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This book on linear programming and game theory has been jointly written by 
Dr. A. J. Meitei and Dr. Veena Jain with an aim to meet the needs of the stu-
dents of mathematics, commerce, economics, management studies, and other 
allied disciplines or courses. The explanation and presentation of every topic 
in the book have been made as simple and user-friendly as possible. Complex 
mathematics involved in various theorems and procedures has been avoided, 
and all explanations are given in simplified and systematic forms so that even 
non-mathematical students or those who know only basic mathematics can 
easily and conveniently read the book. The main emphasis is on the solution 
of various types of linear programming problems by using different kinds of 
software. Use of software in solving mathematical problems has been an inte-
gral part of syllabi these days. Keeping this in mind, the solution of problems 
using the MS-Excel Solver add-in and the external Jenson add-in have been 
discussed in all chapters of this book. We explain step by step the procedure 
of how the add-ins can be used to solve linear programming problems. In ad-
dition to MS-Excel, solutions of LPPs by Mathematica, MATLAB, WinQSB, 
and LINDO have also been explained in the Appendix. 

Exercises are given at the end of each chapter so that students can practice a 
variety of problems. In order to make it easy for students to follow along, all 
of the materials related to various topics are arranged in a systematic way. All 
the definitions, theorems, and procedures for solving problems and all cases 
related to the various topics are discussed clearly in simple language. 

PREFACE
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The book is divided into nine chapters. At the beginning, Chapter 1 discusses 
the basic concepts of algebra that include vectors, matrices, operations on 
matrices and other related methods like the Gauss-Jordan method, solutions 
of simultaneous linear equations, convex sets, and so forth. The use of MS-
Excel in algebraic computations is also explained with relevant examples. All 
of these concepts are used in developing and understanding the solution pro-
cedure for solving a Linear Programming Problem (LPP), so it was essential 
to incorporate them in the book as a separate chapter. Chapter 2 explains each 
definition along with the formulation and graphical method for the solution 
of a linear programming problem. Some important definitions and theorems 
related to the solution of linear programming problems have also been incor-
porated. Also, the use of MS-Excel for plotting graphs and finding the solu-
tion of an LPP is thoroughly explained with examples. Chapter 3 focuses on 
solving linear programming problems by the simplex method with the help 
of its canonical form in a slightly different manner, which has been explained 
by very few authors. In Chapter 4, the M-Charnes and two Phase-methods are 
included, in which the manual solution procedure and the solution by using 
Excel the Solver and the Jensen add-in have also been discussed in detail. 
In addition, a detailed discussion of various special LPP using both Excel 
Solver and simplex tables is included in the chapter. The concept of duality 
with its related theorems and importance is the main topic explained in detail 
in Chapter 5. In Chapter 6, a sensitivity analysis is carried out in a linear pro-
gramming problem by considering all possible changes in the parameters and 
structure of the LPP. Chapters 7 and 8 are on transportation, transshipment, 
and assignment problems. In these chapters the definition and procedure for 
solving these types of problems are discussed at length. Chapter 9 is on game 
theory, where the solution of game problems using different techniques is 
explained and the use of Gambit Software for finding solutions is discussed 
as well. Suggestions for further enhancement are welcome.

Dr. A. J. Meitei

Dr. Veena Jain



C H A P T E R1
BASICS OF LINEAR ALGEBRA 
USING MS-EXCEL

1.1. Vectors

An arrangement of elements either in a row or in a column is called a vector 
and is usually denoted by lowercase bold letters like a, b, c, and so on.

a = (a
1
, a

2
, a

3
) is a row vector of three elements, and a

i
, where i = 1, 2, 3, 

is said to be the ith element of a. Similarly, a =








5

3
 is a column vector with 

two elements.

Geometrically, any vector a = (a
1
, a

2
) can be considered as a point in a 

2-dimensional space. In general a vector a = (a
1
, a

2
, a

3
, …, a

n
) can be consid-

ered as a point in an n-dimensional space.

Equality of two vectors: Two n-component vectors a = (a
1
, a

2
, a

3
, …, a

n
) 

and b = (b
1
, b

2
, b

3
, …, b

n
) are said to be equal if a

i
 = b

i
 for all i = 1, 2, 3, ..., n. 

It should also be noted that if a = b then b = a.

Addition of vectors: Let a
1
 = (2, 4, 6, 9) and a

2
 = (1, 4, 5, 2) be any 

two vectors from a 4-dimensional real space. Then the addition of a
1
 and a

2
,  

denoted by a
1
 + a

2
, is given as follows:

a
1
 + a

2
 = (2 + 1, 4 + 4, 6 + 5, 9 + 2) = (3, 8, 11, 11). To solve this using 

Excel, we can use the command for matrix addition. This operation shown in 
the screenshot will be explained later in matrix addition.

Dot or Inner Product of Vectors: The inner or dot product of two vec-
tors will be defined only if the vectors have the same number of components. 
Let a

1
 and a

2
 be any two real vectors from an n-dimensional real space. Then 

the inner or dot product of a
1
 and a

2
 is given by,
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a a
1 2
⋅ =

=

∑a a
i

i

n

i1

1

2

Let a
1
 = (2 4 6) and a

2
 = (1 4 5), and then a

1
 · a

2
 = 2 × 1 + 4 × 4 + 6 × 5 

= 48. It is also to be noted that the inner product of any two vectors is always 
a scalar.

Fig. 1.1

Fig. 1.2
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In Excel the SUMPRODUCT function can be used to find the dot prod-
uct of any two vectors of the same dimension.

Zero Vector: A vector whose elements are all zero is called a zero vector, 
and it is usually denoted by 0. This vector is also referred to as the origin. In 
the XY plane, (0 0) is a zero vector with two components.

Unit Vector: A vector denoted by e
i
 whose ith component is 1 and all the 

remaining components are zero is called the ith unit vector. For a 3-dimen-
sional space there are three unit vectors, namely e

1
 = (1, 0, 0), e

2
 = (0, 1, 0), 

and e
3
 = (0, 0, 1).

Sum Vector: A vector whose elements are all 1 is called a sum vector and 
is denoted by 1; that is, 1 = (1, 1, …, 1).

Euclidean Space: This space, sometimes called Cartesian space or sim-
ply n space, is the space of all n-tuples of real numbers (x

1
, x

2
, ... x

n
) and is 

generally denoted by Rn or En.

Matrix: A rectangular arrangement of numbers into rows and columns 
is called a matrix and is always enclosed in either brackets [] or parentheses 
(). If the matrix has m rows and n columns, it is called an m × n matrix (read 
as “m” by “n”). m × n is called the dimension of the matrix. It is usually de-
noted by capital boldface letters, such as A, B, C, and so forth. A matrix has 
no numerical value, and the numbers in the matrix are called elements of the 
matrix. A double subscript is used to denote the location of the element in 
the matrix, where the first subscript indicates the row number and the second 
subscript indicates the column number. For example:

A
a a

a a
=










11 12

21 22

 is a 2 × 2 matrix or 2 by 2 matrix, and a
ij
 is the element 

in the ith row and jth column of the given matrix where i =1, 2 and j =1, 2.

Square Matrix: A matrix whose number of rows are equal to the num-

ber of columns is called a square matrix. For example, C =
2 8

9 5









  is a 2 × 2 

square matrix.

Zero Matrix: If each element in a matrix is zero, then the matrix is said 

to be a zero or null matrix; C  =
0

0

0

0

0

0









  is a 2 × 3 zero matrix. A null matrix 

need not be a square matrix.

Identity Matrix: A square matrix denoted by I, in which all diagonal 
elements are one and the other elements are zero, is called an identity matrix. 
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An m × m identity matrix is denoted by I
m
. It should also be noted that the 

multiplication of an identity matrix with any other matrix is the matrix itself, 
that is, AI

m
 = I

m
 A = A, where A is any m × m matrix.

Determinant: It is a number which is associated with every square ma-
trix. The determinant of the nth order matrix A denoted by |A| is computed as 
follows:

A a a a
i j nr

= ±( )∑ 1 2
..

where the sum is taken over all permutations of the second subscript.  
A plus sign is assigned to even permutations and a minus sign to odd permu-
tations.

Consider a third-order matrix A a

a a a

a a a

a a a

i j
= =

















11 12 13

21 22 23

31 32 33

Then |A| = a
11

a
22

a
33

 – a
12

a
21

a
33

 + a
12

a
23

a
31

 – a
13

a
22

a
31

 + a
13

a
21

a
32

 – a
11

a
23

a
32

In Excel, we can use the MDETERM function to find the determinant of 
any square matrix as follows:

Fig. 1.3

Singular Matrix: A square matrix B is said to be a singular matrix if its 
determinant is zero; otherwise, it is non-singular. For example:

A =



















2 4 2 6

3 4 9 7

2 8 1 0

4 1 5 8

 is a non-singular matrix, as |A| = 668 ≠ 0.
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B =
2 4

5 10









 is a singular matrix, as |B| = 0.

Triangular Matrix: Any square matrix is said to be an upper triangular 
matrix if all the entries below the main diagonal are zeros. Similarly, any 
square matrix is called a lower triangular matrix if entries above the main 
diagonal of the matrix are zeros.

For example, B =

2 4 8

0 4 7

0 0 5

















 is an upper triangular matrix, and C =
2 0 0

1 4 0

0 1 5
















 

is a lower triangular matrix.

Multiplication of a Matrix by a Scalar: Let A be an m × n matrix and k 

be any scalar. Then B = kA is an m × n matrix whose every element is k times 
the corresponding element of A.

Let A =

2 4 2 6

3 4 9 7

2 8 1 0

4 1 5 8



















 and k = 4. Then B = A =k

8 16 8 24

12 16 36 28

8 32 4 0

16 4 20 32



















To perform this calculation in Excel, select the output space for B, then 
multiply the matrix A by k as follows, and finally press Ctrl, Shift, and Enter 

simultaneously.

Fig. 1.4
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Addition of Matrices: The addition of two matrices is defined only if 
they are of the same dimension. The previous matrices A and B are of the 
same dimension, 4 × 4, and their addition C = A + B is another matrix of same 
dimension whose elements are the sum of the corresponding elements of the 
matrices A and B.

C =

10 20 10 30

15 20 45 35

10 40 5 0

20 5 25 40



















Fig. 1.5

The previous figure is the screenshot of the same calculation in Excel. Se-
lect the dimension of C and then press Ctrl, Shift, and Enter simultaneously, 
and we will have the required value of C.

Transpose of a Matrix: It is obtained by interchanging the rows and col-
umns of the matrix; for example, the transpose of an m × n matrix C is a new 
matrix of dimension n × m whose rows are the columns of C and vice versa, 
generally denoted by C′ or CT.

Let  C =

10 20 10 30

15 20 45 35

10 40 5 0
















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Then  C' =



















10 15 10

20 20 40

10 45 5

30 35 0

In Excel, we can use the TRANSPOSE function to find the transpose of 
a given matrix.

Fig. 1.6

Matrix Multiplication: The multiplication of any two matrices is de-
fined only if the number of columns of the first matrix is equal to the number 
of rows of the second matrix. Let A be an m × n and B be an n × p matrix. 
Then their product is another matrix C (= AB) of order m × p with:

c a bij ikk

n

kj=
=∑ 1

 for i = 1, 2, 3, …, m and j = 1, 2, 3, …, p

Example: A
2 4 5

3 2 3
=








  and B

1 2

3 5

6 9

=

















Then

C AB= =

























=

2 4 5

3 2 3

1 2

3 5

6 9

2*1+ 4*3 + 5*6 2*2 + 4*5 + 5*9

3*11+ 2*3 + 3*6 3*2 + 2*5 + 3*9

44 69

27 43











=









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In Excel the MMULT function can be used for matrix multiplication.

Step 1. Select the dimension of the matrix C in the output space.

Step 2. Type the command MMULT.

Step 3. Select the two matrices as shown in the following figure.

Step 4. Finally, press Ctrl, Shift, and Enter simultaneously.

Fig. 1.7

Remark: For doing any matrix operation in Excel, one should always 

press Ctrl, Shift, and Enter simultaneously after the necessary inputs.

Vector Space: A vector space is a space consisting of a collection of vec-
tors which are closed under the operation of addition and multiplication by a 
scalar; that is, if vectors a, b are in a collection, then a + b and ka will also be 
in the collection, where k is a scalar quantity.

Rank: The rank of any matrix A, written as r (A), is the maximum num-
ber of linearly independent columns in A, or it is the order of the largest 
non-vanishing minor (determinant of the square submatrix) in A. The rank 
of a matrix is always unique, since the row rank is always equal to the col-
umn rank; that is, the maximum number of linearly independent columns in a  
matrix is always equal to the maximum number of linearly independent rows.

For example, A =

1 1 1

1 1 1

1 1 1

















 has rank 1 since |A| = 0 and every minor of 

order 2 also vanishes.

Note: The rank of a matrix A will be equal to the dimension of the largest 

square sub-matrix of A which is non-singular.

Example 1.1. Show that the rank of 

0 0 0

0 0 0

0 0 0

















 is zero.
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Solution: We cannot identify any sub-matrix of the given matrix which is 
non-singular, and hence the rank of the matrix is zero.

Example 1.2. Show that the rank of 

2 5 6

1 8 3

1 3 1

















 is 3.

Solution: The determinant of the largest sub-matrix of the given matrix, 
which is different from zero, is the matrix itself. Hence the rank of the given 
matrix is 3.

Fig. 1.8

Example 1.3. Show that the rank of 

2 5 6

1 8 3

2 16 6

















 is 2.

Solution: The determinant of the largest order sub-matrix of the given 
matrix, which is different from zero, is of dimension 2 × 2. Hence the rank of 
the given matrix is 2.

Matrix Inverse: An n × n square matrix B is said to be the inverse of an-
other n × n non-singular square matrix A if BA = I, where I is the identity ma-
trix of the same dimension. The inverse of matrix A is usually denoted by A–1.

In Excel we can use the MINVERSE function to find the inverse of any 
square matrix.

Fig. 1.9
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Example 1.4. Use the MINVERSE function	 to	find	 the	 inverse	of	 the	
following matrix:

A =

2 5 6

1 8 3

1 3 1

















Solution: The following is the screenshot of the Excel calculation of the 
inverse of matrix A.

1.2. Linear Independence and Dependence of Vectors

Linear combination of vectors: Let a
1
, a

2
, a

3
, …, a

k
 be a set of k vectors 

from Rn and λ
1
, λ

2
, λ

3
, …, λ

k
 be any k scalars, and then the vector

c = λ
1
a

1
 + λ

2
a

2
 + λ

3
a

3
 + ... + λ

k
a

k

is known as a linear combination of vectors a
1,
 a

2,
 a

3, …, 
a

k
.

Linearly dependent vectors: A set of vectors a
1,
 a

2,
 a

3, …,
 a

k
 from Rn is 

said to be linearly dependent if there exist scalars λ
1
, λ,

2
, λ

3
, ..., λ

k
 that are not 

all zero, such that

λ
1
a

1
 + λ

2
a

2
 + λ

3
a

3
 + ... + λ

k
a

k 
= 0

And if the previous equation holds only when all λ
i
 (i = 1, 2, 3, …, k) are 

zero, then the vectors are said to be linearly independent.

Note: To	check	the	linear	independence	of	vectors,	we	can	write	the	lin-

ear	combination	of	the	given	vectors	as	a	system	of	linear	equations	of	the	
form	λA	=	0	and	solve	for	λ.	If	the	solution	contains	at	least	one	λi	≠	0,	then	
the	set	of	vectors	is	linearly	dependent;	otherwise,	it	is	linearly	independent.

Example 1.5. The	vectors	a
1
 = (2, 6) and a

2
 = (4,12) are linearly depen-

dent	vectors,	as	we	can	find	λ
1
=	2	and	λ

2
 = –1, for which λ

1
a

1
 + λ

2
a

2
 = 0.

Example 1.6. The	vectors	e
1
 = (1,0,0), e

2
 = (0,1,0), and e

3
 = (0,0,1) are 

linearly	independent.	We	have,
λ λ λ

λ λ λ

λ

1 2 3

1 3

1

1,0,0 0,1,0 0 0 1 0,0,0

e e e 0
1 2 3
+ + =

⇒ ( )+ ( )+ = ( )
⇒

2
( ), ,

,λλ λ

λ λ λ

2 3

1 2 3

0,0,0

0, and 0

,( ) = ( )
⇒ = = =0

Hence,	the	set	of	unit	vectors	is	always	linearly	independent.
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Notes:

(i)   A null	vector	is	not	linearly	independent	of	any	other	vector	or	set	of	
vectors.

(ii) 	If	a	set	of	vectors	is	linearly	independent,	then	any	subset	of	these	vec-
tors is also linearly independent.

(iii)  If	any	set	of	vectors	is	linearly	dependent,	then	any	larger	set	of	vectors	
containing	these	vectors	is	also	linearly	dependent.

(iv)	 Any	vector	x is	said	to	be	linearly	dependent	on	a	set	of	vectors	x
1
, x

2
,..., 

x
k
 if x can	be	written	as	a	linear	combination	of	the	set	of	vectors.

(v)	 	If	x
1
, x

2
,... , x

k
 is	a	given	set	of	vectors	from	Rn and there exists at least 

one subset of r < k	vectors	which	are	linearly	independent	but	no	subset	
containing (r + 1) vectors	is	linearly	independent,	then	r	is	the	maximum	
number	of	linearly	independent	vectors	in	the	given	set.	Given	this	subset	
of	r	linearly	independent	vectors	in	the	set,	any	other	vector	in	the	set	
can	be	written	as	a	linear	combination	of	these	r	vectors.

(vi)	 A	set	of	vectors	b
1
, b

2
 …, b

k
 from Rn	where	k	≥	2 is linearly independent if 

and	only	if	one	of	these	vectors	can	be	written	as	a	linear	combination	of	
the others.

Spanning Set: A set of vectors a
1
, a

2
, …, a

k
 (k	≥	2) from Rn is said to span 

or generate Rn if every vector in Rn can be written as a linear combination 
of the given set of vectors. The vectors in the spanning set must be linearly 
independent.

Basis: A basis for Rn is a subset of linearly independent vectors from Rn 

which spans the entire space.

Notes:

(i)  There	exist	an	infinite	number	of	bases	in	Rn.

(ii)  A	set	of	unit	vectors	will	always	form	a	basis,	since	it	is	linearly	indepen-

dent	and	any	vector	in	the	space	can	be	written	as	a	linear	combination	
of	unit	vectors.

(iii) The	basis	formed	by	the	set	of	unit	vectors	is	called	a	standard	basis.

Theorem 1.1. The set of unit vectors forms a basis.
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Proof. Let ei (i = 1, 2, 3, …, n) denote the set of n unit vectors from Rn. 
Then we will have to show that e

i
′s is linearly independent and any vector of 

Rn should be able to be expressed as a linear combination of these unit vectors.

Let λ
i
′s be n scalars, and then we have

λ
i

i

n

e
i

=
∑ =

1

0

⇒ λ
1
(1,0, …, 0) + λ

2
(0,1, ..., 0) + ... + λ

n
(0,0, ..., 1) = (0,0, ... 0) 

⇒ (λ
1
,λ

2
, ..., λ

n
,) = (0,0, ... 0)

This implies e
i
 (i = 1,2,3, …, n) is linearly independent.

Let x = (x
1
, x

2
, …, x

n
) be any other vector of Rn different from e

i
′s. Then 

we can express the vector x as a linear combination of the n unit vectors as 
follows:

x = (x
1
, x

2
, …, x

n
) = x

1
e

1
 + x

2
e

2
 + … + x

n
e

n

Since x is any vector from Rn different from e
i
(i = 1,2,3, …, n), every 

vector of Rn can be expressed as a linear combination of these unit vectors. 
Hence, the set of unit vectors always forms a basis for the given space.

1.3. Solution to a System of Simultaneous Linear Equations

Consider a system of m simultaneous linear equations in n unknowns of 
the form

 a x a x a x b

a x a x a x b

a x a x

n n

m m

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

+ + =

+ + =

+ + +

…

…

⋮ ⋮

…

n n

aa x b
mn n m

=

 

...(1.1)

In the set of equations (1.1), x
1
, x

2
, …, x

n
 are the unknown decision vari-

ables, and a
ij
′	s	and b

i
′s	are constants where i = 1,2, ... m, and j = 1,2 ... n.

A solution to (1.1) is the set of values of the unknown variables x
j
′s,  

j = 1……n which satisfies all the m equations of (1.1).

For understanding linear programming we need to understand the proper-
ties of solutions to the linear system of equations. Keeping this in mind, we 
will devote some effort to studying such systems. The matrix representation 
of the set of equations (1.1) can be written as,
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Where  

Ax b

A =

=

a a a

a a a

a a a

n

n

m m mn m n

11 12 1

21 22 2

1 2

⋯

⋯

⋮ ⋮

⋯

⋮























×

,, x = b =

x

x

x

b

b

b
n n m m

1

2

1

1

2

1

⋮ ⋮





































× ×

&

The system of simultaneous linear equations may have either no solution 
or at least one solution. To determine the conditions under which the system 
has at least one solution, form an augmented matrix A|b = (A,b) of the order 
m × (n + 1) containing the whole matrix A and the vector b. We always have 
r(A|b) ≥ r(A) since every minor of A also appears in A|b. Now

(i)   If r (A|b) > r (A), then no solution exists to the given system of linear 
equations.

(ii) If r (A|b) = r (A), then there exists at least one solution.

 If the system of equations has at least one solution, then the given set of 
equations is called consistent; otherwise, it is said to be inconsistent. Further:

(i)  If m = n and r (A|b) = r (A) = m, then there exists a unique solution to (1.1).

(ii)  If m < n and r (A|b) = r (A) = k < m, then m − k of the equations are re-
dundant. Any solution which satisfies k equations will also satisfy m − k 

of the equations.

(iii)  If m < n and r (A|b) = r (A) = m, then there exist an infinite number of 
solutions to the given system.

Basic Solution: Given a system of m simultaneous linear equations in n 

unknowns (m < n),

A
m × m

x
n × 1

 = b
m × 1

, (m < n)

Let B
m × m

 be any m × m non-singular sub-matrix of A
m × n

. Then, the solution 
obtained by setting the (n − m) variables not associated with the columns of B

m × m
 

equal to zero is called a basic solution to the given system of equations.

Let the set of m variables associated with the columns of B
m × m

 be denoted 
by x

B
 and the remaining (n − m) variables by x

N
B (= 0), and then

B x b x B b
m m B m B m m m× × ×

−

×
= ⇒ =1 1

1

is the basic solution for the given system of equations.
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Notes:

(i)   If x
B
 ≥ 0, then the basic solution is called a basic feasible solution. If one 

or more variables in the basic feasible solution have a zero value, then 
it is called a degenerate basic feasible solution. Otherwise, it is called a 
non-degenerate basic feasible solution.

(ii)  The maximum number of basic solutions in m linear equations “in which 

n is unknown”? (where m < n) is 
n

m n
mC









 . To get all these basic solutions, 

every set of m columns must be linearly independent.

Example 1.7. Find all the possible basic solutions of the following simul-

taneous linear equations:

2x
1
 + 4x

2
 + x

3
 = 21

x
1
 + 2x

2
 + 5x

3
 = 16

Solution: The matrix representation of the given system of equations is

2 4 1

1 2 5

21

16

1

2

3


























=










x

x

x

Here the rank of the coefficient matrix A is 2. The following are our 2 × 2 
non-singular sub-matrices from the coefficient matrix.

2 1

1 5











 and 4 1

2 5









 .

The sub-matrix 
2 4

1 2









  will not be considered, as it is a singular matrix.

When B =
2 1

1 5









 , we have

2 1

1 5

21

16

0 56 0 11

0 11 0

1

3

1

3


















 =











⇒








 =

−

−

x

x

x

x

. .

. ..22

21

16




















   (B–1 is obtained using MINVERSE in Excel)

 
⇒









 =











x

x

1

3

9 89

1 22

.

.
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Hence, x
B
 = (x

1
 = 9.89, x

3
 = 1.22) and x

NB
= (x

2
 = 0), which is a non-degen-

erate basic feasible solution.

Similarly, when B =
4 1

2 5









  bh, x

B
 = (x

2
 = 4.94, x

3
 = 1.22) and x

NB
 = (x

1
 = 0), 

which is also a non-degenerate basic feasible solution.

1.4.  The Gauss-Jordan Method for Solving Systems of Linear 
Equations

Here we shall discuss a very efficient method (the Gauss-Jordan method) 
for solving a system of linear equations. Gauss-Jordan elimination involves 
creating an augmented matrix of both sides of our equations, changing this 
matrix into reduced row echelon form (a form in which a matrix has zeros 
on the lower diagonal and the first non-zero number in each row is 1. Also, if 
a column has a leading 1, then all the other numbers in that column below 1 
need to be 0), then finishing up the problem to find our solution. This method 
can lead us to one of the following three cases:

(i)  The system has no solution.

(ii) The system has a unique solution.

(iii) The system has an infinite number of solutions.

The elementary row operation that we apply in this method is impor-
tant in the sense that a similar type of elimination method will be used in 
the simplex method for solving a given linear programming problem (LPP).  
Example 1.8. (Problem with no solution).

  2x
1
 + 3x

2
 = 10

  10x
1
 + 15x

2
 = 50

The augmented matrix representation of the previous system is:

  
A\b =

2 3

10 15

10

60

1 1 5

0 0

5

10











=










.

 (Divide R
1
 by 2 and Multiply new R

1
 by 10 and subtract from R

2
)
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It can be easily seen that matrix A cannot be converted to an identity ma-
trix. This implies:

  x
1
 + 1.5x

2
 = 5

  0x
1
 + 0x

2
 = 10

Whatever the values of x
1
 and x

2
 are, the second equation can never be 

satisfied. Hence, the given system of equations has no solution.

Example 1.9. (Problem with a unique solution). Use	the	Gauss-Jordan	
method	to	solve	the	following	system	of	simultaneous	linear	equations:
  2x

1
 + x

2
 + x

3
 = 6

  –x
1
 + x

2
 + x

3
 = 4

  2x
1
 + 3x

2
 + x

3
 = –6

The augmented matrix representation of the previous system is:

A | b =

2 1 1

1 1 1

2 3 1

6

4

6

1 0 5 0 5

0 1 5 1 5

0 2 0

3

7

12

−

−

















=

−













. .

. .




  (Divide R
1
 by 2)

  (Multiply new R
1
 by 1 and add it with R

2
)

  (Multiply new R
1
 by 2 and subtract it from R

3
)

    

=

− −

















1 0 0

0 1 1

0 0 2

0 6667

4 6667

21 333

.

.

.

  (Multiply new R
2
 by 0.5 and subtract it from R

1
)

  (Divide R
2
 by 1.5)

  (Multiply new R
2
 by 2 and subtract it from R

3
)

  (Subtract new R
3
 from R

2
)

  (Divide R
3
 by -2)
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= −

















1 0 0

0 1 0

0 0 1

0 6667

6

10 667

.

.

Hence, the solution to the given system of equations is x
1
= 0.6667, x

2
 = –6, 

and x
3
 = 10.667. It can also be seen that the previous system of equations has 

a unique solution.

Example 1.10. (Problem	with	an	infinite	solution).	Use	the	Gauss-Jordan	
method	to	solve	the	following	system	of	simultaneous	linear	equations:
   x

1
 + 2x

2
 + x

3
 = 8

    x
1
 + x

2
 + x

3
 = 6

        x
1
 + x

3
 = 4

The augmented matrix representation of the previous system is:

A | b =

1 2 1

1 1 1

1 0 1

8

6

4

1 2 1

0 1 0

0 2 0

8

2

4

1 0 1

0 1 0

















=

− −

















=

00 2 0

4

2

4

1 0 1

0 1 0

0 0 0

4

2

0

− −

















=

















The linear system corresponding to A | b is

   x
1
 + x

3
 = 4

        x
2
 = 2

This implies that x
2
 = 2 and x

1
 = 4 – x

3
; that is, for different values of x

3
, 

we can obtain different values of x
1
. Hence, we have infinite solutions to the 

given system of equations.

(Subtract R
2
 from R

1
)

(Subtract R
1
 from R

3
)

(Add R
1
 and R

3
)

(Add R
3
 and 2 * R

2
)
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Remark: In the Gauss-Jordan methods the following points can be noted:

(i)   In the final augmented matrix, if we have any row with [0, 0, 0, 0 | k] 
with k	≠	0, then the system of equations will not have a solution.

(ii)  If the final augmented matrix is in the form [I
n
 | k], then the system of 

equations will have a unique solution.

(iii)  If we have any row with [0, 0, 0, …, 0 | k] with k = 0, then the system of 
equations will have an infinite number of solutions.

Example 1.11. Use Gauss-Jordan elementary row operations to	find	the	
inverse	of	the	matrix	given	in	Example	1.4.

Solution: To find inverse of A using the Gauss-Jordan method, form the 
augmented matrix (A | I). Now we will try to reduce the matrix A to an iden-
tity matrix by elementary row operations:

2 4 6

1 8 3

1 3 1

1 0 0

0 1 0

0 0 1

















Divide the first row by 2 and subtract the second and third rows from the 
new row.

1 2 3

0 6 0

0 1 2

0 5 0 0

0 5 1 0

0 5 0 1

.

.

.

−

−

















Divide the second row by 6 and subtract the new row from the third row, 
and also multiply the new row by 2 and subtract from the first row.

1 0 3

0 1 0

0 0 2

0 67 0 33 0

0 08 0 17 0

0 42 0 17 1−

−

−

− −

















. .

. .

. .

Divide the third row by – 2, multiply the new row by 3, and subtract it 
from the first row.

1 0 0

0 1 0

0 0 1

0.04 -0.58 1.5

-0.08 0.17 0

0.21 0.08 -0.5
















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So the inverse of the matrix A is 
0.04 -0.58 1.5

-0.08 0.17 0

0.21 0.08 -0.5

















1.5. Convex Sets

Line Segment: The line segment joining any two points x and y from Rn 

is a collection of points u, where

u = λx + (1 – λ)y, for all 0 ≤ λ ≤ 1.

Here the points x and y are called the endpoints of the line segment. It is 
usually denoted by [x : y].

The open line segment joining x and y is a collection of points, u, where

u = λx + (1 – λ)y, for all 0 < λ < 1.

It is usually denoted by (x : y).

Convex Sets: A set S is said to be a convex set, if for any two points 
belonging to the set, the line segment joining these two points also belongs 
to the set itself.

For example, for any two points x
1
 and x

2
 in S, the line segment joining 

these two points λx
1
 + (1 – λ)x

2
 ϵ S for each λϵ [0, 1].

The line segment λx
1
 + (1 – λ)x

2
 for λϵ [0, 1] is also called a convex com-

bination of x
1
 and x

2
.

Fig. 1.10 Convex sets

Fig. 1.11 Non-Convex sets
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Example 1.12. Prove	that	S	= {(x
1
, x

2
): x

1
 x

2
 ≥	1;	x

1
 ≥ 0, x

2
 ≥	0}	is	convex.

Solution: Let u = (u
1
, u

2
) and v = (v

1
, v

2
) be any two points of the set S, 

then

 u
1
 u

2
 ≥ 1 …(1.2)

	 v
1
 v

2
 ≥ 1 …(1.3)

Multiplying (1.2) and (1.3),

 u
1
 u

2
 v

1
 v

2
 ≥ 1 …(1.4)

Let r = (r
1
, r

2
) represent a point on the line segment joining u and v. Then

 r
1
 = λu

1
 + (1 – λ) v

1
, for all 0 ≤ λ ≤ 1 ...(1.5)

 r
2
 = λu

2
 + (1 – λ) v

2
, for all 0 ≤ λ ≤ 1 ...(1.6)

Now, r r u v u v

u u u v v

1 2 1 1 2 2

2

1 2 1 2 1

1 1

1 1

= + −( )( ) + −( )( )
= + −( ) + −( )

λ λ λ λ

λ λ λ λ λ uu v v

u u u v v u v v

u u

2

2

1 2

2

1 2 1 2 1 2

2

1 2

2

1 2

1

1 1

+ −( )
= + −( ) +[ ]+ −( )

= +

λ

λ λ λ λ

λ λλ λ λ

λ λ λ

1 2 1

2 1

1 2 1 2

2

1 1 2 2

2

1 2

2

1 2

−( ) −( ) + + −( )

= + −( )

[ ]u v v u u v u v v v

u u u11 1 2 2

2

1 2

1 2 1 2

2

2

1 2

1

1

2 1

v u v v v

u v v u

u u u

+ −( )
+ −( ) −





+ −( )

λ

λ λ

λ λ λ

( )

≥≥ 11 1 2 2

2

1 2

1 2 1 2

2

2

1 2

1

1 0

2 1

v u v v v

u v v u

u u

+ −( )
∴ −( ) −





+ −

λ

λ λ

λ λ λ

( ( ) ≥≥

≥≥ (( ) + −( )
+ −( )+ −( )

=

u v u v v v1 1 2 2

2

1 2

2 2

1

2 1 1

1

λ

λ λ λ λ≥≥

 ⇒   r
1
 + r

2
 ≥ 1

Hence the set S is a convex set.

Example 1.13. Show that the set S = {(x
1
, x

2
): x2

1
 + x2

2
 ≤ 9; x

1
 ≥ 0, x

2
 ≥ 0}

is convex.
Solution: Let u = (u

1
, u

2
) and v = (v

1
,	v

2
) be any two points of the set S, then

 u
1
2 + u

2
2 ≤ 9 ...(1.7)

	 v
1
2 + v

2
2 ≤ 9 ...(1.8)
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Let r = (r
1
r

2
) represent a point on the line segment joining u and v. Then

 r
1
 = λu

1
 + (1 – λ) v

1
, for all 0 ≤ λ ≤ 1 ...(1.9)

 r
2
 = λu

2
 + (1 – λ) v

2
, for all 0 ≤ λ ≤ 1 ...(1.10)

Now,  r
1
2 + r

2
2 = (λu

1
 + (1– λ) v

1
)2 + (λu

2
 + (1 – λ) v

2
)2

  = λ2 (u
1
2 + u

2
2) + (1 – λ)2 (v

1
2 + v

2
2) + 2λ (1 – λ) (u

1
v

1
 + u

2
v

2
)

 ≤ 9λ2 + 9 (1 – λ)2 + 2λ (1 – λ) (u
1
v

1
 + u

2
v

2
) ...(1.11)

 (Using (1.7) and (1.8))

Also since u v u v u u v v
1 1 2 2 1

2

2

2

1

2

2

2
+ ≤ + +( )( )  we have

 r
1
2 + r

2
2 ≤ 9λ2 + 9 (1 – λ)2 + 2λ (1 – λ) 9

  = 9

⇒  r
1
2 + r

2
2 ≤ 9

Hence, the set S is a convex set.

Example 1.14. Show that a line segment [x : y] joining any two points x, 

y ϵ Rn is a convex set.

Proof. The line segment joining the two points x, y ϵ Rn is given by,

 {λx + (1 – λ) y, where 0 ≤ λ ≤ 1} ...(1.12)

Let u, v ϵ [x : y], then

  u = λ′x + (1 – λ′) y, 0 ≤ λ′ ≤ 1 …(1.13)

  v = λ″x + (1 – λ″) y, 0 ≤ λ″	≤ 1 …(1.14)

Also let w denote a point on the line segment joining the two points u 

and v, then

 w = βu + (1 – β) v, 0 ≤ β ≤ 1 ...(1.15)

From (1.13), (1.14), and (1.15), we have

 w = β (λ′x + (1 – λ′) y) + (1 – β) (λ″x (1 – λ″) y),

  = (βλ′ + (1 – β) λ″) x +(β (1 – λ′) + (1 – β) (1 – λ″) y) ...(1.16)

Putting,

 α = βλ′ + (1 – β) λ″,
since 0 ≤ β, λ′ and λ″ ≤ 1, we have 0 ≤ α ≤ 1.
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Now, 1 – α = 1 – [βλ′ + (1 – β) λ″]
     = β + (1 – β) – βλ′ – (1 – β) λ″
     = (β (1 – λ′) + (1 – β) (1 – λ″)
Therefore, (1.16) can be rewritten as:

 w = αx + (1 – α) y, 0 ≤ α ≤ 1.

⇒ w ϵ [x : y], hence the line segment is a convex set.

Hyperplane: A set S = {x: c′x = α} is said to be a hyperplane in a  
n-dimensional space if c is a non-zero vector in Rn and α is any scalar.

A straight line in a 2-dimensional space and a plane in 3-dimensional 
space are examples of hyperplanes.

Theorem 1.2. A hyperplane S = {x: c′x = α} is a convex set.

Proof. Let u,	v	ϵ S, then c′u = α

   c′v = α

Let w denote a point on the line segment joining the two points u and v, 
then

 w = λu + (1 – λ) v, 0 ≤ λ ≤ 1 ...(1.17)

Now, c′w = c′ [λu + (1 – λ) v] = λ c′u + (1 – λ) c′v = λα + (1 – λ) α = α, which 
implies that all the points on the line segment joining the two points u and v are 
also part of the set S hyperplane. Hence, a hyperplane is a convex set.

Half-Space: A closed half-space is defined by S = {x: ax ≤ α} or S = {x: 

ax ≥ α}, where a is any non-zero vector in Rn and α is any scalar. 2- All the 
points on one side of the straight line in 2-dimensional space and all the points 
on one side of plane in 3-dimensional space are examples of half-space.

The sets S = {x: ax < α} and S = {x: ax > α}, are called open half-spaces.

Theorem 1.3. A half-space is a convex set.

Proof. Consider the closed half-space S = {x: ax ≤ α}, where a is any 
non-zero vector in Rn and α is any scalar.

Let u, v ϵ S, such that

 au ≤ α and av	≤ α ...(1.18)

Let w be a point on the line segment joining the two points u and v, then

 w = λu + (1 – λ) v, for all 0 ≤ λ ≤ 1
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Now, aw = a [λu + (1 – λ) v] = λau + (1 – λ) av ≤ λ α + (1 – λ) α = α (using (1.18))

Therefore, aw = ≤ α ⇒ All the points on the line segment joining the two 
points u and v are also part of the closed half-space. Hence, the given closed 
half-space is a convex set. Similarly, it can be proved for open half-spaces.

Theorem 1.4. The intersection of any two convex sets is also a convex set.

Proof: Let S
1
 and S

2
 be any two convex sets. And let T = S

1
 ∩ S

2
.

If x,y ϵ T, then x,y ϵ S
1
 and S

2
. Let x′ represent a point on the line segment 

joining x and y, then

x′ = λx + (1 – λ) y, for all 0 ≤ λ ≤ 1

Since S
1
 and S

2
 are convex sets, x′ ϵ S

1
 and S

2
, which implies x′ ϵ T also.

⇒ T = S
1
 ∩ S

1
 is a convex set.

Remark: The	intersection	of	any	finite	number	of	convex	sets	is	again	a	
convex	set.

Polyhedron. It is the intersection of a finite number of half-spaces.

Theorem 1.5. The sum and difference of any two convex sets is again a 
convex set.

Proof. Let A and B be any two convex sets in Rn, and then we have to 
show that A ± B is also a convex set.

Let u and v	be any two points of the sets A ± B so that

u = x
1
 ± y

1
 and v = x

2
 ± y

2
, where x

1
, x

2
, ϵ A and y

1
, y

2
 ϵ B. Let w be any 

point on the line segment joining u and v, then

w = λu + (1 – λ) v, for all 0 ≤ λ ≤ 1

       = λ (x
1
 ± y

1
) + (1 – λ) (x

2
 ± y

2
)

       = [λx
1
 + (1 – λ) x

2
] ± [λy

1
 + (1 – λ) y

2
]

“Since A is a convex set and x
1
, x

2
 ϵ A, we have”?

 λx
1
 + (1 – λ) x

2
 ϵ A, for all 0 ≤ λ ≤ 1

Similarly, for y
1
, y

2
 ϵ B,

 λy
1
 + (1 – λ) y

2
 ϵ B, for all 0 ≤ λ ≤ 1

This implies,

 w = λu + (1 – λ) v ϵ A ± B, for all 0 ≤ λ ≤ 1.
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Thus, for any two points u and v from the set A ± B, the line segment join-
ing these two points is also in A ± B. Hence, the sum and difference of any 
two convex sets is again a convex set.

Convex Hull. A convex hull of a set C of “n” points from Rn, denoted by 
H(C), is the smallest perimeter fence in Rn enclosing these “n” points.

If C is a convex set, then H(C) = C. The following are some illustrations 
of convex hulls.

Fig. 1.12

C

H (C)

Hence, a convex hull can also be defined as:

 ■ the smallest convex set containing all the points

 ■ the smallest area convex “polygon” enclosing the points

 ■ a convex “polygon” enclosing the points, whose vertices are points in the set 

Convex combination of vectors. Let S = { x
1
, x

2
, x

3
, …, x

m
} be a set of “m”  

vectors from Rn. Then a linear combination of these vectors, x = x
i

λ
ii

m

=∑ 1
, where 

λ
i
 ≥ 0 and λ

ii

m
=

=∑ 1
1

, is called a convex combination of the given vectors.

Convex polyhedron. The set of all the convex combination of a finite 
number of vectors in Rn is called a convex polyhedron or a polytope spanned 
by these vectors. In other words, a polytope is a bounded polyhedron and 
always forms a convex set.

Simplex. A simplex in k-dimension is a polytope having exactly (k + 1) 
vertices. A simplex in a 1-dimensional space is a line segment, in two dimesn-
sions it is a triangle, and so on.
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Fig. 1.13 Polytope (a bounded Polyhedron)

Fig. 1.14

Extreme Point: Let S be a convex set. A point r ϵ S is called an extreme 
point if, for any two points u,v ϵ S (where u ≠ v), r cannot be written as a 
convex combination of the points u and v. An extreme point will always be a 
boundary point, but all boundary points will not be extreme points.

For example, a circle is a convex set, and all the points on the circumfer-
ence of the circle are boundary as well as extreme points of the set, whereas in 
the case of a triangle, the three corner points are the extreme points of the set.

Exercises

1.   Define (i) basic solution, (ii) convex set, (iii) convex polyhedron, and  
(iv) extreme points of a convex set.

2.   Define a line segment and show that a line segment is a convex set.
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3.  Let A B C=

















=

−

















=










1 1 0

2 3 1

3 2 5

3 2 1

1 1 1

2 3 2

1

3

2

6

3

8

Find using MS-Excel:

(i) A + B   (ii) transpose of A

(iii) dot product of A and B (iv) Cross Products of A and B

(v) cross products of C and B (vi) | A |

(vii)	A–1 and B–1.

4.  Show that the set of unit vectors will always form a basis.

5.  Show that any two bases in Rn will contain the same number of vectors.

6.  Check whether the following vectors are linearly independent:

  (i) a = [1 2 2], b = [3 4 4], c = [1 0 0]

 (ii) a = [2 1], b = [4 3]

(iii) a = [3 1 2] b = [2 0 0] c = [–1 –1 –2]

(iv)  a = [2 0 –3 1] b = [4 0 –6 2]

7.  Check if the following vectors form the basis:

  (i) a = [1 –1 –1], b = [2 –1 3], c = [1 2 –1]

 (ii) a = [1 2 3], b = [1 –1 –1] c = [1 2 –1]

(iii) a = [4 3 2 –1] b = [4 2 0 –2]

8.   Check with the help of the rank method whether the following system 
of equations are consistent and solve them by using the Gauss-Jordan 
method:

  (i) 0.5x
1
 + 0.5x

2
 + 0.5x

3
 = 2, 4x

1
+ 10x

2
 – 4x

3
 = 6, x

1
 + 7x

2
 – 7x

3
= 5

 (ii) x
1
 – x

2
 + x

3
 = 2, –1.5x

1
 + 0.5x

2
 – x

3
= 3, – 3x

1
 – x

2
 – x

3
 = 18

(iii) x
1
 – x

2
 + x

3
 = 7, x

1
 – 2x

2
 + 3x

3
 = 8, 3x

1
 + 6x

2
 + 9x

3
 = 24

9.   Find the inverse of the matrices A,B,C given in Question 3 by the Gauss-
Jordan Method.
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10.  Determine how many basic solutions exist for the following system of 
equations and find all basic feasible solutions:
(i) x

1
 + 2x

2
 + 10x

3
 + 4x

4
 = 8, x

1
+ x

2
 + 4x

3
 + 3x

4
= 11

(ii) x
1
 + x

2
 + x

3
 = 7, x

1
 + 2x

2
 + 3x

1
 = 8,

(iii) 4x
1
 + 10 x

2
 – 4x

3
 = 6, x

1
 + 7x

2
 – 7x

3
 = 5,

11. Check if the following sets are convex:

(i) S = {[x
1
, x

2
], x2

1
 + 3x2

2
 ≤ 8}

(ii) S = {[x
1
, x

2
], x

1
 ≥ 5, x

2
 ≤ 9}

(iii) S x x x x= −








 + + ≤{[ , ], ( ) }1 2 1

2

2

23

2
5 10

(iv) S = {[ x
1
, x

2
], –x

1
 + x

2
 ≤ 2, 2x

1
 + 3 x

2
 < 11, x

1
 ≥ 0, x

2
 ≥ 0}

(v) S ={ x
1
 x

2
 ≤ 1; x

1
 ≥ 0, x

2
 ≥ 0}

12.  Show that the intersection of a finite number of convex sets is also a 
convex set.

13. Show that a convex polyhedron always forms a convex set.





C H A P T E R2
INTRODUCTION TO LPPs AND 
THE GRAPHICAL METHOD

2.1. Introduction

A programming problem is a problem where we have an objective which is 

to be fulfilled under certain restrictions. The moment this objective and these 
restrictions are converted into a mathematical expression and mathematical 
equations or inequalities, respectively, the problem is called a mathematical 
programming problem. When this mathematical expression and these equa-

tions or inequalities are linear in form, that is, the relationship between the 

variables is linear, in which each variable will only have a power of one and 
product of variables, logarithmic, exponential, trigonometric, etc. terms are 
not allowed, then the mathematical programming problem is called a linear 
programming problem (LPP). Hence, a linear programming problem is a spe-

cial type of mathematical programming problem which either maximizes or 
minimizes a linear objective function while satisfying a set of linear equality 
and/or inequality constraints (restrictions). Mathematical programming prob-

lems are optimization problems. In general, a problem where we maximize or 
minimize a numerical function of variables under some constraints or restric-

tions which are also in the form of the numerical functions is called an opti-
mization problem. These types of problems may have a number of feasible 
solutions which satisfy all the constraints, out of which one is selected, which 
optimizes our objective function.

Any general linear programming problem with n variables and m linear 

constraints can be written as:

Maximize or Minimize Z = c
1
x

1
 + c

2
x

2
 + ... + c

n
x

n
 (Linear objective function)
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Subject to the constraints

 

a x a x a x b

a x a x a x b

n n

n n

11 1 12 2 1 1

21 1 22 2 2 2

+ + + ( )
+ + + ≤ = ≥( )

…

…

⋮ ⋮

≤,=,≥

, ,

⋮⋮

…

⋮ ⋮ ⋮

…

a x a x a x b

a x a x a x b

i i in n i

m m mn n

1 1 2 2

1 1 2 2

+ + + ≤ =≥( )

+ + + ≤ =≥( )

,

,
mm

 …(2.1)

 x
1
, x

2
,
 
…, x

n 
≥ 0 (Non-negative restriction)

The linear inequalities and/or equations represent the restric-

tions on available resources like man-hours, machine-hours, land, 
and so on Here, a

ij
, b

i
, c

j
 where i = 1, 2....m, j = 1, 2...n are as-

sumed to be constants. The coefficients c
1
, c

2
, ..., c

n
 are the unit prof-

its/ cost coefficients of the decision variables x
1
; x

2
,
 
…, x

n
, re-

spectively, in the objective function. The inequality a x b
ij j ij

n
≤

=∑ 1
  

(i = 1, 2, …, m) represents the ith functional constraint (restriction) on 

the consumption of the ith resource where a
ij
 the coefficient of x

j
(j = 1, 2, 

…, n) gives the amount of resource i consumed by one unit of activity j, 
x

j
 is the level of activity j, and b

i
 is the maximum availability of the ith 

resource.
The objective is to determine the non-negative values of the variables 

x
1
; x

2
, …, x

n
 which will satisfy all the constraints on available resources and 

optimizes the objective function.
(2.1) can also be written as:
 Maximize or Minimize Z c x

j j

j

n

=
=
∑

1

 Subject to a x b i m
ij j ij

n

( , , ) , ,≤ = ≥ =
=∑ 1

1 2  …(2.2)
       x

j 
≥ 0, j = 1, 2 …n

Or in matrix form, the same can be written as:
 Maximize or Minimize Z = CX

 Subject to AX (≤, =, ≥) b
    X ≥ 0  …(2.3)
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Here, b
m×1 

= (b
1
, b

2
 …… b

m
), C

(1 × n)
 = (c

1
, c

2
,… c

n
), Xʹ

(1 × n)
 = (x

1
, x

2
 … x

n
)

 A

a a

a a

m n

n

m mn

( )× =

















11 1

1

…

⋮ ⋱ ⋮

…

Solution: An n-tuple (x
1
, x

2
, …, x

n
) of real numbers which satisfies the con-

straints of (2.1) is called a solution to the general linear programming problem.
Feasible Solution: A solution to a linear programming problem is known 

as a feasible solution if it also satisfies the non-negative restriction of the 
problem.

Basic Feasible Solution: If a basic solution to the given linear program-

ming problem satisfies the non-negativity conditions also then the solution 
is called a basic feasible solution. Basic feasible solutions are of two types:

(i)   Degenerate: A basic feasible solution is called degenerate if the value of 
at least one basic variable is zero.

(ii)  Non-degenerate: A basic feasible solution is called “non-degenerate” if 
values of all the variables are greater than zero.

Optimal Basic Feasible solution: If a basic feasible solution to a giv-

en linear programming problem optimizes the objective function, then it is 
called an optimal basic feasible solution.

Note. If a problem has a feasible solution, then it will also have a basic 

feasible solution.

Example: Minimize   z = x
1
 + 2x

2

Subject to

    x
1
 + 2x

2
 ≥ 10

   10x
1
 + 3x

2
 ≥ 20

     x
1
, x

2
 ≥ 0

This is a minimization problem with two decision variables and two con-

straints. Here, c
1
 = 1, c

2
 = 2, b

1
 = 10, b

2
 = 20, a

11
 = 1, a

12
 = 2, a

21
 = 10, and a

22
 = 3.

x
1
= –1, x

2
 = 15 is a solution to the given problem, but it is not a feasible 

one, as x
1
 < 0.

x
1
 = 0.588235, x

2
 = 4.705882 is an optimal basic feasible solution to the 

given problem, and the corresponding minimum value of z is 10.
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2.2. Assumptions in a Linear Programming Problem

To solve any real-life problem by the linear programming approach (LP), the 
following assumptions are made:

1. Certainty. This assumption requires that all the parameters of the 
model be known before solving a given LP problem. In other words, the coeffi-

cients c
j
 of the objective function, the coefficients of the constraints a

ij
, and the 

resource vector b
i
 must all be known and fixed”? must all be known and fixed. 

However, using sensitivity analysis (which will be discussed in Chapter 6),  
the decision maker can explore the effects of changing some parameters over 
a range of values.

2. Linearity. This is a property of the mathematical function. Linearity 
denotes a stable relationship between a dependent and independent variables, 
which when plotted on a graph would be represented by a straight line. In 
linear programming, the relationship of the various decision variables either 
in the objective function or in any of the constraints should be linear. Note 
that in a linear relationship, all variables have an exponent of one, and no 
variables are put in product form.

The following are three properties which help us in clarifying the impli-
cations of linearity:

(i)   Proportionality. This requires that the value of the objective function 
be proportional to the value of the decision variables. For example, in 
an objective function Max 25x

1
 + 38x

2
, each unit of x

1
 should contribute 

25 (a proportionality constant) to the value of the objective function, and 
hence the total contribution of any activity in the objective function de-

pends on the level of activity or the value of the decision variable. In the 
constraints, the amount of each resource used must be proportional to 
the value of the decision variable. For example, let x

1
 + 4x

2
 ≤ 50 be any 

constraint of a given LPP, and then each value of x
2
 will consume 4 units  

(a proportional amount) of the available resource (in this case 50).

(ii)  Additivity. Linearity also requires that the effect of the value of each vari-
able on the values of the objective function and the constraints is additive. 
In other words, there can be no interactions between the effects of differ-
ent activities. For some objective function, for example, Max 25x

1
 + 38x

2
,  

if x
1
 = 2 and x

2
 = 1, this property asserts that the contributions of 50 and 38, 

respectively, must add together to give a sum of 88.
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(iii)  Divisibility (or continuity). This postulate allows the variables to have a  
continuous range of values. This means that the variables may take any 
fractional or decimal value and will not necessarily be a whole number or 
integer. However, in many real-life situations, there may be cases where 
the variables are allowed to have only integer values, and in such situa-

tions LP may be used to provide an approximate answer by rounding off 
the solution to the nearest integer value, but doing so may cause a signifi-

cant departure from optimality. If integer solutions are required, then the 
given linear programming problem is a special type of problem called a 
linear integer programming problem (to be discussed later).

2.3. Theorems on Extreme Points

Theorem 2.1. The set of feasible solutions to a given LPP forms a convex 
set.

Proof. Let S denote the set of feasible solutions to the following LPP,
  Max Z = CX

Subject to

     AX ≤ b
    X ≥ 0  …(2.4)
where      S = {X | AX ≤ b, X ≥ 0}

Let X
1
, X

2
 ϵ S, such that

 AX
1
 ≤ b  …(2.5)

 AX
2
 ≤ b  …(2.6)

Let Xʹ denote the point on the line segment joining X
1
 and X

2
, then

 Xʹ = λX
1
 + (1 – λ)X

2
, 0 ≤ λ ≤ 1  …(2.7)

Multiplying both sides of (2.7) by A, we get

AXʹ = λAX
1
 + (1 – λ)AX

2
 < λb + (1 – λ)b (From (2.5) and (2.6))

⇒ AXʹ ≤ b
which implies that Xʹ ϵ S. Hence, the set of feasible solutions to a given LPP 
is a convex set.
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Theorem 2.2. If the set of feasible solutions to a given LPP is a convex 
polyhedron, then at least one extreme point of the problem will be the opti-
mum solution of the LPP.

Proof. Let,

  Max z = cx,

   Subject to Ax = b, x ≥ 0  …(2.8)
be a given LPP and S be a set of feasible solutions to (2.8), which is a 

convex polyhedron. Also let x
1
, x

2
, …, x

k
 denote the extreme points of S and 

x* ϵ S be the optimum solution of (2.8), that is, z* = cx* ≥ cx ∀ x.

If x* is not an extreme point of S, then

x x
i

*
,= ≥ =

= =∑ ∑λ λ λ
ii

k

i ii

k

1 1
0 1and   …(2.9)

This implies z i ii

k* *= =
=∑cx cxλ
1

 …(2.10)

Let max cx
i
 = cx

p
 ∀ i = 1, 2, …, k. Now (2.10) can be written as

cx cx cx cxii

k

p p

* *≤ ( ) ⇒ ≤
=∑ λ
1

, since λ
ii

k

=∑ =
1

1

But cx* is the maximum value of z, hence cx* = cx
p

⇒ x* = x
p
 (one of the extreme points).

Hence, the optimum solution of the LPP is attained at one of the extreme 
points.

Theorem 2.3. Let S = {x ϵ Rn : Ax = b, x ≥ 0}be the set of feasible solu-

tions of the following LPP,

 Max z = cx,

Subject to

 Ax = b, x ≥ 0
Then x* ϵ S is a basic feasible solution of the given problem if and only if 

it is an extreme point of S.

Proof. (Part 1) Let x* ϵ S be a basic feasible solution of the given prob-

lem, such that

 Ax* = b, x* ≥ 0 …(2.11)
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We have to prove that this is an extreme point; that is, we have to show 

that two points do not exit in the set such that x* can be written as a convex 
combination of these points.

On the contrary, let us assume that x* is not an extreme point of the set of 
feasible solutions, and then two solutions xʹ and xʺ ϵ S exist, such that

 x* = λxʹ + (1 – λ)xʺ, 0 < λ < 1  …(2.12)
Further, let x x x x' x x x x x

B NB B NB B NB

* * *
[ , ], [ , ], [ , ]= = ′ ′ ′′ = ′′ ′′  …(2.13)

where x x
B B

*
, ′  and ′′x

B  are m component vectors and x x xNB NB NB

*
, ,′ ′′and  are 

(n – m) component vectors.
From (2.12) and (2.13), we have

 [ , ] [ , ] ( )[ , ]* *
x x x x x x
B NB NB NB B NB

= ′ ′ + − ′′ ′′λ λ1  …(2.14)

Since x* ϵ S is a basic feasible solution, we have xNB
* = 0  and Bx bB

* =  

where B is a m × m order basic matrix for the given LPP.
Now (2.14) can be written as

 0 1= ′ + −( ) ′′λ λx xNB NB  where 0 < λ < 1 ⇒ ′ = ′′ =x xNB B 0  …(2.15)

Further, Ax Bx bB
′ = ′ =  and Ax Bx bB

′′ = ′′ =   ⇒ = ′ = ′′x x x
B B B

*

and hence x* = xʹ = xʺ which proves that our assumption is wrong and x* 

is an extreme point of S.

(Part 2) Here we will show that if x* ϵ S is an extreme point, then it is a 
basic feasible solution to the given LPP.

Here, x* is an n component vector. Let us assume that its r components 

are positive and the rest are zero such that
a x b x j r
j jj

r

j

* *
, , ,

=∑ = > =
1

0 1 2   …(2.16)

In order to prove that x* is a basic feasible solution, we have to show that 

the vectors associated with the positive components of x* are linearly inde-

pendent. To prove it, let us assume on the contrary that the vectors associated 
with the positive components of x* are linearly dependent, that is:

β
j jj

r

a =
=∑ 0
1

 in which at least one β
j
 is non-zero  …(2.17)

Now consider θ
β

β=min
x
j

j

j
j r

*

, , , ,≠ =

















0 1 2  positive number
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If we take 0 < ε < θ, then x j j

* − >εβ 0 , and x
j j

* − >εβ 0 , j = 1, 2 … r  …(2.18)
In the vector form, (2.18) can be written as
xʹ = x* + εβ and xʺ = x* + εβ where x*, xʹ, xʺ, β are n vector  

components.  …(2.19)
Also we have xʹ, xʺ ≥ 0, that is, both are feasible solutions, and hence we 

have

Axʹ = Ax* + ε Αβ = Ax* = b (since Αβ = 0 from (2.17)). Similarly,  
Axʺ = Ax* + εΑβ = Ax* = b

Further from (2.19) we can write x x x∗ =








 ′ +









 ′′

1

2

1

2
,  which contradicts 

the fact that x* is an extreme point. Hence, our assumption is wrong.
It proves that the vectors associated with the positive variables are lin-

early independent, and hence the extreme point is a basic feasible solution.
Theorem 2.4. If an optimum value of the objective function occurs at any 

two extreme points of the feasible region, then all the points on the line segment 
joining these points also gives the optimal value of the objective function.

Proof. Let the maximum value of the objective function of the following 
LPP,

 Max z = cx,

Subject to

 Ax = b, x ≥ 0
occur at the extreme points x

1
 and x

2
, and then let Max z = z* = cx

1
 = cx

2
.  

Let xʹ be the point on the line segment joining x
1
 and x

2
, and then

 xʹ = λx
1
 + (1 – λ)x

2
, 0 ≤ λ ≤ 1

⇒ cxʹ = λcx
1
 + (1 –λ)cx

2
 = z*

⇒ xʹ is also an optimal solution of the problem and hence the theorem.

2.4. Areas of Application of LPPs

I. Product Mix Problem. Here we have to determine the right mix 
and quantities of products to be manufactured so as to maximize the profit.  
A firm can always produce different types of products which require different 
resources in different quantities, and each product is contributing a certain 
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amount towards profit. The final product mix must take into consideration the 
limited resources, expected demand for each product, and various policies of 
the company, and at the same time maximize the profit.

II. Blending Problem. In this type of problem, several raw materials are 
mixed into the final product that must fulfill certain specifications. Each of the 
raw materials contributes certain properties to the final product and involves 
a certain cost.

III. Media Allocation Problem. Suppose a company has a certain fixed 
budget which is to be utilized for the advertisement of a particular product in 
different media where each medium has a different impact and reach. The cost 
of insertion of an advertisement into each medium is different and known. 
The problem is to determine the number of allocations of an advertisement 
in different media so that there is a maximum exposure of the product to its 
target populations, which maximizes its sales.

IV. Production Scheduling and Inventory Planning. Suppose the de-

mand for a particular product fluctuates over a period of time. The varying 
production rates have proven to be costly. The problem is to determine a 
smooth production schedule that meets the anticipated demand and yet main-

tains a reasonable inventory level that minimizes the overall production and 
inventory carrying cost.

V. Purchasing Problem. Linear programming can also be used in  
deciding about the purchase of various products which are available at dif-
ferent discounts and prices for different quantity ranges. The problem is to 
determine the quantity of different products that should be purchased so as 
to maximize (minimize) the overall profit (cost).

VI. Assignment and Transportation Problem. The transportation and 
assignment problem can always be formulated as a special type of linear in-

teger programming problem, satisfying the various row and column require-

ments and finally minimizing the cost of assignment or transportation.

2.5. Formulation of Linear Programming Models

The following steps need to be taken for a successful formulation of an LP 
model:

I. Understand the problem.
II. Identify the decision variables involved in the problem.



38 • OPTIMIZATION USING LINEAR PROGRAMMING

III. Identify the various coefficients of the objective function.
IV. Identify the various restrictions of the problem.
 V.  Represent the objective function in the form of a linear expression 

involving decision variables.
VI.  Represent all the restrictions in the form of linear expressions involv-

ing decision variables.
Example 2.1. (Product Mix) A small plant manufactures two models of a 

product, say A and B. Two resources, R1 and R2, are required for the manu-

facturing of units of this product. One unit of A consumes 10 units of R1 and 
15 units of R2. Similarly, one unit of B consumes 12 units of R1 and 17 units 

of R2. Suppose further that the company has 800 units of R1 and 600 units of 
R2 available per week, and each unit of model A and B gives a profit of $50 
and $70, respectively. Formulate this as a linear programming problem so as 
to find the optimal weekly production levels for these two models.

Solution: Let x
1
 and x

2
 denote the weekly production levels of model,  

A and model B, respectively.
The LP model of the given problem is,
 Max z = 50x

1
 + 70x

2
 (Objective function)

Subject to

 10x
1
 + 12x

2
 ≤ 800(R1 resource)

 15x
1
 + 17x

2
 ≤ 600(R2 resource)

 x
1
, x

2
 ≥ 0 (non-negative condition)

Example 2.2. (Production Scheduling) A firm manufactures three differ-
ent versions of the same product, which have unit profit contributions of 2, 3, 
and 3.5. In the final part of the manufacturing process, there are assembly, 
polishing, and packing operations. For each version, the time (in hrs.) re-

quired for these operations is shown in the following table:

Assembly Polishing Packing

Product 
versions

1 4 3 3

2 5 1 4

3 2 4 1.5
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Under the given state of the labor force, the firm estimates that each year, 

they have 1,000 hours of assembly time, 800 hours of polishing time, and 950 
hours of packing time available. Formulate a linear programming problem to 
find the number of each version the company should make per year in order 
to maximize the associated profit.

Solution: Let x
1
, x

2
, and x3 be the number of units of the first, second, 

and third version of the product produced per year, respectively. Then the LP 
model of the given problem is,

  Max z = 2x
1
 + 3x

2
 + 3.5x3 (Objective function)

Subject to

    4x
1
 + 5x

2
 + 2x3 ≤ 1000 (Assembly)

    3x
1
 + x

2
 + 4x3 ≤ 800 (Polishing)

 3x
1
 + 4x

2
 + 1.5x3 ≤ 950 (Packing)

   x
1
, x

2
, x3 ≥ 0 (Non-negativity condition)

Example 2.3. (Purchasing Problem) A firm is planning to buy two types 
of cupboards for its new office room, which has a maximum area of 110 
square feet for the cupboards. The first type of cupboard costing $150 per 
unit requires five square feet of floor space, and holds nine cubic feet of files, 
whereas the second cupboard costs $170 per unit, requires seven square feet 
of floor space, and holds eleven cubic feet of files. The firm has a total budget 
of $10,000 for this purpose. How many of which type of cupboard should the 
firm buy in order to maximize storage volume?

Solution: Let x
1
 and x

2
 be the number of units of the first and second type 

of cupboards, respectively. Then the objective function of the problem is to 
maximize storage volume of the office room subject to the cost and space 
constraints. So, the LP model of the given problem is,

Max z = 9x
1
 + 11x

2

Subject to

  150x
1
 + 170x

2
 ≤ 10000 (Cost Restriction)

     5x
1
 + 7x

2
 ≤ 110 (Floor Restriction)

      x
1
, x

2
, ≥ 0 (Non-negativity condition)

Example 2.4. (Transportation Problem) A consumer durable com-

pany which manufactures a single product has three plants, I, II, and III.  
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The amounts of units produced in these plants are 100, 150, and 120, respec-

tively. The firm has its commitment to sell 80 units to customer A, 100 to B, 70 
to C, and 120 to D. The net unit cost of transportation to these four different 
customers from the three plants is given as follows:

Customers

A B C D

Plants I 10 20 15 18

II 21 10 19 11

III 18 14 22 13

Formulate the previous transportation problem as a linear programming 
problem so as to minimize the total cost of transportation.

Solution: Let x
ij
 (i = 1, 2, 3 and j = 1, 2, 3, 4) denote the amount of units 

transported from the ith plant to the jth customer. Then the objective function 
of the problem is,

  Min z = 10x
11

 + 20x
12

 + 15x13 + 18x
14

 + 21x
21

 + 10x
22  

          
+ 19x23 + 11x

24
 + 18x31 + 14x32 + 22x33 + 13x34

Subject to

Row Constraints:

   

x

x

x

jj

jj

jj

11

4

21

4

31

4

100

150

120

=

=

=

∑

∑

∑

=

=

=

Column Constraints:

   

x

x

x

x

ii

ii

ii

ii

11

3

21

3

31

3

41

3

80

100

70

120

=

=

=

=

∑

∑

∑

∑

=

=

=

=

and x
ij
 ≥ 0, ∀ i, j (non-negativity condition)
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Example 2.5. (Media Allocation Problem) A company has an advertis-

ing budget of $10,000,000 and is planning to advertise its products in three 
different media, namely television, radio, and newspapers. The advertising in 
television is further divided into prime time and non-prime time. The objective  

of the company is to have maximum exposure of the product to its potential 

customers. A survey of the market gives the following results:

Television

Prime 

time

Non-prime 

time

Radio News 

paper

Cost of an Advt./unit($) 50,000 28,000 20,000 19,000

No. of potential customers reached/unit 700,000 350,000 250,000 180,000

No. of female potential customers 
reached/unit

500,000 100,000 110,000 87,000

It was also decided that the company will spend no more than 50% of 
the total budget in television. The management was also not willing to have 
more than 7 and 10 insertions in radio and newspapers respectively. Finally, 
the company has also decided to have a minimum of 1.5 million exposures 
among women. Formulate this problem as an LP model so as to maximize the 
total reach of the potential customer.

Solution: Let x
1
, x

2
, x3, and x

4
 denote the number of insertions in prime 

time, non-prime time (TV), radio, and newspapers respectively. The objective 
of the company is to maximize the total reach of the potential customer. Then 
the LP model is:

Max z = 700000x
1
 + 350000x

2
 + 250000x3 + 180000x

4

 (Maximization of potential reach)

Subject to

  50000x
1
 + 28000x

2
 + 20000x3 + 19000x

4
 ≤ 1,000,000, 

 (Budget constraint)

   50000x
1
 + 28000x

2
 ≤ 500,000,

 (Restriction on Television advertisement)

 500000x
1
 + 100000x

2
 + 110000x3 + 87000x

4
 ≥ 1,500,000

  (Restriction on the minimum number female potential  

   customers to be reached by the advertisement)
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x3 ≤ 7, x
4
 ≤ 10

(Upper limits on the number of insertions in Radio and Newspapers)

x
1
, x

2
, x3, and x

4
 ≥ 0

2.6. Graphical Method

The graphical method can be used to solve any LPP with two variables only. 
There are two different approaches for solving an LPP using the graphical 
method:

2.6.1. Extreme Point Approach

The following steps need to be followed while using this approach:
I.  First, draw an XY plane and select the set of points (x, y) which satisfy 

the non-negative restrictions of the given LPP. This set of points will be 
a set of feasible solutions to the given problem. All these points in the 
set of feasible solutions lie in the first quadrant of the xy plane.

II.  Draw all the constraints in the xy plane and identify the common  
region, that is, a set of solutions (x, y) which satisfies all the constraints 
and lie in the first quadrant. This set of solutions is called a common 
region of feasible solutions.

III.  Identify the corner points (extreme points) of the common region of 
feasible solutions; find the value of the objective function at these 
points. Select the point which optimizes the objective function, and this 
will represent our optimal solution.

IV. Give your interpretation to the result.
Note: The common feasible region of any LP problem always forms a 

convex set, and its optimum solution lies at one of the extreme points of the 

convex set.

2.6.2. ISO-Profit (cost) Function Line Approach

After doing the first two steps (I & II) of the procedure given in 2.6.1, con-

tinue with the following:

I.  Draw an ISO-profit (ISO-cost) line for a small value of the objective 
function without violating any of the given restrictions of the given 

LPP.
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II.  Continue drawing ISO-profit (ISO-cost) lines parallel to one another in the 
direction of increasing (or decreasing) the value of the objective function.

III.  The last point of the feasible region where this line will touch before 
it moves out of the (feasible) region for which the value of ISO-profit 
(ISO-cost) is maximum (minimum) is the optimal solution.

We will discuss the steps involved in solving a simple linear program-

ming model graphically with the help of an example.
In this book, our main focus will be on the extreme point approach.

2.7. Solution of LPPs by the Graphical Method Using MS-Excel

Step 1. Select the xy-values which are to be plotted and then go to  
Insert → Scatter → Scatter with straight line and Markers.

       Fig. 2.1

Step 2. Right-click on the chart and click the Select Data option.

     Fig. 2.2
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Step 3. In the Legend Entries (series), select the Add option and add all 
the constraints of the problem.

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

9

x + 3x 211 2

x1

x2

0 6 21

7 5 0

x + x 81 2

x1

x2

0 4 8

8 4 0

   Fig. 2.3

Step 4. Identify the common portion to all the constraints. For shading 
this region go to Insert → Shapes → Freeform and then click the cursor to 
the corner points of the feasible region.
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9
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6

5

4

3

2

1

0

0 5 10 15 20 25

       Fig. 2.4

Step 5. For the formatting of the chart, such as inserting text, gridlines, 
legends, and so on, double-click on the chart and select the Layout option.

Example 2.6. Maximize  z = 2x
1
 + 4x

2

Subject to the constraints:

x
1
 + 3x

2
 ≤ 21

x
1
 + x

2
 ≤ 8

       x
1
 ≤ 3

  x
1
, x

2
 ≥ 0

Solution: In the xy-plane, we take x
1
 on the x-axis and x

2
 on the y-axis. 

When the two constraints along with the non-negativity conditions are plotted 
in the x

1
x

2
 plane, we have the following figure.

7
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x + x 81 2
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6
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x + 3x 211 2

x1

x2

0 6 21

7 5 0

x + x 81 2

x1

x2

0 4 8

8 4 0

A

Feasible
region

B

      Fig. 2.5
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Extreme point approach: In the previous graph the shaded region  
denoted by OABC is the feasible region for the given problem. We also know 
that the optimum solution of the problem lies at one of the extreme points of 
this region. So, the value of the objective function z. at these extreme points 
is:

I. at the point O (0, 0), z = 0

II. at the point A (0, 7), z = 28
III. at the point B (1.5,6.5), z = 29
IV. at the point C (8,0), z = 16

We can clearly see that z = 29 is the maximum value of z, and this occurs 
at point B. Hence, the optimum solution of the problem is (x

1
, x

2
) = (1.5, 6.5), 

and the corresponding maximum value of the objective function is z* = 29.
ISO-profit (cost) function line approach: To get an iso profit line, set 

the objective function equal to some arbitrary small number. This will give us 
a linear equation in x and y, and that can be plotted in the xy – plane. All the 

points on an iso profit line give the same profit. To start with, let us put z = 10.  
Then the equation becomes 2x

1
 + 4x

2
 = 10, and this line contains all the points 

that have a profit of exactly 10.

x + 3x 211 2

x1

x2

0 6 21

7 5 0

x + x 81 2
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x2

0 4 8

8 4 0
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5

4

3

2

1

0
0 5 10 15 20 25

x + 3x 211 2

x + x 81 2

Iso profit line

ISO line touches the corner point B (1.5,6.5)

CO

A

Feasible
region

B

   Fig. 2.6

Now find the highest value of the iso profit line that touches the feasible 

region, which is obtained by plotting a number of parallel lines, away from 
the origin until it touches the corner point(s) of the feasible region. Here the 
iso profit line touches the corner point B for the first time. The coordinates of 
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corner points can be read from the graph or can be computed as the intersec-

tion of the two linear equations.
Therefore, the optimum solution of the problem is x

1
 = 1.5, x

2
 = 6.5, and 

the corresponding maximum value of the objective function is z* = 29.
Example 2.7. Minimize z = 25x

1
 + 38x

2

Subject to the constraints:

30x
1
 + 10x

2
 ≥ 120

10x
1
 + 20x

2
 ≥ 100

  x
1
, x

2
 ≥ 0

Solution: When the two constraints along with the non-negativity condi-
tions are plotted in the x

1
 x

2
 plane, we have the following figure.
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    Fig. 2.7

The area inside the region ABC is the feasible region of the problem, and 
the points A, B, and C denote the extreme points of the region. The coordi-
nates of the extreme points are: A = (0, 12), B = (2.8, 3.6), and C = (10, 0).

The values of the objective function at these points are as follows:
I. at the point A (0, 12), z = 456

II. at the point B (2.8, 3.6), z = 206.8

III. at the point C (10,0), z = 250

Hence, the optimum solution of the problem is (x
1
 = 2.8, x

2
 = 3.6), and the 

corresponding minimum value of the objective function is z* = 206.8.
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Example 2.8. Maximize z = 4x
1
 + x

2

Subject to the constraints:

2x
1
 + x

2
 ≤ 100

x
1
 + x

2
 ≤ 80

      x
1
 ≤ 40

x
1
, x

2
 ≥ 0

Solution: When the three constraints along with the non-negativity con-

ditions are plotted in the (x
1
, x

2
) plane, we have the following figure:
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The shaded region OABCD in the previous figure gives the feasible region 
of the problem, and the values of z at these points (extreme) are as follows:

I. at the point O (0, 0),  z = 0

II. at the point A (0, 80),  z = 80

III. at the point B (20, 60), z = 140

IV. at the point C (40, 20), z = 180

V. at the point D (40, 0),  z = 160

Clearly z = 180 is the maximum value z, and this occurs at the point C 
(40, 20). Hence, the optimum solution of the problem is (x

1
 = 40, x

2
 = 20), 

and the corresponding maximum value of the objective function is z* = 180.
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The following section discusses some special cases in linear program-

ming problems.

2.8. Special Cases

2.8.1. Problem with Multiple Solutions

In some of the linear programming problems, instead of having a unique  
optimal basic feasible solution to the given problem, we may have an  

alternative or multiple (infinite) numbers of optimal basic feasible solu-

tions. This case occurs when the line of the objective function is parallel to 
any one of the constraint lines and lies on one of the edges of the region of 
feasible solutions, which is illustrated in the following example:

Example 2.9. Maximize z = x
1
 + 2x

2

Subject to the constraints:

6x
1
 + 4x

2
 ≤ 24

x
1
 + 2x

2
 ≤ 6 

– x
1
 + x

2
 ≤ 1

    x
2
 ≤ 2, x

1
, x

2
, ≥ 0

Solution: When the constraints along with the non-negativity conditions 
are plotted in the x

1
 x

2
 plane, we have the following figure:
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The area inside OABCDE denotes the feasible region of the problem. The 
values of z at these points are:

I. at the point O (0, 0),  z = 0

II. at the point A (0, 1),  z = 2

III. at the point B (1, 2),  z = 5

IV. at the point C (2, 2),  z = 6
V. at the point D (3, 1.5),  z = 6
The maximum value of z is 6, and this occurs at two points, C and D. 

Therefore, it’s a case of multiple solutions. All the points which lie on the line 
segment joining these two points will also give the same value of z.

Note: If a problem has two points giving the same optimum value of the 
objective function, then this problem will have an infinite number of solutions 
(all the points on the line segment joining these two points), and all solutions 

will give the same value of the objective function.

2.8.2. The Problem with Unbounded Solutions

In some problems, the solution space may be unbounded in at least one vari-
able; that is, the value of that variable may be increased indefinitely without 
violating any of the given constraints, thus giving an infinitely large or small 
value of the objective function. This kind of problem has an unbounded solu-

tion. The occurrence of unbounded solution space is the indication that the 
problem is poorly designed. The following example will be used to under-
stand it better.

Example 2.10. Maximize  z = 4x
1
 + 10x

2

Subject to the constraints:
    x

1
 ≤ 10

x
1
 + 2x

2
 ≥ 6

    x
1
, x

2
 ≥ 0

Solution: The solution space satisfying the constraints and the non-negativity 
restrictions is shown shaded in the following figure. It can be seen that in the 
solution space the value of x

2
 can be increased infinitely because of the sec-

ond constraint, x
1
 + 2x

2
 ≥ 6; due to this the value of objective function also 

can be increased infinitely.
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Hence, the value of z can be made arbitrarily large by increasing the value 
of x

2
 indefinitely, which implies that the given LP problem has an unbounded 

solution.

2.8.3. The Problem with Inconsistent Constraints

The constraints of a given problem are said to be inconsistent if they are mu-

tually exclusive, that is, if no point or solution satisfies all of the constraint 
equations simultaneously and hence there is no unique common region of 
feasible solutions. Sometimes a common region of solutions exists but none 
of the points of this region satisfies the non-negative restrictions of the given 
LPP. In both these situations, there is no solution for the given problem. Such 
a problem arises due to wrong or improper formulation of the problem with 
conflicting constraints.

The problem with inconsistent constraints is said to be an infeasible prob-

lem. Infeasibility is purely due to the constraints of the problem the objective 
function has no role in it.

Example 2.11. Maximize z = x
1
 + 4x

2

Subject to the constraints:
x

1
 + 2x

2
 ≥ 40

x
1
 + x

2
 ≤ 15

x
1
, x

2
 ≥ 0
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Solution: When the two constraints along with the non-negativity conditions 
are plotted in the x

1
x

2
 plane, we have the following figure:
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     Fig. 2.11

It can be clearly seen from the figure that there is no common region 
between the two constraints and hence no feasible solution for the problem. 
Such a problem is said to be a problem with inconsistent constraints, and the 
problem does not possess any solution.

2.8.4 The Problem with Redundant Constraint Equations

Any LPP is said to have a redundant constraint if at least one of the constraints 
does not play any role in finding the optimal solution of the given problem, and 
if even when it is (or they are) removed from the problem, we get the same solu-

tion as was obtained when it was (or they were) present in the problem.
Example 2.12. Maximize z = 2x

1
 – x

2

Subject to the constraints:

x
1
 + 4x

2
 ≤ 50

  x
1
 + x

2
 ≤ 20

        1.5x
1
 + x

2
 ≤ 30 and x

1
, x

2
 ≥ 0

Solution:

The area inside OABC denotes the feasible region of the problem. The 
values of z at these points are:

I. at the point O (0, 0),   z = 0

II. at the point A (0, 12.5),    z = – 12.5
III. at the point B (10, 10),  z = 10

IV. at the point C (20, 0),   z = 30
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The maximum value of z is 30, and this occurs at the point C. It can be 
clearly seen that with or without the third constraint, the optimal solution of 
the problem will remain the same. Hence, the constraint 1.5x

1
 + x

2
 ≤ 30 is said 

to be redundant.

Exercises

1. What is a linear programming problem? What are its limitations? Discuss 
briefly its various areas of application.

2. Write at least five applications of linear programming problems.

3. Explain why solutions to linear programming problems focus on corner points.

4. In the context of a linear programming problem, define the following;
  (i) Solution

 (ii) Feasible solution
(iii) Basic feasible solution and extreme points of a feasible region
(iv) Optimal basic feasible solution

5. What is a feasible region of a linear programming problem? When is it 
solved using the graphical method?

6. Give the generalized definition of an LPP.

7.  Explain the various approaches to solving an LPP using the graphical 
method.
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8. What is an iso-cost line and an iso-profit line?

9.     Explain how to use the iso-profit line in a graphical maximization problem.

10. What are the various assumptions of a linear programming problem?

11.  If a linear programming problem has a feasible region, then it has an infi-

nite number of solutions. Explain.

12. Show that the set of feasible solutions to a given LPP forms a convex set.

13.  Show that any BFS to an LPP is an extreme point of the convex set of 
feasible solutions of the problem.

14.  If the feasible solution to a given LPP is a polytope, then show that at 
least one extreme point of the polytope will give the optimum solution of 
the given LPP.

15.  A firm manufactures three products A, B, and C on which the profits 
earned per unit are $10, $15, and $14, respectively. Each product is pro-

cessed on two machines M
1
 and M

2
. Product A requires one minute of 

processing time on M
1
 and three minutes on M

2
, B requires two minutes 

on M
1
 and one minute on M

2
, while C requires one minute on M

1
 and one 

minute on M
2
. Machine M

1
 is available for not more that 15 hours, while 

M
2
 is available for 18 hours during any working day. Formulate this prob-

lem as an LP model so as to get maximum profit.

16.  A shopkeeper plans to sell two types products at costs of $1150 and  
$1600, The $1150 product yields a profit of $90 and the $1600 product 
yields a profit of $100. The shopkeeper estimates that the total monthly 
demand will not exceed 500 units. Find the number of units of each model 
that should be stocked in order to maximize profit. Also, it is given that the 
shopkeeper does not want to invest more than $1,000,000 in inventory.

17.  A company manufactures two types of models M
1
 and M

2
. Each M

1
 model  

requires 4 hours of grinding and 2 hours of polishing, while each M
2
 

model requires 2 hours of grinding and 5 hours of polishing. The com-

pany has 2 grinders and 3 polishers. Each grinder works for 40 hours a 
week and each polisher works for 60 hours a week. Profit on M

1
 is $30 

and that on a M
2
 model is $40. Formulate this as an LPP and solve it 

graphically. A company manufactures two types of models M
1
 and M

2
. 

Each M
1
 model requires 4 hours of grinding and 2 hours of polishing, 

while each M
2
 model requires 2 hours of grinding and 5 hours of polish-

ing. The company has 2 grinders and 3 polishers. Each grinder works for 
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40 hours a week, and each polisher works for 60 hours a week. Profit on 
M

1
 is $30, and that on an M

2
 model is $40. Formulate this as an LPP and 

solve it graphically.

18.  The standard weight of a special purpose brick is 5 kg, and it contains two 
basic ingredients B

1
 and B

2
. B

1
 costs $5/ kg and B

2
 costs, $8/ kg. Strength 

considerations dictate that the brick contains not more than 4 kg of B
1
 and 

a minimum of 2 kg of B
2
. Since the demand for the product is likely to be 

related to the price of the brick, find graphically the minimum cost of the 
brick satisfying the previous conditions. Further, find the range of the ratio 
of costs of two materials so that the same solution remains optimal.

19.  A company has received a contract to supply gravel to three new con-

struction projects located in towns A, B, and C. The construction engi-
neers have estimated that the required amount of gravel which will be 
needed at these construction projects are:

Project location Weekly requirement (truck loads)
A 72

B 102

C 41

  The company has 3 gravels pits located in towns X, Y, and Z. The gravel 
required by the construction projects can be supplied by three pits. The 
amount of gravel that can be supplied by each pit is as follows:

Plant X Y Z

Available amount (truck loads) 76 82 77

 The company has computed the delivery cost from each pit to each proj-
ect site. These costs (in $) are shown in the following table:

Location

A B C

X 4 8 8

Pit Y 16 24 16

Z 8 16 24
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 Schedule the shipment from each point to each project in such a man-

ner that it minimizes the total transportation cost within the constraints 
imposed by pit capacities and project requirements. Formulate this trans-

portation problem as a linear programming problem to minimize the total 
cost of transportation.

20.  A company has a scheduling problem. Operators are needed according 
to the schedule shown in the table. The operators report at the compa-

ny at the beginning of each period and work for 8 consecutive hours. 
Let x

j
 equal the number of operators beginning work in time period j, 

j = 1, 2, 3, …, 6. Formulate an LP model to hire the minimum number 
of operators the company needs.

Time period Operators needed

Midnight to 3 A.M. 5

3 A.M. to 7 A.M. 10

7 A.M. to noon 88

Noon to 3 P.M. 76

3 P.M. to 7 P.M. 50

7 P.M. to midnight 15

21.  A factory manufactures three products which are processed through three 
different production stages. The time required for manufacturing one unit 
of each of the three products and the daily capacity of the stages are given 
in the following table:

Stage Time required per unit Stage Capacity

Product 1 Product 2 Product 3

1 1 1 1 430

2 3 --- 2 460

3 1 4 --- 420

Profit per unit 3 2 5

Formulate the previous problem as a linear programming problem.

22.  A finished product must weigh exactly 150gms. The two raw materials 
used in manufacturing the product are A, with a cost of $2 per unit, and 
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B, with a cost of $8 per unit. At least 14 units of B and not more than 20 
units of A must be used. Each unit of A and B weights 5 and 10 grams 
respectively. How much of each type of raw material should be used for 
each unit of the final product in order to minimize the cost?

23.  A company produces two types of cowboy hats. Each hat of the first type 
requires twice as much labor time as does each hat of the second type. If 
all hats are of the second type only, the company can produce a total of 
500 hats a day. The market limits daily sales of the first and second types 
to 150 and 200 hats. Assume that the profit per hat is $8 for type 1 and $5  
for type 2. Determine the number of hats of each type to produce to maxi-
mize profit.

24.  A firm has 240, 370, and 180 kg of wood, plastic, and steel, respectively. 
The firm produces two products A and B each unit respectively. Each unit 
of A requires 1, 3, and 2 kg of wood, plastic, and steel, respectively. The 
corresponding requirement for each unit of B is 3, 4, and 1 kg, respec-

tively. If A sells for $4 and B sells for $6 per unit, then what product mix 
should the firm produce in order to have maximum gross income? For-
mulate this as an LPP.

25.  Use the corner point approach to solve the following linear programming 
problems graphically:

(i) Min  z = 3x
1
 + 5x

2

   Subject to

   x
1
 + x

2
 ≤ 3

  0.5x
1
 + 0.5x

2
 ≤ 1, x

1
, x

2
 ≥ 0

(ii) Max  z = 5x
1
 + 3.1 x

2

   Subject to

       3x
1
 + 3.3x

2
 ≤ 30

    x
2
 ≤ 6, x

1
 ≤ 7

      x
1
, x

2
 ≥ 0

(iii) Min  z = 5x
2

   Subject to

x
1
 + 3.3x

2
 ≤ 10

x
1
 + 10x

2
 ≥ 20, x

1
, x

2
 ≥ 0
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(iv) Max  z = 1.5x
1
 + 1.5x

2

   Subject to

      x
1
 + 2x

2
 ≤ 10

    3x
1
 + 3x

2
 ≥ 12

     x
2
 ≤ 3, x

1
, x

2
 ≥ 0

(v) Min  z = – x
1
 – x

2

  Subject to

      – 2x
1
 + 2x

2
 ≤ 2

  x
1
 – 2x

2
 ≥ – 4 x

1
, x

2
 ≥ 0

(vi) Max  z = 5x
1
 + x

2

   Subject to

   3x
1
 + 4x

2
 ≤ 20

   3x
1
 + 3x

2
 ≥ 21

     x
2
 ≤ 3, x

1
, x

2
 ≥ 0

26. Consider the following linear programming formulation:
Min   z = x

1
 + 4x

2

Subject to

 4x1 + 2x
2
 ≥ 60

   3x
1
 + 10x

2 
≥

 
120

    x
1
 + 1.5x

2
 ≥ 30

and     x
1
, x

2
 ≥ 0

 Graphically illustrate the feasible region and apply the iso-cost line to 
find the optimal solution.

27. Discuss the following situations using the graphical method:
  (i) Unbounded solution
 (ii) Multiple solution
(iii) Inconsistent constraint equations
(iv) Redundancy



C H A P T E R3
SIMPLEX METHOD-I

3.1.  Standard and Canonical Form of the General Linear 
Programming Problem

The Standard Form

The standard form of a given linear programming problem should have 

the following four characteristics:

(i)  The objective function should be either maximization or minimization.

(ii) All the constraints should be of the equality type.

(iii) The right-hand side vector b is non-negative.

(iv) All the decision variables should be greater than or equal to zero.

Definition: The standard form of a general linear programming problem 

in m constraints and n variables may be written as follows:

Maximize or Minimize  z = c
1
x

1
 + c

2
x

2
 + ... + c

n
x

n

Subject to the constraints

a x a x a x b

a x a x a x b

a x a x

n n

n n

i i

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

+ + + =

+ + + =

+

…

…

⋮ ⋮ ⋮

++ + =

+ + + =

…

⋮ ⋮ ⋮

…

a x b

a x a x a x b

in n i

m m mn n m1 1 2 2

 ...(3.1)

x
1
, x

2
, …. x

n
 ≥ 0



60 • OPTIMIZATION USING LINEAR PROGRAMMING

So, the standard form of a given linear programming problem consists of 

solving a set of simultaneous linear equations such that the solution satisfies 
the non-negativity conditions and optimizes the linear objective function

The following is the matrix notation of the previous problem:

Maximize or Minimize z = cx

Subject to the constraints

    Ax = b

and       x ≥ 0 …(3.2)

Here c is a 1 × n unit profit (or cost) vector, x is an n × 1 decision variables 

vector, A is an m × n coefficient matrix, and b is a non-negative m-dimensional  

column (resource) vector.

The Canonical Form

In matrix notation, the canonical form can be written:

Maximize or Minimize  z = c
NB 

x
NB

Subject to the constraints

     A
1
x

NB
 + I

m 
x

B
 = b

and        x
NB

, x
B
 ≥ 0  …(3.3)

where c
NB

 is the (n – m) components cost coefficients vector associated 
with non-basic variables x

NB
 in the objective function; A

1
 is the m × (n – m) 

order coefficient matrix of the non-basic variables in the constraint equations; 
I

m
 is an m × m order identity matrix associated with the basic variables x

B
 and 

b is a non-negative m-dimensional column vector. The decision variables x
NB

 

and x
B
 are (n – m) and m-dimensional column vectors, respectively. The basic 

solution x
B
 = b of the canonical form is obtained by setting x

NB
 = 0. The basic 

solution is feasible because b ≥ 0. The variables in the vector x
NB

 are called 

non-basic variables and in the vector x
B
 are called basic variables.

Note: In the canonical form, the following conditions should be true:

(i)   The objective function should be either in maximization or  

minimization.

(ii) All the constraints should be of the equality type.

(iii) All the decision variables should be greater than or equal to zero.

(iv) The right-hand side vector b is non-negative.
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(v) The objective function should be purely in terms of non-basic variables.

(vi)  The total number of basic variables should be equal to the number of 

constraints.

(vii)  Each constraint should have exactly one basic variable with coefficient 1.
Now, it is clear that the canonical form of a given LPP will also represent a 

standard form of the same problem, whereas the opposite does not always hold 

true —which means a standard form may or may not represent a canonical form.

3.2. Slack and Surplus Variables

Slack Variable: The non-negative variable which is added to the LHS of 

the constraint with a less than or equal to inequality (≤) relation, to convert it 
into an equality (=), is called a slack variable.

For example, consider 2x
1
 + 3x

2
 ≤ 60 as one of the constraints of any LPP. 

Adding s
1
 (≥ 0) to the left-hand side of the constraint, we have

 2x
1
 + 3x

2
 + s

1
 = 60

Here, the non-negative variable s
1
 is a slack variable.

Surplus Variable: The non-negative variable which is subtracted from 

the left-hand side of a greater than or equal to inequality (≥) constraint, to 
convert it into an equality (=), is called a surplus variable.

For example, consider 2x
1
 + 3x

2
 ≥ 60 as one of the constraints of any LPP. 

Subtracting s
1
 (≥ 0) from the left-hand side of the constraint, we have

2x
1
 + 3x

2
 – s

1
 = 60

Here, the non-negative variable s
1
 is a surplus variable.

Note: The prices assigned to slack and surplus variables in the objective 

function will always be zero because these variables are used only to convert 

inequalities into equations; otherwise, they do not play any role in optimizing 

the objective function.

Unrestricted Variable: A decision variable is said to be unrestricted in 

sign if it is allowed to take any value, such as positive, negative, or zero. In 

order to solve any LPP containing unrestricted variables, there is a need to 

convert the problem into the form which contains only non-negative variables.

For example, let x
j
 be a variable which is defined to be unrestricted in 

sign. Thus, we can write:

 x x x
j j j
= ′ − ′′  where ′ ′′ ≥x x

j j
, 0
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The variable x
j
 can be written as the difference of two non-negative vari-

ables ′x
j  and ′′x

j , such that: (i) if ′ > ′′x x
j j  then x

j
 > 0, (ii) if ′ < ′′x x

j j  then x
j
 < 0, 

and (iii) if ′ < ′′x x
j j  then x

j
 = 0.

Note: After converting any problem having variables unrestricted in sign 

into a standard linear programming problem having all non-negative vari-

ables, if we solve this problem, then only either one of the two variables ′x
j  

and ′′x
j
, or either of them, will appear in the final solution. They cannot both 

simultaneously be present in the optimal basic feasible solution since vectors 

corresponding to these two variables are linearly dependent and cannot appear 

in the basis at the same time. The variable which will be present in the optimal 

solution at the positive level will determine the sign of the original variable x
j
.

Example 3.1. Write the standard form of the following LPP:

Maximize       z = x
1
 + 2x

2
 – x

3

Subject to the constraints

   x
1
 + x

2
 + x

3
 ≤ 40

    x
1
 + 2x

2
 ≤ 26

   x
1
 + x

2
 + 2x

3
 ≤ 36

and       x
1
, x

2
, x

3
 ≥ 0

Solution: Introducing the slack variables s
1
, s

2
, and s

3
 in the first, second, 

and third constraints, respectively, we have

   x
1
 + x

2
 + x

3
 + s

1
 = 40

     x
1
 + 2x

2
 + s

2
 = 26

x
1
 + x

2
 + 2x

3
 + s

3
 = 36

So, the standard form of the given problem is

Maximize       z = x
1
 + 2x

2
 – x

3

Subject to the constraints

 x
1
 + x

2
 + x

3
 + s

1
 = 40

    x
1
 + 2x

2
 + s

2
 = 26

x
1
 + x

2
 + 2x

3
 + s

3
 = 36

and        x
1
, x

2
, x

3
, s

1
, s

2
, s

3
 ≥ 0
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Example 3.2. Put the following problem into its standard form:

Maximize    z = 6x1 + x
2

Subject to the constraints

x1 + x
2
 ≥ 4

x1 + x
2
 ≤ 6

          x1 ≥ 0 and x
2
 is unrestricted in sign

Solution: Introducing the surplus variable s
1
 ≥ 0 to the first constraint and 

the slack variable s
2
 ≥ 0 in the second constraint, we have

        x
1
 + x

2
 – s

1
 = 4

        x
1
 + x

2
 + s

2
 = 6

Since x
2
 is unrestricted in sign, we can write

       x x x2 2 2= ′ − ′′  where ′ ′′ ≥x x
2 2

0,

So, the standard form of the given problem is

Maximize       z x x x= + ′ − ′′6
1 2 2

Subject to the constraints

      

x x x s

x x x s

x x x s s

1 2 2 1

1 2 2 2

1 2 2 1 2

4

6

0

+ ′ − ′′ − =

+ ′ − ′′ + =

′ ′′ ≥, , , ,

Example 3.3. Put the following problem into its canonical form:

Minimize z = x
1
 – x

2
 + 3x

3
 – x

4

Subject to the constraints

      x1 + x
2
 + x

3
 + 3x

4
 = 14

       x
2
 + 3x3 + x

4
 = 10

       x1, x2
, x

3
, x

4
 ≥ 0

Solution: Since the problem has two constraints, it will have two basic 

variables. Let x
B
 = (x

1
, x

2
) and x

NB
 = (x

3
, x

4
) be the vectors of basic and non-

basic variables of the problem.
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Putting the value of x
2
 obtained from the second constraint, the first con-

straint can be written as:

  x
1
 + (10 – 3x

3
 – x

4
) + x

3
 + 3x

4
 = 14

⇒	 	 x
1
 – 2x

3
 + 2x

4
 = 4

Also expressing the objective function purely in terms of the non-basic 

variables, we have:

   z = (4 + 2x
3
 – 2x

4
) – (10 – 3x

3
 – x

4
) + 3x

3
 – x

4

⇒	 	 	 z = – 6 + 8x
3
 – 2x

4

Now we have

Minimize   z = – 6 + 8x
3
 – 2x

4

Subject to the constraints

      x
1
 – 2x

3
 + 2x

4
 = 4

      x
2
 + 3x

3
 + x

4
 = 10

      x
1
, x

2
, x

3
, x

4
 ≥ 0

The previous problem is the canonical expression of the given problem 

with x
1
 and x

2
 as basic variables.

3.3. Algebraic Simplex Method

The simplex method is a very powerful method developed by George 

Dantzig for solving any given linear programming problem. It is an iterative 

method to solve any LPP, either exactly in a finite number of steps or by giv-

ing an indication that the problem has an unbounded solution or no solution 

at all. As we have already discussed, the common feasible region of any given 

LPP always forms a convex set, and one of the extreme points (basic fea-

sible solution) of this bounded convex set will always be an optimal solution. 

Since there are only finite numbers of extreme points of any bounded region,  
the simplex method moves from one extreme point to another adjacent ex-

treme point, after starting from the initial extreme point, and ultimately reach-

es to the optimal extreme point in a finite number of steps.
Out of all adjacent extreme points, the simplex method selects that ex-

treme point giving the maximum improvement in the value of the objective 

function; if no further improvement is possible, the current extreme point 
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is optimal. At any stage, if the simplex method reaches to an extreme point 

which has an edge leading to infinity and the objective function can be im-

proved infinitely by moving along that edge, then it gives an indication that 
the problem has an unbounded solution. Moving from one corner point to 

another in the simplex method is the same as moving from one basic feasible 

solution to another by changing one basic variable in the given basis by a 

non-basic variable so that we get a new basis and hence a new basic feasible 

solution.

In this section, we will discuss the algebraic approach to this method. 

Here, the basic idea behind this technique is explored using an example so as 

to make the reader understand the method in a better way.

Example 3.4. Max z =3x1 + 1.5x
2
 + 2x

3
 + 2x

4

Subject to the constraints

x1 + x
2
 + x

3
 + 2x

4
 = 60

   x
2
 + 3x

3
 + 3x

4
 = 26

    x1, x2
, x

3
, x

4
 ≥ 0

Solution: Since there are two constraints in the given problem, we should 

have two basic variables. The simplex calculation will be started with the ca-

nonical form of the problem. To convert the given problem into its canonical 

form, we arbitrarily select any two variables as basic variables, which will pro-

vide us with the initial basic feasible solution of the problem. Let x
B
 = (x

1
, x

2
)  

and x
NB

 = (x
3
, x

4
) be the initial vectors of basic and non-basic variables of the 

problem. Using elementary row operations, we can write the constraints and 

z equation in the canonical form as

 x
1
 + (26 – 3x

3
 – 3x

4
) + x

3
 + 2x

4
 = 60

⇒	 	 	 		x
1
 – 2x

3
 – x

4
 = 34 ...(3.4)

   x
2
 + 3x

3
 + 3x

4
 = 26 ...(3.5)

Replacing the values of x
1
 and x

2
 from (3.4) and (3.5) in the objective 

function, we have

  z = 3 (34 + 2x
3
 + x

4
) + 1.5 (26 – 3x

3
 – 3x

4
) + 2x

3
 + 2x

4

   = 141 + 3.5x
3
 + 0.5x

4

So, the canonical form of the given problem is

Maximize z
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Subject to

      x
1
 – 2x

3
 – x

4
 = 34 ...(3.6)

     x
2
 + 3x

3
 + 3x

4
 = 26 ...(3.7)

   z – 3.5x
3
 – 0.5x

4
 =141 ...(3.8)

     x
1
, x

2
, x

3
, x

4 
≥ 0

The value of the objective function at the associated basic feasible solu-

tion (34, 26, 0, 0) is 141. Now the key behind the simplex method is to move 

from one basic feasible solution to another basic feasible solution that gives 

a better value of the objective function, that is, the larger value of z in this 

case. This is done by replacing one variable in the basis with one non-basic 

variable. On carefully observing the z equation given in (3.8), it can be seen 
that the value of z can be improved if at least one of the coefficients of the 
non-basic variable is negative (this will be called the optimality condition). 

If more than one variable has a negative coefficient, then the variable with 
the most negative coefficient will enter the basis (the condition for deciding 
about entering a variable into the basis) in the next calculation. In this case, 

x
3
 will enter the basis.

Now, x
3
 will replace either x

1
 or x

2
 in the basis. To decide about this, we set 

the non-basic variable x
4
 equal to zero in equations (3.6) and (3.7) and we get

   x
1
 – 2x

3
 = 34 ...(3.9)

  x
2
 + 3x

3
 = 26 ...(3.10)

Solving for x
1
 and x

2
 gives

       x
1
 = 34 + 2x

3
 ...(3.11)

      x
2
 = 26 – 3x

3
 ...(3.12)

Since x
1
 and x

2
 are both non-negative, we have

 0 ≤ 34 + 2x
3
  ⇒		 – 17 ≤ x

3

And     0 26 3
26

3
3 3

≤ − ⇒ ≤x x

Clearly, x
3
 cannot be made arbitrarily large as it has to satisfy both in-

equalities. We are here to find the maximum possible value of x
3
 which will 

satisfy both inequalities. Since the first inequality does not have an upper 
bound on x

3
, the upper limit for x

3
 is solely determined by the second equality 

and is equal to 26

3

. And hence, x
3
 will replace x

2
 in the basis.
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(These are the criteria needed to decide about the leaving variable from 

the basis in the simplex calculation. Calculating min 
b

a
ai

ij

ij, >









0  for the con-

straint equations of the present basic variables and the corresponding variable 

for which the minimum ratio exists results in the leaving variable from the 

basis. Here, a
ij
 is the coefficient of the new basic variable x

j
 in the constraint 

equation of the ith basic variable x
i
, and b

i
 is the present value of x

i
).

Now, x
B
 = (x

1
, x

3
) and x

NB
 = (x

2
, x

4
). Letting x

3

26

3
=  gives the basic fea-

sible solution 
150

3
0
26

3
0, , ,









 , and the value of z at this point is 514

3

. Rewrit-

ing (3.6), (3.7), and (3.8) in the canonical form on the basis of the new basic 

and non-basic variables, we have

     x x x1 2 4

2

3

154

3
+ + =  ...(3.13)

     
1

3

26

3
2 3 4

x x x+ + =  ...(3.14)

      z x x+ + =
3 5

2
3

514

3
2 4

.  ...(3.15)

     x
1
, x

2
, x

3
, x

4
 ≤ 0

Since the coefficient of the non-basic variables in the z-row in (3.15) 
are all positive, no further improvement on the value of z is possible; 

hence, the present basic feasible solution is the optimal basic feasible 

solution of the given problem, and the corresponding value of z is the 

maximum value of z.

Optimum solution: x
1

154

3
= , x

2
 = 0, x

3

26

3
= , x

4
 = 0, and the maximum 

value of z is 
514

3

.

Example 3.5. Maximize z = 4x
1
 + x

2

Subject to the constraints:

2x
1
 + x

2
 ≤ 100

x
1
 + x

2
 ≤ 80

       x
1
 ≤ 40

x
1
, x

2
, ≥ 0
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Solution: Writing the given problem into its canonical form by introduc-

ing the slack variables s
1
, s

2
, and s

3
, we have

Maximize z

Subject to the constraints

   2x
1
 + x

2
 + s

1
 = 100 ...(3.16)

   x
1
 + x

2
 + s

2
 = 80 ...(3.17)

   x
1
 + s

3
 = 40 ...(3.18)

      z – 4x
1
 – x

2
 = 0 ...(3.19)

    x
1
, x

2
, x

1
, s

2
, s

3
 ≥ 0

Let x
B
 = (s

1
, s

2
, s

3
) and x

NB
 = (x

1
, x

2
). The value of z at this point is zero. 

Clearly, from (3.19), we can see that x
1
 will enter the basis. To decide on the 

departing variable, we put x
2
 = 0 in (3.16), (3.17), and (3.18), and then we 

have

  s
1
 = 100 – 2x

1
 ≥ 0  ⇒ x

1
 ≤ 50 ...(3.20)

  s
2
 = 80 – x

1
 ≥ 0   ⇒ x

1
 ≤ 80 ...(3.21)

  s
3
 = 40 – x

1
 ≥ 0   ⇒ x

1
 ≤ 40 ...(3.22)

The maximum possible value of x
1
 which satisfies (3.20)–(3.22) is 40, 

and this corresponds to (3.22), and hence x
1
 will replace s

3
 in the basis. Let-

ting x
1
 = 40 gives the basic feasible solution (40, 0, 20, 40, 0), and the value 

of z at this point is 160.
Rewriting (3.16)–(3.19) in the canonical form on the basis of the new 

basic and non-basic variables, we have

    x
2
 + s

1
 – 2s

3
 = 20 ...(3.23)

    x
2
 + s

2
 – s

3
 = 40 ...(3.24)

   x
1
 + s

3
 = 40 ...(3.25)

      z + 4s
3
 – x

2
 = 160 ...(3.26)

Since the coefficient of x
2
 in (3.26) is negative, x

2
 enters the basis. Setting 

s
3
 = 0 in (3.23)–(3.25), we get

  s
1
 = 20 – x

2
 ≥ 0 ⇒ x

2
 ≤ 20 ...(3.27)

  s
2
 = 40 – x

2
 ≥ 0 ⇒ x

2
 ≤ 40 ...(3.28)

  x
1
 = 40 ≥ 0 ...(3.29)
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Again the value of x
2
 must satisfy both (3.27) and (3.28); the maximum 

possible value of x
2
 is 20, and this corresponds to (3.27), and thus x

2
 will 

replace s
1
 in the basis. Letting x

1
 = 40 and x

2
= 20 gives the basic feasible solu-

tion (40, 20, 0, 20, 0), and the value of z at this point is 180.
Rewriting the z-row in terms of the new non-basic variables, we have:

 z + 2s
3
 + s

2
 = 180 ...(3.30)

Since the coefficients of the non-basic variables in the z-row in (3.30) are 
all positive, no further improvement on the value of z is possible. Therefore, 

the present basic feasible solution is the optimal basic feasible solution of the 

given problem, and the corresponding value of z is at its maximum.

Example 3.6. Maximize z = 4x
1
 + 10x

2

Subject to the constraints:

  x1 + x
3
 = 10

    x1 + 2x
2
 – x

4
 = 6

    x1, x2
, x

3
, x

4
 ≥ 0

Solution: Let x
B
 = (x

2
, x

3
) and x

NB
 = (x

1
, x

4
) be the vectors of the initial 

basic and non-basic variables of the problem. Using elementary row opera-

tions, we can write the constraints and z equation in the canonical form as:

Max z

Subject to the constraints

      x
1
 + x

3
 = 10 ...(3.31)

    
1

2

1

2
31 2 4

x x x+ − =  ...(3.32)

 z + x
1
 – 5x

4
 = 30 ...(3.33)

 x
1
, x

2
, x

3
, x

4
 ≥ 0

Clearly, x
4
 will enter the basis in the next step, as it is the only non-basic 

variable with a negative coefficient in (3.33). Now, x
4
 will replace either x

2
 or 

x
3
 in the basis. To decide this, we set non-basic variable (x

1
) equal to zero in 

equations (3.31) and (3.32), and we have

  x
3
 = 10 ...(3.34)

    x x x x
2 4 2 4

1

2
3 3

1

2
− = ⇒ = +  ...(3.35)
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From (3.35), we can see that the value of x
4
 can be increased as much as 

we wish, so as to have a very large value of x
2
 and thus the large value of z. 

This is a situation where the problem has an unbounded solution. And hence 

the given problem has an unbounded solution with x
1
 = 0, x

3
 = 10, x

4
 = 0, and 

an infinitely large value of x
2
.

Algorithm of the Algebraic Simplex Method: The steps involved in the 

previous calculations may be summarized as follows:

1.  First convert the given problem into its canonical form, where all the 

inequalities are converted into equations by adding slack and surplus 

variables so that all the constraints are in equation form, the R.H.S. of 

the equations are positive (if it is negative then multiply both sides of 

the equation by a negative sign), and the objective function is in maxi-

mization (minimization).

2.  Obtain the initial basic feasible solution to start the calculation 

where the coefficient matrix of the initial basic variables should 

form an identity matrix. The initial basic feasible solution is given 

by X
B
 = B−1 b ≥ 0, where B is a basis matrix, b is an RHS vector, 

and X
B
 is a vector containing basic variables. Initially, B is an 

identity matrix, and hence X
B
 = b ≥ 0 gives the solution of initial 

basic variables. Write the objective function purely in terms of the 

non-basic variables.

3.  Check the optimality condition of the present basic feasible solution. 

We look at the coefficients of the objective function (z) equation to find 
one that is negative (positive). If there is none, we have an optimal 

solution. Otherwise, let the variable with the most negative (positive) 

value (say x
r
) in the z equation enter the basis.

4.  Putting the values of other non-basic variables equal to zero in the 

constraint equations, we shall now increase the value of x
r
 until the first 

basic variable x
t
 becomes zero. If this never happens, that is, if no basic 

variable starts having negative value, however large x
r
 may be, then the 

problem will have an unbounded solution. Otherwise, we will replace 

x
t
 by x

r
 in the basis.

5.  Change the basis by replacing the departing basic variable with the 
new entering non-basic variable. Obtain the new basic feasible solu-

tion. The value of z so obtained will have a better value than the previ-

ous one.
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6.  Repeat the previous steps until no further improvement is possible. The 
whole process will terminate after a finite number of steps with one of 
the following conclusions:

(a) the problem has no feasible solution;

(b) the problem has a finite optimal solution; or
(c) the problem has an unbounded solution.

Note. The value of z improves at each iteration unless there are con-

straints with zero value. In this case, the new value of z is same as its old val-

ue. This situation is called degeneracy, and such a case needs to be handled 

differently. For the time being, we assume that we do not have this situation.

3.4. Relationship between the Simplex and Graphical Methods

Now that it can be seen that the simplex method is similar to solving a sys-

tem of linear equations. In fact, this method does solve a system of linear equa-

tions (to be discussed in next chapter) and the solution is derived. Further, the 

method not only solves the equations but also optimizes the objective function 

of the problem. There are a number of methods for solving simultaneous linear 

equations. For example, the Gauss-Jordan method discussed in Chapter 1 is one 

such method which has a close relation to the simplex calculation.

The simplex method as seen previously is an iterative method of solving 

a given linear programming problem. The method starts its calculation with an 

initial basic feasible solution and then repeats the solution process by remov-

ing one basic variable from the basis and allowing another from the non-basic 

variables to enter the basis, making successive improvements until the optimal 

solution is found. It is sometimes referred to as an adjacent extreme point  
solution procedure because it generally begins at a feasible extreme point and 

then successively evaluates the adjacent extreme point until one representing the 

optimal solution is found. It may be recalled that in the graphical method the  

optimum solution (if it exists) of a problem is found at one of the extreme points. 

To understand this more deeply, we consider Example 3.5 of the previous section:
Maximize      z = 4x

1
 + x

2

Subject to the constraints:

2x
1
 + x

2
 ≤ 100

x
1
 + x

2
 ≤ 80

       x
1
 ≤ 40 and x

1
, x

2
 ≥ 0
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  Fig. 3.1

Let the simplex method start its calculation at the origin (0, 0), which 
means at this point x

1
 and x

2
 are both non-basic variables. Now, since in the 

objective function equation x
1
 has a larger coefficient than x

2
, we shall allow 

x
1
 to enter the basis, so we move to the adjacent point D (40, 0), and finally, it 

arrives at the extreme point B (40, 20), which is an optimal solution.
To use the simplex method to solve the previous problem, the constraints 

need to be converted into canonical form.

2x
1
 + x

2
 + s

1
 = 100

x
1
 + x

2
 + s

2
 = 80

   x
1
 + s

3
 = 40

Since there are three equations in five variables, potentially a maximum 
of (5!/3! 2!) = 10 basic solutions are possible for this problem. However, only 
five of these are basic feasible solutions, which correspond to five extreme 
points of the feasible region. The solution values of all five variables associ-
ated with each extreme point are shown in the following table.

Extreme Point (in Fig. 3.1) x
1

x
2

s
1

s
2

s
3

z

O 0 0 100 80 40 0

A 0 80 20 0 40 80

B 20 60 0 0 20 140
C 40 20 0 20 0 180

D 40 0 20 40 0 160

It can also be easily noted that the values of all the variables, including 

the slack variables, are non-negative.
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3.5. Simplex Method in Tabular Form

Though easy, the graphical method has its own limitations. This method 

is ideal for problems with only two variables. Whereas the algebraic form of 

the simplex method may be best for understanding the underlying concept of 

the simplex algorithm, it’s not always convenient to solve a linear program-

ming problem in this way; so, a better way of finding a solution needs to be 
explored. When the problem is solved manually, the tabular form of solving a 

linear programming problem will always be a more convenient approach. The 

tabular form of the simplex method records only the essential information, 

namely, the coefficient of the variables, the values on the right-hand side, and 
the basic variables. This not only saves the computation time but also reduces 

complication in its approach.

To solve a linear programming problem with a maximization (minimiza-

tion) objective function using the simplex method in tabular form, one can 

use the following steps:

(i)  Write the given problem into its canonical form.

(ii)  Create the initial simplex tableau using the initial basic feasible  

solution.

(iii)  Entering Rule: Locate the most negative (positive) entry in the bot-

tom row (or z-row). The column corresponding to this entry is called the 

entering column or pivot column (in a case of a tie, choose any column 

arbitrarily). The non-basic variable corresponding to this pivot column is 

the entering variable in the basis.

(iv)  Leaving Rule: Compute the ratio of the entries in the b-Column (solu-

tion column) with the corresponding positive entries in the entering col-

umn, that is, compute 
b

a

i

ij

, a
ij
 > 0, where j is the entering column. Now 

the departing basic variable corresponds to min 
b

a
ai

ij

ij
, >










0  and the 

corresponding row is called the pivot row. If all entries in the entering 

column are ≤ 0, then the problem will have an unbounded solution. The 

entry at the crossing point of the pivot column and pivot row is called the 

pivot element.

(v)   Using elementary row operations convert the pivot element into 1 and all 

other entries in the entering column as 0. This process is called pivoting.
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(vi)  If all entries in the bottom row are zero or positive (negative), then this 

is the final tableau and the condition is called the optimality condition, 
which is used to determine whether there is any chance of improvement 

in the value of the objective function. If the condition is not satisfied, 
then go to step (iii) and repeat the same procedure; otherwise, stop. As in 

the case of the algebraic method, the whole process will terminate after a 

finite number of steps with one of the following conclusions:
(a) the problem has no feasible solution;

(b) the problem has a finite optimal solution; or
(c) the problem has an unbounded solution.

This algorithm will be better explained using the following example.

Example 3.7. Max z = 40x
1
 + 35x

2

Subject to the constraints

   2x1 + 3x
2
 ≤ 60

   4x1 + 3x
2
 ≤ 96

    x1, x2
 ≥ 0

Solution: Introducing the slack variables s
1
 and s

2
, the standard form of 

the given problem is:

         Max z = 40x
1
 + 35x

2

Subject to the constraints:

   2x
1
 + 3x

2
 + s

1
 = 60

   4x
1
 + 3x

2
 + s

2
 = 96

   x
1
, x

2
, s

1
, s

2
 ≥ 0

Initialization: This method starts with the canonical form of the given 

problem. The initial basic variable, whose coefficient matrix gives an identity 
matrix, will be identified. Now, the problem can be rewritten as:

  2x
1
 + 3x

2
 + s

1
 = 60

     4x
1
 + 3x

2
 + s

2
 = 96 ...(3.36)

 z – 40x
1
 – 35x

2
 = 0

   x
1
, x

2
, s

1
, s

2
 ≥ 0
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For starting the simplex calculation, we need to have an identity matrix of 

size 2 × 2, and the columns corresponding to s
1
 and s

2
 in the constraint equa-

tions of (3.36) are going to provide us with the identity matrix. Thus, x
B
 = (s

1
, s

2
)  

and x
NB

 = (x
1
, x

2
).

Initial Table

Basic 

Variables

z x
1

x
2

s
1

s
2

Solution

s
1

0 a
11

a
12

b
1

s
2

0 a
21

a
22

B–1 b
2

z 1 –c
1

–c
2

–c
3

–c
4

0

The z column plays no role in finding the optimal solution, and hence we will 
not be including this column in any of the tables in the remaining calculations.

Basic 

Variables

x
1

x
2

s
1

s
2

Solution Ratio (Solution/a
i1
 (> 0))

s
1

2 3 1 0 60
60

2
30=

s
2

4 3 0 1 96 96

4
24=

Pivot 
Row

z –40 –35 0 0 0

     Pivot 
Column

Optimality Test: An optimality check will be done on the current basic 

feasible solution (BFS). The current BFS will be optimal if all the elements 

in the z-row are ≥ (≤) in the case of maximization (minimization), or else we 
move to the next table.

In the previous table, since the elements in the z row are not all greater 

than or equal to zero (≥ 0), the optimality condition is not satisfied, and hence 
we move to the next table by allowing a non-basic variable to enter the 
basis and departing a basic variable from the basis at the same time.

It can be seen that the most negative element in the z row is -40, so x
1
 

enters the basis in the next iteration, and this column corresponding to x
1
 (the 

entering variable) is called the pivot column.
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To decide on the leaving variable, we find out the minimum ratio between 
the elements of the solution column and pivot column (which are strictly 
greater than zero). As can be seen from the previous table, the minimum  

ratio is 24 and this corresponds to s
2
 . Therefore, s

2
 now will be the leaving 

variable, and this row will be called the pivot row. The point of intersection 

of the pivot row and pivot column is called the pivot element, which in the 
previous table is 4. Therefore, our new basic and non-basic variables are:

X
B
 =(s

1
, x

1
) and X

NB
 = (x

2
, s

2
)

To construct the new table, we shall use the concept of the Gauss-
Jordan elimination method discussed in Chapter 1, which includes the 
following steps:
 I.  For the row of the new basic variable (in this case x

1
), that is, the pivot 

row:
(a)  Replace the leaving variable by the entering variable in the basic 

variables column.
(b)  Elements of the new pivot row = current pivot row ÷ pivot ele-

ment, that is, the current pivot row/pivot element.
II.  All the remaining rows of the new table, including the z-row, will be 

computed as:
 New row = current row – (pivot column coefficient of the current row)*
(Row of the new basic variable)

1. The row of the new basic variable (in this case x
1
) = 

1

4

 (4 3 0 1 9 6)

Basic variables x
1

x
2

s
1

s
2

Solution

s
1

x
1

1 0.75 0 0.25 24

2. The new row for s
1
 = (2 3 1 0 60) – 2 * (1 0.75 0 0.25 24)

Basic Variables x
1

x
2

s
1

s
2

Solution

s
1

0 1.5 1 –0.5 12

x
1

1 0.75 0 0.25 24

z
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3. The new row for z = (–40 –35 0 0 0) – {(–40) * (1 0.75 0 0.25 24)}
Complete First Iteration Table:

Basic variables x
1

x
2

s
1

s
2

Solution Ratio

s
1

0 1.5 1 -0.5 12 8

x
1

1 0.75 0 0.25 24 32

z 0 –5 0 10 960

Clearly, x
2
 replaces s

1
 in the basis in the next table.

1

1 5.
 (Pivot row of the previous table)

Old row of x
1
 – 0.75* row of new basic variable (x

2
).

Old row of z – (– 5)* row of new basic variable (x
2
).

Second Iteration:

Basic variables x
1

x
2

s
1

s
2

Solution

x
2

0 1 0.67 –0.33 8

x
1

1 0 –0.5 0.5 18

z 0 0 3.33 8.33 1,000

Since all the elements in the z-row are ≥ 0, the optimality condition is now 
satisfied. Hence, the optimum solution of the problem is x

1
 = 18 and x

2
 = 8,  

and the corresponding maximum value of z is 1,000.

3.6.  Use of Solver in MS-Excel for Solving a Linear Programming 
Problem

The stepwise solution of the problem given in Example 3.7 using the 
in-built “Solver” module of MS-Excel 2007 has been demonstrated in this 
section.
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Step 1. Enter your data as shown in the following figure.

     Fig. 3.2

Step 2. Define the LHS, Slack, and z value.

First LHS = Sum product of the first constraint coefficient and the opti-
mum value of x

1
 and x

2
 in the solution space, which can be obtained when the 

problem gets solved. Initially, we can enter any value or the computer will 

assume it to be when none is entered.

Second LHS = Sum product of the second constraint coefficient and the 
optimum value of x

1
 and x

2
 in the solution space, which we will have after 

solving the problem.

Slack = RHS – LHS

z = Sum product of the coefficients of the decision variables in the objec-

tive function and their optimum value in the solution space.

  Fig. 3.3
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Step 3. Go to Data menu option in EXCEL and select Solver (on the top 

right corner).

 Fig. 3.4

Step 4. Fill up the cells in the Solver parameters window.

In the Set Target Cell, enter the cell address from the spread sheet where 

the value of z (where the Sumproduct formula was written) is calculated. 

Define the objective of the problem by selecting Max or Min.
In the By Changing Cells window select the cells in the solution space 

where the values of x
1
 and x

2
 are to be displayed. And then click Add in the 

Subject to the constraints option.

 Fig. 3.5
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In the Add Constraint window, select the call address of the LHS for the 

first constraint from the worksheet and enter it in the Cell reference option of 

the dialogue box; then the RHS cell reference of the first constraint is entered 
in the Constraint option of the box. Repeat the same steps for the remaining 

constraints, and then click OK.

   Fig. 3.6

Step 5. Now Click Solve to have the final solution.

     Fig. 3.7

Result: Solver found a solution. All constraints and optimality conditions 

are satisfied. The optimum solution of the problem is x
1
 = 18 and x

2
 = 8, and 

the corresponding maximum value of z is 1,000.



SIMPLEX METHOD-I • 81

3.7. Use of Jensen Add-Ins for a Linear Programming Problem

Paul Jensen, Professor Emeritus at the University of Texas-Austin, used 

the Internet to share his experiences with Excel-based add-ins for comput-

ing various Operational Research (O.R.) problems. On the site he describes 

models for an enormous variety of O.R. problems and has a collection of 

Microsoft Excel add-ins that implement O.R. methods. All these add-ins are 

available for free and can be easily downloaded.

The following steps explain how the Jensen add-ins can be used to solve 

the same Example (3, 7):
Step 1. Download the Jensen Add-In from http://www.me.utexas.

edu/~jensen/ORMM/ excel/library_windows.html and install the add-in files 
lpip_solver.xla and mp_models.xla.

Step 2. Go to Add-Ins and then to OR_MM and select _Linear/ 
Integer.

  Fig. 3.8

Step 3. In the linear programming dialog box, define the objective of the 
problem, the number of variables, and the number of constraints. Also select 

“none” in the integer variable option box, select “Include Minimums” and 

“Jensen LP/IP,” and then click OK.
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  Fig. 3.9

Step 4. Enter all the necessary information as follows:

  Fig. 3.10
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Step 5. And click solve.

      Fig. 3.11

It can be clearly seen that the problem has an optimal solution and the 

number of iterations required in reaching this solution is 2.

Example 3.8. Max z = 3x1 + 9x
2

Subject to the constraints

  2x1 + x
2
 ≤ 50

    x1 + 4x
2
 ≤ 100

2x1 + 3x
2
 ≤ 90

    x1, x2
 ≥ 0

Solution: The standard form to the given problem is

Max z = 3x
1
 + 9x

2

Subject to the constraints

      2x
1
 + x

2
 + s

1
 = 50

      x
1
 + 4x

2
 + s

2
 = 100 …(3.37)

      2x
1
 + 3x

2
 + s

3
 = 90

      x
1
, x

2
, s

1
 s

2
, s

3
 ≥ 0

(3.37) can also be rewritten as
      2x

1
 + x

2
 + s

1
 = 50

      x
1
 + 4x

2
 + s

2
 = 100

      2x
1
 + 3x

2
 + s

3
 = 90

      z – 3x
1
 – 9x

2
 = 0

      x
1
, x

2
, s

1
 s

2
, s

3
 ≥ 0



84 • OPTIMIZATION USING LINEAR PROGRAMMING

Initial Table

Basic x
1

x
2

s
1

s
2

s
3

Solution Ratio

s
1

2 1 1 0 0 50 50

s
2

1 4 0 1 0 100 25

s
3

2 3 0 0 1 90 30

z –3 –9 0 0 0 0

x
2
 enters and s

2
 departs.

First Iteration

Basic x
1

x
2

s
1

s
2

s
3

Solution Ratio

s
1

1.75 0 1 –0.25 0 25 14.28571

x
2

0.25 1 0 0.25 0 25 100

s
3

1.25 0 0 –0.75 1 15 12

z –0.75 0 0 2.25 0 225

x
1
enters and s

3
 departs.

Second and Final Iteration

Basic x
1

x
2

s
1

s
2

s
3

Solution

s
1

0 0 1 0.8 –1.4 4

x
2

0 1 0 0.4 –0.2 22

x
1

1 0 0 –0.6 0.8 12

z 0 0 0 1.8 0.6 234

Since all the elements in the z row are ≥ 0, the optimality condition is now 
satisfied. Hence, the optimum solution of the problem is x

1
 = 12 and x

2
 = 22, 

and the corresponding maximum value of z is 234.

Note: Here all the algorithms have been explained by assuming a maxi-

mization problem as a standard problem. If any linear programming problem 

is of a minimization type, then convert that problem into a maximization type 

by simply multiplying the objective function coefficients by a negative sign 
and follow the same procedure as is explained for the maximization problem.
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The following are some important points which are to be noted for 
simplex calculations:

•  Simplex calculations always start with a set of initial basic variables 

whose coefficient matrix forms an identity matrix.
•  The solution column in the simplex table, at any stage of the calcula-

tion, should always be greater than or equal to zero. This is called the 

feasibility condition of the problem.

•  The prices assigned to slack and surplus variables in the objective 
function will always be zero, because these variables are used only 

to convert inequalities into equations; otherwise, they do not play any 

role in optimizing the objective function.

•  At any stage of the calculation, the columns corresponding to the basic 

variables should always provide an identity matrix.

•  The entries in the z-row for the basic variables should be equal to zero 
at any stage of the calculation.

•  The simplex method is an iterative method, and it terminates after a 
finite number of steps with one of the following conclusions:
(a)  the problem has no feasible solution (this will be explained in the 

next chapter);

(b) the problem has a finite optimal solution; or
(c)  the problem has an unbounded solution (this will be explained in 

the next chapter).

Exercises

1.   What is the role of a slack and surplus variable in a linear programming 

problem?

2.   What is a standard and canonical form of a given linear programming 

problem?

3.   Taking x
1
 and x

2
 as the basic variables, write the canonical form for the 

following system of linear equations:

4x
1
 + x

2
 – 6x

3
 = 40

   x
1
 – x

3
 = 8

Also, find the value of x
1 
and x

2
 from the resulting system.
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4.  Put the following problem into standard form:

(i) Max z = x
1
 + x

2
 + x

3

  Subject to

   x
1
 + 4x

2
 – x

3
 = 20

     2x
2
 + 3x

3
 ≤ 35

      x
1
, x

2
, x

3
 ≥ 0

(ii) Max z = x
1
 – 3x

2
 + x

3

  Subject to

  –3x
1
 + 4x

2
 + x

3
 ≤ 120

    2x
1
 + 3x

2
 + x

3
 ≥ 350

    x
1
, x

2
 ≥ 0 and x

3
 unrestricted in sign.

(iii) Min z = x
1
 + x

2
 – 2x

4

    Subject to

   x
1
 + 4x

2
 + x

3
 + x

4
 = 55

  3x
2
 + 4x

4
 + x5 ≥ 35

      x
2
, x

3
, x

4
, x5 ≥ 0 and x

1
 unrestricted in sign,

(iv) Max z = 6x
1
 + 2x

2
 + x

3
 + 20

   Subject to

   4x
1
 – 3x

2
 – x

3
 ≤ 100

      x
1
 + x

2
 + x

3
 ≤ 150

     10 ≤ x
3
 ≤ 30

       x
1
, x

2
 ≥ 0

5.  Put the (i) and (iii) parts of problem 4 into canonical form.

6.  Explain the steps involved in simplex calculation.

7.  What is “pivoting” in simplex calculation?

8.   Use the algebraic approach of simplex calculation to solve  

problem 4(i)·
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9.   Graphically explain the steps of the simplex method for the following 

problem:

       Max z =2x
1
 + 3x

2

Subject to

      6x
1
 + 4x

2
 ≤ 48

      2x
1
 + 3x

2
 ≤ 30

      x
1
 ≤ 6, x

2
 ≤ 5 and x

1
, x

2
 ≥ 0

10. Consider the linear program:

       Max z = 6x
1
 + 5x

3
 – x5

Subject to:

   2x
1
 + x

2
 + 4x

3
 – x5 = 20

   3x
1
 + x

3
 + x

4
 + 2x5 = 40

   x
1
 + 1.5x

3
 + x5 + x6 = 35

     x
j
 ≥ 0, j = 1, 2, …, 6

(i) Find an initial basic feasible solution and its values.

(ii)  Convert the given system of equations to the canonical form for  

carrying out the simplex routine.

(iii) Is the current initial basic feasible solution optimal? If not, why?

(iv)  How would you select the entering variable if the current basic fea-

sible solution is not optimal?

(v)  Having chosen an entering variable, how do you select the leaving 

variable?

(vi)  What will happen if none of the current basic variables is eligible 

for leaving the basis?

 (vii)  What is the rule for ensuring that the new basic solution is still fea-

sible?

   (viii)  Without performing the pivot operation, find the values of the new 
basic variables and check for optimality. If the current basic vari-

ables do not provide us an optimal solution, complete the operation 

and find the optimal basic feasible solution to the given problem.
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11.   Solve the following linear programming problems by the simplex 

method:

(i) Maximize Z = 5x
1
 + 4x

2
 + 7x

3

  Subject to the constraints x
1
 + 2x

2
 + x

3
 ≤ 300

    2x
1
 + x

2
 + 2x

3
 ≤ 550

      x
1
 + 3x

2
 + x

3
 ≤ 500,  x

1
, x

2
, x

3
 ≥ 0

(ii) Maximize Z = 1x
1
 – 2x

2
 + x

3

  Subject to the constraints –2x
1
 + x

2
 + x

3
 ≤ 5

     –1x
1
 + x

2
 – 2x

3
 ≤ 8

x
1
 unrestricted in sign, and x

2
, x

3
 ≥ 0.

(iii) Maximize Z = 7x
1
 + 5x

2
 + 3x

3
 + 2x

4

  Subject to the constraints x
1
 + 3x

2
 + 2x

3
 + x

4
 ≤ 50

      3x
1
 + x

2
 + 1x

3
 + x

4
 ≤ 60

     x
1
, x

2
, x

3,
 x

4
 ≥ 0

(iv) Maximize Z = 2x
1
 + 7x

2

  Subject to the constraints x
1
 + 3x

2
 ≤ 20

       1x
1
 + 2x

2
 ≤ 12

    3x
2
 ≤ 5, x

1
, x

2
 ≥ 0



C H A P T E R4
SIMPLEX METHOD-II

4.1. Introduction

As already mentioned in the previous chapter, the simplex algorithm starts 
with an initial basic feasible solution where the coefficient matrix correspond-
ing to the basic variables forms an identity matrix, but there may be a situation 
where we will not be able to get such an identity matrix to start the simplex 
computation. This type of situation mostly occurs when we have constraints 
with (≥) inequalities or with equalities in the given linear programming prob-
lem. In such circumstances, a new dummy variable is introduced in the prob-
lem just to provide us an identity matrix for starting the simplex calculation, 
and such a variable is known as an artificial variable.

Definition: The non-negative variable which is added to the problem so 
as to have an identity basis matrix to start the simplex calculation is known 
as an artificial variable (AV). These variables are called artificial because they 
don’t have any meaning for the original problem, and hence the initial basic 
feasible solution obtained by adding them to the initial problem will not be 
a basic feasible solution for the original problem; it will only be a basic fea-
sible solution for the new problem. Thus, any solution to the original problem 
should not contain an artificial variable at a positive level. If the final solu-
tion of the problem (when the optimality condition is satisfied and further 
improvement is not possible) has one or more artificial variables in the basis 
at the positive level, then no solution exists for the original problem (which 
may be due to inconsistent constraints or due to the nonexistence of a feasible 
solution).

The presence of an artificial variable in the problem has to be handled 
differently. There are two methods for handling the presence of this variable 
in the problem.
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(i)  Big M method

(ii) two-phase method

Both methods work in such a way that the artificial variables are driven 
away from the basis as soon as possible so that we can get a basic feasible 
solution for the original problem, and hence by further application of simplex 
method, we will be able to obtain the optimal solution to the original problem. 
Once artificial variables vanish from the basis, they will never enter again 
into the basis at a positive level, since the simplex method works in such a 
way that it always improves the solution in further iterations.

Remark: An artificial variable will not have any effect on the final value 
of the objective function.

4.2. Big M Method (Penalty Method)

The Big M method is a version of the simplex algorithm that first finds 
a basic feasible solution by adding “artificial” variables to the problem. The 
following steps are involved in this method.

(i)   Make sure that the RHS of each constraint is non-negative. If required, a 
constraint may be multiplied by –1 to convert its RHS into positive. Don’t 
forget to reverse the direction of an inequality if it is multiplied by –1.

(ii)  Convert the problem into its standard form by adding a suitable variable 
(s) to each of the inequality constraints.

(iii)  An artificial variable a
i
(≥	0) will also be added to the constraints identi-

fied as ≥ or = at the end of step 1.

(iv)  If the given linear programming problem (LPP) is a maximization prob-
lem, add (for each artificial variable) a penalty of –M times the artificial 
variable to the objective function. If the LPP is a minimization problem, 
then add (for each artificial variable) M times the artificial variable to the 
objective function, where M denotes a very large positive number. The 
assignment of a large negative price to the artificial variable in the maxi-
mization problem and a large positive price in the minimization prob-
lem makes it unfavorable for the artificial variable to enter again into the  
basis (after being removed from the basis), since simplex method tries to 
improve the solution in all further iterations and the entry of the variable 
with a large negative price will deteriorate the solution further.
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(v)  Express the problem into its canonical form to start the simplex calcula-
tion and apply the simplex method in the usual way as was done earlier.

(vi)  Once an artificial variable departs from the basis, the column corresponding 
to that artificial variable can be dropped from the remaining calculations.

(vii)  At the end, if (i) no artificial variable exists in the basis and the optimal-
ity condition is satisfied, then constraints are consistent, there is no redun-
dancy and optimal basic feasible solution exists for the original problem;  
(ii) one or more artificial variables exist on the basis at the positive level 
and the optimality condition is satisfied, then there is no feasible solution 
for the original problem; (iii) one or more artificial variables exist in the ba-
sis at a zero level and the optimality condition is satisfied, then constraints 
are consistent but redundancy may exist in the constraint, and there is an 
optimal basic feasible solution to the original problem.

Remark: This method is also referred as the penalty method. The meth-
od was first suggested by Charnes and hence is also called the M-Charnes 
method.

Example 4.1. An oil company producing a petroleum product requires an 

input	of	crude	oil	A	and	crude	oil	B.	Each	barrel	of	the	final	product	must	con-

tain	at	least	100	gallons.	In	this	final	mix, at least 60 gallons must be of crude oil 

A and, at most, 50 gallons can be from B. Crude oil B costs $26.13 per gallon, 
and crude oil A costs $25.50	per	gallon.	Use	simplex	method	to	find	out	how	
many gallons of A and B should be used in each barrel of the petroleum product 

in	order	to	meet	the	specifications	and	at	the	same	time	minimize	the	cost.
Solution: Let x

1
 and x

2
 be the number of gallons of crude oil A and B, 

respectively, in a barrel of final product, and then the problem can be formu-
lated as follows:

	 	 	 	Min	z	= 2550x
1
 + 2613x

2

Subject to
	 	 		x

1
	+	x

2
	≥ 100

  	 	 	x
1
	≥	60

	 	 	 	 	x
2
	≤	50

	 	 		 		x
1
,	x

2
	≥	0 ...(4.1)

Introducing surplus variables (s
1
, s

2
	≥ 0) and a slack variable (s

3
	≥	0) in 

the problem so that the standard form of the above problem is
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	 	 	 Min	z	= 2550x
1
 + 2613x

2

Subject to
	 	 	 		x

1
 + x

2
 − s

1
 = 100

	 	 	 	 	 	 x
1
 −	s

2
 = 60

	 		 	 	 	 x
2
 + s

3
 = 50

	 				 		x
1
, x

2
, s

1
, s

2
, s

3
 ≥ 0 ...(4.2)

Now, introducing the artificial variables a
1
 ≥ 0 and a

2
 ≥ 0 in the first and 

second constraints, respectively, and assigning the high positive price M to 
both the artificial variables in the objective function, we get:

	 	 	 	 	Min	z	= 2550x
1
 + 2613x

2
 + 0s

1
 + 0s

2
 + 0s

3
 + Ma

1
 + Ma

2

Subject to
	 	 x

1
 + x

2
 − s

1
 + a

1
 = 100

	 	 	 		x
1
 − s

2
 + a

2
 = 60

	 	 	 			x
2
 + s

3
 = 50

	 	 		x
1
, x

2
, s

1
, s

2
, s

3
, a

1
, a

2
 ≥ 0 ...(4.3)

Now, our starting set of basic variables is x
B
 = (a

1
, a

2
, s

3
). Expressing (4.3) 

into its canonical form we have:

 	 x
1
 + x

2
 − s

1
 + a

1
 = 100

	 	 	 		x
1
 − s

2
 + a

2
 = 60

	 	 	 			x
2
 + s

3
 = 50

	 	 	 	z	+ (2M − 2550)x
1
 + (M − 2613)x

2
 − Ms

1
 − Ms

2
 = 160M

	 	 	 	 		x
1
, x

2
, s

1
, s

2
, s

3
, a

1
, a

2
 ≥ 0 ...(4.4)

Basic 

Variables

x
1

x
2

s
1

s
2

s
3

a
1

a
2

solution Ratio

a
1

1 1 −1 0 0 1 0 100 100

a
2

1 0 0 −1 0 0 1 60 60

s
3

0 1 0 0 1 0 0 50

z 2M -2550 M−2613 −M −M 0 0 0 160 M
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Since all the elements in the z	row are not ≤ 0, the optimality condition 
is yet to be fulfilled. The z	coefficient for x

1
 is most positive, and it will be 

the entering variable in the basis, and a
2
 corresponding to the minimum 

ratio will depart from the basis. Clearly x
1
 replaces a

2
 in the basis in the 

next table. (The column corresponding to a
2
 can be dropped from further 

calculations, to simplify the calculations, since artificial variables are the 
only variables which once they depart from the basis will never enter into 
the basis again.)

Basic Variables x
1

x
2

s
1

s
2

s
3

a
1

solution Ratio

a1 0 1 −1 1 0 1 40 40

x
1

1 0 0 −1 0 0 60

s
3

0 1 0 0 1 0 50 50

z 0 M−2613 − M M−2550 0 0 40M + 153000

Since all the elements in the z	row are not ≤ 0, a
1
 is replaced by s

2
 in the 

next table. (The column corresponding to a
1
 can be dropped from further 

calculations.)

Basic Variables x
1

x
2

s
1

s
2

s
3

solution

s
2

0 1 −1 1 0 40

x
1

1 1 −1 0 0 100

s
3

0 1 0 0 1 50

z 0 − 63 − 2550 0 0 255000

Now that all the elements in the z	row are ≤ 0, the optimality condition is 
satisfied. Hence, x

1
 = 100 and x

2
 = 0 is the optimum solution of the problem, 

and the corresponding value of z	is $2550.00. So, there will be 100 gallons 
of crude A and zero gallons of crude B in a barrel of final product with a total 
cost of $2550.00.
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Example 4.2. Use	penalty	method	to	solve	the	following	LPP.
	 	 	 Min	z	=	2x

1
	+	2x

2
	−	5x

3

Subject to
 3x

1
	+	2x

2
	−	4x

3
 = 10

	 	 	 x
1
	−	x

2
	+	3x

3
 = 60

	 	 	 	 	x
1
,	x

2
,	x

3
, ≥ 0

Solution: By introducing the artificial variables a
1
 ≥ 0 and a

2
 ≥ 0 in the 

first and second constraints, respectively, we have:

	 	 	 	 	Min	z	= 2x
1
 + 2x

2
 − 5x

3
 + Ma

1
 + Ma

2

Fig. 4.1

Fig. 4.2
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Subject to
3x

1
 + 2x

2
 − 4x

3
 + a

1
 = 10

	 x
1
 − x

2
 + 3x

3
 + a

2
 = 60

	 	 x
1
, x

2
, x

3
, a

1
, a

2
 ≥ 0 and M is a large positive number. ...(4.5)

Taking a
1
 and a

2
 as the starting basic variables, the previous problem can 

be written in canonical form as:

      3x
1
 + 2x

2
 − 4x

3
 + a

1
 = 10

	 	 	 	 	 		x
1
 − x

2
 + 3x

3
 + a

2
 = 60

	 z	+ (4M − 2)x
1
 + (M − 2)x

2
 − (M − 5)x

3
 = 70 M

	 	 	 	 x
1
,	x

2
,	x

3
, a

1
, a

2
 ≥ 0 ...(4.6)

Basic Variables x
1

x
2

x
3

a
1

a
2

solution Ratio

a1 3 2 − 4 1 0 10 3.333

a
2

1 − 1 3 0 1 60 60

z 4M − 2 M − 2 − M + 5 0 0 70 M

Not all elements in the z	row are ≤ 0; a
2
 leaves and a

2
 enters the basis.

Basic 

Variables

x
1

x
2

x
3

a
2

solution Ratio

x
1

1 0.667 − 1.333 0 3.333

a
2

0 − 1.667 4.333 1 56.667 13.078

z 0 − 1.666M − 0.666 4.333M + 2.334 0 56.667M + 6.666

Not all elements in the z	row are ≤ 0; a
2
 leaves and x

3
 enters the basis.

Basic Variables x
1

x
2

x
3

solution Ratio

x1 1 0.153 0 20.769 20.769

x
3

0 − 0.384 1 13.077

z 0 0.231 0 − 23.846

Not all elements in the z	row are ≤ 0; x
1
 leaves and x

2
 enters the basis.
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Basic Variables x
1

x
2

x
3

solution

x
2

6.5 1 0 135

x
3

2.5 0 1 65

z − 1.5 0 0 − 55

Since all the elements in the z	row are ≤ 0, the optimality condition is 
satisfied. Hence, x

1
 = 0, x

2
 = 135, and x

3
 = 65 is the optimum solution of the 

problem, and the corresponding value of z	is − 55.

Fig. 4.3

Fig. 4.4
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Example 4.3. Use the Big M-Method	to	solve	the	following	LPP:
	 	 	 			Max	z	=	10x

1
	+	15x

2

Subject to
	 	 	 	 x

1
	+	0.75	x

2
 ≤	4

      2x
1
 + 5	x

2
	≥	20

  2x
1
 + 2	x

2
 = 10

	 	 	 	 	x
1
,	x

2
,	≥	0

Solution: The standard form to the given problem is:

	 	 	 	 Max	z	= 10x
1
 + 15x

2

Subject to
	 	 	x

1
 + 0.75x

2
 + s

1
 = 4

     2x
1
 + 5x

2
 − s

2
 = 20

   2x
1
 + 2x

2
 = 10

	 	 	 	 x
1
,	x

2
, s

1
, s

2
 ≥ 0 ...(4.7)

Introducing the artificial variables a
1
 and a

2
 in the second and third con-

straints of (4.7), we have:

	 	 	 	 Max	z	= 10x
1
 + 15x

2
 − Ma

1
 − Ma

2

Subject to
	 	 	x

1
 + 0.75x

2
 + s

1
 = 4

 2x
1
 + 5x

2
 − s

2
 + a

1
 = 20

   2x
1
 + 2x

2
 + a

2
 = 10

	 		x
1
, x

2
, s

1
, s

2
, a

1
, a

2
 ≥ 0 ...(4.8)

Rewriting (4.8) into its canonical form, we have:

	 	 	x
1
 + 0.75x

2
 + s

1
 = 4

 2x
1
 + 5x

2
 − s

2
 + a

1
 = 20

    2x
1
 + 2x

2
 + a

2
 = 10

	 z	− (4M + 10)x
1
 − (15 + 7M)x

2
 + Ms

2
 = − 30M

	 	 	 	 	 x
1
, x

2
, s

1
, s

2
, a

1,
 a

2
 ≥ 0 ...(4.9)
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Basic Variables x
1

x
2

s
1

s
2

a
1

a
2

Solution Ratio

s
1

1 0.75 1 0 0 0 4 5.333

a1 2 5 0 −1 1 0 20 4

a
2

2 2 0 0 0 1 10 5

z − 4M − 10 − 7M − 15 0 M 0 0 − 30M

Basic Variables x
1

x
2

s
1

s
2

a
2

Solution Ratio

s1 0.7 0 1 0.15 0 1 1.429

x
2

0.4 1 0 −	0.2 0 4 10

a
2

1.2 0 0 0.4 1 2 1.667

z − 1.2M − 4 0 0 −	0.4M −	3 0 −	2M + 60

Basic 

Variables

x
1
x

2
s

1
s

2
a

2
Solution Ratio

x
1

1 0 1.429 0.214 0 1.429 6.667

x
2

0 1 − 0.571 − 0.285 0 3.429

a
2

0 0 − 1.714 0.1428 1 0.286 2

z 0 0 1.715M + 5.716 − 0.143M − 2.144 0 − 0.285M + 65.716

Basic Variables x
1

x
2

s
1

s
2

Solution Ratio

x1 1 0 4 0 1 0.25
x

2
0 1 − 4 0 4

s
2

0 0 − 12 1 2

z 0 0 − 20 0 70

Basic Variables x
1

x
2

s
1

s
2

Solution

s
1

0.25 0 1 0 0.25

x
2

1 1 0 0 5

s
2

3 0 0 1 5

z 5 0 0 0 75
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Since all the elements in the z	row are ≥ 0, the optimality condition is 
satisfied. Hence, x

1
 = 0 and x

2
 = 5 is the optimum solution of the problem, and 

the corresponding value of z	is 75.

4.3. Two-Phase Method

In the Big M method, by assigning a very large negative price to the 
artificial variable in the maximization problem, we try to make the artificial 
variable unprofitable to be there in the basis and intend to drive it out of the 
basis to get the basic feasible solution for the original problem. But if this 

Fig. 4.5

Fig. 4.6
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problem is solved on the computer, then a very large numerical value has 
to be assigned to M, which sometimes can create problems and result in an 
incorrect answer.

Hence, we have a second method for handling the presence of an artifi-
cial variable in a linear programming problem, the two-phase method, which 
was discovered by Dantzig, Orden, and others at RAND Corporation. This 
method consists of solving the given problem in two phases. In the first phase, 
we develop a new objective function which minimizes the sum of the artifi-
cial variables (which are introduced in the problem) regardless of the original  
objective function; for example, if we have n artificial variables in the prob-
lem, our objective function in phase 1 will be:

 Min	Ζp1 = a
1
 + a

2
 + ... + a

n

or Max	Ζp1 = − a
1
 − a

2
 − ... − a

n

Here a price of 1 (in a minimization problem) or −1 (in a maximization 
problem) is assigned to all artificial variables. This objective function along 
with the original constraints will be solved for an optimum solution to this 
new problem. The purpose of phase 1 is to remove all the artificial variables 
from the basis, thus making the value of the objective function of this phase to 
be zero so that we can get the basic feasible solution of the original problem.

At the end of phase 1, we may have the following situations:

(i)   One or more artificial vectors appear in the optimum basis at a positive 
level. In this case, the given problem does not have any feasible solution 
since the constraints are inconsistent or there is no feasible region.

(ii)  One or more artificial vectors appear in the optimum basis at a zero level. 
Go to phase 2, but there may be redundancy in the original constraint 
equations. Here we have to take care that, in phase 2, these artificial vari-
ables do not become positive.

(iii)  No artificial vector appears in the optimum basis. In this case also pro-
ceed to phase 2. Here constraints are consistent, and there is no redun-
dancy in the constraints.

The phase 2 calculation starts with the objective function given in the 
original problem by assigning zero prices to the artificial variables which still 
exist in the basis at the zero level. The basic feasible solution appearing in the 
final table of phase 1 will be considered as the initial basic feasible solution 
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of phase 2; that is the final table of phase 1 will be taken as the first table of 
phase 2 with different values of z	coefficients (since the objective function 
coefficients have been changed). The artificial variables which are non-basic 
a t  the end of phase 1 are removed from further consideration in phase 2.

Now the simplex method will be applied as usual to get the optimal solu-
tion to the original problem by paying special attention to the artificial vari-
ables which are appearing at a zero level in the basis of phase 2 (if any). There 
is a need to make sure that these artificial variables always remain at zero and 
never become positive in any iteration. To keep them at zero, sometimes we 
have to change the criterion for deciding about the leaving variable; that is, 
in the pivot column, if a

ik
< 0, where a

ik 
is the coefficient corresponding to the 

artificial variable i in pivot column k, then instead of removing the vector ac-
cording to the usual criterion, we will remove this artificial variable from the 
basis; otherwise, it will become positive in the next iteration.

Example 4.4. Use	two-phase	method	to	solve	Example	4.1.
Solution: Let x

1
 and x

2
 be the number of gallons of crude oil A and B in a 

barrel of final product, and then the problem is formulated as follows:

	 	 Min	z	= 2550x
1
 + 2613x

2

Subject to

	 	 x
1
 + x

2
 ≥ 100

	 	 	 	 x
1
 ≥ 60

	 	 	 	 x
2
 ≤ 50

	 	 		x
1
, x

2
 ≥ 0 ...(4.10)

Introducing the surplus (s
1
, s

2
) and slack (s

1
) variables in the given prob-

lem to convert it into the standard form such that the problem becomes:

	 	 Min	z	= 2550x
2
 + 2613x

2

Subject to

	 	 		x
1
 + x

2
 − s

1
 = 100

	 	 	 	 x
1
 − s

2
 = 60

	 	 	 	 x
2
 + s

3
 = 50

	 x
1
, x

2
, s

1
, s

2
, s

3
 ≥ 0 ...(4.11)
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Consider the following LP problem derived from the original one by add-
ing the artificial variables a

1
 and a

2
 in the first and second constraints, respec-

tively, to get the initial basic feasible solution and introduce a new objective 
function which consists of minimizing the sum of the artificial variables.

Phase 1
	 	 	 	Min	w	= a

1
 + a

2

Subject to

	 	 		x
1
 + x

2
 − s

1
 + a

1
 = 100

	 	 	 	 	 x
1
 − s

2
 + a

2
 = 60

	 	 	 	 	x
2
 + s

3
 = 50

	 x
1
, x

2
, s

1
, s

2
, a

1
, a

2
 ≥ 0 ...(4.12)

Phase 1 of the problem has an initial basic feasible solution with basic 
variables being a

1
, a

2
, and S

3
. If the minimum value of a

1
 + a

2
, is 0, then 

the solution of phase 1 (even if the optimality condition is not satisfied) can  
be considered as the initial basic feasible solution of the original problem. If 
the minimum value of a

1
 + a

2
 is greater than 0, then the original problem does 

not have any feasible solution.

Now, we construct tables to solve the phase 1 problem. The objective 
value w. should be written in terms of non-basic variables to convert it into 
canonical form.

	 	 		x
1
 + x

2
 − s

1
 + a

1
 = 100

	 	 	 	 x
1
 − s

2
 + a

2
 = 60

	 	 	 	 	x
2
 + s

3
 = 50

	 	 	 	 w	+ 2x
1
 + x

2
 − s

1
 − s

2
 = 160

	 	 	 x
1
, x

2
, s

1
, s

2
, s

3,
 a

1,
 a

2
 ≥ 0 ...(4.13)

Basic Variables x
1

x
2

s
1

s
2

s
3

a
1

a
2

solution Ratio

a
1

1 1 −1 0 0 1 0 100 100

a
2

1 0 0 −1 0 0 1 60 60

s
3

0 1 0 0 1 0 0 50

w 2 1 −1 −1 0 0 0 160
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Basic Variables x
1

x
2

s
1

s
2

s
3

a
1

a
2

solution Ratio

a1 0 1 −1 1 0 1 −1 40 40

x
1

1 0 0 −1 0 0 1 60

s
3

0 1 0 0 1 0 0 50 50

w 0 1 −1 1 0 0 −2 40

Basic Variables x
1

x
2

s
1

s
2

s
3

a
1

a
2

solution

x
2

0 1 −1 1 0 1 −1 40

x
1

1 0 0 −1 0 0 1 60

s
3

0 0 1 −1 1 −1 1 10

w 0 0 0 0 0 −1 −1 0

The optimal value of the phase 1 problem is w	= 0. So, the original prob-
lem is feasible, and the initial basic feasible solution of the phase 2 problem 
is x

1
 = 60, x

2
 = 40, s

1
 = 0, s

2
 = 0, and s

3
 = 10. To start phase 2, we replace the 

w	row in the final table of phase 1 by the original objective function, after 
dropping the columns of the artificial variables, and we have:

Phase 2

Basic Variables x
1

x
2

s
1

s
2

s
3

solution Ratio

x
2

0 1 −1 1 0 40

x
1

1 0 0 −1 0 60

s
3

0 0 1 −1 1 10

z −2550 −2613 0 0 0 0

Doing the elementary row operations, the coefficients of the basic vari-
ables are eliminated from the z	row, and we have:

Basic Variables x
1

x
2

s
1

s
2

s
3

solution Ratio

x
2

0 1 −1 1 0 40 40
x

1
1 0 0 −1 0 60

s
3

0 0 1 −1 1 10

z 0 0 −2613 63 0 257520
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Basic Variables x
1

x
2

s
1

s
2

s
3

solution Ratio

s
2

0 1 −1 1 0 40

x
1

1 1 −1 0 0 100

s
3

0 1 0 0 1 50

z 0 −63 −2550 0 0 255000

The optimum condition is now satisfied. Therefore, the optimum solution of 
the problem is x

1
 = 100 and x

2
 = 0, and the corresponding value of z	is 255,000. 

This solution is in agreement with the solution obtained by using Big M method.

Example 4.5. Use	the	two-phase	method	to	solve	Example	4.2.
Solution: Consider the following LP problem derived from the origi-

nal one by adding artificial variables a
1
 and a

2
 to the first and second con-

straints, respectively. A new objective function which consists of minimizing  
(a

1
 + a

2
) is introduced in the problem and we have:

Phase 1
      Min w = a

1
 + a

2

Subject to
 3x

1
 + 2x

2
 − 4x

3
 + a

1
 = 10

	 	 	 x
1
 − x

2
 + 3x

3
 + a

2
 = 60

	 	 	 	 x
1
, x

2
, x

3
, a

1
, a

2
 ≥ 0 ...(4.14)

Taking a
1
 and a

2
 as the starting basic variables, the canonical form of 

(4.14) can be written as:

 3x
1
 + 2x

2
 − 4x

3
 + a

1
 = 10

	 	 	 x
1
 − x

2
 + 3x

3
 + a

2
 = 60

	 	 	 	w	+ 4x
1
 + x

2
 − x

3
 = 70

	 	 	 	x
1
, x

2
, x

3
, a

1
, a

2
, ≥ 0 ...(4.15)

Basic Variables x
1

x
2

x
3

a
1

a
2

solution Ratio

a1 3 2 −4 1 0 10 3.333333

a
2

1 −1 3 0 1 60 60

w 4 1 −1 0 0 70
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Basic 

Variables

x
1

x
2

x
3

a
1

a
2

solution Ratio

x
1

1 0.666667 −1.33333 0.333333 0 3.333333

a
2

0 −1.66667 4.333333 −0.33333 1 56.66667 13.0769

w 0 −1.66667 4.333333 −1.33333 0 56.66667

Basic Variables x
1

x
2

x
3

a
1

a
2

solution

x
1

1 0.153846 0 0.230769 0.307692 20.76923

x
3

0 −0.38462 1 −0.07692 0.230769 13.07692

w 0 0 0 −1 −1 0

The optimal value of the phase 1 problem is w	= 0. So, the original prob-
lem is feasible, and the initial basic feasible solution of the phase 2 problem is  
x

1
 = 20.76923, x

2
 = 0, x

3
 = 13.07692. To start phase 2, we use the original objec-

tive function and, after dropping the columns of the artificial variables from the 
final table of phase 1, consider it as the initial tableau of phase 2, that is:

Phase 2

Basic Variables x
1

x
2

x
3

solution Ratio

x
1

1 0.153846 0 20.76923

x
3

0 −0.38462 1 13.07692

z −2 −2 5 0

After doing the elementary row operations, the coefficients of the basic 
variables are eliminated from the z	row and hence we get:

Basic Variables x
1

x
2

x
3

solution

x1 1 0.153846 0 20.76923

x
3

0 − 0.38462 1 13.07692

z 0 0.230792 0 − 23.8461
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Basic Variables x
1

x
2

x
3

solution

x
2

6.5 1 0 135

x
3

2.5 0 1 65

z −1.5 0 0 −55

The optimality condition is now satisfied. Therefore, the optimum solu-
tion of the problem is x

1
 = 0, x

2
 = 135, and x

3
 = 65, and the corresponding 

value of z	is −55. This solution is also in agreement with the solution obtained 
by using the Big M method.

Example 4.6. Solve	Example	4.3	using	the	two-phase	method.
Solution: The standard form to the given problem is:

	 	 	 	 Mix	z	= 10x
1
 + 15x

2

Subject to
	 	 	 	 x

1
 + 0.75x

2
 + s

1
 = 4

   2x
1
 + 5x

2
 − s

2
 = 20

  2x
1
 + 2x

2
 = 10

	 	 	 	 x
1
, x

2
, s

1
, s

2
 ≥ 0 …(4.16)

Consider the following LP problem derived from the original one by in-
troducing artificial variables in the second and the third constraints, with a 
new objective function which consists of minimizing the sum of the artificial 
variables.

Phase 1
	 	 	 			Min	w	= a

1
 + a

2

Subject to
	 	 	x

1
 + 0.75x

2
 + s

1
 = 4

 2x
1
 + 5x

2
 − s

2
 + a

1
 = 20

     2x
1
 + 5x

2
 + a

2
 = 10

	 		x
1
, x

2
, s

1
, s

2
, a

1
, a

2
 ≥ 0 …(4.17)
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We start with an initial basic feasible solution with basic variables be-
ing s

1
, a

1
, and a

2
. If the minimum value of a

1
 + a

2
 is 0, then the solution of 

phase 1 (even if it is not optimal) will be the initial basic feasible solution of  
the original problem. If the minimum value of a

1
 + a

2
 is greater than 0, then 

the original problem is not feasible.

Now we construct tables to solve the phase 1 problem. The objective 
value w. should be written in terms of non-basic variables to convert it into 
canonical form.

	 	 x
1
 + 0.75x

2
 + s

1
 = 4

 2x
1
 + 5x

2
 − s

2
 + a

1
 = 20

     2x
1
 + 2x

2
 + a

2
 = 10

	 w	+ 4x
1
 + 7x

2
 − s

2
 = 30

	 		x
1
, x

2
, s

1
, s

2
, a

1,
 a

2
 ≥ 0.

Basic Variables x
1

x
2

s
1

s
2

a
1

a
2

Solution Ratio

s
1

1 0.75 1 0 0 0 4 5.333333

a1 2 5 0 −1 1 0 20 4

a
2

2 2 0 0 0 1 10 5

w 4 7 0 −1 0 0 30

Basic Variables x
1

x
2

s
1

s
2

a
1

a
2

Solution Ratio

s
1

0.7 0 1 0.15 −0.15 0 1 1.428571

x
2

0.4 1 0 − 0.2 0.2 0 4 10

a
2

1.2 0 0 0.4 − 0.4 1 2 1.666667

w 1.2 0 0 0.4 −1.4 0 2

Basic 

Variables

x
1
x

2
s

1
s

2
a

1
a

2
Solution Ratio

x
1

1 0 1.428571 0.214286 −0.21429 0 1.428571 6.666667

x
2

0 1 − 0.57143 −0.28571 0.285714 0 3.428571

a
2

0 0 −1.71429 0.142857 − 0.14286 1 0.285714 2

w 0 0 −1.71429 0.142857 −1.14286 0 0.285714
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Basic Variables x
1

x
2

s
1

s
2

a
1

a
2

Solution

x
1

1 0 4 0 0 −1.5 1

x
2

0 1 −4 0 0 2 4

s
2

0 0 −12 1 −1 7 2

w 0 0 0 0 −1 −1 0

The optimal value of the phase 1 problem is w	= 0. So, the original prob-
lem is feasible, and the initial basic feasible solution of the phase 2 problem 
is x

1
 = 1, x

2
 = 4. To start phase 2, we use the original objective function, and 

after dropping the columns of the artificial variables from the final table of 
phase 1, the initial tableau of phase 2 is as follows:

Phase 2

Basic Variables x
1

x
2

s
1

s
2

Solution

x
1

1 0 4 0 1

x
2

0 1 −4 0 4

s
2

0 0 −12 1 2

z −10 −15 0 0 0

Doing the elementary row operations, the coefficients of the basic vari-
ables are eliminated from the z	row, and we have:

Basic Variables x
1

x
2

s
1

s
2

Solution Ratio

x1 1 0 4 0 1 0.25

x
2

0 1 −4 0 4

s
2

0 0 −12 1 2

z 0 0 −20 0 70

Basic Variables x
1

x
2

s
1

s
2

Solution

s
1

0.25 0 1 0 0.25

x
2

1 1 0 0 5

s
2

3 0 0 1 5

z 5 0 0 0 75
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The optimum condition is now satisfied. Therefore, the optimum solution 
of the problem is x

1
 = 0 and	x

2
 = 5, and the corresponding value maximum value 

of z	is 75. This solution is also in agreement with the solution obtained by using 
the Big M method.

4.4. Degeneracy in Linear Programming Problems

Degeneracy in a linear programming problem occurs if in any given basic fea-
sible solution, at least one of the basic variables takes on a zero value. This is caused 
by redundant constraint(s) and could cost the simplex method extra iterations.  
Degeneracy may occur at any stage of the simplex calculation. An initial basic feasi-
ble solution will be degenerate if the RHS of any constraint is zero. If the minimum 
ratio for determining the leaving variable at any stage of the simplex calculation 
occurs at more than one place, then the next table will also have a degenerate basic 
feasible solution. If in the final table at least one of the basic variables vanishes, then 
the problem will be said to have a degenerate optimal basic feasible solution.

If no degeneracy occurs in any iteration of the simplex method, then the 
optimal solution of the problem can be found in a finite number of steps by 
moving from one basis to another and changing a single vector in the basis 
each time to get the new one. Since there are a finite number of bases and 
since the simplex method improves the solution in every step, no basis is ever 
repeated and ultimately the optimal solution is reached in a finite number of 
iterations or we get an indication that problem has an unbounded solution.

But sometimes when degeneracy is present in the problem, we get entered 
into cycling, that is, the same set of bases keep repeating when we move from 
one to another without changing or improving the value of the objective func-
tion at any iteration and we get stuck in an infinite loop. In this situation we 
never get an optimal solution and need to handle the problem properly so that 
no basis is ever repeated and cycling does not occur. Thus, we discuss here the 
change in the computation procedure required to avoid cycling when degeneracy 
 is present in the solution. This is better explained by the following examples:

Example 4.7. Maz	z	= 10 x
1
 + 15x

2

Subject to
    2x

1
 + 3x

2
 ≤ 60

   0.5x
1
 + x

2
 ≤ 30

	 	 	 	 		x
2
 ≤ 20

	 	 	 x
1
, x

2
 ≥ 0
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Solution: Converting the given problem into its standard form, we 
have:

	 	 	 Maz	z	= 10 x
1
 + 15x

2

Subject to
   2x

1
 + 3x

2
 + s

1
 = 60

       0.5x
1
 + x

2
 + s

2
 = 30

	 	 	 x
2
 + s

3
 = 20

	 	 		x
1
, x

2
, s

1
, s

2
, s

3
 ≥ 0

Taking s
1
 and s

2
 as the initial basic variables and writing the z	equation in 

terms of the non-basic variables x
1
	and	x

2
, we have:

  2 x
1
 +  3 x

2
 +  s

1
 = 6 0

       0.5x
1
 + x

2
 + s

2
 = 3 0

	 	 	 x
2
 + s

3
 = 20

	 z	− 10 x
1
 − 15x

2
 = 0

	 						x
1
, x

2
, s

1
, s

2
, s

3
 ≥ 0

Basic Variables x
1

x
2

s
1

s
2

s
3

Solution Ratio

s1 2 3 1 0 0 60 20

s
2

0.5 1 0 1 0 30 30

s
3

0 1 0 0 1 20 20

z −10 −15 0 0 0 0

There is a tie in the choice of the leaving variable. Either s
1
 or s

3
 can 

leave the basis since the minimum ratio is the same for both of them. 
Here choice can be made arbitrarily or the smallest ith index can be con-
sidered. It is to be noted that when a tie occurs and we select one out 
of two as the leaving variable, then the other variable in the next itera-
tion become zero, that is, the solution becomes degenerate in the next  
iteration.
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Option I: Randomly allowing s
1
 to leave the basis, we have:

Basic Variables x
1

x
2

s
1

s
2

s
3

Solution

x
2

0.666667 1 0.333333 0 0 60

s
2

− 0.16667 0 − 0.333333 1 0 10

s
3

− 0.66667 0 − 0.333333 0 1 0

z 0 0 5 0 0 300

Since all the values of z	are ≥ 0, the optimality condition is now satisfied 
and the optimum solution of the problem is x

1
 = 0 and	x

2
 = 20, and the cor-

responding value of z	is 300.

Option II: Selecting s
3
 to leave the basis instead of s

1
, we have:

Basic Variables x
1

x
2

s
1

s
2

s
3

Solution Ratio

s1 2 0 1 0 −3 0 0

s
2

0.5 0 0 1 −1 10 20

x
2

0 1 0 0 1 20

z −10 0 0 0 15 300

Basic Variables x
1

x
2

s
1

s
2

s
3

Solution

x
1

1 0 0.5 0 −1.5 0

s
2

0 0 − 0.25 1 − 0.25 10

x
2

0 1 0 0 1 20

z 0 0 5 0 0 300

Since all the values of z	are ≥ 0, the optimality condition is now satisfied 
and the optimum solution of the problem is x

1
 = 0, x

2
 = 20, and the corre-

sponding value of z	is 300. The solution is in agreement with the first option, 
but an extra iteration is required in this option to come to the final solution; 
this happens because of the degeneracy in the problem.
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Example 4.8.     Maz	z	= 2.25x
1
 − 18x

2
 − 60x

3
 + 0.5x

4

Subject to
    0.25x

1
 + 9x

2
 − 8x

3
 − x

4
 ≥ 0

     0.5x
1
 + 3x

2
 − 12x

3
 − 0.5x

4
 ≥ 0

         x
4
 ≥ 1

	 	 	 	 x
1
,	x

2
,	x

3
,	x

4
 ≥ 0

Solution: The standard form of the given linear programming problem is:

	 	 	 	 	 	 Maz	z	= 2.25x
1
 − 18x

2
 − 60x

3
 + 0.5x

4

Subject to
    0.25x

1
 + 9x

2
 − 8x

3
 − x

4
 + s

1
 = 0

 0.5x
1
 + 3x

2
 − 12x

3
 − 0.5x

4
 + s

2
 = 0

	 	 	 	 	 	 			x
4
 + s

3
 =1

	 	 	 	x
1
,	x

2
,	x

3
,	x

4
, s

1
, s

2
, s

3
 ≥ 0

Taking s
1
, s

2
, and s

3
 as the initial basic variables and writing the z	equation 

in terms of the non-basic variables x
1
,	x

2
,	x

2
,	and	x

4
 we have:

   0.25x
1
 + 9x

2
 − 8x

3
 − x

4
 + s

1
 = 0

 0.5x
1
 + 3x

2
 − 12x

3
 − 0.5x

4
 + s

2
 = 20

	 	 	 	 	 	 			x
4
 + s

3
 = 1

	 	 	 z	− 2.25x
1
 + 18x

2
 + 60x

3
 − 0.5x

4
 = 0

	 	 	 	 	 			x
1
,	x

2
,	x

3
,	x

4
, s

1
, s

2
, s

3
 ≥ 0

Basic Variables x
1

x
2

x
3

x4 s
1

s
2

s
3

Solution Ratio

s1 0.25 9 − 8 −1 1 0 0 0 0

s
2

0.5 3 −12 − 0.5 0 1 0 0 0

s
3

0 0 0 1 0 0 1 1

z −2.25 18 60 − 0.5 0 0 0 0
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Basic Variables x
1

x
2

x
3

x4 s
1

s
2

s
3

Solution Ratio

x
1

1 36 −32 − 4 4 0 0 0

s
2

0 −15 4 1.5 −2 1 0 0 0

s
3

0 0 0 1 0 0 1 1

z 0 99 −12 −9.5 9 0 0 0

Basic Variables x
1

x
2

x
3

x
4

s
1

s
2

s
3

Solution Ratio

x1 1 − 84 0 8 − 12 8 0 0 0

x
3

0 − 3.75 1 0.375 − 0.5 0.25 0 0 0

s
3

0 0 0 1 0 0 1 1 1

z 0 54 0 −5 3 3 0 0

Basic 

Variables

x
1

x
2

x
3
x4 s

1
s

2
s

3
Solution Ratio

x
4

0.125 −10.5 0 1 −1.5 1 0 0 0

x
3

− 0.0469 0.188 1 0 0.063 − 0.125 0 0 0

s
3

−0.125 10.5 0 0 1.5 −1 1 1 0.667

z 0.625 1.5 0 0 −4.5 8 0 0

Basic Variables x
1

x
2

x
3

x4 s
1

s
2

s
3

Solution Ratio

x
4

−1 −6 24 1 0 −2 0 0

s
1

−0.75 3 16 0 1 −2 0 0

s
3

1 6 −24 0 0 2 1 1 1

z −2.75 15 72 0 0 −1 0 0

Basic Variables x
1

x
2

x
3

x4 s
1

s
2

s
3

Solution

x
4

0 0 0 1 0 0 1 1

s
1

0 7.5 −2 0 1 − 0.5 0.75 0.75

x
1

1 6 −24 0 0 2 1 1

z 0 31.5 6 0 0 4.5 2.75 2.75
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It can be seen from the previous calculations that a number of iterations 
have been repeated with same value of basic variables and also without 
improving the value of the objective function before it finally comes to the 
optimum solution. At the optimal point, x

1
 = 1, x

2
 = 0, x

3
 = 0, and	x

4
 = 1, and 

corresponding maximum value of z	is 2.75.

4.4.1.  Perturbation Method for the Resolution of Degeneracy 
Problems in LPPs

This method will tell us which variable is to be taken out of the basis 
when the minimum ratio for deciding the leaving variable is not unique. This 
will not only help us in avoiding the formation of a cycle but also reduce the 
unnecessary repetition of iteration(s). The following are the steps involved in 
this method:

1.   Let the minimum ratio occur with the basic variables s
1
 and s

2
. Rearrange 

the columns of s
1
 and s

2
. The priority is first given to the column of slack 

variables, then artificial variables, and then finally to the decision vari-
ables.

2.   All the elements of each row are now divided by the corresponding ele-
ment of that row in the pivot column.

3.  The quotients are compared between the tied rows for each column.

4.   The comparison is stopped at the column where the quotients are unequal, 
and the row having an algebraically smaller ratio is selected as the pivot 
row.

5.  After selection of the key row, the normal simplex procedure is resumed.

Example 4.9. Solving	the	same	problem	given	in	Example	4.8	by	using	
the perturbation method,	we	have	the	following	table	where	a	tie	in	leaving	
variables occurs—

Basic 

Variables

x
1

x
2

x
3

x4 s
1

s
2

s
3

Solution Ratio

s
1

0.25 9 − 8 − 1 1 0 0 0 0

s
2

0.5 3 − 12 − 0.5 0 1 0 0 0

s
3

0 0 0 1 0 0 1 1

z − 2.25 18 60 −0.5 0 0 0 0
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To decide the leaving variable, rearrange the columns of s
1
 and s

2
;

Basic Variables s
1

s
2

s
3

x
1

x
2

x
3

x4
s

1
1 0 0 0.25 9 − 8 − 1

s
2

0 1 0 0.5 3 − 12 − 0.5

Dividing each row by the corresponding element of that row in the pivot 
column, we have:

Basic Variables s
1

s
2

s
3

x
1

x
2

x
3

x4

s
1

4 0 0 1 36 −32 − 4

s
2

0 2 0 1 6 −24 − 1

Now, we compare the values between these two rows for each column 
from left to right. It can be seen that in the first column, the second row has a 
lesser value than the first, and hence s

2
 should be our leaving variable.

Basic Variables x
1

x
2

x
3

x
4

s
1

s
2

s
3

Solution Ratio

s
1

0 7.5 − 2 − 0.75 1 − 0.5 0 0

x
1

1 6 − 24 1 0 2 0 0

s
3

0 0 0 1 0 0 1 1 1

z 0 31.5 6 − 2.75 0 4.5 0 0

Basic Variables x
1

x
2

x
3

x4 s
1

s
2

s
3

Solution Ratio

s
1

0 7.5 − 2 0 1 − 0.5 0.75 0.75

x
1

1 6 − 24 0 0 2 1 1

x
4

0 0 0 1 0 0 1 1

z 0 31.5 6 0 0 4.5 2.75 0.275
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This solution is in agreement with the solution obtained by not using 
the perturbation technique. Here the total number of iterations required is 3 
(including the initial table) as compared to 6, which were required to get the 
optimal solution if this method was not used.

Remarks on the problem of degeneracy in LP problems

1.   At any stage of the simplex calculation, if there is more than one choice 
of variable to leave the basis, then the subsequent table will set one or 
more of the basic variables equal to zero in the associated basic feasible 
solution. Such an associated basic feasible solution is called a degener-

ate basic feasible solution.

2.   It is possible that a pivot on a degenerate tableau does not change the 
associated values of the basic feasible solution and its value of z.	Such a 
pivot is called a “degenerate pivot,” as in the case of the second option of 
Example 4.7. 

Observation (2) is particularly troublesome, since it goes against the 
very definition of the simplex algorithm and opens the door to the possi-
bility of an infinite sequence of degenerate pivots, never terminating with 
optimality.

4.5.  Solving a System of Linear Equations Using the Simplex 
Method

Consider a system of m simultaneous linear equations in n unkowns:

Ax = b

Where A is a real coefficient matrix of the order mxn, x ∈ Rn is a vector of 
the order n ×1 containing the unknown decision variables, and b is an m × 1  
order vector of real constants.

To solve such a system of simultaneous linear equations by using sim-
plex method, we will write it into a standard linear programming problem. 
Add an artificial variable to each equation and create a dummy objective 
function, which minimizes the sum of the artificial variables. Also, the giv-
en unrestricted decision variables need to be converted into non-negative 
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variables by writing them as a difference of two non-negative variables as 
follows:

x	= x′	− x″,  where  x′	≥	0, x″ ≥ 0.

Example 4.10. Solve	the	following	simultaneous	linear	equations	using	
the	simplex	method:

  8x
1
 + 2x

2
 =10

  5x
1
 + 4x

2
 =15

Solution: Since the range of x
1
 and	x

2
 is not given, they will be considerd 

as unrestricted variables, and hence we can write:

  

x x x
x x x
1 1 1

2 2 2

= ′ − ′′

= ′ − ′′

Where  ′ ′′ ′ ′′ ≥x x x x
1 1 2 2 0, , , .

Introduce the artificial variables a
1
 ≥ 0 and a

2
 ≥ 0 to the first and second 

equations, respectively. Also, at the same time a dummy objective function 
which minimizes the sum of these artificial variables will be created. Now, 
solving the given system of simultaneous linear equations will be equivalent 
to solving the following linear programming problem:

	 	 	 	 	Min	z	= a
1
 + a

2

Subject to
   8(x′

1
 − x″

1
) + 2(x′

2
 − x″

2
) + a

1
 = 10

  5(x′
1
 − x″

1
) + 4(x′

2
 − x″

2
) + a

2
 = 2 5

	 	 		x′
1
, x″

1
, x′

2
, x″

2
, a

1
, a

2
 ≥ 0

Taking a
1
 and a

2
 as the initial basic variables, the canonical from of the 

previous LPP is:

      

8 2 10

5 4 25

1 1 2 2 1

1 1 2 2 2

′ − ′′( )+ ′ − ′′( )+ =

′ − ′′( )+ ′ − ′′( )+ =

x x x x a

x x x x a

zz x x x x

x x x x a a

+ ′ − ′′+ ′ − ′′ =

′ ′′ ′ ′′ ≥

13 13 6 6 35

0

1 1 2 2

1 1 2 2 1 2
, , , , ,
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Basic Variables ′x
1

′′x1
′x
2

′′x
2

a
1

a
2

Solution Ratio

a1 8 − 8 2 − 2 1 0 10 1.25

a
2

5 − 5 4 − 4 0 1 25 5

z 13 − 13 6 − 6 0 0 35

Basic Variables ′x
1

′′x
1

′x
2

′′x
2

a
2

Solution Ratio

x1
1 1 −1 0.25 −0.25 0 1.25 5

a
2

0 0 2.75 −2.75 1 18.75 6.81818
z 0 0 2.75 −2.75 0 18.75

Basic Variables ′x
1

′′x
1

′x
2

′′x
2

a
2

Solution Ratio

′x
2

4 − 4 1 −1 0 5

a
2

−11 11 0 0 1 5 0.45454

z −11 11 0 0 0 5

Basic Variables ′x
1

′′x1
′x
2

′′x
2

Solution

′x
2

0 0 1 −1 6.81818

′′x1
−1 1 0 0 0.45454

z 0 0 0 0 0

Since all the elements in the z	row are ≤ 0, the optimality condition is now 
satisfied and the optimum solution to the given system of equations is:

′ = ′′= ′ = ′′ =x x x x1 1 2 20 0 45454 6 81818 0, . , . , .

And hence, x
1
 = − 0.45457   and  x

2
 = 6.81818.
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4.6. Solution of a System of Linear Equations by Using Solver

The following are the steps involved for solving a given system of linear 
equations in Excel Solver. Consider Example 4.10.

(i)  Enter the problem as follows.

(ii)  Compute the LHS value as the Sumproduct of the solution value and the 
corresponding coefficient of the variables in the given equation.

(iii)  Now go to Solver, leave the Set Target Cell blank, and select the Value 
of cell as shown. Also enter all the other information as done before. Re-
member to select the simplex option. If the variables are free variables 
(unrestricted), then don’t select the non-negative option.
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(iv)  On clicking solve we have the following output, and this is in agreement 
with what we had obtained using simplex.

4.7. Inverse of a Matrix Using the Simplex Method

Let A be an nxn	square matrix. To find the inverse of A, we create a sys-
tem of simultaneous linear equations, using a dummy decision vector x ∈ Rn 

and a dummy resource vector b.
Ax = b

Now this system of simultaneous linear equations will be solved as given 
in Section 4.5. If the optimal basic feasible solution contains all the variables 
of vector x, then the inverse of A is the columns corresponding to the initial 
basic variables in the final (optimal) table.

If the final table does not contains all the variables of vector x in the 
basis we continue with the simplex procedure until all the variables of vec-
tor x are in the basis and at the same time the optimality condition is also 
satisfied, but the solution in the process may or may not be feasible (see 
Example 4.11).

Example 4.11. Use	the	simplex	method	to	find	the	inverse	of	 A =










10 4

4 3
.

Solution: Let us consider the following system of equations:

 

10 4

4 3

20

10
0

1

2

1

2


















 =


















 ≥

x
x

x
x

;

 ...(4.18)
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where b =
20

10









  is a dummy column vector. Now, introducing the artifi-

cial variables a
1
 ≥ 0 and a

2
 ≥ 0 to the first and second equations, respectively, 

and a dummy objective function which minimizes the sum of these artificial 
variables in the problem, we get:

	 	 	 Min	z	= a
1
 + a

2

Subject to:

 10x
1
 + 4x

2
 + a

1
 = 20

  4x
1
 + 3x

2
 + a

2
 = 10

	 	 	 x
1
, x

2
, a

1
, a

2
 ≥ 0 …(4.19)

Taking a
1
 and a

2
 as the initial basic variables, (4.19) can be rewritten as:

 10x
1
 + 4x

2
 + a

1
 = 20

  4x
1
 + 3x

2
 + a

2
 = 10

	 	 z	+ 14x
1
 + 7x

2
 = 30

	 	 	 	 x
1
,	x

2
, a

1
, a

2
 ≥ 0

Basic Variables x
1

x
2

a
1

a
2

Solution Ratio

a1 10 4 1 0 20 2

a
2

4 3 0 1 10 2.5

z 14 7 0 0 30

Basic Variables x
1

x
2

a
1

a
2

Solution Ratio

x
1

1 0.4 0.1 0 2 5

a
2

0 1.4 −0.4 1 2 1.428571

z 0 1.4 −1.4 0 2

Basic Variables x
1

x
2

a
1

a
2

Solution

x
1

1 0 0.214 − 0.286 1.429

x
2

0 1 − 0.286 0.714 1.429

z 0 0 −1 −1 0
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Now that all coefficients of zero are z	≤ 0, the optimality condition is 
satisfied. Since a

1 
and a

2
 are the starting basic variables, therefore the inverse 

of A is 0 214 0 286

0 286 0 714

. .

. .

−

−









 .

Example 4.12. Use	the	simplex	method	to	find	the	inverse	of	 A =










3 2

1 1
.

Solution: Let us consider the following system of equations:

 
3 2

1 1

9

6

1

2


















 =










x
x

 …(4.20)

where b =
9

6








  is a dummy column vector. Introducing the artificial vari-

ables a
1
 and a

2 
to the first and second equations, respectively, and a dummy 

objective function which minimizes the sum of these artificial variables in the 
problem, we get

	 	 Min	z	= a
1
 + a

2

Subject to
 3x

1
 + 2x

2
 + a

1
 = 9

	 	 x
1
 + x

2
 + a

2
 = 6 …(4.21)

	 	 	 x
1
,	x

2
, a

1
, a

2
 ≥ 0

Taking a
1
 and a

2
 as the initial basic variables, (4.21) can be rewritten as:

 3x
1
 + 2x

2
 + a

1
 = 9

	 	 	 x
1
 + x

2
 + a

2
 = 6

	 	 z	+ 4x
1
 + 3x

2
 = 15

	 	 	 x
1
,	x

2
, a

1
, a

2
 ≥ 0

Basic Variables x
1

x
2

a
1

a
2

Solution Ratio

a1 3 2 1 0 9 3

a
2

1 1 0 1 6 6

z 4 3 0 0 15
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Basic Variables x
1

x
2

a
1

a
2

Solution Ratio

x1 1 0.666667 0.333333 0 3 4.5

a
2

0 0.333333 − 0.33333 1 3 9

z 0 0.333333 − 1.33333 0 3

Basic Variables x
1

x
2

a
1

a
2

Solution Ratio

x
2

1.5 1 0.5 0 4.5

a
2

− 0.5 0 − 0.5 1 1.5

z − 0.5 0 − 1.5 0 1.5

Since all the values of z	≤	0, the optimum solution has been reached. But 
A is still not converted to a unit matrix. In order to do this, we allow x

1
 to enter 

the basis and drop a
2
 from the basis.

Basic Variables x
1

x
2

a
1

a
2

Solution Ratio

x
2

0 1 −1 3 9

x
1

1 0 1 −2 −3

z 0 0 −1 −1 0

Again, we have z	≤	0, that is, the optimality condition is still not violated. 
But it should be noted that the feasibility in this case is violated. Since a

1
 and 

a
2
 are the starting variables, therefore the inverse of A is 

1 2

1 2

−

−









  (rows have 

been rearranged).

4.8. Special Cases

4.8.1. The Problem with Alternative or Multiple Solutions

This case with the graphical method has already been discussed in  
Section 2.8.1. In the simplex calculation, if in the final table, the value of z	
for any non-basic variable takes a zero value, then it is an indication that the 
problem has an alternative solution. In this situation, we allow this non-basic 
variable with a value zero in the z row to enter the basis, and after deciding 
the leaving variable from the basis by the usual criterion, we determine a new 
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optimal basic feasible solution with the same value of objective function as 
with the earlier optimal basic feasible solution.

Example 4.13. Use	the	simplex	method	to	solve	Example	2.9.
Solution: Writing the problem into its standard form, we have:

	 Maximize	z	= x
1
 + 2x

2

Subject to the constraints:

  6x
1
 + 4x

2
 + s

1
 = 24

	 	 	 x
1
 + 2x

2
 + s

2
 = 6

	 	 	−x
1
 + x

2
 + s

3
 = 1

	 	 	 	 	 	 	x
2
 + s

4
 = 2

	 	 	 x
1
,	x

2
, s

1
, s

2
, s

3
, s

4
 ≥ 0

Rewriting the previous problem, we have:

  6x
1
 + 4x

2
 + s

1
 = 24

	 	 	 x
1
 + 2x

2
 + s

2
 = 6

	 	 	 −x
1
 + x

2
 + s

3
 = 1

	 	 	 	 	 x
2 
+ s

4
 = 2

	 	 	 z – x
1
 – 2x

2
 = 0, x

1
, x

2
, s

1
, s

2
, s

3
, s

4
 ≥ 0

Basic Variables x
1

x
2

s
1

s
2

s
3

s4 Solution Ratio

s
1

6 4 1 0 0 0 24 6

s
2

1 2 0 1 0 0 6 3

s
3

−1 1 0 0 1 0 1 1
s

4
0 1 0 0 0 1 2 2

z −1 −2 0 0 0 0 0

Basic Variables x
1

x
2

s
1

s
2

s
3

s4 Solution Ratio

s
1

10 0 1 0 − 4 0 20 2

s
2

3 0 0 1 − 2 0 4 1.33

x
2

− 1 1 0 0 1 0 1

s4 1 0 0 0 − 1 1 1 1
z −3 0 0 0 2 0 2
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Basic Variables x
1

x
2

s
1

s
2

s
3

s4 Solution Ratio

s
1

0 0 1 0 6 −10 10 1.666667

s
2

0 0 0 1 1 −3 1 1
x

2
0 1 0 0 0 1 2

x
1

1 0 0 0 −1 1 1

z 0 0 0 0 −1 3 5

Basic Variables x
1

x
2

s
1

s
2

s
3

s
4

Solution Ratio

s1 0 0 1 − 6 0 8 4 0.5

s
3

0 0 0 1 1 −3 1

x
2

0 1 0 0 1 1 2 2

x
1

1 0 0 1 0 −2 2

z 0 0 0 1 0 0 6

Since all the elements in the z	row are ≥ 0, the optimality condition is now 
satisfied. Hence, the optimum basic feasible solution to the given problem is 
x

1
 = 2, x

2
 = 2, and the corresponding maximum value of z	is 6.

But the value of z	for the non-basic variable s
4
 is zero; this is an indication 

of the existence of an alternative optimum solution to the given problem. To 
find out the alternative optimum basic feasible solution to this problem, we 
allow s

4
 to enter the basis and, accordingly, s

1
 leaves the basis. The resulting 

table is shown as follows:

Basic Variables x
1

x
2

s
1

s
2

s
3

s4 Solution

s
4

0 0 0.125 − 0.75 0 1 0.5

s
3

0 0 3 − 17 1 21 13

x
2

0 1 − 0.125 0.75 0 0 1.5

x
1

1 0 0.25 − 0.5 0 0 3

z 0 0 0 1 0 0 6

Again, the optimality condition is still satisfied, and we have totally dif-
ferent values of x

1
 and	x

2
, giving the same value of z.
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Remark: In real life, alternative optima are very useful; they allow the 
user to select different solutions without experiencing any deterioration in the 
value of the objective function.

4.8.2. Unbounded Solutions

The case of unbounded solutions using the graphical method was dis-
cussed in Section 2.8.2. In the simplex calculation, the problem will be said 
to have an unbounded solution if all the numbers in the pivot column are ≤ 0.

Example 4.14. Use	the	simplex	method	to	solve	Example 2.10.

Solution: Write the given problem into its standard form.

	 	 Maximize	z	= 4x
1
 + 10x

2

Subject to the constraints:

	 	 	 	 x
1
 + s

1
 =10

	 	 	 	 x
1
 + 2x

2
 − s

2
 = 6

	 	 	 	 	 x
1
, x

2
, s

1
, s

2
 ≥ 0

By introducing an artificial variable a ≥ 0 to the second constraint to have 
the initial basic feasible solution, the canonical form of the given problem can 
be written as

Fig. 4.7
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	 	 	 	 	 	 	 x
1
 + s

1
 = 10

	 	 	 	 	 x
1
 + 2x

2
 − s

2
 + a = 6

z	− (M + 4)x
1
 − (2M + 10)x

2
 + Ms

2
 = − 6M

      x
1
, x

2
, s

1
, s

2
	≥	0

Now the canonical form to the given problem is:

Basic Variables x
1

x
2

s
1

s
2

a Solution Ratio

s
1

1 0 1 0 0 10

a 1 2 0 −1 1 6 3

z −(M + 4) −(2M + 10) 0 M 0 − 6M

Basic Variables x
1

x
2

s
1

s
2

Solution Ratio

s
1

1 0 1 0 10

x
2

0.5 1 0 − 0.5 3

z 1 0 0 − 5 30

This tableau is not optimal. However, at this point we are unable to perform 
further iterations, because as we attempt to carry out a ratio test with s

2
 as the 

entering variable, it turns out that there is no ratio to compute. What this means 
is that as we attempt to bring s

2
 in as a basic variable, none of the constraints 

will stop us from increasing its value to infinity. Now, as the value of s
2
 increas-

es, the objective function value will also increase correspondingly at a rate of 5. 
It follows that the problem does not have a finite optimal solution.

Fig. 4.8
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It can also be seen from Figure 4.8 that the objective function values of 
the given problem do not converge, indicating that the problem has an un-
bounded solution.

4.8.3. The Problem with Inconsistent Constraint Equations

This case with the graphical method was discussed in Section 2.8.3. 
Here we will study, how to identify the condition in the simplex table  
under which simplex algorithm gives an indication of no solution to the given 
problem due to either inconsistency of the constraints or absence of any feasible 
solution. Inconsistency or infeasibility will never occur if all the constraints are 
of a ≤ type. For the other type of constraints where, the artificial variables are 
added to get the initial basic feasible solution, when artificial variables occur 
at positive level in the optimal basic feasible solution (and cannot be removed 
from the basis by replacing it with other legitimate variables, in any way) and 
are an indication that the given LP problem has no solution, this may be be-
cause of an the occurrence of an infeasible solution.

Example 4.15. Use	the	simplex	method	to	solve	Example	2.11.
Solution: Writing the problem in its standard form, we have:

	 	 	Maximize	z	= x
1
 + 4x

2

Subject to the constraints:

	 	 x
1
 + 2x

2
 − s

1
 = 40

	 	 	 x
1
 + x

2
 + s

2
 =15

	 	 	 x
1
, x

2
, s

1
, s

2
 ≥ 0

Introducing the artificial variable a	≥	0, in the first constraint we have

	 	 	Maximize	z	= x
1
 + 4x

2
 – Ma

Subject to the constraints:

	 	 		 x
1
 + 2x

2
 − s

1
 + a =40

	 	 	 x
1
 + x

2
 + s

2
 =15

	 	 	 	 	x
1
, x

2
, s

1
, s

2
, a ≥ 0 and M is a large positive real number.

Taking a and s
2
 as the initial basic feasible variables, we have the canoni-

cal form to the given problem as:
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	 	 	 	 	 	 	 	 	x
1
 + 2x

2
 − s

1
 + a =40

	 	 	 	 	 	 	 x
1
 + x

2
 + s

2
 =15

z	− (1 + M)x
1
 − (4 + 2 M)x

2
 + Ms

1
 = − 40M

	 	 	 	 	 			x
1
, x

2
, s

1
, s

2
 a	≥	0 and M is a large positive real number.

Basic Variables x
1

x
2

s
1

s
2

a Solution Ratio

a 1 2 −1 0 1 40 20

s
2

1 1 0 1 0 15 15
z − (1 + M) − (4 + 2M) M 0 0 − 40M

Basic Variables x
1

x
2

s
1

s
2

a Solution Ratio

a −1 0 −1 −2 1 10

x
2

1 1 0 1 0 15

z 3 + M 0 M 4 + 2M 0 60−10M

Since all the elements in the z	row are ≥ 0, the optimality condition is now 
satisfied. But the artificial variable “a” is still there in the basis at a positive 
level, indicating that the given LP is infeasible.

Fig. 4.9
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From Figure 4.9 it can be seen that the Solver could not find a feasible 
solution to the given problem indicating that the given problem is infeasible.

Remarks: The following points are to be noted while making simplex 
calculations.

1.   An artificial variable is introduced in the simplex calculation only to pro-
vide us an identity basis matrix to start the simplex calculation.

2.   The presence of an artificial variable in the problem is handled either by 
the M-Charnes method or the two-phase method.

3.   The presence of artificial variables in the final simplex table (when the 
optimality condition is satisfied) will give us one of the following two 
cases:

(i)     At least one artificial variable appears in the optimum basis at a posi-
tive level. In this case, the given problem does not have any feasible 
solution, possibly because the constraint equations are inconsistent.

(ii)  At least one artificial vector appears in the optimum basis at a zero 
level. Go to phase 2 but there may be redundancy in the original 
constraint equations.

4.   The value of the objective function should always show the improvement 
from iteration to iteration except in case of degeneracy. Degeneracy in 
simplex is handled using the perturbation method.

5.   If all the entries in the pivot column are ≤ 0, then the problem has an  
unbounded solution.

6.   If at least one of the non-basis variables has a zero value in the optimal 
z-row, then the problem has an alternative optimal solution.

Exercises

1.  Define an artificial variable and explain its role in a simplex calculation.

2.   What are the various methods for handling the presence of an artificial 
variable in the simplex calculation? Explain them by differentiating the 
procedural steps.

3.   Explain the two-phase simplex method. What are the various situations 
one may have at the end of phase 1 in the method?
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4.   Explain the steps involved in a Big M method for dealing with the pres-
ence of an artificial variable in a simplex calculation.

5.   Explain the concepts of “degeneracy” and “cycling” in linear program-
ming problems.

6.   What is degeneracy in LPPs? What are the problems caused by degen-
eracy? How can this be resolved?

7.   Explain the perturbation technique to handle degeneracy in LPPs.

8.  Explain the existence of the following cases in the a simplex calculation:

(i) Problem with alternative or multiple solutions

(ii) Unbounded solution

(iii) Problem with inconsistent constraint equations

9.  Use the penalty simplex method to solve the following LPP:
(i)    Min	z	= x

1
 + 2.5x

2
 + x

3

Subject to

  1.5x
1
 + 4x

2
 + x

3
 ≤ 50

	 	 	 	 	x
1
 + 2x

2
 − x

3
 ≥ 15

	 	 x
1
 + 1.5x

2
 + 2x

3
 ≤ 35

	 	 	 	 	 x
1
,
 
x

2
,
 
x

3
 ≥ 0

(ii)    Max	z	= 10x
1
 + 15x

2
 + 23.5x

3

Subject to

    2x
1
 − x

2
 + 5x

3
 ≤ 50

 4x
1
 − 0.5x

2
 + 6x

3
 ≥ 75

	 	 x
1
, x

2
, x

3
 ≥ 0

(iii)    Min	z	= 2x
1
 + 3x

2
 + 2x

3

Subject to

   2x
1
 − 2x

2
 + 2x

3
 ≤ 100

    2x
1
 − 2x

2
 + x

3
 ≥ 80

   2x
1
 − 2x

2
 + 2x

3
 ≥ 75

	 	 x
1
, x

2
, x

3
 ≥ 0
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(iv)     Min	z	= 10x
1
 + 15x

2
 + 23.5x

3

Subject to

    2x
1
 − x

2
 + 5x

3
 ≤ 50

   4 − 0.5x
2
 + 6x

3
 ≥ 75

	 	 x
1
, x

2
, x

3
 ≥ 0

(v)      Max	z	= x
1
 + x

2
 + x

3

Subject to

    3x
1
 − x

2
 + 2x

3
 = 50

	 	 	 	x
1
 + 2x

2
 + x

3
 = 30

    2x
1
 − 1.5x

2
 + x

3
 = 35

	 	 x
1
, x

2
, x

3
 ≥ 0

(vi)		 	 	 	 Min	z	= 2x
1
 + 3x

2
 + 3x

3

Subject to

	 	 	 	x
1
 + 2x

2
 + 2x

3
 ≤ 100

   −x
1
 − 2x

2
 + x

3
 ≤ − 80

 −3x
1
 − 2x

2
 + 2x

3
 ≥ 60

	 	 	 	 	 	 x
2
, x

3
 ≥ 0 and x

1
 is unrestricted in sign.

(vii)      Max	z	= 3x
1
 + 2x

2

Subject to

	 	 	x
1
 + 2x

2
 ≤ 20

     4x
1
 + x

2
 ≤ 30

        3x
1
 − x

2
 ≥ 0

	 	 	 	 x
1
, x

2
, ≥ 0

10. Solve the following LPP:

	 	 	 		Max	z	= 10x
1
 + 30x

2
 + 30x

3
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Subject to

	 x
1
 + 4x

2
 + 2x

3
 ≤ 90

 3x
1
 − 3x

2
 + x

3
 ≤ 100

	 	 	 	x
1
, x

2
, x

3
 ≥ 0

From the optimal table of the previous problem, check for the existence 
of an alternative optima. If it exists, find another optimum solution to the 
same problem.

11. Use the two-phase method to solve the following LPP:
	 	 	 	 Max	z	= 2x

1
 − 4x

2
 + 2x

3

Subject to

 2x
1
 + 3x

2
 + x

3
 ≥ 50

	 	 x
1
 − 3x

2
 + x

3
 ≥ 30

	 x
1
 + 2x

2
 + 4x

3
 ≥ 45

	 	 	 		x
1
,	x

2
,	x

3
 ≥ 0

 Does the problem have a unique solution? If not, find an alternative opti-
mal solution to the given problem.

12.  Solve the following system of simultaneous linear equations using the 
simplex method:

(i) x
1
 + 2x

2
 = 40; x

1
 + x

2
 = 25

(ii) 4x
1
 + 3x

2
 = 10; 5x

1
 + 6x

2
 = 15

(iii)  x
1
 + x

2
 + x

3
 = 40; x

1
 − 2x

2
 + 1.5x

3
 = 25; 2x

1
 + x

2
 + 0.5x

3
 = 35; and x

1
, 

x
2
, x

3
, ≥ 0

13. Find the inverse of the following matrix using the simplex method:

(i)  2 1

3 1









     (ii) 

−









1 1

1 2

(iii) 
4 5 1

1 4 3

1 8 7





















C H A P T E R5
DUALITY

5.1. Introduction

The overall concept of duality is based on the idea that “every linear program-
ming problem associates with another linear programming problem” which 
is called its “dual,” so that both the problems are dual for one another. In 
this, if we can solve one problem, then the solution of the other problem (its 
dual) can be found from the solution of the original problem. This concept 
has its applications from a computational point of view. Sometimes when 
some linear programming problems involve a large number of constraints or 
have a large number of constraints of a ≥ or = type, then finding the dual of 
these types of problems and solving them to get the solution of the original 
problems will be easier and require less computational time and effort as 
compared to solving the original problem.

5.2.  Rules for Finding the Dual of a Given Linear Programming 
Problem

The following are the rules for writing a dual to a given linear programming 
problem:

(i)   If the objective function of the primal problem is maximization, then the 
dual of it will have minimization as its objective function and vice versa.

(ii) Inequalities of the primal problem get reversed in the dual.

(iii)  Objective function coefficients of the primal become RHS coefficients of 
the dual constraint and vice versa.
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(iv)  The number of constraints in the primal is equal to the number of vari-
ables in the dual, and the number of variables in the primal is equal to the 
number of constraints in the dual.

(v)  The column corresponding to each variable in the primal becomes a con-
straint in the dual, and the row coefficient in a constraint becomes the 
column coefficients of the dual variable (associated with that constraint) 
in the dual problem.

(vi)  The dual variables corresponding to inequalities of type ≤ in primal maxi-
mization problems become non-negative variables in the dual problem, 
whereas the dual variables corresponding to inequalities of type ≤ in pri-
mal minimization problems become non-positive variables in the dual 
problem.

(vii)  The dual variables corresponding to inequalities of type ≥ in primal maxi-
mization problems have non-positive value in the dual problem, whereas 
the dual variables corresponding to inequalities of type ≥ in primal mini-
mization problems have non-negative values in the dual problem.

(viii)  The dual variables corresponding to = (equality) constraints in the primal 
problem become unrestricted in sign in the dual problem.

(ix)  Any dual constraint corresponding to a primal variable which is unre-
stricted in sign will have equality in the dual problem.

(x)  A dual constraint corresponding to a non-negative primal variable will 
have ≤ inequality in a maximization problem and ≥ inequality in a mini-
mization problem.

(xi)  A dual constraint corresponding to a non-positive primal variable will 
have ≥ inequality in a maximization problem and ≤ inequality in a mini-
mization problem.

The previous rules are summarized in the following table:

Primal Dual

Maximize Minimize

Number of constraints Number of variables

Number of variables Number of constraints

jth constraint ≤ jth variable ≥ 0
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jth constraint ≥ jth variable ≤ 0

jth constraint = jth variable unrestricted

ith variable ≥ 0 ith constraint ≥

ith variable ≤ 0 ith constraint ≤

ith variable unrestricted ith constraint =

Consider the general linear programming problem with m constraints in 
n variables:

Maximize  Z = c
1
x

1
 + c

2
x

2
 + ∙∙∙ … … … … … …+ c

n
x

n

Subject to the constraints

a x a x a x b

a x a x a x

n n

n n

11 1 12 2 1 1

21 1 22 2 2

+ + + ≤

+ + + ≤

...

...

………………

……………… bb

a x a x a x b

x x x

m m mn n m

n

2

1 1 2 2

1 2 0

(Primal)

, ,

...

⋮

⋮

………………

……

+ + + ≤

≥   ...(5.1)

The primal can also be written in the form 

Maximize   Z c x
j jj

n
=

=∑ 1

Subject to the constraints

a x b x j n i m
ij j i jj

n
≤ ≥ = =

=∑ , , , ,..... , , ,.....0 1 2 1 2
1

 ...(5.2)

Let w
1
, w

2
, ... ... w

m
 be the m dual variables associated with the m con-

straints of the primal problem such that the dual of the given primal problem 
can be written as:

Minimize  W = b
1
w

1
 + b

2
w

2
 + ∙∙∙ ... ... ...+ b

m
w

m

Subject to the constraints

a w a w a w c

a w a w a w

m m

m m

11 1 21 2 1 1

12 1 22 2 2

+ + + ≤

+ + + ≤

...

...

………………

……………… cc

a w a w a w c

w w w

n n mn m n

m

2

1 1 2 2

1 2 0

(Dual)

, ,

...

⋮

⋮

………

……

+ + + ≤

≥  ...(5.3)
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or     Minimize w b w
i ii

m

=
=∑ 1

Subject to the constraints

a w c j n w i m
ij i ji

m

i
≥ = ≥ =

=∑ , , , ... , , ,
1

1 2 0 1 2  ...(5.4)

Note: Any given linear programming problem is said to be in “symmetric 

form” if all variables are non-negative and all constraints have inequalities 

of	a	≤	type	in	the	case	of	maximization	and	in	minimization	problems,	they	are	
of	a	≥	type.	The	previous	primal	and	dual	problems	are	in	symmetric	form.

The primal and dual problems in asymmetric form can be written as 

(Primal)

Maximize Z c x
j jj

n
=

=∑ 1

Subject to the constraints

a x b i k m

a x b i k k m

x j

ij j ij

n

ij j ij

n

j

≤ = <

= = + +

≥ =

=

=

∑

∑

, ,

, , ,

,

1 2

1 2

0

1

1





11 2

1

2

, ,

,

,





p n

x j p

p n

j

<

= +

+

unrestricted in sign, 

 ...(5.5)

(Dual)

 Minimize W bw
i ii

m

=
=∑ 1

Subject to the constraints

a w c j p n
ij i ji

m

≥ = <
=∑ , , ....
1

1 2

 a w c j p p n
ij i ji

m

= = + +
=∑ , , ,......1 2

1

  w
i
	≥	0, i = 1, 2 … … k,

is w
i
 unrestricted in sign, i = k + 1, k + 2 ... .m	 ...(5.6)

Example 5.1. (Symmetric form): Write the dual of the following LPP:

Max Z = x
1
 + 2x

2
 + 3x

3

Subject to

   3x
1
 + x

2
	≤	70

   –x
1
 + x

2
 + 4x

3
	≤	30
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2x
1
 – x

2
 + 3x

3
	≤	60

  x
1
, x

2
, x

3
 ≥ 0

Solution: Let w
1
, w

2
, and w

3
 be the dual variables (corresponding to three 

primal constraints). Then the dual of the given problem is:

Min W = 70w
1
 + 30w

2
 + 60w

3

Subject to

   3w
1
 – w

2
 + 2w

3 
≥ 1

    w
1
 + w

2
 – w

3 
≥ 2

    4w
2
 + 3w

3
 ≥ 3

      w
1
, w

2
, w

3 
≥ 0

The previous can also be done using matrix notation:

Primal Problem: Max Z

x

x

x

=
















( )123

1

2

3

Subject to

  

3 1 0

1 1 4

2 1 3

70

30

60

1

2

3

1

−

−
































≤

















x

x

x

x x,
22 3

0, x ≥

Dual Problem: MinW

w

w

w

=
















( )70 30 60

1

2

3

Subject to

  

3 1 2

1 1 1

0 4 3

1

2

3

1

2

3

1 2

−

−
































≥

















w

w

w

w w w, ,
33
0≥

Example 5.2. (Asymmetric problem): Write the dual of the following 

LPP:

Maximize	 	 Z	=	13x
1
	+	7x

2
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Subject to the constraints

   5x
1
 + 8x

2
	≤	15

   2x
1
 + 5x

2
	≥	20

    x
1
 + 9x

2
 = 25, x

1
	unrestricted	in	sign,	x

2
	≥	0

Solution: Let w
1
, w

2
, and w

3
 be the dual variables associated with three 

primal constraints, and then the dual of the given problem is:

Minimize 15w
1
 + 20w

2
 + 25w

3

Subject to the constraints

     5w
1
 + 2w

2
 + w

3
 =13

8w
1
 + 5w

2
 + 9w

3
 ≥ 7

    w
1
 ≥ 0, w

2
 ≤ 0, w

3
 unrestricted in sign.

(Given previously is an example of an asymmetric problem. The problem 
has three constraints in two variables, which means its dual will have three 
variables and two constraints. Also, it should be noted that the second primal 
constraint has a ≥ inequality, so the corresponding dual variable (w

2
) should 

be ≤ 0. Since the first primal variable is unrestricted in sign, the corresponding 
dual constraint (first dual constraint) should have an equality sign. Finally, the 
last primal constraint has an equality sign, and hence the corresponding dual 
variable should be unrestricted in sign).

Example 5.3. Write the dual of the following LPP:

Minimize	W	= 7w
1
 + 5w

2

Subject to the constraints

  w
1
 + 3w

2
	≥	5

0.5w
1
 + w

2
 ≥ 3

       w
1
 – 0.5w

2
	≥	6, w

1
, w

2
 unrestricted in sign

Solution: Let x
1
, x

2
, and x

3
 be the dual variables, and then the dual of the 

given problem is:

Maximize    Z = 5x
1
 + 3x

2
 + 6x

3

Subject to the constraints

   x
1
 + 0.5x

2
 + x

3
 =7

  3x
1
 + x

2
 – 0.5x

3
 = 5, x

1
, x

2
, x

3
 ≥ 0
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Example 5.4. Write the dual of the following LPP:

Maximize	Z	=	6x
1
	+	7x

2

Subject to the constraints

    2x
1
 + 3x

2
 = 7

   –2x
1
 + 5x

2
	≥	3

    4x
1
 + 7x

2
	≤	10, x

1
	≥	0,	x

2
 unrestricted in sign

Solution: Let w
1
, w

2
, and w

3
 be the dual variables and then the dual of the 

given problem is:

Minimize W =7w
1
 + 3w

2
 + 10w

3

Subject to the constraints

2w
1
 – 2w

2
 + 4w

3
 ≥ 6

3w
1
 + 5w

2
 + 7w

3
 = 7

w
1
 unrestricted in sign, w

2
 ≤ 0, w

3
 ≥ 0

5.3.  Finding the Optimal Dual Solution from the Optimal Table 
of the Primal Problem

The following table gives the layout of the simplex table discussed in  
Chapters 3 and 4.

Basic Variables Initial non-basic  

variables

Initial basic 

variables

Solution 

column

Space for  
Basic variables

Columns for constraint 

coefficients
Identity Matrix

Z-row

(Initial Table)

Basic Variables Initial non-basic  

variables

Initial basic 

variables

Solution 

column

Space for Basic 
variables

Columns for constraint

coefficients
Basis Inverse 

Matrix

Z-row

(Any other table including the optimal)
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As mentioned in an earlier chapter, simplex calculations start with a set 
of basic variables whose constraint coefficients always give us an identity 
matrix. The information of the basis inverse at any stage of the calculation is 
very important, as it is the key to computing all other elements of the associ-
ated table. Given the optimal table of the primal (dual) problem, the optimal 
solution of the other problem can be easily obtained by using any of the two 
following methods.

Method I. The optimal value of the ith dual variable will be obtained by 
taking the sum of the optimal z-coefficient of the ith starting primal basic vari-
able and its original objective coefficient.

Method II. Optimal values of dual variables will be equal to the product 
of the row vector of the original objective coefficients of the optimal primal 
basic variables and the optimal primal basis inverse.

Example 5.5. Use the primal optimal table to obtain the optimal dual 

solution	of	the	following	LP	problem.
Maximize	z = 9x

1
	–	6x

2
 + 9x

3

Subject to the constraints

  3x
1
 – x

2
 + 2x

3
	≤	28

  x
1
 – 2x

2
 + 3x

3
	≤	30

  5x
1
 + x

2
 + 2x

3
	≤	37

   x
1
 + x

2
 + x

3
	≤	85

   2x
1
 + x

2
 + x

3
	≤	18,	 	 	x

1
,	x

2
,	x

3
	≥	0

Solution: The dual of the given problem is:

(Dual) Minimize   w = 28w
1
 + 30w

2
 + 37w

3
 + 85w

4
 + 18w

5

Subject to the constraints

   3w
1
 + w

2
 + 5w

3
 + 1w

4
 + 2w

5
 ≥ 9

  –1w
1 
– 2w

2
 + w

3
 + w

4
 – w

5
 ≥ – 6 

    2w
1
 + 3w

2
 + 2w

3
 + w

4
 + w

5
 ≥ 9

     W
i
	≥	0 ∀ i
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Rewriting the given primal problem in the canonical form, we have:

 3x
1
 – x

2
 + 2x

3
 + s

1
 = 28

 x
1
 – 2x

2
 + 3x

3
 + s

2
 = 30

 5x
1
 + x

2
 + 2x

3
 + s

3
 = 37

  x
1
 + x

2
 + x

3
 + s

4
 = 85

  2x
1
 – x

2
 + x

3
 + s

5
 = 18

	 z – 9x
1
 + 6x

2
 – 9x

3
 = 0

  x
1
, x

2
, x

3
, s

1
, s

2
, s

3
, s

4
, s

5
 ≥ 0

Basic x
1

x
2

x
3

s
1

s
2

s
3

s
4

s
5

Solution Ratio

s
1

3 –1 2 1 0 0 0 0 28 14

s
2

1 –2 3 0 1 0 0 0 30 10
s

3
5 1 2 0 0 1 0 0 37 18.5

s
4

1 1 1 0 0 0 1 0 85 85

s
5

2 –1 1 0 0 0 0 1 18 18

z –9 6 –9 0 0 0 0 0 0

(Initial table s
1
, s

2
, s

3
, s

4
, and s

5
 as the starting basic variables)

Basic x
1

x
2

x
3

s
1

s
2

s
3

s
4

s
5

Solution Ratio

s
1

2.3333 0.3333 0 1 – 0.6666 0 0 0 8 3.428

x
3

0.3333 –0.6666 1 0 0.3333 0 0 0 10 30
s

3
4.3333 2.3333 0 0 – 0.6666 1 0 0 17 3.923

s
4

0.6666 1.6666 0 0 – 0.3333 0 1 0 75 112.5

s
5

1.6666 –0.3333 0 0 – 0.3333 0 0 1 8 4.8

z – 6 0 0 0 3 0 0 0 90

Basic x
1

x
2

x
3

s
1

s
2

s
3

s
4

s
5

Solution

x
1

1 0.14286 0 0.4285 – 0.2857 0 0 0 3.4285

x
3

0 – 0.7142 1 – 0.1428 0.4285 0 0 0 8.8571
s

3
0 1.7142 0 – 1.8571 0.5714 1 0 0 2.1428

s
4

0 1.5714 0 – 0.2857 – 0.1428 0 1 0 72.714
s

5
0 – 0.5714 0 – 0.7142 0.1428 0 0 1 2.2857

z 0 0.8571 0 2.5714 1.2857 0 0 0 110.57
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Since all the elements in the z	row are ≥ 0, the optimality condition is now 
satisfied. Hence, the optimum solution for the primal problem is x

1
 = 3.42857, 

x
2
 = 0, x

3
 = 8.857, z = 110.571.

Finding the optimal dual solution

Method I

Dual

vari-

ables 

(i)

Primal 

starting 

basic 

variables 

(ii)

Optimal primal 

z-coefficient	of	
starting basic 

variables (iii)

Original objec-

tive function 

coefficient	of	
starting basic 

variables (iv)

Optimal value of 

dual variables  

(v = iii + iv)

w
1

s
1

2.5714 0 2.5714

w
2

s
2

1.2857 0 1.2857

w
3

s
3

0 0 0

w
4

s
4

0 0 0

w
5

s
5

0 0 0

Hence, the optimal dual solution is w
1
 = 2.57143, w

2
 = 1.2857, w

3
 = w

4
 = 

w
5
 = 0, and the corresponding value of the objective function is 110.57.

Method II

Optimal values of dual variables will be equal to the product of the row 
vector of the original objective coefficients of the optimal primal basic vari-
ables and the optimal primal basis inverse.

Optimal basis inverse, B
− =

−

−

−

−

1

0 4285 0 2857 0 0 0

0 1428 0 4285 0 0 0

1 8571 0 5714 1 0 0

0 285

. .

. .

. .

. 77 0 1428 0 1 0

0 7142 0 1428 0 0 1

−

−























.

. .

,

the row vector of the original objective function coefficients of the opti-
mal primal basic variables (x

1
, x

2
, s

3
, s

4
, s

5
) is (9 9 0 0 0).

Hence, the optimal values of the dual variables (w
1
, w

2
, w

3
, w

4
, w

5
) are 

given by:
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( )*

. .

. .

. .9 9 0 0 0

0 4285 0 2857 0 0 0

0 1428 0 4285 0 0 0

1 8571 0 5714 1 0 0

0

−

−

−

− .. .

. .

( .

2857 0 1428 0 1 0

0 7142 0 1428 0 0 1

2 571431

−

−























= .. )2857 0 0 0

Example 5.6. Write the dual of the following LP problem:

Maximize	z	= –x
1
 – 2x

2

Subject to the constraints:

   3x
1
 + x

2
 = 11

  4x
1
 + 3x

2
	≥ 20	

   x
1
 + 2x

2
 ≤ 14

     x
1
, x

2
 ≥ 0

And	use	the	primal	optimal	table	to	find	the	optimal	dual	solution.

Solution: The dual of the given problem is:

Minimize w = 11w
1
 + 20w

2
 + 14w

3

Subject to the constraints:

  3w
1
 + 4w

2
 + w

3
 ≥ –1

  w
1
 + 3w

2
 + 2w

3
 ≥ –2

w
1
 is unrestricted,  w

2
 ≤ 0 and w

3
 ≥ 0

The primal problem can be rewritten as:

maximize z	= – x
1
 – 2x

2
 – Ma

1
 – Ma

2

Subject to the constraints

  3x
1
 + x

2
 + a

1
 = 11

   4x
1
 + 3x

2
 – s

1
 + a

2
 = 20

   x
1
 + 2x

2
 + s

2
 = 14

    x
1
, x

2
, s

1
, s

2
, a

1
, a

2
 ≥ 0 and M is a large positive number.
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Now the canonical form for the given primal problem is:

      3x
1
 + x

2
 + a

1
 = 11

      4x
1
 + 3x

2
 – s

1
 + a

2
 = 20

       x
1
 + 2x

2
 + s

2
 = 14

z + (1 – 7M) x
1
 + (2 – 4M) x

2
 + Ms

1
 = – 31M

    x
1
, x

2
, s

1
, s

2
, a

1
, a

2
 ≥ 0 

And the following is the optimal table for the primal problem.

Basic x
1

x
2

s
1

s
2

a
1

a
2

Solution

x
1

1 0 0.2 0 0.6 – 0.2 2.6

x
2

0 1 – 0.6 0 – 0.8 0.6 3.2

s
1

0 0 1 1 1 – 1 5

z 0 0 1 0 M + 1 M – 1 – 9

Where a
1
, a

2
, and s

2
 are the starting initial basic variables, and hence the 

optimal basis inverse is:

B
-1 =

−

−

−

















0 6 0 2 0

0 8 0 6 0

1 1 1

. .

. .

Finding the optimal dual solution

Method I

Dual 

variables 

(i)

Primal starting 

basic variables 

(ii)

Optimal primal 

z-coefficient	of	
starting basic 

variables (iii)

Original ob-

jective function 

coefficient	of	
starting basic 

variables (iv)

Optimal 

value of dual 

variables  

(v = iii + iv)

w
1

a
1

M + 1 – M 1

w
2

a
2

M – 1 – M –1

w
3

s
2

0 0 0

Hence, the optimal dual solution is w
1
 = 1, w

2
 = –1, and w

3
 = 0, and the 

corresponding value of the objective function is – 9.
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Method II

Optimal values of dual variables will be equal to the product of the row 
vector of the original objective function coefficients of the optimal primal 
basic variables and the optimal primal basis inverse.

Optimal basis inverse, B
− =

−

−

−

















1

0 6 0 2 0

0 8 0 6 0

1 1 1

. .

. . , row vector of the original 

objective function coefficients of the optimal primal basic variables, (x
1
, x

2
, s

2
)  

is (–1 –2 0).

Hence, the optimal values of the dual variables (w
1
, w

2
, w

3
) are given by

( )*

. .

. . ( )− −

−

−

−
















= −1 20

0 6 0 2 0

0 8 0 6 0

1 1 1

1 10

5.4.  Use of the Graphical Method for Finding the Optimal Dual 
Solution

Consider the following LPP given in Example 2.8:

Maximize z = 4x
1
 + x

2

Subject to the constraints:

  2x
1
 + x

2
 ≤ 101

   x
1
 + x

2
 ≤ 80

       x
1
 ≤ 40

     x
1
, x

2
 ≥ 0

Then, the dual of this problem is,

Minimize w = 101 w
1
 + 80w

2
 + 40w

3

Subject to the constraints:

  2w
1
 + w

2
 + w

3
 ≥ 4

     w
1
 + w

2
 ≥ 1

    w
1
, w

2
, w

3
 ≥ 0

The following diagram gives the graphical solution of the primal problem.
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z* = 180 is the maximum value z	occurring at point C (40, 20).

Solving the problem again by increasing the RHS of the first constraint 
by one unit, that is, by changing 100 to 101, we get:

140

120

100

80

60

40

20

0
0 20 40 60 80 100

x2

x1

2x + x 1001 2

x 401

x + x 801 2
Feasible region

O

A

B

C
D

2x + x 1001 2

x + x 801 2

x 401

x1
x2

x1
x2

x1
x2

0 25 50

0001 05

0 40 80

4080 0

40 40 40

0 02 021

Fig. 5.1

140

120

100

80

60

40

20

0
0 20 40 60 80 100

2x + x 1001 2

x 401

x + x 801 2Feasible region

2x + x 1011 2

x + x 801 2

x 401

x1

x2

x1

x2

0 51 25

101 0 15

0 40 80

008 04

x1
x2

40 40 40

0 02 021

A

O D

B

C

Now, the new feasible region is denoted by OABʹCʹD.	Let zʹ be the new 
value of the objective function for the changed problem. Clearly, the maxi-
mum value of z′	is 181, which occurred at C′	(40, 21).

Here, the optimal value of the dual variable w
1
 is the difference between 

the new maximum value of the primal objective function and the original 
maximum value of the primal objective function, that is, w

1
 = 1. In other 

words, the dual variable represents the contribution in the objective function 
corresponding to one unit’s worth of a resource. Similarly, to find the value 
of w

2
 and w

3
, the same procedure will be repeated with the second and third 

primal constraint, respectively.

Fig. 5.2
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Points to remember:

(i)   The values of the dual variables at any iteration of the simplex method are 
called simplex multipliers.

(ii)  The dual variables are also called shadow prices or imputed cost per unit 
of resources, representing worth per unit of resources and used to rank 
resources according to their contribution in the objective function.

(iii)  Any LP problem can be considered as an input-output model, where re-
sources are the input and profit obtained can be considered as output such 
that we try to maximize profit under limited resources, and the optimal so-
lution cannot be reached unless profit is equal to the worth of the resources. 
As we move from one iteration to another, profit < worth of resources, and 
as soon as they become equal, we get the optimal solution.

Note. Computation of optimal dual variables using Excel Solver will be 

discussed	latter.

5.5. Construction of a Simplex Table

A simplex table of any iteration can be easily generated using the original 
data, the basis inverse of the associated iteration, and the dual of the problem. 
Construction of the whole simplex table can be carried out by as follows:

I. Constraint coefficient columns including the solution column: At 
any stage of the simplex table calculations the constraint columns of the ith 

iteration can be obtained by taking the product of the basis inverse of the ith 

iteration and the original constraint coefficients.

II. Value of the z-row: At any stage of the simplex calculation, the z-row 
values of the variable x

j
 ∀ j can be calculated by taking the difference of the 

LHS and RHS of the jth dual constraint, that is, the	z-row value for x
j
 = (LHS 

– RHS) of the jth constraint.

Example 5.7. Consider the following LPP:

Maximize	z = x
1
+ 4x

2
 + x

3

Subject to

  x
1
 + x

2
 – 2x

3
 ≤ 7

   – 3x
1
 + x

2
 + 2x

3
 ≤ 3

    x
1
, x

2
, x

3
 ≥ 0
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Consider the set of basic variables = (x
4
,	x

2
),	and	the	basis	inverse	=

−









1 1

0 1
.	 

Compute the entire simplex table associated with the given basic solution and 

check	for	its	optimality	and	feasibility.	Here	x
4
 is the slack variable associated 

with	the	first	constraint.
Solution: Rewriting the given problem into its standard form as follows:

Maximize z = x
1
 + 4x

2
 + x3

Subject to

   x
1
 + x

2
 – 2x

3
 + x

4
 = 7

  –3x
1
 + x

2
 + 2x

3
 + x

5
 = 3

    x
1
, x

2
, x

3
, x

4
, x

5
 ≥ 0

(i)  Column for x
1
 = Basis inverse * (original constraint coefficient of x

1
)

=
−









−









 =

−











1 1

0 1

1

3

4

3
*

(ii) Column for x
2
 = Basis inverse * (original constraint coefficient of x

2
)

=
−















 =










1 1

0 1

1

1

0

1
*

(iii) Column for x
3
 = Basic inverse * (original constraint coefficient of x

3
)

=
−









−







 =

−









1 1

0 1

2

2

4

2
*

(iv) Column for x
4
 = Basic inverse * (original constraint coefficient of x

4
)

=
−















 =










1 1

0 1

1

0

1

0
*

(v) Column for x
5
 = Basic inverse * (original constraint coefficient of x

5
)

=
−















 =

−









1 1

0 1

0

1

1

1
*

(vi) Solution column, that is, the value of (x
4
, x

2
) = Basis inverse * (RHS of 

original constraints)

=
−















 =










1 1

0 1

7

3

4

3
*
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To find the z-row values, we need to write the dual of the given problem, 
as follows:

Minimize z =7w
1
 + 3w

2

Subject to

   w
1
 – 3w

2
 ≥ 1

   w
1
 + w

2
 ≥ 4

     –2w
1
 + 2w

2
 ≥ 1

     w
1
, w

2
 ≥ 0

The value of the dual variable at this stage, 0 4
1 1

0 1
0 4

1 2( )
−







 = ( ) = ( )* w w

(i)  Value of z-row for x
1
 = (LHS – RHS) of the first dual constraints

    = –3 * 4 – 1 = – 12.

(ii) Value of z-row for x
2
 = (LHS – RHS) of the second dual constraints

    = 4 – 4 = 0.

(iii) Value of z-row for x
3
 = (LHS – RHS) of the third dual constraints

    = 2 * 4 – 1 = 7.

The following is the complete simplex table at this iteration:

Basic x
1

x
2

x
3

x
4

x
5

Solution

x
4

4 0 – 4 1 – 1 4

x
2

– 3 1 2 0 1 3

z –12 0 7 0 4 12

Since all the elements in the solution column are ≥ 0, the present 
basic solution is feasible but not optimal, since all elements in the z-row 
are not ≥ 0.

Note. The	 following	points	are	 to	be	remembered	while	constructing	a	
simplex	table.

(i)   The z-row elements corresponding to the basic variables will always be 
equal to zero.

(ii)  The columns corresponding to the basic variable will always provide an 
identity matrix.
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5.6. Duality Theorems

Theorem 5.1: The dual of the dual is primal.

Proof: Let  Max f (x) = cx

Subject to

 Ax ≤ b	 ...(5.7)

  x ≥ 0, be the given primal problem.

Where c is a row vector containing n elements, x is a column vector con-
taining n decision variables, A is the coefficient matrix of dimension m × n, 
and b is a column vector containing the RHS values of the constraints.

Then the dual corresponding to this primal problem is

Min f (y) = bʹy

Subject to

 A′y ≥ c′ ...(5.8)

  y ≥ 0,

Where b′, A′, and c′ are the transposes of b, A, c, and y is an m-dimension 
column vector of the dual decision variables.

Rewriting (5.8), we have

Max – f (y) = – b′y
Subject to

 –A′y ≤ –c′
   y ≥ 0,

Now, the dual of the dual is

Min – f (w) = (– cʹ)ʹw = – cw

Subject to

  (– A′) ′w ≥ (– b′)′ ⇒ – Aw ≥ – b

  w ≥ 0,

Rewriting the previous, we have

Max f (w) = cw
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Subject to

 Aw ≤ b ...(5.9)

w ≥ 0, where w is a column vector containing n decision variables of the 
dual of (5.8).

Now, we can clearly see that (5.7) and (5.9) are the same, and hence we 
can conclude that the dual of a dual is the primal.

Farkas Lemma: If A is any m × n real matrix and b ∈ Rm, then either

(i) Ax = b, x ≥ 0, or

(ii) wT A ≥ 0 and wTb < 0, w ∈ Rm has a solution, but not both.

Proof: Here we need to show that we cannot have solutions to both (i) 
and (ii). On the contrary, let us assume that both have solutions and let x be 
a solution to (i) and w to (ii), so that we have Ax = b, x ≥ 0 and wTA ≥ 0, and 
wTb < 0.

Then, we have

wTA ≥ 0 ⇒ wTA x ≥ 0 (since x ≥ 0) ⇒ wTb ≥ 0 (from (i)), which is a con-
tradiction of (ii), and hence if (i) is true (ii) cannot be true.

Theorem 5.2 (Weak Duality Theorem): For any given feasible solu-
tion, the value of the objective function of the minimization problem (dual) 
is always greater than or equal to the value of the objective function of the 
maximization (primal) problem.

Proof: Let x0 be any feasible solution to the following primal problem:

Max f (x) = cx

Subject to

 Ax ≤ b ...(5.10)

  x ≥ 0

And w0 be any feasible solution to the dual problem of (5.10); that is, w0 
is the feasible solution to

Min f (w) = bʹw

Subject to

 A′w ≥ c′ ...(5.11)

  w ≥ 0,
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Then, we have to show that cx0 ≤ b′w0

From the dual constraint, we have

c′ ≤ A′w0 (since w0 is the feasible solution to the dual problem)

⇒ c ≤ w′0A  ⇒ cx0 ≤ w′0Ax0  ⇒ cx0 ≤ w′0b

(Since x0 is the feasible solution to the primal problem, we have Ax0 ≤ b)

Hence,   cx0 ≤ b′w0  (since b′w0 = w′0b)

Hence the theorem.

Theorem 5.3 (Optimality Theorem): If x
0
 is the feasible solution to the 

following primal problem:

Max f (x) = cx

Subject to

 Ax ≤ b
  x ≥ 0
And w0 is a feasible solution to its dual, that is, w0 is the feasible solution 

to

Min f (w) = b′w

Subject to

   A′w ≥ cʹ

     w ≥ 0,

And, if their objective function values are the same at these feasible solu-
tions, then these are the optimal solutions of their respective problems.

Proof: If x0 and w0 are the feasible solutions of primal and dual problems, 
respectively, and if their objective functions are same at these solutions.

Then, we have

 cx0 = b′w0

Further, let x* and w* be other feasible solutions of primal and dual prob-
lems, respectively, then by the weak duality theorem, we have

cx* ≤ b′w0  ⇒ cx* ≤ cx0  (since cx0 = b′w0) ∀x*

Which proves that x0 is an optimal solution of primal problem.

Similarly, we have



DUALITY • 155

cx0 ≤ b′w* ⇒ b′w0 ≤ b′w*
And hence it shows that w0 is an optimal solution for a dual.

Example 5.8. Consider	the	following	primal	and	dual	linear	programs.
(Primal)  Maximize Z = x

1
 + 5x

2
 + 3x

3

Subject to the constraint

 2x
1
 + x

2
 + 4x

3
 ≤ 15

 x
1
 + 6x

2
 + 5x

3
 ≤ 20, x

1
, x

2
, x

3
 ≥ 0

(Dual)   Minimize W =15w
1
 + 20 w

2

Subject to the constraint

 2w
1
 + w

2
 ≥ 1, w

1
 + 6w

2
 ≥ 5, 4w

1
 + 5w

2
 ≥ 3

  w
1
, w

2
 ≥ 0

Let x
1
 = 1, x

2
 = 1, x

3
 = 1 be the feasible solution for the primal problem 

and w
1
 = 1, w

2
 = 2 be the feasible solution for the dual problem. Then the 

value of the objective function for the primal problem is Z = 9 and for the 
dual problem is W = 55. Since (Z = 9) < (W = 55), it proves the weak duality 
theorem.

Theorem 5.4 (Complementary Slackness Theorem): Let x0 be a fea-
sible solution to the following primal problem:

Max f (x) = cx

Subject to

 Ax ≤ b ...(5.12)

  x ≥ 0,

And w0 is the feasible solution to the dual of (5.12), that is, w
0
 is the fea-

sible solution to

Min f (w) = b′w
Subject to

 A′w ≥	c′ ...(5.13)

  w ≥	0,

Then, the necessary and sufficient conditions for x0 and w0 to be optimal 
for their respective problems is w′0 (b – Ax0) = 0 and x′

0
 (A′w0 – c′) = 0.
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Proof (Necessary condition): Let x0 and w0 be the optimal solutions of 
the primal and dual problems, respectively. Also let p = w′0 (b – Ax0) and q = 
x′0 (A′w0 – c′).

Since w′0, (b – Ax0), x′0, (A′w0 – c′) ≥ 0, it implies p, q ≥	0.

Then, we have

p + q′ = w′0b – w′0Ax0 + w′0Ax0 – cx0 = w′0b – cx0 = b′w0 – cx0 (b′w = w′b)

By Theorem (5.3), at the optimal points x0 and w0 the dual objective func-
tion is equal to the primal objective function, that is bʹw0 = cx0 ⇒ p + q′ = 0.

Hence, p = 0, q = 0; since p	≥	0 and q	≥	0, thus, the necessary condition 
is proved.

(Sufficient condition): Now, let us assume that p = 0, q = 0; then, we 
have to show x0 and w0 are the optimal solutions to the primal and dual prob-
lems, respectively.

Since   p + qʹ= 0, we can write

   b′w0 – cx0 = 0

⇒	 	    b′w0 = cx0

⇒ x0 and w0 are the optimal solutions to the primal and dual problems, 
respectively (by the optimality theorem).

Hence, the sufficient condition.

Note. For	optimal	feasible	solutions	of	primal	and	dual	problems,	when-

ever inequality occurs in the ith	 constraint	of	either	problem,	 then	 the	cor-
responding ith	dual	variable	will	have	zero	value.	Similarly,	if	the	ith variable 

is	positive	 in	either	problem,	 then	 the	corresponding	constraint	 in	 its	dual	
problem	is	having	equality.

Example 5.9. The	following	linear	programming	problem:
Maximize	z	= 4x

1
 + x

2

Subject to the constraints:

    2x
1
 + x

2
	≤	100

     x
1
 + x

2
	≤	80

      x
1 
≤	40

   x
1
,	x

2
	≥	0
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has (40, 20) as an optimum solution. Use the complementary slackness 
condition to find the optimum solution of its dual.

Solution: Let w
1
, w

2
, and w

3
 be the dual variables, and then the dual of 

the given problem is

Minimize w = 100w
1
 + 80w

2
 + 40w

3

Subject to

      2w
1
 + w

2
 + w

3
	≥	4

     w
1
 + w

2 
≥ 1

     w
1
, w

2
, w

3
 ≥ 0

On evaluating the inequalities of the primal constraints at the optimal 
points x1

∗  = 40 and x2

∗  = 20, we find positive slack in the second constraint 
and zero slack in the first and third constraints. Thus, by the complementary 
slackness theorem, at the optimal point of the dual problem, we have w2

∗  = 0.

Now, since x1

∗  and x2

∗  are non-zero, the dual constraints corresponding to 
these two variables will satisfy equality, and hence the dual surplus variables 
for these constraints should be equal to zero. Hence, we can write

    2 w2

∗  + w3

∗  =  4 (first dual constraints with w2

∗  = 0, as explained 
previously)

  w1

∗  = 1 (Second dual constraint)

Clearly, w1

∗  = 1, w2

∗  = 0, and w3

∗  = 2 is the optimal solution of the dual 
problem and the corresponding minimum value of the objective function is 
180, which is same as the value of the primal objective function at the optimal 
solution x1

∗  = 40 and x2

∗  = 20. 

Example 5.10. Use	the	complementary	slackness	theorem	to	find	the	op-

timal solution of the following LPP:

Minimize	Z	= 15x
1
 + 9x

2
 + 8x

3
 + 2x

4

Subject	to	the	constraints	10x
1
 + 14x

2
 + 6x

3
 + x

4
	≥	300	 x

j
	≥	0 ∀j

Solution: The following is the dual of the given problem:

Maximize W = 300 w

Subject to the constraints

10w ≤ 15, 14w ≤ 9, 6w ≤ 8, w	≤	2,  w	≥	0
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The solution of the dual problem is w =
9

14
, which is satisfied by all the 

constraints.

And the second constraint satisfies with equality, while other constraints 
satisfy strict inequality. The optimal value of objective function at this point 
is W = 1350/7.

Now, by the complementary slackness condition, the variable x
1
 corre-

sponding to the first dual constraint, which satisfies inequality, will be zero, 
and x

2
 will be >0 because it is the dual variable corresponding to the second 

constraint which satisfies equality. Similarly, by following the same argu-
ment, we have:

x x x x x
1 3 4 2 2

0 14 300
150

7
= = = ⇒ ≥ ⇒ ≥,  (from the primal constraint)

Now, since we have to minimize the value of z	= 9x
2
, it will be minimum 

at x
2
 = 150/7, and hence Min Z W= 







 = =9

150

7

1350

7
* .Max

Example 5.11. Suppose	it	has	been	claimed	that	(5,	35,	0)	is	the	optimal	
solution	of	the	primal	problem	given	in	Example	5.1.	Verify	the	claim	using	
the	complementary	slackness	theorem.

Solution: It can be seen that the given points satisfy the second primal con-
straint with equality, whereas the other two constraints are satisfied with strict 
inequality. Hence, by the complementary slackness theorem, w

1
 and w

3
 = 0.  

Now, since the first and second primal variables are different from zero, the 
first and second dual constraints should have equality, so that we have

  3w
1
 – w

2
 + 2w

3
 = 1

   w
1
 + w

2
 – w

3
 = 2 ...(5.14)

On putting with w
1
 and w

3
 = 0, we get w

2
 = –1 and 2 from the two equa-

tions of (5.14), which are contradicting one another. Hence, (5, 35, 0) cannot 
be an optimal solution to the given primal problem.

Theorem 5.5 (Strong Duality Theorem): For the primal-dual relation-
ship of a linear programming problem, if the primal (dual) problem has a 
finite optimal solution, then so does the dual (primal) problem, and their value 
of objective functions are same at the optimal point.

Proof: Let Maximize z c x
j jj

n

=
=∑ 1

Subject to the constraints
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a x b x j n i m
ij j ij

n

j
≤ ≥ = =

=∑ , , , ..... , , ..... ,
1

0 1 2 1 2

be the given primal problem and

Minimize w b w
i ii

m

=
=∑ 1

Subject to the constraints

a w c w j n i m
ij i j ii

m
≥ ≥ = =

=∑ , , , .... , , ....0 1 2 1 2
1

be the associated dual problem. Adding the slack variables x
n
 
+
 1, x

n
 + 2,  

…, x
n
 + 

m
 to the constraints of the primal problem, we have the following 

standard form:

Maximize z c x
j jj

n

= ∗

=∑ 1

Subject to the constraints

and 

a x x b

x j n

x i m

ij j n i ij

n

j

n i

+ =

≥ =

≥ =

+=

+

∑ ,

, , ..... ,

, , .....

1

0 1 2

0 1 2   ...(5.15)

Assuming the non-negativity of the constants b
i
, ∀i and taking x

n + 1
, x

n + 2
, 

..., x
n + m

 as the starting initial basic feasible variables, which constitute a basic 
feasible solution to the previous problem, (5. 15) is now in its canonical form, 
and hence the simplex calculation can be started.

Let x*j, j = 1, 2, 3, …, n, (n + 1) ... (n + m) be the resulting optimal solu-
tion of the primal problem.

Now, let w*
i
, i = 1, 2 ... .. m, be the values of dual variables associated 

with the optimal table of the primal problem. The primal problem has an op-
timal solution since its optimality condition is satisfied, and we know that the 
z-row coefficients of the optimal table of the primal problem can be written as 
the difference of the LHS and RHS of the dual constraints, and we can write:

c a w c j n
j ij ii

m

j
= − ≥= =

=∑ 1
0 1 2* , , ,...,  (values of z-row coefficients corre-

sponding to the given variables) ...(5.16)

c w i mn i i+ = − ≥ =
*

, , ,...,0 0 1 2  (For the slack variables)  ..(5.17)

(Refer to Sections 5.3 and 5.5)

Combining (5.16) and (5.17), we have
a w c j n
ij i ji

m *
, , ,..., ,≥ =

=∑ 1 2
1

 and w
i
*	≥	0, i = 1, 2, …, m
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This implies that w
i
*, i = 1, 2 ..., m constitutes a feasible solution to the 

dual problem.

Let us assume that when the simplex algorithm terminates, the equation 
of z	reads 

as, z z c x
k kk

n m

= −
=

+

∑* 1
 …(5.18)

At the optimal point the value of c
k
 is non-negative, and in fact c

k
 has a 

zero value for the basic variables and positive values for the remaining and 
the maximum value of the objective function, and z*	at this point is given by 
z c x

j jj

n
= ∗

=∑ 1
 ...(5.19)

Rewriting (5.18), we have

z z c x c x

z c x w b a x

k k n i n ii

m

k

n

k k i i ij jj

n

i

= − −

= − − −

+ +==

==

∑∑

∑

*

* * ( )

11

11

mm

k

n

i ii

m

j ij iz w b c a w

∑∑

∑

=

=
= − − −

1

1

5 15 5 17...(from( . ) and ( . ))

( ) (* * **

* * * *

)

( )

i

m

jj

n

i ii

m

ij i j ij ii

m

i

m

x

z w b a w c a w

==

= ==

∑∑

∑ ∑∑= − − − −

11

1 11(( )
= − +

=

= =

∑

∑ ∑

x

z w b c x

jj

n

i ii

m

j jj

n

1

1 1
( )* *

And hence, z w b z c xi i j jj

n

i

m* * (since )− = =
== ∑∑ 0
11

 ...(5.20)

Now, combining (5.19) and (5.20), we have
c x w bj j i ii

m

j

n * *=
== ∑∑ 11

Now, by the optimality theorem (Theorem 5.3), it proves that w
i
* is the 

optimal solution for the dual problem. This establishes the equality of the 
objective functions at the optimal points.

Corollary 5.1: If either of the LP problems is unbounded, then the other 
problem must be infeasible.

Proof: This follows from the weak duality theorem. Suppose the primal 
(dual) problem has an unbounded solution, then the dual (primal) cannot have 
a feasible solution, since the dual (primal) objective function value will im-
mediately provide an upper (lower) bound on the objective function value 
for the primal (dual) and then it will contradict our assumption. So, if the LP 
problem is unbounded, then the other problem must be infeasible.

Corollary 5.2: If either LP is infeasible, then the other LP is either infea-
sible or unbounded.
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Proof: This follows from the strong duality theorem, which states that 
if either problem has a finite optimal solution, then so does the dual (primal) 
problem, and their objective function values are same at the optimal point. 
Thus, if one problem is infeasible, then the other cannot have an optimal solu-
tion, and so it must be either infeasible or unbounded.

5.7. Economic Interpretation of Duality

Consider the following primal problem in “n” economic activities and 
“m” resources.

Maximize z c x
j j

j

n

=
=
∑

1

Subject to the constraints

  
a x b i m

x j n

ij j i

j

n

j

≤ =

≥ =

=
∑ , , , ...

, , , ..., ,

1 2

0 1 2

1

Where c
j
 is the revenue per unit of the activity j,	b

i
 is the maximum avail-

ability of the resource i, and a
ij
 is the consumption of resource i per unit of 

activity j. Then the dual of the given problem is given by:

Minimize W bw
i i

i

m

=
=

∑
1

Subject to the constraints

a w c j n w i m
ij i j i

i

m

≥ = ≥ =
=
∑ , , ,..., , , , ,...1 2 0 1 2

1

Interpretation of Dual Variables: We know that at the optimal points 
the value of the primal objective function equals the dual objective function.

That is,   c x b wj j i ii

m

j

n * *=
== ∑∑ 11

 …(5.21)

The LHS of (5.21) gives the value of the maximal revenue of the primal 
problem, whereas the RHS is the sum-product of the availability of the ith 

resource and its worth per unit. Hence, w
i
 denotes the worth or imputed cost 

per unit of the ith resource.

Interpretation of Dual Constraints: At any feasible point for the pri-
mal, we have:

Objective coefficient of x a w c j n
j ij i ji

m

= − =
=∑ ; , ,..., ;1 2
1
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Since c
j
 is the revenue per unit of the activity j, a w

ij i i

m

i

m

= ∑ ==∑ 11
 (con-

sumption of resource i per unit of activity j) * (worth per unit of the ith re-
source) must represent imputed cost of all the resources to produce one unit 
of activity “j.” Therefore, the quantity a w c

ij i ji

m

−
=∑ 1

 represents the reduced 

cost of the activity “j.” In the simplex calculation, with maximization as an 
objective function, it is economically advantageous to increase the level of 

activity “j” if the revenue of one unit of activity “j” > imputed cost per unit 

of activity “j.”
Important Points

(i)   The value of the objective function of the maximization problem for any 
feasible solution is always a lower bound for the value of the objective 
function of the minimization problem.

(ii)  The value of the objective function of the minimization problem for any 
feasible solution is always an upper bound for the value of the objective 
function of the maximization problem.

Primal feasible Dual feasible

Increasing z Decreasing w

Fig. 5.3

(iii)  If the primal (dual) has a feasible solution, but its value of the objective 
function is unbounded, then the dual (primal) problem has an infeasible 
solution.

(iv)  If the primal (dual) problem has an infeasible solution, then the dual (pri-
mal) problem has an unbounded solution.

(v)  Dual variables are called shadow prices of the limited resources, which 
are the imputed costs of respective resources.

(vi)  If there are feasible solutions x j
j

∗
≥ ∀0  and w i

j

∗
≥ ∀0  for the symmetric 

primal and dual linear programs, respectively, and their value of the ob-
jective functions are same at these solutions, then these are the optimal 
solutions for their respective problems.
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5.8. Dual Simplex Method

When we solve an LPP using the simplex method, we start with the fea-
sible solution and try to achieve optimality. While doing this, we are actually 
trying to achieve the feasibility of our dual solution. In the primal simplex 
method, we move from one feasible basis to another until we get the optimal 
feasible basis, which is also a feasible basis for the dual problem. Thus, in 
solving the primal by the simplex method, the dual solution remains infea-
sible when the primal solution is feasible but nonoptimal. The primal problem 
can also be solved by starting with the dual feasible basis, where the optimal-
ity condition of the primal problem will be satisfied and we try to obtain a 
primal feasible basis by moving from one dual feasible basis to another. This 
is the approach used in the dual simplex method.

In the dual simplex method, we start with the solution which is infeasible 
(it does not satisfy the non-negative restriction) but optimal (it satisfies the 
optimality condition), and by moving from iteration to iteration we try to 
achieve its feasibility by maintaining its optimality. As soon as we get a fea-
sible solution, we terminate the process.

This method sometimes is very helpful in solving problems without using 
artificial variables, and is also very useful in carrying out sensitivity analysis, 
in solving integer programming problems, and so on. The main difficulty in 
applying this method is to get the initial dual feasible basis, which sometimes 
is not easy to obtain. In the (primal) simplex method, while moving from one 
table to another we first select the entering non-basic variable, and then the 
departing variable from the basis is selected. Whereas, in the dual simplex 
Method, the leaving variable will be decided first and then followed by the 
entering variable. The rules for deciding the leaving and entering variables in 
the dual simplex algorithm are given as follows.

Feasibility condition: The basic variable having the most positive value 
is chosen as a leaving variable from the basis. When all the basic variables 
become non-negative, then the process terminates and the optimal as well as 
the feasible solution is reached.

Optimality condition: To decide the non-basic variable which will enter 
the basis, the following conditions are employed.

(For maximization problem)
x

y

z

y
yBr

rk rj

r= Max (
row coefficients

, jj

Br

rk

x

y

z

y

<0)

Min (
row coefficients

(For maximization problem) =
rrj

rjy, <0)
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Here, the index r is used for the i = rth row basic variable leaving from the 
basis, and the k index is used for the j = kth column variable, which is a non-
basic variable entering the basis.

If no y
rj
 < 0, we will terminate the process and there is no feasible solution 

to the problem.

The working procedure of the simplex method is different from the dual 
simplex method in the following ways:

(i)   In the simplex method, we start with the feasible but non-optimal basis, 
whereas in the dual simplex method, we start with the dual feasible basis.

(ii)  In the simplex method, we first choose the entering variable and then the 
departing or leaving variable from the basis, whereas in the dual simplex 
method, it is the reverse.

(iii)  In the simplex method, by moving from one feasible basis to another, we try 
to achieve the optimal solution, whereas in the dual simplex method, by mov-
ing from one optimal basis to another, we try to achieve the feasible solution.

Example 5.12. Use the dual simplex method to solve the following LPP:

Minimize	z	= 6x
1
 + 8x

2

Subject to

    x
1 
+ x

2
	≥	30

   5x
1
 + 2x

2
	≥	60

     x
1
+x

2
	≥	0

Solution: Multiply both constraints by –1 to convert the ≥ to ≤ and re-
write the resulting problem as:

   – x
1
 – x

2
 + x

3
 = – 30

  – 5x
1
 – 2x

2
 + x

4
 = – 60

	 	 	 z – 6x
1
 – 8x

2
 = 0

    x
1
, x

2
, x

3
, x

4
 ≥ 0

The initial dual simplex table of the previous problem is:

Basic x
1

x
2

x
3

x
4

Solution

x
3

– 1 – 1 1 0 – 30
x

4
– 5 – 2 0 1 – 60

z – 6 – 8 0 0 0
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The optimality condition of the current table is satisfied, as all elements 
in the z-row are ≤ 0. At the same time it is also infeasible, as the value of both 
the basic variables is ≤ 0. As per algorithm discussed previously, x

4
 will leave 

the basis, as it has the most negative value. The following table shows how 
the optimality condition is used to decide the entering variable.

j = 1 j = 1

Non – basis x
1

x
2

z-row value (z
j
) – 6 – 8

y
4j
(< 0) – 5 – 2

Ratio z
j 
/y

4j
1.2 4

So, x
1
 enters the basis (since it has the minimum ratio). The next table is 

obtained using the normal row operation.

Basic x
1

x
2

x
3

x
4

Solution

x
3

0 – 0.6 1 – 0.2 – 18

x
1

1 0.4 0 – 0.2 12

z 0 – 5.6 0 – 1.2 72
Ratio 9.33 6

x
3
 will leave the basis and x

4
 will re-enter. The resulting table is given as 

follows:

Basic x
1

x
2

x
3

x
4

Solution

x
4

0 3 – 5 1 90
x

1
1 1 – 1 0 30

z 0 – 2 – 6 0 180

Now, both the optimality and feasibility conditions are satisfied and the 
previous table is the optimal table of the given problem. It can be clearly seen 
that in all iterations, optimality is maintained; that is the elements in the z-row 
in all tables are ≤ 0, and as we move from one table to another, the solution 
also moves toward the feasibility. Hence, x

1
 = 30 and x

2
 = 0 is the optimal 

basis feasible solution, and the corresponding minimum value of the objec-
tive function is 180.
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Exercises

1.  Explain the key relationships between primal and dual problems.

2.  Write a short note on duality in linear programming.

3.  Prove that the dual of the dual of a given primal is again primal.

4.  State and prove:

(i)   Weak Duality Theorem

(ii) Strong Duality Theorem

(iii)  Complementary Slackness Theorem

5.   Write the dual associated with each of the following linear programming 
problems:

(i)   Minimize    z	= 10x
1
 + 2x

2

Subject to   x
1
 + x

2
 ≥ – 1

   x
1
 + x

2
 ≥ – 2

  2x
1
 – x

2
 ≥ – 1

   x
1
, x

2
 ≥ 0

(ii)   Maximize   Z = 2x
1
 + 3x

2

Subject to   2x
1
 – 2x

2
 ≥ 4

    x
1
 + 0.25x

2
 ≤ 1, x

1
 and x

2
 are unrestricted in sign

(iii)   Minimize Z = 7x
1
 + 5x

2

Subject to x
1
 + x

2
 = 1

  – 2x
1
 + x

2
 ≤ 3

   – x
1
 + x

2
 ≥ 1

     x
1
 ≥ 0, x

2
, x

3
 are unrestricted in sign

6.   Use duality theory to determine whether x
1
 = 0, x

2
 = 6.111, x

3
 = 6.111, and 

x
4
 = 3.333 is an optimal solution of the following linear programming 

problem:

Max z	= x
1
 + 2x

2
 + 1.3x

3
 – 0.5x

4

Subject to the constraint
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   2.5x
1
 + 2x

2
 + x

3
 – x

4
 ≤ 15

  2x
1
 + x

2
 + 2x

3
 + 0.5x

4
 ≤ 20

  1.5x
1
 + 2x

2
 + x

3
 + 2x

4
 ≤ 25

and      x
1
, x

2
, x

3
, x

4
 ≥ 0

What if the x
1
 coefficient in the objective function is changed to 1.5 and 

the constraints remain the same?

7.  Give the economic interpretation of duality.

8.   Write the dual of the following linear programming problem and graphi-
cally determine the optimal values of the dual variables:

Max z	= 3x
1
 + 2x

2

Subject to

   2x
1
 + x

2
 ≤ 25

    x
1
 + x

2
 ≤ 15

      x
1
 ≤ 8

and     x
1
, x

2
 ≥ 0

9.   The following are the initial and optimal table of a given linear program-
ming problem with minimization as an objective function.

Basic x
1

x
2

x
3

x
4

x
5

x6 x7 Solution

x
5

1 2 – 1 2 1 0 0 b
1

x
6

1 – 2 0 1 0 1 0 b
2

x7 0 0 1 0 0 0 1 b
3

z – 1 0 0 1 0 0 0 0

(Initial Table)

Basic x
1

x
2

x
3

x
4

x
5

x6 x7 Solution

x
4

0.6667 0 0 1 0.3333 0.3333 0.3333 20
x

3
0 0 1 1 0 0 1 42

x
2

f 1 0 0 0.16667 –0.3333 0.16667 7
z a b c d –0.3333 e –0.3333 20

(Optimal Table)
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(i)   Identify the optimal basis inverse

(ii) Find the value ,	and b
1
, b

2
 and b

3

(iii)  Obtain the dual solution

(iv) Determine the values of a,	b,	c,	d,	e,	and f.

10. Explain:

(i)   Weak Duality

(ii) Strong Duality

(iii)  Complementary Slackness Property in Duality.

11. Consider the following LPP:

Max z	= 15x
1
 + 12 x

2
 + 8x

3

Subject to

   2x
1
 + x

2
 + x

3
 ≤ 50

  2x
1
 + x

2
 + 2x

3
 ≤ 65

   x
1
 + 2x

2
 – x

3
 ≤ 45

and    x
1
, x

2
, x

3
 ≥ 0

Check the optimality and feasibility conditions by constructing the entire 
simplex tableau associated with each of the following basic solutions:

(i)   Basic variable = (x
1
, s

2
, x

2
), =

−

−

−

















0 6667 0 0 3333

1 1 0

0 3333 0 0 6667

. .

. .

(ii)   Basic variable = (x
1
, x

3
, x

2
), =

− −

−

−

















1 6667 1 0 3333

1 1 0

1 3333 0 0 6667

. .

. .

.

12.  Explain the dual simplex method used for solving a given LPP. How does 
it differ from the normal simplex method?

13. Use the dual simplex method to solve the following LPP.
(i)   Max z	= – 1.5x

1
 – 4x

2

Subject to

   x
1
 + 2x

2
 ≥ 22
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     2x
1
 + 3x

2
 ≤ 45

     x
1
 ≤ 12

and    x
1
, x

2
 ≥ 0

(ii)   Min z	= x
1
 + 1.2x

2
 + 0.5x

3

Subject to

   x
1
 + 2x

2
 + x

3
 ≥ 20

  2x
1
 + 2x

2
 + x

3
 ≥ 35

     x
1
 + x

2
 ≥ 10

and     x
1
, x

2
, x

3
 ≥ 0

(iii)   Min z	= 2x
1
 + 2x

2

Subject to

   x
1
 + 2x

2
 ≥ 1.5

     – 2x
1
 + x

2
 ≤ – 1

     2x
1
 + 4x

2
 ≥ 1.8

and   x
1
, x

2
, x

3
 ≥ 0





C H A P T E R6
SENSITIVITY ANALYSIS

6.1. Introduction

In all linear programming problems, we make an assumption that the 
parameters a

ij
, b

i
, and c

j
 are certainly known to us, but in real life it is 

not true. The values of these parameters are always estimated based on 
experience and with the help of past data, which never remains the same 
and keeps changing with time. Sensitivity analysis is used to determine 
what changes will occur in the current optimal basic feasible solution 
corresponding to the changes in one or more parameter values. With the help 
of sensitivity analysis, we can determine the sensitivity of the parameters, 
that is, how sensitive the parameters are. There are some parameters which 
are very sensitive in that if we slightly change the value of the parameter, 
the solution changes; on the other hand, the solution due to the change in 
some parameters remains unchanged in some range of parameter values but 
beyond this range, there is a change in the solution. With the help of this 
analysis, we can determine the range of parameter values within which the 
current solution remains feasible as well optimal but obviously with the 
changed values of the variables.

By using the concepts of the construction of a simplex table and dual-
ity, which have been discussed earlier, we can determine the change in the 
final optimal basic feasible solution due to the change in parameter values, 
without solving the whole problem again from the beginning. There may 
be two types of changes in the optimal basic feasible solution: either the 
feasibility or the optimality of the current optimal basic feasible solution 
may get disturbed.
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The feasibility of the optimal solution may get disturbed due to the 
changes in the following parameter values:

(i)  Availability parameter b
i
 for the ith resource, i = 1, 2 .....m

(ii) Addition of a new constraint

(iii) Deletion of a variable

In these cases, the dual simplex method may be applied to regain the 
feasibility of the solution.

The optimality condition of the optimal solution may get disturbed due to 
the changes in the following parameter values:

(i)  The cost coefficient c
j
 in the objective function, j = 1, 2 .....n

(ii) Addition of a new variable

(iii) Changes in the coefficients a
ij
 of a variable x

j
 in constraints j = 1, 2 .....n

(iv) Deletion of a constraint

Here the optimality of the current solution may be regained by applying 
the simplex method.

Note: (1) In case of any change in the parameter values of the given prob-

lem,	 the	 initial	basic	variables	comprising	slack	or	artificial	variables	and	
their	coefficients	remain	the	same,	and	hence	corresponding	to	these	initial	
basic	variables,	the	basis	inverse	B–1	and	the	values	of	the	dual	variables	in	
the	final	table	also	don’t	change.	Therefore,	with	the	help	of	these	values,	the	
remaining	values	in	the	final	simplex	table	can	be	obtained	using	the	relations	
given	as	follows:

(a)  z-row coefficients = (values of dual variables) * (original changed 
vector)- (changed price corresponding to these vectors)

(b)  Any other vector in the Simplex table = (basis inverse) * (changed vector 
if any)

(c)  Changed values of basic variables = (basis inverse) * (changed original 
RHS vector)

(d)	  Changed value of the objective function = (values of dual variables) * 
(changed RHS vector)
Here instead of taking the complete changed vector, we can find the 

incremental changes in the final table as there are incremental changes in the 
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initial table by ignoring all terms where there is no change in the initial table. 
With the help of this procedure, we can find the range of values of given 
parameters in which our current optimal basic feasible solution will remain 
feasible as well as optimal.

After applying the previously mentioned operations, it might happen 
that the final matrix is not in an appropriate form as is required, like the 
vectors corresponding to basic variables do not form identity matrix (this 
may happen if the coefficients corresponding to basic variables appearing 
in final table, changes in the original problem); in this case by applying the 
Gaussian elimination method, we can convert it to the desired form. Now in 
the final table, if the optimality or the feasibility condition has been disturbed, 
then after applying the simplex or dual simplex method, respectively, the 
optimality and the feasibility of the final solution may be regained.

Now let us consider the changes in different parameter values of any 
given linear programming problem and see how we can obtain the solution of 
the changed problem without solving the whole problem again.

6.2. Changes in the RHS Vector b
i

Here we assume that one or more b
i
 (i = 1 ...m) parameter values change 

in the model. As we have discussed earlier, due to this change there will be no 
change in the final simplex table except the RHS column or the values of the 
basic variable and hence the feasibility of the solution.

The new values of the basic variables appearing in the final simplex 
table can be obtained as follows:

(New values of basic variables in final simplex table) = (basis inverse in 
final simplex table) * (newly changed vector b in the original model)

x B b b b
B

∗∗ −− ∗∗ ∗∗
=

1 where is changed vector

And the change in the value of the objective function corresponding to 
this change is (New value of obj. function) = (values of dual variables)* 
(changed vector b)

Example 6.1. Consider	the	following	LPP:
Max   z = x

1
 + 3x

2

Subject to

x
1
	≤	5,	x

1
 + 2x

2
	≤	10,	x

2
	≤	4	x

1
, x

2
	≥	0.
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Solution: Writing the given problem into its canonical form, we have:

Max z

Subject to

   x
1
 + s

1
 = 5

x
1
 + 2x

2
 + s

2
 = 10

  x
2
 + s

3
 = 4

z – x
1
 – 3x

2
 = 0

x
1
, x

2
, s

1
, s

2
, s

3
 ≥ 0

Initial Table

Basic x
1

x
2

s
1

s
2

s
3

Solution Ratio

s
1

1 0 1 0 0 5

s
2

1 2 0 1 0 10 5

s
3

0 1 0 0 1 4 4

z –1 –3 0 0 0 0

x
2
 enters and s

3
 departs.

First Iteration

Basic x
1

x
2

s
1

s
2

s
3

Solution Ratio

s
1

1 0 1 0 0 5 5

s
2

1 0 0 1 –2 2 2

x
2

0 1 0 0 1 4

z –1 0 0 0 3 12

x
1
 enters and s

2
 departs.

Final Table

Basic x
1

x
2

s
1

s
2

s
3

Solution

s
1

0 0 1 –1 2 3

x
1

1 0 0 1 –2 2

x
2

0 1 0 0 1 4

z 0 0 0 1 1 14
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Since all the elements in the z row are ≥ 0, the optimality condition is now 
satisfied. Here, the optimal solution is x

1
 = 2, x

2
 = 4, and	z	= 14.

Now we change the RHS vector to b* =
















12

15

8

. We have the following 
information from the table.

Basis Inverse = B
-1 =

−

−

















1 1 2

0 1 2

0 0 1

 and values of dual variables or shadow 

prices which represent the worth of all resources are 0, 1, 1.

Hence, the values of the new basic variables are B–1b* = (11, –1, 8) and 
z* = 23

Here   b* = b+ b

10

15

8

5

10

4

5

5

4
















= =
















+

















∆∆ ∆∆where bb =

















5

5

4

By incremental analysis we can also obtain the changed values of the 
basic variables as:

Old values of basic variables in the final table + incremental values 

B b
-1
∆∆( ) =
















+

−

−
































=

3

2

4

1 1 2

0 1 2

0 0 1

5

5

4

*

33

2

4

8

3

4

11

1

8
















+ −
















= −

















Similarly, the new value of the objective function = the old value of the 
objective function + the incremental value of the objective function = 14 + 

(values of dual basic variables)* *∆∆b( ) = + ( )
















=14 0 1 1

5

5

4

23 .

Now the RHS vector of the final table has become infeasible (i.e., the 
values of the basic variables have become negative), so we will apply the dual 
simplex method to get the feasible as well as the optimal solution. Changing 
the solution column in the final table of the original problem by 11, –1, 8, and 
23, we have:
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Basic x
1

x
2

s
1

s
2

s
3

Solution

s
1

0 0 1 – 1 2 11

x
1

1 0 0 1 – 2 – 1

x
2

0 1 0 0 1 8

z 0 0 0 1 1 23

Ratio – 0.5

Clearly, x
1
 will leave the basis, and since –2 is the only negative value in the 

row corresponding to the leaving variable, s
3
 enters the basis in the next table.

Basic x
1

x
2

s
1

s
2

s
3

Solution

s
1

1 0 1 0 0 10
s

3
– 0.5 0 0 – 0.5 1 0.5

x
2

0.5 1 0 0.5 0 7.5

z 0.5 0 0 1.5 0 22.5

Since both the optimality and feasibility conditions are now satisfied, the 
optimal solution has been reached. Hence, x

1
 = 0 and x

2
 = 7.5 is the optimal 

solution of the changed problem, and the corresponding value of z is 22.5.

The graphical solution of the original and modified problem is shown as 
follows.

0 2 4 6 8 10 12 14 16

0

2

4

6

8

10

12

14

Optimal point of the original problem

Feasible region of the
changed problem

Optimal point of the
changed problem

E

A B

C
D

F

G

x 82

x1 5

x1 10

x2 4

x + 2x1
2 10 x + 2x1

2 15

Feasible region of
the original problem

O

Fig. 6.1
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In the previous graph, the solid lines denote the original constraints, the re-
gion OABCD gives the feasible region of the original problem, and the optimal 
solution of this problem occurs at the extreme point B (2, 4) with the correspond-
ing value of z as 14. The dotted lines denote the changed constraints when the b 
is changed to b*, and the region surrounded by OEFG gives the feasible region 
of the changed problem. Here, the optimum solution occurs at the extreme point 
E (0, 7.5), and the corresponding value of the objective function is 22.5. Hence, 
there is an increment of 8.5 in the value of the objective function because of the 
new b vector. It can also be seen that the constraint x

2
 ≤ 8 now becomes redundant.

6.2.1. Range of b
i
’s

We can find the range of each b
i
(i = 1, ...m) parameter in which it can 

change so that the current solution remains feasible as well as optimal.

Range for b
1
: We have b = b+ b =* ∆∆

b

b

b

b
1

2

3

1

0

0
















+

















∆

; that is, we assume 

that there is a change in the b
1
 component of the b vector. Due to this 

change, we want our solution to remain feasible as well as optimal, that is, 

B b* = B b+ b B b+ B
-1 -1 -1 -1∆∆( )

















∆b
1

0

0

= (old	solution) + (incremental change in the solution) ≥ 0

⇒
















+

−

−
































≥

⇒ +

3

2

4

1 1 2

0 1 2

0 0 1

0

0

0

3

1

*

∆

∆

b

bb

b

b

b

1

1

1

1

0

3

3

2

≥

⇒ ≥ −

⇒ − ≤ ≤ ∞

⇒ ≤ ≤ ∞

∆

∆

*

Range for b
2
: We have b* = b+ b =∆∆

b

b

b

b

1

2

3

2

0

0
















+

















∆ ; that is, we assume that 

there is a change in the b
2
 component only of the b vector. Due to this change, 

we want our solution to remain feasible as well as optimal; that is:



178 • OPTIMIZATION USING LINEAR PROGRAMMING

B b* = b+ b B b+ B
-1 -1 -1 -1

B ∆∆( )
















≥

0

0

02∆b

 (old solution) + (incremental change in the solution due to the change 
in b vector) ≥ 0



   

3

2

4

1 1 2

0 1 2

0 0 1

0

0

0
2
















+

−

−
































≥* ∆b

       3 0 2 0
2 2

− ≥ + ≥∆ ∆b band

       ∆ ∆b b
2 2
3 2≤ ≥ −and

      −∞ ≤ ≤ − ≤ ∞≤∆ ∆b b
2 2
3 2and

 By combining these two inequalities we get

     − ≤ ≤ ≤ ≤2 3 13
2 2

∆b band 8 
*

.

Range for b
3
: Now, we have b* = b+ b =∆∆

b

b

b b

1

2

3 3

0

0
















+















∆

; that is, we as-

sume that there is a change in the b
3
 component only of the b vector. Due to 

this change, we want our solution to remain feasible as well as optimal, that 

is: B b* B b b B b B
-1 -1 -1 -1

= + = +∆( )

















0

0

3
∆b

= (old	solution) (incremental	change	in	the	solution	due	to	the	change	in	
the b vector) ≥ 0)

   
3

2

4

1 1 2

0 1 2

0 0 1

0

0 0

3
















+

−

−
































≥*

∆b

     3 2 0 2 2 0 4 0
3 3 3

+ ≥ − ≥ + ≥∆ ∆ ∆b b b; and


          

∆ ∆ ∆b b b
3 3 3

2

3
1 4≥ −








 ≤ − ≤; and

 By combining all three inequalities we get

     
−







 ≤ ≤








 ≤ ≤

3

2
1

5

2
5

3 3
∆b band hence 

*
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Hence, these are the ranges in which if any component of the b (RHS) 
vector of constraints changes, then the current solution will remain fea-
sible as well as optimal, but the values of the current basic variables may 
change and the values of the dual variables or shadow prices can be used to 
find the change in the objective function. If there is a change in any of the 
components of the b vector outside the given range, then the basis and the 
corresponding basic feasible solution will get changed. These ranges work 
well only when there is a change in one component of the b vector and the 
other components remain the same.

The following is the sensitivity report of the same problem obtained us-
ing WinQSB-(see Appendix):

Fig. 6.2

*M is a very large positive number.

Interpretations of the previous output:

 ■ The allowable increase for b1 is infinity and can be decreased at most by 
3; that is, –3 ≤ Δb1 ≤ ∞ and hence 2

1
≤ ≤ ∞b* .

 ■  b
2
 can be increased at the most by 3 and can be decreased up to 2; that is, 

–2 ≤ Δb
2
 ≤ 3 and hence 8

2
≤ ≤ ∞∗b .

 ■ The allowable increase for b
3
 is up to 5 and can be decreased at most by 1.5; 

that is, –15 ≤ Δb
3
 ≤ 1 and hence 2 5 5

3
. ≤ ≤∗b .

6.2.2   Simultaneous Changes in b
i
’s

Now we are interested in finding the range of ′b
i
s when several of them 

change simultaneously. There is a 100% rule for finding these ranges which 
calculates, the actual change in each b

i
 as a percentage of allowable change 

in that component of the b vector as determined previously and then adds 
these percentages. If the total percent change remains within 100%, then the 
current solution will remain feasible and the values of the dual variables still 
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can be used to find the change in the objective function; otherwise, the present 
solution may become infeasible and we will be required to find an alternative 
optimum solution.

In the Example (6.1), suppose we have changed all the components  
simultaneously, so if we calculate percent change, we get:

Allowable % change in 
Actual change in 

Maximum Allowa
b

b
1

1=
bble change in b1

100

5
100 0

×

=
∞
× =

Similarly,

Allowable % change in 
Actual change in 

Maximum Allowa
b

b
2

2=
bble change in  

Allowable % change in

b2
100

5

3
100 166 667

×

= × = .

  
Actual change in 

Maximum Allowable change in  
b

b

b
3

3

3

10= × 00

4

1
100 400= × =

(Here, if there is a decrease in b
i
, we will take the maximum allowable 

decrease, and in case of increase in the component value, we will take maxi-
mum allowable increase.)

Now if we sum up these percentages, it is more than 100%, and the 
solution becomes infeasible as seen from the previous calculation. It should 
also be noted that a percentage sum more than 100% does not mean the 
solution will always become infeasible, whereas if the percentage sum is less 
than 100%, then the current solution will always remain feasible as shown by 
the following example:

In the Example (6.1), let b* =
10

11

4 5.

















. Then

allowable % change in 
Actual change in 

Maximum Allowa
b

b
1

1=
bble change in b1

100

5
100 0

×

=
∞
× =
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Similarly,

allowable % change in 
Actual change in 

Maximum allowa
b

b
2

2=
bble change in 

Allowable % change in 

b

b

2

3

100

1

3
100 33 33

×

= × = .

== ×

=

Actual change in 

Maximum allowable change in 

b

b

3

3

100

0.55

1
100 50× =

Now the sum of these percentages is 83.33, and it’s less than 100%, and 
hence the present solution should remain feasible. And the new values of the 
optimal basic variables are is given by:

B b
− =

−

−
































=













1

1 1 2

0 1 2

0 0 1

10

11

4 5

8

2

4 5

*

. .




 and the corresponding maximum value 

of the objective function is z* = 15.5.

6.3. Addition of a New Constraint

Sometimes after getting the solution of the problem, we need to add 
a new constraint which might be due to additional constraints on present 
resources, the addition of some new resources, the introduction of some ad-
ditional technical constraints, or not having considered an issue earlier due 
to some reason, and so on. When a new constraint is added to the problem, 
it never improves the value of the objective function; either it remains the 
same since the constraint is redundant, or it deteriorates the value of the 
objective function since it constricts the region of the feasible solution and 
hence the value of the objective function.

Hence, in order to check the effect of the new constraint on the current 
optimal feasible solution, we will put the current solution in the new con-
straint to check if the constraint is satisfied. If yes, then the current optimal 
solution will remain the same for the changed problem; the new constraint is 
redundant and is not playing any role in finding the solution of the problem. 
But if the constraint gets violated by the present optimal solution, then we 
introduce the new constraint in the last row of the final simplex table by ex-
pressing the whole constraint in terms of non-basic variables and taking the 
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slack variable of the constraint as a basic variable in the table. Here, in this 
case, the feasibility condition of the current solution is not satisfied, and we 
apply the dual simplex method to regain it again by maintaining the optimal-
ity condition. In this way, we will get the new optimal basic feasible solution.

6.3.1. When the Current Solution Satisfies the New Constraint

To illustrate the above mentioned procedure, consider the Example 
(6.1) again.

The solution of the given problem is x
1
 = 2, x

2
 = 4, and	z	= 14. In the same 

problem, if we add the following new constraint

3x
1
 + x

2
 ≤ 15

then we see that for the current solution, the constraint remain satisfied. 
Hence, the solution remains the same for the new problem, and the new con-
straint becomes redundant. The situation can be easily visualized through the 
following graph:

18
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14

12

10

8

6

4

2

0

0 2 4 6 8 10

A

D

B

O

C

3x + x 151 2

x + 2x 101 2

x 42

x 51

Optimal point
(remains same)

(New constraint)

Feasible region of
the original problem

Feasible region of the
changed problem

Fig. 6.3

6.3.2. When the Current Solution Fails to Satisfy the New Constraint

Let 3x
1
 + x

2
 ≤ 8 be the new constraint in the same Example (6.1) consid-

ered previously. Clearly the constraint gets violated by the current solution, 
and hence we need to find the new solution. From the final simplex table of 
the given problem, we obtain the following:
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x
1
 + s

2
 – 2s

3
 = 2      x

1
 = 2 – s

2
 + 2s

3

Similarly,      x
2
 + s

3
 = 4      x

2
 = 4 – s

3

Substituting the expression of x
1
 and x

2
 and adding a slack variable in the 

given constraint, we get:

  3(2 – s
2
 + 2s

3
) + (4 – s

3
) + s

4
 = 8

Here s
4
 is a new slack variable added in this constraint. Now on 

simplification, we get:

     –3s
2
 + 5s

3
 + s

4
 = –2

On adding this new constraint in the final simplex table and applying the 

dual simplex method we have:

Basic x
1

x
2

s
1

s
2

s
3

s4 Solution

s
1

0 0 1 –1 2 0 3

x
1

1 0 0 1 –2 0 2

x
2

0 1 0 0 1 0 4

s
4

0 0 0 –3 5 1 –2

z 0 0 0 1 1 0 14

Ratio – 0.3333

s
4
 leaves and s

2
 enters the basis.

Basic x
1

x
2

s
1

s
2

s
3

s4 Solution

s
1

0 0 1 0 0.3333 -0.3333 3.6667
x

1
1 0 0 0 -0.3333 0.3333 1.3333

x
2

0 1 0 0 1 0 4
s

2
0 0 0 1 –1.6667 –0.3333 0.6667

z 0 0 0 0 2.6667 0.3333 13.3333

Since both the optimality and feasibility conditions are satisfied, our new 
optimal solution is x

1
 = 1.33, x

2
 = 4, and z = 13.33, and the same is shown 

graphically as follows:
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Further, if we add the constraint x
2
 ≥ 1 in the new obtained solution, then 

the new solution will remain unchanged and the newly added constraint is 
ineffective; this can be seen in the following graph:
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But if we change the constraint to x
2
 ≤ 3, which is not satisfied by our new 

obtained solution, the solution will change again because of this constraint, 
and it can be easily seen from the following tables and graphs.

From the final dual simplex table of the changed problem, we obtain the 
following:

x
2
 + s

3
 = 4          x

2
 = 4 – s

3
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Substituting the value x
2
 and adding the slack variable s

5
 in this new con-

straint, we get:

(4 – s
3
) + s

5
 = 3       –s

3
 + s

5
 = –1

On adding this new constraint in the final dual simplex table of the 
changed problem, we have:

Basic x
1

x
2

s
1

s
2

s
3

s4 s5 Solution

s
1

0 0 1 0 0.3333 –0.3333 0 3.6667

x
1

1 0 0 0 – 0.3333 0.3333 0 1.3333

x
2

0 1 0 0 1 0 0 4

s
2

0 0 0 – 3 5 1 0 0.6667

s
5

0 0 0 0 –1 0 1 –1

z 0 0 0 1 1 0 0 13.3333

Ratio – 0.333

s
5
 leaves and s

3
 enters

Basic x
1

x
2

s
1

s
2

s
3

s4 s5 Solution

s
1

0 0 1 0 0 – 0.3333 0.3333 3.3334

x
1

1 0 0 0 0 0.3333 – 0.3333 1.6666

x
2

0 1 0 0 0 0 1 3

s
2

0 0 0 1 0 – 0.3333 –1.6667 2.3334

s
3

0 0 0 0 1 0 –1 1

z 0 0 0 0 0 0.3333 2.6667 10.6666

Since all the entries in the z-row are ≥ 0, the optimum solution has been 
reached. Our new optimum solution is x

1
 = 1.666, x

2
 = 3, and the correspond-

ing maximum value of z is 10.666. The same can be seen from the following 
graph:
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Now our optimal solution has been changed to x
1
 = 1.67, x

2
 = 3, z = 10.67. 

Hence, it can be noted that on adding each new constraint, if the constraint 
is active and changes the solution, then every time value of the objective 
function deteriorates.

6.4. Adding a New Activity or a Variable

When we add a new activity or a variable in the given problem, the cost 
coefficient of that variable will appear in the objective function and a vector 
corresponding to that variable will be added in the constraints, which will 
give the coefficient of that variable in each constraint. The coefficient of the 
new variable (activity) in the ith constraint represents the consumption of the 
ïth resource by one unit of the new activity. Now we have to see the effect of 
the addition of this activity on the current optimal solution. As we discussed 
earlier, it may affect the optimality condition of the current solution and the 
feasibility condition will not be affected by it at all. To check the optimality 
condition, we calculate the z coefficient corresponding to this variable in the 
final simplex table. If the optimality condition still remains satisfied, then 
there is no change in the current optimal solution and the new activity is 
not profitable to produce. On the other hand, if the optimality condition 
gets disturbed, then by applying the simplex method, we try to obtain a new 
optimum solution which satisfies the optimality as well as the feasibility 
condition. The newly obtained solution will contain the newly introduced 
variable, and hence it will be profitable to do that activity.

Old optimal point

New optimal point

New constraint

A B

C
O
0

0

1

2

3

4

5

6

7

8

9

2 4 6 8 10

x + 2x 101 2

x 42

3x + x 81 2

x 32

x 51

New
feasible
solution

Fig. 6.6
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If we consider the same Example (6.1) where the solution is x
1
 = 2, x

2
 = 4,  

and z =14 and add a new variable x
3
 in the problem with c

3
 = 4 and vector 

a
3

1

2

4

=
















 , then the column corresponding to this variable in the final table can 

be obtained as:

B a
− =

−

−
































= −

















1

3

1 1 2

0 1 2

0 0 1

1

2

4

7

6

4

And the z coefficient corresponding to the new variable = (values of dual 
variables) * (a

3
 vector) – c

3

     

= ( )
















− =0 1 1

1

2

4

4 2

In this case, the optimality condition remains satisfied, and hence there 
is no change in the current optimal solution. But if we change the vector 

a
3
=

















1

2

4

 to a
3
=

















1

1

1

 , then we

Have

   

( )

1 1 2 1 2

0 1 2 1 1  and

0 0 1 1 1

1

coefficient 0 1 1 1 4 2

1

z

−    
    = − = −    
    
    

 
 = − = − 
 
 

-1

3
B a

Now the optimality condition is violated, and hence if we add these val-
ues in the final simplex table and apply the simplex method, we get the fol-
lowing solution:

Basic x
1

x
2

x
3

s
1

s
2

s
3

Solution Ratio

s
1

0 0 2 1 – 1 2 3 1.5
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x
1

1 0 – 1 0 1 – 2 2

x
2

0 1 1 0 0 1 4 4

z 0 0 – 2 0 1 1 14

x
3
 enters and s

1

Basic x
1

x
2

x
3

s
1

s
2

s
3

Solution

x
3

0 0 1 0.5 –0.5 1 1.5

x
1

1 0 0 0.5 0.5 – 1 3.5

x
2

0 1 0 – 0.5 0.5 0 2.5

z 0 0 0 1 0 3 17

We can clearly see that the new value of z is 17 and is more than the origi-
nal value of z (14). Hence, it is profitable to produce the new activity, since it 
increases the value of the objective function by 3 units.

6.5. Changes in the Objective Function Coefficients

6.5.1.   Changes in the Objective Function Coefficients of Non-Basic 
Variables

If there is a change in cost coefficient c
j
 of the variable x

j
, which is a non-

basic variable in the final table, then the only change in the final simplex table 
corresponding to this change will be in the z-row coefficient of this variable. 
The new value of the z-row coefficient can be determined by finding (LHS-
RHS) of the dual constraint corresponding to variable x

j
 for the present values 

of the dual variables:

z-row coefficient of x
j
 =  (value of dual variables) * (coefficient vector a

j
) 

– changed value of c
j

If the optimality condition is still satisfied, then the current solution will 
remain feasible as well as optimal; otherwise, we allow x

j
 to enter the basis 

and apply the simplex method to find the new optimal solution.

Range of change of cj.:To find the range of c
j
 in which the current solution 

will remain optimal as well as feasible, the following condition should remain 
satisfied:
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z coefficient of x
j
 =  (LHS-RHS) of the jth dual constraint = (values of dual 

variables) * (coefficient vector a
j
) – c

j
 ≥ 0

Note: The	previous	condition	is	for	a	problem	with	maximization	as	an	
objective	function.	For	the	minimization	objective,	the	condition	will	be	≤	0.	
The	z-row	coefficient	of	a	non-basic	variable	is	also	called	its	reduced	cost,	
which	represents	 the	minimum	amount	by	which	an	objective	 function	will	
change	(decrease)	if	one	unit	of	that	activity	is	to	be	produced.

To understand this in a better way consider the following example:

Example 6.2. Primal	Max	z	= 2x
1
 + 2x

2
 + x

3

Subject to

     x
1
 + 5x

2
 – x

3
 ≤ 50

    2x
1
 + x

2
 + 3x

3
 ≤ 30

         x
1
, x

2
, x

3
 ≥ 0

Dual	 	 	 	 Min	w	=	50y
1
	+	30y

2

Subject to

    y
1
 + 2y

2
 ≥ 2

	 	 	 	5y
1
 + y

2
 ≥ 2

        –y
1
 + 3y

2
 ≥ 1

        y
1
 ≥ 0,	y

2
 ≥ 0

Here y
1
	and	y

2
	are	the	dual	variables	of	the	given	problem.

Solution: It can be easily observed that s
1
 = 50 and s

2
 = 30 represent the 

initial basic feasible solution to the given problem. On solving the problem by 
using the simplex method, the following is the optimal table obtained:

Basic x
1

x
2

x
3

s
1

s
2

Solution

x
2

0 1 – 0.556 0.222 – 0.111 7.778
x

1
1 0 1.778 – 0.111 0.556 11.111

z 0 0 1.444 0.222 0.889 37.778

Here x
1
 and x

2
 are the basic variables and x

3
 is the non-basic variable. 

Also, we have y
1
 = 0.222 and y

2
 = 0.889.
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Range of change of c
3
: Since c

3
 is the coefficient of the non-basic vari-

able in the z equation, the allowable range in which c
3
 can change without 

affecting the optimality of the final table is given by:

z x y y c-row coefficient of 
3 1 2 3

3 0 222 0 889
1

3
= − + − = ( )

−









*
. . * −− ≥c

3
0

*

(the third constraint of the dual problem has been used)
⇒ − + − ≥

⇒ ≤ ⇒ + ≤ ⇒ ≤

0 222 2 667 0

2 446 2 446 1 446

3

3 3 3 3

. .

. . .

*

*

c

c c c c∆ ∆

Here, c
3

*  is the changed value of c
3
.

This means the problem will remain optimal as well as feasible as long as 
the incremental value lies between (–∞, 1.446).

Here, if we change c
3
 = 1 to c c

3 3
2= = *  then we can see that

 

z x crow coefficient of 
3 3

0 222 0 889
1

3

0 222 2

= ( )
−







 −

= − +

. . *

.

*

.. .667 2 0 445− =

This is positive and still satisfying the optimality condition. Hence, there is 
no change in the current solution, because Δc

3
 = 1, is inside the allowable range.

But if c c c
3 3 3
4 1 3

* = = + = +∆ , that is, Δc
3
 = 3, which is outside the allow-

able range, then we have

z x crow coefficient of 
3 3

0 222 0 889
1

3

0 222 2

= ( )
−







 −

= − +

. . *

.

*

.. .667 4 1 555− = −

Now the optimality condition has been disturbed, which can be satisfied 
by applying the simplex method again, where x

3
 will be the entering variable. 

Hence, we get the new solution as:

Basic x
1

x
2

x
3

s
1

s
2

Solution

x
2

0.31271 1 0 0.18729 0.06287 11.2525

x
3

0.56243 0 1 – 0.0624 0.31271 6.24916

z 0.87458 0 0 0.12492 1.37527 47.4954

Now the optimal solution is x
2
 = 11.2525 and x

3
 = 6.24916, z = 47.4954.



SENSITIVITY ANALYSIS • 191

6.5.2.  Changes in Objective Function Coefficients of Basic Variables

If the cost coefficients of some variables change in the objective function and 
these variables appear in the basis of the final simplex table, then the only changes 
in the final table will occur in the z-row coefficients of the non-basic variables. 
The z-row coefficients of the basic variable will still be zero, but these coefficients 
of the non-basic variables may or may not still satisfy the optimality condition. 
We need to recalculate them for non-basic variables as follows:

Changed (new) values of dual variables = (changed cost vector of basic 
variables in the final table) * (basis inverse in the final table)

z row coefficient of non-basic variable x
j
 = (LHS-RHS) of the jth dual 

constraint = (New	values	of	dual	variables)	*	(original	coefficient	vector	a
j
) 

– c
j
	≥	0
*The new dual variables should be used in this case.
If these newly obtained z- row coefficients still satisfy the optimality 

condition, then the current solution will remain feasible as well as optimal; 
otherwise, the simplex method can be applied again to get the new optimal 
feasible solution.

Now again consider the Example (6.2).
Range of change of c

1
: Let c

1

*  be the new (changed) value of c
1
, that is, 

c c c
1 1 1

* = + ∆ .

The new values of dual variables = (changed cost vector of basic vari-
ables in the final table) * (basis inverse in the final table)

 

y y c

c

1 2 1

1

2
0 222 0 111

0 111 0 556

0 444 0 111 0

( ) = ( ) −

−










= − −

*

*

. .

. .

. . .. .
*

222 0 556
1

+( )c
The new value of the z-row coefficient of the non-basic variable x

3

  
= − − +( ) −







 −0 444 0 111 0 222 0 556
1

3
1 1 3

. . . . *
* *c c c

For the current solution to remain optimal, we should have,

⇒ − + + − +( )− ≥ =( )
⇒ ≥

0 444 0 111 3 0 222 0 556 1 0 1

1 1

1 1 3

1

. . . .

.

* *

*

c c c

c

Since

8861   ...(6.1)
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The new value of the z row coefficient of the non-basic variable s
1

    
= − − +( ) 






 −0 444 0 111 0 222 0 556
1

0
0

1 1
. . . . *

* *c c

For the current solution to remain optimal, we should have:

 

⇒ − ≥

⇒ ≤

0 444 0 111 0

4

1

1

. .
*

*

c

c   ...(6.2)

The new value of the z row coefficient of the non-basic variable s
2

    
= − − +( ) 






 −0 444 0 111 0 222 0 556
1

0
0

1 1
. . . . *

* *c c

For the current solution to remain optimal, we should have:

 

⇒ − + ≥

⇒ ≥

0 222 0 556 0

0 39928

1

1

. .

.

*

*

c

c   ...(6.3)

On combining (6.1), (6.2), and (6.3), the allowable range of c
1

*  is given 
by

Max 1.1861,0.39928{ }≤ ≤c
1
4

*

    1 1861 4
1

. ≤ ≤c∗

As long as the changed value of c
1
 lies within this range, the present 

solution will remain optimal.

Similarly, the allowable range of c
2
 is 1 4 6

2
≤ ≤∗c . .

The following is the sensitivity report of the previous analysis obtained 
using WinQSB:

Fig. 6.7
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*M is a very large positive number.

Interpretations of the previous output:

 ■ Allowable range for c
1
 is between 1.1875 and 4, that is, 1 1875 4

1
. .≤ ≤c∗

 ■ Allowable range for c
2
 is between 1 and 4.6, that is, 1 4 6

2
≤ ≤c

∗
. .

 ■ Allowable range for c
3
 is between – ∞ and 2.444, that is, −∞ ≤ ≤c

3
2 4444

*
. .

If we take c c c
1 1 1

3 2 1
* = + ∆ = = +  where Δc

1
 = 1

then we have:

z row coefficient of the non-basic variable x c
3 1

2 11 1 779 3 227= − + =. . .
*

z row coefficient of the non-basic variable s c
1 1

0 444 0 111 0 111= − + =. . .
*

z row coefficient of the non-basic variable s c
2 1

0 222 0 556 1 446= − + =. . .
*

Hence, optimality conditions are satisfied for all variables, and therefore 
there is no change in the optimal solution.

Now if we take c c c
1 1 1

6 2 4
* = + ∆ = = +  where Δc

1
 = 4 then we will have 

following:

z row coefficient of the non-basic variable x c
3 1

2 11 1 779 8 564= − + =. . .
*

z row coefficient of the non-basic variable s c
1 1

0 444 0 111 0 222= − + = −. . .
*

z row coefficient of the non-basic variable s c
2 1

0 222 0 556 3 114= − + =. . .
*

Now the optimality condition of s
1
 has been violated, and hence we will 

apply the simplex method to get a new solution, which will be satisfying the 
feasibility as well as the optimality condition. s

1
 will be the new entering 

variable in the basis. From the optimal table of the original problem we have:

Basic	Var. x
1

x
2

x
3

s
1

s
2

Solution Ratio

x
2

0 1 – 0.556 0.222 – 0.111 7.778 35.03

x
1

1 0 1.778 – 0.111 0.556 11.111

z 0 0 8.564 – 0.222 3.114

s
1
 enters and x

2
 leaves.

Basic	Var. x
1

x
2

x
3

s
1

s
2

Solution

s
1

0 4.505 – 2.505 1 – 0.5 35.031
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x
1

1 0.5 1.5 0 0.501 15

z 0 1 8.008 0 3.003

Now the optimal solution is x
1
 = 15, x

1
 = 1, and the corresponding value 

of z is 6 * 15 + 2 * 0 = 90.

6.5.3.  100% Rule for Making Simultaneous Changes in the Objective 
Function Coefficients

As we have applied this rule for simultaneous changes in b
i
, the same can 

be applied here. We will calculate the change (either increase or decrease) 
in each coefficient as a percentage of allowable change (either increase or 
decrease) in that coefficient and then take the sum of all these percentages of 
change in all the coefficients. If the sum is less than 100%, then the current 
solution will remain feasible as well as optimal; otherwise, it may change.

In the Example (6.2), if we make changes in all the components simulta-
neously, that is, we take

c c c c

c c c c c c

* * * *( , , )

( , , )

( . , , . )

=

= + ∆ + ∆ + ∆

= + + +

=

1 2 3

1 1 2 2 3 3

2 0 5 2 1 1 0 5

(( . , , . )2 5 3 1 5

now, if we calculate these percentages, we get:

 

Allowable % change in 
Actual change in 

Maximum Allowa
c

c
1

1=
bble change in c1

100

0 5

2
100 25

×

= × =
.

%

Similarly,

 

Allowable % change in 
Actual change in 

Maximum Allowa
c

c
2

2=
bble change in 

Allowable % change in

c2

100

1

2 6
100 38 46

×

= × =
.

. %

  
Actual change in 

Maximum Allowable change in 
c

c

c
3

3

3

100= ×

== × =
0 5

1 4
100 35 71

.

.
. %
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The sum of these percentages is 99.17, which is less than 100%, and 
hence the current solution will remain feasible as well as optimal. The follow-
ing is the optimal table with the changed value of c.

Basic 

Var. x
1

x
2

x
3

s
1

s
2

Solution

x
2

0 1 – 0.556 0.222 – 0.111 7.778
x

1
1 0 1.778 – 0.111 0.556 11.111

z 0 0 1.278 0.389 1.056 51.111

Remark. Like in the case of b, a percentage sum more than 100% does 
not ensure that the optimality condition will be either disturbed or remain 
satisfied, whereas if it is less than 100%, then the current solution will remain 
feasible as well as optimal.

6.6. Changes in the a
ij
 Coefficients

6.6.1.  Changes in a
ij
 Coefficients of Non-Basic Variables

If there are some changes in a
ij
 coefficients, for example, the a

j
 vector of 

the variable x
j
, which is a non-basic variable in the final table, then the change 

in the final simplex table corresponding to this change will be in the vector 
corresponding to this variable and the z-row coefficient of this variable only, 
which can be recalculated as follows:

Changed Vector corresponding to non-basic variable x
j
 in the final table 

= (basis inverse in final table) * (changed vector a
j
 in the original problem)

z row coefficient of x
j
 = (values of dual variables) * (changed coefficient 

vector a
j
 in original problem) – c

j

OR   z row coefficient of x
j
 = (value of C

B
) * (changed vector correspond-

ing to non-basic variable x
j
 in the final table) – price c

j

If the optimality condition is still satisfied, then the current solution will 
remain feasible as well as optimal, otherwise by applying the simplex method 
again where the entering variable will be x

j
, optimality can be regained.

For example, if we consider the Example (6.2) and replace a
3
=

−








1

3
 by 

a
3

* =








2

4

, then we have:
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z row coefficient of x
3
 = (values of dual variables) * (changed coefficient 

vector a
3
 in original problem) − = ( ) 






 − =c

3
0 2220 889

2

4
1 3. . * .

OR The changed vector corresponding to non-basic variable x
3
 in the 

final table

 
=

−

−
















 =











0 222 0 111

0 111 0 556

2

4

0

2 002

. .

. . .
.

z row coefficient of x
3
 = (value of C

B
)* (changed vector corresponding to 

non-basic variable x
3
 in the final table) – price c

3
2 2

0

2 002
1 3 002 3= ( )









 − = ≈

.
. .

Since the new value of z = 3 > 0, the optimality condition remains sat-
isfied, and hence the original optimal solution will remain optimal for the 
changed problem.

Now if we change it to a
3

* =
−









10

3

 then we have,

changed vector corresponding to non-basic variable x
3
 in the final table

 

=
−

−









−







 =

−









0 222 0 111

0 111 0 556

10

3

2 553

2 778

. .

. .

.

.
.

zz xrow coefficient of 
3

2 2
2 553

2 778
1 0 55= ( )

−







 − = −*

.

.
. .

Now, since the optimality condition is disturbed, the final table of the 
changed problem will be calculated as follows:

Basic x
1

x
2

x
3

s
1

s
2

Solution

x
2

0 1 – 2.553 0.222 – 0.111 7.778

x
1

1 0 2.778 – 0.111 0.556 11.111

z 0 0 – 0.55 0.222 0.889

x
3
 enters and x

1
 leaves.

Basic x
1

x
2

x
3

s
1

s
2

Solution

x
2

0.919 1 0 0.120 0.400 18.000
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x
3

0.360 0 1 – 0.040 0.200 4.000

z 0.199 0 0 0.200 0.100

Since the optimality condition is now truly satisfied, the optimal solution 
of the changed problem is x

2
 = 18 and x

3
 = 4, and the corresponding value of 

z is 40.

The range of the a
13

 coefficient in vector a
3
 can be calculated as fol-

lows:

Let a
3
=

−








1

3
 be changed into a*

3
=










a
13

3

*

The changed vector corresponding to the non-basic variable x
3
 in the fi-

nal table = (basis inverse in final table) * (changed vector a
3
 in the original 

problem).

=
−

−

















 =

−

−

0 222 0 111

0 111 0 556 3

0 222 0 333

0

13 13
. .

. .

. .
* *

a a

.. .
*

111 1 668
13

a +











z row coefficient of x
3
 = (values of c

B
) * (changed coefficient vector a

3
 in 

final table) – c
3

   
= ( )

−

− +









 − = +2 2

0 222 0 333

0 111 1 668
1 0 222 1 67

13

13

13

. .

. .
. .

*

*

a

a
a**

For the solution to remain optimal, the allowable range for a
13

*

 is

0.222 + 1.67 a
13

*  ≥ 0  a
13

*  ≥ –7.52253

Similarly the range of the a
23

 coefficient in vector a
3
 can be calculated 

as follows:

Let a
3
=

−








1

3
 be changed into a

3

* =
−








1

23
a*

The changed vector corresponding to the non-basic variable x
3
 in the final 

table = (basis inverse in final table) * (changed vector a
3
)

  
=

−

−










−







 =

− −0 222 0 111

0 111 0 556

1 0 222 0 111

23

23
. .

. .

. .

*

*

a

a

00 111 0 556
23

. .
*

+











a

z row coefficient of x
3
 = (values of c

B
) * (changed coefficient vector a

3
 in 

final table) – price c
3
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= ( )
− −

+









 − = − +2 2

0 222 0 111

0 111 0 556
1 1 222 0 89

23

23

2

. . *

. . *
. .

a

a
a
33
*

For the solution to remain optimal, the allowable range for a
13

* is

   –1.222 + 0.89 a
23

* ≥ 0  a
23

* ≥ 1.373.

6.6.2.   Changes in a
ij
- Coefficients of Basic Variables

If changes occur in some or all a
ij
 coefficients of the vector a

j
 correspond-

ing to the variable x
j
 which appear as a basic variable in the final simplex 

table, then we will recompute the following:

Changed column vector of basic variable x
j
 in the final table = (basis in-

verse in the final table) * (changed vector a
j
 in the original problem)

z row coefficient of x
j
 = (values of dual variables) * (changed coefficient 

vector a
j
 in original problem) – c

j

OR z row coefficient of x
j
 = (value of c

B
) * (changed vector corresponding 

to non-basic variable x
j
 in the final table) – price c

j
.

After making these changes in the final table, we have to check the 
required conditions which must be satisfied in any simplex table:

(i)   The vectors corresponding to the basic variables should always be unit 
vectors, and they should form an identity matrix.

(ii) z-row coefficients of the basic variables should always be zero.
If these conditions are not satisfied, then first we apply the Gauss elimina-

tion method to satisfy them; otherwise, we check for the optimality condition. 
If the optimality condition has been disturbed, then apply the simplex method 
to get the new feasible optimal solution else current solution will remain op-
timal.

Changes in a
ij
 coefficients of basic variables: Let a1

1

2
=







  be changed 

into a*1
11

2
=










a *
.

Changed column vector of basic variable x
1
 in the final table = (basis 

inverse in the final table) * (changed vector a
1
, that is, a

1

∗∗  in the original 
problem)

=
−

−

















 =

−

−

0 222 0 111

0 111 0 556 2

0 222 0 222

0

11 11
. .

. .

* . * .a a

.. * .111 1 112
11

a +










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z row coefficient of x
1
 = (value of c

B
) * (changed coefficient vector a

1
 in 

the final table) – price c
1

= ( )
−

− +









 −

= −

2 2
0 222 0 222

0 111 1 112
2

0 222 0 2

11

11

11

. * .

. * .

. * .

a

a

a 222

Let a
11

* = 2, then the changed column vector of the basic variable x
1
 in 

the final table

=
−

− +








 =

−

− +

0 222 0 222

0 111 1 112

0 444 0 222

0 222 1

11

11

. * .

. * .

. .

.

a

a ..

.
.

112

0 222

089









 =











And the z row coefficient = 0.222 * 2 – 0.222 = 0.222.

Then the final table for Example 6.2 can be written as follows:

Basic x
1

x
2

x
3

s
1

s
2

Solution

x
2

0.222 1 – 0.556 0.222 – 0.111 7.778

x
1

0.89 0 1.778 – 0.111 0.556 11.111

z 0.222 0 1.444 0.222 0.889

We now convert the column corresponding to the basic variable x
1
 into a 

unit vector by doing the normal pivoting so that the columns of x
1
 and x

2
 give 

us an identity matrix; the following is the resulting table:

Basic x
1

x
2

x
3

s
1

s
2

Solution

x
2

0.0 1.0 –1.0 0.2 – 0.2 5.0

x
1

1.0 0.0 2.0 – 0.1 0.6 12.5

z 0.0 0.0 1.0 0.2 0.8

Since the optimality condition is now true, the optimal solution of the 
changed problem is x

1
 = 12.5 and x

2
 = 5, and the corresponding value of z is 35.

6.7. Deletion of a Variable

We may sometimes wish to eliminate/delete any variable from the given 
LPP after the solution has been obtained. There are two possible cases, 
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depending on whether the variable belongs to the basis or not. We shall now 
consider both cases:

Case 1: If the variable to be removed is a non-basic in the final (optimal) 
table of the given problem, then the removal of this variable from the problem 
will not affect anything; that is, the optimal solution of the problem will not 
be changed by its removal. Hence, the current optimal solution will remain 
optimal for the changed problem also.

Case 2. If the variable is a part of the optimal basic feasible solution, then 
either the variable has a zero or non-zero value, in the optimal basis. If the 
variable has a zero value, its removal will have no impact on the final solution 
as in case 1. If the variable to be removed has positive value in the solution, 
then it will definitely have an impact on the final solution of the problem, and 
such a situation can be handled with a “sign-reversed dual simplex pivot” 
approach. This is called “sign-reversed” as the calculation starts off with a 
positive value of the variable, rather than a negative value which normally is 
the case in the dual simplex method. To delete this variable from the table, 
we first multiply the row of the deleting basic variable by –1 (except for the 1 
for the basic variable, so that we still have an identity matrix from the present 
basic variables) in the optimal table of the given problem, and we can make 
it look like an ordinary dual simplex. Using the dual simplex algorithm, after 
the first pivot, we can remove the deleted variable from the problem. Con-
tinue the calculations as in the case of a normal dual simplex until the basic 
solution is feasible for the primal problem.

Example 6.3. In	Example	6.2,	 let	 the	variable	x
1
	be	removed	 from	the	

given	LPP	and	obtain	the	resulting	optimum	solution	of	the	changed	LPP.
Solution: Multiplying by – 1 in the x

1
 row of the optimal table of  

Example 6.2, we have:

Basic –x
1

x
2

x
3

s
1

s
2

Solution

x
2

0 1 – 0.556 0.222 – 0.111 7.778

–x
1

1 0 – 1.778 0.111 – 0.556 – 11.111

z 0 0 1.444 0.222 0.889 37.778
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Now we can apply the dual simplex algorithm, as follows:

Basic –x
1

x
2

x
3

s
1

s
2

Solution

x
2

0 1 – 0.556 0.222 – 0.111 7.778

–x
1

1 0 –1.778 0.111 – 0.556 –11.111

z 0 0 1.444 0.222 0.889 37.778

Ratio – 0.8125 – 1.6

x
1
 leaves and x

3
 enters

Basic –x
1

x
2

x
3

s
1

s
2

Solution

x
2

– 0.3125 1 0 0.1875 0.0625 11.25

x
3

– 0.5625 0 1 – 0.0625 0.3125 6.25

z 0.8125 0 0 0.3125 0.4375 28.75

Since all the entries in the z-row are greater than or equal to zero, the 
optimal solution is reached. Hence, the new optimal solution is x

2
 = 11.25 

and x
3
 = 6.25, and the corresponding value of the objective function is 28.75.

6.8. Deletion of a Constraint

In some situations, we may like to delete a constraint of the given prob-
lem after the problems have been solved. In such a situation, we might have 
two different situations.

(i)   If the slack variable corresponding to the constraint which is to be deleted 
has a positive value in the optimal solution, then its deletion leaves the opti-
mal solution unchanged. This is because the constraint under consideration 
is ineffective in determining the optimal solution to the given problem.

(ii)  If the slack variable corresponding to the constraint which is to be deleted 
has a zero value in the optimal solution, then the deletion of such a con-
straint will change the optimal solution of the problem. This type of con-
straint is said to be an active constraint. To obtain the new optimal solution 
in such a situation, we will first have to make this active constraint into an 
inactive one. To do this we will have to introduce the corresponding slack 
variable in the basis. Thereafter, we delete this inactive constraint.
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Example 6.4. To	understand	this	in	a	better	way,	let	us	consider	the	LPP	
given	in	Example	2.8.

	 	 Maximize	=	4x
1
 + x

2

Subject	to	the	constraints:
    2x

1
 + x

2
	≤	100

    x
1
 + x

2
	≤	80

   x
1
	≤	40

     x
1
, x

2
,	≥	0

Solution: The following is the optimal table for this example.

Basic x
1

x
2

s
1

s
2

s
3

Solution

x
2

0 1 1 0 –2 20

s
2

0 0 –1 1 1 20

x
1

1 0 0 0 1 40

z 0 0 1 0 2 180

Here x
1
 = 40 and x

2
 = 20 is the optimal solution of the given problem, and 

the corresponding optimal value z is 180.

Clearly, the second constraint is an inactive constraint, as its slack vari-
able is at a positive level in the basis, and removing this constraint from the 
problem will not create any change in the present optimal solution. This can 
also be easily seen from the following graph:

140

120

100

80

60

40

20

0
0 20 40 60 80 100

x2

x1

2x + x 1001 2

x 401

x + x 801 2
Feasible
region

O

A

B

C

D

Fig. 6.8
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In the previous graph, the corner point C (40, 20) gives us the optimal 
solution of the problem. Clearly removing x

1
 + x

2
 ≤ 80 from the graph, is 

not going to change the optimal point. But on the other hand, removing ei-
ther the first or third constraint from the problem will disturb the optimal 
point. The slack variables corresponding to the first and third constraints 
are at a zero level in the final solution (which can also be seen from the 
table).

Let us now remove the first constraint from the problem. As men-
tioned previously, to handle such situations, we will first have to make 
this constraint an inactive constraint by introducing the corresponding 
slack variable into the basis and thereafter deleting the first constraint, as 
follows:

Basic x
1

x
2

s
1

s
2

s
3

Solution

x
2

0 1 1 0 –2 20

s
2

0 0 –1 1 1 20

x
1

1 0 0 0 1 40

z 0 0 1 0 2 180

Allow s
1
 to enter the basis, and correspondingly x

2
 leaves the basis.

Basic x
1

x
2

s
1

s
2

s
3

Solution

s
2

0 1 1 0 –2 20

s
2

0 1 0 1 –1 40

x
1

1 0 0 0 1 40

z 0 – 1 0 0 4 160

Now in the previous table s
1
 is in the basis with a positive value 20, 

and hence the first constraint becomes inactive and can be removed from the 
problem. Thus, our problem becomes:
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  Maximize z = 4x
1
 + x

2

Subject to the constraints:

     x
1
 + x

2
 ≤ 80

     x
1
 ≤ 40

      x
1
, x

2
 ≥ 0

Now, the initial simplex table, to begin the iteration, is as follows:

Basic x
1

x
2

s
1

s
2

s
3

Solution

s
2

0 1 0 1 –1 40

x
1

1 0 0 0 1 40

z 0 –1 0 0 4 160

Now we continue our simplex calculation to find the optimal solution.

Basic x
1

x
2

s
1

s
2

s
3

Solution

x
2

0 1 0 1 –1 40

x
1

1 0 0 0 1 40

z 0 0 0 1 3 200

So, our new optimal solution is x
1
 = 40 and x

2
 = 40, and the correspond-

ing maximum value of z is 200.

The following is the graphical solution to the changed problem:

120

100

80

60

40

20

0
0 20 40 60 80 100

x 401

x + x 801 2

New
feasible
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New optimal point

Fig. 6.9
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6.9. Sensitivity by Using Excel Solver

Let us use Example 6.1.

(i)  Enter the problem into an Excel sheet as follows:

(ii)  Now enter all the necessary information of parameters in the Solver 
dialogue box as follows:
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(iii)  After entering all the information, click solve. We now will see the fol-
lowing window. Select the sensitivity option.

(iv)  On selecting the sensitivity option, the sensitivity report is generated and 
is shown at the bottom of sheet where the solution is shown, as marked 
by the arrow in the following figure:
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(v) On clicking the report button, we have the following sensitivity report:

Solver sensitivity Report of Example 6.1.

Similarly, we also obtain the sensitivity report of Example 6.2 as follows:

Solver sensitivity Report of Example 6.2.
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Exercises

1.   What do you understand by the sensitivity analysis of a linear program-
ming problem? Discuss in detail.

2.   Discuss all the information given in the sensitivity report of a linear 
programming problem when it is solved by Excel Solver. Interpret it in 
detail.

3.   What is the significance of the 100% rule in sensitivity analysis?  
Explain.

4.   A baking company produces two types of cookies, Choco-chip cookies 
and Atta cookies, which require three types of processes for their produc-
tion: mixing of ingredients, baking, and packaging. The time required by 
each unit of the two products and the maximum time available per week 
for the three processes are given as follows:

Choco-chip 

Cookie(hr/

batch)

Atta Cookie 

(Hr/batch)

Max time available 

Per	week(in	hours)

Mixing 1.5 1 30

Baking 3 2 40

Packaging 2 2 35

Maximum Profit/batch 500 200

Determine

(i)  How many batches of both types of cookies should be produced per 
week so that the profit is at a maximum?

(ii)  The range of variation of objective function coefficients in which the 
current optimal solution will not change.

(iii)  The effect on the current optimal solution if the profit/batch on the 
two types of cookies gets changed to (a) c = (350 , 300) (b) c = (400, 
350). In both the cases, check the 100% rule also to verify the effect.

(iv)  The range of variation of maximum time available/week for the three 
types of processes in which the current solution remains optimal. 
Explain why the allowable increases for mixing and packaging times 
are infinity.
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(v)   The effect of deleting the third constraint from the problem. Also dis-
cuss the effect of deleting the second constraint from the problem.

(vi)   The effect of stopping the production of Atta cookies on the optimal 
solution and profit.

(vii)   The company is thinking of producing one more type of product, 
Besan-Rolls, for which the same three types of processing are re-
quired, and the processing time (in hr/batch) on the three operations 
are 2, 2.5, and 1 and profit/batch is $4.50/-. What will the change be 
in the optimal solution?

5.  Solve the following linear programming problem:

   Maximize z = 2x
1
 + 5x

2
 + 8x

3

Subject to the constraints 2x
1
 + 3x

2
 + 4x

3
 ≤ 15

    2x
1
 + 3x

2
 + x

3
 ≤ 35

    3x
1
 + x

2
 + 2x

3
 ≤ 40, x

1
, x

2
, x

3
 ≥ 0

Consider the following changes in the problem:

(i)   Determine the range of variation of different components of a
1
 and 

a
2
 so that the current solution remains unchanged.

(ii)   Determine the effect on the current optimal solution if a1

2

2

3

=
















 

changes to a1

3

2

4

=

















 and c
1
 = 2 to c

1
 = 7.

(iii)   Determine the effect on the current optimal solution if a
2

3

3

1

=

















 

changes to a1

3

5

3

=

















(iv)   Determine the effect on the current optimal solution if a
3

4

1

2

=

















 

changes to a
3

4

5

3

=

















 and c
3
 = 8 to c

3
 = 3.
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6.  Solve the following linear programming problem:

      Maximize z = 30x
1
 + 45x

2

Subject to the constraints 5x
1
 + 7x

2
 ≤ 60

    3x
1
 + 2x

2
 ≤ 4, x

2
, x

2
 ≥ 0

 Determine the effect of the following changes on the current optimal 
solution:

(i) c
1
 = 30 changes to c

1
 = 80

(ii) b = (60, 4) changes to b = (15, 10)

(iii) x
1
 ≥ 1 constraint is added to the problem

(iv) x
2
 ≥ 1 is added to the problem



C H A P T E R7
TRANSPORTATION AND 
TRANSSHIPMENT 
PROBLEMS

7.1. Introduction

The linear programming problems discussed in Chapters 2, 3, and 4 are all 
examples of classical “activity” models. In such models, the variables and 
constraints deal with distinctly different kinds of activities. This chapter 
introduces a significantly different but equally important model, in which 
something is shipped or assigned to the different locations. The resulting con-
straints represent both limitations on availability and requirements for deliv-
ery, and they have an especially simple form. One such problem is known 
as the transportation problem, in which a single good is to be shipped from 
several origins to several destinations at minimum overall cost. This prob-
lem gives rise to the simplest kind of linear program for minimum-cost flow 
problems.

Definition: A general transportation problem can be described as fol-
lows: a homogenous product or a commodity is available or stored in some 
quantities at a number of locations called origins (or sources) which have to 
be transported to various other locations called destinations. These destina-
tions have their own demand which has to be fulfilled. Under the assumption 
that it is possible to transport from any origin to any other destination, the  
objective of the transportation problem is to determine the amount of the 
product which can be transported from each origin to the different destina-
tions so that the total cost incurred in transportation to satisfy the demand 
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at various destinations is minimized. In order to achieve this objective, it is  
assumed that (i) the amount and location of available supplies and the quan-
tity demanded is known, and (ii) the unit cost of transportation from one ori-
gin to another destination is also known. A transportation problem is one of 
the applications of a linear programming problem in which requirements and 
resources are expressed in terms of only one kind of unit.

7.2. Formulation of a Transportation Problem

Let there be m origins and n destinations.

a
i
 – Number of units of the commodity available at the source i, i = 1, 2 ... m

b
j
 – Number of units of the commodity required at the destination j,  

j = 1, 2 ... n

c
ij
 – Unit cost of transportation from origin i to the destination j

x
ij
 – Number of units or quantity transported from origin i to the destina-

tion j

It is assumed that the total quantity available at the origins must be pre-
cisely the same as the total quantity demanded at the destinations, that is:

 
a bi jj

n

i

m
=

== ∑∑ 11  …(7.1)

The problem is to find x
ij
 ≥ 0 (i = 1, 2 ... m, j = 1, 2 ... n) which satisfies the 

given (m + n) constraints and minimizes the total transportation cost, that is:

 
Min z c x

ij ijj

n

i

m
=

== ∑∑ 11  …(7.2)

Subject to

 
x b j n Demand constraintsij ji

m
= = ( )

=∑ , ,1 2
1

  …(7.3)

    
x a i m Supply constraintsij ij

n
= = ( )

=∑ , ,1 2
1


 …(7.4)

	 	 	 	  x
ij
 ≥ 0 …(7.5)

as it can be seen that it is formulated as a linear programming problem 
which has (m + n − 1) constraints (one constraint becomes redundant due to 
the assumption (7.1)) and (m*n) decision variables or unknowns.
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The given transportation problem can be written in the matrix form like 
a standard LPP as follows:

Min z = (c
11

x
11

 + ... + c
1n

x
1n

) + (c
21

x
21

 + ... + c
2n

x
2n

) + ... + (c
m1

x
m1

 + ... + 
c

mn
x

mn
)

Subject to

x x x a

x x x a

x x x a

x x

n

n

m m mn m

11 12 1 1

21 22 2 2

1 2

11 21

+ + + =

+ + + =

+ + + =

+

…

…

⋮ ⋮ ⋮

…

++ + =

+ + + =

…

⋮ ⋮ ⋮

…

x b

x x x b

m

n n mn n

1 1

1 2

Further, in matrix form it can be written as:

Min z = CX Subject to AX = b, X ≥ 0

where C = (c
11

, c
12

 ... c
mn

) is (1 × mn) row vector, X = [x
m1

, x
m2

, ..., x
mn

] is 

a (mn × 1) column vector, b = [a
1
, a

2
, ..., a

m
, b

1
, b

2
, ..., b

n
] is a ((m + n) × 1) 

column vector and

A =

1 0

0 0 1

n

n

n n n
I I I

is a m n mn matrix

…

⋮ ⋱ ⋮

…
 ((  + )  × ) .

where 1
n
 is a nth order sum vector and I

n
 is a nth order identity matrix.

Any transportation problem which can be written as an LP problem 
can be solved by using the normal simplex algorithm, but due to the special 
structure of matrix A, it is not a very efficient method to solve it. However, 
transportation problems have a special mathematical structure that can be  
exploited to provide a streamlined approach to the general simplex calcula-
tion. This streamlined version of the simplex method is a systematic pro-
cedure for arriving at a solution to the given transportation problem. These 
approaches not only save computational time but also allow the solution to 
have an integer value if required, which otherwise is not possible using the 
normal simplex calculation.
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Further, a transportation problem can be expressed in the tabular form as 
follows:

Table 7.1

Destinations

D1 D2 Dn Supply

O1 c
11

c
12

c
1n

x11 x12 ... x1n
a

1

O2 c
21

c
22

c
2n

x21 x22 ... a
2

Origins ⋮ ⋮ ⋮ ⋮ ⋮
Om c

m1
c

m2
c

mn

x
m1 x

m2 ... x
mn

a
m

Demand b1 b2 ... b
n

Figure 7.1 gives a network representation of a typical transportation 
problem with m sources and n destinations.

11

22

am

c : x11 11

c : xmn mn

Sources Destinations

O1

O2

Om Dn

D2

D1

Fig. 7.1

Feasible Solution: A set of non-negative values of x
ij
, i = 1, 2 ... m,  

j = 1, 2 ... n which satisfies the constraints is called a feasible solution to the 
transportation problem.

Basic Feasible Solution: A feasible solution that contains no more than 
(m + n − 1) non-negative allocations at independent positions is called a basic 
feasible solution to the transportation problem.
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Non-Degenerate Basic Feasible Solution: A basic feasible solution that 
contains exactly (m + n − 1) positive allocations at independent positions.

Degenerate Basic Feasible Solution: When the number of positive al-
locations in a given basic feasible solution are less than (m + n − 1) then that 
solution is called a degenerate solution.

Optimal Solution: Any basic feasible solution which optimizes the ob-
jective function, that is, minimizes the total transportation cost is called an 
optimal solution.

Balanced and Unbalanced Transportation Problem: If the total sup-
ply in a transportation problem equals the total demand, then the transporta-
tion problem is called a balanced transportation problem; otherwise, it is an 
unbalanced transportation problem.

Theorem 7.1: The necessary and sufficient condition for the existence of 
the feasible solution to any transportation problem is:

 
a bi j

j

n

i

m

=
==
∑∑

11

Proof: (Necessary part) Let there exist a feasible solution x
ij
 ≥ 0 to the 

transportation problem such that:

x b j n x a i m

x b

ij j

i

m

ij i

j

n

ij

i

m

j

j

= = = =

∴ =

= =

= =

∑ ∑

∑

1 2 1 2
1 1

1

, , , , , , , and

111 1 11

1 1

n

j

n

ij

j

n

i

i

m

i

m

i

i

m

j

j

n

x a

a b

∑∑ ∑ ∑∑

∑ ∑

= = ==

= =

=

=

and

Hence

(Sufficient Part) Let a b M
ii

m

jj

n

= =∑ ∑= =
1 1

 and x
a b

M
i j

ij

i j= ∀ ,  ...(7.6)

Where M is positive constant. Hence, x
ij
 ≥ 0 since a

i
 > 0, b

j
 > 0 ∀ i, j

Now   x
a b

M
a i mij

i j

ij

n

j

n
= = =

== ∑∑ , ,1 2
11

  (from (7.6))

Similarly,  x
a b

M
b j nij

i j

ji

m

i

m
= = =

== ∑∑ , ,1 2
11

  (from (7.6))

Hence, x
ij
 satisfies all the constraints and therefore is a feasible solution 

for the transportation problem.
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Theorem 7.2: The optimum solution of a transportation problem remains 
unchanged when a fixed constant is added or subtracted from every element 
of the given cost matrix.

Proof: Let,

 
Min z c x

ij ijj

n

i

m
=

== ∑∑ 11

Subject to

 
x b j n Demand constraintsij ji

m
= = ( )

=∑ , ,1 2
1

  …(7.3)

    
x a i m Supply constraintsij ij

n
= = ( )

=∑ , ,1 2
1


 …(7.4)

	 	 	 	  x
ij
 ≥ 0 …(7.5)

be the given transportation problem. Let ′ = ±c c A
ij ij

 where “A” is any 
positive constant and z′	is the corresponding objective function. Then the pre-
vious problem can be rewritten as:

Min ′ = ′

= ±( )

= ±

==

==

=

∑∑

∑∑

z c x

c A x

c x A x

ij ijj

n

i

m

ij ijj

n

i

m

ij ij ijj

11

11

11111

111

n

i

m

j

n

i

m

ij ij ijj

n

i

m

j

n
c x A M M x

∑∑∑∑

∑∑∑

===

===
= ± =( )* , where

ii

m

z A M

=∑
= ±

1

*

Subject to

 
x b j n Demand constraintsij ji

m
= = ( )

=∑ , ,1 2
1

  …(7.3)

    
x a i m Supply constraintsij ij

n
= = ( )

=∑ , ,1 2
1


 …(7.4)

	 	 	 	  x
ij
 ≥ 0 …(7.5)

We can clearly see that our new objective function is now equal to the 
original objective function ± A*M (constant term) (constant term) whereas 
the constraints remain the same. Thus, minimizing z′	will give the same 
set of optimum solutions (allocations) as minimizing the original objective  
function.
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7.3.  Various Methods for Finding the Initial Basic Feasible 
Solution

The following are the methods for finding the initial basic feasible solu-
tion to a given transportation problem:

(i)  North-West Corner method

(ii) Row minima method

(iii) Column minima method

(iv) Least-cost or matrix minima method

(v) Vogel’s approximation method

The first method is “mechanical” in nature, and the remaining methods 
are heuristics which normally give a better starting solution compared to the 
North-West Corner rule. Of all the methods, Vogel’s approximation method 
is considered to be the best one, as the initial basic feasible solution obtained 
by using this method is nearest to the optimum solution.

Note: Before	we	start	finding	initial	basic	feasible	solutions,	first	make	
sure that the problem is a balanced one, that is, total supply is equal to total 

demand,	which	is	a	sufficient	condition	for	finding	the	initial	basic	feasible	
solution.

7.3.1. North-West (N-W) Corner Method

In this method, the basic variables are selected from the North-West 
corner (i.e., top left corner) of the tableau. We start by selecting the North-
West corner cell (cell c

11
) of the transportation table and allocate as many 

units as possible equal to the minimum between available supply and de-
mand requirements, that is, min (a

1
, b

1
). Adjust the supply and demand 

numbers in the respective rows and columns accordingly. If the demand 
for the first column is fulfilled, then by crossing off the column, move 
horizontally to the next cell in the second column (North-West corner); 
otherwise, if the supply for the first row is exhausted, then by crossing off 
that row, move down to the first cell in the second row. If for any cell the 
demand equals the supply, all the units are allocated to the current cell, 
and by crossing off the corresponding row and column, move to the next 
North-West corner, which is the next row and next column, and make 
the allocation there. In this case when we cross off both row and column  
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simultaneously, the total number of allocations will be less than  
(m + n − 1) and we would have to generate more basic variables with zero 
allocations to make the total number of basic variables equal to (m + n − 1).  
Hence, in order to avoid this situation, we can cross off either that row and 
move to the cell in the next row in the N - W corner by making demand in 
that column zero, or we can cross off the column and move to the cell in 
the next column in the N - W corner by making supply at that source zero. 
In both cases, however, the degenerate basic feasible solution will arise. 
This procedure will be continued until all the demands are fulfilled.

Note:

1.   Total number of basic variables (or allocations) in the transportation 
problem must always be (m + n − 1), where m and n represent the number 
of origins and destinations, respectively.

2.   When the total supply is equal to the total demand at any cell allocation, 
then the degenerate basic feasible solution will arise (the condition of de-
generacy).

Example 7.1. Use	 the	North-West-Corner	 rule	 to	 find	 an	 initial	 basic	
feasible solution to the following transportation problem.

D1 D2 D3 D4 D5 Supply(a
i
)

O
1

2 2 3 4 2 20

O
2

5 6 3 7 2 35

O
3

3 2 9 4 7 40

Demand (b
j
) 25 10 30 15 15 95

Solution: Here, m = 3, n = 5, and a bi jji
= =

== ∑∑ 95
1

5

1

3

 (balanced T.P.), 
(m + n − 1) = 7 = no. of basic variables where allocations will be > = 0, and 
others are non basic variables where allocation is zero.
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D
1

D
2

D
3

D
4

D5 Supply

O
1

2

20

2 3 4 2
20

O
2

5
5

6
10

3

20

7 2
35

O
3

3 2 9

10
4

15

7
15

40

Demand 25 10 30 15 15 95

The initial basic feasible solution as per the previous calculation is  
x

11
 = 20, x

21
 = 5, x

22
 = 10, x

23
 = 20, x

33
 = 10, x

34
 = 15 and x35 = 15, and the cor-

responding cost is

z = 2 × 20 + 5 × 5 + 6 × 10 + 3 × 20 + 9 × 10 + 4 × 15 + 7 × 15 = 440

7.3.2. Row Minima Method

In this method, the allocation starts with the first row. The minimum cost 
in the first row is identified (ties are broken arbitrarily) and the maximum pos-
sible units are shipped, which is the minimum of the first-row availability and 
corresponding column demand, that is, min (a

1
, b

j
), where b

j
 is the demand 

of the corresponding column. If the minimum occurs corresponding to the 
column demand b

j
, then the column is crossed off and the next minimum of 

the same row is identified and the same procedure is repeated. If the minimum 
occurs corresponding to the row, that is, a

1
 < b

j
, then we move to the next row 

by crossing off the current row and follow the same procedure again until all 
the requirements are satisfied.

Example 7.2. Use	the	row	minima	method	to	find	an	initial	basic	feasible	
solution to the transportation problem given in Example 7.1.

Solution: The minimum in the first row occurs at three different loca-
tions, namely, (1, 1), (1, 2) and (1, 5). Arbitrarily selecting (1, 1), we allocate 
the maximum possible number of units in this cell, which is min (20, 25) = 20 
and is corresponding to the availability in the row. Now, the first row supply 
is exhausted, and the column demand is accordingly adjusted. Now we move 
to the second row.
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D1 D2 D3 D4 D5 Supply

O
1

2
20

2 3 4 2
20

O
2

5 6 3 7 2
35

O
3

3 2 9 4 7
40

Demand 25 5 10 30 15 15 95

Allocate 15 at (2, 5). Demand for column 5 is fulfilled and supply  
adjusted accordingly. We will still remain in the second row.

D1 D2 D3 D4 D5 Supply

O
1

2
20

2 3 4 2
20

O
2

5 6 3 7 2
15 35 20

O
3

3 2 9 4 7
40

Demand 25 5 10 30 15 15 95

The next minimum in the second row is 3, which occurs at (2, 3); allocate 
20 in this cell. The second row supply is exhausted and demand for the third 
column is adjusted accordingly. Move to the third row.

D1 D2 D3 D4 D5 Supply

O
1

2
20

2 3 4 2
20

O
2

5 6 3
20

7 2
15 35 20

O
3

3 2 9 4 7
40

Demand 25 5 10 30 10 15 15 95
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The minimum in the third row is at (3, 2); we allocate 10 in this. Demand 
for the second column is done, and the supply is adjusted accordingly.

D1 D2 D3 D4 D5 Supply

O
1

2
20

2 3 4 2
20

O
2

5 6 3
20

7 2
15 35 20

O
3

3 2
10

9 4 7
40 30

Demand 25 5 10 30 10 15 15 95

The next minimum in the third row is with (3, 1); allocate 5 in this cell. 
Demand for column 1 is done now, and accordingly the supply is adjusted.

D1 D2 D3 D4 D5 Supply

O
1

2
20

2 3 4 2
20

O
2

5 6 3
20

7 2
15 35 20

O
3

3
5

2
10

9 4 7
40 30 25

Demand 25 5 10 30 10 15 15 95

The next minimum in the third row is with (3,4); allocate 15 in this cell. 
Demand for column 4 is done now, and accordingly the supply is adjusted.

D1 D2 D3 D4 D5 Supply

O
1

2
20

2 3 4 2
20

O
2

5 6 3
20

7 2
15 35 20

O
3

3
5

2
10

9 4
15

7 40 30
25 10

Demand 25 5 10 30 10 15 15 95
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The only cell left in the third row is (3, 3); allocate 10 in this. Demand 
for column 3 is also satisfied. It can be easily seen that all the demands at the 
different locations are now fulfilled, and we have the initial basic feasible 
solution to the given problem using this method.

D1 D2 D3 D4 D5 Supply

O
1

2
20

2 3 4 2
20

O
2

5 6
3
20

7 2
15 35 20

O
3

3
5

2
10

9
10

4
15

7 40 30
25 10

Demand 25 5 10 30 10 15 15 95

The initial basic feasible solution as per the previous calculation is

x
11

 = 20, x
23

 = 20, x25 = 15, x
31

 = 5, x
32

 = 10, x
33

 = 10 and x
34

 = 15

The total cost of transportation using this method is

z = 2 × 20 + 3 × 2 + 2 × 15 + 3 × 5 + 2 × 10 + 9 × 10 + 4 × 15 = 315

7.3.3 Column Minima Method

This is just the opposite of the row minima method. Instead of moving 
from one row to another, here starting with the first column, we move from 
one column to another column till until all the demands are satisfied.

Example 7.3. Use	 the	 column	minima	method	 to	 find	 an	 initial	 basic	
feasible solution to Example 7.1.

Solution: Following the same procedure as in the row minima method, 
we will move column-wise. We have the following table representing the 
initial basic feasible solution obtained using this method.

D
1

D
2

D
3

D
4

D5 Supply

O
1

2

20

2 3 4 2

20

O
2

5 6 3

30

7 2

5 35
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O
3

3

5

2

10

9 4

15

7

10 40

Demand 25 10 30 15 15 95

We have

x
11

 = 20, x
23

 = 30, x25 = 5, x
31

 = 5, x
32

 = 10, x
34

 = 15 and x35 = 10

and the total cost of transportation using this method is

z = 2 × 20 + 3 × 5 + 2 × 10 + 3 × 30 + 4 × 15 + 2 × 5 + 7 × 10 = 305

7.3.4 Least-Cost or Matrix Minima Method

This method usually provides a better initial basic feasible solution than 
the North-West Corner method, and it’s a generalization of the previous 
two methods, since it takes into account the minimum cost present in the 
entire tableau instead of looking for minimum cost in a single row or a 
single column at a time, by moving from one row to another row or from 
one column to another column, respectively. The method starts by assign-
ing the maximum possible amount to the cell with the smallest unit cost in 
the entire tableau (ties are broken arbitrarily). Cross out either the row or 
column which is exhausted completely. If both (row as well as the column) 
are exhausted completely then also cross out only one of them by making 
the entry at either supply or demand equal to zero (to avoid the situation of 
having the no. of allocations to be less than (m + n − 1) as discussed earlier). 
An adjustment of the supply and demand for the row and column which has 
not been crossed out is to be done. Next, select the uncrossed-out cell with 
the smallest unit cost and repeat the process until no row or column is left 
uncrossed out.

Example 7.4. Use	the	least-cost	method	to	find	an	initial	basic	feasible	
solution to Example 7.1.

Solution: The least cost in the table is 2, which occurs at five different 
places; arbitrarily selecting the cell (1, 1), we put the maximum allocation 
possible in this.

D1 D2 D3 D4 D5 Supply

O
1

2
20

2 3 4 2
20
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O
2

5 6 3 7 2 35

O
3

3 2 9 4 7 40

Demand 25 5 10 30 15 15 95

Now the first row supply is exhausted, and hence it has been stricken out 
and the demand for the first column is accordingly adjusted. Find the next 
minimum in the reduced table, which again is 2. The minima occurs at two 
different locations; arbitrarily selecting the cell (2, 5), the next allocation is 
done and the reduced table is shown as follows:

D1 D2 D3 D4 D5 Supply

O
1

2
20

2 3 4 2
20

O
2

5 6 3 7 2
15 35 20

O
3

3 2 9 4 7
40

Demand 25 5 10 30 15 15 95

The demand for column 5 is fulfilled, and thus it’s crossed out. Now the 
next minimum is at (3, 2). Put the maximum possible allocation in this cell. 
The reduced table is shown as follows:

D1 D2 D3 D4 D5 Supply

O
1

2
20

2 3 4 2
20

O
2

5 6 3 7 2
15 35 20

O
3

3 2
10

9 4 7
40 30

Demand 25 5 10 30 15 15 95
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Demand for column 2 is satisfied now. The next minimum is 3, which is 
occurring at two different locations. Arbitrarily selecting the cell (2,3) and 
allocating the maximum possible units in this cell, we get:

D1 D2 D3 D4 D5 Supply

O
1

2
20

2 3 4 2
20

O
2

5 6 3
20

7 2
15 3520

O
3

3 2
10

9 4 7
40 30

Demand 25 5 10 30 10 15 15 95

The next allocation will be at cell (3, 1), and we have:

D1 D2 D3 D4 D5 Supply

O
1

2
20

2 3 4 2
20

O
2

5 6 3
20

7 2
15 35 20

O
3

3
5

2
10

9 4 7 40 30
25

Demand 25 5 10 30 10 15 15 95

The minimum cost cell is (3, 4) in the remaining uncrossed out table, so 
we have:

D1 D2 D3 D4 D5 Supply

O
1

2
20

2 3 4 2
20

O
2

5 6 3
20

7 2
15 35 20

O
3

3
5

2
10

9 4
15

7 40 30
25 10

Demand 25 5 10 3010 15 15 95
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At last doing allocation at cell (3, 3), we get:

D1 D2 D3 D4 D5 Supply

O
1

2
20

2 3 4 2
20

O
2

5 6 3
20

7 2
15 3520

O
3

3
5

2
10

9
10

4
15

7 40 30 25
10

Demand 25 5 10 30 10 15 15 95

The initial basic feasible solution using the least-cost method as per the 
previous calculation is x

11
 = 20, x

23
 = 20, x25 = 15, x

32
 = 10, x

33
 = 10, and x

34
 = 15.  

The total cost of transportation using this method is z = 2 × 20 + 3 × 20 +  
2 × 15 + 3 × 5 + 2 × 10 + 14 × 15 =315

7.3.5 Vogel’s Approximation Method (VAM)

This method not only takes into account the least cost but also the next 
minimum cost for each row and each column. The VAM method is an improved 
version of the least-cost method that generally, but not always, produces the 
best starting solution. The following steps are involved in this method:

Step 1: Determine the difference (penalty) between the minimum and the 
next minimum cost for each row and column (including dummies) and place 
it alongside in a separate column and row of the transportation table.

Step 2: Identify the row or column with the largest difference (penalty).

Step 3: Allocate as much as possible to the lowest-cost cell of the corre-
sponding row or column with the highest penalty (in case of tie select the one 
which has least cost cell) and cross out either the row or column where supply 
or demand is exhausted completely. If it occurs for both, then also only one 
will be crossed out and the entry at the other will be made to be zero.

Step 4: Stop the process if all column requirements are met. If not, then 
go to the next step.

Step 5: Recalculate the difference between minimum and next minimum 
cost out of the remaining uncrossed out cells in all rows and columns. Any 
row and column with an exhausted supply or fulfilled demand should not be 
used in calculating further differences. Then go to Step 2.
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Step 6. If only one row or column is left, with a positive supply, then ap-
ply the least-cost method to that row or column and complete the allocation.

Vogel’s approximation method (VAM) usually produces an optimal or 
near optimal starting solution. Of all the five methods, this is the most widely 
accepted method for finding an initial basic feasible solution to a given trans-
portation problem.

Example 7.5. Use	 VAM	 to	 find	 an	 initial	 basic	 feasible	 solution	 to	 
Example 7.1.

Solution: Determine the difference (penalty) between the minimum and 
the next minimum cost for each row and each column (including dummies) 
and place it alongside the transportation table, as shown in the following table:

D1 D2 D3 D4 D5 Supply Penalty

O
1

2 2 3 4 2
20

0

O
2

5 6 3 7 2
15 35 20

1

O
3

3 2 9 4 7
40

1

Demand 25 10 30 15 15

Penalty 1 0 0 0 0

The highest penalty occurs at three different locations (2nd and 3rd row and 
1st column); arbitrarily selecting the second row, the minimum c

ij
 in this row 

is c25 (i.e., 2). So, x25 = 15 and the fifth column is eliminated.

Again penalties are calculated for the new table.

D1 D2 D3 D4 Supply Penalty

O
1

2 2 3 4
20 0

O
2

5 6 3
20

7
20 2

O
3

3 2 9 4 40 1
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Demand 25 10 30 10 15

Penalty 1 0 0 0

The highest penalty occurs in the second row, where the minimum c
ij
 is 

c
23

 (i.e., 3). So, x
23

 = 20 and the supply for the second row is exhausted, and 
hence it’s eliminated.

New penalties are again calculated for the new reduced table as follows:

D1 D2 D3 D4 Supply Penalty

O
1

2 2 3
10

4
20 10

0

O
3

3 2 9 4
40

1

Demand 25 10 30 10 15

Penalty 1 0 6 0

The highest penalty occurs in the third column, where the minimum c
ij
 

is c
13

 (i.e., 3). So, x
13 

= 10, the demand for the third column is satisfied com-
pletely, and hence it is eliminated.

Now the reduced table has two supply and three demand points, and new 
penalties are calculated again as shown in the following table:

D1 D2 D4 Supply Penalty

O
1

2 2 4
10

0

O
3

3 2
10

4
40 30

1

Demand 25 10 15

Penalty 1 0 0

The highest penalty occurs at two different locations, namely, the second 
row and first column; arbitrarily selecting the second row, the minimum c

ij
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is c
32 

(i.e., 2). So, x
32

 = 10. The second column of the reduced table is now 
deleted.

The highest penalty for the new table is 2, and this occurs in the first row 
of the reduced table; allocating the maximum possible number to the mini-
mum element of this row, we have x

11
 = 10. In doing so the supply of the first 

row is now exhausted, and hence it’s now eliminated.

D1 D4 Supply Penalty

O
1

2
10

4
10

2

O
3

3 4
30 1

Demand 25 15 15

Penalty 1 0

Finally, we are left with only one row, and we apply the least-cost method 
to have the final allocations, as shown in the following:

D1 D4 Supply

O
3

3
15

4
15 30 15

Demand 15 15

Combining all the previous information, the following gives the initial 
basic feasible solution to the given problem using Vogel’s approximation 
method:

D1 D2 D3 D4 D5 Supply

O
1

2
10

2 3
10

4 2
20

O
2

5 6 3
20

7 2
15 35

O
3

3
15

2
10

9 4
15

7
40

Demand 25 10 30 15 15
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The initial basic feasible solution using VAM as per the previous calcula-
tion is:

x
11

 = 10, x
13

 = 10, x
13

 = 20, x25 = 15, x
31

 = 15, x
32

 = 10, and x
34

 = 15

The total cost of transportation using this method is:

z = 2 × 10 + 3 × 10 + 3 × 20 + 2 × 15 + 3 × 15 + 2 × 10 + 4 × 15 = 265

7.4. Closed Path or Loop in Transportation Problems

A closed path or a loop is a sequence of cells in the transportation table 
where, starting with a non-basic cell/empty cell (where there is no allocation), 
we move to the other basic/occupied cells and then come back to the starting 
cell with the following conditions:

(i)   Every row or column should have exactly one pair of occupied cells at the 
corners of the loop.

(ii) The first and last cells of a loop lie in the same row or column.

(iii)  No duplication of a cell is allowed; that is, no cell appears more than once 
in a loop.

(iv)  Only horizontal and vertical moves are allowed and can only change di-
rections at occupied cells.

(v)  This concept of the closed path will be required in the optimality test 
while finding the solution to the transportation problem.

Note: All the allocations in the transportation problem occur at indepen-

dent locations (i.e., using only the allocated cells, one will not be able to form 

a closed loop).

7.5. Moving Toward the Optimal Solution

In the previous section, we have seen the different methods for finding an 
initial basic feasible solution to a given transportation problem. After having 
constructed an initial basic feasible solution, our next step is to move toward 
an optimal solution. There are two methods for doing this:

(i)  Stepping-stone method

(ii) Modified distribution (MODI) or u-v method
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7.5.1. Stepping-Stone Method

This method has been derived from the analogy of crossing a pond using 
stepping stones. This means that the entire transportation table is assumed to 
be a pond, and the occupied cells (where allocations have been made) are the 
stones which are needed to make certain movements within the pond. The 
following steps are involved in this method:

(i)   Find the initial basic feasible solution to the given transportation problem 
using any of the five methods discussed previously.

(ii)  Starting with any non-basic cell, construct a loop via basic cells (or oc-
cupied cells).

(iii)  For the given loop, begin with a plus (+) sign at the starting non-basic cell 
and alternately put minus (−) and plus (+) signs at each basic cell appear-
ing at the corner point of the loop.

(iv)  Now we calculate an Improvement Index by first adding the unit-cost fig-
ures found in each cell containing a plus sign and subtracting the unit 
costs in each cell containing a minus sign.

(v)  Repeat steps (ii)-(iv) for each non-basic cell.

(vi)  If the improvement indices calculated for all non-basic cells are greater 
than or equal to zero, then the present basic feasible solution is the opti-
mal basic feasible solution. But if there is at least one index with a nega-
tive value, select the loop that has the most negative value (ties are bro-
ken arbitrarily) and further improves the solution.

(vii)  To improve the current solution further, select the “smallest” value of the 
basic variables appearing at the corners of the loop and containing minus 
(−) signs. This number is added to all the cells appearing at the corner of 
the closed loop with a plus (+) signs and subtracted from all cells on the 
path assigned with a minus (−) sign, and we get an improved basic fea-
sible solution.

(viii)  Repeat steps (i) through (vi) until all improvement indices computed are 
greater than or equal to zero.

Example 7.6. Apply the stepping-stone method to the initial basic fea-

sible solution (obtained using VAM) of the transportation problem given in 

Example (7.1).
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D1 D2 D3 D4 D5 Supply

O
1

2
10

2 3
10

4 2
20

O
2

5 6 3
20

7 2
15 35

O
3

3
15

2
10

9 4
15

7
40

Demand 25 10 30 15 15 95

The previous table has a total of 8 unoccupied cells, and hence we need 
to compute a total of eight improvement indexes by constructing a loop for 
each of these cells.

For the cell (1, 2):

D
1

D
2

D
3

D
4

D5 Supply

O
1

2
10

2 3
10

4 2
20

O
2

5 6 3
20

7 2
15 35

O
3

3
15

2
10

9 4
15

7
40

Demand 25 10 30 15 15 95

At the cell (1, 4):

D
1

D
2

D
3

D
4

D5 Supply

O
1

2

10

2 3

10

4 2
20

O
2

5 6 3
20

7 2
15 35

O
3

3
15

2
10

9 4
15

7
40

Demand 25 10 30 15 15 95

+

− +

−

−

−+

+
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At the cell (1, 5):

D
1

D
2

D
3

D
4

D5 Supply

O
1

2
10

2 3
10

4 2 20

O
2

5 6 3
20

7 2
15 35

O
3

3
15

2
10

9 4
15

7 40

Demand 25 10 30 15 15 95

At the cell (2, 1):

D
1

D
2

D
3

D
4

D5 Supply

O
1

2
10

2 3
10

4 2 20

O
2

5 6 3
20

7 2
15 35

O
3

3
15

2
10

9 4
15

7
40

Demand 25 10 30 15 15 95

At the cell (2, 2):

D
1

D
2

D
3

D
4

D5 Supply

O
1

2
10

2 + 3
10

3 2 20

O
2

5 + 6 − 3
20

7 2
15 35

O
3

3
15

2
10

9 4
15

7 40

Demand 25 10 30 15 15 95

− +

−+

− +

+ −

+

−

−
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At the cell (2, 4):

D
1

D
2

D
3

D
4

D5 Supply

O
1

− 2
10

2 + 3
10

3 2 20

O
2

5 6 − 3
20

+ 7 2
15 35

O
3

+     3
15

2
10

9 − 4
15

7
40

Demand 25 10 30 15 15 95

At the cell (3, 3):

D
1

D
2

D
3

D
4

D5 Supply

O
1

+     2
10

2 −    3
10

4 2 20

O
2

5 6  3
20

 7 2
15 35

O
3

−    3
15

2
10

+    9 4
15

7
40

Demand 25 10 30 15 15 95

Finally, at the cell (3, 5):

D
1

D
2

D
3

D
4

D5 Supply

O
1

+  2
10

2 −  3
10

4 2 20

O
2

5 6 +  3
20

 7 −    2
15 35

O
3

−  3
15

2
10

9 4
15

+    7
40

Demand 25 10 30 15 15 95
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Now the improvement indexes at these locations are:

(i)  At (1, 2) = 2 + 3 − 2 − 2 = 1

(ii) At (1, 4) = 4 + 3 − 2 − 4 = 1

(iii) At (1, 5) = 2 + 3 − 3 − 2 = 0

(iv) At (2, 1) = 5 + 3 − 2 − 3 = 3

(v) At (2, 2) = 3 + 6 + 3 − 2 − 3 − 4 = 3

(vi) At (3, 3) = 9 + 2 − 3 − 3 = 5

(vii) At (3, 5) = 7 + 2 − 3 − 3 − 3 − 2 = 4
Since all the improvement indexes are ≥ 0, the present basic feasible solu-

tion is the optimal basic feasible solution.

Hence, x
11

 = 10, x
23

 = 10, x
23

 = 20, x25 = 15, x
31

 =15, x
32

 = 10, and x
34

 = 15 
is the optimal basic feasible solution, and the corresponding total minimum 
cost of transportation is:

z = 2 × 10 + 3 × 10 + 3 × 20 + 2 × 15 + 3 × 15 + 2 × 10 + 4 × 15 = 265

Example 7.7. The following table gives the initial basic feasible solu-

tion for a transportation problem of a company, obtained using the North-

West corner rule. Find the optimum transport cost for the company using the 

stepping-stone Method.

P Q R Supply

A
6
16

3
6

5
22

B
5 9

6
2
9 15

C
5 7 8

8 8

Demand 16 12 17 45

Solution: The total cost of transportation for the given initial basic fea-
sible solution is z = 250. In the previous table, we have a total of five unoc-
cupied cells. We will now form the closed loop and compute the improvement 
index for all these cells.

market

Warehouse
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At the cell (1, 3):

P Q R Supply

A
6

16
− 3
6

+  5
22

B
5 − 9

6
−  2
9

15

C
5 7 8

8 8

Demand 16 12 17 45

At the cell (2, 1):

P Q R Supply

A
− 6

16
+ 3

6
5

22

B
+ 5 − 9

6
2

9 15

C
5 7 8

8 8

Demand 16 12 17 45

At the cell (3, 1):

P Q R Supply

A
−      6

16
+ 3

6
5

22

B
 5 −      9

6
+ 2

9 15

C
+       5 7 −  8

8 8

Demand 16 12 17 45

market

Warehouse

market

market

Warehouse

Warehouse
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At the cell (3, 2):

P Q R Supply

A
6

16
3

6
5

22

B
 5 −        9

6
+     2
9 15

C
5 +        7 −     8

8 8

Demand 16 12 17 45

The improvement indices at these cells are:

(i)  At (1, 3) = 5 + 9 − 2 − 3 = 9

(ii)  At (2, 1) = 5 + 3 − 6 − 9 = −7

(iii) At (3, 1) = 5 + 3 + 2 − 6 − 9 − 8 = −13

(iv) At (3, 2) = 7 + 2 − 9 − 8 = −8

Since all the improvement indices are not ≥ 0, the current basic feasible solu-
tion is not an optimal basic feasible solution. As the most negative improvement 
index occurs with the (3, 1) cell, we allow this not-basic cell to enter the basis. We 
select the loop corresponding to the non-basic cell (3, 1) and use it to further im-
prove the solution. In this loop, select the “smallest” value of the basic variables 
containing a minus (−) sign, which is 6 here. This number is added to all the cells 
on the closed loop with a plus (+) sign and subtracted from all cells assigned with 
a minus (−) sign. Thus, we have an improved basic feasible solution.

P Q R Supply

A
6

10
3

12
5

22

B
 5 9 2

15 15

C
5

6
7 8

2 8

Demand 16 12 17 45

market

market

Warehouse

Warehouse
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Now the new improved basic variables are x
11

 = 10, x
12

 = 12, x
23

 = 15, x
31

 = 6,  
and x

33
 = 2, and the corresponding total cost of transportation is z = 172.

The previous steps are repeated again and again until we have the follow-
ing optimal transportation solution:

P Q R Supply

A
6

8

3
12

5
2 22

B
 5 9 2

15 15

C
5

8

7 8
8

Demand 16 12 17 45

Here, x
11

 = 8, x
12

 = 12, x
13

 = 2, x
23

 = 15, and x
31

 = 8 is the optimal basic 
feasible solution, and the corresponding total minimum cost of transportation 
is z = 164.

7.5.2 The Modified (MODI) Distribution or u-v Method

We have seen that in every iteration of the stepping-stone method, one 
has to construct a stepping-stone path (or loop) for every non-basic cell. This 
aspect of the method is not only time-consuming but also laborious. The 
amount of effort involved also grows exponentially with the size of the prob-
lem. This is a very serious drawback of this method. It is, therefore, desirable 
to look for a more efficient alternative. The Modified (MODI) distribution 
or u-v method is one alternative whose computational effort grows only lin-
early. This method allows us to compute improvement indices quickly for 
each non-basic cell without drawing all of the closed paths. Because of this, 
the Modified (MODI) distribution method provides considerable time saving 
over the stepping-stone method. The MODI method provides a new means of 
finding the improvement index for the non-basic cells. Once the cell is identi-
fied, we are required to trace only one closed path.

To understand this method in a better way, we write the dual of the trans-
portation problem given in (7.2). Rewriting (7.2), we have:

MinZ c x
ij ij

j

n

i

m

=
==
∑∑

11

market

Warehouse
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Subject to

 
x b j n

x b j n
j

iji

m

j

iji

m

j

th=

=

∑
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≥ =
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






1

1

1 2

1 2
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


demanddconstraint( )  

...(7.7)

 

x a j m

x a j m
i

ijj

m

i

iji

m

j

th=

=

∑

∑

≥ =

−( ) ≥ − =







1

1

1 2

1 2

, , , ,

, , ,




demanddconstraint( )

≥x
ij
0

Let ′ ′′( )u u
i i
,  be the dual variables for the ith supply constraint and ′ ′′( )v v

j j
,  

be the dual variables associated with the jth demand constraint. The dual of the 
given transportation problem can be written as:

 
Maxw u u a v v bi i

i

m

i i j

j

n

j= ′ − ′′( ) + ′ − ′′( )
= =
∑ ∑

1 1

Subject to

 

′ − ′′( )+ ′ − ′′( ) ≤
′ ′′ ′ ′′ ≥ ∀

u u v v c

u u v v i j

i i j j ij

i i j j
, , and and0   ...(7.8)

By putting u u u
i i i
= ′ − ′′( )  and v v v

j j j
= ′ − ′′( )  in (7.8), we get

 
Maxw u a v bi i

i

m

j j

j

n

= +
= =
∑ ∑

1 1

Subject to

 u
i
 + v

j
 ≤ c

ij

 u
i
, v

j
 are unrestricted in sign ∀ i and j ...(7.9)

From the primal-dual relationship of the transportation problem, the fol-
lowing observations can be made:

(i)   If x
ij
 ∀ i and j constitute a feasible solution to the original problem, them 

u
i
 and v

j
 ∀ i and j will constitute a feasible solution to its dual problem.

(ii)  If (c
ij
 − u

i
 − v

j
) denotes the value of the slack variable of the dual con-

straint, then (c
ij
 − u

i
 − v

j
) x

ij
 = 0 by the complementary slackness theorem 

of duality.
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Hence, we have if x
ij
 > 0 (which is true for basic variables) then c

ij
 − u

i
 − 

u
j
 = 0, and if c

ij
 − u

i
 − u

j
 > 0 (which is true for z row coefficients of non-basic 

variables in the primal transportation problem), then x
ij
 = 0.

Now to apply the MODI method, we begin with an initial basic feasible 
solution obtained by using any of the methods discussed in section (7.3). 
After obtaining the initial basic feasible solution, the following steps can be 
followed:

1.   Compute the values of ′u s
i  for each row and ′v s

j  for each column. Since 
there are (m + n) variables whose values have to be computed and the 
number of occupied cells are (m + n − 1), initially to start the process, 
put any one u

i
 = 0 (u

i
 for the ith row containing a maximum number of  

allocations can also be taken as zero, initially) and use the condition  
u

i
 + v

j
 = c

ij
 corresponding to the occupied cells in the ith row to get the 

value of v
j
 in the jth column of the given occupied cells. Now use the just 

obtained v
j
 and the condition u

i
 + v

j
 = c

ij
 for all occupied cells present in 

the jth column to compute ′u s
i s corresponding to the rows of these occu-

pied cells. This process is repeated again and again until all values of u
i
 

and v
j 
are obtained.

2.   Compute the improvement index d
ij
 for all unoccupied cells by using  

d
ij
 = c

ij
 −(u

i
 + v

j
). Where i = 1,2...m, j = 1,2...n.

3.   If all d
ij
 ≥ 0, then the optimum solution is reached; otherwise, select the 

non-basic variable or unoccupied cell (with no allocation) which has the 
most negative index (ties are broken arbitraily) to enter the basis.

4.   By beginning with the chosen unoccupied cell, we contruct a loop via 
basic cells. Starting with a plus (+) sign at the new basic variable, put a 
minus (−) and plus (+) sign at each basic cell of the loop alternately.

5.   Now, to improve the current solution further, select the “smallest” value 
of all basic variables appearing in the loop with a minus (−) sign. This 
smallest number is added to all the cells on the closed loop with a plus (+)  
sign and subracted from all cells on the path assigned with a minus  
(−) sign. In doing so at least one of the basic variables (whose allocation 
value becomes zero) will leave the basis (if more than one basic variable 
takes a zero value, the next table will have a degenerate basic feasible  
solution). And thus, we will have an improved basic feasible solution.
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6.   Repeat the previous steps untill all improvement indices computed are 
greater than or equal to zero.

Note: The MODI method for solving the transportation problem is also 

called	the	Modified	Simplex	method	since	it	follows	the	same	procedure	as	is	
followed	by	the	simplex	method,	with	minor	modifications.	First,	the	initial	
basic feasible solution is obtained by VAM or any other method discussed 

earlier	and	we	make	one	non-basic	variable	as	the	basic	variable	and	depart	
one basic variable from our current basic feasible solution so that the number 

of basic variables remains the same in the solution. By constructing the loop 

we decide about the leaving basic variable, and after doing some manipula-

tions, we try to get a new basic feasible solution which gives a maximum 

improvement in the value of the objective function. The same procedure is 

followed repeatedly until no further improvement is possible, and hence we 

get an optimal solution.

Example 7.8. Use	the	Modified	distribution	(MODI)	method	for	Example	7.5.
Solution: In the given example, the initial basic feasible solution is 

given as x
11

 = 16, x
12

 = 6, x
22

 = 6, x
23

 = 9, x
33

 = 8, and the corresponding 
cost of transportation is 250. Since the given problem has three supply and  
demand points, we have three values of ′u s

i s and ′v s
j . Initially putting u

1
 = 0, the  

remaining values of u
i
 and v

j
, i = 1,2,3, j = 1,2,3 are computed by using the 

relationship u
i
 + v

j
 = c

ij
 for the basic cells.

P Q R Supply u
i

A
6

16
3

6
5

d
13

22 0

B
5

d
21

9
6

2
9 15 6

C
5

d
31

7

d
32

8
8 8 12

Demand 16 12 17 45

v
j

6 3 −4

market

Warehouse
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Now the next step is to compute the improvement index d
ij
 = c

ij
 − (u

i
 + v

j
) 

for the unoccupied cells which are written at the bottom left corner of the cell.

At the cell (1,3), d
13

 = c
13

 − (u
1
 + v

3
) = 5 − (0 − 4) = 1

At the cell (2,1), d
21

 = c
21

 − (u
2
 + v

1
) = 5 − (6 + 6) = −7

At the cell (3,1), d
31

 = c
31

 − (u
3
 + v

1
) = 5 − (12 + 6) = −13

At the cell (3,2), d
32

 = c
32

 − (u
3
 + v

2
) = 7 − (12 − 3) = − 8

Since all d
ij
 are not ≥ 0, the present basic feasible solution is not the opti-

mal basic feasible solution. Now the cell with the most negative improvement 
index will enter the basic. In this case, the non-basic variable corresponding 
to the cell (3, 1) will enter the basic. Starting with the newly entered basic 
cell (3, 1), we construct a loop via basic cells, that is, a loop is constructed 
such that basic cells appear at the corner points of the loop. Begining with the 
positive sign at the new cell, alternately put a minus (−) and plus (+) sign at 
each basic cell of the loop.

P Q R Supply u
i

A
6

16
3

6
5

1 22 0

B
5

−7

9
6

2
9 15 6

C
5

−13

7

−8

−   8
8 8 12

Demand 16 12 17 45

v
j

6 3 −4

To improve the current solution further, select the “smallest” value of 
basic variables in the loop containing a minus (−) sign. In this case, 6 is 
the minimum value among all basic variables containing a (−) sign. This 
number is added to all the cells on the closed loop with a plus (+) sign and 
subtracted from all cells on the path assigned with a minus (−) sign. In  

market

Warehouse

−

+

+

+
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doing so, the variable in the cell (2, 2) will become a non-basic variable in 
the next iteration, and thus we will have an improved basic feasible solution 
as follows:

P Q R Supply

A
6

10
3

12
5

22

B
5 9 2

15 15

C
5

6
7 8

2 8

Demand 16 12 17 45

Now the new improved solution is x
11

 = 10, x
12

 = 12, x
23

 = 15, x
31

 = 6, 
and x

33
 = 2, and the corresponding total cost of transportation is z = 172. By 

repeating the previous steps again, we get the following:

P Q R Supply u
i

A
− 6

10
3

12
5

− 4 22 0

B
5

4

9
5

2
15 15 − 7

C
+    5

6
7

5
−    8

2 8 − 1

Demand 16 12 17 45

v
j

6 3 9

market

Warehouse

Warehouse

+
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Further we have:

P Q R Supply u
i

A
6

8

3
12

5
2 22 0

B
5

2

9

9

2
15 15 − 3

C
5

8

7

5

8

4
8 − 1

Demand 16 12 17 45

v
j

6 3 5

Now since all the improvement indices are ≥ 0, the optimum solution has 
been reached.

Here, x
11

 = 8, x
12

 = 12, x
13

 = 2, x
23

 = 15, and x
31

 = 8 is the optimal basic feasible 
solution, and the corresponding total minimum cost of transportation is z = 164.

7.6 Solution of Transportation Problems in Excel

A transportation problem can easily be solved using the Solver add-in of 
MS-Excel. We use Example 7.1 to explain the steps involved.

1.  Copy the given problem on the Excel sheet.

Fig. 7.2

market

Warehouse
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2.  Create a solution space on the same Excel sheet as follows:

Fig. 7.3

3.   Insert a blank column and row alongside the space provided for solution 
(x

ij
) to compute the row and column sum, as shown in the following figure:

Fig. 7.4
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4.   Create a space for computing the value of the total minimum cost of 
transportation. The SUMPRODUCT function will be used to multiply 
the given unit cost and solution space.

Fig. 7.5

Fig. 7.6

5.   Now go to the Solver. Put the Total Transportation cost cell address in the Set 
Target cell. Also, put the entire solution space in the By Changing Cells area, as 
shown in the following figure. Do not forget to select the minimization option.
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6.   Taking the column and row sums as the LHS and the given supply and 
demand as the RHS of the constraints, we have a total of 3 + 3 = 6 con-
straints. Enter this information as follows:

Fig. 7.7

7.  Select the Simplex LP option from the dropdown. Then click solve.

Fig. 7.8
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8.   The previous solution is in agreement with the optimum solution ob-
tained using the stepping-stone method. And below the following is the 
calculation of the same using the Jensen add-in.

Fig. 7.9

7.7. Some Special Cases in Transportation Problems

7.7.1. Unbalanced Transportation Problems

We have already proved that a bii

m

jj

n

=
= =∑ ∑1 1

 is the necessary and suf-

ficient condition for the existence of a feasible solution to a transportation 
problem, and the problem is called a balanced transportation problem if this 
condition is satisfied. Otherwise, if total supply is not equal to total demand, 
then the problem is called an unbalanced transportation problem and it has 
to be converted to the balanced form to get an initial basic feasible solution.

Here two cases arise:

(i)  a bii

m

jj

n

= =∑ ∑>1 1
 i.e. Total supply > total demand

In this case, the constraints take the following forms:

x b
ij

i

m

j

=

∑ =
1

 and x a i m j n
ij

j

n

i
< = =

=

∑
1

1 2 1 2, , , , , 

And a bii

m

jj

n

= =∑ ∑−( )1 1

 is the excess number of units available.

Hence, in order to get a balanced transportation problem, here we will 
add a dummy destination with the demand equal to excess availability, that is, 



TRANSPORTATION AND TRANSSHIPMENT PROBLEMS • 249

a bii

m

jj

n

= =∑ ∑−( )1 1
 and the unit cost of transportation from any source to this 

dummy destination will be considered zero.

(ii) a bii

m

jj

n

= =∑ ∑<1 1
 Total supply < total demand.

In this case, the constraints take the following form-

x b
ij

i

m

j

=

∑ ≤
1

 and x a i m j n
ij

j

n

i
= = =

=

∑
1

1 2 1 2, , , , , 

And b a
jj

n

ii

m

= =∑ ∑−( )1 1
 is the excess demand.

Hence, in order to get a balanced transportation problem, here we will 
add a dummy source with the availability equal to excess demand, that is, 

b a
jj

n

ii

m

= =∑ ∑( )1 1

, and the unit cost of transportation from this dummy source 

to any destination will be considered to be zero.

Once we convert the problem into a balanced one, it will be solved in the 
same manner as done earlier.

Example 7.9. Convert the following unbalanced transportation problem 

into a balanced one.

D1 D2 D3 D4 Supply

O
1

1 3 5 2 100

O
2

2 11 7 5 150

O
3

6 4 6 15 200

Demand 125 110 160 155

Solution: The total demand of the given problem is 550, whereas the total 

supply is 450, that is, b a
jj

n

ii

m

= =∑ ∑( )1 1
; therefore, we introduced a dummy row 

(O
4
) having all unit transportation costs equal to zero and a row supply equal to 

550 – 450 = 100. The following is the balanced transportation table obtained:

D1 D2 D3 D4 Supply

O
1

1 3 5 2 100
O

2
2 11 7 5 150

O
3

6 4 6 15 200
O

4
0 0 0 0 100

Demand 125 110 160 155 550
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Example 7.10. Give the LPP formulation of the transportation problem 

given in Example 7.7. Also solve it using Excel Solver.

Solution: The total demand of the given problem is 550, whereas the 

total supply is 450, that is, b ajj

n

ii

m

= =∑ ∑>( )1 1
 so it’s an unbalanced transpor-

tation problem. Let x
ij 

(i = 1, 2, 3; j = 1, 2, 3, 4) denote the amount of units 
transported from the ith source to the jth destination. Then the LPP formulation 
of the given problem is as follows:

Min z = x
11

 + 3x
12

 + 5x
13

 + 2x
14

 + 2x
21

 + 11x
22

 + 7x
23

 + 5x
24  

+ 6x
31

 + 4x
32

 + 6x
33

 + 15x
34

Subject to

x x x x

x x x x

x x x x

11 12 13 14

21 22 23 24

31 32 33 34

100

150

200

+ + + =

+ + + =

+ + + =









 supply constraints

x x x

x x x

x x x

x x x

11 21 31

12 22 32

13 23 33

14 24 34

125

110

160

1

+ + ≤

+ + ≤

+ + ≤

+ + ≤ 555










 Demand constraints

x
ij
 ≥ 0 (i = 1, 2, 3; j = 1, 2, 3, 4)

The following is the screen shot of the Excel Solver calculation:

Fig. 7.10
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As per the previous calculation our optimal basic feasible solution is  
x

14
 = 100, x

21
 = 125, x

24
 = 25, x

32
 = 110, and x

33
 = 90. The corresponding mini-

mum cost of transportation is 1555. Since the total number of basic variables 
having a positive value is 5, which is less than (3 + 4 − 1), the current optimal 
basic feasible solution is a degenerate one.

7.7.2. Restricted Entry

Restricted Entry: Sometimes the transportation from a given source to 
another destination is not possible (it is restricted or not allowed for some 
reason); then in such a situation we assign infinity (∞) or a very large number 
(cost) at that cell (i, j) and follow the previously discussed methods to find 
a solution to the given problem. While solving such problems using Excel 
Solver, one should replace infinity (∞) by a large positive number.

7.7.3. Maximization Problems

In the transportation problem, generally we minimize the total cost of 
transportation given the unit cost of transportation to the various locations 
from the available supply points. However, we may also have problems 
where the cell entries in a transportation table denote unit profits instead 
of unit costs, and hence the objective of these problems will be to maxi-
mize the total profits. In such situations, the problem cannot be solved using  
the previously discussed method. To solve a maximization type problem, 
the solution method discussed earlier cannot be applied as it is, and hence it 
require some changes to be made. The given problem needs to be converted 
into an equivalent minimization type problem. This is done by subtracting 
all the elements of the matrix from the largest element of the matrix. The 
resulting matrix is called the opportunity loss matrix. The cell entries of 
the opportunity loss matrix denote the loss of opportunity for not selecting 
the best option in the matrix (largest element of the matrix). Now the proce-
dure described earlier for solving the minimization problem can be applied, 
and the solution can be obtained. Finally, to obtain the maximum profit, the 
solution obtained here will be multiplied by the corresponding cell entries 
of the original matrix.

Example 7.11. A company distributes its product from three plants to 

four different warehouses. The monthly supplies and demands along with per-

unit	profit	for	transportation	are	given	in	the	following	table.	Find	the	initial	
basic feasible solution using the VAM of the transportation problem so as to 

maximize	the	total	profit.
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To warehouses

From Plant 1 2 3 4 Supply

1 5 12 10 4 80

2 6 9 2 15 50

3 8 11 18 7 70

Demand 40 50 60 50

Solution: The given problem is a maximization problem, and VAM as 
discussed earlier cannot be applied here in the same way. To use VAM, we 
need to convert this table into an opportunity loss table by subtracting all the 
elements of the table from 18, which is the largest per-unit profit in the table. 
Hence, the opportunity loss table is as follows:

To warehouses

From Plant 1 2 3 4 Supply

1 13 6 8 14 80

2 12 9 16 3 50

3 10 7 0 11 70
Demand 40 50 60 50

Now we use VAM for this table:

To warehouses Penalty

From Plant 1 2 3 4 Supply I II III

1 13
30

6
50

8 14 80 30 2 7 7

2 12 9 16 3
50

50 6 6

3 10
10

7 0
60

11 7010 7 3 3

Demand 40 10 50 60 50

I 2 1 8 8

II 2 1 8

III 3 1
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Placing the previous allocation in the original table, we get:

To warehouses
From Plant 1 2 3 4 Supply

1 5 12 10 4 80
30 50

2 6 9 2 15 50
50

3 8 11 18 7 70
10 60

Demand 40 50 60 50

So, our initial basic feasible solution obtained using VAM is x
11

 = 30,  
x

12
 = 50, x

24
 = 50, x

31
 = 10, and x

33
 = 60. And the corresponding total profit is 

(5 * 30 + 12 * 50 + 15* 50 + 8 * 10 + 18 * 60) = 2660.

Use of Excel Solver for solving the previous maximization transpor-
tation problem

When using Solver to solve the previous problem, we don’t need to con-
vert the given transportation table into an opportunity loss table. Here the 
problem will be solved as a maximization problem instead of a minimization 
problem by selecting the maximization option in place of minimization as 
shown in the following figure:

Fig. 7.11
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Now by clicking the solve option after the necessary settings, we have 
following optimum solution:

Fig. 7.12

7.7.4. Multiple Solutions in Transportation Problems

As we are aware that any linear programming problem while being solved 
by the simplex method has a unique solution if all the values of the non-basic 
variables in the z-row of the optimal table are different from zero, the prob-
lem is said to have an alternative solution. Like in the simplex algorithm, the 
transportation problem has an optimal solution if all d

ij
 = c

ij
 − (u

i
 + v

j
) ≥ 0, that 

is, if all the improvement indices are greater than or equal to zero. If all d
ij
 > 0,  

then the problem is said to have a unique solution. However, if at least one d
ij
 

takes a zero value, then it is an indication that the problem has an alternative 
solution.

To obtain the alternative optimum solution, a loop will be constructed 
starting with the cell having d

ij
 = 0 as basic variable cell, and we will get a 

new solution in the same manner as has been discussed earlier. The new solu-
tion will also give the same total cost as has been obtained earlier, indicating 
that this new solution is also an optimal solution to the same transportation 
problem.
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7.7.5. Degeneracy in Transportation Problems

If the number of basic variables in a basic feasible solution to a trans-
portation problem is less than (m +	n	− 1), then the solution is said to be 
a degenerate basic feasible solution. In Example 7.8, the number of basic 
variables in the initial basic feasible solution obtained using VAM was 5, 
which is less than (3 + 4 − 1) = 6. And hence, this solution will be a degen-
erate basic feasible solution, since here we will generate one basic variable 
(to make it equal to (m + n − 1 = 6) with the value zero. Degeneracy in a 
transportation problem can arise in the following situations:

(i)   The initial basic feasible solution has less than m + n − 1 basic variables 
(as in the case of Example 7.8).

(ii)  While moving towards the optimality, when two or more basic vari-
ables leave the basis simultaneously, the next basic feasible solution 
will have less than m + n – 1 basic variables, thus making the solution 
degenerate.

The difficulty with degeneracy is, the optimality test of the problem can-
not be completed. The stepping-stone method fails because for some of the 
non-basic cells, the closed loops cannot be formed, while in the MODI meth-
od, we will not be able to find all the values of u

i
 and v

j
 so as to complete the 

optimality test.

To resolve degeneracy, we assign a very small positive number (close 
to zero) denoted by δ to one or more non-basic cells (as required) so as to 
make the total number of basic variables equal to (m + n − 1). The number δ 
theoretically is non-zero, and mathematically it is considered as good as zero; 
that is, for any constant ‘a’ we have: δ + a = a; δ + δ = δ × δ = 0; a − δ = a;  
δ × a = 0. The allocation of δ should not be done randomly; instead, this 
should be placed at independent location(s) (the location is called indepen-
dent if, starting with the given location, we try to construct a loop by 
having basic variables at the corner of the loop but we are not able to 
do so). If this is not done, then we will not be able to find all the values of u

i
 

and v
j
, and hence the degeneracy will still be unresolved. Out of all available 

independent non-basic cells, we should prefer the one with the minimum cost 
to put into δ.

Example 7.12. Find the optimum solution to the following cost-minimiz-

ing transportation problem.
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To

D1 D2 D3 Supply

S1 10 9 5 100

S2 5 10 11 110

S3 13 5 7 120

Demand 90 120 120 330

Solution: Since the total demand is equal to the total supply, the given 
problem is a balanced one. The following is the initial basic feasible solution 
of the problem obtained using VAM:

To

From

D1 D2 D3

Supply

S1
15 9 5

80 80

S2
5
90

10 11
20 110

S3
13 10

120
12

120

Demand 90 120 100 310

Here since the total number of basic variables is 4, which is less than  
m + n − 1 = 3 + 3 − 1 = 5, the previous basic feasible solution is a degen-
erate basic feasible solution. Here except for cell (1, 1), the remaining 
cells (1, 2), (2, 2), (3, 1), and (3, 3) are independent. We now introduce 
a very small positive number in cell (1, 2) (which has the minimum per 
unit cost among the independent cells) and consider this as one of the 
basic cells. And then we apply the MODI method to check the optimal-
ity of the present solution.

From
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To
From

D1 D2 D3 Supply
u

i

S1

15

16

9
−δ

5
80+ 80 0

S2

5
90

10

−5

11
20− 110 6

S3

13

13

10
120

12

6 120
1

Demand 90 120 100 310

v
j

−1 9 5

Since all the improvement indexes are not greater than or equal to zero, 
the optimality condition is yet to be fulfilled. So, we construct a loop as shown 
in the previous table, and a rearrangement of allocation is done as discussed 
before.

To

From D1 D2 D3 Supply u
i

S1

15

16

9

4

5
80 80 0

S2

5
90

9
δ

11
20 110 6

S3

13

9

10
120

12

2
120 5

Demand 90 120 100 310

v
j

−1 5 5

Here all the improvement indices are now greater than zero. The optimal-
ity condition is fulfilled. The optimal basic feasible solution is x

13
 = 80, x

21
 = 90,  

x
23

 = 20, and x
32

 = 120, and the corresponding minimum cost of transportation 
is 5 × 80 + 5 × 90 + 11 × 20 + 10 × 120 = 2270.

+
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The following is the MS-Excel calculation of the previous problem.

Fig. 7.13

7.8. Transshipment Problems

In the transportation problem, we have seen that the items are directly 
shipped from a particular source to a particular destination in such a way 
that the total cost of transportation is at a minimum. The movement of the 
items among sources or among destinations or the movement of the items 
through some intermediate points is not allowed in a transportation prob-
lem. The shipping problems with any or all of these characteristics are called 
transshipment problems. And hence, a transshipment problem is an exten-
sion of the transportation problem. The optimal solution to a transshipment 
problem can be found by using the methods discussed in the transportation 
problem. In this book we discussed two types of transshipment problems:

(i)   Transshipment problems with some intermediate points between the sup-
ply and demand points; and

(ii)  Transshipment problems where movement of items are allowed between 
one supply point and another supply point and also between one demand 
point and another demand point without having any separate additional 
transshipment points.

The following figure is an example of a transshipment problem with 4 
supply and 3 demand points and two intermediate points where S

i
 (1 = 1, 4) 

denotes the supply available at ith supply points, T
j
 (j = 1, 2) denotes the jth 
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intermediate points, and Dk (k	= 1, 2, 3) denotes the demand at the kth desti-
nation point. Here the movement of items among the intermediate points is 
restricted.

D1

D2

D3

S1

S2

S3

S4

T2

T1

Fig. 7.14

We denote x
ij
 (i = 1, 2, 3, 4 and j = 1, 2) the amount of units shipped 

from the ith supply point to the jth intermediate point and x′jk, (j = 1, 2 and  
k	= 1, 2, 3) denotes the amount of units shipped from the jth intermediate point 
to the kth demand point. Also let cij, (i = 1, 2, 3, 4 and j = 1, 2) denote the 
unit cost of shipping from the ith supply point to the jth intermediate point and  
c′jk, (j = 1, 2 and k	= 1, 2, 3) the unit cost of shipping from the jth transshipment 
point to the kth demand point.

The linear programming formulation of the previous problem can be 
written as:

Min Z = c
11

x
11

 + c
12

x
12

 + c
21

x
21

 + c
22

x
22

 + c
31

 x
31

 + c
32

x
32

  
+ c

41
x

41
 + c

42
x

42
 + + c′

11
x′

11
 + c′

12
x′

12
+ c′

13
x′

13
  

+ c′
21
x′

21
 + c′

22
x′

22
 + c′

23
x

23

Subject to

x x S

x x S

x x S

x x S

11 12 1

21 22 2

31 32 3

41 42 4

+ =

+ =

+ =

+ =










 Supply constraints
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′ + ′ =

′ + ′ =

′ + ′ =









x x D

x x D

x x D

11 12 1

12 22 2

13 23 3

 Demand constraints

x x x x x x x

x x x x x x x

11 21 31 41 11 12 13

12 22 32 42 21 22

+ + + = ′ + ′ + ′

+ + + = ′ + ′ + ′
223




  Transshipment point constraints

x
ij
 ≥ 0 (i = 1, 2, 3; j = 1, 2, 3, 4)

and     x′jk ≥ 0 (j = 1, 2; k = 1, 2, 3)

Example 7.13. (Example with transshipment points between the supply 

and demand points)

A company has three factory locations where items are produced and are 

finally	shipped	to	three	locations	(called demand points) through two trans-

shipment points. It is also given that items cannot be directly transported to 

the demand points and movements between the transshipment points are also 

restricted. The following tables show the total items produced at the three 

locations, the different requirements at the three demand points, and the unit 

cost of shipment from the factories to the transshipment points and from the 

transshipment points to the various demand points.

Factory
Transshipment Points Items Available

T
1

T
2

S
1

21 19 200

S
2

18 16 150

S
3

15 17 200

Transshipment Points Units Demanded

D1 D2 D3

T
1

12 16 14

T
2

14 19 17

Items Required 190 200 160
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Solve	the	previous	transshipment	problem	to	find	the	optimum	transpor-
tation schedule from the factories to the demand points via the transshipment 

points.

Solution: The total available items in the three supply points are 550 and 
the total requirements at the three demand points are 550. Since total units 
available are equal to the total demand, the given problem is a balance trans-
shipment problem.

As the items cannot be shipped directly from the supply points to the 
demand points, the per unit direct cost of shipping from the three supply 
points to the three demand points will be put equal to a very large number, for 
example, infinity.

If x
ij
 (i = 1, 2, 3 and j = 1, 2) denotes the amount of units shipped from 

the ith supply point to the jth transshipment point and x′jk (j = 1, 2, 3 and  
k	= 1, 2, 3) denotes the amount of units shipped from the jth transshipment 
point to the kth demand point, then the LPP formulation of the previous prob-
lem is given as follows:

Min z = 21x
11

 + 19x
12

 + 18x
21

 + 16x
22

 +15x
31

 + 17x
32 

+ 12x′
11

 + 16x′
12

 + 14 x′
13

 + 14 x′
21

 + 19 x′
22

 + 17 x′
23

Subject to
x x

x x

x x

11 12

21 22

31 32

200

150

200

+ =

+ =

+ =









 Supply constraints

′ + ′ =

′ + ′ =

′ + ′ =









x x

x x

x x

11 21

12 22

13 22

190

200

160

 Demand constraints

x x x x x x

x x x x x x

11 21 31 11 12 13

12 22 32 21 22 23

+ + = ′ + ′ + ′

+ + = ′ + ′ + ′




  Transshipment point constraints

x
ij
	≥	0 (i = 1, 2, 3; j = 1, 2)

and      x′
ji
	≥	0 (i = 1, 2, 3; j = 1, 2)

To start using VAM to find the initial basic feasible solution to the given 
problem, we consider the two transshipment points as additional supply and 
demand points, with availability and requirement as 550 (sum of the given 
availability/demand) units each, and of course the movement between these 
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transshipment points still restricted, which is shown in the table by infinity. 
Now the given problem can be rewritten as:

D1 D2 D3 T1 T2 Items Available

S1 ∞ ∞ ∞ 21 19 200

S2 ∞ ∞ ∞ 18 16 150

S3 ∞ ∞ ∞ 15 17 200

T
1

12 16 14 0 ∞ 550

T
2

14 19 17 ∞ 0 550

Items Required 190 200 160 550 550

Now the transshipment table has a total of five rows and five columns. 
The penalties are calculated for the rows and columns as shown in the fol-
lowing:

D1 D2 D3 T1 T
2

Items Available Penalty

S
1

∞ ∞ ∞ 21 19 200 2

S
2

∞ ∞ ∞ 18 16 150 2

S
3

∞ ∞ ∞ 15 17 200 2

T
1

12 16 14 0 ∞ 550 12

T
2

14 19 17 ∞ 0
550

550 14

Items Required 190 200 160 550 550

Penalty 2 3 3 15 16

The highest penalty 16 corresponds to the fifth column, and hence we al-
locate the maximum possible units to the cell (T

2
, T

2
) where the unit cost is 

minimum and the following is the reduced matrix after the necessary deletion:

D
1

D
2

D
3

T
1

Items Available Penalty

S
1

∞ ∞ ∞ 21 200 ∞

S
2

∞ ∞ ∞ 18 150 ∞

S
3

∞ ∞ ∞ 15 200 ∞
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T
1

12
190

16 14 0 550 360 12

Items Required 190 200 160 550

Penalty ∞ ∞ ∞ 15

Now the highest penalty in the previous table is ∞, which occurs at six 
different places. The cell (T

1
, D

1
) has a minimum cost among these, and hence 

we allocate the maximum possible amount in this cell. The following is the 
reduced matrix.

D
2

D
3

T
1

Items Available Penalty

S
1

∞ ∞ 21 200 ∞

S
2

∞ ∞ 18 150 ∞

S
3

∞ ∞ 15 200 ∞

T
1

16 14
160

0 360 200 16

Items Required 200 160 550

Penalty ∞ ∞ 15

Maximum penalty is again ∞, which occurs at five different locations, 14 
at (T

1
, D

3
) has the minimum cost among these rows and columns, and hence 

the maximum possible allocation is done at this cell. The reduced matrix is 
shown as follows:

D
2

T
1

Items Available Penalty

S
1

∞ 21 200 ∞

S
2

∞ 18 150 ∞

S
3

∞ 15
200

200 ∞

T
1

16 0 200 16

Items Required 200 550 350

Penalty ∞ 15
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The previous steps are repeated again and again as in the following, until 
we have the final initial basic feasible solution:

D
2

T
1

Items Available Penalty

S
1

∞ 21 200 ∞

S
2

∞ 18 150 ∞

T
1

16
200

0 200 16

Items Required 200 350

Penalty ∞ 18

T1 Items Available Penalty

S
1

21
200

200 ∞

S
2

18
150

150 ∞

Items Required 350

Penalty 3

Thus, the following is the initial basic feasible solution to the given prob-
lem obtained using VAM:

D1 D2 D3 T1 T2 Items Available

S
1

∞ ∞ ∞ 21
200

19 200

S
2

∞ ∞ ∞ 18
150

16 150

S
3

∞ ∞ ∞ 15
200

17 200

T
1

12
190

16
200

14
160

0 ∞ 550

T
2

14 19 17 ∞ 0
550

550

Items Required 190 200 160 550 550
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The total cost of transshipment for the present allocation = 21 * 200 +  
18 * 150 + 15 * 200 + 12 * 190 + 16 * 200 + 14 * 160 = 17620.

Since the total number of allocation is 7, which is less than (5 + 5 − 1), the 
previous initial basic feasible solution is a degenerate basic feasible solution. 
To apply the MODI method, we introduce a very small number δ at (T

1
T

1
) and 

(T
2
D

2
), and then we have:

D1 D2 D3 T1 T2 Items Available u

S
1

∞ ∞ ∞ 21
200

19 200 0

S
2

∞ ∞ ∞ 18
150

16 150 −3

S
3

∞ ∞ ∞ 15
200

17 200 −6

T
1

12
190

16
200

14
160

0
δ

∞ 550 − 21

T
2

14
δ

19 17 ∞ 0
550

550 −19

Items Required 190 200 160 550 550

v 33 37 35 21 19

The following are the improvement indexes for the non-basic cells:

  (S
1
, T

2
) = 19 − (0 + 19) = 0

  (S
2
, T

2
) = 16 − (− 3 + 19) = 0

  (S
3
, T

2
) = 17 − (− 6 + 19) = 4

  (T
2
, D

2
) = 19 − (− 19 + 37) = 37

  (T
2
, D

3
) = 17 − (− 19 + 35) = 35

Since all the improvement indexes are ≥ 0, the current basic feasible solu-
tion is the optimal basic feasible solution.
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Note: Since the improvement index corresponding to (S1, T2) and (S2, 

T2) are equal to zero, the present problem has more than one optimum solu-

tion.	If	we	allow	either	of	these	two	cells	to	enter	the	basis,	we	can	find	an	
alternative optimum solution to the given problem.

Use of Excel Solver for solving the previous transshipment problem:
The information on the Excel sheet will be entered as it was entered 

in the transportation problem. Here we have three types of constraints, 
namely, supply constraints, demand constraints, and transshipment con-
straints, as is seen from the LPP formulation of the given problem. Since 
infinity is not recognized by Excel, replace it with 1,000 (large positive 
number), which can be considered as large enough in the given context. 
The final output solution of the problem using Excel Solver is as fol-
lows:

T1

T2

S1

S2

S3

D1

D2

D3

190

200

200

200

150

160

Fig. 7.15

The following is the pictorial representation of the optimal solution:
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Using the LPP formulation

Fig. 7.16

Fig. 7.17

Using the normal transportation approach:
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The previous calculation is done using the LPP formulation of the given 
problem, and it represents an alternative optimum feasible solution for the 
given problem. It can be clearly seen that only the necessary movements at 
the transshipment points are used in the transshipment constraints.

Example 7.14. (Problem where the movement of the items is allowed 

between one supply point and another supply point and also between one 

demand point and another demand point without having any separate ad-

ditional transshipment points)

A company has a transshipment problem with two supply points S
1
 and S

2
 

from which items are to be shipped to the two different destinations D
1
 and D

2
.  

The unit cost of transportation between supply and demand points and the 
availabilities and requirements at various sources and destinations are given 
in the following table:

D
1

D
2

Availability

S
1

5 6 30

S
2

4 4 10

Requirements 15 25

The company, instead of shipping directly from the sources to the desti-
nations, wishes to check the option of using the two sources and destinations 
as the transshipment points. Accordingly, the per unit transportation costs be-
tween the supply points and between the destinations are given as follows:

D1 D2

D
1

0 2

D
2

2 0

S1 S2

S
1

0 1

S
2

1 0

Solve the previous transshipment problem to find the optimum transpor-
tation schedule from the supply to the demand points.
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Solution: Here total availability is equal to the total requirements, and 
hence the given transshipment problem is a balanced problem. Since each 
supply and destination point can act as a transshipment point, the given prob-
lem can be represented by a (4 × 4) cost matrix as follows:

S
1

S
2

D
1

D
2

Availability

S1 0 1 5 6 30

S2 1 0 4 4 10

D1 5 4 0 2

D2 6 4 2 0

Requirement 15 25

To solve such a problem, we first add 40 units (the total number of units 
which are to be transported from the supply point to the destinations) to all the 
supply point availabilities and destination points demands. The revised table 
is shown as follows:

S1 S2 D1 D2

S
1

0 1 5 6 70

S
2

1 0 4 4 50

D
1

5 4 0 2 40

D
2

6 4 2 0 40

40 40 55 65

We now can solve this modified problem as a normal transportation prob-
lem. Finding the initial basic feasible solution using VAM and testing its op-
timality using the MODI method, the following is the optimal solution to the 
given problem (steps are left for readers to verify):

S1 S2 D1 D2

S
1

0
40

1
15

5
15

6 70

S
2

1 0
25

4 4
25

50

D
1

5 4 0
40

2 40
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D
2

6 4 2 0
40

40

40 40 55 65

Leaving the allocations in the diagonal cells, the following are the opti-
mal allocations to the given problem:

S
2
 → S

2
 = 15;  S

1
 → D

1
 = 15 and  S

2
 → D

2
 = 25

The total minimum cost of transshipment is 190, and the following is the 
network representation of the previous solution.

S1

S2

D1

D2

15

25

15

Fig. 7.18

The following is the calculation of the previous problem done using Ex-
cel Solver:

Fig. 7.19
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Exercises

1.   What is a transportation problem? Give the LPP formulation of a general 
transportation problem and give the matrix representation of the same.

2.   How do the decision variables in a transportation problem differ from the 
decision variables in a normal linear programming problem?

3.   Show that the necessary and sufficient condition for the existence of a 
feasible solution to a transportation problem is:

a bii

m

jj

m

= =∑ ∑=1 1

 Where a
i
 (i = 1, 2, …, m) is the availability of the ith supply point and b

j
  

(j = 1, 2,...,n) is the requirement of the jth demand point.

4.   Define a loop in a transportation problem and give its importance while 
solving a transportation problem.

5.   Explain the various methods for finding the initial basic feasible solution 
to a transportation problem.

6.   What is a balanced transportation problem? How is this important in the 
solution procedure?

7.   Explain an unbalanced transportation problem.

8.   A firm has three plants which produce items of similar types, and the 
monthly production capacities of these plants are 1,900, 2,099, and 1,200. 
These items are to be distributed to four different locations. Sales fore-
casts indicate that monthly deliveries will be 999, 1,500, 1,700, and 1.000 
to locations 1 to 4, respectively. The transportation cost of shipping a unit 
from a plant to a location is given as follows:

Location 1 2 3 4

Plant 1 15 20 11 13

Plant 2 25 14 10 17

Plant 3 9 13 12 16
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 Formulate a linear programming model for the previous transportation 
problem. Use the North-West Corner Rule and the least-cost method to 
find the initial basic feasible solution to the given transportation prob-
lem. Does the use of the least-cost method give a better solution than the 
North-West rule?

9.   What are the two methods for testing the optimality of a given transporta-
tion problem? Explain them. Which of the two methods would you prefer 
and why?

10.  Explain the connection between the MODI method for solving a trans-
portation problem and the complementary slackness theorem of duality.

11.  What is degeneracy and how does it arise in a transportation problem? 
What problem does this create in the MODI method for testing optimal-
ity? Explain how you overcome it.

12. Explain how to solve a profit maximization transportation problem.

13.  How do you identify the existence of an alternative solution to a transpor-
tation problem, and how will you find it?

14.  Use VAM to find the initial basic feasible solution to Question 8 and 
check for optimality. If it is not optimal, find the optimal solution.

15.  Show that the optimum solution to a transportation problem remains un-
changed when a fixed constant is added to every element in the given cost 
matrix.

16.  Solve the following transportation problems, whose cost matrix is given 
as follows (use VAM to find the initial basic feasible solution):
(i)

Destination Availability

Origin 1 2 3 4

O1 11 9 21 16 400
O2 15 18 11 19 200
O3 9 13 12 12 350
O4 10 17 13 10 200

Requirements 450 310 200 190
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(ii)

Destination Availability

Origin 1 2 3 4

O1 1 M 2 6 40
O2 5 8 1 M 20
O3 M 3 2 2 35
O4 10 7 3 1 20

Requirements 40 30 20 19

Where M is a very large positive number.

(iii)

Available Required

5 3 7 3 8 5 3

5 6 12 5 7 11 4

2 8 3 4 8 2 2

9 6 10 5 10 9 8

3 3 6 2 1 2

17.  The following table gives the cost of transporting material from supply 
points A, B, C, and D to demand points, E, F, G, H, and J.

E F G H J

A 8 10 12 17 15

B 15 13 18 11 9

C 14 20 6 10 13

D 13 19 7 5 12

The present allocation is as follows: A to E 90; A to F 10; B to F 150;  
C to F 10; C to G 50; C to J 120; D to H 210; D to J 70.
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(i)  Check if this allocation is optimum. If not, find an optimum schedule. 
(6) (2) If in the previous problem the transportation cost from A to G 
is reduced to 10, what will be the new optimum schedule?

(ii)  If in the previous problem the transportation cost from A to G is re-
duced to 10, what will the new optimum schedulebe?

18.  XYZ Company collects milk from villagers every day and supplies 
them to three processing plants in Ghaziabad, Faridabad, and Sonepat. 
Milk is collected in vans from three village cooperatives starting at 4:00 
A.M. in the morning. The time required (in hours) to transport the milk 
from the three supply points to the processing plants is given in the fol-
lowing table. To keep the calculations simple, the unit of measure is 
assumed as the number of vans.

Village Cooperatives Ghaziabad Faridabad Sonepat Supply (Vans)

A 5 7 8 15

B 6 5 5 20

C 5 8 7 30

Requirements (vans) 20 20 15

Find the transportation plan.

19.  A firm manufacturing a single product has plants I, II, and III. The three 
plants have produced 60, 35, and 40 units, respectively, during this month. 
The firm had made a commitment to sell 2 units to customer A, 45 units to 
customer B, 20 units to customer C, 18 units to customer D, and 30 units 
to customer E. Find the optimum transportation cost of shipping the man-
ufactured product to five customers. The net per unit cost of transporting 
from the three plants to the five customers is given in the table.

A B C D E

I 4 1 3 4 4

II 2 3 2 2 3

III 3 5 2 4 4

Plant

Customer
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20.  Solve the following profit-maximizing transportation problem using the 
best starting solution.

Destination Availability

Origin 1 2 3 4

O1 4 5 8 6 100
O2 3 7 1 4 150
O3 9 5 2 2 150

Requirements 100 100 100 100

21.  What is a transshipment problem? How does it differ from the transporta-
tion problem? What are different types of transshipment problems?

22. Find the optimum solution to the following transshipment problems:

(i)

Availability

S1 S2 D1 D2

S1 0 2 4 3 100
S2 2 0 5 6 150
D1 4 5 0 1

D2 3 6 1 0
Requirements 120 130

(ii)

Availability

D1 D2 D3 T1 T2

S1 ∞ ∞ ∞ 21 19 100
S2 ∞ ∞ ∞ 16 18 150
T1 15 14 12 0 ∞
T2 17 12 14 ∞ 0

Requirements 50 100 100

Write the LPP formulation of the transshipment problem given in  
Question 18.





C H A P T E R8
ASSIGNMENT PROBLEMS

8.1. Introduction

The transportation model discussed in the previous chapter tells how materi-
als are to be shipped from different sources to various destinations. This mod-
el has a number of applications, and one such application is the assignment 
problem. An assignment problem is a special type of transportation problem 
in which a number of origins have to be assigned to the equal number of 
destinations such that the total cost (or time or distance) incurred in making 
this assignment is at a minimum; for example, “n” number of jobs have to be 
assigned to “n” number of people where the efficiency of doing different jobs 
by different people is different, and the assignment has to be done in such a 
way that the total time of completing all the jobs is at a minimum. Further, 
the assignment has to be made on a one-to-one basis; that is, one job should 
be assigned to one worker only and vice versa. Here the origins and destina-
tions may be in the form of machines, people, plants, jobs, vehicles, and so 
forth. An assignment problem has its application in allocation and schedul-
ing where, for example, planes or crews are assigned to commercial airline 
flights, vehicles or drivers are assigned to different routes, and so on.

8.2. Mathematical Formulation

Let there be n people who are to be assigned to n jobs, and c
i j
 denotes the 

measure of the performance of the ith person doing the jth job.
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Define the decision variable x
i j
 (i = 1, 2, 3, …, n, j = 1, 2, 3, …,n), as fol-

lows—

x
ij

if ith person gets the jth job

otherwise
=






1

0

,

,

So, x
ij
 is a binary variable which can take only two values, either 1 or 0.

The mathematical model for an assignment problem can be formulated 
as:

    
Min Z c x

ij ij

j

n

i

n

=
==

∑∑
11

Subject to     x j n
ij

i

n

= =
=

∑ 1 1 2
1

; , , ,

     x i n
ij

j

n

= =
=

∑ 1 1 2
1

; , , ,   …(8.1)

x
ij
	≥ 	0 ∀ i, j where x

ij
 = 0 or 1 and c

ij
 is the cost of assigning the jth job to 

the ith person.

The previous problem is a special type of linear programming problem 
where decision variables are restricted to take only integer binary values of 
either 0 or 1; for this reason (8.1) is sometimes known as a binary integer 
linear programming problem.

8.3.  Assignment Problems as a Special Case of Transportation 
Problems

As mentioned previously, an assignment problem is one of the many ap-
plications of a transportation problem. Here the number of origins is made 
equal to the number of destinations. The functional constraints of (8.1) make 
sure that only one origin is assigned to each destination and only one destina-
tion is assigned to each origin. Hence, an assignment problem is formulated 
like an n × n transportation problem, where supply at each source is one and 
demand at each destination is also one. There are (2 * n – 1) basic variables in 
this problem, out of which only n variables will have value 1, and others will 
be zero. The solution of the problem will be highly degenerate if it is solved 
by the transportation algorithm or the simplex algorithm. Hence, to solve an 
assignment problem, a special method called the Hungarian method is used 
to get the optimal assignments.
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Tabular representation of an assignment problem as a special case of 
transportation problem is as follows:

Jobs

J
1

J
2

J
n

Supply

M
1

c
11

x
11

c
12

x
12

...
c

1n

x
1n

1

Men M
2

c
21 

x
21

c
22

x
22

...
c

2n

x
2n

1

⋮ ⋮ ⋮ ⋮ ⋮

M
n

c
n1

x
n1

c
n2

x
n2

...
c

nn

x
nn

1

Demand 1 1 ... 1

The assignment problem can also be represented in form of a network as 
follows:

M1

c : x11 11

c : xmn mn

JobsM2

M
n

J1

J2

J
n

Men

Fig. 8.1

Note: If the number of rows is not equal to the number of columns in the 

assignment problem, then that problem is called an unbalanced assignment 

problem and an appropriate number of dummy origins and dummy destina-

tions are added to make it a balanced problem.

Theorem 8.1: In an assignment problem, if a constant is added or sub-
tracted from all elements of the cost matrix [c

ij
], then the assignments that 

minimize the total cost on the original cost matrix will also minimize the new 
cost matrix; that is, the optimal assignments obtained for the changed matrix 
will also be optimal for the original matrix.
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Proof: Let x
ij
 (i = 1, 2, …, n; j = 1, 2,…, n) be the decision variables of the 

assignment problem, and then its mathematical formulation can be written as:

          

Min z c x
ij ij

j

n

i

n

=
==
∑∑

11

Subject to       x j n
ij

i

n

= =
=

∑ 1 1 2
1

; , , ,

          x i n
ij

j

n

= =
=

∑ 1 1 2
1

; , , ,

     x
ij 
≥ 0 ∀ i, j where x

ij
 = 0 or 1

Let c c a
ij ij

* = ±  (where “a” is any constant) be the new value of the cost 
associated with assigning the ith resource to the jth activity and z* be the cor-
responding value of the objective function. Then,

     

Min z c a x

c x a x
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j
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          x
ij 
≥ 0 ∀ i, j where x

ij
 = 0 or 1

This shows that the minimization of the new objective function z* will 
have the same solution as the minimization of the original objective function, 
because “an” is a constant and is independent of the decision variables x

ij
. But 

the new value of the objective function will be increased or decreased by ‘an’ 

from the original value of z.

8.4. Hungarian Method

The steps for this computational procedure are as follows:

1.   First, make sure that the assignment cost matrix is balanced, that is, the 
number of rows is equal to the number of columns. Add a sufficient num-
ber of dummy rows and columns if required to make it balanced.
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2.   Determine the minimum element from each row of the cost matrix and 
subtract that element from all elements of the corresponding row; this 
operation is called row reduction.

3.   Determine the minimum element from each column of the changed ma-
trix and subtract it from all elements of that corresponding column; this 
operation is called column reduction.

4.   The reduced matrix will contain non-negative elements and at least one 
zero in each row and each column. Try to make assignments among zeros 
in the recently obtained matrix by the following procedure:

(a)  Starting with the first row of the cost matrix, find the row having 
a single zero, make an assignment in this zero by encircling it, and 
cross out all other zeros in the column containing this encircled zero. 
Continue searching another row having a single zero and repeat the 
procedure just described until all the rows of the matrix have been 
covered. Keep skipping the rows which have two or more zeros and, 
when only these types of rows are left in the matrix, repeat the same 
row operation on the columns.

(b)  Now, when we are left with the matrix having rows and columns 
(or only rows or only columns) with two or more zeros, then choose 
a row or column having a minimum number of zeros, arbitrarily 
encircle a zero in the chosen row or column, and cross out all zeros 
in the corresponding row and column containing the encircled zero. 
Repeat the whole procedure until all zeros are either encircled or 
crossed off.

(c)  If each row and each column of the obtained matrix has one and only 
one assignment with a zero, then we have the optimal assignment so-
lution of the given problem; otherwise (if there are one or more rows 
or columns in the matrix having no assignment at all), use the follow-
ing procedure:

(i) Tick the row(s) which has no assignment (no encircled zero).

(ii) In the ticked row(s), tick the column(s) having a crossed zero.

(iii) In the ticked column(s), tick the row(s) having an encircled zero.

(iv)  The ticking process will continue as long as the previous conditions 
continue to be satisfied; otherwise, stop the process of ticking and 
draw lines covering all the ticked columns and un-ticked rows.
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(ν)  Choose the minimum of the uncovered (by lines) elements, sub-
tract it from all uncovered elements, add at the intersection of 
lines, and leave the other covered elements as is. Obtain the new 
modified matrix.

5.   Repeat the steps (4) again. After obtaining the optimal solution, add the 
cost element in the original cost matrix at the position of the optimal as-
signment and determine the optimal cost.

Example 8.1. Solve the following assignment problem using the Hungarian 

method.

  

Coat in

Job1 Job2 Job3 Job4

$( )

Machine 1

Machine 2

Machine 3

Machinee 4

7 10 5 4

9 5 8 11

15 9 4 7

10 6 12 4



















Also give the linear programming formulation of the previous problem.

Solution: Since the number of rows equals the number of columns, the 
given assignment problem is a balanced one. We will explain the Hungarian 
algorithm using this example.

Step 1: Subtract row minima (row reduction).

We start with subtracting the row minimum from each row. For example, 
in the first row of the given matrix, the minimum element is 4; therefore, we 
subtract 4 from each element in the first row and the same will be done for the 
remaining rows. The resulting matrix is:

  

Job1 Job2 Job3 Job4

Machine 1

Machine 2

Machine 3

Machine 4

3 6 1 0

4 0 33 6

11 5 0 3

6 2 8 0


















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Step 2: Subtract column minima (column reduction)

Similarly, the previous operation is repeated for the columns of the re-
duced matrix, and the following is the resulting matrix:

  Job1 Job2 Job3 Job4

Machine 1

Machine 2

Machine 3

Machine 4

0 6 1 0

1 0 33 6

8 5 0 3

3 2 8 0



















Step 3: Making assignments.

We can now see that the previous matrix contains at least one zero in each 
row and each column. Therefore, we can start assigning the various jobs to 
the various machines. The first assignment is done to that row which contains 
a single zero, starting from the first row. In this case the second row contains 
a single zero, so we assign Job2 to Machine 2; this is done by encircling the 
zero and crossing off all the zeros (if any) in the column containing the en-
circled zero. Repeat the whole procedure until all zeros are either encircled 
or crossed off.

  

Job1 Job2 Job3 Job4

Machine 1

Machine 2

Machine 3

Machine 4

0 6 1 0

1 0 33 6

8 5 0 3

3 2 8 0



















Since each row and each column has exactly one assignment, the previ-
ous is the optimal solution of the given problem. Hence, Job 1 is assigned to 
Machine 1, Job 2 to Machine 2, Job 3 to Machine 3, and Job 4 to Machine 4. 
The total minimum cost of the assignment is 7 + 5 + 4 + 4 = $20.

Now the mathematical formulation of the previous assignment problem 
as an LPP is as follows:

Let x
ij
 (i = 1, 2, 3, 4; j = 1, 2, 3, 4) be the decision variable which denotes 

that the jth Job is assigned to the ith Machine. Then our problem is:

Min z =  7x
11

 + 10x
12

 + 5x
13

 + 4x
14

 + 9x
21

 + 5x
22

 + 8x
23

 + 11x
24

 + 15x
31

 + 9x
32 

+ 4x
33

 + 7x
33

 + 10x
41

 + 6x
42

 + 12x
43

 + 4x
44
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Subject to the constraints;

  x x x x

x x x x

x x x x

x x

11 12 13 14

21 22 23 24

31 32 33 34

41 42

1

1

1

+ + + =

+ + + =

+ + + =

+ ++ + =













+ + + =

+ +

x x

Row Constraints

x x x x

x x x

43 44

11 21 31 41

12 22

1

1

332 42

13 23 33 43

14 24 34 44

1

1

1

+ =

+ + + =

+ + + =













x

x x x x

x x x x

Column Connstraints

x i jijWhare or 0= ∀1 ,

Example 8.2. (Unbalanced Assignment problem) Solve the following 

assignment problem using the Hungarian algorithm.

  

Cost in 

55 69 38

40 67 70

38 55 67

62 44 89

( $)

I II III

A

B

C

D



















Solution: Since the number of rows is greater than the number of co-
lumns, the given problem is an unbalanced assignment problem. First we 
convert this unbalanced problem into a balanced one by introducing a new 
dummy column IV, with the cost cell entries as all zeros. The new matrix is 
given as follows:

  

I II III IV

A

B

C

D

55 69 38 0

40 67 70 0

38 55 67 0

62 44 89 0



















Since the minimum of each row is zero, the rows will remain unchanged 
after the application of the row reduction procedure, and hence by performing 
the column reduction operations, we get:
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I II III IV

A

B

C

D

17 25 0 0

2 23 32 0

0 11 29 0

24 0 51 0



















Since the previous matrix contains at least one zero in each column and 
in each row, we can start assignments from the second row which contains 
only one zero.

  

I II III IV

A

B

C

D

17 25 0 0

2 23 32 0

0 11 29 0

24 0 51 0



















Since each row and each column has exactly one assignment among ze-
ros, the previous is the optimal solution of the given problem. Hence, I is 
assigned to C, II to D, III to A, and B will not get any job since B has been 
assigned job IV, which is a dummy job, and has been added just to solve the 
problem. The corresponding total minimum cost of assignment is 38 + 38 + 
44 = $120.

Example 8.3. A manager of a company has to assign three jobs, 1, 2, and 

3 to three machines A, B, and C. The estimated job completion times in weeks 

are given in the following table.

  

Time (in days)

Job1 Job2 Job3

Machine A

Machine B

Machine C

27 12 200

19 18 20

24 14 17

















The manager wishes to minimize the total number of weeks required to 

complete all three jobs. How should the allocation of machines to jobs be 

made?

Solution: Applying the row reduction operation in the given cost matrix, 
we have:
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  Job1 Job2 Job3

Machine A

Machine B

Machine C

15 0 8

1 0 2

10 0 3

















On applying the column reduction operation in the previous matrix, we 
have:

  

Job1 Job2 Job3

Machine A

Machine B

Machine C

14 0 6

0 0 0

9 0 1

















As the previous matrix contains at least one zero in each column and in 
each row, we can make assignments in rows and columns having single zeros 
and cross off all zeros in the respective column and row where the assignment 
has been made. So we get:

  

Job1 Job2 Job3

Machine A

Machine B

Machine C

14 0 6

0 0 2

9 0 3

















Now, since the number of assignments made is less than the number of 
rows/columns, the optimal assignment is yet to be reached. Now we shall 
draw a minimum number of lines to cover all the zeros so as to move toward 
the optimal solution (as given in the Hungarian method). The following are 
the steps for doing this:

(i)  Tick row 3 since it has no assignment.

(ii) Tick column 2 since it has a crossed zero in the ticked row 3.

(iii) Tick row 1 since this has an assignment in the ticked column 2.

(iv)  Since no other rows or columns can be further ticked, draw a line to all 
the ticked column(s) and un-ticked row(s).
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Job1 Job2 Job3

Machine A

Machine B

Machine C

14 0 6

0 0 2

9 0 3























We now modify the matrix by subtracting 3 (which is the minimum 
among the elements uncovered by the lines) from all the uncovered elements 
and add the same to the elements appearing at the intersection of the lines. 
The modified matrix is shown as follows:

  

Job1 Job2 Job3

Machine A

Machine B

Machine C

11 0 3

0 3 0

6 0 0

















Now we repeat the previous procedure to find the new assignment:

  

Job1 Job2 Job3

Machine A

Machine B

Machine C

11 0 3

0 3 0

6 0 0

















Since the number of assignments is equal to the order of the given matrix, 
an optimum solution is attained:

  Machine A    Job 2

  Machine B    Job 1

  Machine C    Job 3

Total minimum time for completing the three jobs by the three Machines 
is 48 days.
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8.5. Special Cases in Assignment Methods

8.5.1. Maximization Problems

If the given problem is a maximization problem, then the Hungarian 

method cannot be used to find the optimal assignment to such problems, 
because the Hungarian method requires minimization of the objective func-
tion. To use the Hungarian method to find a solution to such problems, we 
must first convert the given profit matrix into an opportunity loss matrix, and 
this is done by subtracting all the elements of the matrix from the largest ele-
ment of the matrix. Now the given maximization problem will convert to a 
minimization problem, and hence the Hungarian method can be used to find 
the optimal assignment. The corresponding maximum profit can be obtained 
by adding the elements present at the position of the optimal allocations in 
the original profit matrix.

Example 8.4. A	company	selling	five	different	products	has	five	different	
buyers. The ith buyer is willing to pay price p

ij
 (or less) for the jth product. The 

values of p
ij
 are given in the following matrix. The company wishes to know 

which	product	to	offer	to	each	buyer	so	as	to	maximize	total	profit.

  

Products

Buyer

12 15 24 10 29

20 15 30 19 24

33 21 22 18 27

15 19 20 24 16

20 27 211 26 25























Solution. The given matrix contains per unit profit; it is not a cost matrix 
as was considered in earlier problems. Here the objective function is to be 
maximized. Therefore, in order to use the Hungarian method and to find an 
optimal assignment to the given problem, we need to convert the given matrix 
into an opportunity loss matrix by subtracting all the elements from the larg-
est element of the matrix. In the given problem, the maximum element is 33. 
The following is the resulting matrix.

       

21 18 9 23 4

13 18 3 14 9

0 12 11 15 6

18 14 13 9 17

13 6 12 7 8






















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On applying the row and column reduction method, we have the follow-
ing matrix:

  17 14 5 19 0

10 15 0 11 6

0 12 11 15 6

9 5 4 0 8

7 0 6 1 2























Since each row and each column has at least one zero, we can now start 
putting in the assignments:

  

17 14 5 19 0

10 15 0 11 6

0 12 11 15 6

9 5 4 0 8

7 0 6 1 2























Since the total number of assignments in the matrix is equal to the num-
ber of rows/columns, the present assignments are the optimal assignments. 
So, buyer 1 should be given product 5, buyer 2 should be given product 3, 
buyer 3 should be given product 4, and finally buyer 5 should be given prod-
uct 2. The corresponding maximum profit is 29 + 30 + 33 + 24 + 27 = 143.

8.5.2. Restricted Entry

If the assignment at any position of the matrix is prohibited (it is restrict-
ed or not allowed due to some reasons), for example, the ith origin cannot be 
assigned to the jth destination due to some circumstances, then assign infinity 
(∞) at that location and follow the Hungarian method to get the optimal as-
signment schedule and the optimal value of the measure of effectiveness.

8.6. Solution of Assignment Problems Using Excel Solver

An assignment problem can also be solved using MS-Excel in the same 
manner as the transportation problem was solved. The only difference is in 
this case, the availability or supply at each source and demand of each desti-
nation will be exactly equal to unity. Consider Example 8.1.
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  Coat in $

Job1 Job2 Job3 Job4

( )

Machine 1

Machine 2

Machine 3

Machinee 4

7 10 5 4

9 5 8 11

15 9 4 7

10 6 12 4



















1.  Create a solution space on the same Excel sheet.

2.   Insert a blank column and row alongside the space provided for solu-
tion (x

ij
) to compute the row and column sum, as shown in the following  

figure:
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3.   Create a space for computing the value of the total minimum cost of the 
assignment. The SUMPRODUCT command will be used to multiply the 
given unit cost and solution space.

4.   Now go to Solver. On solving the problem in the same manner as we had 
done in transportation, we have the following as the optimal solution and 
its corresponding minimum assignment cost:
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Exercises

1.   Explain assignment problems as a particular case of a transportation 
problem.

2.  What is an assignment problem? Give some real-life example.

3.  Give the LPP formulation of an assignment problem.

4.   Explain the limitation of using the simplex method for solving an assign-
ment problem.

5.   Explain the steps involved in the Hungarian algorithm for solving an as-
signment problem.

6.   If a fixed constant is added to every element of the cost matrix, then show 
that the optimal assignments obtained for the changed matrix will also be 
optimal for the original matrix.

7.  Explain the steps for solving a profit maximizing assignment problem.

8.  Solve the following cost minimizing assignment problem:

(i)

J1 J2 J3 J4

A 20 15 10 17

B 9 14 11 18

C 13 12 14 10

D 15 10 13 9

(ii)

J1 J2 J3 J4 J5

A 6 – 2 4 1

B 3 9 5 2 –

C 2 4 7 3 6

D 4 3 – 4 1

E 7 5 8 7 5
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(iii)

J1 J2 J3 J4 J5

A 200 150 100 140 120

B 109 156 210 180 166

C 140 143 164 180 175

D 140 150 165 173 188

9.   Consider the problem of assigning five jobs to five persons. The assign-
ment costs are given as follows:

J1 J2 J3 J4 J5

A 8 4 2 6 1

B 0 9 5 5 4

C 3 8 9 2 6

D 4 3 1 0 3

E 9 5 8 9 5

Determine the optimum assignment schedule.

10.  Find an optimal solution to an assignment problem with the following 
cost matrix:

J1 J2 J3 J4

M1 10 9 7 8

M2 5 8 7 7

M3 5 4 6 5

M4 2 3 4 5

11.  A company has four sales representatives who are to be assigned to four 
different sales territories. The monthly sales increases estimated for each 
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sales representative for different sales territories (in lakhs of Rupees) are 
shown in the following table:

Sales Representatives Sales Territories

I II III IV

A 200 150 170 220

B 160 120 150 140

C 190 195 190 200

D 180 175 160 190

 Suggest optimal assignments and the total maximum sales increase per 
month. If for a certain reason, sales representative B cannot be assigned 
to sales territory III, will the optimal assignment schedule be different? If 
so, find that schedule and effect on total cost.

12.  An automobile dealer wishes to send four repairmen to four different 
jobs. The repairmen have somewhat different kinds of skills, and they 
exhibit different levels of efficiency from one job to another. The dealer 
has estimated the number of man-hours that would be required for each 
job-man combination. This is given in the matrix form in the following 
table. Find the optimum assignment that will result in the minimum man-
hours needed.

Job

Man

I II III IV

A 5 3 2 8

B 7 9 2 6

C 6 4 5 7

D 5 7 7 8



C H A P T E R9
GAME THEORY

9.1. Introduction

Game theory is a subject which deals with competitive situations and ex-

plains the art of decision making, where each competitor called player makes 

a choice that potentially affects the interests of the other competitors or play-

ers and promotes his own interest. These players may be individuals, groups, 

firms, or any combination of these. Game theory is different from decision 
analysis in the sense that in the latter case a game is played by the decision 

maker whose opponent is passive in nature and makes choices or decisions 

without having any interest in the other’s loss.

This subject has its origin in the early half of the nineteenth century with 

the publication by Antoine Augustin Cournot in 1838 in Researches into the 

Mathematical Principles of the Theory of Wealth, in which he had attempted 

to explain the underlying rules governing the behavior of duopolists. Almost a 

century later, in the year 1921 the mathematician Emile Borel for the first time 
suggested a formal theory of games. However, it was only in 1944 that the mod-

ern principles of game theory were formulated by John von Neumann and Oskar 

Morgenstern with their publication, Theory of Games and Economic Behavior. 

Much of the basic terminology that is in use today was published in this book.

Any competitive situation will be called a “game” if it has the following 

characteristics:

(i)  There are finite numbers of competitors called players.

(ii)  There are finite numbers of possible courses of action called strategies, 
available to each player. Here the strategy may be a simple action or a 
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predetermined rule which tells the player how to respond in different 
situations at each stage of the game.

(iii) There is a defined rule which governs the conduct of the players.

(iv)  The outcome of all the possible combinations of the courses of action 

taken by the various players determines the payoff to each player, which 
denotes win, lose, or draw.

When the game is played, each player knows the strategies available 

to him and the strategies available to his opponents as well as the payoff to 
him as a result of the combination of different strategies adopted by different 
players, but none of them exactly know the choice made by the other, and 

they simultaneously make their own best choice. The objective here is to de-

velop the criterion to enable the players to select their best possible strategy/

strategies.

9.2. Zero-Sum Games

Any competitive game can be classified as a “zero-sum” or “non-zero-sum” 
game on the basis of its outcome. If the algebraic sum of the gains and losses 

of all the players involved in the game is zero, then the game is said to be 
a “zero-sum” game; otherwise, it’s a “non-zero-sum” game. In a zero-sum 
game there is no addition or reduction in the total wealth of all the players; 
instead, the same total wealth is redistributed among the competing players.

If the given game problem consists of only two players, then it’s called a 

two-person game. In a two-person game if the gain of one player is equal to 

the loss of the other player, then it’s called a two-person zero-sum game, and 
it’s also assumed that each player knows the outcome for all possible combi-

nations of strategies that he and his competitor may have adopted during the 

course of the game. The resulting outcomes in a two-person zero-sum game 
can be displayed in the form of a matrix called a payoff matrix. (a

ij
)

m × n
; here 

a
ij
 represents the payoff or utility which may be in terms of monetary benefit, 

and also when one player selects the ith strategy while jth is chosen by other, 

and the possible number of strategies available to both the players are m and 

n. In other words, if a game is played by two players A and B, then this is the 

payoff matrix for player A, where a
ij
 is the amount paid to A by B if A plays 

his ith strategy and B plays his jth strategy, and hence the elements of the payoff 
matrix denote the resulting gain (loss) to a particular player. In a two-person 
zero-sum game, if a player A has a total of m strategies and the other player B 
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has a total n strategies available to him, then the resulting payoff of the game 
can be put in the form of an m × n payoff matrix (a

ij
), where each element of 

the matrix represents the various possible values of the game when the two 

players select their different strategies. In a zero-sum two-person game, the 
payoff matrix for player B will be the negative of the payoff matrix of player A;  
that is, the gain of one will be the loss of the other, such that the sum is zero. 
To understand this in a better way, let us consider the following example in-

volving two different players A and B. Let player A have a total of 3 different 
strategies denoted by I, II, and III, and player B has a total of 2 different strate-

gies denoted by 1 and 2, and let the resulting payoff to player A be as given in 

the following 3 × 2 payoff matrix:

B

A

1 2

1 4

4 1

0 1

I

II

III

−

















As per the previous payoff, player A is going to win a sum of $4 if he selects 

his second strategy at the same time player B select his first strategy. Similarly, 
he will lose $1 if he sticks to strategy II and player B selects strategy 2. The same 

interpretation applies to the remaining elements of the payoff matrix. Since it’s a 
zero-sum game, the payoff matrix to player B can be written as:

B

A

1 2

1 4

4 1

0 1

I

II

III

− −

−

−

















The previous payoff is obtained by simply putting a negative ahead of 
every element of the payoff to player A. When we sum up the two payoffs, the 
resulting matrix is a null matrix.

In a two-person zero-sum game, the two players will be called a row 
player and a column player. The row designations are the courses of action 

available to the row player and the column designations are the courses of 

action available to the column player. The row player will always try to maxi-

mize his yield and for this reason, a row player is also sometimes known as 
a maximizing player, whereas the column player is a minimizing player and 
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will try to minimize his loss. The payoff given in any game problem will al-
ways be considered for the maximizing player unless otherwise stated.

Note. If (a
ij
) is the payoff to one player in a two-person zero-sum game, 

then (− a
ij
) will be the payoff to the other player. The given payoff will always 

be assumed for player A (maximizing player) unless otherwise stated.

9.3. Maximin and Minimax Principle

In the maximin and minimax principle, the players adopt a conservative ap-

proach. The maximin (minimax) principle is a principle adopted by the maxi-
mizing (minimizing) player. Here the player takes a pessimistic approach and 
plays it safe by selecting the best out of the worst possible outcomes, that is, 

the player will always play that strategy which corresponds to the maximum 

(minimum) of the minimum (maximum) gains (losses) from the list of options 
available to him. Since both players are rational, if one player chooses one par-
ticular strategy, then the other player will act rationally and chooses the strategy 

in such a way that it will prevent his maximum loss or prevent his opponent 

to make maximum profit. Both the players are averse to taking the risk of get-
ting larger losses and will play the moves which will guarantee them the best 

payoff and hence will result in a break-even position. This principle helps both 
the players in selecting the strategies which will be best for both of them in a 

way that even if one knows his/her opponent’s selection of strategy, he won’t 

be able to improve his loss or gain any more. To understand it better, consider a 

two-person zero-sum game with the following payoff matrix:

Player 

 

I

II

III

B

A

I II III IV

Player

2 3 5 1

6 4 6 5

4 2 7 9

















Here player A is a maximizing player and has a total of three different 
strategies available to him, whereas B is the minimizing player and has a total 
of four different strategies available to him. When player A plays his strate-

gies, we have the following:

(i)  Worst outcome when A plays I = min (1st row) = min (2, 3, 5, 1) = 1.

(ii) Worst outcome when A plays II = min (2nd row) = min (6, 4, 6, 5) = 4.
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(iii) Worst outcome when A plays III = min (3rd row) = min (4, 2, 7, 9) = 2.

Now the best of these worst outcomes is max (1, 4, 2) = 4 . Hence, the 
maximin for the maximizing player A is 4. Similarly, the worst possible out-
comes of the minimizing player B are

(i)   Worst outcome when B plays I = max (1st column) = max (2, 6, 4) = 6.

(ii) Worst outcome when B plays II = max (2nd column) = max (3, 4, 2) = 4.

(iii) Worst outcome when B plays III = max (3rd

 
column) = max (5, 6, 7) = 7.

(iv) Worst outcome when B plays IV = max (4th column) = max (1, 5, 9) = 9.

And the best of these worst outcomes for player B is min (6, 4, 7, 9) = 4. 
Hence, the minimax for the minimizing player B is also 4.

Saddle Point. A saddle point of payoff matrix is that point of the matrix 
where the maximin value equals the minimax value of the matrix. This point 

of the matrix is also known as the equilibrium point of the matrix. The value 

of the payoff at the saddle point is called the value of the game, and the corre-

sponding strategies are the optimal strategies of the two players. Such a game 
is said to be a deterministic game.

In the previous example, min
j
 max

i
 (a

ij
) = max

i
 min

j
 (a

ij
) = 4. Hence, 4 

is the saddle point of the game and it’s the value of the game. The optimal 

strategy for player A is II and that of B is also II. Hence, if the saddle point 

exists in the game, then both players should adopt the strategies determined 

by the saddle point, since it gives the stable solution where none of them can 

take advantage of his/her opponent to improve his payoff.
It is not necessary that the saddle point of a game always exists. For those 

games without a saddle point, the minimax and maximin value of the payoff 
matrix will provide an upper and lower bound to the expected value of the 

game, obtained using a suitable method; that is, if v is the expected value of 

the game, then

maximin value ≤ v ≤ minimax value
Pure Strategy: A strategy is said to be a pure strategy if a player selects 

the same strategy each time regardless of the other player playing any of his 

strategies. In such situations each player knows in advance what the other 

player is going to do. In a game with a saddle point, each player plays their 

best strategy with a probability of 1.
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Optimum Strategy: This is the best possible strategy (strategies) avail-
able to both the players.

Value of the game. It is the expected amount of gain (loss) to the maxi-
mizing (minimizing) player when both players play optimally. If the value of 
the game is zero, then the game is said to be a fair game.

Theorem 9.1. For any two-person zero-sum game with (a
ij
)

m × n
 as its 

payoff, the maximin value v  of the matrix will always be less or equal to the 

minimax value v  of the matrix; that is, max
i
 min

j
 (a

ij
) ≤ m

i
n

j
 max

i
 (a

ij
).

Proof: We can easily see that,

 min
j
 (a

ij
) ≤ a

ij
, ∀

i
 ...(9.1)

And  max
i
 (a

ij
) ≥ a

ij
, ∀j ...(9.2)

Letting   min
j
 (a

ij
) = a

is
 and  max

j
, (a

ij
) = a

rj
, we have

 a
is 

≤ a
ij
 ≤ a

rj
 i = 1, 2, 3. ..., m and j = 1, 2, 3. …, n ...(9.3)

Now we can easily have,

max
i
 a

is
 ≤ a

ij
 ≤ min

j
 a

rj
, i = 1, 2, 3. …, m and j = 1, 2, 3. …, n ...(9.4)

Hence max
i
 min

j
 (a

ij
) ≤ a

ij
 ≤ min

j
 max

i
 (a

ij
)

⇒	 max min min max
i j ij j i ij

a a v v( ) ≤ ( ) ⇒ ≤  

Remark

1.  If the game possesses a saddle point, then v v v= = , and as mentioned 

previously, such games are said to be deterministic games, and each 

player will select a single strategy as their respective optimal strategy.

2. If v v v= = = 0, then the game is a fair game.

9.4. Game with a Saddle Point

The following are the steps involved for finding a saddle point of a game:
(a)  Select the minimum element in each row of the payoff matrix and put 

them under the “row minima” column. Each of these minima is put 

inside , as shown as follows, in the matrix.

(b)  Select the maximum element in each column of the payoff matrix 
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and put them under the “column maximum” heading. Each of these 

maxima is put inside  as shown as follows in the matrix.

(c)  Now the element(s) with both  and  in the payoff matrix will 
represent the saddle point of the game, and hence the value of the 

game and the corresponding strategy of the two players are their re-

spective optimal strategies.

Note: If the saddle point of the game exists, then it will represent the 

value of the game and the corresponding strategies are the optimal strategies. 

Theorem 9.1 will establish the relation between the minimax and maximin 

value for those games which don’t possess a saddle point.

Example 9.1. Check which of the following two-person zero-sum game 

problems represents a deterministic game. Find the optimum strategies for 

each player, determine if it is a deterministic game, and also mention if the 

game is fair.

(i)  

B

A

I II III

I

II

III

2 3 5

6 4 6

4 2 7

















(ii) 

B

A

I II

I

II

III

−

−

















1 1

2 2

0 1

(iii) 

B

A

I II

I

II

III

1 2

2 1

0 1

−

















(i)  Solution: The minimum of each row is given under the “row minima” 

heading, and the corresponding element is encircled  in the payoff ma-

trix. Similarly, the maximum of each column is written under the heading 
“column maxima” and is shown inside  in the matrix. The maxima of 
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these “row minima” will give the maximin value for player A, whereas 

the minimum of the “column maxima” will provide the minimax value for 

player B.

Here for the given game, maximin = 4 = minimax, and this can be clearly 

seen as the crossing point of the  and . Hence, the game has a saddle 

point, and the value of the game is 4. The best strategy for A and B are their 

respective second (II) strategies. This game is a deterministic game, and since 
its value is not equal to zero, it is an unfair game.

(ii)  Solution: Here, we have maximin = 0 = minimax as shown clearly in the 

figure of payoff table below, and hence the game has a saddle point, and 
the value of the game is 0. Also, it is a fair and deterministic game. The 

best strategy for A is III and for B is I.

(iii)  Solution: For the given game, minimax = min (2, 2) = 2 and maxi-
min = max (1, −1, 0) = 1. Since the two are not equal, the game 
doesn’t possess a saddle point and hence it is not a deterministic 

game. This has to be solved using a different method, to be discussed 
in the following sections.
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9.5. Game without a Saddle Point

For every two-person zero-sum game problem, it is not necessary that the 
maximin value will always equal the minimax value of the game and hence, 

in such situations, the game problem no longer remains a deterministic game, 

and the maximin-minimax principle for solving the game fails. In this case 

if both the players try to select the strategy as suggested by maximin and 

minimax criterion and at the same time predict the other player’s strategy, 

though which are not the same, it will result in an unstable situation since 

both are rational players and will keep on changing their strategies in order 

to prevent his/her opponent to make a larger gain and to avoid incurring his 

own loss. Both the players will try to improve their own payoff. In this situa-

tion, the strategy should not be selected by some fixed criterion so that none 
of them should be able to predict the other’s strategy, and both the players 

should make their choices randomly without taking advantage of the oppo-

nent’s choice.

To solve such a game problem, the concept of a chance move is intro-

duced. Here the two players will be selecting their different strategies accord-

ing to a probability distribution. The objective of each player will be to select 

a set of strategies in a random manner so as to optimize his average payoff. 
The strategies so determined are called mixed strategies because each strat-

egy is being selected according to a probability law assigned to it.

Mixed Strategy: If a game does not possess a saddle point, game theory 

suggests that each player assign a probability distribution to the set of strategies  

available to him. Then the players select at least two or more strategies with 

certain probabilities (weights). These probabilities (weights) represent how 
frequently each move is to be played by the two players. A mixed strategy is 
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used when the player is indifferent among several pure strategies, and thus 
this keeps the opponent guessing the possible moves he will make.

Let (a
ij
)

m × n
 denote the payoff matrix of a two-person (A and B) zero-sum 

game where m & n are the maximum number of available strategies to play-

ers A and B, respectively. Further let x
i
 (i = 1, 2, 3, …, m) and y

j
 (j = 1, 2, 3, 

…, n) be the probabilities of player A playing the ith strategy, and player B 

playing the jth strategy, respectively, and then the expected (average) payoff 
to player A is given by:

 E x y x y a
i j ijj

n

i

m
,( ) =

== ∑∑ 11
 …(9.5)

Here both the players will select mixed strategies according to random 

observations drawn from the probability distribution of their own strategies, 

such that Player A tries to maximize his minimum expected payoff, and player 
B minimizes his maximum expected loss. The optimal mixed strategies for 
both the players will provide a stable solution where:

Maximum of Minimum expected payoff for player A = Minimum of 

Maximum expected loss of player B = value of the game

None of them will be able to improve their positions by deviating from 

these optimal strategies.

Theorem 9.2. For any two-person (A and B) zero-sum game with-

out a saddle point, with 
a a

a a

11 12

21 22









  as the payoff matrix to player A. 

The optimum mixed strategies S
A A

x x
A
=










1 2

1 2

 and S
B B

y y
B
=










1 2

1 2

 are 

given by x
a a

a a a a
1

22 21

11 22 12 21

=
−

+ − +( ) , x x
a a

a a a a
2 1

11 12

11 22 12 21

1= −( ) = −

+ − +( )
,  

y
a a

a a a a
1

22 12

11 22 12 21

=
−

+ − +( )  and y y
a a

a a a a
2 1

11 21

11 22 12 21

1= −( ) = −

+ − +( )
. 

The expected gain for player A is given by v
a a a a

a a a a
=

−

+ − +( )
11 22 12 21

11 22 12 21

.

Proof: Given the mixed strategy for player A as S
A A

x x
A
=










1 2

1 2

, with x
1
+ 

x
2
 = 1.
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If player B moves his strategy B
1
, then the expected gain to player A 

will be:

E
1
 (x) = x

1
a

11
 + x

2
a

21
 = + x

1
a

11
 + (1 − x

1
) a

21
 = x

1
 (a

11
 − a

21
) + a

21
 ...(9.6)

and if B moves B
2
, the expected gain to player A will be:

E
2
 (x) = x

1
a

12
 + x

2
a

22
 = x

1
a

12
 + (1 − x

1
) a

22
 = x

1
 (a

12
 − a

22
) + a

22
 ...(9.7)

Similarly, if B has a mixed strategy as S
B B

y y
B
=










1 2

1 2

 with y
1
+ y

2
 = 1, then 

the expected losses for Player B, when A plays his strategies A
1
 and A

2
, is:

 E
1
 (y) = y

1
a

11
 + y

2
a

12
 ...(9.8)

 E
2
 (y) = y

1
a

21
 + y

2
a

22
,
 
respectively. ...(9.9)

From (9.4), the total expected payoff to player A when B moves his dif-
ferent strategies with probabilities y

1
 and y

2
 is given by:

 E (x, y) = y
1
 (a

11
x

1
 + a

21
x

2
) + y

2
 (a

12
x

1
 + a

22
x

2
)

 = y
1
 (a

11
x

1
 + a

21
(1 − x

1
)) + (1 − y

1
) (a

12
x

1
 + a

22
(1 − x

1
)) ...(9.10)

Let v denotes the expected payoff to player A (value of the game) when 
both the players play their optimum strategies. Now, in order that player A 

is unaffected with whatever choice of strategies player B makes, we must 
have:

 x
1
 (a

11
 − a

21
) + a

21
 = x

1
 (a

12
 − a

22
) + a

22

	 ⇒       x
a a

a a a a
1

22 21

11 22 12 21

=
−

+ − +( )

And         

x x

a a

a a a a

a a

a a a a

2

22 21

11 22 12 21

11 12

11 22 12 21

1

1

= −( )

= −
−

+ − +( )

=
−

+ − +(( )
Similarly, from (9.7) and (9.8), we have:

          y
a a

a a a a
1

22 12

11 22 12 21

=
−

+ − +( )
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and     y
a a

a a a a
2

11 21

11 22 12 21

=
−

+ − +( )
Now putting the values of x

1
 and y

1
 in (9.9), we get:

E x y v
a a a a

a a a a
, .( ) = =

−

+ − +( )
11 22 12 21

11 22 12 21

Example 9.2. Solve the following game problems.

(i)  

B

I II

A
I

II

4 2

3 5











(ii)  

B

B B

A
A

A

1 10

6 5

1

2

1 2











(i)  Solution: Clearly the game does not possess a saddle point.

Let S
x x

A
=










I II

1 2

and S
y y

B
=










I II

1 2

 be the mixed strategies of player A and B, respectively.

Then by theorem 9.2, we have

  

x
a a

a a a a
1

22 21

11 22 12 21

5 3

4 5 2 3

2

4
0 5

=
−

+ − +( )

=
−

+ − +( )
= = .

and   x
2
 =1 − x

1
 = 1 − 0.5 = 0.5.

Similarly, y
a a

a a a a
1

22 12

11 22 12 21

3

4
0 75=

−

+ − +( )
= = .

and   y
2
 = 1 − y

1
 = 0.25 and the value of the game is,

  v
a a a a

a a a a
=

−

+ − +( )
= =11 22 21 12

11 22 12 21

14

4
3 5.



GAME THEORY • 307

Hence, the solution of the game is:

(a) The optimal mixed strategy of player A is (0.5    0.5)
(b) The optimal mixed strategy of player B is (0.75 0.25)
(c) The expected value of the game is v = 3.5

(ii)  Solution. Maximin of the game is 5 and Minimax is 6, and hence there is 
no saddle point to the game.

Let S
A A

x x
A
=










1 2

1 2

 and S
B B

y y
B
=










1 2

1 2

 be the mixed strategies of player A 

and B, respectively.

Then by theorem 9.2, we have

  x
a a

a a a a
1

22 21

11 22 12 21

1

10
0 1=

−

+ − +( )
=
−
−

= .

and   x
2
 =1 − x

1
 = 1 − 0.1 = 0.9.

Similarly,  y
a a

a a a a
1

22 12

11 22 12 21

5

10
0 5=

−

+ − +( )
=
−
−

= .

and   y
2
 = 1 − y

1
 = 0.5 and the value of the game is,

  v
a a a a

a a a a
=

−

+ − +( )
=
−
−

=11 22 21 12

11 22 12 21

55

10
5 5.

Hence, the solution of the game is:

(d) The optimal mixed strategy of player A is (0.1 0.9)
(e) The optimal mixed strategy of player B is (0.5 0.5)
(f) The expected value of the game is v = 5.5

9.6. Graphical Solution of 2 × n and m × 2 Games

The formulas given in theorem 9.2 are applicable only for those game 

problems having no saddle point and whose payoff matrix is of dimension  
2 × 2. However, this procedure can be extended to a square payoff matrix of 
any dimension, but the difficulty arises when the payoff matrix is not a square.

In this section, we will discuss how to solve a game problem with a  

payoff matrix of the order 2 × n and m × 2. The technique is to reduce the 
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dimension of the payoff matrix from 2 × n and m × 2 to 2 × 2 by graphically 

locating the optimal strategies and then applying theorem 9.2 to finally find 
the values. Consider an m × 2 game whose payoff matrix is given by:

B

B B

A

A

A

A

a a

a a

a a
m m m

1 2

1

2

11 12

21 22

1 2

  



















To start with, let us assume that the game does not possess a saddle point. 

Also let y
1
 and y

2
 denote the probabilities of player B playing his strategies B

1
 

and B
2
,
 
respectively, where y

1
 + y

2
 = 1. Now, the expected payoff to player B, 

when A plays his different strategies, is given by:

When A plays Expected payoff to player B

A
1

E
1
 (y) = y

1
a

11
 + y

2
a

12
 = y

1
a

11
 + (1 − y

1
) a

12

A
2

E
2
 (y) = y

1
a

21
 + y

2
a

22
 = y

1
a

21
 + (1 − y

1
) a

22

...

...

A
m

E
m
 (y) = y

1
a

m1
 + y

2
a

m2
 = y

1
a

m1
 + (1 − y

1
) a

m2

According to the minimax criterion, player B will determine the values of 

y
1
 and y

2 
in such a way that it minimizes his maximum expected payoff (loss). 

This can be done by plotting the expected payoff of player B for different 
strategies of player A. For plotting the expected payoffs, we draw two parallel 
lines with one unit apart and mark a scale on each of them. These two lines 

will represent the two available mixed strategies to player B. To draw E
1
 (y), 

we join a
11

 on scale II to a
12

 on scale I. Similarly, the remaining expected pay-

offs can be plotted on the same graph. Now identify the lowest point on the 
upper boundary region of these lines, which will give the minimum expected 

payoff in the maximum expected payoff region on the upper boundary. This 
point will be the minimax value for player B and thus will determine the opti-

mal values of y
1
 and y

2
. Now, the optimal strategies of player A will be deter-

mined with the help of corresponding lines which pass through this minimax 

point. Finally, the dimension of the payoff matrix will be reduced from m × 2 

to 2 × 2, which can be easily solved using the method discussed earlier.
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Almost in the same manner, a 2 × n payoff matrix can also be reduced into 
a 2 × 2 payoff matrix. In this case, instead of looking at the lowest point in 
the upper boundary region of the graph of the expected payoffs (A’s expected  
payoff), we will look for the highest point in the lower boundary region, 
which will give the maximum expected payoff in the minimum expected pay-

off region.
Example 9.3. A soft drink company calculated the market share of two 

products against its major competitor having three products and found out 

the impact of additional advertisement for any one of its products against the 

other. The payoff matrix is as follows:

Competitor

I II III

Company
I

II

6 7 15

20 12 10

What is the best strategy of the company as well as the competitor? 

What is the payoff obtained by the company and the competitor in the 

long run?

Solution: For the given payoff,
Minimax = 12 and Maximin = 10. Since the Minimax is not equal to the 

Maximin, the given game doesn’t possess a saddle point. Let x
1
 and x

2
, (where 

x
1
 + x

2
 = 1) be the probabilities of the company doing additional campaigning 

for its first and second product, respectively. Then the company’s expected 
payoffs, against the competitor’s pure moves, are given by:

Competitor’s moves Expected payoff to the company

I E
1
(x) = 6x

1
 + 20x

2
 = 6x

1
 + 20 (1 − x

1
) = 20 – 14x

1

II E
2
(x) = 7x

1
 + 12x

2
 = 7x

1
 + 12 (1 − x

1
) = 12 – 5x

1

III E
3
(x) = 15x

1
 + 10x

2
 = 15x

1
 + 10 (1 − x

1
) = 10 + 5x

1

Here, E
i
(x), i = 1, 2, 3 denotes the company’s expected payoff when its 

competitor uses its first, second, and third product, respectively. Now we plot 
these expected payoffs as shown in the following figure.
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0

5

10

15

20

25

5

10

15

20
22III

E (x)1

E (x)3

Maximin point

p

Lower most boundary

0 0.2 0.4 0.6 0.8 1
–1

E (x)2

    Fig. 9.1

The two parallel lines are at a unit distance apart and denote the two given 

strategies (products) for the company. To plot E
1
(x), we join 6 on II to 20 on 

I. Similarly, the other two expected payoffs of the company are plotted. The 
bold lines in the graph represent the lowermost envelope of the graph, which 

in fact represents the worst possible outcomes to the company. Now accord-

ing to the maximin principle, the company will select the best of these worst 

possible outcomes, and this is given by point p in the graph, and this point 

denotes the value of the company.

The point identifies the two best strategies, II and III, of the competitor. 
Thus, the competitor will never play its first strategy, and the reduced payoff 
matrix is given as follows:

Competitor

II III

Company
I 7 15

11 12 10

Let y
2
 and y

3
 (where y

2
 + y

3
 = 1) denote the probabilities of the competitor 

doing additional campaigning for its second and third products respectively. 

Here y
1
 = 0. Now, using the formula given in theorem 9.2, we have:

 

x
a a

a a a a
1

22 21

11 22 12 21

10 12

7 10 15 12
0 2

=
−

+ − +( )

=
−

+ − +( )
= .
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and      x
2
 =1 − x

1
 = 1 − 0.2 = 0.8.

Similarly,  y
a a

a a a a
2

22 12

11 22 12 21

5

10
0 5=

−

+ − +( )
=
−
−

= .

and      y
3
 = 1 − y

2
 = 0.5

and the value of the game is,

  

v
a a a a

a a a a
=

−

+ − +( )

=
−
−

=
−
−

=

11 22 21 12

11 22 12 21

7 10 12 15

10

110

10
11

* *
.

Hence, the solution of the game is:

(a) The optimal mixed strategies of the company are (0.2,0.8).
(b) The optimal mixed strategies of the competitor are (0, 0.5, 0.5).
(c)  The expected value of the game is v = 11, which denotes the payoff 

obtained by the company in the long run, and v = −11 will be the pay-

off obtained by the competitor in the long run.
Example 9.4. Use the graphical method to find the solution of the follow-

ing game problems.

(i) 

B

I II

A

I

II

III

IV

V

1 2

4 1

4 2

5 3

2 4























(ii) 

B

I II III IV

A
I

I

1 2 0 4

4 5 6 3

−









(i) Solution: Clearly the given game problem does not possess a saddle 

point. Let y
1
 and y

2
 denote the probabilities of player B playing his strategies 
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I and II, respectively, where y
1
 + y

2
 = 1, and then for the expected payoff to 

player B when player A plays his different strategies, we have:

Strategies of player A Expected payoff to player B

I E
1
(y) = y

1
 + 2y

2
 = y

1
 + 2 (1 − y

1
) = 2 – y

1

II  E
2
(y) = 4y

1
 + y

2
 = 4y

1
 + (1 − y

1
) = 1 + 3y

1

III   E
3
(y) = 4y

1
 + 2y

2
 = 4y

1
 + 2 (1 − y

1
) = 2 + 2y

1

IV   E
4
(y) = 5y

1
 + 3y

2
 = 5y

1
 + 3 (1 − y

1
) = 3 + 2y

1

V   E5 (y) = 2y
1
 + 4y

2
 = 2y

1
 + 4 (1 − y

1
) = 4 – 2y

1

The two parallel lines are at a unit distance apart and denote the two 

given strategies of player B. To plot E
1
, we join 2 on scale I to 1 on scale II. 

Similarly, the remaining expected payoffs of player B corresponding to the 

other strategies of A are also plotted. The bold lines in the graph represent 

the uppermost boundary envelope of the graph, which in fact represent the 

worst possible outcomes to player B (minimizing player), since this region 
corresponds to maximum payoff (gain) to player A and hence maximum loss 

to B. Now according to the minimax principle, the company will select the 

best of these worst possible outcomes, which will result in a minimum loss to 

the company. This point which minimizes its maximum loss is denoted by p 

in the graph, and thus it is the minimax value for player B.

     Fig. 9.2
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The minimax point corresponds to the two best strategies, IV and V, of 

player A. Thus, player A will never play his strategies I, II, and III, and thus 

the reduced payoff matrix is:
B

A

I II

IV

V

5 3

2 4

Let x
4
 and x5 (where x

4
 + x5 = 1) denote the probabilities of playing the 

strategies IV and V by player A, respectively. Here, x
1
 = x

2
 = x

3
 = 0.

Now, using the formula given in theorem 9.2, we have:

  x
a a

a a a a
4

22 21

11 22 12 21

4 2

5 4 3 2
0 5=

−

+ − +( )
=

−
+ − +( )

= .

and   x5 =1 − x
4
 = 1 − 0.5 = 0.5.

Similarly,  y
a a

a a a a
1

22 12

11 22 12 21

1

4
0 25=

−

+ − +( )
= = . ,

  y
2
 =1 – y

1
 = 0.75

and the value of the game is,

  

v
a a a a

a a a a
=

−

+ − +( )

=
−

= =

11 22 21 12

11 22 12 21

5 4 2 3

4

14

4
2 5

* *
. .

Hence, the solution of the game is:

(a) The optimal mixed strategy of player A is (0 0 0 0.5 0.5).

(b) The optimal mixed strategy of player B is (0.25 0.75).

(c) The expected value of the game is v = 2.5.

(ii) The game does not possess a saddle point. Let x
1
 and x

2
 (where x

1
 + 

x
2
 = 1) be the probabilities of player A using his first and second strategies 
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respectively. The expected payoffs of player A is plotted as shown in the fol-

lowing figure below:

   Fig. 9.3

The lowermost region of the graph represents the worst possible out-

comes for the player A, since this envelope corresponds to the minimum pay-

off to player A, and A has to find a point where he will get a maximum payoff 
in this region. The highest point of this boundary is at the point P at which 

he will have the maximum of his minimum payoff. This point represents the 
maximin value for player A and identifies the two best strategies for player B, 

namely, I and IV. Thus, the reduced payoff matrix is:
I IV

I

II
A

−









1 4

4 3

Let y
1
 and y

4
 (where y

1
 + y

4
 = 1) denote the probabilities of playing I and 

IV strategies, respectively, by player B. Here, y
2
 = y

3
 = 0.

Now, using the formula given in theorem 9.2, we have:

 

x
a a

a a a a
1

22 21

11 22 12 21

3 4

1 3 4 4
0 16667

=
−

+ − +( )

=
−

− + − +( )
= .

and  x
2
 = 1 − x

1
 = 1 − 0.16667 = 0.8333.
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Similarly,  y
a a

a a a a
1

22 12

11 22 12 21

1

6
0 16667=

−

+ − +( )
=
−
−

= . ,

  y
4
 = 1 – y

1
 = 0.8333

The value of the game is,

  v
a a a a

a a a a
=

−

+ − +( )
=
− −
−

=11 22 21 12

11 22 12 21

3 16

6
3 6667. .

Hence, the solution of the game is:

(a) The optimal mixed strategy of player A is (0.16667 0.8333).
(b) The optimal mixed strategy of player B is (0.16667 0 0 0.8333).
(c) The expected value of the game is v = 3.6667.

9.7. Method of Dominance

In the previous section, we have discussed the method of reducing a 2 × n or 

m × 2 payoff matrix into a 2 × 2 payoff matrix using the graphical method. 
Here in this section, we will discuss how the size of an m × n payoff matrix 
can be reduced to a 2 × 2 by eliminating a course of action which is inferior 

to another, as this course of action will never be used by the player, and this 

procedure is known as the method of dominance. The following are the rules 

involved in this method:

(i)  If all the elements in the ith row are less than or equal to the corre-

sponding elements of another row, say the jth row, then the ith will be 

said to be dominated by the jth row. In this case, the row player (maxi-
mizing player) will never be in a better position by playing the ith row 

(or the ith strategy), and hence the ith row will be deleted from further 

consideration from the given payoff table.
(ii)  Similarly, if all the elements of the ith column are greater than or equal 

to the corresponding elements of another column, say the jth column, 

then the ith column is said to be dominated by the jth column. In this 

case, the column player (minimizing player) whose objective is to 
minimize his loss will never play the ith column (or the ith strategy), 

since it will give a better payoff to his opponent, and hence the ith col-

umn will be deleted from further consideration from the given payoff 
matrix.
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(iii)  A pure strategy may also be dominated by the average of two or more 

other pure strategies. If all the elements of the average of a number 

of rows are greater than or equal to the corresponding elements of 

another row, say the ith, then the average will dominate the ith row, and 

hence the ith row will be eliminated from the payoff matrix. Similarly, 
in the case of the columns, if the average of two or more columns is 

less than or equal to the corresponding elements of another column, 

say the jth column, then the jth column is said to be dominated by the 

average of a number of columns and hence can be eliminated from 

the payoff table.
Example 9.5. Use dominance method to solve the following game.

(i) 

B

I II III

A

I

II

III

10 5 3

4 5 2

5 3 6

















(ii) 

B

I II III IV

A

I

II

III

1 5 3 4

3 1 2 6

5 3 6 5

















(i)  Solution: In the given payoff matrix, it can be clearly seen that every 
element of the first row is greater than or equal to the corresponding 
elements of the second row. So, from player A’s point of view, the 
second strategy is dominated by the first strategy or the first strategy 
dominates the second strategy. Hence, player A will never play his 

second strategy, and thus the second row may be deleted. The payoff 
matrix is reduced to the form:

 

B

A

I II III

I

III

10 5 3

5 3 6











In the reduced payoff, from the player B point of view, his II strategy 
dominates I, since every element in the second column is less than or equal to 
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the corresponding elements of the first column. Hence, the first column can 
now be deleted; the following is the reduced payoff matrix:

B

A

II III

I

III

5 3

3 6











Now, let x
1
 and x

3
 (where x

1
 + x

3
 = 1) denote the probabilities of player A us-

ing his I and III strategies, respectively, and let y
2
 and y

3
 (where y

2
 + y

3
 = 1) de-

note the probabilities of player B playing his strategies II and III, respectively.

Here x
2
 = probability of playing strategy II by player A = 0 and y

1
 = prob-

ability of playing strategy I by player B = 0

Now the reduced 2 × 2 game problem can be solved as follows:

   x
a a

a a a a
1

22 21

11 22 12 21

6 3

5 6 3 3
0 6=

−

+ − +( )
=

−
+ − +( )

= . ,

and   x
3
 =1 − x

1
 = 1 – 0.6 = 0.4.

Similarly, y
a a

a a a a
2

22 21

11 22 12 21

3

5
0 6=

−

+ − +( )
= = . .

and   y
3
 = 1 – y

2
 = 0.4.

The value of the game is,

      v
a a a a

a a a a
=

−

+ − +( )
=

−
=11 22 21 12

11 22 12 21

30 9

5
4 2. .

Thus, the solution of the game is

(a) The optimal mixed strategy of player A is (0.6 0 0.4).
(b) The optimal mixed strategy of player B is (0 0.6 0.4).
(c) The expected value of the game is v = 4.2.

(ii)  The first column dominates the fourth column since every element of 
the first column is less than or equal to the corresponding element of 
the fourth column. Hence, player B will never play his fourth strategy, 

and the reduced payoff is;
B

A

I II III

I

II

III

1 5 3

3 1 2

5 3 6
















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Now, neither the column nor the row dominance property can be applied 

to the reduced matrix, so check for average domination. The average of the 

first and second column is (3, 2, 4), and these elements are less than or equal 
to the corresponding elements of the third column, and hence the average will 

dominate the third column. The third column can now be deleted, and the 

reduced payoff is:
B

A

I II

I

II

III

1 5

3 1

5 3

















In the reduced matrix, the third row dominates the second row. The sec-

ond row can now be deleted and the reduced payoff is:
B

A

I II

I

III

1 5

5 3











The reduced 2 × 2 game problem can be solved as follows:

Let x
1 
and x

3
 (where x

1
+ x

3
 = 1) denote the probabilities of player A using 

his I and III strategies respectively, and let y
1 
and y

2 
(where y

1
+ y

2
 = 1) be the 

probabilities of player B playing his strategies I and II, respectively. We have 

x
2
 = 0, y

3
 = y

4
 = 0:

   x
a a

a a a a
1

22 21

11 22 12 21

3 5

1 3 5 5
0 3333=

−

+ − +( )
=

−
+ − +( )

= .

and    x
3
 = 1 – x

1
 = 1 – 0.3333 = 0.6667.

Similarly, y
a a

a a a a
1

22 21

11 22 12 21

2

6
0 3333=

−

+ − +( )
=
−
−

= . ,

and    y
2
 = 1 – y

1
 = 0.6667 and the value of the game is,

        v
a a a a

a a a a
=

−

+ − +( )
=

−
−

=11 22 21 12

11 22 12 21

3 25

6
3 6667. .

Hence, the solution of the game is:

(a) The optimal mixed strategy of player A is (0.3333 0 0.6667).
(b) The optimal mixed strategy of player B is (0.3333 0.6667 0 0).
(c) The expected value of the game is v = 3.6667.
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9.8. Solution of a Game Using the Simplex Method

This method is useful for solving any rectangular game with an m × n payoff 
matrix if it does not have a saddle point and at the same time cannot be sim-

plified by the graphical or dominance method. In this method, we will convert 
the given game into a linear programming problem and solve it by using the 

simplex method.

Let us consider an m × n game problem with A = (a
ij
) as its payoff matrix. 

Also let x = (x
1
, ..., x

2
, x

m
) and y = (y

1
, ..., y

2
, y

n
) be the probabilities of playing 

different strategies by the maximizing (row) and minimizing (column) player, 
respectively, where 0 ≤ x

i
, y

j
 ≤ 1, x

ii

m

=∑ =
1

1 , and y
jj

n

=∑ =
1

1 . Here, m and n 

are the strategies available to player 1 and 2, respectively.

Let E
j
 denote the expected gain to the maximizing player when the mini-

mizing player plays his jth strategy, and then:

a x E
i ii

m

11 1=∑ = , when minimizing player plays his first strateegy

, when minimizing player plays his second a x E
i ii

m

21 2=∑ = sstrategy

, when minimizing player plays his 



a x E n
in ii

m

n=∑ =
1

tth  strategy

The objective of the maximizing player is to select x
i
 such that he can 

maximize his minimum expected gains. Let u denote the minimum expected 

gain of the maximizing player, where u a x j n
ij ii

m

= =



=∑Min , , , , .1 2

1
 . We 

have

Maxu Min
u

Min
x

u
x

i

i

m

ii

m

= = =( )= =∑ ∑
1

1
1 1

Since

Subject to the constraints

a x u
ij ii

m

≥
=∑ 1

, ∀j and

x x i m
ii

m

i=∑ = ≥ =
1

1 0 1 2, , , 

Assuming u > 0 and letting ′ =x
x

u
i

i , we have

Minu
u

x
ii

m

′ =








 = ′

=∑
1

1
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Subject to

  
a x j n

x i m

ij ii

m

i

′ ≥ =

′ ≥ =
=∑ 1

1 1 2

0 1 2

, , , ,

, , , ,





Similarly, the minimizing player will try to minimize his maximum loss-

es, and the resulting problem can be written as:

  Minv Max
v

y
jj

n
= = ′

=∑
1

1

Subject to

  
a y i m

y j n

ij jj

n

j

′ ≤ =

′ ≥ =

=∑ 1 1 2

0 1 2

1
, , ,

, , , ,





Where ′ =y
y

v
j

j
 and v a y j n

ij jj

n

= =



=∑Max , , , ,1 2

1
  is the maximum  

expected loss of the minimizing player when the other player plays his vari-
ous strategies.

Remarks

1.  A linear programming problem requires all the variables involved in 

the problem to be non-negative, and thus with a non-negative value 

of the game. This can be assured by making all the elements of the 

given payoff matrix to be greater than or equal to zero. If there is any 
negative element in the payoff table, then a large constant can be added 
to all the elements of the matrix so that the minimum element in the 

matrix is greater than or equal to zero. The optimal solution in terms 
of probabilities of choosing various strategies for the new problem will 

always be the same as it was for the original problem, but the value of 

the game for the original problem will be equal to the value of game 

for the new problem minus the constant (which was added initially in 
the payoff matrix).

2.  It can be easily seen that the two problems are dual to one another, and 

hence all the rules of duality can be applied here to get the optimal 

strategies of both the players.

3.  It will be more economical to solve the LP formulation of the minimiz-

ing player than the maximizing player (since no artificial variable will 
be needed to solve this problem).
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Example 9.6. Give the LPP formulation of the game given in Examples 9.4 

(ii) and 9.5 (i) and solve it using the simplex method.

(i) 

B

I II III IV

A
I

I

1 2 0 4

4 5 6 3

−









(ii) 

B

I II III

A

I

II

III

10 5 3

4 5 2

5 3 6

















(i)  Since the given payoff matrix has a negative element, add a suitable 
positive number, say 1, to all the elements of the matrix, so that each 

element of the given payoff matrix becomes greater than or equal to 
zero. Now the resulting payoff matrix is given as follows:

    

I II III IV

I

II
A

0 3 1 5

5 6 7 4











Let x = (x
1
, x

2
) and y = (y

1
, y

2
, y

3
, y

4
) be the probabilities associated with 

the strategies of the players A and B, respectively, where 0 ≤ x
i
, y

j
 ≤ 1 ∀, i, j. 

Further x
ii=∑ =

1

2

1  and y
jj=∑ =

1

4

1 . To find the optimal strategies of player A, 
the linear programming problem can be formulated as:

Max Minu
u

x x= = ′ + ′
1

1 2

Subject to

   

0 5 1

3 6 1

7 1

5 4 1

0

1 2

1 2

1 2

1 2

1 2

′ + ′ ≥

′ + ′ ≥

′ + ′ ≥

′ + ′ ≥

′ ′ ≥

x x

x x

x x

x x

x x, ,

where ′ =x
x

u

i

1
, i = i, 2 and u is the expected minimum gain to player A.
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Similarly, linear programming formulation of the game for player B is

Min Maxv
v

y y y y= = ′ + ′ + ′ + ′
1

1 2 3 4

Subject to
0 3 5 1

5 6 7 4 1

0

1 2 3 4

1 2 3 4

1 2 3 4

′ + ′ + ′ + ′ ≤

′ + ′ + ′ + ′ ≤

′ ′ ′ ′ ≥

y y y y

y y y y

y y y y, , , ,,

where ′ =y
y

v
j

j ,  j = 1, 2, 3, 4 and v is the expected maximum loss to player B.

The canonical form to B’s problem is,

0 3 5 1

5 6 7 4 1

1

1 2 3 4 1

1 2 3 4 2

1 2

′ + ′ + ′ + ′ + =

′ + ′ + ′ + ′ + =

− ′ − ′ −

y y y y s

y y y y s

v
y y ′′ − ′ =

′ ′ ′ ′ ≥

y y

y y y y s s s

3 4

1 2 3 4 1 2 3

0

0, , , , , , ,

Initial Table

Basic Variables ′y1
′y2

′y3
′y4 s

1
s

2
solution

s
1

0 3 1 5 1 0 1

s
2

5 6 7 4 0 1 1

1

v
–1 –1 –1 –1 0 0 0

And the corresponding optimal table is:

Basic Variables ′y1
′y2

′y3
′y4 s

1
s

2
solution

′y4 0 0.0600 0.200 1 0.200 0 0.200

′y1 1 0.720 1.240 0 – 0.160 0.200 0.040

1

v
0 0.320 0.440 0 0.040 0.200 0.240

v = =
1

0 240
4 1667

.
.  and hence, the expected value of the game is 4.1667 

– 1 = 3.1667.
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The optimum strategies for player B are y y1 1 4 1667= ′* . , = 0.1667, y
2
 = 0, 

y
3
 = 0, and y y

4 4
4 16667 0 8333= ′ =* . .

Using the duality theorem, from the previous optimal table of B’s prob-

lem, we can obtain the optimum solution to A’s problem, that is, we have 
′ =x1 0 040.  and ′ =x

2
0 200. . Further, ( )( ) ( )1 21/ 1/ 0.24 4.1667 .′ ′= + = = =u x x v

Therefore, the optimum strategies for player A are x
1
 = 0.040 * 4.1667 = 

0.1667 and x
2
 = 0.200 * 401667 = 0.8333. (These solutions are in agreement 

with the solution of the same problem obtained using the graphical method.)

(ii)  Solution: Let x = (x
1
, x

2
, x

3
) and y = (y

1
, y

2
, y

3
) be the probabilities 

associated with the strategies of player A and B, respectively, where 

0 ≤ x
i
, y

j
 ≤ 1, ∀i, j.

Further, x
ii
=

=∑ 1
1

3

 and y
jj
=

=∑ 1
1

3

.

Linear programming formulation of the game for player A is:

Max Minu u x x x= = ′ + ′ + ′
1 2 3

Subject to

    

10 4 5 1

5 5 3 1

3 2 3 1

1 2 3

1 2 3

1 2 3

1 2

′ + ′ + ′ ≥

′ + ′ + ′ ≥

′ + ′ + ′ ≥

′ ′ ′

x x x

x x x

x x x

x x, , xx
3
0≥ ,

where ′ =x
x

u

i

1
, i = 1, 2, 3 and u is the is the expected minimum gain to 

player A.

Similarly, linear programming formulation of the game for player B is:

Min Minv
v

y y y= = ′ + ′ + ′
1

1 2 3

Subject to

10 5 3 1

4 5 2 1

5 3 6 1

1 2 3

1 2 3

1 2 3

1 2

′ + ′ + ′ ≤

′ + ′ + ′ ≤

′ + ′ + ′ ≤

′ ′ ′

y y y

y y y

y y y

y y, , yy
3
0≥

where ′ =y
y

v
j

j ,  j = 1, 2, 3 and v is the expected maximum loss to player B.
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The canonical form to B’s problem is:

 

10 5 3 1

4 5 2 1

5 3 6 1

1 2 3 1

1 2 3 2

1 2 4 3

′ + ′ + ′ + =

′ + ′ + ′ + =

′ + ′ + ′ + =

y y y s

y y y s

y y y s

11
0

0

1 2 3

1 2 3 1 2 3

v
y y y

y y y s s s

− ′ − ′ − ′ =

′ ′ ′ ≥, , , , , , 

Initial Table

Basic Variables ′y1
′y2

′y3 s
1

s
2

s
3

Solution

s
1

10 5 3 1 0 0 1

s
2

4 5 2 0 1 0 1

s
3

5 3 6 0 0 1 1

1

v
–1 –1 –1 0 0 0 0

And the corresponding optimal table is:

Basic Variables ′y1
′y2

′y3 s
1

s
2

s
3

Solution

′y2 2.1429 1 0 0.2857 0 – 0.1429 0.1429

s
2

– 6.2381 0 0 – 1.1429 1 0.2381 0.0952
′y3 – 0.2381 0 1 – 0.1429 0 0.2381 0.0952

1

v
0.9048 0 0 0.1429 0 0.0952 0.2381

Hence, the expected value of the game is v = =
1

0 2381
4 2

.
. .

The optimum strategies for player B are y
1
 = 0, y y

2 2
4 2 0 1429 4 2= ′ = =* . . * . .

1429 4 2 0 6= =. * . . , and y y
3 3

4 2 0 0952 4 2 0 4= ′ = =* . . * . . .

Using the duality theorem, from the previous optimal table of B’s prob-

lem, we the optimum solution to A’s problem: ′ =x1 0 1429. , ′ =x
2
0 , and 

′ =x
3
0 0952. . Also, we have u = (1/0.2381) = 4.2 = v.

Therefore, the optimum strategies for player A are x
1
 = 0.1429 * 4.2 = 0.6, 

x
2
 = 0, and x

3
 = 0.0952 * 4.2 = 0.4. (These solutions are in agreement with the 

solution of the same problem obtained using the dominance method).
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9.9. Solution of a Game Using Gambit

Gambit is an open-source collection of tools for doing computation in game 

theory. Using Gambit, we can easily build, analyze, and explore given game 
models. The following link can be used for downloading and installing Gambit:

http://gambit.sourceforge.net

We use (ii) of Example 9.6 to understand how Gambit can be use to find 
the optimal strategies of a given game problem:

Step 1: Go to All Programs and open Gambit. Go to the File option in 

the menu bar and select New → Strategic Game as shown in the following 

figure:

 Fig. 9.4

Step 2: On executing the previous steps, a new window will open now. 

By default only two strategies are shown for both the players. We can in-

crease the number of strategies as we wish by clicking on “Add a strategy 

for this player” for both the players.

 Fig. 9.5
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Step 3: Enter the payoff matrix. Every cell of the payof matrix will have 
two values, one for Player A and the other for Player B. In the case of a zero-
sum game, the Player B entry will be equal to the negative of the Player A 

entry as shown in the following figure:

 Fig. 9.6

Step 4. Now go to the Tools option and select Equilibrium → Compute 
one Nash equilibrium.

    Fig. 9.7

   Fig. 9.8
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Step 5. Now click OK and we will have the following optimal solution:

 Fig. 9.9

This implies:

(a) The optimal strategy of Player A is 
3

5
0
2

5
, ,









 .

(b) The optimal strategy of Player B is 0
3

5

2

5
, ,









 .

EXERCISES

1. What is game theory? Explain the role of the theory of games in decision 

making.

2. What is a rectangular game? What are pure strategy and mixed strategy in 

a game?

3. Explain the following terms: Pure strategy, Mixed strategy, Saddle point, 
Zero-sum game, Fair game, and Payoff matrix.

4. Explain the maxmin and minimax principle used in game theory.

5. Define a saddle point. Explain the steps for determining the saddle point 
of a game.

6. What are the various characteristics of a competitive situation to be called 

a competitive game?

7. Explain the various methods for solving a two-person zero-sum game.
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8. Discuss the dominance method for solving a two-person zero-sum game.

9. Explain the graphical method for solving a two-person zero-sum game.

10.  Derive the expressions for the optimal strategies and value of the game 

for a 2 × 2 two-person zero-sum game without a saddle point.

11.  A two-person zero-sum game with no saddle point has 
a a

a a

11 12

21 22









  as the 

payoff for player A. Then show that the optimum mixed strategies are 

given by 
a a

a a a a

a a

a a a a

22 21

11 22 12 21

11 12

11 22 12 21

−

+ − +( )
−

+ − +( )








,  

 
a a

a a a a

a a

a a a a

22 12

11 22 12 21

11 21

11 22 12 21

−

+ − +( )
−

+ − +( )








,  and the expected gain for 

player A is given by v
a a a a

a a a a
=

−

+ − +( )
11 22 21 12

11 22 12 21

.

12.  Establish the relation between a two-person zero-sum game and a linear 
programming problem.

13.  Explain the process of solving a two-person zero-sum game using the 
simplex method.

14.  For any two-person zero-sum game with (a
ij
)

m
 
×
 
n
 as its payoff, show 

that the maximin value v  of the matrix will always be less or equal to 

the minimax value v  of the matrix; that is, max
i
 min

j
 (a

ij
) ≤ min

j
 max

i
 

(a
ij
).

15.  The following games are deterministic games. Determine the saddle 

point and optimum strategies for each player:

(i) 
8 2

4 3









   (ii) 

1 4 4

0 2 5

3 2 7

−















  (iii) 
10 25 14

21 19 15

16 18 12

















(iv) 
5 3 6

9 4 5









   (v) 

− −

− −

− −

















5 6

1 10

9 8
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16. Use the mehtod of dominance to solve the following game problems:

(i) 
10 5 1

21 9 5

15 8 10

















  (ii) 
13 11 18 10

8 14 9 10

14 12 16 14

















 (iii) 

1 2 0

4 0 3

1 2 1

5 0 1

−

















17. Use the graphical method to solve the following game problem:

(i) 2 6 0

5 3 4









   (ii) 

1 4

2 2

1 3

−

−

















  (iii) 
44 15 10 21

35 19 20 18











18. Use the simplex method to solve the following game problems:

(i) 6 7

4 5









   (ii) 

6 2 0

4 0 3

1 2 1

5 0 1

−

















  (iii) 
1 4

2 2

0 3





















A P P E N D I X

USE OF MATHEMATICA, 
MATLAB, LINDO, AND  
WINQSB TO SOLVE LINEAR 
PROGRAMMING MODELS

A.1. Linear Programming Problems using MATHEMATICA

The Wolfram Language has a collection of algorithms for solving linear op-
timization problems with real variables, accessed via LinearProgramming, 
NMinimize, NMaximize, Minimize, and Maximize. LinearProgramming 
gives direct access to linear programming algorithms, provides the most flex-
ibility for specifying the methods used, and is the most efficient for large-scale 
problems. NMinimize, NMaximize, Minimize, and Maximize are convenient 
for solving linear programming problems in equation and inequality form.

(For more details, one may visit https://reference.wolfram.com/language/

tutorial/ConstrainedOptimizationLinearProgramming.html#430238072)

Example A.1. Min z = 2x
1
 + 1.5x

2

Subject to constraint

    6x
1
 + 3x

2
 ≥ 20

      2x
1
 + x

2
 2 ≥ 15

     x
1
 + x

2
 ≥ 8

	 	 	 	 					 	  x
1
, x

2
 ≥ 0
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(i) Using Linear Programming

Linear Programming [{2, 1.5}, {{6, 3}, {2, 1}, {1, 1}}, {{20, 1}, {15, 1},  
{8, 1}}, {{0, Infinity}, {0, Infinity}}]

Output: {7., 1.}, i.e. x
1
 = 7 and x

2
 = 1

The following is the screenshot of the previous calculation:

Remark: The Linear Programming function works with minimization 
as an objective function; if the problem is maximization, then it has to be 
converted to minimization to use Linear Programming. Also in this function 
equality relation will be denoted by 0, less than equality by – 1, and greater 
than equality by 1.

(ii) Using Minimize

Minimize [{2x
1
 + 1.5x

2
, 6x

1
 + 3x

2
 ≥ 20 && 2x

1
 + x

2
 ≥ 15 && x

l
 + x

2
 ≥ 8 

&& x
l
 ≥ 0 && x

2
 ≥ 0}, {x

1
, x

2
}]

Output: {15.5, {x
1
 → 7., x

2
 → 1.}}, i.e. x

1
 = 7 and x

2
 = 1 and z = 15.5

(iii) Using NMinimize

NMinimize [{2x
1
 + 1.5x

2
, 6x

1
 + 3x

2
 ≥ 20 && 2x

1
 + x

2
 ≥ 15 && x

1
 + x

2
 ≥ 

8 && x
1
 ≥ 0 && x

2
 > 0}, {x

1
, x

2
}]

Output: {15.5,{x
1
 = 7., x

2
 = 1.}}, i.e. x

1
 = 7 and x

2
 = 1 and z = 15.5

Note:- Nminimize will convert the fractional solution into decimal form.

Example A.2. Max z = 10x
1
 + 6x

2
 – 8x

3

Subject to constraint
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5x
1
 + 2x

2
 + 6x

3
 ≤ 20

10x
1
 + 4x

2
 – 6x

3
 ≤ 35

   x
1
, x

2
, x

3
 ≥ 0

(i) Using Linear Programming

Linear Programming [{– 10, – 6, 8}, {{5, + 2, 6}, {10, 4, – 6}}, {{20, – 1},  

{35, – 1}}, {{0, Infinity}, {0, Infinity}, {0,Infinity}}]

Output: 0
55

2

25

3
,









(ii) Using Maximize

Maximize [{10 × 1 + 6x
2
 – 8x

3
, 5x

1
 – 2x

2
 + 6x

3
 < = 20 && 10 × 1 + 4 × 

2 – 6 × 3 < = 35 && × 1 > = 0 && x
2
 > = 0 && x

3
 > = 0}, {x

1
, x

2
, x

3
}]

Output: 65 0
55

2

25

3
1 2 3,{ , , }x x x→ → →









(iii) Using NMaximize

NMaximize [{10 × 1 + 6x
2
 – 8x

3
, 5x

1
 – 2x

2
 + 6x

3
 < = 20 && 10 × 1 + 4 

× 2 – 6 × 3 < = 35 && × 1 > = 0 && × 2 > = 0 && × 3 > = 0}, {x
1
, x

2
, x

3
}]

Output: {65., {x
1
 → 0., x

2
 → 27.50, x

3
 → 12.50}}

Duality using Mathematica: DualLinearProgramming function can 
be used to solve a primal-dual problem using Mathematica.

The following is the dual of the problem given in Example A.1.

Max w = 20w
1
 + 15w

2
 + 8w

3

Subject to constraint

     6w
1
 + 2w

2
 + w

3
 ≤ 2

       3w
1
 + w

2
 – w

3
 ≤ 1.5

          w
1
, w

2
, w

3
 ≥ 0

DualLinearProgramming [{2, 1.5}, {{6, 3}, {2, 1}, {1, 1}}, {{20, 1}, 
{15, 1}, {8, 1}}, {{0, Infinity}, {0, Infinity}}]

Output. {{7., 1.}, {0., 0.5, 1.}, {0., 0}, {0., 0.}}

This implies and x
1
 = 7, x

2
 = 1 and w

1
 = 0, w

2
 = 0.5 and w

3
 = 1.
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A.2. Linear Programming Problems Using MATLAB

In MATLAB, the Optimization Toolbox provides functions for finding the 
solution that minimizes or maximizes objectives while satisfying constraints. 
This toolbox can be used to solve linear programming, mixed-integer linear 
programming, quadratic programming, nonlinear optimization, and nonlinear 
least squares. LPPs can be solved using the linprog function. The following 
are some of the syntax of linprog.

(For more details on this one may visit http://in.mathworks.com/help/

optim/ug/linprog.html#buus0qo-2)

1. Min f

Subject to

Ax ≤ b
Syntax for such a problem is linprog (f, A, b).

Example A.3. Min z = x
1
 + x

2

Subject to

   3x
1
 + x

2
 ≥ 6

   x
1
 + 5x

2
 ≥ 8

% Example Min z= x1+x2

% Subject to

%     3x1+x2>=6

%     x1+5x2>=8

%Co-eff matrix of the constraints

A =   [–3   –1;   –1   –5];

resource=[–6;  –8];

%co-eff of objective function

obcoeff = [1 1];

%solving

%solving

[x z]   = linprog  (obcoeff,  A,  resource)

Solution: x
1
 = 1.5714, x

2
 = 1.2857 and z = 2.8571
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2. Min f

Subject to

Ax b

Aeq beq

≤≤

=





Syntax for such a problem is linprog ( f, A, b, Aeq, beq)

Example A.4. Min z = 2x
1
 + 3x

2
 + 4x

3

Subject to

    8x
1
 + x

3
 = 50

    6x
2
 + x

3
	≤ 70

%Example Min z= 2x1+3x2+4x3

%Subject to

% 8x1+x3=50

% 6x2+x3?70

%

%Co-eff of inequality constraints

A =[0 6 1];

resource1=70;

%Co-eff of equality constraint

Aeq =[8 0 1];

The following is the screenshot of the command (output) window of the 
previous calculation:
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resource2 =50;

%co-eff of objective function

object =   [2 3 4];

%solving

[x z]   =  linprog(object, A,   resource1,  Aeq,   

resource2);

Solution: One or more of the residuals, duality gap, or total relative er-
ror has stalled: the dual appears to be infeasible (and the primal unbounded).

(The primal residual < TolFun = 1.00e-008.)

i.e. the problem has an unbounded solution.

3. Min f

Subject to

Ax b

Aeq beq

≤≤

=





lb ≤ x ≤ ub
Syntax for such a problem is linprog (f, A, b, Aeq, beq, lb, ub)

Example A.5. Min z = 2x
1
 + 8x

2

Subject to

5x
1
 + 10x

2
 = 150

   x
1
 ≤ 20

   x
2
	≥ 15

 x
1
, x

2
	≥ 0

% Example      Min z=2x1+8x2

% Subject to constraint

% 5x1+10x2=150

% x1<=20

% x2>=15

% x1,x2 ≥0

%bounds of variables

lb =   [0 15];

ub =   [20 inf];

% co-efficient matrix for eqality constraints
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eqconst =  [5 10];

resource2 = 150;

%objective function

obcoeff = [2 8];

%solving

warning ‘ off’

[x z]=  linprog(obcoeff,[],[],eqconst,resource2,

lb,ub)

Solution: x
1
 = 0, x

2
 = 15, and z = 120

Example A.6. Min z = 2x
1
 + 1.5x

2

Subject to

    6x
1
 + 3x

2
	≥	20

     2x
1
 + x

2
	≥	15

      x
1
 + x

2
	≥	8

       x
1
, x

2
	≥	0

%   Min z=2x1+1.5x2

% Subject to constraint

%        6x1+3x2>=20

%        2x1+x2>=15

%        x1+x2>=8

%        x1,x2>=0

%bounds of variables

lb = zeros   (2,1);

%co-efficient matrix for inequality constraints
inconst =   [–6 –3;  –2 –1;  –1 –1];

resource1 =   [–20;  –15;  –8];

%objective function

obcoeff =   [2 1.5];

warning ‘off’

%solving

[x z]=  linprog(obcoeff,inconst,resource1,[],[],

lb)
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Solution: x
1
 = 7, x

2
 = 1, and z = 15.5

Example A.7. Min z = 2x
1
 – 3x

2
 + 4x

3

Subject to

8x
1
 + x

3
 = 50

6x
2
 + x

3
	≤	70

       x
1
, x

2
	≥	0	and	–15	≤	x

3
 ∞

%Example Min z = 2x1 – 3x2 + 4x3

%Subject to

%        8x1–x3=50

%        6x2+x3<=70

%        x1,x2>=0     and      –15<=x3<=∞
%Co-eff of inequality constraints

A =[0 6 1];

resource1=70;

%bounds

lb =zeros(3,1);

ub =inf(3,1);

lb(3)=–15;

%Co-eff of equality constraint

Aeq =[8 0 –1];

resource2 =50;

%co-eff of objective function

object =[2  –3 4];

%solving

[x z]=  linprog(object,A,resource1,Aeq,resource2

,lb,ub);

Solution: x
1
 = 4.375, x

2
 = 14.1667, x

3
 = – 15.00, and z = – 93.75

A.3. Linear Programming Problems Using LINDO

With the LINDO API, we can easily create our own optimization appli-
cations. It also allows us to plug the power of the LINDO solver right into 
customized applications that we have written. It has a comprehensive tool 
designed to help us build and solve a wide range of optimization problems, 
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including linear programs, mixed integer programs, quadratic programs, and 
general nonlinear non-convex programs, and so forth.

When we start LINDO, our screen should resemble the following:

Initially we will see two windows, the outer window labeled LINDO is 
the main frame window. The main frame window also contains all the com-
mand menus and the command toolbar. The smaller window contained inside 
the main frame window labeled <untitled> is a new, blank Model Window. 
We will type our sample model directly into this window.

The following are the Syntax of LINDO:

(i)   MAX or MIN will be used to represent the Maximization or Minimiza-
tion objective function

(ii) The maximum allowable length of variable names is 8 characters

(iii) Constraints should be started after ST

(iv) Constraint Name should be terminated with a parenthesis

(v) (+, -, >, <, =) are the recognized arithmetic operations

(vi) Comments can be added by starting with an exclamation mark (!)

(vii) Splitting lines in a model is permitted in LINDO

(viii) LINDO is not case sensitive
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(ix)  RHS should contain only values and LHS should contain variables 
along with their coefficients

(x) Parentheses are not recognized in LINDO
Example A.8. Use LINDO to solve Example A.1.

Enter the problem as shown:

 ■ Comments can be inserted starting with! (exclamation point).

 ■ The constraint name can be given by terminating the name with a paren-
thesis)

Now, click “Solve” on the menu bar and then select “Solve.” Click on 
“No” in the “Do Range (Sensitivity) Analysis?” dialog box. The solution will 
be displayed in a separate “Reports Window.” The output is:
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One can also see the final simplex tableau of the problem by going to 
“Report” on the menu bar and selecting the “Tableau” option and we have 
the following:

Also we can have the sensitivity analysis of the same problem by clicking 
on “Yes” in the “Do Range (Sensitivity) Analysis?” dialog box.
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The following is the output of the sensitivity analysis:

For more details one may visit http://www.lindo.com/.

A.4. LPPs Using WinQSB

WinQSB is the Windows version of the QSB (Quantitative Systems for 
Business) software package developed and maintained by Yih-Long Chan-

gruns. This package contains the most widely used problem-solving algo-
rithms in Management Science and Operation Management.

The following are the steps involved in solving an LP problem using 
WinQSB:

(i)   Download and install WinQSB (https://winqsb.en.uptodown.com/win-

dows).

(ii)   From the WinQSB software set select “Linear and Integer Program-
ming.”

(iii)  Under the File dropdown menu, select “new problem” and a dialog box 
will appear.

(iv) Give the title of the problem and fill in all the required information.

(v)  After selecting OK, the Spreadsheet form will appear on the screen.

(vi)  Again fill in the value of all the parameters of the problem and then solve 
the problem.
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Example A.9. Use WinQSB to solve Example A.6.

Solution: From the WinQSB software we select “Linear and Integer Pro-
gramming” and under the File dropdown menu, select “new problem” and the 
following dialog box has appeared:

Fill in all the necessary information and click OK. A Spreadsheet form 
will appear on the screen, and the following is the screenshot of the Spread-
sheet form after the values of the parameters are filled:
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Select the “solve the problem” option in the “solve and analyze” option 
of the menu bar. It shows the following:
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The final simplex table can be seen by selecting the “Final simplex Table” 
option from the “Result” option on the menu bar. We get the following output:

Click “ok” and get the following result:
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A

Active constraint, 201

Add-ins

for linear programming problem,  

81–85, 248

of MS-Excel, 244

Addition

of matrix, 6

new activity or variable, 186–188

of new constraint, 181–182

of vectors, 1

Additive constant, 32

Adjacent extreme point solution 

procedure, 71

Algebraic simplex method, 64–71

Algorithm, of algebraic simplex method, 

70–71

Artificial variables, 89, 90, 94, 106,  
108, 163

in linear programming problem, 100

in maximization problem, 90
minimizing the sum of, 102, 122

in objective function, 92
Artificial vector, 100
Assignment problems

cost matrix, 280

decision variables of, 278

form of network as, 279
Hungarian method, 280–288

as linear programming problem,  

283–284

mathematical formulation, 277–278

maximization problems, 288–289

restricted entry, 289
of transportation problem, 278–280

unbalanced assignment problem, 279, 
284–285

using Excel Solver, 289–291
Asymmetric form, 138

primal and dual problems in, 138

B

Balanced transportation problems, 215, 

248–251

Basic feasible solution (BFS), 14, 31, 34, 

69–72, 75, 89, 90, 99, 100, 116, 
179, 214, 235, 237, 255

Basic variables, 60, 217

in basic feasible solution, 255

changes a
ij
 coefficients of, 198–199

coefficients of, 103, 105, 108
objective function coefficients, changes 

in, 191–194
“smallest” value of, 231

z-row coefficients of, 191
BFS, see Basic feasible solution

Big M method, 90–99, 104, 106, 109
Binary integer linear programming 

problem, 278

Blending problem, 37

Borel, Emile, 295

C

Canonical form, 69, 92, 95, 97, 104,  
127, 174

to B’s problem, 322, 324
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constraints converted into, 72

of linear programming problem, 

60–61, 117

non-basic variables to convert into, 

102, 107

primal problem in, 143, 146

Cartesian space, 3

Cell reference, 80

Certainty, 32

Changes

in a
ij
 coefficients

of basic variables, 198–199
of non-basic variables, 195–198

Classical “activity” models, 211

Closed half-spaces, 22–23

Closed path/loop in transportation 

problems, 230, 235

Coefficient matrix, 74
Column maxima, 301, 302

Column minima method, 222–223

Column reduction operations, 283, 284, 

286, 289
Command, SUMPRODUCT, 291
Commodity, 211

Common region of feasible solutions, 42

Complementary slackness theorem, 

155–158, 239
Component vectors, 35

Consistent equations, 13

Constraints, 42, 48, 80

addition of, 181–182

deletion of, 201–204

equations, non-basic variables in, 60

of linear programming problem, 61

slack variable of, 182, 183

Construction, of simplex table, 149–151
Convex combination of vectors, 24

Convex hull, 24

Convex polyhedron, 24, 34

Convex sets, 19–25
convex combination of vectors, 24

convex hull, 24

convex polyhedron, 24

extreme point, 25

half-space, 22–23

hyperplanes, 22

linear programming problem forms, 33

line segment, 19–22
polyhedron, 23–24

polytope, 24, 25

simplex, 24

Cost matrix, 280–281

Cost-minimizing transportation  

problem, 255

Cournot, Antoine Augustin, 295

D

Dantzig, George, 64

Decision variables, 278

Degeneracy

in linear programming problem, 109–114
perturbation method for, 114–116

remarks on problem of, 116

in transportation problems, 255–258

Degenerate basic feasible solution, 14, 31, 

116, 215, 218, 255

Degenerate pivot, 116

Deletion

of constraint, 201–204

of variable, 199–201
Demand points, 260–261

Destinations, 211–212, 249, 258
Determinant of matrix, 4

Deterministic game, 299–302
Divisibility (or continuity), 33

Dominance method, 315–319, 324
Dot product of vectors, 1–3

Double subscript, 3

Dual constraints, 136–137, 157, 159, 188
interpretation of, 161

Duality/Dual

complementary slackness theorem, 

155–158

concept of, 135
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decision variables of, 152–153

economic interpretation of, 161–162

optimality theorem, 154–155

optimal solution, 141–147

optimal values of, 142, 144, 147, 148

problems

asymmetric form, 138

feasible solutions of, 154, 155

symmetric form, 138–141

rules for, 135–141

simplex table and, 171

strong duality theorem, 158–161

theorem, 152–161, 323, 324

of transportation problem, 238, 239
value of, 151

weak duality theorem, 153–154

Dual simplex algorithm, 200–201

Dual simplex method, 163–165, 182, 183

Dual variables, 136, 141, 162, 188, 239
interpretation of, 161

new values of, 191
Dummy objective function, 116, 121, 122

Dummy variable, 89

E

Economic interpretation of duality, 

161–162

Elementary row operations, 15, 69, 103
coefficients of basic variables, 105, 108
convet pivot element, 73

Entering column/pivot column, 73

Entering rule, 73

Equality of two vectors, 1

Equilibrium point of matrix, 299
Euclidean space, 3

Extreme points, 71, 72

approach, 42, 46

theorems on, 33–36

F

Fair game, 300

Feasibility condition, 85, 163, 165, 176

of current solution, 186

of optimal solution, 172

Feasible solutions, 31, 34–35, 49,  
153–154, 214

common region of, 42

for transportation problems, 215

Final augmented matrix, 18

First iteration table, 77

Fixed constant, 216

Function

MDETERM, 4

MINVERSE, 9–10, 14
MMULT, 8

SUMPRODUCT, 3, 246

TRANSPOSE, 7

Functional constraint, 30

G

Gambit, game theory using, 325–327

Game theory, 295
characteristics, 295–296
graphical solution of 2 × n and m × 2, 

307–315

LPP formulation of, 321–324

maximin and minimax principle, 

298–300
method of dominance, 315–318

non-zero-sum games, 296–298
optimum strategy, 300

principles of, 295
with saddle point, 300–303

using Gambit, 325–327

using graphical method, 311–315

using simplex method, 319–324
value of, 300

without saddle point, 303–307

zero-sum games, 296–298
Gaussian elimination method, 173, 198
Gauss-Jordan elimination method, 71, 76

by elementary row operation, 15, 18

for system of simultaneous linear 

equations, 15–19



352 • OPTIMIZATION USING LINEAR PROGRAMMING

Graphical methods, 73, 123, 319
extreme point approach, 42, 46

game theory using, 311–315

ISO-profit (cost) function line approach, 
42–43, 46–47

for optimal dual solution, 147–149
problem with inconsistent constraint 

equations, 128–130

relationship between simplex and, 71–72

unbounded solutions using, 126–128

using MS-Excel, 43–49

H

Half-space, 22–23

Homogenous product, 211

Hungarian method, 278, 280–288

Hyperplanes, 22

I

Identity matrix, 3–4, 16, 18, 75, 89, 198
Improvement index, 231, 232, 235, 237, 

242, 257

for non-basic cells, 265

Inactive constraint, 201, 202

In-built “Solver” module, 77

Inconsistency/infeasibility, 128–130

Inconsistent constraint equations, 13, 

128–130

linear programming problem with, 

51–52

Independent non-basic cells, 255

Inequality constraints, 29
Infeasible problem, 51

Infinite solutions, 17
Initial basic feasible solution, 70, 71, 89, 

100, 102, 105, 107, 108, 120, 126, 

128, 219
balanced form, 248

methods for, 217

column minima method, 222–223

least-cost or matrix minima method, 

223–226

Modified (MODI) distribution or u-v 

method, 238–244, 255, 256, 265, 

269
North-West (N-W) corner method, 

217–219
row minima method, 219–222
stepping-stone method, 231–238

Vogel’s approximation method, 217, 

226–230, 253, 256, 261, 264, 269
variables, 159

Initialization method, 74–75

Inner product of vectors, 1–3

Input-output model, 149
Intermediate points, 258–259
Intersection, of linear equations, 47

Inverse matrix, 9–10, 19
using simplex method, 120–123

ISO-profit (cost) function line approach, 
42–43, 46–47

J

Jensen add-in, 248

Jensen, Paul, 81–85

L

Least-cost or matrix minima method, 

223–226

Leaving rule, 73

LHS, 78

Linear algebra using MS-excel

convex sets, 19–25
linear independence and dependence of 

vectors, 10–12

matrix

addition, 6

determinant of, 4

identity, 3–4

inverse of, 9–10
multiplication, 5, 7–8

singular, 4–5

square, 3

transpose of, 6–7
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triangular, 5

zero, 3

system of simultaneous linear equations, 

12–15

Gauss-Jordan method, 15–19
vectors, see vectors

Linear constraints, 29–30
Linear equations

using simplex method, 116–118

using Solver, 119–120
Linear integer programming problem, 33

Linearity, 32–33

Linearly dependent vectors, 10–12

Linearly independent vectors, 10–12

Linear programming (LP) model

formulation of, 37–42

media allocation problem, 41–42

production levels of, 38

production scheduling, 38–39
purchasing problem, 39
transportation problem, 39–40

Linear programming problem (LPP), 15, 

29, 90
areas of application of

assignment and transportation  

problem, 37

blending problem, 37

media allocation problem, 37

production scheduling and inventory 

planning, 37

product mix problem, 36–37

purchasing problem, 37

artificial variable in, 100
assignment problem as, 283–284

assumptions in

certainty, 32

linearity, 32–33

basic feasible solution, 31

binary integer, 278

canonical form of, 60–61, 117

with constraints in variables, 137–138

constraints of, 61–64

convex set, 33

degeneracy in, 109–114
dual of, see Dual problems

feasible solution, 31

formulation, 267–268, 321–324

graphical method, 42–43

using MS-Excel, 43–49
with inconsistent constraints, 51–52

iterative method, 71

Jensen add-ins for, 81–85

for minimum-cost flow problems, 211
with multiple solutions, 49–50
optimal basic feasible solution, 31, 34

primal-dual relationship of, 158–159
with redundant constraint equations, 

52–53

Solver in MS-Excel for solving, 77–80

standard form, 59–60, 62, 97
theorems on extreme points, 33–36

of transportation problem, 250

with unbounded solutions, 50–51

using Big M method, 97
using penalty method, 94

Line segment joining, 19–23, 33, 36, 50
Lower triangular matrix, 5

LPP, see Linear programming problem

M

Mathematical expression, 29
Mathematical formulation, 280

assignment problems, 277–278

Mathematical programming problem, 29
Matrix

addition of, 6

definition, 3
determinant of, 4

elements of, 3

equilibrium point of, 299
identity, 3–4

inverse of, 9–10
inverse using simplex method, 120–123

lower triangular, 5
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minimax value of, 299
m × n, 3

multiplication, 7–8

by scalar, 5

non-singular, 4

null, 3, 297
payoff, 296–298
rank of, 8–9
singular, 4–5

square, 3–5

transpose of, 6–7

triangular, 5

upper triangular, 5

value of, 299
zero, 3

Matrix form, transportation problems  

in, 213

Matrix minima method, 223–226

Matrix notation, 60, 139
Maximin and minimax principle,  

298–300, 303
Maximization transportation problem, 

251–254

assignment problems, 288–289
Maximizing player, 297–298
M-Charnes method, 91, 130
MDETERM function, 4

Media allocation problem, for LP model, 

37, 41–42

Microsoft Excel

graphical method using, 43–49
Jensen add-ins, 81

linear algebra using, see Linear algebra 

using MS-excel

solution space on, 245

transportation problems solution in, 

244–248

use of Solver in, 77–80

MINVERSE function, 9–10, 14
Mixed strategy, 303–307

MMULT function, 8

m × n matrix, 3

Modified (MODI) distribution/u-v method, 
238–244, 255, 256, 265, 269

Modified matrix, 287
Morgenstern, Oskar, 295
Multiple (infinite) numbers, 49
Multiple solutions

linear programming problem with, 

49–50
in transportation problems, 254

Multiplication

matrix, 7–8

by scalar, 5

N

Negative coefficient, non-basic variables 
with, 69

New basic variables, 76

New constraint

addition of, 181–182

apply dual simplex method, 183

current solution

fails to satisfy, 182–186

satisfies, 182
Non-basic variables, 60, 64, 70, 73, 76, 

123, 254

changes a
ij
 coefficients of, 195–198

coefficients of, 69
to convert into canonical form, 102, 107

with negative coefficient, 69
in next iteration, 243

objective function coefficients, changes 
in, 188–190

z-row coefficients of, 191–192
Non-convex sets, 19
Non-degenerate basic feasible solution, 

14, 15, 31, 215

Non-negative variables, 61–62, 89
Non-negativity conditions, 31, 45, 48

constraints with, 49, 50
and linear objective function, 60

Non-singular matrix, 4

Non-zero-sum games, 296–298
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Non-zero vector, 22

Normal transportation approach, 267

North-West (N-W) corner method, 

217–219, 223, 235
Null matrix, 3, 297
Null vector, 11

Numerical functions, 29

O

Objective function coefficients, changes in
of basic variables, 191–194
100% rule for making simultaneous, 

194–195
non-basic variables, 188–190

Objective functions, 30, 32, 104

artificial variables in, 92
coefficients, 70, 135
corresponding value of, 146, 280

decision variables in, 78

dummy, 116, 121, 122

maximum value of, 181

non-basic variables in, 60, 64

optimum value of, 36, 158

of primal problem, 135

same value of, 124

using simplex method in tabular  

form, 73

values of, 47, 130

1-dimensional space, 24

Open half-spaces, 22–23

Operational Research (O.R.) problems, 81

Opportunity loss matrix, 251

Optimal basic feasible solution, 31, 49, 
124, 125, 128, 171, 182, 200, 215, 

235, 237–238

feasibility condition of, 172

and minimum cost of transportation, 257

moving toward, 230

optimality condition of, 172

parameters in, 173

pictorial representation of, 266

of transportation problem, 216

Optimal dual solution

graphical method for, 147–149
and primal variables, 141–147

Optimality condition, 70, 74, 84, 93, 
96, 99, 106, 118, 120, 122, 125, 
163–165, 176, 188, 190, 199

of current solution, 186

of optimal solution, 172

Optimality test, 75–77

Optimality theorem, 154–155, 160

Optimization problem, 29
O.R. problems, see Operational Research 

problems

P

Payoff matrix, 296–298, 314, 321, 326
of 2 × n and m × 2, 307

reduced, 310

saddle point of, 299
of two-person zero-sum game, 304

Penalty, 262–263

Penalty method, see Big M method

Perturbation method, for degeneracy, 

114–116

Pivot column, 73, 75–76, 126

Pivot element, 76

Pivoting, 73

Pivot row, 76

Polyhedron, 23–24

Polytope, 24, 25

Positive constant, 216

Primal-dual relationship, 239
Primal problem, 152

asymmetric form, 138

in canonical form, 143, 146

constraints of, 137

feasible solutions of, 154, 155

objective function of, 135

optimum solution for, 144, 154

symmetric form, 138–141

Primal simplex method, 163

Probability distribution, 303
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Production scheduling and inventory 

planning, for LP model, 37, 38–39
Product mix problem, for LP model, 36–37

Proportionality constant, 32

Purchasing problem, for LP model, 37, 39
Pure strategy, 299, 316

R

RAND Corporation, 100

Range

of b
i
’s, 177–179

of change of c
1
, 191–193

of change of c
3
, 190

of change of c
j
, 188–189

Rank of matrix, 8–9
Reduced matrix, 263, 318

Redundant constraint equations, 52–53

Restricted entry, 251

Resulting matrix, 251

RHS vector

changes in, 173–177

range of b
i
’s, 177–179

simultaneous changes in b
i
’s, 179–181

Row minima method, 219–222,  
300–302

Row reduction operation, 282, 286–287, 289

S

Saddle point

game theory with, 300–303

game theory without, 303–307

of payoff matrix, 299, 300
Second iteration table, 77

Sensitivity analysis, 171

addition

new activity/variable, 186–188

of new constraint, 181–186

objective function coefficients, 

changes in

of basic variables, 191–194
100% rule for making simultaneous, 

194–195

non-basic variables, 188–190
RHS vector changes in, 173–177

range of b
i
’s, 177–179

simultaneous changes in b
i
’s, 179–181

by using excel Solver, 205–207

Set of unit vectors, 10–12

Set of vectors, 11

Sign-reversed dual simplex pivot, 200

Simplex algorithm, 73, 116, 160, 201, 213

Simplex, in k-dimension, 24

Simplex method, 59
algebraic form of, 64–71, 73

Big M method, 90–99
calculations, 85

dual, 163–165

game theory using, 319–324
and graphical methods relationship, 71–72

inverse of matrix using, 120–123

linear programming problems

with alternative/multiple solutions, 

123–126

canonical form of, 60–61

degeneracy in, 109–116
with inconsistent constraint equations, 

128–130

Jensen add-ins for, 81–85

standard form of, 59–60
use of Solver in MS-Excel for, 77–80

overview, 89–90
simplex/dual, 173

slack and surplus variables, 61–64

streamlined version of, 213

system of linear equations using, 

116–118

in tabular form, 73–77

two-phase method, 90, 99–109
unbounded solutions, 126–128

unrestricted variable, 61–62

Simplex or dual simplex method, 173

Simplex table

construction of, 149–151
and duality, 171
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Simultaneous linear equations, using 

simplex method, 116

Singular matrix, 4–5

Slack variables, 61–64, 70, 72, 74, 78, 

91, 101, 150, 159, 182, 183, 185, 
201–203, 239

Solver, in MS-Excel

sensitivity analysis by using, 205–207

Solver in MS-Excel

add-ins of, 244

for maximization transportation problem, 

253–254

screen shot of, 250

solution of assignment problems using, 

289–291
for solving LPP, 77–80

system of linear equations by using, 

119–120
for transshipment problem, 266

Spanning set, 11–12

Square matrix, 3–5

determinant of, 4

Square submatrix, 8–9
Standard basis, 11

Standard form, 101, 150

linear programming problem, 97
of linear programming problem,  

59–60
using two-phase method, 106

Stepping-stone method, 231–238, 248, 

255

Strong duality theorem, 158–161

SUMPRODUCT command, 291
Sumproduct formula, 79
SUMPRODUCT function, 3, 246

Sum vector, 3

Surplus variables, 61–64, 70, 91, 101
Symmetric form, primal and dual 

problems in, 138–141

System of simultaneous linear equations, 

12–15

Gauss-Jordan method for, 15–19

T

Tabular form

simplex method in, 73–77

transportation problems in, 214

Theorems on extreme points, 33–36

Theory of Games and Economic Behavior 

(Morgenstern & von Neumann), 295
Third-order matrix, 4

3-dimensional space, 22

Transportation and assignment problem, 

for LP model, 37, 39–40
Transportation cost, 212, 235, 243, 244, 

246, 258

Transportation model, 277

Transportation problems

assignment problems as, 278–280

basic variables in, 218

closed path or loop in, 230

definition, 211–212
degeneracy in, 255–258

dual of, 238

feasible solution for, 215

formulation of, 212–216

initial basic feasible solution, methods 

for

column minima method, 222–223

least-cost or matrix minima method, 

223–226

Modified (MODI) distribution/u-v 
method, 238–244, 256, 265, 269

North-West (N-W) corner method, 

217–219
row minima method, 219–222
stepping-stone method, 231–238

Vogel’s approximation method, 

226–230, 253, 261, 264, 269
LPP formulation of, 250

in matrix form, 213

maximization problems, 251–254

multiple solutions in, 254

necessary and sufficient condition for, 215
network representation of, 214
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objective of, 211

optimum solution of, 216

primal-dual relationship of, 239
restricted entry, 251

solution in Excel, 244–248

in tabular form, 214

and transshipment problems, 258–270

unbalanced, 248–251

TRANSPOSE function, 7

Transpose of matrix, 6–7

Transshipment problems, 258–270

Triangular matrix, 5

2-dimensional space, 22

Two-person zero-sum game, 296–298, 
300, 303

Two-phase method, 90, 99–109

U

Unbalanced assignment problem, 279, 
284–285

Unbalanced transportation problems, 215, 

248–251

Unbounded solutions, 73, 85, 160

linear programming problem with, 

50–51

using graphical method, 126–128

Unit cost of transportation, 249
Unit transportation costs, 268

Unit vector, 3, 10–12, 199
Unrestricted variables, 61–62, 117

Upper triangular matrix, 5

u-v method, 238–244

V

VAM, see Vogel’s approximation method

Variables, 60

deletion of, 199–201
dependent and independent, 32

non-negative, 61–62

slack and surplus, 61–64

unrestricted, 61–62, 117

Vectors

addition of, 1

artificial, 100
of basic and non-basic variables,  

63, 69
of constraints changes, 179
convex combination of, 24

dot or inner product of, 1–3

equality of two, 1

linear combination of, 10

linear independence and dependence  

of, 10–12

sum, 3

unit, 3

zero, 3

Vector space, 8

Vogel’s approximation method (VAM), 

217, 226–230, 252, 253, 256, 261, 

264, 269
von Neumann, John, 295

W

Weak duality theorem, 153–154, 160

WinQSB, 179, 192

Z

z coefficient, 93
Zero/null matrix, 3

Zero-sum games, 296–298
Zero vector, 3

z-row coefficients, 191–192, 199
of basic variable, 191
new value of, 188

of non-basic variable, 192–193
z value, 78
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