A stationary observer therefore travels through 
only time. When we calculate the time dilation from the point of 
view of the stationary observer, we do it by using the Lorentz trans-
formation and setting z0 = 0. The Lorentz transformation is:

 
 
 

0 0

0 0

t t vz

z z vt

g

g

  

  
 (13.28)

With z0 = 0, we have the time component:

 0 t tg   (13.29)

Which is time dilation.

However, if we want to consider the length of a rod we have to 
make the measurement in such a way that the space-time distance 
from one end of the rod to the other end of the rod is pure space (no 
time). To do this, we need to measure from both ends of the rod at 
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the same time. The stationary observer cannot do this because the 
rear end of the rod passes him a second or so after the front end of 
the rod passes him. Only an observer moving with the rod can mea-
sure its length in pure space. The stationary observer therefore has 
to accept the measurement of the moving observer.

The two events of reading the tape measure at the two ends 
of the rod (measuring the length of the rod) are simultaneous in 
the reference frame of the observer moving with the rod. They are 
therefore not simultaneous in the reference frame of the stationary 
observer.

The moving observer will consider herself stationary with 
respect to the rod. We therefore have to use the Lorentz transfor-
mation from the moving observer. The space part of the Lorentz 
transformation is:

  0 0z z vtg    (13.30)

when we set t0 = 0, we fi nd that length dilates (just like with time).

 0 z zg   (13.31)

Just look at the graph of the hyperbola above, as the time co-ordinate 
increases, so does the space co-ordinate – when cosh( ) increases, so 
does sinh( ).

This is the view of the moving observer. So, the moving 
observer sees the length of the rod to be longer (dilated) when 
it is in the hands of the stationary observer than when it is in her 
hands, as seen by the moving observer. The stationary observer 
has to take the moving observer’s word that the rod is longer in his 
hands than in her hands. This means the stationary observer sees 
the length of the rod shorten (contract) when it moves. The change 
of viewpoint often leads to confusion, but we have to change the 
viewpoint (from stationary observer to moving observer) to mea-
sure the length of a moving rod in pure space. Let us try it again. 
We have

 
 
 

0 0

moving stationary stationary

z z vt

z z vt

g
g

  

 
   (13.32)
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But we need to swap the point of view from the stationary observer 
to the moving observer. Thus we swap:

 
 
 0

stationary moving movingz z vt

z z vt

g

g

 

  
 (13.33)

With t = 0:

 0  z zg            (13.34)

Leading to:

 0
1

z z
g

          (13.35)

This is usually presented as:

 
2

0 21
v

l l
c

     (13.36)

This is the length contraction formula. This is how the stationary 
observer sees the length of a moving rod. For comparison, the time 
dilation formula is:

 
0

2

21

t
t

v
c

 


 (13.37)

When it comes to measuring length, the stationary observer has to 
take the word of the moving observer, and she says that the station-
ary meter rod is longer than her moving rod. The stationary observer 
has to accept the moving observer’s measurement, and so the mov-
ing meter rod is shorter for the stationary observer than the station-
ary meter rod.

If the above presentation seems contorted, just think of the sta-
tionary observer’s view of length contraction as “space has dilated 
but the rod has stayed the same”.

We will eventually be working with 4-dimensional space-time. 
The time of a moving observer is dilated regardless of the direc-
tion in “3-dimensional” space of that observer’s motion. The length 
of a moving observer contracts only in the spatial direction of the 
motion. Thus, a sphere becomes a fl attened sphere when moving as 
it contracts in only one of its spatial dimensions.
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13.9 EXPERIMENTAL EVIDENCE

It is believed, but has never been verifi ed, that the Concorde 
airliner fl ying at 2,000 kilometers per hour shortens by 1010 meters. 
There is no experimental evidence of length contraction of mac-
roscopic objects, but the charge density of a current carrying wire 
changes appropriately. Further, a moving observer sees a stronger 
electromagnetic coulomb force between two separated electrically 
charged objects than is seen by a stationary observer.

Imagine a fl at circular disc. When stationary, the circumference 
of this disc is circum < D. When the disc is rotating, the length of 
the outer edge will contract due to length contraction of moving 
bodies. Thus, the circumference of a rotating disc is predicted by 
the theory of special relativity to be less than that of a stationary 
one, circum < D. Although they did not measure length contrac-
tion, in 1960, Hay, Schiffer, Cranshaw, and Engelstaff, using Moss-
bauer resonance7, verifi ed that there is time dilation at the edge of 
a rapidly spinning rotor compared to the center of the rotor. Moss-
bauer apparati can measure the Doppler shift of light from a source 
moving at only 107ms1.

13.10 GETTING TECHNICAL

The Lorentz transformation is a linear transformation (it’s done 
with matrices). Because the Lorentz transformation is linear, it maps 
straight lines to straight lines. This means that a moving object will 
be seen to move in a straight line through space-time by both a mov-
ing observer and a stationary observer. If the Lorentz transformation 
were not linear, one of the observers would see the object travel in 
a curved line in space-time and would deduce that it was subject to 
a force. There would be forces popping into existence everywhere. 
We could create them by changing our velocity. These forces would 
correspond to energy gradients, and so the conservation of energy 
would go out of the window. If we are to avoid such complications, 

7. Hay, Schiffer, Cranshaw & Engelstaff. Phys Rev Lets 4,165 (1960).
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empty spaces must be linear. It is remarkable that the universe does 
things just right! Without linearity, no conservation of energy (and 
much else goes wrong besides).

13.11 A FEW USEFUL IDENTITIES

For future reference, we end this chapter by appending some 
useful identities. We fi rst remind the reader that, with the speed of 
light, c = 1:

 
2

1
cosh

1

dt
d v

g c
t
  


 (13.38)

 
2

sinh
1

dz v
v

d v
g c

t
  


 (13.39)

Now:

   
2 2 2

2 2 2
2 2 2 2

1 1
1 1 1 1 1

1 1 1 1
v v v

v
v v v v

g g
         

   
 (13.40)

Which is:

    
2

2 2 2 2 2
2

sinh
cosh tanh cosh sinh cosh 1

cosh
cc c c c c
c

     (13.41)

And:

 
2 2 2

2 2 2
2 2 2

1 1
1 1

1 1 1
v v v

v
v v v

g g 
     

  
 (13.42)

Which is:

 2 2sinh 1 coshc c   (13.43)
And:

    
1 3

2 2 32 21
1 1 2

2
d d dv dv

v v v v
dt dt dt dt
g g

          
 

 (13.44)

Similarly:

 3d dv
v

dz dz
g g   (13.45)
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And:
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 (13.46)   

Similarly:

 
3 2

3

( )d v dv dv
v

dz dz dz
dv
dz

g g g

g

 
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 (13.46)

WORKED EXAMPLES

 1. To what velocity does the space-time point (4, 3) corre-
spond? To what space-time angle does this correspond?

  Ans: We have:

 
1 0 4 3 3

4 &  3
0 1 3 4 4

v
v v c

v

g g
g g

g g
     

          
     

 (13.47)

  We have:

         
cosh sinh 4 3 3

tanh 0.9729...
sinh cosh 3 4 4

c c
c c

c c
   

       
   

 (13.48)

EXERCISES

1.  a.  What is the distance of the space-time point 5 4
,

3 3
 
 
 

 from 
the origin?
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  b.  What is the distance of the Euclidean space point 5 4
,

3 3
 
 
 

 
from the origin?

2. What is the time dilation associated with the space-time 
point (5, 4)?
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CHAPTER 14
VELOCITY AND 
ACCELERATION 
TRANSFORMATIONS

Imagine a math student stood upon a (stationary) railway plat-
form. A train carrying a physics student passes the math student at 
velocity, vphysics  0.9c  - nine tenths of the speed of light where 
 is the corresponding angle in space-time. At the same time, a train 
carrying a biology student passes the physics student’s train with 
a relative velocity of vbio  0.8c   - eight tenths of the speed of 
light where  is the corresponding angle in space-time. Now, the 
physics student agrees with the biology student that they pass each 
other at the relative velocity of v  0.8c, and the math student and 
the physics student agree that they pass each other at the relative 
velocity of v  0.9c. It is immediately apparent that the biology stu-
dent in the fastest train passes the math student on the platform at 
0.9c  0.8c  1.7c, but this cannot be correct because no-one, not 
even biology students, can move faster than the speed of light. Let 
us do the math.

The physics student is rotated in space-time by  relative to the 
math student and the biology student is rotated by  in space-time 
relative to the physics student. Thus, the biology student is rotated 
twice in space-time relative to the math student. This is:
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   
   

cosh sinh cosh sinh
sinh cosh sinh cosh

cosh cosh sinh sinh cosh sinh sinh cosh
cosh sinh sinh cosh cosh cosh sinh sinh

cosh sinh
sinh cosh

f f y y
f f y y

f y f y f y f y
f y f y f y f y

f y f y
f y f y

   
   
   

  
    

  
    

(14.1)

cosh( ) is the projection of a moving observer on to the time axis. 
sinh( ) is the projection of a moving observer on to the space axis. 
The velocity is given by:

  
 

 sinh
tanh

cosh
space

v
time

    (14.2)

Now, the velocity at which the biology student passes the math stu-
dent is given by the tanh( ) of the angle (  ); that is:
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 (14.3)

Adjusting the units of space-time:

  
2

tanh
1
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v v
v v

c

f y


 


 (14.4)

Putting the numbers in: 

 / 2

2

0.8 0.9 1.7
1.720.8.0.9

1
bio maths

c c
v c c

c
c


  


 (14.5)

This is called the velocity transformation and is usually presented as: 

 1 2

1 2
21

u u
v

u u
c

 


 (14.6)

Since we have a limiting velocity in space-time, we cannot have sim-
ple addition of velocities. Without a limiting velocity, the events of 
the universe would not be ordered, and if we were able to simply 
add velocities, everything would fall to pieces!
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14.1 ACCELERATION TRANSFORMATION

Within the literature, there is no preferred way to calculate the 
acceleration transformation. The acceleration transformation is far 
less well known than the velocity transformation, and many texts on 
special relativity do not consider it. This is because it is both a more 
complicated and a more diffi cult to understand transformation than 
most other transformations. We derive a simple version (but not the 
whole story) of it here in two ways. In a later chapter, we derive a 
“fuller” version of it using the mathematics of 4-vectors and, after 
that, an “even fuller” version of it using matrices.

14.2  FIRST DERIVATION OF THE ACCELERATION 
TRANSFORMATION

Acceleration in the direction of the velocity

Consider a train moving at (say) half the speed of light passing 
by a stationary platform and accelerating in the direction of its veloc-
ity as it passes. Acceleration is meter sec2. This is length divided by 
time squared. We have:
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3 3

0 0 0 0

0
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l
l al

a
t t t t t t
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g
g g g g

g


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 

 

 (14.7)

Where a0 is the acceleration as is measured by the observer moving 
with the train and a is the acceleration measured by the station-
ary observer on the platform. Note that a0 is the acceleration that 
would be measured by the platform-bound observer if the train was 
(momentarily) stationary on the platform as it accelerated.

So, if a train accelerates at a0  10 meters per sec2 when it is 
stationary, it will be felt to accelerate at 10 meters per sec2 by the 
moving observer aboard the moving train when it is moving at (say) 
half the speed of light. When the train passes the platform, the sta-
tionary observer on the platform will see the train accelerating in the 
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direction of its velocity, relative to herself, not at 10 meters per sec2 

but at (when 
2
c

v  ):

 
3

2
3

10 1 3 3
10 1 10. 6.5  meter sec

4 8g
 

    
 

 (14.8)

Thus, as the train approaches the speed of light relative to the plat-
form, the platform-bound observer will see its acceleration approach 
zero whereas the train-bound observer will think the train is still 
accelerating at 10 meters per sec2.

Acceleration perpendicular to the direction of the velocity

Now let us imagine that the train is accelerating not in the direc-
tion of its velocity but in a direction perpendicular to that velocity – 
think acceleration of a planet moving around a star in a perfectly cir-
cular orbit. Because the acceleration is in a direction at right angles 
to the velocity, there will be no length contraction in that direction, 
but there will still be time dilation. The above calculation becomes: 
Acceleration is meter sec2. This is (non-contracted) length divided 
by time squared. We have:
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 
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 (14.9)

There is a factor of gamma difference.

14.3  SECOND DERIVATION OF THE 
ACCELERATION TRANSFORMATION

Using 0 t tg  :
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 (14.10)
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In short:

 
  3 3

0
d v dv

a a
dt dt

g
g g   

 
 (14.11)

We will see a third derivation of the acceleration transformation 
when we study 4-vectors and a fourth one when we use matrices to 
do what we did with 4-vectors.

We do not need mass to increase towards infi nity to prevent us 
from exceeding the speed of light. If there was no mass, we would 
still be unable to accelerate through the light barrier (as seen by 
a stationary observer outside the rocket). The limiting velocity is a 
feature of space-time; it is nothing to do with mass. It has everything 
to do with the fact that sinh   cosh  as   , and so the ratio 
of these two functions, which is velocity, tends to unity as the space-
time angle, , tends to infi nity.

There is another complication to acceleration. Imagine a rod 
moving and accelerating in the direction of its length. As its velocity 
increases, the rod’s length shortens. This means that, if the front end 
of the rod is accelerating at afront, then either the rear end of the rod 
must accelerate faster than the front end, afront < arear, or the rod 
must stretch within itself. This stretching is the same as stretching 
a stationary rod and is nothing to do with the nature of space-time. 
This stretching is not the “spagettiffi cation” of a rod falling into a 
black hole due to the different strengths of the gravitational fi eld 
at the ends of the rod. This is a separate effect over and above the 
“spagettiffi cation” effect.

EXERCISES

1. A distant green galaxy is receding directly from Earth at a 
velocity of 0.7c. A green alien in that galaxy, looking in the 
same direction as earth-bound observer, sees a distant pink 
galaxy receding from her at a velocity of 0.9c. At what 
velocity does the earth-bound observer see the pink galaxy 
receding from the Earth?
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2. A distant purple galaxy is receding from the Earth at 0.9c. 
As it recedes, it appears to the earth-bound observer to 
accelerate at 0.5c per sec. At what rate does a purple alien 
in the distant galaxy think the purple galaxy is accelerating? 
Would such acceleration violate the limiting velocity of the 
universe?
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CHAPTER 15
THE NATURE OF 
STRAIGHT LINES AND 
THE TWIN PARADOX

15.1 THE CALCULUS OF VARIATIONS

The calculus of variations is central to Lagrangian mechanics 
and particle physics. It is an advanced mathematical topic that has 
only little (and relatively simple) application in special relativity. 
We do not here attempt to familiarize the reader with the whole of 
the calculus of variations; that would be a textbook on its own. The 
reader might be unfamiliar with the calculus of variations and might 
struggle to understand the next few pages, but the details are not 
important. It is the results that are important for our purposes. We 
will show, by using the calculus of variations, that a straight line is 
the shortest distance between two points in Euclidean space. This 
is indeed how Euclid defi ned the straight line circa 300 BC. We will 
then show that a straight line is the longest distance between two 
points in space-time. This means that, in space-time, bent lines are 
shorter than straight lines. Let me emphasize that:

Euclidean space:   A straight line is the shortest distance 
between two points.
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Space-time:  A straight line is the longest distance 
between two points.

Perhaps you should read that bit again; for someone who has never 
before met with this fact, it is a bit of a shocker! 

For the next few paragraphs, for pedagogical ease, we will work 
in the 2-dimensional Euclidean space known as 2. The reader is 
invited to visualise this space as a fl at sheet of paper with a vertical 
y-axis and a horizontal x-axis. In this space, we have functions of the 
form y  f(x). We will be seeking the particular function, f(x), that 
minimises the distance between two points in this space. We already 
know the answer – the minimum distance between two points is a 
straight line. A straight line is expressed as the function:

 y  mx  c (15.1)
We seek to prove that this function is the minimum distance between 
two points in 2. We do this with the calculus of variations. It is 
assumed that the reader is familiar with calculus of normal variables 
up to and including the ability to calculate the maxima and minima 
of a function. We begin:

The distance function of the Euclidean plane is:

 2 2 2S x y   (15.2)

We write this in terms of differentials:

 2 2dS dx dy   (15.3)

A little manipulation gives us:

 

2

2

1

1

dydS
dx dx

dy
S dx

dx

    
 

    
 

 (15.4)

We assume that we do not know what the function y(x) actually is 
(except that, in this case, we do because we know the answer). The 
S is considered to be a functional of the unknown function y(x) and 
is written:

    21
b

a

S y x dx y x      (15.5)
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By which is meant that ( ) ( )
dy

y x x
dx

   is a particular, but not yet deter-

mined function of the variable x. S[y(x)] is the distance between the 
points a&b in the Euclidean plane. The idea is that we are going to 
vary (change) the function y(x) a little bit instead of varying (chang-
ing) the variable, x, a little bit. In normal calculus, we use little bits 
of variable, {dy, dx…}. In variational calculus, we use little bits of 
function {(y(x))}. We are going to fi nd the stationary points (that is 
the maxima and minima) of S[y(x)] in a way very similar to how we 
fi nd the stationary points of a function in normal calculus.

We are going to vary the function y(x) by adding to it another 
function, h(x) , multiplied by a real variable, . We will then let the 
function y(x)  h(x) approach y(x) by letting   0 in a way similar 
to how we let   0 in normal calculus.

y(x)  h(x) is a slightly different function from y(x), and so 
y(x)  h(x) represents a slightly different path between the points 
a & b from the path represented by y(x). Since all paths go through 
the points a & b, we have h(a)  h(b)  0.

Now the difference in the lengths of the paths described by 
y&y  h is:

    ( ) ( ) ( )S S y x h x S y xd e    (15.6)

And:

 
 

   

2

2

( ) 1 ( )       

( ) ( ) 1 ( ) ( )

b

a
b

a

S y x dx y x

S y x h x dx y x h xe e

 

    




 (15.7)

Taylor series expansion in powers of  gives:

   

     

 

22 2

2 2

2

1 1 ...

1 ...
1

b

a

b

a

d
S y h dx y y h O

d

y h
dx y O

y

e e e e
e

e e

              

      
  




 (15.8)
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And so:

    
 

 
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b b

a a
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y h
dx y O dx y x

y

y h
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d e

e e

e e

  

         
  
    
  

 



 (15.9)

Since when S[y] is a stationary point, S  0, and   0, it follows that:

 
2

0
1

b

a

y
dx h

y

      
   (15.10)

and here we have the function that is stationary (minimum or maxi-
mum). Now, given that h(a)  h(b)  0, the integral between {a, b} 
will be zero if:

 
2

constant
1

y

y





 (15.11)

Thus we have y(x)  constant  m. Integration gives:

 [ ] ( ) 
b

a

S y dx m mx c    (15.12)

This is the equation of a straight line, and so the stationary path is a 
straight line. We have thus shown that the stationary (maximum or 
minimum) distance between two points in Euclidean space is given 
by the function y  mx  c  a straight line. We have not yet shown 
this straight line to be the minimum (it could be a maximum) dis-
tance. The reader should recall that, in normal calculus, the sign 

of the second differential, 
2

2

d y

dx
, determines whether or not we 

have a maximum or a minimum. Above, when we Taylor expanded 

 21 ( ) ( ) ,y x h xe    we ignored the 2 term, but this is exactly the 
term we need to determine the nature of the stationary function 
(max or min?). We have:

 
 

 
 

2

2
2 2 3

32
2 2

1 ( ) ( )
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1 2 1

y x h x

y h h
y O

y y

e

e e e

  

  
    

 

  (15.13)
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We have, from above that y(x)  constant. The 2 term is therefore 
positive for all h(x), and we have a minimum. Thus, in Euclidean 
space, a straight line is the shortest distance between two points.

We now do all of the above with the distance function of space-
time. The distance function of the space-time is:

 2 2 2S t z       (15.14)

A little manipulation gives us:

 
2

1
dz

S dt
dt

    
   (15.15)

Which leads to:

 
2

constant
1

z

z





 (15.16)

Integration gives:

 [ ] (m) 
b

a

S z dt mt c    (15.17)

Which again is the equation of a straight line, and so, just like in 
Euclidean space, the stationary path in space-time is a straight line. 
It is actually the path that an observer moving at constant velocity 
(could be zero) follows through space-time.

However, the 2 term is:

 
 

2
2

3 222 1

h

z
e





 (15.18)

z is constant, and the 2 term is negative, and we have a maximum. 
In space-time, a straight line is the longest distance between two 
points. More re-emphasis: 

Euclidean space:   A straight line is the shortest distance 
between two points.

Space-time:   A straight line is the longest distance 
between two points.

This seems weird, but that is, not very simply, our prejudice. Why 
should a straight line be the shortest distance between two points? 
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Why should a straight line not be the longest distance between two 
points1? Now forget 2; everything we have done applies to the 
complex plane and to the hyperbolic complex space-time. Euclid-
ean space and space-time both come from the fi nite group C2. They 
are like brother and sister. Furthermore, they are the only spaces 
that come from this fi nite group. There is a kind of “completeness” 
about these two spaces having the two possible but opposite kinds 
of straight line.

15.2 ANOTHER VIEW

We have, in Euclidean space, for two vectors at angle  to each 
other:

 

   

 
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   

   

 

         

     

     

 

 (15.19)

The vector 1 2V V
ur uur

 is a straight line between two points. In Euclid-

ean space, the vector 1 2V V
ur uur

 has length 1 2V V
ur uur

 and is shorter 

than 1 2V V
ur ur

 (think triangle) because cos 1q  . In space-time, for 
two vectors at angle  to each other we have:
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 

 (15.20)

In space-time, the vector 1 2,V V
 

 which is a straight line between 

two points, has length 1 2V V
 

 and is longer than 1 2V V
 

 because 
cosh 1c   - see graphs.

1. Yes, it does twist the brain a little.
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15.3 YET ANOTHER VIEW

In Euclidean space, we have the {3, 4, 5} triangle given by the 
Pythagoras triple:

 2 2 25 3 4     (15.21)

In space-time, we have the {3, 4, 5} triangle given by the Pythagoras 
like triple:

 2 2 23 5 4     (15.22)

In both cases the length of the hypotenuse of the triangle is the 
number that stands alone on the left of the equals sign. We see that 
in Euclidean space the hypotenuse of a triangle is shorter than the 
sum of the other two sides: 5 < 3  4. In space-time, we have that the 
hypotenuse is longer than the sum of the other two sides: 3 > 5  4 - 
see where the minus sign comes in. 

15.4 THE TWIN PARADOX

There is, and has been for decades, a mythology based pri-
marily on what seems to be a contradiction within special relativ-
ity. That seeming contradiction is known as the twin paradox. The 
idea is based upon the fact that velocity is relative and that each of 
two observers in relative motion may declare themselves to be the 
stationary observer and declare that the other observer is the mov-
ing observer. Since moving clocks run slowly, the moving observer 
will age more slowly than the stationary observer and, thus, after, 
say, fi fty years, will look appreciably younger than the stationary 
observer. The paradox is that both observers can equally consider 
themselves to be moving, and so each will look appreciably younger 
than the other.

In the case that the two observers keep moving relative to each 
other rather than one of the observers change their velocity to match 
the other observer, then they are indeed both younger than the 
other as seen by the other. It is the change of velocity to match the 
other that breaks the symmetry of the system. A change of velocity 
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by observer A to match the velocity of observer B is “dropping” the 
space-time vector of A on to the time axis of observer B. A change of 
velocity by observer B to match the velocity of observer A is “drop-
ping” the space-time vector of B on to the time axis of observer A. 
If the velocities never change, then there is no “dropping” on to 
the other observer’s time axis. Which is the younger depends on the 
point of view (the axes from which you choose to observe).

The twin paradox is usually formulated with two identical twins 
as the observers. One of the twins stays at home on Earth while the 
other twin boards a spaceship and travels, at almost light speed, to 
a nearby star before turning around and coming back to the Earth. 
From the Earth-bound twin’s point of view, the spaceship twin is 
the moving twin and so the spaceship twin will be younger than the 
Earth-bound twin when she eventually returns to Earth and lands 
(changes her axes to match the Earth-bound twin’s axes) and the 
twins meet. However, the spaceship twin has a right to consider her-
self to be the stationary twin and to take the view that the Earth-
bound twin boarded a planet and zoomed off. The spaceship twin 
says that the Earth-bound twin turned around and returned that they 
might meet together – the Earth bound twin did not turn around, 
did she? Thus, so the paradox goes, from the view of the spaceship 
twin, the Earth-bound twin will look and be younger.

There is a difference between the two situations of the two twins. 
The Earth-bound twin travels on a straight line through space-time - 
because her velocity never changes – she never rotates in space-time. 
The spaceship twin must, at the very least, change her velocity when 
she turns around to come back to Earth, and so she does not travel in 
a straight line through space-time. The bent line (through space-time) 
of the spaceship twin is shorter than the straight line (through space-
time) of the Earth-bound twin. Since the Earth-bound twin travels 
along a straight line between the two events, she travels by the longest 
route possible through space-time between two events. Thus, she will 
be older than anyone who travels a shorter route (a bent route). The 
spaceship twin is the younger because, in space-time, a straight line is 
the longest distance between two points.

At the point where the spaceship twin turns around, she rotates 
her axes in space-time. Thus she changes the axes against which she 
measures the universe. At this point, all her data about the universe 
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must be recalibrated to fi t her new co-ordinate system. This recali-
bration includes a considerable adjustment to the age of the Earth-
bound twin as seen by the spaceship twin.

Let us travel with the spaceship twin. We all know that the Earth-
bound twin will age more than we do, and we keep an earthward 
pointing telescope trained upon her as we travel towards the distant 
star. As we look towards Earth from the spaceship, we see the Earth-
bound twin age, but she ages slower than we age because, in our 
view, she is moving and therefore her clock runs slower than does 
ours. When we see this, we have taken proper account of the time 
needed for light to reach us from Earth. The Earth-bound twin’s 
apparent slower ageing is not an effect of our being distant from her 
and the light from Earth taking a year or two to reach us. Now, we 
know that when we return and meet her, she will be older than we 
are, and we know that, for the year or so before we meet, she will 
age slower than we age as we travel back to Earth. Thus, she must 
appear to us to age very quickly during the time when we are turning 
around. If it takes us one second to reverse our spaceship and head 
back to the Earth, then, in that one second, we will see the Earth-
bound twin age by, say, twenty years! This is not an as yet undiscov-
ered time un-dilation effect due to the acceleration experienced by 
the spaceship twin. This apparent drastic ageing is due to no more 
than the re-aligning of the space-time axes of the spaceship twin.

The re-aligning of axes is a change of velocity and so an accelera-
tion is involved. This is why you might hear “disappointing explana-
tions” of the twin paradox in the form “one twin underwent accelera-
tion”. Such a “disappointing explanation” is true but disappointing. 
Re-aligning of axes is the explanation.

Suppose, the Earth-bound twin sees her sister approaching the 
Earth and decides to fl y to meet her. Thus, the Earth-bound twin 
boards a spaceship and accelerates to match her sister’s velocity. 
Who then is younger when they meet? Both twins have travelled 
“bent” lines through space-time. The one who has travelled the least 
bent (closest to straight) will be the oldest because her route was the 
longest.

All objects travel through space-time at the same speed. A sta-
tionary twin travels through space-time in the time direction whilst a 
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moving twin travels through space-time in a “some space and some 
time” direction. Thus we expect that the spaceship twin will travel 
through less time because she is traveling through space as well as 
through time. However, the spaceship twin can consider herself 
to be stationary in space. It is only after one twin has changed her 
space-time axes that it can be said that she was traveling through 
space as well as time. To change her axes, she must change her 
velocity and thus “bend” the line of her travel through space-time. 
Only after changing her velocity does her travel line through space-
time become bent. Only after changing her velocity does her travel 
line through space-time become shorter than the straight line of her 
sister. The different rates of aging are due solely to a straight line 
being the longest distance between two points in space-time, but 
which is the straight line and which is the bent line depends upon 
who changed their velocity. 

The slowing of ageing of travellers has been experimentally 
observed on the Apollo missions to the moon wherein clocks on the 
Apollo spaceships lost 3 seconds compared with clocks on the Earth.

15.5 THE POLE AND BARN PARADOX

There is another famous seeming paradox that is associated with 
the special theory of relativity. It is known as the pole and barn para-
dox. A farmer wishes to store a 20 meter long pole in a barn, but the 
barn is only 10 meters long. A biology student advises the farmer 
that if the pole is accelerated to a velocity of 0.87c, the length of the 
pole will contract to 10 meters. So, the farmer decides to so acceler-
ate the pole to 0.87c, and, as the shortened pole passes by the barn, 
he will give the pole a sideways kick into the barn. From the point of 
view of the farmer, the pole will fi t into the barn. The paradox is that 
a rider on the pole sees the barn to be only 5 meters long whereas 
the pole is still 20 meters long, and so the pole will not fi t into the 
barn.

What is true in one reference frame is also true in any other 
reference frame. Either the pole fi ts into the barn in both refer-
ence frames or is does not fi t into the barn in both reference frames. 
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Let us re-word the pole and barn paradox. We have a barn that is 
10 meters long and a pole that is 10 meters long. When both are 
stationary, the pole is the same length as the barn. When the barn is 
moving, the barn is seen by the rider on the pole to be shorter than 
the pole. When the pole is moving, the pole is seen by the stationary 
farmer to be shorter than the barn. This is the same as the case of the 
two twins moving relatively to each other who both see the other to 
be younger than are they. It is, as in the case of the twins, just a mat-
ter of the orientation of the space-time axes. To make an objective 
observation, the axes of the observers need to be aligned by a change 
of velocity of one of them.

EXERCISES

1. Suppose the space-time of the universe was like the surface 
of a higher dimensional sphere (Riemannian) in that one 
could travel infinitely far within it yet it is of finite extent. 
(There are cosmologies that accept this view.) Now suppose 
that two moving observers pass each other, without any ac-
celeration, as they travel “around” this sphere; and suppose 
they meet again billions of years later during which time 
neither of them has changed velocity. They have both trav-
elled on straight lines through space-time. Who will be the 
younger? Does this mean that the “spherical” view of cosmol-
ogy must be incorrect?

2. A physics student borrows $100.00 from a kindly bank man-
ager who charges the student interest at only 100% per year 
(as measured by the bank manager’s watch). The grateful 
physics student arranges for the bank manager to go on a 
space flight at v  0.9c for a duration of one year (as mea-
sured by the physics student’s watch). How much interest 
does the physics student pay to the bank manager when he 
returns from his space flight?
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CHAPTER 16
4–VECTORS

This chapter and the next are a conventional presentation of spe-
cial relativity using the algebra of 4-vectors. 4-vectors were invented 
by Minkowski in 1907. The chapter following these two chapters is 
a less usual presentation of special relativity using the hyperbolic 
complex numbers (the algebra of space-time).

The 4-vector algebra is a central part of the conventional pre-
sentation of special relativity. It is generally agreed that, for the most 
part, 4-vector algebra gives the correct answers. However, there is a 
problem concerning the acceleration 4-vector in that it has a norm, 
A A,  that is a negative number and the length of the vector is the 
square root of this negative norm, which is imaginary; it ought not to 
be this way. There is also a problem that arises when the dot product 
of the acceleration 4-vector and the velocity 4-vector is calculated 
to be zero – although dot products can be zero in space-time, it is 
nonsensical for them to be so. The conventional response is either 
to not consider the acceleration 4-vector at all (by far the most com-
mon response) or to fudge it and ignore the negativity of the norm 
and misuse of the zero dot product. Your author’s view is that 4-vec-
tor algebra does not work properly because 4-vectors are not a bona 
fi de division algebra. We therefore present the same content dif-
ferently in chapter 18 of this book. We get a much better looking, 
but different, answer from the conventional 4-vector presentation. 
Fortunately, we see in Chapter 18 that it is easy to understand the 
difference and to come to the same answer as is produced by 4-vec-
tor calculation, but without having to fudge things.
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16.1  THE STANDARD PRESENTATION OF 
4-VECTORS

4-vectors do not form a proper mathematical structure in that 
they are not a division algebra – as with vectors in general, there 
is no multiplicative closure or multiplicative inverse – but they are 
widely used in physics because (except for the norm of the 4-accel-
eration and the dot product of the 4-acceleration with the 4-veloc-
ity) they work properly1. 4-vectors are vectors in 4-dimensional 
space-time. They can be based in any inertial (inertial means non-
accelerating) co-ordinate system. They are different from vectors in 
the 4-dimensional Euclidean space, 4, in that they have a different 
inner product and norm and they take account of the different units 
that humankind uses to measure space and time. However, they 
are similar to vectors in the 4-dimensional Euclidean space in that 
they have four components that are just four real numbers and thus 
4-vectors are in 4 rather than in a geometric space derived from a 
fi nite group. 4-vectors are just vectors in 4-dimensional space-time 
(any non-accelerating velocity less than c). It is important to realize 
that a “vector algebra” depends on the type of empty space within 
which the vectors lie; the dot product is different in different spaces. 
Differentiation of 4-vectors is done, as with the familiar vectors in 
3-dimensional Euclidean space, by differentiating each component. 

Not all Lorentz invariant physical laws are expressible with 
4-vectors; some use scalars, some require 4-tensors, and particle 
physicists also use spinors. However, if a physical law can be writ-
ten in 4-vector notation, then that physical law is guaranteed to be 
Lorentz invariant (invariant under rotation in space-time). 

We will write 4-vectors either horizontally or vertically to suit 
appearance. In this book, there is no difference of meaning in using 
horizontal or vertical notation. (In some other books, there is a dif-
ference.) 4-vectors are written as: A [ ],x y z ta a a a  but, in 
order to take account of the units, we include the speed of light, c, in 
the fi nal co-ordinate2. Note that the leftmost three components are 

1. Just because something works properly, they use it – typical of physicists.
2. There is no standard notation denoting 4-vectors. The reader might come across 
various forms such as: A4, . 
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the spatial components associated with 3-dimensional space and the 
rightmost component corresponds to the time component3. Thus, 
the displacement vector is written as: R [ ].x y z ct  Note that 
the physical dimensions (the units in which they are measured) of 
each component in the 4-vector are now the same; they are all of 
mass-dimension length (that is they are measured in meters). We 
write this as:

 1 1 1 1[ ] ,     [ ] ,     [ ] ,     [ ]
L

x L y L z L ct T L
T
       

 1)

We see that multiplying time by a velocity (of light) produces a 
length. As with “normal” vectors, a 4-vector can be thought of as an 
arrow, but, in the case of 4-vectors, it is an arrow in space-time (that 
is the space-time between the 45 asymptotes) rather than in space. 

The length of a 4-vector is calculated as: Length = 
2 2 2 2 2c t x y z   4. The norm of a 4-vector is just its length 

squared. The length is also referred to as the invariant interval – it is 
an interval (distance) in space-time that is invariant under rotation 
in space-time – it is the length of the displacement vector, and so it 
will be invariant under rotation. We denote the invariant interval by 
the Greek letter tau, :

 2 2 2 2 2 2 2 2 2 2 2 2c t x y z c t x y zt t               2)

The dot product (inner product) of 4-vectors is: 

 A B 2

x x

y y
t t x x y y z z

z z

t t

a b

a b
c a b a b a b a b

a b

ca cb

   
   
         
   
   
   

 3)

Note that:

 A B B A      4)

3. In some notations, it is the leftmost component that corresponds to the time 
component. 
4. The reader might find that in some textbooks the length is given as 

2 2 2 2ˆ( )dist x y z ict     where the imaginary square root of minus-one is used to 
avoid the minus signs in the distance function.
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One of the disadvantages of using 4-vectors is that the notation does 
not clearly indicate that the component values are restricted by the 
requirement that:

 2 2 2 2 2c t x y z    5)

When we use the space-time trigonometric functions {cosh( ), 
sinh( )} in a rotation matrix, this restriction is automatic. This nota-
tional failing has led to people postulating some kind of space-time 
in which the spatial distance is greater than the time distance and 
thus the space-time distance is a Euclidean imaginary number given 
by:

 2 2 2 2 2 2c t x y z d id       6)

The number î  is from the Euclidean complex numbers algebra, , 
of the 2-dimensional Euclidean plane. It does not exist in the hyper-
bolic complex numbers algebra, , of space-time. There is no such 
thing as space, or space-time, with imaginary distance. Because of 
these restrictions, the arrow that is the 4-vector can point in only 
directions that are within the 45 asymptotes (limiting velocity) of 
space-time (think velocity 4-vector). This means that there is a prob-
lem with the idea that the 4-acceleration 4-vector is orthogonal to 
the velocity 4-vector. The problem, as we will see in chapter 18, 
derives from the misapplication of the dot product to the idea of 
orthogonality. 

4-vectors have norm (length squared) and inner-product (dot 
product) that is unchanged (invariant) under rotation in space-time, 
but the components of the vector(s) change - components of vec-
tors always change under rotation and lengths of vectors are always 
invariant under rotation. The notation is a little confusing because 
we are using four components and we normally set our velocity to 
be along one of the spatial axes. We have the “counterclockwise” 
rotation:

 

1 0 0 0
0 1 0 0

0 0

0 0

x
x y
yv v

z ctzc c
v ct v

z ct
c c

g g g g

g g g g

   
    
    
          
    
            

 7)
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Where we see that we are carrying two space dimensions along for 
the ride. Special relativity is essentially a theory of 2-dimensional 
space-time – the hyperbolic trigonometric functions are 2-dimen-
sional. Physicists feel the need to adapt special relativity to the 
4-dimensional space-time we see, and so they throw in two inert 
space dimensions that have nothing to do with the math and come 
along for no more than the ride. The 4-dimensional space-time we 
see is dealt with by the Lorentz group which we consider in a later 
chapter. 

16.2 DIFFERENTIATION OF 4-VECTORS

Within 4-vector algebra, it is normal to differentiate, not 
with respect to time, but with respect to the invariant interval, 

2 2 2 2 2 .c t x y zt      There is no great mathematical reason for 

this; we could differentiate with respect to time if we wanted to (or 
space), but the result would be complicated by the fact that time is 
not an invariant under Lorentz transformation (rotation in space-
time) – there is time dilation. We differentiate to compare how 
one variable changes with respect to another variable, and it sim-
plifi es things if the variable against which we do the comparing is 
not changing (dilating). Since time changes with space-time rotation 
in a predictable way (time dilation), we could do the calculations 
necessary to adjust our differentiation. We don’t do this because it 
is easier, and felt to be aesthetically more elegant, to differentiate 
with respect to , which is, of course, the invariant length of the 
4-vector. So, we are differentiating each component of the 4-vector 
with respect to the length of the 4-vector to see how these compo-
nents change under a Lorentz transformation (space-time rotation) 
compared to the unchanging length of the vector. Of course, for a 
stationary observer, the length of her 4-vector is just the same as the 
time component and so, for the stationary observer   t. This is why 
in Newtonian mechanics we differentiate with respect to time when 
calculating velocity and acceleration. 
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NOTE

When we differentiate in the complex plane, , we 
have to take account of the Cauchy Riemann equa-
tions. Your author is of the opinion that we have to 
do the same in the space-time, , of the hyperbolic 
complex numbers and so we will not be differentiat-
ing with respect to  in the Chapter 18 of this book.

The reader will recall from a previous chapter that (9.33) & (9.35):

 

2

2

2

2

1
cosh

1

sinh

1

dt
d v

c
dz v

v
d v

c

g c
t

g c
t

  



  



 8)

In practice, we calculate by differentiating with respect to 

 and then multiplying the result by 1.
dt
dt

  This gives us 

     
.

d d ddt dt
dt d d dt dt

g
t t

  The effect of this is to “drop” the answer 

on to the time axis of the stationary observer (think trigonometric 
functions are projections on to an axis and   cosh). Thus we 
calculate how the object of our calculation appears to a stationary 
observer – which is what we usually want.

16.3 4-VELOCITY

The position 4-vector (displacement 4-vector) in space-time is: 
R [ ].x y z ct  We differentiate this vector with respect to  to 
get the velocity 4-vector (also known as the 4-velocity):

 RU ( )dydx dz d ct d
d d d d dt t t t t
    

 9)

Multiply by dt
dt

 and extract :
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 U

v

( )dydt dx dt dt dz dt d ct
d dt d dt d dt d dt

dydx dz
c

dt dt dt

c

t t t t

g

g

    
    
   
r

 10)

Where we have introduced the 3-dimensional spatial velocity 
vector, .V

ur

The 4-velocity is the familiar velocity in three dimensional space 
fi tted into a 4-vector together with the velocity through time, which 
has value c  speed of light. The concept of velocity through time is 
a diffi cult one. The reader should bear in mind that time, like space, 
can be travelled through.

The magnitude of the 4-velocity is the length of the 4-velocity 
4-vector and is given by the square root of its norm:

  

U U v v

v v
v v

2

2

2

1

1

c c

c

c
c

g         

  






r r

r r
r r  11)

Thus, regardless of the magnitude of the 3-dimensional spatial 
velocity, ,V

ur
 through space, the 4-velocity is always c, including for a 

stationary observer. Yes, the stationary observer is traveling through 
time at the speed of light. The 4-velocity is the velocity through 
space-time. Readers who wish to can think of the 4-velocity as the 
tangent vector that is tangent to our path through space-time. 

So, stationary observers travel through space-time at the speed 
of light – now there’s a thing of import! Since the length of a 4-vector 
is invariant under rotation in space-time, all observers travel through 
space-time at the speed of light. The only difference is direction. 
Some observers (stationary ones) travel in the time only direction. 
Other observers travel in a direction that is part space and part time 
– this concept rather blows the mind when one fi rst meets it. And 
so, the speed of light is the speed, through space-time, of everything 
and not the speed of only light. That is worth emphasizing:
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Everything travels through space-time at the speed of light.

16.4 4-ACCELERATION

We continue to follow the conventional presentation. We have 
above:

 U U 2c       12)
Since c is just a number, if we differentiate  with respect to  we will 
get zero:

 
U U A U2 2 0

d
dt

     13)

This conventional presentation is confusing because, although the 
4-vector dot product in space-time can be zero (see the unrestricted 
way it is defi ned), it cannot be equal to the cosh( ) function because 
the cosh( ) function is never zero. (It’s the failure to acknowledge the 
restrictions  that causes the problem.) Thus the concept of orthogo-
nality as a measure of the angle between two 4-vectors is inappli-
cable. It is, however, part of the standard presentation of 4-vectors, 
and so we will proceed. The convention is that the 4-acceleration is 
orthogonal (in space-time) to the 4-velocity. (What really happens is 
that, for a stationary observer, the acceleration vector points in the 
space-direction while velocity vector points in the time direction.) 
We will emphasise that:

4-acceleration is orthogonal (perpendicular) to 4-velocity

Thus, accepting the convention that orthogonality is equivalent to 
perpendicularity, we see that it is not possible to increase the 4-veloc-
ity (increase the length of the velocity vector) but only to redirect it 
(pull it to one side). Of course, this is what we are accustomed to; 
when we accelerate (change velocity), we rotate the velocity vector 
in space-time – pull it sideways rather than lengthen it. Now, there’s 
a profound insight!  

Although the deduction of the insight is nonsense, the insight is 
correct for a stationary observer, and we will see in Chapter 18 that 
“4-acceleration” is “perpendicular” to “4-velocity” in the space-time 
sense for a stationary observer.

special.indb   184 28-04-2016   20:41:52



4—Vectors • 185

Aside: The 4-vector dot product is zero when the magnitude of the 
spatial part of the 4-vector is of equal magnitude to the time part. 
This is when cosh   sinh . This is never the case since (cosh2   
sinh2   1).

In a previous chapter, we pondered over why humankind were 
stuck with a velocity through space-time (h  1) that was constant. 
We pointed out that this constant is the speed of light, at which all 
objects travel through space-time. We now understand this a little 
better. It is a property of space-time that 4-acceleration (the space-
time type of acceleration) is perpendicular to 4-velocity. Thus, the 
magnitude of the 4-velocity cannot be changed; 4-velocity must be 
constant. This is why the speed of light is a physical constant. The 
speed of light is not the speed of only light. It is the speed of every-
thing in space-time, and it is constant because the 4-acceleration is 
perpendicular to the 4-velocity (at least for the stationary observer – 
we are all stationary observers relative to ourselves). Let me empha-
size that:

The speed of light is constant because the 4-acceleration 
is perpendicular to  4-velocity in space-time.

That’s one way to get a physical constant! 

We differentiate the velocity 4-vector to get the acceleration 
4-vector called 4-acceleration:

   

U UA

v a

22 2 2

2 2 2 2

d yd x d z d ct d d
d dtd d d d

dyd dx dz
c

dt dt dt dt

dy dyd dx dz d dx dz
c c

dt dt dt dt dt dt dt dt

d d
c

dt dt

g
tt t t t

g g

gg g

g gg g

 
   
 

       
                      
    

 

 14)

Where we have introduced the 3-dimensional spatial acceleration 
vector, a .


 Note that this a


 is the acceleration of a moving body 

as seen by a stationary observer. It is of lesser magnitude than the 
acceleration, 0,a


 that would be felt by an observer moving with the 
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accelerating body (which is what a stationary observer would see if 
the accelerating body were stationary). 

We have:

 

 

v v

vv
v v

v a

1
2

2

3
2

2 2

3
2

1

2
1

1
2

d d
dt dt c

d
dt

c c

c

g

g





 
  

 
  

             
   




 


 

 

 15)

Of course, for a stationary observer,   1, 0,
d
dt
g
  and the 4-accel-

eration is just: 

 A a a00 0       
 

 16)

as we think it should be. We see that the 4-acceleration of special 
relativity reduces to the purely spatial 3-dimensional acceleration 
vector of Newtonian mechanics when the velocity of the observer 
is zero. 

There is a problem with A a 0 .   


 That problem is that:

 A A a a a
220 0 0 0             

  
 17)

This cannot be correct because the value of the acceleration is the 
square root of the norm and this is a negative number and so the 
acceleration is imaginary. (Again, it’s that failure to acknowledge the 
restrictions that causes the problem.) This is the origin of the idea 
that the observer’s acceleration is the negative of the norm of the 
4-acceleration. We address this problem in Chapter 18, using matri-
ces instead of 4-vectors. 

There is an “interpretation” of the imaginary nature of the 
4-acceleration. Thinking of space-time as that part of a fl at piece 
of paper that is trapped between the 45 asymptotes that are the 
limiting velocity and noting that the velocity vector of a stationary 
observer points along the horizontal time axis, the acceleration vec-
tor must be vertical. Such a vector, translated back to the origin, 
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would point straight up (or down) the space axis, which is outside 
of the 45 asymptotes, and which points in the imaginary direction 
in the Euclidean complex plane. I think this is an unimpressive 
“interpretation”.

None-the-less, substitution gives:

 
   v a v aA v a4 2 4

2 2 c
c c

g g g
  

  
 

r r r r
r r

 18)

We now calculate the norm of the 4-acceleration. We have:

 

   

   

   

    

A A v a v a

v vv a

v a a a

v a a a

v a a a v v a a

22 6
2 2

24 2
2

24 2
2

26
2 2

1
1

1
2

1

1 1

d d d d
c c

dt dt dt dt

c c

c

c

c c

g g g gg g g g

g g

g g

g g

g

             
     

 
      


       
 
             
 

   

  

   

   

       

 19)

Using (from 3-dimensional vector algebra) the identity:

         v a v v a a v a v a
2

           
         

 20)

(The cross-product of two 3-dimensional vectors was dealt with in 
the chapter on vectors.) We have:

 
    

   

A A v a a a v v a a

v a v a a a

26
2 2

6
2

1 1

1
c c

c

g

g

              
 
         
 

       

       21)

When the 3-dimensional acceleration, a ,


 is parallel to the 3-dimen-
sional velocity, v,


 we have v a 0 

 
 and:

 
 A A a a

A a a

6

3

g

g

    

   

 

   22)
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This cannot be correct (the minus sign). The square root of A A  
is the scalar amount of 4-acceleration through space-time. We get 
around this incorrectitude by fudging it. We declare that the kind of 
acceleration we are used to (the 3-dimensional a

r
) is the negative of 

A A  and that A A0a    . The justifi cation for this is the minus 
signs in the defi nition of the 4-vector dot product. If we could set 
time to zero, this would be the result. This leads to:

 

 A A a a

A a a

6

3

3a

g

g

g

    

   



 

 
 23)

This is the acceleration transformation we derived earlier:

 0
3

a
a

g
   24)

Where a0 is the acceleration as measured by the observer moving 
with a rocket and a is the acceleration of the moving rocket as mea-
sured by the stationary observer as it passes him.

It is customary to call a0


 the proper acceleration. It is the accel-

eration experienced by a stationary observer as measured on an 
accelerating but instantaneously stationary rocket - in the instanta-
neous rest frame. Taking the negative of the length of the 4-accelera-
tion gives: 

    a a a v a v a3
0 2

1
c

g         
      

 25)

This is the 4-vector acceleration transform. If a rocket produces a0


 

acceleration when it is stationary, it will appear to the stationary 
observer to produce a


 acceleration when it is moving at v


. When 

the acceleration is parallel to the velocity, this is:

   26)

When the 3-dimensional spatial acceleration is perpendicular to the 
3-dimensional spatial velocity (think orbiting particles moving in 
storage rings at CERN), this is:
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 

 27)

EXERCISES

1. Is the perpendicularity of 4-acceleration and 4-velocity a 
deep insight into the nature of the universe and of the origin 
of physical constants?

2. What is the length of the 4-vectors [6 4 1 3] & 
[6 4 4 3]

3. What is the space-time angle (think dot-product and cosh( )) 
between the two 4-vectors [6 4 1 3] & [6 2 4 3]?

4. What are the mass-dimensions of gamma?

5. A rocket is moving with 4-velocity [6 2 2 4] as it re-
cedes directly away from a stationary observer. It accelerates 
directly away from the observer in such a way that its instru-
ments record its 4-acceleration to be [3 1 1 2]. What 
will its spatial acceleration be as measured by the stationary 
observer?

6. What is the norm of the 4-acceleration [4 3 1 ) ?

7. What is the 4-acceleration of a spaceship with spatial accel-
eration [1 2 3]moving at space-velocity [2 0 1]?

8. What is the 4-acceleration of a spaceship with 4-velocity 
[12t3 2x y 3z2t)?
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CHAPTER 17
4-MOMENTUM AND 
RELATIVISTIC MASS

We have seen above that the 3-dimensional spatial acceleration, 
a,
r

 is not invariant under change of velocity. This is contradistinct 
from the Newtonian world view in which the acceleration is invari-
ant. We might anticipate that the relativistic view of momentum and 
force will differ from the Newtonian view. 

In Praise of Newton: Newtonian mechanics has successfully pre-
dicted the orbits of planets (excepting a minor discrepancy in the 
orbit of Mercury – which special relativity does not correct) and 
successfully, and delicately, landed space-probes on distant worlds. 
Newtonian mechanics is used by space-agencies world-wide for cal-
culating the trajectories and orbits of their rockets and probes. New-
tonian mechanics is very successful. It is so successful that the fact 
deserves emboldening.

The only thing wrong with Newtonian mechanics is that it is not right1.

Aside: The first writing of the mechanics of special relativity was 
done by Max Planck (1858–1947) in 1906. A second writing of it was 
done by Lewis and Tolman in 19092.

1. CERN finds huge discrepancies between reality and Newtonian mechanics be-
cause they deal with particles moving at very close to the speed of light.
2. Lewis & Tolman Phil Mag 1909 Vol. 18 pp. 510–533.
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Modern physics accepts that every particle in the universe has 
a real number (a scalar) associated with it that we call the particle’s 
rest-mass. We denote this rest-mass as m0. The rest-mass might 
be zero – it might be that such particles are outside of space-time. 
Special relativity does not try to explain what mass is or why every-
thing has mass but starts by accepting as given this assumption of 
rest-mass. Nor does special relativity take any account of gravitation 
(general relativity does that). To special relativity, mass is associated 
with inertia.

Aside: According to quantum theory, particles have rest-masses that 
are proportional to Planck’s constant, h . Planck’s constant plays no 
role in special relativity. 

17.1 ABOUT MASS

We do not understand mass properly; even so, we will discuss it. 
We remind the reader that the mass-dimensions of space and time 
are the same in special relativity:

 [L]  [T]      (17.1)
and that this means that the units used to measure energy and to 
measure mass are the same as the units used to measure momen-
tum. Which is another way of saying that energy, mass, and momen-
tum are the same kind of “stuff”.

The phrase “rest-mass” is a little misleading. Everything travels 
through space-time (as distinct from space) at the speed of light, and 
so nothing is at rest. The rest-mass of a stationary particle is really 
the “momentum” of the particle in the time direction, which is the 
energy of the particle.

The rest-mass of a stationary particle is just its 
momentum in the time direction.

The time direction of space-time is associated with the cosh( ) 
function. It seems that rest-mass is associated with the fact that 
cosh(0)  1.
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From the point of view of the stationary observer, light does not 
travel through time (think time dilation). If a photon of light does 
not travel through time, it has no time component of momentum 
and so it has zero rest-mass. This does not mean that it has zero 
momentum; it will have a spatial component of momentum (which is 
also an energy), and so a photon of light has momentum even though 
it has zero rest-mass. That seems to make sense, and it seems to fi t 
what we observe. However, there is a problem within theoretical 
physics associated with particles called neutrinos. Neutrinos seem 
to travel through space at the speed of light; they also seem to have 
non-zero rest-mass. There is clearly something to do with the speed 
of light and the rest-mass of particles that we do not understand.

Aside: Neutrinos have intrinsic spin which, when compared to the 
neutrino’s direction of motion, allows us to associate a definite helic-
ity with the neutrino. It seems that only left-helicity neutrinos (and 
right-helicity anti-neutrinos) exist. This means that as a neutrino 
passes by us to our right, we always see it with left-helicity. If we 
were to overtake the neutrino, it would appear to pass us to our left 
as we passed it and thus it would appear to have right-helicity, but 
there is no such thing as a right-helicity neutrino. Thus, it must be 
that we cannot overtake neutrinos, and so they must travel at the 
speed of light; in which case they must be massless (or so the stan-
dard story goes). Observations lead us to believe that neutrinos have 
mass – that’s the problem within theoretical physics. 

Having assumed the concept of rest-mass, we are able to defi ne 
the momentum 4-vector (known as 4-momentum or as momenergy) 
as the product of this rest-mass and the 4-velocity:

 P U0m        (17.2)

17.2  MOMENTUM AND ENERGY CONSERVATION 
IN SPECIAL RELATIVITY

The 4-momentum, P,  is a space-time vector. As it rotates in 
space-time, its components will change but its length will stay the 
same.
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Now, every stationary observer sees within their own refer-
ence frame two conservation laws, conservation of momentum and 
conservation of energy. When the observer considers an event in 
more than one reference frame, then energy and spatial momentum 
become unifi ed (as do space and time) into one entity, the 4-momen-
tum, usually called momenergy, and there is only one conservation 
law – conservation of momenergy.

Momentum and energy are a special case of a general phenom-
ena. A stationary observer sees time as separate from space. Despite 
this, to understand the physics of a moving physical system, the sta-
tionary observer has to unify space and time into space-time. The 
“God’s eye view” is that space-time is not two separate things even 
though they will always appear to be so to a stationary observer. The 
same is true with force and power, with electric fi eld and magnetic 
fi eld, and with any two physical concepts that are unifi ed by spe-
cial relativity. It is true with energy and spatial momentum. To the 
stationary observer, in her own reference frame, energy and spatial 
momentum will always be two separate things and they are governed 
by two separate conservation laws. The “God’s eye view” is that only 
the unifi cation of energy with spatial momentum, called momenergy, 
exists and that there is only one conservation law – conservation of 
momenergy. The stationary observer needs to adopt the “God’s eye 
view” if she is to understand physics within a reference frame that is 
moving relative to her own.  

In special relativity, momenergy, also known as 4-momentum, 
is conserved under change of velocity. Of course it is; momenergy is 
the length of the 4-momentum vector. The length of a vector does 
not change when it is rotated. We’ll say that again:

4-momentum (momenergy) is conserved under change of velocity.

Imagine two particles colliding. In a particular reference frame, 
prior to the collision, there is a 4-momentum 4-vector associated 
with each particle. The total 4-momentum is the component-wise 
sum of the two particle 4-momenta. It is the length (magnitude) of 
this total 4-momentum that is conserved through the collision. After 
the collision, the two particles will again each have a 4-momentum. 
The component-wise sum of the two post-collision 4-momenta will 
be equal to the pre-collision total 4-momentum.
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In different reference frames, the components of the total 
4-momentum will differ, but the length of the total 4-momentum 
will be the same. Because observers in relative motion disagree on 
the direction in space-time of the 4-momentum vector (its angle with 
the time axis), they disagree on the components of the 4-momentum 
vector. They agree only on its length. 

So, to repeat, observers in relative motion disagree on the com-
ponents of the 4-momentum but they agree on the magnitude of the 
4-momentum. Of course, they do; as we rotate a vector, its compo-
nents change but its length stays the same. Well, we’ve reiterated 
that enough!

For some observers, the momenergy 4-vector of a canon ball will 
be entirely energy; this corresponds to the canon ball being station-
ary. For other observers, the same momenergy 4-vector will be some 
energy and some spatial momentum. For all observers, the energy 
component will be greater than the spatial momentum component. 
This is exactly the same thing as the limiting velocity of the universe. 
The energy and momentum are as the time and space axes, and a 
direction in the energy-momentum space-time cannot be steeper 
than the limiting 45 asymptotes.

To digress from 4-vectors briefl y: For a cannonball of rest-mass m0 
kilogram moving at a velocity through space-time that corresponds 
to the space-time angle , the energy of the cannonball is given by 
E  m0 cosh  and the spatial momentum of the cannonball is given 
by p  m0 sinh .
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The momenergy 4-vector (that is the 4-momentum 4-vector) 
points in the same direction in space-time as the 4-velocity of the 
particle through space-time - this is not the same as the velocity 
through space.

We have:
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The spatial part of this 4-vector is:

 p u0~ ~mg      
r r

 (17.4)

Now, in Newtonian mechanics, we have that 3-dimensional momen-
tum is the product of mass and velocity, p u,m

r r
 and, because in 

Newtonian mechanics we are concerned with only slow velocities, 
the mass is taken to be the rest-mass. In special relativity, we accept 
that the mass (not rest-mass) is not an invariant quantity under rota-
tion in space-time (change of velocity). This contrasts with electric 
charge which is an invariant quantity under rotation in space-time. 
We therefore, looking at the momentum 4-vector above, defi ne rela-
tivistic mass to be:
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Thus it is that the mass of a body seems to the stationary observer to 
increase with velocity. 

Theoretical physicists equate the mass-dimensions of time with 
those of space. They also have the mass-dimensions of mass as:

 1 1
[ ]M L

L
    (17.6)

The length of a moving rod contracts, and so, looking at the mass-
dimensions of mass, we ought not to be surprised that its mass 
increases.
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Of course, the square root gives rise to both positive and neg-
ative mass, but no-one has ever observed negative mass. For that 
matter, no-one has ever observed negative time from the time dila-
tion formula. It has been postulated that anti-matter might be gravi-
tationally negative mass, but there is evidence that this is not so. 
Experiments by Eotvos (1848–1919) and by Dicke (1916–1997) 
would have detected such gravitationally negative mass, and there is 
astrophysical evidence that the gravitational mass of the K meson 
and its anti-particle are the same to within a few parts in 1010.

Aside: Within particle physics, the rest-mass of a particle is thought 
to derive from the Higgs mechanism. The Higgs mechanism is 
neither conceptually nor mathematically elegant, but no-one has 
invented any better way of explaining mass. 

Rest-mass is approximately only 1% of the mass in the universe. 
The other 99% of the mass of the universe is the binding energy 
within the quark gluon plasma as described by quantum chromo-
dynamics, QCD.

It is often said that the mass of a body tends to infi nity as the veloc-
ity of the body through space tends to the speed of light, and so 
the force necessary to accelerate this body tends to infi nity as the 
velocity through space tends to the speed of light, and so a body with 
non-zero rest-mass cannot accelerate through the “light-barrier”. In 
spite of this being both often said and true, it misses the point. The 
point is that nothing within space can accelerate through the “light-
barrier” because the speed of light is the limiting velocity. If a mass-
less particle was moving slower than the speed of light through space 
(there is no such thing known), it could not be accelerated through 
the “light-barrier”. 

Special relativity does not deny the existence of particles mov-
ing faster through space than the speed of light. They would not be 
in space-time, but the theory does not deny their existence - it says 
nothing about them. Such particles are called tachyons. They have 
been searched for and not found3. Of course, “moving faster” seems 
to be something that can happen in only space-time.

3. They exist in Star Trek movies, but then so does warp speed. 
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Aside: One of the great unsolved mysteries of life is why the inertial 
mass of a body, which a body will have in the complete absence of 
gravity, should be exactly equal to the gravitational mass (the charge 
of the gravity force) of the body. Experiments by Eotvos in 1889 
and again in 1922 and by Roll, Krotkov, and Dicke4 in 1964 and by 
Braginski and Panov5 in 1971 have verified this equivalence to one 
part in 1012. It is because the gravitational mass is equal to the iner-
tial mass that the acceleration due to gravity is equal to the strength 
of the gravitational field. The mystery is that the mass that is the 
resistance to acceleration by an electric field is the same as the mass 
that partakes of the gravitational field.

Now:
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This implies:
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Now the second term is what we recognise as Newtonian kinetic 
energy. It therefore seems, and this is verifi ed by nuclear bombs and 
shining suns6, that the relativistic energy is the whole of the series 
which is, of course, just:
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  (17.9)

Thus it is that we can take the view that rest-mass is just a “frozen” 
form of energy. With zero spatial-velocity, we have:

 2
0E m c  (17.10)

4. Roll, Krotkov & Dicke: Ann Phys 26, 442 (1964).
5. Braginski & Panov: Sov Phys JEPT 34 464 (1971).
6. The sun radiates away 4 million metric tons of mass per second.
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This is the most famous of all equations. Note that the units on 
either side of the equation match because the mass-dimension of 
space is the same as the mass-dimension of time and so velocity is 
just a unit-less number. To put some numbers into this, a kilogram 
of mass is equivalent to 1017 joules. The Hiroshima bomb released 
1014 joules of energy. 

All forms of energy except potential energy by virtue of position 
in a fi eld are equivalent to mass. However, the energy of the fi eld has 
mass (which gravitates), and the gravitational fi eld has mass (which 
gravitates), as does the electromagnetic fi eld. 

Aside: Pressure is a kind of energy. Thus, pressure has mass. Thus 
pressure gravitates. When a supernova begins to gravitationally col-
lapse, the pressure inside the star increases. The gravitational force 
of contraction due to the “mass of the pressure” increases faster than 
the outward pushing force of the pressure itself. In very large stars, 
the pressure increases to the point where the inward gravitational 
force of the (equivalent mass) pressure itself becomes stronger than 
the outward pressure force. The star collapses to become a black 
hole. It is dragged into collapse by the strength of the pressure 
resisting its collapse.

From above, we have:
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and so we see that our momentum 4-vector is comprised of the 
usual 3-dimensional spatial momentum vector (three components 
with relativistic mass) and a scalar (real number) energy component 
in the place of the time component. In general, 4-vectors have this 
structure. They have three components that correspond to the New-
tonian physics and a fourth component that sits in the place of time. 
This is unifi cation of 3-dimensional space and time into 4-dimen-
sional space-time. 

Note that, with c  1, the ratio of the spatial component of the 
momentum 4-vector to the time component (that is the ratio of the 
energy to the spatial momentum) is just the ratio of the spatial velocity 
to the speed of light. 
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This is just 
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Using U U 2 ,c   we have:
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Leading to:
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This is just  2 2 2 2
0 0cosh sinh .m mc c 

With c  1, the rest-mass of a particle is given by the energy and 
momentum components of its 4-momentum by (17.14). Consider a 
particle at rest relative to a stationary observer; its momenergy 4-vec-
tor points in the time direction. Its rest-mass is all energy and zero 
spatial momentum. Now accelerate that particle; the momenergy 
4-vector is rotated in space-time and the particle’s mass becomes 
partly energy and partly spatial momentum. As the momenergy 
4-vector rotates, the particles kinetic energy increases and the par-
ticles spatial momentum increases, but, because the measure of 
space-time distance includes a minus sign (we have that the increase 
in energy minus the increase in spatial momentum is constant), the 
magnitude of the momenergy (the length of the 4-momentum vec-
tor) stays the same. The equation E2 – p2  constant2 is the equation 
of a hyperbola, of course. This “space-time length of the momen-
ergy 4-vector” is the particles rest-mass; it is the constant hyperbolic-
radius of the hyperbola. Should we emphasize that? 

The rest-mass of a particle is the space-time length of its momentum 4-vector.

Clearly, the non-zero rest-mass derives from the nature of the 
cosh( ) function. So, why do different particles have different rest-
masses then? 
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Aside: Within quantum mechanics, we have the operators: 
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h h  If we put these into the above relativistic 

equation operating on the field , we get:
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With 1c  h
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A mere notational change gives:

  2 0mm
m j     (17.17)

This is the quite famous Klein-Gorden equation of quantum field 
theory.

17.3  COLLIDING STICKY BUDS AND THE CENTER 
OF MASS REFERENCE FRAME

It is said that during the summer of 1705, Isaac Newton 
observed a stationary sticky bud being hit by a moving sticky bud. 
The two sticky buds stuck together and moved off at a velocity that 
was slower than the initial velocity of the moving sticky bud. Note 
that evolution has arranged that sticky buds are all of the same rest-
mass, m0. Let us see how Newton analysed the collision. Let u be 
the initial velocity of the moving sticky bud and let v be the velocity 
of the sticky bud pair. Newtonian conservation of linear momentum 
and the Newtonian invariance of mass means that we have:

 0 02
2
u

m u m v v    (17.18)
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However, Newtonian kinetic energy is not conserved. We have:
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Newton concluded that the collision of the two sticky buds con-
verted kinetic energy into heat and noise.

It is said that during the summer of 1905, Albert Einstein 
observed a stationary sticky bud being hit by a moving sticky bud. 
The two sticky buds stuck together and moved off at a velocity that 
was slower than the initial velocity of the moving sticky bud. Note 
that evolution had continued to arrange that sticky buds are all of the 
same rest-mass, m0. Let us see how Einstein analysed the collision. 
Relativistic conservation of linear momentum and the relativistic 
variance of mass means that we have:
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Relativistic conservation of energy is:

 
2 2 2

0 0 0
2 2 2

2 2 2
0

1 1 1

m c m c M c

u v
c c c

 

  
 (17.21)

We have to allow for the increase or loss of mass - heat is energy, and 
so it has mass – so we put M0 as the mass of the sticky bud pair. We 
cannot assume M0  2m0. Solving these equations leads to:

 

2

2

1
20

2
0

2

1

1 1

1
2 1

1

v
u u

c

M
m u

c



 

   
  
 

  (17.22)

Note that if u  0, M0  2m0 but not if u > 0. That M0 > 2m0 if u > 0 is 
seen by Einstein to be the mass of the heat energy in the sticky bud 
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pair. To recap: Newton saw a non-conservation of kinetic energy; 
Einstein saw a conservation of total energy; they both saw a conser-
vation of spatial-momentum. 

17.4 CENTER OF MASS REFERENCE FRAME

It is easier to do the analysis in a reference frame in which, prior 
to the collision, the total momentum is zero. Such a reference frame 
is called the center of mass reference frame. It is really the center 
of momentum frame, but it’s only a name. Since linear momentum 
is conserved, then the center of momentum reference frame is the 
reference frame in which the sticky bud pair will be stationary after 
the collision and in which the (equal mass) two sticky buds prior to 
the collision will be moving at the same speed in opposite directions. 
It is usual to do the analysis in the center of mass frame.

Now, using the above, we have in the center of momentum ref-
erence frame that the sticky bud pair is stationary (  1), and thus its 
spatial momentum is zero and the time part of the 4-momentum is 
E  Mc, and so the center of mass (or momentum) reference frame 
has the 4-momentum as: [Mc 0 0 0] with norm M2c2. The norm 
is invariant under Lorentz transformations, and so we know that the 
norm of the 4-momentum in the original (not center of mass) refer-
ence frame will have a norm of the same value. Within the origi-
nal system, the 4- momentum was:  0 0 0 0u ucm cm mug g . 
Equating the norms gives:

    222 2
0 0u uM c y cm cm mug    (17.23)

Which leads, far more simply, to the equations (17.22).

17.5 4-FORCE

In Newtonian mechanics, we have two defi nitions of force 
(which never was a good idea). We defi ne force as the product of 
mass and acceleration, F  m0a, and we defi ne force as the rate of 
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change of momentum with respect to time, .
dp

F
dt

  In Newtonian 

mechanics, these two defi nitions are completely equivalent. In spe-
cial relativity, we have only one defi nition, which is based on the rate 
of change of 4-momentum with respect to the invariant interval, . 
We defi ne 4-force as the 4-vector:
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This defi nition fi ts with the electromagnetic force. This defi nition is 
such that the momentum remains unchanged unless there is a force. 
We have:
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r ur r
 (17.26)

using: 3 ,
d dv

v
dt dt
g g  we get

 F v a3 30 0
0 0 0

dm dmdv dv
m v m v m v c

dt dt dt dt
g g g g g g         

r ur
 (17.27)

Taking m0 to be a constant and :
dv

a
dt



 

 

F a v a a4 2 4
0

2 2 2 2
0

4
0

1

1

m v v c

m a v vc

m a vc

g g g

g g g

g

     
   


urr ur ur

                 (17.28)

Recalling that 3
0a ag  

    F 4
0 0 01 1m a vc m a vcg g              (17.29)
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Giving us that the 3-dimensional force is:

 0 0f m ag  (17.30)

Thus, we see that the Newtonian F0  m0a0 is modifi ed in special 
relativity. 

Note that the 4th component of the 4-force 4-vector, with c  1, 
is just the velocity, v, and so the total 4-force will be dependent upon 
velocity just as the magnetic part of the total electromagnetic force 
is dependent upon velocity. This is telling us that a 3-dimensional 
velocity-independent force cannot be Lorentz invariant, and so can-
not be a physical law. Within special relativity, almost everything 
depends upon velocity (time, length, acceleration, mass…), and so 
we ought not to be surprised that force depends upon velocity. The 
Lorentz force of electromagnetism (see below) is a typical relativis-
tic force.

We also have:

 

PF p

p F1 1

d d E
d dt c

d dE
power

dt c dt c

g
t

g g

     
          

r

r
r

                (17.31)

Again, we have the characteristic structure of a 4-vector. That is we 
have a 3-dimensional spatial vector and a scalar that corresponds to 
the time component. In this case, we have the 3-dimensional force 
vector and the power scalar. The reader should observe that uni-
fying 3-dimensional space with time into 4-dimensional space-time 
automatically unifi es lots of other concepts together – such as force 
and power. If one thinks of the units in which different things are 
measured and, within these units, one sets the mass-dimension of 
time equal to the mass-dimension of length, then one can see why 
unifying space and time leads to these unifi cations. One can equally 
see why, to the stationary observer, the unifi cations break because 
the stationary observer sees space and time as separate. 

Immediately above, we see that the time component of 4-force 

is, with c  1 and not worrying about the gamma, given by .
dE
dt

 

Within the unifying spirit of space-time, we ought to have the spatial 
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component of 4-force given by .
dE
dr

 This is exactly the concept of 

force that is used in particle physics. It is based on the assumption 
that the universe seeks to drop into the state with the lowest possible 
energy and so seeks to lower the energy by moving particles together 
(or apart). Thus, we might say, spatial force is the rate of change 
of energy with respect to spatial separation. Looking at the equa-
tion immediately above, we would generalize this into: space-time 
force is rate of change of energy with respect to space-time separa-
tion. Perhaps, we were unwise to defi ne force as rate of change of 
momentum with respect to  and ought to have defi ned it as rate of 
change of energy with respect to  (which is spatio-temporal separa-
tion). But then, within special relativity, we have the unifi cation of 
energy and momentum into momenergy, and so we effectively did 
that anyway. There’s the answer; force is rate of change of momen-
ergy with respect to the invariant interval, .

Within the universe, we observe four different types of force. 
These are: the gravitational force, the electromagnetic force, the 
weak force, and the strong force. If force is rate of change of momen-
ergy with respect to spatio-temporal separation, we must have four 
types of space or four types of momenergy. The fi nite groups give us 
different types of space.

17.6 ELECTROMAGNETISM

The 3-dimensional vector for electrical current is:

 j ur
r r

 (17.32)

Wherein,  is the current density. We will see later that the current 
density is not Lorentz invariant because of length contraction effects 
and that we have 0.r gr  The 4-current 4-vector is:

 J U u u j0 0 c c cr r g r r r             
r r r

 (17.33)

The electromagnetic force (Lorentz force) 4-vector is:

 F E v B E v1 1
q

c c
g           

ur r ur ur r
 (17.34)

We will deal with electromagnetism separately later.

special.indb   206 28-04-2016   20:42:13



4-Momentum and Relativistic Mass • 207

WORKED EXAMPLES

 1. What is the momenergy 4-vector of a particle whose kinetic 
energy is four times its rest energy?

  Ans: The total energy of the particle is 5m. We have:

           
 22 2 2 2 2

0 0 0

2
0 0

5

24 24

p E m p m m

m p m

    

  
 (17.35)

  Since the direction of the particle in 3-dimensional space 
is not specified, we are free to choose any set of the three 
spatial components of the 4-vector that (using Pythagoras) 
give the total spatial momentum as 024 .m We choose: 

0 05 0 0 24 .m m  

 2. The same particle as in 1 is observed by a passing alien in a 
spaceship to have its kinetic energy equal to its mass. In the 
alien’s frame of reference, what is the momenergy 4-vector?

  Ans: In the alien’s frame of reference, the total energy of the 
particle is 2m. This gives 3p m  and, since no directions 
are specified, the 4-vector in the alien’s reference frame is, 
by somewhat eccentric choice: [2m m m m]. Note, if 
the directions were specified, we would have no choice.

 3. In a particular reference frame, two particles collide with 
4-momenta [4 1 0 2] & [3 0 1 2]. After the colli-
sion, the particles the 4-momenta of the particles is measured 
and found to be [3 1 1 1] & [2 1 1 1]. Is there 
some energy and momentum missing? If so, what is missing?

  Ans: The total 4-momenta prior to the collision was 
[7 1 1 4] which has length 2 2 2 27 1 1 4 31.l     
This must be conserved, but the total 4-momentum after 
the collision is [2 2 2 2] with length 13.  There is 
something missing. Because we are in a particular reference 
frame, each component of the 4-momentum is conserved, 
and we can say that there must be some unseen particle with 
4-momentum [2 -1 -1 2] . The length of this 4-mo-
mentum vector is 2;  clearly, something is amiss. What is 
wrong?

special.indb   207 28-04-2016   20:42:15



208 • The Special Theory of Relativity

 4. In a particular reference frame, the 4-momentum of a par-
ticle is [5 1 0 0]. What is its 4-momentum as seen by 
an observer moving at half the speed of light relative to the 
particular reference frame?

  Ans: Change of velocity is a 2-dimensional rotation, and so 
we can ignore the two zeros in the given 4-vector. We have:

 

2 1 2 11
5

5 5 23 3 3
1 5 1 2 2 7

5
2 3 3 3

v v

v v

g g g g
g g g g

           
                          

 (17.36)

EXERCISES

1. What is the 4-force associated with the 4-momentum 
[5t3 x y z2t]?

2. What is the spatial part of the force associated with the 4-mo-
mentum [5t3 x y z2t]?

3. If, within a physical system, energy is conserved, then the 
rate of change of energy is zero, and so force is zero unless 
energy is not conserved. Thus, a force must be associated 
with a change of energy. We see this with the change of ki-
netic energy resulting from an accelerating force. Is this why 
we need a force to increase velocity? And what is this to do 
with mass?

4. There is a signifi cant difference between rotation in Euclid-
ean space and rotation in space-time. In space, I need a force 
to start a body rotating, but once it is rotating, it continues 
rotating without any force. In space-time, as soon as I stop 
applying a force to a body, it stops rotating (accelerating) and 
stays pointing in the direction (velocity) in which it pointed 
when the force ceased to act. What is this all about?

5. A particle has {E  5Kg, px  2Kg, py  1Kg, pz  0}. What is 
its mass?
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6. What are the components in Kg of the 4-momentum 4-vector 
of a particle moving in the x-direction through space at 0.8c 
with a rest-mass of 3Kg?

7. What is the momenergy 4-vector of a particle moving in the 
x-direction whose kinetic energy is half its rest energy?

8. Two particles, {A, B}, collide. In a given reference frame, 
the particles have 4-momentum vectors [4 2 1 2] & 
[5 3 1 0] respectively. When the particles separate, 
particle A has 4-momentum [6 3 3 0]. What is the initial 
total 4-momentum of the system in the given reference 
frame? What is the 4-momentum of particle B in the given 
reference frame?

9. If the length of the 4-momentum vector of a particle in a 
stationary observer’s view is 4 Kg, what is the length of the 
4-momentum vector of the particle in the view of an observer 
moving at half the velocity of light?

10. When it is stationary, the energy of a vice-chancellor’s wallet 
is a million metric tons. When the wallet is moving at a veloc-
ity corresponding to the space-time angle , what is its spatial 
momentum and what is its energy?
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CHAPTER 18
DOING IT WITH 
MATRICES

We are now going to do in 2-dimensions, using the 2  2 space-
time matrices, what we did in the previous two chapters with 4-vec-
tors. The reader might have noticed that the 4-vector mathematics 
effectively carried two space dimensions along for the ride and that 
the essence of it was in just two of the components of a 4-vector. 
Within this chapter, we gain insights into the nature of velocity and 
acceleration in space-time.

In the standard presentation of 4-vectors above, we started with 
the position 4-vector R [ ]x y z ct  and differentiated this vec-
tor with respect to  to get the 4-velocity. 

After a little calculation, we came to:

 U v( )v cg    
r

 (18.1)
In 2-dimensions, we see that this corresponds to:

 U
0 cosh sinh

0 sinh cosh
c v c v

v c v c

g g g c c
g g g c c

       
         

       
 (18.2)

Note that in units in which c  1, v < 1. The velocity vector is the 
rotation matrix. The different magnitudes of velocity correspond to 
the different values of the space-time angle, . This really ought to 
be emphasized.

The velocity vector is the rotation matrix. 
A velocity is just a space-time angle.
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In the very fi rst chapter of this book, the reader was told, without 
any discussion or justifi cation, that change of velocity is just rotation 
in space-time. It was stated as if it were almost a “God-given truth”. 
Now we see the basis of that “God-given” truth. A change in the 
angle in the rotation matrix is a change in velocity. Change of veloc-
ity is rotation (in space-time). 

We have above (15.2):

 U U 2c   (18.3)

This might have surprised the reader when she fi rst saw it. We are 
doing no more than dotting together two rotation matrices (with the 
same angle, ). Dotting the matrices together, we get:

 
2

2

0 0 0
0 0 0
g g

g g
        

          
         

c v c v c
v c v c c

 (18.4)

This is:

 
2 2

2 2

cosh sinh cosh sinh
sinh cosh sinh cosh

cosh sinh cosh sinh
sinh cosh sinh cosh

cosh sinh 0

0 cosh sinh

1 0
0 1

c c c c
c c c c

c c c c
c c c c

c c

c c

   
   

   
   

       
 

  
  

 
  
 

 (18.5)

U U 2c   is no more than a simple trigonometric identity. It just 
seems profound in the 4-vector presentation.

If we do this in Euclidean space, we get the same:

 0 1 0 1 1 0
0 1 0 1 0 1

g g

g g

s s
s s

         
                    

 (18.6)

18.1 DIFFERENTIATING THE VELOCITY VECTOR

In the 4-vector presentation, we differentiate the velocity 4-vec-
tor with respect to the invariant interval, , to get the acceleration 
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4-vector.  is the square root of the determinant of the position vec-
tor matrix. In the space-time algebra, , we take the differential by 
differentiating with respect to both the co-ordinates (t, z). Doing this 
with matrices automatically takes account of the Cauchy Riemann 
equations of the  algebra. The reader is reminded that the Cauchy 
Riemann equations of a complex number system need to be satisfi ed 
by a function for the function to be differentiable.

We have:

 

cosh sinh
sinh cosh

sinh cosh cosh sinh

cosh sinh sinh cosh

t z

z t

t z t z

t z t z

c c
c c

c c c cc c c c

c c c cc c c c

 
  
 

 
  
 

           
     

     

 (18.7)

This is the acceleration matrix. We call it the Acceleration vector to 
distinguish it from the 4-acceleration, A.  Calculation shows that the 
determinant of this matrix, which is the magnitude of the accelera-
tion vector, is:

 

2 2 2 2

2 2
2 2

det( )

(1 )

z
accel

z t z z t

v
z z

c c c c

c cg 

                                

             

 (18.8)

This is positive for velocities less than the speed of light and reduces 
to zero at the limiting velocity – as it should do. On the time axis 
(stationary observer),   0 and the acceleration vector is:

 z t

t z

c c

c c

  
   
  
   

 (18.9)

Normally, a stationary observer measures acceleration with respect 
to only time. It can be measured with respect to space (distance 
travelled) just as easily, but it normally is not so measured. This prej-
udice of ignoring of the rate of change of velocity with respect to 
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space effectively sets 0
z
c



 in our view. Of course, it is the spirit of 

special relativity that space and time are equivalent, and we ought 
to measure acceleration with respect to both space and time, as the 
matrix above does.

Looking at the above acceleration vector (matrix), we see that 
the rate of change of angle with respect to time is in the space direc-
tion (the off diagonal elements of the matrix). Of course, for a sta-
tionary observer, velocity is in the time direction. This is what cor-
responds to the 4-acceleration (time-acceleration) being orthogonal 
to the 4-velocity. 

It is not that the space-time acceleration vector is at 90 to the 
space-time velocity vector, and thus orthogonal to that vector. Such 
a concept is nonsense in space-time. It is that the “time component” 
of acceleration is purely spatial and therefore will not lengthen the 
velocity vector in the time direction. 

Notice how the acceleration co-mingles  , .
v v
t z
 
 

 The accelera-

tion vector is the whole matrix, and so the acceleration has two com-
ponents. 

We will need:

 3d dv
v

dt dt
g g  (18.10)

 3d dv
v

dz dz
g g    (18.11)

 3 2( )d v dv dv
v

dt dt dt
g g g   (18.12)

   3 2d v dv dv
v

dz dz dz

g
g g   (18.13)

Now, we differentiate the velocity vector again:

 

   

   

v d v d vd dd
v dt dz dz dt

t z d v d vd d
d

z t dz dt dt dz

g g g gg g
g g

g gg g

   
       

         

  (18.14)
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Substituting gives:
3 3 2 3 3 2

3 3 2 3 3 2

dv dv dv dv dv dv
v v v v

dt dz dz dz dt dtAcceleration
dv dv dv dv dv dv

v v v v
dz dt dt dt dz dz

g g g g g g

g g g g g g

     
  
    
  

 (18.15)

In the previous chapter, we differentiated the dot product of the 
4-velocity with itself to show that the 4-acceleration is orthogonal to 
the 4-velocity see. Unfortunately, the interpretation of the mathe-
matics was in error because the cosh( ) function cannot be zero. We 
will now check the asserted orthogonality directly using the space-
time algebra of hyperbolic complex numbers. We will do this by 
using the inner product to calculate the space-time angle between 
the space-time velocity and the space-time acceleration. That space-
time angle is given by:

 2

dv dv
dz dtAcceleration velocity
dv dv
dt dz

g

 
 

   
 
  

 (18.16)

The inner product is the real part of this and we have 2cosh 0.
dv
dz

c g   

For the stationary observer, if we are to be prejudiced, 0
dv
dz

  and 

we have that the inner product appears to be zero for the prejudiced 

stationary observer. This is the origin of the alleged orthogonality of 

the 4-acceleration, A,  and the 4-velocity, U.

If we allow our prejudice and set 0
dv
dz

  in the above accelera-

tion, we get the prejudiced stationary observers view:

     

3 3 2

3 2 3
 0

dv dv dv
v v

dv dt dt dtAcceleration
dv dv dvdz v v
dt dt dt

g g g

g g g

       
   

  

 (18.17)

the algebra requires that: 

 3 3 2  : 1
dv dv dv

v v v
dt dt dt

g g g     (18.18)
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Which is not true unless 0
dv
dt

 . This is why we get the negative 

aspect of acceleration in 4-vector calculations. This compares with 
the 4-vector form:

 
   v a v aA v a4 2 4

2 2 c
c c

g g g
  

  
 

r r r r
r r

 (18.19)

We have a factor of  difference. This arises because we are differen-
tiating matrices with respect to time while 4-vectors are differenti-
ated with respect to  - remember:

 U Ud d
d dt

g
t
  (18.20)

We are now going to dot the Acceleration vector with itself to calcu-
late its norm:

    

   

   

   

   

d v d v d v d vd d d d
dt dz dz dt dt dz dz dt

d v d v d v d vd d d d
dz dt dt dz dz dt dt dz

g g g gg g g g

g g g gg g g g

   
      

   
            

 (18.21)

Multiplying out gives:

 

2 2( ) ( )
0

0 ~

d d v d d v
dt dz dz dt
g g g g          

    
  

 (18.22)

Wherein, we have used “~” to avoid cluttering the page with dupli-
cate information. This looks like an inner product should look. Sub-
stitution and calculation gives:

        

2 2
2

2 2
2

1
0

1
0

a
v

Acceleration Acceleration
a

v

g

g

        
       

 (18.23)

This seems very different from the answer we got in the standard 
presentation, which is:

 A A
6 2

6 2

0

0

a

a

g

g

 
   

  
 (18.24)
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But let us redo the calculation to get the norm of the Acceleration 
vector as:

   
2 2

4 2 2 0

0 ~

dv dv
v

Acceleration Acceleration dz dt
g g

                  
  

 (18.25)

Let us be prejudiced and set 0
dv
dz

  to get:

  
 

A A

2
4 22 2 2

2
4 2

01 0

0
0 ~

dv av
dt

a

gg g g
g



                     

 (18.26)

The difference of the 2 factor can be traced to differentiating (once 
for each of the two acceleration 4-vectors) with respect to time 
instead of differentiating with respect to the invariant interval, . 
Taking the square root, which in our case is now very simple to do, 
we get the length of the acceleration vector:

 
a

Acceleration
v

g


  (18.27)

In the standard 4-vector presentation, we arrived at the accelera-

tion transformation: 0
3 .

a
a

g
   In the matrix presentation, we have to 

adapt our length calculation to give us what the stationary observer 

sees. The prejudiced stationary observer will take the dv
dz

 term to 

be zero because he measures acceleration with respect to only time. 
The stationary observer will “drop” the length of the acceleration 
vector on to the time axis by multiplying it by cosh   : 

  
4 2

2
4 2

( 1) 0
0 ( 1)

g
g g g

g
 

    

a
Acceleration Acceleration

a
 (18.28)

This leads to:

 0
3

a
a

g
   (18.29)

The (prejudiced) stationary observer has come to the same transfor-
mation of acceleration as the 4-vector standard presentation. 
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We did avoid having to fudge the square root of the norm, and 
we did sort out the dot product equals zero problem, but we have 
done more than that. We are now doing our calculations in space-
time in a way that treats time and space equally. This equality is 
the true co-mingling of space and time; it is missed using 4-vectors. 
The matrix form is not just more elegant, it also gives the complete 
answer and not just a part of that complete answer. The matrix form 
gives us the “God’s eye view” of space-time.

18.2 MOMENTUM

We assume that every particle in the universe has a rest-mass, 
m0. In the standard presentation, we defi ned the momentum 4-vec-
tor as:

 P U u0 0 ( )m m u cg     
r  (18.30)

We similarly defi ne the momentum matrix as the product of scalar 
mass matrix and the velocity matrix:

 P0 0 0

0 0 0

0
0

m v m m v

m v m v m

g g g g
g g g g

     
      

     
 (18.31)

We immediately have that one component of this is the energy, m0, 
and the other component is the momentum, m0. Adjusting the 
units gives:

  0 0 0 0

0 0 0 0

cosh sinh
sinh cosh

E
pm m v m mc

m v m E m m
p

c

g g c c
g g c c

 
    

     
    

  

 (18.32)

We get the unifi cation that we found using 4-vectors. Note that the 
mass-dimensions of all elements of the matrix are the same. We also 
have that the ratio of the energy to the spatial momentum is just the 
ratio of the cosh( ) function to the sinh( ) function. We could set the 
units of mass so that m0  1, and we would thus have:

 
cosh
sinh

Energy

Momentum

c
c




 (18.33)
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What is the scalar mass matrix? We are working in a division algebra 
(the hyperbolic complex numbers); the scalar mass matrix must be 
an element of this algebra; it must be of the form:

 0

0

0 cosh sinh
: 0

0 sinh cosh
m

m

c c
c

c c
   

    
   

 (18.34)

This is why everything in space-time has a non-zero rest energy 
(rest-mass). It is because the minimum of the cosh( ) function is 
unity and not zero. That’s worth emboldening.

Everything has a non-zero rest energy (rest-mass) 
because the minimum of the cosh( ) function is unity.

Hang on a minute! We spoke earlier, about humankind being stuck 
with the radial component of the hyperbolic complex numbers being 
set at h  1. If the radial component is so stuck at unity, then it makes 
sense to ascribe the non-zero rest mass of a particle to the non-zero 
minimum of the cosh( ) function, but the scalar mass could be of the 
form of the radial component of the algebra. Perhaps that is what 
mass is, but then we have to ask why different masses? 

The Lorentz transformation of the energy-momentum vector is:

 

   
   

cosh sinh
sinh cosh

cosh sinh cosh sinh
                

cosh sinh cosh sinh

v E p E vp p vE
v p E p vE E vp

E p

p E

E p p E

p E E p

g g g g
g g g g

c c
c c

c c c c
c c c c

     
            

   
   
   

  
    

 (18.35)

Conservation of momenergy is the invariance of the determinant 
under rotation (the rotation matrix has determinant unity, of course). 
Taking the determinants of both sides of the above will show:

 
   
   det det

E p E vp p vE
p E p vE E vp

g g
g g

      
              

 (18.36)

Momenergy is the determinant of the energy-momentum vector, 
and conservation of momenergy is no more than invariance of the 
determinant under rotation in space-time.
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It is important to realize that the conservation of momenergy 
law breaks into the conservation of energy law and the conservation 
of momentum law for a stationary observer. This means that a sta-
tionary observer will always see two conservation laws (energy and 
momentum). This is like space-time breaks into space and time for 
a stationary observer and electromagnetic force breaks into electric 
force and magnetic force for a stationary observer.

18.3 FORCE

In the standard 4-vector presentation, we defi ned force as the 
4-vector:

 
PF d

dt
  (18.37)

However, using matrices, we take the complete differential rather 
than differentiate with respect to the invariant interval, . The dif-
ferential of the momentum matrix is:

0 0
0

0 0

0 0 0 0
0

~

~

dm dmd dv d
m v v

m m v dz dz dt dz dt
d

m v m dm dmd d dv
m v v

dz dt dt dz dt

g gg g gg g
g g g g g g g

                        

 (18.38)

Substituting and putting 0 0
dm dv
dz dz

   gives:

       

3 0
0

0 0

3 20 0 0
0 0

~

~

dmdv
m vm m v dt dtd

m v m dmdv dv
m v m v

dt dt dt

g gg g
g g

g g g

   
   

      

 (18.39)

In the standard presentation, we had:

  
PF v a3 30 0

0 0 0
dm dmd dv dv

m v m v m v c
d dt dt dt dt

g g g g g g
t

          

r r
 (18.40)

Thus, other than units, we agree with the standard presentation 

when 0 0
dm dv
dz dz

   except for the factor of  which, as in the 
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acceleration vector, derives from differentiating with respect to the 
invariant interval.

Taking the differential of the energy momentum vector gives:

 

dp dpdE dE
E p dt dz dt dzd
p E dp dpdE dE

dt dz dt dz

    
   
      

 (18.41)

In the standard 4-vector presentation, we also have:

 
PF F 1d

power
d c

g
t

     

r
 (18.42)

As seen by the prejudiced stationary observer, 0
dp dE
dz dz

   and the 

 factor is from the differentiation, but the real situation is that we 
have:

 

dpdE
Power

dt dz
dp dE

Force
dt dz

 

 
 (18.43)

Because of the cosh( ) > sinh( ) nature of space-time, we have 
Power > Force. Such is the symmetry of special relativity’s under-
standing of the equivalence of space and time.

18.4 A LITTLE FOOD FOR THOUGHT

We remind the reader that a 2-component vector fi eld {u(t, z), 
v(t, z)} over space-time has:

 
   
   

                                   :   ( ) ( )

du dv dv du
Div F Curl F dt dz dt dz

dv du du dvCurl F Div F
dt dz dt dz

Div F Curl F

    
   
    
  



 (18.44)

We see that, if energy and momentum are thought of as the two 
components of a vector fi eld over space-time, then power is the 
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divergence of that vector fi eld and force is the curl of that vector 
fi eld. 

The standard presentation of special relativity mechanics is to 
use 4-vectors, but we have shown that special relativity mechanics 
can be presented using the hyperbolic complex numbers of space-
time. The hyperbolic complex numbers are a proper algebraic struc-
ture (they are an algebraic fi eld) whereas the 4-vectors are not a 
proper algebraic structure (they are not a division algebra). The 
hyperbolic complex numbers automatically have a fi nite speed (the 
speed of light) as part of their structure, and so we know that there is 
nothing outside of the algebra (faster than light space-time). Without 
the hyperbolic complex numbers, special relativity gets the correct 
results, but it is somewhat contrived, whereas, with the hyperbolic 
complex numbers, everything just falls out of the fi nite group C2. 

The hyperbolic complex numbers is a 2-dimensional algebra. 
Special relativity is 2-dimensional, and it is only the cosmetic inclu-
sion of two inert spatial dimensions that makes special relativity 
appear to be 4-dimensional. We observe a 4-dimensional space-time 
in the universe. There seems to be a diffi culty here. The diffi culty is 
resolved by considering the Lorentz group, and we will deal with this 
in due course. It is, of course, the choice of the reader as to whether 
he prefers the hyperbolic complex numbers of the 4-vector algebra. 

18.5 FIVE FUNDAMENTAL VECTORS AGAIN

The reader might recall that in the chapter on vectors, we listed 
fi ve fundamental vectors, displacement, velocity, momentum (veloc-
ity multiplied by mass), acceleration, force (acceleration multiplied 
by mass). Perhaps, we ought to have mentioned the electromag-
netic fi eld vector as well. What are these fi ve fundamental vectors 
in space-time? 

The velocity vector is the time and space vector given by:

 
cosh sinh
sinh cosh

t z
velocity

z t

c c
c c

   
    
   

 (18.45)
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The acceleration vector is given by

 
cosh sinh
sinh cosh

z tacceleration

t z

c c
k k

c c k k

  
            
   

 (18.46)

The momentum vector is given by:

 0

cosh sinh
sinh cosh

E p
Momentum m

p E

c c
c c

   
    
   

 (18.47)

The force vector is given by:

      0

cosh sinh
sinh cosh

Spatial

Spatial

Power Force
Force m

Force Power
k k
k k

   
    

  
 (18.48)

The electromagnetic vector is given by

 
cosh sinh

.
sinh cosh

E B
E Mag

B E

h h
h h

   
    
   

 (18.49)

We are missing the displacement vector. What is displacement in 
time? It is age. We are thus led to the idea that the displacement 
vector is:

         
cosh sinh
sinh cosh

Age Extent
Displacement

Extent Age

r r
r r

   
    
   

 (18.50)

It might thereby seem that the age of the universe is given by the 
cosh( ) function and the extent of the universe is given by the sinh( ) 
function. If so, then as the age of the universe increases, the extent 
of the universe will increase – we call this the expanding universe. 
Of course, the cosh( ) function is never zero, and so the age of the 
universe was never zero; however, the sinh( ) function can be zero, 
and so the extent of the universe was once zero – there’s a thought.

The point is that all fi ve fundamental vectors, and the elec-
tromagnetic vector, can be drawn on “space-time” axes (with the 
asymptotes) such that the electric fi eld takes the place of time and 
the magnetic fi eld takes the place of space or power takes the place 
of time and force takes the place of space and so on. There we have 
it! The cosh( ) and sinh( ) functions have it all – thank you the 
exponential function.  
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CHAPTER 19
ELECTROMAGNETISM

“What led me more or less directly to the theory of special rela-
tivity…(was the realisation that)…the electromagnetic force acting 
on a (charged) body in motion in a magnetic fi eld was nothing else 
but an electric fi eld (in the rest frame)”

Albert Einstein1.

An electricity generator is comprised of a magnet (that produces a 
magnetic fi eld) and a coil of (copper) wire. If we move the wire so 
that the moving wire cuts the magnetic fi eld lines, an electric current 
is produced in the wire. If we equally move the magnet so that the 
wire cuts the moving magnetic fi eld lines, an equal electric current 
is produced in the wire. Thus, this electromagnetic phenomenon is 
invariant under change of view from the stationary observer to the 
moving observer. This indicates that electromagnetism is Lorentz 
invariant, which means that electromagnetism and special relativity 
fi t together perfectly. It could have been that, instead of being invari-
ant under Lorentz transformations, electromagnetism was invariant 
under Newtonian transformations, but it isn’t – the universe is not 
Newtonian.

Aside: The average speed of electrons in a wire carrying a 10 amp 
electrical current is approximately 1 millimeter per second.

1. Am. J. Phys. 32, 16 (1964) pg 35 R. S. Shankland.
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Electric fi elds are determined by charge distribution. Magnetic 
fi elds are determined by current distribution. Electric charge moves 
through time, and so electric charge is a current in the time direction. 
If we drive a (spatial) electric current in the same direction through 
two parallel wires, the wires will attract each other. We explain this 
by saying that the current produces a magnetic fi eld that circulates 
in the same direction around the wires. In between the two wires, 
the two magnetic fi elds of the two wires point in opposite direc-
tions. Since opposite magnetic poles attract, the opposite directions 
of the magnetic fi elds attract each other and the wires are attracted 
towards each other. 

Aside: Why do opposite magnetic poles attract each other? It seems 
that the magnetic fields try to cancel each other and thereby reduce 
the energy in the system. There seems to be a “motivation” within 
the universe to seek out the lowest energy level. If the energy level 
will be reduced by two current carrying wires being close to each 
other, then the wires will attract each other until the energy of the 
tension in the wires that holds them apart matches the energy reduc-
tion due to the proximity of the wires. It seems that all attractive/
repulsive forces work on this energy level reduction basis. Why does 
the universe try to lower the energy level of a system? – We don’t 
know.

We have the 2-dimensional plane of the magnetic fi eld. We have an 
electrical current perpendicular to that magnetic plane, and we have 
time. For the fi rst time in this book, we have met a 4-dimensional 
phenomenon. Prior to this chapter, we were carrying two inert spa-
tial dimensions for no apparent reason other than we felt naked 
without them. Clearly, we will not be able to explain the whole of 
electromagnetism with only 2-dimensional spaces – (we’re going 
to need the quaternions). It turns out that the order four group 
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C2 C2 is involved; this group has three order two sub-groups and 
the 4-dimensional spaces in it have three 2-dimensional sub-spaces. 
Thus, to some extent, we will be able to present 2-dimensional 
aspects of electromagnetism.

If we switch off the current, the magnetic fi eld disappears. The 
strength of the magnetic force depends on the amount of the cur-
rent fl owing through the wires. A higher current produces a stronger 
magnetic fi eld. A higher current, through the same wire, is faster mov-
ing electrons or more electrons moving at the same speed. The mag-
netic force depends on the amount and velocity of the electric charge 
through space, which is the current. Here, we have that force is depen-
dent upon velocity. Force is not dependent upon velocity in Newtonian 
mechanics; Newtonian mechanics cannot apply to electromagnetism.

19.1 THE MAXWELL EQUATIONS I

In the standard presentation of physics, we are told that all 
electromagnetic phenomena are derivable from the Lorentz force 
law and the four equations known as the Maxwell equations. The 
Lorentz force law and the Maxwell equations are vector equations. 
The Maxwell equations were fi rst written using quaternions rather 
than vectors by James Clerk Maxwell in 1861/62, but later re-written 
in vector form by Gibbs and Heaviside. It is not true that all electro-
magnetic phenomena are derivable from the four Maxwell equations 
and the Lorentz force law. The quantization of electric charge (the 
charge of the electron), the nature of electron orbits in atoms, the 
wave-particle nature of electrons, and the electro-weak unifi cation 
are, at least, some of the electromagnetic phenomena that are not 
derivable from the Maxwell equations and the Lorentz force law – 
well! they have not been derived so far. None-the-less, all “classical” 
electromagnetism is expressed by the Maxwell equations and the 
Lorentz force law2, and a course covering the Maxwell equations 
and the Lorentz force law is considered a complete course in classi-
cal electromagnetism.

2. Perhaps we ought to include the continuity equation and the equation defining 
the field.
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Maxwell was led to the equations named after him by an incon-
sistency in Ampere’s3 law. Ampere’s law is:

  B jCurl 
ur r

 (19.1)

Taking the divergence gives:

     B j0Div Curl Div 
ur r

 (19.2)

This cannot be true. The divergence of any curl is always zero, but 
the divergence of a current is not zero. Maxwell corrected Ampere’s 

law by adding E
t




ur
 to the right-hand side of the equation, and was 

thus led to the Maxwell equations. The  E
t




ur
 bit is electromagnetic 

waves; these were detected by Heinrich Hertz in 1888 thereby 
asserting the correctness of the Maxwell equations.

After Maxwell had produced his equations, it was noticed by 
physicists that the equations are invariant under Lorentz transfor-
mations (rotation in space-time), but that they were not invariant 
under the traditional Galilean transformations associated with the 
Newtonian view of space and time. It is because the Maxwell equa-
tions are Lorentz invariant that the electrical permittivity, 0, and the 
magnetic permeability, 0, are Lorentz invariant and thus the speed 

of light, given by 
0 0

1
,c

e m
  is Lorentz invariant. Actually, it is the 

other way around. Because all bodies travel through space-time at 
the same speed (the speed of light)4, both {0, 0} have to be Lorentz 
invariant and so any correctly written equations containing them will 
have to be Lorentz invariant.

It has been shown by Purcell5 that, provided the laws of physics 
are Lorentz invariant (the same at every velocity) and electromag-
netic attraction is an inverse square law (Coulomb’s law) and elec-
tric charge is conserved, then magnetic effects are bound to happen 

3. Ampere (1775–1836).
4. Which is because it is the nature of space-time that 4-acceleration is “orthogonal” 
to 4-velocity in space-time and thus 4-velocity can change in direction but not in 
magnitude.
5. Edgar M. Purcell, Electricity and Magnetism, New York 1963 pg. 173.
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and the Maxwell equations can be derived from no more than these 
premisses. So, given space-time and a small number of other reason-
able assumptions, we must have electromagnetism. Intriguingly, we 
will see in due course that Maxwell’s equations fall out of quaternion 
space.

In the standard presentation, the equations of electromagnetism 
are: 

 i.  The two scalar (just real numbers on either side of the equals 
sign) Maxwell Equations:

 
 

 

EE EE

BB BB

0

0

yx z

yx z

Div
x y z

Div
x y z

r
e

 
   

  

 
   

  

 

 
 (19.3)

  Wherein, E


 is the electric field vector, B


 is the magnetic 
field vector,  is the electric charge density (Coulomb M3)6, 
and 0 is the electrical permittivity of empty space 
(C2N1M2).

Aside: Two charges of one Coulomb each would exert a force upon 
each other of one Newton if they were separated by 100 kilometers – 
so a coulomb is quite a large amount of electrical charge, or the elec-
tromagnetic force is very strong.

 ii. The two vector (vectors on either side of the equals sign) 
Maxwell equations are:

 
 

 

BE

EB j0 0 0

Curl
t

Curl
t

m m e


 




 




 
 (19.4)

  These equations say that, if the fields are not changing with 
time, then the electric field is an irrotational field but the 

6. Augustin de Coulomb (1736–1806). In 1785, he performed systematic and precise 
experiments that discovered the law of the force between charged bodies known as 
Coulomb’s Law.
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magnetic field is a rotational field - that’s rotation in a 
2-dimensional Euclidean plane.

Aside: The Lie group U(1) is rotation in the 2-dimensional Euclid-
ean complex plane. Thus, we ought to expect that this Lie group will 
appear somewhere in electromagnetism, and it does.

  Written in component form, these are:
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 (19.6)

  Wherein, j


 is the electrical current density (the amount of 
electrical charge per second passing perpendicularly through 
a square meter) (CS1M2); 0 is the magnetic permeability of 
empty space (Newton S2C2). Note that the current in these 
equations flows from positive to negative not in the direc-
tion of the electron velocity. There are, effectively, six scalar 
equations here, and so we can think of Maxwell’s equations 
as being eight scalar equations, but the six (vector) equations 
are entwined together in a way expressed by the vector nota-
tion. That entwinement is the fact that a vector is the same 
length in any co-ordinate system whereas the components 
of the vector in the three scalar equations change from one 
co-ordinate system to another; the entwinement is that the 
components changing under rotation compensate for each 
other to keep the vector’s length constant. We do not want to 
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miss that entwinement for our understanding would be less 
without it; it would be better if we could entwine all eight 
equations together. 

  Nothing in the Maxwell equations describes the effect of the 
fi elds on charged particles. For that, we need: 

 iii. The (vector) Lorentz force law is:

 F E v Bq q  
   

 (19.7)

  wherein q is the electric charge of a body and v


 is the 
velocity through space (relative to the observer) of that 
charged body. In component form, this is:
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            

 (19.8)

It is drawn to the reader’s attention that the force in this equation 
depends upon the velocity of the charged body; this equation can 
never fi t into a Newtonian universe where force is invariant under 
change of velocity. If the velocity through space is zero, we have that 
the force is due to only the electric charge (Coulomb’s law). If the 
velocity through space is not zero, we have two components of the 
force - electrical force and magnetic force. 

The velocity is in a 3-dimensional vector cross product with the 
magnetic fi eld vector, and so, if the velocity is at an angle of 0to the 
magnetic fi eld, we will still have force due to only the electric fi eld. 
The force depends, not only upon the magnitude of the velocity, but 
also upon its direction relative to the magnetic fi eld. We could not 
annul the electric force be changing the space direction in which 
we pointed a charged body, but we can annul the magnetic fi eld by 
changing the spatial direction of the observer’s motion. 

The reader’s attention is drawn to the fact that a 2-dimensional 
Euclidean rotational fi eld (the magnetic fi eld) arises from a rotation 
in space-time (velocity of a charged body). To repeat, a space rota-
tion phenomenon arises from a space-time rotation. What does this 
mean? We will see something like this when we look at the Lorentz 
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group and fi nd that the commutator of two boosts (rotations in 
space-time) is a rotation in space.

For completeness, we also give the scalar continuity equation, 
which expresses the conservation of electric charge and which is:

  JJ J j 0yx z Div
t x y z t
r r   
     

    

rr r
r

 (19.9)

Does this not encourage us to think of electric charge density, , as 
an electric current in the time direction? If we are to have charge 
conservation, the continuity equation must have the same form in all 
reference frames. 

The defi nition of the electric fi eld is:

 
FE
q


r

ur
 (19.10)

which is just the vector equation in which force is divided by scalar 
electric charge, q.

Electromagnetic fi elds can be superimposed on to other elec-
tromagnetic fi elds by simply adding the fi eld vectors at each point in 
space. This is called superposition, and it is an important, and sim-
plifying, property of electromagnetism. It is due to the linearity of 
the electromagnetic equations. Such linearity makes you think that 
perhaps the equations ought to be written as matrices. 

Aside: The ratio of the gravitational force between two electrons to 
the electromagnetic force between them is  1042

19.2 THE INVARIANCE OF ELECTRIC CHARGE

To a stationary observer, the electrical charge of an electron is 
the same in all reference frames – it does not care about directions 
in space-time; it is a physical constant. Electrical charge is invariant 
under change of velocity; the amount of it does not dilate of contract 
with change of velocity. Atoms are comprised of a positively charged 
nucleus and negatively charged electrons that orbit the nucleus. 
Atoms are (when not ionized) electrically neutral as we can easily 
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observe in the macroscopic world. Because electrons and protons 
move at different and varying speeds7 in and around the nucleus, 
atoms can be consistently electrically neutral only if electric charge 
is the same at all velocities. Further, we observe that, an ionized 
atom does not become more or less ionized when moving than when 
stationary and rapidly moving electrons are not more or less charged 
than slowly moving electrons. When a positron and an electron col-
lide (head on is simplest, but any collision will do) and annihilate 
each other, they produce electrically neutral photons. Such an event 
can be seen from different reference frames. If electric charge var-
ied with velocity, then, unless the electron and the positron were 
moving together, the resulting photons could not be electrically neu-
tral or, in such cases, we would not have conservation of electric 
charge. We can take the view that conservation of electrical charge 
compels electrical charge to be invariant under change of velocity. It 
would be a most strange universe if electric charge was not invariant 
under change of velocity.

Why should electrical charge be a Lorentz invariant (does not 
change with velocity)? Mass is not a Lorentz invariant, although 
rest-mass is invariant. There is another difference between mass 
and electric charge. If we add a proton to a neutron, the resulting 
nucleus has a mass that is not equal to the sum of the masses of 
the two constituent particles because of the binding energy hold-
ing them together. If we put two electrons together, the resultant 
“nucleus” has an exactly equal amount of electric charge as the two 
constituent particles. We do not know why electrical charge is invari-
ant under change of velocity. It is as if electrical phenomena are not 
part of space-time, or do not happen in space-time, or are not con-
nected to space-time, or do not “feel” direction in space-time. We 
say that electrical charge does not couple to space-time.  

Charge density, which is the amount of electrical charge in a 
given volume of space, is not Lorentz invariant. That’s quite impor-
tant; I think I’ll say it again. Charge density is not Lorentz invariant. 
Because a stationary observer sees the length of a moving volume 

7. We assume that electrons move at varying speeds around the nucleus; they do 
seem to be at different distances from the nucleus – Rydberg atoms.
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contract in the direction of the motion, she sees the actual volume 
contract. For a moving volume, we have:

 0 0

2 2
0 0 0 0

. . . .

1 . . 1

Volume length hieght width

Volume l h w l h w

v l h w Volume v

  
     

   

 (19.11)

Charge density is charge divided by volume, and so we see that a 
stationary observer will see the charge density of a moving volume 
to be greater than the charge density of the volume when station-
ary. Greater charge density means greater electromagnetic force per 
unit volume (or length).

19.3 MAGNETIC EFFECTS

Consider a stationary wire with no electrical charge but carrying 
a current. An electrically charged body moving parallel to the wire at 
velocity v, “feels” a magnetic force (attracting or repelling according 
to the direction of the current) from the wire. (A moving charged 
body is a current just as much as moving electrons are a current.) 
However, to an observer also moving at velocity v, the electrically 
charged body is stationary and therefore should not feel a magnetic 
force from the wire. None-the-less, the moving observer must see a 
force affecting the motion of the charged body. This force, as seen by 
the moving observer, is not magnetic; it is electrical – think Lorentz 
force law. The Lorentz force law is:

 F E v Bq q  
r ur r ur

 (19.12)

Where v
r

 is the velocity through space (not space-time).

An observer who moves at a velocity different from the velocity 
of the charged body will see the magnetic part of this force because 
the relative velocity between them will not be zero. An observer who 
moves at the same velocity as the charged body will see:

 F Eq
r ur

  (19.13)

One observer’s magnetic force is another observer’s electrostatic 
force. This is like one observer’s time is another observer’s space-
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time. But we would expect that they both observe a force because 
they will both observe a defl ection of the path through space-time 
(or just space) of the charged body. 

The stationary observer sees a magnetic fi eld of magnitude deter-
mined by the velocity of the charged body relative to her. The mov-
ing observer sees a magnetic fi eld of magnitude that is determined 
by the velocity of the electric charge relative to him. Because observ-
ers in motion relative to each other see the electric charge moving at 
different velocities, they see different amounts of current, and, thus, 
see magnetic fi elds of different magnitudes. If one observer moves 
at the same velocity as the electric charge (the charged body or the 
electrons in the wire), then that observer sees zero magnetic fi eld8. 

Aside: Magnetic monopoles are postulated to be quantitised amounts 
of plus or minus magnetism. They are the “mirror image” of electrons 
and positrons with “magnetic charge” in the place of electric charge. 
Although Dirac and others have predicted magnetic quantization and 
it has a place in superconductor theory, magnetic monopoles have 
never been observed. When we dealt with simultaneity in an earlier 
chapter, we found that there is always an observer moving at a particu-
lar velocity that will see two spatially separate but close events as hav-
ing zero time separation; the events are separated by pure space; they 
are simultaneous. So, with a charged body, it is always possible to find 
a velocity at which the electromagnetic force is purely electrostatic. 
Now, the nature of time is that the cosh( ) function is never less than 
one, and so the time axis co-ordinate is never less than one. Since the 
sinh( ) function can equal zero, the space axis co-ordinate can be zero. 
If we identify the electric force with time and the magnetic force with 
space, then we might expect a non-zero amount of electric charge 
(the charge of the electron perhaps) and also expect a zero magnetic 
charge – no magnetic monopoles.

A stationary current carrying wire is a lot of positively charged 
ions fi xed in a crystal matrix that is stationary and a lot of negatively 
charged moving electrons fl owing along the wire. For the stationary 
observer, the stationary wire is electrically neutral (put a stationary 

8. Remember that the direction of the velocity is important.
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electric charge near it), and so the charge density of the positive ions 
must be equal to the charge density of the moving electrons. Think 
about that; the number of electrons per stationary meter length of 
wire has got to equal the number of protons per stationary meter 
length of the wire. But, meter length changes with velocity (length 
contraction), and so, to the stationary observer, the meter of elec-
trons is shorter than the meter of protons. There can be an electro-
static balance only if the density of electrons in the moving meter is 
less than in the density of protons in the stationary meter. 

This electrostatic imbalance is apparent to the observer mov-
ing with an electrically charged body because, in his view, the elec-
trons are not moving and thus there are more protons per meter 
than electrons; this effect is exacerbated by the contraction of the 
proton meter as seen by the moving observer. Thus, the moving 
observer sees an electrostatic force affecting the, stationary in his 
view, charged body and the stationary observer sees a magnetic force 
affecting the, moving in her view, charged body. Yes! it is a little dif-
fi cult to untangle. 

If the above paragraph is diffi cult to accept, do the experiment. 
Place a stationary electrically charged body near to a current carry-
ing wire; vary the current if you like – try zero current. You will fi nd 
that the stationary electrically charged body does not feel any force 
from the current carrying wire. Of course, if the electrically charged 
body is not stationary (subject to the cross-product in the Lorentz 
force equation), it does feel a force from the current carrying wire 
(provided the current is not zero).

Aside: The dimensions of the electric field can be calculated from 
the definition of the electric field as: 

  1 1Newton Coulomb

F Newtons
E

q Coulombs

E 

  


. 

The dimensions of the magnetic fi eld can be calculated from the 
Lorentz force law:
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The magnetic effects of which we have spoken are all a consequence 
of length contraction. Length contraction is a consequence of the 
nature of rotation in space-time and the fact that we can rotate in 
space-time (which we could not do if space and time were not com-
mingled together). Space-time comes from the fi nite group C2. 
One can look at C2 as being the multiplicative relations between 
{1, 1}, and so we might think that magnetism exists because the 
numbers {1, 1} exist. With a little thought, we realize that electro-
magnetism is a 4-dimensional phenomenon whereas C2 produces 
only 2-dimensional phenomena. There must be more to electromag-
netism than only {1, 1}. In later chapters, we will see that the 
group C2  C2 produces 4-dimensional phenomena, and so, in that 
sense, magnetism exists because the numbers {1, 1} exist. 

19.4 ELECTROMAGNETIC WAVES

One of the great triumphs of the Maxwell equations is that they 
predict electromagnetic waves which are identifi ed with light (also 
gamma rays, x-rays, infrared, radio waves etc.). The Maxwell equa-
tions (with c  1) are:

 

E B

B EE B j

                              0

                     
t t

r   

 
     

 

 

     (19.14)

Wherein E,
x y z

   
      


 is the electric fi eld, B


 is the mag-

netic fi eld, j


 is the electric current density, which is a vector, and  
is the electric charge density, which is a scalar (real number).
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In empty space, 0,  & 0,j r 
 

 and we have:
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This is called the wave equation of the electrical fi eld. With the mag-
netic fi eld, we have:
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 (19.18)

This is the wave equation for the magnetic fi eld. Putting the c factors 
into the wave equations leads to electromagnetic waves propagating 
at the velocity of light, c. 

The important thing to notice about these wave equations is that 
the speed at which the electromagnetic waves propagate is not rela-
tive to anything (emitting observer, receiving observer, the sun…).
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19.5 MOVING ELECTRIC CHARGES

Working in two dimensions, we apply the space-time rotation 
matrix (Lorentz transformation) to the electromagnetic matrix. We 
add in the c to balance the dimensions. Of course, for a stationary 
charge, the electromagnetic matrix has a zero magnetic part and the 
Lorentz transformation would be:

 
0

0
c v E c E v E cE B

v c E v E c E B cE

g g g g
g

g g g g
       

        
       

 (19.19)

We see that a magnetic component has arisen even though there 
was not one to begin with. This is why magnetic fi elds exist. The full 
transformation (rotation) is:

 c v E B cE v B cB v E

v c B E cB v E cE v B

g g g g g g
g g g g g g

      
           

 (19.20)

Note that the above matrix is not within the space-time algebra (the 
hyperbolic complex numbers) unless E > B, but then c > .

Of course, the determinant of the rotation matrix is unity, and so 
the determinant of the electromagnetic matrix remains unchanged 
by rotation in space-time. Thus, the real number E2  B2 is invariant 
under change of velocity. We will see this again a few pages later.

In Newtonian mechanics, the gravitational field of a mass, 
whether moving or not, is spherical. Newtonians would expect the 
same for the electric field of a point charge. Newtonians would 
expect that the electrical field surrounding a moving electron 
would be spherical. To non-Newtonians, the electromagnetic field 
of a moving charge is subject to length contraction in the direction 
of motion (and of course to time dilation). Thus, what would be a 
spherical field emanating from a stationary point charge becomes 
an ellipsoidal field when the point charge is moving; it becomes a 
flat disc when the charge moves at the speed of light. A moving bar 
magnet produces a deformed moving magnetic field and an electric 
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field. A moving point charge produces a deformed moving electric 
field and a magnetic field. The 3-dimensional equations are:
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 (19.21)

Where  is the angle between r
r

 and the x-axis.

Now let us pause for thought. A material rod is a lot of atoms 
held in place by electromagnetic forces. If the electromagnetic fi elds 
contract in the direction of motion of the rod because of relativistic 
length contraction, then the length of the rod will contract in the 
direction of motion. But length contraction is a property of space. Is 
it possible that the space-time we observe around us is an electro-
magnetic phenomenon?

19.6 4-TENSORS

This is a book about the theory of special relativity. Special rel-
ativity is a 2-dimensional theory. The concepts of that theory can 
be understood without a detailed mathematical understanding of 
4-dimensional electromagnetism. Such a mathematical understand-
ing of electromagnetism necessarily includes 4-tensors. The reader 
may choose to skip the next few mathematically taxing pages without 
loss of understanding of special relativity. We include these pages for 
completeness because electromagnetism is a central part of the uni-
verse and special relativity does have a lot to say about it – actually, 
it is not that mathematically taxing, really.

In the 4-vector presentation of special relativity, we are able to 
deal with (space and time) dynamics using 4-vectors. The reader 
might expect that we would be able to deal with electromagnetism 
using 4-vectors. It is not unreasonable to think that, starting with the 
three spatial components of the magnetic fi eld, B,


we would be able 

to add a fourth temporal component to make a 4-vector, B,  and sim-

ilarly with the electric fi eld to form an electric 4-vector, E,  but we 
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cannot – we need 4-tensors. We cannot do electromagnetism with 
two 4-vectors  E B,  because the electric and magnetic fi elds are 
entangled together; they are not separate from each other. The type 
of 4-tensor we need is the “tensor product” of two 4-vectors (which 
we call a rank two 4-tensor). Such a tensor will have 16 components. 
(In general, tensors of different types are the tensor products of dif-
ferent numbers of vectors.) 

Vectors have invariants, the length of the vector and the angle 
between two vectors, that do not change under rotation in space (or 
space-time) – or under any other co-ordinate transformation. Ten-
sors also have invariants that do not change under rotation or under 
any other co-ordinate transformation. The vectors in space-time are 
different from the vectors in Euclidean space – they lie over a dif-
ferent type of space - and we calculate the invariants differently (the 
dot products are different) to suit the different types of space or 
space-time. The same is true about tensors. The type of tensors that 
we use in special relativity are called 4-tensors (or Lorentz tensors) 
analogously to the type of vectors that we use in special relativity 
being called 4-vectors.

The important thing about tensors is that, if a tensor equation 
is true in one co-ordinate system, then it is true in all co-ordinate 
systems (including rotated ones, of course) over that same type of 
space. Vectors have this property, and it is the case that vectors are a 
particular type (rank one) of tensor.

19.7 4-POTENTIAL

Although we cannot describe the electromagnetic fi elds using 4-vec-
tors, we can introduce the concept of a 4-potential into electromag-
netism. The reader might recall from an earlier chapter that a poten-
tial is something that we differentiate to get the fi elds. In our case, 
it is the electromagnetic fi elds that we want. The reader might also 
recall that the Aharonov-Bohm experiment done by Chambers indi-
cates that the potential is a real physical thing. Using 3-dimensional 
vectors, we defi ne a scalar potential (that is a potential with only one 

special.indb   241 28-04-2016   20:42:44



242 • The Special Theory of Relativity

component), , and a vector potential (with three components), A.


 
We get the fi elds as:
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Note that, if everything is stationary, then the second of these equa-
tions becomes:

  E Grad f 
ur

 (19.23)

This is just the electrostatic fi eld.

Taking the 3-dimensional and scalar potential together, we are 
able to form a (covariant9) 4-vector. Yes! a genuine 4-vector10.

 Ö A A Ax y z j     
  

  (19.24)

The minus signs are what make this 4-vector co-variant. This is basi-
cally the same thing as taking the conjugate of a complex number by 
changing the sign of the imaginary part.

Aside: Where does the electromagnetic 4-potential come from? As 
well as requiring that physics be unchanged by rotation in space-
time, we also require that it be unchanged by rotation in space; this 
is called U(1) gauge theory. It goes like this:

U(1) invariance is just invariance under rotation in the Euclidean 
complex plane. We get a U(1) gauge theory by requiring that the 
Lagrangian be invariant under changes to the fi eld, (x) of the form: 
(this is just rotation in the complex plane.)

                &     * *i x i xx e x x x ea af f f f a a  (19.25)

Where (x) is a function of space-time. Clearly:

                * * *i x i xx x x e e x x xa af f f f f f a  (19.26)

9. It does not matter if the reader does not understand the difference between a 
covariant vector and a contra-variant vector. Your author includes the word for com-
pleteness. However, the 4-vectors we met in the dynamics above (4-velocity etc..) 
are contra-variant vectors whereas the electromagnetic potential is a co-variant 
4-vector, as is the Lorentz 4-force. 
10. Co-variant vectors are often called 1-forms or dual vectors.
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However terms involving the derivatives of the fi eld (x) are not 
automatically invariant under these changes to the fi eld. To make 
the derivatives U(1) invariant, we are forced to introduce a 4-vec-
tor, a. This 4-vector is the electromagnetic potential. And that, 
we believe is, why electromagnetism exists – because the universe 
requires invariance under rotation in space!

We are able to do the same sort of thing with quaternion space and 
the A3 space that we will meet in later chapters.

Aside: We could add the gradient (of a scalar field) to a vector poten-
tial without affecting the curl of the vector potential because the curl 
of a gradient is zero - 0.f   Such an adding of a gradient to a 
vector potential is called a gauge transformation. Gauge transforma-
tions are central to modern theoretical physics, but the idea was first 
proposed by Hermann Weyl in 1919.11 That we can add a gradient 
to a potential without changing the field equations is called gauge 
invariance; it mitigates the arbitrariness of the potential. Gauge 
invariance is a property of the Maxwell equations. 

By defi nition, we get the fi elds as the (sixteen) components of a 
4-tensor given by the set of curls:

 
Ö Ö

E n m
mn m n

 
 

 
 (19.27)

Aside: It is common in tensor calculus to indicate differentiation 
with a comma. (A semi-colon indicates a different type of differen-
tiation.) The above would thus be written:

 
Ö Ö Ö Ö, ,E n m

n m m nmn m n
 

   
 

 (19.28)

Wherein  is either {x, y, z, t} and  is either {x, y, z, t}; so Öx  is the 
x component of the 4-potential, for example:

 
 Ö Ö Ax t x x

tx
A

E
t x t t t t

f f     
      

     

ur

 (19.29)

11. H. Weyl. Ann. Phisik 59, 101 (1919).
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The reader might notice that this is just like a curl in 3-dimensional 
vectors, and we see that the 4-tensor is a set of curls that “fi t together 
properly”. There is no “omnipotent mathematical god” that makes 
the mathematics work out in such a way that the electromagnetic 
fi eld can be written as a set of curls that “fi t together properly”12. 
It happens because space and time “fi t together properly” into 
space-time.

Aside: The electromagnetic field tensor, E, can be defined dif-
ferently from the way it is defined above. The above definition 
assumes the abelian nature of differentiation. In gauge theory, we 
do not have this assumption, and the electromagnetic field tensor 
is defined as:

 
Ö Ö Ö Ö,E iqn m

m nmn m n
        

 (19.30)

This is referred to as the non-abelian version of the electromag-
netic field tensor. This is Yang-Mills theory13. The brackets indi-
cate the commutator with which we will deal later. 1,i    and 
q is electric charge. In electromagnetism, the photon is seen as 
being an abelian (commutative) potential field. Yang-Mills theory 
deals with non-abelian potential fields and is a way of extending 
the electromagnetic mathematical formulation into new areas of 
physics.

Such is the pedagogic devotion of your author that he writes out the 
electromagnetic fi eld tensor in full for the edifi cation of his readers. 
It is normal to forget that tensors formed from two vectors are not 
strictly speaking a matrix and to pretend that they are a matrix. We 
will do the same (Erow, column):

12. The Maxwell equations for  BDiv
ur

and  ECurl
ur

 are the necessary and sufficient 
conditions for the existence of a potential.
13.  Yang Mills theory dates from 1954: C.N.Yang and R.L.Mills Phys. Rev, 96, 191, 
(1954).
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1 4 2 4 3 4 4 4
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z x z y z z z t

t x t y t z t t
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    
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 
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 
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A A AA A
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y y yx z

yz x z z

yx z
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x y z y y t

x z y z z t

t x t y t z

f

f

f

f f f










     
   

      
        
      

  
             

     
     

      

   

   

   

 








 (19.31)

 

B B E

B B E

B B E

E E E

0

0

0

0

z y x

z x y

y x z

x y z

  
 
  

  
  
 
  

  

  

  

  

 (19.32)

Aside: If we had chosen the co-ordinate order to be m is either {t, x, 
y, z} and n is either {t, x, y, z}, we would have come to:

     

0

0

0

0

yx z

yx x z x

y y yx z

yz x z z

AA A
t x t y t z

AA A A A
x t x y x z

F
A A AA A

y t y x y z

AA A A A
z t z x z y

mn

f f f

f

f

f

       
     


   

                
      


   
  

     

 

   

   

   













 
 
 

 (19.33)
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0
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E B B

E B B

E B B

   
 
 

  
 

 
  

  

  

  

  

Which the reader will see in other text books.

The reader should notice that this matrix, E, is anti-symmetric, 
E  E. The 4-tensor of the electromagnetic fi eld is an anti-
symmetric tensor. Quaternions are the only wholly anti-symmetric 
4-dimensional division algebra. Thus, it ought not to surprise the 
reader that electromagnetism can be done with quaternions, but, 
although Maxwell used quaternions when he formulated electro-
magnetism, he did not do it properly; it is only recently that human-
kind has fi gured out how to do it properly.

Note that if the magnetic part, ìA ,


 of the 4-potential does not 
vary with time, we get:

 

AA A A

A AA A

AA A A

0

0

0

0

yx x z

y yx z

yz x z

y x z x x

x y z y y

x z y z z

x y z
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f f f

    
  

     
      
     
 

           
         

  

  

    (19.34)

It is a property of 4-vectors that their three spatial components form 
a 3-dimensional (spatial) vector. It is a property of anti-symmetric 
4-tensors that their six non-zero components will split into two sets of 
three, each of which is a 3-dimensional vector. The two 3-dimensional 
vectors are the electric and magnetic fi eld vectors  E B, .

ur ur

We use notation like:

 ,  ,  y yz x z x
x y z

W WW W W W
V V V

y z z x x y

    
     

     
 (19.35)

special.indb   246 28-04-2016   20:42:49



Electromagnetism • 247

This allows us to write the electromagnetic fi eld tensor as14:

 

B B E

B B E

B B E

E E E

B B E

B B E
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E E E
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0
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0

0
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  
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 
 
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  
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  
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  
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 (19.36)

Aside: The matrix with the subscripted indices is referred to as the 
covariant electromagnetic 4-tensor. The matrix with the superscripted 
indices is referred to as the contra-variant electromagnetic 4-tensor. 
This does not concern us greatly. To change a covariant 4-vector into 
a contra-variant 4- vector, just alter the sign on the time component.

And so we see that, provided the 4-potential does not vary with 
time, we can equate the electric fi eld vector with the spatial rate of 
change of the electrostatic potential, . The magnetic fi eld vector 
can be equated with the spatial rate of change of the magnetic vector 
potential, A.


 The reader should realize that we have purely electro-

static elements in the tensor only if we treat time as a constant. If we 
treat time on an equal footing as we treat space, which is inevitable 
in special relativity, then the “electric fi eld vector” depends on the 
magnetic vector potential, A,


 as well as the electro-static potential, 

; in which case, the “electric fi eld vector” is not an “electric fi eld 
vector” but an electromagnetic fi eld vector. It is only because we 
stationary observers can ignore time that we have a purely electrical 
fi eld. 

Now, the Lorentz force, F E v B,q q  
   

 depends upon velocity 
through space – it has the magnetic fi eld multiplied by the velocity. 
We might expect, and this turns out to be correct, that the electro-
magnetic force 4-vector is simply the above fi eld 4-tensor multiplied 

14. This was first done by Minkowski.
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by the 4-velocity (and multiplied by the charge, q). This is the 4-vec-
tor (we’ve included a c):
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 (19.37)

This is, in 4-tensor form, the Lorentz force law. It is normally writ-
ten as:

 q
F E U

c
n

m mn  (19.38)

Aside: The Einstein convention is that 
1 2 3 4

1 2 3 4E U E U E U E U E U E Un
n      

We can calculate the components of the Lorentz force by multiply-
ing the matrices together, but we’ll do the fi rst one more slowly. 
When   1:
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 
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 
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n
n
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   

   

   
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 (19.39)

The other bits, by matrix multiplication are:

 
  
  

E B B

E B B

2

3

y x zz x

z y xx y

F q u u

F q u u

   

   

  

    (19.40)

Which is the Lorentz force law (with negative signs). We also have:

 E U4F   
 

 (19.41)
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Which, unfortunately puts the dot product equal to a minus sign 
(think the norm of the 4-acceleration).

We can put these all together (not concerning ourselves with 
signs) to form the electromagnetic force (co-variant) 4-vector:

    F F E U E U B E U1 1 1
Lorentz q q

c c c
g g                   

       
  (19.42)

The  derives from that we differentiate 4-vectors with respect to  
whereas we formed the fi eld tensor by differentiating with respect 
to the co-ordinates.

We earlier found the 4-acceleration is perpendicular in the 
space-time sense to the 4-velocity (conventionally but wrongly, their 
dot product is zero). This implies that the 4-force is perpendicular to 
the 4-velocity. Let us test this:
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 (19.43)
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We see that we would not have the 4-force perpendicular to the 
4-velocity unless we had an anti-symmetric fi eld tensor, or that 
the “orthogonality” of 4-acceleration and 4-velocity, which derives 
directly from the nature of space-time, makes the 4-tensor be anti-
symmetric. It fi ts together well!

19.8 THE MAXWELL EQUATIONS II

When we tried to do vector algebra in 4-dimensional space-time 
using 4-vectors, it worked, but we had to “fudge” a sign in the accelera-
tion 4-vector norm. We begin with the electromagnetic fi eld tensor:
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  (19.45)

We seek E, wherein the comma indicates differentiation with 
respect to the variable to the right of the comma ( in this case). This 
means that we are going to differentiate the th column with respect 
to the th variable (in the order x, y, z, t) from left to right. What 
we are really doing is differentiating the whole matrix by each vari-
able and then picking out the bits we want from each differentiated 
matrix. We put the answer equal to the current 4-vector. We get:
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                                                                                    

  






 

zj

r

 
 
 
 
  

 (19.46)

We swap all the signs, and we include some constants to suit the units15. 
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                                                

 

  

  

 

 (19.47)

15. 0 0 2

1
c

m e 
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Which are four of the eight Maxwell equations given above.

Of course, one observer’s magnetic fi eld is another observer’s 
electric fi eld. If we swap the signs of the electric fi eld and then swap 
the electric fi elds for the magnetic fi elds, we get the dual electro-
magnetic tensor. (The reader might want to swap the fi elds in the 
Maxwell equations to compare.)

 

E E B

E E B

E E B

B B B

0

0

0

0

z y x

z x y

y x z

x y z

Bmn

  
 
  

  
  
 
  

  

  

  

  

 (19.48)

We do as above to get (which we put equal to zero):
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    
        

 
                   

                
 

       

  

 

 

 

 (19.49)

Which are the other four of Maxwell’s equations. We now have all 
eight of the Maxwell equations entwined together in the electromag-
netic fi eld tensor (and its dual). We can write the Maxwell equations as:

 J, ,                    0E Bn
mn n mn n   (19.50)

Also entwined within the electromagnetic fi eld tensor is the Lorentz 
force law equation. 

If we take the current 4-vector and differentiate each component 
by the respective variable, as we did for the electromagnetic tensor 
above, and put it equal to zero, we get the continuity equation:

 J , 0yx z
JJ J

x y z t
n

n
r  

    
   

 (19.51)

This expresses the conservation of electric charge. 
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19.9  THE COMPONENTS OF 
ELECTROMAGNETISM

Thus the components of electromagnetism are a 4-velocity, a 
4-current, a 4-potential, and a defi nition of a 4-tensor (and its dual) 
as a particular set of curls of the 4-potential.

Aside: The Maxwell equations can be written in the Clifford alge-
bra, cl3  Mat(2) or the Clifford algebra cl3,1  Mat(4). In cl3, the 
electric field is taken to be a vector but the magnetic field is taken to 
be a bi-vector (vectors and bi-vectors are dual in cl3).

 
E

B
1 1 2 2 3 3

1 23 2 31 3 12

E e E e E e

B e B e B e

  

  

   

     (19.52)

The Maxwell equations are then:
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r  


   




   


  



  

  



 (19.53)

The Maxwell equations have been written as a single equation in 
many mathematical formulations including as -vectors16, as com-
plex quaternions17, as spinors18, as Clifford algebras19, as bi-vectors20, 
and as quaternions21 (see later).

16. Silberstein 1907.
17. Silberstein 1912–14.
18. Laporte & Uhlenbeck 1931.
19. Juvet & Schidloof 1932 and Mercier 1935.
20. Riesz 1958.
21. Peter Jack 2003
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Aside: The Yang-Mills non-abelian form of the Maxwell equations 
is:

 

   
   

   

   

0

0 0 0 0

0 0 0 0

0

0

Div E iq A E E A j

Div B iq A B B A

B
Curl E iq A B B A A E E A

t

E
Curl B iq A E E A A B B A j

t

    

    


       



       



    

    

    

      

 (19.54)

We also have the non-abelian current conservation equation:

    0
0 0 0 0 0

j
Div j iq A j j A A j j A

t


       


    
 (19.55)

In the non-abelian form of electromagnetism, the electric and mag-
netic fi elds do not have the property of superposition (that they can 
be simply added together). In general, the fi elds from two non-abe-
lian charges cannot be superimposed.

There is also a non-abelian form of the wave equation22.

EXERCISE

1. How does mass density vary with velocity?

22. S. Coleman, Phys. Lett 70B, 59 (1977a).
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CHAPTER 20
QUATERNIONS

Until now, with the exception of the chapter on electromag-
netism, we have been concerned with only 2-dimensional spaces. 
Although, we looked at 4-vectors, we noted that they are no more 
than a 2-dimensional mathematical construction with two inert spa-
tial dimensions tagged on for the ride. When we looked at electro-
magnetism, we were concerned primarily with electromagnetic phe-
nomena and not with the 4-dimensional space of those phenomena. 
With this chapter, we begin to explore 4-dimensional space-time.

The 4-dimensional space-time in which we sit has several prop-
erties which we need to explain:

 i. The space in which we sit seems to have a “distance function” 
of the form: d2  t2  x2  y2  z2. It is an algebraic fact that 
the form of this function is not preserved under multiplica-
tion. That is:

 2 2 2 2 2 2 2 2 2 2 2 2( )( )e f g h a b c d T X Y Z           (20.1)

  Therefore, this “distance function” cannot be of the form of 
the determinant of a rotation matrix. Since distance from the 
origin is preserved by rotation and the only multiplicative 
invariant of a matrix is its determinant, the form of the de-
terminant of the rotation matrix of a space is the form of the 
distance function. Therefore, the above d2  t2 – x2 – y2 – z2 
cannot be the distance function of a space, or, if it is such a 
distance function, then it is the distance function of a space 
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with no rotation – which is not really a space. The nature of 
this purported “distance function” is such that, by setting 
various pairs of the variables in it to zero, we can reduce the 
purported 4-dimensional “distance function” to six 2-di-
mensional distance functions all of which have their form 
preserved under multiplication and therefore can be proper 
2-dimensional geometric spaces. Indeed, we know these six 
2-dimensional distance functions to be exactly of the two 
types of 2-dimensional spaces that derive from the group C2.

 ii. Within electromagnetism, we have that a space-time rota-
tion (velocity) applied to a charged body (an electron, say) 
produces a magnetic fi eld in a spatial plane perpendicular 
to the direction of the motion of the charged body. Using a 
compass to map out this magnetic fi eld shows that it is cir-
cular (Euclidean). We have it that a space-time rotation (a 
velocity boost) produces a spatial rotation; actually, it turns 
out to be the commutators of the boost that is connected a 
spatial rotation commutator. We fi nd this phenomenon else-
where; it is involved in the Thomas precession (see later). 
It is also intrinsic to the Lorentz group (which we will meet 
later) that the commutator of a boost (a change of veloc-
ity - which is a space-time rotation) multiplied by a boost 
produces a spatial rotation. The Lorentz group is central to 
much theoretical physics. These rotation phenomena can-
not be 2-dimensional because a 2-dimensional space-time 
rotation matrix multiplied by a 2-dimensional space-time 
rotation matrix produces a 2-dimensional space-time rota-
tion matrix and not a purely spatial rotation matrix – the 
math is simple and irrefutable. 

 iii. There are clearly 2-dimensional rotations (both types) in 
the space in which we sit. These two types of 2-dimensional 
rotations occur in each of three planes. A sensible person 
might expect only one type of rotation and that it would be a 
4-dimensional rotation.

  We therefore seem to be sitting in a space that cannot 
possibly be a space. We have a type of rotation (Thomas 
precession or electromagnetism) that cannot be 2-dimen-
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sional. Nor can it be a 3-dimensional rotation. Although 
we have not time to go into the details1, this is because no 
3-dimensional Riemannian distance function is closed in 
form under multiplication. We are left with having to fi nd a 
4-dimensional rotation that has the properties we observe. 
We will fi nd this rotation within the fi nite group C2  C2. We 
also need to explain why a function that cannot possibly be 
the distance function of a space appears to be the distance 
function of the space in which we sit, and why do we have 
2-dimensional rotations. We will also fi nd the answer to this 
in the group C2  C2. As a bonus, we will also fi nd electro-
magnetism, the commutation relations of the Lie group 
SU(2), and anti-matter in the group C2  C2. 

Above, we have written of 4-dimensional rotations. But did not the 
great mathematician Leonhard Euler (1707–1783) prove that all 
rotations are 2-dimensional? Yes, he did, but he proved it in spaces 
of the form n. We are not dealing with such spaces. He included 
the word “all” before rotations because he knew of only spaces of the 
form n - he had only one eye on what he was doing.

20.1 INTRODUCTION TO QUATERNIONS

We are interested in division algebras to be found in the fi nite 
group C2  C2. One such algebra is the well-known quaternions. 
Since the other algebras in this group are in many ways similar to 
the quaternions, we will use the familiar quaternions as an example 
of such algebras. 

The quaternions are a 4-dimensional division algebra (4-dimen-
sional type of complex numbers). They have one real axis and three 
imaginary axes which are three square roots of minus unity (minus-
one) called {i , j, k}. They were discovered by the Irish mathemati-
cian William Hamilton (1805–1865) in 1843.

1. The details are to do with the finite group C3.
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Aside: In 1844, the exterior product algebras (Grassman algebras) 
used in particle physics were discovered by Hermann Grassman. In 
1845, the octonian algebra (Cayley numbers) was discovered by John 
Graves and Arthur Cayley2 (1821–1895). In 1848, James Cockle dis-
covered the hyperbolic complex numbers. It was quite a good five 
years for algebraists. In 1876, William Kingdon Clifford3 discovered 
the Clifford algebras.

James Clerk Maxwell, he of electromagnetism fame, had a great 
respect for the quaternions, saying, “The invention of the calculus of 
quaternions by Hamilton is a step towards the knowledge of quanti-
ties related to space which can only be compared for its importance 
with the invention of triple co-ordinates by Descartes4.”5. He wrote 
on the application of quaternions to electromagnetism in 1870. Max-
well’s use of quaternions anticipated the SU(2) weak force and the 
SU(2)  U(1) electro-weak unifi cation of particle physics by more 
than a century, but he used them as 3-dimensional vectors and 
ignored the real part of the quaternion, thereby rather spoiling it all.

Aside: Clifford algebras could have been combined with Maxwell’s 
quaternion formulation of electromagnetism. This would have led 
to the Dirac equation of particle mechanics forty years before it was 
actually written down by Dirac in 1928.

In 1888, Oliver Heaviside and Josiah Willard Gibbs indepen-
dently rewrote electromagnetism in the present day vector form, 
and quaternions were largely forgotten until 1962 when Finkelstein, 
Jaunch, Schiminovich, and Speiser6 wrote a paper involving qua-
ternions that showed the imaginary quaternion degrees of freedom 
correspond to the Higgs fi eld that gives mass to the SU(2) gauge 
bosons. Of course, they did this a year before Higgs invented the 
Higgs fi eld. The paper also anticipates electro-weak unifi cation well 

2. Cayley also formulated matrix algebra.
3. It was Clifford that translated Riemann’s work into English. Riemann’s work is the 
mathematical foundation of general relativity, and so Clifford nearly wrote general 
relativity 40 years before Einstein.
4. Descartes (1596–1650).
5. Volume II of Maxwell’s Scientific Papers (pages 570–576).
6. Helvetica Physica Acta, Vol. XXXV (1962) 328–329.
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before Glashow, Salam, and Weinberg. Glashow (1932– ), Salam 
(1926–1996), and Weinberg (1933– ) won the 1979 Nobel prize for 
electro-weak unifi cation.

Unfortunately, modern physicists of the western world take no 
great interest in quaternions. Most of the published papers are from 
Mexico or Turkey or China or other non-western countries, and the 
bi-quaternion formulation of electromagnetism is well known only 
outside of the western world. An exception to this is Peter Michael 
Jack who rewrote Maxwell’s equations using quaternions (not bi-
quaternions) in his paper of 20037.

Aside: Within particle physics, we are often concerned with math-
ematical objects called commutators and anti-commutators. Lie 
algebra is the study of these things. They are a way of measuring 
the difference between the non-commutative product of two non-
commutative numbers (quaternions say) that arises when the order 
of the numbers in the product is swapped. The anti-commutator is 
defined as:

    1 2 1 2 2 1
1

,
2

Q Q Q Q Q Q   (20.2)

The commutator is defi ned as: 

    1 2 1 2 2 1
1

,
2

Q Q Q Q Q Q   (20.3)

20.2 QUATERNION MATRIX FORMS

There are two matrix forms of quaternion like algebras. They 
both derive from the group C2  C2. The fi rst is the anti-quaternions:

 Anti

a b c d

b a d c
Q a ib jc kd

c d a b

d c b a

 
       
  
   

 (20.4)

7. Physical space as a quaternion structure, I Maxwell Equations. A Brief Note. 
arXiv:math-ph/0307038v1 18 Jul 2003.

special.indb   259 28-04-2016   20:42:58



260 • The Special Theory of Relativity

The b variable is associated with the a square root of minus-one writ-
ten as i. The c variable is associated with the a second square root of 
minus-one written as j. The d variable is associated with the a third 
square root of minus-one written as k. In the QAnti case, we have the 
commutation relations:

 
2 2 21,  1,  1,   ,  ,

 ,  ,  ,  
i j k ij k ji k

ik j ki j jk i kj i

          
 

       
 (20.5)

Notice the non-commutativity of the {i, j, k}; we have ij  ji etc.. 
Multiplication of the anti-quaternions is just like multiplication of 
the Euclidean complex numbers, , but taking account of the com-
mutation relations and being careful to keep everything in order – it 
is easier to just use the matrix form. These commutation relations 
are the reverse of the normal quaternion commutation relations, 
which is why we call them the anti-quaternions or reverse quater-
nions. The second form is the true quaternions as discovered by 
William Hamilton:

 

a b c d

b a d c
a ib jc kd

c d a b

d c b a

 
       
  
   

  (20.6)

The commutation relations of this algebra are a mirror image of the 
commutation relations of the anti-quaternion. They are:

 
2 2 21,  1,  1,   ,  ,

 ,  ,  ,  
i j k ij k ji k

ik j ki j jk i kj i

          
 

       
 (20.7)

Again, multiplication is simple. Just do it as you would for the  
algebra but take account of the order of everything and of the com-
mutation relations – or use the matrix form. The quaternions and 
anti-quaternions are the mirror images of each other. They are 
enantiomorphic spaces (left-handed and right-handed spaces).

Aside: The second of these, the true quaternion, appears in many 
particle physics books in the form:

   2 2 2 22 : 1
a ib c id

SU a b c d
c id a ib

  
        

 (20.8)
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Using the block multiplication properties of matrices and the 
2  2 matrix form of the complex numbers, , will convert this to the 
4  4 quaternion matrix above. The Lie group SU(2) is isomorphic 
to the quaternion rotation matrix and “invariance under SU(2) trans-
formations” can be seen as invariance under rotation in quaternion 
space. Thus, we can think of the quaternion trigonometric functions 
as being the trigonometric functions of SU(2) and the quaternion 
rotation matrix as being SU(2).

Aside: Take the Pauli matrices of particle physics:

 1 2 3

1 0 0 0 1
,   ,   

0 1 0 1 0
i

i
s s s

     
            

  (20.9)

Multiply them each by a real number, add them, and then add a 
fourth real number matrix to get the quaternion:

 a ib c id

c id a ib

  
    

 (20.10)

The (anti-symmetric) rotation matrix of the quaternions is obtained 
by exponentiating the quaternion matrix (with zero real part). You 
are about to see a truly 4-dimensional rotation:

      

       

       

       

       

2 2 2

cos sin sin sin

sin cos sin sin

sin sin cos sin

sin sin sin cos

Rot

b c d

b d c

Q
c d b

d c b

b c d

l l l l
l l l

l l l l
l l l

l l l l
l l l

l l l l
l l l

l

 
 
 
  
 

  
  
 
 
  
 

  

 (20.11)

Within this rotation matrix are the quaternion trigonometric func-
tions8. They are similar to the 2-dimensional Euclidean trigonomet-
ric functions because all the “imaginary” variables are anti-symmetric 

8. It is not really within the remit of this book, but I should mention that the square 
root sign leads to “twice as much rotation” as we have in the complex plane. See: 
Dennis Morris  The Physics of Empty Space ISBN: 978-1507707005.
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and because C2  C2 has three order two sub-groups (one for each 
“imaginary” variable). This is quaternion space, and this rotation 
matrix is the 4-dimensional rotation matrix in that 4-dimensional 
quaternion space. It is something that you have probably never 
imagined and probably did not know existed. Try setting some of the 
variables to zero and playing with commutators of the products of 
the quaternion rotation matrix.

Every geometric space has within it the concept of angle and of 
rotation. Is it such a surprise that a 4-dimensional space should have 
4-dimensional rotations? As pointed out above, we need them to 
understand observed physical phenomena. Rotation in quaternion 
space (also known as SU(2)) is utterly central to quantum fi eld the-
ory – it is all over the place in particle physics.

Aside: The unit quaternions are the Lie group SU(2). This group is 
denoted in many different ways. We have: QRot  Sp(1)  SU(2)  
Spin(3)  S3. There is, however, a difference between QRot and 
SU(2). SU(2) is conceived as existing in 2 (two copies of the com-
plex plane fitted together) space whereas QRot exists in quaternion 
space. 

The quaternion rotation matrix is non-commutative.9 Taking 
the commutator of individual variables gives the Lie algebra. Hav-
ing met 4-dimensional rotation in a 4-dimensional fi nite group space 
that derived from the group C2  C2, we are now ready to look at the 
other 4-dimensional spaces in this group.

20.3  THE C2 × C2 FINITE GROUP AND THE SPACE 
IN WHICH WE SIT

We earlier worked with the algebras (geometric spaces) that 
derive from the fi nite group C2. Of course, these spaces are 2-dimen-
sional but, it seems, we live in a 4-dimensional universe. We are now 
to work with the geometric spaces that derive from the order four 

9. Rotation on the left takes you to a different place than rotation on the right. One 
angle but two different rotations.
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group C2  C2. This, as it appears, is a group formed by crossing C2 
with itself. Thus, in a sense, we are still in the C2 universe. We will 
not be looking at the other order four fi nite group, C4.

We can look at the group C2 as being the multiplicative relations 
between the numbers {(1), (1)}. We can look at the group C2  C2 
as being the multiplicative relations between the pairs of numbers:

 
1 1 1 1

, , ,
1 1 1 1
            

                    
 (20.12)

with multiplication component-wise. 

Aside: C2  C2  C2 is the multiplicative relations between:

 
1 1 1 1 1 1 1 1
1 , 1 , 1 , 1 , 1 , 1 , 1 , 1
1 1 1 1 1 1 1 1

                      
                                     
                                       

 (20.13)

The matrix form of the C2  C2 group is:

 

a b c d

b a d c

c d a b

d c b a

 
 
 
 
 
 

  (20.14)

There are sixteen division algebras that derive from C2  C2. Eight 
(two of type A1 and six of type A2) of these division algebras are com-
mutative division algebras (algebraic fi elds).

The A1 algebra contains three square roots of plus unity (plus-
one). This compares to the hyperbolic complex numbers, , that have 
one square root of plus unity and the Euclidean complex numbers, 
, that have one square root of minus unity (minus-one). The A2 
algebra contains one square root of plus unity and two square roots 
of minus unity. We have no interest in these commutative algebras. 
It seems that the 4-dimensional universe, or at least the observable 
part of it, is comprised of only non-commutative algebras10. 

10. What we did with C2 can be equally well done with C2  C2 by setting two of the 
imaginary variables to zero. It was pedagogically easier to use C2.
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Aside: The Clifford algebra, cl2, has three square roots of plus unity 
and one square root of minus unity. The Clifford algebra, cl3, has 
four square roots of plus unity and four square roots of minus unity. 
The Clifford algebra, cl4, has six square roots of plus unity and ten 
square roots of minus unity.

20.4 NON-COMMUTATIVE SPACES

In the two dimensional complex plane, a rotation through 
degrees followed by a rotation through  degrees gets to the same 
point as a rotation through  degrees followed by a rotation through 
 degrees. This is because the rotation matrices of these two rota-
tions are commutative; it does not matter in which order the product 
of the matrices is written:

cos sin cos sin cos sin cos sin
sin cos sin cos sin cos sin cos

q q f f f f q q
q q f f f f q q

       
                 

 (20.15)

Now imagine a 3-dimensional sphere. It has three planes of rota-
tion (the slice parallel to the Greenwich meridian, the slice parallel 
to longitude 90 west and the slice parallel to the equator). With a 
little thought, the reader will see that rotation in one of these planes 
followed by rotation in a different plane does not necessarily get the 
same result as when the rotations are done in the reverse order. This 
is because the rotation matrices are not commutative:

 

cos sin 0 1 0 0
sin cos 0 0 cos sin
0 0 1 0 sin cos

1 0 0 cos sin 0
0 cos sin sin cos 0
0 sin cos 0 0 1

q q
q q f f

f f

q q
f f q q
f f

   
      
      
   
       
      

 (20.16)

We say that the 2-dimensional space, , is commutative and that the 
3-dimensional space, 3, is non-commutative. Of course, as shown 
by the three 3  3 “rotation matrices”, the sphere does not exist in 
3-dimensional space but in three 2-dimensional spaces.
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The other eight division algebras that derive from the C2  C2 
are non-commutative. That is worth emphasizing:

The commutative group C2  C2 contains eight non-commutative
 division algebras.

We give two examples:

 3        exp

a b c d a b c d

b a d c b a d c
A

c d a b c d a b

d c b a d c b a

    
                    
          

  (20.17)

There are two types of quaternions (the quaternions and the anti-
quaternions) and six types of A3 division algebras. Like the quater-
nions, the A3 algebras have commutation relations. These commuta-
tion relations are different in each algebra and different from the 
quaternions and the anti-quaternions. The A3 algebras come in three 
pairs with each pair being comprised of an algebra and its anti-alge-
bra. The commutation relations of an anti-algebra are the reverse 
of the commutation relations of the algebra. The distribution of the 
minus signs in the bottom right 3  3 corner of the 4  4 matrix are 
reversed in the anti-algebra.

It is quite amazing that the commutative group C2  C2 contains 
non-commutative division algebras. (The reason for this is that real 
numbers have both positive and negative square roots, and although 
your author would like to show the reader why non-commutativity 
exists, it is too much of a digression from the subject of this book.)

A3 contains one square root of minus unity and two square roots 
of plus unity. The quaternions, of course, contain three square roots 
of minus unity. What balance we have within these four types of 
C2  C2 spaces; how fairly they share the square roots of plus and 
minus unity between them. This refl ects, and is the same thing as, 
how fairly they share the different types of 2-dimensional rotations 
(Euclidean spatial or space-time boosts) between them. The mixed 
symmetric and anti-symmtric A3 rotation matrix, of the form (again 
an example of one of the six):
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       

       

       

       

3

2 2 2

cosh sinh sinh sinh

sinh cosh sinh sinh

sinh sinh cosh sinh

sinh sinh sinh cosh

Rot

b c d

b d c

A
c d b

d c b

b c d

l l l l
l l l

l l l l
l l l

l l l l
l l l

l l l l
l l l

l

 
 
 
  
 

  
  
 
 
 
 

   

 (20.18)

Notice that the b variable is anti-symmetric within this matrix 
whereas the c and d variables are symmetric. This means both types 
of 2-dimensional rotation are within this rotation matrix. This means 
both types of 2-dimensional rotation are in this space! The other A3 
rotation matrices are basically the same but with a different anti-
symmetric variable.  

The A3 rotation matrix is a 4-dimensional rotation matrix – it 
does 4-dimensional rotation – just like the quaternion rotation 
matrix. None-the-less, I think emphasis is warranted:

4  4 rotation matrices do 4-dimensional rotation.

The important thing about the A3 algebras is that they contain a mix-
ture of both symmetric and anti-symmetric “imaginary” variables. 
They each have two symmetric “imaginary” variables and one anti-
symmetric “imaginary” variable. This means that A3 space (all six 
types) contains both symmetric rotations (rotations in space-time, 
also called boosts) and an anti-symmetric rotation (spatial rotation) – 
remember the phrase from the Lorentz group “the commutator of a 
boost times a boost makes a spatial rotation”. We need both types of 
2-dimensional rotation in one space. 

The C2  C2 group has three order two subgroups each formed 
from the real variable and one of the imaginary variables. There are 
thus three 2-dimensional rotations within the A3 space. By simple 
multiplication, we see that the commutator of the product of the 
c variable and the d variable in the above A3 matrix is the b vari-
able, and we have that the commutator of two space-time rota-
tions (symmetric rotations) multiplied together is a spatial rotation 
(anti-symmetric rotation).
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The b variable corresponds to a Euclidean rotation, when c  d 
 0, and the {c, d} variables correspond to space-time rotations when 
either of them is zero and b = 0. This is just as in the Lorentz group. 
In the A3 algebra above, we have that the commutator of the sym-
metric (space-time) {c, d} variables is the anti-symmetric (Euclidean 
space) b variable. The six isomorphic forms of the A3 algebra per-
mute the axes, but they all have that the commutator of the product 
of two space-time rotations is a Euclidean space rotation.

20.5 THE SPACE IN WHICH WE SIT

We are about to derive the 4-dimensional space-time in which 
we sit. It brings with it the fi eld equations of general relativity. We 
will skimp on the general relativity bit because general relativity is 
outside of the remit of this book. 

The six A3 algebras come in three pairs; each pair has one A3 
algebra and one A3 anti-algebra. We have six copies of the same alge-
bra written in six different bases. There is a distance function in each 
of the six A3 algebras. We take the expectation distance function (like 
expectation values in quantum mechanics) by adding the six distance 
functions:

 

2 2 2 2

2 2 2 2

2 2 2 2
2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

6 2 2 2

t x y z

t x y z

t x y z
Sum t x y z

t x y z

t x y z

t x y z

   
 

   
 

           
   
 
    

 (20.19)

The ratio of 6 to 2 is just the units in which we measure time and 
space. We have the distance function of our space-time.

We take the expectation algebra by adding the six algebras, but 
wait, you cannot add isomorphic algebras written in different bases 
without destroying the algebras. If we destroy the algebras, we have 
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no multiplication operation11. With no multiplication operation, we 
have no rotation (that’s why we do not see 4-dimensional rotation is 
our space-time) and we have no imaginary variables; all that remains 
is four, not imaginary, variables; they must be real variables. These 
four real variables are a 4-dimensional manifold; we have 4. A clas-
sical type of space has emerged from the fi nite group spaces as an 
expectation space. 

We have a 4-dimensional manifold with a distance function. 
Insisting that a vector maintains its length at different points in the 
manifold (as measured by the distance function) induces a metric 
tensor on to the manifold. Allowing a A3 phase (angle) to vary from 
point to point in the manifold induces an affi ne connection (a notion 
of parallel transport) on to the manifold. (With the distance func-
tion, this is the Levi-Civita connection.) 

We have our 4-dimensional space-time. The second differentials 
of the metric tensor form a unique tensor called the Riemann cur-
vature tensor. From this we get the Einstein tensor. A second rank 
symmetric tensor naturally emerges from the sum of the symmetric 
parts of the fi elds of the A3 algebras. We assume this is the mass-
energy tensor and put it equal to the Einstein tensor12 – we have the 
fi eld equations of general relativity.

When, by observation, we take the expectation algebra, we 
smash the A3 algebras and we smash the 4-dimensional rotation. 
There is no mathematical connection between the A3 algebras and 
the emerging 4 space. Thus there is no deterministic connection 
between these two parts of the universe. It seems that the A3 alge-
bras are quantum gravity. We presume that they each have a charge 
of mass. Since there are three pairs of them, we would expect par-
ticles to have three different masses. We call this three generations 
of particles.

Because the mathematics produces only one copy of each of 
the 2-dimensional rotations, taking the 2-dimensional expectation 
algebras leaves the algebras unchanged; we keep 2-dimensional 
rotations. Because the 2-dimensional distance functions are sub-dis-

11. “Proper” multiplication exists in only division algebras.
12.  We have guessed the field equations, but then so did Einstein.
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tance functions of our 4-dimensional space-time distance function, 
we have the two types of 2-dimensional rotation within our 4-dimen-
sional space-time.

I short, we postulate that the space in which we sit is the sum of 
all the six A3 algebras and both 2-dimensional algebras. 

Thus it is that, if we add the A3 spaces, we get the distance func-
tion of the space in which we sit. We also have the 4-dimensional 
rotations that we need to explain electromagnetic phenomena, the 
Lorentz group we are yet to meet, and the Thomas precession, and 
other, very technical, stuff, and we have the 2-dimensional rota-
tions that we observe. We also have 2-dimensional rotations in three 
2-dimensional planes within these spaces. So, it seems, we live in the 
sum of six C2  C2 fi nite group spaces13. Of course, these spaces exist 
in only their polar forms, but that too is what we observe, there is a 
limiting velocity (all equal) in all three spatial directions. Job done!

And all from nothing more than the real numbers and the mul-
tiplicative relations between {1, 1}; oh! and the exponential func-
tion, of course. It gives good reason to pause for thought.

EXERCISE

1. Within both the quaternion algebra and the anti-quaternion 
algebra (two separate calculations), calculate the product: (a 
 ib  jc  kd)(t  ix  jy  kz). Remember the terms in order 
and see. If you reverse the order of the terms in the product, 
do you get the same answers?

13. These are spinor spaces.
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CHAPTER 21
ELECTROMAGNETISM 
WITH QUATERNIONS

This book is about space-time. In the previous chapter, we found 
the 4-dimensional space-time in which we sit to be formed from the 
sum of the six A3 algebras. These algebras are derived from the group 
C2 C2. Also derived from that group are the quaternions and the 
anti-quaternions; what role do they play in the universe? The quater-
nions and anti-quaternions give rise to the Maxwell equations of elec-
tromagnetism and to the anti-Maxwell equations of anti-electromag-
netism (anti-matter). We give a, rather brief, overview of that here.1

There is an almost religious belief among physicists that the uni-
verse will use “simple” and “elegant” mathematics. We expect that, 
when we eventually discover the “Grand Unifi ed Field Theory”, it 
will be beautiful, elegant, and simple. If we can build a theory from 
no more than only numbers (of various types) derived from the fi nite 
groups, then that theory will “have” to be correct because numbers 
are correct. When we work with n, we are doing “inelegant” math. It 
is humankind, by the act of taking expectation spaces through obser-
vation, that fi ts copies of the fi nite group spaces together to form 
n; the n construction is not found in mathematics but is a conse-
quence of observation by humankind – that is what is “inelegant” 
about it. The quaternions do exist in mathematics. They are not 

1.This is thoroughly covered in Dennis Morris : The Physics of Empty Space ISBN: 
978-1507707005
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invented by humankind but derive from the C  C2 fi nite group. 
Thus, the idea is that we can derive the whole of physics simply by 
doing the mathematics properly (if we knew how). In the previous 
chapter, we got the space in which we sit from no more than num-
bers. Below, we get classical electromagnetism together with the 
SU(2) commutation relations and anti-matter, from nothing more 
than numbers, and so we are now doing number theory but calling 
it electromagnetism.

We remind the reader that the commutator and anti-commuta-
tor of two quaternions are defi ed as:

    1 2 1 2 2 1
1

,
2

Q Q Q Q Q Q   (21.1)

When differentiating quaternion vector fi elds, we need to take 
account of their non-commutative nature. We have left-differenti-
ation (pre-multiplied), dL, and we have right-differentiation (post-
multiplied), dR. 

For the differential of a quaternion vector potential, Q, we have:

 
      

    

1
,

2
1

,
2

Q Right Q Left Q

Q Right Q Left Q

d d d

d d d

    

      

 (21.2)

The choice of subtracting the left differential rather than the right 
differential is arbitrary. The reader will fi nd the opposite convention 
elsewhere.

We differentiate quaternion electromagnetic potential matrix with 
respect to a quaternion matrix. We do not know where this potential 
fi eld comes from (unless it is quaternion phase varying locally over 
space-time like the phase of the wave-function in U(1) gauge theory). 
We just assume it exists. We take the differentials to get:

The electric fi eld vector:

 
 

E E E

E E E

E E E

E E E

,

x y z

x z y
Q Q

y z x

z y x

yx z

T

T
d E

T

T

AA A
T

t x y z
f

 
 
  

   
  
   

 
   
   

ur ur ur

ur ur ur

ur ur ur

ur ur ur  (21.3)
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And the magnetic fi eld vector:

 

B B B

B B B

B B B

B B B

0

0
,

0

0

x y z

x z y
Q Q

y z x

z y x

d B

 
 
          
   

ur ur ur

ur ur ur

ur ur ur

ur ur ur

 (21.4)

Thus, the potential splits into two separate vector fi elds because of 
the non-commutativity of the differentiation. The two separate vec-
tor fi elds are the electric fi eld and the magnetic fi eld. Let us just 
pause to consider that. The quaternions are telling us that the rea-
son we have two types of vector fi eld in electromagnetism, the elec-
tric vector and the magnetic vector, is because the quaternions are 
non-commutative and hence have non-commutative differentiation. 
That is probably worth the pause that we took. 

Of course, in the conventional 4-vector presentation of electro-
magnetism, we were driven to combine two vectors, the electric fi eld 
and the magnetic fi eld, into one 4-tensor. Here, in the quaternions, 
we have those two vectors separate but tied together.

  , ,Q QE d B d    (21.5)

This gives:

 

E E

E E

EE

0 ~ ~ ~ ~ ~ ~

~ ~ ~
~ ~ ~

~ ~ ~
~ ~ ~

~ ~ ~ ~ ~ ~

yx z

y z

x

z x
y

yx
z

BB B
x y z

Bz y
t

B
x z

t
B

y x t

                                            

ur ur

ur ur

urur

 (21.6)

These are the four homogeneous Maxwell equations. Thus, using 
quaternions, we have four of the “Maxwell equations” of classical 
electromagnetism as:

  , ,Q QB d E d     (21.7)

Doing the same with the anti-quaternions produces another set of 
four homogeneous Maxwell equations. 
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The homogeneous Maxwell equations are no more than the differential 
identities of quaternion and anti-quaternion differentiation.

21.1  WHY NO ANTI-MATTER IN OUR 
CLASSICAL UNIVERSE

Taking the expectation fi elds (that is adding the four fi elds 
together – the quaternion electric fi eld, the quaternion magnetic 
fi eld, the anti-quaternion electric fi eld, the anti-quaternion mag-
netic fi eld) leads to a quaternion distribution of minus signs in the 
electromagnetic tensor. We do not get the anti-quaternion distribu-
tion of minus signs in the electromagnetic tensor. We therefore live 
in a matter universe rather than an anti-matter universe. We fi nd 
anti-matter in only the fi nite group spaces.

21.2  THE INHOMOGENEOUS MAXWELL 
EQUATIONS

When we take the expectation Maxwell equations by adding the 
Maxwell equations of both the quaternions and the anti-quaterni-
ons, we fi nd that, in order to fi t these into the quaternion form of 
the electromagnetic tensor, we have to put parts of them equal. This 
gives us the four inhomogeneous Maxwell equations.

The homogeneous Maxwell equations are just a differential iden-
tity and are true in classical space and in the fi nite group spaces. The 
inhomogeneous Maxwell equations are true in only classical space.

The inhomogeneous Maxwell equations are:
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T is the electric fi eld in the time direction. If space and time are not 
different things but just two dimensions in space-time, we would 
expect vector fi elds to have components in the time direction; of 
course, the magnetic fi eld vector has a zero time component. We 
put:

 
0
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T T T T
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r
e

   
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     (21.9)

This seems to invite the interpretation that the electric charge den-
sity, , is the electric current in time direction – everything moves 
forward in time. Throwing in some constants gives:
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 (21.10)

Aside: Of course, the quaternions and the anti-quaternions also have 
the SU(2) commutation relations of quantum field theory. Thus, we 
have done as well as Maxwell plus anti-matter plus quantization.

Maxwell’s equations can be written in several different math-
ematical constructions including 4-vector formulation and Clifford 
algebra formulation. 
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CHAPTER 22
4-DIMENSIONAL 
SPACE-TIME AND THE 
LORENTZ GROUP

In the earlier parts of this book, we dealt with the theory of spe-
cial relativity in only 2-dimensional space. This was pedagogically 
convenient, and, since special relativity is essentially a 2-dimensional 
theory, we lost nothing of the theory by so doing. Doing that, we came 
to understand time dilation, mass increase, the unity of momentum 
and energy etc... However, we clearly live in a space that is 4-dimen-
sional. This book is primarily about the nature of empty space and 
time and motion in that empty space. We are driven to the theory of 
special relativity because it describes so much of that nature, but the 
theory of special relativity begins by assuming a priori the existence, 
substantiated by observation, of 4-dimensional space-time. In this 
book, along with other things, we are trying to understand why space 
has the nature that we observe. Why it is 4-dimensional? and why 
are three of those dimensions spatial? and why does it exist? 

We have seen that the fi nite group C2  C2 has within it the 
quaternion division algebras and the A3 division algebras. We have 
seen that the quaternions have within them the Maxwell equations 
of electromagnetism. We have seen that by adding the six A3 spaces 
on to the same axes, we get something that seems to match the 
4-dimensional space-time in which we sit. We note that these spaces 
each contain 4-dimensional rotations. In this chapter, we present 
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the conventionally accepted description of 4-dimensional space-
time known as the Lorentz group, and we see that it does contain 
4-dimensional rotations and that it matches the sum of the A3 spaces.

22.1 THE LORENTZ GROUP

The Lorentz group is a representation of the 4-dimensional space-
time in which we seem to live. It is conventionally based in 4. Many 
texts defi ne the Lorentz group as the set of linear transformations that 
leave the space-time interval s2  c2t2  x2  y2  z2 invariant. Any linear 
transformation that leaves a distance function invariant is a rotation, 
and we might expect that the Lorentz group would be a 4  4 rotation 
matrix, but this is impossible because the form of the quadratic dis-
tance function with signature ( , , ) is not preserved under mul-
tiplication. This tells us that 4-dimensional space-time is not a single 
space. Nor is it possible to consider the Lorentz group to be a set of 
3  3 rotation matrices, for the same reason as above. The Lorentz 
group is therefore based upon the set of 2-dimensional rotations in the 
4-dimensional space-time that we seem to inhabit. We have seen that 
there are only two types of 2-dimensional rotation. In the 4-dimen-
sional space-time we observe, there are six 2-dimensional planes and 
six corresponding 2-dimensional rotations; that is three temporal rota-
tions in the {(t, x), (t, y), (t, z)} planes, and three spatial rotations in the 
{(x, y), (x, z), (y, z)} planes. We believe, and this is verifi ed by observa-
tion, that the physics of the universe is invariant under these rotations. 
Indeed, it is an axiom of fi eld theory that every element of the Lorentz 
group (which we call SO(3, 1)) is a symmetry of the fi eld theory. This 
is worth emboldening.

22.2  PHYSICS IS INVARIANT UNDER ALL 
ROTATIONS IN THE LORENTZ GROUP

The Lorentz group associates each of the six 2-dimensional rota-
tions with a 4  4 matrix, but it does so by throwing lots of zeros 
into what would otherwise be a 2  2 matrix. The Lorentz group 
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is expressed as a set of commutation relations between these six 
matrices. It is a fact that, within the non-commutative 4-dimen-
sional fi nite group spaces, we have to use commutation relations to 
express relations between 2-dimensional rotations in the 2-dimen-
sional sub-spaces of those 4-dimensional fi nite group spaces. In this, 
the 4-dimensional fi nite group spaces are already looking like the 
Lorentz group.

Aside: The finite group C3 holds geometric spaces with 3-dimen-
sional rotations. The finite group C4 holds geometric spaces with 
both 4-dimensional rotations and a 2-dimensional rotation. The 
finite group C5 holds geometric spaces with 5-dimensional rotations, 
etc... Sets of more than one 2-dimensional rotation occur in only the 
C4  C4  … groups and in the n, n, n spaces.

Since the 2-dimensional rotation matrices derive from the expo-
nentiation of a variable, b, which is symmetric in the hyperbolic case 
and anti-symmetric in the Euclidean case, we refer to the two types 
of rotation as symmetric (hyperbolic - space-time) and anti-symmet-
ric (Euclidean space). Since anti-symmetric matrices normally have 
zeros on the leading diagonal, this might be a little confusing. 

 

cosh sinh
Symmetric

sinh cosh

cos sin
Anti-symmetric

sin cos

c c
c c

q q
q q

 
  

 
 

   

 (22.1)

The fi rst type is described by a rotation matrix that is symmetric in 
the variable, , and the second type is described by a rotation matrix 
that is anti-symmetric in the angle, . Note that cos()  cos . 

We have seen that one of the defi ning properties of groups is mul-
tiplicative closure – any two permutation matrices in the same fi nite 
group always multiply together to form a permutation matrix in that 
same fi nite group. The other defi ning properties of groups are:

 i. Associativity: All matrices are associative.

 ii. An identity: The unit matrix (with one’s on the leading 
diagonal and zero’s everywhere else). In the 2-dimensional 
rotation matrices, the identity is when the angle is zero.
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 iii. A complete set of multiplicative inverses: Rotation matrices in 
general have all these properties. 

 

cosh 0 sinh 0 1 0
sinh 0 cosh 0 0 1

cosh sinh cosh sinh cosh( ) sinh( )
sinh cosh sinh cosh sinh( ) cosh( )

c c j j c j c j
c c j j c j c j

   
   

   
      

           

Thus any particular rotation matrix is a particular group, but they 
each have an infi nite number of elements – {, } can take any real 
value. The above rotation matrices are groups with an infi nite num-
ber of elements. Such groups are called Lie groups. Lie groups are 
concerned with 2-dimensional rotations in different types of space. 
Lie groups are expressed as the commutation relations between 
matrices that each represent one of the 2-dimensional rotations. The 
Lorentz group is the Lie group known as SO(3, 1). In the Lorentz 
group, there are three symmetric (space-time) 2-dimensional rota-
tions {(t, x), (t, y), (t, z)} and three anti-symmetric (Euclidean space) 
2-dimensional rotations {(x, y), (x, z), (y, z)}. Thus, the Lorentz 
group is six 2-dimensional groups of infi nite order fi tted together 
somehow to make a 4-dimensional space-time. As such, it has six 
identities and ought to be 12-dimensional, which makes it a bit of 
a “dog’s dinner”group wise, but this is not different from the usual 
three rotation matrices that we associate with 3. We continue.

22.3  THE STANDARD PRESENTATION OF THE 
LORENTZ GROUP, SO(3, 1), IN 4 SPACE

In the above name, the S stands for special, the O stands for 
orthogonal (as opposed to unitary or simplistic) which means that 
the rotations are in n space (as opposed to n or n space), the 
(22.1) stands for three space dimensions and one time dimension. 
Actually, the (22.1) stands for the distance function d2  t2  x2  y2 
 z2, but that is seen as three space dimensions and one time dimen-
sion. Thus, SO(3, 1) is the Lie rotation group of 4 space with dis-
tance function d2  t2  x2  y2  z2.
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Within our 4-dimensional space-time there are three spatial 
rotations (anti-symmetric), which we call rotations, and three tem-
poral rotations (symmetric), which are changes of velocity and which 
we call boosts. It is conventional to take the view that a large rotation 
is an infi nite number of infi nitesimally small rotations, and, based on 
this, we seek the infi nitesimal rotation matrix.

The spatial rotations in space-time are given as 4  4 matri-
ces, we then let the angle, , approach zero. As   0, cos  1 & 
sin  , (we can view this as grabbing the fi rst term of the series 
expansions of the trigonometric functions and ignoring the higher 
powered terms) and so:

       

1 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0 0
0 0 cos sin 0 0 1 0 0 0 0
0 0 sin cos 0 0 0 1 0 0 0

q q q
q q q

     
     
      
      
     
     

 (22.2)

We put the identity to one side, multiply the angle by 1i    (see 
below), and normalize (divide by ) to get:

 1

0 0 0 0
0 0 0 0
0 0 0
0 0 0

J
i

i

 
 
 
 
 
 

 (22.3)

Which we call a generator of a spatial rotation in one spatial plane; 
notice that the matrix is anti-symmetric. If the reader thinks this is 
a little contrived, she is not alone. However, can the reader produce 
a better way of representing the spatial rotation of 4-dimensional 
space-time? 

Starting with:

 

1 0 0 0 1 0 0 0
0 cos 0 sin 0 cos sin 0

    &    
0 0 1 0 0 sin cos 0
0 sin 0 cos 0 0 0 1

q q q q
q q

q q

   
      
   
      

  (22.4)
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Leads to:

 2 3

0 0 0 0 0 0 0 0
0 0 0 0 0 0

         
0 0 0 0 0 0 0
0 0 0 0 0 0 0

i i
J J

i

i

   
       
   
      

 (22.5)

Similarly, but with no i, we get the boosts (changes of velocity - 
temporal rotations):

 

1

2 3

cosh sinh 0 0 0 1 0 0
sinh cosh 0 0 1 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0

,     
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0

K

K K

c c
c c

   
   
    
   
   
   

   
   
    
   
   
   

 (22.6)

The commutation relations between the above six matrices, {Ji, Ki} 
are the Lie algebra of the Lorentz group. The use of i is connected 
to the distance function of space-time being:

 2 2 2 2 2 2 2 2 2distance ( ) ( ) ( )t ix iy iz t x y z         (22.7)

Note that the Ki matrices are the symmetric matrices and the Ji 
matrices are the anti-symmetric matrices.

There are commutation relations between these “rotation gener-
ating” matrices (which are usually called just generators). For exam-
ple:

  1 2 1 2 2 1 3,J J J J J J iJ    (22.8)

The commutation relations are:

      
     

1 2 3 1 3 2 2 3 1

2 1 3 3 1 2 3 2 1

, ,     , ,   ,

, ,   , ,     , ,

J J iJ J J iJ J J iJ

J J iJ J J iJ J J iJ

   

    
 (22.9)

      1 2 3 1 3 2 2 3 1,         ,         ,K K iJ K K iJ K K iJ     (22.10)
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     

     
     

1 1 2 2 3 3

1 2 3 1 3 2 2 3 1

2 1 3 3 1 2 3 2 1

, , , 0

,          ,          ,

,        ,            ,

J K J K J K

J K iK J K iK J K iK

J K iK J K iK J K iK

  

   

    

 (22.11)

Notice the Ji in the second set of these. We have it that the com-
mutator of two Lorentz boosts (temporal rotations in space-time) is 
a spatial rotation. To put it a different way: the commutator of two 
symmetric rotations is an anti-symmetric rotation – we have that in 
the A3 algebras.

Aside: The Thomas precession is precession of spin in a magnetic 
field. In the rest frame, the spin polarization for a point electron 
obeys the equation:

 
d e

S S B
dt mc

 
r r ur

 (22.12)

Above, we have mentioned that the Aharonov-Bohm effect shows 
that the potential of a fi eld is a real physical thing. The equation 
above shows no precession of the electron polarization if the mag-
netic fi eld is zero. In the Aharonov-Bohm experiment, there is no 
magnetic fi eld, and so no precession of the electron polarization, but 
there is a potential, A0, that corresponds to the phase, in the Euclid-
ean complex plane, of the electron. The precession of this phase 
follows the equation:

 0 k k
d

F iq A F
dt

   (22.13)

Where Fk is a Lie group generator.

The anti-commutators, {Ji, Jj}  Ji Jj  Jj Ji play no part in the Lorentz 
group, and nor does the identity.

Another way of looking at the Lorentz group is that:

 i  The commutators of the anti-symmetric matrices are anti-
symmetric matrices.

 ii. The commutators of the symmetric matrices are anti-sym-
metric matrices.

 iii. The commutators of the anti-symmetric matrices and the 
symmetric matrices are symmetric matrices.
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These are exactly the commutation relations that we have within 
the C2  C2 algebras.

The above commutation relations and generators are the Lie 
algebra SO(3, 1).

22.4 SPLITTING THE LORENTZ GROUP

The standard procedure when dealing with the Lorentz group is 
to split the generators into two copies of the SU(2) Lie algebra. This 
is of no great interest to us, but we include it for completeness. We 
form the combinations:

    1 1
       &        

2 2i i i i i iJ J K J J K      (22.19)

And we discover the commutation relations:

     

     
     

     
     

1 2 3 1 3 2 2 3 1

1 2 3 1 3 2 2 3 1

1 2 1 3 2 3

1 1 2 2 3 3

,         ,         ,

,         ,         ,

, , , 0

, , , 0

J J iJ J J iJ J J iJ

J J iJ J J iJ J J iJ

J J J J J J

J J J J J J

        

        

     

     

   

   

  

  

  (22.15)

Which is a mathematician’s way of saying that we have two separate 
SU(2) algebras, the Ji algebra and the Ji algebra. This is written 
as SU(2)  SU(2). SU(2) is the rotation group in the space formed 
from two copies of the complex plane being fi tted together, 2. We 
say that SO(3, 1)  SU(2)  SU(2); the cross does not mean the same 
as it does in fi nite group theory or in the vector cross product but is 
purely notational. 

The astute reader will have recalled that SU(2) is isomorphic to 
the quaternion rotation matrix, and so we have broken the Lorentz 
group of six rotations in space-time into two sets of three rotations 
each of which is isomorphic to quaternion space. What does this 
mean physically? Looking at the above J2 matrix, we see it is not 
quite the same as the j part in the quaternion matrix. The non-zero 
elements occupy the corresponding positions, but they are not all 
the proper values.
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22.5 A GENERAL VIEW

The standard view of space and time before Einstein produced 
the theory of general relativity was that space and time were a back-
ground within which the physics of universe plays out. It has often 
been pictured that space-time is a theater stage and that particles of 
matter and force are theatrical actors upon that stage. The theory 
of general relativity brings with it the idea that space interacts with 
matter and energy – mass-energy curves space (or at least makes it 
non-commutative). However, general relativity still sees space-time 
as very much a separate thing from the physics of the universe, and 
the connection is gravitational only. In earlier chapters, we have 
seen that electromagnetism (the Maxwell equations) is within the 
quaternions and thus within the fi nite group C2  C2. Also in ear-
lier chapters, we might have found the 4-dimensional space-time 
that we observe, as expressed in the Lorentz group, within the fi nite 
group C2  C2. Thus, it seems that electromagnetism and space-
time are just two aspects of the same fi nite group. Thus, in a sense, 
space-time might be an electromagnetic phenomenon like electrons 
or magnetic dipoles. This is a radically different point of view from 
the “space-time is the stage of the theater” point of view, even if we 
allow the stage to bend with the weight of the actors.

Aside: The standard model of particle physics associates each gen-
erator of the unitary Lie groups {U(1), SU(2), SU(3)} with a boson 
(force particle). If we do the almost the same, and we associate each 
non-commutative generator with a boson and each commutative 
generator with a fermion (the other type of particle) and we use the 
algebras of C2, C2  C2, C2  C2  C2, then we get a match with the 
particle content of the universe excepting the Higgs boson. If we 
continue and include the C2, C2  C2  C2 group, we get, subject to 
the above assumption, super-symmetric unification. It might be just 
numerology.

Within the above finite groups, C2, C2  C2, we find almost exact 
copies of the Lie groups {U(1), SU(2)}. Within C2  C2  C2, we find 
an almost exact copy of the Lie group SU(3). C2  C2  C2  C2 con-
tains nothing like the Lie group SU(4). 
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CHAPTER 23
THE EXPANDING 
UNIVERSE AND THE 
COSMIC BACKGROUND 
RADIATION

In 1912, Vesto Melvin Slipher (1875–1969) discovered that the 
spectral lines from “galactic like nebulae” were red-shifted. At this 
time, it was generally thought that these “galactic like nebulae” were 
inside of, and part of, our galaxy, the Milky Way1. Such red-shift 
is an indication that those “galactic like nebulae” are moving rap-
idly away from the Earth. It was 1923 when Edwin Powell Hubble 
(1889–1953) measured the distance from Earth to those “galactic 
like nebulae” using cepheid variable stars and discovered that the 
“galactic like nebulae” were far too distant to be part of the Milky 
Way. Each galactic like nebula therefore had to be an independent 
galaxy outside of the Milky Way. By 1929, Edwin Hubble, together 
with Milton Lassell Humanson (1891–1972), had realized that there 
was a correlation between the distance of each independent galaxy 
from Earth and the amount of red-shift associated with that inde-
pendent galaxy. This correlation is known as Hubble’s law, and it says 

1. There were individuals who thought differently. In the early part of the 1800s 
Herschel has expressed the opinion that the nebulae were outside of the Milky way. 
Similar opinion had been voiced by Kant, Swedenborg, Lambert, and Wright.
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that the more distant a galaxy is from Earth, the faster it is reced-
ing from Earth (with appropriate numbers). The rate of recession 
against distance is independent of the direction in which we observe 
– it is isotropic. Later astronomy with much more capable telescopes 
(the Hubble telescope for example) and different types of telescope 
(radio telescopes etc..) have confi rmed Hubble’s fi ndings, subject 
only to the fact that galaxies come in small gravitationally bound 
groups and it is these groups that are receding from each other. 

We now have the view that there are some 1011 separate groups 
of gravitationally bound galaxies within our observation – each with 
some 1011 stars. With the exception of a few local galaxies that are 
bound to the Milky Way by gravitation, every one of these other gal-
axy groups is receding from us and the more distant a galaxy group 
is from us, the faster it is receding. This understanding is known as 
the expanding universe. 

It seems that special relativity is not enough to explain the physi-
cal universe between galaxy groups. High frequency photons of light 
have more energy than photons with a low frequency. Thus red-
shifted light has less energy when it reaches us than it did have when 
it left its source. We take conservation of (mass)-energy to be an 
inviolable law of physics, but it seems that it does not apply outside 
galaxy groups, or perhaps the energy is being converted into empty 
space. Since the universe seems to be infi nite and the further a gal-
axy group is from us the faster it recedes from us, the very distant 
galaxies will be receding from us at superluminal velocity – faster 
than the speed of light - that’s not allowed by the normal laws of 
physics.

At fi rst thought, it is as if a giant explosion occurred in the distant 
past, like an exploding grenade, and each galaxy is a fragment of the 
matter in that explosion that has been fl ung out into empty space 
with the fastest moving now being the most distant from the point 
of the explosion. If this were so, then, unless the Earth was left at 
the very center of that explosion, space would seem to us to contain 
different numbers of galaxies in different directions. If the universe 
was the aftermath of a conventional type of explosion into already 
existing empty space, then, as we looked back towards the point of 
that explosion, we would see more galaxies, and a higher concentra-
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tion of galaxies, in that direction than we see when we look away 
from that point of the explosion – picture yourself as riding on a 
fragment of an exploding grenade. This does not accord with obser-
vation – the universe is isotropic, and we do not like to think that the 
Earth is at the very center of the universe. 

There are other diffi culties with this conventional explosion sce-
nario. The galaxies that are very distant from us must have been trav-
eling very quickly away from us for a very long time. The processes 
of the universe slow down in rapidly moving galaxies as seen by a 
stationary observer. Thus, it should appear to us, having accounted 
for the time it takes light to travel from distant galaxies to Earth, 
that the stars in these very distant galaxies are much younger than 
the stars in nearby galaxies. Indeed, the very distant galaxies ought 
not to be there because the process of galaxy formation should have 
slowed by time dilation to the extent that the galaxies have not had 
time enough to form. We do not observe this slowing down of the 
processes of the universe in distant galaxies. Time dilation does not 
happen with distant galaxies that are moving very rapidly away from 
Earth – surely this violates the theory of special relativity.

From special relativity, we would expect the mass of the distant 
galaxies moving very rapidly away from Earth to increase. Surely, 
this ought to have consequences that we could detect, but we see no 
such effects.

Because our observations do not accord with what we would 
expect if the expanding universe were the result of a giant explo-
sion into empty space, we do not accept that explanation. This leaves 
us rather stumped. We are compelled to take the view that the 
empty space between galaxies is stretching. The more space, that 
is the more distance between us and a distant object, the more this 
empty space stretches, and the faster the distant object appears to 
be receding from us. The distant galaxies have been likened to dots 
on a balloon that is being infl ated2. Each dot (galaxy) recedes from 
each other dot (galaxy), and the more distant that dots (galaxies) are 
from each other, the faster they recede from each other. The view is 
that empty space is expanding – getting emptier and more extensive! 

2. The expansion of the universe, Arthur Eddington, 1931
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It is a view with which no-one feels comfortable, but no-one can 
think of any other explanation that is acceptable. There is a “tired 
light”3 explanation which supposes that light loses energy as it travels 
through space, by very small amounts, and this explains the red-shift 
observed from distant galaxies, but this has not found acceptance. 
The tired light idea must assume and explain a static universe and 
it proposes no explanation for the cosmic background radiation that 
we will meet shortly. There is also a “shrinking atom” theory which 
proposes that the charge of electrons was less in the past. If the elec-
tron charge had been less, atoms would have been larger and so 
the emitted spectral wavelengths would have been longer. Unfor-
tunately, such a change in electron charge would have affected the 
fi ne structure constant in such a way that there would be no long 
lived luminous stars like the sun. Humankind does not understand 
expanding space – I think that includes everyone of us! 

Perhaps, as Ernst Mach might have preferred, each gravita-
tionally bound group of galaxies has its own local zero rate of rota-
tion against which the rotation of a planet within the group could 
be measured and, similarly, its own local zero acceleration against 
which acceleration could be measured. Perhaps, if these spatial 
notions are determined within the local galaxy group, then all spatial 
concepts are determined only within the local galaxy group. As such, 
the recession of distant galaxies from each other would be meaning-
less. Thus, special relativity applies within each galaxy group but not 
to the space between each galaxy group. 

If empty space is expanding (stretching), then, at some time 
in the past, all the empty space between galaxies would have been 
“unexpanded”. It seems that, at some time in the past, all empty 
space would be of zero extent and there would be no space between 
galaxies. Following special relativity, we include time as part of space 
and take the view that space-time is expanding and that it started 
from zero extent. Observations lead us to put the zero extent of time 
to be at 13.8 billion years ago. However, there is no projection on to 
the time axis by the cosh( ) function that is less than unity. 

With disregard to the cosh( ) function, the current view is that 
the universe began with a huge explosion of space and time, called 

3. The tired light idea was proposed by Fritz Zwicky in 1929.
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the big bang, 13.8 billion years ago, and that the matter in that explo-
sion did not shoot out into empty space because there was no empty 
space then. It was at the big bang that space-time started and mat-
ter, riding on expanding space-time, was scattered throughout the 
universe. It seems that it is space and time that exploded and not 
matter. The reader can perhaps see why people who do not under-
stand science think cosmology is no more than a different religion. 
It gets worse; in order to explain all the observations, we invent a 
thing called infl ation. The idea of infl ation is that, at the very start 
of the universe, space expanded extremely rapidly, indeed, much 
faster than the speed of light. It does explain the observation that 
the universe is very fl at and uniform at all scales, but the proposed 
mechanism to drive this infl ation (a scalar fi eld with negative pres-
sure resulting from a “super-cooled” phase transition) is unobserv-
able and thus this mechanism is no more than an idea. The infl ation 
scenario works only if a particular parameter of the theory is very 
fi nely tuned4. 

We have no understanding of stretching space-time, and we 
have even less understanding of infl ating space-time, and we do not 
know what matter really is either; but we do know why pubs exist; 
they exist for cosmologists to drown their sorrows.

The mystery deepens. It used to be thought that the gravita-
tional attraction between galaxies would slow the expansion of the 
universe. If the universe were like a grenade exploding into already 
existing empty space-time, then gravity would slow the expansion 
of the universe. It used to be thought that, eventually, 160 billion 
years from now, the universe would stop expanding and might start, 
under gravitational infl uence, to contract. Recent observations seem 
to indicate that the rate of spatial expansion is not slowing but is 
accelerating; very distant galaxy groups are receding from us faster 
than they ought to be. That ought to be spatial and temporal expan-
sion acceleration did it not? but the observations show only spatial 
acceleration. It is as if some anti-gravity like force is accelerating 
distant galaxies away from Earth5.

4. Roger Penrose has pointed out that a flat universe with no inflation is 10100 times 
more likely than a flat one with inflation.
5. Perhaps everyone just wants to get away from people who do not understand 
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We observe that the universe is spatially homogeneous. Since we 
live in space-time, we would expect the universe to be temporarily 
homogeneous, the same now as it was ten billion years ago. Obser-
vations of quasar counts and other empirical evidence indicate that 
the universe is evolving in time and is not temporally homogeneous. 
Of course, if it were that the universe was always 13.8 billion years 
old (including 50 billion years ago), with all the evidence to show 
this, then we would have temporal homogeneity, but that is not a 
commonly held view. It seems, the universe is not temporally homo-
geneous in an historical sense. We do, however, believe that the laws 
of physics, including the values of the physical constants, are the 
same now as they were in the past and will be in the future; time is 
homogeneous in that sense.

We conclude this section of the book with a little speculation. 
Let us consider the displacement vector of the hyperbolic complex 
numbers; these are the numbers that correspond to space-time. Dis-
placement corresponds to age and to spatial extent. If we draw a dia-
gram of these numbers on a sheet of (Euclidean) paper, they appear 
as existing only between the +45 line and the 45 line with age on 
the horizontal axis.

empty space. In “The Expanding Universe” (1933), Eddington wrote, “ The una-
nimity with which the galaxies are running away looks almost as though they had a 
pointed aversion to us.”
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As we move positively along the age axis, we notice that the vertical 
distance from the +45 line to the 45 line increases. Is this the 
expansion of space with increasing age? Now, return to the veloc-
ity vector (space and time on the axes); the asymptotes are limit-
ing lines that are approached by the ratio of the cosh( ) function to 
the sinh( ) function. Because the cosh( ) function is unity when the 
sinh( ) function is zero, the asymptotes are not the limiting velocity 
except at large values of the space-time angle. Suppose that limiting 
velocity is a hyperbola passing through unity on the horizontal axis. 
This means that the velocity of light was infi nite at the start of the 
universe. Does this do away with the need for infl ation at the start 
of the universe? As the hyperbola approaches the asymptotes, its 
slope, which is the velocity of light, varies from infi nite to the limit-
ing velocity of one. At some time in the past, the velocity of light 
was greater than one, and we would expect to see this in the form of 
distant galaxies accelerating in their recession from us, which we do.

23.1 THE COSMIC BACKGROUND RADIATION

In 1964, Arno Penzias (1933– ) and Robert Woodrow Wilson 
(1936– ), while working on ultra-sensitive micro-wave receivers for 
Bell labs, discovered a background radiation that came from all over 
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the universe6. It is today called the cosmic background radiation 
(CBR). It had been predicted to exist by Alpher and Herman in 1948 
based on Gamow’s theory of element production in the big bang. 
The CBR was interpreted by Robert Dicke as the expansive remnant 
of a 3000K soup of protons and electrons in the big bang7. When 
the temperature dropped below 3000K, the electrons and protons 
could combine to form atoms and the universe became transparent 
to radiation. The cosmic background radiation, CBR, accords with 
a background temperature of the universe today of approximately 
2.725K. The CBR has a typical wavelength of one millimeter and is 
about 400 photons per cubic centimeter. 

The CBR is almost perfectly isotropic in its distribution across 
the whole of space, but there is a small dipole anisotropy corre-
sponding to a temperature difference of 5  103 K from one side of 
the universe to the opposite side8. Measured against the CBR, the 
dipole anisotropy corresponds to the Earth moving through space 
at 62722 kilometers per second towards the constellation of Leo. 

The CBR provides a reference frame for the whole universe. 
Special relativity says there is no absolute reference frame. So the 
CBR cannot be an absolute reference frame. The whole of physics 
works just the same when measured against reference frames other 
than that of the CBR. However, since the CBR is everywhere, the 
CBR is a universal reference frame against which the velocity of all 
things can be measured. As such, it provides a universal simultaneity 
and a universal time. It is measured against the CBR universal time 
that we say the universe has an age of 13.8 billion years. Every galaxy 
group sets its clock by the CBR, and so every galaxy group is the 
same age as all other galaxy groups. Of course, every galaxy group 
thinks that it is stationary and that it travels through only time at the 
speed of light. 

Imagine identical twins, Alice and Zara, who were separated at 
the birth of the universe and who have been moving relative to each 
other ever since. The fi rst twin, Alice, might be 13.8 billion years old 

6. Astrophysical Journal Vol. 142 pg. 419.
7. Astrophysical Journal Vol. 142.
8. This anisotropy was discovered by the Cosmic Background Explorer satellite, 
COBE, launched in 1988.
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and think that, since she was born at the same time as the universe, 
the universe is 13.8 billion years old, but she will think her twin sis-
ter, Zara, to be only 2 billion years old. Since Zara has lived since the 
birth of the universe and is only two billion years old, the universe 
must be only two billion years old by Alice’s reckoning. The same 
is true in reverse for Zara who will think herself to be 13.8 billion 
years old. Thus, each twin gives two different ages to the universe. 
It is only when they use the same reference frame, which the CBR 
provides, that the twins have only one age for the universe. 

From the point of view of the stationary observer, light does not 
travel through time (it travels through only space), and so the sta-
tionary observer is of the opinion that light thinks the universe is still 
zero years old. However, from the point of view of a photon of light, 
light does travel through time (it is stationary in its own reference 
frame), and so light thinks the universe is 13.8 billion years old years 
old. 

The CBR does not give us an absolute simultaneity or an absolute 
time (there is no absolute age to the universe, but there is a universal 
one). The universal time fi ts with the observation that the relative 
abundance of U235 to U238 indicates that stars have been burning for 
1.5  1010 years. Since stars convert hydrogen into helium, we can 
also measure the relative abundance of hydrogen to helium and use 
this as a universal clock. This too corresponds to the universal time 
given by the CBR. Without this universal clock, stars would evolve at 
different rates in differently moving parts of the universe and space 
would not be homogeneous. We need a universal clock to keep the 
universe spatially homogeneous.

Thus, we see, that on a cosmological scale, we can largely ignore 
special relativity and work with the universal CBR reference frame. 

Special relativity has nothing to say about “stretched” space-
time, or “infl ated” space-time, other than to remind us that we 
understand very little about these things. We note that our attempt 
to derive the fi nite group equivalent of the Lorentz group in the 
previous chapter also said nothing about “stretched” space-time, or 
“infl ated” space-time.
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CHAPTER 24
CONCLUDING 
REMARKS

I hope this book has given the reader a comprehensive under-
standing of the theory of special relativity. That is certainly one of 
the author’s intentions. 

Another of your author’s intentions is to open up the nature of 
empty space for examination, and I hope that this book might have 
at least made a start in that endeavor. 

I hope also that this book has given the reader an understanding 
of the geometric spaces inside the fi nite groups. This is an area of 
mathematics and physics that is still in its infancy. There are con-
nections to particle physics within the fi nite group spaces that we 
have hardly touched upon and of which we know only very little at 
present. There is much to do and much promise of reward in this 
area. Perhaps the reader will go on to study in this fi eld and contrib-
ute to the maturation of this area of human knowledge. Even if the 
reader does not so do, I hope that the discussion of the fi nite group 
spaces has enlightened the reader’s understanding of the nature of 
space and time and convinced the reader that they need not accept 
the conventional view that space is no more than copies of the real 
numbers, , fi tted together in some way.

We have tried to build our universe from no more than the C2 
fi nite group and its cross products. We might refer to our universe 
as the C2 universe or the electromagnetic universe. We have hardly 
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touched upon the C3 fi nite group and not at all upon its cross prod-
ucts. If we can build a universe from C2, then we ought to be able 
to build a universe from C3. Almost nothing is known in this area. 
There are infi nitely many other fi nite groups. Some of them are very 
different from the cyclic groups. Nothing at all is known about the 
geometric spaces in the lowest even order fi nite simple group A5, 
but they is likely to be very different from the cyclic group spaces. 
Presumably, none of these other universes are detectable to we C2 
beings, or perhaps the C2 sub-spaces of some of these will be detect-
able to us.

The usual modern view of the nature of scientifi c theories is 
that they are collections of observed facts that have been overlain 
by a systematizing understanding and that they approximate real-
ity. The systematizing understanding derives from and is the inven-
tion of the human mind. Such a theory is a, severely constrained by 
observation, human-made amalgam of concepts and observational 
prejudices. The way we have tried in this book to build the theory 
of special relativity and electromagnetism from nothing more than 
numbers is a very different type of scientifi c theory. We develop our 
theory from no more than the observed existence of real numbers 
and fi nite groups; we then compare the result to reality. If the result 
fi ts our observations of reality, then our theory is more than just a 
systematizing understanding of observations – it is numbers. Num-
bers do not derive from the human mind. Nor have we relied upon 
mathematical axioms as statements of declared absolute truth. The 
nature of numbers that is captured in the axioms of algebraic fi elds 
is seen by this book as being the observable properties of numbers, 
like multiplicative closure or absence of zero-divisors. 

We are not that different from Einstein. The theory of special 
relativity had its historical origins very much in mathematics rather 
than in observation, and this is even more true of the theory of gen-
eral relativity, and perhaps even more true again of string theory. 

We have come a long way from no more than real numbers and 
the fi nite groups. Considering that empty space is no more than 
nothing, we have derived a great deal from that nothing.
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It is now time to return to the fi rst page of this book and read it 
again. You are likely to gain a great deal more from this re-read than 
you gained from the fi rst read.
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