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PREFACE

Multivariable and vector calculus is an essential subject of the math-
ematical education for scientists and engineers. This book is aimed 
primarily at undergraduates in mathematics, engineering, and the 

physical sciences. Rather than concentrating on technical skills, it focuses 
on a deeper understanding of the subject by providing many unusual and 
challenging examples. The topics of vector geometry, differentiation, and 
integration in several variables are explored. It also provides numerous 
computer illustrations and tutorials using Maple® and MATLAB®. The soft-
ware applications allow the students to bridge the gap between analysis 
and computation. Mainly, this book compromises three chapters and four 
appendices.

Chapter 1 provides vectors and parametric curves. It contains points 
and vectors on the plane, scalar products on the plane, linear indepen-
dence, geometric transformations in two dimensions, determinants in two 
dimensions, parametric curves on the plane, vectors in space, cross prod-
ucts, matrices in three dimensions, determinants in three dimensions, some 
solid geometry, Cavalieri and the Pappus-Guldin rules, dihedral angles 
and platonic solids, spherical trigonometry, canonical surfaces, parametric 
curves in space, and multidimensional vectors.

Chapter 2 provides differentiation of functions of several variables. 
This chapter mainly discusses some topology, multivariable functions, limits 
and continuity, definition of the derivative, the Jacobi matrix, gradients and 
directional derivatives, Levi-Civita and Einstein, extrema, and Lagrange 
multipliers. 
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xiv • PrefaCe

Chapter 3 provides integrations of functions of several variables. It con-
tains differentiation forms, zero-manifolds, one-manifolds, closed and exact 
forms, two-manifolds, change of variables in double integrals, change to 
polar coordinates, three-manifolds, change of variables in triple integrals, 
surface integrals, and Green’s, Stokes’, and Gauss’ Theorems. 

Finally, the book concludes with four appendices: Appendix A covers 
a basic tutorial on Maple software; Appendix B includes a basic tutorial on 
MATLAB; Appendix C provides the answers to odd-numbered exercises; 
Appendix D reviews the common, useful mathematical formulas.

Companion files (figures from the text) are also available at  
info@merclearning.com.

Sarhan M. Musa

Houston, Texas
January, 2015
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2 • Multivariable and vector calculus

In science and engineering, certain quantities such as force and accel-
eration possess both a magnitude and a direction. They are represented 
as vectors and geometrically drawn as an arrow. For example, in dealing 

with systems of linear equations, the solution can be points in the plane if 
the equations have two variables, points in three space if they are equa-
tions in three variables, points in four space if they have four variables, 
and so on. The solutions make up the subset of large spaces and the con-
structed spaces are called vector spaces, which are used in many areas of 
mathematics.

We start this chapter with an introduction to some linear algebra neces-
sary for the course.

We mainly discuss points and vectors on the plane, scalar product on the 
plane, linear independence, geometric transformations in two  dimensions, 
determinants in two dimensions, parametric curves on the plane, vectors in 
space, cross product, matrices in three dimensions, determinants in three 
dimensions, some solid geometry, cavalieri, the Pappus-Guldin rules, dihe-
dral angles and platonic solids, spherical trigonometry, canonical surfaces, 
parametric curves in space, and multidimensional vectors.

1.1 Points and Vectors on the Plane

Definition 1.1.1 A scalar α ∈  is simply a real number.

Definition 1.1.2 A point r∈2  is an ordered pair of real numbers, 
r ∈( )x y,  with x∈  and y∈. Here the first coordinate x  stipulates the 
location on the horizontal axis and the second coordinate y  stipulates the 
location on the vertical axis. See Figure 1.1.1.

We will always denote the origin, that is, the point (0, 0) by O = (0, 0).

Definition 1.1.3 Given two points r  and r′  in 2  the directed line 
segment with departure point r  and arrival point r′  is called the bi-point 
(or fixed vector) r, r′, and is denoted by [ r, r′]. See Figure 1.1.2 for an 
example.

The bi-point [ r, r′] can be thus interpreted as an arrow starting at r  and 
finishing, with the arrow tip, at r′. We say that r  is the tail of the bi-point  
[ r, r′] and that r′ is its head.
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vectors and ParaMetric curves • 3

FIGURE 1.1.1 A point in 2 . FIGURE 1.1.2 A bi-point in 2 .

Definition 1.1.4 A Vector 
� �a∈ 2  is a codification of movement of a 

bi-point.
Given the bi-point [r, r′ ], we associate to it the vector rr′ =

′ −
′ −











� �� x x

y y
 

stipulating a movement of ′ −x x  units from x y,( )  in the horizontal axis and 
of ′ −y y  units from the current position in the vertical axis. The zero vector 



0
0
0

=








  indicates no movement in either direction. Notice that infinitely 

many different choices of departure and arrival points may give the same 
vector.

Example 1.1.1

Consider the following points:

a  b  a  b  O  b1 1 2 2= ( ) = −( ) = ( ) = −( ) = ( ) = −(1 2 3 4 3 5 5 1 0 0 2 6, , , , , , , , , , , )).  
Though the bi- points a ,b , a ,b , O,b1 1 2 2    [ ]  are in different locations on 
the plane, they represent the same vector, as

3 1
4 2

5 3
1 5

2 0
6 0

2
6

−
− −









 =

−
− −









 =

−
− −









 =

−








 .
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4 • Multivariable and vector calculus

The instructions given by the vector are all the same: start at the point, 
go two units right and six units down. See Figure 1.1.3.

In more technical language, a vector is an equivalence class of bi-points, 
that is, all bi-points that have the same length, have the same direction. 
In this sense, points are equivalent and the name of this equivalence is 
a  vector. As a simple example of an equivalence class, consider the set of 
integers . According to their remainder upon division by 3, each integer 
belongs to one of the three sets:

3 6 3 0 3 6 3 1 5 2 1 4 7

3 2 4 1

� … … � … …
� …

= − −{ } + = − −{ }
+ = − −

, , , , , , , , , , , , , ,

, ,

  

,, , , ,2 5 8…{ }. 

The equivalence class 3  comprises the integers divisible by 3, and 
for example, − ∈18 3. Analogously, in Example 1.1.2, the bi-point a b1 1,   

belongs to the equivalence class 
2
6−









, that is, a b1 1,  ∈

−










2
6

.

Definition 1.1.5 The Vector Oa
� ���

 that corresponds to the point a∈2  is 
called the position vector of the point a.

Definition 1.1.6 Let a ≠  b be the point on the plane and let ab
���

 be the line 
passing through a  and b. The direction of the bi-point [a, b] is the direction 
of the line L, that is, the angle θ π∈[ ]0;  that the line ab

���
 makes with the 

positive x -axis (horizontal axis), when measured counterclockwise. The 

FIGURE 1.1.3 Example 1.1.1.
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vectors and ParaMetric curves • 5

direction of a vector v ≠ 


0  is the direction of 
any of its bi-point representatives. See Figure 
1.1.4.

Definition 1.1.7 We say that [a, b] has the 

same direction as [z, w] if ab zw
��� � ��

= .

Definition 1.1.8 We say that the bi-points 
[a, b] and [z, w] have the same sense if they 
have the same direction, if when translating 
one so its tail is over the other’s tail, and both 
their heads lie on the same half-plane made 
by the line perpendicular to their tails. See  
Figure 1.1.5.

Definition 1.1.9 We say that the bi-points 
[a, b] and [z, w] have the opposite sense if they 
have the same direction, if when translating 
one so its tail is over the other’s tail, and their 
heads lie on different half-planes made by the 
line perpendicular to their tails. See Figure 
1.1.6.

The sense of a vector is the sense of any of 
its bi-point representatives. Two bi-points are 
parallel if the lines containing them are paral-
lel. Two vectors are parallel, if bi-point repre-
sentatives of them are parallel.

Bi-point [b, a] has the opposite sense of [a, b], so we write 
b, a a, b[ ] [ ]= −  . Similarly, we write ab ba

��� � ��
= − .

Definition 1.1.10 The Euclidean length (norm or magnitude) of bi-point 
[a, b] is simply the distance between a and b, and it is denoted by

a,b a b a b1 1 2 2[ ] = −( ) + −( )2 2
.

A bi-point is said to have unit length if it has norm 1. The norm of a 
 vector is the norm of any of its bi-point representatives.

! 
TIP

FIGURE 1.1.4 Direction of a 
bi-point.

FIGURE 1.1.5 Bi-points with the 
same sense.

FIGURE 1.1.6 Bi-points with 
opposite sense.

MVC_Musa_CH01-P1.indd   5 11/17/2014   4:11:01 PM



6 • Multivariable and vector calculus

A vector is completely determined by three things: (i) its norm, (ii) 
its direction, and (iii) its sense. It is clear that the norm of a vector 
satisfies the following properties: 

1. 


a 0≥  

2. 
 



a 0 a 0= ⇔ =

Definition 1.1.11 A unit vector is a vector whose norm is 1. If v


 is a 

nonzero vector ( v


 ≠  0), then the vector u
v

v






=  is a unit vector in direction 

of v


. The procedure of constructing a unit vector in the same direction as a 
given vector is called normalizing the vector.

Example 1.1.2

Find the norm of the vector v = 
1

2













 and normalize this vector.

 n Solution:

v  = 1 2 32 2
( ) + ( ) = ,

which is called the magnitude of the given vector.

The normalized vector is 
1
3

1

2

1
3

2
3

 












=



















. 

n

We may use the software MATLAB in order to compute norm of vectors.

>> v = [1 sqrt(2)];
>> norm(v)
 ans =
  1.7321
>> u = v/norm(v)
u =
  0.5774  0.8165

! 
TIP
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vectors and ParaMetric curves • 7

Also, we may use the software Maple™ in order to compute norm of 
vectors.

 �

 �

 �

 �

Definition 1.1.12 If u  and v  are two vectors in 2, their vector sum 
u   v+  is defined by the coordinate-wise addition: 

 u   v  = +








 +









 =

+
+











u

u

v

v

u v

u v
1

2

1

2

1 1

2 2

. (1.1)

It is easy to see that vector addition is commutative and associative, that 
the vector 



0  acts as an additive identity, and that the additive inverse of 


a  is  
−a. To add two vectors geome trically, proceed as follows. Draw a bi-point 
representative of u. Find a bi-point representative of v  having its tail at the 
tip of u. The sum  u + v  is the vector whose tail is that of the bi-point for 
u  and whose tip is that of the bi-point for v. In particular, if �

� ���
u = AB  and � � ���

v = BC, then we have Chasles’ Rule:

 AB + BC AC
� ��� � ��� � ���

= . (1.2)

See Figures 1.1.7, 1.1.8, 1.1.9, and 1.1.10.

FIGURE 1.1.7 Addition of 
vectors.

FIGURE 1.1.8 Commutative 
of vector addition.
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8 • Multivariable and vector calculus

Definition 1.1.13 If α ∈  and 
� �a∈ 2, we define scalar multiplication of 

a vector and a scalar by the coordinatewise multiplication:

 α α
α
α

 a =  


a

a

a

a
1

2

1

2









 =









. (1.3)

See Figure 1.1.11.

It is easy to see that vector addition and scalar multiplication satisfies 
the following properties:

1. α α α a + b  a +  b






( ) =

2. α β α β +  a  a +  a( ) =  

3. 1 a  a
 =

4.    a   a  α β α β( ) = ( ) 

We may use MATLAB in order to compute sum 
of vectors and scalar multiplication of vectors.

>> u = [2 5];
>> v = [3 4];
>> u + v
ans =
   5  9
>> 6∗u
ans =
  12  30

FIGURE 1.1.11 Scalar 
multiplication of vectors.

FIGURE 1.1.9 Associative of vector addition. FIGURE 1.1.10 Difference of vectors.
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vectors and ParaMetric curves • 9

We may use the software Maple™ in order to compute sum of vectors 
and scalar multiplication of vectors.

 �

 �

 �

 �

 �

Definition 1.1.14 Let u  ≠  


0 . Put � � � � u = u :  λ λ ∈{ }  and let a∈2 . The 

affine line with direction vector u = 
u

u
1

2









  and passing through a is the setoff 

points on the plane a +  u = :  y  � � � �
x

y
x a tu a tu t









∈ = + = + ∈












2

1 1 2 2, , . 

See Figure 1.1.12.

If u1 0= , the affine line previously defined is vertical, as x  is constant. 

If u1 ≠  0, then 
x a

u
t y a

x a

u
u

u

u
x a a

u

u

−
= ⇒ = +

−( )
= + −1

1
2

1

1
2

2

1
2 1

2

1

, that is, 

FIGURE 1.1.12 Parametric equation of a line on the plane.
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10 • Multivariable and vector calculus

the affine line is the Cartesian line with slope 
u

u
2

1

. Conversely, if y mx k= +  
is the equation of a Cartesian line, then 

x

y m
t

k








 =









 +











1 0
 ,

that is, every Cartesian line is also an affine line and one may take the 

vector 
1
m









   as its direction vector. It also follows that two vectors u  and v  

are parallel if and only if the affine lines � � u  and � � v  are parallel. Hence, 
 u || v  if there exists a scalar λ ∈  such that  u =  vλ .

Because 




0 0 v=   for any vector 


v, the 


0 is parallel to every vector.

Example 1.1.3

Find a vector of length 3, parallel to v =
1

2












, but in the opposite sense.

 n Solution:

Since v = 1 2 32 2
( ) + ( ) = , the vector 





v
v

 has unit norm, and has 

the same direction and sense as v , so the vector sought is

 − = −












=
−

−













3
3
3

1

2

3

6





v
v

. 
n

Example 1.1.4

Find the parametric equation of the line passing through 
1
1−









  and in 

the direction of the vector 
2
3−









.

 n Solution: 
The desired equation is plainly: 

 
x

y
t x t y t t









 =

−








 +

−








 ⇒ = + = − − ∈

1
1

2
3

1 2 1 3, ,  .  
n

! 
TIP
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vectors and ParaMetric curves • 11

Some plane geometry results can be easily proved by means of vectors. 
Here are some examples.

Example 1.1.5

Given a pentagon ABCDE , determine the vector sum AB + BC
� ��� � ���

+

+ CD + DE + EA
� ��� � ��� � ���

.

 n Solution: 
Utilizing Chasles’ Rule several times:

 
� � ��� � ��� � ��� � ��� � ��� � ���
0 = +AA= AB + BC + CD + DE EA. n

Example 1.1.6

Consider a ABC∆  . Demonstrate that the line segment joining the mid-
points of two sides is parallel to the third side and it is in fact, half its length.

 n Solution: 
Let the midpoints of [A, B] and [C, A], be MC and MB, respectively. 

We will demonstrate that BC  2 M MC B

� ��� � �������
= . We have, 2 AM ABC

� ����� � ���
=  and 

2 AM ACB

� ����� � ���
= . Therefore,

BC   BA AC

      =  AB AC

      =  AM

� ��� � ��� � ���

� ��� � ���
= +

− +

− 2 CC B

C B

AM

      =  2M A AM

      =  

� ����� � �����

� ����� � �����
+

+

2

2

22 M A AM

      = 2M M

C B

C B

� ����� � �����

� �������
+( )

as we were to show. n

Example 1.1.7

In ABC∆  , let MC be the midpoint of [A,B]. Demonstrate that 

CM   CA CBC

� ����� � ��� � ���
= +( )1

2
.
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12 • Multivariable and vector calculus

 n Solution: 

As AM M BC C

� ����� � �����
= , we have,

  CA CB CM  M A + CM  M BC C C C

� ��� � ��� � ����� � ������ � ����� � ���
+ = + +

���

� ����� � ����� � �����
                  =  2CM AM  + M B

  
C C C−

                 =  2CMC−
� �����

from where the results follows. n

Example 1.1.8

If the medians A, MA   and B, MB   of the non-degenerate ∆ABC  
intersect at the point G, demonstrate that

AG GMA

� ��� � �����
= 2 ; BG GMB

� ��� � �����
= 2 .

See Figure 1.1.13.

 n Solution: 
Since the triangle is non-degenerate, the lines AMA

� �����
and BMB

� �����
 are not 

parallel, and thus meet at a point G. Therefore, AG
� ���

 and GMA

� �����
 are parallel 

and hence there is a scalar a  such that AG GMA

� ��� � �����
= a . In the same fashion, 

there is a scalar b  such that BG GMB

� ��� � �����
= b . From Example 1.1.6,

2M M BA

              = BG GA

         

A B

� ������� � ���

� ��� � ���
=

+

      = GM GM

              = GM M
B A

A

b a

b b

� ����� � �����

� �����
−

+ AA B AM GM   ,
� ������� � �����

− a

and thus 

2 −( ) = −( )b b aM M GMA B A

� ������� � �����
.

Since ∆ABC  is non-degenerate, M MA B

� �������
 and GMA

� �����
 are not parallel, 

where

 2 0 0 2−( ) = −( ) = ⇒ = =b b a a b,  . n
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vectors and ParaMetric curves • 13

Example 1.1.9

The medians of a non-degenerate triangle ∆ABC  are concurrent. The 
point of concurrency G is called the barycenter or centroid of the triangle. 
See Figure 1.1.13.

 n Solution: 

Let G be as in Example 1.1.7. We must show that the line CMC

� �����
 also 

passes through G. Let the line CMC

� �����
 and BMB

� �����
 meet in ′G . By the afore-

mentioned example,

AG GMA

� ��� � �����
= 2 ; BG GMB

� ��� � �����
= 2 ; BG G MB

′ = ′
� ���� � ������

2 ; CG G MC
′ = ′

� ���� � ������
2 .

It follows that

GG GB + BG

      GM  + G MB B

′ = ′

= − ′

� ���� � ��� � ����

� ����� � �����
2 2

��

� ����� � ������

� ����

 

      M G + G M  

     G G.

B B= ′( )
= ′

2

2

Therefore,

GG GG   GG GG G G′ = − ′ ⇒ ′ = ⇒ ′ = ⇒ = ′
� ���� � ���� � ���� � � ���� �

2 3 0 0 , demonstrating the 
result. n

FIGURE 1.1.13 Example 1.1.8. FIGURE 1.1.13 Example 1.1.9. 
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14 • Multivariable and vector calculus

Exercises 1.1

1.1.1 Identify the following physical quantities as scalars or vectors.

1. time
2. pressure
3. acceleration
4. velocity
5. temperature
6. gravity
7. force
8. displacement
9. frequency

10. grade of a motor oil
11. sound
12. current in a river
13. speed
14. energy

1.1.2 Is there is any truth to the statement “a vector is that which has 
magnitude and direction”?

1.1.3 Let u  and v
 

=
−







 =

−
−











1
5

2
4

,  , be vectors in 2. Find u v
 

+ , u v
 

− , 

2u


, and normalization of vector u


.

1.1.4 Name all the equal vectors in the parallelogram shown.

CD

A B

E

FIGURE 1.1.14 Exercise 1.1.4.

1.1.5 Copy the vectors in the figure and use them to draw the following 
vectors.

ba c

FIGURE 1.1.15 Exercise 1.1.5.
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1. a b
 

+

2. a b
 

−

3. b c
 

+

4. a b c
  

+ +

1.1.6 Let u  and v
 

=
−









 =











1
3

1
1

. Find:

1. u v
 

+

2. u v
 

+

3. 3 u


1.1.7 ABCD is a parallelogram. E is the midpoint of [B,C] and F is the 

midpoint of [D,C]. Prove that AC BD BC
� ��� � ��� � ���

+ = 2 .

1.1.8 (Varignon’s Theorem) Use vector algebra in order to prove 
that in any quadrilateral ABCD, whose sides do not intersect, 
the quadrilateral formed by the midpoints of the sides is a 
parallelogram.

1.1.9 Let A,B be two points on the plane. Construct two points I  and 

J such that IA IB
� �� � ��

= −3 , JA JB
� �� � ��

= −
1
3

, and then demonstrate that 

for any arbitrary point M on the plane MA MB MI
� ���� � ��� � ���

+ =3 4  and 

3 4MA MB MJ
� ���� � ��� � ���

+ = .

1.1.10 Find the Cartesian equation corresponding to the line with 
parametric equation x t= − +1 , y t= −2 .

1.1.11 Let x, y, z be points on the plane with x y≠   and consider ∆ xyz. 

Let Q be a point on side [x, z] such that [ ]x,Q : [ ]Q,z  = 3: 4 and 

let P be a point on [y, z] such that [ ],y P : [ ],P Q  = 7 : 2. Let T be 

an arbitrary point on the plane. 

1. Find rational numbers and such that TQ Tx Tz
� ��� � �� � ��

= +α β .

2. Find rational numbers l m n, ,  such that TP Tx Ty Tz
� ��� � �� � �� � ��

= + +l m n .
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16 • Multivariable and vector calculus

1.1.12 Prove that if u


 and v


 are non-collinear then x yu v
  

+ = 0  implies 
x y= = 0.

1.1.13 Prove that the diagonals of a parallelogram bisect each other as in 
Figure 1.1.16.

1.1.14 A circle is divided into three, four, or six equal parts 
(Figures 1.1.17 through 1.1.22). Find the sum of the vectors. 
Assume that the divisions start or stop at the center of the circle, 
as suggested in the figures.

FIGURE 1.1.17 Exercise 1.1.14.

FIGURE 1.1.19 Exercise 1.1.14. FIGURE 1.1.20 Exercise 1.1.14.

FIGURE 1.1.18 Exercise 1.1.14.

C

A

B

D

E
u

v

v

u

FIGURE 1.1.16 Exercise 1.1.13.
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vectors and ParaMetric curves • 17

1.2 Scalar Product on the Plane

We will now define an operation between two plane vectors, which pro-
vides a further tool to examine the geometry on the plane.

Definition 1.2.1 Let � �x∈ 2 and � �y∈ 2. Their scalar product (dot 
product or inner product) is defined and denoted by �i�x y = x y x y1 1 2 2+ .

Example 1.2.1

If 




a =  and b =  
1
2

3
4



















 , then a b = 

�
i
�

1 3 2 4 11× + × = .

The following properties of the scalar product are easy to deduce from 
the definition.

1. Bilinearity
  x + y z = x z + y z ,  x  y + z = x y +� � i� �i� �i� �i � � �i�( ) ( )   x z�i�  (1.4)

2. Scalar Homogeneity
α α α α x y = x  y  x y  � i� �i � �i� �( ) ( ) = ( ) ∈,  (1.5)

3. Commutativity
 x y = y x�i� �i�  (1.6)

4.  x x 0�i� ≥  (1.7)

5.  x x = 0  x�i� � �⇔ = 0  (1.8)

6. 
� �i�x =  x x  (1.9)

FIGURE 1.1.21 Exercise 1.1.14. FIGURE 1.1.22 Exercise 1.1.14.
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18 • Multivariable and vector calculus

The dot product of two vectors can be obtained using MATLAB.

>> a = [1 ; 2];

>> b = [3 : 4];

>> dot (a, b)

ans =

  11

The dot product of two vectors also can be obtained using Maple™.

 �

 �

 �

 �

Definition 1.2.2 Given vectors 


a  and 


b, we define the (convex) angle 

between them, denoted by 
� ��
a , b( )∈[ ]0;π , as the angle between the affine 

lines � � a  and �
�

 b.

Theorem 1.2.1 Let 


a  and 


b  be vectors in2. Then,  a b = a b a , b
�i
� � � � ��

cos( ). 
See Figure 1.2.1.

FIGURE 1.2.1 Theorem 1.2.1.

Proof: From Figure 1.2.1, using Al-Kashi’s Law of Cosines on the length 
of the vectors and (1.4) through (1.9), we have:
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� � � � � � � ��

� � i
� � � � �

b a = a b a b a , b

b a b a a b a

− − ( )
−( ) −( ) = −

2 2 2

2 2

2

2

cos
�� � ��

�
i
� �i

� �i� � � � � � �
b a , b

b b a b a a a b a b a , b

cos

cos

( )
− + = − (2 22 2 ))
− + = − ( )

�

� �i
� � � � � � � ��

�i
� � �

b a b  a a b a b a , b

a b = a b

2 2 2 2
2 2 cos

cos
�� ��
a , b( )

as what we wanted to show. n

Example 1.2.2

If the vectors 


a  and 


b  have lengths 6 and 8, and the angle between 

them is 
� ��
a , b( )  = π / 3 , find  a  b 

� i
�
.

 n Solution:
Using Theorem 1.2.1, we have 

  a b = a b
�i
� � �

cos /π 3 6 8
1
2

24( ) = ( )( )





 = . 

n

The angle between two vectors can be obtained using MATLAB.

>> a = [4; 3];

>> b = [2;5];

>> c= acos (dot(a,b) / (norm(a)∗norm(b)));

>> (360∗c)/(2∗pi)

ans =

31.3287

The angle between two vectors can be obtained using Maple™.

 �  
 �
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20 • Multivariable and vector calculus

 �

 �

 �

 �

 �

Putting 
� ��
a , b( ) =

π
2

 in Theorem 1.2.1, we obtain the following corollary.

Corollary 1.2.1 Two vectors in 2  are perpendicular if and only if their dot 
product is 0.

It follows that the vector 


0  is simultaneously parallel and perpen-
dicular to any vector!

Definition 1.2.3 Two vectors are said to be orthogonal if they are 
perpendicular. If 



a  is orthogonal to 


b, we write 




a b⊥ .

Example 1.2.3

Show that the vectors 




a =  and b = 
−



















2
3

3
2

 are orthogonal.

 n Solution: 

Since a b = 2
�
i
�

−( )× ( ) + ( )× ( ) =3 3 2 0, a and b 
 

 are orthogonal. n

Definition 1.2.4 If 




a b⊥ and  a b




= = 1, we say that 


a  and 


b  are 
Orthonormal.

Since cosθ ≤ 1, we also have the following corollary.

Corollary 1.2.2 Cauchy-Bunyakovsky-Schwarz Inequality (CBS Inequality)

 
�i
� � �

a b a b≤  .

! 
TIP
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Equality occurs if and only if 




a || b.

If 


a = 
a

a
1

2









  and



b = 
b

b
1

2









 , the CBS Inequality takes the form

 a b a b a a b b1 1 2 2 1
2

2
2 1 2

1
2

2
2 1 2

+ ≤ +( ) +( )/ /
.  (1.10)

Example 1.2.4

Let a, b  be positive real numbers. Minimize a b2 2+  subject to the 
constraint a b+ = 1.

 n Solution:
By the CBS Inequality,

1 1 1 1 1
1
2

2 2 1 2 2 2 1 2 2 2= + ≤ +( ) +( ) ⇒ + ≥a b a b a b    • •
/ / .

Equality occurs if and only if 
a

b








 =









λ

1
1

. In this case, a b= = λ, so 

equality is achieved for a b= =
1
2

. 
n

Corollary 1.2.3 Triangle Inequality









a + b a b≤ + .

Proof:
� � � � i �

�

�i� �i
� �

i
�

a + b a b a b

          a a a b + b b

   

2

2

= +( ) +( )
= +

        a a b b

           = a b

≤ + +

+( )

� � � �

� �

2 2

2

2

,

from where the desired result follows. n
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Example 1.2.5

Let a b z, ,   be positive real numbers. Prove that 2 2 2 2 2 2 2x y z x y y z z x+ +( ) ≤ + + + + + . 

2 2 2 2 2 2 2x y z x y y z z x+ +( ) ≤ + + + + + .  

 n Solution:

Put 






a =  b =  c = 
x

y

y

z

z

x




























, , .  Then, 







a + b + c =
+ +
+ +









 = + +( )

x y z

x y z
x y z2 .  

Also,






a  + b  + c = + + + + +x y y z z x2 2 2 2 2 2 ,

and the assertion follows by the triangle inequality




 





a + b + c a + b + c≤  . 
n

We now use vectors to prove a classical theorem of Euclidean geometry.

Definition 1.2.5 Let A  and B  be points on the plane and let u  be a unit 
vector. If AB  u

� ��� �= λ , then λ  is the directed distance or algebraic measure 
of the line segment AB[ ]  with respect to the vector u. We will denote 

this distance by ABu, or more routinely, if the vector u  is patent, by AB. 

Observe that AB BA= − .

Theorem 1.2.2 Thales’ Theorem
Let D

��
 y  ′D

���
 be two distinct lines on the plane. Let A, B, C  

be distinct points of D
��

, and ′A , ′B , ′C  be distinct points of ′D
���

, 
A A , B B , C C ,  A  B  A  B≠ ′ ≠ ′ ≠ ′ ≠ ′ ≠ ′, . Let AA BB′ ′

� ���� � ���
|| . Then, AA CC′ ′ ⇔ =

′ ′
′ ′

� ���� � ����
||

AC
AB

A C
A B

 

AA CC′ ′ ⇔ =
′ ′
′ ′

� ���� � ����
||

AC
AB

A C
A B

.

See Figure 1.2.2.

Proof:
Refer to Figure 1.2.2. On the one hand, because they are unit vectors 

in the same direction,
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AB
AB

 = 
AC
AC

  
A  B
A B

A C
A C

� ��� � ��� � ����� � ����
; .

′ ′
′ ′

=
′ ′
′ ′

On the other hand, by Chasles’ Rule,

BB BA AA A B A B AB AA′ = + ′ + ′ ′ = ′ ′ −( ) + ′
� ��� � ��� � ���� � ���� � ���� � ��� � �����

.

Since ′ ′ = + ′A B AB  AA
� ���� � ��� � ����

λ .

Assembling these results,

CC CA AA A C

      
AC
AB

AB AA

′ = + ′ + ′ ′

= − ⋅ + ′

� ���� � ��� � ���� � ����

� ��� � ����� � ��� � ����
+

′ ′
′ ′

+ ′( )

=
′ ′
′ ′

−










A C
A B

AB AA

      
A C
A B

AC
AB

λ

AAB
A C
A B

AA
� ��� � ����

+ +
′ ′
′ ′









 ′1 λ .

 

As the line AA′
� ����

 is not parallel to the line AB
� ���

, the preceding equality 
reveals that

AA CC′ ′ ⇔ −
′ ′
′ ′

=
� ���� � ����

|| ,
AC
AB

A C
A B

0

proving the Theorem 1.2.2. n

From the preceding theorem, we immediately gather the following cor-
ollary (see Figure 1.2.3).

FIGURE 1.2.2 Thales’ Theorem. FIGURE 1.2.3 Corollary to Thales’ Theorem.
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Corollary 1.2.4 Let D
��

 and ′D
� ��

 be distinct lines, intersecting in the unique 
point C. Let A, B, be points on line D

��
 and ′A , ′B  be points on line ′D

� ��
. Then, 

AA BB′ ′
� ���� � ���

||  ⇔  
CB
CA

CB
CA

=
′
′
.

Exercises 1.2

1.2.1 Find a b 
�
i
�
, if:

1. 




a =  and b = 
4
1

3
5−





















2. 




a =  and b = 
5
0

2
1









 −











3. 




a =  and b = 
2
3

5
6





















4. 




a =  and b = 
−
−





















5
2

4
0

1.2.2 Find a b 
�
i
�
, if: 

1. a =5, b
 

= 8, and the angle between a and b 
 

is π / 3 .

2. a = , b
 

3 4= , and the angle between a and b 
 

is π / 6 .

1.2.3 Find the angle between the vectors.

1. 




a = , b = 
1

3

2
0





















 

2. 




a = , b = 
0
1

1
1











−







 

3. 




a = , b = 
4
2

1
2−



















 

4. 




a = , b = 
0
2

1
1









 −
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1.2.4 Prove that α β α αβ βa b a a b b
� � � �

i
� �

+ = + +
2

2
2

22 .

1.2.5 Prove that the diagonals of a rhombus (a parallelogram whose 
sides have equal length) are perpendicular.

1.2.6 What can we say about the relative magnitudes of vectors 




a and b, 
if 




a  b+  is perpendicular to 




a  b− ?

1.2.7 Show that the vectors 




a =  and b = 
−























5

3
27

15
 are 

perpendicular (orthogonal).

1.2.8 If 




a =  and b = 
k k

3 4








 −









  are orthogonal, find k .

1.2.9 Prove that a b a b
   

+ = −  if and only if a b
�
i
�
= 0. 

1.2.10 Prove that if a and b
 

 are perpendicular, then a b a b
   

+ = +
2 2 2

.

1.2.11 Prove that c a
a b

b
b

� �
�
i
�

�
�

= −
( )













2  is orthogonal to b


, where b


 is a 

nonzero vector.

1.2.12 Find all vectors a
�
�∈ 2  such that a



⊥
−









3
2

 and a = 13.

1.2.13 (Pythagorean Theorem) If a b
 

⊥ , prove that

a b a b
   

+ = +
2 2

.

1.2.14 Let a, b  be arbitrary real numbers. Prove that

a b a b2 2 4 42+( ) ≤ +( ).

1.2.15 Let a


, b


, be fixed vectors in2. Prove that if 

∀ ∈ v  v a = v b� � �i� �i
�

2 , ,  a = b




.

1.2.16 (Polarization Identity) Let u, v  be vectors in2. Prove that 

�i� � � � �u v u v u v= + − −( )1
4

2 2 .
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1.2.17 Consider two lines on the plane L1  and L2  with Cartesian 
equations L y m x b1 1 1: = +  and L y m x b2 2 1: = + , where m1 0≠  , 
m2 0≠  . Using Corollary 1.2.1 from Section 1.2, prove that 
L L m m1 2 1 2 1⊥ ⇔ = − .

1.2.18 Find the Cartesian equation of all lines ′L  passing through 

−









1
2

, making an angle of 
π
6

  radians with the Cartesian line

L x y: + = 1.

1.2.19 Let v, w
��

 be vectors on the plane, with w
�� �

≠ 0 . Prove that the 

vector a v
v w

w
w

� � �i
��

��
��

= − 2  is perpendicular to w
��

.

1.3 Linear Independence

Consider now two arbitrary vectors in 2, x  and y. Under which 
conditions can we write an arbitrary vector v  on the plane as a linear 
combination of x  and y , that is, when can we find scalars a, b  such that 
  v =  x +  ya b ?

The answer can be promptly obtained algebraically. Operating formally, 

  v =  x +  ya b ⇔ = + = +    v ax by v ax by1 1 1 2 2 2, ,

      ⇔ =
−
−

=
−
−

   a
v y v y

x y x y
b

x v x v

x y x y
1 2 2 1

1 2 2 1

1 2 2 1

1 2 2 1

, .

The previous expressions for a  and b make sense only if x y x y1 2 2 1≠  .  
But, what does it mean for x y x y1 2 2 1= ? If none of these are zero, then

x

y

x

y
1

1

2

2

= = λ  and 
x

x

y

y
1

2

1

2









 =









 ⇔λ  x || y.

If x1 0= , then either x2 0=  or y1 0= . In the first case, 


x = 0, and a 
fortiori  x || y, since all vectors are parallel to the zero vector. In the sec-
ond case, we have 







x =  j,    y = y  jx2 2 , so both vectors are parallel to  j


 and 
hence  x || y. We have demonstrated the following theorem.
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Theorem 1.3.1 Given two vectors in 2, x , and y , an arbitrary vector v  can 
be written as the linear combination 

� � � � �v = x + y,   a b a b∈ ∈,

if and only if x  is not parallel to y . In this last case, we say that x  is 

linearly independent from vector y . If two vectors are not linearly indepen-
dent, then we say that they are linearly dependent.

Example 1.3.1

The vectors 
1
0









  and 

1
1









  are clearly linearly independent, since one 

is not a scalar multiple of the other. Given an arbitrary vector 
a

b








, we can 

express it as a linear combination of these vectors as follows:

a

b
a b b









 = −( ) 







 +











1
0

1
1

.

Consider now two linearly independent vectors x  and y. For a∈[ ]0 1; , 
a x  is parallel to x  and traverses the whole length of x: from its tip (when 
a = 1) to its tail (when a = 0). In the same manner, for b∈[ ]0 1; , b y  is 
parallel to y  and traverses the whole length of y. The linear combination 
a b x +  y  is also a vector on the plane.

Example 1.3.2

The vector 5
1
3









  near combination of the vector 

1
3









  of 2  with a = 5.

Example 1.3.3

The vector 2
0
1

3
1
2









 +









  is a linear combination of the vec-

tors 
0
1

1
2



















and  of 2  with a b= =2 3,  , and x and y

 

=








 =











0
1

1
2

.  

By applying addition and scalar multiplication defined on 2, we get 
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2
0
1

3
1
2

3
8









 +









 =









 . Thus, we may also say that the vector v



=










3
8

 is a linear 

combination of x and y
 

=








 =











0
1

1
2

 because there exists a b= =2 3,   such 

that 2
0
1

3
1
2

3
8









 +









 =









 . We can express this relation by saying that the vec-

tor v


=










3
8

is generated by the vectors x and y
 

=








 =











0
1

1
2

.

Definition 1.3.1 (Fundamental parallelogram) Given two linearly 

independent vectors x and y , consider bi-point representatives of them 
with the tails at the origin. The fundamental parallelogram of the vectors x 

and y  is the set a b a b x +  y  : ; , ;∈[ ] ∈[ ]{ }0 1 0 1 .

Figure 1.3.1 shows the fundamental parallelogram of 
1
0

1
1
































, , col-

ored in brown, and the respective tiling of the plane by various translations 

FIGURE 1.3.1 Tiling and the fundamental parallelogram.
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of it. Observe that the vertices of this parallelogram are 
0
0

1
0

1
1

2
1




















































, , , .  

In essence then, linear independence of two vectors on the plane means 
that we may obtain every vector on the plane as a linear combination of 
these two vectors and hence cover the whole plane by all these linear 
combinations.

Exercises 1.3

1.3.1 Show that 
7
3









  is a linear combination of the vectors 

1
0









  and 

3
1











of 2.

1.3.2 Determine whether the first vector of the set of vectors is a linear 
combination of the other vectors. 

1. 
7
1

4
2

1
1−





















−







; ,  

2. 
15

1
4
1

8
2−









 −











−







; ,

3. 
0
4

2
1

4
6

2
3









 −





























; , ,

4. 
5
7

1
1

1
5











−

















; ,

1.3.3 Write an arbitrary vector 
a

b








  on the plane, as a linear 

combination of the vectors 
1
1









  and 

−









1
1

. 

1.3.4 Explain why the following are linearly dependent sets of vectors in 


2. 
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1. x  and y  =
 

=










−
−











1
2

3
6

 

2. x , y  =  and v
  

=


















 =

−









2
3

6
1

5
8

  

1.3.5 Show that the vectors x  and y  =
 

=




















1
0

0
1

 are linearly 
independent.

1.3.6 Show that the following sets of vectors in 2  are linearly 
independent or linearly dependent.

1. 
−









































1
2

2
3

1
4

, ,

2. 
1
3

3
1









 −






















,

3. 
10
12

5
6
































,

4. 
3
4

1
1









 −






















,

1.3.7 Consider the vectors
2
1









 , 

1
2









,  

and 
8
7









 in 2 . Show that the 

set 
2
1

1
2

8
7










































, ,  are linearly 

dependent.

1.3.8 Are vectors x


 and y


 in Figures 1.3.2 and 1.3.3 linearly 
independent or dependent? Explain the reasoning.

1.3.9 Prove that for any two vectors x


 and y


 form a linearly dependent 
set if and only if they are parallel.

x

�

FIGURE 1.3.3 Exercise 1.3.

y

x

FIGURE 1.3.2 Exercise 1.3.
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1.3.10 Prove the following sets of vectors are linearly dependent or 
linearly independent in 2.

1. 
3
2

9
6−











−




















,  

2. 
3
1

5
2−
































,

3. 
−







 −























4
2

2
1

,

4. 
0
1

1
0
































,

5. 
1
1

1
1











−




















,

1.3.11 Find the values of k  for which the following sets of vectors are 
linearly dependent.

1. 
4

2 6 2
k

k

k

+










−




















,  

2. 
−







 −























4 2
1k

,

1.3.12 Prove that two non-zero perpendicular vectors in 2  must be 
linearly independent.

1.4 Geometric Transformations in Two Dimensions

We are now interested in the following fundamental functions of sets 
(figures) on the plane: translation, scaling (stretching or shrinking) reflec-
tion about the axes, and rotation about the origin. A handy tool for investi-
gating all of these (with the exception of translation) is a certain construct 
called matrices, which we will study in the next section.

First, observe what is meant by a function F : 

2 2→ . This means that 
the input of the function is a point of the plane and the output is also a point 
on the plane. 
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The following is a rather uninteresting example, but nevertheless an 
important one.

Example 1.4.1

The function I : 

2 2→ , I(x) = x  is called the identity transformation. 
Observe that the identity transformation leaves a point untouched.

We start with the simplest of these functions.

Definition 1.4.1 A function 
T� � �v : 2 2→  is said to be a 

translation if it is of the form 

T 

v (x) x v= + , where v  is a fixed 

vector on the plane.
A translation simply shifts an 

object on the plane rigidly by a 
given amount of units from where it was originally to form a copy of itself 
(that is, it does not distort its shape or re-orient it). See Figure 1.4.1 for an 
example.

It is clear that the composition of any two translations commutes, 
that is, if T T� � � �v v 

1 2

2 2, : →  are translations, then T T T T� � � �� �v v v v1 2 2 1
=  . Let 

T 

v a   v  
1 1( ) a= +  and T 

v a   v  
2 2( ) a= + . Then, 

T T T T T� � � � �� � � �
v v v v va a a  v a v v

1 2 1 2 2 1 2 1( )( ) = ( )( ) = ( ) + = + + ,

and 

T T T T T� � � � �� � � �
v v v v va a a  v a v v

2 1 2 1 1 2 1 2( )( ) = ( )( ) = ( ) + = + + ,

from where the commutative claim is deduced.

Definition 1.4.2 A function Sa b, : 

2 2→  is said to be a scaling if it is of 

the form S
ax

bya b, (r) =








, where a b> >0 0,  are real numbers. 

Figure 1.4.2 shows the scaling S
x

y

x

y2 0 5

2
0 5, , .



















 =









. 

FIGURE 1.4.1 A translation.
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It is clear that the composition of any two scaling commute, that is, if 

S Sa b a b, ,, :′ ′ → 

2 2  are scaling, then S S S Sa b a b a b a b, , , , ′ ′ ′ ′= . For

S S S S S
a x

b y

a
a b a b a b a b a b, , , , , ′ ′ ′ ′( )( ) = ( )( ) =

′
′



















 =

′
r r

aa x

b b y
( )

′( )








, and 

S S S S S
ax

by

a
a b a b a b a b a b′ ′ ′ ′ ′ ′( )( ) = ( )( ) =



















 =

′
, , , , , r r

aax

b by
( )

′( )








,

from where the commutative claim is deduced.

Translation and scaling do not necessarily commute, however. Consider 

the translation T
i

a a i



( ) = +  and the scaling S
a

a2 1
1

2

2
, (a) = 









. Then,

T S T S T
i i i
� � �� 2 1

1
0

1
0,( ) −

















 =

−



























 =

−22
0

1
0



















 =

−







,

but

S T S T S2 1 2 1

1
0

1
0, ,� � �

i i( ) −

















 =

−



























 = 22 1

0
0

0
0,



















 =









 .

Definition 1.4.3 A function RH : 

2 2→  is said to be a reflection about 

the y-axis or horizontal reflection if it is of the form R
x

yH (r) =
−







 .

A function RV : 

2 2→  is said to be a reflection about the x-axis or 

vertical reflection if it is of the form R
x

yV (r) =
−









. 

A function RO : 

2 2→  is said to be a reflection about origin if it is of 

the form R
x

yH (r) =
−
−









.

Some reflections appear in Figure 1.4.3.

FIGURE 1.4.2 A scaling.
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A few short computations establish various commutative properties 
among reflection, translation, and scaling. See Exercise 1.4.4. 

We now define rotations. This definition will be somewhat harder than 
the others, so let us develop some ancillary results.

Consider a point r  with polar coordinates x    = ρ αcos  and 
y sin    = ρ α  as in Figure 1.4.4. 

Here ρ = +x y2 2  and α π∈[ ]0 2; . If we rotate it, in the levogyrate 

sense, by an angle θ , we land on the new point ′x with ′ = +( )x ρ α θcos  
and ′ = +( )y ρ α θsin . But

ρ α θ ρ θ α ρ θ α θ θcos cos cos sin sin cos sin+( ) = − = −x y ,

and

ρ α θ ρ α θ ρ θ α θ θsin sin cos sin cos cos sin+( ) = + = +y x .

Hence, the point 
x

y








  is mapped to the point 

x y

x y

cos sin
sin cos

θ θ
θ θ

−
+









.

We may now formulate the definition of a rotation.

Definition 1.4.4 A function Rθ : 

2 2→  is said to be a levogyrate 
rotation about the origin by the angle θ  measured from the positive x-axis if 

R
x y

x yθ

θ θ
θ θ

( )
cos sin
sin cos

r =
−
+









. Here ρ = +x y2 2 .

FIGURE 1.4.3 Reflections. The original 
object (in the first quadrant) is yellow. Its 
reflection about the y-axis is magenta (on 
the second quadrant). Its reflection about 
the x-axis is cyan (on the fourth quadrant). 
Its reflection about the origin is blue (on 
the third quadrant).

FIGURE 1.4.4 Rotation by an angle in θ the levogyrate 
(counterclockwise) sense from the x-axis.
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Various properties of the composition of rotations with other plane 
transformations are explored in Exercises 1.4.5 and 1.4.6. We now codify 
some properties shared by scaling, reflection, and rotation.

Definition 1.4.5 A function L : 

2 2→  is said to be a linear 
transformation from 2  to 2  if for all points a, b on the plane and every 
scalar λ, it is verified that L L L L La  b  a  b a  a+ = + =( ) ( ) ( ) ( ), ( )λ λ .

It is easy to prove that scaling, reflections, and rotations are linear trans-
formations from 2 to 2, but not so translation.

Definition 1.4.6 A function L : 

2 2→  is said to be an affine 
transformation from 2  to 2  if there exists a linear transformation 

L : 

2 2→  and a fixed vector v
�
�∈ 2  such that for all points x∈2, it is 

verified that A(x)= (x) + vL


.
It is easy to see that translations are then affine transformations. In this 

definition, where the linear transformation is L, we may take I : 

2 2→ , 
then the identity transformation I(x) = x. 

We have seen that scaling, reflection, and rotation are linear transfor-
mations. If L : 

2 2→ is a linear transformation, then

L r L x i y j xL i yL j( ) = +( ) = ( ) + ( )  
   

, 

and thus a linear transformation from R2 to R2 is solely determined by 

the values L( ) i 


 and L( ) j 


. We will now introduce a way to codify these 
values.

Definition 1.4.7 Let L : 

2 2→  be a linear transformation. The matrix 
AL  associated to L  is the 2 2× , (2 rows, 2 columns) array whose columns 

are (in this order) L
1
0



















  and L

0
1



















.

Example 1.4.2 (Scaling Matrices)

Let a b> >0 0 ,  be real numbers. The matrix of the scaling trans-

formation Sa b,  is 
a

b

0
0









. For S

a

b

a
a b,

1
0

1
0 0



















 =

×
×









 =









  and S

a

b ba b,

0
1

0
1

0

















 =

×
×









 =









 

S
a

b ba b,

0
1

0
1

0

















 =

×
×









 =









.
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Example 1.4.3 (Reflection Matrices)

It is easy to verify that the matrix for the transformation RH  is 
−









1 0
0 1

,  

that the matrix for the transformation RV  is 
1 0
0 1−









, and the matrix for the 

transformation RO  is 
−

−










1 0
0 1

.

Example 1.4.4 (Rotating Matrices)

It is easy to verify that the matrix for a rotation Rθ  is 
cos sin
sin cos

θ θ
θ θ

−







.

Example 1.4.5 (Identity Matrix)

The matrix for the identity linear transformation Id :  

2 2→ , 

Id (x) = x is I2

1 0
0 1

=








.

Example 1.4.6 (Zero Matrix)

The matrix for the null linear transformation N :  

2 2→ ,

N (x) = O is 02

0 0
0 0

=








.

From Example 1.4.7, we know that the composition of two linear trans-
formations is also linear. We are now interested in how to codify the matrix 
of a composition of linear transformations L L1 2  in terms of their indi-
vidual matrices.

Theorem 1.4.1  Let L : 

2 2→  have the matrix representation A
a b

c dL =








  

and let ′ →L : 

2 2  have the matrix representation A
r s

t uL′ =








. Then the 

composition L L ′  has matrix representation 
ar bt as bu

cr dt cs du

+ +
+ +









.
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Proof:
We need to find L L ′( ) 



















1
0

 and L L ′( ) 



















0
1

.

We have

L L L L L
r

t
� ′( ) 

















 = ′





























 =















1
0

1
0 




 =









 +

rL tL

r
a

c

( (j
� �
i) + ) 

                        = tt
b

d

ar bt

cr dt








 =

+
+









,

and

L L L L L
s

u
� ′( ) 

















 = ′





























 =















0
1

0
1 




 =









 +

sL L

a

c

( (j
� �
i) + u ) 

                        = s uu
b

d

as bu

cs du








 =

+
+









,

hence we conclude that the matrix of L L ′  is 
ar bt as bu

cr dt cs du

+ +
+ +









, as 

we wanted to show. n

The preceding motivates the following definition.

Definition 1.4.8 Let A
a b

c d
=









  and B

r s

t u
=









  be two 2 2×  matrices, 

and λ ∈  be a scalar. We define matrix addition as 

A B
a b

c d

r s

t u

a r b s

c t d u
+ =









 +









 =

+ +
+ +









.

We define matrix multiplication as

AB
a b

c d

r s

t u

ar bt as bu

cr dt cs du
=



















 =

+ +
+ +









.

We define scalar multiplication of a matrix as

λ λ
λ λ
λ λ

A
a b

c d

a b

c d
=









 =









.
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Since the composition of functions is not necessarily commutative, 
neither is matrix multiplication. Since the composition of functions is 
associative, so is matrix multiplication.

Example 1.4.7

Let M =
−









1 1
0 1

, N =
−











1 2
2 1

.

Then,

M N+ =
−







 +

−








 =

−










1 1
0 1

1 2
2 1

2 1
2 2

,

          2 2
1 1
0 1

2 2
0 2

M =
−







 =

−







,

MN =
−







 −









 =

× + −( )× −( ) × + −( )×
× + × −(

1 1
0 1

1 2
2 1

1 1 1 2 1 2 1 1
0 1 1 2)) × + ×









 =

−








0 2 1 1

3 1
2 1

.

Example 1.4.8

Find a 2 × 2 matrix that will transform the square in Figure 1.4.5 into the 
parallelogram in Figure 1.4.6. Assume in each case that the vertices of the 
figures are lattice points, that is, coordinate points with integer coordinates.

FIGURE 1.4.5 Example 1.4.8. FIGURE 1.4.6 Example 1.4.8.

! 
TIP
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 n Solution:

Let 
a b

c d








  be the desired matrix. Then, since

a b

c d


















 =











0
0

0
0

,

the point 
0
0









  is a fortiori, transformed to itself. We now assume, with-

out loss of generality, that each vertex of the square is transformed in the 
same order, counterclockwise, to each vertex of the rectangle. Then,

a b

c d

a

c
a c



















 =









 ⇒









 =









 ⇒ = =

1
0

2
2

2
2

2.

Using these values,

a b

c d

a b

c d
b



















 =









 ⇒

+
+









 =









 ⇒ = − =

1
1

1
3

1
3

1 1, d .

And so the desired matrix is 

 
2 1
2 1

−







. 

n

Exercises 1.4

1.4.1 If A =
−









1 1
2 3

, B
a b

=
−









1 2
, and A B A AB B+( ) = + +2 2 22 , find 

a  b.

1.4.2 Let M =
−











1 2
0 1

, N =
−











1 2
3 1

. Find M+N, 3M, and MN.

1.4.3 Find all matrices A M∈ ( )×2 2   that A2
20= .

1.4.4 Find all linear transformations from 2  into 2  that
1. Carry the line x = 0  into the line x = 0.
2. Carry the line y = 0  into the line y = 0.
3. Carry the line x y=  into the line x y= .
4. Carry the line x = 0  into the line x = 0 and carry the line y = 0  

into the line y = 0.
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1.4.5 Let L : 

2 2→  be defined by L
x

y








 =











1
2

. Show if L  is linear 

or not linear.

1.4.6 Let L  be a linear transformation by reflecting each vector u


 in 



2  with respect to the line y x= − . Determine a matrix for L.

1.4.7 Prove that the following transformation L : 

2 2→  defined by

L
x

y

x y

x








 =

−







3

 is linear.

1.4.8 Prove that the following transformation L : 

2 2→  defined by

L
x

y

x

x y








 =

−










2
 is linear.

1.4.9 Consider ∆ABC  with A  B  C=
−







 =

−








 =











1
2

0
2

2
1

, , , as in 

Figure 1.4.7. Determine the effects of the following scaling 
transformations on the triangle: 
S S S2 1 1 2 2 2, , ,, ,  and .

1.4.10 Find the equation of the image of 
the line y x= 3  under a scaling of a 
factor 3 in the x  direction and factor 
5 in the y  direction.

1.4.11 Find the effects of the reflections,

R R Rπ π π
2 4 2

, ,
−

, and R
−

π
4

 on the triangle 

in Figure 1.4.7. 

1.4.12 Find the effects of the reflections RH, RV, and RO  on the triangle 

in Figure 1.4.7.

1.4.13 Determine the matrix that defines a reflection in the yaxis. Find 

the image of 
3
2









  under this transformation. 

FIGURE 1.4.7 Exercises 1.4.2, 
1.4.3, and 1.4.8.
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1.4.14 Find the equation of the image of the ellipse 
x y2 2

16 25
1+ =  under a 

rotation through an angle π / 2 .

1.4.15 Determine the matrix that can be used to define a rotation 
through π / 2  about the point (5,1). Find the image of the unit 
square under this rotation.

1.4.16 Let L : 

2 2→  be counterclockwise rotation through π / 4  
radians. Find the standard matrix representing L.

1.4.17 Let L A1 1x x
 ( ) =  and L A2 2x x

 ( ) =  be defined by the following 

matrices A1  and A2. Find L L2 1 , if:

1. A A1 2

1 3
2 0

1 4
1 0

2
3

=








 =

−








 =









, , x



 

2. A A1 2

2 1
0 1

1 2
0 3
2 1

2
1

=
−







 =

−

















=
−







, , x



 

1.4.18 Let L
x

y

x

y1

3







 =

−








  and L

x

y x y2

0







 =

+








. Find L L2 1 .

1.5 Determinants in Two Dimensions

We will now define a way of determining areas of plane figures on the 
plane. It seems reasonable to require that this area determination agrees 
with common formulae of areas of plane figures, in particular, the area of a 
parallelogram should be as we learn in elementary geometry and the area 
of a unit square is 1.

From Figures 1.5.1 and 1.5.2, the area of a parallelogram spanned by 

a

b








  and 

c

d








  is 

D
a

b

c

d
ad bc





























 = −, ..
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FIGURE 1.5.2 a c b d
ab c b d

ad bc+( ) +( ) − −
+( )

= −2
2

2
2

2
.

This motivates the following definition.

Definition 1.5.1 The determinant of the 2 2×  matrix 
a b

c d








  is

det .
a b

c d
ad bc









 = −

The symbol for determinant of a matrix 
a b

c d








  can be written as 

det
a b

c d








 or 

a b

c d
.

Consider now a simple quadrilateral with vertices

r  r  r  r1 1 1 2 2 2 3 3 3 4 4 4= ( ) = ( ) = ( ) = ( )x y x y x y x y, , , , , , , , listed in counter-

clockwise order, as in Figure 1.5.3. This quadrilateral is spanned by the 
vectors

r r1 2

� ���
=

−
−











x x

y y
2 1

2 1

 , r r1 4
4 1

4 1

� ���
=

−
−











x x

y y
, 

and hence, its area is given by

A det ,=
− −
− −









 = − −( )x x x x

y y y y
D2 1 4 1

2 1 4 1
2 1 4 1r r r r
�� �� �� ��

.

! 
TIP

FIGURE 1.5.1 Area of a parallelogram.
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Similarly, noticing that the quadrilateral is also spanned by

r r3 4
4 3

4 3

� ���
=

−
−











x x

y y
, r r3 2

2 3

2 3

� ���
=

−
−











x x

y y
,

its area is also given by

A det ,=
− −
− −









 = − −( )x x x x

y y y y
D4 3 2 3

4 3 2 3
4 3 2 3r r r r
�� �� �� ��

.

Using the properties derived in previous theorems, we see that

A , ,

A

= − −( ) + − −( )( )
=

1
2
1
2

2 1 4 1 4 3 2 3

2

D D

D

r r r r r r r r

r

�� �� �� �� �� �� �� ��

��� �� �� �� �� �� �� ��

�

, , , ,r r r r r r r

r

4 2 1 1 4 1 1

4

1
2

( ) − ( ) − ( ) + ( )( )
+

D D D

D
�� �� �� �� �� �� �� ��

�

, , , ,

A

r r r r r r r

r

2 3 2 4 3 3 3

2

1
2

( ) − ( ) − ( ) + ( )( )
=

D D D

D
�� �� �� �� �� �� �� �� ��
, , , ,r r r r r r r r4 2 1 1 4 4 2 3

1
2

( ) − ( ) − ( )( ) + ( ) −D D D D ,, ,

A , ,

r r r

r r r r r

2 4 3

1 2 2 3 3

1
2

�� �� ��

�� �� �� �� ��
( ) − ( )( )

= ( ) + ( ) +

D

D D D ,, , .r r r4 4 1

�� �� ��( ) + ( )( )D

We conclude that the area of a quadrilateral with vertices x y x y x y x y1 1 2 2 3 3 4 4, , , , , , ,( ) ( ) ( ) ( ) 

x y x y x y x y1 1 2 2 3 3 4 4, , , , , , ,( ) ( ) ( ) ( )  listed in counterclockwise order is

1r

2r

3r

4r

( )1 1,x y

( )2 2,x y

( )3 3,x y

( )4 4,x y

FIGURE 1.5.3 Area of a quadrilateral.
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1
2

1 2

1 2

2 3

2 3

3 4

3 4

det det det de
x x

y y

x x

y y

x x

y y








 +









 +









 + tt

x x

y y
4 1

4 1



















. (1.11)

To find the area of a triangle of vertices, r r r1

�� �� ��
= ( ) = ( ) = ( )x y x y x y1 1 2 2 2 3 3 3, , , , ,

r r r1

�� �� ��
= ( ) = ( ) = ( )x y x y x y1 1 2 2 2 3 3 3, , , , , , listed in counterclockwise order as in Figure 1.5.4, reflects 

about one of its sides, as in Figure 1.5.5, creating a parallelogram. 

The area of the triangle is now half the area of the parallelogram, which, 
by virtue of equation (1.11), is

1
4 1 2 2 3 3 1D D D Dr r r r r r r r

�� �� �� � � �� �� ��
, , , ,( ) + ( ) + ( ) + ( )( ).

This is equivalent to

1
2

1
4

1 2 2 3 3 1

1 2

D D D

D

r r r r r r

r r

�� �� �� �� �� ��

�� ��

, , ,

,

( ) + ( ) + ( )( )
− ( ) − DD D D Dr r r r r r r r2 3 3 1 2 32

�� � � �� �� �� �� ��
, , , ,( ) − ( ) + ( ) + ( )( ).

We will prove that

D D D D Dr r r r r r r r r r1 2 2 3 3 1 2 32
�� �� �� � � �� �� �� �� �

, , , , ,( ) − ( ) − ( ) + ( ) +
��( ) = 0.

To do this, we appeal once again to the bi-linearity properties derived in 

previous theorems, and observe that we have a parallelogram, r r r r
� �� �� ��

− = −3 2 1,  

which means, r r r r
� �� �� ��

= + −3 2 1 . Thus,

D D D D Dr r r r r r r r r r1 2 2 3 3 1 2 32
�� �� �� � � �� �� �� �� �

, , , , ,( ) − ( ) − ( ) + ( ) +
��

�� �� �� �� �� �� �� ��
( ) =

= ( ) − + −( ) + ( ) −D D D Dr r r r r r r r r1 2 2 3 2 1 2 32, , , 33 2 1 3 3 1

1 2 3 3

�� �� �� �� �� ��

�� �� �� ��
+ −( ) + ( )

= −( ) +

r r r r r

r r r r

, ,

,

D

D D ++ − −( ) + ( )
= + −

r r r r r r

r r r r

2 1 2 3 2 3

3 2 2 3

2
�� �� �� �� �� ��

�� �� �� ��
, ,

,

D

D(( ) + ( )
= ( ) − ( ) + ( )
=

2

2

2 3

3 2 2 3 2 3

D

D D D

r r

r r r r r r

�� ��

�� �� �� �� �� ��
,

, , ,

DD Dr r r r3 2 2 3

0

�� �� �� ��
, ,

,

( ) − ( )
=
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as claimed. We have proved then that the area of a triangle, whose ver-

tices x y x y x y1 1 2 2 3 3, , , , ,( ) ( ) ( )  are listed in counterclockwise order, is

 
1
2

1 2

1 2

2 3

2 3

3 1

3 1

det det det
x x

y y

x x

y y

x x

y y








 +









 +



















 . (1.12)

In general, we have the following theorem.

Theorem 1.5.1 (Surveyor’s Theorem) Let x y x y x yn n1 1 2 2, , , , , ,( ) ( ) ( )  

be the vertices of a simple (non-crossing) polygon, listed in counterclockwise 

order. Then its area is given by

 
1
2

1 2

1 2

2 3

2 3

1

1

det det det
x x

y y

x x

y y

x x

y y
n n

n n









 +









 + +






−

−






 +



















det

x x

y y
n

n

1

1

.

Proof:
The proof is by induction on n. We have already proved the cases n = 3  

and n = 4  in (1.12) and (1.11), respectively. Consider now a simple poly-
gon P  with n vertices. If P  is convex, then we may take any vertex and 
draw a line to the other vertices, triangulating the polygon, creating n − 2  
triangles. If P  is not convex, then there must be a vertex that has a reflex 
angle. A ray produced from this vertex must hit another vertex, creating 
a diagonal; otherwise the polygon would have infinite area. This diagonal 

1r ( )1 1,x y

2r

( )2 2,x y

3r
( )3 3,x y

FIGURE 1.5.4 Area of a triangle.

1r ( )1 1,x y

2r
( )2 2,x y

3r
( )3 3,x y

( ),x yr

FIGURE 1.5.5 Area of a triangle.
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divides the polygon into two sub-polygons. These two sub-polygons are 
either both convex or at least one is not convex. In the latter case, we repeat 
the argument, finding another diagonal and creating a new sub-polygon. 
Eventually, since the number of vertices is infinite, we end up triangulating 
the polygon. Moreover, the polygon can be triangulated in such a way that 
all triangles inherit the positive orientation of the original polygon but each 
neighboring pair of triangles have opposite orientations. Applying (1.12), 
we obtain that the area is

det
x x

y y
i j

i j













∑ ,

where the sum is over each oriented edge. Since each diagonal occurs 
twice, but having opposite orientations, the terms

det det
x x

y y

x x

y y
i j

i j

j i

j i













+












= 0

disappear from the sum and we are simply left with

 
1
2

1 2

1 2

2 3

2 3

1

1

det det det
x x

y y

x x

y y

x x

y y
n n

n n









 +









 + +






−

−






 +



















det

x x

y y
n

n

1

1

. 
n

We may use the software Maple™ in order to speed up computations 
with vectors. Most of the commands we will need are in the linalg package. 

For example, let us define two vectors, a


=










1
2

 and b


=










2
1

, and a matrix

A :=










1 2
3 4

. Let us compute their dot product, find a unit vector in the 

direction of a


, and the angle between the vectors, the determinant of a 
matrix A. (There must be either a colon or a semicolon at the end of each 
statement. The result will not display if a colon is chosen.) 

 �

 �

 �
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 �

 �

 �

 �

 �

We may also use MATLAB in order to speed up computations with 
vectors.

>> a = [1,2];

>> b = [2,1];

>> norm(a)

ans =

  2.2361

>> normalized = a/norm(a)

normalized =

  0.4472  0.8944

>> CosTheta = dot(a,b)/(norm(a)∗norm(b));

>> CosTheta = dot(a,b)/(norm(a)∗norm(b));

>> ThetaInDegrees = acos(CosTheta)∗180/pi

ThetaInDegrees =

  36.8699

>> A=[1 2;3 4]

A =

  1  2

  3  4

>> det (A)

ans =

  −2
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Exercises 1.5

1.5.1 Calculate

1. det
1 2
6 3

−









2. det
1 2
5 4











1.5.2 For what values of α , does 

1. det
1 1

1 1
0

+
−









 =

α
α

2. det
α

α
+ −

−








 =

4 5
1 2

0

1.5.3 Compute the det
cos sin
sin cos

θ θ
θ θ−









  for any real number.

1.5.4 Compute the det
cos sin
sin cos

θ θ
θ θ









  when 

1. θ π= / 4

2. θ π= / 3

1.5.5 Let k  be a number, and let A  be a 2 2×  matrix. How does 
det( )kA  differ from det( )A ?

1.5.6 Let matrix B  be formed from matrix A  by interchanging two 
rows. Prove then that det detA B( ) = − ( ).

1.5.7 Prove that if A  and B  are square matrices of the same size, then
det( ) det( )AB BA= .

1.5.8 Prove that if the sum of elements of each row (or column) of a 
square matrix A  zero, then det( )A = 0.

1.5.9 Let the vectors r1

��
=











a

b
 and r2

��
=











c

d
, and that the vector r3

��
 

obtained by rotating r1

��
 counterclockwise by π / 2  is r3

��
=

−









b

a
. 

Show that r r r r3 2 2

��
i
�� �� ��

= ( )D 1 , .
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1.5.10 Prove that the area of the parallelogram spanned by the vectors 

r1

��
=











a

b
 and r2

��
=











c

d
 is the D r r1

 

, 2( ) .

1.6 Parametric Curves on the Plane

Definition 1.6.1 Let a;b[ ] ⊆  . A parametric curve representation 

r of a curve Γ is function r: a;b[ ] →

2, with r (t)=
x t

y t

( )
( )









, and such that 

r a;b[ ]( )=Γ. 
r ( ) a is the initial point of the curve and r ( ) b  its terminal point. A 

curve is closed if its initial point and its final point coincide. The trace of the 
curve r is the set of all images of r , that is, Γ. If there exists t t1 2≠   such that
r r( ) ( ) pt t1 2= = , then p  is a multiple point of the curve. The curve is simple 
if curve has no multiple points. A closed curve whose only multiple points 
are its endpoints is called a Jordan curve.

Graphing parametric equations is a difficult art. A theory akin to the 
one studied for Cartesian equations in a first Calculus course has been 
developed. Our interest is not in graphing curves, but in obtaining suit-
able parameterizations of simple Cartesian curves. However, we mention 
in passing that Maple™ has excellent capabilities for graphing paramet-
ric equations. For example, the commands to graph the various curves in 
Figures 1.6.1 through 1.6.4 follow.

 �

 �

FIGURE 1.6.1 x t y t= =sin , cos .2 6 
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 �

FIGURE 1.6.3 x
t
t

y
t t

t
=

−
+

=
−
+

1
1 1

2

2

3

2
,  .

FIGURE 1.6.2 x t y tt t= =2 210 10/ /cos , sin .

 �
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FIGURE 1.6.4 x
t

y
t t

=
+( )

=
( ) +( )1

2

1

2

cos
,

sin cos
 .

 �

FIGURE 1.6.5 x t y t t= = ∈, , 2


Our main focus of attention is the following. Given a Cartesian curve 
with equation f x y,( ) = 0, we wish to find suitable parameterizations for 
them. That is, we want to find functions x t a t t b t: ( ), : ( )→ → y  and an 
interval I  such that the graphs of f x y,( ) = 0  and f a t b t t I( ), ( ) ,( ) = ∈0   
coincide. These parameterizations may differ in features, according to the 
choice of functions and the choice of intervals.

Example 1.6.1

Consider the parabola with Cartesian equation y x= 2. We will give vari-
ous parameterizations for portions of 
this curve.

1. If x t=  and y t= 2, then clearly
y t x= =2 2. This works for 
 every t∈, and hence the 
 parameterization 

x t y t t= = ∈, ,  2


,
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works for the whole curve. Notice 
that as t increases, the curve is tra-
versed from left to right.

2. If x t=  and y t= , then again

y t t x= = ( ) =
2

2. This works 

only for t ≥ 0, and hence the 

 parameterization 

x t y t t= = ∈ +∞[ [, , ;   0 ,

gives the half of the curve for which
x ≥ 0 . As t increases, the curve is tra-
versed from left to right.

3. Similarly, if x t= −  and y t= , 

then again y t t x= = ( ) =
2

2. This 

works only for t ≥ 0, and hence 

the parameterization

x t y t t= − = ∈ +∞[ [, , ;   0 ,

gives the half of the curve for which 
x ≥ 0. As t  increases, x  decreases, and 
so the curve is traversed from right to 
left.

4. If x t= cos  and y t t x= = ( ) =cos cos2 2 2. Both x  and y  are periodic 
with period 2π , and so this parameterization only agrees with the 
curve y x= 2  when − ≤ ≤1 1x . For t ∈[ ]0;π , the cosine decreases 
from 1 to −1 and so the curve is traversed from right to left in this 
interval.

The identities

cos sin , tan sec , cosh sinh2 2 2 2 2 21 1 1θ θ θ θ θ+ = − = − =    , are often 
useful when parametrizing quadratic curves.

FIGURE 1.6.7 x t y t t= − = ∈ +∞[ [, , ; . 0

FIGURE 1.6.8 x t= cos , y t= cos2 , t ∈[ ]0; .π

FIGURE 1.6.6 x t y t t= = ∈ +∞[ [, , ; . 0
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Example 1.6.2

Give two distinct parameterizations of the ellipse 
x y−( )

+
+( )

=
1

4

2

9
1

2 2

. 

1. The first parameterization must satisfy that as t  traverses the 
values in the interval 0 2; π[ ], one starts at the point (3, −2), 
traverses the ellipse once counterclockwise, finishing at (3, −2).

2. The second parameterization must satisfy that as t  traverses 
the interval [0; 1], one starts at the point (3, −2), traverses the 
ellipse twice clockwise, and returns to (3, −2).

 n Solution:
What formula do we know where a sum of two squares equals 1? We 

use a trigonometric substitution, a sort of “polar coordinates.” Observe that 
for t ∈[ ]0 2; π , the point cos ,sint t( )  traverses the unit circle once, starting 
at (1, 0) and ending there. Put

x
t x t

−
= ⇒ = +

1
2

1 2cos cos ,

and

y
t y t

+
= ⇒ = − +

2
3

2 3sin sin .

Then

x t y t t= + = − + ∈[ ]1 2 2 3 0 2cos , sin , ;    π

is the desired first parameterization.
For the second parameterization, notice that as t  traverses the inter-

val [0; 1], sin ,cos4 4π πt t( )  traverses the unit interval twice, clockwise, but 
begins and ends at the point (0, 1). To begin at the point (1, 0) we must 

make a shift: sin ,cos4
2

4
2

π
π

π
π

t t+





 +
















  will start at (1, 0) and travel 

clockwise twice, as t  traverses [0; 1]. Hence we may take 
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x t y t t= + +





 = − + +






 ∈[ ]1 2 4

2
2 3 4

2
0 1sin , cos , ;π

π
π

π
     

as our parameterization. n

Some classic curves can be described by mechanical means, as the 
curves drawn by a spirograph. We will consider one such curve.

Example 1.6.3

A hypocycloid is a curve traced out by a fixed point P  on a circle C  of 
radius ρ  as C  rolls on the inside of a circle with center at O  and radius

R . If the initial position of P  is 
R

0








, and θ  is the angle, measured coun-

terclockwise, with a ray starting at O  and passing through the center of C, 
which makes the x-axis, show that a parameterization of the hypocycloid is

x R
R

y R
R

= −( ) +
−( )









= −( ) +
−( )









ρ θ ρ
ρ

ρ

ρ θ ρ
ρ

ρ

cos cos ,

sin sin .

 n Solution: 
Suppose that starting from θ = 0, the centre ′O  of the small circle 

moves counterclockwise inside the larger circle by an angleθ, and the point 

P x y= ( ),  moves clockwise an angle φ. The arc length travelled by the cen-

tre of the small circle is R −( )ρ θ  radians. At then same time the point 

P  has rotated ρφ  radians, and so R −( ) =ρ θ ρφ . See Figure 1.6.9, where 

′O B  is parallel to the x-axis.

Let A  be the projection of P on the x -axis. Then ∠ = ∠ ′ =OAP OPO
π
2

, 

∠ ′ = − − ∠ = −OO P POAπ φ θ
π

φ,  
2

, and OP R= − − −( )( )sinρ π φ θ .

x OP POA R= ( ) ∠ = − − −( ) −





cos ( )sin cosρ π φ θ

π
φ

2
,

y R= − − −( ) −





( )sin sinρ π φ θ

π
φ

2 .
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Now,

x R

R

R

= − − −( ) −







= − +( )

=
−

( )sin cos

( )sin sin

( )
c

ρ π φ θ π φ

ρ φ θ φ
ρ

2

2

 

 oos cos

( )cos
( )

cos cos

( )c

θ φ θ

ρ θ ρ θ φ θ

ρ

− +( )( )

= − −
−

+ +( )( )
= −

2

2
2 

 

R
R

R oos ( ) cos cos .θ ρ θ φ φ− − +( )( )R

Also, 

cos cosθ φ π θ φ
ρ ρ

ρ
+( ) = − − −( ) = −

′
= −

−OO R
 

and 

cos cosφ
ρ θ

ρ
=

−( )









R
, and so

FIGURE 1.6.9 Construction of the hypocycloid.
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x R R R= −( ) − −( ) +( )( ) = −( ) +ρ θ ρ θ φ φ ρ θcos cos cos cos

R
R

−( ) +
−( )







ρ θ ρ

ρ θ
ρ

cos cos , as required. The identity for y is proved similarly. 

Particular examples appear in Figures 1.6.10 and 1.6.11. n

Given a curve Γ  how can we find its length? The idea, as seen in Figure 
1.6.12 is to consider the projections dx, dy  at each point. 

The length of the vector

dr = 
d
d

x

y








  

is

dr  = d dyx( ) + ( )2 2
.

Hence the length of Γ  is given by 

 dr  = d dy
Γ Γ∫ ∫ ( ) + ( )x 2 2

. (1.13)

Similarly, suppose that Γ  is a simple closed curve in 2. How do we 
find the (oriented) area of the region it encloses? The idea, as seen in Figure 
1.6.13, borrowed from finding areas polygons, is to split the region into tri-
angles, each of area

FIGURE 1.6.10 Hypocycloid with 
R = =5 1,  ρ . 
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FIGURE 1.6.11 Hypocycloid with 
R = =3 2,  ρ .

FIGURE 1.6.12 Length of a curve.

FIGURE 1.6.13 Area enclosed by a simple 
closed curve.

FIGURE 1.6.14 Example 1.6.4.

1
2

1
2

1
2

det det
x x x

y y y

x x

y y
x y y x

+
+









 =









 = −( )

d
d

d
d

d d ,

and to sum over the closed curve, obtaining a total oriented area of

 
1
2

1
2

det
x x

y y
x y y x

d
d

d d








 = −( )∫ ∫Γ Γ 

. (1.14)

Hence 
Γ∫ denotes integration around the closed curve.

Example 1.6.4

Let A B A B, , ,( )∈ > >

2 0 0. Find a parameterization of the ellipse 

Γ : , :x y
x
A

y
B

( )∈ + =









2
2

2

2

2
1 , 
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in Figure 1.6.14. Furthermore, find an integral expression for the 
perimeter of this ellipse and find the area it encloses.

 n Solution:
Consider the parameterization Γ : ,0 2 2π[ ] → , with 

x

y

A t

B t








 =











cos
sin

.

This is a parameterization of the ellipse, for

x
A

y
B

A t
A

B t
B

t t
2

2

2

2

2 2

2

2 2

2
2 2 1+ = + = + =

cos sin
cos sin .

Notice that this parameterization goes around once the ellipse 
counterclockwise.

The perimeter of the ellipse is given by

dr  =   


Γ∫ ∫ +A t B t dt2 2 2 2
0

2
sin cos

π

The above integral is an elliptic integral, and we do not have a closed 
form for it (in terms of the elementary functions studied in Calculus I). We 
will have better luck with the area of the ellipse, which is given by

 

1
2

1
2

x y y x A t B t B t A td d  d  d

       

−( ) = ( ) − ( )( )∫ ∫Γ Γ 

cos sin sin cos

                    

            

= +( )∫
1
2

2 2
0

2
AB t AB t dtcos sin

π

               

                         

=

=

∫
1
2 0

2
AB dt

AB

π

π .

 

n

Example 1.6.5

Find a parametric representation for the astroid 

Γ : , : ,/ /x y x y( )∈ + ={ }

2 2 3 2 3 1

in Figure 1.6.15. 
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Find the perimeter of the astroid and the area 
it encloses.

 n Solution:

Take 

 
x

y

t

t








 =











cos
sin

3

3

with t ∈[ ]0 2; π . Then 

x y t t2 3 2 3 2 2 1/ / cos sin+ = + =

The perimeter of the astroid is

d  d

         

r t t t t t

t t

Γ
∫ ∫

∫

= +

=

9 9

3

4 2 4 2
0

2

0

2

cos sin sin cos

sin cos

π

π
dd

         d

         d

        

t

t t

t t

=

=

=

∫

∫

3
2

2

6 2

0

2

0

2

sin

sin
/

π

π

66.

The area of the astroid is given by

1
2

1
2

3 3 3 3x y y x t t t td d  d  d

        

−( ) = ( ) − ( )( )∫ ∫Γ 

cos sin sin cos

                   d

     

= +( )∫
1
2

3 34 2 4 2
0

2
cos sin sin cost t t t t

π

                     d

                 

= ( )∫
3
2 0

2 2

sin cost t t
π

         d

                         

= ( )

= −

∫
3
8

2

3
16

1

0

2 2

sin

c

t t
π

oos

.

4

3
8

0

2
t t( )

=

∫
π

π

 d

                         

FIGURE 1.6.15 Example 1.6.5.
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We can use Maple™ to calculate the above integrals. For example, if 

x y t t, cos ,sin( ) = ( )3 3 , to compute the arc length we use the path integral 

command and to compute the area, we use the line integral command with 

the vector field 
−









y

x

/
/

2
2

. 

 �

 �

 �

      n

We include here for convenience, some Maple™ commands to compute 
various arc lengths and areas.

Example 1.6.6

To obtain the arc length of the path in Figure 1.6.16, we type

 �

 �

FIGURE 1.6.16 Line path.
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To obtain the arc length of the path in Figure 1.6.17, we type

FIGURE 1.6.17 Arc of circle of 
radius 3, angle π θ π

6 5
≤ ≤ .

 �

 �

To obtain the area inside the curve in Figure 1.6.18, we type 

 �

Exercises 1.6

1.6.1 A curve is represented parametrically by x t t t( )= −3 2 ,  

y t t t( ) = +3 2 . Find its Cartesian equation.

FIGURE 1.6.18 Area inside the 
curve x t t= + +1 1( cos )(cos ),
 y t t= + +2 1( cos )(sin ).
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1.6.2 Give an implicit Cartesian equation for the parametric 
representation

x t
t

t
y

t
t

( ) , .=
+

=
+

2

5

3

51 1
 

1.6.3 Let a, b, c, d be strictly positive real constants. In each case give 
an implicit Cartesian equation for the parametric representation 
and describe the trace of the parametric curve.

1. x at b y ct d= + = +,  

2. x t y= =cos , 0

3. x a t y b t= =cosh , sinh

4. x a t y b t t= = ∈ −





sec , tan , ; 
π π
2 2

1.6.4 Parameterize the curve y x= log cos  for 0
3

≤ ≤x
π

. Then find its 
arc length. 

1.6.5 Describe the trace of the parametric curve 

x

y

t

t
t









 =

+








 ∈[ ]

sin
sin

, ; .
2 1

0 4 π  

1.6.6 Consider the plane curve defined implicitly by x y+ = 1. Give 

a suitable parameterization of this curve, and find its length. The 
graph of the curve appears in Figure 1.6.19.

1.6.7 Consider the graph given parametrically by

x t t y t t( ) , ( )= + = −3 21 1 . Find the area under the graph, over the
x -axis, and between the lines x = 1  and x = 2 . 

FIGURE 1.6.19 Exercise 1.6.6.
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1.6.8 Find the arc length of the curve given parametrically by x t t( ) = 3 2, 
y( )t t= 2 3 for 0 1≤ ≤x  .

1.6.9 Let C  be the curve in 2  defined by 

x t
t

y t
t

t( ) , ( ) , ; .
/

= =
+( )

∈ − +





2 3 2

2
2 1

3
1
2

1
2

    

Find the length of this curve.

1.6.10 Find the area enclosed by the curve

x t t y t t t( ) sin , ( ) cos sin= = ( ) +( )3 21 .  

The curve appears in Figure 1.6.20.

1.6.11 Let C  be the curve in 2  defined by

x t
t
t

y t
t
t

t( ) , ( ) , \=
+

=
+

∈ −{ }3
1

3
1

1
3

2

3
    , 

which you may see in Figure 1.6.21. Find the area enclosed by the loop 
of this curve.

1.6.12 Let P  be a point at a distance d  from the centre of a circle of 
radius ρ. The curve traced out by P  as the circle rolls along a 
straight line, without slipping, is called a cycloid, as shown in 
Figure 1.6.22. Find a parameterization of the cycloid.

1.6.13 Find the arc length of the arc of the cycloid 

x t t y t t= −( ) = −( ) ∈[ ]ρ ρ πsin , cos , ;   1 0 2 .

1.6.14 Find the length of the parametric curve given by

x e t y e t tt t= = ∈[ ]cos , sin , ;      0 π . 

1.6.15 A shell strikes an airplane flying at height h above the ground. It 
is known that the shell was fired from a gun on the ground with a 

FIGURE 1.6.20 Exercise 1.6.10.
FIGURE 1.6.21 Exercise 
1.6.11.

FIGURE 1.6.22 Exercise 
1.6.12, Cycloid.
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muzzle velocity of magnitude V , but the position of the gun and 
its angle of elevation are both unknown. Deduce that the gun 
is situated within a circle whose centre lies directly below the 
airplane and whose radius is 

V V gh

g

2 2−
.

1.6.16 The parabola y px2 4= −  rolls without slipping around the 

parabola y px2 4= . Find the equation of the locus of the vertex of 
the rolling parabola.

1.7 Vectors in Space

Definition 1.7.1 The 3-dimensional Cartesian Space is defined and 

denoted by    

3 = = ( ) ∈ ∈ ∈{ }r x y z x y z, , : , , . 

In Figure 1.7.1 we have pictured the point (2, 1, 3).

Having oriented the z-axis upwards, we have a choice for the orientation 
of the x  and y-axis. Figures 1.7.2 and 1.7.3 show the right-handed system 
and the right-hand, respectively. While, Figure 1.7.4 shows the left-handed 

FIGURE 1.7.2 A Right-
handed system. FIGURE 1.7.3 Right-hand.FIGURE 1.7.1 A point in space.
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system. Here, we adopt the convention right-handed 
coordinate system, as in Figure 1.7.2. 

Let us explain. In analogy to 2 we put

i


=
















1
0
0

, j


=
















0
1
0

, k


=
















0
0
1

,

and observe that

r i j k= ( ) = + +x y z x y z, ,
  

.

Most of what we did in 2  transfers to 3  without major complications.

Definition 1.7.2 The dot product of two vectors a


 and b


 in 3 is 

a  b
�
i
�

= + +a b a b a b1 1 2 2 3 3.

The norm of a vector a


 in 3 is

a a  a
� �

i
�

= = ( ) + ( ) + ( )a a a1

2

2

2

3

2
. 

Just as in 2, the dot product satisfies a b a b
�
i
� � �

= cosθ , where θ π∈[ ]0;  

is the convex angle between the two vectors.

The Cauchy-Schwarz-Bunyakovsky Inequality takes the form 

 a b a b
�
i
� � �

≤ ⇒ + + ≤ + +( ) + +( )a b a b a b a a a b b b1 1 2 2 3 3 1
2

2
2

3
2 1 2

1
2

2
2

3
2 1 2/ /

,

equality holding if an only if the vectors are parallel.

Example 1.7.1

Let x y z, ,  positive real numbers such that x y z2 2 24 9 27+ + = . Maximize 
x y z+ + . 

FIGURE 1.7.4 Left-
handed system.
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 n Solution:
Since x y z, , are positive, x y z x y z+ + = + + . By Cauchy’s Inequality,

x y z x y z x y z+ + = + 





 + 






 ≤ + +( ) + +






2

1
2

3
1
3

4 9 1
1
4

1
9

2 2 2 1 2/
11 2

27
7
6

7 3
2

/

.

 

= 





 =

Equality occurs if and only if

x

y

z

x y z2
3

1
1 2
1 3

4 9 4
2

2 2
















=
















⇒ = = = ⇒ + +λ λ
λ λ

λ
λ λ

/
/

, ,
99

27
18 3

7
= ⇒ = ±λ  .

Therefore for a maximum we take

x y z= = =
18 3

7
9 3
14

2 3
7

, , .

Definition 1.7.3 Let a be a point in3 and let v 0
 

≠   a vector in 3.  
The parametric line passing through a  in the direction of v



 is the set 

r r a v∈ = +{ }�
�

3 : t .

Example 1.7.2

Find the parametric equation of the line passing through 
1
2
3

















  

and  
−
−

















2
1

0
.

 n Solution:

The line follows the direction 
1 2
2 1

3 0

3
3
3

− −( )
− −( )

−

















=















.
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The desired equation is 
x

y

z

t
















=
















+
















1
2
3

3
3
3

. 

Given two lines in space, one of the following three situations might 
arise: (i) the lines intersect at a point, (ii) the lines are parallel, (iii) 
the lines are skew (non-parallel, one over the other, without inter-
secting, lying on different planes). See Figure 1.7.5.

Consider now two non-zero vectors a


 and b


in 3. If a b
 

|| , then the set 

s t s ta b a
� �

� �
�

�+ ∈ ∈{ } = ∈{ }: , :λ λ ,

which is a line through the origin. 
Suppose now that a



 and b


 are not parallel. 
We saw in the preceding sections that if the 
vectors were on the plane, they would span 
the whole plane 2. In the case at hand the 
vectors are in space, they still span a plane, 
passing through the origin. Thus 

s t s ta b a b
� �

� �
� �

+ ∈ ∈{ }: , , ||

is a plane passing through the origin. We will 
say, abusing language that two vectors are copla-
nar if there exists bi-point representatives of the vector that lie on the same 
plane. We will say, again abusing language, that a vector is parallel to a specific 
plane or that it lies on a specific plane if there exists a bi-point representative 
of the vector that lies on the particular plane. All the above gives the following 
result.

Theorem 17.1: Let v


, w
��

 in 3  be non-parallel vectors. Then every vector 

u


 of the form u v w
� � ��

= +a b , where a b,  are arbitrary scalars, is coplanar with 

both v


and w
��

. Conversely, any vector t


 coplanar with both v


 and w
��

 can be 

uniquely expressed in the form t v w
� � ��

= +p q . See Figure 1.7.6.

FIGURE 1.7.5  1 2||  . 1  and 3  

are skew.

! 
TIP
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From the above theorem, if a 
vector a



 is not a linear combination 
of two other vectors b



, c


, then linear 
combinations of these three vectors 
may lie outside the plane containing 
b


, c


. This prompts the following 
theorem.

Theorem 1.7.2: Three vectors 
a


, b


, c


 in 3  said to be linearly 
independent  if 

α β γ α β γa b c
   

+ + = ⇒ = = =0 0. 

Any vector in 3 can be written as a linear combination of three linearly 
independent vectors in3.

A plane is determined by three non-collinear points. Suppose that a, 

b, and c  are non-collinear points on the same plane and that r = 
x

y

z

















 is 

another arbitrary point on this plane. Since a, b, and c are non-collinear, ab
���

 

and ac
���

, which are coplanar, are non-parallel. Since ax
���

 also lies on the plane, 
we have by theorem 1, that there exist real numbers p, q  with 

ar ab ac
��� ��� ���

= +p q .

By Chasles’ Rule,

r a b a c a
     

= + −( ) + −( )p q ,

is the equation of a plane containing the three non-collinear points a, b, 

and c, where a


, b


, and c


 are the position vectors of these points. Thus we 
have the following theorem.

Theorem 1.7.3: Let u


 and v


 be linearly independent vectors. The 
parametric equation of a plane containing the point a, and parallel to the vectors 
u


 and v


is given by 

r a u v
   

− = +p q .

FIGURE 1.7.6 Theorem 1.7.1.
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Component-wise this takes the for

x a pu qv

y a pu qv

z a pu qv

− = +

− = +

− = +

1 1 1

2 2 2

3 3 3

,

,

.

 

Multiplying the first equation by u v u v2 3 3 2− , the second by u v u v3 1 1 3− ,  

and the third by u v u v1 2 2 1− , we obtain,

u v u v x a u v u v pu qv

u v u v y a u
2 3 3 2 1 2 3 3 2 1 1

3 1 1 3 2

−( ) −( ) = −( ) +( )
−( ) −( ) =

,

33 1 1 3 2 2

1 2 2 1 3 1 2 2 1 3 3

v u v pu qv

u v u v z a u v u v pu qv

−( ) +( )
−( ) −( ) = −( ) +(

,

)).

Adding gives,

u v u v x a u v u v y a u v u v z a2 3 3 2 1 3 1 1 3 2 1 2 2 1 3 0−( ) −( ) + −( ) −( ) + −( ) −( ) = .

Put

a u v u v b u v u v c u v u v= − = − = −2 3 3 2 3 1 1 3 1 2 2 1, , ,  

and 

d a u v u v a u v u v a u v u v= −( ) + −( ) + −( )1 2 3 3 2 2 3 1 1 3 3 1 2 2 1 .

Since v


 is linearly independent from u


, not all of a,b,c  are zero. This gives the 
following theorem.

Theorem 1.7.4: The equation of the plane in space can be written in the form

ax by cz d+ + = ,

which is the Cartesian equation of the plane. Here a b c2 2 2 0+ + ≠ , that 

is, at least one of the coefficients is non-zero. Moreover, the vector n


=
















a

b

c

 

is normal to the plane with Cartesian equation ax by cz d+ + = . See  
Figure 1.7.7.
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Proof:
We have already proved the first statement. For the second statement, 

observe that if u


 and v


 are non-parallel vectors and r a u v
   

− = +p q  is 

the equation of the plane containing the point a  and parallel to the vec-

tors u


 and v


, then if n


 is simultaneously perpendicular to u


 and v


 then 

r a n
� �

i
�

−( ) = 0  for u n v n
�
i
� �

i
�

= =0 . Now, since at least one of a b c, ,  is non-

zero, we may assume a ≠ 0 . The argument is similar if one of the other let-

ters is non-zero and a = 0. In this case we can see that

x
d
a

b
a

y
c
a

z= − − .

Put y s=  and z t= . Then

x
d
a

y

z

s

b
a

t

c
a

−



















=

−



















+

−















1
0

0
1






, 

is a parametric equation for the plane. We have 

a
b
a

b c a
c
a

b c−





 + ( ) + ( ) = −






 + ( ) + ( ) =1 0 0 0 1 0, ,    

FIGURE 1.7.7 Theorem 1.7.4.
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and so 
a

b

c

















 is simultaneously perpendicular to 

−



















b
a

1
0

 and 

−



















c
a

0
1

, prov-

ing the second statement. n

Example 1.7.3

The equation of the plane passing through the point 
1
1

2
−

















 and normal 

to vector 
−















3
2
4

 is 

− −( ) + +( ) + −( ) = ⇒ − + + =3 1 2 1 4 2 0 3 2 4 3x y z x y z  .  

Example 1.7.4

Find both the parametric equation and the Cartesian equation of the 

plane parallel to the vectors 

1
1
1
















 and 

1
1
0

















, and passing through the point 

0
1

2
−

















.

 n Solution:
The desired parametric equation is 

x

y

z

s t+
−

















=
















+
















1
2

1
1
1

1
1
0

.
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This gives

s z t y s y z y z= − = + − = + − + = − +2 1 1 2 3,      

and
x s t z y z y= + = − + − + = +2 3 1.  

Hence the Cartesian equation is x y− = 1.

Definition 1.7.4 If n


 is perpendicular to plane Π1  and ′n
���

 is 

perpendicular to plane Π2, the angle between the two planes is the angle 

between the two vectors n


 and ′n
���

. n

Example 1.7.5

1. Draw the intersection of the plane z x= −1  with the first octant.

2. Draw the intersection of the plane z y= −1  with the first octant.

3. Find the angle between the planes z x= −1  and z y= −1 .

4. Draw the solid S  which results from the intersection of the 
planes z x= −1  and z y= −1  with the first octant.

5. Find the volume of the solid S.

 n Solution:

1. This appears in Figure 1.7.8.

FIGURE 1.7.8 The plane z x= −1 .
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2. This appears in Figure 1.7.9.

FIGURE 1.7.9 The plane z y= −1 .

3. The vector 
1
0
1

















 is normal to the plane x z+ = 1, and the 

vector 
0
1
1

















 is normal to the plane y z+ = 1. If θ  is the angle 

between these two vectors, then 

cos cosθ θ θ
π

=
⋅ + ⋅ + ⋅

+ ⋅ +
⇒ = ⇒ =

1 0 0 1 1 1
1 1 1 1

1
2 32 2 2 2

.

4. This appears in Figure 1.7.10.

FIGURE 1.7.10 Solid bounded by the 
planes z x= −1  and z y= −1  in the first 
octant.
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5. The resulting solid is a pyramid with square base of area
A = ⋅ =1 1 1 . Recall that the volume of a pyramid is given by 

the formula V
Ah

=
3

, where A is area of the base of the pyra-

mid and h  is its height. Now, the height of this pyramid is 

clearly 1, and hence the volume required is 1
3

. 
n

Exercises 1.7

1.7.1 Vectors a


, b


 satisfy a b a b
   

= = + =13 19 24, , . Find a b
 

− .

1.7.2 Find the equation of the line passing through 
1
2
3

















 in the direction 

of  
−
−

















2
1

0
.

1.7.3 Find the equation of plane containing the point 
1
1
1

















 and 

perpendicular to the line x t y t z t= + = − = −1 2 1, , .  

1.7.4 Find the equation of plane containing the point 
1
1
1

−
−

















 and 

containing the line x y z= =2 3 .

1.7.5 (Putnam Exam 1984) Let A  be a solid a b c× ×  rectangular 
brick in three dimensions, where a b c> > >0 0 0, , . Let B  be 
the set of all points which are at distance at most 1 from some 

point of A  (in particular, A B⊆ ). Express the volume of B  as a 

polynomial in a b c, , .

1.7.6 It is known that a b c
  

= = =3 4 5, ,  and that a b c
   

+ + = 0. Find

a b b c c a
�
i
� �
i
� �
i
�

+ + .
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1.7.7 Find the equation of the line perpendicular to the plane 

ax a y a z a+ + = ≠2 3 0 0,  and passing through the point 
0
0
1
















.

1.7.8 Find the equation of the plane perpendicular to the line 

ax by cz abc= = ≠, 0 and passing through the point 
1
1
1

















 in3.

1.7.9 Find the (shortest) distance from the point 1 2 3, ,( )  to the plane
x y z− + = 1.

1.7.10 Determine whether the lines 

L

x

y

z

t1

1
1
1

2
1
1

:
















=
















+















,

L

x

y

z

t2

0
0
1

2
1

1
:
















=
















+ −















,

Intersect. Find the angle between them.

1.7.11 Let a b c, ,  be arbitrary real numbers. Prove that

a b c a b c2 2 2 2 4 4 43+ +( ) ≤ + +( ).

1.7.12 Let a b c> > >0 0 0, ,  be the lengths of the sides of ∆ABC .  

(Vertex A  is opposite to the side measuring a, etc.) 
Recall that by Heron’s Formula, the area of this triangle is 

S a b c s s a s b s c, ,( ) = −( ) −( ) −( ), where s
a b c

=
+ +

2
 is the 

semiperimeter of the triangle. Prove that f a b c
S a b c

a b c
, ,

, ,( ) =
( )
+ +2 2 2

 

is maximized when ∆ABC is equivalent, and find this maximum.
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1.7.13 Find the Cartesian equation of the plane passing through

1
0
0

0
1
0

0
0
1

















































, ,  and . Draw this plane and its intersection with the 

first octant. Find the volume of the tetrahedron with vertices at

0
0
0

1
0
0

0
1
0

0
0
1





























































, , ,  and 

.

1.7.14 Prove that there do not exist three unit vectors in 3  such that 

the angle between any two of them be >
2
3
π

.

1.7.15 Let r a n
� �

i
�

−( ) = 0  be a plane passing through the point a  and 

perpendicular to vector n


. If b  is not a point on the plane, then 

the distance from b  to the plane is

a b n

n

� �
i
�

�
−( ) .

1.7.16 (Putnam Exam 1980) Let S  be the solid in three-dimensional 

space consisting of all points 
x

y

z

















 satisfying the following system 

of six conditions:

x y z

x y z

x y z

x z

≥ ≥ ≥
+ + ≤

+ + ≤
+ ≤

0 0 0
11

2 4 3 36
2 3 24

, , ,
,

,
.

    

 

Determine the number of vertices and the number of edges of S.

MVC_Musa_CH01-P1.indd   76 11/17/2014   4:17:08 PM



Vectors and Parametric curVes • 77

1.8 Cross Product

We now define the standard cross product in 3 as a product satisfying 
the following properties.

Definition 1.8.1 Let x y z
  

, ,  be vectors in 3, and let α ∈  be a scalar. 
The cross product (×) is a closed binary operation satisfying

1. Anti-commutativity: 

x y y x
   

× = − ×( )
2. Bilinearity: 

x z y x y z y
      

+( )× = ×( ) + ×( )  and x z y x z x y
      

× +( ) = ×( ) + ×( )
3. Scalar homogeneity:

α α αx y x y x y
     ( )× = × ( ) = ×( )

4. Cross product of a vector with itself is always zero:

x x
  

× = 0

5. Right-hand Rule:
i j k   j k i    k i j
        

× = × = × =, ,

It follows that the cross product is an operation that, given two non-
parallel vectors on a plane, allows us to “get out” of that plane.

Example 1.8.1

Find 
1
0
3

0
1
2−

















×















.

 n Solution: 
We have 

i k j k i j i k k j k k

              

� � � � � � � � � � � �
−( )× +( ) = × + × − × − ×3 2 2 3 6

             k j i

                          i

= − + +

=

� � � �

�
2 3 60

3 −− +2j k.
� ��
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Hence

 
1
0
3

0
1
2

3
2

1−

















×
















= −















.  

n

The cross product of vectors in 3  is not associative, since 

i i j i k = j
     

× ×( ) = × −

but
i i j j = 
     

×( )× = ×0 0 .

Operating as in Example 1.8.1, we obtain

Theorem 1.8.1: Let x


=
















x

x

x

1

2

3

 and y


=
















y

y

y

1

2

3

 be vectors in 3. Then, 

x y i j k
    

× = −( ) + −( ) + −( )x y x y x y x y x y x y2 3 3 2 3 1 1 3 1 2 2 1 .

Proof:

Since 
   

 



i i = j j = k k = 0× × × , we only worry about the mixed products, 
obtaining, 

x y i j k i j k

       i j

       

 

× = + +( )× + +( )
= × +

x x x y y y

x y x

1 2 3 1 2 3

1 2 11 3 2 1 2 3 3 1 3 2y x y x y x y x y

x

i k j i j k k i k j

       

         

× + × + × + × + ×

= 11 2 1 2 2 3 3 2 3 1 1 3y y x x y x y x y x y−( ) × + −( ) × + −( ) ×

=

i j j k k i

       

     

xx y y x x y x y x y x y1 2 1 2 2 3 3 2 3 1 1 3−( ) + −( ) + −( )k i j 
  

,

proving the theorem.  n

Using the cross product, we may obtain a third vector simultaneously 
perpendicular to two other vectors in space.

Theorem 1.8.2: x x y
  

⊥ ×( )  and y x y
  

⊥ ×( ), that is, the cross product of 
two vectors is simultaneously perpendicular to both original vectors.

Proof:
We will only check the first assertion, the second verification is 

analogous.

! 
TIP
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� i � �
� � �

i
�

x x y i + j + k

i +

×( ) = ( )
−( ) −(

x x x

x y x y x y x y

1 2 3

2 3 3 2 3 1 1 3 )) −( )( )
= − +

� �
j + k

                

x y x y

x x y x x y x x y
1 2 2 1

1 2 3 1 3 2 2 3 1 −− + −

=

x x y x x y x x y2 1 3 3 1 2 3 2 1

0                ,

 

Completing the proof.  n

Theorem 1.8.3: 
� � � �i�

� �i
� �

a b c a c b a b c × ×( ) = ( ) − ( ) . 

Proof:
� � � � � �

� �
a b c i + j k

i j

× ×( ) = +( )
× −( ) + −( )
a a a

b c b c b c b c

1 2 3

2 3 3 2 3 1 1 3 ++ −( )( )
= −( ) − −

b c b c

a b c b c a b c b

1 2 2 1

1 3 1 1 3 1 1 2

�

�
k 

               k 22 1

2 2 3 3 2 2 1 2 2 1

3 2 3 3 2

c

a b c b c a b c b c

a b c b c

( )
− −( ) −( )
+ −( )

�

� �

�

j

k + i

 j −− −( )
+ +( ) +

a b c b c

a c a c a c b b

3 3 1 1 3

1 1 2 2 3 3 1

�

�
i 

                = i 22 3

1 1 2 2 3 3 1 2 3

� �

� � �
j i

i j i

             

+( )
+ − − −( ) + +( )

b

a b a b a b c c c

   a c b a b c ,= ( ) − ( )�i�
� �i

� �

completing the proof.  n

Theorem 1.8.4: Let x y
� ��, ;( )∈[ ]0 π  be the convex angle between two 

vectors x


 and y


. Then 

x y x  y  x y
� � � � � ��× = ( )sin , .

See Figure 1.8.1.

FIGURE 1.8.1 Theorem 1.8.4.
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Proof:
We have 

x y
� �× = −( ) + −( ) + −( )

= −

x y x y x y x y x y x y

y y x y x
2 3 3 2

2

3 1 1 3

2

1 2 2 1

2

2
3
2

2 3 32 yy z y z y x y x y x y x y

x y x y y y
2

2
2
2 2

1
2

3 1 1 3
2

3
2 2

2
2

1 2 2 1
2

1
2

2

2

+ + − + +

− +

          

         x

= + +( ) + +( ) − + +( )
=

x y z y y y x y x y x y2 2 2
1
2

2
2

3
2

1 1 2 2 3 3

2

�� � �
i
�

� � � � � ��

2 2 2

2 2 2 2 2

y x y

         x y x y x y

        

− ( )
= − ( )cos ,

  x y x y= ( )� � � ��2 2 2sin , ,

where the theorem follows.  n

Theorem 4 has the following geometric significance: x y
 

×  is the area 

of the parallelogram formed when the tails of the vectors are joined. See 
Figure 1.8.2.

The following corollaries easily follow from Theorem 1.8.4.

Corollary 1.8.1: Two non-zero vectors x


, y


 satisfy x y
  

× = 0  if and only 

if they are parallel.

FIGURE 1.8.2 Area of a parallelogram.
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Corollary 1.8.2 (Lagrange’s Identity): 

x y x y x y
� � � � �

i
�

× = − ( )2 2 2
.

The following result mixes the dot and the cross product.

Theorem 1.8.5: Let a b c
  

, , , be linearly independent vectors in 3. The 
signed volume of the parallelepiped spanned by them is a b c

� �
i
�

×( ) .
See Figure 1.8.3.

Proof:
The area of the base of the parallelepiped is the area of the parallelo-

gram determined by the vectors a


 and b


, which has area a b
 

× . The alti-

tude of the parallelepiped is c


cosθ  where θ  is the angle between c


 and 

a b
 

× . The volume of the parallelepiped is thus

� � � � � i�a b c a b c,× = ×( )cosθ

proving the theorem. 

FIGURE 1.8.3 Theorem 1.8.5. n
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Since we may have used any of the faces of the parallelepiped, it fol-
lows that

� � i �
� � i � � � i

�
a b×( ) = ×( ) = ×( )  c b c   a c a   b.

In particular, it is possible to “exchange” the cross and dot products:
� i
� � � � i �a  b c a b   c×( ) = ×( )

Example 1.8.2

Consider the rectangular parallelepiped ABCDD C B A′ ′ ′ ′, see Figure 
1.8.4 with vertices A 2 0 0, ,( ), B 2 3 0, ,( ), C 0 3 0, ,( ), D 0 0 0, ,( ), ′( )D 0 0 1, , ,  

′( )C 0 3 1, , , ′( )B 2 3 1, , , ′( )A 2 0 1, , . Let M  be the midpoint of the line seg-

ment joining the vertices B  and C.

1. Find the Cartesian equation of the plane containing the points A,  
′D , and M.

2. Find the area of ∆AD M′ .

3. Find the parametric equation of the line AC′
� ����

.

! 
TIP

FIGURE 1.8.4 Example 1.8.2.
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4. Suppose that a line through M  is drawn cutting the line segment 
AC′[ ]  in N  and the line DD′

� ����
 in P. Find the parametric equation 

of MP
� ���

.

 n Solution: 
1. Form the following vectors and find their cross product:

AD   AM AD A′ =
−















=
−















⇒ ′×
� ���� � ��� � ����2

0
1

1
3
0

, MM
� ���

=
−
−
−

















3
1
6

.

The equation of plane is thus

x

y

z

x y z

−
−
−

















•
−
−
−

















= ⇒ −( ) + ( ) + = ⇒
2
0
0

3
1
6

0 3 2 1 6 0 3 xx y z+ + =6 6.

2. The area of the triangle is

AD AM
.

′×
= + + =

� ���� � ���

2
1
2

3 1 6
46
2

2 2 2

3. We have AC′ =
−















� ���� 2
3
1

, and hence the line AC′
� ����

 has paramet-

ric equation 

x

y

z

t x t y t z
















=
















+
−















⇒ = − = =
2
0
0

2
3
1

2 2 3, , tt.

4. Since P  in on the z -axis, P

z

=
′

















0
0  for some real number 

′ >z 0. The parametric equation of the line MP
� ���

 is thus 

x

y

z

s

z

x s y s
















=
















+
−
−

′

















⇒ = − = −
1
3
0

1
3 1 3 3, ,, .z sz= ′
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Since N  is on both MP
� ���

 and AC′
� ����

, we must have 

2 2t 1 s, 3t 3 3s, t sz .′− = − = − =

Solving the first two equations gives s t= =
1
3

2
3

, . Putting this into the 

third equation, we deduce ′ =z 2. Thus P =
















0
0
2

 and the desired equation is

 
x

y

z

s x s y s z s
















=
















+ [ ] ⇒ = − = − =
1
3
0

2 1 3 3 2, , .     

n

Exercises 1.8

1.8.1 Prove that 
a b a b a b
     

−( )× +( ) = ×2 .

1.8.2. Prove that x x
  

× = 0  follows from the anti-commutativity of 
the cross product.

1.8.3. If b a
 

−  and c a
 

−  are parallel and it is known that c a i j
   

× = −  
and a b j k

   

× = + , find b c
 

× .

1.8.4. Redo Example 1.7.4 (Section 1.7), that is, find the Cartesian 

equation of the plane parallel to the vectors 
1
1
1

















 and 
1
1
0
















, 

smmusaand passing through the point 0 1 2, ,−( ) , by finding a 
normal to the plane.

1.8.5. Find the equation of the plane passing through the points 
a a, ,0( ), −( )a, ,1 0 , and 0 1 2, , a( )  in 3.
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1.8.6. Let a∈. Find a vector of unit length simultaneously 

perpendicular to v


= −
















0
a

a

 and w
��

=
















1

0
a .

1.8.7. (Jacobi’s Identity) Let a


, b


, c


 be vectors in 3. Prove that 

a b c b c a c a b
        

× ×( ) + × ×( ) + × ×( ) = 0.

1.8.8. Let x x
�
�∈ =3 1, . Find x i x j x k

     

× + × + ×
2 2 2

.

1.8.9. The vectors a b
 

,  are constant vectors. Solve the equation

a x b b x a
     

× ×( ) = × ×( ). 
1.8.10. Let a



 and b


 be vectors in 3  and k  be a scalar, prove that 

k k ka b a b a b
     

×( ) = × = × .

1.8.11. Prove that the position vectors a b  and c
� ��� �
, ,  of 3  all lie in a 

plane if and only if a b c
�
i
� �

×( ) = 0.

1.8.12. The vectors a b c
  

, ,  are constant vectors. Solve the system of 
equations
2 3x y a b   y x a c
       

+ × = + × =, .  

1.8.13. Let a b c d
   

, , ,  be vectors in 


3. Prove the following vector 
identity,

a b c d a c b d a d b c
� �

i
� � �

i
� �
i
� �

i
� �
i
�

×( ) ×( ) = ( )( ) − ( )( ).
1.8.14. Let a b c d

   

, , ,  be vectors in 3. Prove that 

b c a d c a b d a b c d
� �

i
� � � �

i
� � � �

i
� �

×( ) ×( ) + ×( ) ×( ) + ×( ) ×( ) = 0.

1.8.15. Consider the plane Π  passing through the points 
A B6 0 0 0 4 0, , , , , ,( ) ( )  and C 0 0 3, ,( ), as shown in Figure 1.8.5 
The plane Π  intersects a 3 3 3× ×  cube, one of whose 
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vertices is at the origin and that has three of its edges on the 
coordinate axes, as in the figure. This intersection forms a 
pentagon CPQRS.

1. Find CA CB
� ��� � ���

× .

2. Find CA CB
� ��� � ���

× .

3. Find the parametric equation of the line LCA  joining C  and A, 
with a parameter t∈.

4. Find the parametric equation of the line LDE joining D and E,  
with a parameter s∈.

5. Find the intersection point between the lines LCA  and LDE.

6. Find the coordinates of the points P, Q, R, and S.

7. Find the area of the pentagon CPQRS.

FIGURE 1.8.5 Exercise 1.8.15.

1.9 Matrices in Three Dimensions

We will briefly introduce 3 3×  matrices. Most of the material will flow 
like that for 2 2×  matrices.

Definition 1.9.1 A linear transformation T : 

3 3→  is a function such 
that 
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T T T T Ta b a b           a a+( ) = ( ) + ( ) ( ) = ( ), λ λ ,

for all points a b,  in 3  and all scalars λ. Such a linear transformation 

has a 3 3×  matrix representation whose columns are the vectors T Ti j( ) ( ), , 

and T k( ).

Example 1.9.1

Consider L : 

3 3→ , with 

L

x

x

x

x x x

x x x

x

1

2

3

1 2 3

1 2 3

3

































=
− −
+ +
















.

1. Prove that L  is a linear transformation.

2. Find the matrix corresponding to L  under the standard basis.

 n Solution:
1. Let α ∈  and let u,v  be points in 3. Then

L u v L

u v

u v

u v

u v u v

+( ) =
+
+
+

































=

+( ) − +(
1 1

2 2

3 3

1 1 2 2 )) − +( )
+( ) + +( ) + +( )

+

















u v

u v u v u v

u v

3 3

1 1 2 2 3 3

3 3

              =
− −
+ +

















+
− −
+ +








u u u

u u u

u

v v v

v v v

v

1 2 3

1 2 3

3

1 2 3

1 2 3

3










=
































+




             L

u

u

u

L

v

v

v

1

2

3

1

2

3





























= ( ) + ( )             u vL L ,

and also
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L L

u

u

u

u u

α
α
α
α

α α

u

          

( ) =
































=

( ) − ( )

1

2

3

1 2 −− ( )
( ) + ( ) + ( )

















=
− −

α

α α α
α

α

u

u u u

u

u u u

3

1 2 3

3

1 2

          
33

1 2 3

3

1

2

3

u u u

u

L

u

u

u

+ +
















=




























          α




= ( )          uαL ,

proving that L  is a linear transformation.

2. We have L L

1
0
0

1
1
0

0
1
0

1
1
0

















=
































=
−















, ,,  and L
0
0
1

1
1
1

















=
−














, where 

the desired matrix is

1 1 1
1 1 1
0 0 1

− −















.

 

n

Addition, scalar multiplication, and matrix multiplication are defined 
for 3 3×  matrices in a manner analogous to those operations for 2 2×  
matrices.

Definition 1.9.2 Let A B,  be 3 3×  matrices. Then we define

A B a b A a AB a bij ij ij ik kj
k

+ = +



 = 



 =








=
∑, ,           α α

1

3

 .  
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Example 1.9.2 

If A =
















1 2 3
4 5 0
6 0 0

, and B

a b c

a b

a

=
















0
0 0

, then

A B

a a c

a b

a

A

+ =
+ + +
+ +
+

















=












1 2 3
4 5 0
6 0 0

3
3 6 9

12 15 0
18 0 0

,





=
















=
+ + +

+

,

,AB

a b c

a b c

a b c

BA

a b c a b a

a b

6 3
9 9 4
6 6 6

4 6 2 5 3
4 2aa b a

a a a

+
















5 3
2 3

.

Definition 1.9.3 A scaling matrix is one of the form

S

a

b

c
a b c, , ,=

















0 0
0 0
0 0

 

where a b c> > >0 0 0, , .

It is an easy exercise to prove that the product of two scaling matrices 
commutes.

Definition 1.9.4 A rotation matrix about the z  -axis by an angle θ  in the 
counterclockwise sense is 

Rz θ
θ θ
θ θ( ) =

−















cos sin
sin cos .

0
0

0 0 1
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A rotation matrix about the y-axis by an angle θ  in the counterclock-
wise sense is 

Ry θ
θ θ

θ θ
( ) =

−















cos sin

sin cos
.

0
0 1 0

0

A rotation matrix about the x-axis by an angle θ  in the counterclock-
wise sense is 

Rx θ θ θ
θ θ

( ) = −
















1 0 0
0
0

cos sin
sin cos

.

Easy to find counterexamples should convince the reader that the prod-
uct of two rotations in space does not necessarily commute.

Definition 1.9.5 A reflection matrix about x-axis is 

Rx =
−















1 0 0
0 1 0
0 0 1

.  

A reflection matrix about y-axis is

Ry = −
















1 0 0
0 1 0
0 0 1

.

A reflection matrix about z -axis is

Rz =
−

















1 0 0
0 1 0
0 0 1

.

Exercises 1.9 

1.9.1 If A =
−















1 0 2
0 3 1
0 5 4

, and B = −
−

















2 1 3
1 0 1

1 4 3
, find:

1.  A B+     2. 2A     3. AB.
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1.9.2 Let A M∈ ( )×3 3   be given by A =
















1 1 1
1 1 1
1 1 1

. Demonstrate, 

using induction, that A A n nn n= ∈ ≥−3 11  for , .

1.9.3 Consider the n n×  matrix

A =























1 1 1 1 1 1
0 1 1 1 1 1
0 0 1 1 1 1

0 0 0 0 0 1

�
�
�

� � � � � � �
�

.

Describe A A2 3 and  in terms of n.

1.9.4 Let x  be a real number, and put 

m x

x

x
x( ) = − −



















1 0

1
2

0 0 1

2

.

If a b,  are real numbers, prove that 

1. m a m b m a b( ) ( ) ( )= + .

2. m a m a( ) ( )− = I3, the 3 3×  identity matrix.

1.9.5 Determine the standard matrix representing the 
linear transformation L : 

3 3→  which is defined as 

L

x

x

x

x x

x x

x x

1

2

3

1 2

1 2

2 3

































=
−
+
−
















.
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1.9.6 Find the matrix of the linear operator L

x

x

x

x

x

x

1

2

3

1

2

2

3
5

































=
















 on 



3  with respect to the standard basis of 3, then use the 

matrix to find the image of the vector 
−















1
4
2

.

1.9.7 Find the matrix of the linear operator L

x

x

x

x
1

2

3

2

0

0

































=
















 on 3  

with respect to the standard basis of 3, then use the matrix 

to find the image of the vector 
−















1
4
2

.

1.9.8 Find the matrix of each of the following linear 
transformations:

1. L

x

x

x

x x x
1

2

3

1 2 33 5
















= − +   

2. L

x

x

x

x x x

x x x

x x x

1

2

3

1 2 3

1 2 3

1 2 3

4
3 2

3 2 5

















=
+ −
+ +
+ +

















1.9.9 Determine whether the transformation L : 

3 3→ ; 

L

x

x

x

x

x

1

2

3

2

3

1















=
















 is linear.

1.9.10 Let R( )
cos sin
sin cosθ

θ θ
θ θ=

−















0
0

0 0 1

. Describe geometrically the 

linear transformation L : 

3 3→  given by L R x x= ( )θ .
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1.9.11 Find the standard matrix for the linear operator L : 

3 3→ ,  

which maps a vector x


=
















x

x

x

1

2

3

 into its reflection through the 

xz-plane.

1.9.12 Find the standard matrix for the linear operator 
L : 

3 3→ , which rotates each vector π / 2  
counterclockwise about y-axis (looking along the positive 
y-axis toward the origin).

1.10 Determinants in Three Dimensions

We now define the notion of determinant of a 3 3×  matrix. Consider 
now the vectors

a  b  c
  

=
















=
















=












a

a

a

b

b

b

c

c

c

1

2

3

1

2

3

1

2

3

, , 


, in 

3, and the 3 3×  matrix  

A

a b c

a b c

a b c

=
















1 1 1

2 2 2

3 3 3

. Since, thanks 

to Theorem 1.8.5, the volume of the parallelepiped spanned by these 

vectors is a b c
�
i
� �

×( ), we define the determinant of A, det A, to be 

 D

a b c

a b c

a b c

� � � �i
� �

a b c a b c, , det .( ) =
















= ×( )
1 1 1

2 2 2

3 3 3

 (1.15)

We now establish that the properties of the determinant of a 3 3×  
as previously defined are analogous to those of the determinant of 2 2×  
matrix defined in the preceding chapter.
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Theorem 1.10.1 The determinant of a 3 × 3 matrix A as defined by 
Equation (1.15) satisfies the following properties:

1. D  is linear in each of its arguments.

2. If the parallelepiped is flat then the volume is 0, that is, if a b c
  

, , , 
are linearly dependent, then D a b c

  

, ,( ) = 0.

3. D i j k
  

, ,( ) = 0, and accords with the right-hand rule.

Proof:

1. If D a b c a b c
� � � �

i
� �

, ,( ) = ×( ), linearity of the first component follows by 

the distributive law for the dot product:

D
� � � � � � i

� �

�i
�

a a b c a a b c

                     a

+ ′( ) = + ′( ) ×( )
=

, ,

bb c a b c

                     a b c a

×( ) + ′ ×( )
= ( ) + ′

� � i
� �

� � � �
D D, , ,

�� �
b c, ,( )

and if λ ∈,

D Dλ λ λ λa b c a b c a b c a b c
� � � �

i
� � �

i
� � � � �

, , , , .( ) = ( ) ×( ) = ( ) ×( )( ) = ( )
The linearity on the second and third component can be established by 

using the distributive law of the cross product. For example, for the second 
component we have,

D a b b c a b b c

                     a

� � �� � �
i
� �� �

�
, ,+ ′( ) = + ′( )×( )

= ii
� � �� �

�
i
� � �

i
��

b c b c

                     a b c a b

× + ′×( )
= ×( ) + ′× cc

                     a b c a b c

�

� � � � �� �
( )

= ( ) + ′( )D D, , , , ,

and if λ ∈ ,
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D Da b c a b c a b c a b c
� � � �

i
� �� � �

i
� � � � �

, , , , .λ λ λ λ( ) = ( )×( ) = ×( )( ) = ( )
2. If a b c

  

, , , are linearly dependent, then they lie on the same plane 

and the parallelepiped spanned by them is flat, hence D a b c
  

, ,( ) = 0.

3. Since j k i
  

× = , and i i 1
 

× = , D i j k i j k i i
� � � �

i
� � � �

, ,( ) = ×( ) = × = 1. n

Observe that,

 det
a b c

a b c

a b c

1 1 1

2 2 2

3 3 3

















= ×( )a b c
�
i
� �

  (1.16)

= − + −

+ −

a i j

k

�
i

� �

�
(( ) ( )

( ) )

b c b c b c b c

b c b c
2 3 3 2 3 1 1 3

1 2 2 1

 (1.17)

= −( ) + −( )
+ −( )
a b c b c a b c b c

a b c b c
1 2 3 3 2 2 3 1 1 3

3 1 2 2 1

 (1.18)

=








 +











+







a
b c

b c
a

b c

b c

a
b c

b c

1
2 2

3 3
2

1 1

3 3

3
1 1

2 2

det det

det

 ,

 (1.19)

which reduces the computation of 3 3×  determinants to 2 2×  
determinants.

Example 1.10.1 

Find the det
1 2 3
4 5 6
7 8 9
















.
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 n Solution: 

Using Equation (1.19), we have 

det det det detA =








 −









 +











=

1
5 6
8 9

4
2 3
8 9

7
2 3
5 6

1      445 48 4 18 24 7 12 15

3 24 21
0

−( ) − −( ) + −( )
= − + −
=

      
      .

 

 n

Again, we may use the MapleTM packages linalg, LinearAlgebra, or 
Student [VectorCalculus] to perform many of the vector operations. An 
example follows with linalg.

 �

 �

 �

 �

 �

 �

Also, we may use MATLAB package, using the following commands.

>> a=[−2,0,1];

>> b=[−1,3,0];

>> CP=cross(a, b)

CP =

  −3  −1  −6
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>> DP=dot(a, b)

DP =

  2

>> CosTheta = dot(a,b)/(norm(a)∗norm(b));

>> ThetaInDegrees = acos(CosTheta)∗180/pi

ThetaInDegrees =

73.5701

Exercises 1.10

1.10.1 Evaluate the det
3 2 1
2 4 1

5 8 0

−
− −
















.

1.10.2 Evaluate the det
a

b e

c d f

0 0
0
















.

1.10.3 Evaluate the det
a b c

e d

f

0
0 0
















.

1.10.4 Show that det
0 0
0

c

b e

a d f

cba
















= − .

1.10.5 Solve for d  in the equation Solve for d  in the equation 

det
1 1 1

2 4
3 1 0

4
−

−
















=
d

d .
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1.10.6 Determine the values of z  for which the 

det
z

z

z

−
−
−

















=
6 0 0

0 1
0 4 4

0.

1.10.7 Evaluate the det
t

t

t

−
+

















3 9
2 4 1
1 32

.

1.10.8 Show that det
a b a b a

a b

a b b

2 2

1 1
1

0
− +
−
−

















= .

1.10.9 Solve the following equation for c  in the determinant 

det
c

c

−
−

















=
1 1 0

2 1 1
3 0 4

1.

1.10.10 Prove det
1 1 1

2 2 2

a b c

a b c

b c c a a b
















= −( ) −( ) −( ).

1.10.11 Prove det
a b c

b c a

c a b

abc a b c
















= − − −3 3 3 3.

1.10.12 Evaluate the det
1 1 1

2 3 4
x y z

x y z+ + +
















.

1.10.13 Find the values of λ  that satisfy det
1 1 0
0 1
0 1

0λ
λ

















= .

1.10.14 Find the values of λ  that satisfy det
1 0 1

1 2 1
3 3

0
− −

−
−

















=
λ

λ
λ

.
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1.11 Some Solid Geometry

In this section, we examine some examples and prove some theorems of 
three- dimensional geometry.

Example 1.11.1 

Cube ABCDD C B A′ ′ ′  ABCDD C B A′ ′ ′  in Figure 1.11.1 has side  
of length a . M  is the midpoint of edge [ ]BB′  and N  is the midpoint of 
edge [ ]′ ′B C . Prove that AD MN′

� ����
�
� ����

 and find the area of the quadrilateral 
MND A′ .

 n Solution: 
By the Pythagorean Theorem, AD′ =

� ����
a 2. Because they are diag-

onals that belong to parallel faces of the cube, AD BC′ ′
� ����
�
� ����

. Now, M  and 

N  are the midpoints of the sides [ ]′B B  and [ ]′ ′B C  of ∆ ′ ′B C B, and hence 

MN BC
� ����
�
� ����

′  by Example 1.1.6. The aforementioned example also gives 

MN AD
� ���� � ����

= ′ =
1
2

2
2

a
. In consequence, AD MN′

� ����
�
� ����

. This means that the 

four points A, D , M, N′  are all on the same plane. Hence MND A′  is a 

trapezoid with bases of length a 2  and 
a 2

2
, see Figure 1.11.2. From the 

figure

FIGURE 1.11.1 FIGURE 1.11.2
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′ = = ′ −( ) = ⋅D Q AP AD MN
� ���� � ��� � ���� � ����1

2
2

4
a

Also, by the Pythagorean Theorem,

′ = ′ ′ + ′ = + = ⋅D N D C C N
� ���� � ����� � ����2 2

2
2

4
5

2
a

a a

The height of this trapezoid is thus

NQ
� ���

= − = ⋅
5
4 8

3
2 2

2 2a a a
 

The area of the trapezoid is finally,

3
2 2

2
2

2
2

9
8

2a a
a

a
⋅

+


















= ⋅

Let us prove a three-dimensional version of Thales’ Theorem.

Theorem 1.11.1 (Thales’ Theorem): If two lines are cut by three 
parallel planes, their corresponding segments are proportional.

See Figure 1.11.3.

Proof:

Given the lines AB
� ���

 and CD
� ���

, we must prove that 

AE
EB

CF
FD

=
.

Draw line AD
� ���

 cutting plane P2  in G. The plane containing points 

A B  and D, ,  intersects plane P2  in the line EG
� ���

. Similarly the plane con-

taining points A  and D,C,  intersects plane P2  in the line GF
� ���

. Since P2  

and P3  are parallel planes, EG BD
� ���
�
� ���

, and so by Thales’ Theorem on the 
plane (Theorem 1.2.2) 

AE
EB

AG
GD

= .
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Similarly, since P1  and P2  are parallel, AC GF
� ���
�
� ���

 and 

CF
FD

AG
GD

= .

It follows that 

AE
EB

CF
FD

= ,

as needed to be shown.  n

Example 1.11.2 

In cube ABCDD C B A′ ′ ′ ′  of edge of length a , as in Figure 1.11.4, the 

points M  and N  are located on diagonals [ ]AB  and BC′ ′] [  such that MN
� ����

 

is parallel to the face ABCD  of the cube. If

MN AB
� ���� � ���

=
5

3
, find the ratios 

AM
AB

� ���
� ���

′
 and 

BN

BC

� ���

� ����
′

. 

FIGURE 1.11.3 Thales’ Theorem in 3D.
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 n Solution: 

There is a unique plane parallel P  to face ABCD  and containing M. 
Since MN

� ����
 is parallel to face ABCD, P  also contains N. The intersection of 

P  with the cube produces a lamina A B C D′′ ′′ ′′ ′′,  as in Figure 1.11.5.

FIGURE 1.11.4 Example 1.11.2.

FIGURE 1.11.5 Example 1.11.2.

First notice that AB BC′ = ′ =
� ��� � ����

a 2 . Put

AM

AB

MB

AB

AB AM

AB

� ���

� ���

� ����

� ���

� ��� � ���

� ���
′

= ⇒
′

′
=

′ −

′
= −x x1 .  

Now, as ∆ ∆′ ′ ′′B AB B MB  and ∆ ∆BC B BNB′ ′ ′′
 .
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MB

AB

B B

BB
   

MB

AB

MB′

′
=

′′ ′

′

′

′
=

′′
� ����

� ���

� ����

� ���

� ����

� ���

�

,

�����

� ���
� ����

� ����

� ���

� ���

� ��

AB
MB

BB

BB

AM

AB

⇒ ′′ = −( )

′′

′
=

′

1 x a,

��

� ����

� ����

� ����

� ���
� ����

, .     
B N

B C

BB

BB
B N

′′

′ ′
=

′′

′
⇒ ′′ = xa

Since MN
� ����

=
5

3
a, by the Pythagorean Theorem,

MN MB B N
� ���� � ���� � ����2 2 2

2 2 2 2 25
9

1
1
3

2
3

= ′′ + ′′ ⇒ = −( ) + ⇒ ∈{a x a x a x , }}.  

There are two possible positions for the segment, giving the solutions

AM

AB

BN

BC
     

AM

AB

BN

B

� ���

� ���

� ���

� ����

� ���

� ���

� ���

′
=

′
=

′
=

1
3

,
′′

= ⋅
C

 � ����
2
3

 n

Exercises 1.11

1.11.1 In a regular tetrahedron with vertices A, B, C, D  and with 

AB
� ���

= a, points M  and N  are the midpoints of the edges 

[ ]AB  and [ ]CD , respectively.

1. Find the length of the segment [ ].MN  
2. Find the angle between the lines [ ] [ ]MN and BC  

1.11.2 In cube ABCDD C B A′ ′ ′ ′  of edge of length a , find the distance 
between the lines that contain the diagonals [A B] and [AC]′ .

1.12 Cavalieri and the Pappus-Guldin Rules

Theorem 1.12.1 (Cavalieri’s Principle): All planar regions with cross 
sections of proportional length at the same height have area in the same 
proportion. All solids with cross sections of proportional areas at the same 
height have their volume in the same proportion.
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Proof: 
We only provide the proof for the second statement, as the proof for 

the first is similar. Cut any two such solids by horizontal planes that produce 
cross sections of area A x( )  and cA x( ),  where c > 0  is the constant of pro-
portionality, at an arbitrary height x  above a fixed base. From elementary 

calculus, we know that A x dx
x

x
( )

1

2

∫   and cA x dx
x

x
( )

1

2

∫   give the volume of the 

portion of each solid cut by all horizontal planes as x runs over some interval 

[ ];x x1 2 . As A x dx cA x dx
x

x

x

x
( ) ( )

1

2

1

2

∫ ∫= , the corresponding volumes must also be 

proportional. n

Example 1.12.1 

Use Cavalieri’s Principle in order to deduce that the area enclosed by 

the ellipse with equation 
x
a

y
b

a b ab
2

2

2

2
1 0 0+ = > >, , ,  is π .

 n Solution: 
Consider the circle with equation x y a2 2 2+ = , as in Figure 1.12.1. 

Then, for y > 0, y a x y
b
a

a x= − = −2 2 2 2,   .

The corresponding ordinate for the ellipse and the circle are propor-
tional, and hence, the corresponding chords for the ellipse and the circle 
will be proportional. By Cavalieri’s first principle, 

FIGURE 1.12.1 Ellipse and circle.
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Area of the ellipse = 
b
a

 ( Area of the circle)

=
b
a

aπ 2( )

=π ab . n

Example 1.12.2 

Use Cavalieri’s Principle in order to deduce that the volume of a sphere 

with radius a  is 
4
3

3π a  .

 n Solution: 
The following method is due to Archimedes, who was so proud of it that 

he wanted a sphere inscribed in a cylinder on his tombstone. We need to 
recall that the volume of a right circular cone with base radius a  and height 

h is 
π a h2

3
 .

Consider a hemisphere of radius a, as in Figure 1.12.2. 

Cut a horizontal slice at height x, producing a circle of radius r. By 
the Pythagorean Theorem, x r a2 2 2+ = , and so this circular slab has area 
π πr a x2 2 2= −( ). Now, consider a punctured cylinder of base radius a  and 

height a, as in Figure 1.12.3, with a cone of height a  and base radius a  cut 
from it. A horizontal slab at height x  is an annular region of area π πa x2 2− , 
which agrees with a horizontal slab for the sphere at the same height.

FIGURE 1.12.2 Hemisphere.
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By Cavalieri’s Principle,

Volume of the hemisphere = Volume of the punctured cylinder

=π
π

a
a2

3

3
−

=
2

3

3π a
 .

It follows that the volume of the sphere is 2
2

3
4

3

3 3π πa a





 = .

 n

Essentially the same method of proof as Cavalieri’s Principle gives the 
next result.

Theorem 1.12.2 (Pappus-Guldin Rule): The area of the lateral 
surface of a solid of revolution is equal to the product of the length of the 
generating curve on the side of the axis of revolution and the length of the 
path described by the center of gravity of the generating curve under a full 
revolution. The volume of a solid of revolution is equal to the product of 
the area of the generating plane on one side of the revolution axis and the 
length of the path described by the center of gravity of the area under a full 
revolution about the axis.

Example 1.12.3

Since the center of gravity of a circle is at its center, by the Pappus-Guldin 
Rule, the surface area of the torus with the generating circle having radius 

FIGURE 1.12.3 Punctured cylinder.
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r, and radius of gyration R  (as in Figure 1.12.4) is 2 2 4 2π π πr R rR( )( ) = . 

Also, the volume of the solid torus is π π πr R r R2 2 22 2( )( ) = .

Exercises 1.12

1.12.1 Use the Pappus-Guldin Rule to find the lateral area and 
the volume of a right circular cone with base radius r  and 
height h.

1.12.2 Use the Pappus-Guldin Rule to find the lateral area and 
the volume of a rectangular cylinder with base radius r  and 
height h.

1.12.3 Use the Pappus-Guldin Rule to find the lateral area and the 
volume of a semicircle sphere with base radius r  and  
height h.

1.12.4 Find the volume for spherical cap with radius r  and  
height h, with base area A.

1.12.5 A large plastic balloon with a thin metal coating used for 
satellite communications has a diameter 60 m. Find its area 
and volume.

1.12.6 Tell whether the statement true or false.

1. A radius of a small circle of a sphere is a radius of the sphere.
2. A diameter of a great circle of a sphere is a diameter of the 

sphere.

FIGURE 1.12.4 A torus. FIGURE 1.12.5 Generating a cone, Exercise 1.12.1
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1.13 Dihedral Angles and Platonic Solids

Definition 1.13.1 When two half planes 
intersect in space they intersect on a line. The 
portion of space bounded by the half planes 
and the line is called the dihedral angle. The 
intersecting line is called the edge of the dihedral 
angle and each of the two half planes of the 
dihedral angle is called a face. See Figure 1.13.1.

Definition 1.13.2 The rectilinear 
angle of a dihedral angle is the angle 
whose sides are perpendicular to the 
edge of the dihedral angle at the same 
point, on each of the faces. See Figure 
1.13.2.

All the rectilinear angles of a dihe-
dral angle measure the same. Hence 
the measure of a dihedral angle is the 
measure of any one of its rectilinear 
angles.

In analogy to dihedral angles, we now define polyhedral angles.

Definition 1.13.3  The opening of three or 
more planes that meet at a common point is called 
a polyhedral angle or solid angle. In the particular 
case of three planes, we use the term trihedral 
angle. The common point is called the vertex of 
the polyhedral angle. Each of the intersecting lines 
of two consecutive planes is called an edge of the 
polyhedral angle. The portion of the planes lying 
between consecutive edges are called the faces 
of the polyhedral angle. The angles formed by 
adjacent edges are called face angles. A polyhedral 
angle is said to be convex if the section made by a plane cutting all its edges 
forms a convex polygon.

In the trihedral angle of Figure 1.13.3, V  is the vertex, ∆VAB , ∆VBC , 
∆VCA  are faces. Also, notice that in any polyhedral angle, any two adjacent 
faces form a dihedral angle.

FIGURE 1.13.1 Dihedral angles.

FIGURE 1.13.2 Rectilinear of a dihedral angle.

FIGURE 1.13.3 Trihedral angle.
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Theorem 1.13.1: The sum of any two face angles of a trihedral angle is 
greater than the third face angle.

Proof: Consider Figure 1.13.3. If ∠ZVX  is smaller or equal to in size than 
either ∠XVY  or YVZ, then we are done, so assume that, say, ∠ >ZVX XVY.  
We must demonstrate that

∠ + ∠ > ∠XVY YVZ ZVX  .

Since we are assuming that ∠ >ZVX XVY , we may draw, in ∠XVY  the 
line segment VW[ ]  such that ∠ = ∠XVW XVY.

Through any point D  of the segment VW[ ] , draw ∆ADC  on the plane 

P  containing the points V X Z, ,  . Take the point B VY∈[ ]  so that VD VB= . 

Consider now the plane containing the line segment AC[ ]  and the point B. 
Observe that ∆AVD AVB≅ . Hence AD AB= . Now, by the triangle inequal-
ity in ∆ABC AB BC CA,  + > . This implies that ∠ > ∠BVC DVC . Hence

∠ + ∠ = ∠ + ∠AVB BVC AVD BVC  

> ∠ + ∠AVD DVC

= ∠AVC,

which proves that ∠ + ∠ > ∠XVY YVZ ZVX , as wanted.  n

Theorem 1.13.2 The sum of the face angles of any convex polyhedral 
angle is less than 2π  radians.

Proof: Let the polyhedral angle have n  faces and vertex V. Let the faces 
be cut by a plane, intersecting the 
edges at the points A A An1 2, , . . .     ,  

say. An illustration can be seen 

in Figure 1.13.4, where for 

convenience, we have depicted 
only five edges. 

Observe that the polygon 
A A An1 2 . . .    is convex and that 

the sum of its interior angles is 
π n −( )2 . FIGURE 1.13.4 Polyhedral angle.
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We would like to prove that

∠ + ∠ + ∠ + + ∠ + ∠ <−A VA A VA A VA A VA A VAn n n1 2 2 3 3 4 1 1 2 π.

Now, let A A Ak k k− +1 1, ,  , be three consecutive vertices of the polygon 

A A An1 2 . . .   . This notation means that A A Ak k k− +1 1 , represents any of the n  
triplets A A A A A A A A A A A A A A A A A An n n n n n1 2 3 2 3 4 3 4 5 2 1 1 1 1 2, , , , , , − − − , that is, 

we let A A A A A An n n0 1 1 2 2= = =+ +, ,  , etc.Consider the trihedral angle with 
vertex Ak  and whose face angles at Ak  are ∠ ∠− + −A A A VA Ak k k k k1 1 1,  , and 

∠ +VA Ak k 1, as in Figure 1.13.5.

FIGURE 1.13.5 A A
k k

, , A +1  are three consecutive vertices.

Observe that as k  ranges from 1 through n, the sum

∠ = −( )−
≤ ≤

+∑ A A A nk
k n

k k1
1

1 2π ,

be the of the interior angles the polygon A A An1 2 . By Theorem 1.13.1,

∠ + ∠ > ∠− + − +VA A VA A A A Ak k k k k k k1 1 1 1.

Thus

VA A VA A A A A nk
k n

k k k k k k
k n1

1 1 1 1
1

2
≤ ≤

− + − +
≤ ≤

∑ ∑+ ∠ > ∠ = −( )π .

Also,

VA A VA A A VA nk
k n

k k k k k
1

1 1 1
≤ ≤

+ + +∑ + ∠ + ∠ = π ,

since this is summing the sum of the angles of the n triangles of the 
faces. But clearly

VA A VA Ak
k n

k k k
k n1

1 1
1≤ ≤

+ +
≤ ≤

∑ ∑= ∠ ,
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since one sum adds the angles in one direction and the other in the 
opposite direction. For the same reason,

VA A VA Ak
k n

k k k
k n1

1 1
1≤ ≤

− +
≤ ≤

∑ ∑= ∠ .

Hence

∠ = − + ∠( )
≤ ≤

+ + +
≤ ≤

∑ ∑A VA n VA A VA Ak
k n

k k k k k
k n1

1 1 1
1

π  

                        =  

                    

π n VA A VA Ak k k k
k n

− + ∠( )+ −
≤ ≤
∑ 1 1

1

    =

                      

π π
π
n n− −( )

=
2

2 ,

as we needed to show.  n

Definition 1.13.4 A Platonic solid is a polyhedron having congruent 
regular polygon as faces and having the same number of edges meeting at 
each corner.

Suppose a regular polygon with n ≥ 3  sides is a face of a platonic solid 
with m ≥ 3  faces meeting at a corner. Since each interior angle of this poly-

gon measures 
π n

n

−( )2
, we must have in view of Theorem 1.13.2,

m
n

n
m n n m n

π
π

−( )







 < ⇒ −( ) < ⇒ −( ) −( ) <

2
2 2 2 2 2 4.

Since n ≥ 3  and m ≥ 3, the preceding inequality only holds for five 
pairs n m,( ) . Appealing to Euler’s Formula for polyhedrons, which states 

that V F E+ = + 2, where V  is the number of vertices, F  is the number of 
faces, and E  is the number of edges of a polyhedron, we obtain the values 
in the following table.

M N S E F Name of regular Polyhedron

3 3 4 6 4 Tetrahedron or regular Pyramid. 

4 3 8 12 6 Hexahedron or cube.

3 4 6 12 8 Octahedron. 

5 3 20 30 12 Dodecahedron.

3 5 12 30 20 Icosahedron.
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FIGURE 1.13.6 Tetrahedron. FIGURE 1.13.8 Octahedron.

FIGURE 1.13.7 Cube or hexahedron. FIGURE 1.13.9 Dodecahedron.

FIGURE 1.13.10 Icosahedron.

Thus, there are at most five Platonic solids. That there are exactly five 
can be seen by explicit construction. Figures 1.13.6 through 1.13.10 depict 
the Platonic solids.

Exercises 1.13

1.13.1 What are the five regular polyhedrons known as Platonic 
solids?

1.13.2 Each Platonic solid by pairs m n,( ), where m  is the number 
of edges of each face (or the number of vertices of each 
face), and n  is the number of faces meeting at each vertex 
(or the number of edges meeting at each vertex). Write the 
formula for total number of vertices (V), edges (E), and faces 
(F), in terms of m  and n.

1.13.3 Each Platonic solid by pairs m n,( ), where m  is the number 
of edges of each face (or the number of vertices of each 
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face), and n  is the number of faces meeting at each vertex 
(or the number of edges meeting at each vertex). Write the 
formula for the dihedral angle, θ, of the solid m n,( ).

1.13.4 Each Platonic solid by pairs m n,( ), where m  is the number 
of edges of each face (or the number of vertices of each 
face), and n  is the number of faces meeting at each vertex 
(or the number of edges meeting at each vertex). Write the 
formula for the surface area A, and the volume V, of the 
solid m n,( )  with edge length g  and in radius r.

1.14 Spherical Trigonometry

Consider a point B x y z, ,  ( )  in Cartesian coordinates. From O 0 0 0, ,  ( ),  

we draw a straight line to B x y z, ,  ( ), and let its distance be ρ. We mea-

sure its inclination from the positive z -axis. Let us say it is an angle of ϕ, 
ϕ π∈[ ]0;  radians, as in Figure 1.14.1. 

FIGURE 1.14.1 Spherical coordinates.
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Observe that z cos= ρ ϕ  . We now project the line segment OB[ ]  onto 
the xy - plane in order to find the polar coordinates of x  and y. Let θ  be 
angle that this projection makes with the positive x-axis. 

Since OP sin= ρ ϕ  , we find x cos sin= ρ θ ϕ    , y sin sin= ρ θ ϕ    .

Definition 1.14.1 Given a point x y z, ,  ( )  in Cartesian coordinates, its 

spherical coordinates are given by

x cos sin y sin sin z cos= = =               ρ θ ϕ ρ θ ϕ ρ ϕ, , .

Here ϕ  is the polar angle, measured from the positive z-axis, and θ  
is the azimuthal angle, measured from the positive x-axis. By convention,
0 2 0≤ ≤ ≤ ≤θ π ϕ π and .

Spherical coordinates are extremely useful when considering regions, 
which are symmetric about a point.

Definition 1.14.2 If a plane intersects with a sphere, the intersection will 
be a circle. If this circle contains the center of the sphere, we call it a great 
circle. Otherwise we talk of a small circle. The axis of any circle on a sphere 
is the diameter of the sphere, which is normal to the plane containing the 
circle. The endpoints of such a diameter are called the poles of the circle.

The radius of a great circle is the radius of the sphere. The poles of a 
great circle are equally distant from the plane of the circle, but this is 
not the case in a small circle. By the pole of a small circle, we mean 
the closest pole to the plane containing the circle. A pole of a circle is 
equidistant from every point of the circumference of the circle.

Definition 1.14.3 Given the center of the sphere, and any two points of 
the surface of the sphere, a plane can be drawn. This plane will be unique 
if and only if the points are not diametrically opposite. In the case where 
the two points are not diametrically opposite, the great circle formed is split 
into a larger and a smaller arc by the two points. We call the smaller arc the 
geodesic joining the two points. If the two points are diametrically opposite 
then every plane containing the line forms with the sphere a great circle, 
and the arcs formed are then of equal length. In this case, we take any such 
arc as a geodesic.

! 
TIP
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Definition 1.14.4 A spherical triangle is a triangle on the surface of a 
sphere all whose vertices are connected by geodesics. The three arcs of 
great circles, which form a spherical triangle, are called the sides of the 
spherical triangle; the angles formed by the arcs at the points where they 
meet are called the angles of the spherical triangle.

If A B C, ,  are the vertices of a spherical triangle, it is customary to label 
the opposite arcs with the same letter name, but in lowercase.

A spherical triangle has then six angles: three vertex angles 
∠ ∠ ∠A B C, , , and three arc angles, , ,∠ ∠ ∠a b c . Observe that if O  is 
the center of the sphere then

, , , ,∠ = ∠( ) ∠ = ∠( ) ∠ = ∠a b cOB OC    OC OA    OA
� ��� � ��� � ��� � ��� � ���

,, ,OB   
� ���( )  

and

, , ,∠ = ∠ × ×( ) ∠ = ∠ ×A BOA OB OA OC    OB OC OB
� ��� � ��� � ��� � ��� � ��� � ��� �� ��� � ���

� ��� � ��� � ��� � ���
×( )

∠ = ∠ × ×( )
OA    

OC OA OC OB . 

,

,C

Theorem1.14.1: Let ∆ABC  be a spherical triangle. Then

cosa cosb sina sinb cosC cosc   + = .

Proof: Consider a spherical triangle ABC  with A x y z1 1 1, , ,  ( )
B x y z2 2 2, , ,  ( )  and let O  be the centre and ρ  be the radius of the sphere. 

In spherical coordinates, this is, say,

z cos1 1= ρ θ ,  x sin cos1 1 1= ρ θ ϕ  ,  y sin sin1 1 1=   ρ θ ϕ

z cos2 2= ρ θ ,  x sin cos2 2 2= ρ θ ϕ ,  y sin sin2 2 2= ρ θ ϕ ;

By a rotation we may assume that the z-axis passes through C. Then 
the following quantities give the square of the distance of the line segment 

AB[ ]:

x x y y z z cos AOB1 2

2

1 2

2

1 2

2 2 2 22− + − + − + − ∠( ) ( ) ( ) ( ), .      ρ ρ ρ

Since x y z x y z1
2

1
2

1
2 2

2
2

2
2

2
2 2+ + = + + =ρ ρ,  , we gather that x x y y z z cos AOB1 2 1 2 1 2

2+ + = ∠( )ρ 
x x y y z z cos AOB1 2 1 2 1 2

2+ + = ∠( )ρ . Therefore we obtain

! 
TIP
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cos cos sin sin cos cos AOBθ θ θ θ ϕ ϕ2 1 2 1 1 2   + − = ∠( ) ( ),
that is,

 cosa cosb sina sinb cosC cos c    + = .   n

Theorem 1.14.2: Let I be the dihedral angle of two adjacent faces of a 
regular polyhedron. Then

sin
cos

sin

I n

m
2

=

π

π .

Proof: Let AB  be the edge common to the two adjacent faces, C  and D  
the centers of the faces; bisect AB  at E , and join CE  and DE ; CE  and DE  
will be perpendicular to AB , and the angle CED  is the angle of inclination 
of the two adjacent faces; we shall denote it by I . In the plane containing 
CE  and DE  draw CO  and DO  at right angles to CE  and DE  respectively, 
and meeting at O ; about O  as centre describe a sphere meeting OA , OC ,  
OE  at a c e, ,   respectively, so that cae  forms a spherical triangle. Since 
AB  is perpendicular to CE  and DE , it is perpendicular to the plane CED ,  
therefore the plane AOB  which contains AB  is perpendicular to the 
plane CED ; hence the angle cea  of the spherical triangle is a right 
angle. Let m be the number of ides in each face of the polyhedron, n  the 
number of the plane angles which form each solid angle. Then the angle 

ace ACE
m m

= = =
2
2

π π
; and the angle cae  is half one of the n  equal angles 

formed on the sphere round a, that is, cae
n n

= =
2
2
π π

. From the right-angled 
triangle cae

cos cae cos cOe sin ace    = ,
that is

cos cos sin
π π π
2 2 2

= −







I
m

;

therefore,

sin
cos

sin

I n

m
2

=

π

π . 

 n
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Theorem 1.14.3: Let r  and R  be, respectively, the radii of the inscribed 
and circum-scribed spheres of a regular polyhedron. Then

r
a

m
I

R
a I

n
= = ⋅

2 2 2 2
cot tan , tan tan

π π
    

Here a  is the length of any edge of the polyhedron, and I  is the dihe-
dral angle of any two faces.

Proof: Let the edge AB a= , let OC r=  and OA R= , so tat r  is the 

radius of the inscribed sphere, and R  is the radius of the circumscribed 
sphere. Then

CE AE ACE
a

m

r CE CEO CE
I a

m
I

= =

= = =

cot cot ,

tan tan cot tan tan ;

2

2 2 2

π

π

also

r R aOc R eca eac R
m n

= = =cos cot cot cot cot ;
π π

 

therefore

R r
m n

a I
n

= = ⋅tan tan tan tan
π π π

2 2 n

From the previous formula, we now easily find that the volume of the 
pyramid, which has one face of the polyhedron for base and O  for vertex is 
r ma

m3 4

2

⋅ cot
π

, and therefore the volume of the polyhedron is 
mFra

m

2

12
cot

π
 .

Furthermore, the area of one face of the polyhedron is 
ma

m

2

4
cot

π
 , and 

therefore the surface area of the polyhedron is 
mFa

m

2

4
cot

π
 .
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Exercises 1.14

1.14.1 The four vertices of a regular tetrahedron are

V V V1 2 3

1
0
0

1 2

3 2
0

1 2

3 2
0

=
















=

−















=

−

−






,

/

/ ,

/

/    










=

















,   .  V4

0
0

2

 

What is the cosine of the dihedral angle between any pair of faces 
of the tetrahedron?

1.14.2 Consider a tetrahedron whose edge measures a. Show that 

its volume is a3 2
12

, its surface area is a2 3, and that the 

radius of the inscribed sphere is a 6
12

.

1.14.3 Consider a cube whose edge measures a. Show that its 
volume is a3, its surface area is 6 2a , and that the radius of 

the inscribed sphere is a
2

.

1.14.4 Consider an octahedron whose edge measures a. Show that 

its volume is a3 2
3

, its surface area is 2 32a , and that the 

radius of the inscribed sphere is a 6
6

.

1.14.5 Consider a dodecahedron whose edge measures a.  

Show that its volume is a3

4
15 7 5+( ), its surface area is 

3 25 10 52a + , and that the radius of the inscribed sphere is 

a
4

10 22
1
5

+ .

1.14.6 Consider an icosahedron whose edge measures a. Show that 

its volume is 5
12

5 5
3a

+( ), its surface area is 5 32a , and that 

the radius of the inscribed sphere is a
12

5 3 15+( ).
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1.15 Canonical Surfaces

In this section, we consider various surfaces that we shall periodically 
encounter in subsequent sections. Just like in one-variable Calculus it is 
important to identify the equation and the shape of a line, a parabola, a 
circle, etc., it will become important for us to be able to identify certain 
families of often-occurring surfaces. We shall explore both their Cartesian 
and their parametric form. We remark that in order to parameterize curves 
(“one-dimensional entities”), we needed one parameter and that in order to 
parameterize surfaces we shall need two parameters.

Let us start with the plane. Recall that if a b c, ,   are real numbers, not 

all zero, then the Cartesian equation of a plane with normal vector 
a

b

c

















 and 

passing through the point x y z0 0 0, ,  ( )  is 

a x x b y y c z z−( ) + −( ) + −( ) =0 0 0 0 .

If we know that the vectors u


 and v


 are on the plane (parallel to the 
plane) then with the parameters p, q, the equation of the plane is

x x pu qv

y y pu qv

z z pu qv

− = +

− = +

− = +

0 1 1

0 2 2

0 3 3

,

,

.

 

Definition 1.15.1 A surface S  consisting of all lines parallel to a given 
line ∆  and passing through a given curve Γ  is called a cylinder. The line ∆  
is called the directrix of the cylinder.

To recognize whether a given surface is a cylinder we look at its 
Cartesian equation. If it is of the form f A B,( ) = 0, where A, B  
are secant planes, then the curve is a cylinder. Under these condi-
tions, the lines generating S  will be parallel to the line of equation 
A B= =0 0,  . In practice, if one of the variables x y z, ,  or  is missing, 
then the surface is a cylinder, whose directrix will be the axis of the 
missing coordinate.

! 
TIP
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FIGURE 1.15.1 Circular cylinder x y2 2 1+ = .

Example 1.15.1

Figure 1.15.1 shows the cylinder with Cartesian equation x y2 2 1+ = . 
One starts with the circle x y2 2 1+ =  on the xy-plane and moves it up and 
down the z -axis. A parameterization for this cylinder is the following:

x v y v z u u v= = = ∈ ∈[ ]cos , sin , , , ; .         0 2π  

The MapleTM commands to graph this surface are:

 �

 �

 �
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The method of parameterization previously utilized for the cylinder is 
quite useful when doing parameterizations in space. We refer to it as the 
method of cylindrical coordinates. In general, we first find the polar coor-
dinates of x y,   in the xy-plane, and then lift x y, , 0( )  parallel to the z-axis 
to x y z, , :  ( )

x r y r z z= = =cos , sin , .θ θ       

See Figure 1.15.2.

FIGURE 1.15.2 Cylindrical coordinates.
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Example 1.15.2

Figure 1.15.3 shows the parabolic cylinder with Cartesian equation 
z y= 2. One starts with the parabola z y= 2  on the yz -plane and moves it 

up and down the x-axis. A parameterization for this parabolic cylinder is 
the following:

x u y v z v u v= = = ∈ ∈, , , , .         2
   

FIGURE 1.15.3 The parabolic cylinder z y= 2 .

The MapleTM commands to graph this surface are:

 �

 �

 �
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Example 1.15.3

Figure 1.15.4 shows the hyperbolic cylinder with Cartesian equation 
x y2 2 1− = . One starts with the hyperbola x y2 2 1− =  on the xy-plane and 
moves it up and down the z-axis. A parameterization for this parabolic cyl-
inder is the following:

x v y v z v u v= ± = = ∈ ∈cosh , sinh , , , .            

We need a choice of sign for each of the portions. We have used the fact 
that cosh v sinh v2 2 1− = . The MapleTM commands to graph this surface are:

FIGURE 1.15.4 The hyperbolic cylinder x y2 2 1− = .

 �

 �

MVC_Musa_CH01-P2.indd   123 11/19/2014   3:37:29 PM



124 • multiVariable and Vector calculus

 �

Definition 1.15.2 Given a point Ω∈3  (called the apex) and a curve 
(called the generating curve), the surface S obtained by drawing rays from 
Ω and passing through Γ  is called a cone.

In practice, if the Cartesian equation of a surface can be put into 

the form f
A
C

B
C

, ,





 = 0  where A B C, , , are planes secant at  exactly 

one point, then the surface is a cone, and its apex is given by 
A B C= = =0 0 0, , .  

! 
TIP
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FIGURE 1.15.5 Cone x
a

y
b

z
c

2

2

2

2

2

2
+ = .

Example 1.15.4

The surface in 3  implicitly given by z x y2 2 2= +  is a cone, as its equa-

tion can be put in the form 
x
z

y
z







 + 






 − =

2 2

1 0 . Considering the planes 

x y z   = = =0 0 0, , ,the apex is located at 0 0 0, , .( )  The graph is shown in 
Figure 1.15.5.

Definition 1.15.3 A surface S obtained by making a curve Γ  turn around 
a line ∆  is called a surface of revolution. We then say that ∆  is the axis of 
revolution. The intersection of S with a half-plane bounded by ∆  is called 
a meridian.

If the Cartesian equation of S can be put in the form f A,  ∑ =( ) 0, 
where A  is a plane and ∑  is a sphere, then the surface is of revolu-
tion. The axis of S is the line passing through the center of ∑  and 
perpendicular to the plane A.

Example 1.15.5

Find the equation of the surface of revolution generated by revolving 
the hyperbola

x z2 24 1− = ,

about the z-axis.

! 
TIP
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 n Solution: 

Let x y z, ,( )  be a point on S. If this point were on the xz  plane, it 

would be on the hyperbola, and its distance to the axis of rotation would be 
x z= +1 4 2 . Anywhere else, the distance of x y z, ,( )  to the axis of rotation 

is the same as the distance of x y z, ,( )  to 0 0, ,z( ), that is x y2 2+ . We must 
have

x y z2 2 21 4+ = + ,

which is to say

x y z2 2 24 1+ − = .

This surface is called a hyperboloid of one sheet. See Figure 1.15.6.

Observe that when z x y= + =0 12 2,   is a circle on the xy-plane. When 

x y z= − =0 4 12 2, , is a hyperbola on the yz-plane. When y x z= − =0 4 12 2,  

is a hyperbola o the xz-plane.

A parameterization for this hyperboloid is

x u v y u v z u u v= + = + = ∈ ∈[ ]1 4 1 4 0 22 2cos , sin , , , ; .           π  n

Example 1.15.6

The circle y a z r− + =( )2 2 2, on the yz-plane ( a r,  are positive real 
numbers) is revolved around the z-axis, forming a torus T. Find the equa-
tion of this torus.

FIGURE 1.15.6 One-sheet hyperboloid z
c

x
a

y
b

2

2

2

2

2

2
1= + − .

MVC_Musa_CH01-P2.indd   126 11/19/2014   3:37:44 PM



Vectors and Parametric curVes • 127

 n Solution: 
Let x y z, , ( )  be a point on T. If this point were on the yz- plane, 

it would be on the circle, and the of the distance to the axis of rota-
tion would be y a y a r z= + −( ) −sgn 2 2 , where sgn t( )  (with sgn(t) , sgn( ) , sgn( )= − < = > =1 0 1 0 0 0 if  if  and t t t 

sgn(t) , sgn( ) , sgn( )= − < = > =1 0 1 0 0 0 if  if  and t t t ) is the sign of t. Any where else, 
the distance from x y z, , ( )  to the z-axis is the distance of this point to the 
point x y z x y, , : ( ) +2 2 . We must have 

x y a y a r z

a a y a r z r z

2 2 2 2
2

2 2 2 2 22

+ = + −( ) −( )
= + −( ) − + −

sgn

sgn .  

Rearranging

x y z a r a y a r z2 2 2 2 2 2 22+ + − − = −( ) −sgn ,

or

x y z a r a r a z2 2 2 2 2 2 2 2 2 24 4+ + − +( )( ) = − .  

Since sgn y a−( )( ) =
2

1 , (it could not be 0, why?). Rearranging again,

x y z a r x y a r z a r2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 0+ +( ) − +( ) +( ) + −( ) + −( ) = .

The equation of the torus thus, is of fourth degree, and its graph appears 
in Figure 1.15.7.

FIGURE 1.15.7 The torus.
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A parameterization for the torus generated by revolving the circle 

y a z r− + =( )2 2 2  around the z-axis is

x a r y a r z r= + = + =cos cos cos , sin sin cos , sin ,θ θ α θ θ α α  with θ α,( )∈  

−[ ]π π; .2   n

Example 1.15.7

The surface z x y= +2 2  is called an elliptic paraboloid. The equation 

clearly requires that z ≥ 0 . For fixed z c c x y c= > + =, ,  0 2 2  is a circle. 
When y z x= =0 2,   is a parabola on the xz - plane. When x z y= =0 2,   is a 
parabola on the yz - plane. See Figure 1.15.8. The following is a parameter-
ization of this paraboloid:

x u v y u v z u u v= = = ∈ +∞[ [ ∈[ ]cos , sin , , ; , ; .           0 0 2π  

FIGURE 1.15.8 Paraboloid Z
x
a

y
b

= +
2

2

2

2
.

Example 1.15.8

The surface z x y= −2 2  is called a hyperbolic paraboloid or saddle. If 

z x y= − =0 02 2,   is a pair of lines in the xy - plane. When y z x= =0 2,   is 
a parabola on the xz - plane. When x z y= = −0 2,   is a parabola on the yz

-plane. See Figure 1.15.9. The following is a parameterization of this hyper-
bolic paraboloid:

x u y v z u v u v= = = − ∈ ∈, , , , .            2 2
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FIGURE 1.15.9 Hyperbolic paraboloid z
x
a

y
b

= −
2

2

2

2
.

Example 1.15.9

The surface z x y2 2 2 1= + −  is called a hyperboloid of two sheets. 
For   x y z2 2 21 0+ < <, , is impossible, and hence, there is no graph when 
x y2 2 1+ < . When y z x= − =0 12 2, , is a hyperbola on the xz - plane. 
When x z y= − = −0 12 2,   is a hyperbola on the yz - plane. When z c=  is 
a  constant, then the x y c2 2 2 1+ = + , are circles. See Figure 1.15.10. The 
following is a parameterization for the top sheet of this hyperboloid of two 
sheets

x u v y u v z u u v= = = + ∈ ∈[ ]cos , sin , , , ; ,           2 1 0 2 π

and the following parameterizes the bottom sheet,

x u v y u v z u u v= = = − − ∈ ∈[ ]cos , sin , , , ; .           2 1 0 2 π

FIGURE 1.15.10 Two-sheet hyperboloid z
c

x
a

y
b

2

2

2

2

2

2
1= + + .
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Example 1.15.10

The surface z x y2 2 2 1= + −   is called a hyperboloid of one sheet. 
For x y z2 2 21 0+ < <,   is impossible, and hence there is no graph when 
x y2 2 1+ < . When y z x= − = −0 12 2,   is a hyperbola on the xz- plane. When 
x z y= − = −0 12 2,   is a hyperbola on the yz- plane. When z c=  is a con-
stant, then the x y c2 2 2 1+ = +  are circles. See Figure 1.15.6. The following 
is a parameterization for this hyperboloid of one sheet

x u v y u v z u u v= + = + = ∈ ∈[ ]2 21 1 0 2cos , sin , , , ; .            π

FIGURE 1.15.11 One-sheet hyperboloid z
c

x
a

y
b

2

2

2

2

2

2
1= + − .

Example 1.15.11

Let a b c, ,  be strictly positive real numbers. The surface 
x
a

y
b

z
c

2

2

2

2

2

2
1+ + =  

is called an ellipsoid. For z
x
a

y
b

= + =0 1
2

2

2

2
,   is an ellipse on the xy  plane. When 

y
x
a

z
c

= + =0 1
2

2

2

2
,   is an ellipse on the xz - plane. When x

y
b

z
c

= + =0 1
2

2

2

2
,   

is an ellipse on the yz- plane. See Figure 1.15.11. We may parameterize the 

ellipsoid using spherical coordinates:

x a y b z c= = = ∈[ ] ∈[cos sin , sin sin , cos , ; , ;θ φ θ φ φ θ π φ π           0 2 0 ]].

Exercises 1.15

1.15.1 Find the equation of the surface of revolution S  generated 
by revolving the ellipse 4 12 2x z+ =  about the z-axis.

1.15.2 Find the equation of the surface of revolution generated by 
revolving the line 3 4 1x y+ =  about the y-axis.
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1.15.3 Describe the surface parameterized by φ πu v vcos u vsin u au u v a, , , , , , , , .        ( ) ( ) ( ) ( ) ( )∈ × > 0 2 0 1 0
φ πu v vcos u vsin u au u v a, , , , , , , , .        ( ) ( ) ( ) ( ) ( )∈ × > 0 2 0 1 0

1.15.4 Describe the surface parameterized by φ
π

u v au cos bu sin u

u v a b

, , , ,

, , , , ,

   v    v  

 2  

( ) = ( )
( ) ( ) ( )∈ +∞ ×

2

1 0 >> 0.

  
φ

π

u v au cos bu sin u

u v a b

, , , ,

, , , , ,

   v    v  

 2  

( ) = ( )
( ) ( ) ( )∈ +∞ ×

2

1 0 >> 0.

 
φ

π

u v au cos bu sin u

u v a b

, , , ,

, , , , ,

   v    v  

 2  

( ) = ( )
( ) ( ) ( )∈ +∞ ×

2

1 0 >> 0.

1.15.5 Use Maple to show the cylinder with Cartesian equation 
3 5 12 2x y+ = . One starts with the circle 3 5 12 2x y+ =  on 
the xy -plane and moves it up and down the z-axis, where 
− ≤ ≤1 1x , − ≤ ≤1 1y , and − ≤ ≤10 10z . 

1.15.6 Demonstrate that the surface in 3  S e x z ex y z xz: ,2 2 2 2 0+ + −− + =( )  
implicitly defined is a cylinder.

1.15.7 Show that the surface in 3  implicitly defined by 
x y z xyz x y z4 4 4 4 1+ + − + + =( )  is a surface of revolution, and 
find its axis of revolution.

1.15.8 Show that the surface S  in 3  given implicitly by the 

equation 1 1 1
1

x y y z z x−
+

−
+

−
=  is a cylinder and find the 

direction of its directrix.

1.15.9 Show that the surface S  in 3  implicitly defined as 
xy yz zx x y z+ + + + + + =1 0  is of revolution and find its axis.

1.15.10 Demonstrate that the face in 3  given implicitly by 
z xy z2 2 1− = −  is a cone.

1.15.11 (Putnam Exam 1970): Determine, with proof, the 
radius of the largest circle, which can lie on the ellipsoid 
x
a

y
b

z
c

2

2

2

2

2

2
1+ + = , a b c> > > 0.

1.15.12 The hyperboloid of one sheet in Figure 1.15.12 has the 
property that if it is cut by planes at z = ±2, its projection on 
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the xy  plane produces the ellipse x
y

2
2

4
1+ = , and if it is cut 

by a at z = 0, its projection on the xy -plane produces the 
ellipse 4 12 2x y+ = . Find its equation.

1.16 Parametric Curves in Space

In analogy to curves on the plane, we now define curves in space.

Definition 1.16.1 Let a b;[ ] ⊆ . A parametric curve representation r  

of a curve Γ  is a function r: a b;[ ] →

3 , with r( )
( )
( )
( )

t

x t

y t

z t

=















, and such that 

r  ra b a; .[ ]( ) ( )= Γ  is the initial point of the curve and r b( )  its terminal 

point. A curve is closed if its initial point and its final point coincide. The 
trace of the curve r  is the set of all images of r , that is, Γ. The length of the 
curve is  d r



Γ∫ .

Example 1.16.1

The trace of r( ) = i  cos  + j sin  + k t t t t
 



 is known as a cylindrical helix. 

See Figure 1.16.1. To find the length of the helix as t  traverses the interval 
[ ; ]0 2π  , first observe that

FIGURE 1.15.12 Exercise 1.15.12.
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d x d  d


= ( ) + −( ) + =sin cost t t t2 2 1 2 ,

and thus the length is

2 2 2
0

2π
π∫ = dt .

The MapleTM commands to graph this curve and to find its length are:

 �

 �

 �

 �

FIGURE 1.16.1 Helix.

MVC_Musa_CH01-P2.indd   133 11/20/2014   4:13:45 PM



134 • multiVariable and Vector calculus

Example 1.16.2 

Find a parametric representation for the curve resulting by the inter-
section of the plane 3 1x y z+ + =  and the cylinder x y2 22 1+ =  in 3.

 n Solution: 
The projection of the intersection of the plane 3 1x y z+ + =  and the 

cylinder is the ellipse x y2 22 1+ =  on the xy -plane. This ellipse can be 
parameterized as

x t y t t= = ≤ ≤cos , sin , .    
2

2
0 2π  

From the equation of the plane,

z x y t t= − − = − −1 3 1 3
2

2
cos sin .  

Thus we may take the parameterization

r( )
( )
( )
( )

cos

sin

cos sin

t

x t

y t

z t

t

t

t t

=
















=

− −










2
2

1 3
2

2

















.  

 n

Example 1.16.3

Let a b c, ,  be strictly positive real numbers. Consider the region 
ℜ = ∈ ≤ ≤ ={ }( )    x y z x a y b z c, , : , ,

3 . A point P  moves along the ellipse

x
a

y
b

z c
2

2

2

2
1 1+ = = +,   ,

once around, and acts as a source light projecting a shadow of ℜ  onto 
the xy-plane. Find the area of this shadow.

 n Solution: 
First consider the same problem as P  moves around 

the circle x y z c2 2 1 1+ = = +,   , and the region ′ℜ = ∈ ≤ ≤ ={ }( )    x y z x y z c, , : , ,

3 1 1

′ℜ = ∈ ≤ ≤ ={ }( )    x y z x y z c, , : , ,

3 1 1 . See Figure 1.16.2.
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For fixed P u v c, , +( )1  on the circle, the image of ′ℜ  ( a 2 2×  square) 
on the xy - plane is a c c2 2 2 2+( )× +( )  square with center at the point 
Q cu cv− −( ), ,0  (Figure 1.16.3). As P  moves along the circle, Q  moves along 
the circle with equation x y c2 2 2+ =  on the x y c2 2 2+ =  on the xy -plane 
(Figure 1.16.3), being the center of a c c2 2 2 2+( )× +( )  square. This creates 
a region as in Figure 1.16.4, where each quarter circle has radius c , and the 
central square has side 2 2c + , of area

π c c c c2 24 1 8 1+ + + +( ) ( ).

FIGURE 1.16.2 Example 1.16.3.

FIGURE 1.16.3 Example 1.16.3. FIGURE 1.16.4 Example 1.16.3.
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Resizing to a region 

ℜ = ∈ ≤ ≤ =( )x y z x a y b z c, , : , ,     

3 ,

and an ellipse

x
a

y
b

z c
2

2

2

2
1 1+ = = +,   ,

we use instead of c a c+ +( )1 1,   (parallel to the x-axis) and b c +( )1  

(parallel to the y -axis), so that the area shadowed is

π πab c ab c abc c c ab abc ab+ + + + + = + + +( ) ( ) ( ) ( )1 4 1 4 1 12 16 42 2 2 . n

Exercises 1.16

1.16.1 Let C  be the curve in 3  defined by x t= 2, y t= 4 3 2/ , z t= 9 , 
t ∈ +∞[ ]0; . 
Calculate the distance along C  from 1 4 9, ,( )  to 16 32 36, , .( )

1.16.2 Consider the surfaces in 3  implicitly defined by

z x y− − − =2 2 1 0 , z x y+ + − =2 2 3 0 .

Describe as vividly as possible these surfaces and their 
intersection, if they at all intersect. Find a parametric equation 
for the curve on which they intersect, if they at all intersect.

1.16.3 Consider the space curve � �r : t

t
t

t
t

t
t

4

2

3

2

2

2

1

1

1

+

+

+

























. Let tk , 1 4≤ ≤k   

non-zero real numbers. 

Prove that 
  

r  r  r( ), ( ), ( )t t t1 2 3 , and  r


( )t4  are coplanar if and only if 

1 1 1 1
0

1 2 3 4t t t t
+ + + = .
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1.16.4 Give a parameterization for the part of the ellipsoid 

x
y z2

2 2

9 4
1+ + = , which lies on top of the plane x y z+ + = 0.

1.16.5 Find the parametric equations that represent the curve, 
which is the intersection of the surfaces

y z2 2 16+ =  and x y z= − −8 2 .

1.16.6 Let a  be a real number parameter, and consider the planes

P ax y z a

P x ay az
1

2 1

: ,

: .

+ + = −

− + = −

Let l  be their intersection line.

1. Find a direction vector for l.
2. As a  varies through , l  describes a surface S  in 3. Let 

( ), ,x y z  be the point of intersection of this surface and the 
plane z c= . Find an equation relating x  and y.

3. Find the volume bounded by the two planes, x = 0, and x = 1, 
and the surface S  as c  varies.

1.17 Multidimensional Vectors

We briefly describe space in n-dimensions. The ideas expounded ear-
lier about the plane and space carry almost without change.

Definition 1.17.1 

n  is the n -dimensional space, the collection

�
�

�n

n

k

x

x

x

x=



















∈





















1

2 : .

Definition 1.17.2 If 


a  and 


b  are two vector in n their vector sum 




a + b  is defined by the coordinatewise addition 
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� �
�

a + b = 

a b

a b

a bn n

1 1

2 2

+
+

+



















.

Definition 1.17.3 A real number α ∈  will be called a scalar. If α ∈  
and 
� �a∈ n, we define scalar multiplication of a vector and a scalar by the 

coordinatewise

α

α
α

α

 a = 
�

�

a

a

an

1

2



















.

Definition 1.17.4 The standard ordered basis for n  is the collection of 

vectors 
� � …�e e e1 2, , n{ }  with 

�
�

�
ek =























0

1

0

.

(a 1 in the k  slot and 0’s everywhere else). Observe that

α

α
α

α

k
k

n

k

n

=
∑ =



















1

1

2�
�

e .

Definition 1.17.5 Given vectors 


a , 


b  of n  their dot product is

� i
�

a  b = a bk
k

n

k
=

∑
1

.

We now establish one of the most useful inequalities in analysis.

Theorem 1.17.1 (Cauchy Bunyakovsky-Schwartz inequality): Let x


 
and y



 be any two vectors in n. Then we have 

x y x y
�
i
� � �

≤  .
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Proof: Since the norm of any vector is non-negative, we have
� � � � i � �

�i� �i�
x y x y x y

                 x x x

+ ≥ ⇔ +( ) +( ) ≥

⇔ +

t t t

t

0 0

2 yy y y

                 x x y y

+ ≥

⇔ + + ≥ ⋅

t

t t

2

2 2 2

0

2 0

�i�

� �i� �
 

This last expression is a quadratic polynomial in t, which is always non-
negative. As such its discriminant must be non-positive, that is,

2 4 0
2 2 2

x y x y x y x y
�
i
� � � �

i
� � �( ) − ( )( ) ≤ ⇔ ≤ ,

giving the theorem.  n

The preceding proof works for any vector space (cf. below) that has 
an inner product.

The form of the Cauchy-Bunyakovsky-Schwarz most useful to us  
will be

 x y x yk k
k

n

k
k

n

k
k

n

= = =
∑ ∑ ∑≤





















1

2

1

1 2

2

1

1 2/ /

,  (1.22)

or real numbers x yk k,  .

Corollary 1.17.1 (Triangle Inequality): Let 


a  and 


b  be any two 
vectors in n. Then we have 

a b a b
   

+ ≤ + .

Proof:

a b a b a b

           a a a b b b

      

� � � �
i
� �

�
i
� �

i
� �
i
�

+ = +( ) +( )
= + +

2

2

     a a b b

           a b

≤ + +

= +( )

� �
i
� �

� �

2 2

2

2

,

from where the desired result follows.  n

Again, the preceding proof is valid in any vector space that has a norm.

! 
TIP
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Definition 1.17.6 Let x


 and y


 be two non-zero vectors in a vector space 

over the real numbers. Then the angle x y
� ��,( )  between the is given by the 

relation

cos ,x y
x y

x y

� ��
�
i
�

� �( ) = ⋅

This expression agrees with the geometry in the case of the dot product 

for 2  and 3.

Example 1.17.1

Assume that a b c k nk k k, , , , , = 1 , are positive real numbers. Show that

a b c a b ck k k
k

n

k
k

n

k
k

n

k
k

n

= = = =
∑ ∑ ∑ ∑







 ≤
























1

4

4

1

4

1

2

1






2

.

 n Solution: 

Using CBS  on a b ck k
k

n

k( )
=

∑
1

, once we obtain

a b c a b ck k k
k

n

k k
k

n

k
k

n

= = =
∑ ∑ ∑≤





















1

2 2

1

1 2

2

1

1 2/ /

.

Using CBS  again on a bk k
k

n
2 2

1

1 2

=
∑









/

, we obtain 

a b c a b ck k k
k

n

k k
k

n

k
k

n

= = =
∑ ∑ ∑≤





















1

2 2

1

1 2

2

1

1 2/ /

               ≤






























= = =
∑ ∑ ∑a b ck
k

n

k
k

n

k
k

n
4

1

1 4

4

1

1 4

2

1

1 2/ / /

,,

which gives the required inequality.  n
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We now use the CBS inequality to establish another important 
inequality. 

Lemma 1.17.1 Let ak > 0, qk > 0, with qk
k

n

=
∑ =

1

1. Then 

limlog log .
/

x k k
x

k

n x

k k
k

n

q a q a
→

= =
∑ ∑







 =

0
1

1

1

 

Proof: Recall that log 1 0+( ) →x x x  as . Thus 

limlog lim
log/

x k k
x

k

n x

x

k k
x

k

n

q a
q a

x→
=

→

=∑
∑







 =











0
1

1

0

1

                                

       

=
−( )

→

=
∑

lim
x

k k
x

k

n

q a

x0

1

1

                         

           

=
−( )

→
=

∑lim
x k

k

n
k
x

q
a

x0
1

1

                     =
=

∑q ak k
k

n

log .
1

 
n

Theorem 1.17.2 (Arithmetic Mean-Geometric Mean Inequality): 
Let ak ≥ 0. Then

a a a
a a a

nn
n n

1 2
1 2





≤
+ + +

⋅

Proof: If bk ≥ 0 , then by CBS

 
1 1

1 1

2

n
b

n
bk

k

n

k
k

n

= =
∑ ∑≥









 .  (1.23)

Successive applications of Equation (1.23) yield the monotone decreas-
ing sequence
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1 1 1

1 1

2

4

1

4

n
a

n
a

n
ak

k

n

k
k

n

k
k

n

= = =
∑ ∑ ∑≥









 ≥









 ≥,

which by Lemma 1.17.1 has limit

exp log ,
1

1
1 2n

a a a ak
k

n

n
n

=
∑







 =   

giving

a a a
a a a

nn
n n

1 2
1 2





≤
+ + +

,

as wanted.  n

Example 1.17.2 

For any positive integer n > 1  we have 1 3 2 1⋅ ⋅ − <( )5     n nn . For, 
by AMGM, 

1 3 2 1
1 3 5 2 1 2

⋅ ⋅ − <
+ + + + −







 = 






 =( ) ( )

5    
  





n
n

n
n
n

n
n n

n.  

Notice that since the factors are unequal we have strict inequality.

Definition 1.17.7 Let a a an1 20 0 0> > >, , . . . ,      . Their harmonic mean 
is given by

n

a a an

1 1 1

1 2

+ + +

.

As a corollary to AMGM, we obtain

Corollary 1.17.2 (Harmonic Mean-Geometric Mean Inequality) 

Let b b bn1 20 0 0> > >, , . . . ,      . Then

n

b b b

b b b

n

n

n

1 1 1

1 2

1 2

1

+ + +
≤ ( )





/
.
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Proof: This follows by putting a
bk

k

=
1

 in Theorem 1.17.2. Then

1 1 1
1 1 1

1 2

1

1 2

b b b

b b b

nn

n

n












 ≤

+ + +/

.
 n

Combining Theorem 1.17.2 and Corollary 1.17.2, we deduce

Corollary 1.17.3 (Harmonic Mean-Arithmetic Mean Inequality) 

Let b b bn1 20 0 0> > >, , . . . ,      . Then

n

b b b

b b b

n

n

n

1 1 1

1 2

1 2

+ + +
≤

+ + +





.

Example 1.17.3 

Let ak > 0,  and  s a a an= + + +1 2  . Prove that

s
s a

n
nkk

n

−
≥

−=
∑

1

2

1
.

and

a

s a
n

n
k

kk

n

−
≥

−=
∑

1 1
.

 n Solution:

Put b
s

s ak
k

=
−

. Then 

1
1

1 1b

s a

n
n

kk

n
k

k

n

= =
∑ ∑=

−
= − ,

and from Corollary 1.17.3, 
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n
n

s
s a

n
kk

n

−
≤

−=
∑

1
1 ,

from where the first inequality is proved. Since 
s

s a

a

s ak

k

k−
− =

−
1 , we 

have 

a

s a
s

s a

s
s a

k

kk

n

kk

n

k

−
=

−
−











=
−










= =
∑ ∑

1 1

1

               −

≥
−

−

=
−

⋅

=
∑
k

n

n

n
n

n

n
n

1

2

1

1

              

              

. 

 n

Exercises 1.17

1.17.1 The Arithmetic Mean Geometric Mean Inequality says that if 
ak ≥ 0, then 

a a a
a a a

nn

n n
1 2

1 1 2


( ) ≤
+ + +

⋅
/

 

Equality occurs if and only if a a an1 2= = = . In this exercise, 
you will follow the steps of a proof by George Polya.

1. Prove that ∀ ∈ ≤ −x x ex
, 1.

2. Put A
na

a a ak
k

n

=
+ + +1 2 

, and G a a an n= 1 2 . Prove that 

A A A
n G

a a a
n

n
n

n

n1 2

1 2





=
+ + +( )

, and that A A A nn1 2+ + + = .

3. Deduce that G
a a a

nn
n

n

≤
+ + +









1 2 

.
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4. Prove the AMGM inequality by assembling the preceding 
results. 

1.17.2 Demonstrate that if x x n1 2, , , x  are strictly positive real 
numbers then 

x x x
x x x

nn
n

1 2
1 2

21 1 1
+ + +( ) + + +









 ≥  .

1.17.3 (USAMO 1978): Let a b c d e, , , ,  be real numbers such that
a b c d e+ + + + = 8 , a b c d e2 2 2 2 2 16+ + + + = .  Maximize the value 
of e.

1.17.4 Find all the positive real numbers a a an1 2≤ ≤ ≤   such that 

a a ak
k

n

k
k

n

k
k

n

= = =
∑ ∑ ∑= = =

1

2

1

3

1

96 144 1216, , .         

1.17.5 Demonstrate that for integer n > 1 , we have 

n
n n

! .<
+








1
2

 

1.17.6 Prove the sequence x
n

nn

n

= +





 =1

1
1 2, , ,   is strictly 

increasing.
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C H A P T E R2
DIFFERENTIATION

In This Chapter 

 l Some Topology
 l Multivariable Functions
 l Limits and Continuity
 l Definition of the Derivative
 l The Jacobi Matrix
 l Gradients and Directional Derivatives
 l Levi-Civita and Einstein
 l Extrema
 l Lagrange Multipliers

Based on the understanding of the concepts of vectors and parametric 
curves from the previous chapter, in this chapter we focus on differ-
entiation of functions of several variables. We mainly discuss some 

topology, multivariable functions, limits and continuity, definition of the 
derivative, the Jacobi matrix, gradients and directional derivatives, Levi-
Civita and Einstein extrema, and Lagrange multipliers. 
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2.1 Some Topology

Definition 2.1.1 Let a∈n  and let ε > 0. An open ball centered at a  of 
radius ε  is the set 

B n
ε εa x x a( ) = ∈ − <{ } : .  

An open box is a Cartesian product of open intervals

a b a b a b a bn n n n1 1 2 2 1 1; ; ; ; , ×  × ×  ×  − −

where the a bk k,  are real numbers.

Example 2.1.1

An open ball in   is an open interval, an open ball in 2  is an open 
disk (see Figure 2.1.1) and an open ball in 3  is an open sphere (see 
Figure 2.1.2). An open box in   is an open interval, an open box in 2  is a 

FIGURE 2.1.1 Open ball in 2. FIGURE 2.1.2 Open ball in 3.

FIGURE 2.1.3 Open rectangle in 2. FIGURE 2.1.4 Open rectangle in 3.
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rectangle without its boundary (see Figure 2.1.3) and an open box in 3  is 
a box without its boundary (see Figure 2.1.4).

Definition 2.1.2 A set S n⊆   is said open if for very point belonging to it 
we can surround the point by a sufficiently small open ball so that at this ball 
lay completely within the set. That is, ∀ ∈ ∃ >a S, ε 0  such that B Sε a( ) ⊆ .

Example 2.1.2

The region −] [1 1;  is open in . The interval −] ]1 1;  is not open; how-

ever, as no interval centered at 1 is totally contained in −] ]1 1; .

Example 2.1.3

The region −] [ × +∞] [1 1 0; ;  is open in 2.

Example 2.1.4

The ellipsoidal region x y x y, :( )∈ + <{ }

2 2 24 4  open in 2.

You will recognize that open boxes, open ellipsoids and their unions, 
and finite intersections are open sets in n.

Definition 2.1.3 A set S n⊆   is said closed in , as its complement, 
 \ S  is open.

Example 2.1.5

The closed interval −[ ]1 1;   is closed in , as its complement, 
 \ ; ; ;−[ ] = −∞ −] [ ∪ ∞] [1 1 1 1  is open in . However, the interval −] ]1 1;  is 
neither open nor closed in .

Example 2.1.6

The region [−1; 1] ×  [0; +1[ ×  [0; 2] is closed in 3.

Definition 2.1.4 A point P  in a set S n⊂   is called an interior point of 
S  if and only if there is some open ball with center P, which contains only 
points of S.

A set is called an open set if and only if all its points are interior 
points. 

! 
TIP
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Exercises 2.1 

2.1.1 Determine whether the following sub-sets of 2 are open, 
closed, or neither, in 2.

1. A x y x y= ( )∈ ≤ ≤ ≤ ≤{ }, : ,

2 2 4 1 5  

2. B x y x y= ( )∈ ≤ + ≤{ }, :

2 2 20 4

3. C x y x y
x

= ( )∈ > < 















, : , sin

2 0
1

4. D x y x y= ( )∈ > >{ }, : ,

2 0 0

5. E x y x y r= ( )∈ + <{ }, :

2 2 2 2 , for  r > 0

6. F x y x a y b r= ( )∈ −( ) + −( ) <{ }, :

2 2 2 2 , for r > 0  and 

a b,( )∈2  

7. G x y a x b c y d= ( )∈ < < < <{ }, : ,

2  for a rectangle  

= a b c d, , ,( ) ( ) , where a b,( )∈2  and c,d( )∈2

8. H x y y x= ( )∈ ≥ − >{ }, :

2 22 4 1

9. I x y y x= ( )∈ + > −{ }, :

2 2 1

10. J x y x y x y= ( )∈ + < − >{ }, : ,

2 2 2 2 25 1

11. K x y x y= ( )∈ + >{ }, :

2 2 24 4

12. L x y x y x y= ( )∈ + ≥ + ≤{ }, : ,

2 2 2 2 24 4 4 16

13. M x y x y y x= ( )∈ ≥ ≥{ }, : ,

2 2 2

14. N x y x y= ( )∈ + ={ }, :

2 2 2 1

15. L x y
x y

= ( )∈ + <







, :

2
2 2

2 3
1

16. T x y x y= ( )∈ < <{ }, : ,

2 1 1

17. V x y x y= ( )∈ ≤ ≤{ }, : ,

2 1 1

18. V x y x y= ( )∈ + ≥{ }, :

2 2 0
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19. V x y x y= ( )∈ ={ }, :

2

20. V x y xy= ( )∈ >{ }, :

2 0

21. V x y x x= ( )∈ = − + −{ }, : y

2 1 2

22. V x y x y= ( )∈ >{ }, :

2 2

2.1.2 Show that the set A x y x y r= ( )∈ + <{ }, :

2 2 2 2 ,for  r > 0  is 
open in 2.

If a > 0  and b > 0 , let δ > 0  and ε  be the smaller of a  and b, and 
consider B a bδ ,( ).HINT

2.1.3 Determine whether the following sub-sets of 3  are open, 
closed, or neither, in 3.

1. A x y z x y z= ( )∈ < + +( ) <







, , :

3 2 2 2
1
23 6

2. B x y z x y z= ( )∈ + + <{ }, , :

3 2 2 22 3 6

3. C x y z x y z= ( )∈ + < ≡{ }, , : ,

3 2 2 7 0

4. D x y z x a y b z c= ( )∈ −( ) + −( ) + −( ) <{ }, , :

3 2 2 2 2ε  with  

center a b c, ,( )  and radius ε

5. E x y z x a y b z c= ( )∈ −( ) + −( ) + −( ) ≤{ }, , :

3 2 2 2 ε  with 

 center a b c, ,( )  and radius ε

6. F x y z x y z= ( )∈ −( ) + −( ) + +( ) ≤{ }, , :

3 2 2 21 2 3 5

7. B x y z x y z= ( )∈ + + ≤{ }, , :

3 2 2 2 5

8. L x y z
x
a

y
b

z
c

= ( )∈ + + ≤







, , :

3
2

2

2

2

2

2
1

9. V x y z x y z= ( )∈ + − ={ }, , :

3 2 2 2 0

10. M x y z x y z z= ( )∈ + + − ={ }, , :

3 2 2 2 4 0

11. T x y z x y z= ( )∈ ≥ ≥ ≥{ }, , : , ,

3 0 0 0
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12. G x y z
xy
z

= ( )∈







, , :

3

13. C x y z xy z= ( )∈ >{ }, , :

3

14. B x y z x y z= ( )∈ −( ) ={ }, , :

3 2 2

15. T x y z x y z= ( )∈ < + + <{ }, , :

3 2 2 21 2

2.1.4 Determine whether the following statements are true or 
false.

1. The set of x x( )∈ < <{ } : 0 1  is open in .

2. If a  and b  > 0, the open rectangle 

x y x a y b, : ,( )∈ < < < <{ }

2 0 0  is an open set in 2.

3. The interaction of two open sets is an open set.

4. The union of two closed sets is a closed set.

5. The interaction of two closed sets is a closed set.

6. An open ball is a convex set.

7. A set that contains its boundary is called a closed set.

2.1.5 Prove that the union of two open sets is an open set.

 A set is called an open set if and only if all its points are interior points.

2.1.6 Let p x y( ),   be a polynomial with real coefficients in the real 
variables x  and y, defined over the entire plane 2. What 
are the possibilities for the image (range) of p x y( ),  ?

2.1.7 A set of points of complex number (z x iy= + ) is given. 
Determine whether the set is open, closed, or neither.

1. V  is the set of all z  satisfying z z i− ≤ +2 5 .

2. The set M  consists of all z  with Im z( ) < 9.

3. D  is the set of all z  such that 1 6< ( ) ≤Re z .

4. The set C  consists of all z  such that Re Imz z( ) > ( )( )2
.

HINT
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5. B  is the set of all numbers x iy+  with x  and y  any rational 
numbers

6. A  is the set of all z  satisfying z i− < 7.

7. F  is the set of all z  satisfying z i− <2 9.

8. The set T  consists of all z x iy= +  with x > 0.

9. The set K  consists of all z x iy= +  with x ≥ 0.

10. The set E  consists of all z x iy= +  with − ≤ ≤1 1x  and y > 0.

2.2 Multivariable Functions

Let A n⊆  . For most of this course, our concern will be functions of 
the form 

f A m: → .

If m = 1, we say that f  is a scalar field. If m ≥ 2, we say that f  is a 
vector field.

We would like to develop a calculus analogous to the situation in . In 
particular, we would like to examine limits, continuity, differentiability, and 
integrability of multivariable functions. Needless to say, the introduction of 
more variables greatly complicates the analysis. For example, recall that the 
graph of a function f A m: → , A n⊆   is the set 

x x, ( ) : .f x A n m( ) ∈{ } ⊆ +
  

If m n+ > 3 , we have an object of more than three-dimensions! In the 
case, n m= =2 1, ,  we have a tri-dimensional surface. We will now briefly 
examine this case.

Definition 2.2.1 Let A ⊆ 2  and let f A: →  be a function. Given 
c∈, the level curve (or contour) at z c=  is the curve resulting from the 
intersection of the surface z f x y= ( ),   and the plane z c= , if there is such 
a curve.

Example 2.2.1

The level curves of the surface f x y x y,  ( ) = +2 2  (an elliptic parabo-
loid) are the concentric circles x y c2 2+ = , c > 0.
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Example 2.2.2

Sketch the level curve for f x y x y,  ( ) = − −
1
3

12 6 22 2 .

 n Solution: 
The Maple™ commands to graph this function. 

 �

 �

The graph is shown in Figure 2.2.1(a).

FIGURE 2.2.1 (A) Level curve of f x y x y,  ( ) = − −
1
3

12 6 22 2  in 2D with Maple.

 �

The three-dimensional plot is presented in Figure 2.2.1(b).
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The MATLAB commands to graph this function. 

>> syms x y

>> f =(1/3∗sqrt(12−(6∗x^2)−2∗y^2))

f =

1/3∗(12−6∗x^2−2∗y^2)^(1/2)

>> ezcontour(f, [−2, 2, −2, 2])

The graph is shown in Figure 2.2.2(a).

FIGURE 2.2.1 (B) Level curve of f x y x y,  ( ) = − −
1
3

12 6 22 2  in 3D with Maple.

FIGURE 2.2.2 (A) Level curve of f x y x y,  ( ) = − −
1
3

12 6 22 2  in 2D with MATLAB.
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>> syms x y

>> f =(1/3∗sqrt(12−(6∗x^2)−2∗y^2))

f =

1/3∗(12−6∗x^2−2∗y^2)^(1/2)

ezsurf(f, [−2, 2, −2, 2])

The surface plot is presented in Figure 2.2.2(b). n

Definition 2.2.2 Let A ⊆ 3  and let f A: →  be a function. Given 
c∈, the level surface at w c=  is the surface resulting from the intersection 
of the surface w f x y z= ( ), ,  and the plane w c= , if there is such a surface.

In other words, the level surface of a function w f x y z= ( ), ,  is the sur-
face in a rectangular three variables coordinate system xyz( )  defined by 
f x y z c, ,( ) = , where c  is any constant.

FIGURE 2.2.2 (B) Level curve of f x y x y,  ( ) = − −
1
3

12 6 22 2  in surface form with MATLAB.
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Example 2.2.3

Sketch the level surface for f x y z x y z, , ( ) = + +2 2 24 16 .

 n Solution: 
The Maple™ commands to graph this function. 

 �

 �

 �

 �

FIGURE 2.2.3 Level surface f x y z x y z, , ( ) = + +2 2 24 16 . n

Exercises 2.2 

2.2.1 Sketch the level curves in 2D and 3D views for the following 
maps.

1. x y x y,( ) +  

2. x y xy,( )
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3. x y x y,( ) −

3

4. x y x y,( ) +

2 24

5. x y y x,( ) −

2 2

6. x y x y, min ,( ) ( )

7. x y x y, sin( ) +( )

2 2

8. x y x y, cos( ) −( )

2 2

9. x y x y,( ) − − 5 2 2

10. x y yex,( )
11. x y x y, sin sin( )
12. x y x y, ln( ) + −( )

2 2 1

13. x y
y

x
, tan( )

+








−


1

1

14. x y x y, / /( ) +

2 3 2 3

15. x y x y,( ) +( ) + 1 2 2

2.2.2 Sketch the level surfaces for the following maps.

1. x y z x y z, ,( ) + +

2. x y z xyz, ,( )
3. x y z x y z, , min , ,( ) ( )

4. x y z x y, ,( ) +

2 2

5. x y z x y, ,( ) +

2 24

6. x y z z x y, , sin( ) − −( )

2 2

7. x y z x y z, ,( ) + +

2 2 2

8. x y z
y z
y z

, , cos( ) −
+

−


1

9. x y z x y z, ,( ) + −

2 2
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10. x y z
x z

y
, , sin( ) +

−










1

11. x y z x y z, , ln( ) − − +( ) 2 3 4

12. x y z
x z

y
, , tan( ) +







−



1

2.2.3 Describe geometrically how a surface z g x y= ( ),  would have 
to be transformed in order to obtain each of the following 
surfaces z f x y= ( ), , where is 

1. f x y g x y, ,( ) = ( ) + 2

2. f x y g x y, ,( ) = ( )2

3. f x y g x y, ,( ) = − ( )
4. f x y g x y, ,( ) = − ( )2

5. f x y g x y, ,( ) = −( )
6. f x y g x y, ,( ) = ( )2

7. f x y g x y, ,( ) = − − −( )

2.2.4 Let v t( )  be a strictly increasing function of t, and let 

f x y v g x y, ,( ) = ( )( ). How are the level curves of g x y( , )  and 

f x y( , )  related?

2.3 Limits and Continuity

We start this section with the notion of limit.

Definition 2.3.1 A function f n m: →  is said to have a limit L m∈  

at a∈n  if ∀ > ∃ >ε δ0 0  such that

0 < − < ⇒ − <x a xδ εf ( ) L .  

In such a case, we write

lim ( ) L.
x a

x
→

=f  
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The notions of infinite limits, limits at infinity, and continuity at a point 
are analogously defined. Limits in more than one dimension are perhaps 
trickier to find, as one must approach the test point from infinitely many 
directions.

Example 2.3.1

Find lim
, ,x y

x y
x y( )→( ) +0 0

2

2 2
.

 n Solution: 
We use the sandwich theorem. Observe that, 0 2 2 2≤ ≤ +x x y , and so 

0 1
2

2 2
≤

+
≤

x
x y

. Thus

lim lim lim
, , , , , ,x y x y x y

x y
x y

y
( )→( ) ( )→( ) ( )→( )

≤
+

≤
0 0 0 0

2

2 2 0 0
0 ,

And hence

lim
, ,x y

x y
x y( )→( ) +

=
0 0

2

2 2
0.

FIGURE 2.3.1 Example 2.3.1 for 3D plot of x y
x y

x y
,( )

+


2

2 2
.
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The Maple™ commands to graph this surface and find this limit appear 
in the following. Notice that Maple is unable to find the limit and so the 
limit unevaluated.

 �

 �

 �

 �  
n

Example 2.3.2

Find lim
, ,x y

x y
x y( )→( ) +0 0

5 3

6 4
.

 n Solution: 

Either x y≤   or x y≥ . Observe that if x y≤  , then 
x y

x y
y
y

y
5 3

6 4

8

4
4

+
≤ = .

If y x≤  , then 
x y

x y
x
x

x
5 3

6 4

8

6
2

+
≤ = .

Thus

x y
x y

y x y x
5 3

6 4
4 2 4 2 0

+
≤ ( ) ≤ + →max , ,

As x y, ,( ) → ( )0 0 .

Alternative:

Let X x= 3, Y y= 2.

x y
x y

X Y
X Y

5 3

6 4

5 3 3 2

2 2+
≤

+

/ /

.

Passing to polar coordinate X Y= =ρ θ ρ θcos , sin , we obtain 

x y
x y

X Y
X Y

5 3

6 4

5 3 3 2

2 2
5 3 3 2 2 5 3 3 2 7 6 0

+
= = ≤ →+ −

/ /
/ / / / /cos sin ,ρ θ θ ρ  

as x y, , .( ) → ( )0 0  
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The Maple™ commands to graph this surface appear as follows. 

 �

 �

FIGURE 2.3.2 Example 2.3.2 for 3D plot of x y
x y

x y
,( )

+


5 3

6 4
. n

Example 2.3.3

Find lim
, ,x y

x y
x y( )→( )

+ +
−0 0 2 2

1
.

 n Solution: 
When y = 0,

1
2

+
→ +∞

x
x

,  

As x → 0.  

When x = 0,
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1
2

+
−

→ −∞
y

y
,  

As y→ 0.  

The limit does not exist.

The Maple™ commands to graph this surface are as follows. 

 �

 �

FIGURE 2.3.3 Example 2.3.3 for 3D plot of x y
x y

x y
,( ) + +

−


1
2 2

. n 

Example 2.3.4

Find lim
, ,x y

xy
x y( )→( ) +0 0

6

6 8
.
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 n Solution: 
Putting x t y t= =4 3, , we find

xy
x y t

6

6 8 2

1
2+

= → +∞,  

as t → 0. But when y = 0, the function is 0. Thus the limit does not 
exist.

The Maple™ commands to graph this surface appear below. 

 �

 �

Example 2.3.5

Find lim
log

, ,x y

ex y x y

x y( )→( )

−( ) +( ) −( ) +( )
+0 0

2 2 2 21 1
.

FIGURE 2.3.4 Example 2.3.4 for 3D plot of x y
xy

x y
,( )

+


6

6 8
. n 
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 n Solution: 
When y = 0, have 

2 1 1 2
2x x

x
x

x

−( ) −( )
−

ln
,

And so the function does not have a limit at 0 0,( ). 
The Maple™ commands to graph this surface appear as follows. 

 �

 �

FIGURE 2.3.5 Example 2.3.5 for 3D plot of x y
x y x y

x y
e

,
log

( )
−( ) +( ) −( ) +( )

+


1 12 2 2 2

. 
n

Example 2.3.6

Find lim
sin sin

, ,x y

x y

x y( )→( )

( ) + ( )
+0 0

4 4

4 4
.
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 n Solution: 
sin sinx y x y4 4 4 4( ) + ( ) ≤ + ,

and so 

sin( ) sin( )
,

x y

x y
x y

4 4

4 4
4 4 0

+

+
≤ + →  

as x y, ,( ) → ( )0 0 .

The Maple™ commands to graph this surface appear as follows. 

 �

 �

FIGURE 2.3.6 Example 2.3.6 for 3D plot of x y
x y

x y
,

sin sin( ) ( ) + ( )
+



4 4

4 4
. 

n
 

Example 2.3.7

Find lim
sin

sin( ), ,x y

x y

x y( )→( )

( ) −
−0 0

.
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 n Solution: 
When y = 0, we obtain

sin
,

x
x

→1  

As x → 0.  When y x= , the function is identically −1. Thus the limit 
does not exist.

The Maple™ commands to graph this surface appear as follows. 

 �

 �

FIGURE 2.3.7 Example 2.3.7 for 3D plot of x y
x y

x y
,

in

sin( )
( ) ( ) −

−


s
. 

n

If f : 

2 → , it may be that the limits 

 lim lim , , lim lim , ,
y y x x x x y y

f x y f x y
→ → → →

( )

 


 ( )


 




0 0 0 0
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Both exist. These are called the iterated limits of f  as x y x y, ,( ) → ( )0 0 .  
The following possibilities might occur.

1. If lim ,
, ,x y x y

f x y
( )→( )

( )
0 0

 exists, then each of the iterated limits 

lim lim ,
y y x x

f x y
→ →

( )

 




0 0

 and lim lim ,
x x y y

f x y
→ →

( )

 




0 0

 exists.

2. If the iterated limits exist and lim lim , lim lim ,
y y x x x x y y

f x y f x y
→ → → →

( )

 


 ≠ ( )


 




0 0 0 0

, 

then lim ,
, ,x y x y

f x y
( )→( )

( )
0 0

 does not exist.

3. It may occur that lim lim , lim lim ,
y y x x x x y y

f x y f x y
→ → → →

( )

 


 = ( )


 




0 0 0 0

, but that 

lim ,
, ,x y x y

f x y
( )→( )

( )
0 0

 does not exist.

4. It may occur that lim ,
, ,x y x y

f x y
( )→( )

( )
0 0

 exists, but one of the iterated 

limits does not exist.

If you get two or more different values for lim ,
, 0 0x y x y

f x y
( )→( )

( )
,

 as 

 approach x y0 0,( )  along different paths, then lim ,
, ,0 0x y x y

f x y
( )→( )

( )  does 

not exist.

Example 2.3.8

Show that lim
, ,x y

x y
x y( )→( )

−
+0 0

 does not exist.

 n Solution: 

We need to show that lim lim , lim lim ,
y y x x x x y y

f x y f x y
→ → → →

( )

 


 ≠ ( )


 




0 0 0 0

.

So, lim lim lim( )
x y x

x y
x y→ → →

−
+









 = =

0 0 0
1 1  and lim lim lim( )

y x y

x y
x y→ → →

−
+









 = − = −

0 0 0
1 1.

! 
TIP
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Thus the iterated limits are not equal and therefore, lim
, ,x y

x y
x y( )→( )

−
+0 0

, does 

not exist. n

A function f  of two variables x  and y  is a rule that assigns to each 
ordered pair of real numbers x y,( )  in a set of ordered pairs of real 
numbers (D) a unique real number f x y,( ). The set D is the domain 
of f , and the corresponding set of values for f x y,( )  is the range of 
f , that is, f x y x y D( , ) : ( , )∈{ }.

Example 2.3.9

Describe the domain of the function

1. f x y x y,( ) = +2 2  

2. f x y xy, ln( ) =

3. f x y
x y

x
,( ) =

+ −2 2 16

4. f x y
x

x y z
,( ) =

− − −16 2 2 2

 n Solution: 

1. The entire xy-plane.

2. The set of all points x y,( )  in the plane for which xy > 0. 
This consists of all points in the first and third quadrants.

3. The set of all points x y,( )  laying on or outside the 
 circle x y2 2 16+ =  except when x  equal to zero, that is 
D x y x y x= + − ≥ ≠{ }( , ) : ,2 2 16 0 0 .

4. The set of all points x y z, ,( )  laying inside a sphere of radius 
4 that is centered at the origin. n

! 
TIP
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Definition 2.3.2 A function f x y,( )  is continuous at a point x y0 0,( )  in 
an open region R  if all the following conditions hold:

(a)  f x y0 0,( )  exists (i.e., x y0 0,( )  is in the domain of f .

(b)  lim ,
, ,x y x y

f x y
( )→( )

( )
0 0

 exists.

(c)  lim , ,
, ,x y x y

f x y f x y
( )→( )

( ) = ( )
0 0

0 0 .

If one or more of these three conditions fail to hold, then f  is said to 
be discontinuous at x y0 0,( ).

The function f x y,( )  is continuous in the open region R  if it is continu-

ous at every point x y,( )  in R.

Definition 2.3.3 A function f x y,( )  defined in a domain D is continuous 

in D if it is continuous at each point of D.

Theorem 2.3.1 If c  is a real number and f x y,( )  and g x y,( )  are 
continuous at x y0 0,( ), then the following functions are also continuous at 

x y0 0,( ):
1. cf x y0 0,( )
2. f x y g x y0 0 0 0, ,( ) ( )
3. f x y g x y0 0 0 0, ,( ) ± ( )

4. 
f x y

g x y
0 0

0 0

,

,
( )
( ) , if x y0 0 0,( ) ≠

The polynomial and rational functions are continuous at every point 
in their domain D.

Example 2.3.10

The function f x y
x y
x y

,( ) =
−
+
3

2 2
, is continuous at every point in its 

domain, which means that f x y,( ), is continuous at each point in the xy- 
plane except at the point 0 0,( ).

! 
TIP
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Exercises 2.3 

2.3.1 Sketch the domain of definition of x y x y,( ) − − 4 2 2 .

2.3.2 Sketch the domain of definition of x y x y, log( )( ) + .

2.3.3 Sketch the domain of definition of x y
x y

,( )
+



1
2 2

.

2.3.4 Describe the domain and the range of the function.

1. f x y x y( , ) = − −4 2 2  

2. f x y x y( , ) ln( )= − −4

3. f x y
x y

( , ) =
−

5
2

4. f x y
x
y

( , ) tan=








−1

5. f x y x y( , ) cos= −( )−1

6. f x y z
xy
z

( , , ) =

2.3.5 Find lim sin
, ,x y

x y
xy( )→( )

+( ) 









0 0

2 2 1 .

2.3.6 Find lim
sin

, ,x y

xy
x( )→( )0 2

.

2.3.7 Find lim sin
, ,x y

x y
x y( )→( )

+
+0 0

2 2
2 2

1 .

2.3.8 Find lim
, ,x y

xy xy y
( )→ −( )

− +( )
2 1

3 23 .

2.3.9 Find lim
sin

, ,x y

x y

x y( )→( )

+( )
+0 0

2 2

2 23 3
.

2.3.10 Find lim
, ,x y

x ye
x y( )→( )

+ −
+0 0 2 2

2 2 1.

2.3.11 Find lim
, , , ,x y z

x y z
x y z( )→( )

+ +
+ +0 0 0 2 2 2

.
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2.3.12 Demonstrate that  

lim .
, , , ,x y z

x y z
x y z( )→( ) + +

=
0 0 0

2 2 2

2 2 2
0

2.3.13 Prove that lim
, ,x y

x y
x y( )→( ) +

=
0 0

3

2 4
0.

2.3.14 Prove that lim
, ,x y

xy
x y( )→( ) +

=
0 0

2

2 2

2
0.

2.3.15 Show that lim
, ,x y

xy
x y( )→( ) +0 0 2 2

 does not exist by considering the 

line y x=  as one path and the x -axis to the origin another.

2.3.16 Let f : 

2 →  be such that f x y
x
y

,( ) =  for y ≠  0. Show that 

f x y,( )  is discontinuous at any point x0
20,( )∈ .

2.3.17 Show that if g x y( , )  is continuous or discontinuous where 

g x y

x y
x y

x y

x y
( , )

( , ) ,

( , ) ,
=

−
+

≠ ( )

= ( )









2 2

2 2
0 0

0 0 0
.

2.3.18 Describe the largest set L  on which the f  is continuous. 

1. f x y x y,( ) = − + 3  

2. f x y
y xy x

x y
,( ) =

+ +
−

2 2

2

5

2.3.19 For what c  will the function 

f x y
x y x y

c x y
,

,
,

( ) − − + ≤
+







1 4 4
4

2 2 2 2

2 2

if  1, 
if  >1

 

be continuous everywhere on the xy-plane?
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2.4 Definition of the Derivative

Before we begin, let us introduce some necessary notation. Let 
f : →  be a function. We write f h o h( ) = ( )  if f h( )  goes faster to 0 

than h, that is, lim
h

f h

h→

( )
=

0
0. For example, h h o h3 22+ = ( ), since

lim lim .
h h

h h
h

h h
→ →

+
= + =

0

3 2

0

22
2 0

We now define the derivative in the multidimensional space n. Recall 
that in one variable, a function g : →  is said to be differentiable at 
x a=  if the limit

lim
x a

g x g a

x a
g a

→

( ) − ( )
−

= ′( )  

exists. The limit condition above is equivalent to saying that

lim ,
x a

g x g a g a x a

x a→

( ) − ( ) − ′( ) −( )
−

= 0

or equivalently,

lim .
h

g a h g a g a h

h→

+( ) − ( ) − ′( )( )
=

0
0

We may write this as

g a h g a g a h o h+( ) − ( ) = ′( )( ) + ( ).

The preceding analysis provides an analogue definition for the higher-
dimensional case. Observe that since we may not divide by vectors, the 
corresponding definition in higher dimensions involves quotients of norms.

Definition 2.4.1 Let A n⊆  . A function f A m: →  is said to be 
differentiable at a∈A  if there is a linear transformation, called the 
derivative of f  at a, D f n m

a ( ) →:   such that

lim .
x a

ax a x a

x a→

( ) − ( ) − ( ) −( )
−

=
f f D f

0  
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Equivalently, f  is differentiable at a  if there is a linear transformation 

D fa ( )  such that 

f f D f oa h a h ha+( ) − ( ) = ( )( ) + ( ),

as h → 0. 

The condition for differentiability at a  is equivalent to

f f D f ox a x a x aa( ) − ( ) = ( ) −( ) + −( ),

as x → 0.

Theorem 2.4.1 If A  is an open set in definition 2.4.1, D fa ( )  is uniquely 
determined.

Proof:
Let L n m: →  be another linear transformation satisfying the 

Definition 2.4.1. We must prove that ∀ ∈v 

n , L D f( ) ( )v va= ( ) . Since A  

is open, a h A+ ∈  for sufficiently small h . By definition, as h → 0, we 
have 

f f D f oa h a h ha+( ) − ( ) = ( )( ) + ( ).
and

f f L oa h a h h+( ) − ( ) = ( ) + ( ).
Now, observe that,

D f L D f f f

f f L
a av v h a h a

a h a h

( )( ) − ( ) = ( )( ) − +( ) + ( )
+ +( ) − ( ) − ( ).

By the triangle inequality,

D f L D f f f

f f L

a av v h a h a

a h a h

       

( )( ) − ( ) ≤ ( )( ) − +( ) + ( )
+ +( ) − ( ) − ( )

                      h h

                          

= ( ) + ( )o o

   h= ( )o ,

as h → 0. This means

! 
TIP
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L D f( ) ( ) ,v va− ( ) → 0

i.e., L D f( ) ( )v va= ( ) , completing the proof.  n

If A = { }a , a singleton, then D fa ( )  is not uniquely determined. For 

x a− < δ  holds only for x = a, and so f fx a( ) ( )= . Any linear 

transformation T  will satisfy the definition, as T T( )x a− = =( )0 0 , 

and || ( ) || || ||f f Tx a x a( ) ( ) =− − − = 0 0 , identically.

Example 2.4.1

If L n m: →  is a linear transformation, then D L La ( ) = , for any 

a∈n .

 n Solution: 
Since n  is an open set, we know that D La ( )  uniquely determined. 

Thus if L  satisfies Definition 2.4.1, then the claim is established. But by 
linearity 

L L L L L L Lx a x a x a x a( ) − ( ) − −( ) = ( ) − ( ) − ( ) + ( ) = =0 0, hence 
the claim that follows.  n

Example 2.4.2

Let 
f :

,

� � �
� � � �i�

3 3× →

( )x y x y
 

be the usual dot product in 3. Show that f  is differentiable and that

D f� �

� � �i�
�
i
�

x , y
h , k x y h k( ) ( ) = + .

 n Solution: 
We have

f f� � � � � � � � i �
� �i�x h, y k x y x h y k x y

            

+ +( ) − ( ) = +( ) +( ) −,

                             x y x k h y h k x= + + + −�i� �i
� �
i�
�
i
� �i�yy

                                       x k h y h= + +�i
� �
i�
�
i
�
kk .

! 
TIP
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As 
 

 

h , k( ) → ( )0 0, , we have by the Cauchy-Bunyakovsky-Schwarz 

Inequality, 
    

h , k h k h≤ = ( )o , which proves the assertion.  n

It is worth knowing that, just like in the one variable case, differentiabil-
ity at a point implies continuity at that point.

Theorem 2.4.2 Suppose A n⊆   is open and f A n: →  is differentiable 
on A. Then f  is continuous on A.

Proof:
Given a∈A, we must show that

lim .
x a

x a
→

( ) = ( )f f

Since f  is differentiable at a, we have 

f f D f ox a x a x aa( ) − ( ) = ( ) −( ) + −( ),

and so 

f fx a( ) − ( ) → 0,

as x a→ , proving the theorem.  n

Exercises 2.4 

2.4.1 Let L : 

3 3→  be a linear transformation and 

F
L

:
� �
� � � �

3 3→
× ( )

⋅
x x x

Show that F  is differentiable and that 

D F h L Lx x h h x( )( ) = × ( ) + × ( )




 

 .

2.4.2 Let f : 

n → , n ≥ 1 , f  x x( ) =  be the usual norm in n, 

with � �i�x x x= . Prove that 

D fx v
x v
x

( )( ) =�
�i�
� ,  

for  x 0



≠  , but that f  is not differential at 


0.
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2.5 The Jacobi Matrix

We now establish a way that simplifies the process of finding the deriva-
tive of a function at a given point. 

Definition 2.5.1 Let A n⊆  , f A m: → , and put 

f

f x x x

f x x x

f x x x

n

n

m n

x( ) =

( )
( )

( )















1 1 2

2 1 2

1 2

, , ,

, , ,

, , ,

…

…
�

…






.  

Here fi
n: → . The partial derivative 

∂
∂

( )
f

x
i

j

x  is defined 

∂
∂

( ) =
+( ) − ( )

→

f

x

f x x x h x f x x x x

h
i

j
h

i j n i j n
x lim

, , , , , , , , , ,

0

1 2 1 2   

,,  

whenever this limit exists.

To find partial derivatives with respect to the j -th variable, we simply 
keep the other variables fixed and differentiate with respect to the j -th 
variable.

Example 2.5.1

If f : 

3 → , and f x y z x y z xy z, ,( ) = + + +2 3 2 33  then

∂
∂

( ) = +
f
x

x y z y z, , ,1 3 2 3  

∂
∂

( ) = +
f
y

x y z y xyz, , ,2 6 3

and 

∂
∂

( ) = +
f
z

x y z z xy z, , .3 92 2 2
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The Maple™ commands to find these follow. 

 �

 �

 �

 �

Since the derivative of a function fi
n m: →  is a linear transforma-

tion, it can be represented by aid of matrices. The following theorem will 
allow us to determine the matrix representation for D fa ( )  under the stan-
dard bases of n  and m. 

Theorem 2.5.1 Let 

f

f x x x

f x x x

f x x x

n

n

m n

x( ) =

( )
( )

( )















1 1 2

2 1 2

1 2

, , ,

, , ,

, , ,

…

…
�

…






.

Suppose A n⊆   is an open set and f A m: →  is differentiable. Then 

each partial derivative 
∂
∂

f

x
i

j

( )x  exists, and the matrix representation for D fx ( ) 

with respect to the standard bases of n  and m  is the Jacobi matrix

′( ) =

∂
∂

( )
∂
∂

( )
∂
∂

( )

∂
∂

( )
∂
∂

( )
∂
∂f

f

x

f

x

f

x

f

x

f

x

f

x

n

x

x x x

x x

1

1

1

2

1

2

1

2

2

2

�

…
nn

n n n

n

f

x

f

x

f

x

x

x x x

( )

∂
∂

( )
∂
∂

( )
∂
∂

( )




























� � � �

…
1 2



.
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Proof:
Let 



e j, 1 ≤ ≤j n  be the standard basis for n. To obtain the Jacobi 

matrix, we must compute D f e jx ( )( ) , which will give us the j-th column of 

the Jacobi matrix. Let ′ = ( )f Jij( )x , and observe that 

D f e

J

J

J

j

j

j

nj

x ( )( ) =





















�
�

1

2 .

and put y x= + ε e j, ε ∈. Notice that,

f f D f

f x x x h x f x x xj n j

y x y x

y x
x( ) − ( ) − ( ) −( )

−

=
+( ) −1 2 1 2, , , , , , , , ,… … … …,, x D fn j( ) − ( )( )

⋅
ε

ε
x e

�  

Since the sinistral side → 0  as ε → 0, the so does the i-th component 
of the numerator, and so,

f x x x h x f x x x x Ji j n i j n ij1 2 1 2
0

, , , , , , , , , ,   +( ) − ( ) −
→ ⋅

ε

ε

This entails that

J
f x x x x f x x x x f

xij

i j n i j n i=
+( ) − ( )

=
∂
∂→

lim
, , , , , , , , , ,

ε

ε

ε0

1 2 1 2   

jj

x( ) ⋅

This finishes the proof.  n

Strictly speaking, the Jacobi matrix is not the derivative of a func-
tion at a point. It is a matrix representation of the derivative in the 
standard basis of n. We will, however, refer to ′f  when we mean 
the Jacobi matrix of f .

! 
TIP
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We will use the symbol J  in the exercises to represent Jacobi deter-
minant which is J f= ′[ ]det .

Example 2.5.2

Let f : 

3 2→  be given by 

f x y xy yz xye, , log .( ) = +( )  

Compute the Jacobi matrix of f .

 n Solution: 
The Jacobi matrix is the 2 3×  matrix

 ′( ) =

∂
∂

( ) ∂
∂

( ) ∂
∂

( )

∂
∂

( ) ∂
∂

( )
f x y

f

x
x y

f

y
x y

f

z
x y

f

x
x y

f

y
x y

,

, , ,

, ,

1 1 1

2 2 ∂∂
∂

( )



















=
+















f

z
x y

y x z y

x y2

1 1
0

,
.   

n

Example 2.5.3

Let f z zρ θ ρ θ ρ θ, , cos , sin ,( ) = ( )  be the function, which changes from 
cylindrical coordinates to Cartesian coordinates. We have 

′( ) =
−















f zρ θ
θ ρ θ
θ ρ θ, ,

cos sin
sin cos .

0
0

0 0 1

Example 2.5.4

Let f ρ φ θ ρ θ φ ρ θ φ ρ φ, , cos sin , sin sin , cos( ) = ( )  be the function, 
which changes from spherical coordinates to Cartesian coordinates. We 
have 

′( ) =
−

f ρ φ θ
θ φ ρ θ φ ρ φ θ
θ φ ρ θ φ ρ, ,

cos sin cos cos sin sin
sin sin sin cos cosθθ φ

φ ρ φ
sin

cos sin
.

−















0

! 
TIP
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The Jacobi matrix provides a convenient computational tool to com-
pute the derivative of a function at a point. Thus differentiability at a point 
implies that the partial derivatives of the function exist at the point. The 
converse, however, is not true.

Example 2.5.5

Let f : 

2 →  be given by

f x y

y x

x y

xy

,
,

.
( ) =

=
=
≠









 if 
 if 0,

 if  

0

1 0
 

Observe that f is not continuous at 0 0,( )  f 0 0 0,( ) =(  but f x y,( ) = 1  

for values arbitrarily close to 0 0,( )), and hence, it is not differentiable 

there. We have, however, 
∂
∂

( ) =
∂
∂

( ) =
f
x

f
y

0 0 0 0 1, , . Thus even if both partial 

derivatives exist at 0 0,( ), there is no guarantee that the function will be dif-

ferentiable at 0 0,( ). You should also notice that both partial derivatives are 
not continuous at 0 0,( ). We have, however, the following.

Theorem 2.5.2 Let A n⊆   be an open set, and let f n m: → . Put 

f

f

f

fm

=



















1

2



. If each of the partial derivatives D fj i  exists and is continuous on 

A, then f  is differentiable on A.

The concept of repeated partial derivatives is akin to the concept of 
repeated differentiation. Similarly with the concept of implicit partial dif-
ferentiation, the following examples should be self-explanatory.

Example 2.5.6

Let f u v w e v wu, , cos( ) = . Determine 
∂

∂ ∂
( )

2

u v
f u v w, ,  at 1 1

4
, ,−








π
.
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 n Solution: 
We have 

∂
∂ ∂

( ) =
∂
∂

( ) =
2

u v
e v w

u
e w e wu u ucos cos cos ,  

which is 
e 2

2
 at the desired point.  n

Example 2.5.7

The equation z xy xy zxy z
+ ( ) + =2 3 3  defines z  as an implicit function 

of x  and y . Find 
∂
∂
z
x

 and 
∂
∂

z
y

 at 1 1 1, ,( ).

 n Solution: 
We have

∂
∂

=
∂
∂

= +
∂
∂









∂
∂

( ) =
∂
∂

x
z

x
e

y z
xy
z

z
x

z

x
xy

x
e

xy xy z

xy

z z

log

og

log ,

l xxy

zz
x

xy
z
x

xy

x
xy z y z xy z

         =
∂
∂

+





( )

∂
∂

= +
∂

log ,

2 3 2 3 2 23
zz
x∂

,

Hence, at 1 1 1, ,( ), we have 

∂
∂

+ + +
∂
∂

= ⇒
∂
∂

= − ⋅
z
x

z
x

z
x

1 1 3 0
1
2
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Similarly,

∂
∂

=
∂
∂

= +
∂
∂











∂
∂

( )

y
z

y
e

x z
xy
z

z
y

z

y
xy

xy xy z

xy

z

log

log ,         

==
∂
∂

=
∂
∂

+








( )

∂
∂

=

y
e

z
y

xy
z
y

xy

y
xy z xy

z xy

z

l

         

og

log ,

2 3 2 zz xy z
z
y

3 2 23+
∂
∂

,

Hence, at 1 1 1, ,( ), we have

 
∂
∂

+ + +
∂
∂

= ⇒
∂
∂

= − ⋅
z
y

z
y

z
y

1 2 3 0
3
4

 n

Just like in the one-variable case, we have the following rules of dif-
ferentiation. Let A n⊆  , B m⊆   be open sets f g A m, : ,→ ∈ α , be 
differentiable on A, and h B l: → , be differentiable on B, and f A B( )⊆ .  
Then we have

1. Addition Rule: D f g D f D gx x x+( )( ) = ( ) + ( )α α  

2. Chain Rule: D h f D h D ffx x x ( )( ) = ( )( ) ( )( )( )

Since composition of linear mappings expressed as matrices is matrix 
multiplication, the Chain Rule takes the alternative form when applied to 
the Jacobi matrix.

 h f h f f ( )′ = ′( ) ′( ).  (2.1)
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Example 2.5.8

Let

f u v

ue

u v

uv

h x y
x y

y z

v

, ,

, .

( ) = +
















( ) =
+
+











2

 

Find f h x y( )′ ( ), .

 n Solution: 
We have 

′( ) =
















f u v

e ue

v u

v v

, ,1 1  

And

′( ) =








h x y

x
, .

2 1 0
0 1 1

 

Observe also that 

′ ( )( ) =
+( )

+ +

















+ +

f h x y

e x y e

y z x y

y z y z

, .

2

2

1 1

Hence

f h x y f h x y h x y

e x yy z

( )′ ( ) = ′ ( )( ) ′( )

=
+(+

, , ,

                   

2 ))

+ +



























+e

y z x y

x
y z

1 1
2 1 0
0 1 1

2
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                    =
+ +( ) +( )

+

+ + +2 1
2 2 1

2 2

2 2xe x y e x y e

x

xy x

y z y z y z

zz x y z x y2 22+ + +
















.  

n

Example 2.5.9

Let 

f f u v u e

u v u x y xz v x y y z

v: , , ,

, : , , , ,

 

 

2 2

3

→ ( ) = +

→ ( ) = ( ) = +

     

    ..

 

Put h x y f
u x y z

v x y z
,

, ,
, ,

.( ) =
( )
( )









  Find the partial derivatives of h.

 n Solution: 

Put g g x y
u x y

v x y

xz

y z
: , ,

,
,

. 

3 2→ ( ) =
( )
( )









 =

+








   Observe that h f g=  .  

Now,

′( ) =










′( ) =  
′ ( )( ) = 

+

g x y
z x

f u v u e

f h x y xz e

v

y z

, ,

, ,

,

0
0 1 1

2

2 .

 

Thus

∂
∂

( ) ∂
∂

( ) ∂
∂

( )







 = ′( )h

x
x y

h
y

x y
h
z

x y h x y, , , ,

                                                    

 

= ′ ( )( )( ) ′( )( )f g x y g x y, ,

                                                   = +2xz ey zz
z x

 










0
0 1 1

                                                    = + 
+ +2 22 2xz e x z ey z y z .

 

MVC_Musa_CH02.indd   185 12/04/2014   3:04:35 PM



186 • Multivariable and vector calculus

Equating components, we obtain

 

∂
∂

( ) =

∂
∂

( ) =

∂
∂

( ) = +

+

+

h
x

x y xz

h
y

x y e

h
z

x y x z e

y z

y z

, ,

, ,

, .

2

2

2

2

 

n

Under certain conditions we may differentiate under the integral sign.

Theorem 2.5.3 (Differentiation under the integral sign): Let 
f a b Y: [ , ]× →  be a function, with [ , ]a b  being a closed interval, and 

Y  being a closed and bounded subset of . Suppose that both f x y( , )  

and 
∂
∂

( )
x

f x y,  are continuous in the variable x  and y  jointly. Then 

f x y dy
Y

,( )∫   exists as a continuously differentiable function of x  on a b,[ ],  

with derivative

d
d

 d  d
x

f x y y
x

f x y y
Y Y

, , .( ) =
∂
∂

( )∫ ∫  

Example 2.5.10

Prove that 

F x x
x( ) = +( ) =

+
⋅∫ log sin cos log

/
2 2 2

0

2 1
2

θ θ θ π
π

 d

 n Solution: 
Differentiating under the integral

′( ) =
∂
∂

+( ) =
+

⋅

=

∫F x
x

x
x

x

log sin cos log

c

/
2 2 2

0

2 1
2

2

θ θ θ π
π

 d

         
oos

sin cos
.

/ 2

2 2 20

2 θ
θ θ

θ
π

+∫ x
d
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The preceding implies that

x

x
F x

x

x

2 2 2

2 2 20

21
2

1−( )
⋅ ′( ) =

−( )
+∫

cos
sin cos

/ θ
θ θ

θ
π

d

                        d

          

=
+ −

+∫
x

x

2 2 2

2 2 20

2 1cos sin
sin cos

/ θ θ
θ θ

θ
π

              
d

                    

= −
+∫

π θ
θ θ

π

2 2 2 20

2

sin cos

/

x

    
sec d

                       

= −
+

= −

∫
π θ θ

θ

π

π

2

2
1

2

2 20

2

tan

a

/

x

x
rrctan

tan

,

/θ

π π

π

x

x

0

2

2 2
                      = −

 

which in turn implies that for x x> ≠0 1, .

′( ) =
−

−





 =

+
F x

x
x x x

2
1 2 2 12

π π π
.  

For x = 1, one sees immediately that ′( ) = =∫F x 2
2

2
0

2
cos ,

/π
θ θ

π
d  

agreeing with the formula. Now

′( ) =
+

⇒ ( ) = +( ) +F x
x

F x x C
π

π
1

1log .

Since F 1 1 0
0

2
( ) = =∫ log ,

/
dθ

π
 we gather that C = −π log 2.

Finally thus

F x x
x( ) = +( ) − =

+
π π πlog log log .1 2

1
2 n
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Under certain conditions, the interval of integration in the preceding 
theorem need not be compact.

Example 2.5.11

Given that 
sin

,
x

x
x

0 2

+∞

∫ = d
π

 compute 
sin

.
2

20

x
x

x
+∞

∫  d

 n Solution: 

Put I a
ax

x
x( ) =

+∞

∫
sin

,
2

20
 d  with gather that a ≥ 0. Differentiating both 

sides with respect to a, and making the substitution u ax= 2 . 

′( ) =

=

+∞

+∞

∫

∫

I a
x ax ax

x
x

ax
x

x

2

2

20

0

sin cos

sin

 d

         d

        ==

=

+∞

∫
sin

.

u
u

u
0

2

 d

        
π

Integrating each side gives

I a a C( ) = +
π
2

.

Since I( )0 0= , we gather that C = 0. The desired integral is I( )1
2

=
π

.
 n

Exercises 2.5 

2.5.1 Find f x y
x

f x yx , ,( ) =
∂
∂

( ), f x y
y

f x yy , ,( ) =
∂
∂

( ),  

f x y z
x

f x y zx , , , ,( ) =
∂
∂

( ), f x y z
y

f x y zy , , , ,( ) =
∂
∂

( ), and 

f x y z
z

f x y zz , , , ,( ) =
∂
∂

( )  for the following functions:
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1. f x y x y,( ) = −( )3 2 3
 

2. f x y x
x

y, sin( ) = 





 +3 21

5

3. f x y

xy
x y

x y

x y
,

, ,

, ,
( ) = +( ) ( ) ≠ ( )

( ) = ( )

 3
0 0

0 0 0

2 2
if 

    if 
       






4. f x y z
x z

y
, ,

sin
( ) =

−
+

3 2

1 3
 

2.5.2 If f : 

3 → , and f x y z yx zx, , arctan( ) = ( ). Find 
∂
∂

∂
∂

f
x

f
y

, ,  

and 
∂
∂
f
z

.

2.5.3 If f : 

3 → , and f x y z x z x y, , log( ) = +( ) +( )2 2 2 2 1 . Find 
∂
∂

∂
∂

f
x

f
y

,  and 
∂
∂
f
z
.

2.5.4 Let u x y,( )  and v x y,( )  are defined by the equations 

x u v= cos  and y u v= sin . Find ∂
∂
u
x

 and ∂
∂
v
x
.

2.5.5 Let f f x y x y: , , min , . 

2 2→ ( ) = ( )     Find 
∂ ( )

∂

f x y

x

,
 and 

∂ ( )
∂

f x y

y

,
.

2.5.6 Prove that if an equation F x y z, ,( ) = 0  defines an implicit 
differentiable function f  of two variables x  and y  such that 
z f x y= ( ),  for all x y,( )  in the domain of f , D, then

∂
∂

= −
( )
( )

∂
∂

= −
( )
( )

z
x

F x y z

F x y z
z
y

F x y z

F x y z
x

z

y

z

, ,

, ,
,

, ,

, ,
   . 
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2.5.7 Let w u u v v u xy v y x= + − = =3 2 3 , sin , ln . Find ∂
∂
w
x

 and ∂
∂
w
y

.

2.5.8 Let f : 

2 2→  and g : 

3 2→  be given by 

f x y
xy

x y
g x y

x y z

xy
, , ,( ) =









 ( )

− +









2

2

2
.

Compute f g( )′ ( )1 0 1, , , if at all defined. If undefined, explain. 

Compute g f( )′ ( )1 0, , if at all defined. If undefined, explain.

2.5.9 Let f x
xy

x y
, y( ) =

+








  and g x y

x y

x y

x y

,( ) =
−

+

















2 2 . Find g f( )′ ( )0 1, .

2.5.10 Let z  be an implicitly defined function of x  and y  through 

the equation x z y z+( ) + +( ) =2 2
8. Find ∂

∂
z
x

 at 1 1 1, ,( ).

2.5.11 Let x r= cosθ  and y r= sinθ. Find the Jacobi matrix ′( )f r,θ  
and the Jacobi determinant J r,θ( ).

2.5.12 Let x e vu= sin  and y e vu= cos . Find the Jacobi matrix 
′( )f u v,  and the Jacobi determinant J u v,( ).

2.5.13 Let x
u

u v
=

+2 2
 and y

v
u v

=
+2 2

. Find the Jacobi matrix 

′( )f u v,  and the Jacobi determinant J u v,( ).
2.5.14 Let x u vw= +2 , y v u w= +2 2 , and z uvw= . Find the Jacobi 

matrix ′( )f u v w, ,  and the Jacobi determinant J u v w, ,( ).
2.5.15 Let the transformation of coordinates x f u v= ( ),  

and y g u v= ( ),  is one-to-one. Find the determinant 

∂( )
∂( )

∂ ( )
∂ ( )

x y

u v

u v

x y

,

,
,
,

.

2.5.16 Let f : 

3 3→  be given by f r r r r, , sin cos , sin sin , cosθ φ φ θ φ θ φ( ) = ( )
f r r r r, , sin cos , sin sin , cosθ φ φ θ φ θ φ( ) = ( ). Find the Jacobi matrix and Jacobi 

determinant.
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2.5.17 Compute d
dt

x t dx2 3
0

1 2

+( )∫ .

2.5.18 Suppose g : →  is continuous and a∈  is a constant. 
Find the partial derivatives with respect to x  and y  of 

f f x y g t t
a

x y
: , , 

2
2

→ ( ) = ( )∫     d .

2.5.19 Given that dx
x a a

b
a

b

2 20

1
+

=∫ arctan , evaluate dx

x a

b

2 2 20 +( )∫ .

2.5.20 Evaluate e x
x

dx
ax−∞

∫
sin

 
0

 using differentiation under integral 
sign.

2.6 Gradients and Directional Derivatives

A function

f
x f x

n m

:
� �
�

→

( )

is called a vector field. If m = 1, it is called a scalar field.

Definition 2.6.1 Let 

f
x f x

n

:
� �
�

→

( )

be a scalar field. The gradient of f  is the vector defined and denoted by

∇ ( ) =

∂
∂

( )

∂
∂

( )

∂
∂

( )





























f x

f
x

x

f
x

x

f
x

x
n

1

2



.
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The graduation operation is the operator

∇ =

∂
∂

∂
∂

∂
∂





























x

x

xn

1

2



.  

Theorem 2.6.1 Let A n⊆   be open and let f A: →  be a scalar field, 
and assume that f  is differentiable in A. Let K∈  be a constant. Then 
∇f ( )x  is orthogonal to the surface implicitly defined by f K( )x = .

Proof:
Let

c :
� �
�
→

( )
n

t c t

be a curve lying on this surface. Choose t0  so that c t( )0 = x. Then

f c t f c t K( )( ) = ( )( ) =0 ,  

and using the chain rule

′ ( )( ) ′( ) =f c t c t0 0 0,  

which translates to

∇ ( )( ) ′( )( ) =f x c t• 0 0. 

Since ′c t( )0  is tangent to the surface and its dot product with ∇f ( )x   

is 0, we conclude that ∇f ( )x  is normal to the surface.  n

Let θ  be the angle between ∇f ( )x  and ′c t( )0 . Since 
∇ ( )( ) ′( )( ) = ∇ ( ) ′( )f x c t f x c t• 0 0 cos  θ , where ∇f ( )x  is the direc-

tion in which f  is changing the fastest.

! 
TIP
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Example 2.6.1

Find a unit vector normal to the surface x y z3 3 4+ + =  at the point 
1 1 2, ,( ) . 

 n Solution: 
Here f x y z x y z, ,( ) = + + −3 3 4  has gradient 

∇ ( ) =
















f x y z

x

y, ,
3
3
1

2

2  

which at 1 1 2, ,( )  is 
3
3
1
















. Normalizing this vector, we obtain

3
19
3
19
1
19

























.  

 n

For example, we can determine the gradient and the unit normal func-

tion to graph of the function f x y
xy

x y
,( ) =

+
3

2 2
 using Maple™ commands as

 �

 �

 �

 �
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 �

Example 2.6.2

Determine the gradient for the function f x y
x y

x y
,

cos( )( ) =
+

+

2 2

2 2
 using 

Maple™ and MATLAB commands.

 n Solution: 
Maple™ commands:

 �

 �

MATLAB commands:

>> syms x y 

>> f=(cos(x^2+y^2)/(x^2+y^2))

f =

cos(x^2+y^2)/(x^2+y^2)

>> gradf=jacobian(f,[x,y])

gradf =

[ −2∗sin(x^2+y^2)∗x/(x^2+y^2)−2∗cos(x^2+y^2)/(x^2+y^2)^2∗x, 
−2∗sin(x^2+y^2)∗y/(x^2+y^2)−2∗cos(x^2+y^2)/(x^2+y^2)^2∗y] n
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Example 2.6.3

Find the direction of the greatest rate of increase of f x y z xyez, ,( ) =  at 
the point 2 1 2, ,( ).

 n Solution: 
The direction is that of the gradient vector. Here

∇ ( ) =
















f x y z

ye

xe

xye

z

z

z

, ,  

which at 2 1 2, ,( )  comes 
e

e

e

2

2

2

2
2
















. Normalizing this vector, we obtain 

1
5

1
2
2
















.  

 n

Example 2.6.4

Let f : 

3 →  be given by 

f x y z x y z, , .( ) = + −2 2  

Find the equation of the tangent plane to f  at 1 2 3, ,( ).

 n Solution: 
A vector normal to the plane is ∇ ( )f 1 2 3, , . Now

∇ ( ) =
−

















f x y z y

z

, ,
1

2
2

which is

1
4
6−
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at 1 2 3, ,( ) . The equation of the tangent plane is thus

1 1 4 2 6 3 0x y z−( ) + −( ) − −( ) = ,

Or 

 x y z+ − = −4 6 9.   n

Definition 2.6.2 Let

f
x f x

n n

:
� �
�

→

( )
be a vector field with 

f x

f x

f x

f xn

( ) =

( )
( )

( )





















1

2



.  

The divergence of f  is defined and denoted by 

div f x f x
f

x
x

f

x
x

f

x
xn

n

( ) = ∇ ( ) =
∂
∂

( ) +
∂
∂

( ) + +
∂
∂

( )i …1

1

2

2

.  

Example 2.6.5

If f x y z x y yez, , , ,( ) = ( )2 2 2  then 

div f x x y yzez( ) = + +2 2 2 2 .

Definition 2.6.3 Let g k nk
n n: , → ≤ ≤ −1 2  be vector fields with 

g g g gi i i in= ( )1 2, , , . Then the curl of g g gn1 2 2, , , −( )  is 

curl g g g x

e e e

x x x

g x g x
n

n

n

1 2 2

1 2

1 2

11 12, , , det…

…

…

…
−( )( ) =

∂
∂

∂
∂

∂
∂

( ) ( ) gg x

g x g x g x

g x g x g

n

n

n n n n

1

21 22 1

2 1 2 2 2

( )
( ) ( ) ( )

( ) ( )−( ) −( ) −( )

…
� � � �

… xx( )





























.  
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Example 2.6.6

If f x y z x y yez, , , ,( ) = ( )2 2 2 , then 

curl i.f x y z f x y z ez, , , ,( )( ) = ∇ × ( ) = ( )2  

Example 2.6.7

If f x y z w w x y z w zxyz, , , e , , , ,g , , , , , ,( ) = ( ) ( ) = ( )0 0 0 0 02 , then 

curl f g x y z w

e e e e

x x x x

e w

z

xyz

, , , , det( )( ) =
∂

∂
∂

∂
∂

∂
∂

∂

1 2 3 4

1 2 3 4

20 0
0 0 0























= ( )xz e exyz2
4 .

Definition 2.6.4 Let A n⊆   be open and let f A: →  be a scalar 

field, and assume that f  is differentiable in A. Let � �v ∈ { }n \ 0  be such 
that x  v+ ∈t A  for sufficiently small t∈. Then the directional derivative 
of f  in the direction of v  at the point x  is defined and denoted by

D f x
f x t f x

tt




v lim
v( ) =

+( ) − ( )
⋅

→0
 

Theorem 2.6.2 Let A n⊆   be open and let f A: →  be a scalar field, 

and assume that f  is differentiable in A. Let � �
�

v ∈ { }n \ 0  be such that 
 x  v+ ∈t A  for sufficiently small t∈. Then the directional derivative of f  
in the direction of v  at the point x  is given by

∇ ( )f x i �v.  

Example 2.6.8

Find the directional derivative of f x y z x y z, ,( ) = + −3 3 2  in the direc-

tion of 
1
2
3
















.
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 n Solution: 
We have 

∇ ( ) =
−

















f x y z

x

y

z

, ,
3
3

2

2

2

and so

 ∇ ( ) = + −f x y z x y z, , .i�v 3 6 62 2   n

Exercises 2.6

2.6.1 Let g x y x ey, ln( ) = ( )( ). Find ∇ ( )g x y, .

2.6.2 Let f x y z x xy z, ,( ) = − +4 2. Find ∇ ( )f x y z, , .

2.6.3 Let f x y x xy y,( ) = − +3 2. Find ∇( )( )f 1 1, .

2.6.4 Let f x y z xeyz, ,( ) = . Find ∇( )( )f 2 1 1, , .

2.6.5 Let f x y z x y, , sin(yz)( ) = 2 . Find ∇ ( )f x y z, , .

2.6.6 Let f x y z

xz

e

z

xy, ,( ) =















. Find ∇ ×( )( )f 2 1 1, , .

2.6.7 If f x y z x ey, ,( ) = 2  and k x y z y exz, ,( ) = 2 . Find ∇ ( ) ∇ ( )f x y z k x y z, , , , , ,

∇ ( ) ∇ ( )f x y z k x y z, , , , , ,  and ∇( )fk . Verify that ∇( ) = ∇ + ∇fk f k k f .

2.6.8 Find the point on the surface 
x y xy xz yz2 2 5 3+ − + − = −  for which the tangent plane is 
x y− = −7 6.

2.6.9 Use a linear approximation of the function f x y ex y, cos( ) = 2  at 
0 0,( )  to estimate f 0 1 0 2. , .( ) . 

2.6.10 Find the directional derivative of f x y x xy y,( ) = − +2 25 3  at 

the point 2 1,−( )  in the direction θ π= / 4.
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2.6.11 Prove that the gradient ∇f  points in the direction of most 
rapid increase for f .

2.6.12 Find the angles made by the gradient of f x y x y,( ) = +3  at 
the point 1 1,( )  with the coordinate axes.

2.6.13 Find the directional derivative of f x y
x y

x y
,( ) =

−( )
+( )

 at the 

point 2 1,−( )  in the direction 
 

v = 3i + 4j.

2.6.14 Find the directional derivative of f x y z z x y, , arctan( ) = +( )2  

at the point 0 0 4, ,( )  in the direction v = 
6
0
1
















.

2.6.15 Find the directional derivative of f x y z
x
y

y
z

( , , ) =








 − 






  at 

point P1 0 1 2( , , )−  in the direction from P1 0 1 2( , , )−  to P2 3 1 4( , , )− .  
Also determine the direction in which f x y z( , , )  increases 
most rapidly at P1 0 1 2( , , )−  and find the maximum rate of 
increase.

2.6.16 Prove that 

∇ ×( ) = ∇ ×( ) − ∇ ×( )i i i �u v v u u v . 

2.6.17 Let φ : 

3 →  be a scalar field, and let 
� �
� �U V:, 3 3→  be 

vector fields. Prove that 

1. ∇ ( ) = ∇ + ∇i
�

i
� �

iφ φ φU U U  

2. ∇ × ( ) = ∇ × + ∇ ×φ φ φ
  

U U U

3. ∇ ×( ) = ∇ × − ∇ ×i
� � �

i
� �

i
�

U V V U U V

2.6.18 Find the tangent plane equation and the normal line 
equation to the graph of the equation 4 3 102 2 2x y z− + =  at 
the point 2 3 1, ,−( ).

MVC_Musa_CH02.indd   199 12/04/2014   3:06:15 PM



200 • Multivariable and vector calculus

2.6.19 Find the points on the hyperboloid x y z2 2 22 4 16− − =  
at which the tangent plane is parallel to the plane 
4 2 4 5x y z− + = .

Parallel planes have proportional gradients. 

2.6.20 Find the gradient vector of the function f x y x, cos sin y sin y( ) = +π π π2 
f x y x, cos sin y sin y( ) = +π π π2  at point −( )1 1 2, / . Then find the equation of the 

tangent plane.

2.6.21 In what direction v  does f x y x y,( ) = − −1 2 2  decrease most 
rapidly at point −( )1 2, ?

2.6.22 Find the equation of the tangent plane to the surface z xe y= −2  
at the point 1 0 1, ,( ).

2.6.23 Verify that ∇ × ∇ ×( ) = ∇ ∇( ) − ∇
�

i
� �

f f f2   for the vector field 



f

xz

yz

x z

= −
+

















3

2

2

.

2.6.24 Find the directional derivative of f x y x xy y,( ) = + −4 52  at 
the point 2 1,−( )  in the direction of a unit vector whose angle 
θ  with positive x -axis is π / 4 .

2.7 Levi-Civita and Einstein

In this section, unless otherwise noted, we are dealing in the space 3  
and so, subscripts not are in the set 1 2 3, ,{ }.

Definition 2.7.1 (Einstein’s Summation Convention): In any expression 
containing subscripted variables appearing twice (and only twice) in any 
term, the subscripted variables are assumed to be summed over. 

In order to emphasize that we are using Einstein’s convention, we 
will enclose any terms under consideration with ≺ �. . 

HINT

! 
TIP
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Example 2.7.1

Using Einstein’s Summation convention, the dot product of two vectors � �x∈ n  and � �y∈ n  can be written as 

� i � ≺ �x y = =
=
∑ x y x yi
i

n

i t t
1

.  

Example 2.7.2

Given that a b c di j k l, , ,  are the components of vectors in 3, 








a b c d, , , , 
respectively, what is the meaning of 

≺ �a b c di i k k ?  

 n Solution: 
We have 

≺ � ≺ � �i
�
≺ � �i

� �i
�

a b c d a b c d c d c di i k k i
i

i k k k k k k
i

= = =
= =
∑ ∑

1

3

1

3

a b a b a= bb c d( )( )�i
�

. 
 n

Example 2.7.3

Using Einstein’s Summation convention, the ij −  th entry AB
ij( )  of the 

product of two matrices A Mm n∈ ( )×   and B Mn r∈ ( )×   can be written as 

AB A B A B A
ij ik

k

n

kj it kj it tj( ) = = =
=

∑
1

≺ � ≺ B .  

Example 2.7.4

Using Einstein’s Summation convention, the trace tr A( )  of a square 

matrix A Mn n∈ ( )×   is tr A A Att
t

n

tt( ) = =
=
∑

1

≺ � .  

Example 2.7.5

Demonstrate, via Einstein’s Summation convention, that if A B,  are 
two n n×  matrices, then

tr trAB BA( ) = ( ).  
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 n Solution: 
We have 

tr tr trAB AB A B A B
ij ik kj tk kt( ) = ( )( ) = ( ) =≺ � ≺≺ ��, 

and

tr tr trBA BA B A B A
ij kj ik tk kt( ) = ( )( ) = ( ) =≺ � ≺≺ ��,  

from where the assertion follows, since the indices are dummy variables 
and can be exchanged.  n

Definition 2.7.2 (Kroenecker’s Delta): The symbol δ i j,  is defined as 
follows:

δ ij

i j

i j
=





≠
=

0
1

 if 
 if .

 

Example 2.7.6

It is easy to see that ≺ �δ δ δ δ δik kj ik kj ij
k

= =
=

∑
1

3

. 

Example 2.7.7

We have that 

≺ � �i
�

δ δij i j ij i j
ji

k
k

ka b a b a b= = =
== =

∑∑ ∑
1

3

1

3

1

a b.  

Recall that a permutation of distinct objects is a reordering of them. 
The 3 6! =  permutations of the index set {1, 2, 3} can be classified into even 
or odd. We start with the identity permutation 123 and say it is even. Now, 
for any other permutation, we will say that it is even if it takes an even num-
ber of transpositions (switching only two elements in one move) to regain 
the identity permutation and odd if it takes an odd number of transpositions 
to regain the identity permutation. Since

231 132 123 312 132 123→ → → →, ,   

the permutations 123 (identity), 231, and 312 are even. Since

132 123 321 123 213 123→ → →, , ,     

the permutations 132, 321, and 213 are odd.
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Definition 2.7.3 (Levi-Civita’s Alternating Tensor): The symbol ε jkl  is 
defined as follows:

ε jkl

j k l

j k l
=

{ } ≠ { }

−










0 1 2 3

1
1 2 3

if

if  is an odd permutat

, , , ,

iion

if  is an even permutation+

























1
1 2 3
j k l

 

In particular, if one subindex is repeated we have ε ε εrrs rsr srr= = . 
Also, ε ε ε ε ε ε123 231 312 132 321 2131 1= = = = = = −, .   

Example 2.7.8

Using the Levi-Civita, alternating tensor and Einstein’s summation con-
vention, the cross product can also be expressed, if 

� ��� � ��� � ���
i  j  = = =e e e1 2 3, , k ,  

Then

� � ≺
���
�x y× = ( )ε jkl k l ja b e .  

Example 2.7.9

If A aij= 



  is a 3 3×  matrix, then, using the Levi-Civita alternating 

tensor, 

det .A a a aijk i j k= ≺ �ε 1 2 3  

Example 2.7.10

Let   x y z, ,  be vectors in 3. Then 

�i � � ≺ � � � ≺ �x y z y z×( ) = ×( ) = ( )x x y zi i i ikl k lε .  

! 
TIP
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Exercises 2.7

2.7.1 Use the Einstein’s summation convention and the Levi-Civita’s 
alternating tensor to show that � � � � i � � � i � �x y z x  z y x  y z× ×( ) = ( ) − ( ) .

2.7.2 Show that ∇ × ∇( ) =f 0  using the Einstein’s summation 
convention and the Levi-Civita’s alternating tensor.

2.7.3 Show that ∇ ∇ ×( ) =i �u 0  using the Einstein’s summation 
convention and the Levi-Civita’s alternating tensor.

2.7.4 Show that ∇ × ∇ ×( ) = ∇ ∇( ) − ∇� i � �u   u u2  using the Einstein’s 
summation convention and the Levi-Civita’s alternating 
tensor.

2.7.5 Show that  



 v v
v

v v⋅∇ = ∇








 + ∇ ×( )×

2

2
 using the Einstein’s 

summation convention and the Levi-Civita’s alternating 
tensor.

2.7.6 Write True or false for the following statements:
1. ε εijk ikj= −  

2. ε ε δ δ δ δijk ilm jl km jm kl= −

3. 
�i
�

a b a bi i=  

4. 




a b a b
i ijk j k×( ) ≠ ε

2.8 Extrema

We now turn to the problem of finding maxima and minima for vector 
functions. As in the one-variable case, the derivative will provide us with 
information about the extrema, and the “second derivative” will provide us 
with information about the nature of these extreme points. 

To define an analogue for the second derivative, let us consider the fol-
lowing. Let A n⊆   and f A m: →  be differentiable on A. We know that 
for fixed x x0 0

∈A D f, ( ) , Dx0 (f) is a linear transformation from n  to m. 
This means that we have a function

T
A l

D f

n m

:
,  

x x

→ ( )
→ ( )

 

,
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Where l n m
 ,( ) denotes the space of linear transformation from 



n  to m. Hence, if we differentiate T  at x0  again, we obtain a linear 
transformation D T D D f D fx x x x0 0 0 0

2( ) ( ( )) ( )= =  from n  to l n m
 ,( ).  

Hence, given D f l n m
x x

0

2
1( ) ,( )∈ ( )  . Again, this means that given 

x x xx2
2

1 20
∈ ( )( )∈ 

n mD f, ( ) , thus the function 

T
l

D f

n n n m

:
,

( , ) ( )( , )
  

x x x xx

   × → ( )
→1 2

2
1 20

is well defined, and linear in each variable x1  and x2, that is, it is a 
bilinear function. Just as the Jacobi matrix was a handy tool for finding a 
matrix representation of D fx ( )  in the natural bases, when f  maps into ,  
we have the following analogue representation of the second derivative.

Theorem 2.8.1 Let A n⊆   be an open set, and f A: →  be twice 
differentiable on A. Then the matrix of D f n n

x
2 ( ) :  × →  with respect 

to the standard basis is given by the Hessian matrix:

H f

f
x x

f
x x

f
x x

f
x x

f
x

x

n

=

∂
∂ ∂

( ) ∂
∂ ∂

( ) ∂
∂ ∂

( )

∂
∂ ∂

( ) ∂
∂

2

1 1

2

1 2

2

1

2

2 1

2

x x x

x

…

22 2

2

2

2

1

2

2

2

∂
( ) ∂

∂ ∂
( )

∂
∂ ∂

( ) ∂
∂ ∂

( ) ∂
∂ ∂

x
f

x x

f
x x

f
x x

f
x x

n

n n n

x x

x x

…

� � � �

…
nn

x( )





























.  

Example 2.8.1

Let f : 

3 →  be given by

f x y z xy z, , .( ) = 2 3  

Then

H f

yz y z

yz xz xyz

y z xyz xy z
x y z, ,( ) =

















0 2 3
2 2 6
3 6 6

3 2 2

3 3 2

2 2 2 2

..  
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From the preceding example, we notice that the Hessian is symmetric, 

as the mixed partial derivatives 
∂

∂ ∂
=

∂
∂ ∂

2 2

x y
f

y x
f , etc., are equal. This is no 

coincidence, as guaranteed by the following theorem.

Theorem 2.8.2 Let A n⊆   be an open set and f A: →  be twice 
differentiable on A. If D fx0

2 ( )  is continuous, then D fx0

2 ( )  is symmetric, 

that is, ∀( )∈ ×x x1 2,  

n n  have 

D f D fx xx x x x
0 0

2
1 2

2
2 1( ) , ( ) ,( ) = ( ).

We are now ready to study extrema in several variables. The basic theo-
rems resemble those of one-variable calculus. First, we make some analo-
gous definitions.

Definition 2.8.1 Let A n⊆   be an open set, and f A: →. If there 
is some open ball Bx r

0
( ) on which ∀ ∈ ( ) ( ) ≥ ( )x r x xxB f f

0 0, , we say that 
f x0( )  is a local maximum of f . Similarly, if there is some open ball Bx r

1
( )  

on which ∀ ∈ ′( ) ( ) ≤ ( )x r x xxB f f
0 1,  we say that f x1( )  is a local minimum 

of f . A point is called an extreme point if it is either a local minimum or 
local maximum. A point t is called a critical point if f  is differentiable at t  
and D ft ( ) = 0. A critical point which is neither a maxima nor a minima is 
called a saddle point. 

Theorem 2.8.3 Let A n⊆   be an open set, and f A: →  be 
differentiable on A. If x0  is an extreme point, then D fx0

0( ) = , that is, x0  
is a critical point. Moreover, if f  is twice differentiable with continuous 
second derivative and x0  is a critical point such that H fx0

 is negative 
definite, then f  has a local maximum at x0. If H fx0

 is positive definite, 
then f  has a local minimum at x0. If H fx0

 is indefinite, then f  has a 
saddle point. If H fx0

 is semi-definite (positive or negative), the test is 
inconclusive.

Example 2.8.2

Find the critical points of

f
x y x xy y x y

:
,
� �

�

2

2 2 2 3
→

( ) + + + +
⋅  

and investigate their nature.
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 n Solution: 
We have 

∇( )( ) =
+ +

+ +








f x y

x y

x y
, ,

2 2
2 3

 

and so to find the critical points, we solve

2 2 0
2 3 0

x y

x y

+ + =
+ + =

,
,
 

which yields x = −
1
3

, y = −
4
3

. Now, H f
x y,( ) =











2 1
1 2

, which 

is positive definite, since ∆ = >1 2 0  and ∆ =








 = >2

2 1
1 2

3 0det .  

Thus x0

1
3

4
3

=





− −,  is a relative minimum and we have 

− = − −





 ≤ ( ) = + + + +

7
3

1
3

4
3

2 32 2f f x y x xy y x y, , .   
n

Example 2.8.3

Find the extrema of 

f
x y z x y z xy xz yz

:
, ,
� �

�

3

2 2 23 2
→

( ) + + − + +
⋅

 n Solution: 
We have 

∇( )( ) =
− +
− +

+ +

















f x y z

x y z

y x z

z x y

, , ,
2 2
2

6 2
 

which vanishes when x y z= = = 0. Now, 

H fr =
−

−
















2 1 2
1 2 1

2 1 6
,
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which is positive definite, since ∆ = >1 2 0  and ∆ =
−

−








 = >2

2 1
1 2

3 0det ,  

and ∆ =
−

−
















= >3

2 1 2
1 2 1

2 1 6
4 0det . Thus f  has a relative minimum at 

0 0 0, ,( )  and 0 0 0 0 3 22 2 2= ( ) ≤ ( ) = + + − + +f f x y z x y z xy xz yz, , , , .   n

Example 2.8.4

Let f x y x y axy,( ) = − +3 3 , with a∈  a parameter. Determine the 
nature of the critical point of f .

 n Solution: 
We have 

∇( )( ) =
+

− +








 =









 ⇒ = − =f x y

x ay

y ax
x ay y ax, , .

3
3

0
0

3 3
2

2
2 2  

If a = 0, then x y= = 0  and so 0 0,( )  is a critical point. If a ≠ 0 , then

3 3 27

27

2 2

4 2

3

y
a

ay y a y

y y







 = − ⇒ = −

⇒ +                         aa

y y a y ay a

3

2 2

0

3 9 3 0

( ) =

⇒ +( ) − +( ) =                         

                            or ⇒ = = − ⋅y y
a

0
3

 

If y = 0  x = 0, so again 0 0,( )  is a critical point. If y
a

= −
3

 

x
a

a a
= × −






 =

3
3 3

2

 so 
a a
3 3

,−





  is a critical point.

Now,

H
x a

a y
x xy a

f x y,
, .( ) =

−








 ⇒ ∆ = ∆ = − −

6
6

6 361 2
2 
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At 0 0 01 2
2, , ,( ) ∆ = ∆ = −a . If a ≠ 0 , then there is a saddle point. At 

a a
3 3

,−





, ∆ = ∆ =1 2

22 3a a, , hence 
a a
3 3

,−





  will be a local minimum if 

a > 0  and a local maximum if a < 0.  n

We can use the Maple™ commands to find the Hessian of functions.

For example, to find the Hessian H f
x y,( )  for f x y

xy
x y

,( ) =
+

5
2 2

, we 

obtain

 �

 �

Exercises 2.8

2.8.1 Determine the critical points of f x y xy x y,( ) = − − .

2.8.2 Determine the nature of the critical points of 
f x y x y x y, .( ) = + − −( )4 4 2

2  

2.8.3 Determine the nature of the critical points of 
f x y z x z xy x z y, , .( ) = − − − +4 2 42 2 2  

2.8.4 Find the extreme of f x y z x y z xyz, , .( ) = + + +2 2 2

2.8.5 Find the extreme of f x y z x y y z x z, , .( ) = + + −2 2 2

2.8.6 Determine the nature of the critical points of 
f x y z xyz x y z, , .( ) = − − −4 4 4 2  

2.8.7 Determine the nature of the critical points of 
f x y z xyz x y z, , .( ) = − − −( )4

MVC_Musa_CH02.indd   209 12/04/2014   3:07:42 PM



210 • Multivariable and vector calculus

2.8.8 Determine the nature of the critical points of 
g x y z xyze x y z, , .( ) = − − −2 2 2  

2.8.9 Let f x y g t t
y x

x y
,( ) = ( )

−

+

∫ 2

2

 d , where g  is a continuously 

differentiable function defined over all real numbers and 
g g0 0 0 0( ) = ′( ) ≠,  . Prove that 0 0,( )  is a saddle point of f .

2.8.10 Find the minimum of F x y x y
x

y, ,( ) = −( ) +
−

− −










2 2
2

2
144 16

3
4

F x y x y
x

y, ,( ) = −( ) +
−

− −










2 2
2

2
144 16

3
4  for − ≤ ≤ − ≤ ≤3 3 2 2x y, .

2.8.11 Find the extreme of f x y x xy y y x,( ) = − − + −2 23 2 6 .

2.8.12 Find the extreme of f x y x x y y,( ) = − +4 23 2 2.

2.8.13 Find the extreme of f x y x x y y,( ) = + − + −5 4 2 32 2.

2.8.14 Find the extreme of f x y
x

x y
,( ) =

+( )
.

2.8.15 Show that the critical points Pc  for a function g x y,( )  
correspond to points P  on the graph of g  where the normal 
is vertical.

2.8.16 Find the critical points of f x y x x xy y( , ) = + + + +2 2 2 1.

2.8.17 Find the maximum and minimum of f x y z xy yz( , , ) = +  on the 

set of points which satisfy y x2 21= −  and y
x
z

= .

2.8.18 Find the lowest and highest points on the ellipse of 
intersection of the x y2 2 1+ =  (cylinder) and the plane 
x y z+ + = 1.

2.8.19 Let a point P  within a triangle in which the sum of 
the squares of the distances to the sides is a minimum. 
Determine this minimum in terms of the lengths of sides 
and area. 
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2.8.20

f x x x x x x

f y y

D
f f

x

y

xx x

= − = ⇒ −( ) = ⇒ = = ±

= = ⇒ =

=

8 2 0 8 2 0 0
1
2

6 0 0

3 2  or ,

;

det
yy

yx yyf f

x
D













=
−







 ⇒ ( )

−







 = −det , det

24 2 0
0 6

0 0
2 0

0 6

2

112 0< ⇒

 

So 0 0,( )  is saddle point.

D ±















 = > ⇒ ±








1
2

0
4 0
0 6

24 0
1
2

0, det ,  is local minimum point. 

2.9 Lagrange Multipliers

In some situations, we wish to optimize a function given a set of con-
straints. For such cases, we have the following.

Theorem 2.9.1 Let A n⊆   and let f A: →, g : A →  be functions 
whose respective derivatives are continuous. Let g cx0 0( ) =  and let 

S g c= ( )−1
0  be the level set for g  with value c0, and assume ∇ ( ) ≠g x0 0. If 

the restriction of f  to S  has an extreme point at x0, then ∃ ∈λ   such that

∇ ( ) = ∇ ( )f gx x0 0λ .

Theorem 2.9.1 only locates extrema, it does not say anything 
 concerning the nature of the critical points found.

Example 2.9.1

Optimize f f x y x y: , , 

2 2 2→ ( ) = −  given that x y2 2 1+ = .

 n Solution: 
Let g x y x y( , ) = + −2 2 1. We solve

∇








 = ∇









f

x

y
g

x

y
λ  for x y, ,λ. This requires

! 
TIP
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2
2

2
2

x

y

x

y−








 =











λ
λ

.  

From 2 2x x= λ, we get either x = 0  or λ = 1. If x = 0, then y = ±1  and 
λ = −1. If λ = 1, then y = 0, x = ±1. Thus the potential critical points are 
±( )1 0,  and 0 1,±( ). If x y2 2 1+ = , then 

f x y x x x, ,( ) = − −( ) = − ≥ −2 2 21 2 1 1  

and

f x y y y y, .( ) = − − = − ≤1 1 2 12 2 2  

Thus ±( )1 0,  are maximum points and 0 1,±( )  are minimum points.  n

Example 2.9.2

Find the maximum and the minimum points of f x y x y,( ) = +4 3 , sub-
ject to the constraint x y2 24 4+ = , using Lagrange multipliers.

 n Solution: 
Putting g x y x y,( ) = + −2 24 4 , we have 

∇ ( ) = ∇ ( ) ⇒








 =









f x y g x y

x

y
, ,λ λ

4
3

2
8

.

Thus 4 2 3 8= =λ λx y,  , clearly then λ ≠ 0. Upon division, we find 

x
y
=

16
3

. Hence

x y y y y x2 2 2 24 4
256
9

4 4
3
73

16
73

+ = ⇒ + = ⇒ = ± = ± ⋅,  

The maximum is clearly then 

4
16
73

3
3
73

73





 + 






 =  ,  

and the minimum is − 73 . n
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Example 2.9.3

Let a b c> > >0 0 0, , . Determine the maximum and minimum values 

of f x y
x
a

y
b

z
c

,( ) = + +  and the ellipsoid 
x
a

y
b

z
c

2

2

2

2

2

2
1+ + = .

 n Solution: 

We use Lagrange multipliers. Put g x y
x
a

y
b

z
c

,( ) = + + −
2

2

2

2

2

2
1. Then

∇ ( ) = ∇ ( ) ⇔
















=


f x y z g x y z

a

b

c

x a

y b

z c

, , , ,
/
/
/

/
/
/

λ λ
1
1
1

2
2
2

2

2

2













.

It follows that λ ≠ 0 . Hence x
a

y
b

z
c

= = =
2 2 2λ λ λ

, , . Since 

x
a

y
b

z
c

2

2

2

2

2

2
1+ + = , we deduce 

3
4

1
2λ

=  λ = ±
3

2
. Since a b c, ,  are positive, 

f  will have a maximum when all x y, ,z  are positive and a minimum which 
all x y, ,z  are negative. Thus the maximum is when

x
a

y
b

z
c

= = =
3 3 3

, , ,  

and 

f x y z, ,( ) ≤ =
3
3

3  

and the minimum is when

x
a

y
b

z
c

= − = − = −
3 3 3

, , ,

and 

f x y z, ,( ) ≥ − = − ⋅
3
3

3

MVC_Musa_CH02.indd   213 12/04/2014   3:08:26 PM



214 • Multivariable and vector calculus

Alternative Method: Using the CBS Inequality

x
a

y
b

z
c

x
a

y
b

z
c

⋅ + ⋅ + ⋅ ≤ + +





 + +( ) = ( ) ⇒

−

1 1 1 1 1 1 1 3
2

2

2

2

2

2

1 2

2 2 2 1 2
/

/

33 3≤ + + ≤ ⋅
x
a

y
b

z
c

 
 n

Example 2.9.4

Let a b c> > >0 0 0, , . Determine the maximum volume of the paral-
lelepiped with sides parallel to the axes that can be enclosed inside the 

ellipsoid 
x
a

y
b

z
c

2

2

2

2

2

2
1+ + = .

 n Solution: 
Let 2 2 2x y z, , , be the dimensions of the box. We must maximize 

f x y z xyz, ,( ) = 8  subject to the constraint g x y z
x
a

y
b

z
c

, ,( ) = + + −
2

2

2

2

2

2
1. 

Using Lagrange multipliers,

∇ ( ) = ∇ ( ) ⇔
















=


f x y z g x y z

yz

xz

xy

x a

y b

z c

, , , ,

/
/
/

λ

λ

8
8
8

2
2
2

2

2

2














⇒ = = =4 4 4
2 2 2

yz
x

a
xz

y
b

xy
z
c

λ λ λ, , .

Multiplying the first inequality by x, the second by y, the third by z,  
and adding,

4 4

4 12

2

2

2

2

2

2

2

2

2

2

2

2

xyz
x
a

xyz
y
b

xyz
z
c

xyz
x
a

y
b

z
c

= =

= ⇒ = + +





λ λ

λ λ

, ,


 = λ.  

Hence

λ
λ λ λ

3

2

2

2

2

2

2
= = = ⋅

x
a

y
b

z
c
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If λ = 0, 8 0xyz = , which minimizes the volume. If λ ≠ 0, then 

x
a

y
b

z
c

= = =
3 3 3

, , ,           

and the maximum value is

8 8
3 3

xyz
abc

≤ ⋅  

Alternative Method: Using the AM-GM Inequality

x y z abc
x
a

y
b

z
c

abc

x
a2 2 2 1 3 2 3

2

2

2

2

2

2

1 3
2 3

2

2( ) = ( ) ⋅ ⋅





 ≤ ( ) ⋅

+
/ /

/
/

yy
b

z
c

xyz abc

2

2

2

2

3
1
3

8
8

3 3

+

= ⇒ ≤ ( ) ⋅
 n

Exercises 2.9

2.9.1 A closed box (with six outer faces) has fixed surface 
area of S square units. Find its maximum volume using 
Lagrange multipliers. That is, subject to the constraint 
2 2 2ab bc ca S+ + = , you must maximize abc.

2.9.2 Consider the problem of finding the closest point ′P  on the 
plane Π : ,ax by cz d+ + =  

a b c, ,   non-zero constants with a b c d+ + ≠   to the point P 1 1 1, ,  ( ).  
In this exercise, you will do this in three essentially different ways.

1. Do this by a geometric argument, arguing the point ′P  closest 
to P  on Π  is on the perpendicular passing through P  and ′P .

2. Do this by means of Lagrange multipliers, by minimiz-
ing a suitable function f x y z, ,  ( )  subject to the constraint 

g x y z ax by cz d, ,  ( ) = + + − .

3. Do this considering the unconstrained extrema of a suitable 

function h x y
d ax by

c
, ,

− −





.
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2.9.3 Given that x y,   are positive real numbers such that 
x y4 481 36+ = , find the maximum of x y+ 3 .

2.9.4 If x y z, ,   are positive real numbers such that x y z2 3
2

1
6

= , what 
is the minimum value of f x y z x y z( ), ,  = + +2 3 ?

2.9.5 Find the maximum and the minimum values of 
f x y x y( ),  = +2 2  subject to the constraint 5 6 5 82 2x xy y+ + = .

2.9.6 Let a b p> > >0 0 1, ,  . Maximize f x y ax by( ),  = +  subject to 
the constraint x yp p+ = 1.

2.9.7 Find the extrema of f x y z x y z( ), ,  = + +2 2 2, subject to the 
constraint ( ) ( ) ( ) .x y z− + − + − =1 2 3 42 2 2  

2.9.8 Find the axes of the ellipse 5 8 5 92 2x xy y+ + = .

2.9.9 Optimize f x y z x y z( ), ,  = + +  subject to x y2 2 2+ = , and 
x z+ = 1.

2.9.10 Let x y,   be strictly positive real numbers with x y+ = 1. What 
is the maximum value of x xy+ ?

2.9.11 Let a b,   be positive real constants. Maximize 
f x y x e y ea x b y( ),   = − −  on the triangle in 2  bounded by the 

lines x y x y≥ ≥ + ≤0 0 1, , .

2.9.12 Does there exist a polynomial in two variables with real 
coefficients p x y( ),   such that p x y( ),  > 0  for all x  and y, and 
that for all real numbers c > 0  there exists ( ),x y0 0

2 ∈  such 
that p x y c( ),0 0 = ?

2.9.13 Determine the maximum volume of the rectangular solid in 
the first octant with one vertex at the origin and the opposite 

vertex lying in the plane x
k

y
k

z
k1 2 2

1+ + =  where k k1 2, ,  and k3  

are positive constants, using Language multipliers.

First octant ⇒ ≥ ≥ ≥( )x y z0 0 0, , .

2.9.14 Find the local extreme of the function f x y z x y z, ,( ) = + +  
subject to constraint x y z2 2 2 25+ + = .

HINT
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C H A P T E R3
INTEGRATION

In This Chapter

 l Differential Forms
 l Zero-Manifolds
 l One-Manifolds
 l Closed and Exact Forms
 l Two-Manifolds
 l Change of Variables in Double Integrals
 l Change to Polar Coordinates
 l Three-Manifolds
 l Change of Variables in Triple Integrals
 l Surface Integrals
 l Green’s, Stokes’, and Gauss’ Theorems

In this chapter, we focus on differentiation forms, zero-manifolds, 
one-manifolds, closed and exact forms, two-manifolds, change of 
variables in double integrals, change to polar coordinates, three-

manifolds, change of variables in triple integrals, surface integrals, 
and Green’s, Stokes’, and Gauss’ Theorems. 
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3.1 Differential Forms

We will now consider integration in several variables. In order to begin 
our discussion, we need to consider the concept of differential forms.

Definition 3.1.1 Consider n variables x x xn1 2, , ,  in n-dimensional 
space (used as the names of the axes), and let 

a   j

j

j

nj

n

a

a

a

j k=





















∈ ≤ ≤

1

2 1
�

� , ,  

be k n≤   vectors in n. Moreover, let j j j nk1 2 1 2, , , , , , { } ⊆ { }  be a 
collection of k  sub-indices.  

An elementary k -differential form (k > 1) acting on the vectors 
a  j j k, 1 ≤ ≤   is defined and denoted by

d d d a a ax x x

ax ax ax

ax ax
j j j k

j j j k

j j

k1 2

1 1 1

2 2

1 2

1 2

1 2∧ ∧ ∧ ( ) =… …

…

, , , det
……

� � …
…

ax

ax ax ax

j k

j j j kk k k

2

1 2





















.

In other words, d  d  d ax x xj j j kk1 2 1 2∧ ∧ ∧ ( ) ,a , ,a  is the x x xj j jk1 2
, , ,  

component of the signed k-parallelotope in n  spanned by a1 2,a , ,a k.

By virtue of being a determinant, the wedge product ∧  of differen-
tial forms has the following properties:

1. Anti-commutative: d d d da b b a∧ = − ∧ .

2. Linearity: d d da b a b+( ) = + .

3. Scalar homogeneity: if λ ∈, d dλ λa a= .

4. Associative: d d d d d da b c a b c∧( ) ∧ = ∧ ∧( ), notice that associative 
does not hold for the wedge product of vectors.

! 
TIP
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Anti-commutative yields, d da a∧ = 0 .

Example 3.1.1

Consider 

a =
−

















∈
1
0
1

3
 .  

Then

d a

d a

d a

x

y

z

( ) = ( ) =

( ) = ( ) =

( ) = −( ) = −

det ,

det ,

det ,

1 1

0 0

1 1

 

Are the (signed) 1-volumes (that is, the length) of the projections of a  
onto the coordinate axes.

Example 3.1.2

In 3, we have d d dx y x∧ ∧ = 0, since we have a repeated variable.

Example 3.1.3

In 3, we have

d d d d d d d d d d d d d dx z z x x y y x x x x z x y∧ + ∧ + ∧ − ∧ + ∧ = − ∧ + ∧5 4 12 4 5 .  

In order to avoid redundancy, we will make the convention that if 
a sum of two or more terms have the same differential form up to 
permutation of the variables, we will simplify the summands and 
express the other differential forms in terms of the one differential 
form whose indices appear in increasing order.

Definition 3.1.2 A 0-differential form in n  is simply a differentiable 
function in n.

! 
TIP

! 
TIP
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Definition 3.1.3 A k-differential form field in n  is an expression of the 
form

ω = ∧ ∧ ∧
≤ ≤ ≤ ≤ ≤

∑ a x x xj j j
j j j n

j j jk

k

k1 2
1 2

1 2
1

�
…

…d d d ,  

where the a j j j k1 2, , ,  are differentiable function in n.

Example 3.1.4

g x y z w x y z w, , ,( ) = + + +2 3 4  

is a 0-form in 4.

Example 3.1.5

An example of a 1-form field in 3  is

ω = + +x x y y xyz zd d d2 3 .  

Example 3.1.6

An example of a 2-form field in 3  is

ω = ∧ + ∧ + ∧x x y y y z z x2 2d d d d d d .

Example 3.1.7

An example of a 3-form field in 3  is

ω = + +( ) ∧ ∧x y z x y zd d d .

We show now how to multiply differential forms.

Example 3.1.8

The product of the 1-form fields in 3

ω
ω

1

2 2 2

= +

= − +

y x x y

x x y y

d d

d d

,

,

is

ω ω1 2
2 22 2∧ = +( ) ∧x y x yd d .  
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Definition 3.1.4 Let f x x xn1 2, , ,( )  be a 0-form in n. The exterior 
derivative d f  of f  

d  df
f
x

x
ii

n

i=
∂
∂

⋅
=
∑

1

 

Furthermore, if 

ω = ( ) ∧ ∧ ∧f x x x x x xn j j jk1 2 1 2
, , , d d d  

is a k-form in n, the exterior derivative dw  of ω  is the k +( )1 -form

d d d d dω = ( ) ∧ ∧ ∧f x x x x x xn j j jk1 2 1 2
, , , .   

Example 3.1.9

If in 2, ω = x y3 4, then 

d d dx y x y x x y y3 4 2 4 3 33 4( ) = + ⋅  

Example 3.1.10

If in 2, ω = +x y x x y y2 3 4d d , then 

d d d d

     d d d d d

ω = +( )
= +( ) ∧ + +( ) ∧

x y x x y y

xy x x y x x y x x y y

2 3 4

2 2 4 3 32 3 4 dd

     d d d d

     d d

y

x y x x y x y

x y x x y

= ∧ + ∧

= −( ) ∧

2 2 4

2 4 2

3

3 .

 

Example 3.1.11

Consider the change of variables x u v y uv= + =, . Then

d d d
d d d

x u v

y v u u v

= +
= +

,
,  

hence

d d d dx y u v u v∧ = −( ) ∧ .  
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Example 3.1.12

Consider the transformation of coordinates xyz  into uvw  coordinates 
given by

u x y z v
z

y z
w

y z
x y z

= + + =
+

=
+

+ +
⋅, ,      

Then

d d d d

d d

d d

u x y z

v
z

y z
y

y

y z
z

w
y z

x y z
x

x

x y

= + +

= −
+( )

+
+( )

= −
+

+ +( )
+

+

,

d ,2 2

2
++( )

+
+ +( )

⋅
z

y
x

x y z
z2 2d d

Multiplication gives

d d d

 

u v w
zx

y z x y z

y y z

y z x y z

z y z

∧ ∧ = −
+( ) + +( )

−
+( )

+( ) + +( )






+
+(

2 2 2 2

))
+( ) + +( )

−
+( ) + +( )







∧ ∧
y z x y z

xy

y z x y z
x y z2 2 2 2 d d d

                          d d d=
− − −

+( ) + +( )
∧ ∧

z y zx xy

y z x y z
x y z

2 2

2 2 .
 

Exercises 3.1

3.1.1 Match the differential forms types with the elements forms to make 
the statement true.
1. 0-forms    A. Surface elements

2. 1-forms    B. Volume forms
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3. 2-forms    C. Functions forms

4. 3-forms    D. Line elements

3.1.2 Let ω1 = ∧ + ∧y x z x td d d d  and ω2 1= +( ) ∧x y td d . Find ω ω1 2∧ .

3.1.3 Let ω = − +xy x xy y xy z zd d d2 3 . Find the exterior derivative dω.

3.1.4 Let ω = +( ) ∧ + +( ) ∧x y z x y z x y y z2 2 3d d d d .  Find the exterior 

derivative dw.

3.1.5 Express the 2-form d dx y∧  in polar coordinates.

3.1.6 Consider f : 

2 2→  and x y u v, ,( ) ( ) , where u x y= −2 2  and 

v xy= 2 . Find d du v∧  in terms of d dx y∧ .

3.1.7 Let the 1-form, w f x g y h z= + +d d d . Find the exterior derivative 
dw.

3.1.8 Let the 2-form, ω = ∧ − ∧ + ∧f z g x z h xdy d d d d dy. Find the exte-

rior derivative dw.

3.1.9 Let ω = +( ) ∧x z x y2 d d . Find the exterior derivative dω.

3.1.10 Let the 2-form, ω = + ∧ + ∧( )x z x y x z2 d dy d d  and the vectors 

 

v , r=
















=
−















1
5
5

1
0
3

. Find ω  v r,( ).

ω      

v r a d d v r a
d

, , det
,

( ) = ( ) ∧ ( ) = ( )
≤ < ≤ >
∑ ∑F x x F

x
ij

i j n
i j ij

i j i

i

1

 

 

v d r
d v d r

( ) ( )
( ) ( )













x

x x
i

j j

.

3.2 Zero-Manifolds

Definition 3.2.1 A 0 -dimensional oriented manifold of n  is simply 
a point x n∈ , with a choice of the +  or −  sign. A general oriented  
0-manifold is a union of oriented points.

HINT
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Definition 3.2.2 Let M = +{ } ∪ −{ }b a  be an oriented 0-manifold, and 
let ω  be a 0-form. Then

ω ω ω= ( ) − ( )∫ b a
M

.  

−x  has opposite orientation to +x  and 

ω ω= −
−∫ ∫x +x

.

Example 3.2.1

Let M = − ( ){ } ∪ + ( ){ } ∪ − −( ){ }1 0 0 1 2 3 0 2 0, , , , , ,  be an oriented 0-mani-

fold, and let ω = + +x y z2 2. Then

ω ω ω ω= − ( ) + ( ) − ( ) = −( ) + ( ) − −( ) =∫ 1 0 0 1 2 3 0 0 3 1 14 4 17, , , , , , .
M

Do not confuse, say, − ( ){ }1 0 0, ,  with −( ) = −( )1 0 0 1 0 0, , , , . The first 

one means that the point 1 0 0, ,( )  is given negative orientation, the 

second means that −( )1 0 0, ,  is the additive inverse of 1 0 0, ,( ).

Exercises 3.2

3.2.1 Let M = − ( ){ } ∪ + ( ){ } ∪ − −( ){ }1 1 0 0 2 0 1 1 2, , , , , ,  be an oriented  

0-manifold, and let ω = − +3 2 2x y z . Find ω
M∫ .

3.2.2 Let M = + ( ){ } ∪ + ( ){ } ∪ − −( ){ }1 2 0 1 0 3 7 1 0, , , , , ,  be an oriented  

0-manifold, and let ω = − + +3 2x y z. Find ω
M∫ .

3.2.3 Let M = − ( ){ } ∪ − −( ){ } ∪ − ( ){ }1 1 1 0 2 5 1 7 5, , , , , ,  be an oriented  

0-manifold, and let ω = − +3 4x y z. Find ω
M∫ .

! 
TIP

! 
TIP
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3.2.4 Let M = + −( ){ } ∪ − ( ){ } ∪ − −( ){ }1 2 1 0 2 1 3 1 6, , , , , ,  be an oriented  

0-manifold, and let ω = − + −2 2x y z . Find ω
M∫ .

3.2.5 Let M = + ( ){ } ∪ + −( ){ } ∪ + −( ){ }0 1 0 2 0 3 1 5 0, , , , , ,  be an oriented  

0-manifold, and let ω = + −x y z2 . Find ω
M∫ .

3.2.6 Let M = − ( ){ } ∪ + −( ){ } ∪ − ( ){ }1 0 1 3 1 3 1 2 0, , , , , ,  be an oriented  

0-manifold, and let ω = − − +7 32x y z . Find ω
M∫ .

3.2.7 Let M = + ( ){ } ∪ − ( ){ } ∪ + −( ){ }0 0 1 1 3 2 1 2 1, , , , , ,  be an oriented  

0-manifold, and let ω = − +x y z2 3 . Find ω
M∫ .

3.2.8 Let M = − ( ){ } ∪ − ( ){ } ∪ + ( ){ }1 1 0 1 3 1 6 2 0, , , , , ,  be an oriented  

0-manifold, and let ω = − +3x y z. Find ω
M∫ .

3.3 One-Manifolds

Definition 3.3.1 A 1-dimensional oriented manifold of n  is simply 
an oriented smooth curve Γ∈n, with a choice of a  +  orientation if the 
curve traverses in the direction of increasing t, or with a choice of a  −  sign 
if the curve traverses in the direction of decreasing t. A general oriented 
1-manifold is a union of oriented curves.

The curve −Γ  has opposite orientation to Γ  and 

ω ω= −
−∫ ∫Γ Γ

.

If 
�
� �f : 2 2→  and if d r =

d
d



x

y








, the classical way of writing this is 

�
i �f  dr

Γ∫ .  

We now turn to the problem of integrating 1-forms.

! 
TIP
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Example 3.3.1

Calculate 

xy x x y yd  d+ +( )∫Γ
 

where Γ  is the parabola y x x= ∈ −[ ]2 1 2, ;  oriented in the positive 
direction.

 n Solution: 
We parameterize the curve as x t y t= =, 2. Then

xy x x y y t t t t t t t td d d d d+ +( ) = + +( ) = +( )3 2 2 3 23 2 ,  

hence

ω = +( )

= +





= ⋅

−

−

∫∫ 3 2

2
3

3
4

69
4

3 2
1

2

3 4

1

2

t t t

t t

Γ
 d

      

      

 

What would happen if we had given the curve above a different param-
eterization? First observe that the curve travels from (−1, 1) to (2, 4) on the 
parabola y x= 2. These conditions are met with the parameterization. Then

xy x x y y t t t t td d d d

           

+ +( ) = −( ) −( ) + −( ) + −( )( ) −( )1 1 1 1 1
3 2 2

               d

                   

= −( ) + −( )( ) −( )3 1 2 1 1
3 2

t t t

       d= −( ) + −( )( )1
2

3 1 2 1
3 2

t
t t t,
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hence

ω = −( ) + −( )( )
= − + −




∫∫
1

2
3 1 2 1

3
4

7
3

5
2

3 2

0

9

2 3 2

t
t t t

t t t
t

d  

      

Γ

/



=

0

9

69
4

      ,

 

as before.

To solve this problem using Maple™ commands, you may use the fol-
lowing code.

 �

 �

      n

It turns out that if two different parameterizations of the same curve 
have the same orientation, then their integrals are equal. Hence, we 
only need to worry about finding a suitable parameterization.

Example 3.3.2

Calculate the line integral 

y x x x y ysin cos ,d d+∫Γ
 

where Γ  is the line segment from 0 0,( )  to 1 1,( )  in the positive 
direction.

 n Solution: 

This line has equation y x= , so we choose the parameterization x y t= = . 
The integral is thus

! 
TIP
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y x x x y y t t t t tsin cos sin cosd d  d

                     

+ = +( )∫∫ 0

1

Γ

                 d

     

= −( )  − −( )∫t t t t t tsin cos sin cos
0

1

0

1

                                = −2 1 1sin ,

 

upon integrating by parts.

To solve this problem using Maple™ you may use the following code.

 � :
 �

      n

Example 3.3.3

Calculate the path integral

x y
x y

y
x y

x y
x

+
+

+
−
+∫ 2 2 2 2

 d d
Γ

 

around the closed square Γ = ABCD  with A B= ( ) = −1 1 1 1, , ( , ),
C = − −( , )1 1 , and D = −( , )1 1  in the direction ABCDA.

 n Solution: 
On AB y y, ,= =1 0d , on BC x x, ,= − =1 0d , on CD y y, ,= − =1 0d , and 

on DA x x, ,= =1 0d . The integral is thus

 

ω ω ω ω ω
Γ∫ ∫ ∫ ∫ ∫

∫ ∫

= + + +

=
−
+

+
−
+

− −

AB BC CD DA

x
x

x
y
y

y      d  d
1
1

1
121

1

21

1
++

+
+

+
+
+

=
+

=

− −

−

∫ ∫

∫

x
x

x
y
y

y

x
x

1
1

1
1

4
1

1
4

21

1

21

1

21

1

 d  d

     d

    arcttan

.

x
−

=
1

1

2    π

 

n
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When the integral is along a closed path, like in the preceding exam-
ple, it is customary to use the symbol 

Γ∫  rather than 
Γ∫ . The positive 

direction of integration is that sense that when traversing the path, 
the area enclosed by the curve is to the left of the curve.

Example 3.3.4

Calculate the path integral

x y y x2 2
Γ∫ +d d ,  

Where Γ  is the ellipse 9 4 362 2x y+ =  traversed once in the positive 
sense.

 n Solution: 

Parameterize the ellipse as x t y t t= = ∈[ ]2 3 0 2cos , sin , ; π . Observe that 
when traversing this closed curve, the area of the ellipse is on the left-hand 
side of the path, so this parameterization traverses the curve in the positive 
sense. We have

ω
π

Γ∫ ∫= ( )( ) + ( ) −( )( )
=

4 3 9 2

12

2
0

2

3

cos cos sin sin

cos

t t t t t d

      tt t t−( )
=

∫ 18

0

3
0

2
sin

.

π
 d

      
 

To solve this problem, using Maple™ you may use the following code.

 � :
 �

        n

Definition 3.3.2 Let Γ  be a smooth curve. The integral

f x dx( )∫Γ
 

is called the path integral of f  along Γ.

! 
TIP
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Example 3.3.5

Find x xd
Γ
∫  where Γ  is the triangle starting at A : ,− −( )1 1  to B : ,2 2−( ),  

and ending in C : ,1 2( ), see Figure 3.3.1.

 n Solution: 
The lines passing through the given points have equations 

L y
x

AB : =
− − 4

3
 and L y xBC : = − +4 6 .  On LAB.

x x x y x x
x x

dx d d d
 d

= ( ) + ( ) = + −





 =2 2

2

1
1
3

10
3

,

and on LBC

x x x y x x x xdx d d d  d= ( ) + ( ) = + −( ) =2 2 21 4 17 .

Hence

 

x x x

x x
x x

L LAB BC

dx dx dx

            
 d

 d

   

= +

= +

∫∫ ∫

∫ ∫−

Γ

10
3

17
1

2

2

1

          = − ⋅
10
2

3 17
2

  

nFIGURE 3.3.1 Example 3.3.5.
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Exercises 3.3

3.3.1 Consider x x y y
C

d d
 ∫ + . Evaluate x x y y

C
d d

 ∫ +  where C  is the 

straight line path that starts at −( )1 0,  goes to 0 1,( )  and ends at 

1 0,( ), by parameterizing this path. 

3.3.2 Consider xy x
C

d
 ∫  . Calculate xy x

C
d

 ∫   where C  is the straight 

line path that starts at −( )1 0,  goes to 0 1,( )  and ends at 1 0,( ), by 
parameterizing this path.

3.3.3 Evaluate x x y y
C

d d
 ∫ +  where C  is the semicircle that starts at 

−( )1 0,  goes to 0 1,( )  and ends at 1 0,( ), by parameterizing this 
path. 

3.3.4 Calculate xy x
C

d
 ∫   where C  is the semicircle that starts at −( )1 0,  

goes to 0 1,( )  and ends at 1 0,( ), by parameterizing this path. 

3.3.5 Find x x y yd d
 

+∫Γ
 where Γ  is the path shown in Figure 3.3.2, start-

ing at O 0 0,( )  going on a straight line to A 4
6

4
6

cos , sin
π π






  and 

continuing on an arc a circle to B 4
5

4
5

cos , sin
π π






.

3.3.6 Solve Exercise 3.3.5 using Maple commands.

3.3.7 Find x xd
 Γ∫  Γ  is the path shown in Figure 3.3.2.

3.3.8 Find z x x y y zd d d
 Γ∫ + +  where Γ  is the intersection of the sphere 

x y z2 2 2 1+ + =  and the plane x y+ = 1, traversed in the positive 
direction.

3.3.9 Solve Exercise 3.3.7 using Maple commands.

3.3.10 Evaluate x y x x y
C

2 2 2+( ) +∫ 
 d  d . 

1. Where C  consists of line segment from 
1 2,( )  to 1 8,( )  and from 1 8,( )  to −( )2 8, .

2. Where C  is the graph of y x= 2 2  form 
1 2,( )  to −( )2 8, .

FIGURE 3.3.2 Exercises 
3.3.5 and 3.3.7.
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3.3.11 Evaluate x y x xy y
C

2 2 2+( ) +∫ 
 d  d  along the curve

C x t y t t: , ,= = ≤ ≤2 0 12 , where t u= sin  for 0 2≤ ≤u π / .

3.3.12 Compute the curve integral x xy x y xy y
C

2 22 2−( ) + −( )∫ 
 d  d , along 

the parabola y x= 2  from −( )2 4,  to 1 1,( ).

3.4 Closed and Exact Forms

Lemma 3.4.1 (Poincare Lemma): If ω  is a p-differential from of con-
tinuously differentiable functions in n  then

d dω( ) = 0.  

Proof: 
We will prove this by induction on p. For p = 0  if 

ω = ( )f x x xn1 2, , ,  

then

d  dω =
∂
∂=

∑ f
x

x
kk

n

k
1

and

d d  d

     d

ω =
∂
∂









 ∧

=
∂

∂ ∂













∧

=

=

∑

∑

f
x

x

f
x x

x

kk

n

k

j kj

n

1

2

1
jj

k

n

k

j k k jj k n

x

f
x x

f
x x













∧

=
∂

∂ ∂
−

∂
∂ ∂













=

≤ ≤ ≤

∑
1

2 2

1

d

    
nn

j kx x∑ ∧

=

 d d

   0,
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since ω  is continuously differentiable and so the mixed partial deriva-
tives are equal. Consider now an arbitrary p-form, p > 0. Since such a form 
can be written as 

ω = ∧ ∧
≤ ≤ ≤ ≤ ≤

∑ a x x xj j j
j j j n

j j jp

p

p1 2
1 2

1 2
1





d d d ,  

where the a j j jp1 2, 

 are continuous differentiable functions in n, we 
have 

d d d d d

    

ω = ∧ ∧

=
∂

∂

≤ ≤ ≤ ≤ ≤
∑ a x x x

a

x

j j j
j j j n

j j j

j j j

p

p

p

p

1 2
1 2

1 2

1 2

1








ii
i

i

n

j j j n
j j jx x x x

p

p
d  d d d

=≤ ≤ ≤ ≤ ≤
∑∑









 ∧ ∧

11 1 2
1 2



 ,

it is enough to prove that for each summand 

d d d d da x x xj j jp
∧ ∧ ∧( ) =

1 2
0 .  

But

d d d d d dd d d d

               

a x x x a x x xj j j j j jp p
∧ ∧ ∧( ) = ∧ ∧ ∧( )

1 2 1 2
 

                               d d d d d

     

+ ∧ ∧ ∧( )a x x xj j jp1 2


                                       d d d d d= ∧ ∧ ∧a x x xj j j1 2


pp
( ),

Since dda = 0  from the case p = 0. But an independent induction argu-
ment proves that

d d d dx x xj j jp1 2
0∧ ∧( ) = ,

completing the proof. n
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Definition 3.4.1 A differential form ω  is said to be exact if there is a 
continuously differentiable function F  such that

dF = ω.  

Example 3.4.1

The differential form 

x x y yd d+  

is exact, since

x x y y x yd d d+ = +( )







1
2

2 2 .  

Example 3.4.2

The differential form 

y x x yd d+  

is exact, since

y x x y xyd d d+ = ( ).

Example 3.4.3

The differential form 

x
x y

x
y

x y2 2 2 2+
+

+
d dy  

is exact, since

x
x y

x
y

x y
x ye2 2 2 2

2 21
2+

+
+

= +( )





d dy d log .  

Let ω = dF  be an exact form. By the Poincare Lemma 3.4.1, 
d ddω = =F 0. A result of Poincare says that for certain domains 
(called star-shaped domains) the converse is also true, that is, if 
dω = 0  on a star-shaped domain then ω  is exact.

! 
TIP
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Example 3.4.4

Determine whether the differential form 

ω =
−( )

+( )
+

+
2 1

1 12 2 2

x e

x
x

e
x

y
y y

d d  

is exact.

 n Solution: 
Assume there is a function F  such that 

dF = ω.  

By the Chain Rule 

d d dF
F
x

x
F
y

y=
∂
∂

+
∂
∂

⋅  

This demands that 

∂
∂

=
−( )

+( )
∂
∂

=
+

⋅

F
x

x e

x

F
y

e
x

y

y

2 1

1

1

2 2

2

,

We have a choice here of integrating either the first, or the second 
expression. Since integrating the second expression (with respect to y) is 
easier, we find

F x y
e

x
x

y

, ,( ) =
+

+ ( )
1 2

φ  

where φ x( )  is a function depending only on x. To find it, we differenti-
ate the obtained expression for F  with respect to x  and find

∂
∂

= −
+( )

+ ′( )F
x

xe

x
x

y2

1 2 2 φ .  
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Comparing this with our first expression for 
∂
∂
F
x

, we find 

′( ) =
+( )

φ x
x

x

2

1 2 2 ,  

that is 

φ x
x

c( ) = −
+

+
1

1 2
,  

where c  is a constant. We then take

 F x y
e

x
c

y

, .( ) =
−

+
+

1
1 2

  
n

Example 3.4.5

Is there a continuously differentiable function such that

d d d dF y z x xyz y xy z z= = + +ω 2 3 3 2 22 3 ? 

 n Solution: 
We have 

d d d d

     d d d d

   

ω = +( ) ∧

+ + +( ) ∧

+

2 3

2 2 6

3 2 2

3 3 2

yz y y z z x

yz x xz y xyz z y

33 6 6

0

2 2 2 2y z x xyz y xy z z zd d d d

    

+ +( ) ∧

= ,

 

so this form is exact in a star-shaped domain. So put

d d d d d d dF
F
x

x
F
y

y
F
z

z y z x xyz y xy z z=
∂
∂

+
∂
∂

+
∂
∂

= + +2 3 3 2 22 3 .  
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Then

∂
∂

= ⇒ = + ( )
∂
∂

= ⇒ = + ( )

∂
∂

=

F
x

y z F xy z a y z

F
y

xyz F xy z b x z

F
z

x

2 3 2 3

3 2 32

3

, ,

, ,

yy z F xy z c x y2 2 2 3⇒ = + ( ), .

 

Comparing these three expressions for F, we obtain F x y z xy z, ,( ) = 2 3. n

We have the following equivalent of the Fundamental Theorem of 
Calculus.

Theorem 3.4.1 Let U n⊆   be an open set. Assume w F= d  is an exact form, 
and Γ  a path in U  with starting point A  and endpoint B. Then

ω
Γ∫ ∫= = ( ) − ( )dF F B F A

A

B
.  

In particular, if Γ  is a simple closed path, then

ω =∫ 0.
Γ

 

Example 3.4.6

Evaluate the integral 

2 2
2 2 2 2

x
x y

x
y

x y
y

+
+

+∫
Γ


 d d  

where Γ  is the closed polygon with vertices at A B= ( ) = ( )0 0 5 0, , , ,  

C E= ( ) = ( ) = ( )7 2 3 2 1 1, ,D , ,  traversed in the order ABCDEA.  
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 n Solution: 
Observe that 

d d  d d d d
2 2 4 4

2 2 2 2 2 2 2 2 2 2

x
x y

x
y

x y
y

xy

x y
y x

xy

x y+
+

+








 = −

+( )
∧ −

+( )
xx y∧ =d 0,

and so the form is exact in a start-shaped domain. By virtue of Theorem 
3.4.1, the integral is 0. n

Example 3.4.7

Calculate the path integral 

x y x y x y2 2−( ) + −( )∫Γ
 d d ,  

where Γ  is a loop of x y xy2 3 2 0+ − =  traversed once in the positive 
sense.

 n Solution: 
Since

∂
∂

−( ) = − =
∂
∂

−( )
y

x y
x

y x2 21 ,  

the form is exact, and since this is a closed simple path, the integral is 0. n

Exercises 3.4

3.4.1 Are the following statements true or false?

1. A form α is closed if dα = 0.
2. If ω  is exact and C  is closed, then ω

 C∫ = 0.  

3.4.2 Are the following statements true or false?
1. Every exact form is closed, since d dω( ) = 0. On the other 

hand, there are closed but not exact forms.
2. A form α  is exact if α = dβ for some form β.

3.4.3 Show that the differential form x dx ydy2 +  is exact or not exact.

3.4.4 Show that the 1-form ω θ= d  on 2 0\ { }, where θ  is the polar 
angle. In standard Cartesian coordinates:
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ω =
−
+

xdy ydx
x y2 2

. Is the form exact or not exact.

3.4.5 Prove that on a rectangular parallelepiped, Π, all closed forms are 
exact.

3.4.6 Consider the differential 1-form 

ω = −
+

+
+

y
x y

x
x

x y
y

2 2 2 2
d  d .  Defined on Ω = − ( )

2 0 0, , and be 

closed curve at 

C :
,

cos ,sin .
0 2 2π
θ θ θ

[ ] →

( )
�

�
 

Show that w  is exact or not exact. Also, show that w  is a closed 
1-form?

3.5 Two-Manifolds

Definition 3.5.1  A 2-dimensional oriented manifold of 2  is simply an 
open set (region) D∈2, where the +  orientation is counter-clockwise and 
the −  orientation is clockwise. A general oriented 2-manifold is a union of 
open sets.

The region −D  has opposite orientation to D  and 

ω ω
−∫ ∫= −

D D
.  

We will often write 

f x y A
D

,( )∫  d  

where dA  denotes the area element.

In this section, unless otherwise noted, we will choose the positive 
orientation for the regions considered. This corresponds to using the 
area form d dx y.

! 
TIP

! 
TIP
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Let U ⊆ 2 . Given a function f D: →, the integral

fdA
D∫  

Is the sum of all the values of f  restricted to D. In particular,

dA
D∫  

is the area of D.

In order to evaluate double integrals, we need the following.

Theorem 3.5.1 (Fubini’s Theorem): Let D a b c d= [ ]×[ ]; ; , and let 
f A: →  be continuous. Then

f A f x y y x f x y x y
D c

d

a

b

a

b

c

d

∫ ∫∫ ∫∫= ( )( ) = ( )( )d d  d d  d, ,  

Fubini’s Theorem allows us to convert the double integral into iterated 
(single) integrals.

Example 3.5.1

xy A xy y x

xy

d d  d

                     

  0 1 2 3 2

3

0

1

; ;[ ] × [ ]∫ ∫∫= ( )
=

22

2

3

0

1

2

9
2

2

















= −






∫  d

                     

x

x
x

= 





∫0

1

2

0

15
4

 d

                     

                

x

x

     =
5
4

.

 

Notice that if we had integrated first with respect to x  we would have 
obtained the same result:
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xy x y
x y

yd  d  d

                

0

1

2

3 2

0

1

2

3

2∫∫ ∫( ) = 















       d

                     

    

= 







= 





∫
y

x

y

2

4

2

3

2

2

3

                 =
5
4

.

Also, this integral is “factorable into x  and y  pieces” meaning that

xy A x x y yd d  d

                     

  0 1 2 3 0

1

2

3

; ;[ ] × [ ]∫ ∫ ∫= ( ) ( )
=

11
2

5
2

5
















=

                  

                     
44

.

To solve this problem using Maple™, you may use the following code.

 � :
 �

To solve this problem using MATLAB, you may use the following code.

>> syms x y

>> firstint = int(x*y,x,0,1)

firstint =

1/2*y

>> answer = int(firstint,y,2,3)

answer =

5/4
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Example 3.5.2

We have 

x y x y x y x xy y x y+( ) +( ) = + +( )∫∫ ∫∫2 2 2 5 2
0

1

3

4
2 2

0

1

3

4
d d  d d

                                           d

    

= + +





∫

2
3

5
2

2 2
3

4
y y y

                                      =
409
12

.

 

To solve this problem using Maple™, you may use the following code.

 � :
 �

To solve this problem using MATLAB, you may use the following code.

>> syms x y 

>>  firstans = int(int((x+2*y)*(2*x+y),x,0,1),y,3,4)

firstans =

409/12

In the cases when the domain of integration is not a rectangle, we 
decompose so that, one variable is kept constant.

Example 3.5.3

Find xy x y
D
∫  d d   in the triangle with vertices A B C: , , : , , : , .− −( ) −( ) ( )1 1 2 2 1 2

A B C: , , : , , : , .− −( ) −( ) ( )1 1 2 2 1 2  

 n Solution: 
The lines passing through the given points have equations L yAB : =

− −
= − + =

+x
L y x L y

x
BC CA

4
3

4 6
3 1

2
, : , : .  
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Now, we draw the region carefully. If we integrate first with respect 
to y, we must divide the region as in Figure 3.5.1, because there are two 
upper lines, which the upper value of y  might be. The lower point of the 
dashed line is ( ), / .1 5 3−  

The integral is thus

x y y x x y y x
x

x

x

x

− − −( )

+( )

− −( )

− +

∫ ∫ ∫ ∫( ) + ( ) =
1

1

4 3

3 1 2

1

2

4 3

4 6
 d d  d d

/

/

/
−−

11
8

.

If we integrate first with respect to x, we must divide the region as in 
Figure 3.5.2, because there are two left-most lines, which the left value of 
x  might be. The right point of the dashed line is ( )/ , .7 4 1−  

The integral is thus

y x x y y x x y
y

y

y

y
 d d  d d

− −

−( )

−

−

− −( )

−( )
∫∫ ∫ ∫( ) + ( ) =

4 3

6 4

2

1

1

2

2 1 3

6 4/

/

/
−−

11
8

.

To solve this problem using Maple™, you may use the following code.

 �

 �

FIGURE 3.5.1 Example 3.5.3, 
integration order d dy x.

FIGURE 3.5.2 Example 3.5.3, 
integration order d dx y.
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To solve this problem using MATLAB, you may use the following code.

>> syms x y 

>> firstans = int(int(x*y,x,-4-3*y,(6-y)/4),y,-2,-1)+int(int(x*y,x, 
(2*y-1)/3,(6-y)/4),y,-1,2)

firstans =

-11/8 n

Example 3.5.4

Consider the region inside the parallelogram P  with vertices at 

A B C D: , , : , , : , , : , ,6 3 8 4 9 6 7 5( ) ( ) ( ) ( )  as in Figure 3.5.3. 

Find 

xy x y
P

 d d .∫   

 n Solution: 
The lines joining the points have equations

L y
x

L y x

L y
x

L y x

AB

BC

CD

DA

: ,

: ,

: ,

: .

=

= −

= +

= −

2
2 12

2
3
2

2 9

 

The integral is thus

xy x y xy x y xy x y
y

y

y

y

y
 d d  d d  d d

+( ) +( )

+( )

−∫∫ ∫∫+ +
9 2

2

3

4

9 2

12 2

4

5

2/ /

/

33

12 2

5

6 409
4

y+( )
∫∫ = ⋅

/

FIGURE 3.5.3 Example 3.5.4.
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To solve this problem using Maple™, you may use the following code. 

 �

 �

To solve this problem using MATLAB, you may use the following code.

>> syms x y 

>> firstans = int(int(x∗y,x,(y+9)/2,2∗y),y,3,4)+int(int(x∗y,x,(y+9)/2,(y+12)/ 
2),y,4,5)+ int(int(x∗y,x,2∗y-3, (y+12)/2),y,5,6)

firstans =

409/4 n

Example 3.5.5

Find

y
x

x y
D

2 1+∫  d d  

where

D x y x x y= ( )∈ ≥ + ≤{ }, | , .

2 2 20 1  

 n Solution: 
The integral is 0. Observe that if x y D,( )∈ , 

then x y D,−( )∈ . Also, f x y f x y, ,−( ) = − ( ) . n

Example 3.5.6

Find 

e x yy x

y

y
/

/
. d  d

20

4

∫∫ 





  

See Figure 3.5.4.

FIGURE 3.5.4 Example 3.5.6.
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 n Solution: 
We have 

0 4
2

0 2 22≤ ≤ ≤ ≤ ⇒ ≤ ≤ ≤ ≤y
y

x y x x y x, , .     

We then have

 

e x y e y xy x

y

y
y x

x

x
/

/

/

20

4 2

0

2

2∫∫ ∫∫





 = ( )d  d d  d

                              d

                          

= ( )∫ xe xy x
x

x/
2

2

0

2

   d

                           

= −( )
= − − +

∫ xe xe x

e e e

x2
0

2

2 2 22 2 1(( )
= −                           e2 1.

 

n

Example 3.5.7

Find the area of the region

R x y x y x y= ( )∈ + ≥ − + − ≥{ }, : , .

2 1 1 1 1  

See Figure 3.5.5.

 n Solution: 
The area is given by

 
d d  d

       d

A y x

x x

D x

x

∫ ∫∫

∫

=










= − + −( )
−( )
− − −( )

1

1 1 1

0

1

0

1

2

2

2 1 1 xx

       = ⋅
2
3

  

n

Example 3.5.8

Evaluate x y A
R

2 2+∫ �� �� d ,  where R  is the rectangle 0 2 0 2; ;  ×  .

See Figure 3.5.6.
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 n Solution: 
The function x y x y,( ) +��� ��2 2  jumps every time x y2 2+  is an integer. 

For x y R,( )∈ , we have 0 2 2 42 2
2 2

≤ + ≤ ( ) + ( ) =x y . Thus we decom-

pose R  as the union of the 

R x y x y k x y k k

x y A

k

R

= ( )∈ ≥ ≥ ≤ + ≤ +{ } ∈{ }
+

, : , , , , , .�

�� ��

2 2 2

2 2

0 0 1 1 2 3  

d∫∫ ∫∑= +

=
≤ ≤

≤ + <

x y A
R

k

x y

k

2 2

1 3

1 2

1
2 2

�� �� d

                      
,xx y x y x y x y x y

A A
≥ ≥ ≤ + < ≥ ≥ ≤ + < ≥ ≥

∫∫ ∫∫ ∫∫+ +
0 0 2 3 0 0 3 4 0 0

2 3
2 2 2 2, , , , ,

 d  d   dA.

 

Now the integrals can be computed by realizing that they are areas of 
quarter annuli, and so,

k A k k k
k

k x y k x y

 d
≤ + < + ≥ ≥

∫∫ = ⋅ ⋅ + −( ) = ⋅
2 2 1 0 0

1
4

1
4, ,

π π

Hence

 x y A
R

2 2

4
1 2 3

3
2

+ = + +( ) = ⋅∫ �� �� d
π π

  
n

FIGURE 3.5.5 Example 3.5.7. FIGURE 3.5.6 Example 3.5.8.
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Exercises 3.5

3.5.1 Evaluate the iterated integral 

1
01

3

x
y x

x

∫∫  d d .  

3.5.2 Let S  be the interior and boundary of the triangle with vertices 

0 0,( ), 2 1,( ), and 2 0,( ). Find y A
S

d∫ .  

3.5.3 Let S x y x y x y= ( )∈ ≥ ≥ ≤ + ≤{ }, : , , .

2 2 20 0 1 4  Find x A
S

2d∫ . 

3.5.4 Find xy x y
D

d d∫   

where

D x y y x x y= ( )∈ ≥ ≥{ }, | , .

2 2 2  

3.5.5 Find x y x y A
D

+( )( )( )∫ sin sin d

where

D = [ ]0 2; .π

3.5.6 Find min .x y x y2 2
0

1

0

1
+( )∫∫  d d  

3.5.7 Find xy x y
D

d d∫  

where

D x y x y x y x y= ( )∈ > > < + < < − <{ }, : , , , .

2 2 2 2 20 0 9 16 1 16  

FIGURE 3.5.7 
Exercise 3.5.8.

FIGURE 3.5.8 Exercise 
3.5.11.
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3.5.8 Evaluate x A
R

d
 ∫   where R  is the (un-

oriented) circular segment in Figure 

3.5.7, which is created by the intersec-

tion of regions

x y x y, :( )∈ + ≤{ }

2 2 2 16  

and

x y y x, : .( )∈ ≥ − +













2 3
3

4  

3.5.9 Find 2 21

0

1
e x yx

y∫∫ d d .  

3.5.10 Evaluate min , .
;

x y A2
0 1 2 ( )

[ ]∫  d  

3.5.11 Find xy A
R

d
 ∫  , where R  is the (un-

oriented) ∆OAB  in Figure 3.5.8 with 

O A0 0 3 1, , ,( ) ( ), and B 4 4,( ). 
3.5.12 Solve Exercise 3.5.11 using Maple 

commands.

3.5.13 Find loge
D

x y A1 + +( )∫  d  

where

D x y x y x y= ( )∈ ≥ ≥ + ≤{ }, | , , .

2 0 0 1  

3.5.14 Evaluate x y A+
[ ]∫ 2
0 2 2
�� ��;

. d  

3.5.15 Evaluate x y A
R

+∫ �� �� d ,

where R  is the rectangle 0 1 0 2; ;[ ]×[ ].

3.5.16 Evaluate x A
R

d
 ∫   where R  is the quarter annulus in Figure 3.5.9, 

which is formed by the area between the circles x y2 2 1+ =  and 
x y2 2 4+ =  in the first quadrant.

FIGURE 3.5.9 Exercise 3.5.16.

FIGURE 3.5.10 Exercise 3.5.17.

FIGURE 3.5.11 Exercise 3.5.21.
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3.5.17 Evaluate x A
R

d
 ∫  , where R  is the E-shape figure in Figure 3.5.10.

3.5.18 Evaluate 
cos

.
// y

y
y x

x
 d d

ππ 2

0

2

∫∫  

3.5.19 Find sin sin .
π πx

y
y x

x
y

y x
x

x

x2 21

2 2

2

4
d  d d  d∫∫ ∫∫









 +









  

3.5.20 Find 2 2 2x x y A
D

+( )∫  d  

where

D x y x y x y, : .( )∈ + + − ≤{ }

2 4 4 2 2 1  

3.5.21  Find the area bounded by the ellipses x
y

2
2

4
1+ =  and 

x
y

2
2

4
1+ = .  

as in Figure 3.5.11.

3.5.22 Find xy A
D

d∫   

where

D x y x y xy y x, : , , .( )∈ ≥ ≥ + + ≤{ }

2 0 0 1

3.5.23 Find loge
D

x y A∫ + +( )1 2 d  

where

D x y x y x y, : , , .( )∈ ≥ ≥ + ≤{ }

2 20 0 1

3.5.24 Evaluate x A
R

d
 ∫  , where R  is the region between the circles 

x y2 2 4+ =  and x y y2 2 2+ = , as shown 

in Figure 3.5.12.

3.5.25 Find x y A
D

−∫  d  

where

D x y x y, : , .( )∈ ≤ ≤{ }

2 1 1

3.5.26 Find 2 3 1x y A
D

+ +( )∫  d .  FIGURE 3.5.12 Exercise 3.5.24.
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Where D  is the triangle with vertices at A B− −( ) −( )1 1 2 4, , , , and 

C 1 3,( ).

3.5.27 Let f : ; ;0 1 0[ ] → +∞] ]  be a decreasing function. Prove that

xf x x

xf x x

f x x

f x x

2
0

1

0

1

2
0

1

0

1

( )

( )
≤

( )

( )
⋅∫

∫
∫
∫

d

d

d

d
 

3.5.28 Find xy x y A
D

+( )( )∫  d . Where

D x y x y x y, : , , .( )∈ ≥ ≥ + ≤{ }

2 0 0 1

3.5.29 Let f g, : ; ;0 1 0 1[ ] → [ ]  be continuous, with f  increasing. Prove 
that

f g x x f x x g x x( )( ) ≤ ( ) + ( )∫ ∫ ∫0

1

0

1

0

1
d  d  d .  

3.5.30 Compute xy y A
S

+( )∫ 2  d , where S x y x y= ( )∈ + ≤{ }, : ./ /


2 1 2 1 2
1  

3.5.31 Evaluate e y xb x a yba max , ,
2 2 2 2

00

( )∫∫  d d  where a  and b  are positive.

3.5.32 Find xy A
D∫  d .  

Where

D x y y x y x, : , .( )∈ ≥ +( ) ≤{ }

2 2
0 2

3.5.33 A rectangle R on the plane is the disjoint union R Rkk

N
=

=1

 of rect-

angles Rk. It is known that at least one side of each of the rectangles 
Rk  is an integer. Show that at least one side of R  is an integer.

3.5.34 Evaluate    x x x x x xn n1 20

1

0

1

0

1

1 2( )∫∫∫  d d d .  

3.5.35 Evaluate … � �x x x x x xn n1 20

1

0

1

0

1

1 2+ + +( )∫∫∫  d d d .

3.5.36 Find 
1

4
x y

A
D +( )∫  d , where

D x y x y x y, | , , .( )∈ ≥ ≥ + ≤{ }

2 1 1 4
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3.5.37 Find x A
D

d∫ .  Where

D x y y x y x y, | , , .( )∈ ≥ − + ≥ + − ≤{ }

2 0 1 0 2 4 0

3.5.38 Evaluate lim cos .
n n nn

x x x x x x
→+∞ ∫∫∫ + + +( )






  

2
0

1

0

1

0

1

1 2 1 22
π

d d d  

3.6 Change of Variables in Double Integrals

We now perform a multidimensional analogue of the change of vari-
ables theorem in double integrals.

Theorem 3.6.1 Let D n,∆( )∈( )

2 open, bounded sets in n  with volume 

and let g D: ∆ →  be a continuously differentiable bijective mapping such 

that det ′( ) ≠g u 0,both det ( ) ,
det ( )

′
′

g u
g u
1

 bounded on ∆ . For f : D →  

bounded and integrable. f g g u det ( )′  is integrable on ∆  and 

� � �f f g g u
D

= ( ) ′( )∫∫∫∫ ∆
det ,  

that is 

� … …

� …

f x x x x x x

f g u u u g u

nD n

n

1 2 1 2

1 2

, , ,

, , , det

( ) ∧ ∧ ∧

= ( )( ) ′( )

∫∫ d  d d

duu u un1 2∧ ∧ ∧∫∫  d d
∆

… .

 

One normally chooses changes of variables that map into rectangu-
lar regions, or that simplify the integrand. Let us start with a rather trivial 
example.

Example 3.6.1

Evaluate the integral 

x y x y x y+( ) +( )∫∫ 2 2
0

1

3

4
d d .  

 n Solution: 
Observe that we have already computed this integral in Example 3.5.2. Put
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u x y u x y

v x y v x y

= + ⇒ = +
= + ⇒ = +

2 2
2 2

d d d
d d d

,
,

 

giving

d d d du v x y∧ = − ∧3 .  

Now,

u v
x

y
,( ) =





















1 2
2 1

 

is a linear transformation, and hence it maps quadrilaterals into quad-
rilaterals. The corners of the rectangle in the area of integration in the xy- 
plane are (0, 3), (1, 3), (1, 4), and (0, 4) (traversed counter-clockwise; see 
Figure 3.6.1). They map into (6, 3), (7, 5), (9, 6), and (8, 4), respectively, in 
the uv-plane (see Figure 3.6.2). 

The form d dx y∧  has opposite orientation to d du v∧  so we use

d d d dv u x y∧ = ∧3

instead. The integral sought is 

 
1
3

409
12

uv v u
P

 d d∫ = ,  

from Example 3.5.4. n

FIGURE 3.6.1 Example 3.6.1, xy-plane. FIGURE 3.6.2 Example 3.6.1, uv-plane.
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Example 3.6.2

The integral 

x y A y y4 4
0 1

4
0

1

2

1
5

0−( ) = −





 =

[ ]∫ ∫;
. d  d  

Evaluate it using the change of variables u x y v xy= − =2 2 2, .

 n Solution: 
First we find 

d d d
d d d

u x x y y

v y x x y

= −
= +

2 2
2 2

,
,
 

and so

d d d du v x y x y∧ = +( ) ∧4 42 2 .  

We now determine the region ∆  into which the square D = [ ]0 1 2;  is 

mapped. We use the fact that the boundaries will be mapped into boundar-
ies. Put

AB x x

BC y y

CD x y x

DA

= ( ) ≤ ≤{ }
= ( ) ≤ ≤{ }
= −( ) ≤ ≤{ }
=

, : ,

, : ,

, : ,

,

0 0 1

1 0 1

1 0 1

0 11 0 1−( ) ≤ ≤{ }y y: .

 

On AB, we have u x v= =, 0. Since 0 1≤ ≤x  , AB  is thus mapped into 
the line segment 0 1≤ ≤u  , v = 0.

On BC, we have u y v y= − =1 22 , . Thus u
v

= −1
4

2

. Hence, BC  is 

mapped to the portion of the parabola u
v

= −1
4

2

, 0 2≤ ≤v  .
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On CD  we have u x v x= −( ) − = −( )1 1 2 12 , . This means that 

u
v

v= − ≤ ≤
2

4
1 0 2, . Finally, on DA, we have u y v= − −( ) =1 0

2
, . Since 

0 1≤ ≤y  , DA  is mapped into the line segment − ≤ ≤ =1 0 0u v, . The 

region ∆  is thus the area in the uv  plane enclosed by the parabolas 

u
v

u
v

≤ − ≤ −
2 2

4
1 1

4
,  with − ≤ ≤ ≤ ≤1 1 0 2u v, . 

We deduce that

x y A x y
x y

u v4 4
0 1

4 4
4 42

1
4

−( ) = −( )
+( )[ ]∫ ∫;

 d d d

                  

∆

          d d

                          

= −( )

=

∫

∫

1
4
1
4

2 2x y u v

u

∆

∆
  d d

                          d  d

u v

u u
v

v
= ( )−

−

∫∫
1
4 2

2

4 1

1 4

0

2

/

/
vv

                          = 0,

 

as before.  n

Example 3.6.3

Find e Ax y xy

D

3 3+( )∫ / d ,

where

D x y y px x py p= ( )∈ − ≤ − ≤ ∈ +∞] [{ }, | , , ; ,

2 2 22 0 2 0 0 fixed

Using the change of variables x u v y uv= =2 2, .

 n Solution: 
We have 

d d d

d d d

d d d d

x uv u u v

y v u uv v

x y u v u v

= +
= +
∧ = ∧

2

2

3

2

2

2 2

,

,

.
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The region transforms into 

∆ = ( )∈ ≤ ≤ ( ) ≤ ≤ ( ){ }u v u p v p, | , .
/ /



2 1 3 1 3
0 2 0 2

The integral becomes

f x y x y
u v u v

u v
u v u v

D

, exp( ) =
+






( )∫ ∫ d d d d

         

6 3 3 6

3 3
2 23

∆

                d d

                       

=

=

∫3 3 3 2 2e e u v u vu v

∆

11
3

3

1
3

1

2
0

2
2

2

1 3
3u e u

e

p
u

p

( )
∫









= −(

/

d

                      ))2
.

 

As an exercise, you may try the (more natural) substitution 
x u v y v u3 2 3 2= =,  and verify that the same result is obtained.  n

Example 3.6.4

In this problem, we will follow an argument of Calabi, Beukers, and 
Knock to prove that 

1
62

1

2

nn=

+∞

∑ = ⋅
π

 

1. Prove that if S
nn

=
=

+∞

∑ 1
2

1

, then 3
4

1

2 1 2
1

S
nn

=
−( )

⋅
=

+∞

∑

2. Prove that 1

2 1 12
1

2 20

1

0

1

n

x y
x yn −( )

=
−

⋅
=

+∞

∑ ∫∫  
d d

3. Use the change of variables x
u
v

y
v
u

= =
sin
cos

,
sin
cos

  in order to evalu-

ate  
d dx y

x y1 2 20

1

0

1

−
⋅∫∫
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 n Solution: 
1. Observe that the sum of even terms is

1

2

1
4

1 1
42

1
2

1n n
S

n n( )
= =

=

+∞

=

+∞

∑ ∑ ,  

a quarter of the sum, hence the sum of the odd terms must be three 

quarters of the sum, 
3
4

S.

2. Observe that 

1
2 1

1
2 1

2 2
0

1
2

2 2
0

1
2 2

0

1

n
x x

n
x x y yn n n

−
= ⇒

−






 = ( )( )

=

− − −∫ ∫ ∫ d  d  d

xxy x y
n( ) −

∫∫
2 2

0

1

0

1
 d d .  

Thus

1

2 1 2
1

2 2

0

1

0

1

1

2 2

1
0

1

n
xy x y xy

n

n

n

n

n−( )
= ( ) = ( )

=

+∞
−

=

+∞
−

=

+∞

∑ ∫∫∑ ∑∫ d d   d d
d d

, 
0

1

2 20

1

0

1

1∫ ∫∫=
−

x y
x y
x y

1

2 1 2
1

2 2

0

1

0

1

1

2 2

1
0

1

n
xy x y xy

n

n

n

n

n−( )
= ( ) = ( )

=

+∞
−

=

+∞
−

=

+∞

∑ ∫∫∑ ∑∫ d d   d d
d d

, 
0

1

2 20

1

0

1

1∫ ∫∫=
−

x y
x y
x y

 as claimed.

3. If x
u
v

y
v
u

= =
sin
cos

,
sin
cos

  then

d d d

d

x u v u u v v v

y u v v

= ( )( ) + ( )( )( )
= ( )( )

cos sec sin sec tan ,

sec tan sin(( ) + ( )( )d du u v vsec cos ,

 

from where

d d d d d d d dx y u v u v u v u v u v∧ = ∧ − ( )( ) ∧ = − ( )( )( ) ∧tan tan tan tan .2 2 2 21

d d d d d d d dx y u v u v u v u v u v∧ = ∧ − ( )( ) ∧ = − ( )( )( ) ∧tan tan tan tan .2 2 2 21

Also,

1 1 12 2
2

2

2

2
2 2− = − ⋅ = − ( )( )x y

v
v

v
u

u v
sin
cos

sin
cos

tan tan .  
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This gives

d d
d d

x y
x y

u v
1 2 2−

= .  

We now have to determine the region that the transformation,

x
u
v

y
v
u

= =
sin
cos

,
sin
cos

 forms in the uv-plane. Observe that 

u x
y
x

v y
x
y

=
−
−

=
−
−

⋅arctan , arctan
1
1

1
1

2

2

2

2
    

This means that the square in the xy -plane in Figure 3.6.3 is trans-
formed into the triangle in the uv-plane in Figure 3.6.4.

We deduce,

d d
d d d

x y
x y

u v v v

v
v

v

1
2

2 2

2 20

1

0

1

0

2

0

2

0

2

2

−
= = −( )

= −


∫∫ ∫∫ ∫
−ππ π

π

π

// /
/




 = − = ⋅

0

2 2 2 2

4 8 8

π
π π π

/

Finally,

 
3
4 8 6

2 2

S S= ⇒ = ⋅
π π

  
n

FIGURE 3.6.3 Example 
3.6.4, xy-plane.

FIGURE 3.6.4 Example 
3.6.4, uv-plane.
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Example 3.6.5

Evaluate e dxdy
x

x y
y

+








−

∫∫ 3

0

1 3

0

1 5

 

 

 

 
 

/
 using Maple.

To solve this problem using Maple™, you may use the following code.

 �

Maple automatically performs the change of variables.

Exercises 3.6 

3.6.1 Let ′ = ( )∈ ≤ − ≤ ≤{ }D u v u u v u, : , .

2 1  Consider,

Φ :
, ,

� �

�

2 2

2 2

→

( ) + −





u v

u v u v  .

Find the image of Φ   on ′D , that is, find D D= ′( )Φ .  

3.6.2 Let ′ = ( )∈ ≤ − ≤ ≤{ }D u v u u v u, : , .

2 1  Consider,

Φ :
, ,

� �

�

2 2

2 2

→

( ) + −





u v

u v u v .

Find x y e A
D

x y+( )∫ −
2 2 2 d .  

3.6.3 Find f x y A
D

,( )∫  d  where

D x y a xy b y x y x a b a b= ( )∈ ≤ ≤ ≥ ≥ − ≤ ( )∈ < <{ }, | , , , , , 

2 2 2 20 1 0  

and f x y y x,( ) = −4 4  by using the change of variables 
u xy v y x= = −,   2 2.

3.6.4 Use the following steps (due to Tom Apostol), in order to prove that

1
62

1

2

nn=

∞

∑ = ⋅
π
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1. Use the series expansion 

1
1

1 12 3

−
= + + + + <

t
t t t t  ,         ,  

in order to prove (formally) that 
d dx y

xy nn1
1

0

1

0

1

2
1−

= ⋅∫∫ ∑
=

∞

 

2. Use the change of variables u x y v x y= + = −,   to show that

d d d
 d

dx y
xy

v
u v

u
v

u vu

u

u

u

1
2

4
2

40

1

0

1

2 20

1

2 22

2

−
=

− +






 +

− +∫∫ ∫∫ − −

−

∫∫∫ 





1

2
 du.  

3. Show that the preceding integral reduces to 

2
2

4 4
2

2
4

2
420

1

2 21

2

2− −
+

−
−
−∫ ∫u

u

u
u

u

u

u
uarctan arctan .d d  

4. Finally, prove that the preceding integral is π 2

6
  by using 

the substitution θ = arcsin
u
2

. 

3.6.5 Evaluate the integral sin2 2

D

x y x y dA∫∫ −( ) +( )   using change of 

variables, where D  is the region bounded by square with vertices 

0 1 1 2 2 1, , , , ,( ) ( ) ( ), and 1 0,( ).

3.6.6 Evaluate the integral 
cos /x y

dA
x yD

−( )( )
+∫∫

2

3
  using change 

of variables, where D  is the region bounded by the graphs 
y x y x y x y x u x y= − + = − + = = − = −3 3 3 6, , , ;π , and v x y= +3 .

3.6.7 Evaluate the integral x y xy dA
D

2 2+( )∫∫ sin   using change 

of variables, where D  is the region bounded by the graphs 

y
x

y
x

y x y x u x y= = − = − = − = −
2 2

1 92 2 2 2 2 2, , , ; , and v xy= .
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3.6.8 Evaluate the integral y dA
D

 ∫∫   using change of variables, where 

D  is the triangle region with vertices 0 0 2 3, , ,( ) ( ), and −( )4 1, ; 
x u v= −2 4  and y u v= +3 .

3.6.9 Evaluate the integral x y dA
D

+( )∫∫
3

  using change of variables, 

where D  is the parallelogram region with sides x y k+ = 1  and 
x y k− =2 2  for appropriate choices of k1  and k2; x u y= −  and 

x v y= + 2 .

3.6.10 Evaluate the integral sin
− +

+








∫∫

x y
x y

dA
D

  using change of variables, 

where D  is the trapezoid region with vertices 1 1 2 2 4 0, , , , ,( ) ( ) ( ), 
and 2 0,( ); x y u= −  and y v x= − .

3.6.11 Evaluate the integral x y x y dA
D

−( ) +( )∫∫
2 2cos   using change 

of variables, where D  is the region by the square with vertices 

0 1 1 2 2 1, , , , ,( ) ( ) ( ), and 1 0,( ); x u y= +  and y v x= − .

3.6.12 Evaluate the integral    e dA
x y
x y

D

−
+











∫∫  using change of variables, 

where D  is the region defined by D x y x y x y= ( ) ≥ ≥ + ≤{ }, : , ,0 0 1 .

3.7 Change to Polar Coordinates

One of the most common changes of variable is the passage to polar 
coordinates where

x x

y y

= ⇒ = −

= ⇒ = +

ρ θ θ ρ ρ θ θ

ρ θ θ ρ ρ θ θ

cos cos sin

sin sin cos

d d d ,

d d d ,
 

hence

d d d d d dx y∧ = +( ) ∧ = ∧ρ θ ρ θ ρ θ ρ ρ θcos sin .2 2  
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Example 3.7.1

Find  xy x y A
D

2 2+∫ d , where

D x y x y y x x y= ( )∈ ≥ ≥ ≤ + ≤{ }, | , , , .

2 2 20 0 1  

See Figure 3.7.1.

 n Solution: 
We use polar coordinates. The region D  transforms into the region

∆ = [ ]× 





0 1 0
4

; ; .
π

 

Therefore the integral becomes

 ρ θ θ ρ θ θ θ θ ρ ρ
π

4
0

4
4

0

1 1
20∆

∫ ∫ ∫= ( )( ) = ⋅cos sin cos sin
/

d d d d   
n

Example 3.7.2

Evaluate x A
R

d∫  , where R  is the region bounded by the circles 

x y2 2 4+ =  and x y y2 2 2+ = . See Figure 3.7.2.

FIGURE 3.7.1 Example 3.7.1. FIGURE 3.7.2 Example 3.7.2.
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 n Solution: 
Since x y r2 2 2+ = , the radius sweeps from r r2 2= sinθ  to r2 4= , that 

is, from 2sinθ  to 2. The angle clearly sweeps from 0 to 
π
2

 . Thus the inte-
gral becomes

 x A r r
R

d d d  d∫ ∫∫ ∫= = −( ) =2
2

2

0

2
3

0

21
3

8 8
sin/ /

cos cos cos sin
θπ π

θ θ θ θ θ θ 22.  
n

Example 3.7.3

Find e Ax xy y

D

− − −∫ 2 2 d , where 

D x y x xy y= ( )∈ + + ≤{ }, :

2 2 2 1 .

See Figure 3.7.3.

 n Solution: 
Completing squares 

x xy y x
y y

2 2

2 2

2
3
2

+ + = +





 +











 
.  

Put U x
y

V
y

= + = ⋅
2

3
2

,
 

 The integral becomes

e x y e U Vx xy y

x xy y

U V

U V

− − −

+ + ≤{ }
− +( )

+ ≤{ }∫ ∫=2 2

2 2

2 2

2 21 1

2
3

d d d d .  

Passing to polar coordinates, the previous equals

 
2
3

2
3

12

0

1

0

2
1ρ ρ θ

πρ
π

e e− −∫∫ = −( )d d .   
n

Example 3.7.4

Evaluate 
1

2 2 3 2
x y

A
R +( )∫ /  d , over the region

x y x y y, : ,( )∈ + ≤ ≥{ }

2 2 2 4 1  

See Figure 3.7.4.

MVC_Musa_CH03.indd   263 11/17/2014   5:52:18 PM



264 • Multivariable and vector calculus

 n Solution: 

The radius sweeps from r =
1

sinθ
 to r = 2. The desired integral is

 

1 1
2 2 3 2 2

2

6

5 6

x y
A

r
r

R +( )
=∫ ∫∫/ csc/

/
 d  d d

                   

θπ

π
θ

          d

                        

= −





∫ sin

/

/
θ θ

π

π 1
26

5 6

   = − ⋅3
3
π

  

n

Example 3.7.5

Evaluate x y A
R

3 3+( )∫  d , where R  is the region bounded by ellipse 

x
a

y
b

2

2

2

2
1+ = , and the first quadrant, a > 0  and b > 0.

 n Solution: 

Put x ar y br= =cos , sinθ θ. Then

x ar dx a dr ar d

y br dy b dr br d

= ⇒ = −
= ⇒ = +

cos cos sin ,
sin sin cos ,

θ θ θ θ
θ θ θ θ

 

hence

d d d d d dx y abr abr r abr r∧ = +( ) ∧ = ∧cos sin .2 2θ θ θ θ  

FIGURE 3.7.4 Example 3.7.4.FIGURE 3.7.3 Example 3.7.3.
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Observe that on the ellipse

x
a

y
b

a r
a

b r
b

r
2

2

2

2

2 2 2

2

2 2 2

2
1 1 1+ = ⇒ + = ⇒ =

cos sin
.

θ θ
 

Thus the required integral is

 
x y A abr r

R

3 3 4
0

1

0

2
3 3+( ) = +( )∫ ∫∫d d d

                 

π
θ θ θ

/
cos sin

      d d

              

= ( ) +( )( )∫ ∫ab r r a b4
0

1
3 3 3 3

0

2
cos sin

/
θ θ θ

π

         

                      

= 







+







=

ab
a b1

5
2 2

3
2

3 3

aab a b3 3

15
+( )

⋅

  

n

Exercises 3.7 

3.7.1 Evaluate  d
 

xy A
R∫   where R  the region is 

R x y x y x y= ( )∈ + ≤ ≥ ≥{ }, : , ,

2 2 2 16 1 1 ,

as in the Figure 3.7.1. Set up the integral in the Cartesian and polar 
coordinates.

3.7.2 Find x y A
D

2 2−( )∫  d , where

D x y x y= ( )∈ −( ) + ≤{ }, |

2 2 21 1

3.7.3 Find xy A
D

 d∫  , where

D x y x y xy= ( )∈ +( ) ≤{ }, |

2 2 2 2
2

3.7.4 Find f A
D

 d∫  , where

D x y b x a y a b a b= ( )∈ + = ( )∈ +∞] [{ }, : , , ;

2 2 2 2 2 2 2 0 fixed   

and f x x y, y .( ) = +3 3  

FIGURE  3.7.5 Exercise 3.7.1.
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3.7.5 Find x y A
D

2 2+∫  d , where

D x y x y x y x y y= ( )∈ ≥ ≥ + ≤ + − ≥{ }, | , , , .

2 2 2 2 20 0 1 2 0

3.7.6 Find f A
D

 d∫  , where

D x y y x y x= ( )∈ ≥ + − ≤{ }, | ,

2 2 20 2 0 and f x y x y, .( ) = 2  

3.7.7 Find f A
D

 d∫  , where

D x y x x y x= ( )∈ ≥ + − ≤{ }, | ,

2 2 21 2 0  and  

f x y
x y

,( ) =
+( )

⋅
1

2 2 2  

3.7.8 Let D x y x y y x y x= ( )∈ + − ≤ + − ≤{ }, : , .

2 2 2 2 20 0  Find the inte-

gral x y A
D

+( )∫
2
d .  

3.7.9 Let D x y y x y= ( )∈ ≤ + ≤{ }, | .

2 2 2 1  Compute 
dA

x yD 1 2 2 2
+ +( )

⋅∫

3.7.10 Evaluate x y x y A
x y x y x y

3 3 4 4

0 0 1

1
2 4 4

− −
( )∈ ≥ ≥ + ≤{ }

∫  d
, , , ,

, using 

x y2 2= =ρ θ ρ θcos , sin .  

3.7.11 William Thompson (Lord Kelvin) is credited to have said: “A math-
ematician is someone to whom

e xx−
+∞

∫ =2

0 2
d

π
 

is as obvious as twice two is four to you. Liouville was a mathemati-
cian.” Prove that

e xx−
+∞

∫ =2

0 2
d

π

by following these steps.
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1. Let a > 0  be a real number and put D x y x y aa = ( )∈ + ≤{ }, | .

2 2 2 2 
D x y x y aa = ( )∈ + ≤{ }, | .

2 2 2 2  Find

I e x ya
x y

Da

= − +( )∫
2 2

 d d .  

2. Let a > 0  be a real number and put ∆a x y x a y a= ( )∈ ≤ ≤{ }, | , .

2   

∆a x y x a y a= ( )∈ ≤ ≤{ }, | , .

2   

Let J e x ya
x y

a

= − +( )∫
2 2

  d d
∆

.  Prove that

I J Ia a a
≤ ≤ ⋅

2
 

3. Deduce that e xx−
+∞

∫ = ⋅2

0 2
 d

π  

3.7.12 Let D x y x y= ( )∈ ≤ + ≤{ }, :

2 2 24 16  and f x y
x xy y

,( ) =
+ +

⋅
1

2 2
 

Find f x y A
D

, .( )∫  d  

3.7.13 Prove that every closed convex region in the plane of area ≥ π  has 
two points which are two units apart.

3.7.14 In the xy-plane, if R  is the set of points inside and on a convex 
polygon, let D x y( ),   be the distance from ( ),x y  to the nearest 

point R. Show that

e x y L AD x y− ( )
−∞

+∞

−∞

+∞

∫∫ = + +,  d d 2π ,

where L  is the perimeter of R  and A  is the area of R.

3.8 Three-Manifolds

Definition 3.8.1 A 3-dimensional oriented manifold of 3  is simply an 
open set (body) V∈3, where the +  orientation is in the direction of the 
outward pointing normal to the body, and the − orientation is n the direction 
of the inward pointing normal to the body. A general oriented 3-manifold is 
a union of pen sets.
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The region −M  has opposite orientation to M  and 

ω ω= −
−∫ ∫M M

.  

We will often write

 df V
M∫  

Where dV  denotes the volume element.

In this section, unless otherwise noticed, we will choose the positive 
orientation for the regions considered. This corresponds to using the 
volume form d d dx y z∧ ∧ .

Let V ⊆ 3. Given a function f V: →, integral 

f V
V

d∫  

is the sum of all the values of f  restricted to V. In particular,

dV
V
∫  

is the oriented volume of V.

Example 3.8.1

Find 

x ye Vxyz2

0 1 3;

.
[ ]
∫  d  

 n Solution: 
The integral is 

 
x ye z y x x e y xxyz xy2

0

1

0

1

0

1

0

1

0

1
1 d d  d d  d

        

∫∫∫ ∫∫( )( ) = −( )( )
                                    d

        

= − −( )∫ e x xx 1
0

1

                                    = − ⋅e
5
2

 

n

! 
TIP

! 
TIP
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Example 3.8.2

Find z V
R

 d∫  if 

R x y x y z x y z= ( )∈ ≥ ≥ ≥ + + ≤{ }, | , , , .

3 0 0 0 1  

 n Solution: 
The integral is 

 

z x y z z y x z
R

z xz
d d d  d  d d

      

∫ ∫ ∫∫=




















− −( )−( )
0

1

0

1

0

1
22

           d d

                

= − −( )







∫ ∫

−( )
z z x x z

z

0

1 2

0

1
1

2

== −( )
= ⋅

∫
1
6

1

1
840

4

0

1
z z zd

                

 

n

Example 3.8.3

Prove that x V
a bc

V

d∫ =
2

24
,  where V  is the tetrahedron 

V x y x y z
x
a

y
b

z
c

= ( )∈ ≥ ≥ ≥ + + ≤







, : , , , .

3 0 0 0 1  

 n Solution: 
We have

 

x x y z x x y z
V

a ay b az cb bz cc
d d d d d d

               

∫ ∫∫∫=

=

− −−

000

1

/ //

22

1
6

00

2

2

a
ay
b

az
c

y z

a z c

b bz cc
− −








=
− +( )

−

∫∫
/

d d

              
33

30

2

24

b

c
x

a bc

c

∫

= ⋅

 d

              

  

n
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Example 3.8.4

Evaluate the integral, x V
S

d∫   where S  is the is the (unoriented) 

tetrahedron with vertices 0 0 0 3 2 0 0 3 0, , , , , , , ,( ) ( ) ( ), and 0 0 2, ,( ). See  
Figure 3.8.1.

 n Solution: 

A short computation shows that the plane passing through 3 2 0 0 3 0, , , , ,( ) ( ),  

and 0 0 2, ,( )  has equation 2 6 9 18x y z+ + = .  Hence, 0
18 2 6

9
≤ ≤

− −
z

x y
. 

We must now figure out the xy  limits of integration. In Figure 3.8.2, we 

draw the projection of the tetrahedron on the xy-plane. The line passing 

through AB  has equation y
x

= − +
3

3 . The line passing through AC  has 

equation y x=
2
3

. 

We find, finally,

x V x z y x

x x
S

x y

x

x
d d d d

          

∫ ∫∫∫=

=
−

− −( )−

0

18 2 6 9

2 3

3 3

0

3

218 2

/

/

/

−−

=
− −

−

∫∫

∫

6
9

18 2 3
9

2 3

3 3

0

3

2 2

0

3

2 3

3

yx
y x

xy x y y x

x

x

x

 d d

          

/

/

/

−−

= − +







= ⋅

∫

x

x

x
x x x

/3

3
2

0

3

3
2 3

9
4

d

          d

         

 

To solve this problem using Maple™, you may use the following code.

 �

 �
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To solve this problem using MATLAB, you may use the following code.

>> syms x y z

>> firstans = int(int(int(x,z,0,(18-2*x-6*y)/9),y,2*x/3,3-x/3),x,0,3)

firstans =

9/4  n

Example 3.8.5

Evaluate xyz V
R

d∫  , where R  is the solid formed by the intersection of 

the parabolic cylinder z x= −4 2, the planes z y x= =0, , y = 0. Use the fol-
lowing orders of integration:

1. d d dz x y  

2. d d dx y z

 n Solution: 
We must find the projections of the solid on the coordinate planes.

1. With the order d d dz x y, the limits of integration of z can only 
depend, if at all, on x  and y. Given an arbitrary point in the 

FIGURE 3.8.1 Example 3.8.4. FIGURE 3.8.2 Example 3.8.4, xy-projection.
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solid, its lowest z  coordinate is 0 and its highest one is on the 
cylinder, so the limits for z are from z = 0  to z x= −4 2. The 
projection of the solid on the xy-plane is the area bounded by 
the lines y x x= =, 2, and the x  and y  axes.

xyz z x y xy x x y
xy y

d d d d d

               

= −( )
−

∫∫∫ ∫∫0

4

00

2
2

00

2 22 1
2

4

                   d d

             

= − +( )∫∫
1
2

16 8 3 5
00

2
y x x x x y

y

                     d

              

= − +





∫ 4

12
3 5

7

0

2
y y

y
y

                  = 8.

 

2. With the order d d dx y z, the limits of integration of x  can 
only depend, if at all, on y  and z. Given an arbitrary point 
in the solid, x  sweeps from the plane to x = 2, so the limits 
for x  are from x y=  to x z= −4 . The projection of the 
solid on the yz-plane is the area bounded by z y= −4 2, and 
the z  and y  axes.

 

xyz x y z y y z y z
y

z z
d d d  d d

              

2

0

4

0

4
3

0

4

0

41
2

4∫∫∫ ∫∫
− −

= −( )

                    d

                    

= −





∫ 2

8

3

0

4
z

z
z

             = 8.
  

n

Exercises 3.8

3.8.1 Compute  d
 

z V
E∫  , where E  is the region in the first octant bounded 

by the planes x z+ = 1  and y z+ = 1.

3.8.2 Evaluate the integrals  1d
 

V
R∫   and  d

 
x V

R∫  , where R  is the tetra-

hedron with vertices at  (0, 0, 0), (1, 1, 1), (1, 0, 0), and (0, 0, 1).

MVC_Musa_CH03.indd   272 11/17/2014   5:53:07 PM



integration • 273

3.8.3 Compute  d
 

x V
E∫  , where E  is the region in the first octant bounded 

by the plane y z= 3  and the cylinder x y2 2 9+ = .

3.8.4 Find 
dV

x z y zD 1 12 2 2 2+( ) +( )∫  where

D x y z x y z= ( )∈ ≤ ≤ ≤ ≤ ≥{ }, , : , , .

3 0 1 0 1 0  

3.8.5 Write an iterated integral for f x y z dV
S

, ,( )∫∫∫   for the solid region 

S x y z x y z
x y

= ( ) ≤ ≤ ≤ ≤ ≤ ≤
− −
















, , : , ,0 1 0 3 0
12 3 2

6
.

3.8.6 Evaluate 3 3 2xy z dV
S

( )∫∫∫   for the solid region S x y z x= − ≤ ≤{( , , ) : ,1 3

1 4 0 2≤ ≤ ≤ ≤y z, } .

3.8.7 Find the volume of the solid bounded by the cylinders y x= 2  and 
y z= 2, and the plane y = 1.

3.8.8 Find the volume of the solid bounded by the graphs 
z z y x= = =2 4 22, , , and x = 0.

3.8.9 Evaluate e dVx y z

S

+ +( )∫∫∫   for the solid region S  in 3  bounded by 

the planes 

z z x x y= = − = =0 0 1, , , , and y x= − .

3.8.10 Find the volume of the ellipsoidal solid S x y z x= +{( , , ) : 4 2

4 16 02 2y z+ − = } .

3.8.11 Find the volume of the centroid of the tetrahedral defined by 
S x y z x y z y z= ( ) + + ≤ ≥ ≥{ }, , : , ,1 0 0 .

3.8.12 Find the volume of the region S  bounded by the parabolic cylinder 
z x= −4 2  and the planes x y y= − =0 0 6, , , and z = 0.  

3.8.13 Find the volume V  for the solid region S  in 3  bounded by the 
graphs 

z x y z y x y= + = = =2 2 0 0, , , , and x = 2.
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3.8.14 Find the volume V  for the solid region S  in 3  bounded by the 
graphs z x y y x= + = − +, 2 2 4, the coordinate plane, and first octant.

3.9 Change of Variables in Triple Integrals

We demonstrate in this section change of variables in three integrals 
through examples.

Example 3.9.1

Find x y z x y z x y z V
R

+ +( ) + −( ) − −( )∫ d , where R  is the tetrahedron 

bounded by the planes x y z x y z x y z+ + = + − = − − =0 0 0, ,  and 2 1x z− = .

 n Solution: 
We make the charge of variables

u x y z u x y z

v x y z v x y z

w x y z w x y

= + + ⇒ = + +
= + − ⇒ = + −
= − − ⇒ = − −

d d d d
d d d d
d d d d

,
,
zz.

 

This gives

d d d d d du v w x y z∧ ∧ = − ∧ ∧4 .  

These forms have opposite orientations, so we choose, say,

d d d d d du w v x y z∧ ∧ = ∧ ∧4

which have the same orientation. Also,

2 1 2 2x z u v w− = ⇒ + + = .  

The tetrahedron in the xyz-coordinate frame is mapped into a tetrahe-
dron bounded by u v u v w= = + + =0 0 2 1, ,  in the uvw-coordinate frame. 
The integral becomes

1
4

1
1800

2 2

0

1 2

0

2
uvw u w v

v wv
d d d

− −−

∫∫∫ = ⋅
/
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Consider a transformation to cylindrical coordinates

x y z, , cos , sin ,z .( ) = ( )ρ θ ρ θ  

From what we know about polar coordinates

d d d dx y∧ = ∧ρ ρ θ .  

Since the wedge product of forms is associative,

 d d d d d dx y z z∧ ∧ = ∧ ∧ρ ρ θ .   n

Example 3.9.2

Find z x y z
R

2∫ d d d  , if

R x y z x y z= ( )∈ + ≤ ≤ ≤{ }, , | , .

3 2 2 1 0 1  

 n Solution: 
The region of integration is mapped into ∆ = [ ]×[ ]×[ ]0 2 0 1 0 1; ; ;π  

through a cylindrical coordinate change. The integral is therefore

 f x y z x y z z z
R

, ,( ) = ( )( )( ) = ⋅∫ ∫ ∫ ∫ d d d d d dθ ρ ρ
ππ

0

2

0

1
2

0

1

3
 

n

Example 3.9.3

Evaluate x y x y z
D

2 2+( )∫  d d d  over the first octant region bounded by the 

cylinders x y2 2 1+ =  and x y2 2 4+ =  and the planes z z x x y= = = =0 1 0, , , .

 n Solution: 
The integral is 

 ρ ρ θ
π

π

π
3

1

2

4

2

0

1 15
16∫∫∫ = ⋅

/

/
d d dz   

n

Example 3.9.4

Three long cylinders of radius R  intersect at right angles. Find the 
volume of their intersection.

MVC_Musa_CH03.indd   275 11/17/2014   5:53:29 PM



276 • Multivariable and vector calculus

 n Solution: 
Let V  be the desired volume. By symmetry, V V= ′24 , where

′ =
′∫V x y z

D
d d d ,  

′ = ( )∈ ≤ ≤ ≤ + ≤ + ≤ + ≤{ }D x y z y x z x y R y z R z x R, , : , , , , .

3 2 2 2 2 2 2 2 2 20 0

In this case, it is easier to integrate with respect to z  first. Using cylin-
drical coordinates

′ = ( )∈ 





×[ ]× +∞[ ] ≤ ≤ −







∆ θ ρ
π

ρ θ, , ; ; ; , .z R z R co0
4

0 0 0 2 2 2

Now,

′ = 

















= −

−

∫∫∫V z

R

RR
d  d  d

   

000

4

2 2 2

2 2 2ρ θπ
ρ ρ θ

ρ ρ

cos/

cos θθ ρ θ

θ
ρ θ θ

π

π

00

4

20

4
2 2 2 3 2

0

1
3

R

R
R

∫∫

∫

( )
= − −( )





 d  d

   d

/

/ /

cos
cos

    d  now let 

  

=
−

=

= [ ]

∫
R

u

R

3 3

20

4

3

0

3
1

3

sin
cos

, cos

tan

/

/

θ
θ

θ θ

θ

π

π 44
2

21

2
2

3
1

1

2
2

3

1

3
1

2 1
2

+
−









= − +[ ]









=
−

∫

−

u
u

u

R
u u

R

 d

  

  .

 

Finally,

 V V R= ′ = −( )16 8 2 2 3.   n

Consider now a change to spherical coordinates

x y z= = =ρ θ φ ρ θ φ ρ φcos sin , sin sin , cos .      

MVC_Musa_CH03.indd   276 11/17/2014   5:53:33 PM



integration • 277

We have

d
d

x

y

= − +
= +

cos sin d sin sin d cos cos d ,
sin sin d cos s

θ φ ρ ρ θ φ θ ρ θ φ φ
θ φ ρ ρ θ iin d sin cos d ,

cos d sin d .
φ θ ρ θ φ φ

φ ρ ρ φ φ
+

= −dz

 

This gives

d d d d d dx y z∧ ∧ = − ∧ ∧ρ φ ρ θ φ2 sin .  

From this derivation, the form d d dρ θ φ∧ ∧  is negatively oriented, 
and so we choose

d d d d d dx y z∧ ∧ = ∧ ∧ρ φ ρ φ θ2 sin

instead.

Example 3.9.5

Let a b c, , ;( )∈ +∞] [0 3  be fixed. Find xyz V
R

d∫   if

R x y z
x
a

y
b

z
c

x y z= ( )∈ + + ≤ ≥ ≥ ≥







, , : , , , .

3
2

2

2

2

2

2
1 0 0 0  

 n Solution: 
We use spherical coordinates, where

x y z a b c, , cos sin , sin sin , cos .( ) = ( )ρ θ φ ρ θ φ ρ φ  

We have

d d d d d dx y z abc∧ ∧ = ∧ ∧ρ φ ρ φ ρ2 sin .

The integration region is mapped into

∆ = [ ]× 





× 





0 1 0
2

0
2

; ; ; .
π π

 

The integral becomes

 abc
abc( ) ( )( )( ) =

( )
∫ ∫ ∫

2

0

2
5

0

1
3

0

2
2

4
cos sin cos sin

/ /
θ θ θ ρ ρ φ φ φ

π π
d d d

88
⋅  

n
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Example 3.9.6

Let  V x y z x y z z= ( )∈ + + ≤ ≤ ≤{ }, , : , .

3 2 2 2 9 1 2 Then

d d dx y z
V
∫ ∫∫∫=

−

−
ρ

φ

φ

π

ππ
2

1

2

2 2 3

2 1 3

0

2

/cos

/cos

/ arcsin /

/ arcsin /
sinφφ ρ φ θ π

 d d d = ⋅
63

4
  

Exercises 3.9

3.9.1 Consider the region R  below the cone z x y= +2 2  and above the 

paraboloid z x y= +2 2  for 0 1≤ ≤z  . Set up integrals for the volume 
of this region in Cartesian, cylindrical, and spherical coordinates. 
Also, find this volume.

3.9.2 Consider the integral  d
 

x V
R∫  , where R  is the region above the 

paraboloid z x y= +2 2  and under the sphere x y z2 2 2 4+ + = . Set 

up integrals for the volume of this region in Cartesian, cylindrical, 
and spherical coordinates. Also, find this volume.

3.9.3 Consider the region R bounded by the sphere x y z2 2 2 4+ + =  and 
the plane z = 1. Set up integrals for the volume of this region in 
Cartesian, cylindrical, and spherical coordinates. Also, find this 
volume.

3.9.4 Compute  d
 

y V
E∫   where E  is the region between the cylinders 

x y2 2 1+ =  and x y2 2 4+ = , below the plane x z− = −2  and above 

the xy-plane.

3.9.5 Compute  d
 

y z V
E

2 2∫   where E  is bounded by the paraboloid 

x y z= − −1 2 2  and the plane x = 0.

3.9.6 Compute   d
 

z x y z V
E

2 2 2+ +∫  where E  is the upper solid hemi-

sphere bounded by the xy -plane and the sphere of radius 1 about 
the origin.

3.9.7 Compute   the   4-dimentional   integral e x y u vx y u v

x y u v

2 2 2 2

2 2 2 2 1

+ + +

+ + + ≤
∫∫∫ d d d d . 

3.9.8 Find x y z x y z x y z
R

1 9 8 4
1∫ − − −( ) d d d , where 

R x y z x y z x y z= ( )∈ ≥ ≥ ≥ + + ≤{ }, , : , , , .

3 0 0 0 1  
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3.9.9 Find the volume for the unit ball region S  defined by

S x y z x y z= ( ) + + ≤{ }, , : 2 2 2 1 .

3.9.10 Evaluate x z dV
S

2 2
1
2+( )∫∫∫   for the solid region S , which is bounded 

by the paraboloid y z x= +2 2  and the plane y = 4 .

3.9.11 Find the volume V  for the solid region S  in 3  bounded by the 
graphs z x y= − − +2 2 10 , and z = 1 .

3.9.12 Find the volume V  for the solid region S  in 3  bounded by the 
graphs z x y2 2= − +  and z x y2 2 2 4= − + − .

3.9.13 Find the volume V  for the solid region S  in 3  bounded by the 

graphs z z x y y x y x= = − − + = =0 4 32 2 2, , , , and first octant.

3.9.14 Find the volume V  for the solid region S  in 3  bounded by the 
graphs inside z x y2 2 2 1= − − +  and outside z x y2 2 2 0− − = .

3.10 Surface Integrals

Definition 3.10.1 A 2-dimensional oriented manifold of 3  is simply a 
smooth surface D∈3, where the + orientation is in the direction of the 
outward normal pointing away from the origin and the − orientation is in 
the direction of the inward normal pointing toward the origin. A general 
oriented 2-manifold in 3  is a union of surfaces.

The surface −Σ  has opposite orientation on Σ  and

ω ω= −
−∫ ∫Σ Σ

.  

In this section, unless otherwise noticed, we will choose the positive 
orientation for the regions considered. This corresponds to using the 
ordered basis

d d d d d dy z z x x y∧ ∧ ∧{ }, , . 

Definition 3.10.2 Let f : 

3 → . The integral of f  over the smooth 

surface Σ  (oriented in the positive sense) is given by expression

f d x2

Σ
∫ .  

! 
TIP

! 
TIP

MVC_Musa_CH03.indd   279 11/17/2014   5:53:59 PM



280 • Multivariable and vector calculus

Here,

d x d d d d d d2 2 2 2
= ∧( ) + ∧( ) + ∧( )x y z x y z  

is the surface area element.

Example 3.10.1

Evaluate z d x2

Σ
∫  where Σ  is the outer surface of the section of the 

paraboloid, z x y z= + ≤ ≤2 2 0 1, . 

 n Solution: 

We parameterize the paraboloid as follows. Let x u y v z u v= = = +, , 2 2.  

Observe that the domain D  of Σ  is the unit disk u v2 2 1+ ≤ . We see that

d d d d
d d d d
d d d d

x y u v

y z u u v

z x v u v

∧ = ∧
∧ = − ∧
∧ = − ∧

,
,
,

2
2

 

and so

d x d d d d d d

       d d

2 2 2 2

2 21 4 4

= ∧( ) + ∧( ) + ∧( )
= + + ∧

x y z x y z

u v u v.

Now,

z u v u v u v
D

d x d d2 2 2 2 21 4 4
Σ
∫ ∫= +( ) + + .  

To evaluate this last integral, we use polar coordinates and so

 
u v u v u v

D

2 2 2 2 3
0

1

0

2
21 4 4 1 4+( ) + + = +∫ ∫∫d d d d

                 

ρ ρ ρ θ
π

                               = +







π
12

5 5
1
5

.

 

n
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Example 3.10.2

Find the area of that part of the cylinder x y y2 2 2+ =  lying inside the 
sphere x y z2 2 2 4+ + = .

 n Solution: 

We have x y y x y2 2 2 2
2 1 1+ = ⇔ + −( ) = .  We parameterize the cylin-

der by putting x u y u= − =cos , sin1 , and z v= . Hence

d d  d d  d dx u u y u u z v= − = =sin , cos , ,  

hence

d d  d d d d d d d dx y y z u u v z x u u v∧ = ∧ = ∧ ∧ = ∧0, cos , sin ,  

and so

d x d d d d d d

       d d
    

2 2 2 2

2 2

= ∧( ) + ∧( ) + ∧( )
= + ∧

x y z x y z

u u u vcos sin
   d d= ∧u v.

 

The cylinder and the sphere intersect when x y y2 2 2+ =  and 

x y z2 2 2 4+ + = ,  that  is,  when z y2 4 2= − , i.e. v u u2 4 2 1 2 2= − +( ) = −sin sin  . 

Also, 0 ≤ ≤u π. The integral is thus 

 
d x d d  d

          

2
2 2

2 2

0 0
2 2 2

2 2 1

Σ
∫ ∫∫ ∫= = −

=

− −

−
v u u u

u

u

sin

sin
sin

π π

−−

= −( )
∫ sin

.

u u d

          

0

2 2 4 2 4

π
 

n

Example 3.10.3

Evaluate x y z z zx z x xy x yd d d d d d+ −( ) −∫ 2

Σ

,  where Σ  is the top side of 

the triangle with vertices at 2 0 0 0 2 0 0 0 4, , , , , , , ,( ) ( ) ( ).
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 n Solution: 
Observe that the plane passing through the three given points has 

equation 2 2 4x y z+ + = .  We project this plane onto the coordinate axes 
obtaining 

x y z y z y z

z zx z x z zx

z
d d  d d

d d

Σ

Σ

∫ ∫∫

∫

= − −( ) =

−( ) = −( )

−
2 2

8
30

2 2

0

4

2 2
0

/ ,
/

44 2

0

2

0

2

0

2

8

2
3

−

−

∫∫

∫ ∫∫

=

− = − = −

x

y

z x

xy x y xy x y

 d d

d d d d

,

,
Σ

 

and hence,

 x y z z zx z x xy x yd d d d d d
Σ
∫ + −( ) − =2 10.   

n

Exercises 3.10

3.10.1 Evaluate y d x2

Σ
∫  where Σ is the surface z x y x y= + ≤ ≤ ≤ ≤2 0 1 0 2, , .  

3.10.2 Consider the cone z x y= +2 2 . Find the surface area of the part of 

the cone which lies between the planes z = 1  and z = 2.

3.10.3 Evaluate x2 2d x
Σ
∫  where Σ  is the surface of the unit sphere 

x y z2 2 2 1+ + = .  

3.10.4 Evaluate z
S

d x
 

2∫   over the conical surface z x y= +2 2  between 

z = 0  and z = 1 .

3.10.5 You put a perfectly spherical egg through an egg slicer, resulting 
in n  slices of identical height, but you forgot to peel it first! Show 
that the amount of egg shell in any of the slices is the same. Your 
argument must use surface integrals.

3.10.6 Evaluate xy y z x z x x z x yd d d d d d
Σ
∫ − + +( )2 ,  where Σ  is the top of 

the triangular region of the plane 2 2 6x y z+ + = , bounded by the 
first octant.
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3.10.7 Find the surface area of the part of conical z x y2 2 2= +  that is 

directly over the triangle in the xy-plane with vertices 0 0 4 0, , ,( ) ( ), 
and 0 4,( ).

3.10.8 Find the surface area of the part of paraboloid z x y= +2 2  that lies 
directly under the plane z = 9.

3.10.9 Find the surface integral x y z dS
S

+ +( )∫∫  , where S  is the portion of 

the sphere x y z2 2 2 1+ + = , that lies in the first octant using spheri-
cal polar coordinates.

3.10.10 Find the surface area of the part of the plane 2 3 4 12 0x y z+ + − =  
that lies directly above the region in the first octant bounded by the 
graph sin2θ = r.

3.10.11 Find the surface area of the part of the graph of z x y− + =2 2 0  that 
is lies directly in the first octant within the cylinder x y2 2 4 0+ − = .

3.10.12 Find the surface area of the part of the graph of 4 02 2 2z x y− − =  

that is lies directly within the cylinder x y−( ) + − =1 1 02 2 .

3.11 Green’s, Stokes’, and Gauss’ Theorems

We now in position to state the general Stoke’s Theorem in this section.

Theorem 3.11.1 (General Stoke’s Theorem): Let M  be a smooth oriented 

manifold, having boundary ∂M. If ω  is a differential form, then

ω ω
∂∫ ∫=
M M

d .

In 2, if ω is a 1-form, this takes the name of Green’s Theorem.

Example 3.11.1

Evaluate x y x x y
C

−( ) +∫ 3 3


 d d  where C  is the circle x y2 2 1+ = .

 n Solution: 
We will first use Green’s Theorem and then evaluate the integral 

directly. We have
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d d d d d

    d d d d

    

ω = −( ) ∧ + ( ) ∧

= −( ) ∧ + ( ) ∧

=

x y x x y

x y y x x dx y

y

3 3

2 23 3

3 22 23+( ) ∧x x yd d .

 

The region M  is the area enclosed by the circle x y2 2 1+ = . Thus by 
Green’s Theorem, and using polar coordinates,

x y x x y y x x y
C M

−( ) + = +( )∫ ∫3 3 2 23 3


 d d  d d

                                 d d

                                

=

=

∫∫ 3

3

2
0

1

0

2
ρ ρ θ

π

ππ
2

⋅

 

Alternative Method:

We can evaluate this integral directly, again resorting to polar 
coordinates.

x y x x y
C

−( ) + = −( ) −( ) + ( )( )∫ ∫3 3 3
0

2
3



 d d d dcos sin sin cos cosθ θ θ θ θ θ
π

θθ

θ θ θ θ                                = + −( )sin cos sin cos4 4
0

22π
θ∫  d

                             

.

To evaluate the last integral, observe that 1 2 2 2= +( ) =sin cosθ θ
sin sin cos cos4 2 2 42θ θ θ θ+ + , hence the integral equals

 sin cos sin cos sin cos sin cos4 4
0

2
2 2

0

2
1 2θ θ θ θ θ θ θ θ θ

π π
+ −( ) = − −( )∫ ∫ d   d

                                                      

θ

   

                             

= ⋅
3
2
π

 
 

n

In general, let

ω = ( ) + ( )f x y x g x y y, ,d d  
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be a 1-form in 2. Then

d d d d d

    d d

ω = ( ) ∧ + ( ) ∧

=
∂
∂

( ) +
∂
∂

( )









f x y x g x y y

x
f x y x

y
f x y y

, ,

, , ∧∧ +
∂
∂

( ) +
∂
∂

( )







 ∧

=
∂
∂

( ) −
∂
∂

d d d d

    

x
x

g x y x
y

g x y y y

x
g x y

y
f x

, ,

, ,yy x y( )







 ∧d d

 

which gives the classical Green’s Theorem

f x y x g x y y
x

g x y
y

f x y x y
M M

, , , , .( ) + ( ) =
∂
∂

( ) −
∂
∂

( )









∂
∫ ∫ d d  d d  

In 3 , if ω  is a 2-form, the above theorem takes the name of Gauss’s 
Theorem or the divergence Theorem.

Example 3.11.2

Evaluate x y y z z z x y x y
S

−( ) + −∫  d d d d d d  where S  is the surface of the 

sphere x y z2 2 2 9+ + =  and the positive direction is the outward normal.

 n Solution: 
The region M  is the interior of sphere x y z2 2 2 9+ + = . Now,

d d d d d d d d d d d

    d d d

ω = −( ) ∧ ∧ + ∧ ∧ − ∧ ∧

= ∧ ∧

x y y z z z x y x y

x y z.
 

The integral becomes

d d dx y z
M
∫ = ( ) =

4
3

27 36
π

π .  

Alternative Method:

We could evaluate this integral directly, we have 

x y y z x y z−( ) =∫ ∫Σ Σ
 d d d d ,  
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since x y z y, ,( ) −  is an odd function of y  and the domain of integra-

tion is symmetric with respect to y. Now 

x y zd d d d= − =∫ ∫∫−Σ
ρ ρ ρ θ π

π

0

2

3

3
29 36 .  

Also,

z z xd d
Σ∫ = 0,  

since x y z z, ,( )  is an odd function of z  and the domain of integra-
tion is symmetric with respect to z. Similarly,

- d dy x y =∫Σ
0,  

Since x y z y, ,( ) −  is an odd function of y  and the domain of integra-
tion is symmetric with respect to y. Now, n

In general, let

ω = ( ) ∧ + ( ) ∧ + ( ) ∧f x y z y z g x y z z x h x y z x y, , , , , ,d d d d d d  

be a 2-form in 3. Then

d d d d d d d d d d

    

ω = ( ) ∧ + ( ) ∧ + ( ) ∧

=
∂
∂

f x y z y z g x y z z x h x y z x y

x
f x

, , , , , ,

,yy z x
y

f x y z y
z

f x y z z y z

x
g x y

, , , , ,

, ,

( ) +
∂
∂

( ) +
∂
∂

( )







 ∧ ∧

∂
∂

d d d d d

 + zz x
y

g x y z y
z

g x y z z z x

x
h x y z

( ) +
∂
∂

( ) +
∂
∂

( )







 ∧ ∧

∂
∂

d d d d d

  +

, , , ,

, ,(( ) +
∂
∂

( ) +
∂
∂

( )







 ∧ ∧

=
∂
∂

d d d d d

   

x
y

h x y z y
z

h x y z z x y

x
f x y z

, , , ,

, ,(( ) +
∂
∂

( ) +
∂
∂

( )







 ∧ ∧

y
g x y z

z
h x y z x y z, , , , ,d d d

 

which gives the classical Gauss’s Theorem
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f x y z y z g x y z z x h x y z x y

x
f x y z

y

M

, , , , , ,

, ,

( ) + ( ) + ( )

=
∂
∂

( ) +
∂
∂

∂
∫  d d d d d d

gg x y z
z

h x y z x y z
M

, , , , .( ) +
∂
∂

( )







∫  d d d

 

Using classical notation, if





a  dS
d d
d d
d d

=
( )
( )
( )

















=




f x y z

g x y z

h x y z

y z

z x

x y

, ,
, ,
, ,

, 










,  

then

∇( ) =∫ ∫
∂

i� �i
�

a  d a d
M M

V S.  

The classical Strokes’ Theorem occurs when ω  is a 1-form in 3.

Example 3.11.3

Evaluate y x x z y z x z
C

d  d d+ −( ) + −( )∫ 2


 where C  is the intersection 

of the sphere x y z2 2 2 4+ + =  and the plane z = 1.

 n Solution: 
We have 

d d d d d d d d d

    d d d d d d

ω = ( ) ∧ + −( ) ∧ + −( ) ∧

= − ∧ + ∧ + ∧ +

y x x z y z x z

x y x y y z

2

2 dd d
    d d d d d d

z x

x y y z z x

∧
= ∧ + ∧ + ∧ .

 

Since on C, z = 1 , the surface Σ  on which we are integrating is the 
inside of the circle x y2 2 1 4+ + = , i.e., x y2 2 3+ = . Also, z = 1  implies 
dz = 0  and so

d d dω
Σ Σ
∫ ∫= x y.  
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Since this is just the area of the circular region x y2 2 3+ ≤ , the integral 
evaluates to 

 d dx y
Σ
∫ = 3π .  

n

In general, let

ω = ( ) + ( ) + ( )f x y z x g x y z y h x y z z, , , , , ,d d d  

Be a 1-form in 3. Then

d d d d d d d

    d

ω = ( ) ∧ + ( ) ∧ + ( ) ∧

=
∂
∂

( )

f x y z x g x y z y h x y z z

x
f x y z

, , , , , ,

, , xx
y

f x y z y
z

f x y z z x

x
g x y z x

+
∂
∂

( ) +
∂
∂

( )







 ∧

∂
∂

( ) +
∂
∂

, , , ,

, ,

d d d

  + d
yy

g x y z y
z

g x y z z y

x
h x y z x

y
h x

, , , ,

, ,

( ) +
∂
∂

( )







 ∧

∂
∂

( ) +
∂
∂

d d d

   + d ,, , , ,

, , , ,

y z y
z

h x y z z z

y
h x y z

z
g x y z

( ) +
∂
∂

( )







 ∧

=
∂
∂

( ) −
∂
∂

(

d d d

   ))







 ∧

+
∂
∂

( ) −
∂
∂

( )





 ∧

+
∂
∂

d d

d d

y z

z
f x y z

x
h x y z z x

x
g x y z

, , , ,

, ,(( ) −
∂
∂

( )







 ∧

y
f x y z x y, , d d

 

which gives the classical Strokes’ Theorem.

f x y z x g x y z y h x y z z

y
h x y z

z
g x y z

M

, , , , , ,

, , , ,

( ) + ( ) + ( )

=
∂
∂

( ) −
∂
∂

∂
∫  d d d

(( )









+
∂
∂

( ) −
∂
∂

( )







+

∫ d d

    d d

    

y z

z
g x y z

x
f x y z x y

M

, , , ,

∂∂
∂

( ) −
∂
∂

( )









x
h x y z

y
f x y z x y, , , , .d d
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Using classical notation, if 

 

a  dr
d
d
d

=
( )
( )
( )

















=















f x y z

g x y z

h x y z

x

y

z

, ,
, ,
, ,

,


=
















,  dS
d d
d d
d d



y z

z x

x y

,  

then

∇ ×( ) =∫ ∫
∂

� i
� � i �a   d a  d

M M

S r.  

Exercises 3.11

3.11.1 Evaluate  d d
 

x y x xy y
C

3
∫ +  where C  is the square with vertices at 

0 0 2 0 2 2, , , , ,( ) ( ) ( ), and 0 2,( ).
3.11.2 Consider the triangle ∆  with vertices A B C: , , : , , : ,0 0 1 1 2 2( ) ( ) −( ).

1. If LPQ  denotes the equation of the line joining P  and Q, find

L LAB AC, , and LBC.

2. Evaluate y x x y2d d+∫ .
∆

 

3. Find 1 2−( ) ∧∫ y x y
D

 d d  where D  is the interior of ∆ .

3.11.3 Use Green’s Theorem to prove that x y y2 32 16+( ) =∫Γ
 d π ,  where 

Γ  is the circle x y−( ) + =2 42 2 . Also, prove this directly by using a 
path integral.

3.11.4 Let Γ  denote the curve of intersection of the plane x y+ = 2  
and the sphere x x y y z2 2 22 2 0− + − + = , oriented clockwise 

when viewed from the origin. Use Stoke’s Theorem to prove that 

y x z y x zd d d+ + = − ⋅∫ 2 2π
Γ

 Prove this directly by parametrizing 

the boundary of the surface and evaluating the path integral.

3.11.5 Let M ⊂ 2  be the upper semi-disk of radius R. Find 

x dx xydy
M

2 2+( )
∂∫ 

 using Green’s Theorem.
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3.11.6 Evaluate 
�
� �� f r d∫   using Green’s Theorem, where



 

f x y z xy x x y, ,( ) = −( ) +( )2 2 2i + j 


 

f x y z xy x x y, ,( ) = −( ) +( )2 2 2i + j  and C  is the boundary of the region Γ  

defined by the curves y x= 2  and y x= , 0 1≤ ≤x  .

3.11.7 Evaluate    
 

4 22x y dx y dy
C∫ +  using Green’s Theorem, where C  is 

the boundary of the triangle with vertices in Figure 3.11.1.

3.11.8 Evaluate    
 

x y dx x dy
C

+( ) + +( )∫ 2 21


 using Green’s Theorem, 

where C  is the closed curve determined by y x= 3  and y x= 2 form 
0 0,( )  to 1 1,( ).

3.11.9 Evaluate    
 

e y dx e y dyx

C

xsin cos
∫ +  using Green’s Theorem, 

where C  is the ellipse 3 8 242 2x y+ = .

3.11.10 Evaluate   
 

y x dx x dy
C

−( ) +∫ sin cos


 using Green’s Theorem in the 

plane, where C  is the triangle of the Figure 3.11.2.

3.11.11 Evaluate  
 

2 2 2xy x dx x y dy
C

−( ) + +( )∫  using Green’s Theorem in 

the plane, where C  is the closed curve of the region bounded by 
y x= 2  and y x2 =  intersect form 0 0,( )  to 1 1,( ).

3.11.12 Evaluate   
 C

x xy dx x xy y dy
∫ +( ) + + +( )( )2 22 2 2  using Green’s 

Theorem in the plane, where C  is the square with vertices 
0 0 1 0 1 1, , , , ,( ) ( ) ( ), and 0 1,( ), as in Figure 3.11.3.

x

y

( )1,2( )0,2

( )0,0

FIGURE 3.11.1 Exercise 3.11.7.

x

y

,1
2
π 

 
 

,0
2
π 

 
 

( )0,0

FIGURE 3.11.2 Exercise 3.11.10.

MVC_Musa_CH03.indd   290 11/17/2014   5:55:15 PM



integration • 291

3.11.13 Evaluate  
 C

x y dx x y dy
∫ +( ) + −( )2 22  using Green’s Theorem, 

where C  is the Boundary of the region determined by the graphs 

of y x= 2  and y = 4.

3.11.14 Evaluate   
 C

xe dx x dy
∫ +2 2arctan  using Green’s Theorem, where 

C  is the Triangle with vertices 0 0 0 1, , ,( ) ( ), and −( )1 1, .

3.11.15 Evaluate   
 C

xy dx y dy
∫ +2 3cos  using Green’s Theorem, where C  

is the  boundary of the region in the first quadrant determined by 
the graphs of y x= 2  and y x= 3.

3.11.16 Evaluate   
 C

y dx x xy dy
∫ + +( )3 3 23  using Green’s Theorem, where 

C  is the path from 0 0,( )  to 1 1,( )  along the graph y x= 3  and from 

1 1,( )  to 0 0,( )  along the graph of y x= .

3.11.17 Use Gauss’s Theorem to find the outward flux of the vector field 



f

x

yz

z

=
















2

3

2
4

 across the region M  bounded by the parallelepiped 

0 1 0 2 0 3≤ ≤ ≤ ≤ ≤ ≤x y z, ,          .

x

y

( )1,1

( )1,0( )0,0

( )0,1

FIGURE 3.11.3 Exercise 3.11.12. FIGURE 3.11.4 Exercise 3.11.18.

x

y
(1,2,0)

( )0,2,3

( )1,0,3
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3.11.18 Use Gauss’s Theorem to find the flux of the vector field 


f

x y

xz

yz

=
















2

3

2  

across the surface of the rectangle solid M as in Figure 3.11.4, 
where 

0 1 0 2 0 3≤ ≤ ≤ ≤ ≤ ≤x y z, ,           

3.11.19 Use Gauss’s Theorem to find the outward flux of the vec-

tor field 


f

x

y

z

=
















4

4
 across the region M  bounded by the sphere 

x y z2 2 2 4+ + = .

3.11.20 Use Gauss’s Theorem to find the outward flux of the vector 

field 


f

xy

x y

x

=
















2

2

6sin
 across the region M  bounded by the cone 

z x y= +2 2  and the planes z = 2 and z = 4.

3.11.21 Use Gauss’s Theorem to find the outward flux of the vector 

field 


f

xz

y

yz

= −
















4
2  across the region M  of the cube bounded by 

x x y y z= = = = =0 1 0 1 0, , , , , and z = 1.

3.11.22 Use Gauss’s Theorem to find the outward flux of the vector field 



f

y e

xy

x y

z

= −














−

3

1tan
 across the region M  bounded by the coordinate 

planes x y z= = =0 0 0, ,  and the plane x y z+ + = 1.
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3.11.23 Use Stokes’s Theorem to find ∇ ×( )∫∫
�
� �f

S

  n dS  for the vector field 



f

y

x

yz

= −
















 across the region S, which is paraboloid z x y= +2 2  with 

the circle x y2 2 1+ =  and z = 1  as its bounded.

3.11.24 Use Stokes’s Theorem to find 
�
� �� f

C∫  dr  for the vector field 


f

x

y

z

=
















2

2

2

 

across the region S, which is part of the cone z x y= +2 2  cutoff 

by the plane z = 1.
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A P P E N D I XA
MAPLE

In This Appendix 

 l Getting Started and Windows of Maple
 l Arithmetic
 l Symbolic Computation
 l Assignments
 l Working with Output
 l Solving Equations
 l Plots with Maple
 l Limits and Derivatives
 l Integration
 l Matrix

Maple is interactive mathematical and analytical software designed 
to perform a wide variety of mathematical calculations as well as 
operations on symbolic, numeric entities, and modeling. In this 

appendix, we give a general overview of Maple. For more information on 
Maple, visit the maple Website: www.maplesoft.com.
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A.1 Getting Started and Windows of Maple

When you double-click on the Maple icon, it opens as shown 
in Figure A.1. This  figure shows Maple in the document mode. The 
worksheet mode is shown in Figure A.2, where the special [> prompt 
appears. This is the main area in which the user interacts with Maple. 
For general help, click on Help then Maple Help in menu bar as shown 
in Figure A.3. Also, Maple uses the question mark (?), followed by the 
command or topic name, to get help. For example, to get help on solve, 
you type ?solve. To terminate the Maple session, from the File menu, 
select Exit.

Document mode

FIGURE A.1 Default environment (document mode).
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By clicking on this icon,
we get the worksheet mode

worksheet mode

FIGURE A.2 Worksheet mode.

FIGURE A.3 Maple help system.
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A.2 Arithmetic

Maple can do arithmetic operations like a calculator. Table A.1 provides 
Maple’s common arithmetic operations. To evaluate an arithmetic expres-
sion, type the expression and then press the Enter key.

Maple uses, pi, command to present π  and uses, exp (1), command 
to present e. 

Example A.2.1

Calculate 2
8 6

4
3 95 −

+( )
+ × .

 n Solution:

 �

Example A.2.2

Simple numerical calculation 5 3+ − .

 n Solution:
 �

TABLE A.1. Maple common arithmetic operations 

Operation Descriptions

+ addition

− subtraction

∗ multiplication

/ division

^ exponentiation

! factorial

abs (n) Absolute value of n

sqrt (n) Square root of n
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A.3 Symbolic Computation

Maple can do a variety of symbolic calculations. For example, 

 �

Maple also makes simplifications to the expression when you use the 
command simplify. For example, 

 �

The expand and factor commands are used to expand and factor the 
expression respectively. For example,

 �

 �

A.4 Assignments

To assign values to a variable, Maple uses colon equals (:=). For example,

 �

 �

To clear the value of the variable x, type

 �

A.5 Working with Output

One percent sign (%) refers to the output of the previous command. 
Two percent signs (%%) refer to the second-to-last output and three per-
cent signs (%%%) to the third-to-last output. Maple remembers the output 
of the last three statements you entered. For example, 
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 �

 �

 �

 �

A.6 Solving Equations

Maple uses solve command to solve equations. For example,

 �

We can solve equations with more than one variable for a specific vari-
able. For example,

 �

 �

A.7 Plots with Maple

Maple uses the basic plotting command, 
plot, to plot functions, expressions, list of 
points, and parametric functions. For exam-
ple, to plot the graph of y x x= − +3 12  on the 
interval −1 to 1, type

 �

Also, we can plot several functions or 
expressions on same graph. For example, 

 �
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Maple allows you to annotate a plot by adding text and drawings by 
clicking on the plot. The Plot options tool bar will show up. Then click on 
Drawing button and the drawing tool bar will show up. For example,

 �

A.8 Limits and Derivatives

Maple can evaluate limits of lim ( )
x a

f x
→

  by using limit (f(x), x =a); com-

mand. For example,
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 �

Maple uses diff command to compute derivatives. For example,

 �

A.9 Integration

Maple uses int command to compute integrals. For example,

 �

A.10 Matrix 

Maple uses Matrix command to make a matrix. For example,

 �

 �

 �

 �
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In This Appendix 

 l Getting Started and Windows of MATLAB
 l Plotting
 l Programming in MATLAB
 l Symbolic Computation 

MATLAB

BA P P E N D I X

MATLAB has become the useful and dominant tool of technical 
professionals around the world. MATLAB is an abbreviation for 
Matrix Laboratory. It is a numerical computation and simulation 

tool that uses matrices and vectors. Also, MATLAB enables the user to 
solve wide analytical problems. 

A copy of MATLAB software can be obtained from:

The Mathworks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
Phone: 508-647-7000
Website: http://www.mathworks.com

This brief introduction of MATLAB (R2010b) is presented here to give 
a general idea about the software. MATLAB computational applications to 
science and engineering systems used to solve practical problems.
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B.1 Getting Started and Windows of MATLAB

When you double-click on MATLAB icon, it opens as shown in 
Figure B.1. The command window, where the special >> prompt appears, 
is the main area in which the user interacts with MATLAB. To make the 
Command Window active, you need to click anywhere inside its border. 
To quit MATLAB, you can select EXIT MATLAB from the File menu, 
or by enter quit or exit at the Command Window prompt. Do not click on 
the X (close box) in the top right corner of the MATLAB window, because 
it may cause problems with the operating software. Figure B.1 contains 

Click the Start
button for quick
access to tools and
more 

Drag the separator
bar to resize
windows 

Enter MATLAB
statements at the
prompt  

View/execute
previously run
statements are presented
in the command history 

Menus change,
depending on the tool
you are using 

Select the title bar for
a tool to use that tool 

Get help 
View the current
directory  

Change the
current directory 

Move, minimize,
maximize, or close
workspace, undock
workplace 

Get guide 

FIGURE B.1 MATALB default environment.
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TABLE B.1 MATLAB Windows

Window Description

Command Window Main window, enter variables, runs programs

Workplace Window Gives information about the variable used

Command History Window Records commands entered in the Command Window

Current Folder Window Shows the files in current directory with details

Editor Window Makes and debugs script and function files

Help Window Gives help information

Figure Window Contains output from the graphic commands 

Launch Pad window Provides access to tools, demos, and documentation

four default windows, which are Command Window, Workplace Window, 
Command History Window, and Current Folder Window. Table B.1 shows 
a list of the various windows and their purpose of MATLAB.

B.1.1 Using MATLAB in Calculations
Table B.2 shows the MATLAB common arithmetic operators. The 

order of operations as first, parentheses ( ), the innermost are executed 
first for nested parentheses; second, exponentiation ^; third, multiplica-
tion ∗ and division / (they are equal precedence); fourth, addition + and 
subtraction −.

TABLE B.2 MATLAB Common Arithmetic Operators 

operators Symbols Descriptions

+ Addition

− Subtraction

∗ Multiplication

/ Right division (means 
a

b
)

\
Left division (means 

b

a
)

^ Exponentiation (raising to a power)

' Converting to complex conjugate transpose 

( ) Specify evaluation order
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For example, 

>> a = 11; b = −3; c = 5;

>> x = 9∗a + c^2 − 2

x =

122

>> y = sqrt(x)/6

y =

1.8409

Table B.3 provides common sample of MATLAB functions. You can 
obtain more by typing help in the Command Window (>> help).

TABLE B.3 Typical Elementary Math Functions

Function Description

abs (x) Absolute value or complex magnitude of x

acos (x), acosh (x) Inverse cosine and inverse hyperbolic cosine of x (in radians)

angle (x) Phase angle (in radians) of a complex number x

asin (x), asinh (x) Inverse sine and inverse hyperbolic sine of x (in radians) 

atan (x), atanh (x) Inverse tangent and inverse hyperbolic tangent of x (in radians)

conj (x) Complex conjugate of x (in radians)

cos (x), cosh (x) Cosine and inverse hyperbolic cosine of x (in radians)

cot (x), coth (x) Inverse cotangent and inverse hyperbolic cotangent of x (in radians)

exp (x) Exponential of x

Fix Round toward zero

imag (x) Imaginary part of a complex number x 

log (x) Natural logarithm of x

log2 (x) Natural logarithm of x to base 2

log10 (x) Common logarithms (base 10) of x

real (x) Real part of a complex number of x

sin (x), sinh (x) Sine and inverse hyperbolic sine of x (in radians)

sqrt (x) Square root of x

tan (x), tanh (x) Tangent and inverse hyperbolic tangent of x (in radians)

For example,
>> 9+3^(log2(4.25))
ans =
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  18.9077
>> y=5∗cos(pi/4)
y =
  3.5355
>> z = exp(y+6)
z =
  1.3843e+004

In addition to operating on mathematical functions, MATLAB allows 
us to work easily with vectors and matrices. A vector (or one-dimensional 
array) is a special matrix (or two-dimensional array) with one row or one 
column. Arithmetic operations can apply to matrices and Table B.4 shows 
extra common operations that can be implemented to matrices.

TABLE B.4. Matrix Operations

Operations Descriptions

A’' Transpose of matrix A

det (A) Determinant of matrix A

inv (A) Inverse of matrix A

eig (A) Eigenvalues of matrix A

diag (A) Diagonal elements of matrix A 

A vector can be created by typing the elements inside brackets [ ] from 
a known list of numbers.

For example,

>> A = [1 2 3 6 5 22]

A =

  1  2  3  6  5  22

>> B = [1 2 6; 8 9 11; 10 14 16] 

B =
   1   2   6

   8   9  11

  10  14  16

Also, a vector can be created with constant spacing by using the com-
mand variable-name = [a: n: b], where a is the first term of the vector; n is 
spacing; b is the last term.
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For example,

>> x = [1:0.6:5]

x =

  1.0000  1.6000  2.2000  2.8000  3.4000  4.0000  4.6000

Also, a vector can be created with constant spacing by using the com-
mand variable-name = linespace (a, b, m), where a is the first element of the 
vector; b is the last element; m is number of elements.

For example,

>> x=linspace(0,4∗pi,6)

x =

  0  2.5133  5.0265  7.5398  10.0531  12.5664

Examples using Table B.4:

>> B = [1 2 4; 7 8 9; 3 5 10] 

B =

  1  2  4

  7  8  9

  3  5  10

>> D=B^2

D =

  27  38  62

  90  123  190

  68  96  157

>> C= A'

C =

  1

  2
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  3

  6

  5

  22

>> E =[4 8;11 25];

>> inv(E)

ans =

  2.0833  −0.6667

  −0.9167  0.3333

>> det(E)

ans =

  12

Special constants can be used in MATLAB. Table B.5 provides special 
constants used in MATLAB.

TABLE B.5 MATLAB Named Constants

Name Content

Pi π = 3 14159. ...

i or j Imaginary unit, −1
Eps Floating-point relative precision, 2 52−

Realmin Smallest floating-point number, 2 1022−

Realmax Largest floating-point number,(2-eps). 21023 

Bimax Largest positive integer, 2 153 −

Inf or Inf Infinity

nan or NaN Not a number

Rand Random element

Eye Identity matrix

Ones An array of 1’s

Zeros An array of 0’s
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For example,
>> eye(3)
ans =
  1  0  0
  0  1  0
  0  0  1
>> ones(3)
ans =
  1  1  1
  1  1  1
  1  1  1
>> 1/0
ans =
  Inf
>> 0/0
ans =
  NaN
Arithmetic operations on arrays are done element by element. Table B.6  

provides MATLAB common Arithmetic operations on arrays. 

TABLE B.6 MATLAB Common Arithmetic Operations on Arrays 

Operators Symbols on Arrays Descriptions

+ Addition same as matrices

−  Subtraction same as matrices

.∗ Element-by-element multiplication

./ Element-by-element right division 

.\ Element-by-element left division 

.^ Element-by-element power

.' Unconjugated array transpose 
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For example,

>> A=[−1 2 0; 3 5 7; 8 9 9]

A =

 −1  2  0

 3  5  7

 8  9  9

>> A.∗A

ans =

  1  4  0

  9  25  49

  64  81  81

>> C=[0 1;2 4; 7 8];

>> D=[8 11;10 16;14 18];

>> C./D

ans =

  0  0.0909

  0.2000  0.2500

  0.5000  0.4444

>> C.^2

ans =

      0        1

    4     16

  49  64
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B.2 Plotting

MATLAB has nice capability to plotting in two-dimensional and three-
dimensional plots. 

B.2.1 Two-dimensional Plotting
First, we start with two-dimensional plots. The plot command is used 

to create two-dimensional plots. The simplest form of the command is plot 
(x,y). The arguments x and y are each a vector (one-dimensional array). 
The vectors x and y must have the same number of elements. When the 
plot command is executed a figure will be created in the Figure Window. 
The plot (x, y, 'line specifiers') command has additional optional argu-
ments that can be used to detail the color and style of the lines. Tables 
B.7 through B.9 show various types of lines, points, and color types used 
in MATLAB.

TABLE B.7 MATLAB Various Line Styles

Line Types MATLAB Symbol

Solid (default) −

Dashed −−

Dotted :

Dash-dot −.

TABLE B.8 MATLAB Various Point Styles

Point Type MATLAB Symbol

Asterisk ∗

Plus sign +

x-mark x

Circle o

Point .

Square s
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TABLE B.9 MATLAB Various Line Color Types

Color MATLAB Symbol

Black K

Blue B

Green G

Red R

Yellow Y

Magenta M

Cyan C

White W

For example,

>> x=0:pi/50:2∗pi;%x is a vector, 0 <= x <= 2∗pi, increments of pi/50

>> y=3∗sin(2∗pi∗x);% y is a vector

>> plot(x,y,'--b')%creates the 2D plot with blue and dashed line
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The command fplot('function', limits, line specifiers) is used to plot a 
function with form y = f (x), where the function can be typed as a string 
inside the command. The limits is a vector with two elements that specify 
the domain x [xmin,xmax], or is a vector with four elements that specifies 
the domain of x and the limits of the y-axis [xmin,xmax,ymin,ymax]. The 
line specifiers are used the same as in the plot command.

For example, 

>> fplot('x^3+2∗sin(3∗x)−2',[−5,5],'xr')

Also, we can create a plot for a function y = f(x) using the command plot 
by creating a vector of values of x for the domain that the function will be 
plotted, then creating y with corresponding values of f(x).

For example,

>> x=[0:0.1:1];

>> y=cos(2∗pi∗x);

>> plot(x,y,'ro:')

MVC_Musa_CH05_Appendix B.indd   314 12/04/2014   12:27:33 PM



appendix B: MATLAB • 315

In MATLAB several graphs can be plotted at the same plot in two way: 
first, using plot command with typing pairs of vectors inside the Plot com-
mand such as Plot(x,y, z, t, u, h), which will create three graphs : y vs. x, t vs. 
z, and h vs. u, all in the same plot. 

For example, the command to plot the function y x x= − +2 15 53 , its 
first derivative y x’ = −6 152 , and its second derivative y x’’ = 12 , for domain
− ≤ ≤3 6x , all in the same plot, is as follows:

>> x=[-3:0.01:6];% vector x with the domain of the function

>> y=2∗x.^3−15∗x+5;% vector y with the function value at each x

>> yd=6∗x.^2−15;% vector yd with the value of the first derivative 

>> ydd=12∗x; %vector ydd with the value of the second t derivative 

>> plot(x,y,'−r',x,yd,':b',x,ydd,'−−k')
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Second, using hold on, hold off commands. The hold on command will 
hold the first plotted graph and add to it extra figures for each time the 
plot command is typed. The hold off command stops the process of hold on 
command.

For example, if we use the previous example, we get the same result 
using the following commands:

>> x=[−3:0.01:6];

>> y=2∗x.^3−15∗x+5;

>> yd=6∗x.^2−15;

>> ydd=12∗x; 

>> plot(x,y,'-r')

>> hold on % the first graph is created

>> plot(x,yd,':b') % second graph is added to the figure 

>> plot(x,ydd,'−−k') % third graph is added to the figure

>> hold off
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Plots in MATLAB can be formatted using commands that follow the 
plot commands, or by using the plot editor interactively in the Figure win-
dow. First, format the plot using commands as follows:

•	 Labels can be placed next to the axes with the xlabel ('text as string ') 
for the x-axis and ylabel ('text as string ') for the y-axis.

•	 The command title ('text as string') is a title command which can be 
added to the plot to place the title at the top of the figure as a text.

•	 There are two ways to place a text label in the plot. First, using text 
(x,y,'text as string ') command which is used to place the text in the 
figure such that the first character positioned at the point with the 
coordinates x, y according to the axes of the figure. Second, using 
gtext ('text as string ') command which is used to place the text at a 
position specified by the user mouse in the figure window.

•	 The command legend ('string1', 'string2',…,pos) is used to place a 
legend on the plot. The legend command shows a sample of line type 
of each graph that is plotted and, places a label specified by the user, 
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beside the line sample. The strings in the command are the labels 
that are placed next to the line sample and their order corresponds 
to the order that the graphs were created. The pos in the command 
is an optional number that specifies where in the figure the legend is 
placed. Table B.10 shows the options that can be used for pos.

•	 The command axis is used to change the range and the appearance 
of the axes of the plot, based on the minimum and maximum values 
of the elements of x and y. Table B.11 shows some common possible 
forms of axis command.

•	 The command grid on is used to add grid lines to the plot and the 
command grid off is used to remove grid lines from the plot.

TABLE B.10 Options that Can Be Used for pos

Pos value Description

−1 Place the legend outside the axes boundaries on the right side

0 Place the legend inside the axes boundaries in a location that interferes the least 
with graph

1 Place the legend at the upper-right corner of the plot (this is the default)

2 Place the legend at the upper-left corner of the plot

3 Place the legend at the lower-left corner of the plot

4 Place the legend at the lower-right corner of the plot

TABLE B.11 Some Common axis Commands 

axis Command Description

axis ([xmin, xmax, ymin, ymax]) Sets the limits of both the x and y axes (xmin, xmax, ymin, 
ymax are numbers)

axis equal Sets the same scale for both axes

axis tight Sets the axis limits to the range of the data

axis square Sets the axes region to be square

For example,

>> x=0:pi/30:2∗pi;y1=exp(−2∗x);y2=sin(x∗3);

>> plot(x,y1,'−b',x,y2,'−−r')

>> xlabel('x')

>> ylabel('y1, y2')

HINT

MVC_Musa_CH05_Appendix B.indd   318 12/04/2014   12:27:35 PM



appendix B: MATLAB • 319

TABLE B.12 Some Common Greek Characters

Greek characters in the string Greek letter Greek characters in the string Greek letter

\alpha α \Phi Φ

\beta β \Delta ∆ 

\gamma γ \Gamma Γ

\theta θ \Lambda Λ

\pi π \Omega Ω 

\sigma σ \Sigma Σ

>> title('y1=exp(−2∗x), y2=sin(x∗3)')

>> axis([0, 11, −1, 1])

>> text(6,0.6,'Comparison between y1 and y2')

>> legend('y1','y2',0)

In MATLAB, users can use Greek characters in the text by typing\name 
of the letter within the string as in Table B.12. 
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To get a lowercase Greek letter, the name of the letter must be typed in 
all lowercase. To get a capital Greek letter, the name of the letter must start 
with a capital letter.

Second, format the plot using the plot editor interactively in the Figure 
window. This can be done by clicking on the plot and/or using the menus as 
illustrated in the following figure.

MATLAB can use logarithm scaling for two-dimensional plot. Table B.13  
shows MATLAB commands for logarithm scaling.

TABLE B.13 Two-Dimensional Graphic for Logarithm Scaling

Command Description

Loglog To plot log(y) versus log(x)

Semilogx To plot y versus log(x)

Semilogy To plot log(y) versus x

Click on the arrow to start the plot edit mode, and then double
click on an item, a window will open to format the item 

Click on the 
object and 
dragging it in 
order to change 
position of labels, 
legends and other 
objects  

Edit and Insert 
menus used to
add formatting
objects, or to edit
existing objects 

Legend

Text label 

Plot title 

Y axis label 

X axis label 
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TABLE B.14 MATLAB Plots with Special Graphics

Command Description

bar(x,y) Vertical bar plot

barh(x,y) Horizontal bar plot 

stairs(x,y) Stairs plot

stem(x,y) Stem plot

pie(x) Pie plot

hist(y) Histogram plot

polar(x,y) Polar plot

Also, MATLAB can make plots with special graphics as in Table B.14.
For example,

>> t=[0:pi/60:2∗pi];

>> r=3+2∗cos(t);

>> polar(t,r,'r.')

B.2.2 Three-Dimensional Plotting
MATLAB has the capability to make a graph in three-dimensional plots 

using line, mesh, and surface plots.
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The command plot3(x,y,z) is used in a three-dimensional line plot which 
is a line that is obtained by connecting points in three-dimensional space.

For example,

>> x=linspace(0,10∗pi,100);

>> y=cos(x);z=sin(x);

>> plot3(x,y,z,'r');grid on

>> xlabel('x');ylabel('cos(x)');zlabel('sin(x)')

Another example,

> t = −5:0.1:5;

>> x = (3+t.^2).∗sin(50∗t);

>> y = (3+t.^2).∗cos(50∗t);

>> z = 5∗t;

>> plot3(x,y,z,'g')

>> grid on
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Also, The command mesh(X,Y,Z) is used in a three-dimensional plot 
that is applied to plotting functions z = f(x,y). This can be done by creating a 
grid in the x-y plane that covers the domain of the function, then calculating 
the value of z at each point of the grid, and then creating the plot. 

For example,

>> x=(−6:0.1:6);y=(-6:0.1:6);[X,Y]=meshgrid(x,y);

>> Z=sin(X.^2+Y.^2).∗exp(−0.6∗(X.^2+Y.^2));

>> mesh(X,Y,Z)

>> zlabel('Z=sin(X.^2+Y.^2).∗exp(−0.6∗(X.^2+Y.^2))')

>> xlabel('X')

>> ylabel('Y')

>> xlabel('x(t)'),ylabel('y(t)'),zlabel('z(t)')

>> title('plot3 example')
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TABLE B.15 Provides Other Common Mesh Plot Types

Mesh Plot Types Description

meshz(X,Y,Z) Mesh curtain plot which draws a curtain around the mesh

meshc(X,Y,Z) Mesh and contour plot which draws a contour plot beneath the mesh

waterfall(X,Y,Z) Draws a mesh in one direction only 

For example,

>> x=(−6:0.1:6);y=(−6:0.1:6);[X,Y]=meshgrid(x,y);

>> Z=sin(X.^2+Y.^2).∗exp(−0.6∗(X.^2+Y.^2));

>> meshz(X,Y,Z)

>> xlabel('X')

>> ylabel('Y')

>> zlabel('Z=sin(X.^2+Y.^2).∗exp(-0.6∗(X.^2+Y.^2))')
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>> x=(−6:0.1:6);y=(−6:0.1:6);[X,Y]=meshgrid(x,y);

>> Z=sin(X.^2+Y.^2).∗exp(−0.6∗(X.^2+Y.^2));

>> meshc(X,Y,Z)

>> zlabel('Z=sin(X.^2+Y.^2).∗exp(−0.6∗(X.^2+Y.^2))')

>> ylabel('Y')

>> xlabel('X')
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Another command surf(X,Y,Z) is used in a three-dimensional plot that 
is applied to plotting functions z = f(x,y) as in Mesh. This can be done by 
the same step for the mesh. 

For example,

>> x=(−6:0.1:6);y=(−6:0.1:6);[X,Y]=meshgrid(x,y);

>> Z=sin(X.^2+Y.^2).∗exp(−0.6∗(X.^2+Y.^2));

>> surf(X,Y,Z)

>> xlabel('X')

>> ylabel('Y')

>> zlabel('Z=sin(X.^2+Y.^2).∗exp(-0.4∗(X.^2+Y.^2))')
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There are other common surface plot types as in Table B.16.

TABLE B.16 Provides Other Common Surface Plot Types

Surface Plot Types Description

surfl(X,Y,Z) Surface plot with lighting

surfc(X,Y,Z) Surface and contour plot which draws a contour plot beneath the mesh

B.3 Programming in MATLAB

So far we have used MATLAB commands and they were executed in 
the Command Window. This way is fine for a simple task, but for more com-
plex ones, it becomes less convenient and difficult because the Command 
Window cannot be saved and executed again. Therefore, the commands and 
programs can be stored in a file. To begin, tell the MATALAB to get its input 
from the file but this file must be created as an M-file. Do this by clicking 
on File/New/scripts to open a new file in the MATLAB Editor/Debugger or 
simple text editor, then type the program and save it by choosing save from 
the File menu. The file should be saved with an extension “.m”. 

For example, we created program nano1.m using M-file as follows.

We typed nano1 in the Command Window, then hit enter to obtain the 
following figure.
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MATLAB uses flow control through its programs. To allow flow con-
trol in a program certain rational and logical operators are essential. These 
operators are shown in Tables B.17 and B.18. 

TABLE B.17 Rational Operators

Rational Operators Description

< Less than

> Greater than

<= Less than or equal

> = Greater than or equal

= = Equal

~ = Not equal

TABLE B.18 Logical Operators

Logical Operator Description

~ NOT

& AND

| OR

There are four kind of statements used in MATLAB to control the flow 
through the user code. They are for loops, while loops, if, else, and elseif 
constructions, and switch constructions.
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B.3.1 For Loops
for loops allow a group of commands to be repeated a fixed number of 

times. The basic form of a for loop is:

for index = start: increment: stop

  statements

end

The increment can be omitted, but MATLAB will assume the incre-
ment is 1. Also, the increment can be positive or negative. For example,

>> for n=1:7
x(n)=sin(n∗pi/10)
end
x = 0.3090  0.5878  0.8090  0.9511  1.0000  0.9511  0.8090
The general form of a for loop is:

for x = array

  commands…

end

For example,
>> m =[1 5 8; 10 17 22]
m =
  1  5  8
  10  17  22
>> for n = m
x=n(1)−n(2)
end
x =
  −9
x =
  −12
x =
  −14
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B.3.2 While Loops
while loop evaluates a group of statements an indefinite number of 

times in conjunction with a conditional statement. The general form of 
while loop is:

while expression

  commands…

end

For example,

>> n=100;

>> x=[];

>> while (n>0)

n=n/2−1;

x=[x,n];

end

>> x

x =

  49.0000  23.5000  10.7500  4.3750  1.1875  -0.4063

B.3.3 If, Else, and Elseif
The form of an if statement is: 

if expression

  statements

end

The expression can be either 1 (true) or 0 (false). The statements 
between the if and end statements are executed if the expression is true. If 
the expression is false the statements will be ignored and the execution will 
resume at the line after the end statement. An end keyword matches the if 
and terminates the last group of statements. For example,

>> x= 20;

>> if x>0

log(x)
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end

ans =

  2.9957

The optional elseif and else keywords provide for the execution of alter-
nate groups of statements. 

The if and else can be presented as:

if  condition 

  statements 

else  

  statements

end

For example, using just if-else statement as:

>> x= −24;

>> if x>0

log(x)

else

'x is negative number'

end

ans =

x is negative number

The if, else, and elseif can be presented as:

if  condition 1

  statements 

elseif condition 2

  statements

else  condition 3

  statements

end
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For example using if, else, and elseif statements as:

>> x='28';

>> if ~isnumeric(x)

'x is not a number'

elseif isnumeric(x)&x<0

'x is a negative number'

else

log(x)

end

ans =

x is not a number

B.3.4 Switch
The switch statement executes groups of statements based on the value 

of a variable or expression. The basic form of a switch statement is:

switch expression

  case results 1

    statements 

case results 2

    statements 

  .

  .

  .  

  otherwise  

    statements

end

The keywords case and otherwise delineate the groups of statements. 
These respective statements are executed if the value of expression is 
equal to the respective results. If none of the cases are true, the otherwise 
statements are done. Only the first matching case is executed. The same 
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statements can be done for different cases by enclosing the several results 
in braces. For example, 

>> x= 9;

>> switch x

case 1

disp('x is 1')

case {7, 8, 9}

disp('x is 7, 8, and 9')

case 12

disp('x is 12')

otherwise

disp('x is not, 1, 7, 8, 9 and 12')

end

x is 7, 8, and 9

Considering the following tips can be helpful in working with MATLAB:

1. Variables and functions names are case sensitive. 

2. Make comment in M-file by adding lines beginning with a  
% character.

3. Use a semicolon (;) at the end of each command to suppress output 
and the semicolon can be removed when debugging the file.

4. Retrieve previously executed commands by pressing the up (↑) and 
down (↓) arrow keys.

5. Use an ellipse (…) at the end of the line and continue on the next 
line, when an expression does not fit on one line.

B.4 Symbolic Computation 

In previous sections, you learned that MATLAB can be a powerful pro-
grammable and calculator. However, basic MATLAB uses numbers as in a 
calculator. Most calculators and basic MATLAB lack the ability to manipu-
late math expressions without using numbers. In this section, you see that 
MATLAB can manipulate and solve symbolic expressions that make you 
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compute with math symbols rather than numbers. This process is called 
symbolic math. Table B.19 shows some common Symbolic commands. You 
can practice some symbolic expressions in the following section.

B.4.1 Simplifying Symbolic Expressions
Symbolic simplification is not always straightforward; there is no uni-

versal simplification function, because the meaning of a simplest represen-
tation of a symbolic expression cannot be defined clearly. MATLAB uses 
the sym or syms command to declare variables as symbolic variable. Then, 
the symbolic can be used in expressions and as arguments to many func-
tions. For example, to rewrite a polynomial in a standard form, use the 
expand function:

>> syms x y; % creating a symbolic variables x and 

>> x = sym('x'); y = sym('y'); % or equivalently 

>> expand (sin(x+y))

ans =

  sin(x) ∗cos(y) + cos(x)∗ sin(y)

You can use subs command to substitute a numeric value for a symbolic 
variable or replace one symbolic variable with another. For example,

>> syms x;

>> f=3∗x^2-7∗x+5;

>> subs(f,2)

ans =

  3

>> simplify (sin(x)^2 + cos(x)^2) % Symbolic simplification

ans =

  1
TABLE B.19 Common Symbolic Commands

Command Description

diff Differentiate symbolic expression

int Integrate symbolic expression

jacobian Compute Jacobian matrix

limit Compute limit of symbolic expression

(Continued)
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TABLE B.19 Common Symbolic Commands (Continued)

Command Description

symsum Evaluate symbolic sum of series

taylor Taylor series expansion

colspace Return basis for column space of matrix

det Compute determinant of symbolic matrix

diag Create or extract diagonals of symbolic matrices

eig Compute symbolic eigenvalues and eigenvectors

expm Compute symbolic matrix exponential

inv Compute symbolic matrix inverse

jordan Compute Jordan canonical form of matrix

null Form basis for null space of matrix

poly Compute characteristic polynomial of matrix

rank Compute rank of symbolic matrix

rref Compute reduced row echelon form of matrix

svd Compute singular value decomposition of symbolic matrix

tril Return lower triangular part of symbolic matrix

triu Return upper triangular part of symbolic matrix

coeffs List coefficients of multivariate polynomial

collect Collect coefficients

expand Symbolic expansion of polynomials and elementary functions

factor Factorization

horner Horner nested polynomial representation

numden Numerator and denominator

simple Search for simplest form of symbolic expression

simplify Symbolic simplification

subexpr Rewrite symbolic expression in terms of common subexpressions

subs Symbolic substitution in symbolic expression or matrix

compose Functional composition

dsolve Symbolic solution of ordinary differential equations

finverse Functional inverse

solve Symbolic solution of algebraic equations

cosint Cosine integral

sinint Sine integral

zeta Compute Riemann zeta function

(Continued)
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TABLE B.19 Common Symbolic Commands (Continued)

Command Description

ceil Round symbolic matrix toward positive infinity

conj Symbolic complex conjugate

eq Perform symbolic equality test

fix Round toward zero

floor Round symbolic matrix toward negative infinity

frac Symbolic matrix elementwise fractional parts

imag Imaginary part of complex number

log10 Logarithm base 10 of entries of symbolic matrix

log2 Logarithm base 2 of entries of symbolic matrix

mod Symbolic matrix elementwise modulus

pretty Pretty-print symbolic expressions

quorem Symbolic matrix elementwise quotient and remainder

real Real part of complex symbolic number

round Symbolic matrix elementwise round

size Symbolic matrix dimensions

sort Sort symbolic vectors, matrices, or polynomials

sym Define symbolic objects

syms Shortcut for constructing symbolic objects

symvar Find symbolic variables in symbolic expression or matrix

fourier Fourier integral transform

ifourier Inverse Fourier integral transform

ilaplace Inverse Laplace transform

iztrans Inverse z-transform

laplace Laplace transform

ztrans z-transform

B.4.2 Differentiating Symbolic Expressions
Use diff ( ) command for differentiation. For example, 

>> syms x; 
>> f =−cos(5∗x)+2;
>> diff(f)

ans =

5∗sin(5∗x)
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>> y=8∗sin(x)∗exp(x);
>> diff(y)

ans =

8∗cos(x)∗exp(x)+8∗sin(x)∗exp(x)

>> diff(diff(y))% second derivative of y

ans =

16∗cos(x)∗exp(x)

An example for partial derivative is as follows:

>> syms v u;
>> f = cos(v∗u);

>> diff(f,u)% create partial derivative 
∂
∂

f
u

ans =

  −sin(u v)∗ v

>> diff(f,v) % create partial derivative 
∂
∂
f
v

ans =

  −sin(u v)∗ u

>> diff(f,u,2) % create second partial derivative 
∂
∂

2

2

f
u

ans =

  −cos(u v)^2 ∗v

B.4.3 Integrating Symbolic Expressions
The int(f) function is used to integrate a symbolic expression f. For 

example,

>> syms x;
>> f=cos(x)^2;
>> int(f)

ans =
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  1/2 ∗cos(x) ∗sin(x) + 1/2∗ x

>> int(1/(1+x^2))

ans =

  atan(x)

B.4.4 Limits Symbolic Expressions
The limit(f) command is used to calculate the limits of function f. For 

example,

>> syms x y z;

>> limit((sin(x)/x), x, 0) % lim
sin

x

x
x→

=
0

1

ans =

  1

>> limit(1/x, x, 0, 'right') % lim
x x→ +

= ∞
0

1

ans =

  infinity

>> limit(1/x, x, 0, 'left') % lim
x x→ −

= −∞
0

1

ans =

  −infinity

B.4.5 Taylor Series Symbolic Expressions
Use the taylor( ) function to find the Taylor series of a function with 

respect to the variable given. For example,

>> syms x; N =4;

>> taylor(exp(− x),N+1) % f x
n

f
n

N
n( )

!
( )≅

=
∑ 1

0
0

ans =

  1 − x + 1/2 ∗x^2 − 1/6 ∗x^3 + 1/24 ∗x^4
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>> f=exp(x);

>> taylor(f,3)

ans =

  1 + x + ½∗ x^2

B.4.6 Sums Symbolic Expressions
Use the symsum ( ) function to obtain the sum of a series. For example, 

>> syms k n;

>> symsum(k,0,n-1) % k n n n
k

n

= + + + + − = −
=

−

∑ 0 1 2 1
1
2

1
20

1
2...

ans =

  1/2 n^2 − 1/2 n

>> syms n N;

>> symsum(1/n^2,1,inf) % 
1

62
0

2

nn

N

=
∑ =

π

ans =

  1/6 ∗pi^2

B.4.7 Solving Equations as Symbolic Expressions
Many of MATLAB commands and functions are used to manipulate 

the vectors or matrices consisting of symbolic expressions. For example,

>> syms a b c d;

>> M=[a b;c d];

>> det(M)

ans =

  a ∗d - b ∗c

>> syms x y;

>> f=solve('5∗x+4∗y=3','x−6∗y=2'); % solve the system 5 4 3x y+ = ,
 x y− =6 2
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>> x=f.x

x =

  13/17

>> y=f.y

y =

-7/34

>> syms x;

>> solve (x^3-6∗x^2+11∗x-6)

ans =

1

2

3

Use dsolve ( ) function to solve symbolic differential equations. For 
example,

>> syms x y t;

>> dsolve('Dy+3∗y=8') % solve y y/ + =3 8

ans =

8/3 −C1 +exp(−3 t) % C1 is undetermined constant

>> dsolve('Dy=1+y^2','y(0)=1') % solve y y/ = +1 2 with initial condi-

tion y( )0 1=

ans =

tan(t + 1/4 pi)

>> dsolve('D2y+9∗y=0','y(0)=1','Dy(pi)=2') % solve y y/ / + =9 0  with 

initial conditions   % y( )0 1= , y( )π = 2

ans =

− 2/3 ∗sin(3 t) + cos(3 t)
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ANSWERS TO  
ODD-NUMBERED EXERCISES

A P P E N D I Xc

Chapter 1

1.1 Points and Vectors on the Plane

1.1.1

1. Scalar
3. Vector
5. Scalar
7. Vector
9. Scalar

11. Scalar
13. Scalar

1.1.3

u v =

u v =

2u

 

 



+
−









−










=
−









3
1

1
9

2
10
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1.1.5

1. 
a

b

a b+

3.  b
r
c
r

b
r cr
+

1.1.7

Since ABCD is parallelogram, AD BC
� ��� � ���

= . Hence,

AC BD AD BC BC
� ��� � ��� � ��� � ��� � ���

+ = + = 2 .

1.1.9

MA MB MI MI IA IB

               

� ���� � ��� � ��� � ��� � �� � ��
+ = + + +3 3 3

    MI IA IB

                  MI

= + +

=

4 3

4

� ��� � �� � ��

� ���
,

 

and

3 3 3MA MB MJ JA MJ JB

               

� ���� � ��� � ��� � �� � ��� � ��
+ = + + +

    MJ JA JB

                  MJ

= + +

=

4 3

4

� ��� � �� � ��

� ���
.  

1.1.11

1. α β= =
4
7

3
7

, .

1.1.13

Since u and v
 

 are non-collinear, we have by Exercises 1.1.11, x y+ = 1 and 

y x− = 0, i.e., x y= =
1
2

 where E is the midpoint of both diagonals.
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1.2 Scalar Product on the Plane

1.2.1 

1. a b =
�
i
�

7

3. a b =
�
i
�

28

1.2.3

1. 60o.

3. 90o.

1.2.5 

Compute 
� � i �

�
a b a b+( ) −( ) = − =a b2 2 0, since a b= .

1.2.7

a b =
�
i
�

− + =675 675 0.

1.2.9

a b a b a b a b

                       a a

� � � � � � � �

� �
+ = − ⇔ + = −

⇔ ( ) +

2 2

2
2 ii
� � � �

i
� �

�
i

b b a a b b

                       a b

+ ( ) = ( ) − + ( )
⇔

2 2 2
2

4
��

�
i
�

=

⇔ =

0

0                       a b

1.2.11

c b a
a b b

b
b a b

a b b

b
a

�
i
� �

�
i
� �

� i
� �

i
�

�
i
� �

�= −
( )













= ( ) −
( )

=2

2

2

��
i
� �

i
�

b a b( ) − ( ) = 0

1.2.13

Since a b
�
i
�

= 0, we have 

a b a b a b

           a a a b b b

      

� � � �
i
� �

�
i
� �

i
� �
i
�

+ = +( ) +( )
= + +

2

2

      a  b= +
� �2 2
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1.2.15










a b 0, i.e., a b.− = =  

1.2.17

1 1
0 1 0 1

1 2
1 2 1 2m m

m m m m


















 = ⇔ + = ⇔ = −• . 

1.2.19

� �i
��

��
��
i
�� �i

�� �i
��

��
��
i
��

v
v w

w
w w v w

v w

w
w w

   

−














= −2 2

                       v w
v w

w
w

             

= −�i
�� �i

��

��
��

2

2

             = 0.
 

1.3 Linear Independence

1.3.1 

Since 

a b
a

a

b

b

b a

b

1
0

3
1

1
0

3
1

3

















 =

⋅
⋅









 +

⋅
⋅









 =

+







+ , we get the vector equation

3 7
3

b a

b

+







 =









. The solution of this system is given by a b= − =2 3 and . 

Thus, we can write 
7
3

2
1
0

3
1









 = −( ) 

















+ 3 .

1.3.3 

Plainly,

a

b
b a a b







 =

− −







 +

+ 







2

1
1 2

1
1

. 
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1.3.5

if a b
1
0

0
1

0
0



















 =









+ , then a b= =0 0 and  . Thus the vectors x  



=










1
0

and y  =
 0

1








  are linearly independent.

1.3.7

2 8
2 7

0
0

a b c

a b c

+ +
+ +









 =









. This vector equation can be written as a system

2 8 0
2 7 0

a b c

a b c

+ + =
+ + = ,

By solving this homogenous system of linear equations with more unknowns 
than equations, we get 
a c b c= − = −3 2,  , thus for c = −1, we get a b= =3 2 and . Therefore, we have 

shown that the vectors 
2
1









, 

1
2









, and 

8
7









  in 2  are linearly dependent 

because in addition to solution a b c= = = 0  for the vector equation 

a b c
2
1

1
2

8
7

0
0



















 +









 =









+ , we also have the solution a b c= = = −3 2 1, ,  and .

1.3.9

Suppose that vectors x


 and y


 are linearly dependent, i.e.,

a bx y
  

+ = 0,

where a b and  are not both zero. If a ≠ 0 , then x y
 

= −
b
a

, and if b ≠ 0 , then 

y x
 

= −
a
b

; either case, the vectors are parallel. Conversely, if x


 and y


 are 

parallel, then either x y  or y x
   

= =c c . In the first case, 1 0⋅ + −( ) =x y
  

c ; in 

the second case, cx y
  

+ −( ) =1 0; in either case, the pair is linearly 
dependent.
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1.3.11

1. k = −7.

1.4 Geometric Transformations in Two Dimensions

1.4.1 

a b= − = −3
1
2

,  

1.4.3

a b

c a
bc a

−








 = −, 2 

1.4.5

L L
1
1

2
2

3
3

1
2









 +



















 =









 =









  and L L

1
1

2
2

1
2

1
2

2
4









 +









 =









 +









 =









. Thus L is 

not linear.

1.4.7

We show that L preserves addition. Let 
x

y
1

1









 and 

x

y
2

2









 be elements of 2. 

Then

L
x

y

x

y
L

x x

y y
1

1

2

2

1 2

1 2









 +



















 =

+
+









  

= 
x x y y

x x
1 2 1 2

1 23 3
+ − −

+








  

= 
x y

x

x y

x
1 1

1

2 2

23 3
−







 +

−







  

= L
x

y
L

x

y
1

1

2

2









 +









  

Thus L  preserves vector addition.
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Now, we show that L  preserves scalar multiplication. Let k  be a scalar.

L k
x

y
L

kx

ky


















 =









  

=
kx ky

kx

−







3  

= k
x y

x

−







3

 

= kL
x

y










Thus L  preserves scalar multiplication and is linear.

1.4.9

The desired transformations are shown in Figures C.3 and C.5.

1.4.11
The desired transformations are shown in Figures C.6 and C.9.
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1.4.13

RH =
−









−









1 0
0 1

3
2

,

1.4.15

The rotation through π / 2  about the point (5,1) is 
0 1 0
1 0 0
0 0 1

−














.

The image of the unit square under this rotation is (6, −3), (5, −3),  
(5, −4), and (6, −4).

1.4.17

1. L L2 1

27
11

 =
−











1.5 Determinants in Two Dimensions

1.5.1

1. −9.

1.5.3

1

1.5.5

det( ) det( )kA k A= 2

1.5.7

det( ) det( )det( ) det( )det( ) det( )AB A B B A BA= = =

1.5.9

r3

��
i=

−

















 = − + =











b

a

c

d
bc ad

a c

b d
det .
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Since the dot product of two vectors is positive if the angle between them 
is less than π / 2 , the determinant is positive if the angle between r2

��
 and 

r3

��
 is less than π / 2 . Thus r2

��
 lies counterclockwise from r1

��
.

1.6 Parametric Curves on the Plane

1.6.1

We have y x t t
y x

-
-

= =4
4

 and so x
y x y x

= 















-
-

-
4

2
4

3

 is the Cartesian 

equation sought.

1.6.3

1. ay cx ad bc− = − , this is a straight line with positive slope.

3. 
x
a

y
b

x
2

2

2

2
1 0− = >, . This is one branch of a hyperbola. 

1.6.5

Observe that y x= +2 1,  so the trace is part of this line. Since in the interval 
0 4; π[ ] , − ≤ ≤1 1sin t , we want the portion of the line y x= +2 1 with 

− ≤ ≤1 1x  (and, thus − ≤ ≤1 3y ). The curve starts at the middle point 0 1,( ) 
(at t = 0), reaches the high point 1 3,( )  at t =

π
2

, reaches its low point 

−( )1 1,  at t =
3
2
π

, reaches its high point 1 3,( ) again at t =
5
2
π

, it goes to its 

low point −( )1 1,  at t =
7
2
π

, and finishes in the middle point 0 1,( )  when 

t = 4π.

1.6.7

2
5

 

1.6.9

1
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1.6.11

2
3

1.6.13

To calculate the arc length S of the cycloid for

x t t y t t= −( ) = −( ) ∈[ ]ρ ρ πsin , cos , ;   1 0 2

8ρ  

1.6.15

x Vt a y Vt a
gt

u Vt a h Vt a
gt

g t
gh

= = −

= = −

+

cos ; sin ,

cos ; sin ,

  

  

2

2

2 4

2

2

4
−−( ) + + =

−( ) ≥ +( ) ⇒ ≤ −( )

V t h u

gh V g h u g u V V gh

2 2 2 2 2

2 2 2 2 2 2 2 2 2

0

2

.

.

1.7 Vectors in Space

1.7.1

22

1.7.3

x y z−( ) − −( ) − −( ) =1 2 1 1 0.  

1.7.5

abc ab bc ca a b c+ + +( ) + + +( ) +2
4
3

π
π

.

1.7.7

x

y

z

t

a

a

a

t
















=
















+
















∈
0
0
1

2

2

, . 
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1.7.9

3
3

 

1.7.11

x y x y x y x x x y y y1 1 2 2 3 3 1
2

2
2

3
2

1
2

2
2

3
2+ + ≤ + + + + .  Now take x a x b x c1

2
2

2
3

2= = =, , 

x a x b x c1
2

2
2

3
2= = =, ,  and y y y1 2 3 1= = = . 

x y x y x y x x x y y y a b c

a b c
1 1 2 2 3 3 1

2
2
2

3
2

1
2

2
2

3
2 2 2 2

2 2 2

+ + ≤ + + + + ⇒ + +( )
≤ + +( ))( )3 .  

1.7.13

x y z+ + = 1
1
6

.

.  

1.7.15

proj  
r b n

n
n

r b n

n

proj  

n
r b 0 0

n
r b

0

0

� �

� �

� �
i�

�
�

� �
i�

�

�

−

−

=
−( )

=
−( )

⋅

=

2

rr n b n

n

a n b n

n

a b n

n
0 i
� �i�

�

�i�
�
i�

�

� � i�

�
−

=
−

=
−( )

.

 

1.8 Cross Product

1.8.1

a b a b a a a b b a b b a b
             

−( )× +( ) = × + × − × + × = ×2

1.8.3

− −




i k  
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1.8.5

2 3 2 2ax a y az a+ − =  

1.8.7

� � � �i�
� �i� �

� � � �
i� �

�
i�

a b c a c b a c c

b c a b a c b c

× ×( ) = ( ) − ( )

× ×( ) = ( ) − (
,

))
× ×( ) = ( ) − ( )

�

� � � �i
� � �i�

�
a

c a b c b a c a b.

,

 

1.8.9
� � � �

�
x x  a b: .∈ ×{ }  

1.8.11

a b c
�
i
� �

×( ) =
















=det
a a a

b b b

c c c

1 2 3

1 2 3

1 2 3

0  if and only if the row vectors a b  and c
  

, ,  

are linearly independent, i.e., if and only if one vector lies in the plane of 
the other two vectors. 

1.8.13
� � i �

� � � � i
�

� � � � � � �

a b c d a b c d

a b c c a b c

×( ) ×( ) = ×( )×( )
×( )× = − × ×( ) = −

.

ii
� � �i�

� �i�
� �i

� �

� � � i
� �

b a c a b c a b c b a

a b c d

( ) − ( )( ) = ( ) − ( )
×( )×( ) =

.

cc a b c b a d c a b d c b a di�
� �i

� � i
� �i�

�
i
� �i

� �i
�

( ) − ( )( ) = ( )( ) − ( )( ).  

1.8.15

1. 

12
18
24

















3. x t y z t= = = −6 0 3 3, , .
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5. 3 29

7. 33
16

29

1.9 Matrices in Three Dimensions

1.9.1

1. A B+ = −
















1 1 5
1 3 2

1 9 1

.

3. AB =
−

−
− −

















0 7 9
2 4 0
1 16 7

1.9.3

First, we will prove that

A

n n

n n

n n2

1 2 3 4 1
0 1 2 3 2 1
0 0 1 2 3 2

0 0 0 0 0 1

=

−
− −
− −
















�
�
�

� � � � � � �
�








.

Observe that A aij= 



, where aij = 1  for i j≤   and aij = 0  for i j> .  Put 

A bij
2 = 



 . Assume first that i j≤ .  Then b a a j iij ik kj

k

n

k i

j

= = = − +
= =

∑ ∑
1

1 1.

Assume now that i j> .  Then b a aij ik kj
k

n

k i

n

= = =
= =

∑ ∑
1

0 0,  proving the first 

statement. Now, we will prove that
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A

n n n n

n n n n

n n
2

1 3 6 10
1

2
1

2

0 1 3 6
2 1

2
1

2

0 0 1 3
3

=

−( ) +( )

−( ) −( ) −( )

−( ) −

�

�

�
22

2
2 1

2

0 0 0 0 0 1

( ) −( ) −( )































n n

� � � � � � �
�

.

For the second part, you need to know how to sum arithmetic progression. 
In our case, we need to know how to sum (assume i j≤  ),

S a S k
k i

j

k i

j

1 2= =
= =

∑ ∑, .   The first sum is trivial: there are j i− + 1  integers in 

the interval i j;  , and hence

S a S a a j i
k i

j

k i

j

1 1 1 1= = = − +( )
= =

∑ ∑=  .  The second sum, we use Gauβ trick: 

summing the sum forwards is the same as summing the sum backwards, 
and so, adding the first two rows below.

S i i i j j

S i j j i i
2

2

1 2 1

1 2 1

= + + + + + + − +

= + − + + + + − +





 

2

2 1

2

2

S i j i j i j i j i j

S i j j i

= +( ) + +( ) + +( ) + + +( ) + +( )
= +( ) − +( )



Which gives S
i j j i

2

1

2
=

+( ) − +( )
⋅  Put now A cij

3 = 



. Assume first that 

i j≤  . since A A A3 2= .

c b a

k i

k i

ij ik
k

n

kj

k i

j

k i

j

k i

j

k i

j

=

= − +( )

= − +

=

=

= = =

∑

∑

∑ ∑ ∑

1

1

1

   

   

   ==
+( ) − +( )

− − +( ) + − +( )

=
− +( ) − +( )

j i j i
i j i j i

j i j i

1
2

1 1

1 2
2

   .
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c b a

k i

k i

ij ik
k

n

kj

k i

j

k i

j

k i

j

k i

j

=

= − +( )

= − +

=

=

= = =

∑

∑

∑ ∑ ∑

1

1

1

   

   

   ==
+( ) − +( )

− − +( ) + − +( )

=
− +( ) − +( )

j i j i
i j i j i

j i j i

1
2

1 1

1 2
2

   .

Assume now that i j> . Then c b aij ik
k

n

kj
k

n

= = =
= =

∑ ∑
1 1

0 0. This finishes the 

proof.

1.9.5

1 1 0
1 0 1
0 1 1

−

−
















.

1.9.7 

0 0 0
0 1 0
0 0 0
















, 

0
4
0

















1.9.9

Not linear, because L

x

x

x

L

x

x

x

x

x

α
α
α
α

α
α

1

2

3

1

2

3

2

3

1































=
















=
































=
















=,but α α
α

α
α

L

x

x

x

x

x

x

x

1

2

3

2

3

2

3

1 















L

x

x

x

L

x

x

x

x

x

α
α
α
α

α
α

1

2

3

1

2

3

2

3

1































=
















=
































=
















=,but α α
α

α
α

L

x

x

x

x

x

x

x

1

2

3

2

3

2

3

1 














.

1.9.11 

1 0 0
0 1 0
0 0 1

−
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1.10 Determinants in Three Dimensions

1.10.1

−10.

1.10.3

aef

1.10.5

d = 2

1.10.7

− − + + −t t t t4 3 218 9 21

1.10.9

−5.

1.10.11

3 3 3 3abc a b c− − −

1.10.13

λ = −1 , and 1

1.11 Some Solid Geometry

1.11.1 
a
2 4

,
π

⋅

1.12 Cavalieri and the Pappus-Guldin Rules

1. Consider a right triangle ∆ABC  rectangle at A  with legs of length 
CA h= and AB r= , as in Figure C1.12.5. 

The cone is generated when the triangle rotates about CA. The gyrating 
curve is the hypotenuse, whose centroid is its center. The length of the 
generating curve is thus r h2 2+  and the length of curve described by 

the center of gravity is 2
2

π π
r

r





 = . The lateral area is thus π r r h2 2+  .
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To find the volume, we gyrate the whole right triangle, whose area is 
rh
2

. 

We need to find the centroid of the triangle. But from Example 1.1.9, we 
know that the centroid G  of the triangle is two thirds of the way from A  
to the midpoint of BC. If ′G is the perpendicular projection of G onto

CA[ ], then this means that ′G  is at a vertical height of h h
2

2
3 3

× = . By simi-

lar triangles 
GG

r
h

h
GG

r′
= ⇒ ′ =

/ 3
3

. Hence, the length of the curve 

described by the center of gravity of the triangle is 
2
3

π r . The volume of 

the cone is thus 
2
3 2 3

2π
π

r
rh

r h× = .

1.12.3

Area =
1
2

2π r  

Volume =
4
3

3π r   

FIGURE C1.12.5 Generating a cone, Exercise 1.12.1.

1.12.5

A m

V m

=
=

11309 7

113097 3

2

3

.

.
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1.13 Dihedral Angles and Platonic Solids

1.13.1

1. Tetrahedron
3. Octahedron
5. Icosahedron

1.13.3

sin
cos /
sin / m

θ π
π2

=
( )
( )

⋅
n

 

1.14 Spherical Trigonometry

1.14.1

Find a vector a  mutually perpendicular to V V1 2

� �����
 and V V1 3

� �����
 and another 

vector and a vector 


b  mutually perpendicular to V V1 3

� �����
 and V V1 4

� �����
. Then 

show that cosθ =
1
3

, where θ  is the angle between a  and 


b.

1.14.3

V
a

aa= × × 





 =( )1

3 2
6 2 3.

1.14.5

V
a

V
a

= +( )× +












= +( ) ⋅

3

3

4
25 10 5 10 22

1
5

4
15 7 5

1.15 Canonical Surfaces

1.15.1

x y z2 2 21
2

1+ = − ,  

or
4 4 12 2 2x y z+ + = .  
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1.15.3

A spiral staircase.

1.15.5

The MapleTM commands to graph this surface are:

 �

 �

FIGURE C1.15.1 (A) Exercise 1.15.5.

 �

FIGURE C1.15.1 (B) Exercise 1.15.5.

1.15.7

Rearranging 

x y z x y z x y z2 2 2 2 2 2 2 21
2

1 0+ +( ) − + +( ) − + +( )( ) − = ,  

we may take A x y z x y z: , :+ + = + + =0 02 2 2 Σ , showing that the surface 

is of revolution. Its axis is the line in the direction 
 



i j k+ + .
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1.15.9

Rearranging 

x y z x y z x y z+ +( ) − + +( ) + + +( ) + =
2 2 2 2 2 2 0,

we may take A x y z x y z: , :+ + = + + =0 02 2 2 Σ  as our plane and sphere. 

The axis of revolution is then in the direction of 
 



i j k+ + .

1.15.11

To show that circular cross section of radius b  actually exist, one may 
verify that the two planes given by a b c z c a b x2 2 2 2 2 2 2 2−( ) = −( )  give cir-
cular cross sections of radius b.

1.16 Parametric Curves in Space

1.16.1

The arc length element is 2 9t t+( )d . We need t = 1 to t = 4. The desired 
length is 42.

1.16.3

Let r( )t lie on the plane ax by cz d+ + = . Then, we must have 

a
t

t
b

t
t

c
t

t
d at bt ct d t

4

2

3

2

2

2
4 3 2 2

1 1 1
1

+
+

+
+

+
= ⇒ + +( ) = +( )

                                               ⇒ + + −( ) − =at bt c d t d4 3 2 0,
 

which means that if 


r( )t  is on the plane ax by cz d+ + = , then t  must 

satisfy the quadratic polynomial p t at bt c d t d( ) ( )= + + − − =4 3 2 0. Hence, 
the tkare coplanar if and only if they are roots of p t( ). Since the coefficient 
of t  in this polynomial is 0, then the sum of the roots of p t( )  taken three 
at a time is 0, that is,

t t t t t t t t t t t t
t t t t t t t t t t t t

t1 2 3 1 2 4 1 3 4 2 3 4
1 2 3 1 2 4 1 3 4 2 3 40+ + + = ⇒

+ + +

11 2 3 4

0

1

t t t

t

=

⇒                                             
11 2 3 4

1 1 1
0+ + + =

t t t
,

 

as required.
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1.16.5

You can parameterize the cylinder y z2 2 16+ =  by y t= 4cos  and z t= 4sin . 
From the equation, x y z= − −8 2 , you obtain that x t t= − −8 16 42cos sin .

1.17 Multidimensional Vectors

1.17.1

1. Put f f x e xx: , . → ( ) = −−1  Clearly f e1 1 00( ) = − = .  Now,

′( ) = −

′′( ) =

−

−

f x e

f x e

x

x

1

1

1,

.
 

If ′( ) =f x 0, then ex− =1 1  implying that x = 1. Thus f  has a single mini-

mum point at x = 1. Thus for all real numbers x, 

0 1 1= ( ) ≤ ( ) = −−f f x e xx ,  

which gives the desired result.

3. Easy Algebra!

1.17.3

By CBS,

a b c d a b c d a b c d+ + +( ) ≤ + + +( ) + + +( ) = + + +( )2 2 2 2 2 2 2 2 21 1 1 1 4 .  

Hence,

8 4 16 5 16 0 0
16
5

2 2−( ) ≤ −( ) ⇔ −( ) ≤ ⇔ ≤ ≤e e e e e .  

The maximum value e =
16
5

 is reached when a b c d= = = = ⋅
6
5

 

1.17.5

Applying the AM-GM inequality, for 1 2, , , n:

n n
n

n
nn n! . ,/ /1 11 2

1 2 1
2

= ( ) <
+ + +

=
+… �

 

With strict inequality for n > 1.
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Chapter 2

Section 2.1 Some Topology
2.1.1 

1. Closed in 2. 

3. Open in 2.

5. Open in 2.

7. Open in 2.

9. Open in 2.

11. Open in 2.

13. Closed in 2.

15. Open in 2.

17. Closed in 2.

19. Closed in 2.

21. Closed in 2 .

2.1.3
1. Open in 3.

3. Neither open nor closed in 3.

5. Closed ball in 3.

7. Closed in 3.

9. Closed in 3.

11. Closed in 3.
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13. Open in 3.

15. Open in 3. 

2.1.5

Since P S∈ 1, which is an open set, P  is an interior point of S1  and there is 

some open ball with center P, which contains only points in S1. Hence, P  
is also an interior of S S1 2∪  and thus this set is an open set.

2.1.7

1. V  is closed set.

3. D  is neither open nor closed set.

5. B  is neither open nor closed set.

7. F  is closed set.

9. K  is closed set.

2.2 Multivariable Functions

2.2.1

1.

 �

 �

 �
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3.

 �

 �

 �
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5.
 �

 �

 �

7. 

 �

 �
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 �

9.

 �

 �

 �
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11.

 �

 �

Or

 �

In 3D

 �

 �
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Or

 �

Or 

 �

 �

 �

 �

 �
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13.

 �

 �

In 3D

 �
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15.

 �

 �

In 3D

 �
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2.2.3

1. Shift g x y,( )  upward 2 units.

3. Reflect g x y,( )  about the xy -plane.

5. Reflect g x y,( )  in the plane x = 0. 

7. Reflect g x y,( ) in the origin.

2.3 Limits and Continuity 

2.3.1
 �

 �

FIGURE 2.3.8 Exercise 2.3.1 for x y x y,( ) − − 4 2 2 .
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2.3.3
 �

 �

FIGURE 2.3.9 Exercise 2.3.2 for x y
x y

,( )
+



1
2 2

.

2.3.5

0

2.3.7 

0

2.3.9

1
3

 

2.3.11

Does not exist

2.3.13

Show that 
x y

x y
xy

3

2 2+( )
≤  for x y, ,( ) ≠ ( )0 0 . So the limit is 0.
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2.3.15

lim ( , ) lim
x x

f x x
x

x x→ →
=

+






 =

0 0

2

2 2

1
2

; lim ( , ) lim
x x

f x
x→ →

=
+







 =

0 0 2
0

0
0

0.

2.3.17

Since lim lim
x y

x y
x y→ →

−
+









 =

0 0

2 2

2 2
1, and lim lim

y x

x y
x y→ →

−
+









 = −

0 0

2 2

2 2
1.

Thus the iterated limits are not equal and therefore, lim ( , )
, ,x y

g x y
( )→( )0 0

, does 
not exist. Hence, g x y( , ) is discontinuous at 0 0,( ). 

2.3.19 

c = 0  

2.4 Definition of the Derivative

2.4.1

F F L L L



 

 



 

x h x x h h x h h+( ) − ( ) = × ( ) + × ( ) + × ( )  

Now, we will prove that
  

h h h× ( ) = ( )L o  as 




h → 0.  

let




h = ( )
=

∑h L ek
k

n

k
1

,  

where the


ek  are the standard basis for n. Then

L h L e

L h L e

L e

k
k

n

k

k
k

n

K

k













h

h

          h

( ) = ( )

( ) ≤ ( )

= ( )

=

=

∑

∑
1

1

,

22

1

1 2

k

n

=
∑









/

,
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hence, 
    





h h h h h e h× ( ) ≤ ( ) ≤ ( )( ) = ( )( )L L L ok

2 2 1 2/

,  

2.5 The Jacobi Matrix

2.5.1

1. 
f x y x y x

f x y x y y
x

y

,

,

( ) = −( )( )
( ) = −( ) −( )

3 3

3 2

3 2 2

3 2

3. 
f x y

y y x

x y

f x y
x x y

x y

x

y

,

,

( ) =
−( )

+( )

( ) =
−( )

+( )

3

3

2 2

2 2 2

2 2

2 2 2

2.5.3

∂
∂

= +( ) +
+( )

+

∂
∂

=
+( )

+

f
x

x x y
z x xy

x y

f
y

z x x y

x y

2 1
2

1

2
1

2 2
2 2 2

2 2

2 2 2

2 2

log

∂∂
∂

= +( )f
z

z x y2 12 2log

2.5.5

∂
∂

( ) =
>
<



x

f x y
x y

x y
,

1
0

2

2

if 
if 

 

and 

∂
∂

( ) =
>
<



x

f x y
x y

y x y
,

0
2

2

2

if 
if 
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2.5.7

∂
∂

= +( )( ) + −( )







∂
∂

= +( )

w
x

u uv y xy u
y
x

w
y

u uv x xy

3 2 3

3 2

2 2

2

cos ;

cos(( ) + −( )u x2 3 ln

2.5.9

g f g f f

g f

( )′ ( ) = ′ ( )( )( ) ′( )( )

= ′( )( ) ′( )( ) =
−

0 1 0 1 0 1

0 1 0 1
0 1
0 0

, , ,

, ,
22 1

















.

2.5.11

′( ) =
−







f r

r

r
,

cos sin
sin cos

θ
θ θ
θ θ

J r r,θ( ) =

2.5.13

′( ) =

−
+( )

−
+( )

−
+( )

−
−( )

f u v

v u

v u

uv

v u

uv

v u

u v

u v

,

2 2

2 2 2 2 2 2

2 2 2

2 2

2 2 2

2

2





















J u v
u v

,( ) =
−
+( )

⋅
1

2 2 2

2.5.15

1

2.5.17

6 62 5t t+
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2.5.19

Differentiating both sides with respect to the parameter a, the integral is 

1
2 23 2 2 2a

b
a

b
a a b

arctan +
+( )

.

2.6 Gradients and Directional Derivatives

2.6.1

∇ ( ) =














g x y x
e

xe

y

y

,
ln

1

2.6.3

∇ ( ) =
−

− +








f x y

x y

x y
,

3
2

2

, ∇( )( ) =








f 1 1

2
1

,

2.6.5

∇ ( ) = +( )









f x y z

xy yz

x y yz z yz

x y yz

, ,
sin( )

cos( ) sin( )
cos( )

2
2

2 2






2.6.7

∇ ( ) =
















∇ ( ) =


f x y z

xe

x e k x y z

zy e

ye

xy e

y

y

xz

xz

xz

, , , , ,
2

0
22

2

2














∇( ) =
+
+

+ +

+ +

,

fk

xy e x y ze

x ye x y e

x

y xz y xz

y xz y xz

2
2

2 2 2

2 2 2

3yy e

f k k f x e

zy e

ye

xy e

y xz

y

xz

xz

xz

2

2

2

2

2

+

















∇ + ∇ =
















+ yy e

xe

x exz

y

y2 2

2

0

















2.6.9

f x y f f x f y f x y xx y, , , , , .( ) ≈ ( ) + ( ) −( ) + ( ) −( ) ⇒ ( ) ≈ +0 0 0 0 0 0 0 0 1  
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This gives

f 0 1 0 2 1 0 1 1 1. , . . . .−( ) ≈ + =  

2.6.11

Consider an arbitrary unit vector u. Then the directional derivative 
satisfies 

∂
∂

= ∇ = ∇ = ∇
f

f f f� i � �
u

 u u cos cosθ θ,

where θ is the angle between ∇f  and u  . Consequently, − ∇ ≤
∂
∂

≤ ∇f
f

f
u

Thus ∂
∂

f
u

is the largest, when θ = 0 (i.e., same direction of ∇f ), and the 

smallest when θ π= (i.e., opposite direction of ∇f ).

2.6.13

∇ ( ) = +( ) − +( )
∇ −( ) = − −

( )

− −
f x y y x y x x y

f

,

,

/

2 2

2 1 2 4

1 5

2 2 

 



i j

i j

u = 33i + 4j

v

 



( )
−( ) = − − = −

;

, / / / .D f 2 1 6 5 16 5 22 5

2.6.15

f x y z

y

x
y z

y
z

( , , ) =
−







 − 


































1

1
2

2

; ∇ −( ) = − − 





 − 






f 0 1 2

1
2

1
4

, ,
 



i j k; P P1 2

3
2
6

� ����
=

−

















, 

�
� ����

u =
P P1 2

7
. D f

P P1 2
0 1 2

6 2 3
14

5
14

� ���� , ,−( ) =
− − +( )

=
−

. The maximal direction is

∇ −( )f 0 1 2, , ; maximum rate is ∇ −( ) =f 0 1 2
21
4

, , .
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2.6.17

1. 

∇ ( ) =
∂
∂

( ) +
∂
∂

( ) +
∂
∂

( )

=
∂
∂

+
∂
∂

i
�

φ φ φ φ

φ φ

U U U U

           U U

x y z

x y

1 2 3

1 22 3
1 2 3+

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

= ∇ + ∇

φ
φ φ φ

φ φ

z x y z
U

U U U

            U Ui
�

i
�

3. 

∇ ×( ) =
∂
∂

−( ) +
∂
∂

−( ) +
∂
∂

−( )i
� �
U V U V U V U V U V U V U V

    

x y z2 3 3 2 3 1 1 3 1 2 2 1

             V
U U

V
U U

V
U

=
∂
∂

−
∂
∂









 +

∂
∂

−
∂
∂









 +

∂
1

3 2
2

1 3
3y z z x

22 1

1
3 2

2
1 3

∂
−

∂
∂











−
∂
∂

−
∂
∂









 +

∂
∂

−
∂
∂









 +

x y

y z z x

U

U
V V

U
V V

U33
2 1∂

∂
−

∂
∂











= ∇ × − ∇ ×

V V

               V U U V

x y
�
i
� �

i
�

2.6.19

Parallel planes have proportional gradients. Therefore, if F x y z x y z, ,( ) = − − −2 2 22 4 16

F x y z x y z, ,( ) = − − −2 2 22 4 16  and G x y z x y z, ,( ) = − + −4 2 4 5, then ∇ ( ) = −
−

















F x y z

x

y

z

, ,
2
4
8

and G x y z, ,( ) = −
















4
2

4
must be proportional, i.e.,

2 4 4 2 8 4 2
2 2

4 2
4

4
4

2
2 2

x k y k z k x k y
k

z
k

k
k k

= − = − − = ⇒ = = =
−

⇒ − 





 − 

, , , , ,






 = ⇒ = ± ⋅16

4 2
5

k

 

Thus, the points are x y z, , , , ,( ) = ± ±










8 2
5

2 2
5

2 2
5

 .
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2.6.21

∇ ( ) =
−
−









 ∇ −( ) =

−










− ∇ −( ) = − + = −

f x y
x

y
f

f

, ; , ;

,

2
2

1 2
2
4

1 2 4 16 200 2 5= −

Thus, the 
v  direction is

−

−
−



















=

−

















2
2 5

4
2 5

1
5

2
5

.

2.6.23

∇ ∇( ) − ∇ =
−

−

















= ∇ × ∇ ×( )i
� � �
f f

x

z

f2

6
0

6 1

 

2.7 Levi-Civita and Einstein

2.7.1

ε ε ε εijk j klm l m ijk klm l mx y z y z x z y x y z
j j i j j i( ) = = ( ) ( )−  

2.7.3

∇ ∇×( ) = ∂ ∂

= ∂ ∂

i �u

               

             

i ijk j k

ijk i j k

u

u

ε

ε

   

               

               

= − ∂ ∂

= − ∂ ∂

=

ε

ε
jik i j k

jik j i k

u

u

−− ∂ ∂

=

ε jik i j ku

               0.
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2.7.5

v
v v

v v

v v

a a b b
a a

bac adf d f c

a b a

∂ ∂ = ∂








 + ∂( )

= ∂ +

2
1
2

1

ε ε

          
22

∂( ) − ∂( )
= ∂ − ( ) ∂

b a a abc adf d f c

a b a abc adf d

v v v v

v v v

ε ε

ε ε          ff c

a b a bd cf bf cd d f c

v

v v v v

( )
= ∂ − −( ) ∂( )
=

          

          

δ δ δ δ

vv v v v v v

v v v v v v
a b a b a c c b c

a b a a b a a a b

∂ − ∂( ) + ∂( )
= ∂ − ∂( ) + ∂          (( )
= ∂          v va a b

 

2.8 Extrema

2.8.1

There is one critical point 1 1,( ).

2.8.3

The principle minors are 8 8 4z − −;  and 8. At z = 1 2/ , the matrix is nega-
tive definite and the critical point is thus a saddle point.

2.8.5

1 1
1
2

, ,−





  and − −






1 1

1
2

, , are the critical points. Now, 1 1
1
2

, ,−





 is a sad-

dle point. − −





1 1

1
2

, , is also a saddle point.

2.8.7

As x → +0  then f x x x, ,( ) > 0  and f x x x, ,−( ) < 0, which means that in 

some neighborhood of 0 0 0, ,( )  is a saddle point.

2.8.9

∂
∂

( ) = ( ) =
∂
∂

( ) =
f
x

g
f
y

0 0 0 0 0 0, , ,  
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Hf
g

g
0 0

0 0
0 0

, ,( ) =
− ′( )

− ′( )








  

Regardless of the sign of, ′( )g 0  the determinant of this last matrix is

− ′( )( ) <g 0 0
2

, and so (0, 0) is a saddle point.

2.8.11 

f 18 13 14 13/ , /−( )  is not extremum.

2.8.13

f 1 3 2 37 4, / /( ) =  is a local maximum.

2.8.15

The normal above a critical point for g  is 0 0 1, ,( ), which is a vertical vec-
tor. Thus, the tangent plane is horizontal at any critical point.

2.8.17

Maximum = 
3 3

4
, minimum = −

3 3
4

2.8.19

Minimum = 
4 2

1 2 3

A
L L L+ +

 

2.9 Lagrange Multipliers

2.9.1

The maximum volume is

abc
S

=
( )
( )

3

3
6

.   

The previous result can be simply obtained by using the AM-GM inequality:

S ab bc ca
ab bc ca abc abc

S
3

2 2 2
3

2 2 2 2
6

1 3 2 3
3 2

3
=

+ +
≥ ( )( )( )( ) = ( ) ⇒ ≤

/ /
/

/22
⋅  
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Equality happens if

2 2 2
6

ab bc ca a b c
S

= = ⇒ = = = ⋅  

2.9.3

Using CBS,

x y x y
x y

+
≤

+





 = ⇒ + ≤ =

3
2

81
2

36
2

3 2 6 2 3
4 4 1 4 1 4

1 4
3 4 5 4

/ /

/
/ / .  

2.9.5

The desired maximum is thus 

f f−( ) = −( ) =2 2 2 2 4, ,  

and the minimum is 

f f1 2 1 2 1 2 1 2 1/ , / / , / .( ) = − −( ) =  

2.9.7

The first point gives an absolute maximum of 18
12 14

7
+  and the second 

an absolute minimum of 18
12 14

7
− .

2.9.9

( ), ,0 2 1  yields a maximum and that ( ), ,0 2 1−  yields a minimum.

2.9.11

f x y x y e x y e
a

a b
b

a b
ea b x y a b

a b

, .( ) = ≤ ≤
+







 +









− +( ) − −1 1
 

2.9.13

The maximum =
k k k1 2 3

27
. 
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Chapter 3

3.1 Differential Forms

3.1.1 

1. 0-forms →  C. Functions forms

3. 2-forms →  A. Surface elements

3.1.3 

d d d d d d d

    d d d d d

ω = ( ) ∧ − ( ) ∧ + ( ) ∧

= +( ) ∧ − +(
xy x xy y xy z z

y x x y x y x x y

2 2

)) ∧

+ + +( ) ∧

= ∧ + ∧ −

d

   d d d d

    d d d d d

y

y z x xyz y xy z z z

y x x x y x y

2 3 3 2 22 3

xx y x y y

y z x z xyz y z xy z z z

x y x

∧ − ∧

+ ∧ + ∧ + ∧

= ∧

d d d

  d d d d d d

    d d

2 3 3 2 22 3

−− ∧ + ∧ + ∧
= − ∧ − ∧ + ∧ +

y x y y z x z xyz y z

x y y x y y z x z

d d d d d d

   d d d d d d

2 3 3

2 3

2

2xxyz y z

x y x y y z x z xyz y z

3

2 3 32

d d

   d d d d d d

∧

= − −( ) ∧ + ∧ + ∧

 

3.1.5 

From d d dx r r= −cos sinθ θ θ  and d d dy r r= +sin cosθ θ θ , we obtain 

d d d d d d

           d

x y r r r r

r r

∧ = ⋅ ∧ − ⋅ ∧
= ∧

cos cos sin sin

cos

θ θ θ θ θ θ
θ2 dd d d d dθ θ θ θ+ ∧ = +r r r rsin2

Note that, d dr r∧ = 0  and d dθ θ∧ = 0.

3.1.7 

d d d d

    d d d d d d

  +

ω = ∧ ∧∧ + +

=
∂
∂

∧ +
∂
∂

∧ +
∂
∂

∧

∂
∂

f x g y h z

f
x

x x
f
y

y x
f
z

z x

g
x

dd d d d d dy

   + d d d d d d

x y
g
y

y y
g
z

z

h
x

x z
h
y

y z
h
z

z

∧ +
∂
∂

∧ +
∂
∂

∧

∂
∂

∧ +
∂
∂

∧ +
∂
∂

∧ zz

h
y

g
z

y z
f
z

h
x

x z
g
x

f
     d d d d=

∂
∂

−
∂
∂









 ∧ −

∂
∂

−
∂
∂







 ∧ +

∂
∂

−
∂
∂yy

x y








 ∧d d
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d d d d

    d d d d d d

  +

ω = ∧ ∧∧ + +

=
∂
∂

∧ +
∂
∂

∧ +
∂
∂

∧

∂
∂

f x g y h z

f
x

x x
f
y

y x
f
z

z x

g
x

dd d d d d dy

   + d d d d d d

x y
g
y

y y
g
z

z

h
x

x z
h
y

y z
h
z

z

∧ +
∂
∂

∧ +
∂
∂

∧

∂
∂

∧ +
∂
∂

∧ +
∂
∂

∧ zz

h
y

g
z

y z
f
z

h
x

x z
g
x

f
     d d d d=

∂
∂

−
∂
∂









 ∧ −

∂
∂

−
∂
∂







 ∧ +

∂
∂

−
∂
∂yy

x y








 ∧d d

3.1.9 

d d d d d d d d d d

    d d d d

ω = +( ) ∧ ∧ = ∧ ∧ + ∧ ∧
= ∧ ∧ = − ∧

x z x y x x y z z x y

z z x y z x

2 2

2 2 dd d
   d d d

z y

z x y z

∧
= ∧ ∧

\
.2

3.2 Zero-Manifolds

3.2.1

−12.

3.2.3

−44.

3.2.5

−14.

3.2.7

4.

3.3 One-Manifolds

3.3.1

0
3.3.3

0
3.3.5

8

3.3.7

4 3 8 16
5

− + sin
π
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3.3.9

To solve the Exercise 3.3.7 using Maple, you may use the following code.

 �

 �

Maple gives 16
3
10

cos
π

  rather than our 16
3
10

sin
π

 . To check that these two 

are indeed the same, use the code 

 �

which returns true.

3.3.11

13
3

3.4 Closed and Exact Forms

3.4.1

1. True

3.4.3
exact.

3.4.5

Let w Adxdy Bdxdz Cdydz1 = + + . Since dw1 0= , it follows that Bw = 0  and
Cw = 0. B and C do not depend on w. Now, let B b C cz z= =, , and
β2 = +bdx cdy. Then w w d Fdxdy2 1 2= + =β  has no terms involving dw  

or dz, or dw2 0= . This implies that Fz = 0  and Fw = 0. Now let f Fy = , 
where f  and F  depend only on x  and y. Then, let β3 = fdx  and notice 

that w d2 3 0+ =β . Therefore,

w d d d+ + + =β β β1 2 3 0.

Hence, w d= − − −( )β β β1 2 3
.
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3.5 Two-Manifolds

3.5.1

2

3.5.3

15
16

π
  

3.5.5

4π .

3.5.7

21
8

 

3.5.9

e − 1  

3.5.11

18

3.5.13

1
4

 

3.5.15

4

3.5.17

7

3.5.19

4 2
3

π
π

+( )
 

3.5.21

8
5

4
5

5
+









arcsin  
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3.5.23

2
3

2
8
9 3

loge + −
π

 

3.5.25

8
3

 

3.5.27

Since f  is positive and decreasing,

f x f y y x f x f y x y( ) ( ) −( ) ( ) − ( )( ) ≥∫∫ 0

1

0

1
0d d ,  

from where the desired inequality follows.

3.5.29
Since,

f x x y f x x( ) = ( )∫∫ ∫0

1

0

1

0

1
 d d  d ,  

the desired inequality is established.

3.5.31

e
ab

a b2 2 1−
 

3.5.33

Since at least one of the sides of each Rk  is an integer. Since

sin sin sin sin ,2 2 2 2
1

π π π πx y x y x y x y
R R

k

N

k
∫ ∫∑=

=

 d d  d d  

we deduce that at least one of the sides of R  is an integer, finishing the 
proof.

3.5.35
n
2
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3.5.37

275
54

 

3.6 Change of Variables in Two Dimensions

3.6.1

d d d dx y u v∧ = ∧
1
2

 

3.6.3

b a−
4

 

3.6.5

13
6

2 2−( )sin .

3.6.7

0

3.6.9

255
4

⋅

3.6.11

1
3

1
12

6
1

12
2+ − ⋅sin sin

3.7 Change to Polar Coordinates

3.7.1

49
2
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3.7.3

π 2
12

  

3.7.5

π
18

16
9

3− +  

3.7.7
π
8

  

3.7.9

π 2
4

  

3.7.11

1. π 1 2−( )−e a .  

3. First observe that J e xa
x

a

a
= ( )−

−∫
2

2

d .  Since both Ia
 and I

a 2
 tend 

to π  as a → +∞, we deduce that Ja → π. This gives the result.

3.7.13

x y y xd d d d

d d

− = ( ) +( )
− ( ) −( ) =

ρ θ θ ρ ρ θ θ

ρ θ θ ρ ρ θ θ ρ

cos sin cos

sin cos sin 2dd

             

θ 

1
2

1
2

1
2

2
0

2

0

2 2

0
ρ θ θ θ θ θ π θ

π π π
d d + d∫ ∫ ∫= ( )( ) = ( )( ) +( )( )( )f f f /  

< =∫
1
2

4
0

2
dθ π

π /
,  a contradiction.
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3.8 Three-Manifolds

3.8.1

1
6  

3.8.3

27
8

 

3.8.5

     f x y z dzdydx
x y

, ,( )
− −( )

∫∫∫ 0

12 3 2

6
0

3

0

1
.

3.8.7

2.

3.8.9

3 − e.

3.8.11

1
6

⋅

3.8.13

16
3

 

3.9 Change of Variables in Three Dimensions

3.9.1
Cartesian:

d d dz x y
x y

x y

y

y

2 2

2 2

2

2

1

1

1

1

+

+

− −

−

− ∫∫∫  
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Cylindrical: 

r z r
r

r
d d dθ

π

20

2

0

1

∫∫∫  

Spherical:

r r2
00

2

4

2 2cos / sin

/

/
sin

φ φπ

π

π
φ θ φ

( ) ( )
∫∫∫ d d d  

The volume is 
π
3

 .

3.9.3

Cartesian:

d d dz x y
x y

y

y

1

4

3

3

3

3 2 2

2

2 − −

− −

−

− ∫∫∫

Cylindrical: 

r z r
r

d d dθ
π

1

4

0

2

0

3 2−

∫∫∫

Spherical:

r r2
1

2

0

2

0

3

/cos

/
sin

φ

ππ
φ θ φ∫∫∫ d d d

The volume is 
5
3
π

 .

3.9.5
π
96

  

3.9.7

π 2  

3.9.9

4
5
π

⋅
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3.9.11

81
2
π

  

3.9.13

2
9
π

  

3.10 Surface Integrals

3.10.1

13 2
3

 

3.10.3

4
3
π

  

3.10.5

4 2π R n/  .

3.10.7

8 2

3.10.9

3
4
π

⋅

3.10.11
π
48

17 13 2/ .−( )  

3.11 Green’s, Stokes’, and Gauss’ Theorems

3.11.1

−4  

3.11.3

16π .  
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3.11.5

4
3

3R
.

3.11.7

−
2
3

3.11.9

0.

3.11.11

1
30

.

3.11.13

−
96
5

 

3.11.15

−
1
20

 

3.11.17

240

3.11.19

96π . 

3.11.21

3
2

⋅

3.11.23

−2π .
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A P P E N D I XD
FORMULAS

In This Appendix 

 l Trigonometric Identities
 l Hyperbolic Functions
 l Table of Derivatives
 l Table of Integrals
 l Summations (Series)
 l Logarithmic Identities
 l Exponential Identities
 l Approximations for Small Quantities
 l Vectors

D.1 Trigonometric Identities

cot
tan

θ
θ

=
1

, sec
cos

θ
θ

=
1

, csc
sin

θ
θ

=
1

tan
sin
cos

θ
θ
θ

= , cot
cos
sin

θ
θ
θ

=

sin cos2 2 1θ θ+ = , tan sec2 21θ θ+ = , cot csc2 21θ θ+ =

sin( ) sin− = −θ θ , cos( ) cos− =θ θ , tan( ) tan− = −θ θ

csc( ) csc− = −θ θ , sec( ) sec− =θ θ , cot( ) cot− = −θ θ
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cos cos cos sin sinθ θ θ θ θ θ1 2 1 2 1 2±( ) = 

sin sin cos cos sinθ θ θ θ θ θ1 2 1 2 1 2±( ) = ±

tan
tan tan

tan tan
θ θ

θ θ
θ θ1 2

1 2

1 21
±( ) =

±


cos cos cos( ) cos( )θ θ θ θ θ θ1 2 1 2 1 2

1
2

= + + − 

sin sin cos( ) cos( )θ θ θ θ θ θ1 2 1 2 1 2

1
2

= − − + 

sin cos sin( ) sin( )θ θ θ θ θ θ1 2 1 2 1 2

1
2

= + + − 

cos sin sin( ) sin( )θ θ θ θ θ θ1 2 1 2 1 2

1
2

= + − − 

sin sin sin cosθ θ
θ θ θ θ

1 2
1 2 1 22

2 2
+ =

+









−









sin sin cos sinθ θ
θ θ θ θ

1 2
1 2 1 22

2 2
− =

+









−









cos cos cos cosθ θ
θ θ θ θ

1 2
1 2 1 22

2 2
+ =

+









−









cos cos sin sinθ θ
θ θ θ θ

1 2
1 2 1 22

2 2
− = −

+









−









a b a b
b
a

cos sin cosθ θ θ φ φ− = + +( ) 





2 2  , where =tan-1

a b a b
b
a

sin cos sinθ θ θ φ φ+ = + +( ) 





2 2  , where =tan-1

cos( ) sin90 − =θ θ , sin( ) cos90 − =θ θ , tan( ) cot90 − =θ θ

cot( ) tan90 − =θ θ , sec( ) csc90 − =θ θ , csc( ) sec90 − =θ θ

cos( ) sinθ θ± =90� ∓ , sin( ) sinθ θ± = ±90 , tan( ) cotθ θ± = −90
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cos( ) cosθ θ± = −180 , sin( ) sinθ θ± = −180 , tan( ) tanθ θ± =180

cos cos sin2 2 2θ θ θ= − , cos sin2 1 2 2θ θ= − , cos cos2 2 12θ θ= −

sin sin cos2 2θ θ θ= , tan
tan
tan

2
2

1 2
θ

θ
θ

=
−

cos cos sin3 4 33θ θ θ= −

sin sin sin3 3 4 3θ θ θ= −

sin
cosθ θ

2
1

2
= ±

−
, cos

cosθ θ
2

1
2

= ±
+

, 

 tan
cos
cos

θ θ
θ2

1
1

= ±
−
+

, tan
sin

cos
θ θ

θ2 1
=

+
, tan

cos
sin

θ θ
θ2

1
=

−

sinθ
θ θ

=
− −e e

j

j j

2
, cosθ

θ θ

=
+ −e ej j

2
 ( j = −1 ), tanθ

θ θ

θ θ
=

−
+( )

−

−

e e
j e e

j j

j j

e jj± = ±θ θ θcos sin  (Euler’s identity)

1 57 296rad = . 

π = 3 1416.

D.2 Hyperbolic Functions

cosh x
e ex x

=
+ −

2
, sinh x

e ex x

=
− −

2
, tanh

sinh
cosh

x
x
x

= ,  

coth
tanh

x
x

=
1

, sech
cosh

x
x

=
1

, csch
sinh

x
x

=
1

sin sinhjx j x= , cos coshjx x=

sinh sinjx j x= , cosh cosjx x=

sin( ) sin cosh cos sinhx jy x y j x y± = ±

cos( ) cos cosh sin sinhx jy x y j x y± = 

sinh( ) sinh cosh cosh sinhx y x y x y± = ±

cosh( ) cosh cosh sinh sinhx y x y x y± = ±
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sinh( ) sinh cos cosh sinx jy x y j x y± = ±

cosh( ) cosh cos sinh sinx jy x y j x y± = ±

tanh( )
sinh

cosh cos
sin

cosh cos
x jy

x
x y

j
y

x y
± =

+
±

+
2

2 2
2

2 2

cosh sinh2 2 1− =x

sech h2 2 1+ =an x

D.3 Table of Derivatives

y = dy
dx

=
 

c (constant) 0

cxn (n any constant) cnxn−1

eax aeax

ax ( a > 0 ) a ax ln

ln x ( x > 0 )
1
x

c
xa

−
+

ca
xa 1

loga x
loga e

x

sin ax a axcos

cos ax −a axsin

tan ax a ax
a

ax
sec

cos
2

2
=

cot ax − =
−

a ax
a
ax

csc
sin

2
2

sec ax
a ax

ax
sin

cos2

csc ax
−a ax

ax
cos

sin2
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arcsin sinax ax= −1
a
a x1 2 2−

arccos cosax ax= −1
−
−

a
a x1 2 2

arctan tanax ax= −1
a
a x1 2 2+

arc cot cotax ax= −1
−

+
a

a x1 2 2

sinh ax a axcosh

cosh ax a axsinh

tanh ax
a

axcosh2

sinh−1 ax
a
a x1 2 2+

cosh−1 ax
a

a x2 2 1−

tanh−1 ax
a
a x1 2 2−

u x v x( ) ( )+
du
dx

dv
dx

+

u x v x( ) ( ) u
dv
dx

v
du
dx

+

u x
v x
( )
( )

1
2v

v
du
dx

u
dv
dx

−







1
v x( )

−1
2v

dv
dx

y v x( ( ))
 

dy
dv

dv
dx

y v u x( ( ( ))) dy
dv

dv
du

du
dx
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D.4 Table of Integrals

a dx ax c∫ = + ( c is an arbitrary constant)

x dy xy y dx  ∫ ∫= −

x dx
x
n

c nn
n

 , ∫ =
+

+ ≠ −
+1

1
1( )

1
x

dx x c∫ = + ln

e dx
e
a

cax
ax

∫ = +

a dx
a

a
c ax

x

∫ = + >
ln

( )       for 0

ln ln ( )x dx x x x c x∫ = − + >   for 0

sin
cos

ax dx
ax

a
c∫ =

−
+ 

cos
sin

ax dx
ax

a
c∫ = + 

tan
ln cos

ax dx
ax

a
c∫ =

−
+ 

cot
ln sin

ax dx
ax

a
c∫ = + 

sec
ln

sin
sinax dx

ax
ax

a
c∫ =

−
−
+









+ 

1
1

2

csc
ln

cos
cosax dx

ax
ax

a
c ∫ =

−
+









+

1
1

2

1
2 2

1

x a
dx

x
a

a
c

+
=









+∫
−

 
tan
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1
22 2

1

x a
dx

x a
x a
a

c

x
a

a
c

−
=

−
+









+









+∫
−

    or  
ln tanh

1
22 2a x

dx

x a
x a
a

c
−

=

+
−









+∫     
ln

1
2 2

1

a x
dx

x
a

c
−

= 





 +∫ − sin

1
2 2

1

2 2

a x
dx

x
a

a
c x x a c

+
=









+ + +( ) +∫
−

    or  
sinh

ln

1
2 2

2 2

x a
dx x x a c

−
= + −( ) +∫  ln

1
2 2

1

x x a
dx

x
a

a
c

−
=









+∫
−

 
sec

xe dx
ax e

a
cax

ax

∫ =
−( )

+ 
1
2

x ax dx
ax ax ax

a
ccos

cos sin
∫ =

+
+ 

2

x ax dx
ax ax ax

a
csin

sin cos
∫ =

−
+ 

2

x x dx
x

x
x

cln ln∫ = − + 
2 2

2 4

xe dx
e ax

a
cax

ax

∫ =
−

+ 
( )1

2

e bx dx
e a bx b bx

a b
cax

ax

cos
cos sin

∫ =
+( )

+
+ 

2 2

e bx dx
e b bx a bx

a b
cax

ax

sin
cos sin

∫ =
− +( )

+
+ 

2 2
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sin
sin2

2
2

4
x

x x
c∫ = − + dx

cos
sin2

2
2

4
x

x x
c∫ = + + dx

tan tan2 x dx x x c∫ = − + 

cot cot2 x dx x x c∫ = − − + 

sec tan2 x dx x c = +∫
csc cot2 x dx x c = − +∫
sec tan secx x dx x c  = +∫
csc cscx x dx x c cot  = − +∫

D.5 Summations (Series)

D.5.1 Finite Element of Terms

a
a

a
na a

N a Na

a
n

n

N N
n

n

N N N

=

+

=

+

∑ ∑=
−

−
=

− +( ) +

−( )0

1

0

1

2

1
1

1 1

1
   ;      











=
+( )

=
+( ) +( )

= =

=

∑ ∑n
N N

n
N N N

n

n

N

n

N

n

N

0

2

0

0

1
2

1 2 1
6

  ;      

∑∑

∑

+( ) =
+( ) +( )

+( ) = −

=

n
N N N

a b NC a b NCN

n
N n n

n

N

1
1 2
3

0

  ;   

 , where nn N n
nNC

NP

n
N

N n n
= = = − −( )!

!
! !

a
a

a
na a

N a Na

a
n

n

N N
n

n

N N N

=

+

=

+

∑ ∑=
−

−
=

− +( ) +

−( )0

1

0

1

2

1
1

1 1

1
   ;      











=
+( )

=
+( ) +( )

= =

=

∑ ∑n
N N

n
N N N

n

n

N

n

N

n

N

0

2

0

0

1
2

1 2 1
6

  ;      

∑∑

∑

+( ) =
+( ) +( )

+( ) = −

=

n
N N N

a b NC a b NCN

n
N n n

n

N

1
1 2
3

0

  ;   

 , where nn N n
nNC

NP

n
N

N n n
= = = − −( )!

!
! !

D.5.2 Infinite Element of Terms

x
x

x

nx
x

x

n x

n

n

n

n

k n

n

=

∞

=

∞

=

∞

∑

∑

∑

=
−

<( )

=
−( )

<( )

=

0

0
2

0

1
1

1

1
1

1

,  

,  

;

lim
aa

k
k

k a

n

n

a
x

x e
x

n

→ −

=

∞

−( ) ∂
∂ −







 <( )

−( )
+

= − +∑

0

0

1 1

1
2 1

1
1
3

1
5

,   ;

−− + =

= + + + + =

= = +

=

∞

=

∞

∑

∑

1
7

1
4

1
1

1
2

1
3

1
4

1
6

1

2
0

2 2 2
2

0

...

...

!

π

π
n

e
x
n

n

x
n

n

11
1

1
2

1
3

1
1

2 3

0

2

! ! !
...

ln
!

ln
!

ln

x x x

a
a x
n

a x a x
x

n n

n

+ + +

=
( )

= +
( )

+
( )

=

∞

∑
22 3 3

1

2 3

2 3

1
1

2 3

!
ln

!
...

ln ...

+
( )

+

( ) = −
±( )

= ± − ± −
=

∞

∑

a x

x
x

n
x

x x
n n

n

± ,   x

x
x

n
x

x x x
n n

n

<( )

=
−( )

+( )
= − + − +

+

=

∞

∑

1

1
2 1 3 5 7

2 1

0

3 5 7

 

sin
! ! ! !

...

coss
! ! ! !

...

tan

x
x

n
x x x

x x
x x

n n

n

=
−( )
( )

= − + − +

= + +

=

∞

∑ 1
2

1
2 4 6

3
2
1

2

0

2 4 6

3 5

55
1

1
2 1 3 5 7

11
2 1 3 5 7

+ <( )

=
−( )

+
= − + − + <(−

+

...

tan ...,

,  x

x
x

n
x

x x x
x

n n

))
=

∞

∑
n 0
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x

x
x

nx
x

x

n x

n

n

n

n

k n

n

=

∞

=

∞

=

∞

∑

∑

∑

=
−

<( )

=
−( )

<( )

=

0

0
2

0

1
1

1

1
1

1

,  

,  

;

lim
aa

k
k

k a

n

n

a
x

x e
x

n

→ −

=

∞

−( ) ∂
∂ −







 <( )

−( )
+

= − +∑

0

0

1 1

1
2 1

1
1
3

1
5

,   ;

−− + =

= + + + + =

= = +

=

∞

=

∞

∑

∑

1
7

1
4

1
1

1
2

1
3

1
4

1
6

1

2
0

2 2 2
2

0

...

...

!

π

π
n

e
x
n

n

x
n

n

11
1

1
2

1
3

1
1

2 3

0

2

! ! !
...

ln
!

ln
!

ln

x x x

a
a x
n

a x a x
x

n n

n

+ + +

=
( )

= +
( )

+
( )

=

∞

∑
22 3 3

1

2 3

2 3

1
1

2 3

!
ln

!
...

ln ...

+
( )

+

( ) = −
±( )

= ± − ± −
=

∞

∑

a x

x
x

n
x

x x
n n

n

± ,   x

x
x

n
x

x x x
n n

n

<( )

=
−( )

+( )
= − + − +

+

=

∞

∑

1

1
2 1 3 5 7

2 1

0

3 5 7

 

sin
! ! ! !

...

coss
! ! ! !

...

tan

x
x

n
x x x

x x
x x

n n

n

=
−( )
( )

= − + − +

= + +

=

∞

∑ 1
2

1
2 4 6

3
2
1

2

0

2 4 6

3 5

55
1

1
2 1 3 5 7

11
2 1 3 5 7

+ <( )

=
−( )

+
= − + − + <(−

+

...

tan ...,

,  x

x
x

n
x

x x x
x

n n

))
=

∞

∑
n 0

D.6 Logarithmic Identities

log lne a a=  (natural logarithm)

log log10 a a=  (common logarithm)

log log logab a b= +

log log log
a
b

a b= −

log loga n an =

MVC_MusaCH07_Appendix D.indd   403 11/20/2014   5:36:01 PM



404 • Multivariable and vector calculus

D.7 Exponential Identities

e x
x x xx = + + + + +1
2 3 4

2 3 4

! ! !
... , where e  2 7182.

e e ex y x y= +

e ex n nx( ) =

ln e xx =

D.8 Approximations for Small Quantities

If a  1 , then 

ln( )1+ a a

e aa
 1+

sin a a

cos a  1

tan a a

1 1±( ) ±a nan


D.9 Vectors

9.1 Vector Derivatives

1. Cartesian Coordinates

Coordinates (x, y, z)

Vector A a a a= + +A A Ax x y y z z

Gradient ∇ =
∂
∂

+
∂
∂

+
∂
∂

A a a a
A
x

A
y

A
zx y z
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Divergence ∇ =
∂
∂

+
∂

∂
+

∂
∂

⋅⋅ A
A
x

A

y
A
z

x y z

Curl 

∇ × =
∂
∂

∂
∂

∂
∂

=

=
∂
∂

−
∂

∂








 +

∂
∂

−
∂

A

a a a

a

x y z

x y z

z y

x
x z

x y z

A A A

A
y

A

z
A
z

A
∂∂







 +

∂

∂
−

∂
∂









x

A

x
A
yy

y x
za a

Laplacian ∇ =
∂
∂

+
∂
∂

+
∂
∂

2
2

2

2

2

2

2
A

A
x

A
y

A
z

2. Cylindrical Coordinates

Coordinates (r, f, z)

Vector A a a a= + +A A Az zρ ρ φ φ

Gradient ∇ =
∂
∂

+
∂
∂

+
∂
∂

A a a a
A A A

z zρ ρ φρ φ

1

Divergence ∇ =
∂

∂
+

∂

∂
+

∂
∂

.A
1 1
ρ ρ

ρ
ρ φρ

φ( )A
A A

z
z

Curl 

∇ × =
∂

∂
∂

∂
∂
∂

=

=
∂
∂

−
∂

∂








 +

∂

∂

A

a a a

a

1

1

ρ

ρ

ρ φ
ρ

ρ φ

ρ φ

ρ φ

φ
ρ

ρ

z

z

z

z
A A A

A A

z

A

z
−−

∂
∂









 +

∂
∂

−
∂

∂










A
x

A
A

z
zρ ρ

ρ
φφ φ

ρa a
1

( )

Laplacian ∇ =
∂

∂
∂
∂









 +

∂
∂

+
∂
∂

2
2

2

2

2

2

1 1
A

ρ ρ
ρ

ρ ρ φ
A A A

z

3. Spherical Coordinates

Coordinates (r, u, f)

Vector A a a a= + +A A Ar r θ θ φ φ
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Gradient ∇ =
∂
∂

+
∂
∂

+
∂
∂

A a a a
A
r r

A
r

A
r

1 1
θ θ φθ φsin

Divergence ∇ =
∂
∂

+
∂

∂
( ) +

∂

∂
⋅⋅ A

1 1 1
2

2

r r
r A

r
A

r

A
r( )

sin
sin

sinθ θ
θ

θ φθ
φ

Curl 

∇ × =

( )
∂
∂

∂
∂

∂
∂

( )

=

=
∂

∂

A

a a a
1

1

2r

r r

r
A rA r A

r

r

r

sin

sin

sin

sin

θ

θ

θ φ
θ

θ

θ φ

θ φ

θθ
θ

φ θ φφ
θ

φ θ( sin )
sin

( )A
A

r
A

r
rA

r

r
r−

∂
∂









 +

∂
∂

−
∂
∂











+
∂

a a
1 1

1
∂∂

−
∂
∂







r

rA
Ar( )θ φθ

a

Laplacian ∇ =
∂
∂

∂
∂







 +

∂
∂

∂
∂







 +

∂2
2

2
2 2 2

21 1 1
A

r r
r

A
r r

A
rsin

sin
sinθ θ

θ
θ θ

AA
∂φ 2

D. 9.2 Vector Identity

1. Triple Products

A B C B C A C A B⋅⋅ ⋅⋅ ⋅⋅×( ) = ×( ) = ×( )

A B C B A C C A B× ×( ) = ⋅( ) − ⋅( )

2. Product Rules

∇ = ∇ + ∇( ) ( ) ( )fg f g g f

∇ = × ∇× + × ∇× + ∇ + ∇( ) ( ) ( ) ( ) ( )A B A B B A A B B A⋅⋅ ⋅⋅ ⋅⋅

∇ ⋅ = ∇ ⋅ + ⋅ ∇( ) ( ) ( )f f fA A A

∇ ⋅ × = ⋅ ∇ × − ⋅ ∇ ×( ) ( ) ( )A B B A A B

∇ × = ∇ × − × ∇( ) ( ) ( )f f fA A A = ∇ × = ∇ × + ∇ ×( ) ( ) ( )f f fA A A

∇ × × = ⋅∇ − ⋅∇ + ∇ ⋅ − ∇ ⋅( ) ( ) ( ) ( ) ( )A B B A A B A B B A
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3. Second Derivative

∇ ⋅ ∇ × =( )A 0

∇ × ∇ =( )f 0

∇ ⋅ ∇ = ∇( )f f2

∇ × ∇ × = ∇ ∇ ⋅ − ∇( ) ( )A A A2

4. Addition, Division, and Power Rules

∇ + = ∇ + ∇( )f g f g

∇ ⋅ +( ) = ∇ ⋅ + ∇ ⋅A B A B

∇ × ×( ) = ∇ × + ∇ ×A B A B

∇








 =

∇( ) − ∇( )f
g

g f f g

g2

∇ = ∇−f nf fn n 1  (n = integer)

D. 9.3 Fundamental Theorems

1. Gradient Theorem 

( ) ( ) ( )∇ ⋅ = −∫ f d f b f a
a

b

l

2. Divergence Theorem 

( )∇ ⋅ = ⋅∫ ∫A A s
volume surface

dv d


3. Curl (Stokes) Theorem

( )∇ × ⋅ = ⋅∫ ∫A s A l
surface line

d d
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4. f d f d
line surface
∫ ∫= − ∇ ×l s

5. f d fdv
surface volume
∫ ∫= ∇s

6. A s A
surface volume

d dv
∫ ∫× = − ∇ ×
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A
addition of vectors, 7–8, 407
addition rule, differentiation, 183
affine transformation, 35
Al-Kashi’s Law of Cosines, 18
AM-GM Inequality, 215
anti-commutativity, 77

differential forms, 218
approximations for small quantities, 

formula, 404
area

of astroid, 59
of parallelogram, 41–42, 80
of quadrilateral, 42–43, 99–100
of trapezoid, 100
of triangle, 44–45

arithmetic
Maple, 298
operations, MATLAB, 305, 310

assignments, Maple, 299
associative

scalar homogeneity, 218
of vector addition, 8

astroid
area of, 59
parametric representation, 58–60
perimeter of, 59

axis command, 318

B
barycenter of triangle, 13
bilinearity, 17, 77
bi-point, 2–3

direction of, 5
equivalence class, 4
Euclidean length, 5–6
sense of, 5

C
canonical surfaces, 119–130
Cartesian coordinates, formula, 404–405
Cartesian equation, of plane, 69, 71–72
Cartesian line, 10
Cauchy-Bunyakovsky-Schwarz 

Inequality (CBS Inequality), 
20–21, 65–66, 176, 214
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Cavalieri’s principle, 103–106
CBS Inequality. See Cauchy-

Bunyakovsky-Schwarz 
Inequality

chain rule, 183, 235
change of variables

in double integrals, 252–261
in triple integrals, 274–278

Chasles’ rule, 7, 11, 23
closed forms, 232–238
Command History Window, 

MATLAB, 305
Command Window, MATLAB, 305
commutativity, 17

of vector addition, 7
continuity, 159–170. See also limits
critical point, 206–209
cross product, 77–86
cube or hexahedron, 112
curl (Stroke) theorem, formula for, 

407–408
Current Folder Window, MATLAB, 

305
curves

hypocycloid, 54–57
parameterizations of, 49–61, 226–

227, 229
cylindrical coordinates, formula, 405

D
derivatives

definition of, 173–176
directional, 191–198
Maple, 301–302
table of, 398–399

determinants
properties, 93–94
in three dimensions, 93–96
in two dimensions, 41–47

diff command
Maple, 302
MATLAB, 336–337

difference of vectors, 8
differential forms, 218–222

properties, 218
differentiation

definition of derivative, 173–176
Einstein’s summation convention, 

200–202
extrema, 204–209
gradients and directional 

derivatives, 191–198
under integral sign, 186–188
Jacobi matrix, 177–188
Kroenecker’s delta, 202
Lagrange multipliers, 211–215
Levi-Civita’s alternating tensor, 203
limits and continuity, 159–170
multivariable functions, 153–157
symbolic expressions, 336–337
topology, 148–149

dihedral angles, 108–112
directional derivatives, 191–198
distributive law for dot product, 

94–95
divergence theorem. See Gauss’s 

theorem
division of vector, formula, 407
document mode, Maple, 296
dodecahedron, 112
double integrals. See also triple 

integrals
change of variables in, 252–261

dsolve ( ) function, 340

E
edge of polyhedral angle, 108
Editor Window, MATLAB, 305
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Einstein’s summation convention, 
200–202

ellipse, parameterizations of, 53, 
57–58, 229

elseif statement, 330–332
else statement, 330–332
equivalence class, bi-point, 4
Euclidean geometry, 22
Euclidean length, bi-point, 5–6
Euler’s formula for 

polyhedrons, 111
exact forms, 232–238. See also closed 

forms
expand command, 299
exponential identities, formula, 404
extrema, 204–209
extreme point, 206

F
face, 108
face angles, 108
factor command, 299
Figure Window, MATLAB, 305
finite element of terms, 402
flow control, MATLAB, 328
for loops, 329
formulas

approximations for small 
quantities, 404

exponential identities, 407
hyperbolic functions, 397–398
logarithmic identities, 403
summations (series)

finite element of terms, 402
infinite element of terms,  

402–403
table of derivatives, 398–399
table of integrals, 400–402
trigonometric identities, 395–397

vectors
derivatives, 404–406
fundamental theorems, 407–408
identity, 406–407

fplot command, 314
Fubini’s Theorem, 240–241
functions

hyperbolic, 397–398
math, MATLAB, 306
multivariable, 153–157
reflection, 33–34
scaling, 32–33
translation, 32–33

fundamental parallelogram, 28–29

G
Gauss’s Theorem, 285–286, 407
geometric transformations in two 

dimensions, 31–39
gradients, 191–198
gradient theorem, formula for, 407
graphing, parametric equations, 49–52
Greek characters, MATLAB, 319
Green’s Theorem, 283–285
grid off command, 318
grid on command, 318

H
Help Window, MATLAB, 305
Hessian matrix, 205–206
hold off command, 316
hold on command, 316
hyperbolic functions, formula,  

397–398
hypocycloid, 54–57

I
icosahedron, 112
identity matrix, 36
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identity transformation, 32
if statement, 330–332
infinite element of terms, 402–403
int(f) command

Maple, 302
MATLAB, 337–338

integrals
double, 252–261
surface, 279–282
table of, 400–402
triple, 274–278

integration. See also differentiation
change of variables

in double integrals, 252–261
in triple integrals, 274–278

change to polar coordinates, 261–265
closed and exact forms, 232–238
differential forms, 218–222
Maple, 302
one-manifolds, 225–230
surface integrals, 279–282
symbolic expressions, 337–338
three-manifolds, 267–272
two-manifolds, 239–247
zero-manifolds, 223–224

iterated limits, 168–169

J
Jacobi matrix, 177–188
Jordan curve, 49

K
Kroenecker’s delta, 202

L
Lagrange multipliers, 211–215
Lagrange’s identity, 81
Launch Pad window, MATLAB, 305
legend command, 317
level curves of surface, 153–156

Levi-Civita’s alternating tensor, 203
limit(f) function, MATLAB, 301–302, 

338
limits

and continuity, 159–170
Maple, 301–302
symbolic expressions, 338

linear combination, vectors, 26–31
linear independence, 26–31
linearity, differential forms, 218
linearly dependent vectors, 27
linear transformation, 35
line color, MATLAB, 313
line integral, calculating, 227–228
line plot, 322
line styles, MATLAB, 312
logarithmic identities, formula, 403
logarithm scaling, two-dimensional 

graphic for, 320
logical operators, 328

M
Maple. See also MATLAB

arithmetic, 298
assignments, 299
integration, 302
limits and derivatives, 301–302
matrix, 302
plots with, 300
symbolic computation, 299
windows of, 296–297
working with output, 299–300

Maple help system, 297
math functions, MATLAB, 306
MATLAB

differentiating symbolic 
expressions, 336–337

integrating symbolic expressions, 
337–338
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limiting symbolic expressions, 338
plotting

three-dimensional, 321–327
two-dimensional, 312–321

programming, 327–328
if, else, and elseif statements, 

330–332
for loops, 329
switch statement, 332–333
while loops, 330

simplifying symbolic expressions, 
334–336

solving equations as symbolic 
expressions, 339–340

summing symbolic 
expressions, 339

symbolic computation, 333–334
Taylor series symbolic expressions, 

338–339
windows of, 304–305

using in calculations, 305–312
matrix

addition, 37
Hessian, 205–206
Jacobi, 177–188
of linear transformation, 35–37
Maple, 302
multiplication, 37
operations, MATLAB, 307
in three dimensions, 86–90

mesh command, 323
mesh plot, 324
multidimensional vectors, 137–144
multivariable functions, 153–157

N
named constants, MATLAB, 309
normalized vectors, 6
norm of a vector, 5–7

O
octahedron, 112
one-manifolds, 225–230
P
Pappus-Guldin rule, 106–107
parabola, parameterizations of,  

51–52
parallelepiped, volume of, 81
parallelogram, area of, 41–42, 80
parametric curves

on plane
astroid, 58–60
ellipse, 53, 57–58
hypocycloid, 54–57
parabola, 51–52

in space, 132–136
parametric equation

of line, 9, 10–11, 66––67
of plane, 68–71

path integral, calculating, 228–229, 
238

perimeter of astroid, 59
permutation, 202
plane

Cartesian equation of, 69,  
71–72

parametric curves on, 49–61
parametric equation of, 68–71
points on, 2–13
vectors and points on, 2–13

platonic solids, 111–112
plot command

Maple-301, 300
MATLAB, 312, 314, 315, 317

plotting, MATLAB, 300
three-dimensional, 321–327
two-dimensional, 312–321

Poincare lemma, 232–234
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points
on plane, 2–13
position vector, 4

point styles, MATLAB, 312
polar coordinates, change to, 261–265
polyhedral angle, 108
position vector, 4
pos, options for, 318
power rules of vector, formula, 407
product rules, 406
programming in MATLAB, 327–328

if, else, and elseif statements, 
330–332

for loops, 329
switch statement, 332–333
while loops, 330

Pythagorean Theorem, 99–100, 103

Q
quadrilateral, area of, 42–43, 99–100

R
rational operators, 328
rectilinear angle of dihedral angle, 

108
reflection function, 33–34
reflection matrix, 36, 90
right-handed coordinate system, 

64–65
right-hand rule, 77
rotating matrix, 36, 89–90

S
saddle point, 206
sandwich theorem, 160
scalar homogeneity, 17, 77
scalar multiplication

of matrix, 37
of vectors, 8–9

scalar product. See also vectors
linear independence, 26–31
on plane, 17–24

scaling function, 32–33
scaling matrix, 35, 89
second derivative, 407
simplification, symbolic expressions, 

334–336
simplify command, 299
solid geometry, 99–103
solve command, 300, 339
solving equations

Maple, 300
as symbolic expressions, 339–340

space, parametric curves in, 132–136
special graphics, MATLAB plots, 321
spherical coordinates, formula, 

405–406
spherical trigonometry, 113–117
Strokes’ Theorem, 287–289

formula for, 407–408
subs command, 334
summations (series)

formulas
finite element of terms, 402
infinite element of terms,  

402–403
sum, symbolic expressions, 339
surface integrals, 279–282. See also 

double integrals; triple integrals
surface plots, 327
surf command, 326
Surveyor’s Theorem, 45–47
switch statement, 332–333
symbolic commands, 334–336
symbolic computation

Maple, 299
MATLAB, 333–334
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symbolic expressions, MATLAB, 333
differentiating, 336–337
integrating, 337–338
limiting, 338
solving equations as, 339–340
simplifying, 334–336
summing, 339
Taylor series, 338–339

symbolic math, 334

T
table of derivatives, formula, 398–399
table of integrals, formula, 400–402
taylor ( ) function, 338–339
Taylor series symbolic expressions, 

338–339
tetrahedron, 112
text command, 317
Thales’ Theorem, 22–24, 100–101
3-dimensional Cartesian space, 64
three-dimensional plotting, 

MATLAB, 321–327
three-manifolds, 267–272
topology, differentiation, 148–149
translation function, 32–33
trapezoid, area of, 100
triangle, area of, 44–45
triangle inequality, 21
trigonometric identities, formula, 

395–397
trihedral angle, 108
triple integrals, change of variables 

in, 274–278
triple product, formula, 406
two-dimensional plotting, MATLAB, 

312–321. See also three-
dimensional plotting

two-manifolds, 239–247

U
unit vector, 6

V
vector addition

associative of, 7–8
commutative of, 7–8

vectors
difference of, 8
dot product of, 18
formulas

derivatives, 404–406
fundamental theorems, 407–408
identity, 406–407

fundamental parallelogram, 28–29
gradient, 191
linear combination, 26–27
linearly dependent, 27
multidimensional, 137–144
on plane, 2–13

computing, 8–9
difference of, 8
norm of, 5–7
scalar multiplication of, 8–9
sense of, 5
unit, 6

in space, 2, 64–74
vertex of polyhedral angle, 108
volume of parallelepiped, 81

W
while loops, 330
Workplace Window, MATLAB, 305
worksheet mode, Maple, 297

Z
zero-manifolds, 223–224
zero matrix, 36
zero vector, 3
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