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PREFACE

The first part of this textbook (Chapters 1–9) includes a review of mathematical 
methods in physics that have direct applicability to problems encountered in 
physics courses at the undergraduate and beginning graduate level. Topics in the 
first nine chapters include basic mathematical operations (algebra, trigonometry, 
and complex numbers), vectors and matrices, calculus, vector calculus, 
ordinary differential equations, special functions, Fourier series and integral 
transformations, partial differential equations, and complex analysis. The second 
part of the textbook (Chapters 10–16) includes examples from classical mechanics, 
electrodynamics, quantum mechanics, statistical mechanics, special relativity, 
general relativity, and relativistic quantum mechanics. The independent learner 
will also benefit from the textbook in learning to apply Maple and MATLAB to his 
or her own research. The textbook is suitable for advanced undergraduates and 
beginning graduate students taking introductory courses on theoretical physics 
and mathematical methods in physics. The text may be used as a supplement to 
core physics classes and to supply reinforcement in mathematical techniques used 
in physics. 

Some key features of the textbook include:

 Many simple examples that target specific skill sets

 End-of-chapter exercises that are specifically designed for skill building

 Examples demonstrating the use of Maple software at the end of most sections

 Examples using MATLAB software at the end of chapters

 Key examples using the Maple Physics package and the MATLAB PDE toolbox

 Mathematical analogies in table form help bridge the gap between topics such 
as electricity and magnetism

 The Lagrangian approach is demonstrated in chapters on mechanics, 
electromagnetics, special relativity, general relativity and relativistic quantum 
mechanics 

It is left to the reader or the professor to decide if a given exercise should be solved 
using Maple, MATLAB, by hand, or by using a combination of approaches. One 
often finds that computer software only provides a partial result and that further 
analysis and reasoning is necessary to forward the problem and to check the 
validity of results. 
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FUNDAMENTALS

Chapter Outline
1.1 Algebra

1.2 Trigonometry

1.3 Complex Numbers

1.4 Elements of Calculus

1.1 ALGEBRA 

In this section, common algebraic equations in physics and astronomy 
are reviewed, including systems of equations and inverse, exponential and 
logarithmic functions. Techniques of completing the square, obtaining common 
denominators and partial fraction decomposition are covered. The numerical 
solution of transcendental equations is then discussed.

1.1.1 Systems of Equations 
Many problems in introductory physics require the simultaneous solution of N 
equations for N unknowns. Systems of linear equations are solved by substitution, 
addition, and matrix methods.
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T
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Figure 1.1.1: Three masses are connected by two cables that travel over frictionless pulleys. Gravity causes the 
system to accelerate with the top mass m2 moving to the right. The coefficient of friction between m2 and the table 
is k.

 Example 1.1.1
From the illustration in Figure 1.1.1, consider a system of three force equations 
with unknown tensions T1, T2 and acceleration a

                                                           T1 – m1g = m1a

 T2 – km2g – T1 = m2a (1.1.1)

                                                           m3g – T2 = m3a
Solve for the acceleration a for m3 > m1

Solution: We may use the addition method adding the left-hand and right-hand 
sides

 ( )3 1 2 1 2 3km g m g m g m m m a− − = + +  (1.1.2)

thus eliminating the unknown tensions T1 and T2 with the resulting acceleration

 
( )

3 1 2

1 2 3

km g m g m g
a

m m m

− −
=

+ +
. (1.1.3)

We can verify this solution is consistent with Newton’s second law with the 
acceleration inversely proportional to the total mass and directly proportional 
to the net force acting on the system. We could have also used the substitution 
method by solving the first and third equations for T1 and T2 and substituting 
those expressions into the second equation to obtain the acceleration. Once the 
acceleration is known, we can then find the unknown tensions.
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1.1.2 Completing the Square 
It is often desirable to express a quadratic form such as

 y = ax2 + bx (1.1.4)

as a squared term plus a constant. This is done by factoring the coefficient of x2 
and adding and subtracting half the coefficient of the linear term squared

 

2 2
2

2 44

b b b
y a x x

a aa

⎛ ⎞
= + + −⎜ ⎟

⎝ ⎠
 (1.1.5)

thus

 
2 2

2 4

b b
y a x

a a

⎛ ⎞= + −⎜ ⎟
⎝ ⎠

.  (1.1.6)

Graphically this equation corresponds to a parabola with vertex (−b/2a, −b2/4a). 
The technique of completing the square may be used to express exponential 
functions in a form that can be easily integrated. For example, after completing 
the square in the argument of the exponential function

 ( )
22

2
24 ,

bb a xax bx aae e e

⎛ ⎞+− ⎜ ⎟+ ⎝ ⎠=
 (1.1.7)

a substitution method could then be applied in evaluating its integral.

1.1.3 Common Denominator 
Rational expressions such as

 1 1

1x x
+

+
 (1.1.8)

may be combined by obtaining a common denominator

 
2

1 1 1 2 1

1 1

x x x

x x x x x x

+ +⎛ ⎞ ⎛ ⎞+ =⎜ ⎟ ⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠
. (1.1.9)

 Example 1.1.2
Find the equivalent resistance Reff of a parallel combination of resistors R1 and R2 
where

 
1 2

1 1 1

effR R R
= +  (1.1.10)
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Solution:  Obtaining a common denominator

 
2 1 2 1

1 2 2 1 1 2

1 1 1

eff

R R R R

R R R R R R R

+
= + =

 
(1.1.11)

we have

 1 2

2 1
eff

R R
R

R R
=

+
.  (1.1.12)

1.1.4 Partial Fractions Decomposition 
Rational expressions may be separated using the method of partial fractions.

 Example 1.1.3
Separate

 
( )2

1 1

1x xx x
=

++
 (1.1.13)

Solution: We write

 ( )
1

1 1

A B

x x x x
= +

+ +
 (1.1.14)

where A and B are to be determined. Multiplying both sides by x(x + 1)

 A(x + 1) + Bx = 1  (1.1.15)

and equating coefficients of powers of x on both sides gives A = 1, A + B = 0  and 
B 1 so that

 
2

1 1 1

1x xx x

−
= +

++
. (1.1.16)

Partial fraction decompositions are useful for evaluating integrals with factorable 
polynomials in the denominator.

1.1.5 Inverse Functions 
The functions f(x) and g(x)  are inverse functions if

 f(g(x)) = g(f(x)) = x (1.1.17)

The inverse of f(x) is written as f−1(x) so that

 f(f−1(x)) = f−1(f(x)) = x. (1.1.18)
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The graphs of a function and its inverse have reflection symmetry about the line 
y = x. To compute the inverse of a function f(x) we write it as y = f(x), interchange 
x  y and solve for 

 y = f−1(x) (1.1.19)

 Example 1.1.4
In computing the inverse of

 
1

( )
1

f x
x

=
−

we write 
1

1
y

x
=

−
 (1.1.20)

Solution: Interchanging x  y gives 
1

1
x

y
=

−
 and 

1
1y

x
= +  thus

 
1 1
( ) 1f x

x

− = + . (1.1.21)

To verify that this is the inverse we check

 ( )1 1
( ) 1

1

1

f f x x

x

− = + =

−

 and ( )1 1
( )

1
1 1

f f x x

x

− = =
+ −

 (1.1.22)

1.1.6 Exponential and Logarithmic Equations 
The logarithm and exponential functions are inverse functions so that if

    x = ay (1.1.23)

we may solve for the exponent

         y = logax (1.1.24)

where a is the base of the logarithm. We frequently encounter base 10

 log10x = logx (1.1.25)

and base e, or natural logarithms

 logex = lnx. (1.1.26)

Note that logaa = log10 = lne = 1. Also, loga1 = log1 = ln1 = 0. To summarize the 
inverse properties of logarithms

 

ln

log

log

ln( )

log(10 ) 10

log ( ) a

x x

x x

xx
a

e e x

x

a a x

= =

= =

= =

 (1.1.27)
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1.1.7 Logarithms of Powers, Products and Ratios 
An important power rule of logarithms is

 lnxn = nlnx. (1.1.28)

Thus, ln 1000 = ln103 = 3ln10.
The log of a product is the sum of logs

 ln(ab) = lna + lnb (1.1.29)

It is important to remember that ln(a + b)  ln a + ln b.
The product of multiple terms such as

 ( )ln lni i

ii

a a= ∑∏  (1.1.30)

is often encountered in statistical mechanics.
The log of a ratio is given by a difference of logs

 ln ln ln
b

b a
a

= −  (1.1.31)

so that

 1
ln ln1 ln lna a

a
= − = −  (1.1.32)

or equivalently,

 
11

ln ln lna a
a

−= = −  (1.1.33)

by the power rule.

1.1.8 Radioactive Decay 

 Example 1.1.5
Calculate the half-life of radioactive nuclei. The number of radioactive nuclei N is 
treated as a continuous variable

 ( ) 0
tN t N e −=  (1.1.34)

where N0 is the number of nuclei at t = 0 and  is a decay constant that depends on 
the type of nuclei.
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Solution: Setting 1
02

( )N t N=  we find the time t such that

 1

2
te − =  (1.1.35)

Taking the natural logarithm of both sides of this equation gives

1
ln

2
t− =  and we obtain the half-life 

ln2
t


= .

1.1.9 Transcendental Equations 
Transcendental equations often involve algebraic or trigonometric equations that 
must be solved by graphical or numerical means. For example, the equation

 5 = (5  x)ex. (1.1.36)

is encountered in the theory of black-body radiation where / Bx hc k T= . This 
equation cannot be solved analytically. In quantum mechanics, the solutions to 
transcendental equations often give the energies of bound state systems.

1.1.10 Even and Odd Functions 
The graphs of even functions have reflection symmetry about the y-axis. A 
function f(x) is even if f(–x) = f(x). Examples of even functions include

 2

1
( )

9
f x

x
=

+
, 3

( )
x

f x e
−=  and 

23( ) xf x e−= . (1.1.37)

The total area between f(x) and the x-axis is the same to the left and to the right of 
the y-axis.

The graphs of odd functions are fl ipped when refl ected about the y-axis. A 
function f(x) is odd if f(–x) = f(x). Examples of odd functions include

 
23

2

1
( ) , ( )  and ( )

9

xx
f x f x f x xe

xx

−= = =
+

 (1.1.38)

An important property of odd functions is that the areas above and below the 
x-axis are equal. The product of two odd functions and the product of two even 
functions are even. The product of an even and an odd function is odd. Many 
functions such as f(x) = x2 + x3 are neither even nor odd.

1.1.11 Examples in Maple
The following worksheet illustrates basic algebraic operations in Maple including 
factoring, collecting and combining terms, expanding expressions, solving 
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equations, and selecting parts of an expression. The numerical evaluation of 
fundamental constants is then demonstrated. Maple examples in this textbook 
are presented in “document mode” where a semicolon (;) following most Maple 
commands is not required. The reader is encouraged to view the Quick Reference 
Card from the Maple Help Menu to compare document mode vs. worksheet 
mode, common operations, and important syntax.

Key Maple operations: assume , collect , combine , convert , denom , evalf , expand , 
factor , GetConstants , lhs , normal , numer , rhs , solve 

Maple packages: with(ScientificConstants )

restart

Factoring

factor(x3 – 1)

 (x – 1)(x2 + x + 1)

factor((x – 1)y + (x – 1)y2 + (x – 1)y3)

 (x – 1) y (y2 + y + 1)

Collecting Terms

poly: = ax2 – bx2

 a x2 – b x2

collect(poly, x)

 (a – b) x2

Combining Terms

combine(ln(a) – ln(b), ln)

 ln(a) – ln(b)

assume(a > 0, b > 0)
combine(ln(a) – ln(b), ln)

 
ln

a

b

⎛ ⎞
⎜ ⎟
⎝ ⎠



combine(exp(x)  exp(y))

 ex + y

combine(sqrt(a + b)sqrt(a – b), radical)
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 ( )( )a b a b+ −   

Expanding Expressions

expand((x + y)(x – y2))

 –xy2 – y3 + x2 + xy

expand
2 2 1

2

x x

x

⎛ ⎞+ +
⎜ ⎟

−⎝ ⎠

 

2 2 1

2 2 2

x x

x x x
+ +

− − −

expand((x – y)(q + r + s))

 qx + rx + sx – q – r – s

Partial Expansions

expand((x – 1)(q + r + s), x – 1)

 (x – 1)q + (x – 1)r + (x – 1)s

Clear Variable

a: = ‘a’

 a

Solving Equations

solve  2 2 21 1 1
, 0 ,{ , } ;

2 2 2
k x m v M V M V m v v V

 
           

( )( ) ( )( )
2 2

2 2_
, _

mRootO f Mm m Z kM x
V v RootO f Mm m Z kM x

M

⎧ ⎫+ −⎨ ⎬= − = + −
⎩ ⎭
convert(%, radical)

 

2

2
,

kM
m x

kMMm m
V v x

M Mm m

⎧ ⎫
⎪ ⎪
⎨ ⎬+= − =⎪ ⎪+⎩ ⎭

eq1: = T1 – m1g = m1a
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– gm1 + T1 = m1a

eq2: = T2 – T1 –  km2g = m2a
– gm2k – T1+ T2 = m2a

eq3: = m3g – T2 = m3a
gm3 – T2 = m3a

solve({eq1, eq2, eq3}, {a, T1, T2});

 

   
 

2 2
, ,

1 3
k k

k

m1g m2 m2 m3 m3g m2 m1 m2
T1 T 2

m m2 m m1 m2 m3

g m2 m1 m3
a

m1 m2 m3

     
 

   
  


 

restart

Selecting Parts of an Expression

21
1: 2

2
eq m g h m v m g R⋅ ⋅= ⋅ = ⋅ + ⋅ ⋅

 
21

2
2

mgh mv mgR 

rhs(eq1)

 
21

2
2

mv mgR+

lhs(eq1)

 mgh

term: 1 2
1

1 2
i

m m
v

m m

−
= ⋅

+

 
 1 2

1 2

i1m m v

m m




numer(term)

 (m1 – m2) vi1

denom(term)

 m1 + m2
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vi1 + term

 
( )1 2 1

1
1 2

i
i

m m v
v

m m

−
+

+

normal(vi1 + term)

 
1 1

1 2

2 iv m

m m+

Numerical Evaluation

convert(3.1416, rational)

 

3927

1250

evalf(Pi, 11)

 3.1415926536

convert(%, rational)

 

103993

33102

evalf(%, 11)

 3.1415926530

restart

Fundamental Constants

with(ScientificConstants)

[AddConstant, AddElement, AddProperty, Constant, Element, GetConstant, 
GetConstants, GetElement, GetElements, GetError, GetIsotopes, 
GetProperties, GetProperty, GetUnit, GetValue, HasConstant, HasElement, 
HasProperty, ModifyConstant, ModifyElement]

GetConstants( )

A[r](alpha), A[r](d), A[r](e), A[r](h), A[r](n), A[r](p), Eh, F, G, G0, KJ, MEarth, 
MSun, Mu, NA, 0, R, REarth, RK, R, Vm, Z0, a0, ae, a, a, b, c, c1,L, c1, c2, e, 0, g, 
ge, g, gn, gp, e, n, p, gamma_primeh, gamma_primep, h, , k, lp, C,, C,n, 
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C,p, C,, C, mp, m , md, me, m[e]/m[mu], mh, m, mn, mp, m, m[tau]c^2, 
mu, 0, B, N, d, mu[d]/mu[e], e, mu[e]/mu[p], mu[e]/mu_prime[p], 
, n, mu[n]/mu_prime[p], p, mu_primeh, mu_prime[h]/mu_prime[p], 
mu_primep, n0, re, p, e, sigma_primep, tp

c: = Constant(c, units)

 

m
Constant ( )

sSI c

evalf(c)

 

8 m
2.99792458 10

s

hbar: = Constant(hbar, units)

 

2m  kg
Constant ( )

sSI 

G: = Constant(G, units)

 

3

2

m
Constant ( )

kg s
SI G

Plancktime: 3=
hbar G

evalf sqrt
c

  
  
  

 

2 3

2
35

m  kg m

s kg s
1.61609744210

m

s
m

s

−

simplify(%)

 1.616097442 10-35 m

Planckmass: =simplify
hbar c

evalf sqrt
G

⎛ ⎞⎛ ⎞⋅⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
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 2.17664105 10-8 kg

Plancktime: 5=simplify
hbar G

evalf sqrt
c

   
      

 5.390720810 10-44 s

0: = Constant(0, units)

 

2 4

0 2Constant ( )
kg m

SI

A s


e: = Constant(e, units)

 ConstantSI(e) C

finestructure: 
2

0

1
=simplify

4

e
evalf

Pi hbar c

⎛ ⎞⎛ ⎞
⋅⎜ ⎟⎜ ⎟⎜ ⎟⋅ ⋅ ⋅⎝ ⎠⎝ ⎠

 0.007297352532

1

finestructure

 137.0359998

1.2 TRIGONOMETRY 

Trigonometry commonly encountered in physics is covered, including polar 
coordinate transformations and trigonometric identities; systems of equations 
involving trig functions are also reviewed below. The law of cosines and 
transcendental equations involving trigonometric equations are also discussed.

1.2.1 Polar Coordinates 
In two dimensions, the Cartesian coordinates (x, y) are related to the polar 
coordinates (r, )

 x = r cos  (1.2.1)

 y = r sin  (1.2.2)

By dividing these equations, we obtain

 tan
y

x
 =  so that 1tan

y

x
 − ⎛ ⎞= ⎜ ⎟

⎝ ⎠
 (1.2.3)
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Squaring and adding x and y gives

                                   x2 + y2 = r2 (cos2  + sin2 ) (1.2.4)

or  x2 + y2 = r2 since cos2  + sin2  = 1 (1.2.5)

1.2.2 Common Identities 
The identities

 2 1
cos (1 cos2 )

2
 = +  (1.2.6)

 2 1
sin (1 cos2 )

2
 = −  (1.2.7)

frequently occur in electromagnetics and quantum mechanics. Adding these we 
verify

 sin2  + cos2  = 1. (1.2.8)

The double angle identity

 sin(2 = 2sin cos   (1.2.9)

is encountered in introductory physics problems involving projectile motion. 
This identity can be verified by substitution of  =  in the relation

 sin( + ) = sin cos  + sin cos  . (1.2.10)

Identities involving the addition of sine and cosine functions

 sin sin 2sin cos
2 2

a b a b
a b

+ −⎛ ⎞ ⎛ ⎞+ = ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (1.2.11)

 cos cos 2cos cos
2 2

a b a b
a b

+ −⎛ ⎞ ⎛ ⎞+ = ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (1.2.12)

are encountered in problems involving the superposition of waves resulting in 
constructive and destructive interference.

 Example 1.2.1
Add the two waves

 1 = A cos(k1x + 1t)   2 = A cos(k2x + 2t) (1.2.13)

in a region of space where the position of linear superposition holds.
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Solution: Using identity (1.2.12) the superposition of the waves is

 1 2 2 cos( )cos( )A kx t kx t   + = + Δ + Δ  (1.2.14)

where 
1 2 1 2 1 2( )/2,  ( ) / 2,  ( )k k k k k k= + = + Δ = −    and 1 2( )  Δ = − . 

 (1.2.15)

1.2.3 Law of Cosines 
For triangles with sides a, b and c

 a2 = b2 + c2 – 2bc cos  (1.2.16)

where a is the side opposite a. For right triangles, a is the hypotenuse and a2 = b2 + 
c2. If  =  then a2 = (b + c)2 and if  = 0 then a2 = (b – c)2.

The law of sines  gives

 sin sin sin

a b c
= =

     (1.2.17)

where the angles  and  are opposite sides b and c, respectively.

1.2.4 Systems of Equations 
Systems of equations involving trig functions such as

 a cos() + b sin() = 0 (1.2.18)

 a sin() + b cos() = c (1.2.19)

occur in mechanical equilibrium problems involving forces and torques. Many 
such systems can be solved by squaring and adding equations, dividing equations, 
and by substitution.

1.2.5 Transcendental Equations 
Transcendental equations frequently involve trigonometric functions such as

 

1/2
2

2
tan 1

a
x

x

−
⎛ ⎞

= − −⎜ ⎟
⎝ ⎠

 (1.2.20)

encountered in quantum mechanics. These require a numerical solution or root 
finding.
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Maple Examples
Basic trig operations are demonstrated in the following Maple worksheet, 
including expanding, combining and converting trig expressions, solving 
trigonometric equations, and numerically solving transcendental equations.

Key Maple operations: combine , convert , expand , fsolve , plot , simplify , solve 

restart

Expanding Trig Expressions

expand(sin(q + r + s))

 sin(q) cos(r) cos(s) – sin(q) sin(r) sin(s) + cos(q) sin(r) cos(s)
      + cos(q) cos(r) sin(s)

expand(2x))

 2sin(x) cos(x)

Combining Trig Expressions

combine(sin(q) cos(r) cos(s) – sin(q) sin(r) sin(s) + cos(q) sin(r) cos(s)
   + cos(q) cos(r) sin(s))

 (sin(q + r + s)

Converting Trig Expressions

convert(sech(x), exp)

 
2

x xe e−+
convert(sin(x)3, exp)

 ( )31

8
Ix IxI e e−−

convert
2

,
x x

trig
e e−

⎛ ⎞
⎜ ⎟+⎝ ⎠

 

1

cosh( )x

convert ( )31
,

8
Ix IxI e e trig−⎛ ⎞−⎜ ⎟

⎝ ⎠
 sin(x)3
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Simplifying Trig Expressions

Range: 
2 2sin( ) cos( )iv theta theta

g

⋅ ⋅
=

 

22 sin( )cos( )iv

g

 

simplify(Range, {2·sin(theta)·cos(theta) = sin(2·theta)})

 

2 sin(2 )iv

g



Trig Equations

eq1 : = Rysin(theta) = a + b

 Rysin() = a + b

eq 2: = Rxcos(theta) = a

 Rxcos() = a

eq 3: 
( )
( )

( )
( )

1 1

2 2

rhs eq lhs eq

rhs eq lhs eq
= =

 
( )
( )

sin

cos

Rya b

a Rx





+
=

simplify(eq3)

 

( )
( )

sin

cos

Rya b

a Rx





+
=

simplify
sin( )

3, tan( )
cos( )

theta
eq theta

theta

⎛ ⎞⎧ ⎫=⎨ ⎬⎜ ⎟
⎩ ⎭⎝ ⎠

 

( )tanRya b

a Rx

+
=

solve(eq3, theta)

 
( )

arctan
Rx a b

Ry a

⎛ ⎞+
⎜ ⎟
⎝ ⎠
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eq 4: = Acos(delta) = 1

 A cos() = 1

eq5 : = Asin(delta) = –1

 A sin() = –1

solve({eq4, eq5}, {Adelta})

{A = – 2 RootOf(2_Z2 – 1),  = arctan( RootOf(2_Z2 – 1), – RootOf(2_Z2 – 1))}

convert(%, radical)

 
3

2,
4

A  = − =

restart

Transcendental Equations

plot { }tan( ),3 ,
2 2

Pi Pi
x x x

⎛ ⎞⋅ = −⎜ ⎟
⎝ ⎠



–15

–10

–5

0

5

10

15

p

8
p

2
3p

8
p

4

x

p

8
p

2
3p

8
p

4
– – – –

Figure 1.2.1: Plot of the functions tan(x) and 3x.

fsolve tan( ) 3 ,
4 2

Pi Pi
x x x

⎛ ⎞= ⋅ =⎜ ⎟
⎝ ⎠



 1.324194450
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fsolve tan( ) 3 ,
2 4

Pi Pi
x x x

⎛ ⎞= ⋅ = − −⎜ ⎟
⎝ ⎠



 1.324194450

fsolve tan( ) 3 ,
8 8

Pi Pi
x x x

⎛ ⎞= ⋅ = −⎜ ⎟
⎝ ⎠



 0.

TransEqn: 
1

tan( )x
x

= =

 
1

tan( )x
x

=

plot { ( ),  ( )},
2 2

Pi Pi
rhs TransEqn lhs TransEqn x

⎛ ⎞= −⎜ ⎟
⎝ ⎠



–30
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–10
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20

30

p

8
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2
3p

8
p

4

x

p

8
p

2
3p

8
p

4
– – – –

Figure 1.2.2: Plot of the functions tan(x) and 1/x.

fsolve ,
4 2

Pi Pi
TransEqn x

⎛ ⎞=⎜ ⎟
⎝ ⎠



 0.8603335890
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fsolve ,
2 4

Pi Pi
TransEqn x

⎛ ⎞= − −⎜ ⎟
⎝ ⎠



 –0.8603335890

1.3 COMPLEX NUMBERS 

Complex numbers have applicability in most areas of physics, including both 
classical and quantum mechanics as well as electricity and magnetism. In this 
section, we review some of the most basic and essential properties of complex 
numbers required for physics and differential equations.

1.3.1 Complex Roots 
The solution to the quadratic equation

az2 + bz + c = 0 is 
2 4

2

b b ac
z

a

− ± −
= . (1.3.1)

If b2 < 4ac then 
24

2

b i ac b
z

a

− ± −
=  (1.3.2)

where 1i = − .

 Example 1.3.1
Solve

 z2 + z + 1 = 0  (1.3.3)

and find the real and imaginary parts of z.

Solution: The quadratic equation gives

 
1 3

2

i
z

− ±
=  (1.3.4)

with Re(z) = –1/2 and ( )Im 3 / 2z = ± , respectively.

1.3.2 Complex Arithmetic 
Any complex number can be written as a sum of real and imaginary parts. Given 
two complex numbers
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 z1 = a + ib and z2 = c + id if z1 = z2 then a = c and b = d.

Addition and subtraction of complex numbers:

 ( ) ( )1 2z z a c i b d± = ± + ±  (1.3.5)

Powers of i:
                                         i0 = 1
                                                        i1 = i
                                                        i2 = –1

 i3 = i2 i = –i (1.3.6)

                                                        i4 = i2 i2 = 1
                                                        i5 = i4 i = i

 Example 1.3.2
Calculate i19

Solution: Since i4 = 1 we can write

 19 4 4 3( )i i i i= = −  (1.3.7)

1.3.3 Complex Conjugate 
Given the complex number

 z = x + iy (1.3.8)

we may form the complex conjugate of z (denoted as z*) by replacing i by –i

 *z x iy= − . (1.3.9)

Note that the product of a number and its complex conjugate will always be a real 
number

 
2 2* ( )( )z z x iy x iy x y= − + = + . (1.3.10)

This is the same as zz*.
Adding a complex number to its complex conjugate will also give a real number

 * 2z z x iy x iy x+ = + + − = . (1.3.11)

Subtracting z and z*gives a pure imaginary number

 ( )* 2z z x iy x iy iy− = + − − = . (1.3.12)

Any function of a complex number can be written as a sum of real and imaginary 
parts
 f(z) = Re f(z) + i Im f(z). (1.3.13)
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1.3.4 Euler’s Formula 
Euler’s formula relates the circular sine and cosine functions to a complex 
exponential function

 ei= cos() + i sin(). (1.3.14)

Since cos() is an even function and sin() is an odd function

 e–i = cos() – i sin(). (1.3.15)

Adding equations (1.3.14) and (1.3.15), we obtain

 ( )cos
2

i ie e 


−+

= . (1.3.16)

Subtracting these equations, we find

 ( )sin
2

i ie e

i

 


−−

= . (1.3.17)

1.3.5 Complex Plane 
A complex number z = x + iy may be graphed on the complex plane where

Re(z) = x and Im(z) = y. (1.3.18)

We defi ne the magnitude of a complex number as

 
2 2*z z z x y r= = + =  (1.3.19)

and

 
1 Im( )

tan
Re( )

z

z
 −= . (1.3.20)

1.3.6 Polar Form of Complex Numbers 
Euler’s relation enables us to represent a complex number z in polar coordinates 
x = r cos  and y = r sin 

 z = x + iy = r(cos  + isin ) (1.3.21)

or

 z = rei. (1.3.22)
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 Example 1.3.3
Express z = 1 + i in polar form

Solution: 2z =  and ( )1tan 1 / 4 −= =  thus

 /42 iz e = . (1.3.23)

1.3.7 Powers of Complex Numbers 
To compute powers of a complex number we use polar form

 zn = rnein. (1.3.24)

Roots are computed as

 1/ /n i nn z r e=  . (1.3.25)

 Example 1.3.4
Write 1 i+  in polar form

Solution: 
/41 2 iz i e = + =  so that 

1/2 1/4 /82 iz e = . (1.3.26)

1.3.8 Hyperbolic Functions 
Hyperbolic functions involve real exponentials where circular functions are 
expressed as exponentials with imaginary arguments. Table 1.3.1 compares 
circular and hyperbolic functions. 

Table 1.3.1: Circular and hyperbolic functions.

sin( )
2

i ie e

i

 


−−

= sinh( )
2

e e−−
=

 



cos( )
2

i ie e−+
=

 

 cosh( )
2

e e−+
=

 



sin( )
tan( )

cos( )
=





sinh( )

tanh( )
cosh( )





=

1
csc( )

sin( )
=


1

csch( )
sinh( )




=

1
sec( )

cos( )
=



1
sech( )

cosh( )



=

(Contd.)
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cos( )
cot( )

sin( )
=





cosh( )

coth( )
sinh( )





=

cos2 () + sin2 () = 1 cosh2 () – sinh2 () = 1

From Table 1.3.1 we see that the hyperbolic cosine is an even function where 
cosh(–x) = cosh(x). The hyperbolic sine is an odd function sinh(–x) = –sinh(x). 
The hyperbolic tangent and cotangent are also odd functions.

Maple Examples
Operations involving complex numbers are demonstrated in the following Maple 
worksheet. Examples include factoring, floating point evaluation, finding the 
magnitude, real and imaginary parts of complex numbers, defining a complex 
function, and conversion of complex numbers to trigonometric and polar forms.

Key Maple commands: abs , Co mplex , convert , evalf , Im , Re , solve 

Programming: Functional operators

restart

Complex Numbers

solve(x2 + x + 1 = 0, x)

 
1 1 1 1

3, 3
2 2 2 2

I I− + − −

evalf(II)

 0.2078795764 + 0.I

evalf(exp(IPi))

 –1.

factor(x2 + x + 1 = 0, complex)

(x + 0.5000000000 + 0.8660254038I) (x + 0.5000000000 – 0.8660254038I)

psi: = 2 + 3I
 2 + 3 I

psi: = Complex(2, 3)
 2 + 3 I
abs(psi)

 13



FUNDAMENTALS 25

sqrt(psiconjugate(psi))

 13

Re(psi)
 2
Im(psi)
 3

Functions of Complex Numbers

f: = (x, y)  exp(Ix)exp(Iy)

 ( ) ( ),
Iye

Ixx y e→

Converting Complex Numbers

convert(exp(Ix + y), trig)

 (cosh(y) + sinh(y))(cos(x) + I sin(x))

z: = Complex(1,1)
 1 + I
convert(z, polar)

 
1

2,
4

polar 
⎛ ⎞
⎜ ⎟
⎝ ⎠

1.4 ELEMENTS OF CALCULUS 

Basic techniques of integration and differentiation are reviewed in this section 
with examples.

1.4.1 Derivatives 
The derivative of a function f(x) with respect to x can be thought of as the 
instantaneous rate of change of the function as x is varied. The derivative is 
defined as

 
( ) ( )

0
lim
x

f x x f xdf

dx xΔ →

+ Δ −
=

Δ
 (1.4.1)

and is numerically equal to the slope of a line tangent to the graph of f(x) vs. x.

 Example 1.4.1
Use the definition of the derivative to find df/dx where f(x) = x2.
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Solution:

 

2 2

0

2

0

( ) ( )
lim

2
    lim 2

x

x

df x x x

dx x

x x x
x

x

Δ →

Δ →

+ Δ −
=

Δ
Δ + Δ

= =
Δ

 (1.4.2)

1.4.2 Prime and Dot Notation 
Prime and dot notation provides a shorthand for writing derivatives with respect 
to x and t, respectively. The derivative of f(x) with respect to x is written compactly 
as

 
( ) ( )df x

f x
dx

′= . (1.4.3)

A dot denotes the time derivative of a function

 ( ) ( )df t
f t

dt
=  . (1.4.4)

1.4.3 Chain Rule for Derivatives 
The derivative of a function composition f(g(x)) is

 ( ( )) ( ) ( ( ))
d

f g x g x f g x
dx

′ ′= . (1.4.5)

Thus

 ( ) ( ) ( ) ( )
d

f ax ax f ax af ax
dx

′ ′ ′= = . (1.4.5)

1.4.4 Product Rule for Derivatives 
The derivative of a product of functions f(x) g(x) is

 ( ) ( ) ( ) ( ) ( ) ( )d
f x g x f x g x f x g x

dx
′ ′⎡ ⎤ = +⎣ ⎦ . (1.4.6)

1.4.5 Quotient Rule for Derivatives 
The derivative of a ratio f(x)/g(x) is

 
( )
( )

( ) ( ) ( ) ( )
( )2

f x f x g x g x f xd

dx g x g x

′ ′−
= . (1.4.7)
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1.4.6 Indefi nite Integrals 
Given that the function g(x) is the derivative of f(x)

 ( ) ( )df x
g x

dx
=  (1.4.8)

The function f(x) is said to be the antiderivative of g(x)

 ( ) ( )f x g x dx C= +∫  (1.4.9)

where C is a constant.

1.4.7 Defi nite Integrals 
If g(x) is continuous over an interval [a, b] and

 ( ) ( )f x g x dx C= +∫  (1.4.10)

the first fundamental theorem of calculus states that

 ( ) ( ) ( )
b

a

g x dx f b f a= −∫ . (1.4.11)

Geometrically the definite integral above corresponds to the area under the curve 
g(x) between x = a and x = b.

1.4.8 Common Integrals and Derivatives 
Table 1.4.1 gives some common derivatives and integrals routinely encountered 
in introductory physics.
Table 1.4.1:  Common integrals and derivatives.

1n nd
x nx

dx

−= 11

1
n nx dx x C

n

+= +
+∫

( ) ( )sin cos
d

ax a ax
dx

= ( ) ( )1
sin cosax d ax C

a
 = − +∫

( ) ( )cos sin
d

ax a ax
dx

= − ( ) ( )1
cos sinax d ax C

a
 = +∫

ax axd
e ae

dx
=

1ax axe dx e C
a

= +∫
( )ln

d a
ax

dx x
=

1
lndx x C

x
= +∫
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1.4.9 Derivatives of Trigonometric and Hyperbolic Functions 
Table 1.4.2 compares derivatives of trigonometric and hyperbolic functions. This 
table may also be used to determine antiderivatives such as

 ( )1

2

1
sin

1
dx x C

x

−= +
−

∫  and ( )1

2

1
sinh

1
dx x C

x

−= +
+

∫ . (1.4.12)

Table 1.4.2: Derivatives of trigonometric and hyperbolic functions.

sin( ) cos( )
d

x x
dx

= sinh( ) cosh( )
d

x x
dx

=

cos( ) sin( )
d

x x
dx

= − cosh( ) sinh( )
d

x x
dx

=

2tan( ) sec ( )
d

x x
dx

= 2tanh( ) sech ( )
d

x x
dx

=

2cot( ) csc ( )
d

x x
dx

= − 2coth( ) csch ( )
d

x x
dx

= −

sec( ) sec( )tan( )
d

x x x
dx

= sech( ) sech( )tanh( )
d

x x x
dx

= −

csc( ) csc( )cot( )
d

x x x
dx

= − csch( ) csch( )coth( )
d

x x x
dx

= −

1

2

1
sin ( )

1

d
x

dx x

− =
−

1

2

1
sinh ( )

1

d
x

dx x

− =
+

1

2

1
cos ( )

1

d
x

dx x

− = −
−

1

2

1
cosh ( )

1

d
x

dx x

− =
−

1

2

1
tan ( )

1

d
x

dx x

− =
+

1

2

1
tanh ( )

1

d
x

dx x

− =
−

1.4.10 Euler’s Formula 
In polar coordinates, (x, y) = (r cos , r sin ) we can express z

 z = x + iy = r(cos  + isin ). (1.4.13)

Taking the derivative of z with respect to 

 ( )sin cos
dz

r i
d

= − + 


 (1.4.14)

or

 dz
iz

d
=


. (1.4.15)
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This equation may be integrated

 
dz

i d
z

=∫ ∫  (1.4.16)

giving

 ln(z) = i + const. (1.4.17)

Exponentiating both sides

 z = const. × ei  (1.4.18)

with

 z = rei (1.4.19)

we have Euler’s formula

 ei = cos ( + isin (). (1.4.20)

1.4.11 Integrals of Trigonometric and Hyperbolic Functions 
Table 1.4.3 compares integrals of trigonometric and hyperbolic functions. This 
table may also be used to determine derivatives such as

lnsin( ) cot( )
d

x x
dx

=  and lnsinh( ) coth( )
d

x x
dx

=
 

(1.4.21)

Table 1.4.3:  Integrals of trigonometric and hyperbolic functions.

sin( ) cos( )x dx x C= − +∫ sinh( ) cosh( )x dx x C= +∫
cos( ) sin( )x dx x C= +∫ cosh( ) sinh( )x dx x C= +∫
tan( ) lncos( )x dx x C= − +∫ tanh( ) lncosh( )x dx x C= +∫
cot( ) lnsin( )x dx x C= +∫ coth( ) lnsinh( )x dx x C= +∫

2sec ( ) tan( )x dx x C= +∫ 2sech ( ) tanh( )x dx x C= +∫
2csc ( ) cot( )x dx x C= − +∫ 2csch ( ) coth( )x dx x C= − +∫

1.4.12 Improper Integrals 
Integrals over infinite intervals are defined as limits such as

 

0 0

( ) lim ( )

a

a
f x dx f x dx

∞

→∞
=∫ ∫ . (1.4.22)
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The integral converges if the limit is finite; otherwise the integral is divergent.
One requirement for the integral above to converge is

 lim ( ) 0
x

f x
→∞

=  (1.4.23)

although the integral may still diverge even if the integrand goes to zero at infinity. 
For example,

 

1

1
lim ln( )
a

dx a
x

∞

→∞
= = ∞∫ . (1.4.24)

The limit notation is frequently omitted in physics textbooks when dealing with 
common improper integrals such as Gaussian integrals. Improper integrals also 
occur when the integrand has a vertical asymptote.

1.4.13 Integrals of Even and Odd Functions 
Because even functions feven(–x) = feven(x) are symmetric about the y-axis, we can 
write integrals with symmetric limits

 even even

0

( ) 2 ( )
L L

L

f x dx f x dx

−

=∫ ∫  (1.4.25)

Thus if 
2

0

1

2
xe dx 

∞
− =∫  we can evaluate

2xe dx

∞
−

−∞

=∫    (1.4.26)

Odd functions fodd(–x) = –fodd(x) are antisymmetric about the y-axis, with just as 
much area above the x-axis as below it over symmetric intervals so that

 
odd ( ) 0

L

L

f x dx

−

=∫  (1.4.27)

Thus, integrals such as

 

2

,xxe dx

∞
−

−∞
∫

 
sin( )x dx

−
∫


  
and

 
cos( )x x dx



−
∫  (1.4.28)

are immediately evaluated as zero.
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Maple Examples
Basic calculus operations demonstrated in the Maple worksheet below include 
the evaluation of limits and the definition of a derivative, first derivatives, higher 
derivatives, evaluation of derivatives at a point, determining maxima and minima 
of functions, indefinite integrals, checking integrals by differentiation, definite 
integrals, and the numerical evaluation of integrals.

Key Maple commands: assume , combine ,  D , diff , evalf , int , limit , RiemannSum, 
simplify 

Maple packages: with(Student[Calculus1]) 

Programming: Functional operators

restart

Limits

sin( ) sin( )
, 0 , 0

x x
Limit x limit x

x x

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 0

sin( )
lim 1
x

x

x→
=

2 2sin( ) sin( )
, 0 , 0

x x
Limit x limit x

x x

⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

 

2

0

sin( )
lim 0
x

x

x→
=

Directional Limits

1 1
, 0, , 0,Limit x right limit x right

x x

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 0

1
lim
x x+→

= ∞

1 1
, 0, , 0,Limit x left limit x left

x x

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 0

1
lim
x x−→

= −∞
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Definition of Derivative

f: = x   x3 + 2x + 10 sin(x) cos(x)

 x  x3 + 2x + 10 sin(x) cos(x)

( ) ( )( )
, 0

f x dx f x
Limit dx

dx

⎛ ⎞+ −
=⎜ ⎟

⎝ ⎠

 3x2 – 10 sin(x)2 + 10cos(x)2 + 2

–30

–20

–10

10

20

30

3

x

21–1–2–3 0

x3 + 2x + 10 sin(x) cos(x)               
df(x)

dx

Figure 1.4.1: Plot of a function and its derivative.

restart

First Derivatives

diff(exp(ax), x)

a ea x

Diff(exp(sin(exp(ax))), x) = diff(exp(sin(exp(ax))), x)

( ) ( ) ( )sin sincos
a x a xa x a xe ee ae e e

x

∂
=

∂
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diff(log(cosh(x)), x)

sinh( )

cosh( )

x

x

Higher Derivatives

diff(exp(ax), x, x)

 a2 ea x

diff(exp(ax), x$2)

 a2 ea x

diff(exp(ax), x, x, x, x, x)

 a5 ea x

diff(exp(ax), x$5)

 a5 ea x

Derivatives at a Point

f: = (x)  sin(x)x2

 x  sin(x) x2

diff(f(x), x)

 cos(x) x2 + 2 sin(x) x

subs(x = a, diff(f(x), x))

 cos(a) a2 + 2 sin(a) a

D(f) (a)

 cos(a) a2 + 2 sin(a) a

restart

Determining Maxima and Minima

f: = (x)  x4 – 2x2

 x  x4 – 2 x2
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0.5

–0.5

–1

0.5 1 1.5–0.5–1–1.5

Figure 1.4.2: Plot of a function with one maximum and two minima.

diff(f(x), x)

 4 x3 – 4 x

solve(% = 0, x)

 0, 1, –1

Second Derivative Test

D(D(f)) (–1)

 8

D(D(f)) (0)

 –4

D(D(f)) (1)

 8

Thus x = -1, 0, 1 corresponds to min, max and min values, respectively.

Indefinite Integrals

int(sin(x), x)

 – cos(x)



FUNDAMENTALS 35

f: = (x)  x exp(x2)

 
2xx xe→

Int(f(x), x) = int(f(x), x)

 
2 21

2
x xxe dx e=∫

Checking Integrals by Differentiation

1
: int ,

sin( )
g x

x

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 ln(csc(x) – cot (x))

h: = diff(g,x)

 

2csc( )cot( ) 1 cot( )

csc( ) cot( )

x x x

x x

− + +
−

simplify(h)

 

1

sin( )x

w: = int(ln(x),x)
 xln(x) – x
diff(w, x)

 ln(x)

Definite Integrals

Int(exp(-x), x = 0…infinity) = int(exp(-x), x = 0…infinity)

 0
1xe dx

∞ − =∫
sin( ) sin( )

, infinity…infinity , infinity…infinity
x x

Int x int x
x x

⎛ ⎞ ⎛ ⎞= − = = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

sin( )x
dx

x


∞

−∞
=∫

1
int , x a b

x

⎛ ⎞=⎜ ⎟
⎝ ⎠
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Warning, unable to determine if 0 is between a and b; try to use 

assumptions or use the AllSolutions option

 

1b

a
dx

x∫

assume(a, ‘real’, b, ‘real’): assume(a > 0, b > 0):

 ( ) ( )ln lna b− + 

1
int , x a b

x

⎛ ⎞=⎜ ⎟
⎝ ⎠



    ln lna b  
combine(%)

 ln
b

a

⎛ ⎞
⎜ ⎟
⎝ ⎠



restart

1.4.26 Numerical Evaluations of Integrals

with(Student[Calculus1]):
RiemannSum(x.exp(-x), x = 0…5.0, method = lower, output = plot, partition = 20)

0 541 2 3
0

0.1

0.2

0.3

x

A lower Riemann sum approximation of 

5.0

0

( ) ,f x dx∫  where f(x) = xex and the partition is uniform. 

The approximate value of the integral is 0.8664812764. Number of subintervals used 20.

Figure 1.4.3: Integral calculated using a Riemann sum (method–lower).
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0 541 2 3
0

0.1

0.2

0.3

x

A lower Riemann sum approximation of 

5.0

0

( ) ,f x dx∫  where f(x) = xex and the partition is uniform. 

The approximate value of the integral is 1.041998563. Number of subintervals used 20.
Figure 1.4.4:  Integral calculated using a Riemann sum (method–upper).

Int(exp(-x2sin(x)) x = –1 … 1) =evalf(int(exp(-x2 sin(x)) x = –1 … 1)

 

21
sin( )

1
2.113228922x xe dx−

−
=∫

f: = (x, y, z)  cosh(x y z)

 (x, y, z)  cosh(x y z)

evalf(Int(f(x, y, z), x = –1 … 1, y = –1 … 1, z = –1 … 1)

 8.150847483

1.5 MATLAB Examples 
MATLAB’s Symbolic Math Toolbox is demonstrated performing algebraic and 
trigonometric operations as well as calculations involving complex numbers 
below. The differentiation and integration of basic functions in MATLAB are then 
shown.

Key MATLAB commands: conj , diff , factor , fzero , imag , int , limit , real , simplify , 
solve , subs , syms 
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Section 1.1 Algebra

Solving One Equation and One Unknown

>> clear all

>> syms x y a b

>> solve('x^2+y^2')

ans =

  y*i

 -y*i

>> solve('x^3=3')

ans =

                         3^(1/3)

 3^(1/3)*(- 1/2 + (3^(1/2)*i)/2)

  -3^(1/3)*(1/2 + (3^(1/2)*i)/2)

>> solve('x^3=3',x)

ans =

                         3^(1/3)

 3^(1/3)*(- 1/2 + (3^(1/2)*i)/2)

  -3^(1/3)*(1/2 + (3^(1/2)*i)/2)

>> solve('x^2+y^2',y)

ans =

  x*i

 -x*i

>> solve('x^2+y^2=9',y)

ans =

  (3 - x)^(1/2)*(x + 3)^(1/2)

 -(3 - x)^(1/2)*(x + 3)^(1/2)

Solving Systems of Algebraic Equations

>> S=solve('x+a*y=3','b*x-a*y=5',x,y)

S =

    x: [1x1 sym]

    y: [1x1 sym]

>> S.x
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ans =

8/(b + 1)

>> S.y

ans =

(3*b - 5)/(a + a*b)

Factoring Expressions

>> factor(x^5-y^5)

ans =

(x - y)*(x^4 + x^3*y + x^2*y^2 + x*y^3 + y^4)

Simplifying Expressions

>> syms x y

>> simplify((x^2-y^2)/(x+y))

ans =

x - y

Substitution

>> syms x y

>> subs(x^2+y^2,{x,y},{3,sym('r')})

ans =

r^2 + 9

Section 1.2 Trigonometry
>> simplify(cos(x)^2+sin(x)^2)

ans =

1

>> x = fzero(@(x)tan(x)-x,10)

x =

    7.8540

>> fzero('cot(x)-x',1)
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ans =

    0.8603

>> F=@(x)cot(x)-x;

>> fzero(F,1)

ans =

    0.8603

Section 1.3 Complex Numbers
>> syms a b real

>> psi = a+1i*b

psi =

a + b*i

>> real(psi)

ans =

a

>> imag(psi)

ans =

b

>> conj(psi)

ans =

a - b*i

>> simplify(conj(psi)*psi)

ans =

a^2 + b^2

Section 1.4 Elements of Calculus
>> clear all

>> syms x

>> limit(sin(x)/x,x,0)

ans =
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1

>> f=x*cos(x)

f =

x*cos(x)

>> diff(f,x)

ans =

cos(x) - x*sin(x)

Higher derivatives

>> diff(f,x,2)

ans =

- 2*sin(x) - x*cos(x)

>> diff(f,x,3)

ans =

x*sin(x) - 3*cos(x)

Integration

>> int(x*exp(-x))

ans =

-(x + 1)/exp(x)

1.5.1 Functional Calculator
The functional calculator funtool featured in MATLAB’s Symbolic Math Toolbox 
can be used to plot and perform operations on functions. Operations in funtool 
include algebraic operations, finding the inverse function, function composition 
as well as differentiation and integration of functions of one variable. The 
calculator is launched by typing ‘funtool’ at the Command line.
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1.6 EXERCISES

Section 1.1 Algebra 

1. Given

 
03

P
P n E



⎛ ⎞
= +⎜ ⎟

⎝ ⎠
 and ( ) 01rP E = −

  show that

  
0

1

3 2
r

r

n 

 

⎛ ⎞−
= ⎜ ⎟+⎝ ⎠

.

 This result is known as the Clausius-Mossotti relation. 

2. For a block of mass m attached to a spring with force constant k obeying 
Hooke’s law 

 F = –kx = ma
 Conservation of energy gives

 2 2 21 1 1
,

2 2 2
mv kx kA+ = where A x A− ≤ ≤ .

(a)  Calculate the velocity v and acceleration a of the mass at x = 0 and at 
x = A. Note that the velocity of the mass is zero where the acceleration is 
maximal and vice versa.

(b)  Calculate the velocity and acceleration of the mass at x = A/2.

3. Consider a two-particle collision  in one dimension. Momentum conservation 
gives

 1 1 2 2 1 1 2 2i i f fm v m v m v m v+ = +
.

Energy conservation gives

 2 2 2 2
1 1 2 2 1 1 2 2

1 1 1 1

2 2 2 2
i i f fm v m v m v m v+ = + .

Show that if m2 is initially at rest so that v2i = 0 the fi nal velocities are

 

1 2
1 1

1 2
f i

m m
v v

m m

−
=

+
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1
2 1

1 2

2
f i

m
v v

m m
=

+ .

4. Kepler’s third law  may be obtained from Newton’s second law for circular 
orbits where the centripetal acceleration is supplied by the gravitational force

 
2

2

v mM
m G

r r
=  where the velocity 

2 r
v

T
=


.

 Show that the square of the orbital period T2 is proportional to the cube of the 
orbital radius r3.

5. The escape speed  from a body of mass M is

 
esc

2GM
v

r
=

Show that the escape speed is 2 times the orbital speed for circular orbits.

6. Bernoulli’s equation  is a statement of conservation of energy density for ideal 
streamline fluid flow. For any two points in the flow

  
2 2

1 1 1 2 2 2

1 1

2 2
v gh P v gh P   + + = + +

 Use the continuity equation A1v1 = A2v2 to eliminate v1 in Bernoulli’s equation 
and solve for v2 in special cases where
(a)  both points in the streamline fl ow are at atmospheric pressure P1 = P2 = P0

(b)  both points are at the same height h1 = h2 
(c)  one point is at vacuum P1 = 0 and the other is at atmospheric P2 = P0

Show that P1 – P2 = g(h2  – h1) if the fl uid speed is everywhere zero.

7. The energy levels of hydrogen  may be obtained from Newton’s second law for 
circular orbits where the centripetal acceleration is supplied by the electric 
force between the electron and proton

 

22

2
0

1

4
eqv

m
r r

=


Using the total energy of the bound system

 

2
2

0

1 1

2 4
eq

E mv
r

= −
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 and Bohr’s angular momentum quantization  hypothesis 
2

h
L mvr n


= =  

where n = 1, 2, 3, …
show that

 1
2n

E
E

n
= −  and rn = n2a0

where 
4

1 2
0

13.6 eV
8

e em q
E

h
= =  and 

2
0

0 2
0.0529 nm

e e

h
a

m q
= =




8. Solve for the effective capacitance  Ceff of a series combination of three 
capacitors

 
eff 1 2 3

1 1 1 1

C C C C
= + +  .

9. Perform a partial fractions decomposition of

 2

1

2x x+

10. Identify if the following functions are even, odd, or neither

 
1

( )
1

f x
x

=
−

 
2

1
( )

1
f x

x
=

+

 
3

2
( )

1

x
f x

x
=

+

 ( )
1

x
f x

x
=

+

11. Solve Shockley’s diode equation

 
( )

0 1B

qV

k TI I e −

for the Boltzmann constant kB
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12. Simplify rational expression by factoring the numerator and denominator

 

2

3 2

x x

x x

+

+

Factor the expressions

 x3 + 4x2 – x – 4 

 x4 – x3 + x – 1

13. Find the energy E of a photon with a wavelength  equal to the Planck length 

P where E = hf, f = c and 
3P

G

c
=
  . Convert your answer to tons of TNT 

where one ton is equal to 4.184 × 109 joules.

14. Obtain a common denominator to simplify the expression

 

2

2

3/2 1/2
2 2

2 2

1

1 1

v

c

v v

c c

−
⎛ ⎞ ⎛ ⎞

− −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

Section 1.2 Trigonometry

15. The horizontal and vertical components of the tension FT in a conical 
pendulum of length L as shown in Figure 1.6.1 are given by

 
2

sinT

v
F m

r
 =  and FT cos  = mg.

Show that the angle

 

2
1tan

v

rg
 − ⎛ ⎞

= ⎜ ⎟
⎝ ⎠

Solve for the pendulum period T where 
2 r

v
T


=  and r = L sin 



46 MATHEMATICAL METHODS FOR PHYSICS USING MATLAB AND MAPLE

θ

m

Figure 1.6.1: Conical pendulum of length L.

16. Numerically find at least one solution to the following transcendental 
equations

(a) 
2

x x
e− = .

(b) tan(x) = x

(c) ( )sin
2

x
x =

17. Plot the following function

 y(t) = 3 sin(2t) + 3 sin(3t)

18. Plot the following functions on the same graph

 y(t) = e– 3t sin(2t)   y(t) = e– 3t

19. Evaluate the expression

 (1 – cos n)(1 – cos m)

for even and odd values of m and n.

Section 1.3 Complex Numbers

20. Show that

 

1

2

i
i

+
=
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21. Calculate the real and imaginary parts of 3 2z i= +

22. Given
 = (1 + i)e–3i 
calculate *  , Re(), and Im()

23. Given

 (t)= e–3it + e–2it 

calculate *  , Re(), and Im()

24. Using the relations

 
cos( )

2

i ie e 


−+

=
 
and

 
sin( )

2

i ie e

i

−−
=

 



show that cos2 () + sin2 () = 1

25. Using the relations

 
cosh( )

2

x xe e
x

−+
=

 
and sinh( )

2

x xe e
x

−−
=

show that cosh2 (x) – sinh2(x) = 1

26. Show that
                                                cosh (ix) = cos(x)
                                                 sinh (ix) = sin(x)

 

2

2

1
tanh( )

1

x

x

e
x

e

−
=

+

27. Plot the Langevin function

 
1

( ) coth( )L x x
x

= −

Section 1.4 Elements of Calculus

28. Given that the position (in meters) of a mass attached to a spring is given by
x(t) = 3e–3t cos(2t)
Calculate the speed v(t) and acceleration a(t) where

 
dx

v
dt

=  and 
dv

a
dt

=  are in m/s and m/s2, respectively
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29. Given that the position (in meters) of a particle is

 x(t) = 3t3 – 2t2 + 1

Find x(t) and a(t) when v(t) = 0 m/s

30. The position (in meters) of an object falling in a resistive medium is described 
by y(t) =1 – e–t

 Plot y(t), ( )y t  and ( )y t  on the same graph. What is the initial acceleration 

( )0y ?

31. Given that the velocity of a particle is v(t) = e–t calculate the distance x that the 
particle travels between ti = 0 and tf =  seconds where

 

( )
f

i

t

t

x v t dt= ∫

What is the initial acceleration (0)v ?

32. The Gaussian function 
2xe − is encountered in finding solutions to the 

quantum harmonic oscillator. Calculate the following derivatives

 

2
2

2

xd
e

dx

−

 

2xd
e

d




−

33. Verify the following integrals by differentiating the result

 
1

tanh( ) lncosh( ) const.ax dx ax
a

= +∫

 
1

tan( ) lncos( ) const.ax dx ax
a

= +∫

 ( )sin( ) sin cos const.
2

x
x e

e x dx x x= − +∫

 sin( ) sin cos const.x x dx x x x= − +∫
34. Given f(x) = e3x

calculate f (0), f (0) and f (0)

35. Given f(t) = e3t cos (t)

calculate ( )0f , ( )0f  and ( )0f
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2Chapter

VECTORS AND 
MATRICES

Chapter Outline
2.1 Vectors and Scalars in Physics

2.2 Matrices in Physics

2.3 Matrix Determinant and Inverse

2.4 Eigenvalues and Eigenvectors

2.5 Rotation Matrices

2.1 VECTORS AND SCALARS IN PHYSICS 

Physical quantities in nature can be scalars (such as mass, temperature, or density) 
or vectors (such as force or electric and magnetic fields). Both scalars and vectors 
are described by a numerical factor depending on the system of units used. 
Common units in physics are the MKS (meter, kilogram, second) and the CGS 
(centimeter, gram, second) systems. Vector quantities also have directionality. 
Two scalar quantities with the same units may be added or subtracted directly. 
Scalars with differing units may be multiplied or divided. For example, the density 
of an object is its mass divided by its volume. The directionality of vectors must 
be taken into account during addition, subtraction, and multiplication, however. 
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In this textbook, vectors are designated with boldfaced symbols such as A. Vectors 
with unit magnitude are usually boldfaced with a hat such as k̂ .

2.1.1 Vector Addition  and Unit Vectors 
Scalars are tensors of rank zero while vectors are tensors of rank one. A vector may 
be represented graphically by an arrow with a specified length (or magnitude) 
and a direction. Vectors with the same magnitude, length, and units are said to 
be equal. A vector translated in space remains unchanged unless it is rotated or 
stretched. Vectors may be added graphically by arranging them tip-to-tail in any 
order. The vector sum, known as the resultant, is found by constructing a vector 
from the tail of the first vector to the tip of the last vector. A vector A may be 
represented in Cartesian coordinates as 

 ˆˆ ˆ
x y zA A A= + +A i j k  (2.1.1)

where î , ĵ ,
 
and k̂  are unit vectors in the respective x-, y-, and z-directions. 

The components of A along each coordinate axis are Ax, Ay, and Az. The length, 
or magnitude, of A can be determined from the Pythagorean theorem as 

2 2 2
x y zA A A= + +A . 

Given the vector ˆˆ ˆ
x y zB B B= + +B i j k  (2.1.2)

the sum A + B is 

 ( ) ( ) ( ) ˆˆ ˆ x x y y z zA B A B A B+ = + + + + +A B i j k  (2.1.3)

Vector addition is commutative where A + B = B + A. Subtraction is similarly 
performed  

 ( ) ( ) ( ) ˆˆ ˆ x x y y z zA B A B A B− = − + − + −A B i j k  (2.1.4)

2.1.2 Scalar Product of Vectors 
The scalar product, also known as the dot product, between vectors A and B is 
defined as

 ( ) ( )cos cosAB ⋅ = =A B A B  (2.1.5)

where A = |A| and B = |B|. The angle  between A and B can be determined by

 1cos
AB

 − ⋅ =  
 

A B  (2.1.6)
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The dot product between like unit vectors is unity ˆ ˆˆ ˆ ˆ ˆ 1⋅ = ⋅ = ⋅ =i i j j k k  and zero 
between unlike unit vectors ˆ ˆˆ ˆ ˆ ˆ 0⋅ = ⋅ = ⋅ =i j j k k i . To calculate the dot product 
between two vectors expressed in terms of the unit vectors we simply multiply 
their respective components and add 

 
x x y y z zA B A B A B⋅ = + +A B  (2.1.7)

The dot product is commutative where A  B = B  A. The magnitude of a vector 
is also expressed as a dot product where A · A = A2 and

 2 2 2
x y zA A A= ⋅ = + +A A A  (2.1.8)

2.1.3 Vector Cross Product 
The cross product (or vector product) between two vectors A and B denoted as 
A  B forms a third vector with magnitude

 |A  B| = AB sin() (2.1.9)

where  is the angle between A and B. If A and B are parallel then A  B =0.
If A  B = C then A and B are both perpendicular to C so that A  C = B  

C = 0. Also A  B = B  A. The cross products of the unit vectors are

 

ˆ ˆˆ ˆ ˆ ˆ

ˆ ˆˆ ˆ ˆ ˆ   

ˆ ˆˆ ˆ ˆ ˆ

× = × = −

× = × = −

× = × = −

i j k j i k

j k i k j i

k i j i k j

 (2.1.10)

The cross products of like unit vectors are zero ˆ ˆˆ ˆ ˆ ˆ 0× = × = × =i i j j k k .

Example 2.1.1
Calculate the cross product between ˆ ˆ3 2= −A i j  and ˆˆ= −B j k  

Solution:

 
( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ ˆ0

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ3 2 3 3 2 2

ˆˆ ˆ                                         2 3 3

−

× = − × − = × − × − × + ×

= + +

k j i

A B i j j k i j i k j j j k

i j k

 (2.1.11)

Now we can check if this vector is perpendicular to A and B

 
( ) ( ) ( )
( ) ( ) ( )

ˆˆ ˆ ˆ ˆ3 2 2 3 3 6 6 0

ˆ ˆˆ ˆ ˆ2 3 3 3 3 0

⋅ × = − ⋅ + + = − =

⋅ × = − ⋅ + + = − =

A A B i j i j k

B A B j k i j k
 (2.1.12)
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The cross product may also be calculated using a determinant (expanding across 
the top row)

( ) ( ) ( )
ˆˆ ˆ

ˆˆ ˆ
x y z y z y z x z x z x y x y

x y z

A A A A B B A A B B A A B B A

B B B

× = = − − − + −

i j k

A B i j k

 (2.1.13)

Determinants are discussed in Section 2.3 of this chapter.  

Example 2.1.2 
Using a determinant to calculate the cross product in the previous example

Solution

 ( ) ( ) ( )

ˆˆ ˆ

ˆ ˆˆ ˆ ˆ ˆ3 2 0 2 0 3 0 3 0 2 3 3

0 1 1

× = − = − − − − + − = + +

−

i j k

A B i j k i j k  (2.1.14)

Determinants may also be used to calculate the cross product or the curl in other 
coordinate systems as discussed in Chapter 4. 

2.1.4 Triple Vector Products 
The triple cross product is frequently encountered where

 ( ) ( )× × = ⋅ − ⋅A B C B A C C A B  (2.1.15)

This rule is known as the “BAC – CAB” rule.
A determinant may represent the dot product of a vector with a cross product

 ( )
x y z

x y z

x y z

A A A

B B B

C C C

⋅ × =A B C  (2.1.16)

This determinant gives the volume of a parallelepiped spanned by the three 
vectors. The determinant is the same upon the interchange of any row or column 
so that

 ( ) ( ) ( )⋅ × = ⋅ × = ⋅ ×A B C B C A C A B  (2.1.17)
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Observe that 

 ( ) 0
x y z

x y z

x y z

A A A

A A A

C C C

⋅ × = =A A C  (2.1.18)

since A  C is perpendicular to A. Also A × (A  B) = B × (A  B) = 0.

2.1.5 The Position Vector 
Consider the vector C = A – B . If we dot C with itself 

 ( ) ( )⋅ = − ⋅ −C C A B A B  (2.1.19)

we obtain the law of cosines

 2 2 2 2 cosC A B AB = + −  (2.1.20)

In physics, we frequently represent vector positions from an origin of coordinates 
as r and r for source and field quantities, respectively. The quantity r – r denotes 
the difference from the source to field point as shown in Figure 2.1.1. The position 
vector is independent of the origin of coordinates. In terms of the Cartesian unit 
vectors 

 ( ) ( ) ( ) ˆˆ ˆ x x y y z z′ ′ ′ ′− = − + − + −r r i j k  (2.1.21)

and

 ( ) ( ) ( )22 2
x x y y z z′ ′ ′ ′− = − + − + −r r  (2.1.22)

Note that the vector 

 ˆ
′−

=
′−

r r
n

r r
 (2.1.23)

represents a unit vector pointing in the direction r – r. 

z

rr′

r − r′

x

y

Figure 2.1.1: The position vector r – r.
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2.1.6 Expressing Vectors in Different Coordinate Systems
Unit vectors may be expressed in different coordinate systems. For example, in 
cylindrical coordinates (r,  , z)

 
( ) ( )

( ) ( )

ˆ ˆˆcos sin

ˆ ˆˆsin cos

ˆ ˆ

  

  

= −

= +

=

i r

j r

k z

 (2.1.24)

Maple Examples
Vector operations are demonstrated in the Maple worksheet below. A vector v is 
specified by the notation vx, vy, vz with Cartesian unit vectors denoted as ex, ey, 
ez in Maple. Equivalent syntaxes for vector magnitude, dot and cross products are 
also demonstrated in the following examples. 

Key Maple commands: ChangeBasis , DotProduct , CrossProduct , Norm , PlotVector  , 
VectorSpace 

Maple packages: with(VectorCalculus ): with(Student[VectorCalculus]) : 
with(Student[LinearAlgebra]):  

restart

Define Vectors

With(VectorCalculus) :
V1 := 1,2,3

V1 := ex + 2ey + 3ez

V2 := 1,5,9

V2 := ex + 5ey + 9ez

Dot Product

DotProduct(V1, V2)

36

V1V2

36

Vector Magnitude

Norm (V2)

107
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sqrt(V1V2)

107

Cross Product

V3 : = CrossProduct(V1, V2)

V3 := 3ex – 12ey + 7ez

V1&xV2

3ex – 12ey + 7ez

Show That V3 Is Orthogonal to V1 and V2

DotProduct(V1, V3)

0

DotProduct(V2, V3)

0

Position Vector

r := x,y,z

r := (x)ex + (y)ey + (z)ez

rp := xp,yp,zp

rp := (xp)ex + (yp)ey + (zp)ez

r – rp

(x – xp)ex + (y – yp)ey + (z – zp)ez

Unit Vector in the Direction of (r – rp)

              1

2

_ :

(( ) ( ))

r rp
n hat

r rp r rp

−
=

− ⋅ −

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 2 2

2 2 2

2 2 2

_ : x

y

z

x xp
n hat e

x xp y yp z zp

y yp
e

x xp y yp z zp

z zp
e

x xp y yp z zp

− =  
 − + − + − 

− + 
 − + − + − 

− + 
 − + − + − 



56 MATHEMATICAL METHODS FOR PHYSICS USING MATLAB AND MAPLE

n_hat.n_hat

 

( )
( ) ( ) ( )

( )
( ) ( ) ( )

( )
( ) ( ) ( )

2 2

2 2 2 2 2 2

2

2 2 2

x xp y yp

x xp y yp z zp x xp y yp z zp

z zp

x xp y yp z zp

− −
+

− + − + − − + − + −

−
+

− + − + −

simplify(%)

1

restart

Vectors in Spherical and Cylindrical Coordinates

With(Physics[Vectors]) :
Setup(mathematicalnotation = true)

[mathematicalnotation = true]

R := x_i + y_j + z_k
ˆˆˆ:R xi yj zk= + +

ChangeBasis(R, spherical)

( )
( )
( )

ˆsin( )cos( ) sin( )sin( ) cos( )

ˆcos( )cos( ) cos( )sin( ) sin( )

ˆcos( ) sin( )

x y z r

x y z

y x

    

     

  

+ +

+ + −

+ −

ChangeBasis(R, cylindrical)

( ) ( ) ˆˆˆcos( ) sin( ) cos( ) sin( )x y y x zk     + + − +

S := rho_rho + z_k
ˆ ˆ:S zk = +

ChangeBasis(S, cartesian)
ˆˆˆcos( ) sin( )i j zk   + +

restart

Plot Vectors

With(VectorCalculus) :
r := 1, 0, 1

r := ex + ez
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rp := -2, 1, 1

rp := -2ex + ey + ez

PlotVector([r,–rp])

2 1.5
1

0.5
0

−1

−0.5

0

0.5

1

−1

0
−0.2

−0.2
−0.6

−0.8

Figure 2.1.2: Plotting the vectors r and –rp in 3D.

With(Student[LinearAlgebra]) :
VectorSumPlot(r,–rp)

0

3

0

2

1

0

1

−1

−0.5

−1 −0.6

The sum of 2 vectors, showing the resultant in black and the parallelogram(s) of addition
Figure 2.1.3: Maple output plotting the sum of vectors r and –rp in 3D.

With(Student[VectorCalculus]) :
vs1 := VectorSpace(‘cartesian’[x, y, z], [0,0,0]) :
vs2 := VectorSpace(‘cartesian’[x, y, z], [rp[1],rp[21],rp[31]]) :
PlotVector([vs1 :- Vector([r[1],r[2],r[3]]), vs1 :- Vector([rp[1],rp[2],rp[3]]), vs2 :- 

Vector([r[1]–rp[1],r[2]–rp[2],r[3]–rp[3]])], scaling = constrained)
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Figure 2.1.4: Plotting the sum of vectors r and –rp in 3D using the package Student[VectorCalculus]. 

2.2 MATRICES IN PHYSICS 

Matrices are rectangular arrays of elements consisting of M rows and N columns. A 
matrix can be represented by a bold faced symbol A or [aij] with elements denoted 
by aij where the indices i and j correspond to the row and column numbers. A 
matrix may also be written as a symbol with indices that may appear raised or 
lowered, such as Tv or gv. Matrices are tensors of rank two that have widespread 
applications in math and science. Important uses of matrices in physics can be 
found in classical mechanics, electromagnetism, quantum mechanics, special 
relativity, general relativity, and relativistic quantum mechanics. 

2.2.1 Matrix Dimension 
A matrix A with dimension [M  N], (pronounced “M by N”) is written

 

11 12 1

21 22 2

1 2

N

N

M M MN

a a a

a a a

a a a

 
 
 =  
  
 

A




   


 (2.2.1)

The most commonly encountered matrices in physics are square, single column 
(column vectors) and single row (row vectors). If M = N then A is a square matrix

 

11 12 1

21 22 2

1 2

N

N

N N NN

a a a

a a a

a a a

 
 
 =  
  
 

A




   


 (2.2.2)
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A matrix B with M rows and one column is known as a column vector

 

1

2

M

a

a

a

 
 
 =  
  
 

B


 (2.2.3)

A row vector is a matrix with one row and N columns

 ( )1 2 Na a a=A   (2.2.4)

Square and column matrices will also be useful in representing systems of linear 
equations and systems of differential equations. Matrix elements may be real 
numbers, complex numbers, functions, or operators.

2.2.2 Matrix Addition and Subtraction 
Matrices of the same dimension may be added or subtracted. 

 Example 2.2.1
Given the 2  2 matrices

 
a b

c d

 
=  

 
A  and 

1 2

3 4

 
=  

 
B  (2.2.5)

 
1 2 1 2

3 4 3 4

a b a b

c d c d

± ±     
± = ± =     ± ±     

A B  (2.2.6)

Constant multipliers multiply each term in the matrix

 
3 3

3 3
3 3

a b a b

c d c d

   
= =   

   
A  (2.2.7)

2.2.3 Matrix Integration and Differentiation 
Operations of differentiation and integration map to each element of a matrix. 

 Example 2.2.2
Given

 ( ) 2 3

1 x
x

x x

 
=   

 
C  (2.2.8)
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the integral of C(x) is

 ( )

2

3 4

2  const. matrix

3 4

x
x

x dx
x x

 
 
 = +
 
 
 

∫C  (2.2.9)

The derivative of C(x) is

 ( ) 2

0 1

2 3

d
x

dx x x

 
=   

 
C  (2.2.10)

2.2.4 Matrix Multiplication and Commutation 
A matrix product is performed by multiplying row by column. 

 Example 2.2.3
Given the matrices

 
a b

c d

 
=  

 
A  and 

1 2

3 4

 
=  

 
B  (2.2.11)

the fi rst element of the matrix product AB is obtained by multiplying the fi rst 
row of matrix A times the fi rst column of matrix B, and so on. The number of 
columns of A must equal the number of rows of B. For example,

 
1 2 3 2 4

3 4 3 2 4

a b a b a b

c d c d c d

+ +    
= =    + +    

AB  (2.2.12)

Note that the order of matrix multiplication is important. Here ≠AB BA  since 

 
1 2 2 2

3 4 3 4 3 4

a b a c b d

c d a c b d

+ +    
= =    + +    

BA  (2.2.13)

Two matrices whose product is independent of the order of multiplication are 
said to commute. The commutator between matrices A and B, denoted by square 
brackets, is defi ned as 

 , = −  A B AB BA  (2.2.14)
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 Example 2.2.4
For the matrices above 

 

3 2 4 2 2
,

3 2 4 3 4 3 4

3 2 2 3 2 0 0

3 3 3 2 3 0 0

a b a b a c b d

c d c d a c b d

b c a b d

a c d c b

+ + + +   
= −       + + + +   

− + −   
= ≠   − − + −   

A B

 (2.2.15)

Thus matrices A and B do not commute. The anticommutator  between two 
matrices A and B, denoted by curly brackets, is defined as 

 { }, = +A B AB BA  (2.2.16)

If {A, B} = 0 then AB = – BA and the matrices are said to anticommute. 
Matrices with M rows and N columns can only be multiplied by matrices with 

N rows and P columns to yield a matrix with M rows and P columns, or[M  N]
[N  P] = [M  P]. 

Example 2.2.5
A [1  3][3  1] = [1  1] is given by

 ( )1 2 3 2 3

a

b a b c

c

 
  = + + 
 
 

 (2.2.17)

Example 2.2.6
A [3  1][1  3] = [3  3] is given by

 ( )
2 3

1 2 3 2 3

2 3

a a a a

b b b b

c c c c

   
   =   
   
   

 (2.2.18)

2.2.5 Direct Product 
The direct product, or Kronecker product, between two matrices A and B is 
denoted ⊗A B .

Example 2.2.7
Given the matrices

 
a b

c d

 
=  

 
A  and 

1 2

3 4

 
=  

 
B  (2.2.19)
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the direct product is constructed 

 

1 2 1 2

3 4 3 4

1 2 1 2

3 4 3 4

a a b b

a b a a b b

c d c c d d

c c d d

 
    ⊗ = =       
 

B B
A B

B B
 (2.2.20)

2.2.6 Identity Matrix 
The identity matrix I is a square matrix with ones along the diagonal and zeros 
elsewhere. The [3  3] identity matrix is written as

 
1 0 0

0 1 0

0 0 1

 
 =  
 
 

I
 (2.2.21)

The identity matrix can be expressed as a Kronecker delta symbol dij where

 
1     

0     ij

i j

i j


==  ≠
 (2.2.22)

An [N  N] identity multiplying any [N  M] matrix returns the same [N  M] 
matrix so that IA = A.

Example 2.2.8
The [3  3] identity acting on a column vector 

 

1 0 0

0 1 0

0 0 1

a a

b b

c c

    
    =    
    
    

 (2.2.23)

A square matrix commutes with the identity matrix of the same dimension 
IA = AI.

2.2.7 Transpose of a Matrix 
The transpose of a matrix A, written as AT (or sometimes as A ), is obtained by 
interchanging the rows and columns of A. Given A = [aij] then AT = [aji].  
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Example 2.2.9
Given

 

1 2 3

4 5 6

7 8 9

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

A   (2.2.24)

then

  
1 4 7

2 5 8

3 6 9

T

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

A  (2.2.25)

The transpose operation is equivalent to flipping a matrix about its main diagonal. 
The transpose of a column vector will give a row vector 

 ( )
T

a

b a b c

c

⎛ ⎞
⎜ ⎟ =⎜ ⎟
⎜ ⎟
⎝ ⎠

 (2.2.26)

and vice versa

 ( )T

a

a b c b

c

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 (2.2.27)

Additional properties of the transpose include

 ( ) ,
T

T =A A  (2.2.28)

 ( )T T T+ = +A B A B  (2.2.29)

and

 ( )T T T=AB B A  (2.2.30)

2.2.8 Symmetric and Antisymmetric Matrices 
A symmetric matrix is equal to its transpose A = AT. 
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Example 2.2.10

If

1 0 3

0 1 0

3 0 9

 
 =  
 
 

A  then 

1 0 3

0 1 0

3 0 9

T

 
 =  
 
 

A  (2.2.31)

An antisymmetric is equal to the negative of its transpose A = –AT. 

Example 2.2.11

If 
0 1

1 0

 
=  − 

A  then 
0 1

1 0
T

− 
= = − 

 
A A  (2.2.32)

2.2.9 Diagonal Matrix 
Diagonal matrices such as 

 

1 0 0

0 1 0

0 0 9

 
 =  
 
 

A  (2.2.33)

have aij = ij = 0 for i  j and are also symmetric.

2.2.10 Tridiagonal Matrix 
A tridiagonal matrix 

 

1 1

1 2 2

2

1 1

1

0 0

0 0

0 0
N N

N N

a b

c a b

c

a b

c a

− −

−

 
 
 
 =
 
 
 
 

A


 

 
  


 (2.2.34)

may have nonzero elements along the main diagonal a1, a2, … aN as well as upper 
adjacent b1, b2, … bN-1 and lower adjacent diagonals c1, c2, … cN-1. Tridiagonal 
matrices are encountered in numerical solutions to diffusion equations such as 
the Schrödinger equation using the Crank-Nicolson method.

2.2.11 Orthogonal Matrices 
An orthogonal matrix multiplied by its transpose is equal to the identity matrix

 T =AA I  (2.2.35)
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Example 2.2.12 
The matrix 

 
0 1

1 0

 
=  − 

A  (2.2.36)

is orthogonal since 

  
0 1 0 1 1 0

1 0 1 0 0 1
T

−    
= =    −    

AA  (2.2.37)

Orthogonal matrices also have the properties AT = A1 and AAT = ATA. 

2.2.12 Complex Conjugate of a Matrix 
The complex conjugate of a matrix A, written as A*, is formed by taking the 
complex conjugate of each element of A. Given A = aij then A* = aij*. For example, 
if

 

1 0

0 0 0

0 1

i i

A

i i

 +
 =  
 − − 

 then 

1 0

* 0 0 0

0 1

i i

A

i i

 − −
 =  
 + 

 (2.2.38)

2.2.13 Matrix Adjoint  (Hermitian Conjugate )
To form the Hermitian conjugate (or adjoint) of a matrix A, written as A†, the 
complex conjugate of each element of A is taken followed by the transpose. Given 
A = aij then A† = aij*. For example, if

 

1 0

0 0 0

0 1

i i

i i

 +
 =  
 − − 

A  then †

1 0

0 0 0

0 1

i i

i i

 −
 =  
 − + 

A  (2.2.39)

A Hermitian matrix is equal to its Hermitian conjugate. In quantum mechanics, 
Hermitian matrices correspond to physical observables.

Example 2.2.13
Given the matrix

 

1 1

1 2 0

0 1

i i

i

i

 +
 = − 
 − 

A  (2.2.40)
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we see that A†  A,  thus A is Hermitian. 
The diagonal elements of a Hermitian matrix must be real. A Hermitian matrix 

can be constructed from a non-Hermitian matrix B by adding its Hermitian 
conjugate B†.

2.2.14 Unitary Matrix 
A matrix is said to be unitary if the identity matrix is obtained when multiplied by 
its Hermitian conjugate. 

Example 2.2.14

Given

 
0

0

i

i

 
=  − 

A  then †
0

0

i

i

− 
=  

 
A  (2.2.41)

and

 †
0 0 1 0

0 0 0 1

i i

i i

−    
= = =    −    

AA I  (2.2.42)

Thus, † 1−=A A  and † =A A I.

2.2.15 Partitioned Matrix 
A matrix may be partitioned into submatrices. 

Example 2.2.15
The gamma matrix 

 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



 
 
 =  −
  − 

 (2.2.43)

may be written in a more compact way

 
0

0

0


 
=  − 

I

I
 where 

1 0

0 1

 
=  

 
I  (2.2.44)
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2.2.16 Matrix Trace 
The trace of a matrix A is the sum of its diagonal elements

 ( ) 11 22Tr ii

i

a a a= = + +∑A   (2.2.45)

Example 2.2.16
Given the matrix

 

1 0 1

0 0 0

1 0 1

 
 =  
 
 

A  (2.2.46)

we have

 ( )Tr 1 0 1 2= + + =A  (2.2.47)

2.2.17 Matrix Exponentiation 
The exponential function of an N  N square matrix A is defined as

 
0

1 1 1

! 2 6
n

n

e
n

∞

=

= = + + + +∑A A I A AA AAA  ,  (2.2.48)

where I is the N  N identity matrix. For 1ija 

 e ≈ +A I A  (2.2.49)

Maple Examples
Matrix operations demonstrated in the Maple worksheet below include defining 
matrices, specifying individual elements, addition and subtraction, multiplication, 
mapping operations of integration and differentiation on matrices, commutation 
and anticommutation, direct products, transpose, Hermitian conjugate, trace and 
matrix exponential. Equivalent syntaxes for defining matrices are shown.

Key Maple commands: diff , HermitianTranspose, int , KroneckerProduct , Matrix , 
MatrixExponential , Trace , Transpose 

Maple packages: with(LinearAlgebra )

restart

Define Matrices

with(LinearAlgebra) :
A : = Matrix([[1, 2], [3, 4]])
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1 2

3 4

⎡ ⎤
 
 

B : = 1, 3 | 2, 4

1 2

3 4

 
 
 

Matrix Elements

B (1, 1)

1

B (1, 2)

2

B (2, 1)

3

B (2, 2)

4

Matrix Addition and Subtraction

A + B

2 4

6 8

 
 
 

A – B

0 0

0 0

 
 
 

Matrix Multiplication

A.B

7 10

15 22

 
 
 

V1 := 1, 2, 3
1

2

3
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V2 := 1|2|3
V1.V2

1 2 3

2 4 6

3 6 9

⎡ ⎤
 
 
  

V2.V1

14

Matrix Integration and Differentiation

U : = x, x3 | x2, x4

 

2

3 4

x x

x x

 
 
  

Diff(U, x) = map(diff, U, x)

 

2

2 33 4

1 2

3 4

xx x

x x xx x

   ∂
=   

∂      

Int(U, x) = map(int,U, x)

 

2 3
2

3 4
4 5

1 1

2 3
1 1

4 5

x xx x
dx

x x x x

 
   

=   
    

  

∫

Matrix Commutation and Anticommutation

A : = 1, 3 | 2, 4

 
1 2

3 4

 
 
 

B : = a, c | b, d

 
a b

c d

 
 
 

A.B – B.A

 
2 3 3 2 2

3 3 3 3 2

c b b d a

a c d b c

− − + − 
 + − − 
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AB + BA

 
2 2 3 5 2 2

3 5 3 3 8 2

a c b b d a

a c d b d c

+ + + +⎡ ⎤
 + + + + 

Kronecker (Direct) Product

KroneckerProduct(A, B)

 

2 2

2 2

3 3 4 4

3 3 4 4

a b a b

c d c d

a b a b

c c c d

 
 
 
 
 
  

KroneckerProduct(B, A)

 

2 2

3 4 3 4

2 2

3 4 3 4

a a b b

a a b b

c c d d

c c d d

 
 
 
 
 
  

Matrix Transpose

V1 := 1, 2, 3

 

1

2

3

 
 
 
  

Transpose(V1)

 1 2 3  
V1%T

 1 2 3  

Hermitian Conjugate (Adjoint)

V1 := I, 0, 2 – I

 

0

2

I

I

 
 
 
 − 
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HermitianTranspose(V1)
0 2I I− +⎡ ⎤⎣ ⎦

V1%H

 0 2I I− +⎡ ⎤⎣ ⎦

( ) ( )1
: exp ,0,exp

(2)
I x I x

sqrt
 = ⋅ − ⋅

 

1
2

2
0

1
2

2

Ix

Ix

e

e−

 
 
 
 
 
 
 

%H. 1 1

2 2
Ix Ix Ix Ixe e e e− −+

assume(x, ‘real’)
%H.

1

A : = 1 + I, I | 1 – I, 4·I

 
1 1

4

I I

I I

+ − 
 
 

A%H 

 
1

1 4

I I

I I

− − 
 + − 

Re(%)

 
1 0

1 0

 
 
 

Im(%%)

 
1 1

1 4

− − 
 − 
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Matrix Trace

R : = 1,5, 9 | 2, 3, 6 | 0, 1, 8

1 2 0

5 3 1

9 6 8

⎡ ⎤
 
 
  Trace(R)

12

Matrix Exponential

Jy : = 0|0|-I, 0|0|0, I|0|0

 

0 0

0 0 0

0 0

I

I

− 
 
 
  

MatrixExponential(IJy, phi)

 

cos( ) 0 sin( )

0 1 0

sin( ) 0 cos( )

 

 

 
 
 
 − 

2.3 MATRIX DETERMINANT AND INVERSE

In this section, matrix determinants  and matrix inverses  are discussed. 
Determinants and inverses are encountered in solving systems of equations 
common in physics, finding eigenvalues and eigenvectors, and matrix 
diagonalization. The determinant of a matrix A is indicated by |A| or as det(A). 
Given the 2  2 matrix

 
a b

c d

 
=  

 
A  (2.3.1)

the determinant is simply ad cb= −A .
In general, any row or column may be expanded about to calculate the 

determinant of an N  N matrix. The determinant is the sum of aij multiplied by 
determinants of the (N – 1)  (N – 1) submatrices formed by striking out the ith 
row and the jth column.
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Example 2.3.1
The determinant of the 3  3 matrix

 
11 12 13

21 22 23

31 32 33

a a a

a a a

a a a

 
 =  
 
 

A  (2.3.2)

may be obtained by expanding across the top row

 ( ) ( ) ( )1 1 1 2 1 322 23 21 23 21 22
11 12 13

32 33 31 33 31 32

1 1 1
a a a a a a

a a a
a a a a a a

+ + += − + − + −A  (2.3.3)

giving

( ) ( ) ( )11 22 33 32 23 12 21 33 31 23 13 21 32 31 22a a a a a a a a a a a a a a a= − − − + −A  (2.3.4)

It is easier to expand about the row or column containing more zeros. 

Example 2.3.2
We may calculate the determinant of

 

1 3 9

2 6 0

5 7 0

 
 =  
 
 

A  (2.3.5)

by expanding about the third column

 ( )( ) ( )( ) ( )( )1 3 2 3 3 32 6 1 3 1 3
9 1 0 1 0 1 144

5 7 5 7 2 6

+ + += − + − + − = −A  (2.3.6)

2.3.1 Matrix Inverse
The inverse of the matrix A is denoted A1. The identity matrix results from 
multiplying a matrix and its inverse

 1 1− −= =A A AA I  (2.3.7)

The matrix inverse may be computed as

 1 †1 C− =A A
A

 (2.3.8)

where AC is a matrix of cofactors 

 
11 1

1

c c
N

C

c c
N NN

a a

a a

 
 

=  
 
 

A


  



 (2.3.9)
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For a 3  3 matrix

 
11 12 13

21 22 23

31 32 33

c c c

C c c c

c c c

a a a

a a a

a a a

 
 

=  
  
 

A  (2.3.10)

the cofactors are

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

(1 1) (1 2) (1 3)22 23 21 23 21 22
11 12 13

32 33 31 33 31 32

(2 1) (2 2) (2 3)12 13 11 13 11 12
21 22 23

32 33 31 33 31 32

(3 1) (3 2) (12 13 11 13
31 32 33

22 23 21 23

1 1 1

1 1 1

1 1 1

c c c

c c c

c c c

a a a a a a
a a a

a a a a a a

a a a a a a
a a a

a a a a a a

a a a a
a a a

a a a a

+ + +

+ + +

+ +

= − = − = −

= − = − = −

= − = − = − 3 3) 11 12

21 22

a a

a a

+

 (2.3.11)
The inverse of a 2  2 matrix is simply

 
1

1a b d b

c d c aad bc

−
−   

=   −−   

 (2.3.12)

2.3.2 Singular Matrices 
A singular matrix is a matrix that has a zero determinant as well as an undefined 
inverse.

Example 2.3.3
The singular matrix

 
1 0 1

0 0 0

1 0 1

 
 =  
 
 

A  (2.3.13)

has |A| = 0 and is thus noninvertible. Matrices with linearly dependent rows or 
columns are singular. 
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2.3.3 Systems of Equations 
The system of linear equations

 

1 1 1 1

2 2 2 2

3 3 3 3

a x b y c z d

a x b y c z d

a x b y c z d

+ + =

+ + =

+ + =
 (2.3.14)

is written in matrix form

 
1 1 1 1

2 2 2 2

3 3 3 3

a b c x d

a b c y d

a b c z d

    
    =    
    
    

 (2.3.15)

Multiplying both sides by the inverse of the coefficient matrix

 

1

1 1 1 1

2 2 2 2

3 3 3 3

x a b c d

y a b c d

z a b c d

−
     
     =     
     
     

 (2.3.16)

Example 2.3.4
The system

 

2 2

2 2 4

1

x y z

x y z

x y z

+ − =
+ − =

− − + = −
 (2.3.17)

is written in matrix form

 

2 1 1 2

2 2 1 4

1 1 1 1

x

y

z

    −
    − =    
    − − −    

 (2.3.18)

and the coefficient matrix is inverted 

 

1
2 1 1 2

2 2 1 4

1 1 1 1

x

y

z

−
     −
     = −     
     − − −     

 (2.3.19)

with solution (x, y, z) = (1, 2, 2).
Geometrically the solution to the three linear equations corresponds to fi nding 

the intersection of three planes at the point (x, y, z). There is no solution if the 
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three planes are parallel. There are infi nitely many solutions if the planes intersect 
along one, two or three lines and the inverse of the coeffi cient matrix is undefi ned.

Cramer’s rule  may also be used to solve a system of equations where the 
solution (x, y, z) is determined from ratios of determinants. For three equations 
and three unknowns

 

1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3

1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3

       

d b c a d c a b d

d b c a d c a b d

d b c a d c a b d
x y z

a b c a b c a b c

a b c a b c a b c

a b c a b c a b c

= = =  (2.3.20)

where the constants d1, d2, and d3 replace the first, second and third columns in 
the top coefficient matrix determinants in calculating x, y, and z, respectively. For 
a system of two equations

 
1 1 1

2 2 2

a x b y d

a x b y d

+ =

+ =  (2.3.21)

Cramer’s rule gives the unknowns

 

1 1 1 1

2 2 2 2

1 1 1 1

2 2 2 2

       

d b a d

d b a d
x y

a b a b

a b a b

= =  (2.3.22)

Maple Examples
Matrix examples in the Maple worksheet below include matrix determinant, 
matrix inverse, and the use of matrices in solving systems of linear equations. 

Key Maple commands: Determinant , implicitplot3d , MatrixInverse , solve 

Maple packages: with(LinearAlgebra ): with(plots ):

restart
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Matrix Determinant

with(LinearAlgebra) :
C : = 110, -101, 10-2

 

1 1 0

1 0 1

1 0 2

⎡ ⎤
 − 
 − 

Determinant(C)

1

Matrix Inverse

MatrixInverse(C)

 

0 2 1

1 2 1

0 1 1

− − 
 
 
 − − 

C.MatrixInverse(C)

 

1 0 0

0 1 0

0 0 1

 
 
 
  

Systems of Equations

with(plots) :

eqns := [x + 2y = -3, 3x + 2y = 3, x + z = 1,]

[x + 2y = -3, 3x + 2y = 3, x + z = 1,]

Implicitplot3d(eqns, x = -5 … 5, y = -5 … 5, z = -5 … 5, color = [blue, green, red], 
scaling = constrained, axes = boxed)
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z

Figure 2.3.1:  Maple output plotting the intersection of three planes.

solve(eqns, {x, y, z}

{x = 3, y = -3, z = -2}

2.4 EIGENVALUES  AND EIGENVECTORS 

In physics, the eigenvalue problem arises in the analysis of rotating bodies, small 
oscillations and the calculation of energies in quantum systems. In quantum 
mechanics states corresponding to specific energy values can be represented by 
column vectors. The eigenvalue equation is written

 =AX X  (2.4.1)

where A is an N  N matrix. The X are N  1 eigenvectors to be determined and l 
are the eigenvalues. The eigenvalue equation can be expressed as

 =AX IX  (2.4.2)

or as

 ( ) 0X− =A I  (2.4.3)

where I is the N  N identity matrix. The polynomial equation formed by setting 
the determinant equal to zero 

 ( )det 0− =A I  (2.4.4)

is called the characteristic equation. Those values of l that satisfy the characteristic 
equation are the eigenvalues. Once the eigenvalues are found the eigenvector X 
corresponding to each may then be determined. 
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Example 2.4.1
Find the eigenvalues and eigenvectors corresponding to the matrix

 
1 0

1 2

 
=  − 

A  (2.4.5)

Solution: Subtracting I from A

 1 0

1 2






− 
− =  − − 

A I
 (2.4.6)

and setting the determinant equal to zero we obtain the characteristic equation 

 ( ) ( )( )det 1 2 0  − = − − =A I  (2.4.7)

The resulting eigenvalues are

 1  1, 2  2 (2.4.8)

To find the eigenvector X1 corresponding to 1  1 we solve

 1 1 1=AX X  (2.4.9)

This gives

 
1 1

2 2

1 0
1

1 2

x x

x x

    
= ⋅    −    

 (2.4.10)

or

 1 1

1 2 22

x x

x x x

=
− + =

 (2.4.11)

Choosing x1 = 1 gives x2 = 1 so that 

 1

1

1

 
=  

 
X  (2.4.12)

To find the eigenvector X2 corresponding to 2 = 2 we solve

 2 2 1=AX X
. (2.4.13)

This gives

 
1 1

2 2

1 0
2

1 2

x x

x x

    
= ⋅    −    

 (2.4.14)
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or

 1 1

1 2 2

2

2 2

x x

x x x

=

− + =
 (2.4.15)

The first equation gives x1 = 0. For the second equation we take x2 = 1 so that 

 
2

0

1

 
=  

 
X  (2.4.16)

The normalized eigenvectors are 

 1

11

12

 
=  

 
X  and 2

0

1

 
=  

 
X  (2.4.17)

Example 2.4.2
Find the eigenvalues and eigenvectors corresponding to the matrix

 

1 0 1

0 1 0

1 1 0

 
 =  
 
 

A  (2.4.18)

Solution: Subtracting I from A

 

1 0 1

0 1 0

1 1



 



 −
 − = − 
 − 

A I  (2.4.19)

Taking the determinant by expanding across the top row

 ( ) ( )
1 0 0 1

det 1 0 1 0
1 1 1

 
 



− −
− = − − + =

−
A I  (2.4.20)

and we have the characteristic equation

 ( )( ) ( )21 1 0   − − − − =  (2.4.21)

This is a cubic equation that we can solve by factoring (1 – ) 

 ( )( )21 1 0  − − − =  (2.4.22)

The resulting eigenvalues are

 1 2 3

1 5 1 5
1, ,

2 2
  

+ −
= = =  (2.4.23)
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To find the eigenvector X1 corresponding to 1 = 1 we solve

 1 1 1=AX X
 (2.4.24)

This gives

 
1 1

2 2

3 3

1 0 1

0 1 0

1 1 0

x x

x x

x x

    
    =    
    
    

 (2.4.25)

and we have three equations 

 
1 3 1

2 2

1 2 3

x x x

x x

x x x

+ =
=

+ =

 (2.4.26)

with solution x1 = 1, x2 = 1 and x3 = 0 so that 

 1

1

1

0

 −
 =  
 
 

X  (2.4.27)

For the second eigenvector X2 we must solve AX2 = 2X2

 
1 1

2 2

3 3

1 0 1
1 5

0 1 0
2

1 1 0

x x

x x

x x

    
+    =    

    
    

 (2.4.28)

giving

 

( )
( )
( )

1
1 3 12

1
2 22

1
1 2 32

1 5

1 5

1 5

x x x

x x

x x x

+ = +

= +

+ = +

 (2.4.29)

The second equation gives x2 = 0

 
( )
( )

1
3 12

1
1 32

1 5

1 5

x x

x x

= − +

= +
 (2.4.30)

One choice is

 
( )

3

1

2

1 5

x

x

=

= +
 (2.4.31)
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and

 2

1 5

0

2

 +
 

=  
 
 

X  (2.4.32)

A similar analysis solving AX3 = 3X3 gives 

 
( )
( )

1
3 12

1
1 32

1 5

1 5

x x

x x

= − −

= −
 (2.4.33)

and

 
3

1 5

0

2

 −
 

=  
 
 

X  (2.4.34)

Thus we have the normalized eigenvectors

 1

1
1

1
2

0

 −
 =  
 
 

X  

 2

1 5
1

0
10 2 5 2

 +
 

=  
+  

 

X

 3

1 5
1

0
10 2 5 2

 −
 

=  
−  

 

X  (2.4.35)

Example 2.4.3
Find the imaginary eigenvalues and eigenvectors of the matrix

 
0 1

1 0

− 
=  

 
A  (2.4.36)

Solution: Subtracting I from A

 
1

1






− − 
− =  − 

A I  (2.4.37)
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Taking the determinant 

 ( ) 2det 1 0 − = + =A I  (2.4.38)

the resulting eigenvalues are

 1 = i, 2 = i (2.4.39)

To find the eigenvector X1 corresponding to 1 = i we solve

 
1 1 1=AX X  (2.4.40)

This gives

 
1 1

2 2

0 1

1 0

x x
i

x x

−    
= ⋅    

    
 (2.4.41)

or

 
2 1

1 2

x ix

x ix

− =
=  (2.4.42)

Choosing x1 = i gives x2 = 1 so that 

 
1 1

i 
=  

 
X  (2.4.43)

To find the eigenvector X2 corresponding to 2 = -i we solve

 2 2 1=AX X  (2.4.44)

This gives

 1 1

2 2

0 1

1 0

x x
i

x x

−    
= − ⋅    

    
 (2.4.45)

or

 2 1

1 2

x ix

x ix

− = −
= −

 (2.4.46)

Choosing x1 = i gives x2 = 1 so that 

 2 1

i− 
=  

 
X  (2.4.47)

The normalized eigenvectors are 

 1

1

12

i 
=  

 
X  and 2

1

12

i− 
=  

 
X  (2.4.48)
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2.4.1 Matrix Diagonalization 
The technique of matrix diagonalization has application in the dynamics of rigid 
bodies and quantum mechanics. Consider the matrix 

 
1 0

1 2

 
=  − 

A  (2.4.49)

with normalized eigenvectors 

 1

11

12

 
=  

 
X  and 2

0

1

 
=  

 
X  (2.4.50)

corresponding to eigenvalues 1 = 1 and 2 = 2. We may calculate a diagonal matrix

 
1

2

0

0





 
=  

 
D  (2.4.51)

from the operation 

 
1−=D P AP  (2.4.52)

where P is formed from the eigenvectors 

 

1
0

2
1

1
2

 
 
 =
 
 
 

P  (2.4.53)

The inverse is computed as

 1

1 0

2 1 1

2 2

−
 
 =  − 
 

P  (2.4.54)

As a check, we verify

 

1

1
1 0 0

22 1 1
1

12 2
2

1
0

1 022
1 0 1

0
2

−

 
  
  =  −   

  
 

 
    = =  
   
 
 

P P

 (2.4.55)
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Now to diagonalize A

 

1

1
1 0 0

1 0 2
2 1 1

1 2 1
12 2

2

1
1 0 0

2
2 1 1

1 2
22 2

2 2

1
0

1 02
           2

2 0 2
0

2

−

 
       =    −−    

  
 

 
  
  =  −    − +  

 
 
    = = = 
   
 
 

P AP

D

 (2.4.56)

Thus, we have constructed a diagonal matrix whose elements are the eigenvalues 
of A.

Maple Examples
Matrix eigenvalue, eigenvector, and diagonalization calculations are demonstrated 
in the Maple worksheet below. 

Key Maple commands: Eigenvectors , evalf , MatrixInverse , Simplify 

Maple packages: with(LinearAlgebra )

restart

Eigenvalues and Eigenvectors

with(LinearAlgebra) :
C : = 1|2|3, 4|5|6, 7|8|9

 

1 2 3

4 5 6

7 8 9
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(evals, evecs) : = Eigenvectors(C)

 

4 4
1

11 3 11 3
33 3315 3 2 2 2 233

2 2 19 3 19 3
33 33

15 3 1 12 2 2 233 , 2
11 3 11 32 2 2 2

33 33
0 2 2 2 2

1 1 1

⎡ ⎤
 

+ −    +     + −  − −    + −    
  

Matrix of Eigenvectors

evecs

 

4 4
1

11 3 11 3
33 33

2 2 2 2
19 3 19 3

33 33
1 12 2 2 2 2

11 3 11 32 2
33 33

2 2 2 2
1 1 1

 
 

+ − 
 
 + − 

− 
 + −
 
  

Specific Eigenvalue with Eigenvector

evals[1], evecs[1 … 3, 1]

 

4

11 3
33

2 2
19 3

33
15 3 1 2 233,

11 32 2 2
33

2 2
1

 
 

+ 
 
 + 

+  
 +
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evals[2], evecs[1 … 3, 2]

 

4

11 3
33

2 2
19 3

33
15 3 1 2 233,

11 32 2 2
33

2 2
1

⎡ ⎤
 

− 
 
 − 

−  
 −
 
  

evals[3], evecs[1 … 3, 3]

 

1

0, 2

1

 
 − 
  

Matrix Diagonalization

simplify(MatrixInverse(evecs).C.evecs)

 

15 3
33 0 0

2 2
15 3

0 33 0
2 2

0 0 0

 + 
 
 −
 
 
 

evalf(%)

 

16.11684397 0 0

0 1.116843970 0

0 0 0

 
 − 
  

2.5 ROTATION MATRICES 

In this section, we review matrices that transform the components of a vector 
under rotation of the coordinate system. The transformation of 2D vector 
components by coordinate rotation is first discussed. This result is extended to 
consider the transformation of 3D vector components by rotations about all three 
coordinate axes. 
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2.5.1 Rotations in Two Dimensions 
Consider the vector

 
ˆ ˆ

x yA A= +A i j   (2.5.1)

If the vector makes an angle q with respect to the x-axis, then its components are 
expressed as

 
cos

sin
x

y

A A

A A





=

=  (2.5.2)

We will now look at components of A in a coordinate system that has been rotated 
counterclockwise about the z-axis by an angle f as shown in Figure 2.5.1.

y

φ

A

y′

x

x′

φθ

 
Figure 2.5.1: Rotation of the coordinate system by f.

In the transformed coordinate system   ′ = −  so the components

 
cos

sin
x

y

A A

A A




′

′

′=
′=

 (2.5.3)

To develop a relation between the components of A in the primed and unprimed 
coordinate systems we use the identities

 
( ) ( )
( ) ( )

cos cos cos cos sin sin

sin sin sin cos cos sin

      

      

′ = − = +
′ = − = −

 (2.5.4)

and

 

cos cos sin sin

sin cos cos sin
x y

y x

x

A A

y

A A

A A A

A A A

   

   

′

′

= +

= −

 

 
 (2.5.5)
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Thus we have that

 
cos sin

sin cos

x x y

y x y

A A A

A A A

 

 
′

′

= +

= − +
 (2.5.6)

Writing the vector ˆ ˆ
x yA A= +A i j  as 

x

y

A

A

 
  
 

 we express the rotation about the 
z-axis in matrix form

 
cos sin

sin cos

x x

y y

A A

A A

 

 
′

′

    
=       −    

 (2.5.7)

or as

 ( )R ′ =A A  (2.5.8)

The matrix ( )
cos sin

sin cos
R

 


 

 
=  − 

 is referred to as a rotation matrix. Operation 

by Rz() may either be interpreted as a counterclockwise rotation of the coordinate 
system or a clockwise rotation of the vector about the z-axis. A clockwise rotation 

of the coordinate system is performed with ( )
cos sin

sin cos
R

 


 

− 
− =  

 
. If we first 

rotate by  and then by - according to 

 ( ) ( )R R ′ = −A A  (2.5.9)

the vector components should be unchanged

 
cos sin cos sin

sin cos sin cos

x x

y y

A A

A A

   

   
′

′

−     
=        −     

 (2.5.10)

and

 

2 2

2 2

cos sin 0

0 cos sin

x x

y y

A A

A A

 

 

′

′

 +   
=         +    

 (2.5.11)

Using the relation 2 2cos sin 1 + =

 1 0

0 1

x x

y y

A A

A A

′

′

    
=           

 (2.5.12)

and we see that the components of A are unchanged

 
x x

y y

A A

A A

′

′

   
=      

   
 (2.5.13)
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Observe that R()R() = I and that R() = RT() so that RRT = I. Since RR1 = 
I we have the orthogonal property of rotation matrices RT = R1.

2.5.2 Rotations in Three Dimensions 
We can extend this analysis to three dimensions where 

 ˆˆ ˆ
x y zA A A= + +A i j k  (2.5.14)

and consider the rotation of vectors about each coordinate axis. Rotation of the 
coordinate axes about the z-axis by the rotation matrix 

 

( )
( )

cos sin( ) 0

sin( ) cos 0

0 0 1
zR

 

 

 
 

= − 
 
 

 (2.5.15)

will leave z-component Az unaffected as can be seen from the operation 

 

( )
( )

cos sin( ) 0

sin( ) cos 0

0 0 1

x x

y y

z z

A A

A A

A A

 

 
′

′

′

    
    = −    

    
    

 (2.5.16)

where z zA A′ = . Similarly, the rotation matrix 

 ( )
( )

1 0 0

0 cos sin( )

0 sin( ) cos
xR  

 

 
 

=  
 − 

 (2.5.17)

produces a counterclockwise rotation of the coordinate axes by an angle  about 
the x-axis leaving Ax unaffected 

 ( )
( )

1 0 0

0 cos sin( )

0 sin( ) cos

x x

y y

z z

A A

A A

A A

 

 

′

′

′

    
    =     

    −    

 (2.5.18)

where .x xA A′ =  As well 

 
( )

( )

cos 0 sin( )

0 1 0

sin( ) 0 cos
yR

 

 

 
 

=  
 − 

 (2.5.19)



VECTORS AND MATRICES 91

generates a rotation about the y-axis by an angle 

 

( )

( )

cos 0 sin( )

0 1 0

sin( ) 0 cos

x x

y y

z z

A A

A A

A A

 

 

′

′

′

    
    =     

    −      (2.5.20)

where .y yA A′ =  One may perform subsequent rotations about different axes 

simply by multiplying the rotation matrices. Rotation about the x-axis followed 
by a rotation about the y-axis is achieved by

 y xR R′ =A A  (2.5.21)

 

( )

( )
( )

( )

cos 0 sin( ) 1 0 0

0 1 0 0 cos sin( )

sin( ) 0 cos 0 sin( ) cos

x x

y y

z z

A A

A A

A A

 

 

   

′

′

′

     
     =      

     − −     

 (2.5.22)

 
cos( ) sin( )sin( ) sin( )cos( )

0 cos( ) sin( )

sin( ) cos( )sin( ) cos( )cos( )

x x

y y

z z

A A

A A

A A

    

 

    

′

′

′

    −
    =    
    − −    

 (2.5.23)

If we first rotate about the y-axis and then rotate about the x-axis 

 ( )
( )

( )

( )

1 0 0 cos 0 sin( )

0 cos sin( ) 0 1 0

0 sin( ) cos sin( ) 0 cos

x x

y y

z z

A A

A A

A A

 

 

   

′

′

′

     
     =      

     − −     

 (2.5.24)

and we obtain a different result

 
( )

( ) ( )
( ) ( ) ( ) ( )

cos 0 sin( )

0 cos sin( )cos

cos sin( ) sin cos cos

x x

y y

z z

A A

A A

A A

 

  

    

′

′

′

    
    =     

    − −    

 (2.5.25)

We see that y x x yR R R R≠ so that the order of rotation is important and the 
rotation matrices do not commute— , 0x yR R  ≠  .

2.5.3 Infi nitesimal Rotations  
Consider the transformation of A by rotation of the coordinate system about the 
z-axis by a small angle by the rotation matrix 
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 ( )
1 0 1 0 0 0 0

1 0 0 1 0 0 0

0 0 1 0 0 1 0 0 0
zR

 

  

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟= − = + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

  (2.5.26)

The components of A in the new coordinate system are

 

0 0

0 0

0 0 0

x x x

y y y

z z z

A A A

A A A

A A A




′

′

′

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟

= + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 (2.5.27)

Similarly, matrices generating infinitesimal rotations of the coordinate system 
about the x- and y- axes are

 
( )

1 0 0

0 1

0 1
xR  



⎛ ⎞
⎜ ⎟

= −⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 ( )
1 0

0 1 0

0 1
yR







⎛ ⎞−
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 (2.5.28)

The rotation matrices are related to the angular momentum matrices.

Maple Examples
Rotation matrices are demonstrated in the Maple worksheet below corresponding 
to successive rotations about three coordinate axes. The transpose and inverse of 
rotation matrices are compared.  

Key Maple commands: determinant , evalf , simplify , transpose , unapply 

Maple packages: with(LinearAlgebra ):

Programming: Function operation using ‘unapply’

restart

Rotation Matrices

with(LinearAlgebra) :
Rx : = 1, 0, 0 | 0, cos(theta), sin(theta) | 0, sin(theta), cos(theta)

 

1 0 0

0 cos( ) sin( )

0 sin( ) cos( )

 

 

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦
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Ry : = cos(psi), 0, -sin(psi) | 0, 1, 0 | sin(psi), 0, cos(psi)

 

cos( ) 0 sin( )

0 1 0

sin( ) 0 cos( )

 

 

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

Rz : = cos(phi), -sin(psi), 0 | sin(phi), cos(phi), 0| 0, 0, 1

 

cos( ) sin( ) 0

sin( ) cos( ) 0

0 0 1

 

 

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

T :=Rx.Ry.Rz
[[cos() cos(), cos() sin(), sin()],

[–sin()sin()cos() – cos()sin(), –sin()sin()sin() + cos()cos(), 
sin()cos()],
[–cos()sin()cos() + sin()sin(), –cos()sin()sin() – sin()cos(), 
cos()cos()] 

Transpose(T)
[[cos() cos(), –sin()sin() cos() – cos()sin(), –cos()sin()cos()

+ sin()sin()], 
[cos()sin(), – sin()sin()sin() + cos()cos(), –cos()sin()sin() 
–sin() cos()],
[sin(), sin()cos(), cos()cos()] 

simplify(T.Transpose(T))

 

1 0 0

0 1 0

0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

simplify(Determinant(T))

1

Create a matrix function of theta, psi and phi

U := unapply(T, theta, psi, phi) :

U(theta, 0, 0)

 

1 0 0

0 cos( ) sin( )

0 sin( ) cos( )

 

 

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦
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U(0, psi, 0)

 

cos( ) 0 sin( )

0 1 0

sin( ) 0 cos( )

 

 

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

U(0, 0, phi)

 

cos( ) sin( ) 0

sin( ) cos( ) 0

0 0 1

 

 

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

, ,
2 3 4

Pi Pi Pi
U

 
 
 

 

1 1 1
2 2 3

4 4 2
1 1 1

3 2 3 2
4 4 2
1 1

2 2 0
2 2

 
 
 
 − −
 
 

− 
 

evalf(%)

 

0.3535533905 0.3535533905 0.8660254040

0.6123724358 0.6123724358 0.5000000000

0.7071067810 0.7071067810 0

 
 − − 
 − 

V1 : = 1, 2, 3

 

1

2

3

 
 
 
  

U(.01, .01, .01).V1

 

1.04989816999400

2.01969668162800

2.96960252316400
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U(theta, 0, 0).U(theta, 0, 0)

 

2 2

2 2

1 0 0

0 cos( ) sin( ) 0

0 0 cos( ) sin( )

 

 

⎡ ⎤
⎢ ⎥

+⎢ ⎥
⎢ ⎥+⎣ ⎦

simplify(%)

 

1 0 0

0 1 0

0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

2.6 MATLAB EXAMPLES 

As an abbreviation for “Matrix Laboratory,” MATLAB is the software of choice 
when handling large arrays for numerical computation. Examples of numeric and 
symbolic operations on vectors and matrices in MATLAB are shown below. 

Key MATLAB commands: conj , cross , det , dot , inv , kron , min ,  rand , simple , sym , 
syms,  transpose  

Section 2.1 Vectors and Scalars in Physics

Specifying Vectors

>> % row vector

>> v1 = [ 1 2 3]

v1 =

     1     2     3

>> % column vector formed as the transpose of v1

>> v1'

ans =

     1

     2

     3

Vector Addition 

>> v1 = [ 1 2 3];

>> v2 = [-1 -1 -3];

>> v1+v2

ans =

     0     1     0
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Scalar Product of Vectors 

>> v1 = [1 0 1];

>> v2 = [2 1 2];

>> dot(v1,v2)

ans =

     4

>> v1*v2'  % alternate form of the dot product

ans =

     4

>> sqrt(v1*v1') % magnitude of a vector 

ans =

    1.4142

>> v1/sqrt(v1*v1') % normalized vector 

ans =

    0.7071         0    0.7071

Vector Cross Product  

>> v1 = [-1 0 1];

>> v2 = [0 1 0];

>> cross(v1,v2)

ans =

    -1     0    -1

Triple Vector Products 

>> v1=[1 0 0];

>> v2=[-1 0 1];

>> v3 = [0 1 0];

>> cross(v1,cross(v2,v3))

ans =

     0     1     0

Section 2.2 Matrices in Physics

Specifying Matrices and Matrix Elements

>> A = zeros(5) % 5 x 5 zero matrix

A =

     0     0     0     0     0

     0     0     0     0     0

     0     0     0     0     0

     0     0     0     0     0

     0     0     0     0     0

>> % A = zeros(5,5) produces the same output

>> A = rand (5) % 5 x 5 random matrix

A =

    0.8147    0.0975    0.1576    0.1419    0.6557

    0.9058    0.2785    0.9706    0.4218    0.0357

    0.1270    0.5469    0.9572    0.9157    0.8491

    0.9134    0.9575    0.4854    0.7922    0.9340

    0.6324    0.9649    0.8003    0.9595    0.6787

  >> A(1,1) % element at first row and first column
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ans =

    0.8147

>> A(5,1) % element at fifth row and first column

ans =

    0.6324

>> max(A) % returns max values in each column

ans =

    0.9134    0.9649    0.9706    0.9595    0.9340

>> max(max(A)) % returns max element in A

ans =

    0.9706

>> min(min(A)) % returns min element in A

ans =

    0.0357

Adding and Subtracting Matrices 

>> A = [1 0 -1 ; 0 1 0; -1 0 1]

A =

     1     0    -1

     0     1     0

    -1     0     1

>> B = ones(3) % 3 x 3 ones matrix

B =

     1     1     1

     1     1     1

     1     1     1

>> A + B

ans =

     2     1     0

     1     2     1

     0     1     2

>> A- B

ans =

     0    -1    -2

    -1     0    -1

    -2    -1     0

Matrix Multiplication 

>> A = [1 2 ; 3 4];

>> B = [0 -1 ; -1 0];

>> A*B

ans =

    -2    -1

    -4    -3

>> B*A

ans =

    -3    -4

    -1    -2

Matrix Commutation and Anticommutation

>> A*B-B*A % commutator [A,B]

ans =
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     1     3

    -3    -1

>> A*B+B*A % anti-commutator {A,B}

ans =

    -5    -5

    -5    -5

Kronecker (Direct) Product 

>> A=[1 0; 0 1]

A =

     1     0

     0     1

>> B=[2 -2 ; 1 5]

B =

     2    -2

     1     5

>> kron(A,B) % compute the Kronecker product 

ans =

     2    -2     0     0

     1     5     0     0

     0     0     2    -2

     0     0     1     5

>> kron(B,A)

ans =

     2     0    -2     0

     0     2     0    -2

     1     0     5     0

     0     1     0     5

Hermitian Conjugate (Adjoint)

>> A = [ i 0 ; 1+i 2*i]

A =

        0 + 1.0000i        0          

   1.0000 + 1.0000i        0 + 2.0000i

>> A' % compute the adjoint of A

ans =

        0 - 1.0000i   1.0000 - 1.0000i

        0                  0 - 2.0000i

>> conj(transpose(A)) % equivalent method to compute adjoint  

ans =

        0 - 1.0000i   1.0000 - 1.0000i

        0                  0 - 2.0000i

Matrix Exponential

>> syms q % define a symbolic matrix  

>> A = sym([0 1 0; -1 0 0; 0 0 0]);

>> expm(q*A) % compute matrix exponential   

 

ans =

[  cos(q),  sin(q),       0]

[ -sin(q),  cos(q),       0]

[       0,       0,       1]
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Section 2.3 Matrix Determinant and Inverse
>> A = [ 1 0 1 ; 2 -1 2 ; 1 1 0 ]

A =

     1     0     1

     2    -1     2

     1     1     0

>> det(A) % compute the determinate of A

ans =

     1

>> inv(A) % compute the inverse of A

ans =

    -2     1     1

     2    -1     0

     3    -1    -1

>> A*inv(A) % obtain the identity matrix 

ans =

     1     0     0

     0     1     0

     0     0     1

>> inv(A)*A

ans =

     1     0     0

     0     1     0

     0     0     1

Section 2.4 Eigenvalues and Eigenvectors
>> A= [ 1 0 1; 0 1 1; -1 0 1]

A =

     1     0     1

     0     1     1

    -1     0     1

>> eig(A) % find the eigenvalues of the matrix A

ans =

   1.0000          

   1.0000 + 1.0000i

   1.0000 - 1.0000i

>> [T,E]=eig(A) % returns a matrix T with columns corresponding 

to the eigenvectors of A and a matrix E with diagonal elements 

corresponding to the eigenvalues of A

T =

        0             0.5774             0.5774          

   1.0000             0.5774             0.5774          

        0                  0 + 0.5774i        0 - 0.5774i

E =

   1.0000                  0                  0          

        0             1.0000 + 1.0000i        0          

        0                  0             1.0000 - 1.0000i

>> % the matrix E may also be constructed by pre- and post-multiplying 

A by inv(T) and T, respectively  

>> inv(T)*A*T   % diagonalize the matrix A

ans =

   1.0000                  0                  0          
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        0             1.0000 + 1.0000i        0          

        0                  0             1.0000 - 1.0000i

>> % symbolically evaluate the eigenvalues and eigenvectors of the 

matrix B

>> syms a

>> B = sym ([ a 0 -a; 0 a 0 ; -a 0 a])

B =

[  a, 0, -a]

[  0, a,  0]

[ -a, 0,  a]

>> [T, E]=eig(B)

T =

[ 1, -1, 0]

[ 0,  0, 1]

[ 1,  1, 0]

E =

[ 0,   0, 0]

[ 0, 2*a, 0]

[ 0,   0, a]

>> inv(T)*B*T  % equivalent diagonalization of B

ans =

[ 0,   0, 0]

[ 0, 2*a, 0]

[ 0,   0, a]

Section 2.5 Rotation Matrices
>> syms q r s;

>> % rotation about the z-axis

>> Rz = [cos(q) sin(q) 0 ; -sin(q) cos(q) 0 ; 0 0 1]

Rz =

[  cos(q),  sin(q),       0]

[ -sin(q),  cos(q),       0]

[       0,       0,       1]

>> % rotation about the y-axis

>> Ry = [cos(r) 0 sin(r); 0 1 0; -sin(r) 0 cos(r)]

Ry =

[  cos(r),       0,  sin(r)]

[       0,       1,       0]

[ -sin(r),       0,  cos(r)]

>> % rotation about the x-axis

>> Rx = [1 0 0 ; 0 cos(s) sin(s) ; 0 -sin(s) cos(s)]

Rx =

[       1,       0,       0]

[       0,  cos(s),  sin(s)]

[       0, -sin(s),  cos(s)]

>> % successive rotation about the y- and x-axes 

>> Rx*Ry

ans =

[         cos(r),              0,         sin(r)]

[ -sin(s)*sin(r),         cos(s),  sin(s)*cos(r)]

[ -cos(s)*sin(r),        -sin(s),  cos(s)*cos(r)]

>> % rotation matrices do not commute 

>> Rx*Ry-Ry*Rx
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ans =

[                     0,         sin(s)*sin(r), -cos(s)*sin(r)+sin(r)]

[        -sin(s)*sin(r),                     0, -sin(s)+sin(s)*cos(r)]

[ -cos(s)*sin(r)+sin(r), -sin(s)+sin(s)*cos(r),                     0]

>> % successive rotations about the x-axis 

>> Rx*Rx

ans =

[                 1,                 0,                 0]

[                 0, cos(s)^2-sin(s)^2,   2*cos(s)*sin(s)]

[                 0,  -2*cos(s)*sin(s), cos(s)^2-sin(s)^2]

>> simple(Rx*Rx)

% MATLAB outputs several simplifications and we choose 

combine(trig):

[         1,         0,         0]

[         0,  cos(2*s),  sin(2*s)]

[         0, -sin(2*s),  cos(2*s)]

>> det(Rx) % rotation matrices have unit determinate

ans =

cos(s)^2+sin(s)^2

>> simple(det(Rx))

simplify:

1

>> transpose(Rx)*Rx % transpose is equal to the inverse

ans =

[                 1,                 0,                 0]

[                 0, cos(s)^2+sin(s)^2,                 0]

[                 0,                 0, cos(s)^2+sin(s)^2]

2.7 EXERCISES

Section 2.1 Vectors and Scalars in Physics

1. Given the vectors ˆˆ ˆ2= − +A i j k , ˆˆ ˆ2 2 3= − +B i j k  and ˆˆ ˆ2= + +C i j k  calculate
(a) A – B + C
(b) the angle between A and B
(c) the magnitude |A  B|
(d) the dot product A × (B + C)
 (e) the cross product A  (B + C)
(f) the vector product A × (B  C)
(g) the triple cross product A  (B  C)

2. Given the vectors ˆ ˆ2 3= −r i j , ˆˆ ˆ2′ = − +r i j k  calculate 

(a) ′−r r

(b) ′−r r

(c) 
3

′−

′−

r r

r r
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(d) Show that ˆ 
′−

=
′−

r r
n

r r
 has unit magnitude (calculate ˆ ˆ ⋅n n )

3. Given the vectors ˆ ˆ2= −A i j  and ˆˆ ˆ= − +B i j k  find a vector with unit 
magnitude that is perpendicular to both A and B.

4. Express the vector ˆ ˆ2x y= −A i j  in spherical and cylindrical coordinates. 

Section 2.2 Matrices in Physics

5. Show that the Pauli matrices  1, 2, and 3 are Hermitian and unitary

 
1

0 1

1 0


 
=  

   
2

0

0

i

i


− 
=  

    
3

1 0

0 1


 
=  − 

6. Show that the Pauli matrices 1 and 2 satisfy

 

( )
( )
1 2 1 2

1 2 2 1

T T T

T T T

   

   

+ = +

=

7. Show that the Pauli matrices 1, 2,  and 3 obey the commutation relations 

1 2 3, i  =  

2 3 1, i  =  

3 1 2, i  =  

8. Calculate the transpose of (1 2)†

9. Calculate the direct product  2 2I ⊗  where

 2

1 0

0 1
I

 
=  

 
10. Indicate if the following matrices are symmetric, antisymmetric, or neither 

(a) The electromagnetic fi eld tensor 

 

0 / / /

/ 0

/ 0

/ 0

x y z

x z y

y z x

z y x

E c E c E c

E c B B
F

E c B B

E c B B



 
 − − =  − −
  − − 
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(b) The Lorentz transformation matrix 

 

0 0

0 0

0 0 1 0

0 0 0 1

v

c
v

c

 

 

⎛ ⎞−⎜ ⎟
⎜ ⎟
⎜ ⎟−Λ = ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
 

11. Show that ( ) ( ) ( )Tr Tr Tr⊗ =A B A B

12. Given the matrix

 

1 0

0 0 0

0 1

i i

i i

⎛ ⎞+
⎜ ⎟

= ⎜ ⎟
⎜ ⎟− −⎝ ⎠

A

show that †+A A is Hermitian

13. Given the matrices

 

0 0 0

0 0

0 0
xJ i

i

⎛ ⎞
⎜ ⎟

= −⎜ ⎟
⎜ ⎟
⎝ ⎠  

0 0

0 0 0

0 0
y

i

J

i

⎛ ⎞−
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎝ ⎠  

0 0

0 0

0 0 0
z

i

J i

⎛ ⎞−
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

show that

 
,x y zi J J J⎡ ⎤ =⎣ ⎦ ,z x yi J J J=⎡ ⎤⎣ ⎦ ,y z xi J J J⎡ ⎤ =⎣ ⎦

14. Calculate ,xiJe   ,yiJ
e

  and ziJe   given the matrices  above.  

15. Cube the following matrix

 

0 0 0

0 0

0 0
xJ i

i

⎛ ⎞
⎜ ⎟

= −⎜ ⎟
⎜ ⎟
⎝ ⎠
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Section 2.3 Matrix Determinant and Inverse

16. Calculate the determinant of the Lorentz transformation matrix

 

0 0

0 0

0 0 1 0

0 0 0 1

v

c
v

c

 

 

⎛ ⎞−⎜ ⎟
⎜ ⎟
⎜ ⎟−Λ = ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠  where 

1/2
2

2
1

v

c


−
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

17. Calculate the determinants of the Pauli spin matrices 

 
1

0 1

1 0


⎛ ⎞
= ⎜ ⎟

⎝ ⎠         
2

0

0

i

i


−⎛ ⎞
= ⎜ ⎟

⎝ ⎠      
3

1 0

0 1


⎛ ⎞
= ⎜ ⎟−⎝ ⎠

18. Determine if the following matrices are invertible 

(a) 

1 0 1

1 2 1

0 0 1

⎛ ⎞
⎜ ⎟

−⎜ ⎟
⎜ ⎟
⎝ ⎠

(b) 

1 2 1

1 2 0

1 2 1

⎛ ⎞
⎜ ⎟

− −⎜ ⎟
⎜ ⎟
⎝ ⎠

(c) 

1 0 1

0 2 0

1 0 1

⎛ ⎞
⎜ ⎟

−⎜ ⎟
⎜ ⎟−⎝ ⎠

19. Find the value of x such that the matrix

 

1 2 3

5 6

7 8 9

x

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

is singular.
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20. Find the inverse of the following matrix

 

2 0

0 1

 
 − 

21. Calculate the inverse of the following matrix

 

1 0 1

0 2 0

0 0 1

 
 − 
 
 

22. Given two square matrices A and B show that =AB A B . 

23. Given 

1 0 1

0 2 0

0 0 1

 
 = − 
 
 

A  show that 1 1− =A
A

24. Use inverse matrices to solve the following systems of equations 

2 0

1

x y

x y

+ =
− =

2 0

1

x y

x y

− =
− + =

25. Use a matrix inverse to verify the solution to

 
( )

1

2

1

1 1
, , (1, , )

2 2

x y z

x y z

x y z

x y z

− + =
− − =
+ − =

= − −

26. Use a matrix inverse to verify the solution to

 ( )

2

2

0

, , (2, 1,1)

x y z

x y z

x y z

x y z

+ + =
− − =
+ − =

= −
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27. Use a Cramer’s rule to verify the solutions to

 

0

0

0

( , , ) (0,0,0)

x y z

x y z

x y z

x y z

− − =
+ + =
+ − =

=

and

0

1

0

1 1
( , , ) , ,0

2 2

x y z

x y z

x y z

x y z

+ + =
− − =
+ − =

 = − 
 

28. In general, the Jacobian determinant can be computed for N functions of N 
variables. Given the functions u(x, y) and v(x, y) the Jacobian determinant is 

 

,

,

u u

x yu v
J

v vx y

x y

∂ ∂
  ∂ ∂

=  ∂ ∂ 
∂ ∂

Calc ulate J for u = exy and v = x sin y. 

Section 2.4 Eigenvalues and Eigenvectors

29. Calculate the characteristic equations whose roots determine the eigenvalues 
of the following matrices 

(a) 
1 3

4 2

 
 
 

  (b) 

1 0 0

0 2 0

0 0 3

 
 
 
 
 

(c) 

cos sin 0

sin cos 0

0 0 1

 

 

 
 − 
 
 

 (d) 

xx xy xz

yx yy yz

zx zy zz

I I I

I I I

I I I

 
 
 
 
 

30. Show that the characteristic equation  of a 2  2 matrix
11 12

21 22

a a

a a

 
=  

 
A  is 

given by

 
( )2 Tr 0 − + =A A
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31. Calculate the eigenvalues and normalized eigenvectors of the following 
matrices

(a) 
0 1

1 1

 
 − 

     (b) 

1 0 0

0 2 0

0 0 3

 
 
 
 
 

32. Show that the trace of 

0 1 0

1 0 0

0 0 2

 
 =  
 
 

A  is equal to the sum of its eigenvalues 

and the determinant of A is equal to the product of its eigenvalues. 

33. Diagonalize the following matrices  

(a) 
1 3

2 1

 
 − 

 (b) 

1 1 1

2 0 2

1 0 2

 −
 
 
 − − 

Section 2.5 Rotation Matrices

34. Verify the following trigonometric identities for  = 

( ) ( )cos cos cos cos sin sin      ′ = − = +

( ) ( )sin sin sin cos cos sin      ′ = − = −

35. Calculate the determinants xR , yR  and zR

36. Calculate

(a) RxRyX where 

1

0

1

 
 =  
 − 

X  for 
2


 = =

(b) RyRxX where 

1

0

1

 
 =  
 − 

X  for 
2


 = =

37. Calculate the commutator  ,x yR R    for 
2


 = =

38. Show that ( ) ( ) 1T

x y x yR R R R
−

=  for 
2


 = =
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39. Calculate RxRyRz for infinitesimal rotations with  =  =  = . Neglect terms 
of O(2) and higher. 

40. Show that the rotation matrices 

 ( ) ( ) ( )yx z
iJiJ iJ

x y zR e R e R e
   = = =

are generated by the matrices

 

0 0 0

0 0

0 0
xJ i

i

 
 = − 
 
     

0 0

0 0 0

0 0
y

i

J

i

 −
 =  
 
      

0 0

0 0

0 0 0
z

i

J i

 −
 =  
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3Chapter

CALCULUS

Chapter Outline
3.1 Single-Variable Calculus
3.2  Multivariable Calculus
3.3 Gaussian Integrals
3.4 Series and Approximations
3.5 Special Integrals

3.1 SINGLE-VARIABLE CALCULUS 

Differential and integral calculus techniques are reviewed in this section. Examples 
of common integrals encountered in physics are given.  

3.1.1 Critical Points 
A function f(x) has a critical point where the slope is zero at x0 if 

 
( )

0

0
x

df x

dx
=  (3.1.1)
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The critical point (or extremum) may be a local maximum, local minimum or an 
inflection point. To determine the type of critical point a second derivative test is 
used

Local maximum :  
( )

0

2

2
0

x

d f x

dx
<   (3.1.2)

Local minimum : 
( )

0

2

2
0

x

d f x

dx
>  (3.1.3)

Inflection point :  
( )

0

2

2
0

x

d f x

dx
=  (3.1.4)

Example 3.1.1
Find the extremum of f(x) = x2 and determine the type of critical point.

Solution: Solving f (x) = 2x = 0 we fi nd x = 0 is an extremum. Performing the 

second derivative test ( )
0

2 0
x

f x
=

′′ = >  so that x = 0 is a minimum. 

3.1.2 Integration with Substitution  
Integrals of the form 

 ( )( ) ( )f g x g x dx′∫  (3.1.5)

may be transformed

 ( )f u du∫  (3.1.6)

by making the substitutions u = g(x) and ( )du g x dx′= . Once integrated, g(x) is 

substituted back in for u. The limits of definite integrals

 ( )( ) ( )
b

a

f g x g x dx′∫  (3.1.7)

may be transformed as

 ( )
( )

( )u b

u a

f u du∫  (3.1.8)

Alternatively, the original limits may be plugged back in after g(x) is substituted 
for u. 
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Example 3.1.2
Evaluate

 sin cos d  ∫  (3.1.9)

Solution: Making the substitution u = sin  and du = cos  d 

 
2

21
sin

2 2

u
udu = =∫  (3.1.10)

Example 3.1.3
Evaluate

 
2 2

0

sin

2 cos

d

R z Rz


 

+ −
∫  (3.1.11)

Solution: Substituting u = R2 + z2 – 2 Rz cos  and du = 2 Rz sin  d. The limits 
are now from u = R2 + z2 – 2 Rz cos(0) to u = R2 + z2 – 2 Rz cos ()

 

2 2
2 2

2 2

2 2

2 2 2 2 22

2
2

1 1 2 2 2

2

R z Rz
R z Rz

R z Rz
R z Rz

du R z Rz R z Rz
u

Rz Rz Rz Ru

+ +
+ +

+ −
+ −

+ + − + −
= = =∫

 (3.1.12)

Instead of transforming the limits we can back-substitute for u and plug in the 
original limits 

 
2 2

0

1
2 cosR z Rz

Rz



+ −  (3.1.13)

3.1.3 Work-Energy Theorem 
A famous u-substitution integral is encountered when calculating the kinetic 
energy of a mass under an applied force. The relativistic form of the work-kinetic 
energy theorem is given by the integral

 

3

3/2
2

2
1

f f

i i

x v

x v

dv vdv
W m dx m

dt v

c

= =
⎛ ⎞
−⎜ ⎟

⎝ ⎠

∫ ∫

 (3.1.14)
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This integral can be evaluated by making the substitution 
2

2
1

v
u

c
= −  so 

2

2v
du dv

c
= −

   

2

2
1

2
3/2

1
2

v

c
mc

W u du

−

−= − ∫
 (3.1.15)

where the limits ui = 1 and 
2

2
1f

v
u

c
= −  taking vi = 0 and vf = v. From the work-

kinetic energy theorem W = KE

 
( )

2
2 2

2

2

1

1

mc
KE mc mc

v

c

= − = −

−  (3.1.16)

where the initial kinetic energy is zero. 

3.1.4 Integration by Parts 
The derivative of a product of functions u(x) v(x) is obtained using the product 
rule

 ( )d dv du
uv u v

dx dx dx
= +  (3.1.17)

Integrating both sides of this expression we obtain

 uv udv vdu= +∫ ∫  (3.1.18)

within a constant. Thus,

 udv uv vdu= −∫ ∫  (3.1.19)

Evaluating the definite integrals by parts

 
b b

b

a

a a

udv uv vdu= −⎡ ⎤⎣ ⎦∫ ∫  (3.1.20)

This technique is often useful for integrating the product of a polynomial function 
and an exponential, logarithmic or trigonometric function. 
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Example 3.1.4
Evaluate 

 

0

xxe dx
∞

−∫  (3.1.21)

Solution: Making the substitutions 

u x=  xdv e dx−=  (3.1.22)

du dx=   
1 xv e 


−= −

 
2

00 0

1 1 1x x xxe dx xe e dx  

  

∞∞ ∞
− − −⎡ ⎤

= − + =⎢ ⎥
⎣ ⎦∫ ∫  (3.1.23)

Example 3.1.5
Evaluate once again

 sin cos d  ∫  (3.1.24)

Solution: Making the substitutions 

 sinu = cosdv d =  (3.1.25)

 cosdu d =  sinv =

or, sometimes written in table form, we “multiply along the diagonal” and 
“subtract the integral along the bottom”

 

sin cos

cos sin

d

d

  

  
− ∫

←⎯⎯
  (3.1.26)

to obtain

 2sin cos sin sin cosd d      = −∫ ∫  (3.1.27)

Notice that the same integral appears on the left- and right-hand sides. We can 
then solve for the integral (suppressing the constant).

 21
sin cos sin

2
d   =∫  (3.1.28)
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3.1.5 Integration with Partial Fractions 
Partial fractions can sometimes expand integrals with polynomials in the 
denominator.

Example 3.1.6
Evaluate the integral

 
3

dx

x x−∫  (3.1.29)

Solution: Factoring x3 – x = x(x2 – 1) = x(x + 1)(x – 1) (3.1.30)

 
1

( 1)( 1) ( 1) ( 1)

A B C

x x x x x x
= + +

+ − + −
 (3.1.31)

so we must have

 ( )( ) ( ) ( )1 1 1 1 1A x x Bx x Cx x= + − + − + +  (3.1.32)

or

 ( ) ( ) ( )2 2 21 1A x B x x C x x= − + − + +  (3.1.33)

Equating coefficients of like powers of x on both sides gives

 

1

0

0

A

A B C

B C

= −
= + +
= − +

 (3.1.34)

so that A = –1, B = C = 1/2 and

 

( ) ( ) ( )3

2

2

1 1
ln ln 1 ln 1 const.

2 2

1 1
                = ln const.

2

dx
x x x

x x

x

x

= − + + + − +
−

⎛ ⎞−
+⎜ ⎟

⎝ ⎠

∫
 (3.1.35)

after combining logarithm terms.

Example 3.1.7
Evaluate the integral

 3

dx

x x+∫  (3.1.36)
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Solution: Factoring ( )3 2 1x x x x+ = +  (3.1.37)

 ( ) ( )2 2

1

1 1

A Bx

xx x x
= +

+ +  (3.1.38)

we must have

 ( )2 21 1A x Bx= + +  (3.1.39)

Equating coefficients of like powers of x on both sides gives

 
1

0

A

A B

=
= +

 (3.1.40)

so that A = 1, B = –1

 

( ) ( )

3 2

2

2

1

1
              ln ln 1 ln const.

2 1

dx dx xdx

xx x x

x
x x

x

= −
+ +

⎛ ⎞
= − + = +⎜ ⎟⎜ ⎟+⎝ ⎠

∫ ∫ ∫
 (3.1.41)

after combining logarithm terms. 

3.1.6 Integration by Trig Substitution 
Integrals involving radical expression can often by solved by trigonometric 
substitution. 

Example 3.1.8
Evaluate the integral

 
2 2

L

L

dz

r z− +
∫

 (3.1.42)

2

2

r
z

+

r

θ

z

Figure 3.1.1: Triangle for trig substitution.

Solution: Referring to the right triangle in Figure 3.1.1 we identify

 tan
z

r
 =
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2 2

cos
r

r z
 =

+

 2 2
sin

z

r z
 =

+
 (3.1.43)

Since z = r tan  we have dz = r sec2  d. Writing the integrand in terms of cos 
we have that

 
2 2 cos

dz d

r z




=

+
∫ ∫  (3.1.44)

Multiplying top and bottom by cos  and breaking the integrand by partial 
fractions gives

 
2 2 2

cos cos 1 1 1

cos 2 1 1cos 1 sin 1

d du
d d du

u uu

  
 

  

⎛ ⎞= = = = +⎜ ⎟+ −− − ⎝ ⎠∫ ∫ ∫ ∫ ∫  (3.1.45)

The integral

 ( ) ( )1 1
ln 1 ln 1

1 1
du u u

u u

⎛ ⎞+ = + − −⎜ ⎟+ −⎝ ⎠∫  (3.1.46)

becomes

 
2 2 2 2

1 1
ln 1 ln 1

1 1

z z
du

u u r z r z

⎛ ⎞ ⎛ ⎞⎛ ⎞+ = + − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ −⎝ ⎠ + +⎝ ⎠ ⎝ ⎠
∫  (3.1.47)

Plugging in the original limits

 
2 2

2 2 2 2
ln

L

L

dz r L L

r z r L L−

⎛ ⎞+ +⎜ ⎟=
⎜ ⎟+ + −⎝ ⎠

∫  (3.1.48)

3.1.7 Differentiating Across the Integral Sign 
It is often useful to interchange operations of differentiation and integration. The 
Leibnitz integral rule  

 ( ) ( ), ,
d d

f x y dx f x y dx
dy dy

=∫ ∫  (3.1.49)

can be used where f(x, y) is continuous and differentiable. If the limits of a defi nite 
integral are functions of the differentiating variable 
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 ( )
( )

( )

( ) ( )( )
( )

( )

( )( ), , , ,

b y b y

a y a y

d d db da
f x y dx f x y dx f x b y f x a y

dy dy dy dy
= + −∫ ∫  (3.1.50)

We may differentiate across the integral sign to evaluate integrals of the form

 

0

n xx e dx
∞

−∫  (3.1.51)

We encounter such integrals when normalizing the radial wave function of the 
hydrogen atom in quantum mechanics and computing expectation values of 
position and momentum.  

Example 3.1.9
Use the simple integral

 
0

1xe dx



∞
− =∫  (3.1.52)

to evaluate the more complicated integral

 

0

xxe dx
∞

−∫  (3.1.53)

Solution: Using the Leibnitz integral rule treating  as a continuous variable 
where

 
2

0 0

1 1x xxe dx e dx 

   

∞ ∞
− −∂ ∂

= − = − =
∂ ∂∫ ∫  (3.1.54)

Increasing powers of x are evaluated by successive differentiation 

 
1

0 0

1 !
n n

n x x

n

n
x e dx e dx 

   

∞ ∞
− −

+

⎛ ⎞ ⎛ ⎞∂ ∂
= − = − =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠∫ ∫  (3.1.55)

3.1.8 Integrals of Logarithmic Functions 
The derivative of the natural logarithm 

 
1

ln
d

x
dx x

=  (3.1.56)

for x > 0 so that

 ln const.
dx

x
x
= +∫  (3.1.57)
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Example 3.1.10
Show that 

 ln ln const.xdx x x x= − +∫  (3.1.58)

Solution: By taking the derivative

 ( )ln const. ln 1 ln
d x

x x x x x
dx x

− + = + − =  (3.1.59)

Also, from the chain rule for f(x) > 0

 ( ) ( )
( )

ln
f xd

f x
dx f x

′
=  (3.1.60)

so that

 
( )
( ) ( )ln const.

f x
dx f x

f x

′
= +∫  (3.1.61)

Example 3.1.11
Show that

 
( )

( )22

22
ln const.

y h
dy x y h

x y h

+
= + + +

+ +∫  (3.1.62)

Solution:

 ( )
( )( ) ( )

( ) ( )

1/2
22

22

2222

1
2

2ln
x y h y h

y hd
x y h

dy x y hx y h

−
+ + + +

+ + = =
+ ++ +

 (3.1.63)

Example 3.1.12
Show that

 
1

ln tan
sin 2

d





⎛ ⎞= ⎜ ⎟
⎝ ⎠∫  (3.1.64)

Solution:

 

2sec
1 1 1 12ln tan tan

2 2 2 sin
tan tan 2sin cos

2 2 2 2

d d

d d


 

     
⎛ ⎞ = = = =⎜ ⎟
⎝ ⎠

 (3.1.65)
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Maple Examples
Integrals involving radical, polynomial, exponential, and trig functions are 
demonstrated on the Maple worksheet below. 
Key Maple commands: assume , int 

restart

Integrals Involving Radicals

( )2 2

1
,

sqrt
int z

r z

⎛ ⎞
⎜ ⎟+⎝ ⎠

 ( )2 2ln z r z+ +

( )2 2

1
,

sqrt
int z L L

r z

⎛ ⎞= −⎜ ⎟+⎝ ⎠


 ( ) ( )2 2 2 2ln lnL L r L L r− − + + + + +

( )
3
22 2

1
,int z

r z

⎛ ⎞
⎜ ⎟⎜ ⎟+⎝ ⎠

 
2 2 2

z

r z r+

( )
3
22 2

,
z

int z

r z

⎛ ⎞
⎜ ⎟⎜ ⎟+⎝ ⎠

 
2 2

1

r z
−

+

Integrals Involving Polynomials

1
,int u

a u

⎛ ⎞
⎜ ⎟−⎝ ⎠

 -ln(a – u)

2 2

1
,int u

a u

⎛ ⎞
⎜ ⎟−⎝ ⎠

( ) ( )1 ln 1 ln

2 2

u a u a

a a

− +
− +
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,
u

int u
a u

⎛ ⎞
⎜ ⎟−⎝ ⎠

 – u – a ln(u – a)

2 2
,

u
int u

a u

⎛ ⎞
⎜ ⎟−⎝ ⎠

 ( )2 21
ln

2
a u− − +

2

2 2
,

u
int u

a u

⎛ ⎞
⎜ ⎟

−⎝ ⎠

 ( ) ( )1 1
ln ln

2 2
u a u a a u a− − − + +

Integrals Involving Trig Functions

int(cos(theta)2, theta)

 
1 1

cos( )sin( )
2 2

  +

int(sin(theta)2, theta)

 
1 1

cos( )sin( )
2 2

  − +

int(sin(theta)2  cos(theta)2, theta)

 

31 1 1
sin( )cos( ) cos( )sin( )

4 8 8
    − + +

int(cos(theta)2, theta = 0…2  Pi)


int(sin(theta)2, theta = 0…2  Pi)


int(sin(theta)2  cos(theta)2, theta = 0…2  Pi)

 
1

4
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1
int , theta

cos(theta)

⎛ ⎞
⎜ ⎟
⎝ ⎠

ln(sec() + tan())

1
int , theta

sin(theta)

⎛ ⎞
⎜ ⎟
⎝ ⎠

 ln(csc() – cot())

( )2 2

sin(theta)
int , theta

sqrt 2 cos(theta)r z r z

⎛ ⎞
⎜ ⎟+ − ⋅ ⋅ ⋅⎝ ⎠

 

2 2 2 cos( )r z rz

rz

+ −

( )
3
22 2

sin(theta)
int , theta

sqrt 2 cos(theta)r z r z

⎛ ⎞
⎜ ⎟⎜ ⎟+ − ⋅ ⋅ ⋅⎝ ⎠

 
( )1/4

2 22 2 cos( )r z rz

rz

+ −

Integrals Involving Exponential Functions

int(exp(-a  x), x)

 
axe

a

−

−

int(xexp(-a  x), x)

 
( )

2

1 axax e

a

−+
−

int(x2exp(-a  x), x)

 
( )2 2

3

2 2 axa x ax e

a

−+ +
−

assume(a > 0)
int(exp(-a  x), x = 0…infinity)
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1

a 
int(exp(-a  x), x = 0…infinity)

 
2

1

a 
int(x2exp(-a  x), x = 0…infinity)

 
3

2

a 
assume(n, ‘integer’)
int(sin(nx)exp(-a  x), x = 0…infinity)

 2 2

n

a n+


 
int(cos(nx)exp(-a  x), x = 0…infinity)

 2 2

a

a n+


 
int(xnexp(-a  x), x = 0…infinity)

 ( )1 1na n− − Γ + 
int(sin(ntheta), theta = 0…2  Pi)

0

int(sin(ntheta), theta = 0…Pi)

 
1 ( 1)n

n

− + − 



3.2 MULTIVARIABLE CALCULUS 

Partial derivatives, multiple integrals, and orthogonal coordinate systems are 
reviewed in this section. Examples of finding and characterizing extrema of 
function and performing volume and surface integrals in Cartesian, cylindrical, 
and spherical coordinates are discussed.
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3.2.1 Partial Derivatives 
Partial derivatives are used when differentiating a multivariable function with 
respect to a single variable. The partial derivative is defined like the derivative of 
a function of one variable. The partial derivative of f(x, y, z, t) with respect to x is 
given by the following limit

 
( ) ( )

0

, , , , , ,
lim
x

f x x y z t f x y z tf

x xΔ →

+ Δ −∂
=

∂ Δ
 (3.2.1)

The symbol f/x is read as “the partial of f with respect to x.” Similarly, the partial 
of f with respect to y is

 
( ) ( )

0

, , , , , ,
lim
x

f x y y z t f x y z tf

y yΔ →

+ Δ −∂
=

∂ Δ  (3.2.2)

 Example 3.2.1
Given

 ( ), cos( )xf x t e t −=  (3.2.3)

we may calculate the first partial derivatives

 
cos( )

sin( )

x

x

f
e t

x
f

e t
t





 

 

−

−

∂
= −

∂
∂

= −
∂

 (3.2.4)

the second partial derivatives

 

2
2

2

2
2

2

cos( )

cos( )

x

x

f
e t

x

f
e t

t





 

 

−

−

∂
=

∂
∂

= −
∂

 (3.2.5)

as well as mixed and higher partial derivatives

 

3
2

2

3
3

3

sin( )

sin( )

x

x

f
e t

t x

f
e t

t





 

 

−

−

∂
= −

∂ ∂
∂

=
∂

  (3.2.6)



124 MATHEMATICAL METHODS FOR PHYSICS USING MATLAB AND MAPLE

3.2.2 Critical Points 
A function of two variables f(x, y) has a critical point at a point (x0, y0) where 

 
( )

( )0 0,

,
0

x y

f x y

x

∂
=

∂  (3.2.7)

 
( )

( )0 0,

,
0

x y

f x y

y

∂
=

∂  (3.2.8)

The critical point may be a local maximum, local minimum, or a saddle point. To 
determine the type of critical point, a second derivative test is used

 ( )
( )0 0

2
2 2 2

0 0 2 2

,

,

x y

f f f
D x y

x yx y

⎛ ⎞⎛ ⎞∂ ∂ ∂⎜ ⎟= + −⎜ ⎟
⎜ ⎟∂ ∂∂ ∂ ⎝ ⎠⎝ ⎠

 (3.2.9)

Local maximum : ( )0 0, 0D x y >   and 
( )

( )0 0

2

2

,

,
0

x y

f x y

x

∂
<

∂
 (3.2.10)

Local minimum : ( )0 0, 0D x y >   and 
( )

( )0 0

2

2

,

,
0

x y

f x y

x

∂
>

∂
 (3.2.11)

Saddle point : ( )0 0, 0D x y <  (3.2.12)

3.2.3 Double Integrals 
A double integral of a scalar function f(x, y) over a region R is defined as a double 
Riemann sum

 ( ) ( )
,

1 10

, lim ,
N M

i j
N M

i jR a

f x y da f x y a
→∞

= =Δ →

= Δ∑∑∫  (3.2.13)

where a x yΔ = Δ Δ .

Example 3.2.2
Integrate f(x, y) = x2y over the unit square with da = dxdy

 

111 1 23
2

0 0 0 0

1
( , )

3 2 6
R

yx
f x y da x ydxdy= = =∫ ∫ ∫  (3.2.14)

The order of integration is inward to outward. 
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Example 3.2.3
Integrate the same function over half of the unit square consisting of the area 
between the line y = x and the x-axis. We first integrate over y from y = 0 to y = x 
and then integrate over x between 0 and 1

 ( )
11 1 12 4 5

2 2

0 0 0 0 00

1

2 2 10 10

xx
y x x

x y dydx x dx dx
⎛ ⎞ ⎛ ⎞⎜ ⎟= = = =⎜ ⎟
⎜ ⎟ ⎝ ⎠⎝ ⎠

∫ ∫ ∫ ∫  (3.2.15)

Example 3.2.4
Obtain the area of half of the unit square 

 
1 1 1

0
0 0 0 0

1

2

x
x

dydx y dx xdx= = =∫ ∫ ∫ ∫  (3.2.16)

To fi nd the area A bound between two functions y = f(x) and y = g(x) over an 
interval [a, b] we fi rst integrate over y and then x

 
( )

( )g xb

a f x

A dydx= ∫ ∫  (3.2.17)

Example 3.2.5
Find the area between y = x2 and y = x over the interval [0, 1]

 ( )
2

1 1
2

0 0

1 1 1

2 3 6

x

x

A dydx x x dx= = − = − =∫ ∫ ∫  (3.2.18)

Example 3.2.6
Find the area of the unit circle. In polar coordinates da = rdrd and

 2

0 0

R

A rdrd R



 
2

= =∫ ∫  (3.2.19)

Example 3.2.7
Integrate f(x, y) = x2y over the upper half of the unit circle. We must first perform 
a polar coordinate transformation where x = r cos  and y = r sin 

 

( ) ( ) ( )
1

2

0 0

1 1
4 2 2

0 0 1

, cos sin

1 2
                   cos sin

5 15

R

f x y da r r rdrd

r dr d u du





  

  
−

=

= = − =

∫ ∫ ∫

∫ ∫ ∫
 (3.2.20)



126 MATHEMATICAL METHODS FOR PHYSICS USING MATLAB AND MAPLE

3.2.4 Triple Integrals 
The triple integral of a scalar function f(x, y, z) over a volume is defined as a triple 
Riemann sum

 ( ) ( )
, ,

1 1 1vol 0

, , lim , ,
N M O

i j k
N M O

i j kv

f x y z dv f x y z v
→∞

= = =Δ →

= Δ∑∑∑∫  (3.2.21)

where .

Example 3.2.8
Integrate f(x, y, z) = xy2z3 over the unit cube where dv = dxdydz

 ( )
1 1 11 1 1 2 3 4

2 3

0 0 0 0 0 0

1
, ,

2 3 4 24
R

x y z
f x y z dv xy z dxdydz= = =∫ ∫ ∫ ∫  (3.2.22)

The order of integration is inward to outward as it is for double integrals. Triple 
integrals in physics are used to calculate quantities such as mass, charge, and 
probability.  

3.2.5 Orthogonal Coordinate Systems 
Common coordinate systems used in physics are the Cartesian, cylindrical and 
spherical coordinate systems. These are orthogonal systems with coordinate 
surfaces that intersect at right angles.  

3.2.6 Cartesian Coordinates 
Orthogonal surfaces in the Cartesian coordinate system (x, y, z) are planes 
described by

 

const.

const.

const.

x

y

z

=
=
=

 (3.2.23)

with coordinate ranges  ,  ,  x y z−∞ < < ∞ −∞ < < ∞ −∞ < < ∞ .

3.2.7 Cylindrical Coordinates 
The cylindrical coordinates (r, , z) are related to the Cartesian coordinates

 

cos

sin

const.

x r

y r

z





=
=
=

 (3.2.24)
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The coordinate surfaces are circular cylinders of constant r

 2 2 2x y r+ = , (3.2.25)

half planes parallel to the z-axis described by

 tan
y

x
 =  (3.2.26)

and planes perpendicular to the z-axis z = z. The coordinate ranges of the 
cylindrical coordinates are 0 ,  ,  0 2r z  ≤ < ∞ −∞ < < ∞ ≤ < . Note that  is 
frequently used for the angular coordinate in cylindrical polar coordinates. 

3.2.8 Spherical Coordinates 
The spherical coordinates (r,  , ) are related to the Cartesian coordinates

 

sin cos

sin sin

cos

x r

y r

z r

 

 



=
=
=

 (3.2.27)

The coordinate surfaces are spheres of constant r

 
2 2 2 2x y z r+ + =  (3.2.28)

cones of constant  described by

 

2 2
1tan

x y

z
 − +
=  (3.2.29)

and half planes of constant  parallel to the z-axis 

 
1tan

y

x
 −=  (3.2.30)

Coordinate ranges of the spherical coordinates are 0 ,  0 ,  0r   ≤ < ∞ ≤ ≤ ≤  < 
2.

3.2.9 Line, Volume, and Surface Elements 
Surface elements da and volume elements dv may be determined from 
components of the line element ˆd  in a given coordinate system as shown in 
Table 3.2.1. There will be three possible surface elements corresponding to faces 
of the volume element. In Cartesian coordinates, the volume element is a cube 
with square surface elements. Integration over volume elements in Cartesian, 
cylindrical, and spherical coordinates will give the volume of a cube, cylinder and 
sphere, respectively.
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3

cube 0 0 0

L L L

dv dxdydz L= =∫ ∫ ∫ ∫
 (3.2.31)

 

2
2

cylinder 0 0 0

H R

dv rdrdzd R H



 = =∫ ∫ ∫ ∫
 (3.2.32)

 

2
2 3

sphere 0 0 0

4
sin

3

R

dv r drd d R

 

   = =∫ ∫ ∫ ∫
 (3.2.33)

Table 3.2.1: Line, surface, and volume elements in Cartesian, cylindrical, and spherical coordinates.

Coordinate 

System

Line Element Possible Surface 

Elements

Volume 

Element

Cartesian ˆˆ ˆ ˆd dx dy dz= + +i j k ˆ

ˆ

ˆ

dxdy

d dydz

dzdx

⎧
⎪⎪= ⎨
⎪
⎪⎩

k

a i

j

dv = dxdydz

Cylindrical ˆ ˆˆ ˆd dr rd dz= + +r z ˆ

ˆ

ˆ

rd dz

d rd dr

drdz







⎧
⎪= ⎨
⎪
⎩

r

a z

dv = rdrdzd

Spherical ˆˆ ˆˆ sind dr rd r d  = + +r 2 ˆsin

ˆsin

ˆ

r d d

d r d dr

rd dr

  

  

 

⎧
⎪⎪= ⎨
⎪
⎪⎩

r

a

dv = r2sin-
drdd

Maple Examples
Partial derivatives of multivariate functions are demonstrated in the Maple 
worksheet below as well as multiple integrals in Cartesian, cylindrical, and 
spherical coordinates. Extrema including maxima, minima, and saddle points of 
surface plots are evaluated. Various coordinate systems are plotted in 2D and 3D.

Possible coordinate systems: bipolarcylindrical, bispherical, cardioidal, 
cardioidcylindrical, casscylindrical, confocalellip, confocalparab, conical, 
cylindrical, ellcylindrical, ellipsoidal, hypercylindrical, invcasscylindrical, 
invellcylindrical, invoblspheroidal, invprospheroidal, logcoshcylindrical, 
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logcylindrical, maxwellcylindrical, oblatespheroidal, paraboloidal, paraboloidal2, 
paracylindrical, prolatespheroidal, rectangular, rosecylindrical, sixsphere, 
spherical, tangentcylindrical, tangentsphere, and toroidal.

Key Maple commands: coordplot , coordplot3d , evalf , plot3d , simplify , subs 

Maple packages: with(plots ):

Programming: Function operation using ‘’

restart

Partial Derivatives

f := (x, y, z)  sin(yx)cosh(z)

 f := (x, y, z)  sin(yx) cosh(z)

( ), ,f x y z
x

∂
∂

yx ln(y) cos(yx) cosh(z)

2

( , , )f x y z
x y

∂
∂ ∂

 
cos( )sinh( )x xy x y z

y

( )
2

, ,f x y z
z y

∂
∂ ∂

 
cos( )sinh( )x xy x y z

y

restart

Determining Maxima and Minima

f := (x, y)  (x2 – 2y2)exp(–(x2 + y2))

 f := (x, y)  (x2 – 2y2)e–x2y2

plot3d(f(x, y), x = – 2…2, y = – 2…2)
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2 x1
0

–2
–1–1

0

y

–2

1

–0.6

–0.4

–0.2

0

0.2

Figure 3.2.1: Surface plot of a function with two maxima, two minima, and a saddle point.

CritPt : = solve({diff(f(x, y), x)= 0, diff(f(x, y), y)= 0}, {x, y})

CritPt : = {x = 0, y = 0}, {x = 1, y = 0}, {x = 1, y = 0}, {x = 0, y = 1},{x = 0, y = 1}

Second Derivative Test

Extrema : = simplify(diff(f(x, y), x, x)diff(f(x, y), y, y) – (diff(f(x, y), x, y))2)

2 26 2 4 2 2 6 4 2 2 21 9
: 8 3 23 4 8 3 1

2 2
x yExtrema x y x y x y y y e− −⎛ ⎞⎛ ⎞ ⎛ ⎞= − + − − + − + − − +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

evalf(subs({x = 0, y = 0}, Extrema))
8

evalf(subs({x = 1, y = 1}, Extrema))

3.248046797

evalf(subs({x = -1, y = 0}, Extrema))

3.248046797

evalf(subs({x = 0, y = 1}, Extrema))

6.496093594

evalf(subs({x = 0, y = -1}, Extrema))

6.496093594

Thus, (x = 0, y=0) is a saddle point. The other extrema are maxima or minima. 

Double Integrals

g := (x, y)  (xy)
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g := (x, y)  (yx)

int(g(x, y), x = 0…1)

 
2

y

Int(Int(g(x, y), x = 0…1), y = 0 … 1) = int(int(g(x, y), x = 0…1), y = 0 … 1)

 
1 1

0 0

1

4
yxdxdy =∫ ∫

Double Integrals in Polar Coordinates

Int(Int(r, r = 0…R), theta = 0 … 2Pi) = int(int(r, r = 0…R), theta = 0 … 2Pi)
2

2

0 0

R

rdrd R


 =∫ ∫
Triple Integrals

h := (x, y, z)  (xyz)

h := (x, y, z)  y x z

Int(Int(Int(h(x, y, z), x = 0…1), y = 0 … 1), z = 0 … 1) = int(int(int(h(x, y, z), 
x = 0…1), y = 0 … 1), z = 0 … 1)

 
1 1 1

0 0 0

1

8
yxzdxdydz =∫ ∫ ∫

Triple Integrals in Cylindrical Coordinates

Int(Int(Int(r, r = 0…R), theta = 0 … 2Pi), z = 0 … H) = int(int(int(r, r = 0…R), 
theta = 0 … 2Pi), z = 0 … H)

2
2

0 0 0

H R

rdrd dz R H


 =∫ ∫ ∫
Triple Integrals in Spherical Coordinates

Int(Int(Int(r2sin(theta), r= 0…R), theta = 0 … Pi), phi = 0 … 2Pi) = 
int(int(int(r2sin(theta), r= 0…R), theta = 0 … Pi), phi = 0 … 2Pi)

 
32

2

0 0 0

4
sin( )

3

R R
r drd d

  
   =∫ ∫ ∫

Integrals Using the Palette

( )
21

2 2 20 0 0

exp( )

1

z y x y z
evalf dxdydz

sqrt x y z

⋅ ⋅⎛ ⎞
⎜ ⎟⎜ ⎟+ + +⎝ ⎠
∫ ∫ ∫

0.05697298256
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Coordinate Systems

with(plots) :
coordplot(polar, labeling = true, color = “Black”)

0

7
6π

3
6π

4
3π

π

5
6π

2
3π

1
2π 1

3π

1
6π

5
3π

11
6
π

1π
1
0

1
3

0
2

2
3

5
6

0

Figure 3.2.2: Plot of polar coordinates.

coordplot(bipolar, color = “Black”)

Figure 3.2.3: Plot of bipolar coordinates.
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coordplot3d(rectangular, color = “Black”)

Figure 3.2.4: Plot of Cartesian coordinates. Orthogonal surfaces are planes.

coordplot3d(cylindrical, color = “Black”)

Figure 3.2.5: Plot of cylindrical coordinate surfaces. Orthogonal surfaces are cylinders, 
planes and half planes.

coordplot3d(spherical, color = “Black”)
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Figure 3.2.6: Plot of spherical coordinate surfaces. 
Orthogonal surfaces are spheres, cones (one cone shown), and half planes.

coordplot3d(oblatespheroidal, color = “Black”)

Figure 3.2.7: Plot of oblate spheroidal coordinate surfaces. 
Orthogonal surfaces are oblate spheroids, one-sheet hyperboloids, and half planes. 

coordplot3d(prolatespheroidal, color = “Black”)

Figure 3.2.8: Plot of prolate spheroidal coordinate surfaces. 
Orthogonal surfaces are prolate spheroids, two-sheet hyperboloids (one sheet shown), and half planes
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coordplot3d(toroidal, color = “Black”)

Figure 3.2.9: Plot of toroidal coordinate surfaces. Orthogonal surfaces are spheres, toroids, and half planes. 

3.3 GAUSSIAN INTEGRALS 

Gaussian integrals of the form

 
2n xx e dx

∞
−

−∞
∫  (3.3.1)

occur in the quantum harmonic oscillator, Maxwell-Boltzmann velocity 
distribution, and path integrals in quantum field theory. 

Example 3.3.1
To solve the integral

 
2xI e dx

∞
−

−∞

= ∫  (3.3.2)

we first perform a polar coordinate transformation 

 ( )2 22 22 x yx yI e dx e dy e dxdy
 

∞ ∞ ∞ ∞
− +− −

−∞ −∞ −∞ −∞

= =∫ ∫ ∫ ∫  (3.3.3)

Substituting x2 + y2  r2 and dxdy  rdrd gives

 
2

2
2

0 0

rI e rdrd


 

∞
−= ∫ ∫  (3.3.4)
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and substituting u = r2 and du = 2rdr 

 
2 1

2
2

I I



 

= → =  (3.3.5)

Because the integral is symmetric about x = 0

 
2

0

1

2
xe dx 



∞
− =∫  (3.3.6)

Now we can use the Leibnitz integral rule  differentiating across the integral sign 
and treating a as a continuous variable

 
2 22

3

1

2
x xx e dx e dx   

   

∞ ∞
− −

−∞ −∞

∂ ∂
= − = − =
∂ ∂∫ ∫  (3.3.7)

Next

 
2 2

2 2

4

5

3

4
x xx e dx e dx   

   

∞ ∞
− −

−∞ −∞

∂ ∂⎛ ⎞ ⎛ ⎞= − = − =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠∫ ∫  (3.3.8)

and in general

 
22

n

n xx e dx 

 

∞
−

−∞

∂⎛ ⎞= −⎜ ⎟∂⎝ ⎠∫  1,  2, 3,n =   (3.3.9)

For odd powers of x

 
22 1 0n xx e dx

∞
+ −

−∞

=∫  (3.3.10)

since the integrand is antisymmetric about x = 0. However

 
2

0

1

2
xxe dx



∞
− =∫  (3.3.11)

so that the Leibnitz integral rule can be used to evaluate higher odd powers

 

22 1

0

1
   

2

n

n xx e dx

 

∞
+ − ∂⎛ ⎞= −⎜ ⎟∂⎝ ⎠∫

 1,  2, 3,n =   (3.3.12)
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3.3.1 Error Functions 
A related Gaussian integral with a finite upper limit is defined as a function of the 
upper limit x

 ( ) ( )2

0

2
erf exp

x

x d 


= −∫  (3.3.13)

where erf(x) is known as the error function. A Gaussian integral with finite lower 
limit x defines the complementary error function erfc(x) where

 ( ) ( )22
erfc exp

x

x d 


∞

= −∫  (3.3.14)

The prefactors 2 /   are chosen so that 

 ( ) ( ) ( )2

0

2
erf erfc exp 1x x d 



∞

+ = − =∫  (3.3.15)

If the numerical value erf(x) is known, we can immediately find erfc(x) = 1 – 
erf(x). For small values of 1x <<  we have ( )erf 2 /x x ≈ . Also, the error 

function is an odd function since erf(–x) = – erf(x). 

Maple Examples
The computation of even and odd Gaussian integrals by differentiation of a kernel 
is shown in the Maple worksheet below. 

Key Maple commands: diff , int , simplify 

Programming: For loops 

restart

Gaussian Integrals

assume(alpha > 0)
for n from 0 to 10 do
Int(xnexp(alpha*x2), x= 0..infinity) = simplify(int(xnexp(alpha*x2), x= 0.. 
infinity))
end

 

2

0

1

2
xe dx 



∞ − =∫ 
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2

0

1

2
xe dx



∞ − =∫ 



 

22

3/20

1

4
xx e dx 



∞ − =∫ 



 

23

20

1

2

xx e dx



∞ − =∫ 



 

24

5/20

3

8
xx e dx 



∞ − =∫ 



 

25

30

1xx e dx



∞ − =∫ 



 

26

7/20

15

16
xx e dx 



∞ − =∫ 



 

27

40

3xx e dx



∞ − =∫ 



 

28

9/20

105

32
xx e dx 



∞ − =∫ 



 

29

50

12xx e dx



∞ − =∫ 



 

210

11/20

945

64
xx e dx 



∞ − =∫ 



Even Gaussian Integrals by Differentiation of the Kernel I0

0

1
:

2 alpha
I


=

1

2



 

for n from 2 to 10 by 2 do ( ) 2

01 , $
2

n n
simplify diff I alpha

⎛ ⎞⎛ ⎞− ⋅ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
end

3/2

1

4
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 5/2

3

8



 

 
7/2

15

16



 

 9/2

105

32



 

 
11/2

945

64



 
Odd Gaussian Integrals by Differentiation of the Kernel I1

 
1

1
:

2 alpha
I =

⋅

1

2 

for n from 3 to 9 by 2 do ( )
( ) ( )1

2

1

1
1 , $

2

n n
simplify diff I alpha

−⎛ ⎞⎛ ⎞−
− ⋅ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
end

 2

1

2 

 3

1

 

 
4

3

 

 
5

12

 

3.4 SERIES AND APPROXIMATIONS 

In this section geometric, Taylor and Maclaurin series are discussed. Topics 
include index shifting, convergence of series, and the binomial approximation. 
Approximations based on the binomial theorem are also covered. 
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3.4.1 Geometric Series 
Consider the series

 
2 31 nS x x x x= + + + + +  (3.4.1)

Euclid noticed that multiplying both sides by x and then adding one to both sides 
results in

 
2 3 1

1

1 1

         

n

n

xS x x x x

S x

+

+

+ = + + + + +

= +


 (3.4.2)

Solving for S gives

 
11

1

nx
S

x

+−
=

−
 (3.4.3)

Now if 1x <  then 1 0nx + →  as n →∞  so that

 
0

1

1
n

n

x
x

∞

=

=
− ∑  (3.4.4)

Additional series may be derived from the geometric series such as

 
2 4 6

2

1
1

1
x x x

x
= + + + +

−
  (3.4.5)

 2

2
0

1

1

n

n

x
x

∞

=

=
− ∑  (3.4.6)

Differentiating the geometric series

 

0

1

1
n

n

d d
x

dx x dx

∞

=

=
− ∑  (3.4.7)

reveals that

 ( )
1

2
0

1

1

n

n

nx
x

∞
−

=

=
−

∑   for 1x <  (3.4.8)

Subsequent differentiation gives 

 ( )
( ) 2

3
0

2
1

1

n

n

n n x
x

∞
−

=

= −
−

∑  (3.4.9)

The sum may be started from n = 2 since the first two terms are zero. 
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3.4.2 Taylor Series 
A Taylor series relates the value of a function f(x) to the function evaluated at a 
nearby point f(a) where f(x) is continuous and differentiable over some region 
containing x and a. The expansion of f(x) about x = a is 

( ) ( ) ( ) ( ) ( )
2 3

2 3

2 3

1 1

2! 3!x a x a x a

df d f d f
f x f a x a x a x a

dx dx dx= = =

= + − + − + − +

 (3.4.10)

that can be written compactly as

 ( ) ( ) ( )
0

1

!

n
n

n
n x a

d f x
f x x a

n dx

∞

= =

= −∑  (3.4.11)

3.4.3 Maclaurin Series 
The expansion of f(x) about x = 0 is known as a Maclaurin series

 ( ) ( )
0 0

1

!

n
n

n
n x

d f x
f x x

n dx

∞

= =

=∑  (3.4.12)

Expanding sin() and cos() in a Taylor series about  = 0

 ( ) ( ) ( )
3 5 2 1

0

sin 1
3! 5! 2 1 !

n
n

n n

  
 

∞ +

=

= − + + = −
+∑  (3.4.13)

 ( ) ( ) ( )
2 4 2

0

cos 1 1
2! 4! 2 !

n
n

n n

  


∞

=

= − + + = −∑  (3.4.14)

Example 3.4.1
Expand ei in a Taylor series about  = 0 to show that ei = cos() + i sin()
Solution: Using

 
0 !

n
z

n

z
e

n

∞

=

=∑  (3.4.15)

 ( ) 2 3 4 5 6

0

1
! 2! 3! 4! 5! 6!

n

i

n

i
e i i i

n

      


∞

=

= = + − − + + −∑  (3.4.16)

and separating real and imaginary terms

 
2 4 6 3 5

1
2! 4! 6! 3! 5!

ie i     


⎛ ⎞ ⎛ ⎞
= − + − + + − + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

   (3.4.17)

we fi nd that ei = cos() + i sin().
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3.4.4 Index Labels 
Any symbol may be used for indexing summations and series. For example

 ( ) ( )0 0
0 0

m n

m n

m n

a x x a x x
∞ ∞

= =

− = −∑ ∑  (3.4.18)

The index of summation is often referred to a “dummy” index. It is sometimes 
convenient to shift indices when combining summations. We can begin the 
summation at m = 1 by shifting our indices to m – 1

 ( ) ( ) 1

0 1 0
0 1

m m

m m

m m

a x x a x x
∞ ∞

−
−

= =

− = −∑ ∑  (3.4.19)

3.4.5 Convergence of Series 
The power series

 ( )0
0

n

n

n

a x x
∞

=

−∑  (3.4.20)

is said to converge if

 ( )0

0

lim
M

n

n
M

n

a x x
→∞

=

−∑  (3.4.21)

converges. The power series converges absolutely if

 ( )0

0

n

n

n

a x x
∞

=

−∑  (3.4.22)

converges. Note that a power series converges if it converges absolutely. However, 
the converse is not necessarily true. 

3.4.6 Ratio Test 
The ratio text compares subsequent terms in a series

 
( )
( )

1

1 0 1
0

0

lim lim

n

n n

nn n
nn

a x x a
x x L

aa x x

+
+ +

→∞ →∞

−
= − =

−
 (3.4.23)

if L < 1 then the power series converges. If L = 1 the test is inconclusive. Several 
other convergence tests may also be used such as the integral test. 
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3.4.7 Integral Test
The integral test for convergence of the series n

n k

a
∞

=
∑ is performed by replacing the 

series by an improper integral

 ( )n

n k k

a f n dn

∞∞

=

>∑ ∫  (3.4.24)

If the improper integral converges then the series converges. If the integral 
diverges then the sum also diverges.

Example 3.4.2
Applying the integral test for convergence  of the harmonic series 

 
1

1 1 1 1
1

2 3 4n n

∞

=

= + + + +∑   (3.4.25)

Solution: The integral test gives

 ( )
1

1
lim lim ln

M

M M
dn M

n→∞ →∞
= →∞∫  (3.4.26)

Example 3.4.3
Test the Riemann zeta function  (1 + ) for convergence

 ( ) ( ) 1 1 11
1

1 1 1 1
1 1

2 3 4n n
  

 
∞

+ + ++
=

+ = = + + + +∑   (3.4.27)

Solution: Applying the integral test

 ( )1
1 1

1 1 1 1
lim lim lim 1

MM

M M M

n
dn

Mn



   

−

+→∞ →∞ →∞

⎛ ⎞ ⎛ ⎞⎜ ⎟= − = − <⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
∫  (3.4.28)

Thus (1 + ) converges for any  > 0. The divergent harmonic series  is obtained 
for  = 0. 

3.4.8 Binomial Theorem 
The binomial theorem gives an expansion of a binomial raised to a power n

 ( ) 1 2 2

1 2

n n n n n
n n

a x a a x a x x− −⎛ ⎞ ⎛ ⎞
+ = + + + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
  (3.4.29)
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where the binomial coefficients  are defined as

 
( )

!

! !

n n

k k n k

⎛ ⎞
=⎜ ⎟

−⎝ ⎠
 (3.4.30)

Example 3.4.4
Expand (a + x)4 using the binomial theorem 

Solution: ( )4 4 3 2 2 3 4
4 4 4

1 2 3
a x a a x a x ax x

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ = + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (3.4.31)

( ) ( ) ( ) ( )
4 4 3 2 2 3 4

4 3 2 2 3 4

4! 4! 4!

1! 4 1 ! 2! 4 2 ! 3! 4 3 !

            4 6 4

a x a a x a x ax x

a a x a x ax x

+ = + + + +
− − −

= + + + +

 (3.4.32)

3.4.9 Binomial Approximations 
A very useful approximation based on the binomial theorem for a = 1 is obtained 
from

 ( ) 21 1
1 2

n n
n n

x x x x
⎛ ⎞ ⎛ ⎞

+ = + + + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

  (3.4.33)

For values of 1x <<  terms of order x2 and higher may be neglected so that 

 ( )1 1
n

x nx+ ≈ +  (3.4.34)

Example 3.4.5
Find an approximation of the velocity

 
2

1 1 sR
v c

R

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
 (3.4.35)

Solution: The binomial approximation gives for sR R<<

 
2

1 1 2s sR R

R R

⎛ ⎞
− ≈ −⎜ ⎟

⎝ ⎠
 (3.4.36)

Thus, the velocity 2 sR
v c

R
≈
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Maple Examples
Examples in the Maple worksheet below present finite and infinite sums as well 
as series expansions including Taylor, Maclaurin, and multivariate expansions.  
The conversion of functions to formal power series is shown. Pascal’s triangle  is 
constructed with the use of binomial coefficients. 

Key Maple commands: add , convert , expand , evalf , FormalPowerSeries , mtaylor , 
sum 

Maple packages: with(plots ):

Programming: For loops

Special functions: binomial

restart

Finite Sums

1
, 0 5

!
sum k

k

⎛ ⎞=⎜ ⎟
⎝ ⎠



 
163

60

1
, 0 5

!
add k

k

⎛ ⎞=⎜ ⎟
⎝ ⎠



 
163

60
sum(f(k), k)

 ( )
k

f k∑
Infinite Sums

1
, 0 infinity

3n
sum n

⎛ ⎞=⎜ ⎟
⎝ ⎠



 
3

2

999
, 0 infinity

1000

n

sum n
⎛ ⎞⎛ ⎞⎜ ⎟=⎜ ⎟
⎝ ⎠⎝ ⎠
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 1000

998
, 0 infinity

1000

n

sum n
⎛ ⎞⎛ ⎞⎜ ⎟=⎜ ⎟
⎝ ⎠⎝ ⎠



 500

997
, 0 infinity

1000

n

sum n
⎛ ⎞⎛ ⎞⎜ ⎟=⎜ ⎟
⎝ ⎠⎝ ⎠



 

1000

3

Series

1
,

1
series x

x

⎛ ⎞
⎜ ⎟
−⎝ ⎠

1 + x + x2 + x3 + x4 + x5 + O(x6)

2

1
,

1
series x

x

⎛ ⎞
⎜ ⎟
−⎝ ⎠

1 + x2 + x4 + O(x6)

3

1
,

1
series x

x

⎛ ⎞
⎜ ⎟
−⎝ ⎠

1 + x3 + O(x6)

2

1
,

1
series x

x

⎛ ⎞
⎜ ⎟
+⎝ ⎠

1 – x2 + x4 + O(x6)

series(xx, x = 0, 5)

 
2 2 3 3 4 4 51 1 1

1 ln( ) ln( ) ln( ) ln( ) ( )
2 6 24

x x x x x x x x O x− + − + +

series(sqrt(cos(cos(x))), x = 0, 10) :
evalf(%)

0.7350525872 + 0.2861941445 x2 – 0.1255054201 x4 + 0.04539280320 x6 – 
0.02503855750 x8 + O(x10)
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series(cos(x cos(theta)), theta = 0, 10)

 

2 2 4

2 3 6

4 2 3 8 10

1 1 1
cos( ) sin( ) cos( ) sin( )

2 8 24

1 1 1
cos( ) sin( )

48 720 48

1 1 1 1
cos( ) sin( ) ( )

384 640 192 40320

x x x x x x x

x x x x x

x x x x x x O

 



 

⎛ ⎞+ + − −⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞+ − − +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞ ⎛ ⎞+ − − − + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

type(%, series)

true

Taylor Series

taylor(exp(-x)sin(x)x, x = 1, 4);

 

( ) ( )

( ) ( )( )

21 1 1

3 41 1

sin(1) cos(1) 1 sin(1) 1

2 1
cos(1) sin(1) 1 1

3 3

e e x e x

e e x O x

− − −

− −

+ − − −

⎛ ⎞+ − + − + −⎜ ⎟
⎝ ⎠

type(%, ‘taylor’)

true

Maclaurin Series

taylor(exp(-x)x, x = 0);

 
2 3 4 5 61 1 1

( )
2 6 24

x x x x x O x− + − + +

sin( )
, 0 ;

x
taylor x

x

⎛ ⎞=⎜ ⎟
⎝ ⎠

 
2 4 61 1

1 ( )
6 120

x x O x− + +

Multivariate Series

mtaylor(sqrt(cos(x2 + y2)),[ x, y]);

 

4 2 2 41 1 1
1

4 2 4
x y x y− − −
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Converting to Power Series

sin( )
, ,

x
convert FormalPowerSeries x

x

⎛ ⎞
⎜ ⎟
⎝ ⎠

 
( )
( )

2

0

1

2 1 !

k k

k

x

k

∞

=

−
+∑

convert(exp(-x), FormalPowerSeries, x)

 
( )

0

1

!

k k

k

x

k

∞

=

−∑

convert(arctan(x), FormalPowerSeries, x)

 
( ) 2 1

0

1

2 1

k k

k

x

k

∞ +

=

−
+∑

Binomial Coefficients

binomial(5,3);

10

expand((1 + x)5)

x5 + 5x4 + 10x3 + 10x2 + 5x + 1

Pascal’s Triangle

for n from 0 to 6 do expand((a + b)n) end

1

a + b

a2 + 2ab + b2

a3 + 3a2b + 3ab2 + b3

a4 + 4a3b + 6a2b2 + 4ab3 + b4

a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5

a6 + 6a5b + 15a4b2 + 20a3b3 + 15a2b4 + 6ab5 + b6 
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3.5 SPECIAL INTEGRALS 

3.5.1 Integral Functions 

Many important integrals that are commonly encountered in physics have no 
analytical solution. Several special functions are defi ned in terms of integrals such 
as the error function erf(x)

 ( ) ( )2

0

2
erf exp

x

x d 


= −∫  (3.5.1)

and the complementary error function erfc(x)

 ( ) ( )22
erfc exp

x

x d 


∞

= −∫  (3.5.2)

related to the Gaussian integrals in Section 3.3. Other special functions have 
integral representation such as the Bessel functions in Section 6.6

 ( ) ( )0

0

1
cos sinJ x x d



 


= ∫  (3.5.3)

 ( ) ( )
0

1
cos sinnJ x n x d



  


= −∫  1,2,3n =   (3.5.4)

3.5.2 Elliptic Integrals 
Elliptic integrals may be expressed in Jacobi or the Legendre forms shown below. 
Incomplete elliptic integrals have two arguments (k, ) while complete elliptic 
integrals have one argument (k,  = /2)

Incomplete elliptic integral  of the fi rst kind:

 ( )
( )1/2

2
0

,
1 sin

d
F k

k







=
−

∫  (3.5.5)

Incomplete elliptic integral of the second kind:

 ( ) ( )1/2
2

0

, 1 sinE k k d



  = −∫  (3.5.6)
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Complete elliptic integral  of the first kind:

 ( )
/2

1/2
2

0

,
2 1 sin

d
F k

k


 



⎛ ⎞ =⎜ ⎟
⎝ ⎠ −

∫  (3.5.7)

Complete elliptic integral of the second kind:

 ( )
/2

1/2
2

0

, 1 sin
2

E k k d




 
⎛ ⎞ = −⎜ ⎟
⎝ ⎠ ∫

 (3.5.8)

The period T of a simple pendulum of length L and amplitude 0 may be expressed 
as a complete elliptic integral of the first kind

 4 ,
2

L
T F k

g

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 with 0sin
2

k


=  (3.5.9)

The perimeter of an ellipse P is given by a complete elliptic integral of the second 

kind 4 ,
2

P aE k
⎛ ⎞= ⎜ ⎟

⎝ ⎠
 with 

2

2
1

b
k

a
= −  equal to the eccentricity of the ellipse with 

semi-major axis a and semi-minor axis b. Complete elliptic integrals are usually 
written with the /2 suppressed F(k) and E(k). 

3.5.3 Gamma Functions 
The integral representation of the gamma function (s) is  

 ( ) 1

0

x ss e x dx

∞
− −Γ = ∫  (3.5.10)

If n is a positive integer

 ( ) ( )1 !n nΓ = −  (3.5.11)

For positive real numbers s

 ( ) ( )1s s sΓ + = Γ  (3.5.12)

Using the integral form of the gamma function we may verify that (2) = 1! by 
integrating by parts 

 ( ) ( )
0

0 0

2 1x x xe xdx e x e dx

∞ ∞
∞− − −Γ = = − + =∫ ∫  (3.5.13)
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For negative real values of s

 ( ) ( )1
1s s

s
Γ = Γ +  (3.5.14)

so that for negative integers ( )1, 2...Γ − − →∞ .

3.5.4 Riemann Zeta Function 
The Riemann zeta function (z) is defined as

 ( )
1

z

n

z n
∞

−

=

=∑  for  1z ≥  (3.5.15)

Convergence of (1 + ) for any  > 0 was investigated in Section 3.4 using the 
integral test. The zeta function is related to the gamma function

 ( ) ( )
1

0

1

1

n

x

x
n dx

n e


∞ −

=
Γ −∫  (3.5.16)

The zeta function is related to the prime numbers  p

 ( ) 1

1 z
p

z
p


−

=
−∏  (3.5.17)

For example (2) is the product

 ( ) 2 2 2 2

1 1 1 1
2

1 2 1 3 1 5 1 7


− − − −

⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟− − − −⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠
  (3.5.18)

In quantum field theory the zeta function is useful in the renormalization  of 
divergent quantities such as the zero-point energy of vacuum modes  n

 

renormalization

diverges finite

1 1

2 2

s

n n n

n n

  
−

→∑ ∑ 
   (3.5.19)

In renormalization procedures involving the zeta function, the s  0 limit is 
found for the calculation of physical quantities. 

3.5.5 Writing Integrals in Dimensionless Form 
An integral may contain variables and parameters that have units. By making 
suitable substitutions we may essentially factor the units outside of the integral 
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and obtain an expression that is a product of physical constants with dimensions 
and an integral that is just a numerical factor. Writing integrals in dimensionless 
form is useful for dimensional analysis as well as for simplifying the integration. 
Consider the integral 

 
2 2

0

kre
dr

r a

∞ −

+∫
 (3.5.20)

where r and a have units of length and k has units of inverse length. If we define 
the dimensionless variable x = kr then dx = kdr. Substitution gives 

 ( )2 22
20 0

numerical factor

x xe dx e
k dx

k x kax
a

k

∞ ∞− −

=
+⎛ ⎞ +⎜ ⎟

⎝ ⎠

∫ ∫


 (3.5.21)

where the limits of the integral are now from x = 0 to x = . The product ka is a 
dimensionless number so the original integral is expressed as a numerical factor 
times the parameter k. 

3.5.6 Black-Body Radiation 
The integral 

 

2

3

0

8

1B

hf

k T

f hf
df

c
e


∞

−
∫  (3.5.22)

is encountered in statistical mechanics in calculating the total power radiated by a 
body at temperature T. The integral may be cast in dimensionless form by making 
the substitution 

 
B

hf
x

k T
=  so that Bk T

df dx
h

=  and 

4

3 3Bk T
f df x dx

h

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 (3.5.23)

Both hf and kBT have units of energy so that x is a dimensionless variable. The 
temperature dependence and physical constants are now factored out 

 

4 3

3

0

physical numerical
constants factor

8

1
B

x

k Th x
dx

hc e


∞⎛ ⎞

⎜ ⎟ −⎝ ⎠ ∫  (3.5.24)
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The integral is evaluated by multiplying the top and bottom of the integrand by 
ex

 3

0
1

x

x

e
x dx

e

∞ −

−−∫  (3.5.25)

using the result that 

 
0

1

1

nx

x
n

e
e

∞
−

−
=

=
− ∑  (3.5.26)

Factoring the sum outside of the integral

 ( )13 3

0 00 0

n xx nx

n n

x e e dx x e dx

∞ ∞∞ ∞
− +− −

= =

=∑ ∑∫ ∫  (3.5.27)

letting u = (n + 1)x and we have that 

 ( )
4

4
3

4
0 0

6

90

1

151

uu e du
n




∞∞

−= =
+

∑ ∫
  (3.5.28)

and the integral is a numerical factor equal to 4/15

 
4 4

3

8

15
Bk Th

hc

 ⎛ ⎞
⎜ ⎟
⎝ ⎠

 (3.5.29)

Factoring out the temperature dependence shows that the power radiated by a 
black body is proportional to the fourth power of temperature T

 
4 4

4

3 3

8

15
Bk

T
h c

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 (3.5.30)

The Stephan-Boltzmann constant  

 
4 4 4 4

3 3 3 2

8 2

4 15 15
B Bk kc

h c h c

 


⎛ ⎞
= =⎜ ⎟⎜ ⎟
⎝ ⎠

 (3.5.31)

is equal to 8

2 4

Watts
5.67 10

m K
 −= ×  and the radiated flux F in units of power per area 

Watts/m2 is

 
4F T=  (3.5.32)
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The black-body radiation integral can be written as a product of Riemann zeta 
and gamma functions

 ( ) ( )
3

0

4 4
1x

x
dx

e


∞

= Γ
−∫  (3.5.33)

where in general 

 ( ) ( )
1

0
1

n

x

x
dx n n

e


∞ −

= Γ
−∫

 (3.5.34)

Maple Examples
The black-body integral is expressed in terms of gamma and Riemann zeta 
functions in the Maple worksheet below. The gamma function is plotted in 1D 
and 3D. Zeros of the gamma function are shown by plotting 1/gamma. 
Key Maple commands: complexplot3d , plot , int 

Maple packages: with(plots ):

Special functions: GAMMA , Zeta 

restart

Black-Body Integral

3 3

, 0 infinity , 0 infinity
exp( ) 1 exp( ) 1

x x
Int x int x

x x

⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
 

 
3

4

0

1

151x

x
dx

e


∞
=

−∫
GAMMA(4)Zeta(4)

 

41

15


4 4

, 0 infinity , 0 infinity
exp( ) 1 exp( ) 1

x x
Int x int x

x x

⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟

− −⎝ ⎠ ⎝ ⎠
 

 

4

0
24 (5)

1x

x
dx

e


∞
=

−∫

GAMMA(5)Zeta(5)

24(5)
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Plot of the Gamma Function
restart
plot(GAMMA, -5 … 4, 0 …3)

5 4 43213 2 1 0

3

2

1

Figure 3.5.1: Plot of the gamma function.

with(plots) :

complexplot3d(abs(GAMMA(z)), z = -4 – 4 * I … 4 + 4 * I, view = [-4 … 4, -4 … 4, 
0 … 6], orientation = [-50, 70, 0]):

Figure 3.5.2: 3D Plot of the gamma function in the complex plane.
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Plot of the 1/Gamma Function

 
1

, 4 4, 7 7
GAMMA

plot
⎛ ⎞− −⎜ ⎟
⎝ ⎠

 

Figure 3.5.3: Plot of the 1/gamma function showing zeros at -3, -2, and 0.

3.6 MATLAB EXAMPLES 

The use of MATLAB’s Symbolic Math Toolbox is demonstrated in this section in 
solving single- and multivariable integration and differentiation. Topics include 
the calculation of maxima and minima of functions, multiple integrals, Gaussian 
and special integrals, symbolic summations and the series expansion of functions. 

Key MATLAB commands: ezplot3 ,int , syms , symsum , taylor 

Section 3.1 Single Variable Calculus

Symbolic Integration and Differentiation

>> int(log(x),x)

ans =

x*(log(x) - 1)

>> diff(ans,x)

ans =

log(x)

>> F=x^2+x*exp(x)

F =

x*exp(x) + x^2

>> diff(F,x,2)

ans =

2*exp(x) + x*exp(x) + 2

>> int(F,x,0,2)

ans =

exp(2) + 11/3
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Maxima and Minima

>> syms x real

>> f=x^4-9*x^2

f =

x^4 - 9*x^2

>> diff(f,x)

ans =

4*x^3 - 18*x

>> solve(ans)

ans =

              0

  (3*2^(1/2))/2

 -(3*2^(1/2))/2

Section 3.2 Multivariable Calculus
3D Parametric Curve

>> syms t

>> ezplot3(sin(t)/t,cos(t),t,[0,20])

>> xlabel('x')

>> ylabel('y')

>> zlabel('t')

Double Integral

>> syms x y

>> int(int(x*y,y,0,x),x,0,1)

ans =

1/8

Triple Integral

>> syms x y z

>> int(int(int(x*y*z/sqrt(x^2+y^2+z^2),x),y),z)

ans =

(x^2 + y^2 + z^2)^(1/2)*(z^2*((2*x^2)/15 + (2*y^2)/15) + (2*x^2*y^2)/15 

+ x^4/15 + y^4/15 + z^4/15)

Section 3.3 Gaussian Integrals
>> syms x a

>> int(exp(-a*x^2),x,0,inf)

Warning: Explicit integral could not be found. 

 

ans =

 

piecewise([a = 1, pi^(1/2)/2], [a < 0, Inf], [Re(a) < 0 and pi/2 < 

abs(arg(a)) and not a < 0, int(1/exp(x^2*a), x = 0..Inf)], [0 <= 

Re(a) or abs(arg(a)) <= pi/2 and a <> 0, pi^(1/2)/(2*a^(1/2))])
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>> syms a positive

>> int(exp(-a*x^2),x,0,inf)

 

ans =

 

pi^(1/2)/(2*a^(1/2))

>> int(x^2*exp(-a*x^2),x,0,inf)

 

ans =

 

pi^(1/2)/(4*a^(3/2))

Section 3.4 Series and Approximations
Symbolic Summation

>> syms x k

>> symsum(exp(-k*x),k,-1,1)

 

ans =

 

1/exp(x) + exp(x) + 1

>> syms n

>> symsum(1/n^2,1,inf)

 

ans =

 

pi^2/6

>> symsum((-1)^n/2^n,0,inf)

 

ans =

 

2/3

Taylor Expansion

>> syms x

>> taylor(sin(x)/x,x,5)

ans =

x^4/120 - x^2/6 + 1

>> syms m v c

>> E= m*c^2/sqrt(1-v^2/c^2)

E =

(c^2*m)/(1 - v^2/c^2)^(1/2)

>> taylor(E,v,3)

ans =

m*c^2 + (m*v^2)/2

Section 3.5 Special Integrals
>> syms x y

>> int(exp(-y^2),y,0,x)

ans =

(pi^(1/2)*erf(x))/2
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>> int(exp(-y^2),y,x,inf)

ans =

-(pi^(1/2)*(erf(x) - 1))/2

>> int(cos(x*sin(y)),y,0,pi)

ans =

pi*besselj(0, x)

3.7 EXERCISES

Section 3.1 Single-Variable Calculus

1. The displacement vector of a particle moving with constant speed in a unit 
circle is given by

 
( ) ( ) ( )ˆ ˆcos sint t t = +r i j

Calculate (a) r  (b) r  (c) r  (d) r  (e) r

2. A particle moves with time-dependent speed 

 ( ) ( )0 expv t v t t = −

Calculate the total distance x traveled from ti = 0 to tf = 

 

( )
f

i

t

t

x v t dt= ∫

Calculate the acceleration of the particle ( ) ( )a t v t=   evaluated at time t = 0.

3. The Lennard-Jones formula  models the potential energy between two neutral 
atoms

 
( )

12 6

0 04 2
r r

U r
r r


⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

Calculate the equilibrium distance where the force is zero

 0
dU

F
dr

= − =

Calculate the distance where the force is maximal

 0
dF

dr
=

What is the value of the force at its maximum value?
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4. Evaluate the u-substitution integral 

 
( )5sin d ∫

 by writing ( ) ( ) ( ) ( )( )25 4 2sin sin sin sin 1 cos    = = −  and letting u = 

cos This is the procedure  for integrating odd powers of sin(). A similar 
procedure is used for integrating odd powers of cos().

5. Evaluate the u-substitution integrals 

(a) ( ) ( )sin cos d  ∫  (b) ( ) ( )4sin cos d  ∫    

(c) ( )sin
cose d

  ∫     (d) 

( )
1 3 2

3/2
4 3

0

4 6 1

2 1

x x
dx

x x x

+ +

+ + +
∫

6. Calculate the following integrals

(a) 2

0

3
sin

L
x

dx
L

⎛ ⎞
⎜ ⎟
⎝ ⎠∫   (b) 2

0

4
cos

L
x

dx
L

⎛ ⎞
⎜ ⎟
⎝ ⎠∫

7. Evaluate the following integrals by parts 

(a) ( )2 lnx x dx∫  (b) ln( )x x dx∫
8. Show that the integral

 
4

2

4

cos cos
2 2 2

cos exp cos
sin

z i z dz








  


   
−

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎝ ⎠− =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠∫

using integration by parts.

9. Use the result that

 
0

1xe dx



∞
− =∫

to calculate the following integrals using the Leibnitz integral rule

(a) 3

0

xx e dx−

∞

∫    (b) 
4

0

xx e dx−

∞

∫   (c) 5

0

xx e dx−

∞

∫

10. Given 
1

0

!n x

n

n
x e dx



∞
−

+
=∫   calculate 

2 2

0

xx e dx

∞
−∫
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Section 3.2 Multivariable Calculus

11. Given ( ) ( ) ( ), , e sin coszf x y z x y=
calculate the following partial derivatives 

 
2 2

2
, , ,  and 

f f f f

x y y zy

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂∂

12. Given

 
( )2 2

( , ) x y
f x y e

− +=

show that 

 

2 2f f

x y y x

∂ ∂
=

∂ ∂ ∂ ∂

13. Evaluate the double integral 

1 1
2

0 0

x ydxdy∫ ∫

14. Evaluate the double integral 2( )x y dxdy+∫∫  over the first quadrant of the 

unit circle using a polar coordinate transformation 

15. Evaluate the triple integrals in Cartesian coordinates 
1 1 1

2

0 0 0

x yzdxdydz∫ ∫ ∫
1

2

0 0 0

yz

xyz dxdydz∫ ∫ ∫

( )
0 0 0

, ,
a a a

x y z dxdydz∫ ∫ ∫  where ( ) / / /
0, , x a y a z ax y z e e e  − − −=  

16. Evaluate the volume integral in spherical coordinates  

2 2

0 0 0

cos
R

r dv

 

∫ ∫ ∫
17. Evaluate the volume integral in cylindrical coordinates  

2 1
2

0 1 0

R

z rdv



−
∫ ∫ ∫
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Section 3.3 Gaussian Integrals

18. Given 
2

0

1

2
xe dx 



∞
− =∫  calculate 

26

0

xx e dx
∞

−∫

19. Given  
2

0

1

2
xxe dx



∞
− =∫   calculate 

27

0

xx e dx
∞

−∫

20. Show that  

1
2

221 2
exp exp

2 2

J
x Jx dx




 

∞

−∞

⎛ ⎞⎛ ⎞ ⎛ ⎞− + = ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∫  

by completing the square in the exponent

21. Calculate the following integrals

( )

( )

2

2

2

2

3

0

1

1

x

x

ax bx

x e dx

x e dx

e dx





−

−

∞

−∞
∞

∞
− +

−∞

+

−

∫

∫

∫

 

22. Calculate the following integrals

( )

( )

2

22

x

x

xe dx

x e dx

 

 

− −

− −

∞

−∞
∞

−∞

∫

∫
 

Section 3.4 Series and Approximations

23. Find the Taylor series for f(x) centered about x = a where

 ( ) 1f x x= −

24. Find the Taylor series for f(x) centered about x = a where

 ( ) 2xf x e−=
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25.  Find the Maclaurin series for f(x) where

 ( )
3

1x

x
f x

e
=

−
26. Use the binomial expansion to approximation to show that 

2

2

1 1
1

2
1

v

cv

c

⎛ ⎞≈ + ⎜ ⎟
⎝ ⎠⎛ ⎞−⎜ ⎟

⎝ ⎠
27. Use the binomial expansion to approximate the following expression where 

x << 1

( )3/2

3

1

1

x

x

−

−
28. Perform the integral test for convergence of the series

 
2

1

1

n n

∞

=
∑

Section 3.5 Special Integrals
29. Perform a Maclaurin expansion of the complete elliptic integral of the first 

kind

 ,
2

F k
⎛ ⎞

⎜ ⎟
⎝ ⎠

30. Perform a Maclaurin expansion of the complete elliptic integral of the second 
kind 

,
2

E k
⎛ ⎞

⎜ ⎟
⎝ ⎠

31. Plot ,
2

F k
⎛ ⎞

⎜ ⎟
⎝ ⎠

 and ,
2

E k
⎛ ⎞

⎜ ⎟
⎝ ⎠

 from k = 0 to k = 1. 

32. Plot the Fresnel integrals  S(x) vs. C(x) defined by

 ( ) 2

0

cos
2

x

C x u du
⎛ ⎞= ⎜ ⎟

⎝ ⎠∫

 ( ) 2

0

sin
2

x

S x u du
⎛ ⎞= ⎜ ⎟
⎝ ⎠∫

from x = 4 to x = 4
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33. Express the following integrals in dimensionless form and evaluate the 
integrals

( )
0

sinkxe kx dx

∞
−∫  

where x has units of length and k has units of inverse length. 

( )20 1

i te
dt

t





∞ −

+∫
where t has units of time and  has units of inverse time (frequency). 

34. Write the triple integral

 
( ) 3/2

2 2 2

1
L L L

L L L

dxdydz
x y z

−
− − − + +
∫ ∫ ∫

 in dimensionless form by making the substitutions u = x/L, v = y/L and 
w = z/L. Also transform the limits of integration.

35. Use the integral representation of the gamma function to show that (1) = 1

36. Show that the perimeter of an ellipse with zero eccentricity is that of a circle 
P = 2a

37. Use the integral representation of the gamma function for (s + 1) 

 

( )
0

1 x ss e x dx

∞
−Γ + = ∫

integrating by parts to show that (s + 1) = s(s)

38. Numerically evaluate the following integrals encountered in the theory of 
Bose-Einstein condensation

 0
1x

x
dx

e

∞

−∫

 

3/2

0
1x

x
dx

e

∞

−∫

39. Write a program to estimate the Riemann zeta function (2) from the first 100 
prime numbers. Hint: The Maple command ithprime(i) returns the ith prime 
number. For example, ithprime(1) = 2 and ithprime(100) = 541. 
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4Chapter

VECTOR 
CALCULUS 

Chapter Outline
4.1 Vector and Scalar Fields
4.2 Gradient of Scalar Fields
4.3 Divergence of Vector Fields
4.4 Curl of Vector Fields
4.5 Laplacian of Scalar and Vector Fields
4.6 Vector Identities
4.7 Integral Theorems

4.1 VECTOR AND SCALAR FIELDS 

Vector fields have both magnitude and direction while scalar fields are 
directionless. Both scalar and vector fields can have physical units and be spatially 
varying. A vector field can be described by the spatial variation of a scalar field. 
In this section, we seek a mathematical description of the spatial distribution of 
scalar and vector fields. 
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4.1.1 Scalar Fields 
Examples of scalar fields include temperature T(r) and pressure P(r) with 
values that depend on coordinates r. A two-dimensional scalar field such as the 
temperature

 ( ) ( )2 2

0,
x y

T x y T e
− +

=  (4.1.1)

may describe the temperature in a plate with a hot spot at the center. A scalar field 
describes the electrical potential of a point charge located at r  0 in spherical 
coordinates 

 ( ) 2
0

1

4

q
V r

r
=  (4.1.2)

Scalar fields may be represented graphically using contour plots , surface plots 
or density plots. Contour plots show lines of constant field values. Surface plots  
represent scalar field values by different heights. Density plots may use variations 
in grayscale or color to illustrate regions with different field values. 

4.1.2 Vector Fields 
Examples of vector fields include the electric field E(r), magnetic field B(r) 
and the velocity field v(r) of a fluid. A two-dimensional vector field has x and y 
components that can vary over space

 ( ) ( ) ( )ˆ ˆ, , ,x yx y F x y F x y= +F i j  (4.1.3)

The magnitude of a vector field will produce a scalar field

 ( ) ( ) ( )2 2
, , ,x yx y F x y F x y= +F  (4.1.4)

We may plot a vector field by drawing arrows with lengths proportional to the 
magnitude of the field at equally spaced locations on a grid. The vector field ˆ=F i  
is plotted with arrows of the same length all pointing in the x-direction. Arrows 
corresponding to the vector field ˆx=F i  point to the right for x > 0 and to the left 

for x < 0 with increasing length as x  increases. 

4.1.3 Field Lines 
Lines that are tangent to the vector field are known as field lines and can be used 
to visualize a given vector field. In two dimensions, the equation describing field 
lines are a solution to the equation 
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( )
( )

,

,

y

x

F x ydy

dx F x y
=  (4.1.5)

where dy/dx gives the slope of the line tangent to the vector field at the point (x, y). 

Example 4.1.1
Find the equation of the field lines  corresponding to 

 ˆ ˆx y= −F i j  (4.1.6)

We identify Fx  x and Fy  y so that 

 

dy y

dx x

−
=  (4.1.7)

This equation is solved by separating variables 

 
dy dx

y x
= −  (4.1.8)

and integrating 

 
dy dx

y x
= −∫ ∫  (4.1.9)

with the result 

 ( ) ( )ln ln const.y x= − +  (4.1.10)

where we have combined both integration constants on the right-hand side. 
Exponentiating this expression 

 ( )
1

ln const.
ln y xe e

 + 
 =  (4.1.11)

gives us an equation for the field lines 

 
1

const.y
x

=  (4.1.12)

where econst. is a constant.  Positive constant values give hyperbolas in the first and 
third quadrants.  Negative constant values give hyperbolas in the second and 
fourth quadrants. There are infinitely many field lines corresponding to all values 
of the constant. Usually, just a few lines are required to visualize the field, however. 
A similar analysis shows that the field lines corresponding to the vector field

 ˆ ˆx y= +F i j  (4.1.13)
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are straight lines passing through the origin according to

 y  const. x (4.1.14)

with slopes of the field lines given by the constant.

Maple Examples
Examples of scalar field and vector field plots are given in the Maple worksheet 
below. Scalar field plots include contour, surface and combined surface and 
contour plots. Vector fields are plotted in 2D and 3D including combined vector 
field and field line plots. 

Key Maple commands: Contourplot , Ezsurfc , Fieldplot , Fieldplot3d , FlowLine , 
Plot3d , VectorField 

Maple packages: with(plots ): with(MTM ): with(Student[VectorCalculus]): 

restart

Scalar Field Plots

with(plots) :
g:  exp(-(x2  y2))sin(xy)

( )2 2

: sin ,x yg e x y− −=

contourplot(g, x  -3 … 3, y  -3 … 3, color  “Black”)

−1.5 −1 -0−0.5 1.50.5 1

1.5

1

0.5

−0.5

−1

−1.5

y

x

Figure 4.1.1 Contour plot of scalar field.
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plot3d(g, x  -3 … 3, y  -3 … 3, color  “Gray”)
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Figure 4.1.2: Surface plot of scalar field.

with(MTM) :
ezsurfc(g, [3, 3, 3, 3])

2
1

0
−1

−2

3

3

2
1

3
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0 1
2
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Figure 4.1.3: Surface plot of scalar field with contours.
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Vector Field Plots

fieldplot([y, x] x  2 … 2, y  2 … 2)

Figure 4.1.4: Plot of vector field.

fi eldplot3d([-y, x, z] x  2 … 2, y  -2 … 2, z  2 … 2, color  “Black”)

–2

–1

1

2

0

–2
–1
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2 2 1

–1
0
x

–2

y

z

Figure 4.1.5: 3D vector field plot.



VECTOR CALCULUS 171

Field Line Plots

with(Student[VectorCalculus]) :
FlowLine(VectorField(-y, x), [0, 1, 0, 2, 0, 3, 0, 4], scaling  constrained)

Arrows of the vector field, and the flow line(s) emanating from the given initial point(s)
Figure 4.1.6: Vector field displayed with field lines.

FlowLine(VectorField(-y, x, z), [0, 1, -2, 0, 1, -1, 0, 1, 1, 0, 1, 2])

20
4

–4 –2

y

4
2

–4
–2

0
–4

–2

0

2

4

z

y

x

Arrows of the vector field, and the flow line(s) emanating from the given initial point(s)
Figure 4.1.7: 3D vector field plot with field lines.
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4.2 GRADIENT OF SCALAR FIELDS 

4.2.1 Gradient  in Cartesian Coordinates
The gradient of a scalar field T is written as T where the operator  is a 
directional derivative defined as

 
ˆˆ ˆ

x y z

∂ ∂ ∂
∇ ≡ + +

∂ ∂ ∂
i j k  (4.2.1)

Consider a scalar field T(x, y, z) in Cartesian coordinates. Operation on T by  
gives a vector field

 ˆ ˆˆ ˆ ˆ ˆT T T
T T

x y z x y z

 ∂ ∂ ∂ ∂ ∂ ∂
∇ = + + = + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

i j k i j k  (4.2.2)

Example 4.2.1
Calculate the gradient of the scalar field

 ( )2 2 2

e
x y z

T
− + +

=  (4.2.3)

Solution: In Cartesian coordinates 

 ( ) ( )2 2 2

ˆˆ ˆ2 2 2 e
x y z

T x y z
− + +

∇ = − − −i j k  (4.2.4)

The gradient function T is related to the total differential 

 
T T T

dT dx dy dz
x y z

∂ ∂ ∂
= + +
∂ ∂ ∂

 (4.2.5)

formed by the dot product 

 dT T d= ∇ ⋅ r  (4.2.6)

where

 ˆˆ ˆd dx dy dz= + +r i j k  (4.2.7)

Note that dT is maximal when dr points in the direction of T. 

4.2.2 Unit Normal 
The gradient can also be used to construct the unit vector normal to a surface 
defined by 

 
( ), , const.T x y z =

 (4.2.8)
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The gradient T is a vector normal to a surface of constant T. Thus, a unit vector 
normal to the surface is obtained by dividing by the magnitude of the gradient

 ˆ
T

T

∇
=
∇

n  (4.2.9)

Example 4.2.2
Find a unit vector normal to the sphere described by

 x2 + y2 + z2 = 1 (4.2.10)

Solution: Here we have

 
( ) ( ) ( )2 2 2

ˆˆ ˆ2 2 2 ˆˆ ˆˆ

2 2 2

x y z
x y z

x y z

+ +
= = + +

+ +

i j k
n i j k  (4.2.11)

We can verify that we have found a unit vector by forming the dot product 
2 2 2ˆ ˆ 1x y z⋅ = + + =n n .  

Example 4.2.3
Find the unit vector normal to the paraboloid of revolution 

 z  x2 + y2 (4.2.12)

Solution: We must first write the equation in the form T(x, y, z)  const., or x2  

y2   z   0, which gives

 ( ) ( )2 2

ˆˆ ˆ2 2
ˆ

2 2 1

x y

x y

+ −
=

+ +

i j k
n

 (4.2.13)

and we see that ˆ ˆ 1⋅ =n n  as required.

4.2.3 Gradient in Curvilinear Coordinates 
The gradient of a scalar T may be written in orthogonal curvilinear coordinates 
(u1, u2, u3) as

 1 2 31/2 1/2 1/2
1 2 311 22 33

1 1 1
ˆ ˆ ˆ

T T T
T

u u ug g g

∂ ∂ ∂
∇ = + +

∂ ∂ ∂
e e e  (4.2.14)

where ( )1 2 3
ˆ ˆ ˆ,  ,  e e e  are unit vectors along the coordinate axes. The line element is 

 2 2 2 2 2 2 2
11 1 22 2 33 3ds dx dy dz g du g du g du= + + = + +  (4.2.15)



174 MATHEMATICAL METHODS FOR PHYSICS USING MATLAB AND MAPLE

In terms of the Cartesian coordinates, the metric coefficients gii are 

 

2 2 2

ii

i i i

x y z
g

u u u

     ∂ ∂ ∂
= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (4.2.16)

Note that in Cartesian coordinates g11g22 g331. 

4.2.4 Cylindrical Coordinates 
In cylindrical coordinates, we have (u1, u2, u3)  (r, , z) and (x, y, z)  (r cos , 
r sin , z)

 

2 2 2

2 2
11

cos sin
cos sin 1

r r z
g

r r r

 
 

∂ ∂ ∂     = + + = + =     ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (4.2.17)

 
2 2 2

2 2 2 2 2
22

cos sin
sin cos

r r z
g r r r

 
 

  

     ∂ ∂ ∂
= + + = + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (4.2.18)

 

2 2 2

33

cos sin
1

r r z
g

z z z

 ∂ ∂ ∂     = + + =     ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (4.2.19)

Hence

 
1 ˆˆ ˆ

T T T
T

r z r




∂ ∂ ∂
∇ = + +

∂ ∂ ∂
r z  (4.2.20)

Example 4.2.4
Compute the gradient of 

 T = r cos  (4.2.21)

Solution: In cylindrical coordinates, the gradient is 

 ˆˆcos sinT  ∇ = −r  (4.2.22)

4.2.5 Spherical Coordinates 
In spherical coordinates, we have (u1, u2, u3)  (r, , ) and 

(x, y, z)  (r sin  cos , r sin  sin , r cos )

 

( )

2 2 2

11

2 2 2 2 2

2 2 2 2 2 2

sin cos sin sin cos

sin cos sin sin cos

sin cos sin cos sin cos 1

r r r
g

r r r

    

    

     

∂ ∂ ∂     = + +     ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠
= + +

= + + = + =

 (4.2.23)
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 ( )
( )( ) ( )

2 2 2

22

2 2 2 2 2 2

2 2 2 2 2 2 2 2 2

sin cos sin sin cos

cos cos cos sin sin

cos cos sin sin cos sin

r r r
g

r

r r r

    

  

    

     

∂ ∂ ∂     = + +     ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠
= + +

= + + = + =

 (4.2.24)

 

( )

2 2 2

33

2 2 2 2 2 2

2 2 2 2 2 2

sin cos sin sin cos

sin sin sin cos

sin sin cos sin

r r r
g

r r

r r

    

  

   

   

     ∂ ∂ ∂
= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠
= +

= + =

 (4.2.25)

hence 

 
1 1ˆ ˆˆ

sin

T T T
T

r r r


  

∂ ∂ ∂
∇ = + +

∂ ∂ ∂
r θ  (4.2.26)

Example 4.2.5
Calculate the gradient of 

 1
sinT

r
=  (4.2.27)

Solution: In spherical coordinates, the gradient is 

 
2 2

1 1 ˆˆsin cosT
r r

 ∇ = − +r θ  (4.2.28)

4.2.6 Scalar Field from the Gradient 
Given a vector field F, one may seek to find if it could have resulted from the 
gradient of a scalar field . 

Example 4.2.6
The vector field

 ˆˆ ˆx y z= + +F i j k  (4.2.29)

could have resulted from the gradient of the scalar field

 
22 2

2 2 2

yx z
Ω = + +  (4.2.30)
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Example 4.2.7
The vector field in cylindrical coordinates 

 
1

ˆ
r

=F r  (4.2.31)

may be obtained from the gradient of

   ln(r) (4.2.32)

Maple Examples
Examples of gradient field calculations are given in the Maple worksheet below. 
The unit normal to a surface is computed. Gradient fields are calculated and 
plotted in Cartesian, cylindrical, and spherical coordinates. Scalar potentials 
corresponding to vector fields in Cartesian, cylindrical and spherical coordinates 
are obtained. 

Key Maple commands:

VectorField,  ScalarPotential  , SetCoordinates , Gradient , fi eldplot3d 

Maple packages: with(plots ): with(MTM ): with(Student[VectorCalculus]): 

restart

Gradient in Cartesian Coordinates

with(VectorCalculus) :

with(plots) :

SetCoordinates(‘cartesian’[x, y, z]);

cartesianx, y, z

G:  x
2  y2  z2

 x2  y2  z2

Gradient(G);

2 2 2x y zxe ye ze+ +

Unit Normal to a Surface

Z:  x2  y2

 x2  y2

( )
( )

sqrt ( ) ( )

Gradient Z

Gradient Z Gradient Z⋅
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2 2 2 2
x y

yx
e e

x y x y

⎛ ⎞⎛ ⎞ + ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

Gradient Plot in Cartesian Coordinates

fieldplot3d(Gradient(G), x  -2 … 2, y  2 … 2, z  2 … 2)

1
0

–1
–2

1
0

–1
–2

22

1

0

–1

–2

2

z

y
x

Figure 4.2.1: 3D plot of a field gradient.

Gradient in Cylindrical Coordinates

SetCoordinates(‘cylindrical’[r, theta, z]);

cylindricalr, , 

H:  rsinh(z)cos(theta)

rsinh(z)cos()

Gradient(H);

( ) ( )sinh( )cos( ) sinh( )sin( ) cosh( )cos( )r y zz e z e r z e  − +
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Gradient Plot in Cylindrical Coordinates

fieldplot3d(Gradient(H), r  0 … 2, theta  0 … 2Pi, z  2 … 2)

1
0

–1

1.5

0.5
–0.5

–1.5

2

1

0

–1

–2

2

Figure 4.2.2: 3D plot of a field gradient in cylindrical coordinates.

Gradient in Spherical Coordinates

SetCoordinates(‘spherical’[r, theta, phi])

sphericalr, , 

S:  rsin(theta)

rsin()

Gradient(S);

( ) ( )sin( ) cos( )re e  +

Plot of Gradient in Spherical Coordinates

fieldplot3d(Gradient(S), r  0 … 2, theta  0 … Pi, phi  2 … 2Pi)
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1 0 –1
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1
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2

1
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–1

2

–2

Figure 4.2.3: 3D plot of a field gradient in spherical coordinates.

Scalar Potential in Cartesian Coordinates

with(VectorCalculus) :
SetCoordinates(‘cartesian’[x, y, z]);

cartesianx, y, z

v  VectorField(x2, y3, z)
( ) ( )2 3 ( )x y zx e y e z e+ +

ScalarPotential(v) 
3 4 21 1 1

3 4 2
x y z+ +

Scalar Potential in Spherical Coordinates

SetCoordinates(‘spherical’[r, theta, phi])

sphericalr, , f

v  VectorField(r, 0, 0)
( )

rr e

ScalarPotential(v) 
21

2
r
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Scalar Potential in Cylindrical Coordinates

SetCoordinates(‘cylindrical’[r, phi, z]);

cylindricalr, , z

v  VectorField(r, 0, z2)

 ( ) ( )2
r zr e z e+

ScalarPotential(v) 

 ( ) ( )2 22 2 31 1 1
cos sin

2 2 3
r r z + +

4.3 DIVERGENCE OF VECTOR FIELDS 

4.3.1 Flux through a Surface 
Consider a three-dimensional vector field

 ( ) ( ) ( ) ˆˆ ˆ( , , ) , , , , , ,x y zx y z F x y z F x y z F x y z= + +F i j k  (4.3.1)

The flux of F through a surface is defined as surface integral

 flux d= ⋅∫F a  (4.3.2)

where surface element da is normal to the surface. 

Example 4.3.1
The flux through the z  0 plane due to the vector field 

 ( )2 2

ˆx y
e
− +

=F k  (4.3.3)

is given by the surface integral

 
2

2

0 0

rd e rdrd



 
∞

−⋅ = =∫ ∫ ∫F a  (4.3.4)

after making the polar coordinate transformation ˆd rdrd=a k  and x2 + y2 = r2. 

4.3.2 Divergence of a Vector Field 
We now consider the flux of a vector field through a closed surface. The divergence 
of a vector field at a point is related to the flux though a closed surface surrounding 
the point. The surface encloses a volume V. The divergence is defined as limit as 
V  0 of the flux divided by V or

 
0

1
div lim

V
d

VΔ →
≡ ⋅

Δ ∫F F a  (4.3.5)
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If we choose a cubical volume our surface integral has six terms. Surface elements 

at x and x x+Δ  are ˆ y z− Δ Δi  and ˆ y zΔ Δi , respectively. The flux through these two 

surfaces is ( ), ,xF x y z y z− Δ Δ  and ( ), ,xF x x y z y z+Δ Δ Δ . With similar terms for the 
other four faces we have 

( ) ( )
( ) ( )
( ) ( )

, , , ,

             , , , ,

             , , , ,                             

x x

y y

z z

d F x x y z F x y z y z

F x y y z F x y z x z

F x y z z F x y z x y

⎡ ⎤⋅ = + Δ − Δ Δ⎣ ⎦
⎡ ⎤+ + Δ − Δ Δ⎣ ⎦
⎡ ⎤+ + Δ − Δ Δ⎣ ⎦

∫F a

 (4.3.6)

Dividing the surface integral by V = xyz

( ) ( )

( ) ( ) ( ) ( )

, , , ,1

, , , , , , , ,
                           

x x

y y z z

F x x y z F x y z
d

x y z x

F x y y z F x y z F x y z z F x y z

y z

⎡ ⎤+ Δ −⎣ ⎦⋅ =
Δ Δ Δ Δ

⎡ ⎤+ Δ − ⎡ ⎤+ Δ −⎣ ⎦ ⎣ ⎦+ +
Δ Δ

∫F a

 (4.3.7)

and taking the limit as the V  0

 
0

1
lim

yx z

V

FF F
d

V x y zΔ →

∂∂ ∂
⋅ = + +

Δ ∂ ∂ ∂∫F a  (4.3.8)

We may obtain the divergence of a vector field F by forming the dot product with  
 where

 ( )ˆ ˆˆ ˆ ˆ ˆ
x y zF F F

x y z

 ∂ ∂ ∂
∇⋅ = + + ⋅ + +⎜ ⎟∂ ∂ ∂⎝ ⎠

F i j k i j k  (4.3.9)

gives a scalar function 

 
yx z

FF F

x y z

∂ ∂ ∂
∇⋅ = + +⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

F  (4.3.10)

Example 4.3.2
Calculate the divergence of the vector field

 ( ) 1 ˆˆ ˆsin yx e
z

−= + +F i j k  (4.3.11)

Solution: In Cartesian coordinates

 ( ) 2

1
cos yx e

z

−∇⋅ = − −F  (4.3.12)
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Notice that a function of the form

 ( ) ( ) ( ) ˆˆ ˆ, , ,x y zF y z F x z F x y= + +F i j k  (4.3.13)

will have zero divergence since 

 ( ) ( ) ( ), , , 0x y zF y z F x z F x y
x y z

∂ ∂ ∂
= = =

∂ ∂ ∂  (4.3.14)

Thus, we can see from inspection that the vector field

 ( ) ( ) ( )2 2

ˆˆ ˆsinh cos e
x yz zy e x

− +−= + +F i j k  (4.3.15)

has zero divergence. 

4.3.3 Gradient in Curvilinear Coordinates 
In curvilinear coordinates (u1, u2, u3) the divergence of a vector

1/21/2 1/2

1 2 31/2
1 11 2 22 3 33

1 g g g
F F F

u g u g u gg

⎧ ⎫⎡ ⎤⎡ ⎤ ⎡ ⎤     ∂ ∂ ∂⎪ ⎪⎢ ⎥⎢ ⎥ ⎢ ⎥∇⋅ = + +⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭
F  (4.3.16)

where

 

11 12 13

21 22 23 11 22 33

31 32 33

g g g

g g g g g g g

g g g

= =  (4.3.17)

4.3.4 Cylindrical Coordinates 
In cylindrical coordinates, we have (u1, u2, u3)  (r, , z) and (x, y, z)  (r cos , r sin 
, z)

 g11 = 1, g22 = r2, g33 = 1, so that g = r2 (4.3.18)

 ( )1 1 1z
r z r

FF
rF rF F rF

r r z r r z r


 

∂∂⎧ ⎫∂ ∂ ∂ ∂⎡ ⎤∇⋅ = + + = + +⎡ ⎤ ⎡ ⎤⎨ ⎬⎣ ⎦ ⎣ ⎦ ⎣ ⎦∂ ∂ ∂ ∂ ∂ ∂⎩ ⎭
F  (4.3.19)

Example 4.3.3
Find the divergence of 

 ˆˆcos sinr r = −F r  (4.3.20)

Solution: In cylindrical coordinates 

 ( ) ( )21 1
cos sin 2cos cos cosr r

r r r
    



∂ ∂
∇⋅ = − = − =

∂ ∂
F  (4.3.21)
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4.3.5 Spherical Coordinates 
In spherical coordinates, we have (u1, u2, u3)  (r, , ) and 
 (x, y, z)  (r sin  cos , r sin  sin , r cos ) (4.3.22)

 g11 = 1, g22 = r2, g33 = r2, so that g = r4 sin2 (4.3.23)

 

( ) ( )

2

2

2

2

1
sin sin

sin

sin1 1 1
        

sin sin

r

r

r F r F rF
rr

r F FF

r r rr

 



 
 



   

⎧ ⎫∂ ∂ ∂⎡ ⎤ ⎡ ⎤∇⋅ = + +⎡ ⎤⎨ ⎬⎣ ⎦ ⎣ ⎦⎣ ⎦∂ ∂ ∂⎩ ⎭
∂ ∂∂

= + +
∂ ∂ ∂

F

 (4.3.24)

Example 4.3.4
Find the divergence of 

 
ˆˆsinr r= −F r θθ  (4.3.25)

Solution: In spherical coordinates 

 
( ) ( )3

2

sin sin1 1
3sin cot

sin

r r

r rr

 
 

 

∂ ∂
∇⋅ = − = −

∂ ∂
F  (4.3.26)

Maple Examples
Examples of divergence calculations of vector fields in Cartesian, cylindrical and 
spherical coordinates are given in the Maple worksheet below. The flux of a vector 
field through closed surfaces is computed.  

Key Maple commands: Assume,  Divergence , DotProduct , Flux , SetCoordinates , 
VectorField

Maple packages: with(VectorCalculus ):

restart

Divergence in Cartesian Coordinates

with(VectorCalculus) :
SetCoordinates(‘cartesian’[x, y, z]);

cartesianx, y, z

F:  VectorField(-y, x, 0)

( ) ( ): (0)x y zF y e x e e= − + +
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Divergence(F)

0
G:  VectorField(-y, x, z)

( ) ( ): ( )x y zG y e x e z e= − + +

Divergence(G)

1

DotProduct(Del, G)

1

Divergence in Cylindrical Coordinates

SetCoordinates(‘cylindrical’[r, phi, z]);

cylindricalr, , z

2

1
: ,0,0v VectorField

r

 
=  

 

( ) ( )
2

1
: 0 0r zv e e e

r


 = + + 
 

Divergence(v)

 
3

1

r
−

Divergence in Spherical Coordinates

SetCoordinates(‘spherical’[r, phi, theta])

sphericalr, , 

2

1
: sin( ),0,w VectorField phi

r

 
=  

 

( )( ) ( )
2

1
: sin 0rw e e e

r
 

 = + +  
 

Divergence(w)
( )2sin

r



restart

Flux through a Surface

with(VectorCalculus) :
SetCoordinates(‘spherical’[r, theta, phi])

sphericalr, , 
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2

1
: ,0,0v VectorField

r

 
=  

 

( ) ( )
2

1
: 0 0rv e e e

r
 

 = + + 
 

assume(R > 0)
Flux(v, Sphere(0, 0, 0, R))

4
Divergence(v)

0
Here, v is a delta function that is zero everywhere except the origin. 

SetCoordinates(‘cartesian’[x, y, z]);

cartesianx, y, z

w:  VectorField(x, y, z)
( ) ( ): ( )x y zw x e y e z e= + +

Flux(w, Box(0 … 1, 0 … 1, 0 … 1))
3

Flux(w, Sphere(0, 0, 0, 2))
32

with(Student[VectorCalculus]) :
Flux(w, Box(0 … 1, 0 … 1, 0 … 1), output  plot, scaling  constrained)

1 1

0
0.5

1

0.5

1.5

0

−0.5
0

1.5 x
y

z

−0.5

−0.5

0.5

The vector field arrows, the surface through which the field passes, and vectors normal to the surface.
Figure 4.3.1: Flux through a cube showing surface normal vectors.
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Flux(w, Sphere(1, 1, 1, 1))
4

Flux(w, Sphere(1, 1, 1, 1), output  plot, scaling  constrained)

1

2

0
0.5

1.5 2 1.5
xy

2

2.5

1z

0.5

1.5

1
0
0.5

1 1
0.5 0

0

The vector field arrows, the surface through which the field passes, and vectors normal to the surface.
Figure 4.3.2: Flux through a sphere showing a surface normal vector at the top of the sphere.

4.4 CURL OF VECTOR FIELDS 

The line integral and its relation to the curl are discussed in this section. Examples 
of the curl are given in Cartesian and curvilinear coordinates including cylindrical 
and spherical. The vector potential is introduced. 

4.4.1 Line Integral 
Given a three-dimensional vector field

 ( ) ( ) ( ) ˆˆ ˆ( , , ) , , , , , ,x y zx y z F x y z F x y z F x y z= + +F i j k  (4.4.1)

we may form the line integral of F along a path  as

 ˆd

Γ

⋅∫F   (4.4.2)

The line element ˆˆ ˆ ˆd dx dy dz= + +i j k  is tangential to the path and 

 ( ) ( ) ( )ˆ , , , , , ,x y zd F x y z dx F x y z dy F x y z dz⋅ = + +F   (4.4.3)



VECTOR CALCULUS 187

so our line integral is

 
ˆ

x y zd F dx F dy F dz

Γ

⋅ = + +∫F   (4.4.4)

If F is a force vector, then our line integral would equal the work done by the force 
along the path . 

Example 4.4.1
Calculate the line integral of the vector field

 2 2 2 ˆˆ ˆx y z= + +F i j k  (4.4.5)

along a path consisting of two segments from (x, y, z) = (0, 0, 0)  (1, 0, 0)  
(1, 0, 1). 
Solution: Along the first segment 1 = (0, 0, 0)  (1, 0, 0) there is no change in y 
or z so dy = dz = 0 and 2ˆd x dx⋅ =F 

 

1

1
2

0

1ˆ
3

d x dx

Γ

⋅ = =∫ ∫F   (4.4.6)

Along the second segment 2 = (1, 0, 0)  (1, 0, 1) where dx = dy = 0 and 
2ˆd z dz⋅ =F 

 

2

1
2

0

1ˆ
3

d z dz

Γ

⋅ = =∫ ∫F   (4.4.7)

thus

 
1 2

2ˆ ˆ
3

d d

Γ Γ

⋅ + ⋅ =∫ ∫F F   (4.4.8)

Example 4.4.2
Integrate the vector field 

 ˆˆ ˆy x z= − +F i j k  (4.4.9)

around the unit circle in the x-y plane.
Solution: Since dz  0 

 
ˆ

x yd F dx F dy ydx xdy

Γ Γ Γ

⋅ = + = −∫ ∫ ∫F     (4.4.10)

Performing a polar coordinate transformation along the unit circle with r  1, 
x  cos , y  sin , dx   sin d and dy  cos d
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 ( )
2

2 2

0

sin cos 2ydx xdy d



   
Γ

− = + =∫ ∫  (4.4.11)

4.4.2 Curl of a Vector Field 
The curl of a vector field at a point is related to the closed line integral around a 
path  enclosing an area a. The component of the curl normal to a is defined as 
the limit as a  0 of the closed line integral divided by a

 ( )
0

1 ˆˆcurl lim
a

d
aΔ →

Γ

⋅ ≡ ⋅
Δ ∫F n F   (4.4.12)

where n̂  is the unit vector normal to a. By choosing rectangular contours where 
ˆˆ ˆˆ ,  ,  =n i j k

 ( ) ˆcurl 
yz

FF

y z

∂∂
⋅ = −

∂ ∂
F i  (4.4.13)

 ( ) ˆcurl x zF F

z x

∂ ∂
⋅ = −

∂ ∂
F j  (4.4.14)

 ( ) ˆcurl 
y x

F F

x y

∂ ∂
⋅ = −

∂ ∂
F k  (4.4.15)

and we fi nd that curl F =   F. 

4.4.3 Curl in Cartesian Coordinates 
The curl of a vector field gives another vector field. In Cartesian coordinates the 
curl of F is given by

 ( )ˆ ˆˆ ˆ ˆ ˆ
x y zF F F

x y z

 ∂ ∂ ∂
∇× = + + × + +⎜ ⎟∂ ∂ ∂⎝ ⎠

F i j k i j k  (4.4.16)

The curl may be expressed as a determinant

 

ˆˆ ˆ

x y z

x y z

F F F

∂ ∂ ∂
∇× =

∂ ∂ ∂

i j k

F   (4.4.17)
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Expanding across the top row gives

 ˆˆ ˆy yz z x x
F FF F F F

y z x z x y

∂ ∂   ∂ ∂ ∂ ∂ 
∇× = − − − + −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠

F i j k  (4.4.18)

Example 4.4.3
Calculate the curl of ˆˆ ˆy x z= − +F i j k  
Solution:

  

ˆˆ ˆ

z x

x y z y z

y x z

 ∂ ∂ ∂ ∂ ∂
∇× = = +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

−

i j k

F ˆ yz

x z

∂∂ − − ∂ ∂⎝ ⎠
i ˆ ˆˆ 2

yx

x y

 ∂∂
+ − − = −⎜ ⎟∂ ∂⎝ ⎠

j k k

 (4.4.19)

Notice that the curl of a vector field involves derivatives of each component with 
respect to the other two variables so that

 ( ) ( ) ( ) ˆˆ ˆ( , , ) x y zx y z F x F y F z= + +F i j k  (4.4.20)

would have zero curl. 

4.4.4 Curl in Curvilinear Coordinates 
In curvilinear coordinates, the curl may be expressed in determinant form

 

( ) ( ) ( )1/2 1/2 1/2

1 11 2 22 3 33

1 2 3

1/2 1/2 1/2
11 1 22 2 33 3

ˆ ˆ ˆ/ / /g g g g g g

u u u

g F g F g F

∂ ∂ ∂
∇× =

∂ ∂ ∂

e e e

F  (4.4.21)

4.4.5 Cylindrical Coordinates 
In cylindrical coordinates, we have (u1, u2, u3)  (r, , z) and (x, y, z)  (rcos , 
rsin , z)
 g11 = 1, g22 = r2, g33 = 1, so that g = r2 (4.4.22)

 

1 1ˆˆ ˆ

r z

r r

r z

F rF F





∂ ∂ ∂
∇× =

∂ ∂ ∂

r z

F  (4.4.23)
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( ) ( )

( ) ( )

1
ˆ

ˆ            

1
ˆ         +

z

z r

r

F rF
r z

F F

r z

rF F
r r











⎛ ⎞∂ ∂
∇× = −⎜ ⎟∂ ∂⎝ ⎠

∂ ∂⎛ ⎞
− −⎜ ⎟∂ ∂⎝ ⎠
⎛ ⎞∂ ∂

−⎜ ⎟∂ ∂⎝ ⎠

F r

z
 (4.4.24)

Example 4.4.4 
Find the curl of  

 
ˆˆz r= −F r  (4.4.25)

Solution: 
In cylindrical coordinates 

 

( ) ( ) ( )2 21 1ˆˆ ˆ

ˆˆ         2

z
r r z

r z z r r






⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞∇× = + + − −⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
= − +

F r z

z

 (4.4.26)

4.4.6 Spherical Coordinates 
In spherical coordinates, we have (u1, u2, u3)  (r, , ) and 

 (x, y, z)  (r sin  cos , r sin  sin , r cos )

 g11 = 1, g22 = r2, g33 = r2 sin2, so that g = r4 sin2 (4.4.27)

 

2

1 1 1ˆ ˆˆ
sinsin

sinr

r rr

r

F rF r F 




 


∂ ∂ ∂
∇× =

∂ ∂ ∂

r

F

θ

 (4.4.28)

 

( ) ( )

( ) ( ) ( ) ( )

1
ˆ sin

sin

1 1ˆ ˆ         sin
sin

r r

F F
r

r F F rF F
r r r r

 

 


  

 
  

⎛ ⎞∂ ∂
∇× = −⎜ ⎟∂ ∂⎝ ⎠

⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞− − + −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

F r

θ
 (4.4.29)
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Example 4.4.5
Calculate the curl of 

 
ˆˆ r= −F r θθ  (4.4.30)

Solution: In spherical coordinates it is given by

 

( )1
ˆ

sin
r

r  

⎛ ⎞∂
∇× = ⎜ ⎟∂⎝ ⎠

F r ( )

( ) ( )2

1ˆ
sin

1ˆ        

r

r
r r


 

 


⎛ ⎞∂
− −⎜ ⎟∂⎝ ⎠

∂ ∂
+ − −

∂ ∂

θ

1ˆ ˆ2
sinr




⎛ ⎞
= −⎜ ⎟

⎝ ⎠
θ

 (4.4.31)

4.4.7 Vector Potential 
Given a vector B field one may seek to find if it could have resulted from the curl 
of a vector field A.

Example 4.4.6
The vector field

 ˆ2= −B k  (4.4.32)

could have resulted from the curl of the vector field

 ˆ ˆy x= −A i j  (4.4.33)

In magnetostatics the magnetic field B is given by the curl of a vector potential 

B =  A.

Maple Examples
Examples of path integrals of scalar fields and line integrals of vector fields are 
shown in the Maple worksheet below. The curl of vector fields is evaluated in 
Cartesian, cylindrical, and spherical coordinates. Vector potential calculations are 
demonstrated in Cartesian and cylindrical coordinates. 

Key Maple commands: Circle , CrossProduct , Curl , Ellipse,  LineInt , LineSegments , 
Path , PathInt , SetCoordinates,  simplify , VectorField , VectorPotential  

Maple packages: with(VectorCalculus ):

restart

Path Integrals of Scalar Fields

with(VectorCalculus) :
g:  xy
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xy

PathInt(g, [x, y]  LineSegments(0, 0, 1, 0, 1, 1))

 
1

2
PathInt(g, [x, y]  Circle(0, 0, 1))

0

PathInt(1, [x, y]  Ellipse(3x2  4y2 1))

 4 1
3EllipticE

3 2

⎛ ⎞
⎜ ⎟
⎝ ⎠

Line Integrals of Vector Fields

with(VectorCalculus) :
SetCoordinates(‘cartesian’[x, y])

cartesianx, y

F:  VectorField(-y, x)
( )

x yye x e− +

LineInt(F, LineSegments(1, 0, 1, 10, 1,0, 0, 1, 0))

2

LineInt(F, Circle(0, 0, r))

2r2

LineInt(F, Path( cos(t), sin(t), t  0 … 2 pi))

2

F:  VectorField(x, y)
( ) ( )x yx e y e+

LineInt(F, Line(0, 0, 1, 1))

1

LineInt(F, Circle(0, 0, r))

0

LineInt(F, LineSegments(1, 0, 1, 10, 1,0, 0, 1, 0))

0

Curl in Cartesian Coordinates

SetCoordinates(‘cartesian’[x, y, z])

cartesianx, y, z
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F:  VectorField(y, x, 0)
( )

x yye x e− +

Curl(F)

2 ze

CrossProduct(Del, F)

2 ze

F:  VectorField(x, y, 0)
( ) ( )x yx e y e+

Curl(F)

0 ze

Curl in Cylindrical Coordinates

with(VectorCalculus) :
SetCoordinates(‘cylindrical’[r, phi,  z]);

cylindricalr, , z 

F:  VectorField(r, z, phi )

( ) ( ): ( ) r zF r e z e e = + +

Curl(F)
1

(0)r z

r z
e e e

r r


−⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

CrossProduct(Del, F)

 
1

(0)r z

r z
e e e

r r


−⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

Curl in Spherical Coordinates

with(VectorCalculus) :
SetCoordinates(‘spherical’[r, theta, phi])

sphericalr, ,  

2

1
: ,0,0v VectorField

r

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

 2

1
: (0) (0)rv e e e

r
 

⎛ ⎞= + +⎜ ⎟
⎝ ⎠

Curl(v)

(0) (0) (0)re e e + +
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2

1
: sin( ),0,w VectorField phi

r

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

( )( ) 2

1
: sin (0)rw e e e

r
 

⎛ ⎞= + + ⎜ ⎟
⎝ ⎠

Curl(w)

 
2

3

sin( )
cos( )

cos( )
(0)

sin( )sin( )
r

re e e
rr

 






⎛ ⎞+⎜ ⎟⎛ ⎞ + +⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
restart

Vector Potential

with(VectorCalculus) :
SetCoordinates(‘cartesian’[x, y, z])

cartesianx, y, z

v:  VectorField(z, x, y)

 ( ) ( )x y zz e xe y e− +

VectorPotential(v)

 
2 21 1

2 2
x yxz y e z e

⎛ ⎞− − −⎜ ⎟
⎝ ⎠

Curl(%)

 ( ) ( )x y zz e xe y e− +

Vector Potential of a Uniform Magnetic Field

SetCoordinates(‘cylindrical’[r, phi, z]);

cylindricalr, , z

v:  VectorField(0, 0, B)

( ) zB e

VectorPotential(v)

( )2sin( )cos( ) sin( )rBr e Br e   − +

SimplifyCurl(%)

( ) zB e

The vector potential is not unique. For example,

1
: 0, ,0

2
v VectorField r B

⎛ ⎞
= ⋅⎜ ⎟

⎝ ⎠
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1

2
rBe 

Curl(v)

( ) zB e

4.5 LAPLACIAN OF SCALAR AND VECTOR FIELDS 

The divergence of a gradient field T(x, y, z)results in a scalar field

 
2 2 2

2

2 2 2
ˆ ˆˆ ˆ ˆ ˆT T T T T T

T
x y z x y z x y z

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∇ = + + ⋅ + + = + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

i j k i j k  (4.5.1)

The Laplacian operator in Cartesian coordinates  is defi ned as

 
2 2 2

2

2 2 2x y z

∂ ∂ ∂
∇ = + +

∂ ∂ ∂
 (4.5.2)

Example 4.5.1
Calculate the Laplacian of the scalar field

 ( ) ( )sin cos zT kx ky e −=  (4.5.3)

Solution: In Cartesian coordinates 

 ( ) ( ) ( )2 2 22 sin cos zT k kx ky e  −∇ = −  (4.5.4)

4.5.1 Laplacian in Curvilinear Coordinates 
In curvilinear coordinates (u1, u2, u3) the scalar Laplacian may be written 

 
1/2 1/2 1/2

2

1/2
1 11 1 2 22 2 3 33 3

1 g g gT T T
T

u g u u g u u g ug

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪∇ = + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎨ ⎬∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭
 (4.5.5)

4.5.2 Cylindrical Coordinates 
In cylindrical coordinates, we have (u1, u2, u3)  (r, , z) and (x, y, z)  (r cos , 
r sin , z)

 g11 = 1, g22 = r2, g33 = r2 sin2, so that g = r2 (4.5.6)

 

2

2 2

2 2 2

1 1

1 1
       

T T T
T r r

r r r z z r

T T T
r

r r r z r

 



⎧ ⎫⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞⎪ ⎪∇ = + +⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭
∂ ∂ ∂ ∂⎛ ⎞= + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 (4.5.7)
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Example 4.5.2
Find the Laplacian of  

 ( )2 cosh cosT r z =  (4.5.8)

Solution:  In cylindrical coordinates 

 
( )

2 2 2
2 2 2

2 2 2

2

2

1 cosh( ) 1 cos
cosh( )cos cos cosh( )

       4cosh( )cos cosh( )cos cos cosh( )

       3 cosh( )cos

r z
T r z r r z

r r r z r

z r z z

r z


 



  



⎛ ⎞∂ ∂ ∂ ∂
∇ = + +⎜ ⎟

∂ ∂ ∂ ∂⎝ ⎠
= + −

= +

 (4.5.9)

4.5.3 Spherical Coordinates 
In spherical coordinates, we have (u1, u2, u3) = (r, , ) and (x, y, z)  (r sin  cos , 
r sin  sin , r cos )

 g11 = 1, g22 = r2, g33 = r2 sin2, so that g = r4 sin2 (4.5.10)

 2 2

2

1 1
sin sin

sinsin

T T T
T r

r rr
 

    

⎧ ⎫⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞⎪ ⎪∇ = + +⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭
 (4.5.11)

Example 4.5.3
Find the Laplacian of 

 
2

1
sinT

r
=  (4.5.12)

Solution: In spherical coordinates 

 

( )

2 2

2 2 2

2 2

4 2

1 1 1
sin sin sin sin

sin

2sin 1
        cos sin

T r
r rr r r

r r

   
 


 

⎧ ⎫⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞⎪ ⎪∇ = +⎨ ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

= + −

 (4.5.13)

4.5.4 The Vector Laplacian 
In Cartesian coordinates the Laplacian of a vector field may be expressed as

 ( ) ( ) ( )
2 2 2

2

2 2 2
ˆˆ ˆ, , , , , ,x y zF x y z F x y z F x y z

x y z

∂ ∂ ∂
∇ = + +

∂ ∂ ∂
F i j k  (4.5.14)
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In curvilinear coordinates, the form of the vector Laplacian is complicated and 
will be discussed in Section 4.6.

Maple Examples
The Laplacian of scalar fields is calculated in Cartesian, cylindrical, and spherical 
coordinates in the Maple worksheet below.

Key Maple commands: Divergence , expand , Gradient , Laplacian , SetCoordinates 

Maple packages: with(VectorCalculus ):

restart

Laplacian in Cartesian Coordinates

with(VectorCalculus) :
SetCoordinates(‘cartesian’[x, y, z])

cartesianx, y, z

Laplacian(f(x, y, z))

 ( ) ( ) ( )
2 2 2

2 2 2
, , , , , ,f x y z f x y z f x y z

x y z

∂ ∂ ∂
+ +

∂ ∂ ∂
Divergence(Gradient(f(x, y, z)))

 ( ) ( ) ( )
2 2 2

2 2 2
, , , , , ,f x y z f x y z f x y z

x y z

∂ ∂ ∂
+ +

∂ ∂ ∂
g : x2  y2  z2

x2   y2  z2

Laplacian(g)

6

restart

Laplacian in Cylindrical Coordinates

with(VectorCalculus) :
SetCoordinates(‘cylindrical’[r, phi, z]);

cylindricalr, , z

expand(Laplacian(f(r, z)))

 
( )

( ) ( )
2 2

2 2

,
, ,

f r z
r f r z f r z

r r z

∂
∂ ∂∂ + +
∂ ∂
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( )1
: cos phi sinh( )g z

r
= ⋅ ⋅

cos( )sinh( )z

r



Laplacian(g)
cos( )sinh( )z

r



Divergence(Gradient(g))
cos( )sinh( )z

r



restart

Laplacian in Spherical Coordinates

with(VectorCalculus) :
SetCoordinates(‘spherical’[r, theta, phi])

sphericalr, , 

expand(Laplacian(f(r, phi)))

 ( )
( )

( )
2

2 2

2 2 2

,2 ,
,

sin( )

f rf r
r

f r
r r r







∂∂⎛ ⎞
⎜ ⎟ ∂ ∂∂⎝ ⎠ + +

∂

g : rcos(theta)sin(phi)

rcos()sin()

Laplacian(g)

2

cos( )sinh( )

sin( )r

 


−

Divergence(Gradient(g))

2

cos( )sinh( )

sin( )r

 


−

4.6 VECTOR IDENTITIES 

In this section, first and second derivatives involving the divergence, curl, and 
gradient of vector and scalar functions are covered. The vector Laplacian for 
curvilinear coordinates is introduced. 
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4.6.1 First Derivatives 
The gradient, divergence and curl of sums is straightforward 

 ( )f g f g∇ + =∇ +∇  (4.6.1)

 ( )∇ ⋅ + = ∇ ⋅ +∇ ⋅F G F G  (4.6.2)

 ( )∇× + = ∇× +∇×F G F G  (4.6.3)

4.6.2 First Derivatives of Products 
The gradient of a product of scalar functions is

 ( )fg g f f g∇ = ∇ + ∇  (4.6.4)

The divergence of a scalar function times a vector function is

 ( )f f f∇ ⋅ = ⋅∇ + ∇ ⋅F F F  (4.6.5)

Example 4.6.5
Verify the above identity for the divergence of a scalar times a vector. 
Writing out the terms on the right-hand side

 
x y z

f f f
f F F F

x y z

∂ ∂ ∂
⋅∇ = + +

∂ ∂ ∂
F  (4.6.6)

 
yx z
FF F

f f f f
x y z

∂∂ ∂
∇ ⋅ = + +

∂ ∂ ∂
F  (4.6.7)

On the left-hand side

 ( ) ( ) ( ) ( )x y zf fF fF fF
x y z

∂ ∂ ∂
∇ ⋅ = + +

∂ ∂ ∂
F  (4.6.8)

Using the chain rule, we find

 ( ) yx z
x y z

FF Ff f f
f F f F f F f

x x y y z z

∂∂ ∂∂ ∂ ∂
∇ ⋅ = + + + + +

∂ ∂ ∂ ∂ ∂ ∂
F  (4.6.9)

is equal to the sum of terms on the right. This identity is encountered in 
electrostatics. 
The curl of a scalar function times a vector function is

 ( )f f f∇× = ∇× − ×∇F F F  (4.6.10)

The gradient of the dot product and the curl of the cross product are

 ( ) ( ) ( )∇ ⋅ = ⋅∇ + ⋅∇ + ×∇× + ×∇×F G F G G F G F F G  (4.6.11)

 ( ) ( ) ( ) ( ) ( )∇× × = ⋅∇ − ⋅∇ + ∇ ⋅ − ∇ ⋅F G G F F G F G G F  (4.6.12)
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4.6.3 Second Derivatives 
The following second derivatives are frequently encountered and should be 
memorized

 0f∇×∇ =  (4.6.13)

 0∇ ⋅∇× =F  (4.6.14)

 ( ) 2∇×∇× =∇ ∇ ⋅ −∇F F F  (4.6.15)

4.6.4 Vector Laplacian 
Identity (4.6.15) allows us to calculate the Laplacian of a vector field in curvilinear 
coordinates

 ( )2∇ =∇ ∇ ⋅ −∇×∇×F F F  (4.6.16)

 

1/2

2 311 2
1 1/2

1 3 211

1/2

322 1
2 1/2

2 1 322

1/2

33 1 2
3 1/2

3 2 133

1
ˆ

1
ˆ

1
ˆ

⎧ ⎫⎡ ⎤⎛ ⎞ ∂Γ∂Γ∂∇ ⋅⎪ ⎪∇ = + −⎨ ⎬⎢ ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎣ ⎦⎪ ⎪⎩ ⎭
⎧ ⎫⎡ ⎤⎛ ⎞ ∂Γ ∂Γ∂∇ ⋅⎪ ⎪+ + −⎨ ⎬⎢ ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎣ ⎦⎪ ⎪⎩ ⎭
⎧ ⎫⎡ ⎤⎛ ⎞ ∂Γ ∂Γ∂∇ ⋅⎪ ⎪+ + −⎨ ⎬⎜ ⎟ ⎢ ⎥∂ ∂ ∂⎝ ⎠ ⎣ ⎦⎪ ⎪⎩ ⎭

g

u g u ug

g

u g u ug

g

u g u ug

F
F e

F
e

F
e

 (4.6.17)

where the  symbols are

 ( ) ( )1/2 1/211
1 33 3 22 21/2

2 3

g
g F g F

u ug

⎧ ⎫∂ ∂
Γ = −⎨ ⎬∂ ∂⎩ ⎭

 ( ) ( )1/2 1/222
2 11 1 33 31/2

3 1

g
g F g F

u ug

⎧ ⎫∂ ∂
Γ = −⎨ ⎬∂ ∂⎩ ⎭

 (4.6.18)

 ( ) ( )1/2 1/233
3 22 2 11 11/2

1 2

g
g F g F

u ug

⎧ ⎫∂ ∂
Γ = −⎨ ⎬∂ ∂⎩ ⎭

and the divergence

 

1/21/2 1/2

1 2 31/2
1 11 2 22 3 33

1 g g g
F F F

u g u g u gg

⎧ ⎫⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎪ ⎪⎢ ⎥⎢ ⎥ ⎢ ⎥∇ ⋅ = + +⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭
F

 (4.6.19)
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with  

11 12 13

21 22 23 11 22 33

31 32 33

g g g

g g g g g g g

g g g

= =  (4.6.20)

Maple Examples
Second derivatives of vector fields are evaluated in the Maple worksheet below. 
The vector Laplacian is calculated in Cartesian and spherical coordinates. 
Key Maple commands: Curl , Divergence , expand , Gradient , Laplacian , 
SetCoordinates , VectorField

Maple packages: with(VectorCalculus):  with(Physics ): with(Vectors ):

restart

Second Derivatives

with(VectorCalculus) :
SetCoordinates(‘cartesian’[x, y, z])

cartesianx, y, z

F:  VectorField(f(x, y, z), g(x, y, z), h(x, y, z))

 ( )( ) ( )( ) ( )( ): , , , , , ,x y zF f x y z e g x y z e h x y z e= + +

Divergence(Curl(F))

 0

Curl(Gradient(f(x, y, z)))

 ( ) ( ) ( )0 0 0x y ze e e+ +

Vector Laplacian in Cartesian Coordinates

F:  VectorField(fx(x, y), fy(x, y), 0)

 ( )( ) ( )( ) ( ): , , 0x y zF fx x y e fy x y e e= + +

Laplacian(F)

 ( ) ( ) ( ) ( ) ( )
2 2 2 2

2 2 2 2
, , , , 0x y zfx x y fx x y e fx x y fx x y e e

x y x y

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
+ + + +⎜ ⎟ ⎜ ⎟

∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

Vector Laplacian in Spherical Coordinates

SetCoordinates(‘spherical’[r, theta, phi])
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sphericalr, , 

2

1
: sin( ),0,w VectorField phi

r

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

 ( )( ) ( )
2

1
: sin 0rw e e e

r
 

⎛ ⎞= + + ⎜ ⎟
⎝ ⎠

Laplacian(w)

 

2

3 3 2

2 2 2 2

1 cos( )

2sin( ) sin( ) 2cos( ) sin( )
(0)

sin( ) sin( )
r

r r
e e e

rr r r
 


   

 

⎛ ⎞
− +⎜ ⎟⎛ ⎞ ⎜ ⎟− − + + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

Gradient(Divergence(w)) – Curl(Curl(w))

 

2

2 3 3 2

2 2 2 2

1 cos( )

2sin( ) sin( ) 2cos( ) sin( )
(0)

sin( ) sin( )
r

r r
e e e

rr r r
 


   

 

⎛ ⎞
− +⎜ ⎟⎛ ⎞ ⎜ ⎟− − + + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

restart
with(Physics) :
with(Vectors) :

[&x, ‘’, ‘.’, ChangeBasis, ChangeCoordinates, Component, Curl, 
DirectionalDiff, Divergence, Gradient, Identify, Laplacian, , Norm, 

Setup, diff]

%Curl(%Curl(A))

( )A∇× ∇×
expand(%)

( ) 2A A∇ ∇⋅ −∇

4.7 INTEGRAL THEOREMS 

In this section, the fundamental theorem of gradients is introduced. Integral 
theorems are discussed including Gauss’s divergence theorem and Stokes’s 
theorem. Bernoulli’s equation is derived from the Navier-Stokes equation.  
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4.7.1 Gradient Theorem 
The fundamental theorem of gradients states that the line integral of the gradient 
of a scalar function f between points a and b depends only on the value of f at the 
end points 

 ( ) ( )ˆ
b

a

f d f a f b∇ ⋅ = −∫   (4.7.1)

To show this, we consider the dot product between the gradient

 
ˆˆ ˆf f f

f
x y z

∂ ∂ ∂
∇ = + +

∂ ∂ ∂
i j k  (4.7.2)

and the line element

 ˆˆ ˆ ˆd dx dy dz= + +i j k  (4.7.3)

giving

 ˆ f f f
f d dx dy dz df

x y z

∂ ∂ ∂
∇ ⋅ = + + =

∂ ∂ ∂
  (4.7.4)

so that

 ( ) ( )ˆ
b b

a a

f d df f a f b∇ ⋅ = = −∫ ∫  (4.7.5)

The line integral above is also independent of the integration path between a and 
b. Also

 ˆ 0f d∇ ⋅ =∫   (4.7.6)

If the closed line integral of a vector field F is not zero

 ˆ 0d⋅ ≠∫ F   (4.7.7)

then F cannot be obtained from the gradient of a scalar field. 

4.7.2 Divergence Theorem 
Gauss’s divergence theorem states that the flux of a vector field F through a closed 
surface is equal to the divergence of F integrated over the enclosed volume 

 
surf vol

ˆ   da dv⋅ = ∇⋅∫ ∫F n F  (4.7.8)
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4.7.3 Cartesian Coordinates

Example 4.7.1
Verify Gauss’s divergence theorem  over the unit cube in the first octant given the 
vector field ˆx=F i  in Cartesian coordinates. 
Solution: Computing the divergence

 ( ) ( ) 1xF x
x x

∂ ∂
∇⋅ = = =

∂ ∂
F  (4.7.9)

and the volume integral

 

1 1 1

vol 0 0 0

 1dv dxdydz∇⋅ = =∫ ∫ ∫ ∫F  (4.7.10)

Now ˆ 0⋅ =F n  on all sides of the cube except the face at x  1 where 
1

ˆ ˆˆ 1.
x

x
=

⋅ = ⋅ =F n i i  
The surface integral is thus computed

 

1 1

surf 0 0

ˆ 1 da dydz⋅ = =∫ ∫ ∫F n  (4.7.11)

in agreement with the divergence theorem.

4.7.4 Cylindrical Coordinates 

Example 4.7.2
Verify Gauss’s divergence theorem in cylindrical coordinates given the vector field

 2ˆr=F r  (4.7.12)

with the volume bounded by the cylindrical surface r  R and the planes z  0 and 
z  H. 
Solution: Computing the divergence

 ( ) ( )31 1
3rrF r r

r r r r

∂ ∂
∇⋅ = = =

∂ ∂
F  (4.7.13)

and the volume integral

 ( )
2

3

vol 0 0 0

 3
H R

dv r rdrd dz HR



 ∇⋅ = = 2∫ ∫ ∫ ∫F  (4.7.14)

Now ˆ 0⋅ =F n  on the top and bottom end caps of the cylinder and 
2 2ˆ ˆ ˆ

r R
r R

=
⋅ = ⋅ =F n r r  on the cylindrical surface
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2

2 2 3

surf surf 0 0

ˆ 2
H

 da R  da R Rd dz HR



 ⋅ = = =∫ ∫ ∫ ∫F n  (4.7.15)

4.7.5 Stokes’s Curl Theorem 
Stokes’s curl theorem relates the vector field F integrated around a closed path  
to   F integrated over any capping surface bound by the contour

 
surf

ˆ ˆd  da

Γ

⋅ = ∇× ⋅∫ ∫F F n  (4.7.16)

where ˆd  is tangential to the path and ˆ n is a unit vector normal to the surface. 
The direction of ˆ n is determined by a right-hand rule. If fingers of the right 
hand are pointed in the direction of ˆd then the thumb points in the direction 
of ˆ n . Line integrals may be performed as in Section 4.4 with the line element in 
Cartesian coordinates

 ˆˆ ˆ ˆd dx dy dz= + +i j k  (4.7.17)

so that

 
ˆ

x y zd F dx F dy F dz

Γ Γ

⋅ = + +∫ ∫F    (4.7.18)

Example 4.7.3
Verify Stokes’s theorem given the vector field

 2 ˆx y=F i  (4.7.19)

over the surface bound by the unit circle in the x-y plane. 
Solution: We calculate the curl

 2 ˆx∇× = −F k  (4.7.20)

Taking the integration contour to be counterclockwise around the circle the right-
hand rule gives ˆˆ =n k  and the surface integral is 

 
2

surf surf

ˆ da x  da∇× ⋅ = −∫ ∫F n  (4.7.21)

A polar coordinate transformation gives da  rdrd and x  rcos so that

 ( )
1 2 2

2 3 2

surf 0 0 0

1 1
cos 1 cos2

4 2 4
x  da r dr d d

 


   − = − = − + = −∫ ∫ ∫ ∫  (4.7.22)
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Next, we compute 2ˆd x ydx⋅ =F   so our line integral

 2

1

ˆ

r

d x ydx

Γ =

⋅ =∫ ∫F    (4.7.23)

On the boundary of the unit circle x  cos, y  sin and dx  sind so, 

 
2

2 2 2

1 0

cos sin
r

x ydx d



  
=

= −∫ ∫  (4.7.24)

Using cos2 = (1 + cos2)/2 and sin2 = (1  cos2)/2 we have cos2sin2= (1  
cos22)/4

( )
2 2

2 2 2

0 0

2
22

0
0

1
cos sin 1 cos 2

4

1 1 1
                               cos 2 sin 4

2 4 2 4 4 4 4

d d

d

 




    

   
  

− = − −

= − + = − + + = −

∫ ∫

∫
 (4.7.25)

in agreement with Stokes’s theorem. 

Example 4.7.4
Verify Stokes’s theorem given the vector field

 2ˆy=F i  (4.7.26)

over the surface bound by one-quarter of the unit circle in the first quadrant of 
the x-y plane. 
Solution: The integration contour is taken to be counterclockwise around the 
figure below. 

1
x

y

1

Figure 4.7.1: Counterclockwise contour in the first quadrant.

We calculate the curl

 ˆ2y∇× = −F k  (4.7.27)
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For a counterclockwise contour, the right-hand rule gives ˆˆ =n k  and the surface 
integral is computed as

 
2

surf surf

ˆ 2 da y  da∇× ⋅ = −∫ ∫F n  (4.7.28)

Using da  rdrd and y  rsin and we have

 

1 /2
2 2

surf 0 0

2
2 2 sin

3
y  da r dr d



 − = − = −∫ ∫ ∫  (4.7.29)

Next, we compute 2ˆd y dx⋅ =F   so our line integral

 
2 2 2

bottom curve left

ˆd y dx y dx y dx

Γ

⋅ = + +∫ ∫ ∫ ∫F   (4.7.30)

On the bottom y  0 , on the left dx  0 , so that the first and third integrals are 
zero. On the curve we have r  1, x  cos, y  sin and dx  sind so we have

 ( ) ( )
/2 /2 0

2 3 2 2

curve 0 0 1

2
sin 1 cos sin 1

3
y dx d d u du

 

    = − = − − = − = −∫ ∫ ∫ ∫  (4.7.31)

in agreement with Stokes’s theorem. 

4.7.6 Navier-Stokes Equation 
The Navier-Stokes equation describing the flow of a fluid with viscosity  and 
density  in a gravitation field is given by

 ( ) 2P
t

   
∂

+ ⋅∇ = −∇ + ∇ −
∂
v

v v v g  (4.7.32)

Bernoulli’s equation is obtained neglecting viscous drag and acceleration of the 
fluid. In the approximation where 2∇ v  and / t∂ ∂v are small

 ( ) P ⋅∇ = −∇ −v v g  (4.7.33)

Integrating both sides of this equation along a vertical path 

 ( ) ˆ ˆ ˆd P d d ⋅∇ ⋅ = − ∇ ⋅ − ⋅∫ ∫ ∫v v g    (4.7.34)

with ĝ=g j  and ˆ ˆd dy= j  

 

2 2 2

1 1 1

v P y

v P y

vdv dP g dy = − −∫ ∫ ∫  (4.7.35)
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gives Bernoulli’s equation  

 
2 2

1 1 1 2 2 2

1 1

2 2
P v gy P v gy   + + = + +  (4.7.36)

4.8 MATLAB EXAMPLES 

In this section, we demonstrate the visualization of scalar and vector fields in 
MATLAB. The numerical gradient of scalar fields as well as the divergence and 
curl of vector fields are calculated with graphical output. Symbolic operations of 
divergence, curl, gradient and Laplacian are carried out in Cartesian coordinates

Key MATLAB commands: contour ,contourf , curl , del2 , divergence , ezcontour , 
ezcontourf , ezmesh , gradient , isosurface , laplacian , meshc , meshgrid , quiver ,  quiver3 , 
subplot , syms 

Section 4.1 Vector and Scalars Fields

Contour and Surface Plots

The following example demonstrates styles of surface and contour plots of a 
scalar field G(x, y). MATLAB code is entered at the Command Prompt.

>> [x,y]meshgrid(-2:0.1:2,-2:0.1:2);
>> Gsin(y)*exp(-x.^2-y.^2);
>> subplot(2,2,1); mesh(x,y,G)

>> subplot(2,2,2); contour(x,y,G)

>> subplot(2,2,3); meshc(x,y,G)

>> subplot(2,2,4); contourf(x,y,G)

The Rotate 3D tool may be used to view surface plots from different orientations. 
The same plots above may be generated using the Symbolic Math Toolbox as 
shown below.

>> syms x y

>> colormap(bone)

>> subplot(2,2,1); ezmesh(x*exp(-x^2-y^2))

>> subplot(2,2,2); ezcontour(x*exp(-x^2-y^2))

>> subplot(2,2,3); ezmeshc(x*exp(-x^2-y^2))

>> subplot(2,2,4); ezcontourf(x*exp(-x^2-y^2))
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Figure 4.8.1: Subplots of surface and contour plots including surface (top left), contour (top right), surface with 
contours (bottom left) and filled contours (bottom right).

Section 4.2 Gradient of Scalar Fields
The gradient of a scalar field may be numerically computed and visualized in 
MATLAB using the following syntax entered at the Command Prompt: 

>> [x,y]meshgrid(-2:0.1:2,-2:0.1:2);
>> Fexp(-x.^2-y.^2);
>> quiver(x,y,Fx,Fy,'k')

>> title('Gradient Field')

>> xlabel('x')

>> ylabel('y')
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Gradient Field

–2 –1.5 –1 –0.5 0 21.510.5
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Figure 4.8.2: Gradient field plot.

In the example below, the gradient vector plot is superimposed on a contour plot 
of the scalar field 

>> quiver(x,y,Fx,Fy,'k')

>> hold on

>> contour(x,y,F,'k')

>> title('Gradient and Scalar Fields')

>> xlabel('x')

>> ylabel('y')

Gradient and Scalar Fields

–2 –1.5 –1 –0.5 0 21.510.5
x

y

2

1.5

1

0

0.5

–0.5

–1

–1.5

–2

Figure 4.8.3: Gradient field plot with contours of the scalar field.
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The gradient of a 3D scalar field F(x, y, z) is plotted below. The isosurface F(x, y, z) 
 0.01 is superimposed on the gradient field. 

v-1:0.25:1;
[x,y,z]meshgrid(v);
F(x.^2y.^2-z.^2);
[Fx,Fy,Fz]gradient(F);
quiver3(x,y,z,Fx,Fy,Fz,'k')

axis tight

hold on

isosurface(x,y,z,F,0.01)

hold off

alpha(0.7)

colormap(bone)

xlabel('x')

ylabel('y')

zlabel('z')

0

–1

1
1

0.5

x

y

1

0

0.5

0.5
–1

–1

0
–0.5–0.5

–0.5

–1

Figure 4.8.4: 3D gradient field plot with isosurface displayed. 

Section 4.3 Divergence of Vector Fields
The divergence of the vector field (cos(3x), sin(2y)) may be numerically computed 
in MATLAB using the following syntax executed as a script file. The divergence 
is plotted as a filled contour plot with regions of positive divergence appearing 
lighter and regions of negative divergence having a darker shading. An arrow plot 
of the vector field is superimposed on the divergence plot. 

[x,y]meshgrid(-1.5:0.1:1.5,-1.5:0.1:1.5);
Fxcos(3*x);
Fysin(2*y);
cavdivergence(x,y,Fx,Fy);
contourf(x,y,cav)

hold on

quiver(x,y,Fx,Fy,'k')
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hold off

title('Vector Field with Divergence')

xlabel('x')

ylabel('y')

colormap bone

–1

1

1

x

y

0

0.5

1.5

0

–0.5 0.5

–0.5

–1.5

–1

1.5

–1.5

Vector Field with Divergence

Figure 4.8.5: Vector field plotted with a filled contour plot of its divergence. 

Section 4.4 Curl of Vector Fields
The curl of a vector field may be computed numerically in MATLAB using the 
following syntax:

[x,y]meshgrid(-1.5:0.1:1.5,-1.5:0.1:1.5);
Fxcos(3*x-y);
Fysin(x3*y);
cavcurl(x,y,Fx,Fy);
contourf(x,y,cav)

hold on

quiver(x,y,Fx,Fy,'k')

hold off

title('Vector Field with Curl')

xlabel('x')

ylabel('y')

colormap bone
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–1
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Vector Field with Curl

Figure 4.8.6: Vector field plotted with a filled contour plot of its curl. 

Section 4.5 Laplacian of Scalar and Vector Fields
The scalar field V(x, y) and its Laplacian are computed in the following MATLAB 
script file. The Laplacian and the field are displayed as subplots for comparison. 

[x,y]meshgrid(-1.5:0.1:1.5,-1.5:0.1:1.5);
Vx.*y.*exp(-x.^2-y.^2);
lap4*del2(V);
subplot(2,1,1); 

mesh(x,y,V)

axis equal

colormap bone

title('Scalar Field')

subplot(2,1,2);

mesh(x,y,lap)

axis equal

title('Laplacian of Scalar Field')

colormap bone
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1.5

Scalar Field

Laplacian of Scalar Field

1

–1
0

1

–1

0

1

–1

0

1

–1

0

Figure 4.8.7: Subplots of a scalar field (top) and its Laplacian (bottom).  

Section 4.6 Vector Identities
>> syms x y z

>> f-x^2y^3z^4
f 
- x^2  y^3  z^4
>> gradient(f,[x,y,z])

ans 
  -2*x

 3*y^2

 4*z^3

>> laplacian(f,[x,y,z])

ans 
12*z^2  6*y - 2
>> divergence([2*x^2 , cos(y), exp(z)],[x , y, z])

ans 
4*x  exp(z) - sin(y)
>> curl([y^2 , x, x*y],[x , y, z])

ans 
       x

      -y

 1 - 2*y

>> g  x*y*cos(z)
g 
x*y*cos(z)

>> curl(gradient(g),[x,y,z])

ans 
 0

 0

 0
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>> curl(curl([y*z,cos(x),exp(x*z)],[x,y,z]),[x,y,z])

 

ans 
 

 exp(x*z)  x*z*exp(x*z)
                  cos(x)

           -z^2*exp(x*z)

>> divergence(curl([z^2,x*y,z*x],[x,y,z]),[x,y,z])

 

ans 
 

0

4.9 EXERCISES

Section 4.1 Vector and Scalar Fields

1. Create a surface plot of the scalar function ( ) ( ) ( )2 2
2 2, sin

x y
g x y x y e

− +
= +  

2.  Create a contour plot of the scalar function ( ) ( )2 2

,
x y

g x y xye
− +

=  

3. Given ˆ ˆy x= +F i j , use the relation 

y

x

Fdy

dx F
=  to show that the equation for the fi eld lines is y2  x2 = const.

4. Create an arrow plot of the vector field ˆ ˆy x= − +F i j . Use the relation 

 y

x

Fdy

dx F
=  to write an equation for the fi eld lines. Plot the vector fi eld and the 

fi eld lines.

5. Create a 3D vector field plot of ˆˆ ˆy x z= − + −F i j k

Section 4.2 Gradient of Scalar Fields

6. Calculate the gradient of the following scalar functions in Cartesian 
coordinates
G(x,y,z)  xyz
G(x,y,z)  exeyez

7. Show that

( )1 ˆˆ ˆlnsinh coth
xyz xyz

yz xz xy
abc abc abc

⎛ ⎞ ⎛ ⎞∇ = + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

i j k
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8. Use the gradient operator to find the unit vector normal to the ellipsoid

  

22 2

2 2 2
1

yx z

a b c
+ + =

9. Find the unit normal to the plane described by 2x  y  z  3

10. Calculate the gradient of the following scalar functions in cylindrical 
coordinates
G(r, , z)  r2ez cos 
G(r, z)  z ln(r)

11. Calculate the gradient of the following scalar functions in spherical 
coordinates
G(r, , )  rcosei

( ) cos
,G r

r


 =

Section 4.3 Divergence of Vector Fields

12. Calculate the divergence of the following vector fields in Cartesian coordinates

 ( ) ˆˆ ˆ, , x y zx y z e e e= + +F i j k

 ( ) ˆˆ ˆ, ,x y z y z x= + +F i j k

13. Find a vector field F(x,y,z) with divergence in Cartesian coordinates given by

 ( ), ,x y z x y z∇⋅ = + +F

14. Show that the divergence of the following vector function in Cartesian 
coordinates is zero

 ( ) ˆˆ ˆ, ,x y z x y xy= − +F i j k

15. Calculate the divergence of the following vector fields in cylindrical 
coordinates (u1, u2, u3)  (r, , z)

 ( ) 2 ˆˆ ˆ, , sinr z r z r = + +F r z

 ( ) 2 ˆˆ ˆ, , ir z r z e  = + +F r z

16. Find a vector field F(r, , z) with divergence in cylindrical coordinates given 
by

 ( ) 2, ,r z r∇⋅ =F
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17. Calculate the divergence of the following vector fields in spherical coordinates 
(u1, u2, u3)  (r, , )

 ( ) 2 ˆ ˆˆ, , cos cosr r r   = + +F r θθ

 ( ) 2 ˆ ˆˆ, , sin ir r r e    = + +F r θθ

18. Find a vector field F(r, , ) with divergence in spherical coordinates given by

 ( ) 2, ,r r ∇⋅ =F

Section 4.4 Curl of Vector Fields

19. Given ˆˆ ˆx y z= + +F i j k  calculate the line integral ˆ
b

a

d⋅∫F   

where a  (0, 0, 0) and b  (1, 1, 1) along the paths
(a) (0, 0, 0)  (1, 0, 0)  (1, 1, 0)  (1, 1, 1)
(b) (0, 0, 0)  (0, 0, 1)  (0, 1, 1)  (1, 1, 1)

20. Calculate the curl of the following vector functions in Cartesian coordinates

( ) ˆˆ ˆ, , x y zx y z e e e= + +F i j k

( ) ˆˆ ˆ, ,x y z y z x= + +F i j k

21. Show that the curl of the following vector function in Cartesian coordinates 
is zero

 ( ) ( ) 2 ˆˆ ˆ, , cosxx y z e y z= + +F i j k

22. Create 3D vector field plots of ˆˆy x= −F i k  and   F displayed together.

23. Calculate the curl of the following vector functions in cylindrical coordinates 
(u1, u2, u3)  (r, , z)

( ) 2 ˆˆ ˆ, , sinr z r z r = + +F r z

 ( ) 2 ˆˆ ˆ, , ir z r z e  = + +F r z

24. Calculate the curl of the following scalar functions in spherical coordinates 
(u1, u2, u3)  (r, , )

( ) 2 ˆ ˆˆ, , cos cosr r r   = + +F r θθ

 ( ) 2 ˆ ˆˆ, , sin ir r r e    = + +F r θθ

Section 4.5 Laplacian of Scalar and Vector Fields

25. Fill in the blanks with “vector” or “scalar”



218 MATHEMATICAL METHODS FOR PHYSICS USING MATLAB AND MAPLE

(a) The divergence of a__________  fi eld gives a _________ fi eld
(b) The gradient of a    __________  fi eld gives a _________ fi eld
(c) The curl of a           __________  fi eld gives a _________ fi eld
(d) The Laplacian of a _____/ _____fi eld gives a_____/ ____ fi eld

26. Calculate the Laplacian of the following scalar functions in Cartesian 
coordinates
G(x, y, z)  xyz
G(x, y, z)  e

xeyez

27. Calculate the Laplacian of the following scalar functions in cylindrical 
coordinates
G(r, , z) = r2ez cos
G(r, z)  z ln(r)

28. Calculate the Laplacian of the following scalar functions in spherical 
coordinates
G(r, , ) = rcos ei

       ( ) cos
,G r

r


 =

29. Show that in spherical coordinates the Laplacian 

 

2
2 2

2 2 2 2

1 1 1 1
sin

sin sin
r

r rr r


    

⎡ ⎤∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞∇ = + +⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

is equivalent to 

 

2 2 2
2 2

2 2 2 2

2 1
cot csc

r rr r
 
 

⎛ ⎞∂ ∂ ∂ ∂ ∂
∇ = + + + +⎜ ⎟

∂ ∂∂ ∂ ∂⎝ ⎠

30. Calculate the Laplacian of the following vector fields in Cartesian coordinates

( ) ˆˆ ˆ, , x y zx y z e e e= + +F i j k

                                               ( ) ˆˆ ˆ, ,x y z y z x= + +F i j k

Section 4.6 Vector Identities

31. Given ˆˆ ˆx y z= + +R i j k  show that

(a) 3∇⋅ =R

(b) 0∇× =R
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(c) ∇ =
R

R
R

(d) 
2n n

n
−

∇ =R R R

(e) ( ) 22 1
n n

n n
−

∇ = +R R

32. Verify that the identity

 ( )f f f∇× = ∇× − ×∇F F F

holds for

 f(x, y) = yex and x̂=F j

33. Verify that the identity

 
( ) ( ) ( ) ( ) ( )∇× × = ⋅∇ − ⋅∇ + ∇⋅ − ∇⋅F G G F F G F G G F

holds for ˆyx=F j  and ˆ=G k

34. Calculate the Laplacian of the following vector field in cylindrical coordinates

 ( ) ˆˆ, , cos sinr z r r  = +F r

35. Calculate the Laplacian of the following vector field in spherical coordinates

 ( ) ˆ, , cosr r  =F

Section 4.7 Integral Theorems

36. Given f  xyz calculate the line integral ˆ
b

a

f d∇ ⋅∫   

where a  (0, 0, 0) and b  (1, 1, 1) along the paths
(a) (0, 0, 0)  (1, 0, 0)  (1, 1, 0)  (1, 1, 1)
(b) (0, 0, 0)  (0, 0, 1)  (0, 1, 1)  (1, 1, 1)

37. Verify Gauss’s divergence theorem in Cartesian coordinates over the unit cube 
in the first octant ˆxy=F i

38. Verify Gauss’s divergence theorem in cylindrical coordinates over a volume 
bounded by a cylindrical surface of radius R. The cylinder is coaxial with the 
z-axis with end caps located at z  0 and z  h. The vector field inside the 
cylinder is 

 ( ) 2 ˆˆ ˆ, , sinr z r z r = + +F r z .



220 MATHEMATICAL METHODS FOR PHYSICS USING MATLAB AND MAPLE

39. Verify Gauss’s divergence theorem in spherical coordinates over a volume 
bounded by a spherical surface of radius R. The vector field inside the sphere 
is ( ) 2ˆ, ,r r  =F r . 

40. Verify Stokes’s theorem given the vector field

 ˆ ˆy x= −F i j

 over the area bound by the unit square in the fi rst quadrant of the x-y plane. 
Take the direction of the integration contour to be counterclockwise.

41. Verify Stokes’s theorem given the vector field

 2ˆy=F i

 over the area bound by the unit circle in the x-y plane. Take the direction of 
the integration contour to be counterclockwise around the circle.

42. Torricelli  (1608–1647) gives an approximation using Bernoulli’s equation 
and the continuity equation A1v1  A2v2 in cases where  1 2A A>>  so that 

2
1v  

is negligible compared to 2
2v . If both points in the flow are at atmospheric 

pressure P1  P2  P0, show that the efflux speed ( )2 1 22v g h h= − .
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5Chapter

ORDINARY 
DIFFERENTIAL 
EQUATIONS

Chapter Outline
5.1 Classification of Differential Equations

5.2 First Order Differential Equations

5.3 Linear, Homogeneous with Constant Coefficients

5.4 Linear Independence

5.5 Inhomogeneous with Constant Coefficients

5.6 Power Series Solution to Differential Equations

5.7 Systems of Differential Equations

5.8 Phase Space

5.9 Nonlinear Differential Equations

5.1 CLASSIFICATION OF DIFFERENTIAL 
EQUATIONS 

In this section, the classification of differential equations by order and degree is 
discussed. Examples of differential equations that are solvable by direct integration 
and exact equations are given. The Sturm-Liouville form is introduced. 
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5.1.1 Order 
Ordinary differential equations (ODEs) contain derivatives with respect to 
a single independent variable. The order of a differential equation refers to the 
order of the highest derivative in the equation.

Example 5.1.1
The differential equation 

 
2

2

( )
( )

d y t k
y t

mdt
= −  (5.1.1)

describing simple harmonic motion of a block of mass m attached to a spring 
with force constant k is second order. 

Example 5.1.2
The differential equation 

 

4

4
( )

d y
EI w x

dx
=  (5.1.2)

describing the deflection y(x) of a beam with flexural rigidity EI and external load 
w(x) is fourth order.

5.1.2 Degree 
The exponent of the highest derivative is the degree of the differential equation. 

Example 5.1.3
The differential equation

 

3
2

2
0

d y dy
y

dxdx

⎛ ⎞
+ + =⎜ ⎟

⎝ ⎠
 (5.1.3)

is second order with degree  3.

5.1.3 Solution by Direct Integration 
Sufficiently simple differential equations may be solved by direct integration. 

Example 5.1.4
Solve the following differential equation 

 
3

3
0

d y

dx
=  (5.1.4)
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Solution: Successive integration gives

 
2

12

d y
c

dx
=  (5.1.5)

 1 2

dy
c x c

dx
= +  (5.1.6)

and

 
2

1 2 3
2

x
y c c x c= + +  (5.1.7)

The constants c1, c2, and c3 are determined by initial conditions. In this example 
y(0)  c3, y(0)  c2, and y(0)  c1. In general, the number of constants to be 
determined by initial conditions is equal to the order of the differential equation. 

5.1.4 Exact Differential Equations 
A differential equation 

 ( , ) ( , ) 0
dy

N x y M x y
dx

+ =  (5.1.8)

written in the form

 ( , ) ( , ) 0M x y dx N x y dy+ =  (5.1.9)

is said to be exact if 

 
( , ) ( , )M x y N x y

y x

∂ ∂
=

∂ ∂
 (5.1.10)

The general solution is f(x, y)  const. such that

 ( , ) ( , ) ( )f x y M x y dx g y= +∫  (5.1.11)

and

 ( , ) ( , ) ( )f x y N x y dy h x= +∫  (5.1.12)

Example 5.1.5
Verify that the differential equation

 2xydx + x2dy  0 (5.1.13)

is exact and find the general solution

Solution: Identifying M(x, y)  2xy, and N(x, y)  x2 we fi nd the differential 
equation is exact since 
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2(2 ) ( )

2
xy x

x
y x

∂ ∂
= =

∂ ∂
 (5.1.14)

Finding the general solution, we have that

 
2( , ) 2 ( ) ( ) const.f x y xydx g y x y g y= + = + +∫  (5.1.15)

and

 
2 2( , ) ( ) ( ) const.f x y x dy h x x y h x= + = + +∫  (5.1.16)

so that g(y)  h(x)  0 and

 2( , ) const.f x y x y= +  (5.1.17)

5.1.5 Sturm-Liouville Form 
Many differential equations arising in physics can be written in the Sturm-
Liouville form

 ( ) ( ) ( ) 0
dyd

p x q x y w x y
dx dx


⎛ ⎞ − + =⎜ ⎟
⎝ ⎠

 (5.1.18)

where the function y(x) and the eigenvalues  are to be determined. 

Example 5.1.6
Bessel’s differential equation 

 
2

2 2 2

2
( ) 0

d y dy
x x x n y

dxdx
+ + − =  (5.1.19)

may be written in Sturm-Liouville form dividing by x

 
2 2

2
0

d y dy n
x y xy

dx xdx
+ − + =  (5.1.20)

and combining the first two terms

 
dyd n

x y xy
dx dx x

⎛ ⎞ − + =⎜ ⎟
⎝ ⎠

 (5.1.21)

we identify

 p(x)  x, q(x)  n/x and w(x)  x (5.1.22)

Maple Examples
Homogeneous and inhomogeneous first order differential equations are solved in 
the Maple worksheet below.



ORDINARY DIFFERENTIAL EQUATIONS 225

Key Maple commands: diff , dsolve , plot , rhs

restart

Classification of Differential Equations

With(DEtools):
Deq: diff(y(x), x, x) + sin(x)diff(y(x), x)2  0

 
2

2 2

2 2
( ) sin( ) ( ) 0

d d
y x x y x

dx dx

⎛ ⎞
+ =⎜ ⎟

⎝ ⎠
odeadvisor(Deq)

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

dsolve(Deq)

 

( )
2

2

2

1
_ 1 tan

2_ 2 _ 1 2arctan
_ 1

( )
_ 1

C1 x

C C1
C1

y x
C1

⎛ ⎞⎛ ⎞+ ⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟− +
⎜ ⎟−⎝ ⎠=
−

Deq: diff(y(x), x, x, x) + xdiff(y(x), x) + y(x)  sin(x)

 

3

3
( ) ( ) ( ) sin( )

d d
y x x y x y x x

dxdx

⎛ ⎞+ + =⎜ ⎟
⎝ ⎠

odeadvisor(Deq)

[[_3rd_order, _exact_linear_nonhomogeneous]]

dsolve(Deq)

 

( )( )(
( )( ) )

( ) ( )_ 3 ( )_ 2

( ) cos( ) _ 1 ( )

( ) cos( ) _ 1 ( )

y x AiryAi x C AiryBi x C

AiryBi x x C dx AiryAi x

AiryAi x x C dx AiryBi x



= − + −

− − − − −

− − −

∫
∫

 

5.2 FIRST ORDER DIFFERENTIAL EQUATIONS 

In this section, we review the solution of first order homogeneous and 
inhomogeneous differential equations. Integrating factors are introduced. 
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5.2.1 Homogeneous Equations 
First order homogeneous equations can be integrated directly. 

Example 5.2.1
The first order differential equation 

 0x x+ =  (5.2.1)

written as

 
dx

x
dt

= −  (5.2.2)

may be solved by separating variables 

 
dx

dt
x

= −  (5.2.3)

Integrating both sides

 ln(x)  t + const. (5.2.4)

and exponentiating gives
 x(t)  x(0)et (5.2.5)

5.2.2 Inhomogeneous Equations 
To solve an inhomogeneous differential equation

 
( ) ( )x t x f t+ =

 (5.2.6)

we first consider the first order differential equation with 

 ( ) 0x t x+ =  (5.2.7)

Separating variables

 ( )
dx

t dt
x

= −  (5.2.8)

Integrating

 ( )
( ) e

t dt
x t

−
= ∫  (5.2.9)

Now multiply both sides of the differential equation by the integrating factor 
( )

e
t dt∫

 
( ) ( )

( ( ) )e ( )e
t dt t dt

x t x f t
 

+ =∫ ∫  (5.2.10)

We recognize the left-hand side to be the time derivative of the product of x and 
the integrating factor 
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 ( ) ( )( ) ( )
( ) e e

t dt t dtd
x t x x

dt

 
+ =∫ ∫  (5.2.11)

so that

 ( )( ) ( )
e ( )e

t dt t dtd
x f t

dt

 
=∫ ∫  (5.2.12)

and

 
( ) ( )

( ) e ( )e const.
t dt t dt

x t f t dt
 − ⎡ ⎤= +⎢ ⎥⎣ ⎦

∫ ∫∫  (5.2.13)

Example 5.2.2
Solve the inhomogeneous differential equation 

 
2 tx t x e−+ =  (5.2.14)

Solution: With (t)  t2 and f(t)  et we have

 
2 2

( ) e e const.
t dt t dttx t e dt

− −⎡ ⎤= +⎢ ⎥⎣ ⎦
∫ ∫∫  (5.2.15)

and

 
3 3

( ) exp exp const.
3 3

t t
x t t dt

⎡ ⎤⎛ ⎞ ⎛ ⎞
= − − +⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
∫  (5.2.16)

Maple Examples
Homogeneous and inhomogeneous first order equations are solved in the Maple 
worksheet below.

Key Maple commands: diff , dsolve , plot 

restart

Homogeneous First Order Equations

Deq:= diff(y(t), t) + f(t)y(t) = 0

( ) ( ) ( ) 0
d

y t f t y t
dt

+ =
dsolve(Deq)

( )( )
( ) _

f t dt
y t C1e

−
= ∫

Deq: diff(y(x), x) + cosh(x)y(x)  0

( ) cosh( ) ( ) 0
d

y x x y x
dt

+ =
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dsolve({Deq, y(0)  1})

 y(x)  esinh(x)

Inhomogeneous First Order Equations

Deq: diff(y(t), t) + f(t)y(t)  g(t)

( ) ( ) ( ) ( )
d

y t f t y t g t
dt

+ =

dsolve(Deq)

( )( ) ( )( )
( ) ( ) _

f t dt f t dt
y t g t e dt C1 e

−
= +∫ ∫∫

Deq: diff(y(x), x) + xy(x)  (1 – exp(x))

( ) ( ) 1 xd
y x xy x e

dx

−+ = −

dsolve({Deq, y(0)  0})

 

2

1

2

1 1

2 2

1 1 1 1 1
( ) 2 2 2 2 2

2 2 2 2 2

1 1
2 2

2 2

x

y x I e erf I x I I erf I x

I e erf I e

 



−

− −

⎛ ⎛ ⎞ ⎛ ⎞= − −⎜ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝

⎞⎛ ⎞+ ⎟⎜ ⎟
⎝ ⎠⎠

plot(rhs(%), x  0 … 6)

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

Figure 5.2.1: Plot of the solution to an inhomogeneous first order differential equation. 
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5.3 LINEAR, HOMOGENEOUS WITH CONSTANT 
COEFFICIENTS 

Linear, homogeneous differential equations with constant coefficients are 
discussed in this section. Examples include the overdamped, underdamped, and 
critically damped harmonic oscillator. Solutions to higher order linear differential 
equations are introduced. 

5.3.1 Damped Harmonic Oscillator 
The second order homogeneous differential equation with constant coefficients 
given by

 0mx bx kx+ + =   (5.3.1)
corresponds to a damped harmonic oscillator such as a block of mass m on a 
spring with force constant k and damping coefficient b. We assume a trial solution 

 x(t)  ert (5.3.2)

where our task is to determine values of r. Substituting the trial solution into the 
differential equation, we obtain

 2 0rt rt rtmr e bre ke+ + =  (5.3.3)

The factor ert cancels and we obtain the characteristic equation 

 2 0mr br k+ + =  (5.3.4)

whose solutions determine r

 
2 4

2

b b mk
r

m

− ± −
=  (5.3.5)

thus,

 
2 2

2
1 2

4 4
( ) exp exp

2 2

b
t

m
b mk b mk

x t e c t c t
m m

− ⎛ ⎞⎛ ⎞ ⎛ ⎞− −⎜ ⎟⎜ ⎟ ⎜ ⎟= + −⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
 (5.3.6)

where the constants c1 and c2 are determined by the initial conditions x(0), and 
(0).x If b2 > 4 mk the roots are real and we say that the motion is overdamped. If b2 < 

4 mk the motion is underdamped and if b2   4 mk the motion is critically damped. 
For undamped motion b  0. Below we compare undamped, overdamped, 
underdamped, and critically damped motion when x(0)  0. 



230 MATHEMATICAL METHODS FOR PHYSICS USING MATLAB AND MAPLE

5.3.2 Undamped Motion 

Example 5.3.1
Choosing b  0, m  1 and k  1 the square root 2 4 2b mk i− =  and 2r i= ±  thus 

 
2 2

1 2( ) it itx t c e c e−= +  (5.3.7)

We can also write x(t) in terms of circular functions using Euler’s formula

 1 2( ) cos(2 ) sin(2 ) cos(2 ) sin(2 )x t c t i t c t i t= + + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  (5.3.8)

Collecting cos(2t) and sin(2t) terms

 
1 2 1 2( ) ( )cos(2 ) ( )sin(2 )x t c c t i c c t= + + −  (5.3.9)

and defining new constants 1 2 1( )c c c+ →  and 1 2 2( )i c c c− →  (5.3.10)

 1 2( ) cos(2 ) sin(2 )x t c t c t= +  (5.3.11)

If x(0)  0 then c1  0 and

 2( ) sin(2 )x t c t=  (5.3.12)

where (0)x  is used to determine the constant c2. We could have chosen circular 
functions from the beginning as is often preferable when working with 
mechanical problems and bound state problems in quantum mechanics. Complex 
exponentials are often the functions of choice for wave motion and scattering 
problems. 

5.3.3 Overdamped Motion 

Example 5.3.2
For parameters m  1, b  3 and k  1 we have 2 4 5b mk− =  and r = 3/2 

5/2±  thus,

 
3 5 3 5

2 2
1 2( )

t t

x t c e c e
− + − −

= +  (5.3.13)

For x(0)  0 we have 0  c1 + c2  c2  c1. This gives

 ( )3 5 5 3

2 2 2 2
1 1

5
( ) sinh

2

t t t t

x t c e e e c e t
− − − ⎛ ⎞

= − = ⎜ ⎟
⎝ ⎠

 (5.3.14)

where we have absorbed a factor of two into c1. 
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5.3.4 Underdamped Motion 

Example 5.3.3
Choosing parameters m  1, b  1 and k  1 we have 2 4 3b mk i− =  and 

1/ 2 3 / 2r i= − ±  thus, 

 
1 3 1 3

2 2
1 2( )

i i
t t

x t c e c e
− + − −

= +  (5.3.15)

Taking x(0)  0 as before c2 c1 and

 ( )1 3 3 1

2 2 2 2
1 1

3
( ) sin

2

i i
t t t t

x t c e e e c e t
− − − ⎛ ⎞

= − = ⎜ ⎟
⎝ ⎠

 (5.3.16)

absorbing 2i into c1. 

5.3.5 Critically Damped Oscillator 

Example 5.3.4
For parameters m  1, b  2 and k  1 the square root 2 4 0b mk− =  and we have 
a repeated root r  1. For repeated roots the second exponential is multiplied by 
t to ensure linear independence

 
1 2( ) t tx t c e c te− −= +  (5.3.17)

Now the boundary condition x(0)  0 gives c1  0 and

 
2( ) tx t c te−=  (5.3.18)

5.3.6 Higher Order Differential Equations 
The characteristic equation for higher order differential equations of the form

 
1

1 1 01

( ) ( ) ( )
( ) 0

n n

n nn n

d x t d x t dx t
a a a a x t

dtdt dt

−

− −
+ + + + =  (5.3.19)

with constant coefficients an is obtained by substituting x(t)  ert as before

 
1

1 1 0 0n n
n na r a r a r a−

−+ + + =  (5.3.20)

Example 5.3.5
To solve the third order differential equation 

 ( ) ( ) ( ) ( ) 0x t x t x t x t+ + + =    (5.3.21)

we obtain the characteristic equation 
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 r3 + r2 + r + 1  0 (5.3.22)
that can be factored

 r2(r + 1) + (r + 1)  (r + 1)(r2 + 1)  0 (5.3.23)

so that r  1, i, i and

 1 2 3( ) t it itx t c e c e c e− −= + +  (5.3.24)

or using circular functions

 1 2 3

transient steady state

( ) cos( ) sin( )tx t c e c t c t−= + +  (5.3.25)

We can identify short duration (transient) behavior in the decaying exponential 
and long duration (steady state) behavior. The constants c1, c2 and c3 determined 
from x(0), (0)x  and (0)x  will have values depending on the choice of complex 
exponentials or circular functions. In either case, both solutions will be 
mathematically identical. Here we have three initial conditions. In general, the 
number of initial conditions will be the same as the order of the differential 
equation. 

Maple Examples
The characteristic polynomial is found for a homogeneous linear differential 
equation in the Maple worksheet below. Solutions to differential equations 
corresponding to underdamped, critically damped and overdamped oscillations 
are found and plotted together.  

Key Maple commands: diff , dsolve , eval , plot , rhs , simplify , solve , subs 

restart

Characteristic Polynomial

Deq:= diff(x(t), t$3) + diff(x(t), t$2) + diff(x(t), t) + x(t) = 0
3 2

3 2
: ( ) ( ) ( ) ( ) 0

d d d
Deq x t x t x t x t

dtdt dt
= + + + =

( )( )
( )

( ) exp ,
:

exp

subs x t r t Deq
charPoly simplify eval

r t

⎛ ⎞⎛ ⎞= ⋅
= ⎜ ⎟⎜ ⎟⎜ ⎟⋅⎝ ⎠⎝ ⎠

charPoly:  r3  r2  r  1  0

solve(charPoly, r)
1, I, 1

dsolve(Deq)

x(t)  _C1 et C2 sin(t)  _C3 cos(t)
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Damped Oscillations

Deq: mdiff(x(t), t$2) + bdiff(x(t), t) + kx(t)  0

2

2
: ( ) ( ) ( ) 0

d d
Deq m x t b x t kx t

dtdt

⎛ ⎞ ⎛ ⎞= + + =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

( )( )
( )

( ) exp ,
:

exp

subs x t r t Deq
charPoly simplify eval

r t

⎛ ⎞⎛ ⎞= ⋅
= ⎜ ⎟⎜ ⎟⎜ ⎟⋅⎝ ⎠⎝ ⎠

charPoly:  mr2  br  k = 0

solve(charPoly, r)

2 24 4
,

2 2

b b mk b b mk

m m

− + − + −
−

Underdamped

undDamp: subs({m  1, b  1, k  1}, Deq)

2

2
: ( ) ( ) ( ) 0

d d
undDamp x t x t x t

dtdt
= + + =

dsolve({undDamp, x(0)  1, D(x)(0) 0}, x(t));

2

2

3
3 sin

32( ) cos
3 2

t

t
t

e
t

x t e

−

−

⎛ ⎞
⎜ ⎟ ⎛ ⎞⎝ ⎠= + ⎜ ⎟

⎝ ⎠
xUnd: rhs(%)

2

2

3
3 sin

32: cos
3 2

t

t
t

e
t

xUnd e

−

−

⎛ ⎞
⎜ ⎟ ⎛ ⎞⎝ ⎠= + ⎜ ⎟

⎝ ⎠
Critically Damped

critDamp: subs({m  1, b  2, k  1}, Deq)

2

2
: ( ) 2 ( ) ( ) 0

d d
critDamp x t x t x t

dtdt

⎛ ⎞= + + =⎜ ⎟
⎝ ⎠

dsolve({critDamp, x(0)  1, D(x)(0) 0}, x(t));

x(t)  e-t  ett

xCrit: rhs(%)

xCrit  et  ett
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Overdamped

overDamp: subs({m  1, b  3, k  1}, Deq)

2

2
: ( ) 3 ( ) ( ) 0

d d
overDamp x t x t x t

dtdt

⎛ ⎞= + + =⎜ ⎟
⎝ ⎠

dsolve({overDamp, x(0)  1, D(x)(0) 0}, x(t));

( ) ( )5 3 3 5

2 2
1 3 5 1 3 5

( )
2 10 2 10

t t

x t e e
− +

−⎛ ⎞ ⎛ ⎞
= + + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

xOver: rhs(%)

( ) ( )5 3 3 5

2 2
1 3 5 1 3 5

:
2 10 2 10

t t

xO ver e e
− +

−⎛ ⎞ ⎛ ⎞
= + + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

plot([xUnd, xCrit, xOver], t  0 … 10, labels  [“t”, “x”], legend  [“Under damped”, 
“Critically damped”, “Over damped”], linestyle  [solid, dash, dashdot], title  
“Damped Oscillations”)

Damped Oscillations

Under damped    Critically damped

Over damped

2 4 6 8 10

0

1

0.2

0.6

0.4

0.8

Figure 5.3.1: Plot of the position vs. time of an oscillator that is underdamped (bottom curve), critically damped 
(middle curve), and overdamped (top curve). 
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5.4 LINEAR INDEPENDENCE 

The condition for linear independence of functions 1 2( ),  ( ),  ,  ( )ny x y x y x  is 

 1 1 2 2( )+ ( ) ( ) 0n nc y x c y x c y x+ + =
 (5.4.1)

only if the constants 1 20, 0,  ,  0.nc c c= = = If the equation above can be satisfied 
for any of the 1 nc c  not equal to zero, then the functions are linearly dependent.

5.4.1 Wronskian Determinant 
The Wronskian determinant 

 

( ) ( ) ( ) ( )

1 2

1 2

1 1 1 1

1 2 3

n

n

n n n n

n

y y y

y y y
W

y y y y
− − − −

′ ′ ′
=




   
 (5.4.2)

may be used to test for the linear independence of n functions. If W = 0 then y1...
yn are linearly dependent. If W  0 then the functions are linearly independent. 

Example 5.4.1
Determine if the functions y1(x) = 3cos(x), y2(x)  2sin(x) are linearly dependent 
or linearly independent

Solution: We evaluate the determinant

 ( )1 2 2 2

1 2

3cos( ) 2sin( )
6 cos ( ) sin ( ) 6

3sin( ) 2cos( )

y y x x
W x x

y y x x
= = = + =

′ ′ −
 (5.4.3)

Thus W  0 and y1, y2 are linearly independent.

Maple Examples
The Wronskian determinant is used to test for the linear independence or linear 
dependence of sets of functions in the Maple worksheet below.  

Key Maple commands: Wronskian 

Maple packages: with(VectorCalculus ):

restart
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Wronskian Determinant: Linearly Independent Functions

with(VectorCalculus) :

Wronskian([cosh(t), sin(t), t]),t)

cosh( ) sin( )

sinh( ) cos( ) 1

cosh( ) sin( ) 0

t t t

t t

t t

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

1
2 , , , ' 'W ronskian x x determinant

x

⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

2

1
2

4
,

1
2

x
x

x

x

⎡ ⎤
⎢ ⎥

−⎢ ⎥
⎢ ⎥−
⎢ ⎥⎣ ⎦

Wronskian([t, t2, t3,t4,t5]),t, ‘determinant’)

2 3 4 5

2 3 4

52 3

2

1 2 3 4 5

,2880 2 6 12 20

0 0 6 24 60

0 0 0 24 120

t t t t t

t t t t

tt t t

t t

t

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Wronskian Determinant: Linearly Dependent Functions

Wronskian([exp(x), exp(x), cosh(x)], x, ‘determinant’)

cosh( )

sinh( ) ,0

cosh( )

x x

x x

x x

e e x

e e x

e e x

−

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Wronskian([exp(Ix), exp(-Ix), 2cos(x) + 3sin(x)],x, ‘determinant’)

 

2cos( ) 3sin( )

2sin( ) 3cos( ) ,0

2cos( ) 3sin( )

Ix Ix

x Ix

Ix Ix

e e x x

Ie Ie x x

e e x x

−

−

−

⎡ ⎤+
⎢ ⎥

− − +⎢ ⎥
⎢ ⎥− − − −⎣ ⎦
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Wronskian([t, 2t, t3,t4]),t, ‘determinant’)

 

3 4

2 3

2

2

1 2 3 4
,0

0 0 6 12

0 0 6 24

t t t t

t t

t t

t

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

5.5 INHOMOGENEOUS WITH CONSTANT 
COEFFICIENTS

In this section, examples of linear, second order, inhomogeneous differential 
equations  with constant coefficients are given. Such second order equations can 
model damped harmonic oscillators with driving . 

Example 5.5.1
Find a solution to the inhomogeneous equation 

2 sinx x x t+ + =   (5.5.1)

Solution: The procedure is to first find a solution to the homogeneous equation

 2 0x x x+ + =   (5.5.2)

The characteristic equation

 r2 + 2r + 1  0 (5.5.3)

factors 

 (r + 1)(r + 1)  0 (5.5.4)

with repeated roots r  –1

 1 2( ) t t
cx t c e c te− −= +  (5.5.5)

where the solution to the homogeneous equation xc is known as the 
complementary solution. Next, we guess the form of the particular solution xp to 
the inhomogeneous equation 

 ( ) sin cospx t A t B t= +  (5.5.6)

and our job is to find A and B such that

 2 sinp p px x x t+ + =   (5.5.7)

Taking first and second derivatives of (5.5.6)

 ( ) cos sinpx t A t B t= −  (5.5.8)

 ( ) sin cospx t A t B t= − −  (5.5.9)
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and substituting into the differential equation 

 
2 2 cos 2 sinp p px x x A t B t+ + = − 

 (5.5.10)

Since the right-hand side of (5.5.10) should be equal to sin t we have A = 0 and 
B = –1/2.

Combining our complementary and particular solutions

 
1 2

1
( ) ( ) ( ) cos

2
t t

c px t x t x t c e c te t− −= + = + −  (5.5.11)

Example 5.5.2
Solve the inhomogeneous differential equation 

 23 2x x t+ = +  (5.5.12)

Solution: To find the complementary solution  we solve the homogeneous 
equation 

 0x x+ =  (5.5.13)

with characteristic equation 

 r2 + 1  0 (5.5.14)
that factors
 (r + i)(r  i)  0 (5.5.15)
with roots r  i. Thus, our complementary solution is

 1 2( ) it it
cx t c e c e−= +  (5.5.16)

Next we guess the form of the particular solution 

 
2( )px t A Bt Ct= + +  (5.5.17)

Differentiating (5.5.17) twice

 ( ) 2px t B Ct= +  (5.5.18)

 ( ) 2px t C=  (5.5.19)

and substituting we have

 
22p px x C A Bt Ct+ = + + +  (5.5.20)

Requiring that

 2 22 3 2C A Bt Ct t+ + + = +  (5.5.21)

gives C  2, B  0, 2C + A  3  A  1.
Now we have that 

 
2

1 2( ) ( ) ( ) 2 1it it
c px t x t x t c e c e t−= + = + + −  (5.5.22)

or in terms of circular functions

 2
1 2( ) sin cos 2 1x t c t c t t= + + −  (5.5.23)
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Maple Examples
Second order inhomogeneous linear differential equations are solved in the Maple 
worksheet below. Solutions to differential equations corresponding to driven 
underdamped, critically damped, and overdamped oscillations are found and 
plotted together. The oscillator response to step and impulse driving functions 
is calculated and plotted. Resonance curves are computed for three different 
damping factors. 

Key Maple commands: coeff , convert , diff , dsolve , expand , rhs , plot , solve , subs 

Special functions: Heaviside 

restart

Second Order Inhomogeneous Differential Equations

Deq: diff(x(t), t$2) + x(t)  0.5*cos(0.8*t);

2

2
: ( ) ( ) 0.5cos(0.8 )

d
Deq x t x t t

dt
= + =

dsolve(Deq, x(0)  0, D(x)(0)  0}, x(t));

4
25cos

25cos( ) 5( )
18 18

t

t
x t

⎛ ⎞
⎜ ⎟
⎝ ⎠= − +

Damped Driven Oscillations

Deq: mdiff(x(t), t$2) + bdiff(x(t), t) + k(x(t)  Asin(2t);

2

2
: ( ) ( ) ( ) sin(2 )

d d
Deq m x t b x t kx t A t

dtdt

⎛ ⎞ ⎛ ⎞= + + =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

Underdamped Driven Oscillations

undDamp: subs({m  1, b  1, k  1, A  1}, Deq)

2

2
: ( ) ( ) ( ) sin(2 )

d d
undDamp x t x t x t t

dtdt
= + + =

dsolve({undDamp, x(0)  0, D(x)(0) 0}, x(t));

2 2
3 3

14 3 sin 2 cos
2cos(2 ) 3sin(2 )2 2( )

39 13 13 13

t t
t t

e e
t t

x t

− −⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠= + − −
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xUnd: rhs(%)

2 2
3 3

14 3 sin 2 cos
2cos(2 ) 3sin(2 )2 2:

39 13 13 13

t t
t t

e e
t t

xUnd

− −⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠= + − −

Critically Damped Driven Oscillations

critDamp: subs({m  1, b  2, k  1, A  1}, Deq)

2

2
: ( ) 2 ( ) ( ) sin(2 )

d d
critDamp x t x t x t t

dtdt

⎛ ⎞= + + =⎜ ⎟
⎝ ⎠

dsolve({critDamp, x(0)  1, D(x)(0) 0}, x(t));

4 2 4cos(2 ) 3sin(2 )
( )

25 5 25 25

t te e t t t
x t

− −

= + − −

xCrit: rhs(%)

4 2 4cos(2 ) 3sin(2 )

25 5 25 25

t te e t t t
xCrit

− −

= + − −

Overdamped Driven Oscillations

overDamp: subs({m  1, b  3, k  1, A  1}, Deq)

2

2
: ( ) 3 ( ) ( ) sin(2 )

d d
overDamp x t x t x t t

dtdt

⎛ ⎞= + + =⎜ ⎟
⎝ ⎠

dsolve({overDamp, x(0)  0, D(x)(0) 0}, x(t));

( ) ( )5 3 3 5

2 2
1 5 1 5 2cos(2 ) sin(2 )

( )
15 15 15 15 15 15

t t
t t

x t e e
− +

−⎛ ⎞ ⎛ ⎞
= + + − − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
xOver: rhs(%)

( ) ( )5 3 3 5

2 2
1 5 1 5 2cos(2 ) sin(2 )

:
15 15 15 15 15 15

t t
t t

xO ver e e
− +

−⎛ ⎞ ⎛ ⎞
= + + − − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

Plot( [xUnd, xCrit, xOver], t  0 … 20, labels  [“t”, “x(t)”], legend  
[“Under damped”, “Critically damped”, “Over damped”], linestyle  
[solid, dash, dot], title  “Damped Driven Oscillations”)
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Damped Driven Oscillations

Under damped

Critically damped
Over damped

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0.4

x(t)

5 10 2015

Figure 5.5.1: Plot of the position vs. time of a driven oscillator that is underdamped 
(large amplitude), critically damped (medium amplitude), and overdamped (small amplitude). 

Response to a Step Function

HeaviDeq: mdiff(x(t), t$2) + bdiff(x(t), t) + kx(t)  AHeaviside(t);

 
2

2
: ( ) ( ) ( ) ( )

d d
HeaviDeq m x t b x t kx t AHeaviside t

dtdt

⎛ ⎞ ⎛ ⎞= + + =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

Heq: subs({m  1, b  1, k  1, A  1}, HeaviDeq)

 
2

2
: ( ) ( ) ( ) ( )

d d
Heq x t x t x t Heaviside t

dtdt
= + + =

dsolve({Heq, x(0)  0, D(x)(0) 0}, x(t));

 
2 2

3 3
( ) 3 sin 3 cos 3

2 2
( )

3

t t
t t

Heaviside t e e

x t

− −⎛ ⎞⎛ ⎞ ⎛ ⎞
+ −⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠= −

plot([rhs(%)], t  -2 … 10, labels  [“t”, “x(t)”])
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–2 0 2 4 6 8 10

1
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Figure 5.5.2: Plot of the position vs. time of a damped oscillator in response to a step function. 

Response to an Impulse Function
ImpulseDeq: mdiff(x(t), t$2) + bdiff(x(t), t) + kx(t)  A(Heaviside(t)  
Heaviside(t – 1));

( )

2

2
: ( ) ( ) ( )

( ) ( 1)

d d
ImpulseDeq m x t b x t kx t

dtdt

A Heaviside t Heaviside t

⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

= − −

Ieq: subs({m  1, b  1, k  1, A  1}, ImpulseDeq)

( )
2

2
: ( ) ( ) ( ) ( ) 1

d d
Ieq x t x t x t Heaviside t Heaviside t

dtdt
= + + = − −

dsolve({Ieq, x(0)  0, D(x)(0) 0}, x(t));

( )

( ) ( )

( ) ( )

2

1

2 2

1

2 2 2

3
3 sin ( )

2( ) ( ) 1
3

3 1
3 1 sin

2
3

3 1 3
1 cos cos ( )

2 2

t

t

t t

t
e Heaviside t

x t Heaviside t Heaviside t

t
Heaviside t e

t t
Heaviside t e e Heaviside t

−

− +

− + −

⎛ ⎞
⎜ ⎟
⎝ ⎠= − − −

⎛ ⎞−
− ⎜ ⎟

⎝ ⎠+

⎛ ⎞ ⎛ ⎞−
+ − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
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plot([rhs(%), A(Heaviside(t) – Heaviside(t – 1))], t  -2 … 15, labels  [“t”, 
“x(t)”])

0.1

0.3

0.5

0.4

0.2

x(t)

–2 0 2 4 6 8 10

t

12 14

Figure 5.5.3: Plot of the position vs. time of a damped oscillator in response to an impulse function. 

Resonance Curves

Eqn: mdiff(y(t), t, t) + betadiff(y(t), t) + ky(t)  sin(omegat)
2

2
: ( ) ( ) ( ) sin( )

d d
HeaviDeq m y t y t ky t t

dtdt
 

⎛ ⎞ ⎛ ⎞= + + =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

sol:  dsolve(Eqn)

 

( ) ( )

( ) ( ) ( )

( )

2 24 4

2 2

2

2 4 2 2 2

: ( ) _ _

sin cos

2

km t km t

m msol y t e C 2 + e C1

m k t t
+

m km k

   

   

  

− + − + −
−

= =

− + −

+ − +

( ) ( ) ( )

( )
2

2 4 2 2 2

sin cos
:

2

m k t t
steadyState

m km k

   

  

− + −
=

+ − +

 

( ) ( ) ( )

( )
2

2 4 2 2 2

sin cos
:

2

m k t t
steadyState

m km k

   

  

− + −
=

+ − +

sinCos:  Aexpand(cos(omegat – delta))
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sinCos:  A(cos(wt) cos() + sin(wt) sin())

sinEqn:  coeff(sinCos, sin(omegat))  coeff(steadyState, sin(omegat))

( )
2

2 4 2 2 2
sin : sin( )

2

m k
Eqn A

m km k




  

− +
= =

+ − +

cosEqn:  coeff(sinCos, cos(omegat))  coeff(steadyState, cos(omegat))

( )2 4 2 2 2
cos : cos( )

2
Eqn A

m km k




  
= = −

+ − +

Solve({sinEqn, cosEqn}, {A, delta}):
convert(%[1], radical)

 2 4 2 2 2 2

1

2
A

m km k   
=

+ − +

( )
2 4 2 2 2 2

1
: , , beta,omega

2
A m k

m km k   
= →

+ − +

 ( )
2 4 2 2 2 2

1
: , , ,

2
A m k

m km k
 

   
= →

+ − +

Plot( [A(1, 1, .7, omega), A(1, 1, 0.5, omega), A(1, 1, 0.2, omega)], omega  0 … 2, 
labels  [“”, “A()”], legend  [“beta  1”, “beta  0.5”, “beta  0.2”], 
linestyle  [solid, dash, dashdot], title  “Resonance Curves”)

Resonance Curves

1.5

3

0.5

4

2

0 21

5

A(ω)

1

(ω)

Beta = 1

Beta = 0.5

Beta = 0.2

Figure 5.5.4: Plot of amplitude vs. frequency of an oscillator with large damping (bottom curve), medium 
damping (middle curve), and small damping (top curve). 
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5.6 POWER SERIES SOLUTIONS TO 
DIFFERENTIAL SOLUTIONS 

Power series solutions to second order differential equations in standard form are 
covered in this section. Singular points are discussed. Examples include power 
series solutions to Airy’s, Hermite’s, Bessel’s and Legendre’s differential equations.   

5.6.1 Standard Form 
The differential equation 

 ( ) ( ) ( )
2

2
0

d y dy
f x g x h x y

dxdx
+ + =  (5.6.1)

is written in standard form by dividing by the coefficient of y

 ( ) ( )
2

2
0

d y dy
P x Q x y

dxdx
+ + =  (5.6.2)

Ordinary points  are at locations where P(x) and Q(x) are analytic. P(x) and Q(x) 
are not analytic at singular points. Polynomial functions are analytic for all x while 
rational functions are analytic except where the denominator is zero. 

Example 5.6.1
x  0 is an ordinary point of the differential equation  

 
2

2

2
0

d y dy
x xy

dxdx
+ + =  (5.6.3)

since x2 and x are analytic at x  0. 
A power series solution may be found to the standard form of a differential 

equation centered on an ordinary point.

5.6.2 Airy’s Differential Equation 

Example 5.6.2
The differential equation 

 
2

2
0

d y
xy

dx
+ =  (5.6.4)

is in standard form with P(x)  0 and Q(x)  x. Assume a power series solution of 
the form
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0

( ) n
n

n

y x a x
∞

=

= ∑  (5.6.5)

to find the coefficients an 

Solution: We take derivatives of y(x) 

 
1

0

( ) n
n

n

y x a nx
∞

−

=

′ =∑  (5.6.6)

 
2

0

( ) ( 1) n
n

n

y x a n n x
∞

−

=

′′ = −∑  (5.6.7)

and substitute expansions of y(x) and y(x) into the differential equation 

 2 1

0 0

( 1) 0n n
n n

n n

a n n x a x
∞ ∞

− +

= =

− + =∑ ∑  (5.6.8)

Shifting the index of the second sum

 
2 2

3
0 3

( 1) 0n n
n n

n n

a n n x a x
∞ ∞

− −
−

= =

− + =∑ ∑  (5.6.9)

The first and second terms of the first sum are zero. We can combine the sums 
beginning from n  3

 ( )( ) 2
2 3

3

2 1 0n
n n

n

a a n n a x
∞

−
−

=

+ − + =∑  (5.6.10)

The coefficient of each power of x must be zero so that a2  0 and 

 ( ) 31 0n na n n a −− + =  (5.6.11)

We thus obtain the recursion relation 

 
( )

3

1
n

n

a
a

n n
−= −
−

 (5.6.12)

Starting from n  3

 0
3

3 2

a
a = −

⋅

 1
4

4 3

a
a = −

⋅

 2
5 0

5 4

a
a = − =

⋅
 since a2  0
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 3 0
6

6 5 6 5 3 2

a a
a = − =

⋅ ⋅ ⋅ ⋅

 
4 1

7
7 6 7 6 4 3

a a
a = − =

⋅ ⋅ ⋅ ⋅

 5
8 0

8 7

a
a = − =

⋅
 since a5  0

 6 0
9

9 8 9 8 6 5 3 2

a a
a = − = −

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

7 1
10

10 9 10 9 7 6 4 3

a a
a = − = −

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
Our series solution 

 3 4 6 7 9 10
0 1 3 4 6 7 9 10( ) 0 0 0y x a a x a x a x a x a x a x a x= + + + + + + + + + + +  (5.6.13)

becomes

 

3 4 6 70 01 1
0 1

9 100 1

( )
3 2 4 3 6 5 3 2 7 6 4 3

                         
9 8 6 5 3 2 10 9 7 6 4 3

a aa a
y x a a x x x x x

a a
x x

= + − − + +
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

− − +
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅


 (5.6.14)

The general solution can now be expressed as

 0 1 1 2( ) ( ) ( )y x a y x a y x= +  (5.6.15)

with constants a0 and a1 to be determined from initial conditions and 

   3 6 9
1

1 1 1
( ) 1

3 2 6 5 3 2 9 8 6 5 3 2
y x x x x= − + − +

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
  (5.6.16)

 4 7 10
2

1 1 1
( )

4 3 7 6 4 3 10 9 7 6 4 3
y x x x x x= − + − +

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
  (5.6.17)

5.6.3 Hermite’s Differential Equation 

Example 5.6.3
The differential equation

 
2

2
2 2 0

d y dy
x y

dxdx
− + =  (5.6.18)

has application in the solution of the quantum harmonic oscillator. Proceed with 
a power series solution where

 
0

n
n

n

y a x
∞

=

=∑  (5.6.19)
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to find a recursion relation for the coefficients an 

Solution: Taking derivatives 

 
1

0

n
n

n

y na x
∞

−

=

′ =∑  (5.6.20)

 
( ) 2

0

1 n
n

n

y n n a x
∞

−

=

′′ = −∑
 (5.6.21)

Substituting back into the original differential equation 

 ( ) 2

0 0 0

1 2 2 0n n n
n n n

n n n

n n a x na x a x
∞ ∞ ∞

−

= = =

− − + =∑ ∑ ∑  (5.6.22)

Shifting the index of the first term n  n + 2

 ( )( ) 2
2 0 0

2 1 2 2 0n n n
n n n

n n n

n n a x na x a x
∞ ∞ ∞

+
=− = =

+ + − + =∑ ∑ ∑  (5.6.23)

The n  –2 and n  –1 terms of the first sum are zero so we can combine terms

  ( )( ) 2
0

2 1 2 2 0n
n n n

n

n n a na a x
∞

+
=

⎡ ⎤+ + − + =⎣ ⎦∑  (5.6.24)

and

 ( )( ) 22 1 2 2 0n n nn n a na a++ + − + =  (5.6.25)

for all xn giving the recursion relation

 
( )

( )( )2

2

2 1
n n

n
a a

n n


+

−
=

+ +  (5.6.26)

5.6.4 Singular Points 
A differential equation in standard form possesses singular points where either 
P(x) or Q(x) are nonanalytic. A singular point is regular if (x – x0)P(x) and 
(x x0)2Q(x) and are analytic. The Frobenius theorem  states that at least on e 
solution of the form

 ( )0
0

m k

m

m

y a x x
∞

+

=

= −∑  (5.6.27)

exists if x  x0 is a regular singular point.
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5.6.5 Bessel’s Differential Equation 

Example 5.6.4
Find a recurrence relation for the coefficients in the series solution to Bessel’s 
differential equation 

 
2

2 2 2

2
( ) 0

d y dy
x x x n y

dxdx
+ + − =  (5.6.28)

about x  0. 

Solution: In standard form

 

2 2

2 2

1
1 0

d y dy n
y

x dxdx x

⎛ ⎞
+ + − =⎜ ⎟

⎝ ⎠
 (5.6.29)

we see that x0  0 is a singular point

 ( )0

1
( ) 1  analyticx x P x x

x
− = = →  (5.6.30)

 2 2 2
0( ) ( )  analyticx x Q x x n− = − →  (5.6.31)

so we seek a power series solution of the form

 
0

m k
m

m

y a x
∞

+

=

=∑  (5.6.32)

Evaluating derivatives

 
1

0

( ) m k
m

m

y a m k x
∞

+ −

=

′ = +∑  (5.6.33)

 
2

0

( )( 1) m k
m

m

y a m k m k x
∞

+ −

=

′′ = + + −∑  (5.6.34)

and substituting into the differential equation 

2 2 1 2 2

0 0 0

( )( 1) ( ) ( ) 0m k m k m k
m m m

m m m

x a m k m k x x a m k x x n a x
∞ ∞ ∞

+ − + − +

= = =

+ + − + + + − =∑ ∑ ∑
 (5.6.35)

2 2

0 0 0 0

( )( 1) ( ) 0m k m k m k m k
m m m m

m m m m

a m k m k x a m k x a x n a x
∞ ∞ ∞ ∞

+ + + + +

= = = =

+ + − + + + − =∑ ∑ ∑ ∑
 (5.6.36)
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Combining sums containing xmk 

 ( )( ) ( ) 2 2

0 0

1 0m k m k
m m

m m

a m k m k m k n x a x
∞ ∞

+ + +

= =

⎡ ⎤+ + − + + − + =⎣ ⎦∑ ∑  (5.6.37)

Simplifying the first sum and shifting the index of the second sum

 2 2
2

0 2

( ) 0m k m k
m m

m m

a m k n x a x
∞ ∞

+ +
−

= =

⎡ ⎤+ − + =⎣ ⎦∑ ∑  (5.6.38)

Combining the sums

( )2 2 2 2 1 2 2
0 1 2

2

( ) (1 ) ( ) 0k k m k
m m

m

a k n x a k n x a m k n a x
∞

+ +
−

=

⎡ ⎤ ⎡ ⎤− + + − + + − + =⎣ ⎦⎣ ⎦ ∑
 (5.6.39)

The coefficient of each power of x must be zero so

 2 2
0( ) 0a k n− =  (5.6.40)

If k  n then a1  0 for

 2 2
1 (1 ) 0a k n⎡ ⎤+ − =⎣ ⎦

 (5.6.41)

and

 ( )2 2
2 0m ma m n n a −

⎡ ⎤+ − + =
⎣ ⎦

 (5.6.42)

Our recursion relation for m  2 is

 ( )
2

2
m

m

a
a

n m m
−= −

+  (5.6.43)

Starting from m  2

 ( )
0

2
2 2 2

a
a

n
= −

+

 
( )

1
3 0

2 3 3

a
a

n
= − =

+
 since a1  0.

Thus, all odd coefficients are zero. Now

 

02
4

0 04
6 6

(2 4)4 (2 4)(2 2)4 2

(2 6)6 (2 6)(2 4)(2 2)6 4 2 2 ( 3)( 2)( 1)3 2 1

aa
a

n n n

a aa
a

n n n n n n n

= − =
+ + + ⋅

= − = − = −
+ + + + ⋅ ⋅ + + + ⋅ ⋅
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and our even coefficients are 

 
( ) /2

0

1

2 ! ( 2)( 1)
2 2

m

m
m

a a
m m

n n n

−
=

⎡ ⎤⎛ ⎞ ⎛ ⎞+ + +⎜ ⎟ ⎜ ⎟⎢ ⎥
⎝ ⎠ ⎝ ⎠⎣ ⎦


 (5.6.44)

5.6.6 Legendre’s Differential Equation 

Example 5.6.5
Find a recurrence relation  for the coefficients in the series solution to Legendre’s 
differential equation 

 
2

2

2
(1 ) 2 ( 1) 0

d y dy
x x y

dxdx
− − + + =   (5.6.45)

about x  0 and obtain an expression for the general solution. 

Solution: Writing the differential equation in standard form

 
2

2 2 2

2 ( 1)
0

(1 ) (1 )

d y dyx
y

dxdx x x

+
− + =

− −
   (5.6.46)

we find x  0 is an ordinary point so we seek a series solution of the form

 
0

m
m

m

y a x
∞

=

=∑  (5.6.47)

Taking derivatives 

 
1

0

m
m

m

y a mx
∞

−

=

′ =∑  (5.6.48)

 2

0

( 1) m
m

m

y a m m x
∞

−

=

′′ = −∑  (5.6.49)

and substituting into the differential equation 

2
2 0 0 0

( 2)( 1) ( 1) 2 ( 1) 0m m m m
m m m m

m m m m

a m m x a m m x a mx a x
∞ ∞ ∞ ∞

+
=− = = =

+ + − − − + + =∑ ∑ ∑ ∑ 
.

 (5.6.50)

Since the first two terms of the first sum are zero we can combine all the sums

 2
0

( 2)( 1) ( 1) 2 ( 1) 0m
m m

m

a m m a m m m x
∞

+
=

⎡ ⎤+ + − − + − + =⎡ ⎤⎣ ⎦⎣ ⎦∑    (5.6.51)

                          
2( 2)( 1) ( 1) ( 1) 0m ma m m a m m+ + + − + − + =⎡ ⎤⎣ ⎦   (5.6.52)



252 MATHEMATICAL METHODS FOR PHYSICS USING MATLAB AND MAPLE

 2

( 1) ( 1)

( 2)( 1)
m m

m m
a a

m m
+

+ − +
=

+ +
 

 (5.6.53)

 2 0

( 1)

2 1
a a

+
= −

⋅
 

 3 1

1 2 ( 1)

3 2
a a

⋅ − +
=

⋅
 

 4 2 0

2 3 ( 1) 2 3 ( 1) ( 1)

4 3 4 3 2 1
a a a

⋅ − + ⋅ − + +
= = −

⋅ ⋅ ⋅
     

 
5 3 1

4 3 ( 1) 4 3 ( 1) 1 2 ( 1)

5 4 5 4 3 2
a a a

⋅ − + ⋅ − + ⋅ − +
= =

⋅ ⋅ ⋅
     

Thus,

 0 1 1 2( ) ( ) ( )y x a y x a y x= +  (5.6.54)

with constants a0 and a1 to be determined from initial conditions and

 2 4
1

( 1) 2 3 ( 1) ( 1)
( ) 1

2 1 4 3 2 1
y x x x

+ ⋅ − + +
= − − +

⋅ ⋅ ⋅
        (5.6.55)

 3 5
2

1 2 ( 1) 4 3 ( 1) 1 2 ( 1)
( )

3 2 5 4 3 2
y x x x x

⋅ − + ⋅ − + ⋅ − +
= + + +

⋅ ⋅ ⋅
        (5.6.56)

Maple Examples
Power series solutions to differential equations are demonstrated in the Maple 
worksheet below. Examples include Legendre’s, Laguerre’s, and Hermite’s 
differential equations. Truncated series and exact solutions are compared.

Key Maple commands: convert , D , diff , dsolve , rhs 

restart

Truncated Series Solutions to ODEs

Deq:= diff(y(t), t, t) – 2ty(t) = 0

2

2
: ( ) 2 ( ) 0

d
Deq y t ty t

dt
= − =

dsolve(Deq, y(t), ‘type  series’)

3 4 61 1
( ) (0) ( )(0) (0) ( )(0) ( )

3 6
y t y D y t y t D y t O t= + + + +
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Formal Series Solutions to ODEs

dsolve(Deq, y(t), ‘type  formal_series’)

( )

( )

_
3_

_ 0

_
3_ 1

_ 0

2
2 9( ) _ 1 , ( )

23
_ 1 _

3

2

92 _ 1 3
4

_ _ 1
3

2
9

3

n

n

n

n

n

n

t

y t C y t

n n

t

C

n n



∞

=

+
∞

=

⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎛ ⎞ ⎝ ⎠⎜ ⎟= Γ⎜ ⎟⎜ ⎟⎝ ⎠ ⎛ ⎞Γ + Γ +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟

⎝ ⎠⎜ ⎟
⎜ ⎟⎛ ⎞Γ + Γ +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠=

⎛ ⎞Γ⎜ ⎟
⎝ ⎠

∑

∑

Legendre’s Differential Equation

LegEqn: (1 – x2)diff(y(x), x, x)  2xdiff(y(x), x) + (nu(nu + 1))y(x) 0

( )
2

2

2
: ( 1) ( ) 2 ( ) 1 ( ) 0

d d
LegEqn x y x x y x y x

dxdx
 

⎛ ⎞ ⎛ ⎞= − + − + + =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

dsolve(LegEqn, y(x), ‘type  formal_series’)

( )( )
( ) ( )( )

( )

( )( )
( ) ( )( )

( )

_
_

2
_ 0

_
_

2
_ 0

1
_ 1 _ 1

2_ 1sin 1
_ 1

( ) , ( )

1
_ 1 _ 1

2_ 1sin 1
_ 1

n
n

n

n
n

n

n n x

C
n

y x y x

n n x

C
n

 
 



 
 



∞

=

∞

=

⎛ ⎞⎛ ⎞− Γ + + Γ − −⎜ ⎟⎜ ⎟
⎝ ⎠⎜ ⎟+ ⎜ ⎟Γ +⎝ ⎠=

⎛ ⎞⎛ ⎞ Γ + + Γ − +⎜ ⎟⎜ ⎟
⎝ ⎠⎜ ⎟+ ⎜ ⎟Γ +⎝ ⎠=

∑

∑

Laguerre’s Differential Equation

LagEqn: xdiff(y(x), x, x) + (1 – x)diff(y(x), x) + ny(x) 0

( )
2

2
: ( ) 1 ( ) ( ) 0

d d
LagEqn y x x x y x ny x

dxdx

⎛ ⎞ ⎛ ⎞= + − + + =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠
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dsolve(LagEqn, y(x), ‘type  formal_series’)

( )
( )

( )

_

2
_ 0

_ _
_ 1

_ 1
( )

n

n

n n x
C

n
y x

n

∞

=

⎛ ⎞Γ +
⎜ ⎟⎜ ⎟Γ +⎝ ⎠=

Γ −

∑

Hermite’s Differential Equation

HermEqn: diff(y(x), x, x) – 2xdiff(y(x), x) + 2 my(x) 0

2

2
: ( ) 2 ( ) 2 ( ) 0

d d
HermEqn y x x y x my x

dxdx

⎛ ⎞= − + =⎜ ⎟
⎝ ⎠

dsolve(HermEqn, y(x), ‘type  formal_series’)

( )

( )

_ 2 _

_ 0

_ 2 _ 1

_ 0

_ 4
2_ 1

2 _ 1
( ) , ( )

2

1
_ 4

2 2_ 1
2 _ 2

1

2 2

n n

n

n n

n

m
n x

C
n

y x y x
m

m
n x

C
n

m

∞

=

+
∞

=

⎛ ⎞⎛ ⎞Γ −⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟⎜ ⎟Γ +⎝ ⎠=
⎛ ⎞Γ −⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞Γ + −⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟⎜ ⎟Γ +⎝ ⎠=
⎛ ⎞Γ − +⎜ ⎟
⎝ ⎠

∑

∑

Comparing Truncated Series

deq1: diff(y(t), t, t)  2ty(t) + sin(t)

2

2
1: ( ) 2 ( ) sin( )

d
deq y t ty t t

dt
= = +

dsolve({deq1, y(0)  0, D(y)(0)  0})

( ) ( ) ( )

( ) ( ) ( )

2/3 1/3 1/3

0

1/3 1/3

0

1
( ) 2 AiryAi 2 AiryBi 2 _ sin _ _

2

AiryBi 2 AiryAi 2 _ sin _ _

t

t

y t t zl zl d zl

t zl zl d zl


⎛ ⎛ ⎛ ⎞
⎜ ⎜= − ⎜ ⎟⎜ ⎟⎜⎜ ⎝ ⎠⎝⎝

⎞⎞⎛ ⎞
⎟⎟− ⎜ ⎟⎜ ⎟⎟⎟⎝ ⎠⎠⎠

∫

∫

exactSol: rhs(%):
dsolve({deq1, y(0)  0, D(y)(0)  0}, y(t), ‘type  series’)
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3 5 61 1
( ) ( )

6 120
y t t t O t= − +

serSol1: convert(rhs(%), polynom)

3 51 1
1:

6 120
serSol t t= −

Order:  10:
dsolve({deq1, y(0)  0, D(y)(0)  0}, y(t), ‘type  series’)

3 5 6 7 8 9 101 1 1 1 1 37
( ) ( )

6 120 90 5040 3360 120960
y t t t t t t t O t= − + + − + +

serSol2: convert(rhs(%), polynom)

3 5 6 7 8 91 1 1 1 1 37
2 :

6 120 90 5040 3360 120960
serSol t t t t t t= − + + − +

Plot( [exactSol, serSol1, serSol2], t  0 … 3, labels  [“t”, “y(t)”], legend  [“Exact 
Solution”, “2 Terms in Series”, “5 Terms in Series”], linestyle  [solid, dot, 
dash], title  “Comparing Exact Solution and Truncated Series”)

Comparing Exact Solution and Truncated Series

t

0 21

y(t)

2 Terms in Series

Exact Solution

0
3

1

2

3

4

5

6

5 Terms in Series

Figure 5.6.1: Comparison of exact and truncated power series solutions to a differential equation.
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5.7 SYSTEMS OF DIFFERENTIAL EQUATIONS

Homogeneous and inhomogeneous systems of differential equations are discussed 
in this section. Topics include solution vectors, tests for linear independence, the 
general solution of homogeneous systems, and expressing higher order differential 
equations as first order systems. The differential equations describing the motion 
of a charged particle in crossed electric and magnetic fields are developed. 

5.7.1 Homogeneous Systems
The homogeneous system of first order differential equations 

 

1 11 1 12 2 1

2 21 1 22 2 2

1 1 2 2

                     

n n

n n

n n n nn n

x a x a x a x

x a x a x a x

x a x a x a x

= + + +
= + + +

= + + +

 
 
  
 

 (5.7.1)

may be written in matrix form
 =X AX  (5.7.2)
where 

 

1 11 12 1 1

2 21 22 2 2

1 2

, , and

n

n

n n n nn n

x a a a x

x a a a x

x a a a x

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

X A X

 
 
     
 

 (5.7.3)

so that

 

1 11 12 1 1

2 21 22 2 2

1 2

n

n

n n n nn n

x a a a x

x a a a x

x a a a x

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟=⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

 
 
     
 

 (5.7.4)

Example 5.7.1
Write the homogeneous system below in matrix form

 
x y

y x z

z z

=
= −
=





 (5.7.5)
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Solution: Identifying

 

0 1 0

, 1 0 1 and

0 0 1

x x

y y

z z

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟

= = − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

X A X


 


 (5.7.6)

so that

 

0 1 0

1 0 1

0 0 1

x x

y y

z z

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟

= −⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠





 (5.7.7)

5.7.2 Inhomogeneous Systems
Inhomogeneous systems are of the form

 = +X AX F  where 

( )
( )

( )

1

2

n

f t

f t

x f

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

F


 (5.7.8)

Example 5.7.2
We write the following system of inhomogeneous equations

 
3

2

x y x t

y x y t

= − +
= + +


  (5.7.9)

in matrix form.

Solution:  
1 1 3

2 1

x x t

y y t

−⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠




 (5.7.10)

5.7.3 Solution Vectors

A vector ( )

( )
( )

( )

1

2

n

x t

x t
t

x t

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

X


 that satisfies = +X AX F  is called a solution vector.
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If the vectors ( )

( )
( )

( )

11

21
1

1n

x t

x t
t

x t

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

X
  ( )

( )
( )

( )

12

22
2

2n

x t

x t
t

x t

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

X
  … ( )

( )
( )

( )

1

2

n

n
n

nn

x t

x t
t

x t

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

X
  are 

solution vectors, then ( ) ( ) ( ) ( )1 1 2 2 n nt c t c t c t= + + +X X X X  is also a solution 

to the system of ODEs for any constants 1 2,  , , nc c c  by the principle of 
superposition. 

5.7.4 Test for Linear Independence
The set of solution vectors 1 2( ), ( ), , ( )nt t tX X X  is linearly independent if 

 
1 1 2 2( ) ( ) ( ) 0n nc t c t c t+ + + =X X X  (5.7.11)

only for all constant 1 2,  , , nc c c equal to zero. If the sum is zero for any nonzero 
constants, then the set is linearly dependent. If the determinant of the matrix 
formed by the solution vectors is nonzero

 

11 12 1

21 22 2

1 2

0

n

n

n n nn

x x x

x x x

x x x

≠




   


 (5.7.12)

then the solution vectors are linearly independent. If the determinant is zero, then 
the solution vectors are linearly dependent.  

5.7.5 General Solution of Homogeneous Systems
The general solution to the homogenous system =X AX is obtained by solving 
the characteristic equation obtained by assuming a trial solution 

 ( ) ( )
1 1

2 2andt t

n n

k k

k k
t e t e

k k

 

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

X X
 

 so that  =AX X  (5.7.13)
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In matrix form

 

11 12 1 1 1

21 22 2 2 2

1 2

n

n t t

n n nn n n

a a a k k

a a a k k
e e

a a a k k

 

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟=⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠




     


 (5.7.14)

dividing by et and factoring out K we can write the system as (A  I)K  0

 

( )


11 12 1 1

21 22 2 2

1 2

0

n

n

n n nn n

a a a k

a a a k

a a a k









−

−⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟−⎜ ⎟⎜ ⎟ =⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

KA I




    




 (5.7.15)

Our task is now to find the eigenvalues  and eigenvectors K to determine the 
general solution 

 1 2
1 1 2 2( ) ntt t

n nt c e c e c e  = + + +X K K K  (5.7.16)

with constants 1 2,  , , nc c c determined by the initial conditions.

Example 5.7.3
Find the general solution to the system

 
2

x x

y x y

=
= − +




 (5.7.17)

Solution: Writing the system in matrix form

 
1 0

1 2

x x

y y

⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠


  with 

1 0

1 2

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

A  (5.7.18)

we compute

 ( ) ( )( )
1 0

det 1 2 0
1 2


  



−
− = = − − =

− −
A I  (5.7.19)

The eigenvalues and eigenvectors are

 1  1, 1  2, and 
1 2

1 0
,

1 1

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

K K  (5.7.20)
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The general solution is then

 

( ) 2
1 2

1 0

1 1
t tt c e c e

⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
X

 (5.7.21)

Example 5.7.4
Find the general solution to the system

 

x x z

y y

z x y

= +
=
= +





 (5.7.22)

Solution: In matrix form

 

1 0 1

0 1 0

1 1 0

x x

y y

z z

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟

=⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠





  with 

1 0 1

0 1 0

1 1 0

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

A   (5.7.23)

we compute

 ( ) ( ) 2

1 0 1

det 0 1 0 1 ( 1) 0

1 1



    



−
− = − = − − − =

−
A I  (5.7.24)

The resulting eigenvalues and eigenvectors are

 
1 2 3

1 5 1 5
1, ,  with

2 2
  

+ −
= = =  

 
1 2 3

1 1 5 1 5

1 , 0  and  0

0 2 2

⎛ ⎞ ⎛ ⎞⎛ ⎞− + −
⎜ ⎟ ⎜ ⎟⎜ ⎟

= = =⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

K K K   (5.7.25)

and the general solution is

 ( )
1 5 1 5

2 2
1 2 3

1 1 5 1 5

1 0 0

0 2 2

t t
tt c e c e c e

+ −
⎛ ⎞ ⎛ ⎞− + −⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟= + +⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

X  (5.7.26)
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Higher Order ODEs 
An nth order differential equation may be expressed as a system n first order 
equations with appropriate variable substitutions.

Example 5.7.5
Write the second order differential equation 

 0x x x+ + =   (5.7.27)

as two first order equations. 

Solution: We make the substitution v x=   and our system is

 
x v

v x v

=
= − −




 (5.7.28)

Example 5.7.6
Write the third order equation 

 2 3 4 sinx x x x t+ + + =    (5.7.29)

as three first order equations.

Solution:  We make the substitutions 

 

0

1 0

2 1

x x

x x

x x x

=
=
= =


 

 (5.7.30)

 
   

2 2 1 0

2 3 4 sin
x x x x

x x x x t+ + + =

  

 (5.7.31)

and our system becomes

 
0 1

1 2

2 2 1 02 3 4 sin

x x

x x

x x x x t

=
=
= − − − +





 (5.7.32)

Expressing higher order differential equations as first order systems is the first 
step in applying numerical integration schemes such as the Runge-Kutta and 
Euler methods. 

5.7.7 Charged Particle in Electric and Magnetic Fields
The motion of a charged particle in a region with crossed electric E and magnetic 
B fields 



262 MATHEMATICAL METHODS FOR PHYSICS USING MATLAB AND MAPLE

 0

0

ˆ

ˆ

E

B

=

=

E k

B j

 (5.7.33)

is obtained from the Lorentz force equation q q= + ×F E v B  and Newton’s second 

law with ( )ˆˆ ˆ ,m x y z= + +F i j k    ( )ˆˆ ˆx y z= + +v i j k    and 

 
0 0

0

ˆˆ ˆ

ˆˆ

0 0

x y z B z B x

B

× = = − +
i j k

v B i k      (5.7.34)

Newton’s second law 

 
0 0 0ˆ ˆ ˆˆ ˆ ˆqB qB qE

x y z z x
m m m

+ + = − + +i j k i k k      (5.7.35)

results in a system of differential equations 

 

0

0 0

0

qB
x z

m
y

qB qE
z x

m m

= −

=

= +

 



 

 (5.7.36)

The first and third equations are coupled while the second equation integrates 
immediately to 

 ( ) (0) (0)y t y y t= +   (5.7.37)

Making the substitution 
0 /qB m =

 
0

x z

qE
z x

m





= −

= +

 

 
 (5.7.38)

and taking derivatives to decouple the x and z equations

 x z

z x





= −
=

 
 

 (5.7.39)

and substituting for z  gives two decoupled third order equations

 
2 0

2

qE
x x

m

z z

 



= − −

= −

 

 

 (5.7.40)
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Maple Examples
An exact solution to a system of three first order, linear differential equations is 
calculated in the Maple worksheet below.

Key Maple commands:  diff , dsolve

restart

Systems of Differential Equations

Deq1: diff(x1(t), t)  x1(t) + x2(t) + x3(t);

( ) ( ) ( ) ( )
d

x1 t x1 t x 2 t x3 t
dt

= + +

Deq2: diff(x2(t), t)  2*x1(t) + x2(t) – x3(t);

( ) 2 ( ) ( ) ( )
d

x 2 t x1 t x 2 t x3 t
dt

= + −

Deq3: diff(x3(t), t)  –8 *x1(t) –5*x2(t) – 3*x3(t);

( ) 8 ( ) 5 ( ) 3 ( )
d

x3 t x1 t x 2 t x3 t
dt

= − − −

dsolve({Deq1, Deq2, Deq3, x1(0)  1, x2(0)  0, x3(0)  5}, {x1(t), x2(t), x3(t)});

{
}

2 2 2

2 2

23 32 35
1( ) 7 8 , 2( ) ,

12 3 4

23 16 49
3( )

12 3 4

t t t t t

t t t

x t e e x t e e e

x t e e e

− − − −

− −

= − + = − +

= − − +
 

5.8 PHASE SPACE 

Phase space is an abstract mathematical space with coordinate axes corresponding 
to the time-dependent variables in a dynamical system. Examples of time-
dependent variables include position, velocity or momentum. A point in phase 
space represents a possible state of the system. 

5.8.1 Phase Plots 
The number of coordinates in phase space is determined by degrees of freedom of 
the system. A particle of mass m constrained to move in the x-direction has one 
degree of freedom and the phase space is two-dimensional. If a force F acts on the 
particle so that mx F=  we may plot the resulting motion in the x - v plane 

 
/

x v

v F m

=
=




 (5.8.1)
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The dimensionality of the phase space is equal to the number of first order 
equations. Position and momentum are also frequently used as phase space 
coordinates where the motion may be plotted in the x - p plane

 
x v

p F

=
=


  (5.8.2)

5.8.2 Noncrossing Property 
For a deterministic system, the future is determined by the initial conditions. A 
unique trajectory in phase space will exist for a given set of initial conditions. Two 
trajectories in phase space corresponding to different initial conditions will not 
cross. If the trajectories did cross, then past and future states of the system would 
become indeterminant. Trajectories of higher dimensional systems may appear to 
cross when plotted on a two-dimensional screen. 

5.8.3 Autonomous Systems 
Autonomous systems such as

 
x x y

y z

z y z

= +
=
= −





 (5.8.3)

have implicit time dependence in the derivatives but time does not appear 
explicitly. The above system has three degrees of freedom. Nonautonomous 
systems such as

 
cos( )

x x y

y z t

z y z

= +
= +
= −





 (5.8.4)

have explicit time dependence and time counts as a degree of freedom. Thus, the 
above system has four degrees of freedom. 

5.8.4 Phase Space Volume 
Given the autonomous system

 
( , , )

( , , )

( , , )

x

y

z

x F x y z

y F x y z

z F x y z

=
=

=





 (5.8.5)
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an initial condition (x0, y0, z0) will result in specific values (x, y, z) at time t. We now 
consider the evolution of a three-dimensional block of possible initial conditions 
with initial phase space volume 0 0 0 0V x y z= Δ Δ Δ  evolving to V x y z= Δ Δ Δ . 
Calculating the time dependence of the volume element

 

dV
x y z x y z x y z

dt
= Δ Δ Δ +Δ Δ Δ +Δ Δ Δ  

 (5.8.6)

Dividing by V x y z= Δ Δ Δ  gives

 
1 ydV x z

V dt x y z

ΔΔ Δ
= + +
Δ Δ Δ

 
 (5.8.7)

Now we have that

 
( , , ) ( , , )

( , , ) ( , , )

( , , ) ( , , )

x x

y y

z z

x F x x y z F x y z

y F x y y z F x y z

z F x y z z F x y z

Δ = +Δ −
Δ = +Δ −

Δ = +Δ −





 (5.8.8)

Thus,

 
( , , ) ( , , )x x xF x x y z F x y z Fx

x x x

+Δ − ∂Δ
= ≈

Δ Δ ∂


 (5.8.9)

and similarly 

  and 
y z

F Fy z

y y z z

∂ ∂Δ Δ
≈ ≈

Δ ∂ Δ ∂
 

 (5.8.10)

so that

 
1 yx z

FF FdV

V dt x y z

∂∂ ∂
= + +

∂ ∂ ∂
 (5.8.11)

This expression is known as the logarithmic divergence written compactly as

 1 dV

V dt
= ∇⋅F  (5.8.12)

If F  0 the system is conservative and phase space volumes are constant. Phase 
space volume elements contract if  F < 0 and the system is dissipative. Phase 
space volumes expand where F > 0 and the system “blows up.”  Integrating the 
logarithmic divergence  

 ( )ln const.V dt= ∇⋅ +∫ F  (5.8.13)
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and exponentiating gives

 0

0

( ) exp
t

V t V dt
⎛ ⎞

′= ∇⋅⎜ ⎟⎜ ⎟
⎝ ⎠
∫ F  (5.8.14)

where the constant is chosen so that V(0)  V0. If F is independent of time, then

 0( ) exp( )V t V t= ∇⋅F  (5.8.15)

Example 5.8.1
Determine if the following system is conservative, dissipative or if it blows up

 2 3

3

x x y z

y x z

z x y z

= − +
= +
= + −





 (5.8.16)

Solution: We calculate

        ( ) (2 3 ) ( 3 )

       1 0 3 2

yx z

x y z

x y z x z x y z
x y z

∂∂ ∂
∇⋅ = + +

∂ ∂ ∂
∂ ∂ ∂

= − + + + + + −
∂ ∂ ∂

= + − = −

F
 

 (5.8.17)

Thus, the system is dissipative and phase volumes contract as

 
2

0( ) tV t V e−=  (5.8.18)

Maple Examples
Phase portraits and the direction fields of systems of ordinary differential 
equations are plotted in the Maple worksheet below. 

Key Maple commands: D , dfi eldplot , diff , dsolve , odeplot , phaseportrait 

Maple packages: with(DEtools ): with(plots ):

restart

Phase Portrait

with(DEtools):
with(plots):
Deq1:  diff(x(t), t)  v(t) 0.2x(t)

( ) ( ) 0.2 ( )
d

x t v t x t
dt

= −



ORDINARY DIFFERENTIAL EQUATIONS 267

Deq2: diff(v(t), t)  – 0.2x(t) + 0.2v(t)

( ) 0.2 ( ) 0.2 ( )
d

v t x t v t
dt

= − +

sol1: dsolve({Deq1, Deq2, x(0)  3, v(0)  0}, {x(t), v(t)}, numeric)

proc(x_rkf45) … end proc

p2:  odeplot(sol1, [x(t), v(t)], t  0 … 40)

0
–3 1 32–2 –1

–1.5

1
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1

–1.5

0.5

x

v

Figure 5.8.1: Phase plot of an ODE showing velocity (vertical axis) vs. position (horizontal axis). 

Direction Field

 cos( ) , ( ), 3 3, 3 2
dy x

dfieldplot y x y x x y
dx y

⎛ ⎞= ⋅ = − = −⎜ ⎟
⎝ ⎠
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Figure 5.8.2: ODE direction field.

Direction Field and Phase Portrait

phaseportrait(D(y)(x)  –y(x) – x2 , y(x), x  –1 … 2.5, [[y(0)  0], [y(0)  1], [y(0) 
 –1]])

Figure 5.8.3: ODE direction field with phase plots corresponding to three different initial conditions.
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5.9 NONLINEAR DIFFERENTIAL EQUATIONS 

In this section, we consider nonlinear differential equations with terms that are 
products or nonlinear functions of dynamical variables. The predator-prey system 
and the nonlinear pendulum  are discussed. Topics include linearization of equations 
near fixed points  and the numerical solution of nonlinear differential equations. 

5.9.1 Predator-Prey System 
The predator-prey system

 
1

1 1 2

2
2 1 2

dN
pN qN N

dt
dN

rN sN N
dt

= −

= − +

 (5.9.1)

describes the interaction between two species with prey population N1 and 
predator population N2 modeled as continuous variables. The nonlinear terms 
qN1N2 and sN1N2 represent the mortality rate of the prey and the growth rate 
of the predators, respectively. Mortality rate and growth rate are proportional to 
predator and prey populations. Interaction between the species is governed by the 
parameters q and s. If there is no interaction between species q  s  0 and

 

1
1

2
2

dN
pN

dt
dN

rN
dt

=

= −

 (5.9.2)

with solutions 

 
( ) ( )
( ) ( )

1 10

2 20

exp

exp

N t N pt

N t N rt

=

= −
  (5.9.3)

so that the prey population would continue to increase while the predators would 
die off without interaction. 

5.9.2 Fixed Points 
Points in the phase space where the velocities are zero are known as fixed points, 
or equilibria. Given the autonomous system
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( , , )

( , , )

( , , )

x

y

z

x F x y z

y F x y z

z F x y z

=
=

=





 (5.9.4)

the fixed points are where the derivatives are zero. The fixed points (x0, y0, z0) are 
solutions to

 

0 ( , , )

0 ( , , )

0 ( , , )

x

y

z

F x y z

F x y z

F x y z

=
=

=
 (5.9.5)

5.9.3 Linearization 
An autonomous system may be linearized near a fixed point (x0, y0, z0) by 
approximating Fx, Fy and Fz by the first terms in the Taylor expansion

 

0 0 0 0 0 00 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 00 0 0

0 0 0

( , , ) ( , , )( , , )

0 0 0

( , , ) ( , , ) ( , , )

0 0 0

( , , ) ( ,( , , )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

x x x

x y z x y zx y z

y y y

x y z x y z x y z

z z z

x y z x yx y z

F F F
x x x y y z z

x y z

F F F
y x x y y z z

x y z

F F F
z x x y y z z

x y z

∂ ∂ ∂
= − + − + −

∂ ∂ ∂

∂ ∂ ∂
= − + − + −

∂ ∂ ∂

∂ ∂ ∂
= − + − + −

∂ ∂ ∂






0, )z

 (5.9.6)

Writing the linearized system using local coordinates x = (x – x0), y  (y  y0) 
and z  (z  z0)

 

0 0 0 0 0 00 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 00 0 0

( , , ) ( , , )( , , )

( , , ) ( , , ) ( , , )

( , , ) ( , , )( , , )

x x x

x y z x y zx y z

y y y

x y z x y z x y z

z z z

x y z x y zx y z

F F F
x x y z

x y z

F F F
y x y z

x y z

F F F
z x y z

x y z

   

   

   

∂ ∂ ∂
= + +

∂ ∂ ∂

∂ ∂ ∂
= + +

∂ ∂ ∂

∂ ∂ ∂
= + +

∂ ∂ ∂







 (5.9.7)

In matrix form

 

0 0 0( , , )

/ / /

/ / /

/ / /

x x x

y y y

z z z x y z

x F x F y F z x

y F x F y F z y

z F x F y F z z

 

 

 

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
⎜ ⎟ ⎜ ⎟ ⎜ ⎟= ∂ ∂ ∂ ∂ ∂ ∂⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠





 (5.9.8)
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The eigenvalues of the coefficient matrix will determine the type of fixed point. 

5.9.4 Simple Pendulum 

Example 5.9.1
The differential equation describing the motion of a simple pendulum with 
damping is nonlinear for large angles

 sin( ) 0  + + =   (5.9.9)

For simplicity, we set all the parameters (mass, length, damping coefficient, gravity 
constant) equal to one. We let  =   to obtain the system of first order equations

 

sin( )

 

  

=
= − −




 (5.9.10)

The equilibria are found from

 
0

0 sin( )



 

=
= − −

 (5.9.11)

and are 0 0 = , 0 evenn = ±  and 0 oddn = ±

Our derivative vector is

 ( ) ( ), , sinF F    = = − −F  (5.9.12)

Linearizing our equation near the equilibria 

 

( )
( )

( )
( )

( )
( )

( )
( )

0 0 0 0

0 0 0 0

0 0

, ,

0 0

, ,

F F

F F

 

   

 

   

    
 

    
 

∂ ∂
= − + −

∂ ∂

∂ ∂
= − + −

∂ ∂





 (5.9.13)

gives

 

( )
( )

( )
( )

( ) ( )
( )

( ) ( )
( )

0 0 0 0

0 0 0 0

0 0
, ,

0 0

, ,

sin sin

   

   

 
    

 

   
    

 

∂ ∂
= − + −

∂ ∂

∂ − − ∂ − −
= − + −

∂ ∂




 (5.9.14)

or

 
( )
( )( ) ( )( )

0

0

0 0cos 1


  

     

= −

= − − + − −



  (5.9.15)
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We consider equilibria at the bottom and top of the motion.

Bottom: 0 evenn = ±  and ( )evencos 1n ± =  

Top: 0 oddn = ± and ( )oddcos 1n ± = −

Transforming to local coordinates we let    – 0 and     0.

At the top cos0 1 and

 
 

  

=
= −



  (5.9.16)

Writing the system in matrix form

 
0 1

1 1





⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦

A






 (5.9.17)

To find the eigenvalues we take the determinant of 0− =A I

 
2

0 1
det 1 0

1 1


 



−⎡ ⎤
= + − =⎢ ⎥− −⎣ ⎦

 (5.9.18)

This gives

 
1 1 4 1 5

2 2


− ± + − ±
= =  (5.9.19)

and we have one positive and negative real eigenvalue corresponding to a saddle 
point .

At the bottom 0 evenn = ±  and cos0  1

  

  

=
= − −




 (5.9.20)

In matrix form

 0 1

1 1





⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦

A






 (5.9.21)

To fi nd the eigenvalues take the determinant of 0− =A I

 
2

0 1
det 1 0

1 1


 



−⎡ ⎤
= + + =⎢ ⎥− − −⎣ ⎦

 (5.9.22)



ORDINARY DIFFERENTIAL EQUATIONS 273

 
1 1 4 1 3

2 2

i


− ± − − ±
= =  (5.9.23)

Thus, we have complex eigenvalues with negative real parts corresponding to an 
inward spiral. 

5.9.5 Numerical Solution 
The simplest scheme for numerically solving differential equations is Euler’s 
scheme . Applied to a first order equation

 ( , )y f y t=  (5.9.24)

we approximate the derivative

 1 ( , )n n
n n

y y
f y t

t
+ − =
Δ

 (5.9.25)

For discrete time nt n t= Δ  where 0,1,2 nmaxn =   and time step t

 1 ( , )n n n ny y f y t t+ = + Δ  (5.9.26)

This equation is then iteratively solved after specifying an initial condition. 
Higher order integration schemes, such as the Runge-Kutta method, may also 
be applied. The first step in applying a numerical scheme to solve a higher order 
differential equation is to first express the differential equation as a system of first 
order equations.

Maple Examples
The predator-prey model is numerically integrated in the Maple worksheet below. 
Euler’s method is demonstrated for the numerical solution of a simple differential 
equation.  

Key Maple commands: display , dsolve,  odeplot , plot , seq 

Maple packages: with(plots ):

Programming: for loops, function statements using ‘’

restart

Predator-Prey Model

p:= 4: q:= 2: r:= 4: s:= 5: 

: ( ) ( ) ( ) ( )
d

Deq1 x t p x t q x t y t
dt

= = ⋅ − ⋅ ⋅
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: ( ) 4 ( ) 2 ( ) ( )

d
Deq1 x t x t x t y t

dt
= = −

: ( ) ( ) ( ) ( )
d

Deq2 y t s x t y t r y t
dt

= = ⋅ ⋅ − ⋅

 : ( ) 0.5 ( ) ( ) 4 ( )
d

Deq2 y t x t y t y t
dt

= = −

sol1: dsolve({Deq1, Deq2, x(0)  5, y(0)  5}, {x(t), y(t)}, numeric)

sol1: proc(x_rkf45) … end proc

with(plots):
odeplot(sol1, [x(t), y(t)], t  0 … 8)

1
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Figure 5.9.1: Phase plot of predators vs. prey.

odeplot(sol1, [[t, x(t)], [t, y(t)]], t  0 … 5, legend  [prey, predators], linestyle  
[solid, dash])
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Figure 5.9.2: Time series of prey and predator populations.

Numerical Solution to Differential Equations—Euler’s Method

Solve dy/dx  y numerically:
Initial conditions:
x[0] : 0 : y[0] : 1.0 :
Step size
h : 0.1 :
f : (x, y)  y

f : (x, y)  y

for n from 1 to 20 do x[n] :  n*h; y[n] :  y[n – 1] + h*f(x[n – 1], y[n – 1]): od: 
data : [seq([x[n], y[n]], n  0 … 20)]:
p1 : plot(data, style  point, legend  “Numeric”):
p2 : plot(exp(x), x  0 … 2, legend  “Exact”):
display(p1, p2)
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Numeric

Exact
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Figure 5.9.3: Comparison of Euler’s method and exact solutions to a first order ODE.

5.10 MATLAB EXAMPLES

MATLAB may be used to solve single as well as systems of ordinary differential 
equations using the ‘dsolve’ command. Derivatives are represented with an 
uppercase D. The differential equation

 2 3 0y y y+ + =   
would be 

>> dsolve('D3y + 2Dy+3y=0')

Examples of symbolic and numerical solutions to differential equations in 
MATLAB are shown below. 

Key MATLAB commands: D , dsolve , global , ode45 , plot3 

Section 5.2 First Order Differential Equations
>> clear all

>> % solve the homogeneous first order equation 

>> dsolve('Dy + y=0')

 

ans =

 

C2/exp(t)

>> % first order inhomogeneous equation  

>> dsolve('Dy + y = t^2')
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ans =

 

t^2 - 2*t + C2/exp(t) + 2

Section 5.3 Linear, Homogeneous with Constant Coeffi cients
>> % solve the homogeneous third order differential equation 

>> dsolve('D3y + D2y+D1y+y=0')

ans =

C2*cos(t) + C3*sin(t) + C4/exp(t)

>> % initial value problem  

>> dsolve('D2y+D1y+y= 0','D1y(0)=0','y(0)=1')

ans =

cos((3^(1/2)*t)/2)/exp(t/2) + (3^(1/2)*sin((3^(1/2)*t)/2))/(3*exp(t/2))

Section 5.5 Inhomogeneous with Constant Coeffi cients
>> % solve the inhomogeneous third order differential equation 

>> dsolve('D3y + D2y+D1y+y= sin(t)')

 

ans =

 

sin(t)/4 - cos(t)/4 + C2*cos(t) + C3*sin(t) + cos(t)*(cos(2*t)/8 - t/4 

+ sin(2*t)/8 + 1/8) - sin(t)*(t/4 + cos(2*t)/8 - sin(2*t)/8 + 1/8) 

+ C4/exp(t)

>> % initial value problem  

>> dsolve('D3y + D2y+D1y+y= sin(t)','D2y(0)=0','D1y(0)=0','y(0)=1')

 

ans =

 

3/(4*exp(t)) + sin(t) + cos(t)*(cos(2*t)/8 - t/4 + sin(2*t)/8 + 1/8)

- sin(t)*(t/4 + cos(2*t)/8 - sin(2*t)/8 + 1/8)

Section 5.7 Systems of Differential Equations
>> % solve the system of three first order equations   

>> dsolve('D1y+z= 0','D1x+y=0','D1z+x=0')

ans = 

    x: [1x1 sym]

    y: [1x1 sym]

    z: [1x1 sym]

>> ans.x  % returns x(t)  

ans =

 

C3/exp(t) - (C1*exp((3*t)/2)*cos((3^(1/2)*t)/2))/(2*exp(t)) + (C2*exp((

3*t)/2)*sin((3^(1/2)*t)/2))/(2*exp(t)) + (3^(1/2)*C2*exp((3*t)/2)*c

os((3^(1/2)*t)/2))/(2*exp(t)) + (3^(1/2)*C1*exp((3*t)/2)*sin((3^(1/

2)*t)/2))/(2*exp(t))

>> % initial value problem   

>> dsolve('D1y+z= 0','D1x+y=0','D1z+x=0','x(0)=0','y(0)=1','z(0)=-1')

ans = 

    x: [1x1 sym]

    y: [1x1 sym]
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    z: [1x1 sym]

>> ans.y   % returns y(t)  

ans =

 

(cos((3^(1/2)*t)/2)*exp(t)^(3/2))/exp(t) + (3^(1/2)*sin((3^(1/2)*t)/2)*

exp(t)^(3/2))/(3*exp(t))

Section 5.9 Nonlinear Differential Equations
The following example illustrates the solution of the Rossler system consisting of 
three nonlinear differential equations 

 

( )

x y z

y x ay

z b z x c

− −⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= +⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟+ −⎝ ⎠ ⎝ ⎠





with parameters a, b and c. The M-file named ‘rossler.m’ is created
function yp=rossler(t,y)

 

global a b c

      yp= [-y(2)-y(3);

           y(1)+a*y(2);

           b+y(3)*(y(1)-c)];

The parameters, time interval 0  t  100 and initial conditions (x0, y0, z0)  (0.1, 
0.1, 0.1) are specifi ed at the command line. 

>> global a b c

>> a = 0.2; b=0.2; c=5.7;

>> % solve using the fourth order Runge-Kutta routine ode45

>> [t,y]=ode45(@rossler,[0, 100], [.1;.1;.1]);

>> % create a 3D plot the solution 

>> plot3(y(:,1),y(:,2),y(:,3))

>> xlabel('x')

>> ylabel('y')

>> zlabel('z')

>> title('Rossler Atractor')
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Figure 5.10.1: 3D plot of the Rossler attractor.
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5.11 EXERCISES

Section 5.1 Classifi cation of Differential Equations

1. Determine the order and degree of the following differential equations

 

3
2

3

xd y dy
x e

dxdx

−− =
 

 

2

2
0

d r dr
r

dtdt
 − + =

 

22

2
0

d s ds ds
s

dx dxdx

⎛ ⎞+ + =⎜ ⎟
⎝ ⎠

2. Solve the following differential equations by successive integration 

 

2

2
0

d y

dt
=

 

3

3

d y
x

dx
=

 

2

2

td y
e

dt

−=

3. Solve the following differential equations by successive integration and 
determine the integration constants with the indicated initial conditions 

 

4

4
0

d y

dx
=

 

where y(0)  1, y(0)  0, y(0)  1, y(0)  1

4. Determine if the following differential equations are exact and solve

 
2 0y dx xdy+ =

 
2 0

dy
x xy

dx
− =

 cos sin 0ydx xdy+ =

5. A particle of mass m is projected upward with speed v0 from a moon with 
radius R and mass M 

 

2

2 2

d r mM
m G

dt r
= −  with r(0)  R and 0(0)r v= .
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(a)  Calculate v(r) making the substitution 
2

2

d r dv dv dr dv
v

dt dr dt drdt
= = =  and 

separating variables 
(b) Calculate r(t) 

Section 5.2 First Order Differential Equations

6. The differential equation describing the variation of atmospheric pressure  
with height P(y) is given by

 B

mgdP
P

dy k T
= −

Show that

 ( ) 0
B

mgy

k TP y P e
−

=

where P(0)  P0 is atmospheric pressure 

7. Obtain an integrating factor to solve the following differential equations

 
1 xdy

y e
dx x

−+ =

 
2 sin( )

dy
x y x

dx
+ =

 
sin( )

df
f t

dt
 + =

8. Solve the following first order differential equation with the specified initial 
conditions 

 

1
, (0) 0xdy

y e y
dx x

−+ = =

 

2 sin( ), (0) 0
dy

x y x y
dx

+ = =

 
sin( ), (0) 0

df
f t f

dt
 + = =

9. Solve the differential equation 
2dv

m mg kv
dt

= −

10. Solve the differential equation 
22

2
1

d y dy

dxdx

⎛ ⎞= + ⎜ ⎟
⎝ ⎠

 using the substitution 
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dy

s
dx

=

Section 5.3 Linear, Homogeneous with Constant Coeffi cients

11. Given the fourth order differential equation 

 0x x x x+ + + =   
 write the characteristic equation and the general solution to the differential 
equation. 

12. Write the characteristic equation of the differential equation

 9 0x x+ = 
 Solve for the roots of the characteristic equation and write the general solution 
(careful if repeated roots!)

13. Solve the differential equation 

 2 0x x x− + =  

with initial conditions  (0) 1, (0) 0x x= =   and x(0)  0.
Plot the solution. 

14. Solve the differential equation 

 2 0x x x+ − = 
with initial conditions (0) 1x =  and x(0)  0.
Plot the solution.

15. Find a general solution to the differential equation 

 3 3 0x x x x− + − =  

16. Determine if the motion of the harmonic oscillator is underdamped, critically 
damped, or overdamped with parameter values below
(a) (m, b, k)  (1, 1, 2)
(b) (m, b, k)  (2, 2, 1)

Section 5.4 Linear Independence

17. Determine if y1(x)  ex, y2(x)  x are linearly independent or linearly dependent 

18. Determine if y1(t) = e
t, y2(t)  et, y3(t)  tet are linearly independent or linearly 

dependent 

19. Determine if y1(x)  ex, y2(x)  cosh(x), y3(x)  sinh(x) are linearly independent 
or linearly dependent 

20. Verify the linear independence of the functions t, t2 and t3
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21. Show that the following functions are linearly dependent 

 y1  3ex, y2  4ex

Section 5.5 Inhomogeneous with Constant Coeffi cients

22. Solve the differential equation cosx x x t− + = 
23. Solve the differential equation 2 tx x e−+ =  and plot the solution for initial 

conditions  (0) 1x =   and x(0)  0

24. Solve the differential equation 2 1x x t t− = + +
25. Solve the differential equation tx x x e− + =   and plot the solution for initial 

conditions (0) 1x =  and x(0)  0

26. Solve the differential equation sinx x t+ =

Section 5.6 Power Series Solutions to Differential Equations

27. Find the first four terms in the power series solution to the differential 
equation

 
dy

y x
dx

+ =

28. Find a power series solution to the differential equation 

 

2
2

2
0

d y
x y

dx
+ =

29. Find a power series solution to the differential equation

 

2 0
dy

x y
dx

+ =

30. Find a power series solution to the differential equation

 

2
2

2
sin( ) 0

d y
x y x

dx
+ + =

31. Find a power series solution to the differential equation

 

2
2

2
( 1) 0

d y dy
x x y

dxdx
+ − + =  about x0  0
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Section 5.7 Systems of Differential Equations

32. Write the following systems of differential equation in matrix form
2

2

x x y

y x y

= −
= −




2

x x y

y x y

= −
= − +




2

2

x x y z

y x y

z x y z

= − +
= −
= + −





2x x y z

y x y

z x y z

= − +
= −
= + −





2

2

x x y z

y x y w

z x y z

w z y

= − +
= − +
= + −
= − −






33. Find the general solutions to the systems of equations in Exercise 32.

34. Write the following third order differential equation as three first order 
equations

 0x x x x+ + + =  

 Use the substitutions a x=   and v x=  . Write the system in matrix form and 
fi nd the general solution. 

35. Write the following third order differential equation as three first order 
equations

 0x x x x− + − =  

 Use the substitutions a x=   and v x= . Write the system in matrix form and 
fi nd the general solution. 

36. Find the general solution to the following systems of differential equations 

 
1 1

2 1

x x

y y

−⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
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0 1

2 1

x x

y y

⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠




 

0 1 0

1 0 1

0 0 1

x x

y y

z z

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟

= −⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠





2 0 0

1 0 1

0 1 1

x x

y y

z z

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟

= −⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠





37. Determine if the solution vectors 

1

2
te−

⎛ ⎞
⎜ ⎟
⎝ ⎠

 and 

1

1
te

⎛ ⎞
⎜ ⎟−⎝ ⎠

 are linearly independent 

or linearly dependent.

38. Determine if the solution vectors 

1

0

1

te−
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟−⎝ ⎠

, 

1

2

0

te

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 and 

1

0

1

tte

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 are linearly 

independent or linearly dependent 

39. Solve the differential equations

 

2 0

2

qE
x x

m

z z

 



= − +

= −

 

 

with initial conditions (0) (0) (0) 0x x x= = =   and (0) (0) (0) 0z z z= = = 

Section 5.8 Phase Space

40. Create a phase plot x  vs. x of the system described by the differential equation

  0x x x+ + = 

41. Determine if the following system is conservative, dissipative or if it blows up.

 

2 2

3

x x y

y z

z x y z

= − +
=
= + +
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42. Determine if the following system is conservative, dissipative or if it blows up. 

 

x

y

x

y y

x p

y p

p x y

p p x

=
=

= +
= −






43. Write the following nonlinear fourth order differential equation as four first 
order equations

 2 0x x x+ + = 
Use the substitutions 

3x x= , 2x x= , 1x x=   and x0  x
and calculate ∇⋅F

Section 5.9 Nonlinear Differential Equations

44. Calculate the fixed points of the predator-prey system 

 

1
1 1 2

2
2 1 2

dN
pN qN N

dt
dN

rN sN N
dt

= −

= − +

45. Calculate the equilibrium points of the Lorenz model 

 

x x y

y xz Rx y

z xy z

 



= − +
= − + −
= −





 Is the system conservative or dissipative for parameter values   10, R  28 
and   8/3? 

46. Linearize the Lorenz model above about the equilibrium point at the origin. 
Determine the stability of the equilibrium point. 

47. The Hénon-Heiles system  models the orbits of stars in a galaxy 

 2 2

2

x

y

x

y

x p

y p

p x xy

p y x y

=
=

= − −

= − − +






Calculate the equilibrium points. Is the system conservative or dissipative? 
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48. Linearize the Hénon-Heiles system above about all equilibrium points. 

49. Write the following nonlinear fourth order differential equation as four first 
order equations

 
2 0x x x+ + = 

using the substitutions 

 3 2 1, ,x x x x x x= = =   and x0  x.

 Integrate the system of differential equations with initial conditions (x30, x20, 
x10, x00)  (0.1, 0.1, 0.1, 0.1) using the Euler method for 100 time steps with 

t  0.01.

50. Integrate the Lorenz model with parameter values above with initial 
conditions (x0, y0, z0)  (0.1, 0.1, 0.1) using the Euler method for 2000 time 
steps with t  0.01.  Make a 3D plot of the solution.
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6Chapter

SPECIAL 
FUNCTIONS

Chapter Outline
6.1 Dirac Delta Function 

6.2 Orthogonal Functions  

6.3 Legendre Polynomials 

6.4 Laguerre Polynomials 

6.5 Hermite Polynomials

6.6 Bessel Functions  

6.1 DIRAC DELTA FUNCTION 

The 1D Dirac delta function is defi ned as

 ( )
0          0  

         0   

x
x

x


≠⎧⎪= ⎨∞ =⎪⎩
 (6.1.1)

The delta function has unit area so that 

 ( ) 1x dx
∞

−∞

=∫  (6.1.2)
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A delta function located at xa is expressed as

 
0          0  

( )
            

x
x a

x a


≠⎧⎪− = ⎨∞ =⎪⎩
with ( ) 1x a dx

∞

−∞

− =∫  (6.1.3)

Also, we have

 ( ) 1
a

a

x a dx






+

−

− =∫  (6.1.4)

where  can be made arbitrarily small.
Because (x) is zero everywhere except at x = 0 if we multiply it by a function f(x) 
we have that

 ( ) ( ) (0) ( )f x x f x =  (6.1.5)

Under the integral sign

 

( ) ( ) (0) ( ) (0)f x x dx f x dx f 
∞ ∞

−∞ −∞

= =∫ ∫
 (6.1.6)

As well if we have

 ( ) ( ) ( ) ( ) ( )f x x a dx f a x a dx f a 
∞ ∞

−∞ −∞

− = − =∫ ∫  (6.1.7)

The delta function essentially “picks out” the value f(x)  where the argument of the 
delta function is zero.

6.1.1 Representations of the Delta Function
The integral representation of the delta function 

 ( )1
( ) i x a tx a e dt



∞
−

−∞

− =
2 ∫  (6.1.8)

is frequently encountered as well as the analogous series form 

 ( )1
( ) i x a k

k

x a e


∞
−

=−∞

− =
2 ∑  (6.1.9)
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6.1.2 Delta Function in Higher Dimensions
The 3D delta function  can be expressed as a product of 1D delta functions 

 
3( ) ( ) ( ) ( )x y z   =r  (6.1.10)

where

 
3

vol

( ) 1dv =∫ r  (6.1.11)

and as well

 ( )3

vol

( ) ( )f dv f ′ ′− =∫ r r r r  (6.1.12)

6.1.3 Delta Function in Spherical Coordinates 
Consider a vector function F proportional to the electric field of a point charge in 
spherical coordinates

 
2

ˆ
( )r

r
=

r
F

 (6.1.13)

Applying Gauss’s divergence theorem  to this function 

 2 2

vol surf

ˆ ˆ
ˆdv da

r r
∇⋅ = ⋅∫ ∫

r r
r  (6.1.14)

where the volume integral is over a sphere centered at r  0 and the surface integral 
is over the spherical surface. The right-hand side gives 4 independent of r so that 
the integrand on the left-hand side must be

 
2

ˆ
4 ( )

r
∇⋅ =

r
r  (6.1.15)

where

 
vol

( ) 1dv =∫ r  (6.1.16)

Now consider the electric field at r due to a point charge located at a point r other 
than the origin. The magnitude of the displacement between r and r is given by 

.′−r r
To get a unit vector pointing in the direction of r  r we replace
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 ˆ
′−

→
′−

r r
r

r r
 (6.1.17)

We also replace

 2 2

1 1

r
→

′−r r
 (6.1.18)

thus

 
2 3

ˆ

r

′−
→

′−

r r r

r r
 (6.1.19)

The divergence of this quantity is

 ( )3
4

′− ′∇ ⋅ = −
′−

r r
r r

r r
 (6.1.20)

To calculate the divergence of the integral

 ( ) 3

vol

f dv
′−′ ′∇ ⋅
′−∫

r r
r

r r
 (6.1.21)

we may bring the divergence inside the integral sign because the integral is over 
primed coordinates and is with respect to unprimed coordinates 

 ( ) 3

vol

f dv
⎛ ⎞′−⎜ ⎟′ ′∇ ⋅
⎜ ⎟′−⎝ ⎠

∫
r r

r
r r

 (6.1.22)

The divergence can now be written as a delta function and 

 vol

( )4 ( ) 4 ( )f dv f ′ ′ ′− =∫ r r r r

 (6.1.23)

We may take the gradient of the integral

 
( ) ( ) 3

vol vol

f
dv f dv

′ ′−′ ′ ′∇ = −
′− ′−∫ ∫

r r r
r

r r r r
 (6.1.24)

bringing  into the integral and using 

 3

1 ′−
∇ = −

′− ′−

r r

r r r r
 (6.1.25)
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Also

 ( )2

3

1 1
4

′− ′∇ = ∇⋅∇ = −∇⋅ = − −
′ ′− − ′−

r r
r r

r r r r r r
 (6.1.26)

so that we may evaluate the Laplacian of the integral

 2 2

vol vol

( ) 1
( ) 4 ( )

f
dv f dv f

′ ⎛ ⎞′ ′ ′∇ = ∇ = −⎜ ⎟′ ′− −⎝ ⎠
∫ ∫

r
r r

r r r r
 (6.1.27)

since 2 acts on unprimed coordinates and the integral is over primed coordinates.

6.1.4 Poisson’s Equation

Example 6.1.1
Obtain Poisson’s equation from the integral form of the electrostatic potential 
V(r) due to a charge density (r) 

 
0 vol

1 ( )
( )

4
V dv




′
′=

′−∫
r

r
r r

 (6.1.28)

Solution: Applying the Laplacian operator to both sides

 
2 2

0 vol

1 ( )
( )

4
V dv




′
′∇ = ∇

′−∫
r

r
r r  (6.1.29)

Since 2 is with respect to unprimed coordinates

 
2 2

0 vol

4 ( )

1 1
( ) ( )

4
V dv






′− −

⎛ ⎞
′ ′∇ = ∇ ⎜ ⎟⎜ ⎟′−⎝ ⎠

∫
r r

r r
r r


 (6.1.30)

Thus, we obtain Poisson’s equation  

 ( ) ( )2

0

1
V 


∇ = −r r  (6.1.31)

6.1.5 Differential Form of Gauss’s Law 

Example 6.1.2
Obtain the differential form of Gauss’s law from the integral expression for the 
electric field E(r) due to (r)
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 3
0 vol

1 ( )
( ) ( )

4
dv



′−′ ′=
′−∫

r r
E r r

r r
 (6.1.32)

Solution: Applying the divergence operator to both sides 

 3
0 vol

1 ( )
( ) ( )

4
r dv



′−′ ′∇ ⋅ = ∇⋅
′−∫

r r
E r

r r
 (6.1.33)

Since  acts on unprimed coordinates 

 
3

0 vol

4 ( )

1 ( )
( ) ( )

4
dv






′−

′−′ ′∇ ⋅ = ∇⋅
′−∫

r r

r r
E r r

r r
  (6.1.34)

and we obtain the differential form 

 
0

1
( ) ( )


∇⋅ =E r r  (6.1.35)

6.1.6 Heaviside Step Function 
The Heaviside step function is defined as

 ( )
1 0

     
0 0

x
x

x

≥⎧⎪Θ = ⎨ <⎪⎩
 (6.1.36)

The delta function may be expressed as the derivative of the step function 

 ( ) ( )
d

x x
dx

 = Θ  (6.1.37)

Example 6.1.3
A square pulse of width 2a may be represented as a difference of step functions 

 
1

( ) ( )      
0

a x a
x a x a

x a

− ≤ ≤⎧⎪Θ + − Θ − = ⎨ >⎪⎩
 (6.1.38)

Maple Examples
Integrals involving the Dirac delta function in 1D and 3D are performed in the 
Maple worksheet below. Examples involving the related Heaviside step function 
are given. 
Key Maple commands: expand , int 
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Special functions: Dirac , Heaviside 

restart

Dirac Delta Function

int(Dirac(x), x = -infinity … infinity)

 1

int(Dirac(x), x = -infinity … 0)

1

2

int(Dirac(x), x = 1 … infinity)

 0
int(Dirac(ax), x = -infinity … infinity)

1

a

Int(f(x)Dirac(x), x = -infinity … infinity) = int(f(x)Dirac(x), x = -infinity … 
infinity)

( ) ( ) (0)f x Dirac x dx f

∞

−∞

=∫
Int(f(x)Dirac(ax), x = -infinity … infinity) = int(f(x)Dirac(ax), x = -infinity … 
infinity)

(0)
( ) Dirac( )

f
f x x dx

a

∞

−∞

=∫
Int(Dirac(x – x0)*exp(-I*x*p), x = -infinity … infinity) = int(Dirac(x – x0)*exp(-
I*x*p), x = -infinity … infinity)

 ( ) Ixp Ix 0 pDirac x x0 e dx e

∞
− −

−∞

− =∫
int(xDirac(2x – 1), x = -infinity … infinity)

 
1

4
3D Dirac Delta Function

Dirac([x, y, z])
 Dirac([x, y, z])
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expand(%)
 Dirac(x) Dirac(y) Dirac(z)

int(f(x, y, z)Dirac([x – a, y – b, z – c]), x = -infinity … infinity, y = -infinity … 
infinity, z = infinity … infinity)

f(a, b, c)

Heaviside Step Function

Dirac( )x dx∫
Heaviside(x)

Heaviside( )
d

x
dx

Dirac(x)

int(Heaviside(x + 1) – Heaviside(x – 1), x = -1.5 … 1.5)

2

Int(f(x)(Heaviside(x + 1) – Heaviside(x – 1)), x = -infinity … infinity)
= int(f(x)(Heaviside(x + 1) – Heaviside(x – 1)), x = -infinity … infinity)

 ( ) ( )( )
1

1

( ) 1 1 ( )f x Heaviside x Heaviside x dx f x dx

∞

−∞ −

+ − − =∫ ∫

6.2 ORTHOGONAL FUNCTIONS 

The functions fn(x) and fm(x) are orthogonal on the interval [a, b] if

 ( ) ( ) ( ) 0
b

n m

a

w x f x f x dx =∫ for m  n (6.2.1)

where w(x) is a weighting function . In addition, if 

 2 2( ) ( ) ( ) ( ) 1
b b

n m

a a

w x f x dx w x f x dx= =∫ ∫  (6.2.2)

then fn(x) and fm(x) are orthonormal . For many orthogonal functions w(x) = 1, as 
we take for the examples below. 
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6.2.1 Expansions in Orthogonal Functions 
A function u(x) may be expanded as a set of functions fn(x) orthogonal on an 
interval [a, b] 

 ( ) ( )
0

n n

n

u x c f x
∞

=

= ∑  (6.2.3)

To obtain the cn we multiply both sides by fm(x) and integrate over the interval 

 ( ) ( ) ( ) ( )
0

b b

m n n m

na a

u x f x dx c f x f x dx
∞

=

= ∑∫ ∫  (6.2.4)

 ( ) ( ) ( ) ( )
0

b b

m n n m

na a

u x f x dx c f x f x dx
∞

=

= ∑∫ ∫  (6.2.5)

The integral on the right is zero for all n  m so we have n  m only. 

 ( ) ( )
b

n n

a

c u x f x dx= ∫   (6.2.6)

If fn are not normalized then there will be a constant multiplying the integral 
above. 

6.2.2 Completeness Relation 
A set of orthogonal functions fn(x) is complete on the interval [a, b] if

 
( ) ( ) ( )

0

*n n

n

f x f x x x
∞

=

′ ′= −∑
 (6.2.7)

This is also known as the closure relation. To show this we multiply both sides by 
fm

*(x) and integrate over [a, b]

 ( ) ( ) ( ) ( ) ( )
1

* * *
b b

n n m m

na a

f x f x f x dx f x x x dx
∞

=

′ ′= −∑∫ ∫  (6.2.8)

We may factor out the sum

 ( ) ( ) ( ) ( )
1

* * *
b

n n m m

n a

f x f x f x dx f x
∞

=

′ ′=∑ ∫  (6.2.9)
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The integral on the left may be expressed as a Kronecker delta  mm 

 ( ) ( )
1

* *n mn m

n

f x f x
∞

=

′ ′=∑  (6.2.10)

where mn is zero if n  m. 

Example 6.2.1
Show that
P1(x) = x and ( ) 2

2

3 1

2 2
P x x= −  are orthogonal over the interval [1, 1]

Solution:  
1

3

1

3 1
0

2 2
x x dx

−

⎛ ⎞− =⎜ ⎟
⎝ ⎠∫  (6.2.11)

Note that odd functions integrated between symmetric limits are zero. 

Example 6.2.2
Show that sin(nx) and sin(mx) are orthogonal over the interval [, ] for n  m

Solution: For n = m the integral ( )2sin nx dx






−

=∫  (6.2.12)

Using the identity ( ) ( )1
sin sin cos cos

2
a b a b a b⎡ ⎤= − − +⎣ ⎦  for n  m 

( ) ( ) ( ) ( )

( ) ( )

1
sin sin cos cos

2

1 1 1
                                sin sin 0

2

nx mx dx n m x n m x dx

n m x n m x
n m n m

 

 




− −

−

⎡ ⎤⎡ ⎤ ⎡ ⎤= − − +⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤ ⎡ ⎤= − − + =⎢ ⎥⎣ ⎦ ⎣ ⎦− +⎣ ⎦

∫ ∫

 (6.2.13)

6.3 LEGENDRE POLYNOMIALS 

Solutions to Legendre’s differential equation 

 ( ) ( )
2

2

2
1 2 1 0

d y dy
x x y

dxdx
− − + + =   (6.3.1)
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are linear combinations of Legendre polynomials of the first kind  P(x) and 
Legendre functions of the second kind  Q(x).

 ( ) ( )y A P x B Q x= +     (6.3.2)

These polynomials and functions are encountered in potential problems in 
spherical coordinates with axial symmetry with argument x = cos. The Legendre 
functions of the second kind are ill behaved along the z-axis since ( )0Q → ∞ . 

The fi rst three Legendre polynomials are given by

 

( )
( )

( ) ( )

0

1

2
2

cos 1

cos cos

1
cos 3cos 1

2

P

P

P



 

 

=

=

= −

 (6.3.3)

6.3.1 Associated Legendre Polynomials 
Solutions to the differential equation

 ( ) ( )
2 2

2

2 2
1 2 1 0

1

d y dy m
x x y

dxdx x

⎡ ⎤
− − + + − =⎢ ⎥

−⎣ ⎦
   (6.3.4)

are linear combinations of associated Legendre polynomials of the first kind  
( )mP x  and associated Legendre functions of the second kind  ( )mQ x

 ( ) ( )m m
m my A P x B Q x= +     (6.3.5)

where the argument x  cos in spherical coordinates. They are encountered in 
potential problems without axial symmetry. The associated Legendre functions 
of the second kind become ill behaved ( )0mQ → ∞  and are discarded in potential 
problems that include the z-axis. 

6.3.2 Rodrigues’ Formulas 
Legendre polynomials for any  = 0, 1, 2,... may be computed from

 ( ) ( )21
1

2 !

d
P x x

dx
= −

 
  

 (6.3.6)

Special values for even and odd  are

 ( ) ( ) ( ) ( )/2

odd even 

1 !!
0 0,  0 1

!!
P P

−
= = − 

 



 (6.3.7)

                  ( ) ( ) ( ) ( ) 1 1,  1P P x P x= − = − 
  

 (6.3.8)
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Rodrigues’ formulas for the associated Legendre polynomials and functions are

       
2 /2

2(1 )
( ) ( 1)

2 !

m m
m

m

x d
P x x

dx

+

+

−
= −




  
 (6.3.9)

 2 /2( ) (1 ) ( )
m

m m

m

d
Q x x Q x

dx
= −   (6.3.10)

6.3.3 Generating Functions 
The coefficients of r in the Taylor expansion of the radical expression 

 

2 2 3 3

2

2 4 4

1 1 3 3 5
1

2 2 2 21 2

3 15 35

8 4 8

xr x r x r
xr r

x x r

⎛ ⎞ ⎛ ⎞= + + − + + − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠− +
⎛ ⎞+ − + +⎜ ⎟
⎝ ⎠


 (6.3.11)

are the Legendre polynomials P(x). The radical expression is known as a 
generating function where

 ( )
2

0

1

1 2
P x r

rx r

∞

=

=
− +

∑ 



 (6.3.12)

The generating function of the associated Legendre polynomials is 

 
( ) ( )

( )
( )

/2
2

1/2
2

2 ! 1

2 ! 1 2

m
m

m

m
m

m

m x r
P x r

m rx r

∞

+
=

−
=

− +
∑ 




 (6.3.13)

6.3.4 Orthogonality Relations 
Legendre polynomials and associated Legendre polynomials are orthogonal over 
the interval [–1, 1] 

 ( ) ( )
1

1

2

2 1
P x P x dx ′ ′

−

=
+∫     (6.3.14)

 ( ) ( ) ( )
( )

1

1

!2

2 1 !
m m

mm

m
P x P x dx

m
 ′

′ ′ ′
−

+
=

+ −∫   


   (6.3.15)

A series representation of the delta function  is shown as

 ( )
0

1
( ) ( )

2
x a P x P a

∞

=

⎛ ⎞− = +⎜ ⎟
⎝ ⎠

∑  


  (6.3.16)
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6.3.5 Spherical Harmonics 
Associated Legendre polynomials appear in the spherical harmonics

 

( ) ( )
( ) ( )!2 1

, cos
4 !

m m im
m

Y P e
m

  


−+
=

+ 



 (6.3.17)

describing the angular wave function of atomic orbitals. The 
mY  are orthogonal 

over the surface of a sphere

 ( ) ( ) ( )
2

0 0

, * , sinm m
mmY Y d d

 

        ′
′ ′ ′=∫ ∫     (6.3.18)

The completeness relation for spherical harmonics  is given by a double sum

 ( ) ( ) ( ) ( )
0

, * , cos cosm m

m

Y Y         
∞

= =−

′ ′ ′ ′= − −∑ ∑


 
 

 (6.3.19)

For a given value of  the sum over all possible m values is

 ( ) ( ) 2 1
, * ,

4
m m

m

Y Y   
=−

+
=∑



 


  (6.3.20)

Maple Examples
Legendre polynomials are shown to be solutions to Legendre’s differential 
equation and are plotted in the Maple worksheet below. Rodrigues’ formula 
and generating functions are used to generate the Legendre and associated 
Legendre polynomials. Integrals involving Legendre polynomials demonstrate 
orthogonality. Spherical harmonics are converted into trigonometric functions 
and plotted in 3D. Double integrals involving spherical harmonics demonstrate 
orthogonality of these functions. 

Key Maple commands: Array , conjugat e, diff , expand , int , plot , plot3d , subs , taylor 

Special functions: LegendreP , LegendreQ , SphericalY 

Programming: for loops, function statements using ‘’

restart

Legendre Polynomials

for n from 1 to 6 do expand(LegendreP(n, x)) end
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x
21 3

2 2

x
− +

35 3

2 2
x x−

4 23 35 15

8 8 4
x x+ −

5 363 35 15

8 4 8
x x x− +

6 4 25 231 315 105

16 16 16 16
x x x− + − +

B := Array(1 … 1, 1 … 5):

Plots of Legendre Polynomials

LegendreP(2,x), LegendreP(3,x), LegendreP(4,x), LegendreP(5,x)
for n from 1 to 5 do
B1, n := plot(LegendreP(n, x), x = 1 … 1, title  [LegendreP(n, x)], color = “Black”): 
end:
B

Legendre P(3, x)Legendre P(2, x)
x

–1

0.5

1

1

–1

Legendre P(5, x)Legendre P(4, x)

x
x

x

x

0.5

–0.5

0.5

1

0.5

1

0.5–1 1

–1 0.5 10

–0.5

–0.5

–1

–0.5

–1

–0.5
–1 0.5 1

–1 0.5 1–0.2

0.2

1

0.6

Figure 6.3.1: Plots of the first five Legendre polynomials. 

for n from 1 to 3 do expand(LegendreQ(n, x)) end

( ) ( )ln 1 ln 1
1

2 2

x x x x+ −
− −
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( ) ( ) ( ) ( )2 2ln 1 ln 1 3 ln 1 3 ln 1 3

4 4 4 4 2

x x x x x x x+ − + −
− + + − −

( ) ( ) ( ) ( )3 3 25 ln 1 5 ln 1 3 ln 1 3 ln 1 2 5

4 4 4 4 3 2

x x x x x x x x x+ − + −
− − + + −

Legendre’s Differential Equation

LegEqn:= (1 – x2)diff(y(x), x, x) 2xdiff(y(x), x) + (nu(nu + 1))y(x) = 0

( ) ( )
2

2

2
: 1 ( ) 2 ( ) 1 ( ) 0

d d
LegEqn x y x x y x y x

dxdx
 

⎛ ⎞ ⎛ ⎞= − + − + + =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

subs(y(x) = LegendreP(nu, x) LegEqn)

( )

( )

2
2

2
1 LegendreP( , ) 2 LegendreP( , )

1 LegendreP( , ) 0

d d
x v x x v x

dxdx

v x 

− + −

+ + =

simplify(%)

0 = 0

subs(y(x) = LegendreQ(nu, x) LegEqn)

( ) ( )
2

2

2
1 LegendreQ( , ) 2 LegendreQ( , ) 1 LegendreQ( , ) 0

d d
x v x x v x v x

dxdx
 − + − + + =

simplify(%)

0 = 0

 

( ) ( ) ( )

( )

2

2

2

: 1 ( ), , 2 ( ),

1 ( ) 0
1

LegEqnMod x diff y x x x x diff y x x

u
nu nu y x

x

= − ⋅ − ⋅ ⋅

⎛ ⎞
+ ⋅ + − ⋅ =⎜ ⎟

−⎝ ⎠

( ) ( )
2 2

2

2 2
: 1 ( ) 2 ( ) 1 ( ) 0

1

d d u
LegEqnMod x y x x y x y x

dxdx x
 

⎛ ⎞ ⎛ ⎞⎛ ⎞= − + − + + − =⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ − +⎝ ⎠ ⎝ ⎠

subs(y(x) = LegendreP(nu, u, x) LegEqnMod)

( )

( )

2
2

2

2

2

1 LegendreP( , , ) 2 LegendreP( , , )

1 LegendreP( , , ) 0
1

d d
x v u x x v u x

dxdx

u
v u x

x
 

− + −

⎛ ⎞
+ + − =⎜ ⎟

− +⎝ ⎠simplify(%)
0 = 0
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Rodrigues’ Formula: Legendre Polynomials

( ) ( )21
: , ( 1) , $

2 !

l

l
Pl l x diff x x l

l
= → ⋅ −

( )
( )2( 1)

: ,
2 !

l
l

l

l

x
xPl l x

l

∂
−

∂= →

Pl(3, x)

( )2
3 3 1

2

x x
x

−
+

Rodrigues’ Formula: Associated Legendre Polynomials

( )
( )

( )( )
22

21
: , , ( 1) , $

2 !

m

l

l

x
Plm l m x diff x x l m

l

−
= → − +

( )
( )22 2( 1) ( 1)

: , ,
2 !

m
l m

l

l m

l

x x
x

Plm l m x
l

+

+

⎛ ⎞∂
− + −⎜ ⎟

∂⎝ ⎠= →

Plm(2, 0, x)

21 3

2 2

x
− +

Plm(2, 1, x)

 23 1x x− +
Plm(2, 2, x)

3x2 3

Generating Function: Legendre Polynomials

( )2

1
, 0,5

sqrt 1 2
taylor r

r x r

⎛ ⎞=⎜ ⎟− ⋅ ⋅ +⎝ ⎠

2
2 3 3 4 2 4 51 3 5 3 35 15 3

1 ( )
2 2 2 2 8 4 8

x
xr r x x r x x r O r

⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + − + + − + − + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

Generating Function: Associated Legendre Polynomials

for m from 0 to 3 do 
( ) ( )

( )

2

1
2

2

2

2 ! 1
, 0, 4

2 ! 1 2

m

m

m
m

m x r
taylor r

m r x r
+

⎛ ⎞⋅ −⎜ ⎟=
⎜ ⎟⋅ − ⋅ ⋅ +⎝ ⎠

 end
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2
2 3 3 41 3 5 3

1 ( )
2 2 2 2

x
xr r x x r O r

⎛ ⎞ ⎛ ⎞+ + − + + − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

2
2 2 2 2 3 415 3

1 3 1 1 ( )
2 2

x
x r x xr x r O r

⎛ ⎞
− + + − + + − + − +⎜ ⎟

⎝ ⎠

 ( ) ( )2 2 2 3 43 3 15 1 ( )x r x xr O r− + + − + +

 ( )3/2
2 3 415 1 ( )x r O r− + +

Orthogonality: Legendre Polynomials

Int(LegendreP(2, x)LegendreP(3, x), x = -1 … 1) = int(LegendreP(2, 
x)LegendreP(3, x), x = -1 … 1)

 

1

1

LegendreP(2, ) LegendreP(3, ) 0x x dx

−

=∫
Int(LegendreP(3, x)LegendreP(3, x), x = -1 … 1) = int(LegendreP(3, 
x)LegendreP(3, x), x = -1 … 1)

 

1
2

1

2
LegendreP(3, )

7
x dx

−

=∫
A := Array(1 … 5, 1 … 5) :
for i from 1 to 5 do
for j from 1 to 5 do
Ai,j :  int(LegendreP(i, x)LegendreP(j, x), x  -1 … 1)
end
end
A

 

2
0 0 0 0

3
2

0 0 0 0
5

2
0 0 0 0

7
2

0 0 0 0
9

2
0 0 0 0

11

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦



304 MATHEMATICAL METHODS FOR PHYSICS USING MATLAB AND MAPLE

Converting Spherical Harmonics to Trig

for l from 0 to 5 do expand(convert(SphericalY(l, 0, , ), LegendreP)) end

1

2


( )1
3 cos

2




( )21 1
5 3 5 cos

4 4


 − +

( ) ( )31 1
5 7 cos 3 7 cos

4 4

 
 −

( ) ( )4 21 1 1
3 9 35 9 cos 15 9 cos

16 16 8

 
  + −

( ) ( ) ( )5 31 1 1
63 11 cos 35 11 cos 15 11 cos

16 8 16

  
  − +

restart

Plotting Spherical Harmonics (l=2)

l: = 2;
l: = 2;

for m from 0 to l do
plot3d(conjugate(SphericalY(l, m, theta, phi))SphericalY(l, m, theta, phi), 
phi = 0 … 2Pi, theta = 0 … Pi, coords = spherical, grid = [100, 100], title = 
[conjugate(Y(l,m))Y(l,m)] 
end



SPECIAL FUNCTIONS 305

Y(2, 0) Y(2, 0)
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Figure 6.3.2: Plots of spherical harmonic magnitudes with l = 2. 

Plotting Spherical Harmonics (m = 0)

for l from 0 to 3 do
conjugate(Y(l, 0))Y(l, 0);
plot3d(conjugate(SphericalY(l, 0, theta, phi))SphericalY(l, 0, theta, phi), phi = 0 
… 2Pi, theta = 0 … Pi, coords = spherical, grid = [200, 200]); 
end
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Y(3, 0) Y(3, 0)

0.04

0.02

0

–0.2

–0.4

0.10
0

0.05

–0.10
–0.05

–0.10
–0.05

0
0.05

Figure 6.3.3: Plots of spherical harmonic magnitudes (m=0). 

Orthogonality of Spherical Harmonics

int(int((SphericalY(2, 2, phi, theta))SphericalY(2, 1, phi, theta))sin (theta), theta 
= 0 … Pi), phi = 0 … 2Pi)
 0
int(int((SphericalY(2, 1, phi, theta))SphericalY(2, 1, phi, theta))sin (theta), theta 
= 0 … Pi), phi = 0 … 2Pi)

 
5

16

int(int((SphericalY(3, 1, phi, theta))SphericalY(2, 1, phi, theta))sin (theta), theta 
= 0 … Pi), phi = 0 … 2Pi)
 0

6.4 LAGUERRE POLYNOMIALS 

Solutions to Laguerre’s differential equation 

 ( )
2

2
1 0

d y dy
x x ny

dxdx
+ − + =  (6.4.1)

are linear combinations of Laguerre polynomials 

 ( )ny L x=  (6.4.2)   

Solutions to

 ( )
2

2
1 0

y
x m x y ny

xx

∂ ∂
+ + − + =

∂∂
 (6.4.3)
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are the associated Laguerre polynomials

 
( )m

ny L x=
 (6.4.4)   

found in the radial wavefunctions of the hydrogen atom. The first three Laguerre 
polynomials are 

 

( )
( )

( ) ( )

0

1

2
2

1

1

1
4 2

2

L x

L x x

L x x x

=

= −

= − +

 (6.4.5)   

6.4.1 Rodrigues’s Formula 
Laguerre polynomials for any n = 0, 1, 2... may be computed from

 ( ) ( )1

!

n
x n x

n n

d
L x e x e

n dx

−=  (6.4.6)

while the associated Laguerre polynomials are

 ( ) ( )1

!

n
m x m n m x
n n

d
L x e x x e

n dx

− + −=  (6.4.7)

6.4.2 Generating Function 
The coefficients of rn in the Taylor expansion 

 ( )
0

1
exp

1 1 !

n

n

n

rx r
L x

r r n

∞

=

−⎛ ⎞ =⎜ ⎟− −⎝ ⎠
∑  (6.4.8)

are proportional to Ln(x) while the ( )m
nL x  are generated by the Taylor expansion 

 ( )
( )1

0

1
exp

1 !1

n
m
nm

n

rx r
L x

r nr

∞

+
=

−⎛ ⎞ =⎜ ⎟−⎝ ⎠−
∑  (6.4.9)   

6.4.3 Orthogonality Relations 
Ln(x) and ( )m

nL x  are orthogonal over the interval [0, ) 

 ( ) ( ) ( )2

0

!x
n n nne L x L x dx n

∞
−

′ ′=∫  (6.4.10)
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with weighting function  ( ) exp( )w x x= −  and

 ( ) ( ) ( )
( )

3

0

!

!
x m m m

n n nn

n
e x L x L x dx

n m


∞
−

′ ′=
−∫  (6.4.11)   

with weighting function  ( ) ( )exp mw x x x= − . An important relation is expressed 
as

 ( ) ( ) ( )
2

1

0

!
2 1

!
x m m

n

n m
e x L x dx n m

n

∞
− + +

⎡ ⎤ = + +⎣ ⎦∫  (6.4.12)   

A series representation of the delta function is given by

 ( ) ( ) ( ) ( )/2

0

x a

n n

n

x a e L x L a
∞

− +

=

− = ∑  (6.4.13)   

Maple Examples
Laguerre polynomials are shown to be solutions to Laguerre’s differential 
equation and are plotted in the Maple worksheet below. Rodrigues’s formula and 
generating functions are used to generate the Laguerre polynomials. Integrals 
involving Laguerre polynomials demonstrate orthogonality. 
Key Maple commands: Array , diff , expand , int , plot , simplify , subs , taylor 
Special functions: LaguerreL 
Programming: for loops, function statements using ‘’

restart

Laguerre Polynomials
for n from 0 to 6 do simplify(LaguerreL(n, x)) end

1

1 – x

21
1 2

2
x x− +

2 33 1
1 3

2 6
x x x− + −

2 3 42 1
1 4 3

3 24
x x x x− + − +

2 3 4 55 5 1
1 5 5

3 24 120
x x x x x− + − + −

2 3 4 5 615 10 5 1 1
1 6

2 3 8 20 720
x x x x x x− + − + − +
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Plots of Laguerre Polynomials

B := Array(1 … 1, 1 … 5) :
for m from 1 to 5 do
B1, m := plot(simplify(LaguerreL(m, x), x  0 … 6, title = [LaguerreL(m, x)], color 
“Black”): end:
B

Laguerre L(1, x) Laguerre L(2, x) Laguerre L(3, x)

Laguerre L(4, x) Laguerre L(5, x)

x x

x

x x

–5
–4
–3
–2

–1
0

1

1 2 3 4 5 6 1 2 3 4 5 6

1 2 3 4 5 61 2 3 4 5 6

1 2 3 4 5 6

1

2

0

5

7

–1

1
3

–5
–4

1
0

–3

–2
–1

1

0

–3

–2

–1

Figure 6.4.1: Plots of the first five Laguerre polynomials.

restart
n : = 1

n : = 1

Laguerre’s Differential Equation

LagEqn:= xdiff(y(x), x, x) + (1 – x)diff(y(x), x) + ny(x)= 0

 ( )
2

2
: ( ) 1 ( ) ( ) 0

d d
LagEqn x y x x y x y x

dxdx

⎛ ⎞ ⎛ ⎞= + − + =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

subs(y(x) = LaguerreL(n, x), LagEqn)

 ( )
2

2
LaguerreL(1, ) 1 LaguerreL(1, ) LaguerreL(1, ) 0

d d
x x x x x

dxdx
+ − + =

simplify(%)
0 = 0
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Rodrigues’ Formula

( ) ( )exp( )
: , exp( ), $

!
nx

Ln n x diff x x x n
n

⎛ ⎞
= → ⋅ ⋅ −⎜ ⎟

⎝ ⎠

( )
( )

: ,
!

n
x n x

n
e x e

x
Ln n x

n

−⎛ ⎞∂
⎜ ⎟

∂⎝ ⎠= →

expand(Ln(3, x))

3 21 3
3 1

6 2
x x x− + − +

Generating Function
1

exp , 0,3
1 1

r x
taylor r

r r

⎛ ⎞⋅⎛ ⎞⋅ =⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠

( ) 2 2 31
1 1 2 1 ( )

2
x r x x r O r

⎛ ⎞+ − + − + +⎜ ⎟
⎝ ⎠

Orthogonality

w := (x)  exp(-x)
Int(w(x)(LaguerreL(2, x)LaguerreL(3, x), x = 0 … infinity) = int(exp(-x)
(LaguerreL(2, x)LaguerreL(3, x), x = 0 … infinity)

-

0

LaguerreL(2, ) LaguerreL(3, ) 0xe x x dx

∞

=∫
Int(w(x)(LaguerreL(3, x)LaguerreL(3, x), x = 0 … infi nity) = int(exp(-x)
(LaguerreL(3, x)LaguerreL(3, x), x = 0 … infi nity)

- 2

0

LaguerreL(3, ) 1xe x dx

∞

=∫
A := Array(1 … 5, 1 … 5) :
for i from 1 to 5 do
for j from 1 to 5 do
Ai,j : = int(w(x)LaguerreL(i, x)LaguerreL(j, x), x = 0 … infinity)
end
end
A
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1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

6.5 HERMITE POLYNOMIALS 

The solution to Hermite’s differential equation    

 
2

2
2 2 0

d y dy
x ny

dxdx
− + =  (6.5.1)

is a linear combination of Hermite polynomials,

 y = Hn(x) (6.5.2)

These polynomials are encountered in quantum mechanical problems such as the 
simple harmonic oscillator.  

The fi rst three Hermite polynomials are 

 
( )
( )
( )

0

1

2
2

1

2

4 2

H x

H x x

H x x

=

=

= −

 (6.5.3)

6.5.1 Rodrigues’ Formula 
The following Rodrigues formula may be used to obtain Hn(x) 

 ( )2 2

( ) ( 1)
n

n x x
n n

d
H x e e

dx

−= −  (6.5.4)

for any n = 0, 1, 2... . Useful relations for even and odd n include 

 odd 

/2 /2
even 

(0) 0

 H (0) ( 1) (2) ( 1)!!

n

n n
n

H

n

=

= − −
 (6.5.5)

  ( ) ( 1) ( )n
n nH x H x− = −  (6.5.6)

6.5.2 Generating Function 
Coefficients of rn in the Taylor expansion of the exponential function 

 
( )22

0 !

n
nrx r

n

H x r
e

n

∞
−

=

= ∑  (6.5.7)

are proportional to Hn(x).
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6.5.4 Orthogonality 
The Hn(x) are orthogonal over the interval (, ) 

 ( ) ( )2

2 !x n
n n nne H x H x dx n 

∞
−

′ ′
−∞

=∫  (6.5.8)

with weighting function  w(x) = exp(x2).
A series representation of the delta function  is shown as 

 ( )
( )

( ) ( )
2 2 /2

0

1

2 !

x a

n nn
n

e
x a H x H a

n




− + ∞

=

− = ∑  (6.5.9)

Maple Examples
Hermite polynomials are shown to be solutions to Hermite’s differential equation 
and are plotted in the Maple worksheet below. Rodrigues’ formula and generating 
functions are used to generate the Hermite polynomials. Integrals involving 
Hermite polynomials demonstrate orthogonality. 
Key Maple commands: Array , diff , expand , int , plot , simplify , subs , taylor 
Maple packages: with(orthopoly ):
Special functions: HermiteH 
Programming: for loops, function statements using ‘’

restart

Hermite Polynomials

with(orthopoly)
for m from 1 to 10 do expand(HermiteH(m, x)) end

2x

4x2  2
8x3 – 12x

16x4  48x2 + 12
32x5  160x3 + 120x

64x6  480x4 + 720x2  120
128x7  1344x5 + 3360x3  1680x

256x8  3584x6 + 13440x4  13440x2 + 1680
512x9  9216x7 + 48384x5  80640x3 + 30240x

1024x10  23040x8 + 161280x6  403200x4 + 302400x2  30240 

Plots of Hermite Polynomials

B := Array(1 … 1, 1 … 5) :
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for m from 1 to 5 do
B1, m := plot(HermiteH(m, x), x = 2 … 2, title = [HermiteH(m, x)], color = “Black”): 
end:
B

 
Hermite H(1, x)

x

x
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–4

2
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Figure 6.5.1: Plots of the first five Hermite polynomials.

Hermite’s Differential Equation

m : = 3
m : = 3

dEqn:= diff(y(x), x, x) – 2xdiff(y(x), x) + 2my(x)= 0

 

2

2
: ( ) 2 ( ) 6 ( ) 0

d d
dEqn y x x y x y x

dxdx

⎛ ⎞= − + =⎜ ⎟
⎝ ⎠

subs(y(x) = HermiteH(m, x), dEqn)

 
2

2
HermiteH(3, ) 2 HermiteH(3, ) 6HermiteH(3, ) 0

d d
x x x x

dxdx
− + =

expand(simplify(%))
0 = 0
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Rodrigues’ Formula

Hn := (n,x)  ((-1)n exp(x2)diff(exp(x2), x$n))

 ( ) ( ) 2 2

: , 1
n

n x x

n
Hn n x e e

x

−⎛ ⎞∂
= → − ⎜ ⎟

∂⎝ ⎠
expand(Hn(3, x))

 8x3 – 12 x

Generating Function

taylor(exp(2rx – r2), r = 0, 5)

 ( )2 2 3 3 2 4 4 54 1 2
1 2 2 1 2 2 ( )

3 2 3
xr x r x x r x x r O r

⎛ ⎞ ⎛ ⎞+ + − + − + − + + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

Orthogonality Relations

w := (x)  exp(-x2)
2

: xw x e−= →

Int(w(x)(HermiteH(1, x)HermiteH(3, x), x = -infinity … infinity) = 
int(w(x)HermiteH(1, x)HermiteH(3, x), x = -infinity … infinity)

 
2- HermiteH(1, ) HermiteH(3, ) 0xe x x dx

∞

−∞

=∫
int(w(x)HermiteH(1, x)HermiteH(3, x), x = -infinity … infinity)

0
A := Array(1 … 5, 1 … 5) :
for i from 1 to 5 do
for j from 1 to 5 do
Ai,j : = int(w(x)HermiteH(i, x)HermiteH(j, x), x  infinity … infinity)
end
end
A

 

2 0 0 0 0

0 8 0 0 0

0 0 48 0 0

0 0 0 384 0

0 0 0 0 3840











⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦
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6.6 BESSEL FUNCTIONS

The solution to Bessel’s differential equation 

 
2

2 2 2

2
( ) 0

d y dy
x x x n y

dxdx
+ + − =  (6.6.1)

is a linear combination of Bessel functions of the first kind Jn(x) and the second 
kind Nn(x) 

 
( ) ( )n n n ny A J x B N x= +

 (6.6.2)

These functions have applications in the vibrations of circular membranes, 
heat conduction in circular plates and electromagnetic problems in cylindrical 
coordinates. The Bessel functions of the second kind are ill behaved along the 
z-axis where Nn(0)   and are discarded in regions including the z-axis. 

6.6.1 Modifi ed Bessel Functions 
The solution to Bessel’s modified differential equation 

 
2

2 2 2

2
( ) 0

d y dy
x x x n y

dxdx
+ − + =  (6.6.3)

is a linear combination of modified Bessel functions of the first kind In(x) and the 
second kind Kn(x).

 ( ) ( )n n n ny A I x B K x= +  (6.6.4)

The Bessel functions of the second kind are ill behaved along the z-axis where  
Kn(0)  and are discarded in regions including the z-axis. 

6.6.2 Generating Function 
The coefficients of rn in the Taylor expansion of the generating function

 ( )1/ /2
( )

x r r n
n

n

e J x r
∞

−

=−∞

= ∑  (6.6.5)

are the Bessel functions Jn(x). A similar generating function for the modified 
Bessel functions In(x) is given by

 
( )1/ /2

( )
x r r n

n

n

e I x r
∞

+

=−∞

= ∑  (6.6.6)
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6.6.3 Spherical Bessel Functions 
Solutions to the radial part of the Helmholtz equation in spherical coordinates 

 ( )
2

2 2

2
2 1 0

d y dy
x x x y

dxdx
⎡ ⎤+ + − + =⎣ ⎦   (6.6.7)

are linear combinations of spherical Bessel functions of the first kind j(x) and of 
the second kind n(x)

 ( ) ( )y A j x B n x= +     (6.6.8)

These are related to the cylindrical Bessel functions 

 1/2( ) ( )
2

j x J x
x


+=   (6.6.9)

 1/2( ) ( )
2

n x N x
x


+=   (6.6.10)

6.6.4 Rayleigh Formulas 
Given the  = 0 forms

  
0 0

sin cos
( ) and ( )

x x
j x n x

x x
= = −   (6.6.11)

subsequent spherical Bessel functions may be obtained using the Rayleigh 
formulas

 
1 sin

( ) ( )
d x

j x x
x dx x

⎛ ⎞ ⎛ ⎞= − ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠




  (6.6.12)

 
1 cos

( ) ( )
d x

n x x
x dx x

⎛ ⎞ ⎛ ⎞= − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠




  (6.6.13)

6.6.5 Generating Functions
Spherical Bessel functions are also generated by Taylor expansions of the 
following functions

 ( )2
1

0

1 ( )
sin 2 ( )

!

r
x rx j x

x

∞

−
=

−
− = ∑




 

 (6.6.14)

 ( )2
1

0

1 ( )
sin 2 ( )

!

r
x rx n x

x n

∞

−
=

−
+ = ∑






 (6.6.15)
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6.6.6 Useful Relations
In cylindrical coordinates, the delta function  is represented by

 ( ) ( ) ( )
0

1
m mr r kJ kr J kr dk

r


∞

′ ′− = ∫  (6.6.16)

The inverse magnitude of the position vector is

 
( ) ( ) ( )

0

1 k z zim

m m

m

ke J kr J kr e dk
 

∞∞
′′ − −−

=−∞

′=
′− ∑ ∫r r

 (6.6.17)

Integral representation of Bessel functions  include

 
0

0

1
( ) cos( sin )J x x d



 


= ∫  (6.6.18)

 
0

1
( ) cos( sin ) 1,2,3nJ x n x d n



  


= − =∫    (6.6.19)

Maple Examples
Bessel and Hankel functions are shown to be solutions to their respective 
differential equations and are plotted in the Maple worksheet below. The zeros 
of Bessel functions are calculated. Spherical Bessel functions are generated using 
Rayleigh formulas and are plotted together. 
Key Maple commands: diff , display , dsolve , evalf , expand , plot , pointplot , simplify , 
subs 
Maple packages: with(orthopol y): with(plots ):
Special functions: BesselJ , BesselJZero s, BesselY , BesselI,  BesselK , HankelH1 , 
HankelH2 

restart

with(orthopoly)

 [G, H, L, P, T, U]

Bessel Functions

BesselEqn:= x2diff(y(x), x, x) + xdiff(y(x), x) + (x2 v2)y(x)= 0

 ( )
2

2 2 2

2
: ( ) ( ) ( ) 0

d d
BesselEqn x y x x y x v x y x

dxdx

⎛ ⎞ ⎛ ⎞= + + − + =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

subs(y(x) = BesselJ(nu, x), BesselEqn)
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 ( )
2

2 2 2

2
BesselJ( , ) BesselJ( , ) BesselJ( , ) 0

d d
x v x x v x v x v x

dxdx
+ + − + =

simplify(%)
0 = 0

subs(y(x) = BesselY(nu, x), BesselEqn)

 ( )
2

2 2 2

2
BesselY( , ) BesselY( , ) BesselY( , ) 0

d d
x v x x v x v x v x

dxdx
+ + − + =

simplify(%)
0 = 0

Modified Bessel Functions

BesselEqnMod:= x2diff(y(x), x, x) + xdiff(y(x), x)  (x2 + y2)y(x)= 0

 ( )
2

2 2 2

2
: ( ) ( ) ( ) 0

d d
BesselEqnMod x y x x y x v x y x

dxdx

⎛ ⎞ ⎛ ⎞= + − + =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

subs(y(x) = BesselI(nu, x), BesselEqnMod)

 ( )
2

2 2 2

2
BesselI( , ) BesselI( , ) BesselI( , ) 0

d d
x v x x v x v x v x

dxdx
+ − + =

simplify(%)
0 = 0

subs(y(x) = BesselK(nu, x), BesselEqnMod)

 

( )
2

2 2 2

2
BesselK( , ) BesselK( , ) BesselK( , ) 0

d d
x v x x v x v x v x

dxdx
+ − + =

simplify(%)
0 = 0

Hankel Functions

subs(y(x) = HankelH1(nu, x), BesselEqn)

 ( )
2

2 2 2

2
HankelH1( , ) HankelH1( , ) HankelH1( , ) 0

d d
x v x x v x v x v x

dxdx
+ + − + =

simplify(%)
0 = 0
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subs(y(x) = HankelH2(nu, x), BesselEqn)

( )
2

2 2 2

2
HankelH2( , ) HankelH2( , ) HankelH2( , ) 0

d d
x v x x v x v x v x

dxdx
+ + − + =

plot([seq(BesselJ(nu, x), nu = 0 … 3)], x = 0 … 20, legend = [J0, J1, J2, J3], linestyle 
= [solid, dash, dashdot, dot]):

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

5 10 15 20
x

J0

J1

J2
J3

Figure 6.6.1: Plots of the first four Bessel functions of the first kind.  

Zeros of Bessel Functions

BesselJZeros(3, 1 … 5)
BesselJZeros(3, 1 … 5)

evalf(%)
6.380161896. 9.761023130, 13.01520072, 16.22346616, 19.40941523

with(plots):
p1:= pointplot({seq([evalf(BesselJZeros(3, n)), 0], n = 0 … 5)}):
p2:= plot(BesselJ(3, x), x = 0 … 20):
display(p1, p2)
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–0.2

–0.1

0

0.1

0.2

0.3

0.4

5 10 15 20

x

Figure 6.6.2: Plots of the Bessel functions J3 and its zeros.

Spherical Bessel Functions

sphBessEqn:= r2diff(y(r), r, r) + 2rdiff(y(r), r) + (r2 l(l + 1))y(r)= 0

 ( )( )
2

2 2

2
: ( ) 2 ( ) 1 ( ) 0

d d
sphBessEqn r y r r y r r l l y r

drdr

⎛ ⎞ ⎛ ⎞= + + − + =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

dsolve(sphBessEqn)

 

( ) ( )1 4 1 1 4 1
_ BesselJ , _ BesselY ,

2 2( )

l l l l
C1 r C 2 r

y r
r r

⎛ ⎞ ⎛ ⎞+ + + +
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠= +

Spherical Bessel Functions: Rayleigh Formulas

[ ] sin( )
0 :

x
j

x
=

[ ] sin( )
0 :

x
j

x
=

for l from 1 to 3 do [ ] [ ]( )1
: 1 ,j l simplify diff j l x

x

⎛ ⎞= ⋅ −⎜ ⎟
⎝ ⎠

 end

for l from 1 to 3 do expand(j[l](-x)l) end

sin( )x

x
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2

cos( ) sin( )x x

x x
− +

2 3

sin( ) 3cos( ) 3sin( )x x x

x x x
− − +

2 3 4

cos( ) 6sin( ) 15cos( ) 15sin( )x x x x

x x x x
− − +

[ ] cos( )
0 :

x
n

x
= −

[ ] cos( )
0 :

x
n

x
= −

for l from 1 to 3 do [ ] [ ]( )1
: 1 ,n l simplify diff n l x

x

⎛ ⎞= ⋅ −⎜ ⎟
⎝ ⎠

 end:

for l from 0 to 3 do expand(n[l](-x)l) end

cos( )x

x
−

2

sin( ) cos( )x x

x x
− −

2 3

cos( ) 3sin( ) 3cos( )x x x

x x x
− −

2 3 4

sin( ) 6cos( ) 15sin( ) 15cos( )x x x x

x x x x
+ − −

Spherical Bessel Function Plots

plot([j[0], j[1], j[2], j[3]], x = 0 … 15, title  = ‘Spherical Bessel Functions’, legend = 
[j0, j1, j2, j3], linestyle = [solid, dash, dashdot, dot]):
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Spherical Bessel Functions

x

1.0

0.8

0.6

0.4

0.2

0

–0.2

5 10 15

j
0

j
1

j
2

j
3

Figure 6.6.3: Plots of the spherical Bessel functions of the first kind.   

plot([n[0], n[1], n[2], n[3]], x = 0 … 15, x = -2 … 2, title  = ‘Spherical Bessel 
Functions’, legend = [n0, n1, n2, n3], linestyle = [solid, dash, dashdot, dot]):

Spherical Bessel Functions

0

–2

8 10 14

n
0

y

–1

1

2

12642

n
1

n
2

n
3

x

Figure 6.6.4: Plots of the spherical Bessel functions of the second kind.   

6.7 MATLAB EXAMPLES

Several special functions common in physics are plotted together in this section.
Key MATLAB commands: besselj , hermiteH , laguerreL , legendreP , plot 
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Section 6.3 Legendre Polynomials
The following example plots the first four Legendre polynomials on the same 
graph. Code is entered into a script file ‘legendre.m’ and executed at the Command 
Prompt by typing 

>> legendre

x=-1:0.05:1;

LagP0=legendreP(0,x);

LagP1=legendreP(1,x);

LagP2=legendreP(2,x);

LagP3=legendreP(3,x);

plot(x,LagP0,'-k',x,LagP1,':k',x,LagP2,'-.k',x,LagP3,'--

k','LineWidth',2)

legend('P0(x)','P1(x)','P2(x)','P3(x)')

xlabel('x')

–1 0.20
x

0.4 0.6 0.8–0.2–0.4–0.6–0.8

–1

–0.8

–0.6

–0.4

–0.2

0.2

0

0.4

0.6

0.8

1

1

P1(x)

P2(x)

P3(x)

P0(x)

Figure 6.7.1: Plot of Legendre polynomials.   

Section 6.4 Laguerre Polynomials
The following example plots the first four Laguerre polynomials on the same 
graph. Code is entered into a script file ‘Laguerre.m’ and executed at the Command 
Prompt by typing 

>> Laguerre

x=-1.5:.1:5;

L0=laguerreL(0,x);

L1=laguerreL(1,x);

L2=laguerreL(2,x);

L3=laguerreL(3,x);

plot(x,L0,'-k',x,L1,':k',x,L2,'-.k',x,L3,'--k','LineWidth',2)

legend('L0(x)','L1(x)','L2(x)','L3(x)')

xlabel('x')



SPECIAL FUNCTIONS 325

10

L0(x)

L1(x)

L2(x)

L3(x)

8

6

4

2

0

–2

–4

–1 20 31 4 5x–2

Figure 6.7.2: Plot of Laguerre polynomials.   

Section 6.5 Hermite Polynomials
The following example plots the first four Hermite polynomials on the same 
graph. Code is entered into a script file ‘hermite.m’ and executed at the Command 
Prompt by typing 

>> hermite

x=-1.5:.1:1.5;

H0=hermiteH(0,x);

H1=hermiteH(1,x);

H2=hermiteH(2,x);

H3=hermiteH(3,x);

plot(x,H0,'-k',x,H1,':k',x,H2,'-.k',x,H3,'--k','LineWidth',2)

legend('H0(x)','H1(x)','H2(x)','H3(x)')

title('Hermite polynomials')

xlabel('x')

Hermite Polynomials

10

x

H0(x)
H1(x)

H2(x)

H3(x)

8

6

4
2

0

–2

–4

–6

–8

–10

–1.5 –1 –0.5 0 0.5 1 1.5

Figure 6.7.3: Plot of Hermite polynomials.
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Section 6.6 Bessel Functions
The following example plots the first four Bessel function of the first kind on the 
same graph. Code is entered at the Command Line. 

>> x=0:.1:15;

>> plot(x,besselj(0,x),'-k',x,besselj(1,x),':k',x,besselj(2,x),'-

.k',x,besselj(3,x),'--k','LineWidth',2)

>>  legend('J0(x)','J1(x)','J2(x)','J3(x)')

>> title('Bessel functions')

>> xlabel('x')

Bessel Functions

5 10 150

1

0.5

0

–0.5

x

J0(x)

J1(x)
J2(x)

J3(x)

Figure 6.7.4: Plot of Bessel functions.    

6.8 EXERCISES

Section 6.1 Dirac Delta Function

1. Evaluate ( ) ( )i kx te x a dx 
∞

−

−∞

−∫
2. Use integration by parts to show that ( ) ( ) ( )f x x a dx f a

∞

−∞

′ ′− = −∫
3. Given a charged spherical shell is described by 

2
( ) ( )

4

Q
r r a

a
 


= −  in 

spherical coordinates, show that the volume integral
vol

( )r dv Q =∫

4. Given the vector field defined by 
( )

3

vol

( )
( )

i t
e dv

′⋅ − ′− ′=
′−∫ k r r r

F r
r r

 calculate ∇⋅F
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5. Given the scalar field defined by the integral ( )
( )

vol

i t
e

G dv
′⋅ −

′=
′−∫

k r

r
r r

 calculate 
2 ( )G∇ r

6. Show that 3

1 ′−
∇ = −

′− ′−

r r

r r r r
 in Cartesian coordinates

7. Evaluate ( 2)
d

x
dx

Θ +

8. Plot the functions

(a) ( 1) ( 3)x xΘ + − Θ −

(b) 
2

e ( 1)x x− Θ +

(c) sin( )
2 2

x x x
 ⎡ ⎤⎛ ⎞ ⎛ ⎞Θ + − Θ −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦

Section 6.2 Orthogonal Functions
9. Test if sin(x) and cos(2x) are orthogonal over the interval x = [, ]

10. Test if ei3 and ei2 are orthogonal over the interval  = [0, 2]

11. Test if 
3

sin
x

L

⎛ ⎞
⎜ ⎟
⎝ ⎠

 and 
2

sin
x

L

⎛ ⎞
⎜ ⎟
⎝ ⎠

 are orthogonal over the interval x = [0, L]

12. Test if ex and cos(x) are orthogonal over the interval x = [0, 2]

13. Test if x and 
2

1

1 x−
 are orthogonal over the interval x = [1, 1]

Section 6.3 Legendre Polynomials

14. Calculate the first three Legendre polynomials from the Rodrigues formula 

( ) ( )21
1

2 !

l
l

l l

d
P x x

dxl

⎛ ⎞= −⎜ ⎟
⎝ ⎠

15. Calculate the following integrals involving Legendre polynomials

( ) ( )2

0

cos cos sinP d



    ∫

( ) ( )2 3

0

cos cos sinP P d



   ∫

( ) ( )3 3

0

cos cos sinP P d



   ∫
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( ) ( )3
00

cos cos sinP P d



   
∞

=

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭
∑∫ 


( ) ( )
00

cos 1 cos sin
R

P d
r



   
∞

=

⎧ ⎫⎛ ⎞⎪ ⎪ +⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∑∫





( ) ( )
00

cos cos sin
R

P d
r



    
∞

=

⎧ ⎫⎛ ⎞⎪ ⎪
⎨ ⎬⎜ ⎟

⎝ ⎠⎪ ⎪⎩ ⎭
∑∫






16. Show that 

( ) ( )0 2
2

1 5
, 3cos 1

4
Y   


= −  and ( ) ( )1 2

2

1 5
, 3cos 1

4
iY e   


± ±= −

are orthogonal over the surface of a sphere (hint: do the  integration fi rst)

17. Show orthogonality between

( ) ( )0 2
2

1 5
, 3cos 1

4
Y   


= −   and ( )0

1

1 3
, cos

2
Y   


=

over the surface of a sphere.

18. Show that the relation ( ) ( ) ( ) ( ) ( )1 11 2 1 0P x xP x P x+ −+ − + + =      is 

satisfied  for  = 2 by substituting P1(x), P2(x) and P3(x) 

19.  Show that y = P2(x) is a solution to ( ) ( )
2

2

2
1 2 2 2 1 0

d y dy
x x y

dxdx
− − + + =

20. Expand ( )f x x=  as a series of Legendre polynomials over the interval 
[-1, 1]

Section 6.4 Laguerre Polynomials

21. Calculate the following integrals involving Laguerre polynomials

1 2

0

( ) ( )xe L x L x dx

∞
−∫

2
1

0

( )xe L x dx

∞
−∫

22. Use Rodrigues’ formula ( ) ( )1

!

n
x n x

n n

d
L x e x e

n dx

−=  to compute Laguerre 

polynomials for 0,1,2n =
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23. Show that ( ) ( ) ( )1 1 0n n nL x nL x nL x− −′ ′− + =  is satisfied substituting L1(x) and 
L2(x).

24. Show that y = L2(x)is a solution to ( )
2

2 2
22

1 2 0
d L dL

x x L
dxdx

+ − + = .

25. Expand f(x) = xex as a series of Laguerre polynomials for 0x ≥ . 

Section 6.5 Hermite Polynomials

26. Compute the following integrals involving Hermite polynomials

2

1 2( ) ( )xe H x H x dx

∞
−

−∞
∫

2 2
1( )xe H x dx

∞
−

−∞
∫

27. Use Rodrigues’ formula 
2 2

( ) ( 1) ( )
n

n x x
n n

d
H x e e

dx

−= −  to compute several 
Hermite polynomials 

28. Show that the relation ( ) ( ) ( )1 12 2 0n n nH x xH x nH x+ −− + =  is satisfied by 
H3(x), H2(x) and H1(x). 

29. Show that y = H2(x) is a solution to 2 4 0y xy y′′ ′− + =
30. Expand 

2

( ) cos( ) xf x x e−=  as a series of Hermite polynomials. 

Section 6.6 Bessel Functions

31. Plot the asymptotic form of several Bessel functions. Compare the asymptotic 
forms with plots of the Bessel functions displayed together

2
( ) cos

2 4n

n
J x x

x

 


⎛ ⎞≈ − −⎜ ⎟
⎝ ⎠

 for large x.

32. Create a plot of J4(x) and display zeros of the function on the same graph

33. Show that y = J2(x) is a solution to 2 2( 4) 0x y xy x y′′ ′+ + − =
34. Evaluate the following integrals involving Bessel functions

0

( )nJ x dx
∞

∫

1

0

1
( )J x dx

x


∞

∫

2

0

1
( )J x dx

x


∞

∫
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7Chapter

FOURIER SERIES 
AND TRANS-
FORMATIONS

Chapter Outline
7.1 Fourier Series

7.2 Fourier Transforms

7.3 Laplace Transforms

7.1 FOURIER SERIES 

In this section, Fourier series are introduced, including the Fourier cosine, sine 
and exponential series. A periodic function f(x) with period 2L may be expanded 
as an infinite sum of sine and cosine functions that form a complete set of 
orthogonal functions over the interval [L, L]

 
0

1

( ) cos sin
2

n n

n

a n x n x
f x a b

L L

 ∞

=

⎡ ⎤⎛ ⎞ ⎛ ⎞= + +⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦

∑  (7.1.1)

where the coefficients

 
1

( )cos
L

n

L

n x
a f x dx

L L



−

⎛ ⎞= ⎜ ⎟
⎝ ⎠∫  (7.1.2)
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1

( )sin
L

n

L

n x
b f x dx

L L



−

⎛ ⎞= ⎜ ⎟
⎝ ⎠∫  (7.1.3)

 
0

1
( )

L

L

a f x dx
L

−

= ∫  (7.1.4)

The a0 term represents a “dc offset” that shifts the function up or down. The 
Fourier series converges to f(x) at points where the function is continuous. The 
series converges to the average value of f(x) at points of discontinuity. If the 
interval is instead [0, 2L] then the integral limits are simply from zero to 2L.

Example 7.1.1
Write integral expressions for the Fourier coefficients of function f(t) with period 
T.

Solution: The Fourier series is

 0

1

2 2
( ) cos sin

2
n n

n

a n t n t
f t a b

T T

 ∞

=

⎡ ⎤⎛ ⎞ ⎛ ⎞= + +⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦

∑  (7.1.5)

For an interval [T/2, T/2] the coeffi cients are

 
/2

/2

2 2
( )cos

T

n

T

n t
a f t dt

T T



−

⎛ ⎞= ⎜ ⎟
⎝ ⎠∫  (7.1.6)

 

/2

/2

2 2
( )sin

T

n

T

n t
b f t dt

T T



−

⎛ ⎞= ⎜ ⎟
⎝ ⎠∫  (7.1.7)

 

/2

0

/2

2
( )

T

T

a f t dt
T

−

= ∫  (7.1.8)

These coefficients are often expressed in terms of angular frequency   2/T

 
/

/

( )cos( )na f t n t dt

 

 





−

= ∫  (7.1.9)

 
/

/

( )sin( )nb f t n t dt

 

 





−

= ∫  (7.1.10)

 
/

0

/

( )a f t dt

 

 




−

= ∫  (7.1.11)
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7.1.1 Fourier Cosine Series 
An even periodic function f(x)  f(x) may be expanded as an infinite series of 
cosine functions

 
( )

0

cosn

n

n x
f x a

L

∞

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑
 (7.1.12)

with coefficients

 1
( )cos

L

n

L

n x
a f x dx

L L



−

⎛ ⎞= ⎜ ⎟
⎝ ⎠∫  for 1,2,3n =   (7.1.13)

and

 0

1
( )

2

L

L

a f x dx
L

−

= ∫  (7.1.14)

Example 7.1.2
Find the Fourier coefficients an corresponding to cosine series of the function 

 f(x)  x2 (7.1.15) 

with period 2 over the interval [, ] 

Solution: ( )2

2

1 4
cos( ) 1

n

na x nx dx
n






−

= = −∫  for  1,2,3n =   (7.1.16)

and

 

2
2

0

1

2 3
a x dx








−

= =∫  (7.1.17)

7.1.2 Fourier Sine Series 
An odd periodic function f(x)  f(x) may be expanded as a series of sine functions

 
1

( ) sinn

n

n x
f x b

L

∞

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑  (7.1.18)

over the interval [L, L] where the coefficients

 
1

( )sin
L

n

L

n x
b f x dx

L L



−

⎛ ⎞= ⎜ ⎟
⎝ ⎠∫  (7.1.19)
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Example 7.1.3
Find the Fourier coefficients bn corresponding to the sine series of the function 

 ( )
1 0

     
1 0

x
f x

x





− − ≤ <⎧⎪= ⎨ < ≤⎪⎩
 (7.1.20)

with period 2 over the interval [, ] 

Solution:                  
0

0

1 1
sin( ) sin( )nb nx dx nx dx




 

−

= − +∫ ∫  (7.1.21)

 
0

0

1 1 1 1
cos( ) cos( )nb nx nx

n n



 −
= −  (7.1.22)

 ( )( )2
1 1

n

nb
n

= − −  (7.1.23)

 
4

nb
n

=  for 1,3,5n =   (7.1.24)

7.1.3 Fourier Exponential Series 
The Fourier series may be expressed more compactly using complex exponentials. 
A function of time f(t) with period T is expanded as

 
2

( ) expn

n

n
f t a i t

T

∞

=−∞

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑  (7.1.25)

where the an are now complex. Multiplying both sides by 
2

exp
n

i t
T

 ′⎛ ⎞−⎜ ⎟
⎝ ⎠

 and 
integrating over the interval [T/2, T/2].

 
/2 /2

/2 /2

2 2 2
( )exp exp exp

T T

n

nT T

n n n
f t i t dt a i t i t dt

T T T

  ∞

=−∞− −

′ ′⎛ ⎞ ⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∑∫ ∫  (7.1.26)

Bringing the sum outside of the integral and combining exponentials on the right

 
( )/2 /2

/2 /2

22
( )exp exp

T T

n

nT T

n nn
f t i t dt a i t dt

T T

 ∞

=−∞− −

′⎛ ⎞−′⎛ ⎞ = ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
∑∫ ∫  (7.1.27)

Evaluating the integral on the right

 

( )
( ) ( )( ) ( )( )

/2

/2

2
exp exp exp

2

T

T

n n T
i t dt i n n i n n

T i n n


 


−

′⎛ ⎞−
⎡ ⎤′ ′= − − − −⎜ ⎟ ⎣ ⎦⎜ ⎟ ′−⎝ ⎠

∫
 (7.1.28)
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( ) ( )

( )
/2

/2

2 sin
exp

T

nn

T

n n n n
i t dt T T

T n n

 


 ′
−

′ ′⎛ ⎞− −
= =⎜ ⎟⎜ ⎟ ′−⎝ ⎠

∫  (7.1.29)

Thus, the complex an are 

 

/2

/2

1 2
( )exp

T

n

T

n
a f t i t dt

T T



−

⎛ ⎞= −⎜ ⎟
⎝ ⎠∫  (7.1.30)

or in terms of angular frequency   2/T

 ( )
/

/

( )exp
2

na f t in t dt

 

 





−

= −∫  (7.1.31)

Maple Examples
Even and odd functions are expanded in Fourier cosine and sine series in the 
Maple worksheet below. The Fourier series expansion is demonstrated for a 
function that is neither even nor odd. Examples of expansions in terms of Hermite 
and Legendre polynomials are given.  
Key Maple commands: int , piecewise , plot , sum 
Special functions: HermiteH , LegendreP 
Programming: for loops, function statements using ‘ → ’

restart

with(plots):

Fourier Sine Series (Odd Functions)

fodd : (x)  x3cos(x)

 fodd : (x)  x3·cos(x)

( )2
: int ( ) sin( ), Pi Pi

2 Pi
b n fodd x n x x

⎛ ⎞= → ⋅ ⋅ ⋅ = −⎜ ⎟
⋅⎝ ⎠



 

( )sin( )

:

fodd x nx dx

b n






−=
∫



B : Array(1 … 1, 1 … 3) :
f_sinseries : (x, N)  sum(b(n)sin(nx), n  1 … N):
for m from 1 to 3 do
N :  m3:
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B1, m : plot([fodd(x), f_sinseries(x, N)], x  Pi … Pi, legend  [function, sine 
series(N terms)], linestyle  [dash, solid]):
end do:

display(B)
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 Figure 7.1.1: Fourier sine series plots. 

Fourier Cosine Series (Even Functions)

feven : (x)  abs(x)exp(x2)

2

: xfeven x x e−= 

( )1
: int ( ) cos( ), Pi Pi ;

Pi
a n feven x n x x

⎛ ⎞= → ⋅ ⋅ ⋅ = −⎜ ⎟
⎝ ⎠
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( )cos( )
:

feven x nx dx
a n






−= ∫

( ) ( )(0)
_ cos : , ( ) cos( ), 1 :

2

a
f series x N sum a n n x n N= → + ⋅ ⋅ = 

C : Array(1 … 1, 1 … 3) :
for m from 1 to 3 do
N :  m2:
C1, m : plot([feven(x), f_cosseries(x, N)], x  Pi … Pi, legend  [function, 
 cosseries(N terms)], linestyle  [dash, solid]):
end do:

display(C)
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Figure 7.1.2: Fourier cosine series plots. 
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General Fourier Series (Arbitrary Functions)

f : (x)  piecewise(x < 0, -3x, x > 0, ln(x  1)

 

3 0
:

ln( 1) 0

x x
f x

x x

− <⎧⎪= ⎨ + <⎪⎩


( )1
: int ( ) sin( ), Pi Pi ;

Pi
b n f x n x x

⎛ ⎞= → ⋅ ⋅ ⋅ = −⎜ ⎟
⎝ ⎠



( )sin( )
:

f x nx dx
b n






−= ∫

( )1
: int ( ) cos( ), Pi Pi ;

Pi
a n f x n x x

⎛ ⎞= → ⋅ ⋅ ⋅ = −⎜ ⎟
⎝ ⎠



( )cos( )
:

f x nx dx
a n






−= ∫

( ) ( )(0)
_ : , ( ) cos( ) ( ) sin( ), 1 :

2

a
f series x N sum a n n x b n n x n N= → + ⋅ ⋅ + ⋅ ⋅ = 

C : Array(1 … 1, 1 … 3) :
for m from 1 to 3 do

N :  m2:
C1, m : plot([f(x), f_series(x, N)], x  Pi … Pi, legend  [function, series(N terms)], 
linestyle  [dash, solid]):

end do:

display(C)
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Figure 7.1.3: Fourier series plots. 

Expansion in Legendre Polynomials

f : (x)  sin(x)exp(x2)

2

: sin( ) xf x x e−= 

( )2 1
: int ( ) LegendreP( , ), 1 1 ;

2

n
a n f x n x x

⋅ +⎛ ⎞= → ⋅ ⋅ = −⎜ ⎟
⎝ ⎠



( )1

1

1
: ( )LegendreP( )

2
a n n f x nx dx

−

⎛ ⎞= +⎜ ⎟
⎝ ⎠ ∫

f_LegPexp : (x, N)  sum(a(n)LegendreP(n,x), n  1 … N):
N :  3:
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plot([f(x), f_LegPexp(x,N)], x  1 … 1, legend  [function, Legendre Polynomial(N 
terms)], linestyle  [dash, solid])
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– 0.2Function

3 Legendre Polynomial 
terms

Figure 7.1.4: Expansion in Legendre polynomials. 

Expansion in Hermite Polynomials

f : (x)  abs(x)

 :f x x= 

( )21
: int exp( ) ( ) HermiteH( , ), infinity infinity ;

2 ! sqrt(Pi)n
a n x f x n x x

n
= → ⋅ − ⋅ ⋅ = −

⋅ ⋅


 

2

( )HermiteH( , )
:

2 !

x

n

e f x n x dx
a n

n 

∞ −

−∞= ∫

N :  10:
f_HerHexp : (x, N)  sum(a(n)HermiteH(n, x), n  0 … N):
plot([f(x), f_HerHexp(x,N)], x  -1 … 1, legend  [function, Hermite Polynomial(N 
terms)], linestyle  [dash, solid])
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Figure 7.1.5: Fourier expansion in Hermite polynomials. 

7.2 FOURIER TRANSFORMS 

A periodic function f(t)  f(t  T) with period T is expressed as a Fourier series

 
2

( ) expn

n

n
f t a i t

T

∞

=−∞

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑  (7.2.1)

with complex coefficients 

 

/2

/2

1 2
( )exp

T

n

T

n
a f t i t dt

T T



−

⎛ ⎞= −⎜ ⎟
⎝ ⎠∫  (7.2.2)

that can be written in terms of the angular frequency   2/T. For nonperiodic 
signals the Fourier coefficients become continuous an  a()d and we take T 
, 2n/T , 1/T d/2 and  . Thus

 ( ) ( ) ( )expf t a i t d  
∞

−∞

= ∫  (7.2.3)

and

 
1

( ) ( )exp( )
2

a f t i t dt 


∞

−∞

= −∫  (7.2.4)
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The integral for a() is known as the Fourier transform and the integral for f(t) is 
the inverse Fourier transform . The factor of 1/2 is often split so that the integral 
transforms are symmetric.

Fourier transform:

 
1

( ) ( )exp( )
2

a f t i t dt 


∞

−∞

= −∫  (7.2.5)

Inverse Fourier transform:

 1
( ) ( )exp( )

2
f t a i t d  



∞

−∞

= ∫  (7.2.6)

Fourier transforms and inverse transforms enable signals to be observed in time 
and frequency domains. Signal conditioning can be performed where known 
interference frequencies are removed from the a(). A filtered time signal f(t) is 
then obtained from the inverse transform of the modified a(). This procedure is 
used in digital signal processing, or DSP. 

7.2.1 Power Spectrum 
Since a() is a complex function, the power spectrum S() is often plotted given 
f(t) where 

 
2

( ) ( )S a =  (7.2.7)

The square root of S() is sometimes called the noise spectrum. A spectrum 
analyzer is an instrument that displays S() from a signal input. 

7.2.2 Spatial Transforms 
Fourier transforms can also be used to determine the wavelengths  present in a 
nonperiodic pulse or wave packet described by f(x)

 
1

( ) ( )exp( )
2

a k f x ikx dx


∞

−∞

= −∫  (7.2.8)

with inverse transform

 
1

( ) ( )exp( )
2

f x a k ikx dk


∞

−∞

= ∫  (7.2.9)
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where k  2/ is called the spatial frequency. In quantum mechanics, the 
momentum p  k where  is Planck’s constant divided by 2. The wavefunction   
whose magnitude squared gives the probability of locating a particle is described 
in momentum or coordinate space according to the Fourier transforms 

 
1

( ) ( )exp( )
2

p x ipx dx 


∞

−∞

= −∫  (7.2.10)

and 

 
1

( ) ( )exp( )
2

x p ipx dp 


∞

−∞

= ∫  (7.2.11)

Example 7.2.1
Given 

 
1

( )          
0

L x L
f x

x L

− ≤ ≤⎧⎪= ⎨ >⎪⎩
 (7.2.12)

calculate a(k)

 
1

( ) 0 0
2

L L

ikx

L L

a k e dx


− ∞
−

−∞ −

⎡ ⎤
= + +⎢ ⎥

⎢ ⎥⎣ ⎦
∫ ∫ ∫  (7.2.13)

 

( ) ( )

( )

1 1

2

2 1
        

22

2 sin( )
        

ikL ikL

ikL ikL

a k e e
ik

e e

k i

kL
L

kL







−

−

= −
−

−
=

=

 (7.2.14)

Example 7.2.2
Given 

 ( ) x
f x e

−=  (7.2.15)

calculate a(k)

 
1

( )
2

x ikxa k e e dx


∞
− −

−∞

= ∫  (7.2.16)



344 MATHEMATICAL METHODS FOR PHYSICS USING MATLAB AND MAPLE

using  
0

         
0

x x
x

x x

≥⎧⎪= ⎨− <⎪⎩
 (7.2.17)

the integral is broken up as

 

0

0

1
( )

2

x ikx x ikxa k e e dx e e dx


∞
− − −

−∞

⎡ ⎤
= +⎢ ⎥

⎢ ⎥⎣ ⎦
∫ ∫  (7.2.18)

 ( ) ( )
0

1 1

0

1 1 1 1
( )

1 12 2

ik x ik x
a k e e

ik ik 

∞
− − +

−∞

⎡ ⎤ ⎡ ⎤= −⎢ ⎥ ⎢ ⎥− +⎣ ⎦ ⎣ ⎦
 (7.2.19)

 
1 1 1

( )
1 12

a k
ik ik

⎡ ⎤= +⎢ ⎥− +⎣ ⎦
 (7.2.20)

Plancherel’s Formula 

Given two functions of time f(t) and g(t) show the integral relation 

 *( ) ( ) *( ) ( )f t g t dt F G d  
∞ ∞

−∞ −∞

=∫ ∫  (7.2.21)

where

 
1

( ) ( )
2

i tf t F e d 


∞
−

−∞

= ∫  (7.2.22)

and

 
1

( ) ( )
2

i tg t G e d 


∞
−

−∞

= ∫  (7.2.23)

Writing the integral on the left-hand side in terms of the respective Fourier 
transforms over frequency

 
1 1

*( ) ( ) ( ) ( )
2 2

i t i tf t g t dt F e d G e d dt    
 

∞ ∞ ∞ ∞
′−

−∞ −∞ −∞ −∞

⎡ ⎤ ⎡ ⎤
′ ′= ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∫ ∫ ∫ ∫  (7.2.24)

 is a dummy index. Separating the time components

 
( )1

( ) ( )
i t

d d F G e dt
    



∞ ∞ ∞
′−

−∞ −∞ −∞

⎡ ⎤
′ ′= ⎢ ⎥

2⎢ ⎥⎣ ⎦
∫ ∫ ∫  (7.2.25)
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gives a delta function 

 *( ) ( ) ( )d F d G      
∞ ∞

−∞ −∞

′ ′ ′= −∫ ∫  (7.2.26)

and we obtain the desired result

 *( ) ( )F G d  
∞

−∞

= ∫  (7.2.27)

Maple Examples
Fourier integral transforms are calculated in the Maple worksheet below. Fourier 
transforms are then used to solve inhomogeneous differential equations.
Key Maple commands: assume , convert , fourie r, int , invfourier , piecewise , simplify , 
solve 
Maple packages: with(inttrans ):
Special functions: Dirac , Heaviside 
Programming: for loops, function statements using ‘’

restart

Fourier Transforms

with(inttrans):
assume(a > 0, omega > 0, k > 0)
fourier(sin(omegat), t, omega)

–I  Dirac(0)

fourier(cos(omegat), t, omega)

 Dirac(0)

fourier(sin(t), t, omega)

–I  Dirac( – 1)

convert(fourier(f(omegat), t, omega), int)

( ) I tf t e dt
∞ −

−∞∫ 
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Fourier Transform of Heaviside Functions

p : piecewise(x < –1, 0, – 1  x  1, 1, x > 1, 0)

 

0 1

1 1   1

0 1

x

x x

x

and

< −⎧
⎪ − ≤ ≤⎨
⎪ <⎩

f : (x)  p;

 x  p

int(f(x)exp(–Ikx), x  infinity … infinity)

 

( )2 1Ik IkI e e

k

−−
−

 


simplify((convert(%, trig)))

 
( )2sin k

k




fourier(Heaviside(x  1) – Heaviside(x – 1)), x, k)

 
( )2sin k

k




Fourier Transform Solution of Differential Equations
2

2
: ( ) ( ) sin( )

d
Deq1 y t y t at

dt
= − =

 

2

2
( ) ( ) sin( )

d
y t y t a t

dt
− = 

fourier(Deq1, t, s)

 –(s2  1) fourier(y(t), t, s)  I p (–Dirac(s – a~)  Dirac(s  a~))

solve(%, fourier(y(t), t, s))

 
( ) ( )( )Dirac DiracI s a s a− − + 

invfourier(%, s, t)

 
( )

2

sin

1

a t

a
−

+
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( )
4

4
: ( ) ( ) Dirac sin( )

d
Deq2 y t y t t a at

dt
= − = − ⋅

 
( )

4

4
( ) ( ) Dirac sin( )

d
y t y t t a a t

dt
− = −  

fourier(Deq2, t, s)

 (s – 1)(s  1)(s2  1) fourier(y(t), t, s)  sin(a~2)e–Ia~s

solve(%, fourier(y(t), t, s))

 

( )
( )( )( )

2

2

sin

1 1 1

Ia sa e

s s s

−

− + +



invfourier(%, s, t)

( ) ( )( ) ( )(
( )( ) ( ))

21
sin sin Heaviside

4

sin Heaviside

t a

t a

a e t a t a

e t a t a

− +

−

− + − − −

− − − +





  

 

7.3 LAPLACE TRANSFORMS 

In this section Laplace and inverse Laplace transforms are introduced along 
with several important properties. These properties enable the solution to initial 
value problems. Given the function f(t), the Laplace transform is obtained by 
multiplying by est and integrating over time to obtain a new function 

 ( ) ( )
0

stF s e f t dt

∞
−= ∫  (7.3.1)

The function f(t) is called the kernel of the transform. This integral transform is 
expressed as F(s) = [f(t)].

Example 7.3.1
Find the Laplace transform of f(t)  t

Solution: 2

0

1stt te dt
s

∞
−= =⎡ ⎤⎣ ⎦ ∫  (7.3.2)
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7.3.1 Properties of the Laplace Transform
Important properties of the Laplace transform  include 
Linearity:

1 1 2 2 1 1 2 2( ) ( ) ( ) ( )c f t c f t c F s c F s+ = +⎡ ⎤⎣ ⎦  where c1 and c2 are constants.  (7.3.3)

Change of scale:

 
1

( )
s

f at F
a a

⎛ ⎞=⎡ ⎤⎣ ⎦ ⎜ ⎟
⎝ ⎠

  (7.3.4) 

Shifting properties:

 ( ) ( )ate f t F s a⎡ ⎤ = −⎣ ⎦  (7.3.5)

 ( ) ( )asf t a e F s−− =⎡ ⎤⎣ ⎦  (7.3.6)

7.3.2 Inverse Laplace Transform
The inverse Laplace transform is defined in terms of a contour integral

 ( ) ( ) ( )1 1

2

i

st

i

F s e F s ds f t
i






+ ∞
−

− ∞

⎡ ⎤ = =⎣ ⎦ ∫  (7.3.7)

If F(s) = [f(t)] then 1[F(s)] = f(t). (7.3.8)

7.3.3 Properties of Inverse Laplace Transforms 
The inverse Laplace transform is also a linear operator 

( ) ( ) ( ) ( )1
1 1 2 2 1 1 2 2c F s c F s c f t c f t− ⎡ ⎤+ = +⎣ ⎦  where c1 and c2 are constants.  (7.3.9)

Other properties of the inverse Laplace transform 1[F(s)] = f(t) include the 
following:

Change of scale:

 11
( )

s
F f at

a a

− ⎡ ⎤⎛ ⎞ =⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

  (7.3.10)

Shifting properties: 

 ( ) ( )1 atF s a e f t− ⎡ ⎤− =⎣ ⎦  and ( ) ( )1 ase F s f t a− −⎡ ⎤ = −⎣ ⎦  (7.3.11)
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7.3.4 Table of Laplace Transforms 
Several Laplace transforms and inverse Laplace transforms are shown in Table 
7.3.1.

Table 7.3.1: Table of Laplace and inverse Laplace transforms.

Laplace Transform Inverse Laplace Transform

( ) ( )f t F s=⎡ ⎤⎣ ⎦ 1 ( ) ( )F s f t− =⎡ ⎤⎣ ⎦

1
(1)

s
= 1 1

1
s

− ⎛ ⎞ =⎜ ⎟
⎝ ⎠



2

1
( )t

s
= 1

2

1
t

s

− ⎛ ⎞ =⎜ ⎟
⎝ ⎠



1

!
( )n

n

n
t

s +
=

(n positive integer)

1

1

! n

n

n
t

s

−
+

⎛ ⎞ =⎜ ⎟
⎝ ⎠


 

2 2
(sin( ))t

s





=

+
 1

2 2
sin( )t

s





− ⎛ ⎞ =⎜ ⎟+⎝ ⎠


2 2
(cos( ))

s
t

s



=

+
 1

2 2
cos( )

s
t

s



− ⎛ ⎞ =⎜ ⎟+⎝ ⎠


1
( )te

s




=

−
 1 1 te

s




− ⎛ ⎞ =⎜ ⎟−⎝ ⎠


1

!
( )

( )

n t

n

n
t e

s a


+

=
−



(n positive integer)
( )

1

1

! n t

n

n
t e

s a

−
+

⎛ ⎞ =⎜ ⎟⎜ ⎟−⎝ ⎠


1( ( )) sat a e− −− = 1( ) ( )sae t a− − = −

( ( ))
ase

t a
s

−

Θ − = 1 ( )
ase

t a
s

−
− ⎛ ⎞

= Θ −⎜ ⎟
⎝ ⎠



7.3.5 Solving Differential Equations 
A very useful property of Laplace transforms is the transformation of derivatives . 
Transformation of the first derivative of f(t) gives



350 MATHEMATICAL METHODS FOR PHYSICS USING MATLAB AND MAPLE

 ( )
( ) (0)

df t
sF s f

dt

⎡ ⎤ = −⎢ ⎥⎣ ⎦


 (7.3.12)

Transformation of second derivative:

 

2
2

2

( )
( ) (0) (0)

d f t
s F s sf f

dt

⎡ ⎤
= − −⎢ ⎥

⎣ ⎦
  (7.3.13)

The transformation of higher derivatives may also be obtained:

 
1 2 ( 1)( )

( ) (0) (0) (0)
n

n n n n

n

d f t
s F s s f s f f

dt

− − −⎡ ⎤
= − − − −⎢ ⎥

⎣ ⎦
   (7.3.14)

This property enables the Laplace transform solution to initial value problems.

Example 7.3.2
Solve the differential equation 

2

2

( ) ( )d y t dy t
t

dtdt
− =  with initial conditions y(0)  0, (0) 1y = .  (7.3.15)

Taking the Laplace transform

 
2

2

1
( ) (0) (0) ( ) (0)s Y s sy y sY s y

s
− − − + =  (7.3.16)

and solving for Y(s)

 

2

4 3

1
( )

s
Y s

s s

+
=

−  (7.3.17)

The inverse Laplace transform gives

 
21

( ) 2 2
2

ty t e t t= − − −  (7.3.18)

Maple Examples
Laplace transforms and inverse transforms of functions and derivatives are 
calculated in the Maple worksheet below. Laplace transforms are used to solve 
inhomogeneous differential equations with specified initial conditions, a system 
of differential equations, and an integro-differential equation.

Key Maple commands: diff , invlaplace , laplace , plot , rhs , solve , subs 

Maple packages: with(inttrans ):
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Special functions: Dirac , Heaviside 

restart

Laplace Transforms

with(inttrans):
laplace(cos(t), t, s);

 2 1

s

s +
laplace(tcos(t), t, s);

 
( )

2

2
2

1

1

s

s

−

+

Inverse Laplace Transforms

2
, , ;

1

s
invlaplace s t

s

⎛ ⎞
⎜ ⎟

+⎝ ⎠

 cos(t)

( )

2

2
2

1
, , ;

1

s
invlaplace s t

s

⎛ ⎞−
⎜ ⎟⎜ ⎟+⎝ ⎠

 t cos(t)

Laplace Transform of Derivatives

laplace(diff(x(t), t) t, s)

 s laplace(x(t), t) t, s) – x(0)

laplace(diff(x(t), t$2) t, s)

 s2 laplace(x(t), t) t, s) – D(x)(0) – sx(0)

Inverse Laplace Transform of Derivatives

invlaplace(diff(x(s), s, s) s, t)

 t2 invlaplace(x(s), s, t)

invlaplace(diff(x(s), s, s, s, s) s, t)

 t4 invlaplace(x(s), s, t)
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Laplace Transform Solution of Differential Equations

2

2
: ( ) ( ) ( ) sin( ) exp( );

d d
Deq y t y t y t t t

dtdt

⎛ ⎞= + + = ⋅ −⎜ ⎟
⎝ ⎠

2

2
( ) ( ) ( ) sin( ) td d

y t y t y t t e
dtdt

−+ + =

laplace(Deq, t, s)

( ) ( )

( )
( )

2

2

( ), , ( )(0) (0) ( ), , (0)

1
( ), ,

1 1

s laplace y t t s D y sy s laplace y t t s y

laplace y t t s
s

− − + −

+ =
+ +

s olve(%, laplace(y(t), t, s))

 ( )( )
3 2 2

2 2

(0) ( )(0) 3 (0) 2 ( )(0) 4 (0) 2 ( )(0) 2 (0) 1

2 2 1

y s D y s y s D y s sy D y y

s s s s

+ + + + + + +

+ + + +

subs({y(0)  1, D(y)(0)  0}, %)

 ( )( )
3 2

2 2

3 4 3

2 2 1

s s s

s s s s

+ + +

+ + + +

invlaplace(%, s, t)

 
( )

1

2
2 1

3 sin 3 cos
3 2

t
te t e t

− −⎛ ⎞ +⎜ ⎟
⎝ ⎠

dsolve({Deq, y(0)  1, D(y)(0)  0}, y(t))

 
( )

1

2
2 1

( ) 3 sin 3 cos
3 2

t
ty t e t e t

− −⎛ ⎞= +⎜ ⎟
⎝ ⎠

plot(rhs(%), t  0 … 20)
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Figure 7.3.1: Laplace transform solution to a differential equation.

Differential Equations Involving Delta Functions

2

2
: ( ) ( ) ( ) Dirac( )

d d
Deq y t y t y t t

dtdt

⎛ ⎞= + + =⎜ ⎟
⎝ ⎠

 

2

2
( ) ( ) ( ) Dirac( )

d d
y t y t y t t

dtdt
+ + =

laplace(Deq, t, s)

 s2 laplace(y(t), t, s) – D(y)(0) – sy(0)  s laplace(y(t), t, s) – y(0) 

  laplace(y(t), t, s)  1

solve(%, laplace(y(t), t, s))

 
2

(0) ( )(0) (0) 1

1

sy D y y

s s

+ + +
+ +

subs({y(0)  1, D(y)(0)  0}, %)

 
2

2

1

s

s s

+
+ +

invlaplace(%, s, t)

 
1

2
1 1

cos 3 3 sin 3
2 2

t

e t t
− ⎛ ⎞⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
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Differential Equations Involving Step Functions

2

2
: ( ) 3 ( ) ( ) Heaviside( ) Heaviside( 1)

d d
Deq y t y t y t t t

dtdt

⎛ ⎞= + ⋅ + = − −⎜ ⎟
⎝ ⎠

 
2

2
( ) 3 ( ) ( ) Heaviside( ) Heaviside( 1)

d d
y t y t y t t t

dtdt

⎛ ⎞+ + = − −⎜ ⎟
⎝ ⎠

laplace(Deq, t, s)

 

( ) ( )

( )

2 ( ), , ( )(0) (0) 3 ( ), , 3 (0)

1
( ), ,

s

s laplace y t t s D y sy s laplace y t t s y

e
laplace y t t s

s

−

− − + −

−
+ =

solve(%, laplace(y(t), t, s))

 ( )
2

2

(0) ( )(0) 3 (0) 1

3 1

sy s D y s sy e

s s s

−+ + − +

+ +

subs({y(0)  1, D(y)(0)  0}, %)

 
( )

2

2

1 3

3 1

ss s e

s s s

−+ + −

+ +
invlaplace(%, s, t)

( )( ) ( )( ) ( )( )
( )

1 1
5 3 1 5 3 1

2 2
1

Heaviside(1 ) 2 7 3 5
20

Heaviside( 1) 3 5 5

t t

t e e

t

− − − + −
− + + − +

− +

Systems of Differential Equations

{
}

: ( ) 2 ( ) ( ), ( ) ( ) ( ), ( ) ( ), (0) 1,

(0) 0, (0) 0

d d d
dEqns x t y t z t y t x t z t z t y t x

dt dt dt

y z

= = ⋅ + = − = =

= =

{
}

( ) 2 ( ) ( ), ( ) ( ) ( ),

( ) ( ), (0) 1, (0) 0, (0) 0

d d
x t y t z t y t x t z t

dt dt

d
z t y t x y z

dt

= + = −

= = = =

dsolve(dEqns, {x(t), y(t), z(t)}, method  laplace)
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( )
( )

( )
( )

( )
( )

3

3

3

_2

_ _ 1

_2

_ _ 1

_2

_ _ 1

1
( ) 8 _ 12 _ 13 ,

23

1
( ) 9 _ 2 _ 6 ,

23

1
( ) 6 _ 9 _ 4

23

l t

l RootOf Z Z

l t

l RootOf Z Z

l t

l RootOf Z Z

x t l l e

y t l l e

z t l l e













 

 

 

= − − −

= − − −

= − − −

⎧⎪ = − − −⎨
⎪⎩

= − −

⎫⎪= − − − ⎬
⎪⎭

∑

∑

∑

Integro-Differential Equations

IGEqns : diff(y(t), t) – 2y(t)  Int(y(tau), tau  0 … t)

 ( )
0

( ) 2 ( )
td

y t y t y d
dt

 − = ∫
laplace(IGEqns, t, s)

 ( ) ( ) ( )( ), ,
( ), , (0) 2 ( ), ,

laplace y t t s
s laplace y t t s y laplace y t t s

s
− − =

solve(%, laplace(y(t), t, s))

 2

(0)

2 1

y s

s s− −
subs({y(0)  1, D(y)(0)  0}, %)

 
2 2 1

s

s s− −
invlaplace(%, s, t)

 ( ) ( )( )1
2 sinh 2 2cosh 2

2
te t t+

7.4 MATLAB EXAMPLES 

The following MATLAB examples demonstrate the calculation of the Fourier 
series and the fast Fourier transform (FFT). Laplace transforms and Fourier 
integral transforms are then calculated. 

Key MATLAB commands: abs , fft , fourier ,ilaplace , laplace , length , linspace , plot , 
square , syms , symsum 

Programming: for loops
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Section 7.1 Fourier Series
The Fourier sine series (with 16 terms) of a square wave with period T  2 is plotted 
using the following MATLAB script. A plot of the square wave is superimposed on 
this figure for comparison. 

t0:.01:5;
omegadouble(pi);
fsquare(omega*t);
g(4/pi)*symsum(sin((2*n1)*pi*t)/(2*n1),n,0,15);
 

plot(t,g,t,f)

 

legend('f(t)','Fourier sine series')

xlabel('time')

ylabel('f(t)')

Time
0.5 1 1.5 2 2.5 3 3.5 4 4.50 5

1.5

1

0.5

0

–0.5

1

–1.5

f(t) Fourier sine series

Figure 7.4.1: Fourier sine series of a square wave with period two plotted with 16 terms. The square wave is shown 
on this figure for comparison. 

Section 7.2 Fourier Transforms
Examples using the Symbolic Math Toolbox to calculate Fourier integral 
transforms are shown below. These calculations are performed at the Command 
Line.

>> fourier(cos(t))

ans 
pi*(dirac(w - 1)  dirac(w  1))
>> fourier(1/t)

ans 
pi*(2*heaviside(-w) - 1)*i
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The following script fi le evaluates the fast Fourier transform (FFT).

dt0.001;
tmax2.0;
t0:dt:tmax;
A2*sin(2*pi*150.0*t)5*sin(2*pi*333.0*t);
yfft(A);
plot(abs(y))

xlabel('index')

ylabel('abs(FFT)')

Index
500 1000 1500 2000 2500

500

1000

1500

2000

2500

3000

3500

4000

4500

0
0

ab
s(

F
F

T
)

Figure 7.4.2: Double-sided FFT plotted as a function of index. The FFT is symmetric about N/2 where the number 
of points in the time series N  2000.  

The following script fi le evaluates the single-sided fast Fourier transform (FFT) 
with frequency plotted on the horizontal axis. 

dt0.001;
tmax2.0;
t0:dt:tmax;
A2*sin(2*pi*150.0*t)5*sin(2*pi*333.0*t);
yfft(A);
fmax1/(2.0*dt);
f linspace(0,fmax,length(t)/2);
mabs(y)/length(f);
mm(1:length(f));
plot(f,m)

xlabel('frequency')

ylabel('abs(FFT)')
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Frequency
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Figure 7.4.3: Single-sided FFT plotted as a function of frequency. The highest frequency, 500 Hz, is equal to half of 
the sample rate. 1000 points are plotted. 

The discrete Fourier transform (DFT) may be calculated if the Fourier transform 
of a time series is desired at a single frequency or over a limited frequency range 
as shown below

dt0.001;
tmax2.0;
t0:dt:tmax;
A2*sin(2*pi*150.0*t)5*sin(2*pi*333.0*t);
 

nmaxlength(t);
 

fmin  300;
fmax  350;
mmax  1000;
 

Ftx  zeros(1,mmax);
 

f  linspace(fmin,fmax,mmax);
 

for m1:mmax
    for n1:nmax
        Ftx(m)Ftx(m)A(n)*exp(-1i*2*pi*f(m)*n*dt);  
    end

end

 

FtxFtx/(nmax/2);
 

plot(f,abs(Ftx))

 

set(gca,'XTick',fmin:3:fmax)

xlabel('frequency')

ylabel('Fourier transform')



FOURIER SERIES AND TRANSFORMATIONS 359

303300 306 309 312 315 318 321 324 327 330 336 339 342 345 348

Frequency
333

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

F
ou

ri
er

 t
ra

n
sf

or
m

Figure 7.4.4: DFT plotted over a frequency range between 300–350 Hz.  

Section 7.3 Laplace Transforms
Laplace integral transformations are evaluated below using MATLAB’s Symbolic 
Math Toolbox.  

>> clear all

>> syms a s t

>> laplace(t)    

ans 
1/s^2

>> laplace(cos(a*t))

ans 
s/(a^2  s^2)
>> laplace(exp(a*t))

ans 
-1/(a - s)

>> ilaplace(1/s^2)

ans 
t

>> ilaplace(s/(a^2  s^2))
ans 
cos(a*t)

>> ilaplace(-1/(a - s))

ans 
exp(a*t)
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7.5 EXERCISES

Section 7.1 Fourier Series

1. Find the Fourier coefficients  corresponding to the sine series of the function 

 
1 2 0

( )      
1 0 2

t
f t

t

− − < <⎧⎪= ⎨ < <⎪⎩
with period T  4s

2. Find the Fourier coefficients corresponding to the cosine series of the function 

 
1 1 0

( )       
1 0 1

x x
f x

x x

+ − < <⎧⎪= ⎨− + < <⎪⎩
with period L  2m

3. Find the Fourier coefficients corresponding to the function 

 

1
2 0

( )      2
0 2

1

t
f t

t

⎧ − < <−⎪= ⎨ < <⎪⎩
 

with period T  4s

Section 7.2 Fourier Transforms

4. Given the following even functions f(x) find the Fourier cosine transform a(k) 
and plot it

2

1
( )

9
f x

x
=

+
f(x)  e3x

23( ) xf x e−=
5. Given the following odd functions f(x) find the Fourier sine transform a(k) 

and plot it

2
( )

9

x
f x

x
=

+

1
( )f x

x
=

23( ) xf x xe−=
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6. Given the following function f(t) find the complex Fourier coefficients 

 
2 1 1/ 2 0

( )       
1 0 1

t t
f t

t t

+ − < <⎧⎪
= ⎨− + < <⎪⎩

7. Find the inverse Fourier transform of the following functions to find f(x)

2
( )

9

k
a k

k
=

+

1
( )a k

k
=

a(k)  e3k

Section 7.3 Laplace Transforms

8. The Laplace transform of a periodic function  is given by

 
0

1
( ) ( )

1

T

st

sT
f t e f t dt

e

−
−

=⎡ ⎤⎣ ⎦ − ∫

Calculate the [f(t)]where 

 
0 1/ 2

( )      
1 1/ 2 1

t t
f t

t t

≤ <⎧⎪
= ⎨ − ≤ <⎪⎩

 with   T  1

9. Calculate the following Laplace transforms 

(a) cos( )t⎡ ⎤⎣ ⎦

(b) cosh( )at⎡ ⎤⎣ ⎦

(c) cos( )te t −⎡ ⎤
⎣ ⎦

10. Calculate the following inverse Laplace transforms 

(a) 
1 1

s r a

− ⎡ ⎤
⎢ ⎥− +⎣ ⎦



(b) ( )
1 1

s s r

− ⎡ ⎤
⎢ ⎥−⎣ ⎦



(c) 1 1 r se

s

−
−

⎡ ⎤−
⎢ ⎥
⎣ ⎦
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11. Calculate the following inverse Laplace transforms 

(a) 
1

2 2

1

s r

− ⎡ ⎤
⎢ ⎥

+⎣ ⎦


(b) 
( )

2
1

3/2
2 2

s

s r

− ⎡ ⎤
⎢ ⎥
⎢ ⎥+⎣ ⎦



(c) 
/

1
r se

s

−
− ⎡ ⎤

⎢ ⎥⎣ ⎦


12. Use Laplace transform methods to solve for the charge q(t) in an LC series 
combination driven by a time-dependent voltage source according to the 
differential equation

2

02
sin( )

d q q
L V t t

Cdt
+ =

where (0) (0) 0q q= =
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8Chapter

PARTIAL 
DIFFERENTIAL 
EQUATIONS

Chapter Outline
8.1 Types of Partial Differential Equations

8.2 The Heat Equation 

8.3 Separation of Variables 

8.1 TYPES OF PARTIAL DIFFERENTIAL EQUATIONS 

A partial differential equation (PDE) involves partial derivatives of an unknown 
function of several variables. The unknown function may be a scalar or a vector 
function of position and time such as temperature T(x, y, z, t) or electric field E(x, 
y, z, t). The order of the PDE is determined by the order of the highest derivative 
in the equation. In this section, we review several first and second order PDEs 
important in physics. 

8.1.1 First Order PDEs 
Examples of first order PDEs in physics include Maxwell’s equations . Maxwell’s 
two divergence equations for electric E and magnetic B fields are  

 
0




∇⋅ =E  (8.1.1)
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 B  0 (8.1.2)

where  is the electric charge density and 0 is the permittivity of free space. 
Maxwell’s two curl equations in the absence of sources are 

 
t

∂
∇× = −

∂
B

E  (8.1.3)

 
0 0

t
 

∂
∇× =

∂
E

B  (8.1.4)

These equations show that time-changing magnetic fields give rise to electric 
fields with curl. Also, time-changing electric fields cause magnetic fields with curl. 
Another important first order PDE is the continuity equation  

 
t

∂
∇⋅ = −

∂
J  (8.1.5)

where J is the current density and  is the charge density. The continuity equation 
may also be applied to fluid flow where r is fluid density and J  v is the product 
of fluid density and flow velocity v. 

8.1.2 Second Order PDEs
Linear second order partial differential equations of the form

 
2 2 2

2 2

f f f f f
A B C D E Ff G

x y x yx y

∂ ∂ ∂ ∂ ∂
+ + + + + =

∂ ∂ ∂ ∂∂ ∂
 (8.1.6)

with two independent variables x, y and coefficients A, B, C, D, E, F and G are 
classified as elliptic if B2 – 4 AC < 0, parabolic if B2 – 4 AC  0 or hyperbolic 
if B2 – 4 AC > 0. The PDE is homogeneous if G  0 or inhomogeneous if G  
0. Common second order PDEs in physics include Laplace’s equation, Poisson’s 
equation, the diffusion equation and the wave equation. For diffusion and wave 
equations with one spatial dimension the variable y would correspond to the time 
t in the equation above. 

8.1.3 Laplace’s Equation 

The elliptic partial differential equation known as Laplace’s equation 

 
2 2

2 2
0

x y

∂ Φ ∂ Φ
+ =

∂ ∂
 (8.1.7)
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is encountered in electrostatics, magnetostatics, heat flow, and fluid dynamics 
when there are no sources or sinks. In three dimensions Laplace’s equation is

 2 = 0 (8.1.8)

8.1.4 Poisson’s Equation 
Poisson’s equation

 
2 2

2 2
q

x y

∂ Φ ∂ Φ
+ = −

∂ ∂
 (8.1.9)

is an inhomogeneous elliptic equation with a source term q proportional to 
charge density in electrostatic problems or the heat source in steady state heat 
transfer problems. In three dimensions

 2 q (8.1.10)

8.1.5 Diffusion Equation 
The diffusion equation

 
2

2
k

tx

∂ Φ ∂Φ
=

∂∂
 (8.1.11)

is a parabolic equation  where  may represent temperature for transient heat 
transfer problems or the wavefunction in the Schrödinger equation. In three 
dimensions, the diffusion equation becomes

 2 k
t

∂Φ
∇ Φ =

∂
 (8.1.12)

8.1.6 Wave Equation 
The hyperbolic PDE 

 
2 2

2 2 2

1
0

x c t

∂ Φ ∂ Φ
− =

∂ ∂
 (8.1.13)

may describe the propagation of matter waves and electromagnetic waves. In 
three dimensions using the d’Alembertian operator 

 
2

2 2

2 2

1

c t

∂
= ∇ −

∂
  (8.1.14)
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the wave equation may be written compactly as

 2 0Φ =  (8.1.15)

8.1.7 Helmholtz Equation 

The Helmholtz equation

 2 2 0k∇ Φ + Φ =  (8.1.16)

is a time-independent form of the wave equation useful for the study of vibrations 
and electromagnetic radiation.

8.1.8 Klein-Gordon Equation 
The Klein-Gordon equation

 2 2( ) 0− Φ =  (8.1.17)

is an early relativistic wave equation. In quantum field theory, solutions to the 
Klein-Gordon equation are scalar fields whose quanta are spin zero particles.  

Example 8.1.1
Show that the concentration 

 
2

1/2
( , ) exp

4

A x
C x t

tt 

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 (8.1.18)

satisfies the diffusion equation

 
2

2

C C
D

tx

∂ ∂
=

∂∂
 (8.1.19)

and find the constant D in terms of the parameter .

Solution: Calculating the x-derivative

 
2

1/2
exp

4 2

C A x x

x t tt  

⎛ ⎞⎛ ⎞∂
= − −⎜ ⎟⎜ ⎟∂ ⎝ ⎠⎝ ⎠

 (8.1.20)

The second derivative is then 

 

22 2 2

2 1/2 1/2

1
exp exp

4 2 4 2

C A x x A x

t t t tx t t   

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞∂
= − − + − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 (8.1.21)

Simplifying we have
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22 2

2 1/2

1
exp

4 2 2

C A x x

t t tx t   

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ⎢ ⎥= − −⎜ ⎟ ⎜ ⎟∂ ⎢ ⎥⎝ ⎠⎝ ⎠ ⎣ ⎦
 (8.1.22)

The time derivative of the concentration is then

 

2 2 2

1/2 2 3/2

1
exp exp

4 2 44

C A x x A x

t t tt t t 

⎛ ⎞⎛ ⎞ ⎛ ⎞∂
= − − −⎜ ⎟⎜ ⎟ ⎜ ⎟

∂ ⎝ ⎠⎝ ⎠ ⎝ ⎠  (8.1.23)

or

 

2 2

1/2 2

1
exp

4 24

C A x x

t t tt t 

⎡ ⎤⎛ ⎞ ⎛ ⎞∂
= − −⎢ ⎥⎜ ⎟ ⎜ ⎟

∂ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦  (8.1.24)

Thus

 

2

2

1C C

tx 

∂ ∂
=

∂∂  (8.1.25)

and D  . 

Maple Examples
The following Maple worksheet demonstrates the solution of first order partial 
differential equations, the diffusion equation, the wave equation, and the KdV 
equation. Solutions to PDEs are verified by using the pdetest feature where a zero 
output confirms a given solution. The wave equation is expressed in Jet Notation 
using the PDEtools package. 

Key Maple commands: diff , FromJet , pdetest,  pdsolve , ToJet 

Maple packages: PDEtools 

restart

First Order PDE

PDE : diff(y(x, t), x)  –betadiff(y(x, t), t)

 ( , ) ( , )y x t y x t
x t


∂ ∂⎛ ⎞= − ⎜ ⎟∂ ∂⎝ ⎠

soln : pdsolve(PDE)

 y(x, t)  _F1(-x  t)
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pdetest(soln, PDE)

0

A zero output of pdetest verifies the solution.

Diffusion Equation

PDE : diff(C(x, t), x, x)  alphadiff(C(x, t), t)

 

2

2
( , ) ( , )C x t C x t

tx


∂ ∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠∂
soln : pdsolve(PDE)

 

( )
2

1
12

( , ) _ ( )_ ( )  

_ _ ( )
and where _ ( ) _ _ ( ), _ ( )

C x t F1 x F 2 t

c F 2 td d
F1 x c F1 x F 2 t

dtdx 

=

⎡ ⎤⎧ ⎫
= =⎨ ⎬⎢ ⎥

⎩ ⎭⎣ ⎦

pdetest(soln, PDE)

0

Wave Equation

PDE : diff(f(x, t), t, t)  k2diff(f(x, t), x, x)

 

2 2
2

2 2
( , ) ( , )f x t k f x t

t x

⎛ ⎞∂ ∂
= ⎜ ⎟

∂ ∂⎝ ⎠

soln : pdsolve(PDE)

 f(x, t)  _F1(kt  x)  _F2(kt – x)

pdetest(soln, PDE)

0

KdV Equation

PDE : diff(f(x, t), x, x, x)  diff(f(x, t), t)  6f(x, t)diff(f(x, t), x)  0

 

3

3
( , ) ( , ) 6 ( , ) ( , ) 0f x t f x t f x t f x t

t xx

∂ ∂ ∂⎛ ⎞+ + =⎜ ⎟∂ ∂⎝ ⎠∂

soln : pdsolve(PDE)
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 ( )
3

22 1 8 _ _
( , ) 2 _ tanh _ _ _

6

C 2 C 3
f x t C 2 C 2x C 3t C1

C 2
= − + + +

pdetest(soln, PDE)

0

Jet Notation

PDE : diff(f(x, y), x, x)  diff(f(x, y), y, y)  0

 
2 2

2 2
( , ) ( , ) 0f x y f x y

x y

∂ ∂
+ =

∂ ∂
with(PDEtools) :
ToJet(PDE,f(x, y))

fx, x  fy, y  0

FromJet(%,f(x, y))

 
2 2

2 2
( , ) ( , ) 0f x y f x y

x y

∂ ∂
+ =

∂ ∂

8.2 THE HEAT EQUATION 

The 3D heat equation is derived in this section. Steady state heat transfer problems 
are like electrostatic problems where the temperature satisfies Laplace’s equation. 
A Laplace transform solution to the heat equation is then considered. 

8.2.1 Transient Heat Flow 
In one dimension, the time rate of change of thermal energy Q contained in a rod 
of cross-sectional area A and temperature gradient T/x is

 Q T
A

t x


∂ ∂
=

∂ ∂
 (8.2.1)

where  is the thermal conductivity . In three dimensions, the change in thermal 
energy in a volume v bounded by a surface is 

 
surf

Q
T d

t


∂
= ∇ ⋅

∂ ∫ a  (8.2.2)
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where F = T is the heat flux vector . We now seek to express the heat equation 
in terms of one unknown function T. Transforming the surface integral using 
Gauss’s divergence theorem 

 
2

vol vol

Q
Tdv Tdv

t
 

∂
= ∇⋅∇ = ∇

∂ ∫ ∫  (8.2.3)

The thermal energy stored in a mass m at constant temperature T is given by Q  
mCT. If the temperature or mass density is variable 

 
vol

Q C T dV= ∫  (8.2.4)

where C is the specific heat and  is the mass density. Taking the time derivative of 
Q and equating volume integrals for Q/t.

 
2

vol vol

T
c dV TdV

t
 

∂
= ∇

∂∫ ∫  (8.2.5)

Because the integration region is over an arbitrary volume, we may equate the 
integrands giving the heat equation 

 
2 1 T
T

t

∂
∇ =

∂
 (8.2.6)

where   /C. Note that  has units of length2 / time. 

8.2.2 Steady State Heat Flow 
For steady state heat flow where T/t  0, the temperature is satisfied by Laplace’s 
equation

 T  0 (8.2.7)

where the temperature T is analogous to the electrostatic potential V in 
electrostatics where

 V  0 (8.2.8)

The heat flux vector F = T is analogous to the electric field E = V. 

8.2.3 Laplace Transform Solution 

Example 8.2.1
A temperature T0 is applied to the edge of a bar at t  0. Find the temperature T(x, 
t) of the bar if it is initially at zero temperature. 
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Solution: The differential equation with initial conditions are

 

( )
( )
( )

2

02

,0 0

0,

, 0

T x
T T

T t T
tx

T t



⎧ ⎫ ⎧ ⎫
∂ ∂ ⎪ ⎪ ⎪ ⎪= =⎨ ⎬ ⎨ ⎬∂∂ ⎪ ⎪ ⎪ ⎪∞ ⎩ ⎭⎩ ⎭

 (8.2.9)

Taking the Laplace transform of both the differential equation and the initial 
conditions gives

 

( )
( )
( )

2
0

2

0
,0

( )
( ) (0) 0,

, 0

x
Ts

s s T s
sx

s



⎧ ⎫
⎧ ⎫Θ ⎪ ⎪⎪ ⎪∂ Θ ⎪ ⎪= Θ − Θ = ⎨ ⎬⎨ ⎬

∂ ⎪ ⎪⎪ ⎪Θ ∞⎩ ⎭ ⎪ ⎪⎩ ⎭

 (8.2.10)

where T(0)  0. The solution to this equation is

 ( ) exp exp
s s

s A x B x
 

⎛ ⎞ ⎛ ⎞
Θ = ⋅ + ⋅ −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (8.2.11)

Applying the bo undary condition T(x  , t)  0 gives A  0 and 0T
B

s
=  so that

 
0( ) exp

T s
s x

s 

⎛ ⎞
Θ = ⋅ −⎜ ⎟⎜ ⎟

⎝ ⎠
 (8.2.12)

The inverse Laplace transform gives

 0

1 1
( , ) erfc

2
T x t T x

t

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 (8.2.13)

where the complementary error function is given by

 
22

erfc( ) t

x

x e dt


∞
−= ∫  (8.2.14)

Maple Examples
The following Maple worksheet demonstrates the separation of variables solution 
to the heat equation. Solutions to the heat equation are obtained including lateral 
heat loss and convection. These solutions are displayed using 3D and animated 
plots. 

Key Maple commands: diff  , dsolve , expand , Laplacian , lhs , pds:-animate , pds:-
plot3d , pdsolve , rhs , subs 
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Maple packages: with(VectorCalculus ):  

restart

Separation of Variables: Heat Equation 1D

with(VectorCalculus) :
heatEqn : expand(Laplacian(T(x, t), ‘cartesian’[x, y, z]))  diff(T(x, t), t)

 
2

2
( , ) ( , )T x t T x t

tx

∂ ∂
=

∂∂
SubsEqn : expand(subs(T(x, t)  T(x)phi(t), heatEqn)

 

2

2
( ) ( ) ( ) ( )

d d
T x t T x t

dtdx
 

⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

SepEqn : expand
1

( ) phi( )
SubsEqn

T x t

⎛ ⎞⋅⎜ ⎟⋅⎝ ⎠

 

2

2
( ) ( )

( ) ( )

d d
T x t

dx dt
T x t




=

dsolve(rhs(SepEqn)  - lambda2)

2

( ) _ tt C1e  −=
dsolve(lhs(SepEqn)  2)

 T(x)  _C1 sin(x)  _C2 cos(x)

Heat Equation
1

: ( ( , ), , )  ,( ( ), )PDE1 diff T x t x x diff T x t t
alpha

= = ⋅

 

2

2

( , )
( , )

T x t
tT x t

x 

∂
∂ ∂=
∂

ics :  T(x, 0)  T0sin(x)

 T(x, 0)  T0sin(x)

pdsolve([PDE1, ics])

 T(x, t)  sin(x)e-tT0
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Heat Equation: Lateral Heat Loss
1

: ( , ), ,   ( , ), ( , )( ) ( )PDE 2 diff T x t x x diff T x t t T x t
alpha

a⋅ + ⋅= =

 ( )
2

2

( , )
( ) ,,

T x t
tT x t a

x
T x t



∂
∂ ∂= +
∂

ICS :  T(x, 0)  sin(2pix)

 T(x, 0)  sin(2  x)

BCS :  T(0, t)  0, T(1, t)  0

 T(0, t)  0, T(1, t)  0

pdsolve([PDE2, ICS, BCS])

 
( ) ( )2 21 _ _

2 2 2
1

4( 1) _ sin( )cos( )sin _
( , )

_ 4

Z 1 t Z 1 a

Z 1

Z 1 Z 1 x e
T x t

Z 1

    

 

∞ + − +

− =

−
=

−∑
 



 


Heat Equation: Convection

PDE3 : diff(T(x, t), x, x)  diff(T(x, t), t)  diff(T(x, t), x)

 

2

2
( , ) ( , ) ( , )T x t T x t T x t

t xx

∂ ∂ ∂
= +

∂ ∂∂

ICS :  {T(x, 0)  1, T(0, t)  0, D[1](T)(1, t)  0}

 {T(0, t)  0, T(x, 0)  1, D1(T)(1, t)  0}

pds : pdsolve(PDE3, ICS, numeric, time  t, range  0 … 1)

 module() … end module

pds:-plot3d(t  0 … 1, x  0 … 1)
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Figure 8.2.1: Solution to a PDE displayed as a surface plot.

Animate the Solution

pds:-animate(t  .2 … 1, frames  20)

x

10.2 0.4 0.6 0.80

0
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0.4

0.5

0.6

0.7

Figure 8.2.2: First frame of an animated solution to the heat equation. 
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8.3 SEPARATION OF VARIABLES 

In this section, we illustrate the technique of separation of variables for solutions 
of the heat equation, Laplace’s equation, the wave equation and the Helmholtz 
equation.  

8.3.1 The Heat Equation 

The heat equation in one dimension is

 
2

2

T T

t x


∂ ∂
=

∂ ∂
 (8.3.1)

To separate variables, a product solution is chosen 

 T(x, t)  T(x)(t) (8.3.2)

Substitution of the product solution into the heat equation 

 
2

2

( ) ( )
( ) ( )

t T x
T x t

t x


 

∂ ∂
=

∂ ∂
 (8.3.3)

and dividing by T(x)(t) gives

 
( ) ( )

( ) ( )

T x t

T x t






′′
=


 (8.3.4)

Since the left-hand side is only a function of x and the right-hand side is only a 
function of t each side must be a constant. Choosing our separation constant to be 
–k we have the differential equations  

 ( ) ( )t k t = −  (8.3.5)

 ( ) ( ) 0
k

T x T x


′′ + =  (8.3.6)

with solutions

  (t) = c1 exp(kt) (8.3.7)

 ( ) 2 3cos sin
k k

T x c x c x
 

= +  (8.3.8)

where the constants c1, c2 and c3 are determined by boundary conditions. 
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8.3.2 Laplace’s Equation  in Cartesian Coordinates
Laplace’s equation 2V(x, y) = 0 in Cartesian coordinates is 

 

2 2

2 2
0

V V

x y

∂ ∂
+ =

∂ ∂
 (8.3.9)

where < x < , < y< . Applying separation of variables, we assume a 
product solution

 V(x, y, z) = X(x)Y(y) (8.3.10)

Substituting the product form of V into Laplace’s equation and dividing by V 
gives

 
2 2

2 2

1 1
0

X Y

X Yx y

∂ ∂
+ =

∂ ∂
 (8.3.11)

The variables x, y may vary independently. Thus, each term above must be equal 
to a constant 2 if the sum is zero. If we choose 

 
2 2

2 2

2 2

1 1
   

X Y

X Yx y
 

∂ ∂
= − =

∂ ∂
 (8.3.12)

then 

 { }{ }( , ) sin( ) cos( ) y yV x y A x B x Ce De   −= + +  (8.3.13)

Expressed in a shorthand notation 

 
sin( ) exp( )

( , )
cos( ) exp( )

x y
V x y

x y

 

 

⎧ ⎫⎧ ⎫⎪ ⎪⎪ ⎪
= ⎨ ⎬⎨ ⎬−⎪ ⎪⎪ ⎪⎩ ⎭⎩ ⎭

 (8.3.14)

For different values of the constants C and D we may choose hyperbolic functions

 
sin( ) sinh( )

( , )
cos( ) cosh( )

x y
V x y

x y

 

 

⎧ ⎫⎧ ⎫⎪ ⎪⎪ ⎪
= ⎨ ⎬⎨ ⎬

⎪ ⎪⎪ ⎪⎩ ⎭⎩ ⎭
 (8.3.15)

We may also choose to work with complex exponentials for different values of the 
constants A and B. When separating variables if we had selected

 
2 2

2 2

2 2

1 1
   

X Y

X Yx y
 

∂ ∂
= = −

∂ ∂
 (8.3.16)

then the solution to the X equation would have been real exponential functions 

 
exp( ) sin( )

( , )
exp( ) cos( )

x y
V x y

x y

 

 

⎧ ⎫⎧ ⎫⎪ ⎪⎪ ⎪
= ⎨ ⎬⎨ ⎬−⎪ ⎪⎪ ⎪⎩ ⎭⎩ ⎭

 (8.3.17)
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The boundary conditions often motivate the sign choice when separating 
variables. For example, if V(x, 0)  0 then it would be preferable to work with 
functions such as sin(y) that are zero where y  0. 

Example 8.3.1
A square plate is held at a potential of V  0 on the sides y  0 and y  L. The 
potential is V  V0 on sides x  0 and x  L. Find the potential inside the square 
region.

Solution: With the potential of the form

 { }{ }( , ) exp( ) exp( ) sin( ) cos( )V x y A x B x C y D y   = + − +  (8.3.18)

our task is to find the constants. Applying the boundary conditions V(0, y)  V(L, 
y)  0 we require that D  0 and sin(L)  0. Thus   n/L so that we have 
different values of the constants for n = 1, 2, 3, ... . Absorbing the Cn into the An 
and Bn

 
0

( , ) exp exp sinn n

n

n n n
V x y A x B x y

L L L

  ∞

=

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

∑  (8.3.19)

Applying the boundary condition V(0, y)  V0 gives 

 ( )0
0

sinn n

n

n
V A B y

L

∞

=

⎛ ⎞= + ⎜ ⎟
⎝ ⎠

∑  (8.3.20)

The condition V(L, y)  V0 

 ( )0
0

e e sinn n
n n

n

n
V A B y

L

  ∞
−

=

⎛ ⎞= + ⎜ ⎟
⎝ ⎠

∑  (8.3.21)

Comparing these expressions 

 e en n
n n n nA B A B −+ = +  (8.3.22)

so that we can eliminate the constant

 
(1 e )

(1 e )

n

n n n
B A



−

−
= −

−
 and (8.3.23)

 
( )
( )0

1 e
( , ) exp exp sin

1 e

n

n n
n

n n n
V x y A x x y

L L L





  ∞

−
=

⎛ ⎞−⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟= − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
∑  (8.3.24)
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An is found by applying the boundary condition at V(L, y)  V0 

 ( )0
0

e 1 sinn
n

n

n
V A y

L

 ∞

=

⎛ ⎞= + ⎜ ⎟
⎝ ⎠

∑  (8.3.25)

Multiplying both sides of this expression by sin(ny/L) and integrating 

 ( )0
00 0

sin e 1 sin sin
L L

n
n

n

n y n y n y
V dy A dy

L L L

  ∞

=

′ ′⎛ ⎞ ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∑∫ ∫  (8.3.26)

Making use of orthogonality and using the identity 

 2 21
sin 1 cos

2

n y n y

L L

 ⎛ ⎞ ⎛ ⎞= −⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 (8.3.27)

and removing the primes since only terms with n = nare nonzero

 ( )( ) ( )0 1 cos e 1
2

n
n

L L
V n A

n




− = +  (8.3.28)

Now cos(n)  (1)n so that An is zero for even n and the sum is over odd n

0

1,3,5

4 1 1 (1 e )
( , ) exp exp sin

(e 1) (1 e )

n

n n
n

V n n n
V x y x x y

n L L L



 

  



∞

−
=

⎛ ⎞−⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ −⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
∑



 (8.3.29)

Note that this solution may also be expressed using hyperbolic functions.

8.3.3 Laplace’s Equation in Cylindrical Coordinates 
Laplace’s equation 2V(r, z) = 0 in cylindrical coordinates with axial symmetry 
(no variation in the -direction) is 

 

2

2

1
0

V V
r

r r r z

∂ ∂ ∂⎛ ⎞ + =⎜ ⎟∂ ∂ ∂⎝ ⎠  (8.3.30)

where r  0, < z< . Substituting V(r, z)  R(r)Z(z) with separation constant 
k2 gives the differential equations 

 

2
2 2

2

1 1 1
    

R Z
r k k

R r r r Z z

∂ ∂ ∂⎛ ⎞ = − =⎜ ⎟∂ ∂ ∂⎝ ⎠  (8.3.31)
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so that we may construct our solution

 0

0

( ) exp( )
( , )

( ) exp( )

J kr kz
V r z

N kr kz

⎧ ⎫⎧ ⎫⎪ ⎪⎪ ⎪= ⎨ ⎬⎨ ⎬−⎪ ⎪⎪ ⎪⎩ ⎭⎩ ⎭
  (8.3.32)

where J0(kr) and N0(kr) are Bessel functions of zero order. If we had selected

 
2

2 2

2

1 1 1
    

R Z
r k k

R r r r Z z

∂ ∂ ∂⎛ ⎞ = = −⎜ ⎟∂ ∂ ∂⎝ ⎠
 (8.3.33)

then

 
0

0

( ) sin( )
( , )

( ) cos( )

I kr kz
V r z

K kr kz

⎧ ⎫⎧ ⎫⎪ ⎪⎪ ⎪= ⎨ ⎬⎨ ⎬
⎪ ⎪⎪ ⎪⎩ ⎭⎩ ⎭

 (8.3.34)

where I0(kr) and K0(kr) are modified Bessel functions  of zero order.

Example 8.3.2
A cylinder of height L and radius R is at a potential of V  0 on the bottom z  0 
and top z  L end caps. The potential is V  V0 on the side r  R. Find the potential 
inside the cylindrical region.

Solution: The potential is of the form

 { }{ }0 0( , ) ( ) ( ) sin( ) cos( )V r z AI kr BK kr C kz D kz= + +  (8.3.35)

with the constants A, B, C and D to be determined. 
We set B  0 since K0(0) . Applying the boundary conditions V(0, r)  V(L, 

r)  0 gives D  0 and sin(kL)  0. Thus kn  n/L for n = 1, 2, 3, ... . Absorbing the 
Cn into the An 

 
( ) 0

0

, sinn

n

n n
V r z A I r z

L L

 ∞

=

⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑
 (8.3.36)

An is found by applying the boundary condition at V(R, z)  V0 

 
0 0

0

sinn

n

n n
V A I R z

L L

 ∞

=

⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑
 (8.3.37)

Multiplying both sides of this expression by sin(nz/L) and integrating 

 0 0
00 0

sin sin sin
L L

n

n

n z n n z n z
V dz A I R dz

L L L L

   ∞

=

′ ′⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∑∫ ∫  (8.3.38)
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Removing the primes since only terms with n  nare nonzero as in the previous 
example

 ( )( )0 01 cos
2

n

L n L
V n A I R

n L





⎛ ⎞− = ⎜ ⎟
⎝ ⎠

 (8.3.39)

Now cos(n)  (1)n so that An is zero for even n and the sum is over odd n

 
0

0

1,3,5
0

4 1
( , ) sin

n

n
I r

V nL
V r z z

nn L
I R

L






∞

=

⎛ ⎞
⎜ ⎟ ⎛ ⎞⎝ ⎠= ⎜ ⎟⎛ ⎞ ⎝ ⎠
⎜ ⎟
⎝ ⎠

∑


 (8.3.40)

8.3.4 Wave Equation 
Applying separation of variables for solution of the wave equation 

 
2

2

2 2

1
0

V
V

c t

∂
∇ − =

∂
 (8.3.41)

we substitute the product

 ( , ) ( ) ( )V t V tr r  (8.3.42)

into the wave equation. Dividing by the product V(r)(t) then gives

 

2 2

2 2

2 2

( ) 1 1 ( )
0

( ) ( )

k k

V t

V tc t




− −

∇ ∂
− =

∂
r

r 
. (8.3.43)

Choosing the separation constant to be –k2 the differential equation for (t) 
becomes

 
2

2 2

2

( )
( )

t
k c t

t




∂
= −

∂
 (8.3.44)

with solutions (t)  A sin(t)  B cos(t) where c  /k. The Helmholtz equation 
gives the spatial part of the wave equation  

 2 2( ) ( ) 0V k V∇ + =r r  (8.3.45)

8.3.5 Helmholtz Equation in Cylindrical Coordinates 
The Helmholtz equation (2 + k2)V(r, )  0 in cylindrical coordinates with no 
variation in the z-direction is 

 
2

2

2 2

1 1
0

V V
r k V

r r r r 

∂ ∂ ∂⎛ ⎞ + + =⎜ ⎟∂ ∂ ∂⎝ ⎠
 (8.3.46)
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Substituting V(r, )  R(r)() and multiplying by r2

 

2
2 2

2
0

R
r r R k r R

r r 

∂ ∂ ∂ Φ⎛ ⎞Φ + + Φ =⎜ ⎟∂ ∂ ∂⎝ ⎠  (8.3.47)

Dividing by R we obtain

 

2 2

2
2 2

2

1 1
0

n n

R
r r k r

r r R 

−

∂ ∂ ∂ Φ⎛ ⎞ + + =⎜ ⎟∂ ∂ Φ∂⎝ ⎠ 
 (8.3.48)

Choosing n2
 as a separation the  equation becomes 

 
2

2

2
n



∂ Φ
= − Φ

∂
 (8.3.49)

so that 

 ( ) cos( ) sin( )n nC n D n  Φ = +  (8.3.50)

The R equation becomes

 
2

2 2 2 2

2
( ) 0

R R
r r k r n R

rr

∂ ∂
+ + − =

∂∂
 (8.3.51)

with solution 

 
( ) ( ) ( )n n n nR r A J kr B N kr= +

 (8.3.52)

so that we may construct our solution

 
( ) sin( )

( , )
( ) cos( )

n

n

J kr n
V r z

N kr n





⎧ ⎫⎧ ⎫⎪ ⎪⎪ ⎪= ⎨ ⎬⎨ ⎬
⎪ ⎪⎪ ⎪⎩ ⎭⎩ ⎭

 (8.3.53)

8.3.6 Helmholtz Equation in Spherical Coordinates 
In spherical coordinates with axial symmetry, the Helmholtz equation is 

 
2 2

2 2

1 1 1
sin 0

sin

V V
r k V

r rr r


  

∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ + =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 (8.3.54)

Substituting V(r, )  R(r)() with separation constant ( 1) we obtain

 

( ) ( )

2 2 2

1 1

1 1
sin 0

sin

R
r r k

R r r


  
+ − +

∂ ∂ ∂ ∂Θ⎛ ⎞ ⎛ ⎞+ + =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
   

   (8.3.55)

The  equation is

 ( )1
sin 1

sin


  

∂ ∂Θ⎛ ⎞ = − +⎜ ⎟∂ ∂⎝ ⎠
   (8.3.56)
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with the R equation 

 ( )
2

2 2

2
2 1 0

R R
r r k R

rr

∂ ∂ ⎡ ⎤+ + − + =⎣ ⎦∂∂
   (8.3.57)

so that our general solution is 

 
( ) (cos )

( , )
( ) (cos )

j kr P
V r

n kr Q






⎧ ⎫⎧ ⎫⎪ ⎪⎪ ⎪
= ⎨ ⎬⎨ ⎬

⎪ ⎪⎪ ⎪⎩ ⎭⎩ ⎭

 

 

 (8.3.58)

where j, nare spherical Bessel functions  and P, Q are Legendre functions of the 
first and second kind, respectively. 

Maple Examples
The following Maple worksheet demonstrates the separation of angular and 
radial components of Laplace’s equation in spherical and cylindrical coordinates. 

Key Maple commands: expand , Laplacian , SetCoordinates , subs 

Maple Packages: with(VectorCalculus ): 

restart

Separation of Variables: Spherical Coordinates

with(VectorCalculus) :
LapEqn : expand(Laplacian(V(r, theta), ‘spherical’[r, theta, phi]))  0

 

2

2 2

2 2 2

2 ( , ) cos( ) ( , ) ( , )
( , ) 0

sin( )

V r V r V r
r

V r
r r r r

   
 


∂ ∂ ∂⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟∂∂ ∂⎝ ⎠ ⎝ ⎠ ∂+ + + =

∂

SubsEqn : expand(subs(V(r, theta)  R(r)Theta(theta), LapEqn))

2

2 2

2

2

2

2 ( ) ( ) cos( ) ( ) ( )
( ) ( )

sin( )

( ) ( )

0

d d
R r R r

ddr d
R r

r dr r

d
R r

d

r

  






⎛ ⎞ ⎛ ⎞Θ Θ⎜ ⎟ ⎜ ⎟⎛ ⎞⎝ ⎠ ⎝ ⎠+ Θ +⎜ ⎟
⎝ ⎠

⎛ ⎞
Θ⎜ ⎟

⎝ ⎠+ =

SepEqn : expand ( ) ( )
2

Theta theta

r
Sub n

R
q

r
sE

⎛ ⎞
⋅⎜⎜

⎝ ⋅
⎟⎟
⎠
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2 2
2

2 2
( )2 ( ) cos( ) ( ) ( ) ( )

0
( ) ( ) ( )sin( ) ( )

dd d d
r R rr R r R r

dr dr d d
R r R r

  
 

  

⎛ ⎞⎛ ⎞ ⎛ ⎞Θ Θ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠+ + + =

Θ Θ
restart

Separation of Variables: Cylindrical Coordinates

with(VectorCalculus) :
SetCoordinates(‘cylindrical’[r, phi, z]);

 cylindricalr, , z

Lap : Laplacian(f(r, z))

 

2 2

2 2
( , ) ( , ) ( , )f r z r f r z r f r z

r r z

r

⎛ ⎞ ⎛ ⎞∂ ∂ ∂
+ +⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠

LapEqn : simplify(expand(Lap)  0)

 
2 2

2 2

( , )
( , ) ( , ) 0

f r z
r f r z f r z

r r z

∂
∂ ∂∂ + + =
∂ ∂

SubEqn : expand(subs(f(r, z)  R(r)Z(z), LapEqn))

 

2 2

2 2

( ) ( )
( ) ( ) ( ) ( ) 0

d
R r Z z

d ddr
R r Z z R r Z z

r dr dz

⎛ ⎞
⎜ ⎟ ⎛ ⎞ ⎛ ⎞⎝ ⎠ + + =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

SepEqn : expand
( ) ( )

1
SubsEqn

R r Z z

⎛ ⋅
⋅

⎞
⎜ ⎟
⎝ ⎠

 

2 2

2 2
( ) ( )( )

0
( ) ( ) ( )

d dd
R r Z zR r

dr dr dz
R r r R r Z z

+ + =

8.4 MATLAB EXAMPLES 

MATLAB is ideally suited for numerically solving and graphically displaying 
solutions of partial differential equations. In this section, MATLAB’s PDE Toolbox 
is described and demonstrated in finding the resonant vibrations in a plate. A 
numerical solution to the transient heat equation is given using the method of 
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finite differences. The solution to a boundary value problem obtained by using 
separation of variables is then plotted. 

Key MATLAB commands: besseli , mesh , meshc 

Programming: for loops

Section 8.1 Types of Partial Differential Equations
Typing ‘pdetool’ at the Command Prompt

>> pdetool

launches the graphical user interface (GUI) of the PDE Toolbox shown in Figure 
8.4.1. 

Figure 8.4.1: Toolbar of MATLAB’s PDE Toolbox.

The work fl ow on the toolbar is from left to right in specifying the type of PDE 
to be solved (Figure 8.4.2), constructing a solution region, assigning boundary 
conditions, building a fi nite element mesh, solving the problem and graphically 
viewing the solution.

Figure 8.4.2: GUI for selecting type of PDE. 

Types of PDEs supported included elliptic, parabolic, hyperbolic, and eigenmode. 
The elliptic PDE with time-independent u is of the form

 ( )c u au f−∇⋅ ∇ + =

The parabolic PDE with time-dependent u is

 ( )
u

d c u au f
t

∂
−∇⋅ ∇ + =

∂
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The hyperbolic PDE with time-dependent u is given by

 ( )
2

2

u
d c u au f

t

∂
−∇⋅ ∇ + =

∂
The eigenvalue equation

 ( )c u au du−∇⋅ ∇ + =

where the eigenvalues  are calculated by the solver. In the above PDEs, the 2D 
potential is of form u(x, y) or u(x, y, t). Note that the coefficients c and a may be 
constant or functions of (x, y) as well. The function f may have time dependence 
in parabolic and hyperbolic PDEs. 

The type of PDE may also be determined by specifying one of the following 
applications under the Options tab, including:

Generic Scalar 
Generic System 
Structural Mechanics, Plane Stress 
Structural Mechanics, Plane Strain
Electrostatics
Magnetostatics
AC Power Electromagnetics
Conductive Media DC
Heat Transfer
Diffusion 

Once the application/type of PDE is chosen, the model is constructed and the 
boundary conditions are assigned to the edges of the model. Types of boundary 
conditions include Neumann (derivative of u), Dirichlet (value of u), and Mixed 
(combination of Neumann and Dirichlet) boundary conditions.  

Example 8.4.1
Find the modes of vibration of a membrane in the shape of a polygon with an 
elliptical hole. 

Step I: The problem type is specifi ed as an eigenvalue problem with coeffi cients 
c  1, a  0 and d  1.

Step II: The model is drawn as shown in Figure 8.4.3 using the graphical line and 
ellipse tools. The boundary conditions are specifi ed as Dirichlet with h  1 and 
r  0 on the straight edges and on the elliptical hole. 
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Figure 8.4.3: Drawing the model and specifying boundary conditions. 

Step III: The fi nite element mesh shown in Figure 8.4.4 is generated using the 
triangular toolbar buttons and refi ned as desired.

Figure 8.4.4: Finite element mesh. 

The refi ned mesh in Figure 8.4.5 consists of 1234 nodes and 2256 triangular 
elements.

Figure 8.4.5: Refined finite element mesh. 
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Step IV: The problem is solved by clicking on the ‘’ button on the toolbar. 
Solutions corresponding to the fi rst three resonant frequencies (54.34, 66.82, 
74.69) are visualized by choosing a contour map of the potential with colormap 
bone (Figure 8.4.6). 

Figure 8.4.6: Shaded contour solutions to the eigenvalue problem. 

The fourth resonant frequency (85.08 Hz) is plotted using 3D contour levels 
(Figure 8.4.7). 

Figure 8.4.7: 3D contour plot of the fourth eigenvalue solution.  
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Section 8.2 The Heat Equation
The following MATLAB code demonstrates the finite difference method for 
solving the transient heat equation (also see Figure 8.4.8) for the temperature T(x, 
t) for a body with initial condition

 T(x, 0)  0 for 0 < x < L

and boundary conditions 

 T(0, t)  T(L, t)  100
% parameter r dt*alpha/dx^2 
r0.2; 
% specify the grid size and number of time steps

grid_size  50; 
time_steps 1000; 
% Initialize the temperature matrix 

Tzeros(time_steps,grid_size);
% specify boundary temperatures switched on at t0;
T(:,1) 100;
T(:,grid_size)100;
for n  1:time_steps-1
    for i2:grid_size-1 
        T(n1,i) T(n,i)r*(T(n,i1)-2*T(n,i)T(n,i-1));
    end 

end

% create a 3D surface plot (with contours) of the time dependent 

temperature

meshc(T)

xlabel('x')

ylabel('t')

zlabel('T')

title('T(x,t)')

colormap bone
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Figure 8.4.8: Solution to the transient heat equation displaced as a surface with contours. 
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Section 8.3 Separation of Variables
Below the separation of variables solution to Laplace’s equation obtained in 
Section 8.3 for a cylinder with constant potential specified on the cylindrical 
surface with grounded endcaps is coded in MATLAB (see also Figure 8.4.9).

% Analytical solution of Laplace's equation in a cylinder

 

% specify array dimensions

imax20;
jmax20;
 

% number of term carried out in the infinite sum

nmax201;
 

% initialize the array

Vzeros(imax,jmax);
 

L1.0;
R1.0;
 

% evaluate the potenial over the square region

for i1:imax
for j1:jmax
        

    r(i-1)/(imax-1);
    z(j-1)/(jmax-1);
for n1:2:nmax
    

    G1sin(n*pi*z/L)/n;
    G2besseli(0,n*pi*r/L)/besseli(0,n*pi*R/L);
    V(i,j)V(i,j) G1*G2;
end

   

end 

end

 

VV*4/pi;
mesh(V) % plot the results

xlabel('z')

ylabel('r')

zlabel('V')

title('V(r,z)')

colormap bone
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Figure 8.4.9: Solution to Laplace’s equation in cylindrical coordinates displayed as a surface plot. 

8.5 EXERCISES

Section 8.1 Types of Partial Differential Equations

1. Determine the order of the following partial differential equations. State if the 
PDE is linear or nonlinear

(a) 
2 2 2

2 2
6

u vu v

∂ Ω ∂ Ω ∂ Ω
+ + =

∂ ∂∂ ∂
 with independent variables (u, v) and dependent 

variable 

(b)  

22

2
2 0

y y
y

xx

∂ ∂⎛ ⎞+ + =⎜ ⎟∂∂ ⎝ ⎠
 with independent variable x and dependent 

variable y

(c)  
4 2

4
2 0

R R R

x y yx

∂ ∂ ∂
+ + =

∂ ∂ ∂∂
 with independent variables (x, y) and dependent 

variable R

2. State if the following linear PDEs are elliptic, hyperbolic, or parabolic. Also 
indicate if the PDEs are homogeneous or inhomogeneous  

(a) 
2 2 2

2 2
3 0

f f f

x yx y

∂ ∂ ∂
+ + =

∂ ∂∂ ∂
 with independent variables (x, y) and dependent 

variable f
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(b) 
2 2 2

2 2
4 2 3

R R R R
R

r t rr t

∂ ∂ ∂ ∂
+ + + =
∂ ∂ ∂∂ ∂

 with independent variables (r, t) and 

dependent variable R

(c) 
4 2 2

4 2
2 2 3

S S S S

r rr  

∂ ∂ ∂ ∂
+ + + =
∂ ∂ ∂∂ ∂

 with independent variables (r ) and 

dependent variable S

3. Show that V(x, y)  e2x sin2y is a solution to 
2 2

2 2
0

V V

x y

∂ ∂
+ =

∂ ∂

, 0
2

V x
⎛ ⎞ =⎜ ⎟

⎝ ⎠
 V(x, 0) 

4. Show that (x, t)  e2xsin4t is a solution to 

2

2 tx

 ∂ ∂
=
∂∂

V(x, 0)  e2x

5. Solve the following differential equations by direct integration  
2

2T
xy

x y

∂
=

∂ ∂
2

0
S S

y
x y y

∂ ∂
+ =

∂ ∂ ∂
6. Substitute (x)  et(c1cos(kx)  c2 sin(kx))  into the PDE

2 2
2

2 2
a b

x t

 


∂ ∂
− =

∂ ∂
to fi nd b in terms of a,  and k

Section 8.2 The Heat Equation

7. Solve the heat equation 
2

2

1 T
T

tx 

∂ ∂
=

∂∂
for a bar of length L with boundary conditions 
T(0, t)  0, T(L, t)  0
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and initial conditions

0( ,0) sin
x

T x T
L

⎛ ⎞= ⎜ ⎟
⎝ ⎠

8. Solve the heat equation 
2

2

1 T
T

tx 

∂ ∂
=

∂∂
for a bar of length L with boundary conditions 
T(0, t)  T0, T(L, t)  0
and initial conditions

 0( ,0) 1
x

T x T
L

⎛ ⎞= −⎜ ⎟
⎝ ⎠

9. Solve the heat equation 

 
2

2

1 T
T

tx 

∂ ∂
=

∂∂
for a bar of length L with initial conditions
T(x, 0)  0
and boundary conditions 
T(0, t)  T0, T(L, t)  0

10. Solve the heat equation 

2

2

1 1T T T

r r tr 

∂ ∂ ∂
+ =

∂ ∂∂
for a disk of radius R with initial conditions
T(r, 0)  0
and boundary conditions 
T(R, t)  T0

11. Solve the heat equation 
2

2

1 T
T

tx 

∂ ∂
=

∂∂
for a semi-infi nite bar with initial conditions
T(x, 0)  0
and boundary conditions 
T(0, t)  T0 sin(t)

12. The x  0 plane of a semi-infinite heat conductor is given a brief temperature 
pulse T0 at t  a described by a delta function T0(t – a). Use Laplace transform 
methods to solve the heat equation 
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2

2

T T

t x


∂ ∂
=

∂ ∂
with boundary conditions 

 

( )
( )
( )

( )0

,0 0

0,

, 0

T x

T t T t a

T t



⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪

= −⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪∞ ⎩ ⎭⎩ ⎭

Section 8.3 Separation of Variables

13. Solve Laplace’s equation for the potential V over a square region of length L 
with boundary conditions V(0, y)  0, V(x, 0)  0, V(L, y)  V0, and V(x, L)  
V0. 

14. Solve Laplace’s equation for the potential V between two cylindrical surfaces 
of radii a and b with respective boundary values V(a)  V0 and V(b)  0

15. Show that Poisson’s equation 2

0

1
( , ) ( , )V r z r z


∇ = −  has the form

 
2

2
0

1 1
( , )

V V
r r z

r r r z




∂ ∂ ∂⎛ ⎞ + = −⎜ ⎟∂ ∂ ∂⎝ ⎠
in cylindrical coordinates with axial symmetry.

16. Show that Poisson’s equation in spherical coordinates  2

0

1
( , ) ( , )V r r  


∇ = −  

has the form

 ( )2 2

1 1 1
sin ,

sin

V V
r r

r rr r
  

  

∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ = −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
in spherical coordinates with axial symmetry.
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9Chapter

COMPLEX 
ANALYSIS

Chapter Outline
9.1 Cauchy-Riemann Equations 
9.2 Integral Theorems
9.3 Conformal Mapping 

9.1 CAUCHY-RIEMANN EQUATIONS 

We may express a function of a complex variable f(z), where z  x  iy, as a sum of 
real and imaginary parts

 f(z) = u(x, y) + iv(x, y) (9.1.1) 

where u  Re(f) and v  Im(f).
The function f(z) is said to be analytic in a region R if its derivative exists 

everywhere in R. The derivative defi ned as

 ( ) ( ) ( )
0

lim
z

f z z f zd
f z

dz zΔ →

+ Δ −
=

Δ
 (9.1.2) 

exists if the limit is independent of the direction that z  0. In the complex 
plane, there are infinitely many directions that z x iy can go to zero. We 
first consider the direction parallel to the real axis letting x  0 while holding y 
fixed. Separating f(z) into its real and imaginary parts we have 
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0

( , ) ( , ) ( , ) ( , )
( ) lim

x

u x x y u x y i v x x y v x yd
f z

dz xΔ →

+ Δ − + + Δ −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦=
Δ

 (9.1.3) 

so that

 ( )
d u v

f z i
dz x x

∂ ∂
= +

∂ ∂
 (9.1.4) 

Next, we consider the direction parallel to the imaginary axis, letting y  0 while 
holding x fixed

 
0

( , ) ( , ) ( , ) ( , )
( ) lim

y

u x y y u x y i v x y y v x yd
f z

dz i yΔ →

+ Δ − + + Δ −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦=
Δ

 (9.1.5) 

so that

 ( )
d u v

f z i
dz y y

∂ ∂
= − +

∂ ∂
 (9.1.6) 

If f(z) is analytic then the derivative obtained each way should be equivalent

 
u v u v

i i
x x y y

∂ ∂ ∂ ∂
+ = − +

∂ ∂ ∂ ∂  (9.1.7) 

Equating real and imaginary parts of this expression gives the Cauchy-Riemann 
equations 

 and
u v v u

x y x y

∂ ∂ ∂ ∂
= = −

∂ ∂ ∂ ∂
  (9.1.8) 

9.1 Laplace’s Equation 
If we differentiate the first Cauchy-Riemann equation with respect to x and the 
second with respect to y we obtain

 
2 2 2 2

2 2
and

u v v u

x y y xx y

∂ ∂ ∂ ∂
= = −

∂ ∂ ∂ ∂∂ ∂
  (9.1.9) 

Differentiating the first equation with respect to y and the second with respect to x

 

2 2 2 2

2 2
and

u v v u

y x x yy x

∂ ∂ ∂ ∂
= = −

∂ ∂ ∂ ∂∂ ∂
 (9.1.10) 

Equating the cross partial derivatives in the two equations above gives

 
2 2 2 2

2 2 2 2
0 and 0

u u v v

x y x y

∂ ∂ ∂ ∂
+ = + =

∂ ∂ ∂ ∂
 (9.1.11) 
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This remarkable result shows that both the real and imaginary parts of any 
analytic function satisfy Laplace’s equation. 

Maple Examples
The real and imaginary parts of complex variable functions are plotted and shown 
to satisfy Laplace’s equation in the Maple worksheet below. 

Key Maple commands: assume , Im , implicitplot , Laplacian , Re , seq 

Maple packages: with(VectorCalculus ): with(plots ):

restart

Laplacian of Re[ F(z) ] and Im [F (z) ]

assume(x, real) : assume(y, real) :
z :  x  I*y

 z :  x~  Iy~

F :  exp(z)

 F :  ex~  Iy~

u :  Re(F)

 u :  ex~ cos(y~)

v :  Im(F)

 v :  ex~ sin(y~)

with(VectorCalculus) :
Laplacian(u, [x, y])

 0

Laplacian(v, [x, y])

 0

with(plots) :

Re_contours : seq(u  c, c  0 … 6) : Im_contours :  seq(v  c, c  -3 … 3) :
implicitplot([Re_contours], x  0 … 4, y  2 … 2)
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0
1 42 3

−1.5

−1

−0.5

0.5

1

1.5

y−

x−

Figure 9.1.1: Contour plot of the real part of F(z). 

implicitplot([Im_contours], x  0 … 4, y  -2 … 2)

0

−1

2

1

−2

2 3 41

Figure 9.1.2: Contour plot of the imaginary part of F(z).

G : z2

 G :  (x~  Iy~)2

u :  Re(G)

 u :  x~2 – y~2

v :  Im(G)

 v :  2x~ y~
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Laplacian(u, [x, y])
0

Laplacian(v, [x, y])
0

Re_contours : seq(u  c, c  3 … 3) : Im_contours :  seq(v  c, c  3 … 3) :
p1 :  implicitplot([Re_contours], x  -2 … 2, y  2 … 2, linestyle  solid, legend  
Real Part) :
p2 :  implicitplot([Re_contours], x  2 … 2, y  2 … 2, linestyle  dash, legend  
Imaginary Part) :

display(p1, p2)

0

–1

–2

2

1

–1–2 1 2
x

Real Part Imaginary Part

Figure 9.1.3: Contour plot of the real and imaginary parts of G(z).

9.2 INTEGRAL THEOREMS

Cauchy’s integral theorem and Cauchy’s integral formula are first discussed in 
this section, followed by the Laurent series expansion and types of singularities. 
Examples include the calculation of residues and integrals using the residue 
theorem. 

9.2.1 Cauchy’s Integral Theorem 
Cauchy’s integral theorem states that the closed line integral of an analytic 
function is zero

 ( ) 0f z dz =∫  (9.2.1)
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To show this, we write f(z)  u(x, y)  iv(x, y) and dz  dx  idy so that

 ( ) ( )( ) ( )f z dz u iv dx idy udx vdy i vdx udy= + + = − + +  (9.2.2)

Separating the integral into real and imaginary parts

 ( ) ( ) ( )f z dz udx vdy i vdx udy= − + +∫ ∫ ∫    (9.2.3)

Green’s theorem relates the line integral to the surface integral

 

surf

( , ) ( , )
G F

F x y dx G x y dy dxdy
x y

⎛ ⎞∂ ∂
+ = −⎜ ⎟∂ ∂⎝ ⎠

∫ ∫  (9.2.4)

Applying Green’s theorem, we have

 surf surf

( ) ( ) 0
v u u v

udx vdy i vdx udy dxdy i dxdy
x y x y

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
− + + = − + + − =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

∫ ∫ ∫ ∫ 
 (9.2.5)

where both surface integrals are zero because of the Cauchy-Riemann equations 

 and
u v v u

x y x y

∂ ∂ ∂ ∂
= = −

∂ ∂ ∂ ∂
  (9.2.6)

9.2.2 Cauchy’s Integral Formula 
Cauchy’s integral formula relates the value of f(z) at z0 to a line integral around z0 

 0

0

( )1
( )

2

f z
f z dz

i z z
Γ

=
−∫  (9.2.7)

provided f(z) is analytic inside . To show this consider the contour in Figure 9.2.1

 
1 2

0 0 0

( ) ( ) ( )f z f z f z
dz dz dz

z z z z z z
Γ Γ Γ

= +
− − −∫ ∫ ∫    (9.2.8)

consisting of clockwise and counterclockwise parts. 

r

Γ Γ
1

Γ
2

z
0

�

Figure 9.2.1: Contour around z0.
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Since the integrand f(z)(z – z0)1 is analytic in-between 1 and 2, Cauchy’s 
integral theorem gives 

 
1 2

0 0

( ) ( )
0

f z f z
dz dz

z z z z
Γ Γ

+ =
− −∫ ∫   (9.2.9)

or

 
1 2

0 0

( ) ( )f z f z
dz dz

z z z z
Γ Γ

=
− −∫ ∫   (9.2.10)

where both integrals are now taken as counterclockwise. Along the path 2, we 
make the coordinate transformation z – z0  rei and dz  ireid

 
2

2

0

0 0

( )
( )if z

dz i f z re d
z z


 

Γ

= +
−∫ ∫  (9.2.11)

now

 
2

0 0
0

0

lim ( ) 2 ( )i

r
i f z re d if z


  

→
+ =∫  (9.2.12)

Cauchy’s integral formula can be extended to derivatives of f(z) at z0 where the nth 
derivative

 
( )

0 1
0

( )!
( )

2 ( )

n

n

f zn
f z dz

i z z +
Γ

=
−∫  (9.2.13)

9.2.3 Laurent Series Expansion 
The Laurent expansion of a complex function f(z) about a point z0

 0( ) ( )n
n

n

f z a z z
∞

=−∞

= −∑  (9.2.14)

has coefficients corresponding to positive and negative n values

 
1 2

1 0 0 1 0 2 0( ) ( ) ( ) ( )f z a z z a a z z a z z−
−= + − + + − + − +   (9.2.15)

Laurent’s theorem gives coefficients

 
1

0

( )1

2 ( )
n n

f z
a dz

i z z +
Γ

=
−∫  (9.2.16)
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9.2.4 Types of Singularities 
The singularity z0 of a function f(z) may be classified by the nonzero terms of the 
Laurent series. 

Removable singularity : If all negative coeffi cients are zero, the singularity z0 is said 
to be removable, and the Laurent series is equivalent to a Taylor series.

Essential singularity : The singularity z0 is essential if there are an infi nite number 
of nonzero coeffi cients in the Laurent expansion.  

Pole : If there are a fi nite number of nonzero coeffi cients, the singularity z0 is 
classifi ed as a pole. 

Example 9.2.1
The function 

1
( )

n
f z

z
=  has a pole z0  0 of order n

Example 9.2.2

The function 
3

1
( )

( 1)
f z

z z
=

−
 has a pole z0  0 of order one and a pole z0  1 of 

order three

9.2.5 Residues 
The coefficient a-1 corresponding to n  –1 in the Laurent expansion is the residue 
of f(z) at z  z0. From the integral formula for the coefficients 

 1
0

( )1

2 ( )
n n

f z
a dz

i z z +
Γ

=
−∫  (9.2.17)

we have

 1

1
( )

2
a f z dz

i−
Γ

= ∫  (9.2.18)

If z0 is a pole of order one

 
0

1 0lim( ) ( )
z z

a z z f z− →
= −  (9.2.19)

If z0 is a pole of order m

 0

1

1 01

1
lim ( ) ( )

( 1)!

m
m

mz z

d
a z z f z

m dz

−

− −→
⎡ ⎤= −⎣ ⎦−  (9.2.20)
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Example 9.2.3
Calculate the residues of 

3

2
( )

( 1)

z
f z

z z
=

−
Solution:

a-1 at z  0: 

3

20 0
lim ( 0) ( ) lim 0

( 1)z z

z
z f z

z→ →
− = =⎡ ⎤⎣ ⎦ −

 (9.2.21)

a-1 at z  1: 
2 2

1 1

1
lim ( 1) ( ) lim2 2

1!z z

d
z f z z

dz→ →
⎡ ⎤− = =⎣ ⎦   (9.2.22)

9.2.6 Residue Theorem 
If  is a closed contour and f(z) is analytic inside  except at isolated singularities, 
then

 1( ) 2f z dz i a −
Γ

= ∑∫  (9.2.23)

where 1a−Σ  is the sum of residues. 

Example 9.2.4
Evaluate the integral

 
1

1
2

1

z
dz i a

z
 −

Γ

+
=

− ∑∫  (9.2.24)

where  is a closed contour surrounding z  1

Solution: We evaluate the residue 

a-1 at z  1: 
1 1

lim ( 1) ( ) lim( 1) 2
z z

z f z z
→ →

− = + =⎡ ⎤⎣ ⎦  (9.2.25)

 
1

4
1

z
dz i

z


Γ

+
=

−∫  (9.2.26)

Example 9.2.5
Evaluate the integral

 12
2

1

ze
dz i a

z



 −
Γ

=
+

∑∫  (9.2.27)
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where  is the rectangular contour shown in Figure 9.2.2.

Re Z

i

Im Z

Figure 9.2.2: Rectangular contour in the upper half plane. 

Solution: Factoring the denominator 

 
2 ( )( )1

z ze e

z i z iz

 

=
+ −+

 (9.2.28)

our contour only encloses the pole at z  i

a-1 at z  i: 
1

lim ( ) ( ) lim
( ) 2 2

z i

z i z i

e e
z i f z

z i i i

 

→ →

−
− = = =⎡ ⎤⎣ ⎦ +

  (9.2.29)

 2

1
2

21

ze
dz i

iz



 
Γ

−⎛ ⎞= = −⎜ ⎟+ ⎝ ⎠∫  (9.2.30)

Example 9.2.6
Evaluate the integral 

 
1/ze dz

Γ
∫  (9.2.31)

where  is the unit circle surrounding z  0 .

Solution: z  0 is an essential singularity. The integrand is expanded as an infi nite 
series 

 1/ 1 21 1
1

1! 2!

ze z z− −= + + +  (9.2.32)

where we identify the coeffi cient of z-1 as a-1  1 so that

 
1/ 2ze dz i

Γ

=∫  (9.2.33)
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The residue theorem can be used to evaluate more complicated integrals such as 
improper integrals and integrals involving trigonometric functions. 

9.2.7 Improper Integrals

Re Z

Γ
R

R–R

Figure 9.2.3 Semicircular contour closed in the upper half plane

Certain improper integrals of the form ( )f x dx

∞

−∞
∫  can be performed by 

integrating around infinite semicircular contours in the upper half plane (Figure 
9.2.3) where along the x-axis f(x)dx  f(z)dz so that

 1( ) ( ) lim ( ) ( ) 2

R

R

R
R

f x dx f z dz f z dz f z dz i a
∞

−
→∞

−∞ − Γ

⎡ ⎤
⎢ ⎥= = + =
⎢ ⎥⎣ ⎦

∑∫ ∫ ∫ ∫  (9.2.34)

The estimation lemma gives an upper bound on the contour integral in the upper 
half plane where the integral over the upper half circle is less than or equal to the 
length of the contour R multiplied by the maximum value of f(z) evaluated on 
R: 

 ( )( ) length max ( )
R

R

R
z

f z dz f z
∈Γ

Γ

≤ Γ ×∫  (9.2.35)

Thus, if lim max ( ) 0
RR z

R f z
→∞ ∈Γ

× =  then lim ( ) 0

R

R
f z dz

→∞
Γ

=∫  and the indefi nite 

integral of f(x) is given by 2i times the sum of residues of f(z) in the upper half 
plane

 1
upper half

( ) 2f x dx i a
∞

−

−∞

= ∑∫  (9.2.36)
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Example 9.2.7
Evaluate the improper integral

 
2

1

1
dx

x

∞

−∞ +∫  (9.2.37)

Solution: Taking the contour in the upper half plane (Figure 9.2.4)

Re Z

Γ
R

R–R

X  i

X   –i

Figure 9.2.4: Semicircular contour enclosing a residue in the upper half plane

 12 2 2

1 1 1
2

1 1 1
R

R

R

dz dz dz i a
z z z

 −
Γ − Γ

= + =
+ + +

∑∫ ∫ ∫  (9.2.38)

From the estimation lemma, since

 2

1
lim length( )max 0

1
R

R
R

zz→∞
∈Γ

⎛ ⎞
Γ =⎜ ⎟+⎝ ⎠

 (9.2.39)

 2

1
lim 0

1
R

R
dz

z→∞
Γ

=
+∫  (9.2.40)

There is only one residue in the upper half plane

 1

1 1
lim( )

( )( ) 2z i
a z i

z i z i i
− →

= − =
− +

  (9.2.41)

so that

 
2

1

1
dx

x


∞

−∞

=
+∫  (9.2.42)
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which agrees with the result obtained by trigonometric substitution.

Example 9.2.8
Evaluate the improper integral

 
sin( )x

dx
x

∞

−∞
∫  (9.2.43)

Solution: The integrand has a pole on the x-axis that must be avoided

 0

sin( )
Im lim

Riz iz

R
R

x e e
dx dz dz

x z z





∞ −

→∞
−∞ −→

⎡ ⎤
= +⎢ ⎥

⎢ ⎥⎣ ⎦
∫ ∫ ∫

 (9.2.44)

Our strategy is to avoid the pole by integrating around the contour shown in 
Figure 9.2.5

Re Z

Γ
R

R–R
X

–ε ε

Figure 9.2.5: Closed contour avoiding a pole on the x-axis

and apply Cauchy’s integral theorem since our contour encloses no poles

 0

R

Riz iz iz iz iz

R

e e e e e
dz dz dz dz dz

z z z z z






−

Γ − Γ Γ

= + + + =∫ ∫ ∫ ∫ ∫  (9.2.45)

 
0

0

sin( )
Im lim Im lim

Riz iz iz

R
R

x e e e
dx dz dz dz

x z z z







∞ −

→∞ →
−∞ − Γ→

⎡ ⎤
= + = −⎢ ⎥

⎢ ⎥⎣ ⎦
∫ ∫ ∫ ∫  (9.2.46)

To evaluate the integral over  we let z  ei and dz  ieid . For small , the 
exponential 1iz ie i e ≈ +
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0

0 0

1
Im lim Im lim Im( )

iz i
i

i

e i e
dz i e d i

z e





 



  

→ →
Γ

+
− = − = − −∫ ∫   (9.2.47)

and

 
sin( )x

dx
x


∞

−∞

=∫   (9.2.48)

9.2.8 Fourier Transform Integrals

Improper integrals of the form ( ) ikxf x e dx

∞

−∞
∫  may be evaluated by integrating 

over infinite semicircular contours taken counterclockwise in the upper half plane 
for k > 0 

 1( ) lim ( ) ( ) 2

R

R

ikz ikx ikz

R
R

f z e dz f x e dx f z e dz i a −→∞
− Γ

⎡ ⎤
⎢ ⎥= + =
⎢ ⎥⎣ ⎦

∑∫ ∫ ∫  (9.2.49)

Jordan’s lemma gives an upper bound on the contour integral in the upper half 
plane 

 
( ) max ( )

R

R

ikz

z
e f z dz f z

k


∈Γ

Γ

≤ ×∫  (9.2.50)

Thus, if lim max ( ) 0
RR z

f z
k


→∞ ∈Γ

× =  then lim ( ) 0

R

ikz

R
e f z dz

→∞
Γ

=∫  and

 1

upper half

( ) 2ikxf x e dx i a
∞

−

−∞

= ∑∫  (9.2.51)

If k < 0 then the semicircular contour is taken clockwise in the lower half plane

 
1

lower half

( ) 2
ikxf x e dx i a

∞

−

−∞

= − ∑∫  (9.2.52)

Example 9.2.9
Evaluate the improper integral

 2

cos3

1

x
dx

x

∞

−∞ +∫  (9.2.53)
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Solution: Along the y  0 axis we replace

 

3

2 2

cos3

1 1

i zx e

x z
→

+ +   (9.2.54)

and compute the contour integral 

 

3 3 3

12 2 2
lim 2

1 1 1
R

Ri z i z i z

R
R

e e e
dz dz dz i a

z z z
 −→∞

Γ − Γ

⎡ ⎤
⎢ ⎥= + =

+ + +⎢ ⎥⎣ ⎦
∑∫ ∫ ∫  (9.2.55)

 is taken along the x-axis and closed by semicircular contour R in the upper half 
plane. By Jordan’s lemma 

 

3

2
lim 0

1
R

i z

R

e
dz

z→∞
Γ

=
+∫  (9.2.56)

and the contour only encloses the pole at z  i with residue

 
3 3

1 lim( )
( )( ) 2

i z

z i

e e
a z i

z i z i i

−

− →
= − =

− +
 (9.2.57)

so that

 2 2 3

cos3

1 1

ize x
dz dx

z x e


∞

Γ −∞

= =
+ +∫ ∫  (9.2.58)

Maple Examples
The following Maple worksheet demonstrates the calculation of residues by series 
expansion and by using the residue command. Improper integrals are calculated 
using the residue theorem corresponding to infinite semicircular contours closed 
in the upper and lower half plane. 

Key Maple commands: evalf, expand, factor, residue, series

Special functions: Zeta

restart

Calculation of Residues

series(Zeta(z), z  1, 4)

 ( )2 3 41 1
( 1) 1 (1)( 1) (2)( 1) (3)( 1) ( 1)

2 6
z z z z O z   − − + − − + − − − + −

residue(Zeta(s), s  1)
1
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2

1
, 1,4

1
series z

z

⎛ ⎞= −⎜ ⎟−⎝ ⎠

 ( ) ( ) ( ) ( )1 2 31 1 1 1
1 1 1 ( 1)

2 4 8 16
z z z O z

−− + − − + − + + +

2

1
, 1

1
residue z

z

⎛ ⎞= −⎜ ⎟−⎝ ⎠

1

2
−

1
, 0, 4

sin( )
series z

z

⎛ ⎞=⎜ ⎟
⎝ ⎠

 
1 31

( )
6

z z O z− + +

1
, 0

sin( )
residue z

z

⎛ ⎞=⎜ ⎟
⎝ ⎠

1

( )
2

exp
, ,2

1

I z
series z I

z

⎛ ⎞⋅
=⎜ ⎟+⎝ ⎠

1 1( ) ()
2

I
e z I O− −− − +

( )
2

exp
,

1

I z
residue z I

z

⎛ ⎞⋅
=⎜ ⎟+⎝ ⎠

1

2

I
e−−

Improper Integrals (Contours Closed in the Upper Half Plane)

( )
4 2

exp

5 4

I x
dx

x x

∞

−∞

⋅

+ ⋅ +∫

 

1 2

3 6

e e − −

−

factor(x4  5x2  4)

 (x2  4)(x2  1)
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( ) ( )

4 2 4 2

exp exp
2 , , 2

5 4 5 4

I z I z
pi I residue z I residue z I

z z z z

⎛ ⎞⎛ ⎞ ⎛ ⎞⋅ ⋅
⋅ ⋅ = + = ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟

+ ⋅ + + ⋅ +⎝ ⎠ ⎝ ⎠⎝ ⎠

 
1 2

2
6 12

Ie Ie
I

− −⎛ ⎞
− +⎜ ⎟

⎝ ⎠

expand(%)

1 2

3 6

e e − −

−

2

6 4 214 49 36

x
dx

x x x

∞

−∞ + + +∫

60



2

6 4 2
: ( )

14 49 36

z
f z

z z z
= →

+ + +
2

6 4 2
: ( )

14 49 36

z
f z

z z z
= →

+ + +
factor(z6  14z4  49z2  36)

 (z2  9)(z2  4)(z2  1)

2piI(residue(f(z), z  I)  residue(f(z), z  2I)  residue(f(z), z  3I))

60



( )
4 2

exp

10 9

I x
dx

x x

∞

−∞

⋅

+ ⋅ +∫
1 3

8 24

e e − −

−

factor(x4  10x2  9)
 (x2  9)(x2  1)

( ) ( )
4 2 4 2

exp exp
2 , 3 ,

10 9 10 9

I z I z
pi I residue z I residue z I

z z z z

⎛ ⎞⎛ ⎞ ⎛ ⎞⋅ ⋅
⋅ ⋅ = ⋅ + =⎜ ⎟⎜ ⎟ ⎜ ⎟

+ ⋅ + + ⋅ +⎝ ⎠ ⎝ ⎠⎝ ⎠

 
3 1

2
48 16

Ie Ie
I

− −⎛ ⎞
−⎜ ⎟

⎝ ⎠
expand(%)
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3 1

24 8

e e − −

− +

Improper Integrals (Contours Closed in the Lower Half Plane)

( )
4 2

exp 3

5 4

I x
dx

x x

∞

−∞

− ⋅ ⋅

+ ⋅ +∫
6 3

6 3

e e − −

− +

factor(x4  5x2  4)

 (x2  4)(x2  1)

( ) ( )
4 2 4 2

3 6

exp 3 exp 3
2 , , 2

5 4 5 4

2
6 12

I z I z
pi I residue z I residue z I

z z z z

Ie Ie
I

− −

⎛ ⎞⎛ ⎞ ⎛ ⎞− ⋅ ⋅ − ⋅ ⋅
− ⋅ ⋅ ⋅ = − + = − ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟

+ ⋅ + + ⋅ +⎝ ⎠ ⎝ ⎠⎝ ⎠
⎛ ⎞

− −⎜ ⎟
⎝ ⎠

expand(%)

 
3 6

3 6

e e − −

−

4 2

1

5 4
dx

x x

∞

−∞ + ⋅ +∫

6



4 2 4 2

1 1
2 , , 2

5 4 5 4
pi I residue z I residue z I

z z z z

⎛ ⎞⎛ ⎞ ⎛ ⎞
− ⋅ ⋅ ⋅ = − + = − ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟

+ ⋅ + + ⋅ +⎝ ⎠ ⎝ ⎠⎝ ⎠

6



9.3 CONFORMAL MAPPING 

Topics in this section include Poisson’s integral formulas for a cylinder and 
half plane, the Schwarz-Christoffel transformation, conformal mappings and 
mappings on the Riemann sphere. 
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9.3.1 Poisson’s Integral Formulas 
Solutions to Laplace’s equation may be obtained by integral formulas developed by 
Poisson. If a function V is specified everywhere along the x-axis, ( ,0) ( ),V x F x ′=
then the potential in the upper half plane is

 2 2

( )1
( , )

( )

yF x dx
V x y

y x x

∞

−∞

′ ′
=

′+ −∫  (9.3.1)

The integral formula to obtain V inside a circle of radius R with boundary 
condition ( , ) ( )V R G ′ ′=  is

 

2 2 2

2 2

0

1 ( ) ( )
( , )

2 2 cos( )

R r G d
V r

R rR r


 


  

′ ′−
=

′− − +∫  (9.3.2)

9.3.2 Schwarz-Christoffel Transformation 
Polygons with interior angles j in the w-plane are mapped to the x-axis of the 
z-plane by the transformation

 1 2 / 1/ 1 / 1
1 2( ) ( ) ( ) n

n

dw
A z x z x z x

dz

     −− −= − − −  (9.3.3)

Integrating this expression gives

 1 2 / 1/ 1 / 1
1 1 2 2( ) ( ) ( ) n

nw c z x z x z x dz c     −− −= − − − +∫   (9.3.4)

where c1 and c2 are constants. 

9.3.3 Conformal Mapping 
The transformation w  f(z) is conformal over a region R if ( ) 0f z′ ≠  on R. If f(z) 
 u(x, y)  iv(x, y) is analytic over R then u and v satisfy the Cauchy-Riemann 
equations  

 and
u v v u

x y x y

∂ ∂ ∂ ∂
= = −

∂ ∂ ∂ ∂  (9.3.5)

and therefore satisfy Laplace’s equation

 
2 2 2 2

2 2 2 2
0 and 0

u u v v

x y x y

∂ ∂ ∂ ∂
+ = + =

∂ ∂ ∂ ∂
  (9.3.6)



414 MATHEMATICAL METHODS FOR PHYSICS USING MATLAB AND MAPLE

as discussed in Section 9.1.

Example 9.3.1
The transformation w  z2 maps the first quadrant of the z-plane to the upper half 
of the w-plane. Find the w components in terms of the original z-coordinates

Solution:

 

2 2Re( )

Im( ) 2

u w x y

v w xy

= = −

= =  (9.3.7)

where u and v each satisfy Laplace’s equation .
Because contours of constant u are perpendicular to contours of constant v, we 

may fi nd both electric fi eld lines and equipotentials in electrostatic problems. If a 
scalar function V(x, y) satisfi es Laplace’s equation in the x-y plane, then

 
2 2

2 2
0

V V

x y

∂ ∂
+ =

∂ ∂
 (9.3.8)

A transform that maps a region of the z-plane to a region in the w-plane preserves 
the form of Laplace’s equation written with the new coordinates u and v 

 
2 2

2 2
0

V V

u v

∂ ∂
+ =

∂ ∂
  (9.3.9)

In this way, we may transform an original complicated boundary into a simple 
boundary. Once V(u, v) is determined, then V(x, y) is found by substituting 
V(u(x, y), v(x, y)). If a complex region can be transformed to a half plane or a unit 
circle, then Poisson’s integral formula can be used to find a solution to Laplace’s 
equation in the transformed region. 

6.3.4 Mappings on the Riemann Sphere 
Points on the complex plane may be mapped onto a unit sphere with its south 
pole S coincident with the intersection of the real and imaginary axes. This sphere, 
known as the Riemann sphere, is illustrated in Figure 9.3.1. A line segment drawn 
from a point on the complex plane to the north pole N of the sphere maps the 
point to the intersection of the sphere and the line segment. The regions |z|  1 
and |z|  1 are mapped to the southern and northern hemispheres, respectively. 
The unit circle |z|  1 is mapped to the equator of the sphere. Points at infinity are 
mapped to the north pole. 
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Re z

Im z

S

N

Figure 9.3.1: Mapping on the Riemann sphere. 

Maple Examples
The following Maple worksheet demonstrates Poisson’s integral formula for 
calculation of the potential inside the unit circle. Conformal mappings of the 
first quadrant, upper half plane and all four quadrants as well as mappings on the 
Riemann sphere are performed.

Key Maple commands: conformal , conformal3d , evalf 

Maple packages: with(plots ):

Programming: Functions statements using ‘’

restart

Poisson Integral Formula

G:  q  sin(q)

 G:  q  sin(q)

( )
( )
( )

2

2

( ) 1 cos( )1
: , theta int , 0 2 Pi

2 Pi 1 2 cos theta

G q r q
V r q

r q r

⎛ ⎞⎛ ⎞⋅ −
⎜ ⎟= → = ⋅⎜ ⎟⎜ ⎟⎜ ⎟⋅ − ⋅ ⋅ − +⎝ ⎠⎝ ⎠
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( )
( )

2 2

2

0

( ) 1 cos( )

1 2 cos
: ( , )

2

G q r q
dq

r q r
V r








− +
− − +

= →
∫

evalf(V(0.99, 0.5))

 0.4123628560

evalf(V(0.99, –0.5))

 –0.4123628560

evalf(V(0.99, 0))

0

Conformal Mappings w = f(z) of the First Quadrant

with(plots) :
lower_left : 0  0I: upper_right : 1  1I:
conformal(z1.1, z  lower_left … upper_right, color  [“Black”, “Gray”])

 0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

  9.3.2(a)

conformal(z1.5, z  lower_left … upper_right, color  [“Black”, “Grey”])
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 –0.6 –0.4 –0.2 0 10.4 0.6 0.80.2

1.5

1

0.5
 9.3.2(b)

conformal(z2, z  lower_left … upper_right, color  [“Black”, “Grey”])

 0 1–1 –0.5 0.5

2

1.5

1

0.5

 9.3.2(c)

conformal(sin(3z), z  lower_left … upper_right, color  [“Black”, “Grey”])
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–8

–6

–4

–2

0

2

4

6

8

10

10842 6

 9.3.2(d)

conformal(tanh(z), z  lower_left … upper_right, color  [“Black”, “Grey”])

 0 0.2 0.4 0.6 0.8 1

1.5

1

0.5
 9.3.2(e)

conformal(tan(z), z  lower_left … upper_right, color  [“Black”, “Grey”])
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1.510.5

0

0.2

0.4

0.6

0.8

1

 9.3.2(f)

Figure 9.3.2(a–f): Conformal mappings of the first quadrant. 

Conformal Mappings w = f(z) of the Upper Half Plane

lower_left : –1  0I: upper_right : 1  1I:
conformal(z1.1, z  lower_left … upper_right, color  [“Black”, “Grey”])

 

0.2

0
10.5–0.5–1

1.0

–0.2

0.8

0.6

0.4

 9.3.3(a)

conformal(z1.5, z  lower_left … upper_right, color  [“Black”, “Grey”])
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10.5
–1.5 –1 –0.5 0

–1

–0.5

0.5

1

1.5

 9.3.3(b)

conformal(z2, z  lower_left … upper_right, color  [“Black”, “Grey”])

 –2

2

–1

–0.5
0

0.5 1

–1

–1

 9.3.3(c)

conformal(sin(3z), z  lower_left … upper_right, color  [“Black”, “Grey”])
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10

8

6

4

2

–8

–6

–4

–2

105–10 –5
 9.3.3(d)

conformal(tanh(z), z  lower_left … upper_right, color  [“Black”, “Grey”])

 0

1.5

–1 –0.5 0.5 1

1

0.5
 9.3.3(e)

conformal(tan(z), z  lower_left … upper_right, color  [“Black”, “Grey”])
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1

0–1.5 –1 –0.5 –0.5 –1 –1.5

0.8

0.2

0.4

0.6

 9.3.3(f)

Figure 9.3.3(a–f): Conformal mappings of the upper half plane.

Conformal Mappings w = f(z) of All Quadrants

lower_left : –1 – 1I: upper_right : 1  1I:
conformal(z1.03, z  lower_left … upper_right, color  [“Black”, “Grey”])

 

0.5

1

0

–0.5

0.5–0.5 1–1

–1

 9.3.4(a)

[ ]1
ln , _ _ , "Black","Grey"

1

z
conformal z lower left upper right color

z

⎛ ⎞+⎛ ⎞ = =⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠
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 –2

0

–1

1

2

–2 –1 1 2
 9.3.4(b)

conformal(exp(z2), z  lower_left … upper_right, color  [“Black”, “Grey”])

 

0
–0.5 1

1.5 2 2.5

1.5

1

0.5

–0.5

–1

–1.5

 9.3.4(c)

[ ]sin( )
, _ _ , "Black","Grey"

z
conformal z lower left upper right color

z

⎛ ⎞= =⎜ ⎟
⎝ ⎠
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0

–0.1

–0.2

–0.3

0.3

0.2

0.1

0.090 0.095 1.00 1.05 1.10 1.15
 9.3.4(d)

conformal(tan(z), z  lower_left … upper_right, color  [“Black”, “Grey”])

 
–1

–1 –0.5 0 0.5 1.5–1.5 1

–0.5

1

0.5

 9.3.4(e)

Figure 9.3.4(a–e): Conformal mappings of a square region in all four quadrants.
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Conformal Mappings Projected on the Riemann Sphere

lower_left : –1 – 3I: upper_right : 3  3I:
conformal3d(z, z  lower_left … upper_right, color  [“Black”, “Grey”], spherecolor 
 “Grey”)

 0.8
0

–0.8
–0.8

1.8
1.6

0.8

0.4

1.4
1.2
1.0

0.6

0.2

–0.4
0.4

–0.4
0

–0.8–0.4

 9.3.5(a)

conformal3d(cos(z), z  lower_left … upper_right, color  [“Black”, “Grey”], 
spherecolor  “Grey”)

 0.8
0

–0.8
–0.8

1.8
1.6

0.8

0.4

1.4
1.2
1.0

0.6

0.2

–0.4
0.4

–0.4
0

–0.8–0.4

 9.3.5(b)

lower_left : –1 – 1I: upper_right : 1  1I:
for n from 1 to 4 do
conformal3d(sin(nz), z  lower_left … upper_right, color  [“Black”, “Grey”], 

spherecolor  “Grey”)

end

 0.8
0 –0.8

0.8

0.2

–0.8

–0.4

–0.8
0

 9.3.5(c)
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 0.8
0 –0.8

0.8

0.2

–0.8

–0.4

–0.8
0

 9.3.5(d)

Figure 9.3.5(a–d): Conformal mappings on the Reimann sphere.

 0.8
0 –0.8

0.8

0.2

–0.8

–0.4

–0.8
0

 9.3.5(e)

 0.8
0 –0.8

0.8

0.2

–0.8

–0.4

–0.8
0

 9.3.5(f)

Figure 9.3.5(e–f): Conformal mappings on the Reimann sphere.

9.4 MATLAB EXAMPLES 

Examples in this section demonstrate the numerical Laplacian of the real and 
imaginary parts of complex variable functions satisfying the Cauchy-Riemann 
equations. The orthogonal streamlines of the real and imaginary components are 
plotted together. 

Key MATLAB commands: contour , imag , max , meshgrid , real 

Section 9.1 Cauchy-Riemann Equations
Given a function of a complex variable we calculate the discrete Laplacian (del2) 
of the function’s real (u) and imaginary (v) parts.  The maximum value of these 
arrays are calculated as max(max(del2(v))) and  max(max(del2(u))) to show these 
values are effectively zero within numerical precision. The quantities  max(max(v)) 
and  max(max(u)) are calculated for comparison. 



COMPLEX ANALYSIS 427

>> [x,y]meshgrid(-1:0.1:1,-1:0.1:1);
>> zx1i*y;
>> z1exp(z);
>> ureal(z1);
>> vimag(z1);
>> max(max(del2(u)))

ans 
  1.0248e-005

>> max(max(del2(v)))

ans 

  9.5442e-005

>> max(max(u))

ans 
    2.7183

>> max(max(v))

ans 
    2.2874

Section 9.3 Conformal Mapping
Contour plots of complex functions

x-2.0:.05:2.0;
y-2.0:.05:2.0;
[X,Y]meshgrid(x,y);
zX1i*Y;
z1sin(z);
ureal(z1);
vimag(z1);
contour(X,Y,u,'k-')

hold on

contour(X,Y,v,'k:')

hold off

axis equal

legend('Re(sin(z))','Im(sin(z))')

–2.5 –2 –1.5 –1 –0.5 0 0.5 1 1.5 2.52

2

1.5

1

0.5

0

–0.5

–1

–1.5

–2

Re(sin(z))
lm(sin(z))

Figure 9.4.1: Contour plot of the real and imaginary parts of sin(z).
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9.5 EXERCISES

Section 9.1 Cauchy-Riemann Equations

1. Given 
2

( ) zf z e= create contour plots of Ref(z)  u(x, y) and Imf(z)  v(x, y) 
displayed together

2. Given f(z)  ez show that both Ref(z)  u(x, y) and Imf(z)  v(x, y) satisfy 
Laplace’s equation

2 2

2 2
0

u u

v vx y

⎧ ⎫ ⎧ ⎫∂ ∂⎪ ⎪ ⎪ ⎪+ =⎨ ⎬ ⎨ ⎬
∂ ∂⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

3. Show that the Cauchy-Riemann equations in polar coordinates  are

1u v

r r 

∂ ∂
=

∂ ∂
 and 

1v u

r r 

∂ ∂
= −

∂ ∂

where 2 2 ,r x y= + x  r cos , y  r sin  and 1tan
y

x
 − ⎛ ⎞= ⎜ ⎟

⎝ ⎠
Hint: Use the chain rule relations 

u u r u

x r x x





∂ ∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂ ∂

u u r u

y r y y





∂ ∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂ ∂

with similar expressions for v

x

∂
∂

 and v

y

∂
∂

.

4. Given an analytic function of a complex variable expressed in polar 
coordinates f(z)  u(r, )  iv(r, ) show that both u(r, ) and v(r, ) satisfy 
Laplace’s equation

2 2

2 2

1 1
0

u u u

v v vr r rr 

⎧ ⎫ ⎧ ⎫ ⎧ ⎫∂ ∂ ∂⎪ ⎪ ⎪ ⎪ ⎪ ⎪+ + =⎨ ⎬ ⎨ ⎬ ⎨ ⎬∂∂ ∂⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎩ ⎭
 

5. Given f(z)  z2, Re f(z)  u(x, y) and Imf(z)  v(x, y) express u(x, y) and v(x, y) 
in polar coordinates and verify directly that 

2 2

2 2

1 1
0

u u u

v v vr r rr 

⎧ ⎫ ⎧ ⎫ ⎧ ⎫∂ ∂ ∂⎪ ⎪ ⎪ ⎪ ⎪ ⎪+ + =⎨ ⎬ ⎨ ⎬ ⎨ ⎬∂∂ ∂⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎩ ⎭
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Section 9.2 Integral Theorems

6. Evaluate the line integral 
2z dz

Γ
∫  from z  0 to z  1  i

7. Show that 2 0z dz

Γ

=∫  if  is

(a) a square with vertices  1i and 1i
(b) the unit circle |z|  1 

8. Show that 0ze dz

Γ

=∫  where  is

(a) a square with vertices 1i and 1i
(b) the unit circle |z|  1 

9. Use Cauchy’s integral formula 

0
0

( )1
( )

2

f z
f z dz

i z z
Γ

=
−∫  

to evaluate

1 cos( )

2 1

z
dz

i z
Γ

−∫  where  is the circle |z|  2 

10. Use Cauchy’s integral formula 

( )
0 1

0

( )!
( )

2 ( )

n

n

f zn
f z dz

i z z +
Γ

=
−∫  

to evaluate

3

1 cos( )
0

2 ( 1)

z
dz

i z
Γ

=
−∫  where  is the circle |z|  2

11. Find all residues of the following functions

2

cosh( )

1

z

z −
  

2 1

z

z +

2

ze

z z+

12. Find residues of the following functions at the indicated values of z

2 1

ze

z −
 at z  1
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( )
2

cos

1

z

z +
 at z  i

2

2

ze

z z+
 at z  0

13. Evaluate the following integrals

( )
2

cosh

1

z
dz

zΓ −∫  where  is the circle |z|  2 

2 1

z
dz

zΓ +∫  where  is the circle |z|  2

14. Evaluate the following improper integrals
2 3

4 220 64

ixx e
dx

x x

∞

−∞ + +∫
2

4 211 18

x
dx

x x

∞

−∞ + +∫  

2

2

sin x
dx

x

∞

−∞
∫   

Section 9.3 Conformal Mapping

15. Create contour plots of the following conformal transformation 

1
w

z
=  with z  the square with vertices  1i and 1i

w  z2 with z  the square with vertices 1i and 1i

5
w z

z
= +  with z  the square with vertices 1i and 1i

16. Create 3D conformal mappings  w  f(z) on the Riemann sphere  

sin( )

1

z
w

z
=

−
 z  the square with vertices 1i and 1i

cosh( )z
w

z
=  z  the square with vertices 1i and 1i
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5
w z

z
= +  z  the square with vertices 1i and 1i

17. Use Poisson’s integral formula

( )

( )22

1
( , )

yV x dx
V x y

y x x

∞

−∞

′ ′
=

′+ −
∫

to plot the potential V(x, y) in the upper half plane where 

1 0
( )       

0 0

x
V x

x

′ ≥⎧⎪′ = ⎨ ′ <⎪⎩

18. Use Poisson’s integral formula
2 2 2

2 2

0

1 ( ) ( )
( , )

2 2 cos( )

R r V d
V r

R rR r


 


  

′ ′−
=

′− − +∫
to plot the potential V(r, ) inside a circle of radius R  1
V()  cos(3)

19. Use Maple to create contour plots of the real and imaginary parts of the 
complex potentials 
(a) Uniform fl ow V(z)  e3iz

(b) Superposition of source and sink 
1

( ) ln
1

z
V z

z

−
=

+
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10Chapter

CLASSICAL 
MECHANICS

Chapter Outline
 10.1 Velocity-Dependent Resistive Forces

 10.2 Variable Mass Dynamics

 10.3 Lagrangian Dynamics

 10.4 Hamiltonian Mechanics

 10.5 Orbital and Periodic Motion

 10.6 Chaotic Dynamics

 10.7 Fractals

10.1 VELOCITY-DEPENDENT RESISTIVE FORCES 

In this section, we investigate the motion of a body in the presence of a drag force 
that increases monotonically with the velocity. Resistive motion in a gravitational 
field is then considered. 
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10.1.1 Drag Force Proportional to the Velocity 

Example 10.1.1
Consider the motion of a body where the only force acting is a resistive drag force 
proportional to the velocity of the body. Find the velocity as a function of distance.

Solution: Newton’s second law gives


dv

m bv
dt

= −  (10.1.1)

where b is a drag coefficient with units of Ns/m. We first seek the velocity as a 
function of distance 


dv dx

m bv
dx dt

= −  (10.1.2)

or


dv

m v bv
dx

= −  (10.1.3)

Thus, we integrate


dv b

dx m
= −  (10.1.4)

to obtain

 0( )
bx

v x v
m

= −  (10.1.5)

We can calculate the total distance traveled corresponding to v(x)  0


0v m

x
b

=  (10.1.6)

Example 10.1.2
Find the velocity as a function of time in the example above and then integrate to 
obtain the distance traveled. 

Solution: We may integrate


dv b

m dt
v m
= −  (10.1.7)
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to find the velocity as a function of time

 ( ) 0

b
t

mv t v e
−

=  (10.1.8)

and then integrate again to obtain the total distance

 ( ) 0 0
0

0 0 0

b b
t t

m m
v m v m

x v t dt v e dt e
b b

∞∞ ∞
− −

= = = − =∫ ∫  (10.1.9)

10.1.2 Drag Force on a Falling Body 
If the particle is acted on by both gravitational and resistive drag forces, Newton’s 
second law becomes


dv

mg bv m
dt

− =  (10.1.10)

where the gravitational force is in the opposite direction of the resistive drag force. 
We can immediately find the terminal velocity  where the acceleration is equal to 
zero 

 T

mg
v

b
=  (10.1.11)

Example 10.1.3
Find the velocity and acceleration of a body falling in a resistive medium as a 
function of time

Solution: To fi nd the velocity as a function of time we separate variables


dv

dt
b

g v
m

=
−

 (10.1.12)

and integrate


0 0

t v
dv

dt
b

g v
m

=
−

∫ ∫  (10.1.13)

making a u substitution 
b

u g v
m

= −  so that 
b

du dv
m

= −  and our integral 
becomes
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b
g v

m

g

m du
t

b u

−

= − ∫  (10.1.14)

giving

 ln ln
b

g v
m

g

b
g v

b mt u
m g

−
−

− = =  (10.1.15)

Exponentiating both sides and using ln ex  x gives

 1
b

t
m

b
e v

mg

−
= −  (10.1.16)

Solving for the time-dependent velocity

 ( )( ) 1
b

t
m

mg
v t e

b

−
= −  (10.1.17)

and we see that at t  0 the velocity v  0 and as t   we reach the terminal 
velocity v  mg/b as calculated previously. Also, we can calculate the acceleration 
as a function of time

 ( )
b

t
ma t ge

−
=   (10.1.18)

so we have that a  g at t  0. 

Maple Examples
The time-dependent velocity of a body falling with a resistive drag force is 
calculated in the Maple worksheet below. Projectile motion is considered in the 
presence of a drag force. 

Key Maple commands: diff , dsolve,  expand 

Drag Force Proportional to Velocity

Eq1 : mdiff(v(t), t)  mg – betav(t)

 ( ) ( )
d

m v t mg v t
dt


⎛ ⎞ = −⎜ ⎟
⎝ ⎠

dsolve({Eq1, v(0)  0}, v(t));

 ( )

t

mgm e gm
v t



 

−

= −
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Drag Force Proportional to Velocity Squared

Eq2 : mdiff(v(t), t)  mg – Cv(t)2

 
2( ) ( )

d
m v t mg Cv t

dt

⎛ ⎞ = −⎜ ⎟
⎝ ⎠

dsolve({Eq2, v(0)  0}, v(t));

 
tanh

( )

t Cmg
Cmg

m
v t

C

⎛ ⎞
⎜ ⎟
⎝ ⎠=

Projectile Motion with Drag Proportional to Velocity Squared

Eq3 : mdiff(y(t), t, t)  – mg – betadiff(y(t), t)

 

2

2
( ) ( )

d d
m y t mg y t

dtdt


⎛ ⎞ ⎛ ⎞= − −⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

Eq4 : mdiff(x(t), t, t)  – betadiff(x(t), t)

 

2

2
( ) ( )

d d
m x t x t

dtdt


⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

dsolve({Eq3, Eq4, D(y)(0)  1, D(x)(0)  1, y(0)  0, x(0)  0}, {x(t), y(t)})

 

( ) ( )

( ) , ( )

t

m
t

m

me gm m gm
gmt

m me
x t y t



  

 
  

−

−

⎧ ⎫
+ +⎪ ⎪⎪ ⎪+ −⎨ ⎬

⎪ ⎪= − = −
⎪ ⎪⎩ ⎭

expand(%[2])

 

2 2

2

( )
t t

m m

m g gmt m gm m
y t

e e

    
 

= − − − + +

10.2 VARIABLE MASS DYNAMICS 

The Tsiolkovsky rocket equation  is developed using conservation of linear 
momentum in this section. Rocket thrust and motion in a gravitational field are 
calculated. 
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10.2.1 Rocket Motion 
The initial momentum pi of a rocket with  mass M  M traveling in one 
dimension with a speed v is

 ( )ip M M v= +Δ  (10.2.1)

The final momentum pf of the rocket and the ejected fuel mass M is 

 ( ) ( )f ep M v v v M v v= + Δ + Δ −  (10.2.2)

where ve is the exhaust speed.  Conservation of momentum pi  pf gives

 eMv Mv Mv M v Mv Mv+ Δ = + Δ + Δ − Δ  (10.2.3)

Simplifying we are left with

 eM v v MΔ = Δ  (10.2.4)

Dividing by t gives the rocket thrust  as the product of the exhaust speed times 
the burn rate M/t.

 e

v M
M v

t t

Δ Δ
=

Δ Δ  (10.2.5)

We also have a liftoff condition  

 e

M
v Mg

t

Δ
>

Δ  (10.2.6)

where the thrust must exceed the weight of the rocket to leave the launch pad. To 
calculate the speed of the rocket we first consider the case of zero gravity from 
equation (10.2.4).

 
e

M
v v

M

Δ
Δ =  (10.2.7)

for an infinitesimal change in velocity v  dv with the rocket losing mass  M  
dM. Integration gives

 

f f

i i

v M

e

v M

dM
dv v

M
= −∫ ∫  (10.2.8)

and we find 

 ln i
f i e

f

M
v v v

M

⎛ ⎞
= + ⎜ ⎟⎜ ⎟

⎝ ⎠
 (10.2.9)

as obtained by Tsiolkovsky in 1912 showing that the change in velocity is equal to 
the exhaust speed times the logarithm of the initial to final mass ratio. Considering 
rocket motion in a gravitational field with vi  0, vf  v(t) and Mf  M(t).
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 ( ) ( )
ln i

e

M
v t v gt

M t

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
 (10.2.10)

Integrating to obtain the height of the rocket as a function of time neglecting air 
resistance and the variation of g with height we find

 ( ) ( )
2

0

1
ln

2

t

i
e

M
h t v dt gt

M t

⎛ ⎞
′= −⎜ ⎟⎜ ⎟′⎝ ⎠

∫  (10.2.11)

where ve is assumed constant. We may neglect air resistance during lunar launch 
where the acceleration of gravity is g/6. 

Example 10.2.1
Calculate the rocket height as a function of time h(t) for an exponential burn 

 M(t)  Mie
t

Using the fact that ln (ex)  x we integrate the equation 

 

( ) ( )

( )

2

0

2

0

2

1
ln

2

1
       

2

1
       

2

t

t
e

t

e

e

h t v e dt gt

v t dt gt

v g t







′ ′= −

′ ′= −

= −

∫

∫  (10.2.12)

Thus, we require that ve  > g for liftoff in this example. Calculating the thrust

 
( )

thrust t
e e i

dM t
v v M e

dt

 −= =  (10.2.13)

At t  0, thrust   veMi and we verify our liftoff condition veMi  > Mig so that 
ve  > g.

Maple Examples
Rocket motion is modeled with and without resistive drag forces in the Maple 
worksheet below.

Key Maple commands: assume , diff , dsolve , simplify

restart
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Rocket Motion: Exponential Burn

assume(lambda  0, t  0)
M:  (t)  Miexp(-lambdat)
 M:  t  Miet

( ): ln
( )

Mi
v t ve g t

M t

⎛ ⎞
= → ⋅ − ⋅⎜ ⎟

⎝ ⎠

 ( ): ln
( )

Mi
v t ve g t

M t

⎛ ⎞= −⎜ ⎟
⎝ ⎠



Eq1 : diff(h(t), t)  v(t)

 : ( )
d

Eq1 h t ve t gt
dt

= = −   


dsolve({Eq1, v(0)  0, h(0) 0}, h(t));

 { }2 21 1
( )

2 2
h t t ve gt= −   

Rocket Motion with Resistive Drag

withDrag : diff(vel(t), t)  ve(-diff(M(t), t) – mg – betavel(t)

 ( ): ( ) td
withDrag vel t veM e mg vel t

dt

 −= = − −   


dsolve({withDrag, vel(0)  0})

( )
( )

t t

tMi ve e gm gmveMi
vel t e

  
 

     

− −
− ⎛ ⎞= − + − +⎜ ⎟− −⎝ ⎠

  
 

 
 

10.3 LAGRANGIAN DYNAMICS 

Variational methods find application in many branches of physics, including 
classical and quantum mechanics, relativity and electromagnetism. Topics in this 
section include the application of variational techniques to mechanical problems.

10.3.1 Calculus of Variations 
The calculus of variations involves finding an unknown function y(x) such that 
integral

 

2

1

, ,

x

x

dy
J F y x dx

dx

⎛ ⎞= ⎜ ⎟
⎝ ⎠∫  (10.3.1)
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is an extremum J  0. The integrand F(y, y, x) is a known functional  (function 
of a function) of y(x) and y(x). The integral J is an extremum if F satisfies the 
Euler-Lagrange equation 

 0
F F

y x y

⎛ ⎞∂ ∂ ∂
− =⎜ ⎟′∂ ∂ ∂⎝ ⎠

 (10.3.2)

In the case of time-dependent dynamical problems, the functional is the 
Lagrangian L and

 
2

1

, ,

t

t

dq
S L q t dt

dt

⎛ ⎞= ⎜ ⎟
⎝ ⎠∫  (10.3.3)

is the action integral where S  0 gives the differential equation of motion

 0
L L

q t q

⎛ ⎞∂ ∂ ∂
− =⎜ ⎟∂ ∂ ∂⎝ ⎠

 (10.3.4)

Example 10.3.1
Use the Euler-Lagrange equation to show that the shortest distance between two 
points is a straight line. 

Solution: The line element in two dimensions is 

 ( )
1/2

2
1/2

2 2 1
dy

ds dx dy dx
dx

⎛ ⎞⎛ ⎞⎜ ⎟= + = + ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 (10.3.5)

or

 ( ) ( )1/2
2, , 1ds F x y y y′ ′= = +  (10.3.6)

where y= dy/dx. The Euler-Lagrange equation is

 0
F F

y x y

⎛ ⎞∂ ∂ ∂
− =⎜ ⎟′∂ ∂ ∂⎝ ⎠

 (10.3.7)

Since F/y  0 

 ( )1/2
2

0
1

yF

x y x y

′∂ ∂ ∂ ⎡ ⎤
= =⎢ ⎥′∂ ∂ ∂ ′+⎢ ⎥⎣ ⎦

 (10.3.8)

and

 ( )1/2
2

const.
1

y

y

′
=

′+  (10.3.9)
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Squaring both sides and solving gives y = c1 and 

 y = c1x + c2 (10.3.10)

where c1 and c2 are constants. 

10.3.2 Lagrange’s Equations of Motion 
The Lagrangian  L is defined as

 L = T  V (10.3.11)

where the kinetic energy T and potential energy V are both functions of the 
generalized coordinates qi and velocities iq  where 

 ( )1 2 1 2, , , , , ,N NL L q q q q q q t=      (10.3.12)

for N degrees of freedom. We seek the qi such that

 
2

1

0

t

t

S Ldt = =∫  (10.3.13)

with the qi fixed at the endpoints qi(t1)  qi(t2)  0. 

In one dimension, ( , , )L L q q t=   and the action integral  is

 ( )
2

1

, ,

t

t

S L q q t dt= ∫   (10.3.14)

Calculating the variation of the action

 
2

1

0

t

t

L L
S q q dt

q q
  

⎡ ⎤∂ ∂
= + =⎢ ⎥∂ ∂⎣ ⎦
∫ 

  (10.3.15)

with ( ) /q d q dt =  (10.3.16)

 ( )
2

1

0

t

t

L L d
q q dt

q q dt
 

⎡ ⎤∂ ∂
+ =⎢ ⎥∂ ∂⎣ ⎦

∫   (10.3.17)

Integrating the second term by parts

 ( )
2 2

2

1

1 1

t t
t

t

t t

L d L d L
q dt q qdt

q dt q dt q
  

⎛ ⎞∂ ∂ ∂
→ − ⎜ ⎟∂ ∂ ∂⎝ ⎠

∫ ∫    (10.3.18)

and since q(t1)  q(t2)  0 we have

 

2 2

1 1

0

t t

t t

L d L L d L
q q dt qdt

q dt q q dt q
  

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
− = − =⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

∫ ∫   (10.3.19)
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For the integral to be zero for an arbitrary choice of q the integrand must be zero 
so

 0
d L L

dt q q

⎛ ⎞∂ ∂
− =⎜ ⎟∂ ∂⎝ ⎠

 (10.3.20)

This is the Euler-Lagrange equation of motion. In general, we will have one 
equation for each degree of freedom 

 0
i i

d L L

dt q q

∂ ∂
− =

∂ ∂  (10.3.21)

Example 10.3.2
Show that ( )/q d q dt =  assuming q depends on a parameter r

Solution:

                 

dq dq
q r

dt r dt
qd

r
dt r
d

q
dt

  





∂
= =

∂
∂

=
∂

=



 (10.3.22)

Example 10.3.3
Find the equation of motion of a block on a spring with kinetic energy 21

2
T mx=   

and potential energy 21

2
V kx=

Solution: The Lagrangian is

 
2 21 1

2 2
L T V mx kx= − = −  (10.3.23)

Lagrange’s equation of motion

 0
d L L

dt x x

∂ ∂
− =

∂ ∂
 (10.3.24)

becomes

 ( ) 0
d

mx kx
dt

+ =  (10.3.25)

or

 mx kx= −  (10.3.26)
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Example 10.3.4
Find the equation of motion of a simple pendulum with kinetic energy 

( )21

2
T m =   and potential energy ( )1 cosV mg = − .

Solution: Constructing the Lagrangian 

 ( ) ( )
21

1 cos
2

L m mg = − −   (10.3.27)

we evaluate 

 0
d L L

dt 

∂ ∂
− =
∂∂

 (10.3.28)

 ( )2 sin 0
d

m mg
dt

 + =   (10.3.29)

or

 sin
g

 = −


 (10.3.30)

10.3.3 Lagrange’s Equations with Constraints 
The Lagrangian L of a dynamical system subject to the holonomic constraint 

 ( )1 2, , , 0Nf q q q t =  (10.3.31)

is

 ( )iL L f q′ = +  (10.3.32)

where  is the Lagrange multiplier to be determined.
Lagrange’s equations of motion 

 0
i i

d L L

dt q q

′ ′∂ ∂
− =

∂ ∂  (10.3.33)

may be written as

 
i i i

fd L L

dt q q q

∂∂ ∂

− =
∂ ∂ ∂   (10.3.34)

Example 10.3.5
Find the equations of motion of a sphere of radius r rolling without slipping down 
a plane inclined at an angle .
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Solution: The kinetic energy of the rolling sphere consists of translational and 
rotational components

 2 21 1

2 2
T mx I= +   (10.3.35)

where I is the moment of inertia of the sphere. The potential energy of the sphere 
is measured from the bottom of the plane of length L.

 ( )sinV mg L x = −  (10.3.36)

Our constraint equation is

 x  r  0 (10.3.37)

with Lagrangian

 ( ) ( )2 21 1
sin 0

2 2
mx I mg L x x r   + − − + − =  (10.3.38)

The equations of motion become

 sin 0mx mg  + − =  (10.3.39)

 0I r + =  (10.3.40)

Maple Examples
Lagrange’s equations of motion are found for physical systems in the Maple 
worksheet below. It is not necessary to substitute dummy variables when 
differentiating with respect to time derivatives using the Physics package.

Key Maple commands: diff , Setup , subs 

Maple packages: with(Physics ):

restart

Lagrangian: Simple Harmonic Oscillator

2 21 1
: ;

2 2
L m xdot k x= ⋅ ⋅ − ⋅ ⋅

 
2 2

:
2 2

mxdot kx
L = −

diff(L, xdot)

 m xdot

diff(subs(xdot  diff(x(t), t), diff(L, xdot)), t) – subs(x  x(t), diff(L, x))  0
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2

2
( ) ( ) 0

d
m x t kx t

dt

⎛ ⎞
+ =⎜ ⎟

⎝ ⎠

Lagrangian: Central Potential

restart

( )2 2 21
: ;

2

G m M
L m rdot r phidot

r

⋅ ⋅
= ⋅ ⋅ + ⋅ +

 

( )2 2 2

:
2

m r phidot rdot GmM
L

r

+
= +

tsubs : {r  r(t), phi  phi(t), rdot  diff(r(t), t), phidot  diff(phi(t), t)};

 { }: ( ), ( ), ( ), ( )
d d

tsubs t phidot t r r t rdot r t
dt dt

  = = = = =

rEqn : diff(subs(tsubs, diff(L, rdot)), t) – subs(tsubs, diff(L, r))  0

 
( )

22

2 2
: ( ) ( ) ( ) 0

d d GmM
rEqn m r t m t r t

dtdt r t


⎛ ⎞ ⎛ ⎞= − + =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

Lagrangian: Physics Package

restart
with(Physics) :
Setup(mathematicalnotationtrue)

 [mathematicalnotation  true]

( ) ( )2 221 1
: ( ), ( ) ( ),

2 2 ( )

G m M
L m diff r t t m r t diff phi t t

r t

⋅ ⋅
= ⋅ ⋅ + ⋅ ⋅ ⋅ +

 

2 2
2( ) ( ) ( )

:
2 2 ( )

d d
m r t mr t t

GmMdt dt
L

r t


⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠= + +

diff(diff(L, diff(r(t), t)), t) – diff(L, r(t))  0

 

22

2 2
( ) ( ) ( ) 0

( )

d d GmM
m r t mr t t

dtdt r t


⎛ ⎞ ⎛ ⎞− + =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠
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10.4 HAMILTONIAN MECHANICS 

Hamilton’s equations of motion are applied to dynamical problems in this 
section. Hamiltonian mechanics finds utility in several branches of physics 
and is especially useful in quantum mechanics. We first introduce the concept 
of generalized momenta and define the Hamiltonian in terms of a Legendre 
transformation of the Lagrangian function. Hamilton’s equations of motion are 
obtained and expressed using the Poisson bracket formulation. Examples of the 
simple harmonic oscillator and the simple pendulum are given. 

10.4.1 Legendre Transformation 
Given the Lagrangian function of generalized coordinates and momenta

 ( )1 2 1 2, , , , ,N NL L q q q q q q=      (10.4.1)

the generalized momenta are

 
i

i

L
p

q

∂
=
∂ 

 (10.4.2)

The Hamiltonian is constructed as 

 ( ) ( )1 2 1 2 1 2 1 2
1

, , , , , , , , , ,
N

N N i i N N

i

H q q q q q q p q L q q q q q q
=

= −∑           (10.4.3)

10.4.2 Hamilton’s Equations of Motion 
Given a Lagrangian L, the Hamiltonian from the Legendre transformation 

 
1

N

i i

i

H p q L
=

= −∑   (10.4.4)

To find Hamilton’s equations of motion we evaluate 

 
1 1 1 1

N N N N

i i i i i i

i i i i i i

L L
dH dp q p dq dq dq

q q= = = =

∂ ∂
= + − −

∂ ∂∑ ∑ ∑ ∑  


 (10.4.5)

Since the second and third terms sum to zero and /i ip L q= ∂ ∂  

 
1 1

N N

i i i i

i i

dH dp q p dq
= =

= −∑ ∑   (10.4.6)

Given H  H(pi, qi) we also have that

 
1 1

N N

i i

i i i i

H H
dH dp dq

p q= =

⎛ ⎞ ⎛ ⎞∂ ∂
= +⎜ ⎟ ⎜ ⎟

∂ ∂⎝ ⎠ ⎝ ⎠
∑ ∑  (10.4.7)
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Comparing the last two expressions we obtain the equations of motion 

 

i

i

i

i

H
p

q

H
q

p

∂
= −

∂
∂

=
∂




 (10.4.8)

Hamilton’s equations of motion are first order in time while Lagrange’s equations 
are usually second order. The equations of motion are often nonlinear and must 
be evaluated numerically. Numerical integration schemes can be applied directly 
to systems of first order equations whereas higher order differential equations 
must be converted to first order systems before applying integration schemes such 
as the Euler method or the Runge-Kutta technique. 

Example 10.4.1
Find Hamilton’s equations of motion of a block of mass m attached to a spring 
with force constant k.

Solution: The Lagrangian of the block on a spring considered in Section 10.3 is

 2 21 1

2 2
L T V mx kx= − = −  (10.4.9)

The generalized momentum is

 x

L
p mx

x

∂
= =
∂




 (10.4.10)

The Hamiltonian is obtained from the Legendre transformation

 2 21 1

2 2
xH xp L mx kx= − = +   (10.4.11)

Writing the Hamiltonian in terms of the generalized momentum and position

 
2

21

2 2
xp

H kx
m

= +  (10.4.12)

Hamilton’s equations of motion are thus

 
x

H
p kx

x

∂
= − = −

∂
  (10.4.13)

 x

x

pH
x

p m

∂
= =
∂

  (10.4.14)
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Example 10.4.2
Find Hamilton’s equations of motion of the simple pendulum with Lagrangian

 ( ) ( )
21

1 cos
2

L T V m mg = − = − −   (10.4.15)

Solution: The generalized momentum is

 2L
p m 



∂
= =
∂

  (10.4.16)

The Hamiltonian

 ( ) ( )
21

1 cos
2

H p L m mg  = − = + −    (10.4.17)

written in terms of p and  becomes

 ( )
2

1 cos
2

p
H mg

m
 = + −


 (10.4.18)

Hamilton’s first order equations of motion are

 sin
H

p mg 


∂
= − = −

∂
   (10.4.19)

 
pH

p m





∂

= =
∂




 (10.4.20)

Example 10.4.3
Given a Lagrangian such that 

 ( ),L L q q=   and 0
L

t

∂
=

∂
 (10.4.21)

show that the Hamiltonian is a conserved quantity

 0
dH

dt
=  (10.4.22)

Solution: Calculating the total derivative of the Lagrangian 

 
q qdL L L L

dt t q t q t

∂ ∂∂ ∂ ∂
= + +

∂ ∂ ∂ ∂ ∂


  (10.4.23)

we have 

 
dL L L

q q
dt q q

∂ ∂
= +
∂ ∂
 

  (10.4.24)
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From Lagrange’s equation of motion 

 
L d L

q dt q

∂ ∂
=

∂ ∂ 
 (10.4.25)

we have

 
dL d L L d L

q q q
dt dt q q dt q

⎛ ⎞∂ ∂ ∂
= + = ⎜ ⎟∂ ∂ ∂⎝ ⎠

  
    (10.4.26)

or

 0
d L

q L
dt q

⎛ ⎞∂
− =⎜ ⎟∂⎝ ⎠

  (10.4.27)

Thus, we have the conserved quantity

 0
dH

dt
=  (10.4.28)

where the Hamiltonian is

 
L

H q L
q

∂
= −
∂

  (10.4.29)

Also, if 

 ( )1 2 1 2, , , , ,N NL L q q q q q q=      and 0
L

t

∂
=

∂
 (10.4.30)

the Hamiltonian 

 
1

N

i i

i

H p q L
=

= −∑   where i

i

L
p

q

∂
=
∂   (10.4.31)

is a conserved quantity. 

10.4.3 Poisson Brackets 
Consider a function F(q, p) of a generalized coordinate q and momentum p. We 
can calculate the time derivative of F by using the chain rule 

 
( ),dF q p q pF F

dt q t p t

∂ ∂∂ ∂
= +

∂ ∂ ∂ ∂
 (10.4.32)

or in dot notation 

 
F F

F q p
q p

∂ ∂
= +

∂ ∂
   (10.4.33)
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Substituting Hamilton’s equations 

 
H

p
q

∂
= −

∂
  (10.4.34)

 
H

q
p

∂
=

∂
  (10.4.35)

into our time derivative 

 { },
F H F H

F F H
q p p q

∂ ∂ ∂ ∂
= − =

∂ ∂ ∂ ∂


 (10.4.36)

where the Poisson bracket between two quantities A and B is defined as

 { },
A B B A

A B
q p p q

∂ ∂ ∂ ∂
= −

∂ ∂ ∂ ∂
 (10.4.37)

The Poisson bracket of A with the Hamiltonian gives the time derivative 

 { },A A H=  (10.4.38)

Some important Poisson bracket relations include

 

{ }
{ }
{ }
{ }
{ } { }

( ){ } ( ){ }

2

2

, 1

, 1

, 2

, 2

, , 0

, , 0

p q

q p

p q q

q p p

p p q q

p f p q f q

= −

=

= −

=

= =

= =

 (10.4.39)

where f(p) and f(q) are arbitrary functions of p and q. 

Example 10.4.4
Use Poisson brackets to find Hamilton’s equations of motion of the one-
dimensional harmonic oscillator with Hamiltonian 

 
2

21

2 2
xp

H kx
m

= +  (10.4.40)

Solution: To obtain the equations of motion we calculate the Poisson brackets 

 { } { }
2

2 21 1
, , ,
2 2 2

x
x x x x

p
p p kx k p x kx p x kx

m

⎧ ⎫⎪ ⎪= + = = = −⎨ ⎬
⎪ ⎪⎩ ⎭

  (10.4.41)
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 { } { }
2

2 21 1
, , ,
2 2 2

x x x
x x

p p p
x x kx x p x p

m m m m

⎧ ⎫⎪ ⎪= + = = =⎨ ⎬
⎪ ⎪⎩ ⎭

  (10.4.42)

Example 10.4.5
Use Poisson brackets to find Hamilton’s equations of motion of the simple 
pendulum with Hamiltonian

 ( )
2

1 cos
2

p
H mg

m
 = + −


 (10.4.43)

Solution: To obtain the equations of motion we calculate the Poisson brackets 

 ( ) { }
2

, 1 cos ,cos sin
2

p
p p mg mg p mg

m


    
⎧ ⎫⎪ ⎪= + − = − = −⎨ ⎬
⎪ ⎪⎩ ⎭

   


 (10.4.44)

 ( ) { }
2

21
, 1 cos ,
2 2

p p
mg p

m m m
 

   
⎧ ⎫⎪ ⎪= + − = =⎨ ⎬
⎪ ⎪⎩ ⎭

 
    (10.4.45)

Maple Examples
The Hamiltonian and Hamilton’s equations of motion are found for physical 
systems in the Maple worksheet below. The equations of motion may be found 
directly using the DEtools package. It is not necessary to substitute dummy 
variables when differentiating with respect to time derivatives using the Physics 
package. 

Key Maple terms: collect, diff, hamilton_eqs, simplify, solve, subs

Maple packages: with(DEtools): with(Physics):

restart

Hamiltonian from the Lagrangian

2 2 2 21 1 1 1
:

2 2 2 2
L m xdot m ydot k x k y= ⋅ ⋅ + ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅

 

2 2 2 21 1 1 1
:

2 2 2 2
L mxdot mydot kx ky= + − −

Px  diff(L, xdot)

 Px  m xdot

Py  diff(L, ydot)

 Py  m ydot
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H : diff(L, xdot)xdot  diff(L, ydot)ydot – L

 2 2 2 21 1 1 1
:

2 2 2 2
H mxdot mydot kx ky= + + +

{ }: , ,
PyPx

H subs xdot ydot H
m m

⎛ ⎞
= = =⎜ ⎟

⎝ ⎠

 
2 22 2

:
2 2 2 2

Py kyPx kx
H

m m
= + + +

Henon-Heiles Hamiltonian

restart
tsubs : {x  x(t), y  y(t), Px  Px(t), Py  Py(t)};

 tsubs : {Px  Px(t), Py  Py(t), x  x(t), y  y(t)}

( ) ( )
3

2 2 2 2 21 1
: lambda

2 2 3

y
H Px Py x y x y

⎛ ⎞
= + + ⋅ + + ⋅ ⋅ −⎜ ⎟

⎝ ⎠

 
2 22 2

2 31
:

2 2 2 2 3

Py yPx x
H x y y

⎛ ⎞= + + + + −⎜ ⎟
⎝ ⎠

Hamilton’s Equations of Motion

diff(x(t), t)  subs(tsubs, diff(H, Px))

 ( ) ( )
d

x t Px t
dt

=

diff(y(t), t)  subs(tsubs, diff(H, Py))

 ( ) ( )
d

y t Py t
dt

=

diff(Px(t), t)  subs(tsubs, -diff(H, x))

 ( ) 2 ( ) ( ) ( )
d

Px t x t y t x t
dt

= − −

diff(Py(t), t)  subs(tsubs, -diff(H, y))

 ( )2 2( ) ( ) ( ) ( )
d

Py t y t x t y t
dt

= − − −
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Hamilton’s Equations using the DEtools Package

with(DEtools) :

( ) ( )
3

2 2 2 2 21 1
: lambda

2 2 3

q2
H p1 p2 q1 q2 q1 q2

⎛ ⎞
= + + ⋅ + + ⋅ ⋅ −⎜ ⎟

⎝ ⎠

 
2 2 2 2

2 31
:

2 2 2 2 3

p1 p2 q1 q2
H q1 q2 q2

⎛ ⎞= + + + + −⎜ ⎟
⎝ ⎠

Hamilton_eqs(H)

 

( )

[ ]

2 2( ) 2 ( ) ( ) ( ), ( ) ( ) ( ) ( ) ,

( ) ( ), ( ) ( ) , ( ), ( ), ( ), ( )

d d
p1 t q1 t q2 t q1 t p2 t q2 t q1 t q2 t

dt dt

d d
q1 t p1 t q2 t p2 t p1 t p2 t q1 t q2 t

dt dt

 
⎡ = − − = − − −⎢⎣

⎤
= = ⎥⎦

Hamiltonian of the Double Pendulum from the Lagrangian

restart
with(Physics) :
x1:  (t)  lsin(1 (t))

 x1:  (t)  l sin(1 (t))

y1:  (t)  l – lcos(1 (t))

 y1:  (t)  l – l cos(1 (t))

x2:  (t)  lsin(1 (t))  lsin(2 (t)) 

 x2:  (t)  l sin(1 (t))  lsin(2 (t))

y2:  (t)  2l – lcos(1 (t)) – lcos(2 (t))

 y2:  (t)  2l – l cos(1 (t)) – l cos(2 (t))

( )( ) ( )( )( )
( )( ) ( )( )( )

2 2

1 1

2 2

2 2

1
: , ,

2
1

, , :
2

T m diff x t t diff y t t

m diff x t t diff y t t

= ⋅ ⋅ +

+ ⋅ ⋅ +

simplify(T, trig)

 

( ) ( ) ( )( ) ( )( ) ( )( ) ( )( )( )

( )
( )

2

1 2 1 2 1 2

2

2
2

1

cos cos sin sin

2

d d
m t t t t t t

dt dt

d
t

d dt
t t

dt

     




⎛⎛ ⎞ ⎛ ⎞⎜ + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝

⎞⎛ ⎞ ⎟⎜ ⎟⎛ ⎞ ⎝ ⎠ ⎟+⎜ ⎟ ⎟⎝ ⎠ ⎠
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subs(sin(1 (t)) sin(2 (t))  cos(1 (t)) cos(2 (t))  cos(1 (t) – 2 (t)), %):
T : %

( ) ( ) ( ) ( ) ( )( )

( )

2

1 1 2 1 2

2

2
2

: cos

2

d d d
T m t t t t t

dt dt dt

d
t

dt
t

    



⎛⎛ ⎞ ⎛ ⎞⎛ ⎞⎜= + −⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠⎝

⎞⎛ ⎞ ⎟⎜ ⎟
⎝ ⎠ ⎟+ ⎟

⎠

V : simplify(mgy1(t)  mgy2(t)):
L : subs({m  1, g  1, l  1}, T – V) 

 

( ) ( ) ( ) ( ) ( )( )

( )
( )( ) ( )( )

2

1 1 2 1 2

2

2

1 2

: cos

2cos cos 3
2

d d d
L t t t t t

dt dt dt

d
t

dt
t t

    


 

⎛ ⎞ ⎛ ⎞⎛ ⎞= + −⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠+ + + −

P1 : (diff(L, diff(1 (t), t)))

 ( ) ( ) ( ) ( )( )1 1 2 1 2: 2 cos
d d

P t t t t
dt dt
   

⎛ ⎞= + −⎜ ⎟
⎝ ⎠

P2 : (diff(L, diff(2 (t), t)))

 ( ) ( ) ( )( ) ( )
2 1 1 2 2: cos

d d
P t t t t

dt dt
   

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

H : P1  diff(1 (t), t)  P2  diff(2 (t), t) – L :
H : collect(H, {diff(1 (t), t), diff(1 (t), t)})

 

( ) ( ) ( ) ( ) ( )( )

( )
( )( ) ( )( )

2

1 1 2 1 2

2

2

1 2

: cos

2cos cos 3
2

d d d
H t t t t t

dt dt dt

d
t

dt
t t

    


 

⎛ ⎞ ⎛ ⎞⎛ ⎞= + −⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠+ − − +

Hamiltonian in Terms of Generalized Momenta

( ) ( ){ } ( ) ( ){ }1 1 2 2 2 1, , ,
d d

solve p t P p t P t t
dt dt
 

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
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( )
( ) ( ) ( )( ) ( )

( ) ( )( )
( )

( ) ( ) ( )( ) ( )

( ) ( )( )

2 1 2 1
1 22

1 2

1 1 2 2

2

1 2

cos
,

cos 2

cos 2

cos 2

p t t t p td d
t t

dt dtt t

p t t t p t

t t

 
 

 

 

 

⎧ − −⎪ =⎨
− −⎪⎩

⎫− − + ⎪= − ⎬
− − ⎪⎭

H : simplify(subs(%, H)): 

Double Pendulum Equations of Motion

Deq1 : diff(1 (t), t)  diff(H, p1(t)):
Deq2 : diff(2 (t), t)  diff(H, p2(t)):
Deq3 : diff( p1(t), t)  –simplify(diff(H, theta1(t)):
Deq4 : diff( p2(t), t)  –simplify(diff(H, theta2(t)):
sol : dsolve({Deq1, Deq2, Deq3, Deq4, 1(0)  0, 2(0)  0.2, p1(0)  0, p2(0)  0}, 
{1(t), 2(t), p1(t), p2(t)}, numeric)

sol : proc(x_rkf45) … end proc 
with(plots) :
withodeplot(sol, [1(t), p1(t)], t  0…200, numpoints  2000)

Figure 10.4.1: Phase plot of the double pendulum. 

10.5 ORBITAL AND PERIODIC MOTION

Lagrangian formalism is applied to orbital and periodic motion in this section. 
Integral expressions are developed to calculate the period of motion for different 
potentials. The theory of small oscillations about equilibria is then discussed. 
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10.5.1 Kepler Problem
The orbit of a small mass m about a much larger mass M >> m located at the 
origin of coordinates may be formulated using Lagrangian mechanics where the 
kinetic energy in cylindrical coordinates is 

 ( )2 2 21

2
T m r r = +   (10.5.1)

The potential energy

 
Mm

V G
r

= −  (10.5.2)

The Lagrangian is

 ( )2 2 21

2

Mm
L T V m r r G

r
= − = + +  (10.5.3)

Lagrange’s equations are

 0
d L L

dt r r

∂ ∂
− =

∂ ∂
 (10.5.4)

 0
d L L

dt  

∂ ∂
− =

∂ ∂  (10.5.5)

The radial equation is

 ( ) 2

2
0

d Mm
mr mr G

dt r
− + =  (10.5.6)

The angular equation 

 ( )2 0
d

mr
dt

 =  (10.5.7)

shows the quantity 2mr  =   is a constant so that we may write the radial equation 

 

2

3 2
0

Mm
mr G

mr r
− + =
  (10.5.8)

The total energy

 ( )2 2 21

2

Mm
E T V m r r G

r
= + = + −  (10.5.9)
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Eliminating 

 

2
2

2 2

1

2

Mm
E m r G

rm r

⎛ ⎞
= + −⎜ ⎟

⎝ ⎠

  (10.5.10)

we may integrate

 
2

2 2

2 Mm
r E G

m r m r

⎛ ⎞= + −⎜ ⎟
⎝ ⎠

  (10.5.11)

Separating variables

 
2

2 2

2

dr
dt

Mm
E G

m r m r

=
⎛ ⎞+ −⎜ ⎟
⎝ ⎠

  (10.5.12)

in terms of 
2

d

dt mr


=


 and 
2mr

dt d=


 2 2 2
4 3 2

2 2 2 2

2 2
2

dr dr
d

mr Mm mE Mm
E G r G r r

m r m r

 = =
⎛ ⎞+ − + −⎜ ⎟
⎝ ⎠




 

 (10.5.13)

This equation may now be integrated.

10.5.2 Periodic Motion
The total energy of a particle of mass moving in a 1D potential U(x) is

 ( )21

2
mx U x E+ =  (10.5.14)

We seek to find a formula for the period of motion

 ( )2 2
x E U x

m
⎡ ⎤= −⎣ ⎦  (10.5.15)

Taking the positive square root

 ( ) 1/22dx
E U x

dt m
⎡ ⎤= −⎣ ⎦  (10.5.16)

and separating variables

 ( ) 1/22

m dx
dt

E U x
=

⎡ ⎤−⎣ ⎦
 (10.5.17)
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Half of the period is 

 
( )

2

1

/2

1/2

0
2 2

x T

x

m dx T
dt

E U x
= =

⎡ ⎤−⎣ ⎦
∫ ∫  (10.5.18)

Example 10.5.1
Find the period of motion of a block of mass m attached to a spring with force 
constant k

Solution: The force acting on the spring is given by Hooke’s law F  –kx with 
corresponding potential energy function 

 ( ) 21

2
U x kx=  (10.5.19)

If the spring is released from rest at x  A the total mechanical energy is

 21

2
E kA=  (10.5.20)

The sum of kinetic and potential energy during the motion is equal to the initial 
potential energy

 2 2 21 1 1

2 2 2
mx kx kA+ =  (10.5.21)

Solving for the velocity of the particle 

 
1/2

2 2dx k
A x

dt m
⎡ ⎤= ± −⎣ ⎦  (10.5.22)

Notice that the velocity of the particle is zero when the acceleration is maximal 
x = A while the velocity is maximal where the acceleration is zero at x  0. 
Separating variables and integrating to obtain the period 

 1/2
2 22

A

A

T m dx

k A x−

=
⎡ ⎤−⎣ ⎦
∫  (10.5.23)

The integral is evaluated using by trigonometric substitution and we obtain

 
2

T m

k
=  (10.5.24)
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Example 10.5.2
Write an integral expression for the period of a particle with total energy E moving 
in the presence of a potential function that is piecewise defined 

 ( )U x k x=  (10.5.25)

Solution: Write

 ( )

2

1

1/2
2

2

x

x

m dx
T

E U x
=

⎡ ⎤−⎣ ⎦
∫  (10.5.26)

x1 and x2 are the turning points where E = k|x| or x = ±E/k

 

/

1/2

/

2
2

E k

E k

m dx
T

E k x−

=
⎡ ⎤−⎣ ⎦
∫  (10.5.27)

Now 

 
0

     
0

x x
x

x x

≥⎧⎪= ⎨− <⎪⎩
 (10.5.28)

so that we must break the integral apart 

 

0 /

1/2 1/2

/ 0

2
2

E k

E k

m dx dx
T

E kx E kx−

⎡ ⎤
⎢ ⎥= +
⎢ ⎥+ −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦
∫ ∫  (10.5.29)

In the first integral, we let u  E  kx so that du  kdx. In the second integral u  
E – kx and du  – kdx. 

 
0

1/2 1/2

0

1 1 1
2 8

2 2

E

u u E

m mE
T u du u du

k k k

− −

= =

⎡ ⎤
= − =⎢ ⎥

⎢ ⎥⎣ ⎦
∫ ∫  (10.5.30)

10.5.3 Small Oscillations
Given a physical system described by a Lagrangian function of generalized 
coordinates qi and velocities iq  

 ( ),i iL L q q=    (10.5.31)

we consider small oscillations about the equilibria qi0 where 0.iq =  Performing a 
Taylor expansion of L about the equilibria
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( ) ( )
( )

( )
( )

( )( )
( )

( )( )
( )

0 0

0 0

0 0 0

,0 ,0

2 2

0 0 0 0

,0 ,0

,0

1 1
      

2 2

i i

i i

i i i i i

i iq q

i i j j i i j j

i j i jq q

L L
L L q q q q q

q q

L L
q q q q q q q q

q q q q

∂ ∂
= + − + −

∂ ∂

∂ ∂
+ − − + − − +

∂ ∂ ∂ ∂

 


    
 

 (10.5.32)

The first term is time independent and does not contribute to Lagrange’s 
equations of motion. The second two terms represent the dL and sum to zero. 
With the substitutions i  qi – qi0  and i iq =   we write the Lagrangian 

 
1 1

2 2
ij i j ij i jL T V   = −   (10.5.33)

with kinetic energy matrix

 

2

0i

ij

i j q

L
T

q q
=

∂
=
∂ ∂


   (10.5.34)

and potential energy matrix 

 

2

0i

ij

i j q

L
V

q q
=

∂
= −

∂ ∂


 (10.5.35)

Lagrange’s equations near the equilibria 

 0
i i

d L L

dt  

∂ ∂
− =

∂ ∂  (10.5.36)

become

 0ij j ij jT V + =  (10.5.37)

To find the characteristic frequencies of motion with harmonic time dependence

 
i t

j js e  −=  (10.5.38)

 
2 0ij j ij jT s V s− + =  (10.5.39)

 ( )2 0ij ij jV T s− =  (10.5.40)

We thus have an eigenvalue problem

 ( )2 0V T S− =  (10.5.41)
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To obtain the characteristic frequencies  we solve the characteristic equation

 
2 0V T− =  (10.5.42)

and then obtain the eigenvectors S. 

 
k k 

m 

x
1
 

m 

k 

x
2
 

Figure 10.5.1:  Two equal masses m connected by three springs with force constant k

Example 10.5.3
As shown in Figure 10.5.1, two equal masses m are connected to three springs 
with force constant k with Lagrangian

 ( )( )22 2 2 2
1 2 1 1 2 2

1 1 1

2 2 2
L mx mx k x x x x= + − + − +   (10.5.43)

Find the vibrational frequencies for small oscillations.

Solution: Constructing the matrices

 
0 2

0 2ij ij

m k k
T V

m k k

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

     (10.5.44)

the vibrational frequencies are found from the determinant

 

2
2

2

2
0

2

k m k
V T

k k m






− −
− = =

− −
 (10.5.45)

giving  ( )2
2 22 0k m k− − =  (10.5.46)

with two frequencies

 1

k

m
 =  and 2

3k

m
 =   (10.5.47)

where 1 corresponds to the masses moving in phase (in sync to the left or to the 
right) and 2 out of phase (alternatively toward and away from each other).
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10.6 CHAOTIC DYNAMICS 

Chaos can be described as erratic but deterministic behavior in low dimensional 
systems with three or more degrees of freedom. Examples of chaotic systems 
include orbital motion involving three or more masses, oscillating chemical 
reactions, turbulent fluid flow, and population dynamics with interaction between 
species. Chaotic systems are hypersensitive with respect to small changes in initial 
conditions and are only forecastable for short time durations. An infinitesimal 
change in starting conditions can result in dramatic differences at later times. This 
sensitive dependence on initial conditions is known as the butterfly effect.   

10.6.1 Strange Attractor s
Types of attractors in phase space include stable and unstable fixed points known 
as elliptic and hyperbolic points, respectively. A classic example is the simple 
pendulum with an elliptic point at its lowest position and a hyperbolic point where 
the pendulum is completely inverted. Phase space orbits of dissipative systems 
tend to spiral into elliptic points or away from hyperbolic points. Trajectories in 
phase space may also converge to a locus of points known as a limit cycle in two 
dimensions, or a torus in three dimensions. Chaotic systems are characterized by 
attractors that do not have integer dimension, known as strange attractors. 

10.6.2 Lorenz Model 
Perhaps the most famous chaotic system is the Lorenz model consisting of three 
first order, coupled, nonlinear differential equations  

 

( )dx
x y

dt
dy

xz rx y
dt
dz

xy bz
dt

= − +

= − + −

= −

 (10.6.1)

Typical values of the parameters are   10, r  28 and b  8/3. This system was 
first investigated numerically by Edward Lorenz in 1963 to model atmospheric 
dynamics. 

10.6.3 Jerk Systems
Nonlinear differential equations with time-dependent accelerations can exhibit 
chaos. The first derivative of the acceleration is known as the jerk. For example, 
the third order system
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 1 0x x Ax x+ + + + =    (10.6.2)

can be written as a system of three first order equations. At least one nonlinear 
term is required for chaos. Hyper-jerk systems such as 

 1 0x x x Ax x+ + + + + =   
 (10.6.3)

that are fourth order or greater may also exhibit chaos.

10.6.4 Time Delay Coordinates 
Time delay coordinates can be used to reconstruct phase plots from single time 

series x(t). A two-dimensional phase plot is obtained by plotting x(t) vs. x(t – ) 
where  is the time delay. Two time delays may be used to reconstruct a three-

dimensional phase with axes x(t), x(t – ) and x(t – 2). This technique is useful 

in the analysis of experimental data where only one sensor reading is available. 

Reconstructed phase plots  show qualitative similarity to the actual phase plot and 

may be used to obtain information that would not be available by plotting only 

the time series.   

10.6.5 Lyapunov Exponents 
Chaotic systems exhibit sensitive dependence on initial conditions. Given nearby 
initial conditions x0 and x0  x0, the separation in initial conditions will evolve as

 ( ) ( )0 expx t x tΔ = Δ  (10.6.4)

where  is the Lyapunov exponent. There will be one Lyapunov exponent for each 
degree of freedom. A block of initial conditions V0  x0y0z0 for a system with 
three degrees of freedom will evolve as 

 

3

0
1

( ) exp i

i

V t V t
=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑  (10.6.5)

In Section 5.8, we found that the phase volume element

 ( ) 0

0

exp
t

V t V dt
⎛ ⎞

′= ∇ ⋅⎜ ⎟⎜ ⎟
⎝ ⎠
∫ F  (10.6.6)

is obtained from the logarithmic divergence so that if F is independent of time 
then

 
3

1
i

i


=

∇⋅ =∑F  (10.6.7)
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Thus, if the sum of Lyapunov exponents is zero, then the system is conservative. 
If the sum is negative or positive, then the system is dissipative or it blows up, 
respectively. For a system to exhibit chaos it must have

1. at least one positive Lyapunov exponent

2. at least one nonlinear term

3. at least three degrees of freedom

Time counts as a degree of freedom in nonautonomous systems where it appears 
explicitly. 

Example 10.6.1
Calculate the sum of Lyapunov exponents of the Lorenz system. Is the system 
conservative, dissipative or does it blow up?

Solution: Evaluating 
yx z

x y z

∂∂ ∂
∇⋅ = + +

∂ ∂ ∂
F

 
 

 ( )x y xz rx y xy bz

x y z

⎡ ⎤∂ − + ∂ − + − ∂ −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦∇⋅ = + +
∂ ∂ ∂

F  (10.6.8)

 1 b∇⋅ = − − −F  (10.6.9)

The system is dissipative for positive values of  and b. 

10.6.6 Poincaré Sections 
Trajectories of chaotic systems in phase space are often quite complex and difficult 
to visualize in higher dimensions. Poincaré sections, or strobe plots, are a useful 
tool where points are plotted where phase space trajectories intersect a specified 
plane. For example, given a system with three degrees of freedom corresponding 
to the Cartesian coordinates x, y and z one may plot a point each time the 
trajectory crosses the x-y plane. The Poincaré section gives a slice of the phase 
space, analogous to an MRI scan. The strobe plot of periodic or quasi-periodic 
systems will consist of a few points or a locus of points. For chaotic systems, the 
resulting plot may be a curve or a fractal.

Maple Examples
A 3D phase plot of the Lorenz model is computed in the Maple worksheet below. 
Sensitive dependence on initial conditions is demonstrated by comparing time 
series of the Lorenz system for slightly different initial conditions. Poincaré 
sections are computed for a Hamiltonian system using the DEtools package. 

Key Maple terms: display , dsolve , odeplot , poincare 
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Maple packages: with(plots ): with(DEtools ):

restart

Lorenz Model

( ) ( ) ( )( ): 10
d

xEqn x t y t x t
dt

= = ⋅ −

 ( ) ( ) ( ): 10 10
d

xEqn x t y t x t
dt

= = −

( ) ( ) ( ) ( ) ( ): 28
d

yEqn y t x t y t x t z t
dt

= = ⋅ − − ⋅

 ( ) ( ) ( ) ( ) ( ): 28
d

yEqn y t x t y t x t z t
dt

= = − −

( ) ( ) ( ) ( )8
:

3

d
zEqn z t x t y t z t

dt
= = ⋅ − ⋅

 ( ) ( ) ( ) ( )8
:

3

d z t
zEqn z t x t y t

dt
= = −

ics : x(0)  0.1, y(0)  0.1, z(0)  0.1

 ics : x(0)  0.1, y(0)  0.1, z(0)  0.1

sol1 : dsolve({xEqn, yEqn, zEqn, ics}, {x(t), y(t), z(t)}, numeric)
sol1 : proc(x_rkf45) … end proc

with(plots) :
odeplot(sol1, [x(t), y(t), z(t)], t  0…30, numpoints  2000)
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Figure 10.6.1: Lorenz model phase portrait. 
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Butterfly Effect: Comparing a Small Change in Initial Conditions

ics2 : x(0)  0.1001, y(0)  0.1, z(0)  0.1

 ics2 : x(0)  0.1001, y(0)  0.1, z(0)  0.1

sol2 : dsolve({xEqn, yEqn, zEqn, ics2}, {x(t), y(t), z(t)}, numeric)

 sol2 : proc(x_rkf45) … end proc

p1 :  odeplot(sol1, [t, x(t)], t  0…30):
p2 :  odeplot(sol2, [t, x(t)], t  0…30, color  blue, linestyle  longdash):
display(p1, p2)

Figure 10.6.2: Divergence in separate time series of the Lorenz model with slightly different initial conditions. 

restart
with(DEtools) :

Poincaré Section: Henon-Heiles Hamiltonian

( ) ( )2 2 2 2 3
2:

2 2 3

p1 p2 q1 q2 q2
H q1 q2

+ +
= + + ⋅ −

 
2 2 2 2 2 31 1 1 1 1

2 2 2 2 3
H p1 p2 q1 q2 q1 q2 q2= + + + + −

Pointcare(H, t  0…20000, {[0, .2, .2, .2, .33]}, stepsize  0.1) 
 _______________________________________________________

H  .11567100, Initial conditions:, t  0, p1  0.2, p2  0.2, q1  0.2, q2  0.33 

Number of points found crossing the (p1, q1) plane: 5278
Maximum H deviation: .5667037400 %

_______________________________________________________
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Time consumed: 31 seconds
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Figure 10.6.3: Poincaré section of the Henon-Heiles Hamiltonian. 

10.7 FRACTAL S

The term fractal was coined by Benoit Mandelbrot  to describe a curve that has self-
similar structure over many size scales. Examples of fractals in this section include 
the Cantor set, the Koch snowflake, and the Mandelbrot set. The dimensionality 
of fractals and chaotic maps are also discussed. 

10.7.1 Cantor Set 
The Cantor Set or “Cantor comb ” is a fractal formed by first removing the center 
third of the unit interval. Subsequent thirds are removed from the resulting line 
segments ad infinitum (Figure 10.7.1). The resulting set consists of infinitely 
many points with zero length. 

Figure 10.7.1: Iterates of the Cantor comb.
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10.7.2 Koch Snowfl ake 
The Koch snowflake (Figure 10.7.2) begins with an equilateral triangle with 
sides of length L. The center third of the line segments forming the triangle are 
removed and replaced by two sides of the equilateral triangle with lengths L/3. The 
perimeter has 12 segments each of length L/3 after the first iterate and 96 segments 
of length L/9 after the second iterate. The area of the snowflake approaches 8/3 the 
area of the original triangle with the perimeter length approaching infinity with 
subsequent iteration. 

Figure 10.7.2: Iterates of the Koch snowflake. Similar fractals may be drawn using the Base-Motif Fractal 
Generator in Maple. 

10.7.3 Mandelbrot Set 
The Mandelbrot set is an escape set consisting of the values of C in the complex 
plane that do not diverge when repeatedly squared and added to themselves. The 
repeated iteration is represented by the formula

 
2

1n nz z C+ = +  (10.7.1)

The first three iterations of the above formula are computed as

 

( )

1

2 2

2 1

2
2 2

3 2

=

= + = +

= + = + +

z C

z z C C C

z z C C C C

 (10.7.2)



470 MATHEMATICAL METHODS FOR PHYSICS USING MATLAB AND MAPLE

Mandelbrot’s formula can be separated into real and imaginary parts, 
substituting zn  xn  iyn, zn 1  xn 1  iyn 1  and C  ReC  i Im C, giving the 
iterated equations 

 

2 2
1

1

Re

2     Im
n n n

n n n

x x y C

y x y C

+

+

= + +

= +  (10.7.3)

10.7.4 Fractal Dimension 
Fractals are geometrical objects with noninteger dimension. There are several 
ways to define the dimension of a fractal. The simplest definition is the capacity, 
or “box counting” dimension, that is obtained by finding the number of boxes N 
required to cover the fractal as a function of the box length . For example, the 
number of boxes required to cover a cube of side L with boxes of side  would be

 ( ) 3 3/N Lε ε=  (10.7.4)

In D dimensions we have

 ( ) ( )1/ε ε=
DDN L  (10.7.5)

Taking the natural log of both sides 

 ( ) ( )ln ln ln 1/ε ε= +N D L D  (10.7.6)

and solving for D

 
( )
( )

ln

ln ln 1/

ε
ε

=
+

N
D

L
 (10.7.7)

The capacity dimension DC is defined by taking the limit   0 as

 
( )

( )0

ln
lim

ln 1/
C

N
D





→
=  (10.7.8)

Example 10.7.1
Calculate the capacity dimension  of the Cantor comb

Solution: For the 0th  iterate, we require N  1 boxes with length   L to cover the 
curve. 
first iterate: N  2   L/3
second iterate: N  4   L/9
third iterate: N  8   L/27
nth iterate: N ()  2n   L/3n
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( )

( ) ( )0

ln ln 2 ln 2 ln 2
lim lim lim

ln 1/ ln 3 ln ln 3ln 3 /

n

C nn n

N n
D

n LLε

ε
ε→ →∞ →∞

= = = =
−

  (10.7.9)

Example 10.7.2
Calculate the capacity dimension of the Koch snowflake  

Solution: For the 0th iterate we require N  3 boxes with length   L to cover the 
sides of a triangle. 
first iterate: N  4  3   L/3
second iterate: N  42  3   L/32

third iterate: N  43  3   L/33

nth iterate: N ()  4n  3   L/3n

( )
( )

( )
( )0

ln 4 3ln ln 4 ln 3 ln 4 ln 2
lim lim lim 2

ln 1/ ln 3 ln ln 3 ln 3ln 3 /

n

C nn n

N n
D

n LLε

ε
ε→ →∞ →∞

× +
= = = = =

−

 (10.7.10)

10.7.5 Chaotic Maps 
Chaotic trajectories in phase space are the solutions to nonlinear differential 
equations. Chaotic maps, on the other hand, are generated by iterated finite 
difference equations. Chaotic maps often resemble Poincaré sections of chaotic 
flows and can be characterized by a fractal dimension. Whereas three degrees of 
freedom are necessary for chaos in continuous flows, chaos can occur in one-
parameter maps such as 

 ( )1 ,n nx f x μ+ =  (10.7.11)

where  is an adjustable parameter. An example of a chaotic map is the logistic 
equation  that models population dynamics in a limited environment 

 ( )1 1n n nx x x+ = −  (10.7.12)

Periodic and chaotic oscillations in xn can result depending on the value of . For 
values of  < 3, the system reaches a fixed point after several steps where xn does 
not change with subsequent iteration. The system goes into a 2-cycle, alternating 
between two values when  reaches 3.2. As  increases, the system progresses 
through 4-, 8-, 16-, 2m-cycles, becoming chaotic around   3.9. This type of 
repeated bifurcation as a system parameter is adjusted is known as the period 
doubling rout to chaos and is common to other dynamical systems such as the 
simple driven pendulum with damping.   
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Maple Examples
Examples of chaotic maps are plotted in the Maple worksheet below, including 
the Henon, logistic, and standard maps. A bifurcation diagram of the logistic map 
is plotted. The Mandelbrot set is visualized using 3D surface, 3D contours, and 
various list plots. The burning ship fractal is shown using the Fractals:-EscapeTime 
package. 

Key Maple terms: Array , BurningShip , Embed , listdensityplot , Matrix , pointplot , 
seq , surfdata 

Maple packages: with(plots ): with(Fractals:-EscapeTime ): with(ImageTools ):

Programming: for loops, if statements, function statements using ‘’

restart

Henon Map

with(plots) :
a : 1.4 : b :  0.3
N : 3000 : x[0] : 0 : y[0] :  0
for n from 0 to N do x[n  1] :  b*y[n]  a – x[n]^2; y[n  1] :  x[n]; od: 
pointplot([seq([x[n], y[n]], n  0 … N)], symbol  point, labels  [“x”, “y”])
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Figure 10.7.3: Henon map fractal.  

Bifurcation Diagram of Logistic Map

restart
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with(plots) :
f : (x, mu)  mux(1 – x)

 f : (x, )  x(1 – x) 

N : 50 : j : 0 : 
for i from 0 to 2000 do

mu :  2.0  .001i;
x[0, i] :  0.5;
for n from 0 to N do
x[n  1, i] :  f(x[n, i], mu);
if n > 20 then
mm[j] :  mu;
xx[j] :  x[n  1, i];
j :  j  1;
end if
od:
od:

points : seq([mm[jn], xx[j]], j  0 … 60000) :
pointplot({points}, symbolsize  1)
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Figure 10.7.4:  Bifurcation diagram of the logistic map.  

Standard Map

restart
with(plots) :
K : 0.972 :
N : 3000 : z : evalf(2Pi) : m :  0:
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for j from 0 to 20 do

p[0] :  5 – .6j : theta[0] :  5 – .5j:

for n from 0 to N do

m :  m  1;

if theta[n] > z then
theta[n] :  theta[n] – z;
elif theta[n] < 0 then
theta[n] :  theta[n]  z;
end if

temp :  p[n]  Ksin(theta[n]);
p[n  1] :  temp;
theta[n  1] :  theta[n]  temp;
qq[m] :  theta[n];
pp[m] :  p[n];

od:
od:
pointplot([seq([qq[m], pp[m]], m  0 … 50000)], symbol  point, labels  [“theta”, 
“p”])
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Figure 10.7.5: Plot of the standard map with several initial conditions and K  0.972.  
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Mandelbrot Set

restart
with(plots) :

for i from 0 to 200 do

2.5
: 2.0 ;

200.0
x0 i= − + ⋅

x[0] :  0;

for j from 0 to 200 do

2.0
: 1.0 ;

200.0
y0 j= − + ⋅

y[0] :  0;
for n from 0 to 30 while sqrt(x[n]2  y[n]2) < 10 do

x[n  1] :  x[n]2 – y[n]2  x0;
y[n  1] :  2x[n]y[n]  y0;

od:

z[i, j] :  n;

od:
od:

M :  Matrix(200, 200, z, datatype  float[8])

 

8

200 200

:
:

:

: _

x Matrix

DataType float
M

Storage rectangular

O rder Fortran order

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A :  Array(0…200, 0…200, z, datatype  float[8])

 

8

0 200 0 200

:
:

:

: _

x Array

DataType float
A

Storage rectangular

O rder Fortran order

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

surfdata(M)
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Figure 10.7.6: Landscape plot of the Mandelbrot set.  

listdensityplot(M, style  point)
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Figure 10.7.7: Listdensity plot of the Mandelbrot set.  
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Fractals Using EscapeTime

with(Fractals:- EscapeTime)
[BurningShip, Colorize, HSVColorize, Julia, LColorize, Lyapunov, Mandelbrot, Newton]

with(ImageTools) :
size :  500 : lower_left : – 1.8 – 0.2I: upper_right : –1.5  0.1 I:
B : BurningShip(size, lower_left, upper_right, output  layer2)

 

8

1 500 1 500

:
:

:

: _

x Array

DataType float
B

Storage rectangular

O rder C order

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Embed(B)

Figure 10.7.8: Burning ship fractal.

10.8 MATLAB EXAMPLES 

In this section, the MATLAB Symbolic Math Toolbox is demonstrated in 
obtaining Lagrange’s equations of motion. A user-defined fourth order Runge-
Kutta scheme is used to integrate the Lorenz model equations where a time delay 
map is constructed. A Julia set fractal is calculated and the Henon map is plotted 
inside of its basin of attraction.  
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Key MATLAB commands: contour , functionalDerivative , imag , linspace ,plot , plot3 , 
real , syms 

Programming: for loops, function statements, if statements

Section 10.3 Lagrangian Dynamics
The script ‘coupled_oscillators_lag.m’ outputs Lagrange’s equations of motion 
for coupled oscillators with kinetic energy

 ( )2 2

1 2

1

2
T m x x= +   (10.8.1)

and potential energy

 ( )22 2

1 2 1 2

1 1 1

2 2 2
V kx kx K x x= + + −  (10.8.2)

syms m k K x1(t) x2(t)

T  sym(1)/2*m*diff(x1,t)^2  sym(1)/2*m*diff(x2,t)^2;
V  sym(1)/2*K*(x1-x2)^2  sym(1)/2*k*x1^2sym(1)/2*k*x2^2;
L  T - V
 

eqn1  functionalDerivative(L,x1)  0
eqn2  functionalDerivative(L,x2)  0

The script is executed at the Command line
>> coupled_oscillators_lag

 

L(t) 
 

(m*diff(x1(t), t)^2)/2 - (k*x2(t)^2)/2 - (K*(x1(t) - x2(t))^2)/2 - 

(k*x1(t)^2)/2  (m*diff(x2(t), t)^2)/2
 

 

eqn1(t) 
 

K*x2(t) - K*x1(t) - m*diff(x1(t), t, t) - k*x1(t)  0
 

eqn2(t) 
 

K*x1(t) - m*diff(x2(t), t, t) - K*x2(t) - k*x2(t)  0

Section 10.6 Chaotic Dynamics
MATLAB features built-in ODE solvers such as ‘ode45.’ User-defined solvers may 
offer greater flexibility for a given application. For example, the Runge-Kutta 
algorithm may be used to integrate the first order differential equation with 
explicit time dependence 
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( ),

dx
f x t

dt
=

 (10.8.3)

according to

 
( )1 1 2 3 4

1

1
2 2

6
n n

n n

x x k k k k

t t h

+

+

= + + + +

= +
  (10.8.4)

where

 

( )

( )

1

1
2

2
3

4 3

,

,
2 2

,
2 2

,

n n

n n

n n

n n

k hf x t

k h
k hf x t

k h
k hf x t

k hf x k t h

=

⎛ ⎞= + +⎜ ⎟
⎝ ⎠
⎛ ⎞= + +⎜ ⎟
⎝ ⎠

= + +

 (10.8.5) 

For the Lorenz model in Equation (10.6.1), we have three first order equations 
so that there will be a set of 1 4k  values for each differential equation as shown 
in the MATLAB script below.  Also, the tn do not appear in (10.8.5) unless the 
differential equations have explicit time dependence. 

% specify parameters and time step

rho28;
sigma10;
beta8/3;
dt0.01;
% create function handles

f@(x,y,z)sigma*(y-x);
g@(x,y,z)rho*x-y-x*z;
h@(x,y,z)x*y-beta*z;
 

% specify number of time steps and create arrays

 

nmax5000;
 

xzeros(nmax,1);
yzeros(nmax,1);
zzeros(nmax,1);
tzeros(nmax,1);
% arrays for time delay coordinates

x1zeros(nmax,1);
x2zeros(nmax,1);
x3zeros(nmax,1);
% specify initial conditions

x(1)0.1; y(1)0.1; z(1)0.1; t(1)0.0;
% integrate the Lorenz system using the R-K algorithm
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for n1:nmax
    k1x  dt*f(x(n),y(n),z(n));
    k2x  dt*f(x(n)k1x/2,y(n),z(n));
    k3x  dt*f(x(n)k2x/2,y(n),z(n));
    k4x  dt*f(x(n)k3x,y(n),z(n));
    

    k1y  dt*g(x(n),y(n),z(n));
    k2y  dt*g(x(n),y(n)k1y/2,z(n));
    k3y  dt*g(x(n),y(n)k2y/2,z(n));
    k4y  dt*g(x(n),y(n)k3y,z(n));
    

    k1z  dt*h(x(n),y(n),z(n));
    k2z  dt*h(x(n),y(n),z(n)k1z/2);
    k3z  dt*h(x(n),y(n),z(n)k2z/2);
    k4z  dt*h(x(n),y(n),z(n)k3z);
    

    x(n1)x(n) k1x/6 k2x/3  k3x/3  k4x/6;
    

    y(n1)y(n)k1y/6  k2y/3  k3y/3  k4y/6;
    

    z(n1)z(n)k1z/6  k2z/3  k3z/3  k4z/6;
    

    t(n1)t(n)  dt;
end

 

% two time delays of the x-time series

for n1:nmax-10
    x1(n)x(n);
    x2(n)x(n5);
    x3(n)x(n10);
end

 

% create a 3-D time delay plot 

plot3(x1,x2,x3,'k')

xlabel('x(t)')

ylabel('x(ttau)')
zlabel('x(t2 tau)')
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Figure 10.8.1: Lorenz attractor reconstructed from the x-time series using two time delays with five time steps for 
each time delay. 
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Section 10.7 Fractals
Julia Sets

Julia set fractals may be computed from Mandelbrot’s formula

 
2

1n nz z C+ = +  (10.8.6)

The Mandelbrot set are those values of C such that equation (10.8.6) converges 
upon subsequent iteration. A Julia set consists of the initial values of zn such 
that (10.8.6) converges for a given value of the complex number C. Thus, there 
are infinitely many Julia sets with one Julia set for each point in the Mandelbrot 
set. Values of C inside the Mandelbrot set form “connected” Julia sets whereas 
C numbers outside the Mandelbrot set result in disconnected Julia sets that are 
referred to as “dust.” Julia sets may also be found for other iterated formulas of the 
form

 ( )1n nz f z C+ = +  (10.8.7)

The MATLAB script ‘Julia.m’ outputs the fractal shown in Figure 10.8.2, 
corresponding to iterations of (10.8.6) with C  -0.75  0.02i

nmax   100;
xzeros(nmax,1);
yzeros(nmax,1);
 

mmax  1000;
 

J  zeros(mmax,mmax);
 

x0  linspace(-1.5,1.5,mmax);
y0  linspace(-1.5,1.5,mmax);
 

const -0.75 + i*0.02;
 

for i  1:mmax
for j  1:mmax
    

    x(1)x0(i);
    y(1)y0(j);
for n1:nmax-1
    y(n1)  2*x(n)*y(n)imag(const);
    x(n1)  x(n)^2 - y(n)^2 real(const);
end

 

if sqrt(x(n)^2  y(n)^2) < 5.0
   J(i,j) 1;
else

   J(i,j)0; 
end

 

end

end
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contourf(J)

 

axis equal

colormap gray

title('Julia Set')
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Figure 10.8.2: Julia set fractal with C  -0.75  0.02i.

Basin Boundary of the Henon Map

The basin boundar y of the Henon map

 

2

1

1

1n n n

n n

x ax y

y bx

+

+

= − +

=
 (10.8.8)

consists of those initial conditions (x0, y0) that converge to the Henon map. In the 
MATLAB script below, points that converge to the map are given a value of one 
and those points that diverge are given a value of zero. The Henon map is then 
displayed in its basin of attraction. 

nmax  50;
xzeros(nmax,1);
yzeros(nmax,1);
 

a1.4; b0.3;
 

mmax  300;
 

M  zeros(mmax,mmax);
 

x0  linspace(-2.0,2.0,mmax);
y0  linspace(-2.0,2.0,mmax);
 

for i  1:mmax
    for j  1:mmax
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 x(1)x0(j);
 y(1)y0(i);
 

for n1:nmax-1
y(n1)  b*x(n);
x(n1)  1-a*x(n)^2  y(n);
end

 

if sqrt(x(n)^2  y(n)^2) < 5.0
M(i,j) 1;
else

   M(i,j)0; 
end

 

    end

end

contourf(x0,y0,M)

hold on 

 

nmax  500;
 x(1)1.2;
 y(1)0.0;
 

for n1:nmax-1
y(n1)  b*x(n);
x(n1)  1-a*x(n)^2  y(n);
end

 

plot(x,y,'.k')

axis equal

colormap bone

title('Basin Boundary of the Henon Map')

xlabel('x')

ylabel('y')

Basin Boundary of the Henon Map
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Figure 10.8.3: Henon map plotted inside of its basin of attraction. Initial conditions in the white region converge 
to the fractal while initial conditions in the black region diverge with subsequent iteration.   
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10.9 EXERCISES

10.1 Velocity-Dependent Resistive Forces

1. A particle moves with a velocity-dependent drag force in a gravitational field. 
The differential equation of motion is

 
dv

mg bv m
dt

− =

Calculate the velocity as a function of distance v(x).

2. A particle with initial speed v0 moves in a medium with resistive drag force 
proportional to the velocity squared Fd  Cv2. Find the velocity of the particle 
as a function of position x (excluding gravity).

3. Plot the acceleration a(t) and velocity v(t) in the previous problem. 

4. A particle with initial speed v0 moves in a hypothetical medium with a drag 
force that depends exponentially on the speed Fd  K(e – 1). Find the velocity 
of the particle as a function of position x. 

5. Two particles with mass m and opposite charges q and –q are initially separated 
by a distance d. The particles are released from rest and allowed to fall 
together with a resistive drag force proportional to the velocity squared Fd  
Cv2. Find the speed of the particles as a function of time (neglect gravitational 
attraction). 

Section 10.2 Variable Mass Dynamics

6. A rocket with initial mass Mi has a time-dependent mass ( )
1 /

iM
M t

t 
=

+
. Find 

the rocket thrust and velocity of the rocket as a function of time.

7. A rocket burns fuel at a constant rate ;
dM

k
dt

=  find the acceleration .
dv

dt
8. A rocket ascends in the earth’s gravitation field while experiencing a drag force 

proportional to the velocity squared Fdrag  v2. The rocket mass decreases 
exponentially M(t)  Mie

t

Find differential equations for
(a) the velocity of the rocket as a function of time
(b) the height of the rocket as a function of time

9. Numerically compare the relativistic rocket velocity vf 

tanh lne i
f i

f

v M
v v c

c M

⎛ ⎞
= + ⎜ ⎟⎜ ⎟

⎝ ⎠
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to the velocity of a nonrelativistic rocket vi 

ln i
f i e

f

M
v v v

M

⎛ ⎞
= + ⎜ ⎟⎜ ⎟

⎝ ⎠
Compare for the same values of ve, vi, Mi, and Mf. 

10. A sugar cube falls through an aqueous medium with a resistive drag force 
proportional to the square of its velocity Fdrag  v2. The sugar cube dissolves 

with a constant rate .=
dM

k
dt

 Find a differential equation describing the 

velocity of the sugar cube as a function of time. 

Section 10.3 Lagrangian Dynamics

11. The kinetic and potential energies of a spherical pendulum (or ice cube sliding 
inside a frictionless bowl) are expressed in spherical coordinates

( )2 2 2 21
sin

2
= + T m θ θφ

and

( )1 cos= −V mg θ

with Lagrangian

( ) ( )2 2 2 21
sin 1 cos

2
L m mg  = + − −  

 Write down Lagrange’s equations of motion. Consider special cases of a 
conical pendulum (with 0 = ) and a simple pendulum (with 0=φ )

12. A particle of mass m is projected upward with a speed v0 from a moon with 
radius R and mass M. The kinetic energy of the particle is 

21

2
T mr= 

with gravitational potential energy

= −
mM

V G
r

 Find Lagrange’s equation of motion of the mass and solve it for r(0)  R and 

0(0) .=r v

13. A particle moves in one dimension with a logarithmic potential energy 
function with Lagrangian 
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2

0

1
ln

2

x
L mx m

x

⎛ ⎞
= + Λ ⎜ ⎟

⎝ ⎠


 where the constant has units of velocity squared. Find Lagrange’s equation 
of motion and solve it for x(0)  x0 and 0(0)x v= .

14. For 2D projectile motion in a constant gravitational field the kinetic energy 
and potential energy functions are 

  ( )2 21

2
= + T m x y  and V  mgy

Show that the solutions to Lagrange’s equations give

1

2

x c

y gt c

=
= − +




where c1 and c2 are the initial velocities in the x- and y-directions, respectively. 

15. A mass m is attached to a spring with force constant k and equilibrium length 
r0 as shown in Figure 10.9.1. The spring pivots about the point O and can only 
stretch in a radial direction. The Lagrangian of the system is 

( ) ( ) ( )22 2 2

0 0

1 1
cos

2 2
= + − − − −L m r r k r r mg r rθ θ

Find Lagrange’s equations of motion.

θ

k

m

Figure 10.9.1: Mass on a swinging spring.

16. A particle is free to move inside a cone of half angle  as shown in Figure 
10.9.2. The cone is coaxial with the z-axis where the distance from the z-axis 
is given by r  z tan . Given that the Lagrangian in cylindrical coordinates is

( )2 2 2 21

2
= + + − L m r r z mgzφ

(a) show that

( )2 2 2 21
csc cot

2
L m r r mgr  = + −



CLASSICAL MECHANICS 487

and write Lagrange’s equations of motion for
(b) circular orbits 0=r  and
(c) zero angular momentum 0=φ
Solve the resulting differential equations.

Figure 10.9.2: Mass moving on a conical surface. 

17. A mass m is free to slide without friction on the inside of a paraboloid of 
revolution z  x2  y2 as shown in Figure 10.9.3.
(a)  Write the Lagrangian in cylindrical coordinates and fi nd Lagrange’s 

equations of motion 
(b)  Write the equations of motion for circular orbits where 0=r  and zero 

angular momentum where 0=φ
(c)  Solve the resulting differential equations of motion

Figure 10.9.3: Mass moving inside a paraboloid of revolution. 

18. Find Lagrange’s equations of motion for the anharmonic oscillator with 
Lagrangian

2 2 3 41 1 1 1

2 2 3 4
L mx kx x x = − − −
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19. A physical system with two degrees of freedom is described by a Lagrangian

( )1 2 1 2, , , ,=  L L q q q q t

The system is subject to the holonomic constraints 
f  f(q1, q2)  0
such that

1 2

1 2

0
f f

f q q
q q

δ δ δ
∂ ∂

= + =
∂ ∂

From the variation of the action integral 

2

1

1 2

1 1 2 2

0

t

t

L d L L d L
S q q dt

q dt q q dt q
δ δ δ

⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎪ ⎪= − + − =⎨ ⎬⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭
∫  

show that

1 1 2 2

1 2

const.
/ /

L d L L d L

q dt q q dt q

f q f q

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
− −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠= =
∂ ∂ ∂ ∂

 

Set the constant equal to  and obtain Lagrange’s equations of motion. 

10.4 Hamiltonian Mechanics

20. A swinging spring has kinetic energy

( )2 2 21

2
= + T m r r θ

and potential energy

( )2

0

1
cos( )

2
V k r mgr = − +

 Write the Hamiltonian in terms of the conjugate momenta 
∂

=
∂ 
L

pθ θ  and 

r

L
p

r

∂
=

∂  and fi nd Hamilton’s equations of motion. 

21. A spherical pendulum has kinetic energy

( )2 2 2 21
sin

2
= + T m θ θφ

and potential energy
V  mg (1 cos())
 Write the Hamiltonian in terms of the conjugate momenta

L
p 

∂
=
∂  and 

L
p 

∂
=
∂ .
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Find Hamilton’s equations of motion.  

22. Use the Poisson bracket formulation to find Hamilton’s equations of motion 
for projectile motion with Lagrangian 

( )2 21

2
= − = + − L T V m x y mgy

23. Calculate the following Poisson brackets

{ }

{ }2 3

,sin

1
,

,

p q

q
p

p q

⎧ ⎫
⎨ ⎬
⎩ ⎭

10.5 Orbital and Periodic Motion

24. Write an integral expression for the period of a particle with total energy E 
moving in the presence of a potential function that is piecewise defined 

2

4

( )           x 0

( )           x 0

= <

= ≥

U x ax

U x bx
.

 What are the values of x where the velocity of the particle is zero? You must 
break the integral apart to calculate the period. 

25. Consider the two-body problem consisting of masses m1 and m2 orbiting in a 
plane where each mass is free to move. Find Lagrange’s equations of motion 
of the particles given the kinetic and potential energies

( ) ( )2 2 2 2
1 1 1 2 2 2

1 1

2 2
T m x y m x y= + + +   

( ) ( )
1 2

2 2

2 1 2 1

m m
V G

x x y y

= −
− + −

26. Two equal masses m are connected to three springs with force constant k, 2k 
and 3k with Lagrangian

( )( )22 2 2 2
1 2 1 1 2 2

1 1 1
2 3

2 2 2
L mx mx k x x x x= + − + − +  .

Find the vibrational frequencies for small oscillations.
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10.6 Chaotic Dynamics

27. Can a system described by the differential equation 2 0+ + = y y y  exhibit 
chaos? Why or why not?

28. Numerically integrate the hyper-jerk system 

1 0x x x Ax x+ + + + + =   

for A  3.9 and initial conditions ( ) ( )0 0 0 0, , , 0.85,0.26, 0.48, 0.18= − − −  x x x x

29. Model the three-body problem consisting of masses m1, m2 and m3 orbiting in 

the z  0 plane where each mass is free to move. ( )
3

2 2

1

1

2
i i i

i

T m x y
=

= +∑  

2 3 3 11 2

12 23 31

m m m mm m
V G

r r r

⎡ ⎤
= − + +⎢ ⎥

⎣ ⎦
 where ( ) ( )2 2

12 2 1 2 1r x x y y= − + − , etc. 

30.  Model the three-body problem above holding m1 fixed at (x1, y1, z1) = (0, 0, 0). 
corresponding m1 >> m2 and m1 >> m3

31. Write Lagrange’s equations of motion corresponding to the three-body 
problem above 
(a) holding m1 fi xed at (x1, y1, z1) = (0, 0, 0) 
(b) allowing all three masses to move
(c)  plotting the trajectories of the masses in 3D and creating a Poincaré section 

plotting points where orbits cross the z  0 plane 

10.7 Fractals

32. Compute the first three iterates of the Mandelbrot set for C  1  i

33. Create plots of the Julia set for values of C inside and outside of the Mandelbrot 
set. 

34. Investigate periodic and chaotic orbits in the “Gingerbread” map

 
1

1

1+

+

= − +

=
n n n

n n

x y x

y x

35. The Taylor-Chirikov map 

1

1 1

sin( )    mod(2 )n n n

n n n

p p K

p

 

 
+

+ +

= +
= +

 is an area-preserving map also known as the standard map. Periodic boundary 
conditions are applied using mod(2) conditions so that the map can be 
projected onto a torus. Create a bifurcation diagram of the map plotting 
values of n vs. the parameter K with p0  0. 
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Additional Exercises
For the following exercises, the reader is invited to find Lagrange’s and Hamilton’s 
equations of motion, plot solutions and find the frequencies of small oscillations 
where applicable.

36. Two masses m are attached to springs with force constant k and equilibrium 
length r0. The springs can only stretch in a radial direction. The top spring 
pivots about a fixed point O and the bottom spring pivots about the top mass 
m (Figure 10.9.4).

k

m

k

m

O

θ
1

Figure 10.9.4: A flexible double pendulum with two masses and two springs. 

37. A triangular wedge of mass M rests on a frictionless surface. A small mass m 
slides down the wedge without friction. The coordinates x1 and x2 locate the 
position of the wedge along the plane and the small mass along the wedge, 
respectively (Figure 10.9.5).

M

m
L

x
2

x
1 θ

Figure 10.9.5: Block sliding down a wedge on a frictionless surface. 

38. A triangular wedge of mass M rests on a frictionless surface. The small mass m 
slides without friction along the incline and is attached to a spring with force 
constant k. The spring is attached to the top of the incline. The coordinates 
x1 and x2 locate the position of the wedge along the plane and the small mass 
along the wedge, respectively (Figure 10.9.6). 
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M

m
L

x
2

x
1

θ

k

Figure 10.9.6: Block attached to a spring on a wedge sliding on a frictionless surface. 

39. The spring and mass configuration in the previous problem is now attached 
to a fixed spring with force constant k (Figure 10.9.7).

M

m
L

x
2

x
1

θ

k

Figure 10.9.7: Block attached to a spring on a wedge sliding on a frictionless surface. 
The wedge is also attached to a spring.

40. A massless beam of length 2L is attached to two springs with force constant k. 
The beam pivots about an axis O through the center of the beam. The small 
mass m slides without friction along the massless beam (Figure 10.9.8).

k

m

k

O

Figure 10.9.8: Block sliding on a beam attached to two springs.

41. A massless beam is attached to two springs with force constant k at opposite 
ends. A small mass m is attached to one side of the beam by a spring with force 
constant k and slides without friction along the beam (Figure 10.9.9).
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k

m

k

O

Figure 10.9.9: Block sliding on a beam attached to two springs.

42. A massless beam pivots about a point O and is attached to a spring with force 
constant k. A small mass m is attached to one side of the beam by a spring with 
force constant k and slides without friction (Figure 10.9.10).

k
m

k

O

θ

Figure 10.9.10: Mass on a pivoting beam with springs attached.

43. A mass m is attached to a spring with force constant k and slides without 
friction on a horizontal surface. A simple pendulum consisting of a rigid rod 
of length L attached to a small mass m swings from a pivot on the sliding mass 
(Figure 10.9.11).

m

k

θ

m

Figure 10.9.11: Pendulum attached to a mass on a spring.

44. A mass M is attached to a spring with force constant k and slides without 
friction on a horizontal surface. Two simple pendula consisting of massless 
rigid rods of length L attached to small masses m pivot from two points on 
the sliding mass. The pendula masses are connected by a spring with force 
constant k (Figure 10.9.12).
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k

M

m m

k
θ

1
θ

2

L

Figure 10.9.12:  Coupled pendula attached to block on a spring.

45. Two equal masses M are attached to a spring with force constant k and slide 
without friction on a horizontal surface. Two simple pendula consisting of 
massless rigid rods of length L attached to small masses m pivot from points 
on the sliding masses (Figure 10.9.13).

k

θ
1

θ
2

M

m
m

LL

M

Figure 10.9.13:  Pendula attached to two masses connected by a spring.
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11Chapter

ELECTROMAGNETISM

Chapter Outline
11.1 Electrostatics in 1D

11.2 Laplace’s Equation in Cartesian Coordinates

11.3 Laplace’s Equation in Cylindrical Coordinates 

11.4 Laplace’s Equation in Spherical Coordinates 

11.5 Multipole Expansion of Potential 

11.6 Electricity and Magnetism

11.7 Scalar Electric and Magnetic Potentials 

11.8 Time-Dependent Fields

11.9 Radiation

11.1 ELECTROSTATICS IN 1D 

One-dimensional electrostatic problems discussed in this section include 
application of Gauss’s law in Cartesian, cylindrical, and spherical coordinates. 
Examples of Laplace’s and Poisson’s equation are demonstrated where the 
potential only depends on one coordinate. Electrostatic energy, capacitance, and 
induced charge density are discussed. 
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11.1.1 Integral and Differential Forms of Gauss’s Law 
Gauss’s law states that the electric flux though a closed surface is proportional 
to the charge enclosed inside the surface. The electric flux through a surface is 
defined as the normal component of the electric field integrated over the surface. 
We may use Gauss’s law to compute the electric field when the charge density 
has symmetry in one of the orthogonal coordinate systems such as Cartesian, 
cylindrical, or spherical coordinates. 

x

a−a

ρ
0

Figure 11.1.1: A charged slab with thickness 2a with a 
Gaussian pillbox surface for calculating the electric field positioned with one end at x  0. 

Example 11.1.1
Given a charged slab as in Figure 11.1.1 with uniform volume charge density

 ( ) 0    
0

a x a
x

x a




− ≤ ≤⎧⎪= ⎨ >⎪⎩
 (11.1.1)

find the electric field inside the slab using integral and differential forms of 
Gauss’s Law

Solution: From symmetry E  0 at x  0 so there is no fl ux through that end cap 
of the Gaussian surface shown. Also, the electric fi eld is perpendicular to the 
cylindrical walls where ˆ 0.= =E n  The total fl ux EA is through the right endcap 
so that

 enc 0

0 0surf

ˆ
q Aa

 da EA


 
⋅ = → =∫ E n  (11.1.2)
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and the electric field

 0

0

ˆa


=E i  for x  a (11.1.3)

Also

 0

0

ˆa


= −E i  for x a (11.1.4)

To find the electric field inside the slab we locate the right-hand side of the 
Gaussian surface at x < a so that qenc  0Ax and

 0

0

ˆx


=E i  for |x| < a (11.1.5)

Using the differential form of Gauss’s law in one dimension 

 0

0

xE

x





∂
∇⋅ = =

∂
E  (11.1.6)

Integrating once we obtain

 
0

0

const.xE x



= +  (11.1.7)

where the constant is zero since Ex  0 at x  0.

11.1.2 Laplace’s Equation in 1D 

Example 11.1.2
Find the potential and electric field in a planar capacitor with boundary conditions 
V(0)  0 and V(L)  V0

Solution: Laplace’s equation 

 
2

2

2
0

V
V

x

∂
∇ = =

∂
 (11.1.8)

where V  V(x) only has solutions

 V = c1x  c2 (11.1.9)

Applying the boundary conditions to find the constants c1 and c2 we have 

 V(0)  0  c2  0 (11.1.10)
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and

 ( ) 0
1 0 1

V
V L c L V c

L
= = → =  (11.1.11)

and our potential is

 
0( )

x
V x V

L

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (11.1.12)

with electric field

 0ˆ ˆVV

x L

∂
= − = −

∂
E i i  (11.1.13)

Example 11.1.3
Solve Laplace’s equation in spherical coordinates to calculate the potential outside 
of a sphere of radius R and potential V(R)  V0. Calculate the electric field outside 
the sphere. Check your result using Gauss’s law. Show that the capacitance of the 
sphere is proportional to its radius. 

Solution: Laplace’s equation without  or  dependence is

 
2

2

1
0

V
r

r rr

∂ ∂⎛ ⎞ =⎜ ⎟∂ ∂⎝ ⎠
 (11.1.14)

Multiplying by r2 and integrating once gives

 
2

1

V
r c

r

∂
=

∂  (11.1.15)

Dividing by r2 and integrating a second time

 1
2( )

c
V r c

r
= − +  (11.1.16)

We may determine the constants c1 and c2 by applying the boundary conditions 
V(R)  V0 and V()  0 so that

 
0( )

R
V r V

r

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (11.1.17)

Now the electric fi eld is given by E V or

 0 2
ˆ ˆ

V R
V

r r

∂
= − =

∂
E r r  (11.1.18)
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We may calculate the surface charge density 

 
0

0 0
r R

VV

r R
  

=

∂
= − =

∂  (11.1.19)

To compare the electric field obtained from Gauss’s law

 
surf vol

d dv⋅ = ⋅∫ ∫E a  (11.1.20)

or

 
2 2

2

1 1
4 4

4
r

o o

Q
E r A R

R
  

  
= =  (11.1.21)

and the radial electric field component is

 
2

1

4
r

o

Q
E

r 
=  (11.1.22)

Using the expression for  calculated form the potential

 
2 201 1

4 4r o

o o

V
E r A R

R
   

 
= =  (11.1.23)

we obtain our previous expression for the electric field

 0 2r

R
E V

r
=  (11.1.24)

Now the energy stored in the electric field is

 
2

vol

1
E

o

W dv


= ⋅∫ E  (11.1.25)

Performing the volume integral

 

22
2

0 2

0 0

1
sinE

o R

R
W d d V r dr

r

 

  


∞
⎛ ⎞= ⎜ ⎟
⎝ ⎠∫ ∫ ∫  (11.1.26)

 2 2 2
0 0

1
4 2E o

R

W V R V R
r

 
∞

⎛ ⎞= − =⎜ ⎟
⎝ ⎠

 (11.1.27)

The capacitance  C is related to the total energy

 2
0

1

2
EW CV=  (11.1.28)
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Thus, the capacitance of our sphere is proportional to the radius

 C = 40R (11.1.29)

Example 11.1.4
Find the radial dependence of potential and the electric field outside a cylinder of 
radius R held at a potential V(R)  V0

Solution: Laplace’s equation in cylindrical coordinates with only radial 
dependence is

 
2 1

0
V

V r
r r r

∂ ∂⎛ ⎞∇ = =⎜ ⎟∂ ∂⎝ ⎠
 (11.1.30)

so that

 
1

V
r c

r

∂
=

∂
 (11.1.31)

and

 1 2( ) lnV r c r c= +  (11.1.32)

We can see from these expressions that the electric field is proportional to 1/r. 
Evidently the potential diverges as r  . Note that the cylinder in question is 
taken to be infinite in length. The potential at a great distance from a cylinder of 
finite length will in fact go as 1/r. 

Example 11.1.5
Find the potential between two cones  of infinite extent (Figure 11.1.2). Use 
spherical coordinates where the potential only varies in the q direction with V
V0 at and VV0 at 

V
0

−V
0

α

Figure 11.1.2:  Two cones coaxial with the z-axis with opposite potentials on the upper and lower cones.
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Solution: Laplace’s equation in spherical coordinates with V  V() only is

 
2

2 2

1
sin 0

sin

V
V

r


 

∂ ∂⎛ ⎞∇ = =⎜ ⎟∂ ∂⎝ ⎠
 (11.1.33)

Integrating once

 
1

1sin
sin

cV V
c

  

∂ ∂
= → =

∂ ∂  (11.1.34)

A second integration gives 

 ( ) 1 2ln tan
2

V c c


 = +  (11.1.35)

Applying boundary conditions V()  V0 and V(0)  0 

 1 2 0ln tan
2

c c V


+ =  (11.1.36)

 0
1 2ln tan 0

2
c c


+ =  (11.1.37)

Subtracting these equations, we obtain

 
0

1 1 0ln tan ln tan
2 2

c c V


− =  (11.1.38)

Solving for c1

 

1

1 0 1 0
0 0

tan tan
2 2ln ln

tan tan
2 2

c V c V

 

 

−
⎡ ⎤
⎢ ⎥

= → = ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (11.1.39)

The second boundary condition gives c2

 
0

2 1 ln tan
2

c c


= −  (11.1.40)

and our potential becomes

 

0

0

0

tan
2ln

tan
2( )

tan
2ln

tan
2

V V










=  (11.1.41)
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Whereas the potential is only a function of , the electric field will depend on r as 
well. We may calculate the electric field from the gradient in spherical coordinates 

 1 ˆV

r 

∂
= −

∂
E θ  (11.1.42)

Example 11.1.6
Find the potential and electric field in a wedge  with one side at V(0)  0 and 
V(0)  V0

Solution: Laplace’s equation in cylindrical coordinates where V  V() only

 

2

2 2

1
0

V

r 

∂
=

∂  (11.1.43)

has solutions 

 V  c1  c2 (11.1.44)

Applying the boundary condition at   0 and at   0 gives

 V(0)  0  c2 = 0 (11.1.45)

 ( ) 0
0 1 0 0 1

0

V
V c V c 


= = → =  (11.1.46)

so that

 0
0

( )V V





⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (11.1.47)

with electric fi eld 

 
0

0

1 1ˆ ˆVV

r r 

∂
= − = −

∂
E θ θθ θ  (11.1.48)

11.1.3 Poisson’s Equation in 1D 

Example 11.1.7
Solve Poisson’s equation to find the electric field outside of the spherical charge 
distribution 

 2
( ) ( )

4

Q
r r R

R
 


= −  (11.1.49)

Solution: Poisson’s equation 
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 2

0

( )r
V




∇ = −  (11.1.50)

in spherical coordinates with V  V(r) is

 ( )2

2 2
0

1 1

4

V Q
r r R

r rr R


 

∂ ∂⎛ ⎞ = −⎜ ⎟∂ ∂⎝ ⎠
 

Integrating both sides up to r > R

 ( )2

2 2
00 0

1 1

4

r r
V Q

r dv r R dv
r rr R


 

∂ ∂⎛ ⎞ = −⎜ ⎟∂ ∂⎝ ⎠∫ ∫  (11.1.52)

with dv  4r2dr

 
2 2

2
0 0

1
4 4

4

V Q Q
r R

r R
 

 

∂
= − = −

∂  (11.1.53)

Thus, the electric field for r  R

 
2

0

ˆ
ˆ

4

V Q

r r

∂
= − =

∂
r

E r  (11.1.54)

and E  0 for r < R.

Maple Examples 
One-dimensional potential problems are demonstrated in the Maple worksheet 
below. The potential and electric field is calculated between concentric spheres 
and coaxial cylinders at different potentials. The electric potential and field is 
calculated at a wedge with one side grounded and the other side at a nonzero 
potential. The potential and field due to an oblate spheroid at a constant potential 
is calculated in oblate spheroidal coordinates. 

Key Maple terms: dsolve , expand , factor , Gradient , Laplacian , SetCoordinates , 
simplify 

Maple packages: with(VectorCalculus ):

Electric Potential and Field between Two Spheres

restart
with(VectorCalculus) :
SetCoordinates(‘spherical’[r, theta, phi])

sphericalr, , 
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Lap : Laplacian(V(r))

 
( ) ( )

2
2

2

2

2 sin( ) sin( )

:
sin( )

d d
r V r r V r

dr dr
Lap

r

 



⎛ ⎞⎛ ⎞ +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠=

LapEqn : expand(Lap)  0

 

( )
( )

2

2

2
: 0

d
V r

ddr
LapEqn V r

r dr

⎛ ⎞
⎜ ⎟
⎝ ⎠= + =

dsolve({LapEqn, V(a)  1, V(b)  0})

 ( )( )
a ab

V r
a b a b r

= −
− −

E  Gradient(rhs(%))

 ( )
( ) ( )

2
0 0r

ab
E e e e

a b r
 

⎛ ⎞= + +⎜ ⎟−⎝ ⎠

Electric Potential in a Wedge

Lap : Laplacian(V(phi))

 

( )
2

2

2 2
:

sin( )

d
V

d
Lap

r





=

LapEqn : expand(Lap)  0

 

( )
2

2

2 2
: 0

sin( )

d
V

d
LapEqn

r





= =

dsolve({LapEqn, V(alpha)  1, V(0)  0}):
simplify(%)

 
( )V





=

E  Gradient(rhs(%))

 

( ) ( )
( )
1

0 0
sin

rE e e e
r

  
⎛ ⎞= + + ⎜ ⎟
⎝ ⎠
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Electric Potential and Field between Two Cylinders

SetCoordinates(‘cylindrical’[r, phi, z]);

cylindricalr, , z

Lap : Laplacian(V(r))

 

( ) ( )
2

2

:

d d
V r V r r

dr dr
Lap

r

⎛ ⎞
+ ⎜ ⎟
⎝ ⎠=

LapEqn : simplify(expand(Lap)  0)

 

( )
( )

2

2
: 0

d
V r

ddrLap V r
r dr

= + =

dsolve({LapEqn, V(a)  1, V(b)  0})

 
( ) ( )

( )
( ) ( )

ln( ) ln
( )

ln ln ln ln

r b
V r

b a b a
= +

− −
E  Gradient(rhs(%))

 
( )

( ) ( )( )
( ) ( )ln
0 0

ln ln
r z

b
E e e e

b a r


⎛ ⎞
= + +⎜ ⎟−⎝ ⎠

Electric Potential and Field due to an Oblate Spheroid at Constant Potential

SetCoordinates(‘oblatespheroidal’[u, v, w]);

 Oblatespheroidalu, v, w

Lap : Laplacian(V(u))

( ) ( ) ( ) ( )

( ) ( )

2
2 2

2

22 2

sinh( ) 1 cos cosh( ) 1 cos

:
cosh( ) 1 cos( ) cosh( ) 1 cos

d d
u v V u u v V u

du du
Lap

u v u v

⎛ ⎞⎛ ⎞− + −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠=
− + −

LapEqn : simplify(expand(Lap)  0)

( ) ( )

( )2 2

cosh( ) sinh( )

: 0
cosh( ) 1 cos( ) cosh( )

d d
V u u u V u

dudu
Lap

u v u

⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠= =

− +
dsolve({LapEqn, V(a)  1, V(b)  0})
factor(%)
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( ) ( )
( ) ( )

arctan arctan
( )

arctan arctan

b u

b a

e e
V u

e e

− +
= −

−

E  Gradient(rhs(%))

( )( ) ( ) ( )( )
( ) ( )

2
2 2

0 0
cosh( ) 1 cos( ) 1 arctan arctan

u

u v w
u b a

e
E e e e

u v e e e

⎛ ⎞
= + +⎜ ⎟

⎜ ⎟− + + −⎝ ⎠

11.2 LAPLACE’S EQUATION IN CARTESIAN 
COORDINATES 

Electrostatic examples solving Laplace’s equation in 3D Cartesian coordinates by 
separation of variables are first given in this section. The method of images is then 
discussed. 

11.2.1 3D Cartesian Coordinates 
Laplace’s equation 2V(x, y, z)  0 in Cartesian coordinates is written as

 
2 2 2

2 2 2
0

V V V

x y z

∂ ∂ ∂
+ + =

∂ ∂ ∂
 (11.2.1) 

where  < x < ,  < y < ,  < z < . Applying separation of variables, we 
assume a product solution

 V(x, y, z) X(x)X(y)Z(z) (11.2.2) 

Substituting the product form of V into Laplace’s equation and dividing by V 
gives

 
2 2 2

2 2 2

1 1 1
0

X Y Z

X Y Zx y z

∂ ∂ ∂
+ + =

∂ ∂ ∂
 (11.2.3) 

The variables x, y and z may vary independently. Thus, each term above must be 
equal to a constant if the sum is zero. One choice of constants is

 
2 2 2

2 2 2

2 2 2

1 1 1
      

X Y Z

X Y Zx y z
  

∂ ∂ ∂
= = = −

∂ ∂ ∂
 (11.2.4)

where 2  2 – 2  0. The solutions to these differential equations may be written 
as linear combinations of sine, cosine and exponential functions. 
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{ }{ }{ }( , , ) sin( ) cos( ) sin( ) cos( ) z zV x y z A x B x C y D y Ee Fe     −= + + +

 (11.2.5) 

with constants A, B, C, D, E, and F determined by the boundary conditions. 

Example 11.2.1
A cubical region has boundary condition V  0 on the four sides y  0, y  L, x  
0 and x  L. The sides at z  –L/2 and z  L/2 are at potentials V  –V0 and V  V0, 
respectively. Find the potential V(x, y, z) inside the cube.

Solution: Applying the boundary conditions V(0, y, z)  0 and V(x, 0, z)  0 we 
fi nd that B  0 and D  0. The boundary conditions V(L, y, z)  0 and V(x, L, z)  0 
give us   n/L and   m/L where n and m are integers. Now 2  2 – 2  0 so 

that 
2 2n m

L


 = +  and our potential is given by the double sum

 
,

1 1

2 2 2 2
, ,

( , , ) sin sin

exp exp

n m

n m

n m n m

n m
V x y z A x y

L L

E n m z F n m z
L L

 

 

∞ ∞

= =

⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞+ + − +⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

∑∑
 (11.2.6) 

Comparing the boundary conditions at z  L/2

 

0 ,
1 1

2 2 2 2
, ,

sin sin

exp exp
2 2

n m

n m

n m n m

n m
V A x y

L L

E n m F n m

 

 

∞ ∞

= =

⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞+ + − +⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

∑∑
 (11.2.7) 

and at z  –L/2

0 ,
1 1

2 2 2 2
, ,

sin sin

exp exp
2 2

n m

n m

n m n m

n m
V A x y

L L

E n m F n m

 

 

∞ ∞

= =

⎛ ⎞ ⎛ ⎞− = ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞⎛ ⎞ ⎛ ⎞− + + +⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

∑∑
 (11.2.8) 

we find that Fn,m  –En,m and

2 2
,

1 1

( , , ) sin sin sinhn m

n m

n m
V x y z A x y n m z

L L L

  ∞ ∞

= =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∑∑   (11.2.9) 
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where a factor of two and the En,m have been absorbed into the An,m. To find the 
An,m we multiply both sides of the boundary condition at z  L/2

 2 2
0 ,

1 1

sin sin sinh
2

n m

n m

n m
V A x y n m

L L

  ∞ ∞

= =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∑∑   (11.2.10) 

by sin sin
n m

x y
L L

 ′ ′⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

and integrate over x and y. The left-hand side gives

 

( )( )
2

0 2

0 0

2

2

sin sin 1 cos 1 cos

4
                                                             (for   and   odd)

L L
n m L

V x y dxdy n m
L L n m

L
n m

n m

 
 





′ ′⎛ ⎞ ⎛ ⎞ ′ ′= − −⎜ ⎟ ⎜ ⎟ ′ ′⎝ ⎠ ⎝ ⎠

′ ′=
′ ′

∫ ∫
 (11.2.11) 

The right-hand side becomes

2 2
,

1 10 0

2
2 2

,
1 1

sin sin sinh sin sin
2

               sinh
4 2

L L

n m

n m

n m nn mm

n m

n m n m
A x y n m x y dxdy

L L L L

L
A n m

    


 

∞ ∞

= =

∞ ∞

′ ′
= =

′ ′⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞= +⎜ ⎟
⎝ ⎠

∑∑∫ ∫

∑∑
 (11.2.12) 

Hence, we can drop the primes and find for odd n and m

 
0

, 2
2 2

16 1

sinh
2

n m

V
A

nm
n m


=

⎛ ⎞+⎜ ⎟
⎝ ⎠

 (11.2.13) 

and 

2 2

0
2

2 21,3,5... 1,3,5...

sinh
16 1

( , , ) sin sin

sinh
2

n m

n m z
V n m L

V x y z x y
nm L L

n m


 



∞ ∞

= =

⎛ ⎞+⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎝ ⎠= ⎜ ⎟ ⎜ ⎟ ⎛ ⎞⎝ ⎠ ⎝ ⎠ +⎜ ⎟
⎝ ⎠

∑ ∑

 (11.2.14) 

11.2.2 Method of Images 
The electric field of a charge distribution near a planar conductor can be 
calculated by calculating the field resulting from the charge distribution and a 
fictitious image charge distribution on the opposite side of the conductor. 
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Example 11.2.2
A single line charge with charge per unit length  is located at height y  h above 
a perfectly conducting planar surface at y  0 (Figure 11.2.1). Take the z-axis to be 
tangent to the conducting plane just under the line charge (perpendicular to the 
page). 

Figure 11.2.1: Line charge above a conducting plane. 

Solution: The potential of a line charge pointing along the z-axis (r  0) in 
cylindrical coordinates

 
0

( ) ln( )
2

V r r



= −  (11.2.15) 

We may express this potential in Cartesian coordinates

 
2 2

0

( , ) ln
2

V x y x y



= − +  (11.2.16) 

If the line charge is passing through the point (x, y)

 ( ) ( ) ( )2 2

0

, ln
2

V x y x x y y



′ ′= − − + −  (11.2.17) 

Use the method of images to find the potential above the conducting plane. 

 ( ) ( ) ( )2 22 2

0 0

, ln ln
2 2

V x y x y h x y h
 

 
= + − − + +  (11.2.18) 

 ( ) ( )
( )

22

22
0

, ln
2

x y h
V x y

x y h





+ −
=

+ +
 (11.2.19) 

The y-component of the electric field Ey above the conducting plane is

 
( ) ( )

( )
( )
( )2 22 2

0 0

,

2 2
y

V x y y h y h
E

y x y h x y h

 

 

∂ − +
= − = − +

∂ + − + +
 (11.2.20) 

Calculating the induced charge density on the conducting plane as a function of x

 
( )

0 2 2 2 2 2 2

0

,

2 2
y

V x y h h h

y x h x h x h

  
 

  
=

∂ −
= − = − = −

∂ + + +
 (11.2.21) 
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The total charge per unit length induced on the plane is then

 2 2

h

x h






∞

−∞

− = −
+∫  (11.2.22) 

Maple Examples 
The electric potential of Example 8.3.1 corresponding to a square region with 
opposite sides grounded is plotted in the Maple worksheet below. The potential is 
visualized using a 3D contour plot. 

Key Maple terms: contourplot3d , subs , sum 

Maple packages: with(plots ):

Programming: Function statements using ‘’

restart

Potential inside a Square

N : 60 :

( )
( )( )

( )( )
( )( )
( )( )

2 0 1 cos
: ,

exp 1

1 exp
exp exp

1 exp

sin , 1

V n Pi
V x y sum

Pi n n Pi

n Pin Pi n Pi
x x

L Ln Pi

n Pi
y n N

L

⎛ ⎛⋅ − ⋅
= → ⋅⎜ ⎜⎜⎜ ⋅ ⋅ +⎝⎝

⎛ ⎞− ⋅⋅ ⋅⎛ ⎞ ⎛ ⎞⋅ ⋅ − ⋅ − ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠− − ⋅⎝ ⎠
⎞⎞⋅⎛ ⎞⋅ ⋅ =⎜ ⎟ ⎟⎟⎝ ⎠ ⎠⎠



( )

( )( ) ( )

( )
1

1 e e
1 cos e sin

1 e2 0
e 1

: ,

n x
n x n L

L
N n

n
n

n y
n

L
V

n
V x y


 










−

−

=

⎛ ⎞⎛ ⎞
⎜ ⎟− ⎛ ⎞⎜ ⎟− − ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠−⎝ ⎠⎜ ⎟⎜ ⎟+⎝ ⎠=
∑



V2 : subs({L  1, V0  1}, V(x, y)) :
with(plots) :
contourplot3d(V2, x  0…1, y  0…1, color  “Black”, contours  30)
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Figure 11.2.2: 3D contour plot of the potential inside a square region with opposite 
sides grounded and the other two sides at the same potential.

11.3 LAPLACE’S EQUATION IN CYLINDRICAL 
COORDINATES 

Solutions to Laplace’s equation in cylindrical coordinates without z-dependence 
are investigated using separation of variables in this section. Examples of a 
grounded cylinder in an external field and cylindrical shells with Dirichlet 
boundary condition are given. Cylindrical solutions to Laplace’s equation in 
three dimensions are discussed. The angular coordinate is represented by  in the 
following. 

11.3.1 Potentials with Planar Symmetry 
If the potential Vis only a function of r and , Laplace’s equation becomes

 ( )
2

2

2 2

1 1
, 0

V V
V r r

r r r r




∂ ∂ ∂⎛ ⎞∇ = + =⎜ ⎟∂ ∂ ∂⎝ ⎠
 (11.3.1)

Substituting ( , ) ( ) ( )V r R r = Θ  and multiplying by r2
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2

2
0

R
r r R

r r 

∂ ∂ ∂ Θ⎛ ⎞Θ+ =⎜ ⎟∂ ∂ ∂⎝ ⎠
 (11.3.2)

Dividing by R we obtain

 
22

2

2

1 1
0

nn

R
r r

r r R 
−

∂ ∂ ∂ Θ⎛ ⎞ + =⎜ ⎟∂ ∂ Θ∂⎝ ⎠   (11.3.3)

Choosing n2
 as the separation constant, the equation becomes 

 
2

2

2
n



∂ Θ
= − Θ

∂
 (11.3.4)

with solution

 () = cn cos(n) + dnsin(n) (11.3.5)

The R equation becomes

 
2R

r r n R
r r

∂ ∂⎛ ⎞ =⎜ ⎟∂ ∂⎝ ⎠
 (11.3.6)

or

 
2

2 2

2

R R
r r n R

r r

∂ ∂
+ =

∂ ∂
 (11.3.7)

It can be verified by direct substitution that rn and rn are solutions to this 
differential equation. Therefore, the general solution to the R equation including 
the case where n  0 is

 0 0( ) ln( )
n n

n nR r a r b r a r b−= + + +  (11.3.8)

If potential is only a function of r, we have n  0 and

 V(r) = a0 lnr + b0 (11.3.9)

Example 11.3.1
A grounded conducting cylinder of radius R is coaxial with the z-axis. The cylinder 
is placed in an otherwise uniform electric field 0

ˆE=E j  in the y-direction. Solve 
Laplace’s equation for the potential outside of the cylinder. Calculate the induced 
surface charge density on the cylinder.

Solution: The potential far from the cylinder is

 
0 0 sinV E y E r = − = −  (11.3.10)

where 0 .̂V E= −∇ =E j  The general solution for the potential is



ELECTROMAGNETISM 513

 ( )( )
1

( , ) cos sinn n
n n n n

n

V r a r b r c n d n  
∞

−

=

= + +∑  (11.3.11)

Applying the boundary condition of zero potential at the surface of the cylinder

 
( ), 0 0n n

n nV R a R b R −= ⇒ + =
 (11.3.12)

gives us a condition between the an and the bn

 
2n

n nb a R= −  (11.3.13)

For large r  R

 ( ) 0
1

cos sin sinn
n n n

n

a r c n d n E r  
∞

=

+ = −∑  (11.3.14)

Thus cn  0 and we may absorb the dn into the an. Since n  1 only, we have a1  –E0 

and the potential

 
2

0 0( , ) sin sin
R

V r E r E
r

  = − +  (11.3.15)

Factoring

 
2

0( , ) sin
R

V r E r
r

 
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 (11.3.16)

we see that V(R, )  0. Although the potential is zero at r  R, the surface charge 
density is nonzero

 
0 0 02 sin

r R

V
E

r
   

=

∂
= − =

∂
 (11.3.17)

Example 11.3.2
A cylinder of radius R has a surface potential 

 

( ) 0

0

0
,        

2

V
V R

V

 


  

≤ <⎧⎪= ⎨− ≤ <⎪⎩  (11.3.18)

Calculate the potential V(r, ) for r  R and r < R. 

Solution: Because the potential is odd about   0 we choose the sine series

 ( ) ( )
1

, sinn
n

n

V r a r n 
∞

<
=

=∑  (r  R) (11.3.19)
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 ( ) ( )
1

, sinn
n

n

V r b r n 
∞

−
>

=

= ∑  (r  R) (11.3.20)

We require that the potential is continuous at r  R

 2n n n
n n n na R b R b a R−= ⇒ =  (11.3.21)

To solve for the an we multiply both sides of

 ( ) ( )
1

, sinn
n

n

V R a R n 
∞

=

= ∑  (11.3.22)

by sin(n) and integrate

 ( ) ( ) ( ) ( )
2 2

10 0

, sin sin sinn
n

n

V R n d a R n n d

 

     
∞

=

′ ′= ∑∫ ∫  (11.3.23)

Left-hand side:

 

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

2 2

0 0

0 0

20 0

0

0 0

, sin sin sin

                                   cos cos

                                   1 1 1 1

                          

n n

V R n d V n d V n d

V V
n n

n n
V V

n n

  



 



      

 

′ ′

′ ′ ′= −

′ ′= − +
′ ′

⎡ ⎤ ⎡ ⎤= − − − + − −
⎣ ⎦ ⎣ ⎦′ ′

∫ ∫ ∫

( )04
              odd

V
n

n
′=

′

 (11.3.24)

Right-hand side:

 

( ) ( ) ( ) ( )
2 2

1 10 0

2

1 0

sin sin sin sin

                                               
2

n n
n n

n n

n n
n nn n

n

a R n n d a R n n d

a R a R

 



     


 

∞ ∞

= =

∞
′

′ ′
=

′ ′=

= =

∑ ∑∫ ∫

∑
 (11.3.25)

Dropping the primes since n = n

 0 04 4
         b

n

n nn

V V R
a

nnR 
= =  (11.3.26)

 ( ) ( )0

1,3,5...

4 1
, sin

n

n

V r
V r n

n R
 



∞

<
=

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑
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and ( ) ( )0

1,3,5...

4 1
, sin

n

n

V R
V r n

n r
 



∞

>
=

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑  (11.3.27)

We can immediately verify ( , ) ( , ).V R V R < >=

Example 11.3.3
A cylinder of radius R has a surface potential 

 V(R, ) = V0 cos(3) (11.3.28)

Calculate the potential V(r, ) for r  R and r < R.

Solution: Since the boundary condition is even, we may discard coeffi cients of 
sin(n) so that

 ( ) ( )
1

, cosn
n

n

V r a r n 
∞

<
=

= ∑  (r  R) (11.3.29)

 ( ) ( )
1

, cosn
n

n

V r b r n 
∞

−
>

=

= ∑  (r > R) (11.3.30)

We require that the potential is continuous at r  R

 
2n n n

n n n na R b R b a R−= ⇒ =  (11.3.31)

Now to solve for the an

 ( ) ( )0
1

cos 3 cosn
n

n

V a R n 
∞

=

= ∑  (11.3.32)

From inspection, we see that n  3 and a3  V0/R3

 ( ) ( )
3

0, cos 3
r

V r V
R

 <
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (r  R) (11.3.33)

 ( ) ( )
3

0, cos 3
R

V r V
r

 >
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (r > R) (11.3.34)

11.3.2 Potentials in 3D Cylindrical Coordinates 
If the potential depends on all three cylindrical coordinates we have general 
solutions of the form
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( )( )

( )
1

( , , ) ( ) ( ) cos sin

sinh cosh

n n n n n n

n

n n

V r z a J kr b N kr c n d n

e kz f kz

  
∞

=

= + +

+

∑
 (11.3.35)

where the radial dependence is given by Bessel functions. The Neumann Bessel 
functions Nn(kr) are divergent where r  0 and are discarded in regions including 
the z-axis. 

Maple Examples 
The electric potential is calculated inside of a circular region with specified 
boundary potential and visualized using a contour plot in the Maple worksheet 
below.

Key Maple terms: contourplot , int , subs , sum 

Maple packages: with(plots ):

Programming: Function statements using ‘’

restart

Potential inside a Cylinder 
f : (theta)  V0  cos(2  theta)  V0  sin(2  theta)

f :   V0 cos(2 )  V0 sin(2 )

( ) ( ) ( )
2

0

1
: cos

n
a n f n d

R


  



⋅
= → ⋅ ⋅ ⋅

⋅ ∫

 
( ) ( )

2

0
cos

:
n

f n d
a n

R


  


= ∫

( ) ( ) ( )
2

0

1
: cos

n
b n f n d

R


  



⋅
= → ⋅ ⋅ ⋅

⋅ ∫

 
( ) ( )

2

0
cos

:
n

f n d
b n

R


  


= ∫

N : 10 :

( ) ( ) ( ) ( )( ): cos theta sin theta , 0
n

r
V sum a n n b n n n N

R

⎛ ⎞⎛ ⎞⎜ ⎟= ⋅ ⋅ ⋅ + ⋅ ⋅ =⎜ ⎟
⎝ ⎠⎝ ⎠



 
2 2 22

4

( ) - ( )c2 cos 2 sin os( )
:V

V 0r V 0r V 0r

R

  +
=
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V2 : subs({R  1, V0  1}, V) 

 V2 : 2r2 cos()2 – r2  2r2 sin() cos()

with(plots) :
contourplot([r, theta, V2], r  0…1, theta  0…2, coords  cylindrical, contours  
20, color  “Black”)

Figure 11.3.1: Equipotentials inside a cylindrical region with specified potential on the cylindrical boundary. 

11.4 LAPLACE’S EQUATION IN SPHERICAL 
COORDINATES 

We investigate solutions to Laplace’s equation in spherical coordinates without 
-dependence using separation of variables in this section. Examples of a hollow 
ring, nested spheres and a single sphere with Dirichlet boundary conditions are 
given. Spherical solutions to Laplace’s equation with -dependence are discussed. 

11.4.1 Axially Symmetric Potentials  
If the electric potential V is only a function of r and , Laplace’s equation becomes

 

2 1
sin 0

sin

V V
r

r r


  

∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠  (11.4.1)

Obtaining a separation of variables solution, we substitute V(r, ) = R(r)  () 
into Laplace’s equation and divide by R(r)  ()
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( ) ( )

2

1 1

1 1
sin 0

sin

R
r

R r r


  
+ − +

∂ ∂ ∂ ∂Θ⎛ ⎞ ⎛ ⎞+ =⎜ ⎟ ⎜ ⎟∂ ∂ Θ ∂ ∂⎝ ⎠ ⎝ ⎠
   

   (11.4.2)

With separation constant (  1), the radial differential equation becomes

 ( )2 1
R

r R
r r

∂ ∂⎛ ⎞ = +⎜ ⎟∂ ∂⎝ ⎠
   (11.4.3)

with solutions

 ( ) 1

B
R r A r

r +
= + 

   (11.4.4)

The equation

 ( )sin 1 sin 
 

∂ ∂Θ⎛ ⎞ = − + Θ⎜ ⎟∂ ∂⎝ ⎠
   (11.4.5)

has the general solution

 ( ) ( ) ( )cos cosC P D Q  Θ = +     (11.4.6)

where P(cos) are the Legendre polynomials that can be obtained by Rodrigues’ 
formula.

The Q(cos) are the Legendre functions of the second kind. They are usually 
not considered because they are divergent where   0 (on the z-axis). If the z-axis 
is excluded from a given problem then we must include the Q(cos).

Example 11.4.1
Find the potential inside a ring in spherical coordinates  held at a potential 
V(a, )  V0 on its inner surface and grounded on all other surfaces (Figure 11.4.1). 

α

V
0

r = a

r = b

z

Figure 11.4.1: Ring formed from the intersection of spheres (with radii a and b) 
and cones (with half angles  and  – )
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Solution: Because the z-axis is excluded from the solution region the general 
solution will include the Q(cos)

 ( ) ( )( ) ( ) ( )( )1

0

, cos cosV r A r B r C P D Q  
∞

− +

=

= + +∑ 
     


 (11.4.7)

The boundary conditions are 

 V(b, )  0, V(a, )  V0, V(r, )  V(r,   )  0 (11.4.8)

Applying the boundary condition at r  b

 
( )1

0A b B b
− ++ =

   (11.4.9)

gives a relation between the constants B  –Ab21.
With zero potential on the surface of constant 

 ( ) ( )cos cos 0C P D Q + =     (11.4.10)

we have

 
( )
( )
cos

cos

P
D C

Q




= − 

 


 (11.4.11)

Absorbing the C into the A, the potential is

 ( ) ( )( ) ( ) ( )
( ) ( )12 1

0

cos
, cos cos

cos

P
V r A r b r P Q

Q


  



∞
− ++

=

⎛ ⎞
= − −⎜ ⎟⎜ ⎟

⎝ ⎠
∑   

  
 

 (11.4.12)

Applying the boundary condition at r  a

 
( )( ) ( ) ( )

( ) ( )12 1
0

0

cos
cos cos

cos

P
V A a b a P Q

Q


 



∞
− ++

=

⎛ ⎞
= − −⎜ ⎟⎜ ⎟

⎝ ⎠
∑   

  
 

 (11.4.13)

As an approximation, we multiply both sides by P(cos)sind and integrate

( )

( )( ) ( ) ( )
( ) ( )

0

0

12 1

0 0

cos sin

cos
     cos cos (cos )sin

cos

V P d

P
A a b a P Q P d

Q





  


    



′

∞
− ++

′
=

⎛ ⎞
= − −⎜ ⎟⎜ ⎟

⎝ ⎠

∫

∑ ∫



  
   

 

 (11.4.14)
This gives

 ( ) ( )( )
1

12 1
0

01

2

2 1
V P x dx A a b a 

∞
− ++

′ ′
=−

= −
+∑∫  

  
 

 (11.4.15)
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and

 ( )( )

1

0 12 1
1

2 1
( )

2
A V P x dx

a b a
− ++

−

+
=

−
∫  


 (11.4.16)

Example 11.4.2
A sphere of radius a has a surface potential 

 V(a, ) = V0 cos() (11.4.17)

The sphere is surrounded by a grounded concentric sphere of radius b

 V(b, ) = 0 (11.4.18)

Calculate the potential V(r, ) for r < a and a  r  b

Solution: Because the z-axis is included in our solution region, our general 
solution is

 ( ) ( )( ) ( )1

0

, cosV r A r B r P 
∞

− +

=

= +∑ 
  


 (11.4.19)

Applying the boundary condition at r  b gives

 
( )1

A b B b
− += − 

   (11.4.20)

and our potential is

 ( ) ( ) ( )( ) ( )2 1 1

0

, cosV r A r b r P 
∞

+ − +

=

= −∑  
 


 (11.4.21)

Applying the boundary condition at r  a

 
( ) ( )( ) ( )2 1 1

0
0

cos cosV A a b a P 
∞

+ − +

=

= −∑  
 


 (11.4.22)

we only have   1 where P1(cos)  cos and 

 ( )
0

1 3 2

V
A

a b a−
=

−  (11.4.23)

Writing the potential between the spheres as

 ( )
2 3 3

0 3 3 2
, cos

a r b
V r V

a b r
 

⎛ ⎞⎛ ⎞−
= ⎜ ⎟⎜ ⎟

−⎝ ⎠⎝ ⎠
 (11.4.24)

we can verify that the boundary conditions at r  a and r  b are satisfied.
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Example 11.4.3
A sphere of radius a is grounded 

 V(a, )  0 (11.4.25)

The sphere is surrounded by a larger concentric sphere of radius b with a potential

 ( )0 2 3( , ) (cos ) (cos )V b V P P  = +  (11.4.26)

Find the potential between the spheres and find the induced surface charge 
density on the inner sphere.

Solution: Applying the boundary condition at r  a

 ( ) ( )( ) ( )1

0

, cos 0V a A a B a P 
∞

− +

=

= + =∑ 
  


 (11.4.27)

so that Aa  –Ba(1) or B  –Aa(21).
Factoring the A and applying the boundary condition at r  b 

 ( ) ( )( ) ( ) ( )( ) ( )2 1 1

0 2 3
0

cos cos cosV P P A b a b P  
∞

+ − +

=

+ = −∑  
 


 (11.4.28)

For   2 we have

 ( ) ( ) ( )2 5 3
0 2 2 2cos cosV P A b a b P −= −  (11.4.29)

and

 ( ) ( )
3

0 0
2 2 5 3 5 5

V V b
A

b a b b a−
= =

− −
  (11.4.30)

For   3 

 ( ) ( )
4

0 0
3 3 7 4 7 7

V V b
A

b a b b a−
= =

− −   (11.4.31)

Substituting the constants our potential becomes

( ) ( )
3 4

2 5 3 3 7 40 0
2 35 5 7 7

( , ) (cos ) (cos )
( ) ( )

V b V b
V r r a r P r a r P

b a b a
  − −= − + −

− −
 (11.4.32)

and we can verify that the boundary conditions are satisfi ed at r  a and r  b.

Now the surface charge density on the inner sphere 

 ( ) ( )
0

,

r a

V r

r


  

=

∂
= −

∂
 (11.4.33)
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Calculating the derivatives

( )
( )

( )
( )

3 4
5 4 2 7 50 0

0 2 35 5 7 7
( ) 2 3 (cos ) 3 4 (cos )

r a

V b V b
r a r P r a r P

b a b a
    − −

=

⎡ ⎤
⎢ ⎥= − + + +
⎢ ⎥− −⎣ ⎦

 (11.4.34)
we obtain

 ( ) ( ) ( ) ( ) ( )
3 2 4

0 0 2 35 5 7 7

5 7
cos cos

ab a b
V P P

b a b a
    

⎡ ⎤
⎢ ⎥= − +
⎢ ⎥− −⎣ ⎦

 (11.4.35)

11.4.2 3D Spherical Coordinates  
In spherical coordinates without azimuthal symmetry the solution to Laplace’s 
equation is of the form

 ( ) ( )( ) ( )1

, ,
0

, , ,m
m m

m

V r A r B r Y   
∞

− +

= =−

= +∑ ∑



  

 
  (11.4.36)

where the ( ),mY    are spherical harmonics. 

Maple Examples 
The electric potential is calculated inside of a spherical region with specified 
boundary potential and visualized using a contour plot in the Maple worksheet 
below.

Key Maple terms: contourplot3d  , int , subs , sum 

Maple packages: with(plots ):

Programming: Function statements using ‘’

Special functions: LegendreP 

restart

Potential inside a Sphere 

f : (theta)  V0  cos(theta)  sin(3  theta)

 f :   V0 cos() sin(3 )

( ) ( ) ( ) ( )( ) ( )
0

2 1
: LegendreP ,cos sin

2

n
C n f n d


   

⋅ +
= → ⋅ ⋅ ⋅∫
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 ( ) ( ) ( )( ) ( )( )
0

1
: LegendreP ,cos sin

2
C n n f n d


   

⎛ ⎞= +⎜ ⎟
⎝ ⎠ ∫

N : 7 :

( ) ( )( ): LegendreP ,cos theta , 0
n

r
V sum C n n n N

a

⎛ ⎞⎛ ⎞⎜ ⎟= ⋅ ⋅ =⎜ ⎟
⎝ ⎠⎝ ⎠



 

( )( )

( )( ) ( )( )
3

3

7

7

5

5

( )
:

16 128

21 LegendreP 3,cos3 cos

363 LegendreP 5,cos 105 LegendreP 7

2048 2048

,cos

V 0rV 0r

V 0r

V
a a

r

a a

V 0

  

   

= +

− −

V2 : subs({a  1, V0  1}, V) : 
with(plots) :
contourplot3d([r, theta, V2], r  0…1, theta  0…2, coords  cylindrical, contours 
 20, color  “White”, filledregions  true)

Figure 11.4.2: Equipotentials inside a sphere with specified axially symmetric potential on the surface. 
The spherical potential with axial symmetry is plotted in cylindrical coordinates.  

11.5 MULTIPOLE EXPANSION OF POTENTIAL 

We investigate the multipole expansion of potentials with axial symmetry on and 
off the z-axis below. Examples of a charged needle, disk, and ring are given. The 
multipole expansion of asymmetric potentials is discussed. 
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11.5.1 Axially Symmetric Potentials  
The multipole expansion technique is an approximation method of calculating 
the integral from the potential 

 

( ) ( )
0

1

4
vol

V dv




′
′=

′−∫
r

r
r r

 (11.5.1)

for an arbitrary charge distribution (r). Since 

 

2
2 2 2 22 cos 1 2 cos

r r
r r rr r

r r
 

⎛ ⎞′ ′⎛ ⎞ ⎛ ⎞′ ′ ′ ⎜ ⎟− = + − = + −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
r r  (11.5.2)

where is the angle between r and r, we have

 

1/2
2

1 1
1 2 cos

r r

r r r


−
⎛ ⎞′ ′⎛ ⎞ ⎛ ⎞⎜ ⎟= + −⎜ ⎟ ⎜ ⎟⎜ ⎟′− ⎝ ⎠ ⎝ ⎠⎝ ⎠r r  (11.5.3)

Expanding for r > r

 

2 32 31 1 3cos 1 5cos 3cos
1 cos

2 2

r r r

r r r r

  


⎛ ⎞⎛ ⎞ ⎛ ⎞′ ′ ′− −⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟= + + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟′− ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠r r


 (11.5.4)

we find the coefficients of (r/r)n are the Legendre polynomials Pn(cos ) 

0 2 3

0 1 2 3

1 1
(cos ) (cos ) (cos ) (cos )

r r r r
P P P P

r r r r r
   

⎛ ⎞′ ′ ′ ′⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟= + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟′− ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠r r


 (11.5.5)

Thus,

 ( )
0

1 1
cos

n

n

n

r
P

r r


∞

=

′⎛ ⎞= ⎜ ⎟′− ⎝ ⎠
∑

r r
 (11.5.6)

and our integral for potential for r > r

 
( ) ( )

0 0

1
( ) cos

4

n

n

nvol

r
V P dv

r r






r
r

∞

=

′ ′⎛ ⎞ ′= ⎜ ⎟
⎝ ⎠

∑∫  (11.5.7)



ELECTROMAGNETISM 525

is evaluated over primed coordinates so that

 ( ) ( ) ( )1
0 0 vol

1 1
cos

4
n

nn
n

V r P dv
r

 


∞

+
=

′ ′ ′= ∑ ∫r r  (11.5.8)

The first three multipole terms corresponding to n  0, 1, 2 are the monopole 
term:

 ( ) ( )
0 vol

1 1

4
V dv

r



′ ′= ∫r r  (11.5.9)

dipole term: 

 ( ) ( ) ( )12
0 vol

1 1
cos

4
V r P dv

r
 


′ ′ ′= ∫r r  (11.5.10)

and the quadrupole term: 

 ( ) ( ) ( )2
23

0 vol

1 1
cos

4
V r P dv

r
 


′ ′ ′= ∫r r  (11.5.11)

Note that an arbitrary, irregular charge distribution (r) may result in monopole, 
dipole, quadrupole, and higher multipole terms where we may be only interested 
in calculating the first few terms. The monopole term is proportional to the total 
charge. Certain charge distributions may have only even or odd multipole terms. 

11.5.2 Off-Axis Trick 
For axially symmetric problems, the potential may first be obtained along the 
z-axis. The potential may then be obtained from points off the axis by making use 
of the addition theorem of spherical harmonics 

 ( ) ( ) ( )4
cos , , *

2 1
m m

m

P Y Y


    
=−

′ ′=
+ ∑



  


 (11.5.12)

or

 ( ) ( )
( ) ( ) ( ) ( )!

cos cos cos
!

imm m

m

m
P P P e

m

    ′−

=−

−
′=

−∑


  



  (11.5.13)

With axial symmetry, we only have m  0, cos   cos  and

 ( ) ( ) ( )cos cos cosP P P  ′=    (11.5.14)
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Thus, the expression 

 ( )
0

1 1
cos

n

n

n

r
P

r r


∞

=

′⎛ ⎞= ⎜ ⎟′− ⎝ ⎠
∑

r r
 (11.5.15)

may be written 

 ( ) ( )
0

1 1
cos cos

n

n n

n

r
P P

r r
 

∞

=

′⎛ ⎞ ′= ⎜ ⎟′− ⎝ ⎠
∑

r r
 (11.5.16)

We may now calculate the potential along the z-axis where   0

 ( ) ( ) ( )1
0 0 vol

1 1
cos

4
n

nn
n

V z r P dv
r

 


∞

+
=

′ ′ ′ ′= ∑ ∫ r  (11.5.17)

and then obtain the potential off-axis by multiplying each term in the expansion 
by Pn(cos ) or 

 ( ) ( ) ( ) ( )1
0 0 vol

1
cos cos

4
n

n nn
n

q
V r P dv P

r
  



∞

+
=

⎡ ⎤
′ ′ ′ ′= ⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∫r r  (11.5.18)

Example 11.5.1
Calculate the potential due to a charged needle  of length 2a oriented along the 
z-axis (Figure 11.5.1)

θ
Q

a

–a

Figure 11.5.1: Needle with charge Q located along the z-axis.

Solution: In the special case where the charge is only oriented along the z-axis 
Pn(cos )  Pn(cos ). Here we have r = z with charge density 

 ( )
2

Q
dv dz dz

a
 ′ → =r  (11.5.19)
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and potential

 ( ) ( )1
0 0

1 1
cos

4 2

a

n
nn

n a

Q
V z P dz

ar




∞

+
= −

= ∑ ∫r  (11.5.20)

Integrating over z 

 ( ) ( ) ( ) 11

1
0 0

cos 1

4 2 1

nn
n

n
n

P a aQ
V

a nr





++∞

+
=

− −
=

+∑r  (11.5.21)

( ) 11 12
nn na a a

++ +− − =  for even n and we have

 ( ) ( )
0 0,2,4...

1 1
cos

4 1

n

n

n

Q a
V P

r n r




∞

=

⎛ ⎞= ⎜ ⎟+ ⎝ ⎠
∑r  r > a (11.5.22)

We can check that the n  0 monopole term gives the potential of a point charge

 ( )
0

1
,

4

Q
V r

r



=  (11.5.23)

Example 11.5.2
Calculate the potential due to a uniformly charged disk  of radius R coaxial with 
the z-axis

Solution: In the special case where the charge is only in the z  0 plane   /2 
and Pn(cos )  Pn(0), we fi rst calculate the potential along the z-axis ˆr′ ′=r r  and 

ˆz=r k  so we have that

 ( ) ( ) 2
2

Q
dv r da r dr

R
  


′ ′ ′ ′ ′→ =r  (11.5.24)

 ( ) ( ) ( ) ( ) 1

2 1
0 0 0

1 1
2 0

4

R
n

nn
n

Q
V z P r dr

R z


 

∞
+

+
=

′ ′= ∑ ∫  (11.5.25)

 ( ) ( )
0 0

1 2 1
0

4 2

n

n

n

Q R
V z P

z n z

∞

=

⎛ ⎞= ⎜ ⎟+ ⎝ ⎠
∑  z > R (11.5.26)

and the potential off the z-axis is then

 ( ) ( ) ( )
0 0

1 2 1
, 0 cos

4 2

n

n n

n

Q R
V r P P

r n r
 



∞

=

⎛ ⎞= ⎜ ⎟+ ⎝ ⎠
∑  r > R (11.5.27)

We can check that the n  0 monopole term gives the potential of a point charge.



528 MATHEMATICAL METHODS FOR PHYSICS USING MATLAB AND MAPLE

Example 11.5.3
Calculate the potential due to a uniformly charged ring  of radius a coaxial with 
the z-axis

Solution: Expressing the charge density in spherical coordinates

 ( ) ( )2 22

q
r a

a


   



⎛ ⎞′ ′ ′= − −⎜ ⎟
⎝ ⎠

r  (11.5.28)

the potential

 ( ) ( ) ( ) ( ) ( )
1

0 0 vol

1 1
cos

4

n

nn
n

V r P dv
r

 


∞

+
=

′ ′ ′= ∑ ∫r r  (11.5.29)

We first calculate the nonzero multipole terms of the potential along the z-axis 
 ′→ . We then calculate the potential everywhere off the axis

( )

2
2

2 1
0 0 0 0 0

1 1
( ) (cos )sin ( ) ( )

4 22

n
nn

n

q
V d P d r r a dr

a r

 


      
 

∞∞
+

+
=

⎛ ⎞′ ′ ′ ′ ′ ′= − −⎜ ⎟
⎝ ⎠

∑ ∫ ∫ ∫r

 (11.5.30)
Performing the integrations 

 ( ) ( )
0 0

1
0

4

n

n

n

q a
V P

r r

∞

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑r  (11.5.31)

The potential off the axis is then

 ( ) ( ) ( )
0 0,2,4,

1
, 0 cos

4

n

n n

n

q a
V P P

r r
 



∞

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑r


 (11.5.32)

Evidently all the odd multipole terms are zero since Pn(0)  {1, 0, 1/2, 0, 3/8, 
0, …}.

11.5.3 Asymmetric Potentials
To compute the multipole expansion of potentials without azimuthal symmetry  
we use the expansion 

 ( ) ( )
0

1 1 4
, * ,

2 1
m m

m

r
Y Y

r r


   

∞

= =−

′⎛ ⎞ ′ ′= ⎜ ⎟′− +⎝ ⎠
∑ ∑

r r



 
  

 (11.5.33)

and our integral for the potential 

 ( ) ( ) ( ) ( )
0 0 vol

1 1 1 4
, , *

4 2 1
m m

m

V Y r Y dv
r r


    



∞

= =−

′ ′ ′ ′ ′=
+∑ ∑ ∫r r




 
   (11.5.34)
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can be written

 ( ) ( )
0 0

1 1 1 4
,

4 2 1
m

m

m

V q Y
r r


 



∞

= =−

=
+∑ ∑r



 
 

 (11.5.35)

where the coefficients 

 ( ) ( )
vol

, , , *m
mq r r Y dv    ′ ′ ′ ′ ′ ′ ′= ∫ 
    (11.5.36)

are the multipole moments . 

Maple Examples 
The multipole expansion of the potential of a charged ring for points off the z-axis 
is calculated in the Maple worksheet below.

Key Maple terms: expand , sum 

Maple packages: with(orthopoly ):

Programming: Function statements using ‘’

Special functions: LegendreP 

restart

Multipole Expansion: Charged Ring

with(orthopoly) :

( ) ( ) ( )( ): , theta ,0 ,cos theta , 0 4 ;
4

n
q a

V r sum P n P n n
Pi epsilon r r

⎛ ⎞⎛ ⎞⎜ ⎟= → ⋅ ⋅ =⎜ ⎟
⋅ ⋅ ⋅ ⎝ ⎠⎝ ⎠



( )
( ) ( )( )

4

0

,0 ,cos

: ,
4

n

n

a
q P n P n

r
V r

r






=

⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠=
∑



V(r, theta)
expand(%)

 
( ) ( ) ( )2 4 2

3 3 5

2 2 4

5

4

5

4

4 16 16 256 256 128

3 cos 9 105 cos 45 cosqa qa qq

r r r r r r

a qa qa
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11.6 ELECTRICITY AND MAGNETISM 

Computations in magnetostatics can be more challenging than electrostatics 
because magnetic sources are vectors while electrostatic sources are scalars. 
Calculations in magnetics often involve cross products and applications of the 
right-hand rule. Key integral theorems for electrostatics and magnetostatics are 
Gauss’s divergence theorem and Stokes’s theorem, respectively. 

11.6.1 Comparison of Electrostatics and Magnetostatics 
Table 11.6.1 provides a comparison of electric E and magnetic B fields, electric 
V and magnetic (A, ) potentials, and electric (q, , , ) and magnetic (I, K, J) 
sources. Analogous expressions for electric and magnetic forces and energies are 
also presented side by side. 

TABLE 11.6.1: Comparison of static electrostatic and magnetostatic equations. 

Electrostatics Magnetostatics

Electric field E at r due to a point charge q 
located at r

( ) ( )
3

04

q



′−
=

′−

r r
E r

r r

Magnetic field at r due to a current element 
ˆId  located at r

( ) ( ) ( )0
3

ˆ

4

I d



′ ′× −
=

′−

r r r
B r

r r



Electric field due to a line charge  (with 
units of C/m)

( ) ( )( )
3

0

1

4

d


Γ

′ ′−
=

′−∫
r r r

E r
r r



Magnetic field due to a line current (with 
units of amperes)

( ) ( ) ( )0
3

ˆ

4

I d


Γ

′ ′× −
=

′−∫
r r r

B r
r r



Electric field due to a surface charge density  
(with units of C/m2) 

( ) ( )( )
3

0 surf

1

4

da



′ ′ ′−
=

′−∫
r r r

E r
r r

Magnetic due to a surface current K (with 
units of A/m)

( ) ( ) ( )0
3

surf
4

da



′ ′ ′× −
=

′−∫
K r r r

B r
r r

Electric field due to a volume charge density 
 (with units of C/m3)

( ) ( )( )
3

0 vol

1

4

dv



′ ′ ′−
=

′−∫
r r r

E r
r r

Magnetic field due to a volume current J 
(with units of A/m2)

( ) ( ) ( )0
3

vol
4

dv



′ ′ ′× −
=

′−∫
J r r r

B r
r r
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Electrostatics Magnetostatics

Integral form of Gauss’s law 

enclosed
0surf

1
ˆda Q


⋅ =∫ E n

Integral form of Ampere’s law

0
ˆd IB

Γ

⋅ =∫ 

Differential form of Gauss’s law

0




∇⋅ =E

Differential form of Ampere’s law

0∇× =B J

Electric field from the electric potential

( ) ( )V= −∇E r r

Magnetic field from the vector magnetic 
potential

( ) ( )= ∇×B r A r

Integral computation of electric potential

( ) ( )
0 vol

1

4

dv
V





′ ′
=

′−∫
r

r
r r

Integral computation of vector magnetic 
potential

( ) ( )0

vol
4

dv



′ ′
=

′−∫
J r

A r
r r

Multipole expansion of electric potential

( ) ( ) ( )1
0 0 vol

1 1
cos

4
n

nn
n

V r P dv
r

 


∞

+
=

′ ′ ′= ∑ ∫r r

where  is the angle between r and r

Multipole expansion of vector potential

( ) ( ) ( )0
1

0 vol

1
cos

4
n

nn
n

r P dv
r






∞

+
=

′ ′ ′= ∑ ∫A r J r

where  is the angle between r and r

Poisson’s equation for the electric potential

( ) ( )2

0

V



∇ = −

r
r

Poisson’s equation for the vector magnetic 
potential 

( ) ( )2
0∇ = −A r J r

Laplace’s equation for the electric potential
2 0V∇ =  where V= −∇E

Laplace’s equation for the scalar magnetic 
potential

2 0∇ Ω =  where = −∇ΩH

Force on a point charge in an electric field 
F  qE

Force on a current element in a magnetic 
field 

F  I  Bd
Force between two point charges 

( )1 21 2
3

0 1 2
4

q q



−
=

−

r r
F

r r

Force between two current loops

( )
1 2

2 1 1 20
1 2 3

1 2

ˆ ˆ

4

d d
I I




Γ Γ

× × −
=

−∫ ∫
r r

F
r r

 


Electric energy in terms of  and V

vol

1

2
EW Vdv= ∫

Magnetic energy in terms of J and A

vol

1

2
BW dv= ⋅∫ J A
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11.6.2 Electrostatic Examples 

Example 11.6.1
Calculate the electrostatic energy stored in a collection of point charges and 
develop an integral expression for the energy stored in a continuous distribution 
of charge.

Solution: The potential a distance r from a single point charge q is

 ( )
0

1 q
V r

r
=
4

 (11.6.1)

The electrostatic energy of two point charges q1 and q2 separated by r12 is 

 1 2

0 12

1
E

q q
W

r
=
4

 (11.6.2)

For a collection of N point charges the electrostatic energy is

 
0 ,

1 1

2

N
i j

E

i j ij
i j

q q
W

r
≠

=
4 ∑  (11.6.3)

where the factor of 1/2 accounts for repeated terms such as q1q2/r12 and q2q1/r21. 
Factoring the qi 

 
0

1 1

2

N N
j

E i

i j ij

q
W q

r
=

4∑ ∑  (11.6.4)

we identify the sum over j as V(ri) so that

 ( )1

2

N

E i i

i

W q V= ∑ r  (11.6.5)

For a continuous charge distribution, we make the replacements qj  dv and 
  so that

 ( ) ( )
vol

EW V dv ′ ′ ′= ∫ r r  (11.6.6)

Example 11.6.2
From the integral expression for the electrostatic energy stored in a continuous 
charge distribution show that   

 ( )2
0

vol

EW E dv ′ ′= ∫ r
 (11.6.7)

where the integration volume is over all space. 
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Solution: Using Maxwell’s equation 0/ ∇⋅ =E  the integral is transformed as

 
0

vol

EW Vdv ′= ∇⋅∫ E

 (11.6.8)

Using the identity for the divergence of a scalar function times a vector function

 ( )V V V∇⋅ = ∇⋅ + ⋅∇E E E  (11.6.9)

we break the integral in two parts 

 
( )0 0

vol vol

EW V dv Vdv ′ ′= ∇⋅ − ⋅∇∫ ∫E E
 (11.6.10)

Applying Gauss’s divergence theorem to the first integral and using V∇ = −E  in 
the second integral gives

 ( ) 2
0 0

surf vol

EW V da dv ′ ′= ⋅ +∫ ∫E E  (11.6.11)

For large surface areas a ~ r2 the surface integral goes to zero as ~1/r since 
E ~1/r 2 and V ~1/r so we have that 

 
2

0

vol

EW dv ′= ∫ E  (11.6.12)

11.6.3 Magnetostatic Examples 

Example 11.6.3
Find the magnetic field along the z-axis of a current loop of radius R carrying a 
current I. Next find an integral expression for the field along the axis of a washer 
of inner radius a and outer radius b carrying a uniform current density K.

Solution: The Biot-Savart law for a line current 

 ( ) ( ) ( )0
3

ˆ

4

I d



′ ′× −
=

′−∫
r r r

B r
r r


  (11.6.13)

With the plane of the current loop located at z  0 we have that ˆ ˆId IRd=  and 
ˆ ˆz R′− = −r r z r

 
( ) ( )ˆ ˆ ˆ ˆ ˆ ˆId Id z R Izd IRd  ′× − = × − = +r r z r r z

 (11.6.14)

The radial component of the magnetic field along the z-axis is zero from symmetry 
and we only must integrate over  to obtain 
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 ( )
( ) ( )

2 2
20 0

3/2 3/2
2 2 2 2

0

ˆ ˆ
4 2

Id R
IR

z R z R

 


= =

+ +
∫B r z z  (11.6.15)

and

 
( )

2
0

3/2
2 22

z

I R
B

z R


=

+
 (11.6.16)

For a washer of inner radius a and outer radius b carrying a uniform current 
density K the magnetic field along the z-axis is 

 ( )
3

0
3/2

2 22

b

z

a

K r dr
B

z r


=

+
∫  (11.6.17)

Example 11.6.4
Find the vector potential inside and outside of a cylindrical solenoid of radius R 
carrying a current I with turns per unit length n  N/L. The axis of the solenoid 
coincides with the z-axis. 

Solution: The uniform magnetic fi eld inside the solenoid is 0
ˆnI=B z  and B  0 

outside the solenoid. Since = ∇×B A  we can express the magnetic fl ux inside the 
solenoid for r < R in terms of A from Stokes’s theorem 

 ˆˆda d⋅ = ⋅∫ ∫B n A   (11.6.18)

where ˆA=A  so that

 ( ) ( )2
0 2nI r A r  =  (11.6.19)

Thus, the vector potential inside the solenoid 

 0 ˆ
2

nI
r


=A  (11.6.20)

is zero at the center and increases linearly with r. Now to get the vector potential 
outside the solenoid r > R we have the total flux through a circular contour of 
radius r as B(R2). Thus

 ( ) ( )2
0 2nI R A r  =  (11.6.21)

and we see that the vector potential goes as 1/r outside the solenoid

 
2

0 ˆ
2

nI R

r


=A  (11.6.22)
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Example 11.6.5
From the integral formula for the vector potential of an arbitrary current 
distribution J(r)

 ( ) ( )0

vol
4

dv




′
′=

′−∫
J r

A r
r r

 (11.6.23)

calculate the first three multipole moments. 

Solution: The integral is only over primed coordinates so that we may factor out 
the sum

 ( ) ( ) ( )0
1

0 vol

1
cos

4
n

nn
n

r P dv
r






∞

+
=

′ ′ ′= ∑ ∫A r J r  (11.6.24)

The n  0 monopole moment 

 ( ) ( )0

vol

1

4
dv

r




′ ′= ∫A r J r  (11.6.25)

will be equal to zero for physical current distributions. For n  1 we have the 
dipole moment

 ( ) ( ) ( )0
12

1
cos

4
vol

r P dv
r





′ ′ ′= ∫A r J r  (11.6.26)

and the quadrupole moment 

 ( ) ( ) ( )20
23

1
cos

4
vol

r P dv
r





′ ′ ′= ∫A r J r  (11.6.27)

for n  2. 

z

y

x

r
1

ˆdℓ
1

2
ˆdℓ

I
1

r
2 
–

 
r

1

r
2 

I
2

Figure 11.6.1: Two current loops carrying currents I1 and I2 



536 MATHEMATICAL METHODS FOR PHYSICS USING MATLAB AND MAPLE

Example 11.6.6
Show that the force between two current loops  (Figure 11.6.1) is

 
( )

1 2

2 1 1 20
1 2 3

1 2

ˆ ˆ

4

d d
I I




Γ Γ

× × −
=

−∫ ∫
r r

F
r r

 
  (11.6.28)

Solution: The magnetic fi eld at the point on coil 2 located at r2 due to a current 
element at r1 is

 

( ) ( )1 1 20
1 2 1 3

1 2

ˆ

4

d
d I





× −
=

−

r r
B r

r r



 (11.6.29)

The total field at r2 due to coil 1 is then

 

( ) ( )
1

1 1 20
1 2 1 3

1 2

ˆ

4

d
I




Γ

× −
=

−∫
r r

B r
r r




 (11.6.30)

Now the force on 2
ˆd  due to B1(r2) is

 
( )2 2 1 2

ˆd I d= ×F B r
 (11.6.31)

and the total force on coil 2 is

 ( )
2

2 2 1 2
ˆI d

Γ

= ×∫F B r  (11.6.32)

and we obtain

 
( )

1 2

2 1 1 20
1 2 3

1 2

ˆ ˆ

4

d d
I I




Γ Γ

× × −
=

−∫ ∫
r r

F
r r

 
  (11.6.33)

11.6.4 Static Electric and Magnetic Fields in Matter 
Table 11.6.2 provides a comparison of the forces and torques acting on electric 
and magnetic dipoles in external fields. Electric and magnetic potentials are then 
compared for single dipoles and dipole moment densities in matter. Polarization 
and magnetization resulting from bound charges and currents are related to 
electric displacement and magnetic field strength, respectively.  
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TABLE 11.6.2:  Comparison of static electrostatic and magnetostatic equations in matter. 

Electric Fields in Matter Magnetic Fields in Matter

Electric dipole moment 
p  qd

where d points from -q to q

Magnetic dipole moment 
m  Ia

where a is the area bound by the current 
Torque  on an electric dipole with moment 
p in an electric field E
  p  E

Torque  on a magnetic dipole with moment 
m in a magnetic field B
mB

Force on a dipole in a nonuniform field

( )= ⋅∇F p E

Force on m in a nonuniform B field

( )= ∇ ⋅F m B

Energy of an electric dipole in an electric 
field
WE  -p  E

Energy of a magnetic dipole in a magnetic 
field
WB  -m  B

Potential at r due to a dipole p located at r

( ) ( )
3

0

1

4
V



′⋅ −
=

′−

p r r
r

r r

Vector potential A(r) due to mat r

( ) ( )0
34





′× −
=

′−

m r r
A r

r r

Potential at r due to an object with dipole 
moment density P(r) where p = Pdv

( ) ( ) ( )
3

0 vol

1

4
V dv



′ ′⋅ −
′=

′−∫
P r r r

r
r r

Vector potential due to an object with dipole 
moment density ( )′M r  where dv′=m M

( ) ( ) ( )0
3

vol
4

dv




′ ′× −
′=

′−∫
M r r r

A r
r r

The volume integral for the potential is 
transformed as 

( )

( )
0 surf

0 vol

1
( )

4

1

4

b

b

V da

dv









′
′= +

′−

′
′

′−

∫

∫

r
r

r r

r

r r

where ˆ
b = ⋅P n  and b = −∇⋅P

The volume integral for the vector potential 
is transformed as 

( )

( )

0

surf

0

vol

( )
4

4

b

b

da

dv









′
′=

′−

′
′+

′−

∫

∫

K r
A r

r r

J r

r r

where b = ∇×J M  and ˆ
b = ×K M n

The total charge density is a sum of bound 
and free charge densities
  b  free

Total current is a sum of bound and free 
current densities
J  Jb  Jfree

Using the differential form of Gauss’s law 
and the definition of the polarization charge 
density

0 free ∇⋅ = −∇⋅ +E P

Using the differential form of Ampere’s law 
and the definition of the bound current 
density

0 free/ ∇× =∇× +B M J

(contd.)



538 MATHEMATICAL METHODS FOR PHYSICS USING MATLAB AND MAPLE

Electric Fields in Matter Magnetic Fields in Matter

Factoring the divergence terms on the left

( )0 free ∇⋅ + =E P

Factoring the curl terms on the left

( )0 free/ ∇× − =B M J

we identify the electric displacement (with 
units of Cm2)
D0EP

we identify the magnetic field strength (with 
units of A/m)
H  B/0 – M

with divergence

free∇⋅ =D
with curl

free∇× =H J

Gauss’s law for dielectrics :Dis determined 
by the free charge density.

free

surf

ˆda Q⋅ =∫ D n

Ampere’s law for magnetic materials : H is 
determined by the free current density. 

free
ˆd I

Γ

⋅ =∫H l

For linear dielectrics P is proportional to E
P  0eE

For linear magneticsMis proportional to H
M  mH

where e is the electric susceptibility . The 
electric displacement now becomes
D  0(1  e)E
with relative permittivity r  (1  e) and 
absolute permittivity   0r

where m is the magnetic susceptibility . The 
magnetic flux density is thus
B  0(1  m)H

with relative permeability r  (1  m) and 

absolute permeability   0r

The energy stored in an electric field 

vol

1

2
EW dv= ⋅∫ E D

The energy stored in a magnetic field 

vol

1

2
BW dv= ⋅∫ B H

Surface charge density 

 0

V

n
 

∂
= −

∂  
where n is the coordinate normal to the 
surface. 

Surface current density  
K  Htan

in units of A/m2.

Boundary conditions at a charged surface 
     Potential V is continuous 
     Normal component of D is discontinuous
     Tangential component of E is continuous

Boundary conditions at a surface current 
    Vector potential A is continuous 
    Normal component of B is continuous
     Tangential component of H is 

discontinuous

11.6.5 Examples: Electrostatic Fields in Matter

Example 11.6.7
A cube of side a located in the first octant of the Cartesian coordinate system has 

polarization 0
ˆ.

z
P

a

⎛ ⎞= ⎜ ⎟
⎝ ⎠

P k  Calculate the total surface charge and volume charge 

of the polarized cube.
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Solution: The bound charge density is 0
ˆ

b P = ⋅ =P n  on the top of the cube where 
ˆˆ =n k , b  0 on the four sides of the cube where ˆ⊥P n  and b  0 on the bottom 

where z  0. The charge on top of the cube is

 2
top b 0 0

surf 0 0

a a

Q da P dxdy P a= = =∫ ∫ ∫  (11.6.34)

The bound volume charge density is 0/ .b P a = −∇⋅ = −P  The charge inside the 
cube is

 20
inside 0

0 0 0

a a a

b

vol

P
Q dv dxdydz P a

a
= = − = −∫ ∫ ∫ ∫  (11.6.35)

Thus, the total charge is Qtop  Qinside  0. 

Example 11.6.8
A cube of side a in the first octant has a constant polarization 0

ˆP=P k . Calculate 
the surface charge and volume charge of the polarized cube

Solution: The bound charge density is 0
ˆ

b P = ⋅ =P n  on the top of the cube 
where ˆˆ =n k , b  0 on the four sides of the cube where ˆ⊥P n  and b  P0 on the 
bottom of the cube where ˆˆ = −n k . The total charge on top of the cube is

 
2

top b 0 0

surf 0 0

a a

Q da P dxdy P a= = =∫ ∫ ∫  (11.6.36)

and on the bottom of the cube

 
2

bottom 0 0

0 0

a a

Q P dxdy P a= − = −∫ ∫  (11.6.37)

The bound volume charge density is 0.b = −∇⋅ =P  The charge inside the cube 
is

 inside 0b

vol

Q dv= =∫  (11.6.38)

Thus, the total charge is Qtop  Qinside  Qbottom  0. 

Example 11.6.9
A sphere of radius R carries a total free charge Q. The sphere is covered by a 
dielectric layer of thickness d. Find D, E, and P inside the dielectric. Calculate the 
bound charge density on the inner and outer surfaces and in the volume of the 
dielectric layer.
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Solution: Integrating the differential form of Maxwell’s equation inside a 
dielectric 

 free

vol vol

dv dv∇⋅ =∫ ∫D
 (11.6.39)

and applying Gauss’s divergence theorem 

 
surf

ˆda Q⋅ =∫ D n  (11.6.40)

The electric displacement is obtained by choosing a spherical Gaussian surface 
inside the dielectric ˆ⊥D n  where ˆ ˆ=n r  so that

 ( )24rD r Q =  (11.6.41)

where r is measured from the center of the sphere. Thus, we have

 
2

ˆ
4

Q

r
=D r  (11.6.42)

Since the electric displacement D  r0E we have

 2
0

ˆ
4 r

Q

r 
=E r  (11.6.43)

and the polarization P  0eE 

 2
ˆ

4
e

r

Q

r




=P r  (11.6.44)

Now the bound charge density on the outer surface of the dielectric is

  ( )outer 2
ˆ

4

e

r

Q

R d





= ⋅ =

+
P n  (11.6.45)

while on the inner surface ˆ ˆ= −n r

 inner 2
ˆ

4
e

r

Q

R





= ⋅ = −P n  (11.6.46)

In the volume of the dielectric

 
2

2 2

1
0

4
e

b

r

Q
r

rr r






⎛ ⎞∂
= −∇⋅ = − =⎜ ⎟⎜ ⎟∂ ⎝ ⎠

P  (11.6.47)

Thus, the total charge on the dielectric layer is

 ( )2 2
outer inner4 4 0R d R   + + =  (11.6.48)
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11.6.6 Examples: Magnetic Fields in Matter

Example 11.6.10
Given the vector potential at r due to a magnetic dipole located at r is

 ( ) ( ) ( )0
34





′ ′× −
=

′−

m r r r
A r

r r
 (11.6.49)

write an integral expression for the vector potential due to a body with a magnetic 
dipole per unit volume M(r) where m(r)  M(r)dv. Identify expressions for the 
bound surface and bound volume currents. 

Solution: We have a volume integral for the vector potential due to a continuous 
magnetization distribution 

 ( ) ( ) ( )0
3

vol
4

dv




′ ′× −
′=

′−∫
M r r r

A r
r r

 (11.6.50)

As before 
( )

3

1 ′−
∇ = −

′− ′−

r r

r r r r
 while 

( )
3

1 ′−
′∇ =

′− ′−

r r

r r r r
 so

 ( ) ( )0

vol

1

4
dv




′ ′ ′= ×∇

′−∫A r M r
r r  (11.6.51)

Making use of our product rule involving the curl of a scalar times a vector

 ( ) ( ) ( )1 1 1⎡ ⎤
′ ′ ′ ′ ′ ′∇ × = ∇ × − ×∇⎢ ⎥′ ′ ′− − −⎢ ⎥⎣ ⎦

M r M r M r
r r r r r r

 (11.6.52)

we write

 ( ) ( ) ( )0

vol vol

1

4
dv dv





⎡ ⎤′
′ ′ ′ ′ ′= ∇ × − ∇ ×⎢ ⎥

′ ′− −⎢ ⎥⎣ ⎦
∫ ∫

M r
A r M r

r r r r
 (11.6.53)

The second integral is transformed into a surface integral 

 ( ) ( ) ( )0 0

vol surf
4 4

d
dv

 

 

′ ′ ′ ′∇ × ×
′= +

′ ′− −∫ ∫
M r M r a

A r
r r r r  (11.6.54)

where ˆd da′ ′=a n . From these integrals, we identify the bound surface current 

density ˆ
b = ×K M n  and the bound volume current density b = ∇×J M.
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Example 11.6.11
A cylindrical wire of radius R carries a total free current I. The wire is coated by a 
layer with relative permeability r and thickness d. Calculate H, B, M and the total 
energy inside the permeable layer. 

Solution: Applying Ampere’s law 

 
ˆd I⋅ =∫H   (11.6.55)

for a circular contour inside the permeable coating R  r  R + d gives

 H(2r)  I (11.6.56)

so that

 ˆ
2

I

r



=H  (11.6.57)

The magnetic field is then

 0
0

ˆ
2
r

r

I

r

 
  


= =B H  (11.6.58)

and the magnetization

 ( )
0

ˆ1
2

r

I

r
 

 
= − = −

B
M H  (11.6.59)

Notice that M  0 if r  1 (air). Now the total magnetic energy is

 0

0

20

1

2

1
     2

2 2 2

     ln 1
4

B

vol

L R d

r

R

W dv

I I
rdrdz

r r

d
LI

R

 


 





+

= ⋅

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⎛ ⎞= +⎜ ⎟
⎝ ⎠

∫

∫ ∫

B H

 (11.6.60)

Example 11.6.12
A parallel plate conductor carries a current ˆKk on the top plate and ˆK− k  on 
the bottom plate. The space between the plates is filled by a layer with relative 
permeability r. Calculate H, B, and M inside the iron layer. 

Solution: Ampere’s law 

 
ˆd I⋅ =∫H   (11.6.61)
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for a rectangular contour saddling the top plate gives HL  I. Since K  I/L the 
magnetic field strength is

 ˆK=H i  (11.6.62)

with magnetic field

 0 0
ˆ

r r K   = =B H i  (11.6.63)

and magnetization

 ( )
0

ˆ1r K


= − = −
B

M H i  (11.6.64)

Maple Examples
The electric potential and field of a line charge and the vector potential and 
magnetic field of a finite line current is calculated in the Maple worksheet below.

Key Maple terms: Curl , Gradient , Int , limit , Norm , simplify , value 

Maple packages: with(Physics[Vectors] ):

restart

with(Physics[Vectors]) 

[&x, ‘’, ‘.’, ChangeBasis, ChangeCoordinates, Component, Curl, 
DirectionalDiff, Divergence, Gradient, Identify, Laplacian, Nabla, 

Norm, Setup, diff]

Setup(mathematicalnotation  true)

[mathematicalnotation  true]

Finite Line Charge 

r_ : x_i  y_j  z_k 

 
ˆˆˆ:r xi yj zk= + +



rp_ : zp_k 

 
ˆ:rp zpk=



lambda :
Q

L
=

 
:

Q

L
 =

( )0

1 lambda
: ,

4 _ _ 2 2

L L
V Int zp

Pi Norm r rp

⎛ ⎞⎛ ⎞= ⋅ = −⎜ ⎟⎜ ⎟⎜ ⎟⋅ ⋅ −⎝ ⎠⎝ ⎠
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( )
2

2
22 2

0

:
4

L

L

Q
dzp

L x y z zp
V



− + + −
=

∫
  

V : value(V)

 

( )((
( )))

2 2 2 2

0

2 2 2 2

1
: ln 2 4 4 4 4

4

ln 2 4 4 4 4

V Q z L L zL x y z
L

z L L zL x y z


= − − − + + + + +

+ − + + − + + +



V : limit(V, L  0)

 
2 2 2

0

:
4

Q
V

x y z
=

+ +

E_ : simplify(-Gradient(V))

 

( )
( )3/2

2 2 2
0

ˆˆˆ
:

4

Q xi yj zk
E

x y z

+ +
=

+ +





Finite Line Current 

r_ : x_i  y_j 

 
ˆˆ:r xi yj= +



rp_ : zp_k 

 
ˆ:rp zpk=



0
_ : _

I
J k

L
= ⋅

 
ˆ0

:
I k

J
L

=


( )
0 _

_ : ,
4 _ _ 2 2

J L L
A Int zp

Pi Norm r rp

 ⎛ ⎞⎛ ⎞= ⋅ = −⎜ ⎟⎜ ⎟⎜ ⎟⋅ −⎝ ⎠⎝ ⎠
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2

2

0 2 2 2

ˆ0

:
4

L

L

I k
dzp

L x y zp
A





−

⎛ ⎞
⎜ ⎟
⎜ ⎟+ +⎝ ⎠=
∫

A_ : value(A_)

 
( ) ( )( )2 2 2 2 2 2

0
ˆ0 ln 4 4 ln 4 4

:
4

I k L L x y L L x y
A

L





− − + + + + + + +
=



B_ : simplify(Curl(A_))

 

( )
( )

0

2 2 2 2 2

ˆˆ2 0
:

4 4 4 4

I iy jx
B

L x y x y





−
=

+ + − −



11.7 SCALAR ELECTRIC AND MAGNETIC 
POTENTIALS 

In this section, we compare electric and magnetic boundary value problems 
with dielectrics and permeable materials in external fields. Solutions to Laplace’s 
equation are given for the electric potential V and the scalar magnetic potential  
for electrostatic and magnetostatic problems, respectively. Additional examples 
including hollow dielectric and superconducting spheres in external fields are 
given. 

Example 11.7.1
Model dielectric and permeable spheres in external electric and magnetic fields.

Solution: The chart below compares the solutions of a dielectric sphere of radius 
R in a uniform electric fi eld and a permeable sphere of the same radius in a 
uniform magnetic fi eld.  

Dielectric sphere with   r0 in an 
electric field 0

ˆE=E k
Permeable sphere with   r0 in a 
magnetic field 0

ˆB=B k

Solve Laplace’s equation for the electric 
potential

2 0V∇ =  where V= −∇E

Solve Laplace’s equation for the scalar 
magnetic potential 

2 0∇ Ω =  where = −∇ΩH
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Inside the sphere r  R

( ) ( )
0

, cosV r A r P 
∞

<
=

= ∑ 
 



Outside the sphere r > R

( )

( )

0

1
0

, cos

cos

V r E r

B
P

r

 



>
∞

+
=

= −

+∑ 




Where far from the sphere 0V E z> = − so 
that 

0
ˆE=E k

Inside the sphere r  R

( ) ( )
0

, cosr A r P 
∞

<
=

Ω = ∑ 
 



Outside the sphere r > R

( )

( )

0

0

1
0

, cos

cos

B
r r

B
P

r

 




>

∞

+
=

Ω = −

+∑ 




Where far from the sphere 

0 0/B z >Ω = −  so that 0
ˆB=B k

Boundary Conditions:
Tangential E is continuous (no free 
charges)

( ) ( )V R V R< >=

Normal D is continuous 

0

r R r R

V V

r r
 < >

= =

∂ ∂
=

∂ ∂

Boundary Conditions:
Tangential H is continuous 

( ) ( )R R< >Ω = Ω

Normal B is continuous 

0

r R r R
r r

 < >

= =

∂Ω ∂Ω
=

∂ ∂

Only   1 contributes

1 0

3

2r

A E


−
=

+

3
1 0

1

2
r

r

B R E




−
=

+

Only   1 contributes 

1 0

3

2r

A B


−
=

+

3 0
1

0

1

2
r

r

B
B R



 

−
=

+

Inside the sphere E is uniform

0

3 ˆ
2r

E


=
+

E k

Inside the sphere B is uniform

0

3 ˆ
2r

B


=
+

B k

Example 11.7.2
A hollow dielectric sphere of inner radius R and outer radius 2R is placed in a 
uniform field 0

ˆE=E k . Calculate the potential in the hollow cavity r < R (region 
I) inside the dielectric R  r  2R (region II) and outside the sphere r > 2R (region 
III)

Solution: The potential in region I: r < R
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 ( ) ( )I
0

, cosV r A r P 
∞

=

=∑ 
 


 (11.7.1)

In region II:  R  r  2R

 ( ) ( )( ) ( )1

II
0

, cosV r B r C r P 
∞

− +

=

= +∑ 
  


 (11.7.2)

In region III: r > 2R

 ( ) ( ) ( )1

III 0
0

, cos cosV r D r P E r  
∞

− +

=

= −∑ 
 


 (11.7.3)

The tangential components of E and the normal components of D are continuous 
at r  R and r  2R.
Tangential E at r  R: 

 ( ) ( )I II, ,V R V R =  (11.7.4)

 
( )( ) ( ) ( )1

0 0

cos cosB R C R P A R P 
∞ ∞

− +

= =

+ =∑ ∑ 
    

 
 (11.7.5)

 
( )1

B R C R A R
− ++ = 

    (11.7.6)

Tangential E at r  2R: 

 ( ) ( )II III2 , 2 ,V R V R =  (11.7.7)

 

( )( )
( )

1

0

1

0
0

(2 ) (2 ) (cos )

(2 ) (cos ) (2 )cos

B R C R P

D R P E R



 

∞
− +

=
∞

− +

=

+

= −

∑

∑


  




 



 (11.7.8)

Thus, we have  1 and

 ( ) ( ) ( ) ( )2 2

1 1 1 02 2 2 2B R C R D R E R
− −+ = −  (11.7.9)

Normal D at r  R: 

  
I II

0 0 r

R R

V V

r r
  

∂ ∂
− = −

∂ ∂  (11.7.10)

 ( )3
1 1 12r B C R A −− =  (11.7.11)
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Normal D at r  2R: 

 
II III

0 0

2 2

r

R R

V V

r r
  

∂ ∂
− = −

∂ ∂  (11.7.12)

 ( )( ) ( )3 3

1 1 1 02 2 2 2r B C R D R E
− −− = − −  (11.7.13)

Equations 11.7.6, 11.7.9, 11.7.11, and 11.7.13 are used to find the constants A1, B1, 
C1, and D1.

Example 11.7.3 
Calculate the magnetic potential  and magnetic field B outside a superconducting 
sphere  of radius R with r  0 in an external field 0

ˆB=B k  where  is measured 
with respect to the positive z-axis. Calculate the supercurrent density  on the 
sphere.

Solution: Outside the sphere the scalar magnetic potential is 

 ( ) ( )0
1

0 0

, cos cos
B B

r r P
r

  


∞

> +
=

Ω = − +∑ 



 (11.7.14)

where far from the sphere 0 0/B z >Ω = −  so that 0
ˆB=B k .

The normal component of B is continuous at r  R

 0 0r

r R r R
r r

  < >

= =

∂Ω ∂Ω
=

∂ ∂  (11.7.15)

The relative permeability r  0 inside a superconductor so that 

 0
r R

r
>

=

∂Ω
=

∂
 (11.7.16)

thus

 ( ) ( )0
2

0 0

cos 1 cos 0
r R

B B
P

r
 



∞

+
= =

⎡ ⎤
− − + =⎢ ⎥

⎣ ⎦
∑ 




  (11.7.17)

This gives

 ( ) ( )0
2

0 0

cos 1 cos
B B

P
R

 


∞

+
=

− = +∑ 



  (11.7.18)

where P1(cos)  cos so that all the B are zero except   1 and 

 
30

1
02

B
B R


= −  (11.7.19)
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Outside the sphere

 ( )
3

0 0
2

0 0

, cos cos
2

B B R
r r

r
  

 >Ω = − −  (11.7.20)

with magnetic field

 0 0

1 ˆˆ
r r

 
>

∂Ω ∂Ω⎡ ⎤= − Ω = − −⎢ ⎥∂ ∂⎣ ⎦
B r∇ θ∇ θ  (11.7.21)

 
3 3

0 03 3
ˆˆcos 1 sin 1

2

R R
B B

r r
 

⎛ ⎞ ⎛ ⎞
= − − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
B r θ  (11.7.22)

From this expression, we can see that the normal component of B is zero at the 
surface of the sphere. The magnetic field along the z-axis is obtained by setting 
  0 where ˆˆ =r k

 
3

0 3
1z

R
B B

r

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 (11.7.23)

Now the supercurrent density is given by the tangential component of H at r  R 
in A/m

 super tan
0

1 ˆB
= =K H θ  (11.7.24)

 0
super

0

3 ˆsin
2

B



= −K θ  (11.7.25)

Thus, the supercurrent is maximal on the equator of the sphere where   /2 and 
is zero on the poles. 

Maple Examples 
The scalar potential of a permeable sphere in an otherwise uniform magnetic 
field is calculated in the Maple worksheet below. Note that the magnetic field is 
perpendicular to the plotted lines of constant scalar in this example.

Key Maple terms: implicitplot , piecewise , subs 

Maple packages: with(plots ):

restart
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Permeable Sphere in an External Field

with(plots) :

( ) ( )
3

0 0
2 2

0 0

1
: cos theta cos theta

2
r

r

B B R
r

r



  

−⎛ ⎞
Ω = − ⋅ ⋅ + ⋅ ⋅ ⋅⎜ ⎟+⎝ ⎠

 
( ) ( ) ( )

( )

3
00

2 2
0 0

1 coscos
:

2

r

r

B RB r

r

 

  

−
Ω = − +

+

( )
( )0

1
0

: 3 cos theta
2r

B
r

 
Ω = − ⋅ ⋅

⋅ +

 

( )

( )
0

1
0

3 cos
:

2r

B r 

 
Ω = −

+

( )1 2: , , ,piecewise r R r RΩ = ≤ Ω > Ω

 

( )

( )
( ) ( ) ( )

( )

0

0

3
00

2
0 0

3 cos

2
:

1 coscos

2

r

r

r

B r
r R

B RB r
R r

r



 

 

  

⎧
− ≤⎪ +⎪Ω = ⎨ −⎪− + <⎪ +⎩

 : subs({B0  1, 0  1, R  1, r  3}, )

 

( )

( ) ( )
2

3 cos
1

5:
2cos

cos 1
5

r
r

r r
r






⎧
− ≤⎪⎪Ω = ⎨

⎪− + <
⎪⎩

)

, 5 5 , 1 ,
5

0 2,  theta 0 2 Pi, polar,

Contours
implicitplot seq Contours r

r coords scaling constrained

⎛ ⎧ ⎫⎛ ⎞Ω = = − =⎨ ⎬⎜ ⎜ ⎟
⎝ ⎠⎩ ⎭⎝

= = ⋅ = =
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–1

1

2

0–1 –0.5 10.5

Figure 11.7.1: Scalar magnetic potential of a permeable sphere in a uniform field.

11.8 TIME-DEPENDENT FIELDS 

The Ampere-Maxwell equation and its relation to the continuity equation is first 
discussed in this section. Integral and differential forms of Maxwell’s equations 
are then compared. Examples of the self-inductance of a toroid  and the mutual 
inductance between two current loops  are given. Maxwell’s wave equation  and 
Maxwell’s equations in matter  are discussed. Time harmonic fields  are then 
considered. Key equations in electromagnetic theory are compared with the 
inclusion of hypothetical magnetic monopoles .

11.8.1 The Ampere-Maxwell Equation  
The continuity equation  relating the electric current density J and the charge 
density  

 
t

∂
∇⋅ = −

∂
J  (11.8.1)

results from charge conservation. The current flowing out of a region is minus the 
time rate of change of the total charge within the region. The differential form of 
Ampere’s law relating the magnetic field B and the current density is 
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 0∇× =B J  (11.8.2)

Taking the divergence of both sides of this equation 

 ( ) 0∇⋅ ∇× = ∇⋅B J  (11.8.3)

and substituting the continuity equation 

 ( ) 0
t




∂
∇⋅ ∇× = −

∂
B  (11.8.4)

Since the divergence of the curl of any vector field is zero we should add to 

Ampere’s law another term whose divergence is 0
t




∂
∂

.

Considering the differential form of Gauss’s law

 
0




∇⋅ =E  (11.8.5)

we construct the additional term

 ( )0 0 0 0 0
t t t


    

∂ ∂ ∂⎛ ⎞= ∇⋅ = ∇⋅⎜ ⎟∂ ∂ ∂⎝ ⎠

E
E  (11.8.6)

The term 0 / t ∂ ∂E  is called the displacement current . 

11.8.2 Maxwell’s Equations 
Gauss’s law for electric and magnetic fields, Faraday’s law and the Ampere-
Maxwell equation including the displacement current are collectively referred to 
as Maxwell’s equations. Integral and differential forms of Maxwell’s equations are 
compared in Table 11.8.1. The differential forms of Gauss’s law indicate that the 
charge density  is a source of electric field with divergence while the divergence 
of the magnetic field is zero in the absence of magnetic monopoles. The integral 
forms of Gauss’s law state that the electric flux through any closed surface is 
proportional to the total charge inside the surface while the total magnetic flux 
through any closed surface containing no magnetic monopoles is zero. The 
differential form of Faraday’s law shows that a time-changing magnetic field is a 
source of electric field with curl. The integral form of Faraday’s law relates the line 
integral of the electric field around a closed contour  to the time rate of change 
of magnetic flux B obtained by integrating the normal component of B over any 
open surface bounded by  or

 
open surf

ˆ
B daΦ = ⋅∫ B n

 (11.8.7)

If the contour  coincides with a conducting wire, then there is a voltage V (called 
the electromotive force ) induced in the wire given by
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 BV
t

∂Φ
= −

∂
 (11.8.8)

The minus sign in this equation indicates that currents induced in the wire will 
flow in a direction that opposes the change in flux inside the loop per Lenz’s law . 
The differential form of the Ampere-Maxwell equation states that current density 
and the displacement current are both sources of magnetic field with curl. The 
integral form of the Ampere-Maxwell equation relates the line integral of B 
around a closed contour  to the time rate of change of electric flux E  

 
open surf

ˆ
E daΦ = ⋅∫ E n  (11.8.9)

obtained by integrating the normal component of E over any open surface 
bounded by . 

TABLE 11.8.1: Comparison of differential and integral forms of Maxwell’s equations. 

Maxwell’s Equation Differential Form Integral Form

Gauss’s law

0




∇⋅ =E

0surf

ˆ
Q

da


⋅ =∫ E n
Gauss’s law for magnetics 0∇⋅ =B

surf

ˆ 0da⋅ =∫ B n
Faraday’s law

t

∂
∇× = −

∂
B

E ˆ Bd
t

Γ

∂Φ
⋅ = −

∂∫ E 
Ampere-Maxwell equation

0 0 0
t

  
∂

∇× = +
∂
E

B J
0 0 0

ˆ Ed I
t

  
Γ

∂Φ
⋅ = +

∂∫ B 

11.8.3 Self-Inductance  
The magnetic flux through a current loop is proportional to the current I in the 
loop

 B LIΦ =   (11.8.10)

where the proportionality constant L is the self-inductance with units of 
Tm2/A  H.  
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Example 11.8.1
The magnetic field inside a toroid with N turns carrying a current I (Figure 11.8.1) 
is 

 0

2

NI
B

r




=  (11.8.11)

where r is measured from the axis of the toroid. Calculate the self-inductance L of 
the toroid of inner radius a, outer radius b, and height h

a

b
h

Figure 11.8.1: Toroid with square cross section carrying a current I. 

Solution: The magnetic fl ux through the square cross section of the toroid is 

 
0

0
2

h b

B

a

NI
Bda dz dr

r




Φ = =∫ ∫ ∫  (11.8.12)

Integration gives

 0 01
ln

2 2

b

B

a

NIh NIh b
dr

r a

 

 
⎛ ⎞Φ = = ⎜ ⎟
⎝ ⎠∫  (11.8.13)

For a toroid with N turns we have NB  LI and the inductance is

 
2

0 ln
2

N h b
L

a




⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (11.8.14)

11.8.4 Mutual Inductance  
The magnetic flux through a closed loop 1 is proportional to a current I2 in a 
nearby loop

 1 12 2M IΦ =  (11.8.15)

where M12 is the mutual inductance between the two loops. If instead a current I1 
flows through coil 1 then the flux through coil 2 is 2  M21I1.
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Example 11.8.2
A current I1 flows through loop 1 next to a second loop 2. Show that the mutual 
inductance between loop 1 and loop 2 is given by 

 0 1 2
12

1 24

d d
M





⋅
=

−∫ ∫ r r

 
   (11.8.16)

Solution: To calculate the mutual inductance between the two coils, we calculate 
the fl ux through coil 2 due to current fl owing in coil 1. From Stokes’s theorem we 
obtain

 ( )2 1 2 1 2 1 2

surf

ˆd d dΦ = ⋅ = ∇× ⋅ = ⋅∫ ∫ ∫B a A a A   (11.8.17)

where the vector potential A1 at r2 due to current in coil 1 is 

 ( ) 0 1
1 2 1

1 2

ˆ

4

d
I




=

−∫A r
r r

  (11.8.18)

The flux through coil 2 is then

 
0 1

2 1 2
1 2

ˆ
ˆ

4

d
I d





⎛ ⎞
Φ = ⋅⎜ ⎟⎜ ⎟−⎝ ⎠

∫ ∫ r r

    (11.8.19)

which is proportional to the current flowing in coil 1

 
0 1 2

2 1 21 1
1 2

ˆ ˆ

4

d d
I M I





⋅
Φ = =

−∫ ∫ r r

   (11.8.20)

where the mutual inductance M21 is given by Neumann’s formula  

 0 1 2
21

1 2

ˆ ˆ

4

d d
M





⋅
=

−∫ ∫ r r

   (11.8.21)

Interchanging subscripts in this expression we see that M12  M21.

11.8.5 Maxwell’s Wave Equations    
Table 11.8.2 compares Maxwell’s equations for electric and magnetic fields 
in a vacuum and in the absence of sources. Maxwell’s wave equations for the 
electric and magnetic field have the same mathematical form showing that 
electromagnetic waves propagate with a speed 8

0 01/ 2.998 10  m/sc  = = ×  in 
free space. 
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TABLE 11.8.2: Maxwell’s equations in free space. 

Electric Fields in Vacuum Magnetic Fields in Vacuum

Curl and divergence of electric fields in 
source-free regions 

t

∂
∇× = −

∂
B

E

0∇⋅ =E

Curl and divergence of magnetic fields in 
source-free regions 

0 0
t

 
∂

∇× =
∂
E

B

0∇⋅ =B

Maxwell’s wave equation for electric field 
in source-free regions

2
2

2 2

1

c t

∂
∇ =

∂
E

E

Maxwell’s wave equation for magnetic 
field in source-free regions

2
2

2 2

1

c t

∂
∇

∂
B

B =

11.8.6 Maxwell’s Equations in Matter    
The Ampere-Maxwell equation  is written

 0 0 0
t

  
∂

∇× = +
∂
E

B J  (11.8.22)

In matter the total current J may consist of free, bound, and polarization currents

 free b pol= + +J J J J  (11.8.23)

where Jfree is the free current  and bound current  b = ∇×J M  is the curl of the 
magnetization  M. The polarization current  polJ  results from the motion of bound 
charges as a body is becoming polarized or depolarized and is given by the time 
rate of change of the polarization vector  P 

 
pol

t

∂
=
∂
P

J
 (11.8.24)

Substituting these forms into the Ampere-Maxwell equation

 0 free 0 0
t t

  
∂ ∂⎛ ⎞∇× = +∇× + +⎜ ⎟∂ ∂⎝ ⎠

P E
B J M  (11.8.25)

and factoring the curl and the time derivative

 ( )free 0
0 t




⎛ ⎞ ∂
∇× − = + +⎜ ⎟ ∂⎝ ⎠

B
M J E P  (11.8.26)

we obtain

 
free

t

∂
∇× = +

∂
D

H J  (11.8.27)
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where the magnetic field strength  H is

  ( )0/ = −H B M   (11.8.28)

and the electric displacement  is 

 ( )0= +D E P  (11.8.29)

Example 11.8.3
Combine Ohm’s law  =J E , Gauss’s law 

0/ ∇⋅ =E  and the continuity 

equation
t

∂
∇⋅ = −

∂
J  to show that an initially localized free charge 0 will diffuse 

exponentially with time in a medium with conductivity .

Solution: Taking the divergence of Ohm’s law and using the differential form of 
Gauss’s law 

 
0


 


∇⋅ = ∇⋅ =J E  (11.8.30)

From the continuity equation, we have that 

 
0 t

 



∂
= −

∂
 (11.8.31)

Separating variables

 
0

d
dt

 

 
= −  (11.8.32)

and integrating gives

 ( ) ( )0/

0

t
t e

   −=  (11.8.33)

11.8.7 Time Harmonic Maxwell’s Equations   
For electric and magnetic fields with harmonic time dependence 

 
( )
( )

( )
( ) ( ),

exp
,

t
i t

t


⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪= −⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

E r E r

B r B r
 (11.8.34)

Maxwell’s equations in vacuum regions and in the absence of sources become

 

0 0

0

0

i

i

 



∇⋅ =
∇⋅ =
∇× = −
∇× =

B

E

B E

E B

 (11.8.35)
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For electromagnetic waves in media with conductivity  and permittivity  with
J  E we have

 ( )0 0 0i   ∇× = −B E  (11.8.36)

The electric and magnetic fields satisfy the wave equations

 2 2
⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪∇ =⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

E E

B B
 (11.8.37)

where the complex propagation constant  is 

 
2 2i   = −  (11.8.38)

We write     i and square to solve for  and  

 2 2 2 22i i      = − + = −  (11.8.39)

Equating real and imaginary parts 

 
2 2 2   − = −  and 2 =  (11.8.40)

Solving these two equations for  and  

 

1/2

1 1
2

  


 

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞⎢ ⎥= +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
  (11.8.41)

where the upper and lower signs correspond to  and , respectively. If an 
electromagnetic wave is polarized such that E  (Ex, 0, 0) and B  (0, By, 0) we have

 
( )

0

iz
x

t z
e eE E   − ±=  

( )
0

z t z

y

i
B e eB   − ±=  (11.8.42)

and the wave is attenuated with distance in the direction of E  B.

11.8.8 Magnetic Monopoles  
Table 11.8.3 compares equations for electric and magnetic fields and forces with 
electric and magnetic charges (qe and qm), charge densities (e and m), and current 
densities (Je and Jm). Maxwell’s curl and divergence equations become symmetric 
with the inclusion of magnetic sources m and Jm. We also have analogous 
expressions for the continuity equation as well as Coulomb and Lorentz forces if 
magnetic monopoles exist. 
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TABLE 11.8.3: Symmetric forms describing electric and magnetic fields and forces
 in the presence of electric and hypothetical magnetic charges. 

Sources of Electric Fields and Forces Sources of Magnetic Fields and Forces

Differential form of Faraday’s law includ-
ing magnetic currents

0 m
t


∂

∇× = − −
∂
B

E J

Differential form of Ampere’s law

0 0 0e
t

  
∂

∇× = +
∂
E

B J

Differential form of Coulomb’s law for 
electric fields

0

e


∇⋅ =E

Differential form of Coulomb’s law for 
magnetic fields

0 m ∇⋅ =B

Continuity equation for electric charge 

e
e

t

∂
∇⋅ = −

∂
J

Continuity equation for magnetic charge 

m
m

t

∂
∇⋅ = −

∂
J

Force between two electric charges

1 2

2
0

1

4

e e

e

q q

r
=F

Force between two magnetic charges

1 20
24

m m

m

q q

r




=F

Lorentz force on an electric charge mov-
ing in electric and magnetic fields

( )e eq= + ×F E v B

Lorentz force on a magnetic charge mov-
ing in electric and magnetic fields

2

1
m mq

c

⎛ ⎞= − ×⎜ ⎟
⎝ ⎠

F B v E

Dirac’s quantization condition  states that given electric and magnetic charges qe 
and qm separated by a distance d the total angular momentum stored in the fi elds 
is 

 0

4
e mL q q




=  (11.8.43)

where angular momentum is quantized L  n. Thus, electric charge would be 
quantized 

 
0

4
e

m

q n
q





⎛ ⎞
= ⎜ ⎟

⎝ ⎠


 n = 1, 2, 3  (11.8.44)

This is the only known possible explanation for the quantization of electric 
charge . Even if one monopole exists somewhere in the universe then we require 
the quantization of electric charge.  
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11.9 RADIATION

The Poynting vector  describing the fl ow of electromagnetic fi eld energy and 
momentum is discussed in this section. Wave equations and integral relations 
are developed for the potentials A and V with time-changing sources. The fi elds 
resulting from time harmonic sources are then considered with the simplest 
example of radiation from a Hertz dipole antenna .

11.9.1 Poynting Vector 
The direction of electromagnetic energy propagation is perpendicular to the 
electric and magnetic field vectors as described by the Poynting vector

 
0

1


= ×S E B  (11.9.1)

with unit of watts/m2. The electromagnetic energy per unit time passing through 
a surface is given by the power 

 
surf

P d= ⋅∫ S a  (11.9.2)

The divergence of the Poynting vector is

 u

t

∂
∇⋅ = −

∂
S   (11.9.3)

where u is the electromagnetic energy density  

 2 2
0

0

1 1

2
u E B



⎛ ⎞
= +⎜ ⎟

⎝ ⎠
 (11.9.4)

The momentum per unit volume  g is proportional to S

 
0 0 =g S   (11.9.5)

and the total field momentum  

 0 0

vol

em dv = ∫p S
 (11.9.6)

Newton’s second law is

 
mech

0 0

vol surf

d d
dv d

dt dt
 = − + ⋅∫ ∫

p
S T a  (11.9.7)
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with components of stress energy tensor   T

 
2 2

0
0

1 1 1

2 2
ij i j ij i j ijT E E E B B B  


⎛ ⎞ ⎛ ⎞= − + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (11.9.8)

If the force f per unit volume

 0 0

d

dt
 = − +∇ ⋅

S
f T   (11.9.9)

is zero, conservation of momentum gives

 d

dt
= ∇⋅

g
T  (11.9.10)

Example 11.9.1
A potential difference V is applied across a cylindrical resistor of length L and 
radius a so that a current I flows along the resistor (Figure 11.9.1). Show that the 
total power

 n̂da IV⋅ =∫S  (11.9.11)

n̂

I
a

Figure 11.9.1: Cylindrical resistor carrying a current I.

Solution: The electric fi eld points along the axis of the resistor in the ẑ -direction 

 ˆ
V

L
=E z  (11.9.12)

while the magnetic field points in the ̂ -direction 

 0 ˆ
2

I

a





=B  (11.9.13)

The Poynting vector is thus in the radial direction 

 
0

0 0

1 1 ˆˆ ˆ
2 2

IV IV

L a aL




   
= × = × =S E B z r  (11.9.14)

Thus, the total power 

 ˆ ˆ ˆ2
2

IV
nda aL IV

aL



⋅ = ⋅ =∫S r r  (11.9.15)

and there is no contribution from n̂⋅S  on the end caps of the resistor where ˆ ˆ.n = z
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Example 11.9.2
A plane wave polarized with E  (Ex, 0,0) and B  (0, By, 0) propagates along the 
z-axis where

 
( )0 expz

y eB B i t −=
 (11.9.16)

 
( )0 expz

xE eE i t −=
 (11.9.17)

For a plane wave the amplitudes of electric and magnetic fields are related as B0  
E0/c. Calculate the time-average Poynting vector, momentum density, and energy 
stored in the field. What is the distance that the wave propagates where the energy 
density is reduced 50% from its value at z  0?

Solution: The Poynting vector

 
2 20 0

0

1 ˆ
2

z i tE B
e e 


−= × =S E B k  (11.9.18)

when time averaged 2 1/ 2i te  =  so that

 
20 0

0

ˆ
4

zE B
e 


−=S k  (11.9.19)

The time-averaged momentum density

 20 0 0
0 0

ˆ
4

zE B
e 

  −= =g S k  (11.9.20)

The energy density 

 
2 2

0
0

1 1

2
u E B



⎛ ⎞
= +⎜ ⎟
⎝ ⎠

 (11.9.21)

time averaged with 00 00B E =  is

 
2 20

0
2

zu E e  −=  (11.9.22)

To find z such that

 
( )
( )

1

20

u z

u
=  (11.9.23)

we solve
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 2 1

2
ze − =  and 

ln2

2
z


=  (11.9.24)

Example 11.9.3
A single current sheet carries surface charge density . The sheet is moving with 
a speed v out of the page in the z-direction. Calculate the Poynting vector. 

Solution: Application of Gauss’s law with a cylindrical Gaussian surface straddling 
the charge density gives the electric fi eld 

 
0

ˆ
2




= ±E j  (11.9.25) 

A rectangular Amperian loop gives 

 0 ˆ
2

K
=B i  (11.9.26)

where the top and bottom signs above correspond to y > 0 and y < 0. On both 
sides of the sheet the Poynting vector is

 
0 0

1 ˆ
4

K

 
= × =S E B k  (11.9.27)

Example 11.9.4
A wire with radius a and charge density  carries a current I  v in the z-direction 
where v is the velocity of the charge carriers. Calculate the momentum stored in 
the fields inside the wire. Note that the fields will have no z-dependence so just 
do the integral over r and  to get the field momentum per unit length inside the 
wire.

Solution: To obtain the electric fi eld we consider cylindrical Gaussian surface 
inside the wire

 
0

1
n̂da dv


⋅ =∫ ∫E  (11.9.28)

 
2

0

1
2E rL r L 


=  (11.9.29)

so that the electric field is radial

 
0

ˆ
2

r


=E r  (11.9.30)

Now the magnetic field is obtained using Ampere’s law
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ˆ ˆd nda⋅ = ⋅∫ ∫B J  (11.9.31)

with a circular contour of radius r and ˆ ˆn = z

 
2

02B r v r   ⋅ =  (11.9.32)

 0 ˆ
2

vr 
=B  (11.9.33)

Now the Poynting vector

 
2 2

0 0

1
ˆ

4

r v

 
= × =S E B z  (11.9.34)

The momentum stored in the field is 

 
2

30
0 0 0 0

vol vol 0

ˆ
2

a

em

L v
dv rdrd dz r dr

  
    = = =∫ ∫ ∫p S S z  (11.9.35)

and the momentum stored per unit length in the wire is

 
2 4

0 ˆ
8

em va

L

 
=

p
z  (11.9.36)

11.9.2 Inhomogeneous Wave Equations 
Wave equations may be developed for the vector and scalar potentials A and V 
from the Ampere-Maxwell equation

 
0 0 0

t
  

∂
∇× = +

∂
E

B J  (11.9.37)

the differential form of Gauss’s law

 
0




∇⋅ =E  (11.9.38)

and Faraday’s law

 / t∇× = −∂ ∂E B  (11.9.39)

Substituting the expression for E(r, t) and B(r, t)

 ( ) ( ), ,t t= ∇×B r A r  (11.9.40)

 ( ) ( ) ( ), , ,t t V t
t

∂
= − −∇

∂
E r A r r  (11.9.41)

into Faraday’s and Gauss’s laws 
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 ( ) 0 0 0 V
t t

  
∂ ∂⎛ ⎞∇× ∇× = + − −∇⎜ ⎟∂ ∂⎝ ⎠

A J A  (11.9.42)

 
0

V
t





∂⎛ ⎞∇⋅ − −∇ =⎜ ⎟∂⎝ ⎠
A  (11.9.43)

and using the identity 

 ( ) ( ) 2∇× ∇× =∇ ∇⋅ −∇A A A  (11.9.44)

we obtain

 

2
2

0 0 0 0 02
V

tt
    

∂ ∂⎛ ⎞∇ − = − +∇ +∇⋅⎜ ⎟∂∂ ⎝ ⎠
A A J A  (11.9.45)

 
2

0

V
t





∂⎛ ⎞− ∇⋅ −∇ =⎜ ⎟∂⎝ ⎠
A  (11.9.46)

With the Lorentz gauge condition 

 0 0 V
t

 
∂

∇⋅ = −
∂

A  (11.9.47)

we obtain the inhomogeneous wave equations 

 
2

2
0 0 02t
  

∂
∇ − = −

∂
A A J  (11.9.48)

 

2
2

0 0 2
0

V V
t


 



∂
∇ − = −

∂
 (11.9.49)

with source terms on the right. Written in terms of the d’Alembertian operator  

 

2
2 2

0 0 2
 

t
 

∂
= ∇ −

∂
  (11.9.50)

the wave equations become

 2
0= −A J  (11.9.51)

 2

0

V



= −  (11.9.52)
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11.9.3 Gauge Transformation 

Example 11.9.5
Show that the gauge transformation performed by the replacements

 → +∇A A   (11.9.53)

 V V
t

∂
→ −

∂
 (11.9.54)

leave E and B unchanged, where  is any scalar function.  

Solution: Substituting the potentials above into /V t= −∇ − ∂ ∂E A  

 

( )V V
t t t

 


∂ ∂ ∂⎛ ⎞ ⎛ ⎞= −∇ − − + ∇ = −∇ + ∇⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠
E A

t t


∂ ∂
− − ∇

∂ ∂
A

V
t

∂
= −∇ −

∂
A  (11.9.55)

interchanging  and /t. Substitution into B =   A gives

 ( )
                            

 = ∇× + ∇ = ∇× + ∇×∇
= ∇×

B A A

A
 (11.9.56)

where the curl of the gradient of any scalar function is zero.  

11.9.4 Radiation Potential Formulation  
Integral relations for vector and scalar potentials for static fields are

 ( ) ( )0

4
dv





′
′=

′−∫
J r

A r
r r

 (11.9.57)

 ( ) ( )
0

1

4
V dv





′
′=

′−∫
r

r
r r

 (11.9.58)

The magnetic and electric fields are then obtained from the curl and negative 
gradient of A and V

 ( ) ( ) ( )0
34

dv




′ ′× −
′=

′−∫
J r r r

B r
r r

 (11.9.59)

 ( ) ( )( )
3

0

1

4
dv





′ ′−
′=

′−∫
r r r

E r
r r

 (11.9.60)
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Because of the finite speed of light c, there will be a time delay |r - r|/c between 
source changes at r and field changes at r. The retarded time  is thus defined as

  
rt t

c

′−
= −

r r
 (11.9.61)

where the potentials are

 ( ) ( )0
,

,
4

rt
t dv





′
′=

′−∫
J r

A r
r r

 (11.9.62)

 ( ) ( )
0

,1
,

4
rt

V t dv




′
′=

′−∫
r

r
r r

 (11.9.63)

Integral expressions for B(r, t) and E(r, t) will not be directly analogous to the static 
case since the retarded time depends on the position vector r so that derivatives 
of the potential will give extra terms. If the sources depend harmonically on time

 ( ) ( ), ri t
rt e −′ ′=J r J r  (11.9.64)

 ( ) ( ), ri t
rt e   −′ ′=r r  (11.9.65)

the potentials will also be time harmonic 

 ( ) ( ), i tt e −=A r A r  (11.9.66)

 ( ) ( ), i tV t V e −=r r
 (11.9.67)

We may then separate the spatial part of the potentials

 ( ) ( )0 e

4

i

c

dv







′−

′ ′=
′−∫

r r

A r J r
r r

 (11.9.68)

 ( ) ( )
0

1 e

4

i

c

V dv






′−

′ ′=
′−∫

r r

r r
r r

 (11.9.69)

where /c  2/. 
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11.9.5 The Hertz Dipole Antenna  

θ

J

−L/2

y

r
L/2

z

x

Figure 11.9.2: Hertz dipole carrying a current in the z-direction.

The radiation fi eld of a short dipole antenna was developed by Hertz in 1888. 
Figure 11.9.2 shows a cylindrical dipole of length L with current density 

( )0
ˆexp rJ i t z= −J  in the z-direction. The dipole has a cross section S and a 

volume LS. To simplify the integrals, we make the approximations that L   and 
that J0 is uniform over the volume of the antenna. This approximation is ideal for 
radio waves on the order of meter wavelengths and greater. For microwaves with  
  cm the approximation is better for L  mm. The integral (11.9.68) over the 
source coordinates gives the volume of the antenna with r′− ≈r r  and J0S  I 

 
( ) 0 ˆ,  e

4

i r
c

i te
t IL z

r






=A r

 (11.9.70)

The term exp(ir/c)/r is known as the spherical propagation factor. Writing the 
Cartesian unit vector ẑ  in spherical coordinates

 ˆˆ ˆcos sinz r = −  (11.9.71)

we express the vector potential in terms of radial r̂  and angular ̂  components 

 ( ) ( )0 ˆˆ, cos sin
4

i r
c

i tIL e
t r e

r




 


−= −A r  (11.9.72)

Taking the curl of 

 
1 1 ˆ

rrA A
r r r

 


∂ ∂⎛ ⎞∇× = −⎜ ⎟∂ ∂⎝ ⎠
A  (11.9.73)
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gives the magnetic field 

 ( ) 0 1 ˆ, sin
4

i r
c

i tIL e
t i e

r r c



 
 


−⎛ ⎞= −⎜ ⎟

⎝ ⎠
B r  (11.9.74)

that has only a  component. The electric field may be obtained from 
/ t∇× = −∂ ∂E B  giving

2 2

0 ˆˆcos 2 2 sin
4

i r
c

i te c c c c
IL r i i e

r r r r r




   
    

−
⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥⎜ ⎟ ⎜ ⎟= + + − + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦

E

 (11.9.75)

To obtain the electric and magnetic fields far from the dipole (in the radiation 
zone ) we retain the lowest power of 1/r in (11.9.74) and (11.9.75)

 0 ˆsin
4

i r
c

i te
i IL e

r




  


E −= −  (11.9.76)

 0 ˆsin
4

i r
c

i te
i IL e

c r



 
 


−= −B  (11.9.77)

From the time-averaged Poynting vector (in watts/m2)

 

22 2

avg 0 2
0

1 1 sin
ˆ

2 4

IL
r

c r

 


 
⎛ ⎞= × = ⎜ ⎟
⎝ ⎠

S E B  (11.9.78)

we obtain the total power radiated by the dipole (in watts) 

 
avgP d= ⋅∫S a  (11.9.79)

giving

 
2 22

20 0
2

0 0

4sin
sin

2 4 3 4

IL IL
P r d d

c cr

    
  

 

2
⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫ ∫  (11.9.80)

11.10 MATLAB EXAMPLES 

In this section, MATLAB’s PDE Toolbox is demonstrated solving problems 
in electromagnetism. Electrostatics, magnetostatics, conductive media DC 
and AC power electromagnetics problem types are selected under Options   
Application. Refer to Section 8.4 and online documentation for a description of 
the PDE Toolbox. 
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Section 11.2 Laplace’s Equation in Cartesian Coordinates
The GUI for selecting the dielectric constant  and charge density  for the 
electromagnetics application is shown in Figure 11.10.1.

Figure 11.10.1: GUI for selecting the dielectric constant and charge density for electrostatics problems.

Poisson’s equations for the scalar electric potential V 

 ( )V −∇ ⋅ ∇ =  (11.10.1)

is solved in this application where E = V. Figure 11.10.2 shows a finite element 
mesh with 1668 nodes and 3168 elements generated over a rectangular solution 
region with an elliptical hole.

Figure 11.10.2: Finite element mesh generated in the PDE toolbox electrostatic application. 

Equipotentials and electric fi eld lines are plotted in Figure 11.10.3 corresponding 
to the fi nite element mesh in Figure 11.10.2 with zero potential specifi ed on the 
rectangular boundary and a positive charge density on the interior elliptical 
contour. 
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Figure 11.10.3: Equipotentials and electric field vectors are plotted corresponding to a positive charge density 
inside of a grounded 2D rectangular box.  

Section 11.6 Electricity and Magnetism
The GUI for selecting the permeability  and current density J for the 
magnetostatics application is shown in Figure 11.10.4.

Figure 11.10.4: GUI for selecting the magnetic permeability and current density for 
the magnetostatics application.

Poisson’s equations for the vector potential A 

 
1

A J


⎛ ⎞
−∇ ⋅ ∇ =⎜ ⎟

⎝ ⎠
 (11.10.2)

is solved in this application where B =   A and A is the component of A 
perpendicular to the 2D solution region. Figure 11.10.5 shows a finite element 
mesh with 2044 nodes and 3872 elements generated over a rectangular solution 
region with an elliptic superconducting cylinder. The elliptic superconducting 
region is not meshed since the magnetic field inside of an ideal Type-I 
superconductor is zero for external fields lower than the critical field of the 
superconductor.
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Figure 11.10.5: Finite element mesh generated in the PDE 
Toolbox magnetostatic application. 

Flux lines of constant vector potential and magnetic fi eld vectors are plotted in 
Figure 11.10.6 corresponding to the fi nite element mesh in Figure 11.10.5 with 
opposite values of vector potential specifi ed on the left- and right-hand sides of 
the model. A zero tangential magnetic fi eld is specifi ed on the top and bottom 
boundaries of the solution region. A zero-normal fi eld condition is imposed on 
the elliptical superconducting cylinder. 

Figure 11.10.6: Flux lines and magnetic field vectors near a superconductor in 
an external magnetic field.  

Section 11.7 Scalar Electric and Magnetic Potentials 
The GUI for selecting the material conductivity  and source currents q for DC 
current flow problems is shown in Figure 11.10.7. 
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Figure 11.10.7: GUI for selecting the conductivity and current source for the conductive media DC application.

In this application, the scalar potential Vis calculated where

 ( )V q−∇ ⋅ ∇ =  (11.10.3)

Section 11.8 Time-Dependent Fields
The GUI for selecting the material conductivity , relative permeability  and 
dielectric constant  for time harmonic electromagnetic (AC power) problems is 
shown in Figure 11.10.8

Figure 11.10.8: GUI for selecting the frequency and material properties 
for the AC power electromagnetics application.  

The time harmonic fi eld equation

 ( )21
0E i E  



⎛ ⎞
−∇⋅ ∇ + + =⎜ ⎟

⎝ ⎠
 (11.10.4)

is solved in this application where E is the component of the electric field E 
perpendicular to the 2D solution region. Figure 11.10.9 shows a finite element 
mesh with 2096 nodes and 3904 triangular elements generated over the solution 
region corresponding to off-axis coaxial cylinders. The interior cylindrical region 
is not meshed. 
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Figure 11.10.9: Finite element mesh generated in the AC power PDE Toolbox application. 

The shaded magnitude and lines of constant electric fi eld and magnetic fi eld 
vectors are plotted in Figure 11.10.10 corresponding to the fi nite element mesh 
in Figure 11.10.9, with the outer and inner cylinders at E = 1.0 V/m, angular 
frequency   5.0 rad/s, relative permeability   1.0, conductivity   1.0 S/m 
and relative permittivity   1.0. 

Figure 11.10.10: Electric field (shaded magnitude and constant E contours) and magnetic field vectors 
corresponding to the finite element AC power model meshed in Figure 11.10.9. 
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Figure 11.10.11: 3D visualization of electric field (shaded surface and lines of constant E) and magnetic field 
vectors corresponding to the AC power model meshed in Figure 11.10.9.
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11.11 EXERCISES

Section 11.1 Electrostatics in 1D

1. Use the differential and integral forms of Gauss’s law to find the electric field 
inside a hollow spherical shell with uniform charge density 

0( )          
0 ,  

a r b
r

r a r b




≤ ≤⎧⎪= ⎨ < >⎪⎩
Make a plot of the radial electric fi eld as a function of r. 

2. Use the differential and integral forms of Gauss’s law to find the electric field 
inside a cylinder with nonuniform charge density 

0               
( )

0                    

r
r a

r a
r a




⎧ ≤⎪= ⎨
⎪ >⎩

Make a plot of the radial electric fi eld as a function of r. 

3. Use the differential form of Gauss’s law to find the electric field inside a sphere 
of radius a with charge density 

0               
( )

0                    

r
r a

r a
r a




⎧ ≤⎪= ⎨
⎪ >⎩

Make a plot of the radial electric fi eld as a function of r. 

4. Calculate the potential and electric field due to a thin cone with half angle   
/8 over a conducting plane with 0  /2 in spherical coordinates.

5. A coaxial cylinder has an outer conductor grounded V(b)  0 and an inner 
conductor at V(a)  V0. Show that the potential between the conductors is 

( ) 0

ln

ln

r

b
V r V

a

b

⎛ ⎞
⎜ ⎟
⎝ ⎠=
⎛ ⎞
⎜ ⎟
⎝ ⎠

Find the electric fi eld and the capacitance per unit length.

6. Two concentric spheres have inner and outer radii a and b. The outer sphere 
is grounded V(b)  0 and the inner sphere has a charge q. Find the potential 
between the spheres. Find the electric charge density on the inside of the outer 
sphere. Show that the total charge on the inside of the outer sphere is q.
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11.2 Laplace’s Equation in Cartesian Coordinates

7. A cube of side a is held at zero potential on four faces (x  0, a and y  0, a) and 
at a potential of V0 on the faces that are parallel to the x-y plane located at z  
a/2 and z  a/2. Calculate the potential V at points inside the cube. 

8. A pipe with a square cross section is closed at one end located at z  0. The 
pipe is grounded with V  0 on the four sides (x  0, L and y  0, L). The closed 

end at z  0 is held at a potential ( ) 0 2
, ,0

xy
V x y V

L
= . Find the potential V(x, y, 

z) inside the pipe taking ( ), , 0V x y z →∞ = .

9. A point charge q is located a distance d above a conducting plane at zero 
potential. Use the method of images to find the electric potential above the 
conducting plane and the induced surface charge density on the plane. 

10. A point charge q with a mass m is released a height d above a conducting plane 
held at zero potential. Calculate the time required for the charge to reach the 
plane after it is released. Neglect the gravitational force acting on the point 
charge. 

11. Two point charges q and -q are located at distances d and 2d above a conducting 
plane held at zero potential. Find the electric potential above the conducting 
plane and the induced surface charge density on the plane.

11.3 Laplace’s Equation in Cylindrical Coordinates 

12. Verify by direct substitution that rn and rn are solutions to
2

2 2

2

R R
r r n R

r r

∂ ∂
+ =

∂ ∂

13. A cylinder of radius R has a surface potential 

( ) 0 0 /2
,               

0 /2 2

V
V R

 


  

≤ <⎧⎪= ⎨ ≤ <⎪⎩
Calculate the potential V(r, ) for r  R and for r < R. 

14. A cylinder of radius R has a surface potential 

( )
0

0

0

0

0 / 2

/ 2
,            

3 / 2

3 / 2 2

V

V
V R

V

V

 

  


  

  

≤ <⎧
⎪− ≤ <⎪= ⎨ ≤ <⎪
⎪− ≤ <⎩

Calculate the potential V(r, ) for r  R and for r < R. 
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15. A cylinder of radius a has a surface potential 
V(a, )  V0 cos()
The cylinder is surrounded by a grounded coaxial cylinder of radius b
V(b, )  0
Calculate the potential V(r, ) for r < a and for a  r  b. 

16. A long hollow cylinder of radius R carries surface charge density (R, )  
0 cos(2). The cylinder is surrounded by a grounded cylinder held at zero 
potential V(2R, )  0
Calculate the potential V< inside the inner cylinder 0  r  R
Calculate the potential V> between the cylinders R  r  2R 
 Note that the electric fi eld is discontinuous across the surface charge density 
where the boundary conditions are V<(R, ) = V> (R, )and

( )
0

1
,

r R r R

V V
R

r r
 


< >

= =

∂ ∂
− =

∂ ∂
.

11.4 Laplace’s Equation in Spherical Coordinates 

17. A thin hollow sphere R is held at a potential 

 

( ) 0      0 / 2
,

0      / 2

V
V R

 


  

≤ <⎧⎪= ⎨ ≤ <⎪⎩
Calculate V(r, ) both inside and outside the sphere

18. A hollow sphere of radius R carries a potential of V0P2(cos). Calculate the 
potential inside and outside the sphere.

19. A hollow sphere of radius R carries a potential of V0(1  cos). Calculate the 
potential inside and outside the sphere.

20.  A thin hollow sphere of radius 2R is held at a potential 

( ) ( )2
0

1
2 3cos 1

2
V R V = − . The sphere is concentric with a grounded (zero 

potential) sphere of radius R. Calculate the potential between the two spheres  
R  r  2R and outside the sphere r > 2R. Calculate the induced charge density 
on the surface of the grounded sphere. 

21. A hollow sphere of radius R carries a potential of V(R, )  V0 cos2. The 
sphere is surrounded by a second sphere of radius 2R held at zero potential 
V(2R, )   0 . Calculate the potential in the region between the two spheres.

22. A sphere of radius a is held at a potential
V(a, )  V0 cos()
The sphere is surrounded by a grounded concentric sphere of radius b
V(b, )  0
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Calculate the potential V(r, ) for r < a and for a  r  b. 

23. A sphere of radius a is held at a potential

( ) ( )0      0,2, 4,6
, ,  where    1  

0       1,3,5,7  4 4

V n
V a n n

n

 
  

=⎧⎪= ≤ < +⎨ =⎪⎩
in Figure 11.11.1. Calculate the potential V(r, , ) for r < a and r  a

V
0

V
0

V
0

Figure 11.11.1: Sphere of radius a with striped potential. 

11.5 Multipole Expansion of Potential 

24.  A thin hollow sphere of radius R has a surface charge density 

( ) 0

0

     0 / 2
,

   / 2
R

  
 

   

≤ <⎧⎪= ⎨− ≤ <⎪⎩  
 Calculate a multipole expansion of the potential along the z-axis. Obtain an 
expression for the potential off the z-axis for r > R .

25. Calculate the potential everywhere r > a due to a charged needle oriented 
along the z-axis. The needle carries a charge distribution

( )
Q/      0

Q/   0

a z a
z

a a z


≤ ≤⎧⎪= ⎨− − ≤ <⎪⎩ .

26. Given a diffuse charge density ( ) ( )26
exp cos '

Q
P

rr


 

⎛ ⎞′ = −⎜ ⎟′′ ⎝ ⎠
r  

 calculate the nonzero multipole terms of the potential along the z-axis. Also, 
calculate the potential everywhere off the axis.

27. Calculate a multipole expansion of the potential due to point charges q located 
at (x, y, z) = (0, 0, a).

28. Calculate a multipole expansion of the potential due to point charges q located 
at (x, y, z) = (a, 0, 0) and q located at (x, y, z) = (0, a, 0).
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29. A thin sphere of radius R carries a surface charge density 

( ) ( )1
22

, , ,
4

Q
R Y

R
    


= . Calculate a multipole expansion of the potential 

outside the sphere. 

11.6 Electricity and Magnetism

30. Four equal point charges q are held at the corners of a square by rigid rods of 
length a. Find the electric potential at the center of the square. Find the energy 
stored in the charge distribution. 

31. A sphere of radius R contains a uniform charge density . Find the electrostatic 
energy stored in the regions r  R and r > R.

32. The vector potential of an infinite current sheet carrying K in amperes per 
meter is

0
ˆ

2

K
y=A k .

 Compare the magnetic fi eld obtained by computing the curl of A with the 
magnetic fi eld calculated from Ampere’s law. 

33. A thin strip of width L carries a total current I in the z-direction out of the page. 
Write an integral expression for the vector potential ( ) ( ) ˆ, ,zx y A x y=A k . 

34.  A thin strip of width L carries a current -I from –L/2 < x < 0 and I from 0 < x < 

L/2. Write an integral expression for the vector potential ˆ( , ) ( , ) .zx y A x y=A k

35. Plot the magnetic field and vector potential inside and outside of a long 
solenoid with radius R as a function of r. The solenoid carries a current per 
length I/L. 

36. Use Ampere’s law to calculate the magnetic field B inside (r < R) and outside 
(r > R) a wire with radius R carrying a total current I.

37. A hollow cylinder of radius R carries a charge Q. Calculate the energy stored 
per unit length in a surrounding dielectric layer with permittivity 1 between  
R  r  2R.

38. A hollow cylinder of radius R carries a charge Q. A surrounding dielectric 
of thickness 2R is divided into four 90-degree quadrants with relative 
permittivity 1, 2, 3, and 4 (Figure 11.11.2). Calculate D, E, and P in each 
quadrant.
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ε
3

ε
4

ε
2

ε
1

Figure 11.11.2: Charged cylinder surrounded by four dielectric segments.

39. A hollow sphere of radius R carries a charge Q. Calculate the energy stored in 
a surrounding dielectric shell of thickness R and relative permittivity r.  

40. A hollow dielectric sphere with relative permittivity r, inner radius a and 
outer radius b surrounds a point charge Q located at the center. Calculate D, 
E, and P inside the dielectric. Calculate the bound charge density on the inner 
and outer surfaces of the dielectric sphere.

41. The polarization P inside a cylinder of radius R and height h is
2

0
ˆ3P r=P r

 The cylinder is coaxial with the z-axis. Calculate the bound volume b and 
surface b charge densities. Show that 

vol surf

0b bdv da + =∫ ∫

42. A cylindrical wire of radius R carries a total free current I. The wire is coated 
by a layer with relative permeability r and thickness d. Calculate the bound 
current density on the inner and outer surfaces of the permeable layer as well 
as in the volume of the layer. 

43. A parallel plate conductor carries a current ˆKk on the top plate and ˆK− k on 
the bottom plate. The space between the plates is filled by a layer with relative 
permeability r. Calculate the bound current density on the top and bottom 
surfaces of the permeable slab as well as in the volume of the slab.

44. Calculate the force between a line current I located a height h above a 
superconducting plane located at y  0. The line current flows in the 
z-direction. The magnetic field above the superconductor can be modeled by 
placing an image current I below the superconducting plane at y  h. 

45. The torque acting on a dipole with moment m in a uniform field is   m  
B. Note that the torque acts to align the dipole with the fi eld direction so that 
there is no torque when m || B and maximum torque when  m  B. Calculate 
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the torque acting on a dipole with moment ( )0
ˆˆm= −m i k  in a magnetic fi eld 

( )0
ˆˆ 2B= −B j k .

46. The energy of a magnetic dipole m in a B field is WB  mB.
 The energy is minimized when the dipole points along the direction of the 

fi eld. Calculate the energy of a dipole ( )0
ˆˆm= −m i k  in a fi eld ( )0

ˆˆ 2B= −B j k .

47. The force acting on a magnetic dipole in a B field is ( )= ⋅∇F m B . Note that 

the force on a dipole m is zero in a uniform magnetic field. Calculate the force 

acting on a dipole ( )0
ˆˆm= −m i k  in a nonuniform field ( )0

ˆˆ 2B y z= −B j k .

48. A square slab of thickness d with vertices on the bottom face [(0, 0, 0), (0, a, 
0), (a, a, 0) and (a, 0, 0)] and vertices on the top face [(0,0, d) , (0, a, d), (a, a, 
d) and (a, 0, d)] carries a magnetization ( )0

ˆ ˆ3 2M xy y= +M i j . Find the bound 
currents inside the slab, its edges and on the top and bottom faces.

11.7 Scalar Electric and Magnetic Potentials 

49. A solid dielectric sphere of radius a is surrounded by a concentric sphere of 
radius b held at a potential of V(b, )  V0 cos . Calculate the potential in the 
dielectric sphere r < a (region I) and between the dielectric sphere and outer 
spherical shell a  r  b (region II).

50. Calculate the electric potential V(r, ) inside and outside a dielectric cylinder 
of permittivity r and an external field 0

ˆE=E i  where  is measured with 
respect to the positive x-axis. 

51. A hollow dielectric cylinder (inner radius  a, outer radius  b) with relative 
dielectric constant r is placed in a uniform electric field 0

ˆE=E i  pointing in 
the positive x-direction. Calculate the electric potential V(r, ) for 0 < r < a 
(region I), a  r  b (region II) and r > b (region III).

52. Calculate the magnetic potential  and magnetic field B outside a 
superconducting cylinder of radius R with r  0 in an external field 0

ˆB=B i  
where  is measured with respect to the positive x-axis. Calculate the 
supercurrent density on the cylinder. 

53. A hollow sphere (inner radius  a, outer radius  b) with a relative permeability 
r is placed in a uniform magnetic field 0

ˆB=B k  pointing in the positive 
z-direction. Calculate the potential (r, ) for 0 < r < a (region I), a  r  b 
(region II) and r > b (region III).
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54. Calculate the magnetic potential (r, ) inside and outside a cylinder of 
permeability r and an external field 

0
ˆB=B i  where  is measured with respect 

to the positive x-axis. The radius of the cylinder is a. 

11.8 Time-Dependent Fields

55. Show that ˆ md
t

E
∂Φ

⋅ = −
∂∫   is equivalent to 

t

∂
∇× = −

∂
B

E

56. Show that 0 0 0
ˆ ˆd I da

t
  B E n

∂
⋅ = + ⋅

∂∫ ∫∫  is equivalent to

0 0 0
t

  
∂

∇× = +
∂
E

B J

57. From 0
ˆd IB ⋅ =∫   derive 

0∇× =B J

58. The magnetic field in a region of space is given by ( ) ( )0
ˆsin .t B kx t= −B k

Find the electric field component in the y-direction Ey (within a constant) 
given that the x-component Ex  0.

59. The electric field in a region of space is given by ( ) ( )0
ˆ, cos

x
x y E t

a
=E j . 

Find the magnetic field (within a constant).

60. Given a static magnetic field ( ) ( ) ( )0 0
ˆ, cos exp /x y B kx y y= −B k . Find the 

electric current density J.

61. Given that the current in a superconductor is proportional to the vector 
potential 

 
2

0

1

L 
= −sJ A

derive London’s two equations 

 
2

0

1

L 
∇× = −sJ B

 
2

0

1

L

d

dt  
=sJ

E

by taking the curl and time derivative of Js above. 

62. A transient current may be produced in a conductor placed in a time-varying 
magnetic field. Using Ohm’s law J  E and neglecting displacement currents 
inside the metal

 0 ∇× =B E .
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Take the curl of this equation and use the relation 

t

∂
∇× = −

∂
B

E

to show that the magnetic fi eld satisfi es a diffusion equation 

2
0

t
 
∂

∇ =
∂
B

B
.

63. Calculate the mutual inductance between a line current coaxial with a toroid 
of square cross section with inner radius a, outer radius b and height h.

64. Calculate the ratio of forces between two electric and two magnetic monopoles 
with each pair separated by the same distance r.

11.9 Radiation

65. A parallel plate capacitor carries a surface charge density  and  on the 
upper and lower plates, respectively. The plates are moving with a speed v out 
of the page (Figure 11.11.3). Calculate the stress energy tensor in between the 
plates.

Figure 11.11.3: Oppositely charged parallel plates moving out of the page. 

66. Given the expression for the vector potential of a hollow sphere of radius 
R with total charge Q rotating with angular speed  is (see D. J. Griffiths, 
Introduction to Electrodynamics, p. 246)

( )
4

0
2

1 ˆ, , sin
3

R
r

r

 
  =A

 where 4R2  Q. Calculate the Poynting vector outside of the sphere.

67. The Maxwell stress tensor consists of nine components

2 2
0

0

1 1 1

2 2
ij i j ij i j ijT E E E B B B  


⎛ ⎞ ⎛ ⎞= − + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠  

where T11  Txx, etc. Write the nonzero terms of Tij for
(a) a single charged sheet with charge Q
(b) a parallel plate capacitor with oppositely charged plates
(c) a long solenoid carrying a current I

68. Find the inhomogeneous wave equations for the potentials A and V for time 
harmonic sources.
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69. For the Hertz dipole use the AC form of the Lorentz gauge 

0 0i V ∇⋅ =A

with the divergence in spherical coordinates

( )2

2

1 1
sin

sin
rr A A

r rr
 

∂ ∂
∇⋅ = +

∂ ∂
A

to show that the electric potential is

0

1
cos

4

i r
i tIL e i

V e
r r


 

 
−⎛ ⎞= +⎜ ⎟

⎝ ⎠

70. Calculate the electric field of the Hertz dipole using

V
t

∂
= − −∇

∂
A

E

where the gradient of V in spherical coordinates

1ˆˆ
V V

V r
r r




∂ ∂
∇ = +

∂ ∂
gives

( ) ( )
0

2 2

2 2 1 ˆˆcos sin
4

i r
i te i

V IL i r e
r r rr r




   
   

−
⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟∇ = − − − +

⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
and 

( )0 ˆˆcos sin
4

i r
i te

IL i r i e
t r




  


−∂
= − +

∂
A

71. The Lagrangian for a nonrelativistic particle of mass m and charge e in electric 
and magnetic fields is given by

21

2

e
L m eV

c
= + ⋅ −r A r 

 Show that L is invariant under the Gauge transformation A  A + and 

V V
t

∂Λ
→ −

∂
. Find Lagrange’s equations of motion.
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QUANTUM 
MECHANICS

Chapter Outline
12.1 Schrödinger Equation

12.2 Bound States I

12.3 Bound States II

12.4 Schrödinger Equation in Higher Dimensions

12.5 Approximation Methods 

The time-dependent Schrödinger equation is first discussed in this section 
followed by the time-dependent Schrödinger equation obtained by separation 
of variables. Additional topics include quantum mechanical operators and the 
computation of expectation values. Nonstationary states are discussed followed 
by the development of the probability current density. Plane wave solutions to 
the Schrödinger equation are discussed in the context of scattering and quantum 
mechanical tunneling.  
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12.1 SCHRÖDINGER EQUATION 

12.1.1 Time-Dependent Schrödinger Equation 

The time-dependent Schrödinger equation 

 ( ) ( ) ( ) ( )
2

2 , , ,
2

t V t i t
m t

∂
− ∇ Ψ + Ψ = Ψ

∂
r r r r

   (12.1.1)

describes the spatial and temporal evolution of the complex wavefunction  in 
the presence of a potential V(r). The Schrödinger equation is a diffusion equation 
like Fick’s second law and the heat equation. According to the Born interpretation  
of quantum mechanics, the probability of locating a particle such as an electron 
in a volume dv is dv where the complex conjugate * is obtained by replacing 
i  i in the expression for . Physical properties of the wavefunction include 
the following:

1. The normalization condition  expressed as

 
vol

* 1dvΨ Ψ = Ψ Ψ =∫  (12.1.2)

 where the probability of locating an electron somewhere in space is unity. 
Exceptions are plane wave solutions to the Schrödinger that are not 
normalizable. 

2. The wavefunction is a continuous, single valued function of position.  
is continuous over regions with varying potential with continuous slope 
except across delta function potentials where the slope of the wavefunction is 
discontinuous.

3. Normalizable wavefunctions should be small at large distances with the 
boundary condition  at infi nity. 

12.1.2 Time-Independent Schrödinger Equation 
Writing the wavefunction as a product of spatial and temporal functions 

 ( , ) ( ) ( )t t Ψ =r r  (12.1.3)

we substitute product form into the differential equation 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
2

2

2
t V t i t

m t
     

∂
− ∇ + =

∂
r r r r

   (12.1.4)
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and divide by (r)(t) 

 
( )

( ) ( )
( )
( )

2
2

function of function of 

2

t

t
m tV i

t

 

 

∂
∇

∂− + =

r

r
r

r




 

 (12.1.5)

Because the left-hand side is only a function of r and the right-hand side is only a 
function of time, they must be equal to the same constant E. The  equation

 ( ) ( )E
t t

t i
 
∂

=
∂ 

 (12.1.6)

gives

(t) = eit  where  = E/. Canceling the complex exponential gives the time-

independent Schrödinger equation 

 
2

2 ( ) ( ) ( ) ( )
2

V E
m

  r r r r− ∇ + =


 (12.1.7)

Certain quantum systems are in states where the probability of locating the 
electron is independent of time. If we can express the wavefunction as 

 ( , ) ( )e i tt r r −Ψ =  (12.1.8)

and E is the energy of the electron, then we see that 

 2 2* ( ) e e ( )i t i t  r r−Ψ Ψ = =  (12.1.9)

 is then referred to as a stationary state satisfying the time-independent 
Schrödinger equation. Table 12.1.1 compares properties of stationary state and 
nonstationary state wavefunctions. 

TABLE 12.1.1: Stationary vs. nonstationary state wavefunctions in quantum mechanics. 

Stationary States Nonstationary States 

Harmonic time dependence

( , ) ( ) i tt e  −Ψ =r r

Not separable
( , ) ( ) ( )t t Ψ ≠r r

Time-independent probabilities
( ) ( )* ( )P dv dv =r r r

Time-dependent probabilities

( ) ( ) ( ), , * ,P t dv t t dv= Ψ Ψr r r

Time-independent expectation values Time-dependent expectation values

Sharp (well-defined) energies Fuzzy (time-dependent) energies
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12.1.3 Operators, Expectation Values and Uncertainty
For every observable O of a quantum system there corresponds an operator ˆ.O  
Table 12.1.2 shows the observables position, momentum, kinetic energy, and total 
energy with their corresponding operators in 1D and 3D. 

TABLE 12.1.2: Quantum mechanical operators  corresponding to physical observables in 1D and 3D. 

Physical Observable 

(Name of Operator)

Operator in 1D Operator in 3D

Position x̂ x= ˆ =r r  

Momentum
p̂

i x

∂
=
∂


p̂
i
= ∇


Kinetic energy 2 2 2

2

ˆ

2 2

p

m m x

∂
= −

∂
 2 2

2
ˆ

2 2

p

m m
= − ∇



Total energy (Hamiltonian) 2 2

2
ˆ ( )

2
H V x

m x

∂
= − +

∂
 2

2ˆ ( )
2

H V
m

= − ∇ + r


Total energy 
Ê i

t

∂
=
∂
 Ê i

t

∂
=
∂


We may write the time-dependent Schrödinger equation (TDSE) as a scalar 
operator equation based on conservation of energy where the total energy is given 
by the sum of kinetic and potential energies

 ( )
2ˆ ˆ

2

p
V E

m

⎛ ⎞
+ Ψ = Ψ⎜ ⎟

⎝ ⎠
r  (12.1.10)

To calculate the average (or expectation) value of an observable O we compute

 
vol

ˆ ˆ*O O O dv= Ψ Ψ = Ψ Ψ∫  (12.1.11)

In one dimension, the expectation values 

 
*x x dx

∞

−∞

= Ψ Ψ∫  
2 * 2x x dx

∞

−∞

= Ψ Ψ∫  (12.1.12)

 *p dx
i x

∞

−∞

∂⎛ ⎞= Ψ Ψ⎜ ⎟∂⎝ ⎠∫


 2 *p dx
i x i x

∞

−∞

∂ ∂⎛ ⎞⎛ ⎞= Ψ Ψ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠∫
 

 (12.1.13)
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with corresponding uncertainties x and p given by their standard deviations 

 
22x x xΔ = −  

22p p pΔ = −  (12.1.14)

The Heisenberg uncertainty principle  relates the uncertainties in position and 
momentum as a product

 
2

x pΔ Δ ≥


 (12.1.15)

It is not possible to measure both position and momentum with infinite precision. 
A smaller x will result in a larger p and vice versa. A similar uncertainty product 
for energy E and time t is given by 

 
2

E tΔ Δ ≥


 (12.1.16)

Both Heisenberg’s position-momentum and energy-time uncertainty relations 
may be used to provide estimates of physical quantities. 

Example 12.1.1
Use Heisenberg’s position-momentum relation to estimate the kinetic energy of a 
particle of mass m confined to a one-dimensional box of length L.

Solution: Taking the length of the box equal to the uncertainty in position x = L 
we estimate the momentum of the particle by p.

 
2

p
L

Δ ≥


 and the kinetic energy 
2 2

22 8

p
KE

m mL
= ≈

  (12.1.17)

In the next section, we find the ground state energy of a particle confined to a 1D 
box of length L is 

 
2

1 28

h
E

mL
=  (12.1.18)

by solving Schrödinger’s equation directly. 

12.1.4 Probability Current Density 
We will now develop an equation that represents the flow of probability in 
quantum mechanics. Beginning with the TDSE

 ( )
2

2

2
V i

m t

∂
− ∇ Ψ + Ψ = Ψ

∂
r

   (12.1.19)

Multiplying on the left by 
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 ( )
2

2* * *
2

V i
m t

∂
− Ψ ∇ Ψ+ Ψ Ψ = Ψ Ψ

∂
r

   (12.1.20)

Taking the complex conjugate of the TDSE and multiply on the left by 

 ( )
2

2 * * *
2

V i
m t

∂
− Ψ∇ Ψ + ΨΨ = − Ψ Ψ

∂
r

   (12.1.21)

Subtracting the two equations (12.1.20) and (12.1.21) we obtain

 ( )
2

2 2 *
* * *

2
i

m t t

∂Ψ ∂Ψ⎛ ⎞− Ψ ∇ Ψ−Ψ∇ Ψ = Ψ +Ψ⎜ ⎟∂ ∂⎝ ⎠

   (12.1.22)

The right-hand side is proportional to the time derivative of the probability 
density 

 ( ) ( )2 2

2mi t

  ∂
Ψ ∇ Ψ−Ψ∇ Ψ = − Ψ Ψ

∂
  (12.1.23)

This is written as

 ( )pcd
t

∂
∇⋅ = − Ψ Ψ

∂
J  (12.1.24)

where the probability current density 

 ( )pcd *
2mi

J = Ψ ∇Ψ−Ψ∇Ψ


 (12.1.25)

is a vector that gives the direction of probability flow. In 1D 

 pcd
ˆ* *

2mi x x
J i

∂ ∂⎛ ⎞= Ψ Ψ −Ψ Ψ⎜ ⎟∂ ∂⎝ ⎠


 (12.1.26)

Example 12.1.2
Calculate the probability current density given the plane wave solution to the 
TDSE

 ( ) ( ), i kx tx t Ae −Ψ =  (12.1.27)

Solution: For plane wave and stationary state wavefunctions Jpcd is independent 
of time. In one dimension  

 ( ) 2

pcd

* ˆ ˆ ˆ* 2 *
2 2

k
ikA A A

mi x x mi m

 
 
∂ ∂⎛ ⎞= − = =⎜ ⎟∂ ∂⎝ ⎠

J i i i
  

 (12.1.28)

corresponding to a particle moving to the right. Note that for a particle moving to 
the left described by (x) = Beikx the probability current density
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 2

pcd
ˆk

B
m

= −J i
  (12.1.29)

Example 12.1.3
Particles with energy E are incident from the left where V(x) = 0for x < 0. The 
particles are confronted with a step in potential energy V(x) = V0for x > 0 where 
E > V0. Find the reflection coefficient R and the transmission coefficient T. 

Solution: For x < 0 the wavefunction

 ( )1 1 1exp exp( )A ik x B ik x = + −  where 2
1 2 /k mE=   (12.1.30)

The incident and reflected probability currents are

 
21

inc
ˆk

A
m

=J i


 and 
21

refl
ˆk

B
m

= −J i


 (12.1.31)

The reflection coefficient is

 

2

refl

2
inc

B
R

A
= =

J

J
 (12.1.32)

In the region x > 0

 2 2exp( )C ik x =  where ( ) 2
2 02 /k m E V= −   (12.1.33)

The transmitted probability current is 

 
22

trans
ˆk

C
m

=J i


 (12.1.34)

The transmission coefficient is

 

2

trans 2
2

inc 1

 

 

Ck
T

k A
= =

J

J
 (12.1.35)

The boundary conditions 1(0) = 2(0) give

 A + B = C (12.1.36)

and d1/dx = d2/dx at x = 0 gives 

 ( )1 2ik A B ik C− =  (12.1.37)

The reflection coefficient  is 

 
( )

2 2
1 2

2 2

1 2

( )B k k
R

k kA

−
= =

+
 (12.1.38)
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The transmission coefficient  is

 ( )

2

2 1 2
2 2

1 1 2

 4

 

Ck k k
T

k k kA
= =

+  (12.1.39)

and we check that T + R = 1. 

Maple Examples
Probability current densities as well as reflection and transmission coefficients are 
computed in the Maple worksheet below for particles incident on a step potential 
and a barrier. 

Key Maple commands: assign , assume , conjugate , D , diff , evalc , simplify , solve 

Programming: Function statements using ‘’

restart

Transmission and Refl ection from a Step Potential
assume(k1 > 0, k2 > 0, m > 0, h > 0)
assume(k1, ‘real’, k2, ‘real’, x, ‘real’, m, ‘real’, h, ‘real’)
psiI : = x  Aexp(Ik1x)

 
1:

Ik x

psiI x Ae= 
psiR : = x  Bexp(-Ik1x);

1:
Ik x

psiR x Be
−

= 
psiT : = x  Cexp(Ik2x);

2:
Ik x

psiT x Ce= 

( )( ) ( )( ) ( )( )
( )( )( )

: ,
2

,

hbar
pcdR evalc conjugate psiR x diff psiR x x psiR x

m I

diff conjugate psiR x x

⎛ ⎞= ⋅ ⋅ −⎜ ⎟⋅ ⋅⎝ ⎠
⋅

2
1:

B k
pcdR

m
= − 



( )( ) ( )( ) ( )(
( )( )( ))

: ,
2

,

hbar
pcdI evalc conjugate psiI x diff psiI x x psiI x

m I

diff conjugate psiI x x

⎛ ⎞= ⋅ ⋅ −⎜ ⎟⋅ ⋅⎝ ⎠

⋅
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2

1:
A k

pcdI
m

= 


( )( ) ( )( ) ( )(
( )( )( ))

: ,
2

,

hbar
pcdT evalc conjugate psiT x diff psiT x x psiT x

m I

diff conjugate psiT x x

⎛ ⎞= ⋅ ⋅ −⎜ ⎟⋅ ⋅⎝ ⎠

⋅

2
2:

C k
pcdT

m
= 



:
pcdT

T simplify
pcdI

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

2
2

2
1

:
C k

T
A k
= 



:
pcdR

R
pcdI

−
=

 
2

2
:

B
R

A
=

bc1 : = psiI(0) + psiR(0) = psiT(0)

 bc1 : = A + B = C

bc2 : = D(psiI)(0) + D(psiR)(0) = D(psiT)(0)

1 1 2:bc2 IAk IBk ICk= − =  

constants : = solve({bc1, bc2}, {A, B})

 

( ) ( )1 2 1 2

1 1

: ,
2 2

C k k C k k
constants A B

k k

⎧ ⎫+ −⎪ ⎪= = =⎨ ⎬
⎪ ⎪⎩ ⎭

   

 

assign(constants)
simplify(T)

 ( )
2 1

2

1 2

4k k

k k+
 

 

simplify(R)

 
( )
( )

2

1 2

2

1 2

k k

k k

−

+
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simplify(T + R)

 1

Transmission and Reflection from a Barrier 

restart
assume(k1 > 0, k2 > 0, k3 > 0)
assume(k1, ‘real’, k2, ‘real’, L, ‘real’, x, ‘real’, k3, ‘real’)
psiI : = x  exp(Ik1x)

 1:
Ik x

psiI x e= 

psiR : = x  Rexp(-Ik1x);

 1:
Ik x

psiR x Re
−

= 

psiM : = x  Aexp(k2x) + Bexp(k2x);

 2 2:
k x k x

psiM x Ae Be
−

= +

psiT : = x  Texp(Ik1x);

 1:
Ik x

psiT x Te= 

( )( ) ( )( ) ( )(
( )( )( ))

: ,
2

,

hbar
pcdR evalc conjugate psiR x diff psiR x x psiR x

m I

diff conjugate psiR x x

⎛ ⎞= ⋅ ⋅ −⎜ ⎟
⋅ ⋅⎝ ⎠

⋅

 
2

1:
R k

pcdR
m

= − 

( )( ) ( )( ) ( )(
( )( )( ))

: ,
2

,

hbar
pcdI evalc conjugate psiI x diff psiI x x psiI x

m I

diff conjugate psiI x x

⎛ ⎞= ⋅ ⋅ −⎜ ⎟
⋅ ⋅⎝ ⎠

⋅

 
1:

k
pcdI

m
= 

( )( ) ( )( ) ( )(
( )( )( )

: ,
2

,

hbar
pcdT evalc conjugate psiT x diff psiT x x psiT x

m I

diff conjugate psiT x x

⎛ ⎞= ⋅ ⋅ −⎜ ⎟
⋅ ⋅⎝ ⎠

⋅
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2
1:

T k
pcdT

m
= 

( )

( )
:

abs pcdT
Trans

abs pcdI
=

 2
:Trans T=

( )

( )
:

abs pcdR
Refl

abs pcdI
=

 
2

:Refl R=

bc1 : = psiI(0) + psiR(0) = psiM(0)

 bc1 : = 1 + R = A + B

bc2 : = D(psiI)(0) + D(psiR)(0) = D(psiM)(0)

 1 1 2 2:bc2 Ik IRk Ak Bk= − = −   

bc3 : = psiM(L) = psiT(L)

 2 2 1:
k L k L Ik L

bc3 Ae Be Te
−

= + =
    

bc4 : = D(psiM)(L) = D(psiT)(L)

 2 2 1
2 2 1:

k L k L Ik L

bc4 Ak e Bk e ITk e
−

= − =
    

  

constants : = solve({bc1, bc2, bc3, bc4}, {R, A, B, T}): 
assign(constants)
simplify(expand(T))

 

( )

( )
2

1 2
1 2

2 2 2 2 2
1 2 1 2 1 2 1 2

4

2 2

L
Ik k

k L

Ie k k

Ik k k k e Ik k k k

−
−

+ + + − +





 
 


       

simplify(expand(R))

 
( )( )

( )

2

2

2 2 2
1 2

2 2 2 2 2
1 2 1 2 1 2 1 2

1

2 2

k L

k L

k k e

Ik k k k e Ik k k k

+ −

+ + + − +






 


       

simplify(abs(T)2 + abs(R)2)

 1

simplify(Trans + Refl)

 1
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12.2 BOUND STATES I

In this section, we investigate bound state solutions  to the time-independent 
Schrödinger equation 

 ( )
2 2

22
V x E

m x
  

∂
− + =

∂


 (12.2.1)

where the potential V is piecewise constant. Examples include a particle in a one-
dimensional box, the semi-infinite square well, and a square well with a step. 

12.2.1 Particle in a Box 

Example 12.2.1
A particle is trapped in a one-dimensional box described by the potential 

 ( )
0              0

        0 or  

x L
V x

x x L

< <⎧⎪= ⎨ ∞ ≤ ≥⎪⎩
 (12.2.2)

This potential may be used to model the vibrational spectra of atoms as well 
as light absorption in molecules. Solve the Schrödinger equation and apply 
boundary conditions at x = 0, L to determine the form of the wavefunction 
within a normalization constant. Find the allowed energy levels. Normalize the 
wavefunction by requiring unit probability of locating the particle somewhere 
inside the well. 

Solution: Outside the box the potential is infi nite where there is no probability 
of locating the particle. Hence the wavefunction must vanish in regions x  0 and 
x L. Inside the box where V(x) = 0 the Schrödinger equation has the form

 
2

2 2

2mE

x




∂
= −

∂ 
 (12.2.3)

Making the substitution 

 2

2

2mE
k =


 (12.2.4)

the general solution to this differential equation is (x) = A sin(kx) + B cos(kx). 
The wavefunction should vanish at the walls x = 0 and x = L. At x = 0, (0) = A 
sin(0) + B cos(0) = B and we have that B = 0. At x = L, (L) = A sin(kL) so we 
require that kL = n, n = 0, 1, 2, 3 for (L) = 0. For integer values of n, the 
above condition permits only discrete or quantized energy levels. With p = k and 
E = p2/2m we have that 
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2 2

2

22
nE n

mL

⎛ ⎞
= ⎜ ⎟
⎝ ⎠


 (12.2.5)

Now that we have the energy levels, we return to the wavefunctions expressed as

 ( ) sinn

n x
x A

L




⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (12.2.6)

The constant A is determined by requiring that the wavefunctions are normalized 
so that the probability of locating the particle somewhere along the x-axis is 

 * 1dx 
∞

−∞

=∫  (12.2.7)

Since the particle is constrained between 0 and L, we only must integrate over this 
interval and our normalization condition becomes

 2 2

0

sin 1
L

n x
A dx

L

⎛ ⎞ =⎜ ⎟
⎝ ⎠∫  (12.2.8)

Making use of the trigonometric identity 

 
2 1 2

sin 1 cos
2

n x n x

L L

 ⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (12.2.9)

we have

 2

0

sin
2

L
n x L

dx
L

⎛ ⎞ =⎜ ⎟
⎝ ⎠∫  (12.2.10)

so that

 2
A

L
=  (12.2.11)

and the normalized wavefunction is now

 ( ) 2
sinn

n x
x

L L




⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (12.2.12)

12.2.2 Semi-Infi nite Square Well 

Example 12.2.2
A particle with energy E < V0 is contained in a semi-infinite square well with 
potential

 

0

0

( ) 0        0

x

V x x L

V x L

⎧∞ <
⎪= ≤ ≤⎨
⎪ >⎩

 (12.2.13)
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Solve the Schrödinger equation and apply boundary conditions at x = 0, L and 
 to determine the form of the wavefunction within an overall constant in each 
region. Obtain a transcendental equation whose roots determine the allowed 
energy values.

Solution: The time-independent Schrödinger equation in region I where V(x) = 0 
for 0  x  L is written

 I I2

2mE
 ′′ = −


 (12.2.14)

In region II where V(x) = V0 for x > L

 ( )0
II II2

2m V E
 

−
′′ =


 (12.2.15)

For x < 0 we have  = 0 since V =  there. Making the substitution in region I 

 2

2

2mE
k=


 (12.2.16)

and in region II we let

 
( )0 2

2

2m V E


−
=


 (12.2.17)

The solutions to 2
I Ik ′′ = −  are

 ( ) ( )I sin cosA kx B kx = +  (12.2.18)

while solutions to 2
II II  ′′ =  are

 II
x xCe De  −= +  (12.2.19)

where A, B, C and D are constants. Applying the boundary condition at x = 0 

 ( ) ( ) ( )I 0 sin 0 cos 0 0A k B k = ⋅ + ⋅ =  (12.2.20)

gives B = 0. The wavefunction must vanish at x =  so we have C = 0 and

 I = A sin(kx) (12.2.21)

 II = Deax (12.2.22)

At x = L the wavefunction  as well as must be continuous

 
( ) ( )I IIL L =

 (12.2.23)
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 I II( ) ( )L L ′ ′=
 (12.2.24)

These boundary conditions give

 sin LA kL De −=  (12.2.25)

 cos LAk kL D e  −= −  (12.2.26)

Dividing these two equations results in a transcendental equation  whose roots 
give the energy eigenvalues

 tan( )
k

kL


= −  (12.2.27)

In terms of the energies the transcendental equation becomes

 ( )
0

tan
E

E
V E





= −

−
 (12.2.28)

where 22 / .m L =   Roots of the transcendental equations must be found 
numerically. The left-hand and right-hand sides of the transcendental equation 
are plotted as a function of E and the intersection of these curves gives the 
allowed energy values. Note that we have not found the constants A and D yet. 
They canceled when we took the ratio of boundary conditions above. To get the 
constants we use either one of the boundary conditions and the normalization 
condition

 ( )2 2 2 2

0

* sin 1
L

x

L

dx A kx dx D e dx 
∞ ∞

−

−∞

= + =∫ ∫ ∫  (12.2.29)

12.2.3 Square Well with a Step 

V(x)

V
0

E

x = 0 x = a x = b

Figure 12.2.1: Square well potential with a step
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Example 12.2.3
Consider the potential function shown in Figure 12.2.1 defined by

 
0

0

0 0
( )        

x

x a
V x

V a x b

b x

∞ <⎧
⎪ ≤ <⎪= ⎨ ≤ <⎪
⎪∞ ≤⎩

 (12.2.30)

Solve the Schrödinger equation and apply boundary conditions at x = 0, a and 
b to determine the form of the wavefunction within an overall constant in each 
region for E < V0. Derive a transcendental equation whose roots determine the 
allowed energy values.

Solution: The boundary condition I(0) = 0 gives

 I(x) = A sin(kx) (12.2.31)

in region I while in region II

 ( ) x x
II x Be Ce  −= +  (12.2.32)

Continuity of the wavefunction I(a) = II(a) and its slope ( )( )I IIa a ′ ′=  give 
the equations

 ( )sin a aA ka Be Ce −= +  (12.2.33)

and

 ( )cos a aAk ka B e C e  −= − +  (12.2.34)

Because the potential is infinite for x > b we have II(b) = 0 or

 0b bBe Ce − + =  (12.2.35)

giving a relation between the constants

 2 bB Ce = −  (12.2.36)

The transcendental equation is obtained by division of the boundary conditions 
at  x = a

 
2

2

tan 1 a a b

a a b

ka e e e

k e e e

  

  

−

−

−
=

+
 (12.2.37)

 
( ) ( )

( ) ( )tan
a b a b

a b a b

k e e
ka

e e

 

 

− − −

− − −

− +
=

+
 (12.2.38)

 ( )tan tanh
k

ka b a


⎡ ⎤= − −⎣ ⎦  (12.2.39)
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Maple Example
The transcendental equation for the semi-infinite square well is obtained in the 
Maple worksheet below.

Key Maple commands: assume , diff , lhs , rhs , subs 

Programming: Function statements using ‘→ ’

restart

Semi-Infinite Well

assume(k > 0, alpha > 0, L > 0)
psi1 : = (x)  Asin(kx)
 x  Asin(kx)

psi2 : = (x)  Bexp(-alphax)

 x  Bex

psiCont : = psi1(L) = psi2(L)

 Asin(kL) = BeL

dpsiCont : = subs(x = L, diff(psi1(x), x) = diff(psi2(x), x))

 Akcos(kL) = BeL

( )
( )

( )
( )

,
rhs psiCont lhs psiCont

simplify trig
rhs dpsiCont lhs dpsiCont

⎛ ⎞
=⎜ ⎟⎜ ⎟

⎝ ⎠

 
( )
( )

1 sin

cos

kL

k kL
− =

expand(%)

 
( )
( )

1 sin

cos

kL

k kL
− =

12.3 BOUND STATES II

We consider bound state solutions to the time-independent Schrödinger equation 
(TISE) that are not piecewise constant in this section. Examples include the 
delta function potential, the quantum bouncer, and the harmonic oscillator. The 
harmonic oscillator is also described using the operator formalism. 
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12.3.1 Delta Function Potential  
Given the one-dimensional delta function potential located at x = 0

 ( ) ( )0V x V x= −  (12.3.1)

the TISE is

 ( )
2

0
2

V x E
m
   ′′− − =


 (12.3.2)

Example 12.3.1
Find the energy level and normalized wavefunction of the bound state solution 
with the delta function potential located at the origin. 

Solution: Away from the delta function the TISE is of the form

 
2

2
E

m
 ′′− =


 (12.3.3)

For bound state solutions, E < 0 and 2k ′′ =  with 

 
2

2mE
k = −


 (12.3.4)

we have solutions 

 ( ) 1 2
kx kxx C e C e −= +  (12.3.5)

Requiring that  is finite at 

 ( ) 1

2

       0

     0

kx

kx

C e x
x

C e x


−

⎧ ≤= 
≥

 (12.3.6)

Continuity of  at x = 0 gives C1 = C2 = C. To determine C, we apply the 
normalization condition

 ( )
0

2 2 2 2

0

1kx kxx dx C e dx e dx
∞ ∞

−

−∞ −∞

 
= + =  

 
∫ ∫ ∫  (12.3.7)

and find .C k=  The bound state energy is found by integrating the TISE over 
the delta function 

 ( )
2

0
2

dx V x dx E dx
m

  

  

  
− − −

′′− − =∫ ∫ ∫


 (12.3.8)

This gives

 ( ) ( )
2

0 0 0
2

x V
m




 

−
′ − − = 


 (12.3.9)



QUANTUM MECHANICS 603

 ( ) ( ) 02

2m
V C   ′ ′− − = −


 (12.3.10)

since (0) = C. Taking the limit   0 we have

 ( ) 020

2
lim 2k k m

kCe kCe kC V C 



−

→
− − = − = −

  (12.3.11)

thus

 
0

2 2

2mV mE
k = = −

   (12.3.12)

with energy

 
2

0
22

mV
E = −


 (12.3.13)

and normalized wavefunction 

 ( ) 0
2

       0

     0

kx

kx

e xmV
x

e x


−

⎧ ≤⎪= ⎨
≥⎪⎩

 (12.3.14)

12.3.2 Quantum Bouncer 
A quantum bouncing ball with a very small mass m released in a gravitation field 
g is modeled with the potential energy function 

 ( )
0

     
0

mgy y
V y

y

≥⎧⎪= ⎨ ∞ <⎪⎩
 (12.3.15)

and TISE

 
2 2

22
mgy E

m y
  

∂
− + =

∂


 (12.3.16)

Example 12.3.2
Find the quantized energy levels and wavefunctions of the quantum bouncer. 

Solution: Substituting  = 2m2g/2 and  = 2mE/2 into the TISE

 ( )y   ′′ = −  (12.3.17)

we find the general solution as a linear combination of Airy functions

 ( ) 1 22/3 2/3
Ai Bi

y y
y C C

   


 

⎛ ⎞ ⎛ ⎞− −
= +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (12.3.18)
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The constant C2 = 0 since Bi(x) diverges for large x. The quantized energy levels 
are determined by the boundary condition (0) = 0

 /2/3 = xn (12.3.19)

where xn by the roots of Ai(x) = 0. The quantized energy levels are 

 
1/3

2 2

2
n n

mg
E x

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠

  (12.3.20)

The first three energies are given by x1 =2.338, x2 = 4.088 and x3 = 5.521. 

12.3.3 Harmonic Oscillator  

Example 12.3.3
Develop a quantum description of a mass subject to a restoring force F = kx 
corresponding to a pot en tial V(x) = kx2/2 with one-dimensional Schrödinger 
equation  

 
2 2

2

2

1

2 2
kx E

m x


 

∂
− + =

∂


 (12.3.21)

Find the ground state energy and normalized wavefunction.

Solution: The natural frequency of the spring is /k m =  so that k = m2 and

 
2 2 2 2

2 2 2

2m x mE

x

 
 

∂
− =

∂  
 (12.3.22)

We first seek a trial solution of the form

 ( ) 2xx Ae  −=  (12.3.23)

Calculating the first derivative 

 
2

2 xxAe
x


 −∂

= −
∂

 (12.3.24)

and the second derivative 

 
2 2

2
2 2

2
2 4x xAe x Ae

x

 
 − −∂

= − +
∂

 (12.3.25)

Substitution these derivatives into the Schrödinger equation

 
2 2 2

2 2 2
2 2

2 2

2
2 4 0x x xmE m x

Ae x Ae Ae  
 − − −⎛ ⎞

− + + − =⎜ ⎟
⎝ ⎠ 

 (12.3.26)
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and then canceling the Aeax2
 and equating constant terms gives

 
2

2
2

mE
 =


 (12.3.27)

Equating terms proportional to x2

 
2 2

2

2
4

m 
 =


 (12.3.28)

Thus, we have 

 
2

mE
 =


 and 

2

m
 =


 (12.3.29)

so that the energy of the ground state is

 
1

2
E =   (12.3.30)

and the ground state wavefunction

 ( )
2

2

m
x

x Ae



−

=   (12.3.31)

The constant A is determined by normalization

 
22 2* 1xdx A e dx 

∞ ∞
−

−∞ −∞

= =∫ ∫  (12.3.32)

This gives

 2 1
2

A



=  or 

1/4
m

A



⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (12.3.33)

12.3.4 Operator Notation  
The TISE for the harmonic oscillator

 
2 2

2 2

2

1

2 2
m x E

m x


  

∂
− + =

∂


 (12.3.34)

can be expressed as Ĥ E =  where the Hamiltonian operator

 
2 2

2 2

2

1ˆ
2 2

H m x
m x


∂

= − +
∂


 (12.3.35)

In terms of the quantum mechanical operators

 p̂
i x

∂
=
∂


 and x̂ x=  (12.3.36)

 
2

2 2
ˆ 1ˆ ˆ

2 2

p
H m x

m
= +  (12.3.37)
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Next, we define the operators 

 
ˆ

ˆ
2

ipm
a x

m




⎛ ⎞

= +⎜ ⎟
⎝ ⎠  (12.3.38)

 
†

ˆ
ˆ

2

ipm
a x

m




⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 (12.3.39)

where â  and †â are known as annihilation and creation operators , respectively. 
Adding and subtracting these operators

 

†

†

ˆ ˆ ˆ2
2

ˆ
ˆ ˆ 2

2

m
a a x

ipm
a a

m







+ =

− =





 (12.3.40)

and solving for the position and momentum operators

 

†

†

ˆ ˆ2
ˆ

2

ˆ ˆ
ˆ 2

2

a a
x

m

a a
p m

i





+
=

−
=




 (12.3.41)

Substituting these into our Hamiltonian

 ( ) ( )2 2
† †1 1ˆ ˆ ˆ ˆ ˆ

4 4
H a a a a = − − + +   (12.3.42)

 ( ) ( )2 2
† †1ˆ ˆ ˆ ˆ ˆ

4
H a a a a⎡ ⎤= + − −⎢ ⎥⎣ ⎦

  (12.3.43)

 2 † † †2 2 † † †21ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ
4

H a aa a a a a aa a a a⎡ ⎤= + + + − + + −⎣ ⎦  (12.3.44)

 
† †1ˆ ˆˆ ˆ ˆ

2
H aa a a⎡ ⎤= +⎣ ⎦  (12.3.45)

Consider the commutator between annihilation and creation operators

 ( )

( )

†
ˆ ˆ

ˆ ˆ ˆ ˆ, ,
2

ˆ ˆˆ ˆ, ,
2

1
2

ip ipm
a a x x

m m

i
p x x p

i
i i



 
⎡ ⎤⎡ ⎤ = + −⎢ ⎥⎣ ⎦ ⎣ ⎦

= −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

= − − =





 


 (12.3.46)
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Since ˆˆ,x p i=⎡ ⎤⎣ ⎦   and 
† †ˆˆ ˆ ˆ 1aa a a− =  or 

† †ˆˆ ˆ ˆ1aa a a= +  our Hamiltonian can be 
written as

 

† †

†

1ˆ ˆ ˆ ˆ ˆ1
2

1
ˆ ˆ     

2

H a a a a

a a





⎡ ⎤= + +⎣ ⎦

⎡ ⎤= +⎢ ⎥⎣ ⎦




 (12.3.47)

12.3.5 Excited States of the Harmonic Oscillator 
We can use creation and annihilation operators to deduce wavefunctions and 
higher energy levels of the harmonic oscillator. If we operate on the ground state 
0(x) with â  we obtain

 

( ) ( )

( )

2

2 2

0 0

1/4

2

1/4

2 2

ˆ
2

            
2

            2 0
2 2

m
x

m m
x x

m
a x x x

m x

m m
x e

m x

m m m
xe e x

m



 


 



 

 

  

 

−

− −

∂⎛ ⎞= +⎜ ⎟∂⎝ ⎠

∂⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠
⎛ ⎞⎛ ⎞ ⎛ ⎞= − =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠



 





 


  

 (12.3.48)

 

( ) ( )

( )

( )

2

2 2

2

†
0 0

1/4

2

1/4

2 2

1/4

2
1

ˆ
2

            
2

            2
2 2

           2 2
2

m
x

m m
x x

m
x

m
a x x x

m x

m m
x e

m x

m m m
xe e x

m

m m
xe x



 




 



 

 

  

 

 




−

− −

−

∂⎛ ⎞= −⎜ ⎟∂⎝ ⎠

∂⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠
⎛ ⎞⎛ ⎞ ⎛ ⎞= +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞= =⎜ ⎟
⎝ ⎠



 







 


  

 

 (12.3.49)

Using the notation ( )n x n =  we have that ˆ 0 0a =  and †ˆ 0 2 1a = . 
Subsequent operation reveals that

 
†ˆ 1 1a n n n= + +  (12.3.50)

 ˆ 1a n n n= −  (12.3.51)

The creation operator allows us to construct any state n  from the ground state 
0  
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( )†ˆ

0
!

n

a
n

n
=  (12.3.52)

Consider operation on the state 3  first by â  and then by †â

 
† † †ˆ ˆ ˆ ˆ3 3 2 3 2 3 3 3 3 3a a a a= = = =  (12.3.53)

In general, N̂ n n n=  where the number operator 

 †ˆ ˆ ˆN a a=  (12.3.54)

The Hamiltonian can also be written in terms of the number operator 

 
† 1 1ˆ ˆˆ ˆ

2 2
H a a N 

⎡ ⎤ ⎛ ⎞= + = +⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠
   (12.3.55)

By operating on n  by the Hamiltonian 

 
1ˆ
2

H n n n
⎛ ⎞= +⎜ ⎟
⎝ ⎠

  (12.3.56)

we find that the energy levels of the harmonic oscillator are evenly spaced

 
1

2
nE n

⎛ ⎞= +⎜ ⎟
⎝ ⎠

  (12.3.57)

 Maple Examples 
The general solution to the quantum bouncer is found in the Maple worksheet 
below. The wavefunctions corresponding to the first four energy levels of the 
quantum harmonic oscillator are then plotted. Quantum uncertainties are 
calculated for several oscillator wavefunctions. A nonstationary superposition 
state of the quantum harmonic oscillator is animated. Operator notation is 
demonstrated using the Maple Physics package. 

Key Maple commands: animate , Annihilation , assume , Bra , conjugate , Creation , 
diff,  dsolve , eval , expand , int , Ket , plot , simplify , subs 

Maple packages: with(orthopoly ): with(plots ): with(Physics ):

Programming: Function statements using ‘’

Special functions: HermiteH

restart 
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Quantum Bouncer

assume(m > 0, h > 0, g > 0, E > 0);

( )( ) ( ) ( )
2

2
1: , , ;

m
Deq diff psi y y y m g y E psi y

h

⎛ ⎞= = ⋅ ⋅ ⋅ − ⋅⎜ ⎟
⎝ ⎠

 ( ) ( ) ( )2

2 2

2
1:

m g m y E yd
Deq y

dy h




−
= =

   


dsolve({Deq1}, psi(y));

 

( ) ( )

( )

1/3

1/3 2/3 2/3

1/3

1/3 2/3 2/3

2
_ AiryAi

2
_ AiryBi

g m y E
y C1

m g h

g m y E
C2

m g h


⎧ ⎛ ⎞−⎪

= +⎜ ⎟⎨ ⎜ ⎟⎪ ⎝ ⎠⎩
⎫⎛ ⎞− ⎪

⎜ ⎟⎬⎜ ⎟⎪⎝ ⎠⎭

  
  

  
  

assume(beta > 0, alpha > 0); Deq2 := diff(psi(y), y, y) = (betay – alpha)psi(y); 

 ( ) ( ) ( )
2

2
2 :

d
Deq y y y

dy
   = = − 

dsolve({Deq2}, psi(y));

 ( )
2/3 2/3

_ AiryAi _ AiryBi
y y

y C1 C2
   


 

− −⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

   
 

Harmonic Oscillator Wavefunctions 

restart
with(orthopoly)

 [G, H, L, P, T, U]

( )
2

: exp
2

x
w x

⎛ ⎞
= → −⎜ ⎟

⎝ ⎠
2

2: e
x

w x
−

= 
dEqn := diff(y(x), x, x) + (2m + 1 – x2)y(x)= 0

( ) ( ) ( )
2

2

2
: 2 1 0

d
dEqn y x x m y x

dx
= + − + + =

subs({y(x) = w(x)HermiteH(5, x), m = 5}, dEqn)
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 ( )( ) ( ) ( )
2 2

2
22 2

2
e HermiteH 5, 11 e HermiteH 5, 0

x x
d

x x x
dx

− −
+ − + =

expand(simplify(%))

 0 = 0

Orthogonality of Oscillator Wavefunctions

int(w(x)HermiteH(3, x)HermiteH(2, x), x = -Infi nity … Infi nity)

0

Plots of Oscillator Wavefunctions and Potential

( )
( )

( )
1
4

21
psi : , exp HermiteH ,

2sqrt 2 !n

x
n x n x

n

⎛ ⎞
= → ⋅ − ⋅⎜ ⎟

⎝ ⎠⋅ ⋅

 ( ) ( )
2

2

1/4

e HermiteH ,
: ,

2 !

x

n

n x
n x

n




−

= →

( ) ( ) ( ) ( )

( ) ( ) [ ]

2 2 2 2 2
0 1 2

1
psi , , 0 3 , , 2 2, , , ,

2

2 , , , , , ,
3

plot seq n x n n x x legend x x x

x V x linestyle dash dot dashdot longdash solid

  



⎛ ⎡ ⎤⎛ ⎞⎛ ⎞ ⎡+ + = = − =⎜ ⎜ ⎟⎢ ⎥⎜ ⎟ ⎣⎝ ⎠⎝ ⎠⎣ ⎦⎝
⎞⎤ = ⎟⎥⎦ ⎠

 

V(x)

0–1–2 1 2

4

3

2

1

x

Ψ
1
(x)2

Ψ
0
(x)2

Ψ
2
(x)2

Ψ
3
(x)2

Figure 12.3.1: Harmonic oscillator wavefunctions.
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Computation of Uncertainty 

assume(n, ‘integer’)
Unc_x := (n)  sqrt(int(psi(n, x)2x2, x = -infinity … infinity))

 ( )2 2_ : ,Unc x n n x x dx
∞

−∞
= ∫

eval(Unc_x(3))

 
14

2

Unc_p := (n)  sqrt(int(-psi(n, x)diff(psi(n, x), x, x) x = infinity … infinity))

( ) ( )
2

2
_ : , ,Unc p n n x n x dx

x
 

∞

−∞

⎛ ⎞∂
= − ⎜ ⎟

∂⎝ ⎠∫

eval(Unc_p(3))

14

2

Minimum Uncertainty of Ground State

eval(Unc_x(0)Unc_p(0))

 
1

2

Animation of Nonstationary Superposition States

psiT := (n, x, t)  psi(n, x)exp(-Int)
 psiT := (n, x, t)  (n, x)eInt

with(plots) :
animate(plot, [eval(conjugate(psiT(1, x, t) + psiT(2, x, t))(psiT(1, x, t) + psiT(2, x, 
t))), x = -4 … 4], t = 0 … 30, frames = 600)
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0–1–2 32
x

1 4–3–4

0.2

0.4

0.6

0.8

1

1.2

Figure 12.3.2: Animation of a nonstationary superposition state of harmonic oscillator wavefunctions (not 
normalized).

Operator Notation

restart
with(Physics) :
Setup(mathematicalnotation = true)

 [mathematicalnotation = true]

Ket(v, n)

|vn
Bra(v, m)

vm
Bra(v, m)Ket(v, n)

m, n

Annihilation(v)

a

Creation(v)

a

v1 := Annihilation(v)Ket(v, n)

 11: nv n v
−

=

Bra(v, m)v1

 , 1m nn
−
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Bra(v, m)Annihilation(v)Ket(v, n)

 , 11 n mm  ++
Annihilation(v)Ket(v, 0)

 0

Creation(v)Ket(v, 0)

 v1
Creation(v)%

 22 v

Creation(v)%

 36 v

12.4 SCHRÖDINGER EQUATION IN HIGHER 
DIMENSIONS

In the section, we consider solutions to the time-independent Schrödinger equation 
in three dimensions. Examples include a particle in a 3D box, Schrödinger’s 
equation in spherical coordinates and the hydrogen radial wavefunctions.  

12.4.1 Particle in a 3D Box
We will first consider a particle in a 3D box of side L

 ( ) ( ) ( ) ( )
2

2

2
V E

m
  − ∇ + =r r r r


 (12.4.1)

Writing the wavefunction as a product

 ( ) ( ) ( ) ( )1 2 3x y z   =r  (12.4.2)

Substituting into the TISE 

 
22 22 2 2

31 2
2 3 1 3 1 2 1 2 32 2 22 2 2

E
m m mx y z

 
        

∂∂ ∂
− − − =

∂ ∂ ∂
  

 (12.4.3)

Dividing by 123 gives

 

1 32

22 22 2 2
31 2

2 2 2
1 2 3

1 1 1

2 2 2

E EE

E
m m mx y z

 

  

∂∂ ∂
− − − =

∂ ∂ ∂
  

 
 (12.4.4)
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where the separation constants E = E1 + E2 + E3. We now have the three differential 
equations

 
2

21 1
1 1 12 2

2mE
k

x


 

∂
= − = −

∂ 
 (12.4.5)

 
2

22 2
2 2 22 2

2mE
k

y


 

∂
= − = −

∂ 
 (12.4.6)

 
2

23 3
3 3 32 2

2mE
k

z


 

∂
= − = −

∂ 
 (12.4.7)

Requiring  = 0 along x = 0, y = 0 and z = 0 sides

 ( )1 1 1sinA k x = , ( )2 2 2sinA k y =  and ( )3 3 3sinA k z =  (12.4.8)

Requiring  = 0 along x = L, y = L and z = L sides

 ( )1 1 1sinA k x = , ( )2 2 2sinA k y =  and ( )3 3 3sinA k z =  (12.4.9)

 1 2,  
n m

k k
L L

 
= =  and 3k

L


=


  (12.4.10)

Combining the constants A = A1A2A3, 

 sin sin sin
m yn x z

A
L L L

 


⎛ ⎞⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠


 (12.4.11)

Normalization leads to

 
2 2 2 2

vol 0 0 0

* sin sin sin 1
L L L

m yn x z
dv A dxdydz

L L L

 
 

⎛ ⎞⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠∫ ∫ ∫ ∫


 (12.4.12)

 
2 2 2 2

0 0 0

sin sin sin 1
L L L

m yn x z
A dx dy dz

L L L

 ⎛ ⎞⎛ ⎞ ⎛ ⎞ =⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠∫ ∫ ∫


 (12.4.13)

with each integral contributing a factor of L/2 so we have

 

3/2
2

A
L

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (12.4.14)

The energy levels are

 ( )
2 2

2 2 2
, , 22

n mE n m
mL


= + +
   (12.4.15)
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with the ground state

 
2 2

1,1,1 2

3

2
E

mL


=


 (12.4.16)

The next energy level is threefold degenerate where

 
2 2

2,1,1 1,2,1 1,1,2 2

6

2
E E E

mL


= = =


 (12.4.17)

Degeneracy  is broken for a box with unequal sides L1, L2 and L3 where

 

22 22 2

, ,
1 2 32

n m

n m
E

m L L L

 ⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞
⎢ ⎥= + + ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦


 

 (12.4.18)

12.4.2 Schrödinger Equation in Spherical Coordinates 
The time-independent Schrödinger equation in 3D is

 ( )
2

2

2
V r E

m
  − ∇ + =

  (12.4.19)

In spherical coordinates, the Laplacian is

 

2
2 2

2 2 2 2

1 1 1 1
sin

sin sin
r

r rr r


    

⎡ ⎤∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞∇ = + +⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦
 (12.4.20)

The solution to Schrödinger’s equation is obtained by applying separation of 
variables in spherical coordinates. Substituting  

 
( ) ( ) ( ) ( ), ,r R r    = Θ Φ

 (12.4.21)

into

 ( )2

2 2

2 2m mE
V r  ∇ − = −

 
 (12.4.22)

and dividing by RΘΦ  gives

 

( )
( )

( )
( )

( )
( )

( )( )

2
2

2 2 2 2

2

1 1 1 1
sin

sin sin

2

R r
r

r rr R r r

m
V r E

 


     



⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂Θ ∂ Φ∂ ∂
+ +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂Θ Φ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

= −


 (12.4.23)
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Separating angular and radial terms

 
( )

( )
( )

( )

( )
( ) ( )( )

2

2 2

2 2

2

1 1 1
sin

sin sin

1 2

C

C

R r m
r r V r E

R r r r

 


      

⎡ ⎤⎛ ⎞∂Θ ∂ Φ∂
+⎢ ⎥⎜ ⎟⎜ ⎟Θ ∂ ∂ Φ ∂⎢ ⎥⎝ ⎠⎣ ⎦

⎛ ⎞∂∂
= − + −⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠





 (12.4.24)

The angular equation is further separated

 ( )
( )

( )
( )2

2

2

1 1
sin sin sin

DD

C
 

  
    

⎛ ⎞∂Θ ∂ Φ∂
− = −⎜ ⎟⎜ ⎟Θ ∂ ∂ Φ ∂⎝ ⎠ 

 (12.4.25)

The  equation 

 
( ) ( )

2

2
D






∂ Φ
= − Φ

∂
 (12.4.26)

has solutions 

 ( ) ( )exp i D Φ = ±  (12.4.27)

The  equation is

 
( )

( ) 21
sin sin sinC D


  

  

⎛ ⎞∂Θ∂
− =⎜ ⎟⎜ ⎟Θ ∂ ∂⎝ ⎠

 (12.4.28)

Choosing the separation constants C = -(+ 1) and 2D m=   solutions for () 
are associated Legendre polynomials ( ) ( )cosmP Θ = 

  with allowed values 
m = ,  + 1, … 0, …,  – 1, . With () = exp(im) the product  are the 
spherical harmonics 

 ( ) ( )
( ) ( )!2 1

, cos
4 !

m imm
m

Y P e
m

  


−+
=

+
 

 



 (12.4.29)

where the normalization constant is such that

 ( ) ( ) ( )
2

0 0

, * , sinm m
mmY Y d d

 

        ′
′ ′ ′=∫ ∫     (12.4.30)
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The angular momentum operators 

 

2
2 2

2 2

1 1ˆ sin
sin sin

L 
   

⎧ ⎫∂ ∂⎛ ⎞⎪ ⎪= − +⎨ ⎬⎜ ⎟∂ ∂⎝ ⎠⎪ ⎪⎩ ⎭
  (12.4.31)

and

 ˆ
zL i



∂
=
∂
  (12.4.32)

acting on ( ),mY    give

 ( )2 2ˆ 1m mL Y Y= +     (12.4.33)

so that the magnitude of the angular momentum vector ( )1L = +   is 
constant. The operator 

 ˆ m m
zL Y m Y= 
    (12.4.34)

gives the z-component of angular moment Lz = m. The angle  that the angular 
momentum vector makes with respect to the z-axis is also quantized where 

 
( )

cos
1

zL m

L
 = =

+


 
 (12.4.35)

This is known as space quantization . 

Example 12.4.1
Find the allowed orientations of the angular momentum vector for  = 3 

Solution: With the allowed values of m = -3, -2, -1, 0, 1, 2, 3 and ( )1 2 3+ =   
we have

 
1 3 1 1 1 1 3

cos , , ,0, , ,
2 3 3 2 3 2 3 3 2 3

 − ⎧ ⎫− − −
= ⎨ ⎬

⎩ ⎭
  (12.4.36)

or  { }150 ,125 ,107 ,90.0 ,73.2 ,54.7 ,30.0 =       
 (12.4.37)

12.4.3 Radial Equation 
If the potential V(r) is only a function of the radial coordinate, then R(r) is given 
by solutions to  

 
( ) ( )( ) ( ) ( ) ( )2 2

2

2
1 0

R r m
r E V r r R r R r

r r

⎛ ⎞∂∂
+ − − + =⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

 


 (12.4.38)
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For a free particle V(r) = 0 and the radial equation 

 

( ) ( ) ( ) ( )
22

2

2 2

11

2 2

R r
r R r ER r

m r rr mr

⎛ ⎞∂ +∂
− + =⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

  

 (12.4.39)

with solutions given by the spherical Bessel functions

 
( ) ( ) ( )R r A j kr B n kr= +     (12.4.40)

where 22 /k mE=  . The functions nl(kr) are divergent at r = 0 and are discarded 
in regions including the origin. 

Example 12.4.2
Find the wavefunctions (r, , ) and allowed energies of a particle contained in 
a spherical well with

 ( )
0

     
r a

V r
r a

≤⎧⎪= ⎨∞ >⎪⎩
 (12.4.41)

Solution: Since the solution region includes the origin we have 

 ( ) ( )R r A j kr=    (12.4.42)

Applying the boundary condition (r, , ) = 0 gives 

 ( ) 0j ka =   (12.4.43)

so that ka = n where n are the roots of j(n) = 0. Thus, our quantized energy 
levels are 

 
22

2
n

nE
m a

⎛ ⎞
= ⎜ ⎟

⎝ ⎠





 (12.4.44)

 ( ) ( ), , ,m
n n

r
r A j Y

a
     

⎛ ⎞= ⎜ ⎟
⎝ ⎠

     (12.4.45)

The constants An are obtained from normalization. 

12.4.4 Hydrogen Radial Wavefunctions  
The radial equation part of the wave equation for hydrogen with potential

 ( )
2

0

1

4

e
V r

r
= −  (12.4.46)
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is

 ( ) ( ) ( ) ( ) ( )
22 2

2

2 2
0

11 1

2 42

R r e
r R r R r ER r

m r r rr mr 

⎛ ⎞∂ +∂
− + − =⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

    (12.4.47)

Setting u(r) = rR(r) we have

 ( ) ( ) ( ) ( ) ( )
22 2 2

2 2
0

1 1

2 42

e
u r u r u r Eu r

m rr mr 

+∂
− + − =

∂

  
 (12.4.48)

Arranging terms

 ( ) ( ) ( ) ( )
2 2

2 2 2 2
0

1 2 1 2

4

me mE
u r u r u r

rr r 

⎡ ⎤− +∂
+ + = −⎢ ⎥

∂ ⎢ ⎥⎣ ⎦

 
 

 (12.4.49)

with the Bohr radius 
2

0
0 2

4
a

me


=


 and 

2

2mE
k = −


 for bound state solutions E 

< 0 so k > 0.
Note that k has dimension of inverse length so that we may defi ne a 

dimensionless radius  = kr

 ( ) ( ) ( ) ( )
2

2 2

2 2
0

1 2 1
k u u k u

a rr
  



⎡ ⎤− +∂
+ + =⎢ ⎥

∂ ⎣ ⎦

 
 (12.4.50)

Dividing by k2

 ( ) ( ) ( ) ( )
2

0
2 2

1
u u u


  

 

⎡ ⎤− +∂
+ + =⎢ ⎥

∂ ⎣ ⎦

 
 (12.4.51)

where 0 = 2/ka0. For large values of , the quantity in square brackets is small and 

 ( ) ( )
2

2
u u 



∂
≈

∂
 (12.4.52)

with solution ( ) 1 2u c e c e  −≈ +  (12.4.53)

Since e diverges for large values of , we require that c2 = 0.
For small values of 

 ( ) ( ) ( )
2

2 2

1
u u 

 

+∂
≈

∂

 
 (12.4.54)

with solutions

 ( ) 1
3 4u c c  − +≈ + 

 (12.4.55)
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Since  diverges for small , we require that c3 = 0.
Thus, we take as a general solution 

 ( ) ( )1u e f  + −=   (12.4.56)

where f() is a polynomial in .
To fi nd the form of f() we fi rst evaluate the derivatives 

 ( ) 1 11
fu

e f e f e    
 

− + − + − ∂∂
= + − +

∂ ∂
    (12.4.57)

and

 

( ) ( ) ( )

( )

( )

2
1

2

1 1

2
1 1

2

1 1 1

1

1

fu
e f e f e

f
e f e f e

f f f
e e e

  

  

  

  


  


  
  

− − − −

− + − + −

− + − + −

∂∂
= + − + + +

∂∂
∂

− + + −
∂

∂ ∂ ∂
+ + − +

∂ ∂ ∂

  

  

  

   





 (12.4.58)

factoring

 

( ) ( )( ) ( )( )
2

1 1 1

2

2
1

2

1 2 1 2 1
fu

f

f
e 

    





− + +

+ −

∂∂ ⎡= + − + + + + −⎢ ∂∂ ⎣
⎤∂

+ ⎥
∂ ⎦

    



   
 (12.4.59)

and substitution into the differential equation gives

 
( ) ( )2

0
2

2 1 2 1
2 0

f f
f



   

⎛ ⎞ ⎛ ⎞+ +∂ ∂
+ − + − =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂∂ ⎝ ⎠ ⎝ ⎠

 
 (12.4.60)

This will be in the form of Laguerre’s differential equation letting x = 2

 ( )( ) ( )
2

0
2

2 1 1 0
2

f f
x x f

xx

∂ ∂ ⎛ ⎞
+ + − + − + =⎜ ⎟∂∂ ⎝ ⎠

   (12.4.61)

The associated Laguerre polynomials  ( )m
nL x′  are solutions to 

 ( ) ( ) ( ) ( )
2

2
1 0m m m

n n nx L x m x L x n L x
xx

′ ′ ′
∂ ∂ ′+ + − + =

∂∂
 (12.4.62)

so that we have m = 2 + 1 and ( )0 1
2

n
′ = − + .
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Since n is an integer, 0/2 is also an integer n. Writing 0 = 2n with 0 = 2/ka0 we 
have 

  2
0

2 1mE
k

na
= − =

  (12.4.63)

This gives our quantized energy levels

 1
2

E
E

n
=  with 

2

1 2
0

13.6 eV
2

E
ma

= − = −


 (12.4.64)

Our normalized radial wavefunctions with 0 = kr = r/na0 are

 ( ) ( )
( )

( ) ( )0

3
1 / 2 1

, 0 1 03
0

1 !2
2 / 2 /

2 !

r na
n n

n
R r r na e L r na

na n n

+ − +
− −

− −⎛ ⎞
= ⎜ ⎟

⎡ ⎤⎝ ⎠ +⎣ ⎦

 
 




 (12.4.65)

Including angular dependence our wavefunctions are

 ( ) ( ),, , ,m
nr R Y    =  

  (12.4.66)

Allowed values of the three quantum numbers n(principal), (orbital), and 
m (magnetic) required to specify the wavefunction in three dimensions are shown 
in Table 12.4.1.

TABLE 12.4.1: Allowed values of the principal, orbital, and magnetic quantum numbers.

Quantum Number Name Allowed Values

n Principal n = 1, 2, 3, …

 Orbital  = 0, 1, 2, …, n – 1

m Magnetic m =  ,  + 1, …, 

Maple Examples
Hydrogen atom wavefunctions are demonstrated in the Maple worksheet below. 
Calculations include the evaluation of the normalized radial wavefunctions, 
expectation value of position, and density plots of the wavefunction. 

Key Maple commands: assume, conjugate, densityplot, integrate

Maple packages: with(plots): with(orthopoly):

Programming: Function statements using ‘’

Special functions: S phericalY, L (Laguerre polynomial), altL (alternate Laguerre 
polynomial)

restart
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Hydrogen Atom Radial Wavefunctions

with(orthopoly) :
altL := (n, a, x)  (1)an!orthopoly[L](n – a, a, x):

3

2

3
0 0 0

0

2 ( 1)! 2
: ( , , ) sqrt exp

2 (( 1)!)

2
,2 1,

l
n l r r

R n l r
n a n a n an n

r
altL n l l

n a

− − ⋅⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= → − ⋅ ⋅ − ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⋅ ⋅ ⋅⋅ ⋅ +⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⋅⎛ ⎞⋅ + +⎜ ⎟⋅⎝ ⎠

 

0

3/2

3
0 0 0

1 ( 1)! 2 2
: ( , , ) 2 2 e ,2 1,

2 ( )!

r

nan l r r
R n l r altL n l l

na na nan n l

−− −⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠ ⎝ ⎠


R(1, 0, r)

 0

3/2

0

1
2 e

r

a

a

−⎛ ⎞
⎜ ⎟
⎝ ⎠

R(2, 0, r)

 
0

3/2
2

0 0

1 2
2 e 4

8

r

a r

a a

−⎛ ⎞ ⎛ ⎞− +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠−

R(2, 1, r)

 
0

3/2
2

0

0

1
6e

12

r

a r
a

a

−⎛ ⎞
⎜ ⎟
⎝ ⎠−

Normalization of Radial Wavefunctions 

assume(a0 > 0) :
integrate(R(19, 15, r)2r2, r = 0 … infinity)

1

integrate(R(5, 0, r)2r2, r = 0 … infinity)

1

Expectation Value <r>

integrate(R(3, 0, r)2r3, r = 0 … infinity)

 027

2

a −
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Hydrogen Probability Density 

R1 := (n, l, r)  subs(a0 = 1, R(n, l, r))

R1 := (n, l, r)  subs(a0 = 1, R(n, l, r))

 := (n, l, m, r, theta, phi)  R1(n, l, r)SphericalY(l, m, theta, phi)

 := (n, l, m, r, , )  R1(n, l, r)SphericalY(l, m, , )

with(plots) :
densityplot(r2(4, 1, 1, r, theta, 0)conjugate((4, 1, 1, r, theta, 0)), r = 0 … 10, 
theta = 0 … 2Pi, colorstyle = SHADING, coords = polar)

Figure 12.4.1: Shaded plot of hydrogen probability density state (4,1,1).

densityplot(r2(4, 2, 1, r, theta, 0)conjugate((4, 2, 1, r, theta, 0)), r = 0 … 40, 
theta = 0 … 2Pi, coords = polar)

Figure 12.4.2:  Shaded plot of hydrogen probability density state (4,2,1).
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12.5 APPROXIMATION METHODS

Approximation methods in quantum mechanics are investigated in this section. 
The WKB (Wentzel, Kramers, and Brillouin) approximation is first discussed. 
Time-independent perturbation theory is then considered for estimating energies 
and wavefunctions of systems that can be modeled as modified bound states with 
known energies and wavefunctions. Methods of degenerate perturbation theory 
are then developed for problems where the unperturbed systems have multiple 
states with the same energy.  

12.5.1 WKB Approximation 
The WKB approximation is a general method of approximating second order 
linear differential equations such as the time-independent Schrödinger equation 

 ( ) ( ) ( ) ( )
2 2

22
x V x x E x

m x
  

∂
− + =

∂
  (12.5.1)

where the wavefunction (x) is slowly varying compared to the de Broglie 
wavelength. The WKB wavefunction is of the form 

 ( ) ( ) ( )/iS x
x u x e = 

 (12.5.2)

Taking the first derivative of 

 ( ) ( ) ( ) ( ) ( )/ /
/

iS x iS x
u x e u x e iS x

x

∂ ′ ′= +
∂

    (12.5.3)

and taking the second derivative gives

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )

2
/ / /

2

2/ /

/ /

                              / /

iS x iS x iS x

iS x iS x

u x e u x e iS x u x e iS x
x

u x e iS x u x e iS x

∂ ′′ ′ ′ ′ ′= + +
∂

′ ′′+ +

  

 

 

 
 (12.5.4)

Also, we have that

 ( )( ) ( ) ( )
2

/

2 2

2 iS xm
E V x u x e

x

∂
= − −

∂



 (12.5.5)

Setting expressions for ′′ equal and canceling the exponential factors 

 
( )( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )
2

2

2
2 /

                              / /

m
E V x u x u x u x iS x

u x iS x u x iS x

′′ ′ ′− − = + +

′ ′′+ +




 
 (12.5.6)
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Equating the real and imaginary parts of this expression gives

 ( )( ) ( ) ( ) ( ) ( )( )22

2
/

m
E V x u x u x u x S x′′ ′− − = − 


 (12.5.7)

and

 ( ) ( ) ( ) ( )0 2 / /u x S x u x S x′ ′ ′′= +   (12.5.8)

For u(x) slowly varying we make the approximation that ( ) ( )u x u x′′ <<  so that

 ( ) ( )( ) ( )2S x m E V x p x′ = ± − = ±  (12.5.9)

Integration gives

 ( ) ( ) const.S x p x dx= ± +∫  (12.5.10)

 ( ) ( ) ( ) ( )0 2u x p x u x p x′ ′= +  (12.5.11)

Next, we solve

 ( ) ( ) ( )( )21
0u x p x

u x

′
=  (12.5.12)

giving

 ( ) ( )2
const.u x p x =  (12.5.13)

or

 ( )
( )

const.
u x

p x
= ±  (12.5.14)

Our WKB wavefunction is then obtained

 ( )
( )

( )

( )
( )

1 2e e
i i

p x dx p x dxc c
x

p x p x


−
= +∫ ∫   (12.5.15)

where c1 and c2 are constants. The WKM method can be used to estimate the 
transmission probability through a barrier with slowly varying potential. The 
probability T that a particle incident from the left with energy E will surmount a 
barrier where V(x) > E from x1 to x2 is

 ( )
2

1

2
exp

x

x

T p x dx
⎡ ⎤
⎢ ⎥′ ′= −
⎢ ⎥⎣ ⎦
∫  (12.5.16)
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Example 12.5.1
A particle with energy E = V0/2 is incident from the left on a step potential 

  ( ) 0         
0

V x a
V x

x a

≤⎧⎪= ⎨ >⎪⎩
 (12.5.17)

Find the probability that the particle will tunnel through the barrier.

Solution: Using the WKB approximation 

 

( )( )

( )

2

1

0
0 0

2
exp 2

42
  exp 2 / 2 exp

x

x

a

a

T m V x E dx

mV a
m V V dx

−

⎡ ⎤
⎢ ⎥′ ′= − −
⎢ ⎥⎣ ⎦

⎛ ⎞⎡ ⎤
′ ⎜ ⎟= − − = −⎢ ⎥ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠

∫

∫



 

 (12.5.18)

12.5.2 Time-Independent Perturbation Theory
The TISE for the unperturbed system is written as

 
0 0 0

0
ˆ

n n nH E =  (12.5.19)

The Hamiltonian for the system including the perturbation is

 0
ˆ ˆ ˆH H H ′= +  (12.5.20)

where 0Ĥ  is the Hamiltonian of the unperturbed system and Ĥ ′  is the 
Hamiltonian of the perturbation. Now we rewrite 

 
0

ˆ ˆ ˆH H H ′= +  (12.5.21)

where is a small dimensionless parameter to be expanded about. The corrected 
energies and wavefunctions are thus

 0 1 2 2
n n n nE E E E = + + +  (12.5.22)

 
0 1 2 2

n n n n    = + + +  (12.5.23)

The TISE ˆ
n n nH E =  is now

 
( )( ) ( )

( )
0 1 2 2 0 1 2 2

0

0 1 2 2

ˆ ˆ
n n n n n n

n n n

H H E E E      

   

′+ + + + = + + +

+ + +

 


 (12.5.24)

Equating terms multiplying equal powers of  on the left and right sides we obtain 
an infinite set of equations
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0 0 0
0

1 0 1 0 0 1
0

2 2 2 1 2 0 2 2 1 1 2 2 0
0

ˆ

ˆ ˆ

ˆ ˆ

n n n

n n n n n n

n n n n n n n n

H E

H H E E

H H E E E

 

       

         

⎧ ⎫=
⎪ ⎪

′+ = +⎪ ⎪
⎨ ⎬

′+ = + +⎪ ⎪
⎪ ⎪
⎩ ⎭

 (12.5.25)

The first equation gives the TISE for the unperturbed system. The second and third 
equations give the first and second order corrections, and so on. Approximations 
to the perturbed wavefunctions and their respective energies can then be found. 
We consider the first order correction 

 ( )1 0 0 0 1
0

ˆ ˆ
n n n n nE H H E  ′= + −  (12.5.26)

Since 
1
n  can be expanded in terms of any orthogonal functions, we choose to 

expand them as a linear combination of the unperturbed wavefunctions 
0
n

 
1 0

0
n nm m

m

a 
∞

=

=∑  (12.5.27)

 ( )1 0 0 0 0
0

0

ˆ ˆ
n n n n nm m

m

E H H E a  
∞

=

′= + − ∑  (12.5.28)

Since 0 0 0
0

ˆ
m m mH E =   the last term 

 ( ) ( ) ( )0 0 0 0 0 0 0
0 0

0 0 0

ˆ ˆ
n nm m nm n m nm m n m

m m m

H E a a H E a E E  
∞ ∞ ∞

= = =

− = − = −∑ ∑ ∑  (12.5.29)

Multiplying both sides of our first order correction by 0 *n  and integrating 

 ( )1 0 0 0 0 0 0 0 0

0

ˆ
n n n n n nm m n n m

m

E H a E E     
∞

=

′= + −∑  (12.5.30)

The sum vanishes for n  m because of orthogonality and for n = m where 

( )0 0 0.m nE E− =  Thus, we have the first order correction to the energy

 1 0 0ˆ
n n nE H ′=  (12.5.31)

To determine the anm we multiply the first order correction by 
0 *m  and integrate 

to obtain

 ( )1 0 0 0 0 0 0 0 0

0

ˆ
n m n m n nm m n m m

m

E H a E E     
∞

=

′= + −∑  (12.5.32)
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The term on the left vanishes for m  n because of orthogonality and 

 

0 0

0 0

ˆ
m n

nm

n m

H
a

E E

 ′
=

−
 (12.5.33)

and the first order correction to our wavefunction is

 

0 0

1 0

0 0
0

ˆ
m n

n m

m n m

H

E E

 
 

∞

=

′
=

−∑  (12.5.34)

Example 12.5.2
Consider a particle in a 1D potential well (Figure 12.5.1)

  
0

0

0
( )           

0

x

W x a
V x

a x L

x L

∞ <⎧ ⎫
⎪ ⎪≤ <⎪ ⎪= ⎨ ⎬≤ ≤⎪ ⎪
⎪ ⎪∞ >⎩ ⎭

 (12.5.35)

V(x)

x = 0 x = a x = L

W
0

Figure 12.5.1: Square well with a small step

Treat the small step of height W0 as a perturbation of the infinite square potential. 
Calculate the perturbed energy levels and wavefunctions.

Solution: The fi rst order correction to the energy levels is

 
1 0 0ˆ
n n nE H ′=  (12.5.36)

 ( )0 2
sinn

n x
x

L L




⎛ ⎞= ⎜ ⎟
⎝ ⎠

 with 0Ĥ W′ =  for 0  x  a (12.5.37)
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1 2
0 0

0 0

0

2 2 1 2
sin 1 cos

2

2
sin

2

a a

n

n x n x
E W dx W dx

L L L L

W L n a
a

L n L

 





⎛ ⎞ ⎛ ⎞= = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞= −⎜ ⎟
⎝ ⎠

∫ ∫
 (12.5.38)

The first order correction to the wavefunctions is

 

0 0

1 0

0 0
0

ˆ
m n

n m

m n m

H

E E

 
 

∞

=

′
=

−∑   with  

2 2
2

22
nE n

mL

⎛ ⎞
= ⎜ ⎟
⎝ ⎠


 (12.5.39)

0 0 02
1 0 0

0 0 2 2 2 2
0 0

2
sin sinˆ

2 2
sin

a

m n

n m

m mn m

m x n x
W dx

H L L LmL m x

L LE E n m

 
  

 


∞ ∞

= =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟′ ⎝ ⎠ ⎝ ⎠ ⎛ ⎞= = ⎜ ⎟− − ⎝ ⎠

∫
∑ ∑

 
 (12.5.40)

12.5.3 Degenerate Perturbation Theory
Different quantum states of a system with the same energy are degenerate where g 
is the number of states with the same energy. For example, the degeneracy of the 
first excited state of a cubical square well with side L is g = 3 where E2,1,1 = E1,2,1 = 
E1,1,2. Our first order correction to the wavefunction is not defined for degenerate 
wavefunctions where 

0 0
n mE E= . To apply perturbation theory to a system with 

degeneracy, we expand the wavefunction as a linear combination of degenerate 
states ni. 

 
1

g

n ni ni

i

c 
=

=∑  (12.5.41)

where g is the degeneracy of the nth level and ˆ
n n nH E =  is now

 ( )0
1 1

ˆ ˆ
g g

ni ni n ni ni

i i

H H c E c 
= =

′+ =∑ ∑  (12.5.42)

Since 0
0

ˆ
n n nH E =

 ( )0

1 1

ˆ
g g

ni n ni ni n ni ni

i i

c E H E c  
= =

′+ =∑ ∑  (12.5.43)
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Multiplying on the left by *nj and integrating

 
( )0

1 1

ˆ
g g

ni n nj ni nj ni n ni nj ni

i i

c E H E c     
= =

′+ =∑ ∑
 (12.5.44)

since nj ni ij  =

 
0

1

ˆ
g

ni n ni nj ni ni n

i

c E c H c E 
=

′+ =∑  (12.5.45)

and

 ( )0

1

ˆ
g

ni nj ni ni n n

i

c H c E E 
=

′ = −∑  (12.5.46)

This equation can be expressed in matrix form with 0
n n nE E EΔ = −

1 1 2 1 1 1

21 2 2 2 2

1 2

ˆ ˆ ˆ

ˆ ˆ ˆ
0

ˆ ˆ ˆ

n n n n n ng n
n

nn n n n n ng n

ng
n ng n ng ng ng n

H E H H c

cH H E H

cH H H E

     

     

     

⎛ ⎞′ ′ ′− Δ ⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟′ ′ ′− Δ ⎜ ⎟ =⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟′ ′ ′ ⎝ ⎠−Δ⎝ ⎠




   



 (12.5.47)

12.5.4 Stark Effect
The shifting of atomic and molecular energy levels due to application of an 
electric field E is known as the Stark effect. The shift in energy levels results in a 
splitting of spectral lines. Here we consider the linear Stark effect where shifts in 
energy levels are proportional to the magnitude of the electric field. Second order 
effects are proportional to the square of the electric field. 

A hydrogen atom in the n = 2 state in an electric fi eld oriented in the z-direction  
ˆE=E k  with perturbation Ĥ eEz′ =

21 2200 200 200 210 200 211 200 21 1

22210 200 210 210 210 211 210 21 1
2

23211 200 211 210 211 211 211 21 1

2421 1 200 21 1 210 21 1 211 21 1 21 1

c cz z z z

cz z z z
eE E

cz z z z

cz z z z

       

       

       

       

−

−

−

− − − − −

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟ = Δ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

1

22

23

24

c

c

c

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 (12.5.48)
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With the nonzero matric elements

 200 210 210 200 03z z Eea   = =  (12.5.49)

our matrix equation becomes

 

2 0 21

0 2 22

2 23

2 24

3 0 0

3 0 0
0

0 0 0

0 0 0

E Eea c

Eea E c

E c

E c

−Δ⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟−Δ⎜ ⎟⎜ ⎟ =⎜ ⎟⎜ ⎟−Δ
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟−Δ⎝ ⎠⎝ ⎠

 (12.5.50)

Solving for E2

 

2 0

0 2

2

2

3 0 0

3 0 0
0

0 0 0

0 0 0

E Eea

Eea E

E

E

−Δ
−Δ

=
−Δ

−Δ

 (12.5.51)

we find E2 = 3Eea0, 3Eea0, 0, 0.
Substituting E2 = +3Eea0 into our matrix equation we find c21 = c22 and

 ( )2 200 210

1

2
  + = −  (12.5.52)

for E2 = 3Eea0 we have c21 = c22 and

 ( )2 200 210

1

2
  − = +   (12.5.53)

The states 211 and 21-1 are unperturbed by the electric field.

Maple Examples
Approximation methods in quantum mechanics are demonstrated in the Maple 
worksheet below. Calculations include the WKB probability of tunneling through 
barriers and the perturbed energy levels for nondegenerate and degenerate 
wavefunctions.

Key Maple commands: Array, assume, Eigenvectors, plot

Maple packages: with(LinearAlgebra): with(Student[LinearAlgebra]):

Programming: Function statements using ‘’

restart
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WKB Tunneling through a Ramp Potential

(1 abs( )) 1 1
: ( )

0

x x
V x

otherwise

− − < <⎧⎪= → ⎨
⎪⎩

 
1 | | 1 1

:
0

x x
V x

otherwise

− − < <⎧⎪= ⎨
⎪⎩



1 2 0

1 1 1
: : : : : : : 1 :

2 2 2
E x x V

−
= = = =

plot([V(x), E], x = 2 … 2, legend = [“V(x)”, “E”], linestyle = [solid, dash])

–2 –1 0 1 2
x

0.2

0.4

0.6

0.8

1

E

V(x)

Figure 12.5.2: Ramped potential

2

1

2 2
exp ( ( ) )

x

x

m
T V x E dx

⎛ ⎞⋅ ⋅⎜ ⎟= − ⋅ −
⎜ ⎟
⎝ ⎠

∫

 4

3e
m

T
−

= 

WKB Tunneling through a Hump Potential

pi pi
cos( )

2 : ( ) 2 2
0

x x
V x

otherwise

⎧ − < <⎪= → ⎨
⎪⎩
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cos( )
2 : 2 2

0

x x
V x

otherwise

 ⎧ − < <⎪= ⎨
⎪⎩



plot([V2(x), E], x = -2 … 2, legend = [“V(x)”, “E”], linestyle = [“solid”, “dash”])

–2 –1 0 1 2
x

0.2

0.4

0.6

0.8

1

E

V(x)

Figure 12.5.3: Humped potential

solve(V2(x) = E)

 
3



1 2

Pi Pi
: : :

3 3
x x= − =

 2 :
3

x

=

2

1

2 2
exp ( 2( ) )

x

x

m
T V x E dx

⎛ ⎞⋅ ⋅⎜ ⎟= − ⋅ −
⎜ ⎟
⎝ ⎠

∫

 

1 1
2 2 3 2 Elliptick 4 2 Elliptick

2 2

e

m

T

⎛ ⎞⎛ ⎞ ⎛ ⎞− +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠−
= 

Nondegenerate Perturbation: Delta Function inside a 3D Rectangular Well

restart
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assume(n :: , m :: , l :: , a > 0, b > 0, c > 0)

Pi2 Pi 2 2 Pi
psi : ( , , ) sin sin sin

m yn x l z
x y z

a a b b c c

⋅ ⋅⋅ ⋅ ⋅ ⋅⎛ ⎞⎛ ⎞ ⎛ ⎞= → ⋅ ⋅ ⋅ ⋅ ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

2 2 2
: ( , , ) sin sin sin

m yn x l x
x y z

a a b b c c

 ⎛ ⎞⎛ ⎞ ⎛ ⎞Ψ = ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠



0: ( , , ) Dirac Dirac Dirac
2 2 2

a b c
Hp x y z V x y z

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= → ⋅ − ⋅ − ⋅ −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 0: ( , , ) Dirac Dirac Dirac
2 2 2

a b c
Hp x y z V x y z

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠



2

0 0 0

( , , ) psi( , , ) dz dy dx
a b c

E simplify Hp x y z x y z
⎛ ⎞

Δ = ⋅⎜ ⎟⎜ ⎟
⎝ ⎠
∫ ∫ ∫

 

2 2 2

0

~ ~ ~
8 sin sin sin

2 2 2
~ ~ ~

l m n
V

E
a b c

  ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠Δ =

Degenerate Perturbation: Delta Function inside a 2D Box

restart
with(LinearAlgebra) :
assume(L > 0, V0 > 0)

2Pi2 Pi
: ( , ) sin sina

yx
x y

L L L

⋅⋅ ⎛ ⎞⎛ ⎞Ψ = → ⋅ ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

2
2sin sin

: ( , )a

yx

L Lx y
L

 ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠Ψ = 

Pi2 2 Pi
: ( , ) sin sinb

yx
x y

L L L

⋅⋅ ⋅ ⎛ ⎞⎛ ⎞Ψ = → ⋅ ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

2
2sin sin

: ( , )b

yx

L Lx y
L

 ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠Ψ = 

0: ( , ) Dirac Dirac
3 4

L L
Hp x y V x y

⎛ ⎞ ⎛ ⎞= ⋅ − −⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
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 0: ( , ) Dirac Dirac
3 4

L L
Hp x y V x y

⎛ ⎞ ⎛ ⎞= − −⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠


A := Array(1 … 2, 1 … 2) :

1,1
0 0

: ( , ) ( , ) ( , )dx dy
L L

a aA x y Hp x y x y= Ψ ⋅ ⋅Ψ∫ ∫

 0~
1,1 2

3
:

~

V
A

L
=

1,2
0 0

: ( , ) ( , ) ( , )dx dy
L L

a bA x y Hp x y x y= Ψ ⋅ ⋅Ψ∫ ∫

 0~
1,2 2

3 2
:

2 ~

V
A

L
=

2,1
0 0

: ( , ) ( , ) ( , )dx dy
L L

b aA x y Hp x y x y= Ψ ⋅ ⋅Ψ∫ ∫

 0~
2,1 2

3 2
:

2 ~

V
A

L
=

2,2
0 0

: ( , ) ( , ) ( , )dx dy
L L

b bA x y Hp x y x y= Ψ ⋅ Ψ∫ ∫

 0~
2,2 2

3
:

2 ~

V
A

L
=

with(Student[LinearAlgebra]) :
Eigenvectors(A)

 

0~
2
~

9 2
2

,2 2
1 10

V

L

⎡ ⎤ ⎡ ⎤
−⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

12.6 MATLAB EXAMPLES

Section 12.4 Schrödinger Equation in Higher Dimensions
The PDE Toolbox may be used to find a numerical solution to the 2D time-
independent Schrödinger equation

 2

2

2mE
 ∇ = −


 (12.8.1)

The eigenvalue equation to be solved is
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 ( )c u au du−∇⋅ ∇ + =  (12.8.2)

where 2

2
,  1,  0,  1,  

mE
u c a d = = = = =


Figure 12.6.1 shows a fi nite element mesh generated over an elliptical region 
with a ratio of semi-minor to semi-major axes of 0.6. The Dirichlet boundary 
condition u = 0 is applied to the elliptical boundary to model a particle of mass m 
confi ned to the interior. 

Figure 12.6.1:  Finite element mesh for the solution of  TISE describing a particle confined to a 2D elliptical well.  

Contour and shaded surface plots of the second and fourth excited state 
wavefunctions are shown in Figure 12.6.2 calculated with the fi nite element mesh 
in Figure 12.6.1. The resulting eigenvalues are  = 10.9, 21.2, 34.5, 36.0, 50.1, 55.7, 
70.0, 73.6, 80.6, 94.3, 95.8 with energy levels E = 2/2m. 

  
Figure 12.6.2  Wavefunctions corresponding to the second and fourth energy levels inside a 2D elliptical well.
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12.7 EXERCISES

Section 12.1 Schrödinger Equation

1. An electron is represented by the time-independent wavefunction

( ) x
x Ae

 −=
 

where  has units of inverse length. 
(a) Find the normalization constant A 
(b)  Determine the probability of fi nding the electron in the range x1 = 0 to

x2 = -1 
(c) Find the probability that the electron is outside the interval above 

2. A trial wave function for a particle is
(x) = Ax(x – L)
for L > 0 and 0  x  L
(a) Find the normalization constant A 
(b) Calculate the quantum uncertainty in position x 

3. A particle is described by the wavefunction 

( )
/ 0

        
00

x L xAe
x

x


−⎧ ≥⎪= ⎨ <⎪⎩
(a)  Find the normalization constant A 
(b)  Determine the probability of fi nding the particle in the range x = 0 to 

x = L.
(c)  Calculate the quantum uncertainty in position x  

4. Given a trial time-independent wavefunction

( )
/ 0

        
0 elsewhere

Ax L x L
x

≤ ≤⎧⎪= ⎨
⎪⎩

(a) Find the normalization constant A 
(b) Calculate the quantum uncertainty in position x  

5. An electron is represented by the time-independent wavefunction

( )
2     0

0             0

xAx e x
x

x




−⎧ ≥⎪= ⎨

<⎪⎩
(a) Find the normalization constant A
(b) Find the quantum uncertainty in position x 
(c)  Estimate the quantum uncertainty in momentum /p xΔ ≈ Δ  based on 

your answer in (b) 
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6. An electron is represented by the time-independent wavefunction

( ) 2xx Axe  −=

(a) Find the normalization constant A
(b)  Find the quantum uncertainties in position and momentum. Write the 

uncertainty product xp

7. Calculate  where 1 2
1 2( , ) ( )e ( )ei t i tx t x x  Ψ = + . 

8. Given the nonstationary wavefunction of a particle 

( ) ( ) ( )
1 2

1 2

1 1
,

2 2

E E
i t i t

x t x e x e 
− −

Ψ = + 

 calculate *

0

L

E i dx
t

∂⎛ ⎞= Ψ Ψ⎜ ⎟∂⎝ ⎠∫   where 1 and 2 are orthogonal and 

normalized 

9. Given that the wavefunction
(x, t) = Aei(kxt)

satisfi es the time-dependent Schrödinger equation for V(x) = 0
(a) Find a relation between k and 
(b) Calculate and p̂Ψ

10. An electron of mass m is confined to a 1D box. Use Heisenberg’s uncertainty 
principle to calculate the length of the box L such that the uncertainty in 
velocity is one-tenth the speed of light v = 0.1c.

11. Spherical C-60 Bucky balls (m = 1.2 × 1024 kg) are fired through a slit of two-
nanometer width (d = 2 × 109 m) with a speed of 106 m/s in the x-direction 
as shown in Figure 12.7.1.

Figure 12.7.1: Bucky balls fired through a slit. 

(a)  Calculate the y-momentum uncertainty of the Bucky balls in the slit 
(perpendicular to the incident direction) 

(b)  Use the y-momentum uncertainty obtained in (a) to estimate the spread 
in position of Bucky balls impacting a screen located 1.0 m to the right of 
the slit. 
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12. Show that ( ) 2 2* * * *∇⋅ Ψ ∇Ψ−Ψ∇Ψ = Ψ ∇ Ψ−Ψ∇ Ψ
13. Particles with energy E = V0 are incident from the left where V(x) = 0 into 

a region where V(x) = V0. Find the particles’ reflection and transmission 
probabilities. 

14. Particles with energy E = 2V0 are incident from the left on a potential

0

0 0

( )          0

0

x

V x V x a

x a

⎧ <
⎪= − ≤ ≤⎨
⎪ >⎩

Find the particles’ refl ection and transmission probabilities.

15. Write a program to animate the diffusive Gaussian wave packet with 
probability density 

( ) ( )22

2 4 2 2 2 2 2 2 2 2 2

22
, exp

4 / 4 /

gx v t
x t

a t m a t m a


 

⎛ ⎞−⎜ ⎟= −⎜ ⎟+ +⎜ ⎟
⎝ ⎠

 
  

with group velocity vg = k/m. Calculate the time-dependent width x(t). 

Section 12.2 Bound States I

16. A particle in a 1D square well is represented by the time-independent 
wavefunction

 
( ) ( )2

sin          0n

n x
x x L

L L




⎛ ⎞= ≤ ≤⎜ ⎟
⎝ ⎠

(a) Calculate the average values x and x2
(b) Calculate the average values pand p2 
(c) Calculate the uncertainty product xp as a function of n

17. Determine if the time-dependent wavefunctions 

( ) 2
, sin exp n

n

iE tn x
x t

L L

 −⎛ ⎞⎛ ⎞Ψ = ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 are an eigenfunction of  

(a) 
2p̂

i x i x

∂ ∂⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

 
. If so what are the corresponding eigenvalue?

(b) p̂
i x

∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠


. If so what are the corresponding eigenvalue?

(c) Ê i
t

∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠
 . If so what are the corresponding eigenvalue?
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18. Consider the potential function 

0

0

0( )         

x b

V b x a

a x aV x

V a x b

x b

∞ < −⎧ ⎫
⎪ ⎪− ≤ < −⎪ ⎪⎪ ⎪− ≤ ≤= ⎨ ⎬
⎪ ⎪< ≤⎪ ⎪
∞ >⎪ ⎪⎩ ⎭

 

E

V(x)

x = –b

V
0

x = –a x = a x = b

Figure 12.7.2: Piecewise constant potential for 18. 

(a) Write the form of the wavefunction in each region for E < V0

(b) Apply boundary conditions on the wavefunction at x = a and x = b 
(c)  Obtain a transcendental equation whose roots satisfy the energy spectrum 
Partial Solution: 
I(x) = Aex + Bex

II(x) = C cos kx + D sin kx (consider even and odd wavefunctions separately)
III(x) = Eex + Fex

I(b) = Aeab + Beab = 0
A = Be2ab 
III(b) = Eeab + Feab = 0
F = Ee2ab 

19. Repeat the previous exercise for E > V0

20. Show that the energy levels of the infinite 1D square well are obtained from 
the transcendental equation 

( )tan
k

kL


= −

 describing energy levels of the semi-infi nite square well in the limit 0V →∞  
where

( )0

2

2m V E


−
=





QUANTUM MECHANICS 641

21. Consider the potential function 0

0

0

0
( )        

0

x

W x a
V x

a x d

V d x

∞ <⎧ ⎫
⎪ ⎪≤ <⎪ ⎪= ⎨ ⎬≤ ≤⎪ ⎪
⎪ ⎪< < ∞⎩ ⎭

V(x)

V
0

E

x = 0 x = a x = d

W
0

Figure 12.7.3: Piecewise constant potential for 21.

(a)  Write the form of the wavefunction in each region for W0 < E < V0 

(b)  Apply boundary conditions on the wavefunction at x = 0, x = a, x = d and 
infi nity.

(c)  Obtain a transcendental equation whose roots satisfy the energy spectrum 

22. Covalent bonds can be modeled by a double well potential. Consider the 
double well function symmetric about x = 0 shown in Figure 12.7.4 with 
potential

0

0

( )         

0

x d

d x a

V a x aV x

a x d

x d

∞ < −⎧ ⎫
⎪ ⎪− ≤ < −⎪ ⎪⎪ ⎪− ≤ ≤= ⎨ ⎬
⎪ ⎪< ≤⎪ ⎪
∞ >⎪ ⎪⎩ ⎭

E

V(x)

x = –d

V
0

x = –a x = a
x = d

Figure 12.7.4: Piecewise constant potential for 22.
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(a)  Write the form of the wavefunction in each region for E < V0. Consider 
even and odd wavefunctions separately.

(b)  Apply boundary conditions on the even and odd wavefunctions at x = 0, 
x = a and  x = d.

(c)  Obtain transcendental equations whose roots satisfy the energy spectrum 
for both even and odd wavefunctions.  

Section 12.3 Bound States II

23. Consider the potential function defined by

0

            0

( )              0

              x

x

x
V x V x a

a
a

∞ <⎧ ⎫
⎪ ⎪⎪ ⎪= ≤ <⎨ ⎬
⎪ ⎪
∞ ≤⎪ ⎪⎩ ⎭

where E < V0 as shown in Figure 12.7.5.

E

V(x)

V
0

x = a

Figure 12.7.5: Piecewise defined potential for 23.

(a) Write down the form of the wavefunction for 0  x  a
(b) Apply boundary conditions at x = 0 and x = a
(c) Obtain a transcendental equation whose roots specify the energy spectrum.
(d) Write an integral expression for the normalization constant. 

24.  Consider the potential function defined by

1 2

0

0 0
( )              

x

x a
V x

c x c a x d

x d

∞ <⎧ ⎫
⎪ ⎪≤ <⎪ ⎪= ⎨ ⎬+ ≤ ≤⎪ ⎪
⎪ ⎪∞ >⎩ ⎭
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where 0 0
1

V W
c

d a

−
=

−
, 0 0

2

V a W d
c

d a

− +
=

−
 and E < V0 as in Figure 12.7.6.

E

V(x)

V
0

x = a x = d

W
0

Figure 12.7.6: Piecewise defined potential for 24.

(a) Write down the form of the wavefunction for 0  x  a and a  x  d
(b) Apply boundary conditions at x = 0, x = a and x = d. 
(c) Obtain a transcendental equation whose roots specify the energy spectrum.
(d) Write an integral expression for the normalization constant. 

25. The potential of an infinite square well with a delta function centered in the 
well is 

( )0

         / 2

( )          / 2 / 2

     / 2

x L

V x V x L x L

x L



⎧ ⎫∞ < −
⎪ ⎪= − − ≤ ≤⎨ ⎬
⎪ ⎪∞ >⎩ ⎭

(a)  Write the form of the wavefunctions in the well.
(b)  Obtain a transcendental equation whose roots determine the energy 

spectra.

26. The potential of a double delta function is given by 

0( )
2 2

L L
V x V x x 

⎡ ⎤⎛ ⎞ ⎛ ⎞= − − + +⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦

(a) Write the form of even and odd wavefunctions in the well 
(b) Obtain transcendental equations whose roots determine the energy 

spectra of the even and odd wavefunctions 
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27. Consider the potential function defined by

0

0

            0

( )              0

              x

x

x
V x V x a

a
V a

∞ <⎧ ⎫
⎪ ⎪⎪ ⎪= ≤ <⎨ ⎬
⎪ ⎪

≤⎪ ⎪⎩ ⎭
where E < V0 as in Figure 12.7.7.

E

V(x)

V
0

x = a

Figure 12.7.7: Piecewise defined potential for 27.

(a) Write down the form of the wavefunction for 0  x  a and a  x
(b) Apply boundary conditions at x = 0, x = a and infi nity. 
(c) Obtain a transcendental equation whose roots specify the energy spectrum.
(d) Write an integral expression for the normalization constant. 

28. Show that the wavefunctions of the ground state 0(x) and the first excited 
state 1(x) of the simple harmonic oscillator are orthogonal where

( ) ( )
( ) ( )

2
0 0

2
1 1

exp / 2

  exp / 2

x A m x

m
x A x m x

 


 

= −

= −






29. Given the ground state of the harmonic oscillator is 2
0 0( ) exp( / 2 )x A m x = −   

(a) Calculate the average values xand x2
(b) Calculate the average values pand p2
(c) Calculate the uncertainty product xp

30. Show that the ground state of the harmonic oscillator 

is in an eigenstate of 2p̂
i x i x

∂ ∂⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

 

31. Show that ˆ ˆ ˆ,N a a⎡ ⎤ =⎣ ⎦
† †ˆ ˆ ˆ,N a a⎡ ⎤ =⎣ ⎦



QUANTUM MECHANICS 645

Section 12.4 Schrödinger Equation in Higher Dimensions

32. Consider a particle moving in a two-dimensional space defined by V = 0 for 
0  x  L and 0  y  L and V =  elsewhere
(a)  Write down the wavefunctions for the particle in this well
(b)  Calculate the probability that the particle is in the corner region 0  x  L/4 

and 0  y  L/4

33. Consider a particle constrained to a 2D box with V = 0 for 0  x  a and 
0  y  b and V =  elsewhere 
(a) What are the normalized wavefunctions inside the box?
(b) What are the energy levels?

34. Consider a particle moving in a 3D space defined by V = 0 for 0  x  L. What 
percent of the time is the particle located within a distance L/10 from the sides 
of the box?

35. For hydrogen in the l = 3 state calculate the magnitude of L and the allowed 
values of Lz and .

36. Show that ( ) ( )2
2

2 2

1 1R r u r
r

r r rr r

⎛ ⎞∂ ∂∂
=⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

 where u(r) = rR(r)

37. For a spherically symmetric state of a hydrogen atom, the Schrödinger 
equation in spherical coordinates is

2 2 2

2

2

2

d d ke
E

m r dr rdr

 
 

⎛ ⎞
− + − =⎜ ⎟

⎝ ⎠



(a) Show that the 1s wavefunction for an electron in hydrogen,

( )1 0
3

0

1
( ) exp /s r r a

a



= −

satisfi es the Schrödinger equation
(b)  Show that the 1s wavefunction is normalized
(c)  Calculate the probability that the electron is at a distance greater than 5a0 

from the nucleus 
(d)  Given the charge density of the ground state of hydrogen ( ) 2

1 ( )sr q r =  
use Gauss’s law to show that the electric fi eld 

       

( ) 0

2 2

2 2
00 0

1 2 2
ˆ1 1

4

r

a r r
r e

ar a

−⎡ ⎤⎛ ⎞
⎢ ⎥= − + +⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

E r

38. The simplest probability distribution for hydrogen corresponding to the 1s 
state (n = 1,  = 0) is ( ) 2

1 4 *
sP r r= Ψ Ψ  or
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( )
2

1 3
00

4 2
exps

r r
P r

aa

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

Calculate the uncertainty r in the state where

1

0

sr P rdr

∞

= ∫   
2 2

1

0

sr P r dr

∞

= ∫   
22r r rΔ = −

Note that the integrals required above are not Gaussian but have the form

( ) 1

0

!
expn

n

n
r r dr



∞

+
− =∫

 Calculate the probability that the electron is within one Bohr radius of the 
nucleus.

39. For the 1s state of hydrogen, evaluate the most probable value of r by setting 
dP1s/dr = 0 and solving for r.

40. The radial part of the wavefunction for the hydrogen atom in the 2p state is 
given by

0/2
2

0

1

24

r a
pR re

a

−=

where a0 is the Bohr radius. Calculate the uncertainty r

41. The wavefunction for the hydrogen atom in the 2s state is given by

0/2
2 3/2

00

1
2

4 2

r a
s

r
e

aa



−⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 where a0 is the Bohr radius. Find the most probable radial position of the 
electron.

42. Find the wavefunctions (r, , ) and allowed energies of a particle contained 
in a finite spherical well with potential 

( )
0

0
     

r a
V r

V r a

≤⎧⎪= ⎨ >⎪⎩

43. Find the wavefunctions (r, , ) and allowed energies of a particle contained 
in a spherical shell potential

( ) 0        

r a

V r a r b

r b

⎧∞ <
⎪= ≤ ≤⎨
⎪∞ >⎩
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Section 12.5 Approximation Methods

44. A particle with energy E = V0/2 is incident from the left on a ramped potential 

 

( ) 0 / 0
        

0 elsewhere

V x a x a
V x

≤ ≤⎧⎪= ⎨
⎪⎩

Find the WKB probability that the particle will tunnel through the barrier.

45. A particle with energy E = V0/2 is incident from the left on a hump potential 

 

( ) ( )20 1 /
        

0

V x a x a
V x

x a

⎧ ⎡ ⎤− ≤⎪ ⎣ ⎦= ⎨ >⎪⎩
Find the WKB probability that the particle will tunnel through the barrier.

46. Obtain general expressions for the second and third order corrections to the 
energy levels and wavefunctions for the nondegenerate time-independent 
perturbation theory. 

47. Consider a particle in a 1D potential well as in Figure 12.7.8. Treat the delta 
potential of height W0 as a perturbation of the infinite square potential. Find 
the first order perturbation of the energy levels and wave functions. 

 

( )0

0

( )         0

x

V x W x d x L

x L



⎧ ⎫∞ <
⎪ ⎪= − ≤ ≤⎨ ⎬
⎪ ⎪∞ >⎩ ⎭

V(x)

W
0

x = 0 x = d x = L

Figure 12.7.8: Square well with a delta function. 

48. Consider a particle in a 1D potential well as in Figure 12.7.9.

 

( )0

0

( )     1 /     0

x

V x W x L x L

x L

⎧ ⎫∞ <
⎪ ⎪= − ≤ ≤⎨ ⎬
⎪ ⎪∞ >⎩ ⎭
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 Treat the tilted fl oor with slope –W0/L as a perturbation of the infi nite 
square potential. Find the fi rst order perturbation of the energy levels and 
wavefunctions. 

V(x)

W
0

x = 0 x = L

Figure 12.7.9: Square well with a ramped floor.

49. Consider a particle in a 1D potential well as in Figure 12.7.10. Treat the delta 
potential of height W0 as a perturbation of the semi-infinite square potential. 
Find the first order perturbation of the energy levels and wavefunctions. 

V(x)

W
0

x = 0 x = dx = a/2

V
0

Figure 12.7.10: Semi-infinite well with a delta function. 

50. Consider a particle in a 1D potential well as in Figure 12.7.11. Treat the delta 
potential of height W0 as a perturbation of the simple harmonic oscillator. 
Find the first order perturbation of the energy levels and wavefunctions. 
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W
0

V(x)

x = 0

Figure 12.7.11: Harmonic oscillator with a delta function.  

51. Use degenerate perturbation theory to find the perturbed energy levels and 
wavefunctions of a 2D harmonic oscillator with a delta function perturbation 
of height W0 at (x, y) = (0, 0)

52. A three-dimensional square well with unperturbed wave functions

( )
3/2

2
, , sin sin sin

m y yn x
x y z

L L L L

 


⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠



 and energy levels ( ) ( )
2 2

2 2 2

2
, ,

2
E n m n m

mL


= + +
   is given a corner 

perturbation
 ( )0  0 ,  0 ,  0H W x a y a z a′ = ≤ ≤ ≤ ≤ ≤ ≤  as shown in Figure 12.7.12. 
Use degenerate perturbation theory to fi nd perturbed energy levels and 
wavefunctions. 

Figure 12.7.12: 3D square well with a corner perturbation.   

53. Show that the nondegenerate perturbation of the hydrogen atom in the 
n = 1 state due to an electric field with perturbing Hamiltonian Ĥ eEz′ =  is 
zero. 
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13Chapter

STATISTICAL 
MECHANICS

Chapter Outline
13.1 Microcanonical Ensemble

13.2 Canonical Ensemble

13.3 Continuous Energy Distributions 

13.4 Grand Canonical Ensemble   

13.1 MICROCANONICAL ENSEMBLE 

The microcanonical ensemble is introduced in this section. The Shannon entropy 
formula is then computed from the Boltzmann equation and the number of 
microstates. The entropy of an array of spins is calculated. 

13.1.1 Number of Microstates and the Entropy 
The microcanonical ensemble describes systems with fixed total energy E, volume 
Vand number of particles N. Consider a system with N particles and M possible 
states. The total number of possible arrangements of the particles, or the number 
of microstates, is given by

 
1 2

!

! ! !M

N

n n n
Ω =

  (13.1.1)
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where the total number of particles is given by

 
1

M

i

i

N n
=

=∑  (13.1.2)

The number of particles in each state is ni. The entropy S is then given by the 
Boltzmann formula  S = kBln 

 
1 2

!
ln

! ! !
B

M

N
S k

n n n
=


 (13.1.3)

Expanding the log of the ratio as a difference of logs

 ( )1 2ln ! ln ! ! !B MS k N n n n⎡ ⎤= −⎣ ⎦  (13.1.4)

Applying Stirling’s approximation  to ln N! and expanding the log of the product 
in the second term gives

 
1

ln ln !
M

B i

i

S k N N N n
=

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
∑  (13.1.5)

The last term is then expanded using Stirling’s approximation

 ( )
1

ln ln
M

B i i i

i

S k N N N n n n
=

⎛ ⎞
= − − −⎜ ⎟

⎝ ⎠
∑  (13.1.6)

Using ni = N the factor of N cancels 

 
1

ln ln
M

B i i

i

S k N N n n
=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑  (13.1.7)

Factoring N from this expression 

 
1

ln ln
M

i
B i

i

n
S Nk N n

N=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑  (13.1.8)

and combining terms

 
1

ln
M

i i
B

i

n n
S Nk

N N=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑  (13.1.9)

We now write the occupation probability Pi = ni/N

 
1

ln
M

B i i

i

S Nk P P
=

= − ∑  (13.1.10)
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This formula is known as the Shannon entropy  or the information entropy . The 
entropy is a positive quantity since Pi  1 and ln Pi  0.

Figure 13.1.1: Array of spins with two possible orientations.

Example 13.1.1
Find the maximum and minimum entropy of an array of N spins where each spin 
can be up or down (Figure 13.1.1).

Solution: N = nu + nd where nu and nd are the respective number of spins pointing 
up and down.

The number of possible spin orientations in the array is

 
!

! !u d

N

n n
Ω =  (13.1.11)

For example, the number of possible ways to arrange nu = N/2 and nd = N/2 spins 
with N = 100 is

 

29100!
10

50!50!
Ω = ≈

 (13.1.12)

corresponding to the state of maximum entropy S = 66.8 kB. Minimum entropy 
states with all the spins up (nu = N, nd = 0) or all the spins down (nu = 0, nd = N) 
have S = kB ln 1 = 0 where

 
! !

1
!0! 0! !

N N

N N
Ω = = =  (13.1.13)

since there is only one way in which all the dipoles can either point up or down. 

Maple Examples
The Shannon entropy of the logistic map is calculated as a function of the 
parameter  in the Maple worksheet below.

Key Maple commands: add , Array , plot 

Maple packages: with(plots ):
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Programming: for loops, if statements

restart

Shannon Entropy of the Logistic Map

with(plots) :
f := (x, mu)  mux(1 – x)

 f := (x, )  x(1 – x)

N := 1000 : bins : = 40 : length_mu := 300 :
muu := Array(1 … length_mu):
p := Array(1 … bins)

 

1..40

 :
:

:

: _

Array

Data Type anything
p

Storage rectangular

O rder Fortran order

=

S := Array(1 … length_mu):

for j from 1 to length_mu do
x[0] : = 0.5;
muu[j] := 2.49 + 0.005j;
for n from 0 to N do
x[n + 1] : = f(x[n], muu[j]);
od:

for n from 20 to N do
for nn from 1 to bins do

if [ ]1nn nn
x n

bins bins

−
≤ <  then

p[nn] : = p[nn] + 1;
end if
od:
od:

for n from 20 to N do
for nn from 1 to bins do

if [ ]1nn nn
x n

bins bins

−
≤ <  then

p[nn] : = p[nn] + 1;
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end if
od:
od:
total : = add(p[nn], nn = 1 … bins);

S[j] := 0;
for nn from 1 to bins do
if p[nn] > 0 then

[ ] [ ] [ ] [ ]
: log ;

p nn p nn
S j S j evalf

total total

⎛ ⎞⎛ ⎞
= − ⋅⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
p[nn] : = 0;
end if
od:
od:
plot(muu, S, labels = [‘mu”, “S”], title = “Entropy of the Logistic Map”)

2

mu

3

3.2

0

3.02.6 2.8

1

S

3.83.63.4

Entropy of the Logistic Map

Figure 13.1.2: Shannon entropy of the logistic map as a function of the parameter μ. 
The downward spikes in entropy occur in periodic windows after the onset of chaos above about μ = 3.57. 

13.2 CANONICAL ENSEMBLE

The partition function for the canonical ensemble  is demonstrated as a sum of 
Boltzmann factors in this section. Thermodynamic quantities including the free 
energy, entropy, and specific heat are all obtained from the partition function. 
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Examples are given including a particle in a box, the simple harmonic oscillator 
and the rigid rotator. Separable partition functions are discussed for composite 
systems with the example of a stretched rubber band. 

13.2.1 Boltzmann Factor and Partition Function 
The canonical ensemble applies to physical systems with a fixed number of 
particles N and volume V in thermodynamic equilibrium at a fixed temperature T. 
The probability Pi that a given state will have energy Ei is given by the Boltzmann 
factor

 exp i
i

B

E
P

k T

⎛ ⎞
−⎜ ⎟

⎝ ⎠
  (13.2.1)

The probability is normalized by the partition function Z

 ( )exp i
i

E
P

Z

−
=  (13.2.2)

where  = 1/kBT and Z is the sum of all Boltzmann factors

 e iE

i

Z −= ∑  (13.2.3)

13.2.2 Average Energy
The average energy of states in a system

 i i

i

E P E= ∑  (13.2.4)

becomes

 ( )1
expi i

i

E E E
Z

= −∑  (13.2.5)

This can be written compactly as

 
ln Z

E


∂
= −

∂  (13.2.6)

Using 2/ / ,Bk T T∂ ∂ = − ∂ ∂  we can express the average energy as

 
2 ln

B

Z
E k T

T

∂
=

∂
 (13.2.7)

The total energy is the number of particles times the average energy E = NE.
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13.2.3 Free Energy and Entropy 
The free energy F is less than the total energy E 

 F = E  TS (13.2.8)

where S is the entropy of the system. F represents the energy available to do useful 
work that decreases as the entropy S and temperature T increase. The entropy 
may be obtained by differentiation with respect to temperature

 
,N V

F
S

T

∂⎛ ⎞= −⎜ ⎟∂⎝ ⎠
 (13.2.9)

for fixed volume and number of particles denoted by the subscripts N, V. We may 
write the free energy in terms of the partition function 

 F NkBT ln Z (13.2.10)

and the entropy by differentiating F with respect to T

 ( )lnBS Nk Z = + Ε  (13.2.11)

From this expression, we see that the entropy is zero at T = 0 K in accord with the 
third law of thermodynamics. 

13.2.4 Specifi c Heat 
The temperature of a system will increase as energy is added. The specific heat C is 
numerically equivalent to the energy required to increase the system temperature 
by 1 K. Written as

 
E

C
T

∂
=

∂
 (13.2.12)

we see that the units of C are J/K. An equivalent formula is obtained by 
differentiating the average energy with respect to 

 
2

1

B

C E
k T 

∂
= −

∂
 (13.2.13)

13.2.5 Rigid Rotator  
The energy levels of a rigid rotator such as a diatomic molecule is 

 ( )
2 2

1
2 2

L
E

I I
= = +

    (13.2.14)

where L is the angular momentum and I is the moment of inertia. The degeneracy 
of the th state is g = 2 + 1, thus the partition function 
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 ( )
0

expZ g E
∞

=

= −∑  


 (13.2.15)

becomes

 ( ) ( )
2

0

2 1 exp 1
2

Z
I

∞

=

⎛ ⎞
= + − +⎜ ⎟

⎝ ⎠
∑


    (13.2.16)

At low temperatures, we may approximate Z by taking the fi rst two terms where 
most of the molecules are in the ground state or the fi rst excited state

 

2

1 3expZ
I

⎛ ⎞
= + −⎜ ⎟

⎝ ⎠


 (13.2.17)

The average energy is

 ( )
2

2

ln 3 /

3 exp /

Z I
E

I 

∂
= − =

∂ +


  (13.2.18)

with specific heat

 ( )
( )
( )

2
22

2 2 22
2

3 /1 3 / 1

3 exp / 3 exp /B B

II
C

k T k TI I  

⎡ ⎤∂ ⎢ ⎥= − =
⎢ ⎥∂ + ⎡ ⎤+⎣ ⎦ ⎣ ⎦


 

 (13.2.19)

The free energy is

 
2

ln ln 1 3expF Nk T Z Nk T
I


Β Β

⎛ ⎞⎛ ⎞
= − = − + −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠


 (13.2.20)

with the entropy

 ( ) ( )
2

2

2
/

/

3 /
ln ln 1 3e

1 3e

I

I

F I
S Nk T Z Nk

T T





−
Β Β −

⎡ ⎤
∂ ∂ ⎢ ⎥= − = = + +⎢ ⎥∂ ∂ +⎢ ⎥⎣ ⎦





 (13.2.21)

13.2.6 Harmonic Oscillator 
A harmonic oscillator potential U(x) = kx2/2 corresponding to a linear restoring 
force F(x) = kx can be used to model the vibrational energy levels of molecules. 
Solutions to the Schrödinger equation with harmonic oscillator potential give 
evenly spaced energy 

 
1

          0,  1,  2,...
2

nE n n
⎛ ⎞= + =⎜ ⎟
⎝ ⎠

  (13.2.22)
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The resulting partition function 

 
0

1
exp

2n

Z n  
∞

=

⎡ ⎤⎛ ⎞= − +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

∑   (13.2.23)

can be written factoring the zero-point energy term

 ( )
0

exp exp
2 n

Z n
 

 
∞

=

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

∑   (13.2.24)

This is a geometric series  

 
0

1

1

n

n

r
r

∞

=

=
−∑  (13.2.25)

with r = exp() so that

 
( )

exp
2

1 exp
Z

 

 

⎛ ⎞−⎜ ⎟
⎝ ⎠=

− −




 (13.2.26)

The average energy, specific heat, free energy, and entropy may now be calculated. 

13.2.7 Composite Systems 
Consider a system of N noninteracting particles each with possible states 1i, 2i, 
…, Ni and with possible energies E1i of particle 1, E2i of particle 2, etc. Possible 
energy levels of the composite system are E1i + E2i + … + ENi so that the partition 
function 

 
( )1 2 1 2

total

1 ,2 , , 1 ,2 , ,

i i Ni i i Ni
E E E E E E

i i Ni i i Ni

Z e e e e
   − + + + − − −= =∑ ∑

 
  (13.2.27)

may be factored into N sums 

 
1 2

1 2

total

1 2 1

i i Ni

N

N
E E E

k

i i Ni k

Z Z Z

Z e e e Z  − − −

=

= =∑ ∑ ∑ ∏
 

 (13.2.28)

As an example, the partition function of a diatomic gas can be separated into 
translational, rotational and vibrational components.

13.2.8 Stretching a Rubber Band 
As an example of a one-dimensional composite system we consider a polymer 
chain  consisting of N segments each of length L. The fully stretched length 
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of the chain is NL. When stretched small distances x, the restoring force is f 
corresponding to a potential energy function

 ( )U x f x= − ⋅  (13.2.29)

The total length of the chain is 

 
1

N

i

i

x L 
=

= ∑   (13.2.30)

where i = 1 corresponds to the segment pointing to the right and i = 1 
corresponds to the segment pointing to the left. Given the partition function 

 
1

exp
N

i

i

Z fL 
=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑  (13.2.31)

it may be shown that

 ( )2cosh
N

Z fL=  (13.2.32)

to calculate the average energy, entropy, free energy and specific heat of the chain. 

Maple Examples
The partition function, average energy and specific heat of a particle in a square 
well is computed in the Maple worksheet below. The partition function, average 
energy, free energy and entropy of a simple harmonic oscillator and a two-state 
system are also calculated. 

Key Maple commands: convert , diff , expand,  factor , plot , semilogplot , subs , sum

Maple packages: with(plots ):

restart

Particle in a Square Well

E := (n)  E0n2

 E := (n)  E0 n2

Z := Sum(exp(-betaE(n)), n = 1 … infinity)

 
20

1

: E n

n

Z e 
∞

−

=

= ∑
AvgE := -diff(log(Z), beta)

 

( )2

2

2 0

1

0

1

0

:

E n

n

E n

n

E n e

AvgE

e





∞
−

=
∞

−

=

−
= −

∑

∑
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2

( , beta)
:

diff AvgE
C expand

kB T

⎛ ⎞
= − ⎜ ⎟

⋅⎝ ⎠

 
2 2

2
2

2
4 2

2 2

0 0
1 1

2
2 2

0 01 1

0 0

:
1 1

E n E n
n n

E n E nn n

n n
E E

e e
C

kBT kBT
e e

 

 

∞ ∞

= =
∞ ∞

= =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠= −
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑

∑ ∑

{ }1
0 1, beta ,subs E AvgE

T

⎛ ⎞
= =⎜ ⎟

⎝ ⎠

 

( )2

2

2

1

1

n

T

n

n

T

n

n e

e

∞ −

=

∞ −

=

−
−
∑

∑

{ }1
1: ( ) 0 1,beta , 1 ,C T subs E kB C

T

⎛ ⎞
= → = = =⎜ ⎟

⎝ ⎠

 { }1
1: 0 1, , 1 ,C T subs E kB C

T


⎛ ⎞
= = = =⎜ ⎟

⎝ ⎠


with(plots) :
semilogplot(C1(T), T = 0.1 … 100)
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Figure 13.2.1: Specific heat vs. temperature of a particle in a square well.

assume(beta > 0, h > 0,  > 0)



662 MATHEMATICAL METHODS FOR PHYSICS USING MATLAB AND MAPLE

Harmonic Oscillator 

1
: ( )

2
E n n 

⎛ ⎞= → + ⋅⎜ ⎟
⎝ ⎠



 
1

: ( )
2

E n n 
⎛ ⎞= +⎜ ⎟
⎝ ⎠

 

Z := sum(exp(-betaE(n)), n = 0 … infinity)

 

~ ~ ~

2

~ ~ ~
:

1

e
Z

e

 

 
=

−





Eavg := -factor(diff(log(Z), beta))

 
( )

( )
~ ~

~ ~ ~

~ ~ 1
:

2 1
avg

e
E

e

 

 

 +
=

−







F := kBTexpand(ln(Z))

 ( )~ ~ ~ ~ ~
: ln 1

2
BF k T e    ⎛ ⎞= − − − +⎜ ⎟

⎝ ⎠
 

1
: beta ,

B

F subs F
k T

⎛ ⎞= =⎜ ⎟⋅⎝ ⎠

 ( )~ ~
~ ~

: ln 1
2

Bk T
B

B

F k T e
k T


⎛ ⎞

⎜ ⎟= − − − +⎜ ⎟
⎝ ⎠




S := expand(diff(F, T))

 ( )
( )

~ ~
~ ~

~ ~

~ ~
: ln 1

1

B

B

B

k T
k T

B

k T

e
S k e

T e







= − −

−








restart

Two-State System 

Z := exp(-betaepsilon) + exp(betaepsilon)

 Z := e  + e  

Eavg := -factor(diff(ln(Z), beta))

 
( )e e

:
e e

avgE
 

 

∈ ∈

∈ ∈

∈ −
=

+
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Eavg := convert(Eavg, trig)

 
sinh( )

:
cosh( )

avgE




∈ ∈
=

∈

F := -NkBTexpand(ln(Z))

 F := N kB T ln(e  + e )

1
: ,

B

F subs beta F
k T

⎛ ⎞= =⎜ ⎟⋅⎝ ⎠

 ( ): ln e eB Bk T k T
BF Nk T

∈ ∈
−

= − +

S := -diff(F, T)

 ( ) 2 2

e e

: ln e e

e e

B B

B B

B B

k T k T

B

k T k T B B
B

k T k T

Nk T
k T k T

S Nk

∈ ∈
−

∈ ∈
−

∈ ∈
−

⎛ ⎞
⎜ ⎟∈ ∈

−⎜ ⎟
⎝ ⎠= + +

+
S := expand(convert(S, trig))

  

sinh

: ln(2) ln cosh

cosh

B
B B

B

B

N
k T

S Nk Nk
k T

T
k T

∈⎛ ⎞∈ ⎜ ⎟⎛ ⎞∈⎛ ⎞ ⎝ ⎠= + −⎜ ⎟⎜ ⎟ ∈⎛ ⎞⎝ ⎠⎝ ⎠ ⎜ ⎟
⎝ ⎠

13.3 CONTINUOUS ENERGY DISTRIBUTIONS 

In this section, thermodynamic quantities are calculated for systems with 
continuous energy distributions, partition function and average energy. Examples 
of a particle in a box, the Maxwell-Boltzmann speed distribution of an ideal gas 
and a relativistic gas are given.

13.3.1 Partition Function and Average Energy 
The partition function corresponding to a system with a continuous energy 
distribution is obtained by integrating the Boltzmann factor over all internal 
degrees of freedom. If the energy is only a function of the parameter r then

 
( )

all 

E r

r

Z e dr
−= ∫  (13.3.1)
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The probability that the system is between a and b is then 

 ( ) ( )1
b

E r

a

P a r b e dr
Z

−≤ ≤ = ∫  (13.3.2)

The average energy E of a system with continuous energy spectrum in 
thermodynamic equilibrium is similarly obtained

 ( ) ( )

all 

1 E r

r

E E r e dr
Z

−= ∫  (13.3.3)

13.3.2 Particle in a Box 
Systems with discrete energy levels can be modeled as having a continuous energy 
distribution if the energy levels are closely spaced. The energy levels of a particle 
contained in a 1D box of length L are 

 

2 2
2 2

122
nE n E n

mL


= =


 (13.3.4)

so that our partition function becomes

 ( )2
1

1

exp
n

Z E n
∞

=

= −∑  (13.3.5)

For large L the energy levels are more closely spaced so that we may approximate 
the infinite sum by the Gaussian integral 

 ( )2
1

0

expZ E n dn
∞

= −∫  (13.3.6)

with solution

 
2

2 2 2

2 2

2
B BmL k T mk T

Z L
h




= =


 (13.3.7)

The square root has units of inverse length since Z is dimensionless.

13.3.3 Maxwell-Boltzmann Distribution  
In a gas at temperature T, the distribution of molecular speeds is proportional to 
a Boltzmann factor where the probability that the ith molecule has energy Ei is 
proportional to

 
2

exp exp
2

i

B B

E mv

k T k T

⎛ ⎞⎛ ⎞
− = −⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
  (13.3.8)
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where the energy Ei = mv2/2. Gas molecules obeying Maxwell-Boltzmann statistics 
have a normalized distribution of speeds described by

 ( )
3/2 2

24 exp
2 2B B

m mv
n v dv v dv

k T k T




⎛ ⎞⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (13.3.9)

To calculate the average speed, we evaluate the integral 

 ( )
0

8 Bk T
v vn v dv

m

∞

= =∫  (13.3.10)

To calculate the average of v2 we evaluate 

 ( )2 2

0

3 Bk T
v v n v dv

m

∞

= =∫  (13.3.11)

The root mean square speed  is then given by 

 2
rms

3 Bk T
v v

m
= =  (13.3.12)

13.3.4 Relativistic Gas 
There is no maximum speed limit of molecules in the Maxwell-Boltzmann 
distribution where the tail region of the n(v) plot extends to infinity. However, the 
maximum speed of molecules should not be greater than the speed of light c in 
accordance with special relativity. Using the relativistic form of the kinetic energy 
( – 1)mc2 for a hypothetical gas

 ( ) ( ) ( ) 2
2 1

4 exp
B

mc
n v dv A v dv

k T




⎛ ⎞−
= −⎜ ⎟⎜ ⎟

⎝ ⎠
 (13.3.13)

with 2 21/ 1 /v c = −  we have

 
( )

2
2

2

2

1
( ) 4 exp 1

1
B

mc
n v dv A v dv

k T v

c


⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟−⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (13.3.14)

The normalization constant A is determined by numerically evaluating

 ( )
0

1

c

n v dv =∫  (13.3.15)
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In terms of u = v/c and TR = mc2/kB 

 

2

2

1

2

2
0

1
exp 1

1
( )

1
exp 1

1

R

R

T
u du

T u
n u du

T
u du

T u

⎛ ⎞⎛ ⎞
−⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠=

⎛ ⎞⎛ ⎞
′ ′−⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟′−⎝ ⎠⎝ ⎠

∫
 (13.3.16)

the average speed 

 ( )
1

0

v c n u udu= ∫   (13.3.17)

and average speed squared

 ( )
1

2 2 2

0

v c n u u du= ∫  (13.3.18)

Note that this analysis neglects collisional effects and particle pair creation and 
annihilation at high energies.  

Maple Examples
The normalized Maxwell-Boltzmann (M-B) velocity distribution of a gas at 
three temperatures is plotted in the Maple worksheet below. The average velocity 
and average squared velocity of the Maxwell-Boltzmann distribution is then 
computed. The velocity distribution of a relativistic gas is then computed and 
plotted at three temperatures. The average velocity of the relativistic gas is then 
computed. 

Key Maple commands: assume , evalf , plot , simplify 

restart

Maxwell-Boltzmann Distribution 

assume(m > 0, kB > 0, T > 0)

3/2

2: ( , , ) 4 exp
2 Pi 2B B

m m v
n m T v Pi v

k T k T

⋅⎛ ⎞ ⎛ ⎞= → ⋅ ⋅ ⋅ ⋅ −⎜ ⎟ ⎜ ⎟⋅ ⋅ ⋅ ⋅ ⋅⎝ ⎠ ⎝ ⎠

 

2
3/2

22: ( , , ) 2 e B

mv

k T

B

m
n m T v v

k T




−⎛ ⎞= ⎜ ⎟
⎝ ⎠
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Plot of Maxwell-Boltzmann Distribution 

kB := 1
kB := 1

plot([n(1, 10, v), n(1, 100, v), n(1, 1000, v)], v = 0 … 120, linestyle = [solid, 
 dash, dashdot], legend = [‘kT = 10’, ‘kT = 100’, ‘kT = 1000’])
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Figure 13.3.1: Plot of the M-B velocity distribution at three temperatures.

Show That the M-B Distribution Is Normalized 

0

( , , )n m T v dv

∞

∫

 

3/2
3/2

3/2

~

~

~

~

m

T

m

T



⎛ ⎞
⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟
⎝ ⎠

simplify(%)
1

Calculate <v2>

2

0

( , , )v n m T v dv

∞

⋅∫
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⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

simplify(%)

 
3 ~

~

T

m

Calculate <v>

0

( , , )v n m T v dv

∞
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3/2
2

2

~
2 2 ~

~

~

m
T

T

m




⎛ ⎞
⎜ ⎟
⎝ ⎠

simplify(%)

 
2 2 ~

~

T

m

Relativistic Gas

restart
m : = 1.6710-27; c : = 3.0108; k : = 1.3810-23;

 m : = 1.670000000 1027

 c : = 3.000000000 108

  k : = 1.380000000 1023

2

alpha :
m c

k

⋅
=

  : = 1.089130435 1013

2

2

1
2

20

1 1
exp 1

sqrt(1 )
: ( , )

1 1
exp 1

sqrt(1 )

u
T u

nrel T u

evalf w dw
T w

⎛ ⎞⎛ ⎞⋅ −⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠= →
⎛ ⎞⎛ ⎞⎛ ⎞⋅ −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠⎝ ⎠
∫
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evalf w dw

−
− +

−
− +

=
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⎜ ⎟
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( )
2 2 2

[ (0.01, ], (.1, , (1, )], 0 1, [ , , ],

0.01 , 0.1 ,

plot nrel u nrel u nrel u u linestyle solid dash dashdot

mc mc mc
legend T T T

k k k

= =

⎡ ⎤
= ′ = ⋅ ′ ′ = ⋅ ′ ′ = ′⎢ ⎥⎣ ⎦
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Figure 13.3.2: Plot of the velocity distribution of a relativistic gas at three temperatures.

Normalization of Relativistic Velocity Distribution 

( )1

0
(.001, )evalf nrel v dv∫

 1.000000000

Average Velocity of Relativistic Gas 

( )1

0
(.1, )evalf v nrel v dv⋅∫

 0.3973286862

13.4 GRAND CANONICAL ENSEMBLE 

The partition function for the grand canonical ensemble is evaluated as a sum 
of Gibbs factors in this section. Calculated thermodynamic quantities include 
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average values of energy and particle number. Bose-Einstein and Fermi-Dirac 
statistics are discussed with examples including black-body radiation and the 
Debye theory of specific heat.

13.4.1 Gibbs Factor 
The grand canonical ensemble describes open systems with fixed temperature T, 
chemical potential  and volume V where the total number of particles is variable. 
For multiple species, we express the Gibbs factor like the Boltzmann factor 

 
,

, exp
i j j j

i j

B

E N
P

k T

−⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠
  (13.4.1)

where Ei,j is the ith energy level, j is the chemical potential and Nj is the number 
of particles of the jth species. The Gibbs factor is proportional to the probability 
Pi,j of finding a particle of a given species with energy Ei,j. The probability is 
normalized by the grand canonical partition function 

 ( ),

,

expG i j j j

i j

Z E N = − +∑  (13.4.2)

with 1 = kBT so that

 
( ),

,

exp i j j j

i j

G

E N
P

Z

 − +
=  (13.4.3)

and

 ,
,

1i j

i j

P =∑  (13.4.4)

13.4.2 Average Energy and Particle Number 
The average energy is calculated in the grand canonical ensemble  as

 , ,

,

i j i j

i j

E P E= ∑  (13.4.5)

or

 ( ), ,

,

1
expi j i j j j

G i j

E E E N
Z

 = − +∑  (13.4.6)

This can be expressed as a derivative

 
2ln lnG G

B

Z Z
E k T

T

∂ ∂
= − =

∂ ∂
 (13.4.7)
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We may also compute the average particle number N

 ( ), ,
,

1
expi j i j j j

G i j

N N E N
Z

 = − +∑  (13.4.8)

13.4.3 Single Species 
For a single species with chemical potential   the partition function is a single 
sum

 ( ) ( )exp expG i

i

Z E N = −∑  (13.4.9)

defining the parameter  = . We can calculate the average particle number

 
ln GZ

N


∂
=

∂  (13.4.10)

13.4.4 Grand Potential 
From the grand potential defined as

 lnB Gk T ZΩ = −  (13.4.11)

we may compute the entropy S at constant  and V 

 
,V

S
T 

∂Ω⎛ ⎞= −⎜ ⎟∂⎝ ⎠
 (13.4.12)

and the pressure P at constant  and T 

 
,T

P
V 

∂Ω⎛ ⎞= −⎜ ⎟∂⎝ ⎠
  (13.4.13)

13.4.5 Comparison of Canonical and Grand Canonical 
Ensembles 

Table 13.4.1 compares the canonical and grand canonical ensembles. In both 
ensembles, once the partition function is found then thermodynamic quantities 
such as average energy and entropy may be calculated.  

TABLE 13.4.1: Comparison of thermodynamic quantities evaluated in the 
canonical and grand canonical ensembles. 

Canonical Ensemble Grand Canonical Ensemble

Boltzmann factor 

( )expi iP E−
Gibbs factor 

( ),expij i j j jP E N − +

(contd.)
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Canonical Ensemble Grand Canonical Ensemble

Partition function 

e iE

i

Z −= ∑
Grand canonical partition function 

( ),

,

expG i j j j

i j

Z E N = − +∑

Normalized probability 

( )exp i
i

E
P

Z

−
=

Normalized probability 

( ),

,

exp i j j j

i j

G

E N
P

Z

 − +
=

Average energy

2ln ln
B

Z Z
E k T

T

∂ ∂
= − =

∂ ∂

Average energy

2ln lnG G
B

Z Z
E k T

T

∂ ∂
= − =

∂ ∂

Helmholtz free energy

lnBF Nk T Z= −
Grand potential 

lnB Gk T ZΩ = −

13.4.6 Bose-Einstein Statistics  
Bose-Einstein statistics are applicable to integer spin particles such as photons and 
phonons. Photons are spin one particles while phonons are quanta of vibration 
without spin (spin zero). Such particles do not obey the Pauli exclusion principle  
so there is no limit to the number of particles that may be in each state ns. We 
write the partition function summing over all possible configurations R

 ( )expG R

R

Z E N = − +∑  (13.4.14)

with

 1 1 2 2R s s

s

E n E n E n E= + + = ∑  (13.4.15)

The variable number of particles N can be written

 1 2 s

s

N n n n= + + = ∑  (13.4.16)

allowing us to factor the partition function 

 
( ) ( )1 1 2 2 1 2

1 2, ,

n E n E n n

G

n n

Z e e
 − + + + += ∑  


 (13.4.17)

The factor

 1 1 1 2 2 2

1 20 0

n E n n E n
G

n n

Z e e   
∞ ∞

− + − +

= =

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
∑ ∑   (13.4.18)
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is written as an infinite product

 
00

k k k

k

n E n
G

nk

Z e  
∞ ∞

− +

==

⎛ ⎞
= ⎜ ⎟

⎜ ⎟
⎝ ⎠
∑∏  (13.4.19)

Evaluating the sum

 
0

1

1 k
G E

k

Z
e
 

∞

− +
=

⎛ ⎞= ⎜ ⎟−⎝ ⎠
∏  (13.4.20)

and taking the logarithm 

 ( )
0 0

1
ln ln ln 1

1
k

k

E
G E

k k

Z e
e

 
 

∞ ∞
− +

− +
= =

⎛ ⎞= = − −⎜ ⎟−⎝ ⎠
∑ ∑  (13.4.21)

The average number of particles with energy Ek is shown as

 ( )
1 1

ln
1 1

k

k k

E

k G E E
k

e
n Z

E e e

 

   

− +

− + −

∂
= − = =

∂ − −
 (13.4.22)

This formula expressed as a continuous function of energy ( )BE kf E n=  is 
known as the Bose-Einstein distribution  where

 ( ) ( )
1

1
BE E

f E
e
 −

=
−

 (13.4.23)

13.4.7 Black-Body Radiation  
By treating emitters of radiation as discrete (as opposed to continuous), Planck 
obtained a very good fit to measured black-body spectra. For a cubical cavity of 
side L with volume V = L3, the allowed wavelengths are  = 2L/n corresponding to 
the energy levels

 
2

hc hc
E hf n

L
= = =  (13.4.24)

where 2 2 2 2
x y zn n n n= + + . The number of standing electromagnetic waves in a 

cubical cavity of side L between n and n + dn expressed as the first octant of a 
spherical shell

 ( ) 2 21
2 4

8
g n dn n dn n dn = =  (13.4.25)

with a factor of 2 for two photon polarizations and n = 2Lf/c

 ( )
3

22L
g f df f df

c

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (13.4.26)
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The energy density u(f, T)df is obtained by multiplying the average energy E by 
g(f)df divided by the volume L3 

 ( )
2

3

8
,

f
u f T df E df

c


=   (13.4.27)

The average energy of photons may be obtained using the Bose-Einstein 
distribution with zero chemical potential 

 ( ) ( )
2

3

8
,

exp / 1B

f hf
u f T df df

hf k Tc

 ⎛ ⎞
= ⎜ ⎟⎜ ⎟−⎝ ⎠

 (13.4.28)

The radiated flux , or power per area P/A, is obtained from integrating u(f, T) 
times c/4

 ( )
0

,
4

P c
u f T df

A

∞

= ∫  (13.4.29)

This integral is evaluated in Section 3.5 giving

 4P
T

A
=  (13.4.30)

where  is the Stephan-Boltzmann constant. To find the frequency corresponding 
to the maximum power we evaluate

 ( ), 0
d

u f T
df

=  (13.4.31)

This gives a transcendental equation that must be numerically solved. Expressed 
in terms of the maximum wavelength max = c/fmax Wien’s law  is thus obtained 

 
3

max 2.9 10 mKT −= ×  (13.4.32)

13.4.8 Debye Theory of Specifi c Heat 
The Debye theory of specific heat treats lattice vibrations as spin zero quanta that 
obey Bose-Einstein statistics. Whereas the maximum mode number is infinite for 
photons, in a solid the maximum mode number will be limited by the separation 
between atoms. Vibrational energy levels are given by

 shv
E hf


= =  (13.4.33)

where vs is the speed of sound in the solid. For a cubical solid of side L with volume 
V = L3, the allowed wavelengths are  = 2L/n corresponding to the energy levels
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2

shv
E n

L
=  (13.4.34)

The maximum energy level

 max

min

shv
E


=  (13.4.35)

with the minimum phonon wavelength taken as twice the atomic separation min = 
2L/nmax. The maximum mode number for phonons in a solid with N atoms is 

3
max .n N=  The total energy of lattice vibrations is thus

 ( ) ( )( )
max max max

1 1 1x y z

n n n

n n n

U E n N E n
= = =

= ∑ ∑∑  (13.4.36)

where 
2 2 2 2

x y zn n n n= + + . The average number of phonons with energy E(n) 

 ( )( ) ( )/
3

e 1BE n k T
N E n =

−
  (13.4.37)

with the factor of three for vibrations in x-, y- and z- directions. Making an 
integral approximation to the sum by treating the mode numbers as continuous 

 
( )

( )
( )

( )

max max maxmax max max

/ /
1 1 1 0 0 0

3 3
e 1 e 1B B

x y z

n n nn n n

x y zE n k T E n k T
n n n

E n E n
U dn dn dn

= = =

= ≈
− −

∑ ∑∑ ∫ ∫ ∫  (13.4.38)

This integral is converted to spherical coordinates integrating over the first octant 
of a sphere with positive nx, ny and nz 

 
( )

( )

/2 /2

2

/
0 0 0

3 sin
e 1B

R

E n k T

E n
U n dn d d

 

  =
−∫ ∫ ∫  (13.4.39)

Integration over angular coordinates gives /2 and

 

2

/2

0

3

2 2 e 1s B

R

s

hv n Lk T

hv n n
U dn

L


=

−∫  (13.4.40)

The integral is written in dimensionless form making the substitution 

 
2

s

B

hv n
x

Lk T
=  so that 

4

3 32 B

s

Lk T
n dn x dx

hv

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
  (13.4.41)
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and

 
max

3
3

4

0

23

2 e 1

x

B
B x

s

Lk x
U k T dx

hv

 ⎛ ⎞
= ⎜ ⎟

−⎝ ⎠
∫  (13.4.42)

We define the Debye temperature  TD such that

 max
2

s D

B

hv R T
x

Lk T T
= =  and 3

6
 

2
s

D

B

hv N
T

Lk 
=   (13.4.43)

giving

 
4 3

3

0

9
e 1

DT

T

B x
D

T x
U Nk dx

T
=

−∫  (13.4.44)

The specific heat C is then obtained

 ( )
2 /24

2 2
/2

0

3 1 e

2 2 e 1

s B

s B

R hv n Lk T
s

hv n Lk T
B

hvdU n
C dn

dT L k T

 ⎛ ⎞
= = ⎜ ⎟

⎝ ⎠ −
∫  (13.4.45)

Expressed in dimensionless form 

 

( )
3 4

3 2

0

9
e 1

DT

T x

B
x

D

T x e
C Nk dx

T
=

−
∫  (13.4.46)

13.4.9 Fermi-Dirac Statistics  
Fermi-Dirac statistics apply to half integer spin particles such as electrons that 
obey the Pauli exclusion principle. A given state can be vacant ni = 0 or occupied 
ni = 1. The factored partition function 

 1 1 1 2 2 2

1 2

1 1

0 0

n E n n E n
G

n n

Z e e   − + − +

= =

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
∑ ∑   (13.4.47)

is written as an infinite product

 

1

00

k k k

k

n E n
G

nk

Z e  
∞

− +

==

⎛ ⎞
= ⎜ ⎟

⎜ ⎟
⎝ ⎠
∑∏  (13.4.48)
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Carrying out the summation

 ( )
0

1 kE
G

k

Z e  
∞

− +

=

= +∏  (13.4.49)

and taking the logarithm

 ( )
0

ln ln 1 kE
G

k

Z e  
∞

− +

=

= +∑  (13.4.50)

we may calculate the average number of particles with energy Ek

 
1

ln
1

k

k

E

k G E
k

e
n Z

E e

 

 

− +

− +

∂
= − =

∂ +
 (13.4.51)

Dividing by the exponential gives

 
1

1k
k E

n
e
 −

=
+

 (13.4.52)

This formula expressed as a continuous function of energy ( )FD kf E n=  is 
known as the Fermi-Dirac distribution  where the chemical potential is identified 
at the Fermi energy   = EF. When E = EF we have fFD(E) = 1/2 for all temperatures. 
At absolute zero 

 ( ) ( )
1          1

0       1F

F

FD E E
F

E E
f E

E Ee
 −

<⎧⎪= → ⎨ >⎪+ ⎩
 (13.4.53)

The number of electronic standing waves in a cubical cavity of side L between n 
and n + dn expressed as the first octant of a spherical shell is

 ( ) 2 21
2 4

8
g n dn n dn n dn = =  (13.4.54)

with two spin states of the electron. Setting the wavelength of the nth mode  = 
2L/n equal to the de Broglie wavelength  = h/p the nonrelativistic energy is 

 

22 1

2 2 2

p nh
E

m m L

⎛ ⎞= = ⎜ ⎟
⎝ ⎠

 (13.4.55)

Solving for n 

 
2

2
L

n mE
h

=  (13.4.56)
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we have

 1/22mL
dn E dE

h

−= .  (13.4.57)

The electronic density of states is

 ( )
3 3/2

2 1/2

3

8 2 L m
g E dE n dn E dE

h


= =  (13.4.58)

The number of states per unit volume with energy between E and E + dE is

 
( ) ( ) ( )

( )

( )

3/2

3

8 2 1

1F

FD

FD E E

g E f

m
n E dE g E f E dE E dE

h e



−

= =
+  (13.4.59)

Integrating we obtain

 ( )

3/2

3 /
0

8 2

1F BE E k T

N m EdE

V h e


∞

−
=

+∫  (13.4.60)

Below the Fermi energy fFD = 1 and the integral simplifies to

 
3/2 3/2

3/2

3 3

0

8 2 8 2 2

3

FE

F

N m m
EdE E

V h h

  ⎛ ⎞= = ⎜ ⎟
⎝ ⎠∫  (13.4.61)

We may thus evaluate the Fermi energy from this expression 

 
2/32 3

2 8
F

e

h N
E

m V
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (13.4.62)

The Fermi temperature  is defined as

 F
F

B

E
T

k
=  (13.4.63)

Only a small fraction of electrons within kBT of EF may be excited thermally with 
electronic contribution to the specific heat 3 /el FC RT T≈  which is about 1% of 
the specific heat at room temperature. 

Maple Examples
The Fermi-Dirac distribution is plotted at three temperatures as a function of E/
EF in the Maple worksheet below. The Debye specific heat and internal energy is 
then numerically computed and plotted as a function of T/TD.
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Key Maple commands: evalf , plot  

restart

Fermi-Dirac Distribution 

1
: ( , )

exp( ( 1)) 1
f E r

r E
= →

⋅ − +

 ( 1)

1
: ( , )

e 1r E
f E r

−
=

+


plot([f(E, 100), f(E, 10), f(E, 5)], E = 0 … 3, labels = [“E/E_F”, “f(E)”], linestyle = 
[solid, dash, dashdot], legend = [beta E_F = 100, beta E_F = 10, beta E_F = 5])

0 1 2

E/E_F
3

0.2

0

0.4

0.6

0.8

1

f(E)

β E_F = 100

β E_F = 10

β E_F = 5

Figure 13.4.1: Plot of the Fermi-Dirac distribution. 

Debye Specifi c Heat

1

4
3

2

0

exp( )
: ( ) 9

(exp( ) 1)

T
x x

C T T evalf dx
x

⎛ ⎞
⎜ ⎟⋅

= → ⋅ ⋅ ⎜ ⎟⎜ ⎟−⎝ ⎠
∫

 

1

4
3

2

0

e
: ( ) 9

(e 1)

T x

x

x
C T T evalf dx

⎛ ⎞
⎜ ⎟

= ⎜ ⎟⎜ ⎟−⎝ ⎠
∫
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C(1)

 2.855196201 – 3.491860243 107I

plot(Re(C(T)), T = .001 … 1, labels = [“T/T_D”, “C/(N k_B)”]

0

T/T_D

0.1

C/(N k_E)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.5

1

1.5

2

2.5

Figure 13.4.2: Specific heat in the Debye model.  

Debye Internal Energy

1

3
4

0

: ( ) 9
exp( ) 1

T
x

U T T evalf dx
x

⎛ ⎞
⎜ ⎟

= → ⋅ ⋅ ⎜ ⎟⎜ ⎟−⎝ ⎠
∫

 

1

3
4

0

: ( ) 9
e 1

T

x

x
U T T evalf dx

⎛ ⎞
⎜ ⎟

= ⎜ ⎟⎜ ⎟−⎝ ⎠
∫

plot(Re(U(T)), T = .001 … 1, labels = [“T/T_D”, “U/(N k_B T_D)”])



STATISTICAL MECHANICS 681

0

T/T_D
0.01

U/(N k_B T_D)
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0.001

0.002

0.003

0.004

Figure 13.4.3: Internal energy in the Debye model.  

13.5 MATLAB EXAMPLES 

A Shannon entropy calculation of the tent map and plots of the Maxwell-
Boltzmann distribution are demonstrated in this section.

Key MATLAB commands: hist , sum , line , plot 

Section 13.1 Microcanonical Ensemble  
Figure 13.5.1 shows a cobweb plot showing 21 iterates of the tent map for  = 1.6. 

 ( )1

0 1/2
    

1 1/2 1
n n

n
n n

x x
x

x x



+

≤ ≤⎧⎪= ⎨ − < ≤⎪⎩
 (13.6.1)

Cobweb Plot of the Tent Map

1
x(n)

0 0.2 0.4 0.6 0.8

0
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0.9

1

x(
n

 +
 1

)

Figure 13.5.1: Cobweb plot showing 21 iterates of the tent map  = 1.6.
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% parameters and initial conditions

mu=1.6;

x0=0.2;

Nmax=21;

 

x=zeros(Nmax,1);

t=zeros(Nmax,1);

y=zeros(Nmax,1);

 

x(1)=x0;

 

% iterate the tent map

for i=1:Nmax

    if x(i)<0.5 && x(i)>0

        x(i+1)=mu*x(i);

    elseif x(i)<1.0 && x(i)>=0.5

        x(i+1)=mu*(1-x(i));

    end

end

 

for i=1:Nmax

    t(i)=(i-1)/(Nmax-1);

     if t(i)<0.5 && t(i)>0

        y(i)=mu*t(i);

    elseif t(i)<1.0 && t(i)>=0.5

        y(i)=mu*(1-t(i));

    end

end

 

hold on

% plot the function and the diagonal line

 

plot(t,t,t,y)

% create the cobweb plot

line([x(1) x(1)], [0 x(2)])

 

for i=1:Nmax-1

    line([x(i) x(i+1)], [x(i+1) x(i+1)])

    line([x(i+1) x(i+1)], [x(i+1) x(i+2)])

end

 

hold off

axis equal

title("Cobweb plot of the tent map")

xlabel("x(n)")

ylabel("x(n+1)")

colormap bone

Once the MATLAB fi le is executed, the entropy calculation is performed at the 
Command line. A histogram of the xn time series with 20 bins is fi rst created and 
normalized by the length of the time series. 

>> y=hist(x,20)/length(x)

y =
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  Columns 1 through 16

0.0020         0         0         0    0.0459    0.0539    0.0339    0.0499    

0.0479    0.0479    0.0679    0.0739    0.0778    0.0579    0.0599    0.0719

  Columns 17 through 20

0.0818    0.0838    0.0679    0.0758

Bins that have a value of ‘0’ are assigned a value of ‘1’ using the command 
‘y(y==0)=1’ to properly calculate the Shannon entropy.

>> y(y == 0) = 1

y =

  Columns 1 through 16

0.0020    1.0000    1.0000    1.0000    0.0459    0.0539    0.0339    0.0499    

0.0479    0.0479    0.0679    0.0739    0.0778    0.0579    0.0599    0.0719

  Columns 17 through 20

0.0818    0.0838    0.0679    0.0758

>> S=-sum(y.*log(y))

S =

    2.7541

Section 13.3 Continuous Energy Distribution 
The following script plots the Maxwell-Boltzmann velocity distribution of 
molecular oxygen and carbon dioxide at the same temperature.

% molecular masses of O2 and CO2

 

m_O2=5.31*10^-26;

m_CO2=7.32*10^-26;

 

k_B=1.38e-23; % Boltzmann constant 

 

T=400; % temperature in K

 

%normalize the O2 and CO2 M-B distributions

 

norm_O2=4*pi*(m_O2/(2*pi*k_B*T))^(3/2);

 

norm_CO2=4*pi*(m_CO2/(2*pi*k_B*T))^(3/2);

 

v=1:10:2000;     % velocity range in m/s

 

%compute the O2 and CO2 distributions 

 

n_O2=norm_O2*(v.^2).*exp(-m_O2*v.^2/(2*k_B*T));

 

n_CO2=norm_CO2*(v.^2).*exp(-m_CO2*v.^2/(2*k_B*T));

 

%compare O2 and CO2 MB distributions at the same temperature

 

hold on

 

plot(v,n_O2,'-.k');
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plot(v,n_CO2,'k');

 

hold off

 

xlabel('velocity (m/s)')

ylabel('n(v)')

legend('O2','CO2')

title('M-B Velocity Distribution')

0
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200

0.5

1

0 400 600 800 1000 1200 1400 1600 1800 2000

1.5
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×10–3
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n
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)

CO
2

O
2

Figure 13.5.2: Maxwell-Boltzmann velocity distribution of two gases. 

13.6 EXERCISES 

Section 13.1 Microcanonical Ensemble 

1. A collection of N = 100 particles can exist in three spin states (up, down and 
zero). Find the maximum and minimum entropy of this system. 

2. Use the Shannon entropy formula to plot the entropy of the tent map in 
Section 13.5 as a function of the parameter .

3. Mixing dissimilar substances with particle numbers N1 and N2 where 
N = N1 + N2 will result in a change in entropy 

1 2

!
ln

! !
B

N
S k

N N
Δ =

Use Sterling’s formula to show that 

1 2
1 2ln lnB

N N
S k N N

N N

⎛ ⎞
Δ = − +⎜ ⎟

⎝ ⎠ .
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Section 13.2 Canonical Ensemble 

4. Calculate the average energy in a two-state system with E1 = 3.0J and E2 = 
3.0J with P1 = 0.65 and P2 = 0.35. Note that ( )1 2 / 2E E E≠ +  except when 
P1 = P2 = 1/2.

5. A two-state system has energy levels E1 = 3.0J and E2 = 3.0J. At what 
temperature are one-fourth of the particles in state 1?

6. Show that 2

1

B
T k T 

∂ ∂
= −

∂ ∂

7. Use the Shannon entropy formula lnB i i

i

S Nk P P= − ∑  with Pi = exp(-Ei)/Z 
in the canonical ensemble to show that

lni B

N
S E Nk Z

T
= +

8. Suppose that a system of N particles can be in three allowed states S1, S2 and S3 
with energies E1 = -, E2 = 0 and E3 = . Derive expressions for P1, P2 and P3 at 
temperature T. Calculate the average energy from the formula 

i i

i

E E P= ∑
Calculate the entropy using the Shannon formula.

9. A population of N magnetic dipoles with two possible orientations of 
magnetic moment μ are placed in a magnetic field ˆBk  at a temperature T. 
The interaction energies are (-zB, +zB). Calculate the partition function Z, 
the average energy <E>, the free energy F, the specific heat C and the entropy 
S with the dipoles in thermodynamic equilibrium. 

Section 13.3 Continuous Energy Distributions  

10. For a particle in a 3D box with side L modeled as having a continuous energy 
distribution, show that the partition function 

( )3
/ QZ L L=

where the quantum length is defi ned as / 2Q BL h mk T= .

11. Show that the average energy of a system with a continuous energy distribution 
is

( )

( )
0

0

B

P E EdE

E k T

P E dE

∞

∞
= =

∫

∫
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where the Boltzmann factor P(E) = exp(-E/kBT).

12. The partition function for the rigid rotator is 

( ) ( )
2

0

2 1 exp 1
2

Z
I

∞

=

⎛ ⎞
= + − +⎜ ⎟

⎝ ⎠
∑


  

 Make an integral approximate to Z where the energy levels are more closely 
spaced at high temperatures. Treat ( + 1) as a continuous variable with 2
+ 1 = d(( + 1)). Calculate the average energy, specifi c heat, free energy, and 
entropy of the rigid rotator in the high-temperature limit. 

13. By setting dn(v)/dv = 0 show that the most probable speed of molecules in the 

Maxwell-Boltzmann distribution is 2 /p Bv k T m=  

14. Calculate the uncertainty in speed 
22v v vΔ = −  of the Maxwell-

Boltzmann distribution. Plot the uncertainty as a function of the temperature 
T.

15. Calculate the average energy at temperature T of a classical harmonic oscillator 
with energy as a function of speed and position 

2 21 1

2 2
E mv kx= +

with partition function

EZ A e dxdp
∞ ∞

−

−∞ −∞

= ∫ ∫
where A is a normalization factor. 

16. Calculate the average energy of a relativistic harmonic oscillator with

2 2 2 4 21

2
E p c m c kx= + +

at temperature T.

17. Find the root mean square speed vrms of a relativistic gas where the kinetic 

energy ( ) 2 3
1

2
Bmc k T − =  and 

2
rms

2

1

1
v

c

 =

−

.

18. Find the most probable speed of a relativistic gas vp = cup by setting 
dn(u)/du = 0.

19. Write the partition function for a relativistic electron in a box. Write an integral 
form of the partition function treating the energy levels as continuous. Find 
expressions for the free energy, entropy, and specific heat. 
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Section 13.4 Grand Canonical Ensemble  

20. Given that the average energy of photons in the Bose-Einstein distribution 
with  = 0 is 

0

0

n

n

E
n

n

E

n

E e

E

e





∞
−

=
∞

−

=

=
∑

∑
where En = nhf show that

( )exp / 1B

hf
E

hf k T

⎛ ⎞
= ⎜ ⎟⎜ ⎟−⎝ ⎠  

21. Model the average energy of phonons with frequency f in a solid at temperature 
T using the Bose-Einstein formula 

( )exp / 1B

hf
E

hf k T

⎛ ⎞
= ⎜ ⎟⎜ ⎟−⎝ ⎠  

to calculate Einstein’s expression for the specifi c heat.

dU
C

dT
=

 where 3U N E= . Evaluate the high-temperature limit of E to fi nd C at 
high temperatures. 

22. Show that the high-frequency approximation to Planck’s black-body formula 

where ( )exp / 1Bhf k T   gives

( )
3

3

8
, exp

B

hf hf
u f T

k Tc

 ⎛ ⎞
≈ −⎜ ⎟

⎝ ⎠

while at low frequencies where Bhf k T  so ( )exp / 1 /B Bhf k T hf k T≈ +

( )
2

3

8
, B

f
u f T k T

c


≈

 This formula is known as the Rayleigh-Jeans law and is commonly used in 
radio astronomy. The high-frequency (short-wavelength) discrepancy of 
the Rayleigh-Jeans law from observed black-body spectra was known as the 
“ultraviolet catastrophe.”
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23. Find the low-temperature limit of the specific heat C in the Debye theory 
where /DT T → ∞ . Find C at high temperatures using 1xe x≈ +  where 

1.x   The high-temperature limit of C is known as the Dulong-Petit law.

24. Show that the average energy at absolute zero in the Fermi-Dirac distribution 
is 

3

5
FE

E =

where 

( )

3/2

3 /

0

8 2

1

/

F BE E k T

m E EdE

h e
E

N V


∞

− +
=

∫
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14Chapter

SPECIAL 
RELATIVITY

Chapter Outline
14.1 Kinematics  

14.2 Energy and Momentum  

14.3 Electromagnetics in Relativity

14.4 Relativistic Lagrangian Formulation 

14.1 KINEMATICS

Topics in this section include the postulates of special relativity, relativistic time 
dilation, length contraction, the relativistic Doppler effect, Galilean and Lorentz 
transformations, relativistic velocity addition, and 4-vector notation. 

14.1.1 Postulates of Special Relativity
Maxwell’s wave equations 

 

2
2

0 0 2

2
2

0 0 2

0

0

t

t

 

 

∂
∇ − =

∂
∂

∇ − =
∂

E E

B B

 (14.1.1)
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predict that electromagnetic waves propagate with the speed of light 0 01/ .c  =  

The wave equations do not describe how the measured light speed should depend 
on the velocities of sources or observers in relative motion. In the late 1800s, it 
was assumed that light traveled through a medium called the ether that pervaded 
all of space. Experiments by Michelson and Morley subsequently failed to detect 
variations in the measured speed of light due to the earth’s motion through the 
supposed ether. In 1905 Einstein postulated that light propagates with the same 
speed in all inertial frames of reference independent of the motion of the source 
or the observer. Furthermore, there is no preferred frame of reference, and the 
laws of physics are the same in all inertial frames. Because of the constancy of the 
speed of light, observers in relative motion disagree on the order of events as well 
as time intervals and lengths measured in their respective frames. 

14.1.2 Time Dilatation

v∆t

d

Figure 14.1.1: (top) A light ray is projected from the bottom of a train car and reflected off a mirror located at the 
top of the car. (bottom): The light ray travels a greater distance in the earth frame.

To illustrate the effect of time dilation, consider the geometry of Figure 14.1.1. In 
this fi gure, a light ray is refl ected off a mirror in a moving train car with a height 
of d. On the train, the light travels a distance 2d in a time tp = 2d/c. The train 
travels at a speed v and distance vt in the earth frame. The distance that light 
travels in the earth frame is ct. Per Einstein’s second postulate, light travels the 
same speed in both reference frames. Thus, it takes a longer time t > tp for light 
to travel a greater distance in the earth frame. We can calculate t from the right 
triangle shown in Figure 14.1.2.
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v∆t/2

dc∆
t/2

Figure 14.1.2: Right triangle for computing the time dilation formula.

The Pythagorean theorem gives

 

2 2

2

2 2

c t v t
d

Δ Δ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (14.1.2)

Solving for t we have

 
2 2

2

2 2 2 2 2

4 4 1

1 /

d d
t

c v c v c
Δ = =

− −
 (14.1.3)

so that

 pt tΔ = Δ  where 
2 2

1

1 /v c
 =

−
 (14.1.4)

14.1.3 Length Contraction
An observer at rest with respect to two stars measures proper distance Lp and a 
time interval t required for a rocket to travel between the two stars. An astronaut 
in the spaceship traveling at a speed v measures the proper time tp and a distance 
between the two stars L = vtp. Since t = tp, the proper length Lp = vt = 
vtp = L. Thus, the distance between the two stars in the rocket frame is shorter 
than the proper distance by a factor of  

 
2

2

1
1p p

v
L L L

c
= = −  (14.1.5)

14.1.4 Relativistic Doppler Effect
Consider an observer moving with speed v toward a source of light with frequency 
fsource and wavelength source = c/fsource. The observed wavelength obs is shortened 
by vt 

 obs source v t = − Δ  (14.1.6)

and with fsource = 1/t we have 

 obs c t v t = Δ − Δ
 (14.1.7)
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Now t in the observer frame is related to tp in the source frame by the time 
dilation formula t = tp so that

 
( )obs pc v t = − Δ

 (14.1.8)

Since obs = c/fobs we have

 ( )
obs source

1c
c v

f f
= −  (14.1.9)

Rearranging gives

 

2

2

obs source

1

1

v

c
f f

v

c

−
=

⎛ ⎞−⎜ ⎟
⎝ ⎠

 (14.1.10)

or

 obs source

1

1

v

cf f
v

c

+
=

−
 (14.1.11)

14.1.5 Galilean Transformation  

vt

O O′

x

x′

Figure 14.1.3: Frames O and O are coincident at t = 0. A rocket ship moving to the 
right is located by x and x in the unprimed and primed frames, respectively. 

Consider the two reference frames in relative motion in Figure 14.1.3. The frame 
O moves at speed v with respect to O. The two frames are coincident at t = 0 and 
are separated by a distance vt at time t. The coordinates x and x locate a rocket 
ship in the O and O frames, respectively. The Galilean transformation relates the 
primed and unprimed coordinates

 x x vt′ = −  (14.1.12)
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We may write the inverse transformation 

 x x vt′= +  (14.1.13)

by solving algebraically for x or by switching the primes and changing the sign of 
v.

The velocity of the rocket in the primed frame /xu dx dt′ ′=  and in the 
unprimed frame ux = dx/dt are related by the Galilean velocity transformation

 x xu u v′ = −  (14.1.14)

with the inverse transformation

 x xu u v′= +  (14.1.15)

14.1.6 Lorentz Transformations   
To obtain the relativistic transformation we guess a form

 
( )x x vt′ = −

 (14.1.16)

We seek the functional form of  where   1 for v c<< . The inverse 
transformation should also be of the form

 ( )x x vt ′ ′= +  (14.1.17)

Substituting x into x gives

 ( )2x x vt vt  ′= − +  (14.1.18)

and solving for tgives

 ( )21
1t x t

v
 


′ = − +  (14.1.19)

Now we can express the velocity of the rocket in the primed frame in terms of the 
velocity in the unprimed frame

 

( )

( )21
1

x

dx vdtdx
u

dt
dx dt

v



 


−′
′ = =

′
− +

 (14.1.20)

and dividing by dt

 

2 2

1 1 1 1
1 1 1 1

x
x

x

dx
v

u vdtu
dx

u
v dt v 

− −
′ = =

⎛ ⎞ ⎛ ⎞
− + − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

 (14.1.21)
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Now, instead of a rocket, we consider a light ray moving to the right with the same 
speed in both frames. Setting x xu u c′ = =  gives

 

2

1 1
1 1

c v
c

c
v 

−
=
⎛ ⎞
− +⎜ ⎟

⎝ ⎠

 (14.1.22)

Solving for  we obtain 

 2

2

1

1
v

c

 =

−
 (14.1.23)

We can now write the equation for ct more compactly as

 
v

ct ct x
c


⎛ ⎞′ = −⎜ ⎟
⎝ ⎠

 (14.1.24)

The Lorentz transformation equations are then

 

( )x vt
x

y
y

z
z

v
ct ct x

c





⎛ ⎞−
′⎛ ⎞ ⎜ ⎟

⎜ ⎟ ⎜ ⎟′⎜ ⎟ ⎜ ⎟=⎜ ⎟′ ⎜ ⎟
⎜ ⎟ ⎛ ⎞⎜ ⎟⎜ ⎟′ −⎝ ⎠ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (14.1.25)

The inverse Lorentz transformation  is obtained by switching the primes and 
changing the sign of v so 

 

( )x vt
x

y
y

z
z

v
ct ct x

c





′ ′⎛ ⎞+
⎛ ⎞ ⎜ ⎟

′⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= ′⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎛ ⎞⎜ ⎟⎜ ⎟ ′ ′+⎝ ⎠ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (14.1.26)

Example 14.1.1
Obtain the length contraction formula from the Lorentz transformation 
equations

 
( )
( )

1 1 1

2 2 2

x x vt

x x vt





′ = −

′ = −
 (14.1.27)
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Solution: If measurements of x1 and x2 are made simultaneously in the unprimed 
frame, then t1 = t2 and

 ( )2 1 2 1x x x x′ ′− = −  (14.1.28)

and L = Lp/ with 2 1pL x x′ ′= −  and L = x2 – x1.

Example 14.1.2
Show the time dilation formula follows from the Lorentz transformation 
equations

 

2 2 2

1 1 1

v
ct ct x

c

v
ct ct x

c





⎛ ⎞′ = −⎜ ⎟
⎝ ⎠
⎛ ⎞′ = −⎜ ⎟
⎝ ⎠

 (14.1.29)

Solution: If measurements of t1 and t2 are made at the same location in the 
unprimed frame x1 = x2 and

 ( )2 1 2 1t t t t′ ′− = −  (14.1.30)

and tp = t with 
2 1pt t t′ ′Δ = −  and t = t2 – t1.

14.1.7 Relativistic Addition of Velocities  
Formulas for the relativistic addition of velocities are obtained from the Lorentz 
transformation equation. If v is along the x-direction 

 
2

1

x
x

x

u vdx
u

u vdt

c

′ −
′ = =

′
−

 (14.1.31)

Evaluating /yu dy dt′ ′ ′=  and /zu dz dt′ ′ ′=  we obtain

 
2

1

y

y

x

u
u

u v

c


′ =
⎛ ⎞−⎜ ⎟
⎝ ⎠

 (14.1.32)

 
2

1

z
z

x

u
u

u v

c


′ =
⎛ ⎞−⎜ ⎟
⎝ ⎠

 (14.1.33)

To obtain the velocities ux, uy, and uz in terms of ,xu′  ,yu′  and 
zu′  we simply 

interchange the primes and change the sign of v.
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Example 14.1.3
Consider a frame O moving with a speed v = c/2 with respect to O. A rocket 
travels with a speed / 2xu c′ =  with respect to O. What is the speed of the rocket 
in the O frame?

Solution

 

2
1

x
x

x

u v
u

u v

c

′ +
=

+
 (14.1.34)

 ( )( )
2

/ 2 / 2 4

1/ 2 / 2 5
11

4

x

c c c
u c

c c

c

+
= = =

++  (14.1.35)

This differs from the Galilean velocity addition where x xu u v c′= + = . 

Example 14.1.4
Consider an observer on earth (unprimed frame) with ux = 0. A mass m is 
projected upward with a speed uy. According to an observer (primed frame) 
moving with a speed v the velocity yu′  is given by

 
2

0
1

y y

y

u u
u

v

c




′ = =
⋅⎛ ⎞−⎜ ⎟

⎝ ⎠
 (14.1.36)

Suppose the mass in question is replaced by a ray of light. The speed of light 
should be the same in both frames. The speed of light in the unprimed frame is 
uy = c. Note that the light ray also has an x-velocity component in the primed 
frame u v′ = −  The speed of light in the primed frame is 

 ( )
2

22 2
y x

c
u u v c



⎛ ⎞
′ ′ ′= + = + − =⎜ ⎟

⎝ ⎠
u  (14.1.37)

so that both observers measure the same speed of light.

14.1.8 Velocity Addition Approximation  
A simple relativistic velocity addition shortcut may be applied in the special case 
where relativistic speeds v/c are represented as a decimal followed by a series of 
nines. The shortcut is useful for board work examples in introductory physics 
courses and for quickly comparing the results of relativistic to Galilean velocity 
addition. 
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Consider two bodies traveling in one dimension attached to inertial frames O 
and Owith speeds vOE and 

Eov ′  relative to a third “earth” frame E. The Galilean 
velocity addition formula is 

E Eoo o ov v v′ ′= + . The relativistic formula is given by

 
2

1

E E

E E

o o
oo

o o

v v
v

v v

c

′
′

′

+
=

+  (14.1.38)

where c is the speed of light. For two bodies approaching at vOE = 0.999 c and 
0.99 

Eov c′ =  the velocity addition formula gives 0.999995 oov c′ =  compared to 
1.989 oov c′ = in the Galilean case. Thus, to perform the velocity addition to very 

good approximation we simply “add the nines.” Similarly, one can find that any 
combination of nines will sum in a straightforward way as shown in Table 14.1.1.

TABLE 14.1.1: Velocity voo(third column) obtained from the addition of 
velocities vOE (first column) and vEo (second column).  

vOE/c vEO/c voo/c

0.999 0.999 0.9999995

0.9999 0.99 0.98

0.99999 0.99 0.99999995

0.99999 0.99 0.998

Another shortcut can be used to quickly obtain the relativistic factor 

( ) 1/2
2 21 / .v c

−
= −  For velocities represented as an odd number of nines v/c = 

0.9, 0.999, 0.99999 … we have  = 2.29, 22.4, 224, …. For an even number of nines 
v/c = 0.99, 0.9999, 0.999999 … we have  = 7.1, 70.7, 707 …. Hence for every two 
nines added to the velocity, the relativistic factor  increases very nearly an order of 
magnitude. Thus, examples using relativistic velocity addition can be extended to 
quickly find time dilations and length contractions in different reference frames. 

14.1.9 4-Vector Notation  
The Lorentz transformation may be expressed in matrix form

 

0 0

1 1

22

3
3

/ 0 0

/ 0 0

0 0 1 0

0 0 0 1

x xv c

x v c x

xx

xx

 

 

⎛ ⎞′ ⎛ ⎞−⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟′ − ⎜ ⎟⎜ ⎟⎜ ⎟ = ⎜ ⎟⎜ ⎟′⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟′ ⎝ ⎠⎝ ⎠

 (14.1.39)



698 MATHEMATICAL METHODS FOR PHYSICS USING MATLAB AND MAPLE

where the 4-vectors are

 

0

1

2

3

x ct

x x

yx

zx

⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟=⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 and 

0

1

2

3

x ct

x x

yx
z

x

⎛ ⎞′ ′⎛ ⎞⎜ ⎟
⎜ ⎟⎜ ⎟′ ′⎜ ⎟⎜ ⎟ = ⎜ ⎟′′⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟′⎝ ⎠⎜ ⎟′⎝ ⎠

 (14.1.40)

The inverse transformation is 

 

00

1 1

2 2

3
3

/ 0 0

/ 0 0

0 0 1 0

0 0 0 1

xx v c

x v c x

x x

x x

 

 

⎛ ⎞′⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟′⎜ ⎟ ⎜ ⎟⎜ ⎟=⎜ ⎟ ⎜ ⎟ ′⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎜ ⎟′⎝ ⎠ ⎝ ⎠

 (14.1.41)

The inverse transformation matrix is such that

 

/ 0 0 / 0 0 1 0 0 0

/ 0 0 / 0 0 0 1 0 0

0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 1

v c v c

v c v c

   

   

−⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟−⎜ ⎟⎜ ⎟ ⎜ ⎟=⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

 (14.1.42)

The Lorentz transformation equations can be written compactly as

 x x  


′ = Λ  (14.1.43)

This corresponds to four equations for each value . Since the v are repeated they 
are summed over according to the Einstein summation convention 

 

0 0 0 0 1 0 2 0 3
0 1 2 3

1 1 0 1 1 1 2 1 3
0 1 2 3

2 2 0 2 1 2 2 2 3
0 1 2 3

3 3 0 3 1 3 2 3 3
0 1 2 3

x x x x x

x x x x x

x x x x x

x x x x x

′

′

′

′

= Λ + Λ + Λ + Λ

= Λ + Λ + Λ + Λ

= Λ + Λ + Λ + Λ

= Λ + Λ + Λ + Λ

 (14.1.44)

Maple Examples
Operations involving Lorentz transformation matrices are demonstrated in the 
Maple worksheet below. The dot product of a 4-vector is shown to be invariant 
under successive Lorentz transformations, or boosts, along the x-axis. An 
equivalent transformation matrix is found corresponding to successive boosts. 
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Key Maple commands: ‘.’ (matrix multiplication), simplify , subs 

restart

Lorentz Transformation Matrix 

1 2
1
2

1
: :

sqrt 1
v

c

 =
⎛ ⎞
−⎜ ⎟

⎝ ⎠

1 : 0 0 , 0 0 , 0 |0 |1|0 , 0 |0 |0 |11 1 1 1
1 1

v v

c c

 
  

⋅ ⋅
= − −

 

2 2

2 2

2 2

2 2

1
0 0

1 1

1
0 0:

1 1

0 0 1 0

0 0 0 1

1

1 1

1

1

1 1

v

v v
c

c c

v

v v

c c



⎡ ⎤
−⎢ ⎥

⎢ ⎥− −⎢ ⎥
⎢ ⎥
⎢ ⎥−= ⎢ ⎥
⎢ ⎥− −
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Inverse Lorentz Transformation Matrix

1_ : 0 0 , 0 0 , 0 | 0 |1| 0 , 0 | 0 | 0 |11 1 1 1
inv 1 1

v v

c c

 
  

⋅ ⋅
=

 

2 2

2 2

2 2

2 2

1
0 0

1 1

1
0 0:

1 1

0 0 1 0

0 0 0 1

1

1 1

1

1_inv

1 1

v

v v
c

c c

v

v v
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⎡ ⎤
⎢ ⎥
⎢ ⎥− −⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥− −
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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simplify(11_inv)

 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Transformation of a 4-Vector

0 1 2 3: , , ,A A A A A=

 

0

1

2

3

:

A

A
A

A

A

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Ap1 := 1A

2 2

2 2

2 2

2 2

2

3

1 1

:

1 1

0 1 1

1 1

1 0 1

p1

1 1

A v A

v v
c

c c

v A A
A

v v
c

c c

A

A

⎡ ⎤
−⎢ ⎥

⎢ ⎥− −⎢ ⎥
⎢ ⎥
⎢ ⎥− += ⎢ ⎥
⎢ ⎥− −
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Invariance of a Dot Product

simplify(Ap1[1]Ap1[1] - Ap1[2]Ap1[2] - Ap1[3]Ap1[3] - Ap1[4]Ap1[4])
2 2 2 2
0 1 2 3A A A A− − −

Successive Lorentz Transformations (Boosts along the x-Direction)

2 2
2
2

1
:

sqrt 1
v

c

 =
⎛ ⎞
−⎜ ⎟

⎝ ⎠

 2
2
2

1
:

1

2

v

c

 =

−
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2 2 2
2 2 2: 0 0 , 0 0 , 0 | 0 |1| 0 , 0 | 0 | 0 |12v v

c c

 
  

⋅ ⋅
= − −

 

2 2

2 2

2 2

2 2

1
0 0

1 1

1
0 0:

1 1

0 0 1 0

0 0 0 1

2

2 1

2

2

2 2

v

v v
c

c c

v

v v
c

c c



⎡ ⎤
−⎢ ⎥

⎢ ⎥− −⎢ ⎥
⎢ ⎥
⎢ ⎥−= ⎢ ⎥
⎢ ⎥− −
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Ap2 := simplify(2Ap1)

2
1

2 2 2 2
2

2 2

2

2 2 2 2
2

2 2

2

3

( )

( )
:

0 1 2 0 1 1

1 2

1 0 1 2 1 1 2
p2

1 2

A c A v v c A v v

c v c v
c

c c

A c A v v c A v v
A

c v c v
c

c c

A

A

⎡ ⎤− + +
⎢ ⎥

− −⎢ ⎥
⎢ ⎥
⎢ ⎥

− + +⎢ ⎥= ⎢ ⎥
− −⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Invariance of a Dot Product under Two Boosts
simplify(Ap2[1]Ap2[1]  Ap2[2]Ap2[2]  Ap2[3]Ap2[3]  Ap2[4]Ap2[4])

2 2 2 2
0 1 2 3A A A A− − −
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Equivalent Transformation Matrix for Two Boosts
simplify(12)

 

2

2 2 2 2 2 2 2 2
2

2 2 2 2

2

2 2 2 2 2 2 2 2
2

2 2 2 2

0 0

0 0

0 0 1 0

0 0 0 1

1 2 1 2

2 1 2 1

1 2 1 2

2 1 2 1

c v v v v

c v c v c v c v
c c

c c c c

v v c v v

c v c v c v c v
c c

c c c c

⎡ ⎤+ + +
−⎢ ⎥

− − − −⎢ ⎥
⎢ ⎥
⎢ ⎥

+ +⎢ ⎥−⎢ ⎥
− − − −⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

subs(v1 = 0.9c, v2 = 0.9c, %)

 

9.526315784 9.473684204 0 0

9.473684204 9.526315784 0 0

0 0 1 0

0 0 0 1

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

14.2 ENERGY AND MOMENTUM

In this section, relativistic forms of momentum and Newton’s second law are 
discussed. The mass energy relation is derived from the work kinetic energy 
theorem. The classical form of kinetic energy is obtained at low velocities. The 
energy-momentum relation is then shown to be a Lorentz invariant. Examples of 
particle decay and completely inelastic collisions are given. 

14.2.1 Newton’s Second Law
The relativistic form of momentum 

 m=p v  (14.2.1)

insures that momentum is conserved in all inertial reference frames in the absence 
of external forces. The form of Newton’s second law 

 
d

dt
=

p
F   (14.2.2)
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is also correct for relativistic velocities. We may then obtain the relation between 
force and acceleration

 

3/2
2

3

2
1

d v d
m m

dt dtc


−
⎛ ⎞

= = −⎜ ⎟
⎝ ⎠

v v
F  (14.2.3)

and we have a velocity-dependent acceleration 

 
3/2

2

2
1

d v

dt m c

⎛ ⎞
= −⎜ ⎟
⎝ ⎠

v F  (14.2.4)

For a constant force per mass ratio the speed of light will be approached 
asymptotically with dv/dt  0 as v  c. The speed of light is analogous to the 
terminal speed of a particle moving through a resistive medium under a constant 
applied force. 

14.2.2 Mass Energy and Kinetic Energy 
The work done on a mass m by an applied force of magnitude F

 

3/2 3/2
2 2

2 2
1 1

f f f

i i i

x x v

x x v

v dv v
W Fdx m dx m dv

dtc c

− −
⎛ ⎞ ⎛ ⎞

= = − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫ ∫ ∫  (14.2.5)

is equal to the change in kinetic energy of the particle. If the particle starts from 
rest vi = 0 and W = KE = KE. Taking vf = v the u-substitution integral gives the 
kinetic energy

 ( ) 21KE mc= −  or 2 2mc mc KE = +  (14.2.6)

where we identify mc2 = total energy and mc2 = rest mass energy of the particle.

Example 14.2.1
Find the speed of a particle whose rest mass energy is equal to its kinetic energy. 

Solution: Equating rest mass and kinetic energies

 ( )2 21mc mc= −  (14.2.7)

gives  = 2 corresponding to 
2

1 3
1

2
v c c


= − = .

Table 14.2.1 shows a comparison of physical quantities expressed in Newtonian 
and relativistic forms, including time intervals, lengths, linear momentum, 
Newton’s second law, force and acceleration, kinetic energy, and rest mass energy. 
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TABLE 14.2.1: Comparison of physical quantities expressed in Newtonian and relativistic forms.

Physical Quantity Newtonian Form Relativistic Form

Time interval measured in different 
inertial frames

t = tp t = tp

Length measured in different inertial 
frames

L = Lp
pL

L


=

Linear momentum p = mv p = mv

Newton’s second law d

dt
=

p
F

d

dt
=

p
F

Relation between force and acceleration F = ma F = 3ma

Kinetic energy
21

2
KE mv= ( ) 21KE mc= −

Rest mass energy ----- Er = mc2

14.2.3 Low Velocity Approximation  
For low velocities v c<<  and we can use the binomial theorem to approximate 

 

2

2

1 1
1

2
1

v

cv

c


⎛ ⎞= ≈ + ⎜ ⎟
⎝ ⎠⎛ ⎞−⎜ ⎟

⎝ ⎠

  (14.2.8)

neglecting powers of velocity higher than v2. Multiplying both sides by mc2

 2 2 21

2
mc mc mv ≈ +  (14.2.9)

and we see that the total energy is sum of rest mass and kinetic energies. 

14.2.4 Energy Momentum Relation 
From the total energy E = mc2 and linear momentum p = mv we find that 

 2 2 2 2 4E p c m c− =  (14.2.10)

is the same in all inertial reference frames. Such a quantity is called a Lorentz 
invariant. For massless particles, we have E = pc and for particles at rest E = mc2. 
The energy momentum relation may be represented by the right triangle shown 
in Figure 14.2.1 with hypotenuse E and sides pc and mc2.
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mc2

pc
E

Figure 14.2.1: Energy momentum triangle. 

Example 14.2.2
Demonstrate the mass energy relation using 4-vector notation 

Solution: The 4-momenta p = (mc, mv) and p = (mc, -mv)

 

( )2 2 2 2 2 2

2
2

2

2 4

, , ,

           =

          

x y zp p m c v v v

E
p

c

m c


 = − − −

−

=  (14.2.11)

14.2.5 Completely Inelastic Collisions 

Example 14.2.3
Consider two “ideal” blobs of clay with equal masses m moving toward each other 
with a speed v relative to the laboratory frame. Find the final mass of the blobs 
after they collide.

Solution: The momentum of the masses is conserved before and after the collision 
where
 1 1 2 2ip mv mv = +  (14.2.12)

Now pi = 0 since v1 = v2 and 1 = 2 = . Momentum conservation pi = pf gives 
pf = 0.

The initial energy before the collision is

 2 2
iE mc mc = +  (14.2.13)

After the collision, the combined masses are at rest in the laboratory frame

 
2

fE Mc=  (14.2.14)

Conservation of energy Ei = Ef gives the final mass  M = 2m.
Consider a completely inelastic collision of two equal ideal masses with 

differing speeds. We must now solve the following system of equations for 
momentum conservation  



706 MATHEMATICAL METHODS FOR PHYSICS USING MATLAB AND MAPLE

 
1 1 2 2 f fmv mv Mv  + =  (14.2.15)

and energy conservation 

 2 2 2
1 2 fmc mc Mc  + =  (14.2.16)

to determine the final combined mass M and velocity vf. 

14.2.6 Particle Decay

Example 14.2.4
A hypothetical particle of mass M traveling at a speed v = c/3 spontaneously 
decays into two particles each with mass M/3. Find the final speed of the particles 
and the angle that each particle makes with respect to the x-axis. 

Solution: The initial and fi nal energies of the particles are shown as

 
2

iE Mc=  (14.2.17)

 
2 2

3 3
f

M M
E c c ′ ′= +  (14.2.18)

Conservation of energy Ei = Ef gives  ′  where

 ( )2

2

1 1 3 2

1 4/ 3 11 9
c

c

 = = =
−−

 (14.2.19)

so 
3 9 2

2 8
 ′ = =  and

 
2

1 32 7
1 1

81 9
v c c c


′ = − = − =

′
 (14.2.20)

The initial and final x-component momenta of the particles are

 
3

ix

c
p M=  (14.2.21)

 cos cos
3 3

xf

M M
p v v   ′ ′ ′ ′= +  (14.2.22)

Setting pix = pxf we obtain

 
3 7 3 7

cos cos
3 2 3 9 2 3 9

c M M
M c c    = +  (14.2.23)

giving 
3

cos
7

 = . 
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14.2.7 Energy Units 
The S.I. units of energy and mass are joules and kilograms, respectively. In these 
units, the rest mass energy of the electron is

 
( )( )2

2 31 8 149.11 10  kg 2.998 10  m/s 8.19 10  Jem c − −= ⋅ ⋅ = ⋅
 (14.2.24)

To avoid large negative exponents when dealing with elementary particles it is 
more convenient to express their rest mass energy in millions of electron volts 
(MeV) where 1 eV = 1.602 10-19 J is the potential energy of an electron across a 
potential difference of 1 V. 1 MeV = 1.602 1013 J and mec

2 = 0.511 MeV. Mass is 
then expressed in units of MeV/c2. 

Maple Examples
A one-dimensional completely inelastic collision is modeled in the Maple 
worksheet below. A mass m traveling with a speed v1 impacts an identical mass 
m initially at rest. The final speed and combined mass is calculated. The energy-
momentum relation is verified. 

Key Maple terms: evalf , simplify , solve , subs  

restart

Completely Inelastic Collision

Initial Momentum of m before the Collision 

1 2
1
2

1
:

1
v

sqrt
c

 =
⎛ ⎞
−⎜ ⎟

⎝ ⎠

pi := m1v1

 

1

2
1
2

:

1

i

mv
p

v

c

=

−

Final Momentum of Combined Masses after Collision

2

2

1
:

1

f

fv
sqrt

c

 =
⎛ ⎞
⎜ ⎟−
⎝ ⎠

:
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pf := Mfvf

2

2

:

1

f

f

f

Mv
p

v

c

=

−

Conservation of Momentum and Energy Equations 

Ei := m1c2 + mc2 : Ef := mfc2 :
pEqn := pi = pf :
EEqn := Ei = Ef :

1: ,
2

c
pEqn subs v pEqn

⎛ ⎞= =⎜ ⎟
⎝ ⎠

2

2

3 4
:

6
1

f

f

Mvm c
pEqn

v

c

= =

−

1: ,
2

c
EEqn subs v EEqn

⎛ ⎞= =⎜ ⎟
⎝ ⎠

2 2
2

2

2

3 4
:

3
1

f

c m c Mc
EEqn mc

v

c

= + =

−

Final Velocity vf and Combined Mass M after Collision 

solve({pEqn, EEqn}, {vf , M})

 2 3 4 3 6
4 3 6, 3 2

3
f

m
M m v c c

⎧ ⎫⎪ ⎪−⎨ ⎬= + − = − +
⎪ ⎪⎩ ⎭

evalf(%)
{M = 2.075909701 m, vf  = 0.267949192c}

Energy-Momentum Relation

E := 1mc2

 

2

2
1
2

:

1

c m
E

v

c

=

−
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p :=1 mv1

 
1

2
1
2

:

1

mv
p

v

c

=

−

simplify(E2 – p2c2)

c4m2

14.3 ELECTROMAGNETICS IN RELATIVITY

In this section, we investigate how electric and magnetic fields transform in 
different reference frames in relative motion. Simple examples of charged plates 
and solenoids in relative motion are examined. Maxwell’s equations and the 
Lorentz force acting on charged particles moving in electric and magnetic forces 
are then written using relativistic notation. 

14.3.1 Relativistic Transformation of Fields 
Because of Lorentz contractions, a charged body will have a greater charge density 
in reference frames moving with respect to the body. 

Example 14.3.1 
Find the electric field in a frame at rest with respect to a large current sheet located 
in the y = 0 plane that carries a surface charge density + moving with a velocity v 
out of the page in the z-direction (Figure 14.3.1). 

v

σ

Figure 14.3.1: Charged sheet moving out of the page. The Gaussian pillbox and Amperian loop are used to 
calculate the electric and magnetic fields, respectively. 

Solution: In the unprimed frame in which the charged sheet is at rest

 
0

ˆ
2




=E j  (14.3.1)
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In a primed frame in which the charged sheet is moving the charge density is 
increased by a factor of  because the sheet is contracted along the direction of 
motion so that the electric field in the primed frame is

 
0

ˆ
2




=E j  (14.3.2)

The electric field is increased in a direction perpendicular to the direction of 
motion. From Ampere’s law, the magnetic field is

 0 0
ˆ ˆ

2 2

K v
 = =B i i  (14.3.3)

Example 14.3.2
Find the electric field inside a parallel plate capacitor with upper and lower plates 
having charge densities . Let the capacitor move in a direction perpendicular to 
the area of the plates ˆ

yv=v j . 

Solution: The electric fi eld between the plates is 

 
0

ˆ


=E j  (14.3.4)

The distance between the plates will be smaller because of Lorentz contraction. 
The electric field inside the capacitor will be unchanged, however. In this simple 
example, the electric field along the direction of motion is unchanged. 

Example 14.3.3
Find the magnetic field inside a solenoid carrying a current I coaxial with the 
x-axis that moves with a velocity ˆ

xv=v i . 

Solution: In a frame at rest with respect to the solenoid the magnetic fi eld is 

 0
ˆN

I
L

=B i  (14.3.5)

In the laboratory frame the solenoid is length-contracted so that /L L ′ =
. Current in the solenoid is reduced by a factor of  due to time dilation 

/I q t′ ′= Δ Δ  where t t′Δ = Δ . Thus, the magnetic field along the direction of 
motion is unchanged. 

In general, the electric and magnetic fi elds are related in the primed and 
unprimed frames
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( )

2

1

c





⊥ ⊥

⊥ ⊥

′ =

′ = + ×

′ =

⎛ ⎞′ = − ×⎜ ⎟
⎝ ⎠

E E

E E v B

B B

B B v E

 

 
 (14.3.6)

where || and  refer to field components parallel and perpendicular to v. To 
transform from the primed frame to the unprimed frame simply interchange the 
primes everywhere and replace v with -v.

Example 14.3.4
Find the magnetic field resulting from the moving charged sheet in Example 
14.3.1 using equation (14.3.5)

Solution: From equation (14.3.5) the magnetic fi eld is 

 2 2
0

ˆ ˆ
2

v

c c

  


′ = − × = − ×B v E k j  (14.3.7)

or

 0
ˆ

2

v 
′ =B i  (14.3.8)

in agreement with the result obtained from Ampere’s law. 

14.3.2 Covariant Formulation of Maxwell’s Equations 
Although electric and magnetic fields depend on the inertial frame, Maxwell’s 
equations are correct in all inertial frames. The electromagnetic field tensor  

 F A A    = ∂ −∂  (14.3.9)

is obtained from the vector 4-potential 

 ( )/ , , ,x y zA V c A A A =  (14.3.10)

In terms of the field components 

 

0 / / /

/ 0

/ 0

/ 0

x y z

x z y

y z x

z y x

E c E c E c

E c B B
F

E c B B

E c B B



− − −⎛ ⎞
⎜ ⎟−⎜ ⎟= ⎜ ⎟−
⎜ ⎟⎜ ⎟−⎝ ⎠

 (14.3.11)
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For example,  

 01 0 1 1 0 1 1 1x
x

A V
F A A E

c t c x c

∂ ∂
= ∂ −∂ = + = −

∂ ∂
 (14.3.12)

 

( )

2 1
12

1 2

z

y x
z

A AA A
F B

x x x y

×

∂ ∂∂ ∂
= − = − + = −
∂ ∂ ∂ ∂

A


∇

 (14.3.13)

The diagonal elements F00 = F11 = F22 = F33 = 0.
The electromagnetic 4-current  is

 ( ), , ,x y zJ c J J J =  (14.3.14)

The inhomogeneous Maxwell equations (with sources)  are given by the formula

 0

F
J

x







∂
=

∂
 (14.3.15)

Example 14.3.5
Write out explicitly 

 
0

0
0

F
J

x






∂
=

∂
 (14.3.16)

Solution: Summing over the repeated index

 
00 10 20 30

0
00 1 2 3

F F F F
J

x x x x


∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂
 (14.3.17)

we obtain

 0

1 1 1
0

yx z
EE E

c
c x c y c z

 
∂∂ ∂

+ + + =
∂ ∂ ∂

 (14.3.18)

which is equivalent to

 
0




∇⋅ =E  (14.3.19)

where the constants 0c
2 = 1/0. The remaining three equations 

 
0     1,2,3

i
iF

J i
x






∂
= =

∂
 (14.3.20)
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give the Ampere-Maxwell relation 

 0 0 0
t

  
∂

∇× = +
∂
E

B J  (14.3.21)

14.3.3 Homogeneous Maxwell Equations
The homogeneous Maxwell equations (without sources) are obtained from 

 0
G

x





∂
=

∂
 (14.3.22)

where the dual field tensor  is

 

0

0 / /

/ 0 /

/ / 0

x y z

x z y

y z x

z y x

B B B

B E c E c
G

B E c E c

B E c E c



− − −⎛ ⎞
⎜ ⎟−⎜ ⎟= ⎜ ⎟−
⎜ ⎟⎜ ⎟−⎝ ⎠

 (14.3.23)

Example 14.3.6
Write out explicitly 

3

0
G

x





∂
=

∂
 

Solution:

 
03 13 23 33

0 1 2 3
0

G G G G

x x x x

∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂
 (14.3.24)

 1 1 1
0 0

y z x
B E E

c t c x c z

∂ ∂ ∂
− + + =

∂ ∂ ∂
 (14.3.25)

 

( )
y

yx z
BE E

z x t
×

∂∂ ∂
− = −

∂ ∂ ∂
E


∇

 (14.3.26)

Combined with 
1

0
G

x





∂
=

∂
 and 

2

0
G

x





∂
=

∂
 we obtain the differential form of 

Faraday’s law

 
t

∂
∇× = −

∂
B

E  (14.3.27)

Example 14.3.7

Show that 0
A

x





∂
=

∂
 gives the Lorentz gauge condition  
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Solution: Summing over repeated indices 

 
0 1 2 3

0 1 2 3
0

A A A A

x x x x

∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂
 (14.3.28)

 

1
0

yx z
AA AV

c t c x y z

∇⋅

∂∂ ∂∂ ⎛ ⎞ + + + =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
A

  (14.3.29)

and we have the Lorentz gauge condition 

 
2

1 V

tc

∂
∇⋅ = −

∂
A

 (14.3.30)

Example 14.3.8

Show that 0
J

x





∂
=

∂
 gives the continuity equation  

 
0 1 2 3

0 1 2 3
0

J J J J

x x x x

∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂
 (14.3.31)

 
( )1

0
yx z

JJ J
c

c t x y z


∇⋅

∂∂ ∂∂
+ + + =

∂ ∂ ∂ ∂
J

  (14.3.32)

 
t

∂
∇⋅ = −

∂
J  (14.3.33)

14.3.4 Lorentz Force Equation 
A covariant form of the Lorentz force equation 

 dp
qF U

d





=  (14.3.34)

where the 4-momentum p = (mc, px, py, pz),  is the proper time and 4-velocity  
Uv = (c, vx, vy, vz). Thus, we have four equations

 

0 / / /

/ 0

/ 0

/ 0

x y z

x z yx x

y z xy y

z y xz z

E c E c E cmc c

E c B Bmv vd

E c B Bmv vd

E c B Bmv v










− − −⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎜ ⎟⎜ ⎟ ⎜ ⎟= ⎜ ⎟⎜ ⎟ ⎜ ⎟− −
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎝ ⎠

 (14.3.35)
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The fi rst equation 

 ( )x x y y z z

d
mc E v E v E v

d c





= + +  (14.3.36)

 ( ) ( )2d
mc

d
 


= ⋅v E  (14.3.37)

 
dE

dt
= ⋅v E  (14.3.38)

where d/d = d/dt and the total energy E = mc2

The second equation is

 ( ) ( ) ( )x x z y y z x

d
mv q E B v B v q

d
  


= + − = + ×E v B  (14.3.39)

Similarly, the third and fourth equations give

 ( ) ( )y y

d
mv q

d
 


= + ×E v B  (14.3.40)

 ( ) ( )z z

d
mv q

d
 


= + ×E v B  (14.3.41)

Combining the last three equations

 ( )d
q

dt
= + ×

p
E v B  (14.3.42)

where p = mv. 
The Lorentz force equations with metric signature (, +, +, +) are obtained 

from

 

0 / / /

/ 0

/ 0

/ 0

x y z

x z yx x

y z xy y

z y xz z

E c E c E cmc c

E c B Bmv vd

E c B Bmv vd

E c B Bmv v










−⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎜ ⎟⎜ ⎟ ⎜ ⎟= ⎜ ⎟⎜ ⎟ ⎜ ⎟− −
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎝ ⎠

 (14.3.43)

where the signs of the F electric field components and 4-velocity components 
are opposite from the signs of the (+, , , ) signature. Representations of the 
electromagnetic field tensor can vary among textbooks depending on the metric 
signature and system of units used. For example, the (, +, +, +) is used in David 
Griffith’s textbook Introduction to Electrodynamics, while the (+, , , ) signature 
is used in J. D. Jackson’s textbook Classical Electrodynamics. 
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Maple Example
Transformation of the electric and magnetic field components for a Lorentz boost  
along the x- axis given by T F Λ Λ  is shown in the Maple worksheet below.

Key Maple commands: ‘.’ (matrix multiplication), assume , simplify , Transpose 

Maple packages: with(LinearAlgebra ):

restart

Relativistic Transformation of Fields
with(LinearAlgebra) :

: 0 , 0 , 0 , 0
y yx z x z

z y z x y x

E EE E E E
F B B B B B B

c c c c c c

−− −
= − − −

 

0

0
:

0

0

yx z

x
z y

y

z x

z
y x

EE E

c c c
E

B B
cF

E
B B

c
E

B B
c

⎡ ⎤
− − −⎢ ⎥

⎢ ⎥
⎢ ⎥−⎢ ⎥

= ⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥⎣ ⎦

1 2

2

1
: :

1
v

sqrt
c

 =
⎛ ⎞
−⎜ ⎟

⎝ ⎠

1 1
1 1: 0 0 , 0 0 , 0 0 1 0 , 0 00 1

v v

c c

 
 

⋅ ⋅
Λ = − −

 

2 2

2 2

2 2

2 2

1
0 0

1 1

1
0 0:

1 1

0 0 1 0

0 0 0 1

v

v v
c

c c

v

v v
c

c c

⎡ ⎤−⎢ ⎥
⎢ ⎥− −⎢ ⎥
⎢ ⎥
⎢ ⎥−Λ = ⎢ ⎥

− −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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Ft := simplify(Transpose().F)

2 2 2 2

2 2

2 2

2 2 2 2
2 2

2 2

2

2 2 2 2
2

2 2

2

2 2 2 2
2

2 2

0

0

:

0

0

z y y zx

z y y zx

z y z y

x

y z y z

x

vB E vB EE

c c v c v
c c

c c

B c vE B c vEE

c c v c v
c c

c c
Ft

vB E B c vE
B

c v c v
c c

c c

vB E B c vE
B

c v c v
c c

c c

− +⎡ ⎤
− −⎢ ⎥

− −⎢ ⎥
⎢ ⎥
⎢ ⎥

− + +⎢ ⎥
⎢ ⎥

− −⎢ ⎥
⎢ ⎥
⎢ ⎥=

− + −⎢ ⎥
−⎢ ⎥

− −⎢ ⎥
⎢ ⎥
⎢ ⎥

+ +⎢ ⎥
−⎢ ⎥

− −⎢ ⎥
⎢ ⎥⎣ ⎦

assume(c > 0)
simplify(Ft, sqrt)

2 2 2 2

2 2

2 2 2 2

2

2 2 2 2

2

2 2 2 2

0

0

:

0

0

z y y zx

z y y zx

z y z y

x

y z y z

x

vB E vB EE

c c v c v

B c vE B c vEE

c c c v c c v
Ft

vB E B c vE
B

c v c c v

vB E B c vE
B

c v c c v

− +⎡ ⎤
− −⎢ ⎥

− −⎢ ⎥
⎢ ⎥− + +⎢ ⎥
⎢ ⎥− −= ⎢ ⎥

− + −⎢ ⎥
−⎢ ⎥

− −⎢ ⎥
⎢ ⎥+ +
⎢ ⎥−
⎢ ⎥− −⎣ ⎦

  
 

    


  


  

14.4 RELATIVISTIC LAGRANGIAN FORMULATION

The Lagrangian formulation is applied to relativistic problems below, including 
the free particle, simple harmonic oscillator, and a particle in electric and 
magnetic fields. Lagrange’s equations of motion are then obtained. The relativistic 
Hamiltonian and Hamilton’s equations of motion are then demonstrated. 
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14.4.1 Lagrangian of a Free Particle 
The relativistic Lagrangian of a free particle moving in one dimension is

 

2
2

2
1

x
L mc

c
= − −


 (14.4.1)

From the generalized momentum

 

2

22 2

2 2

1
2

2
1 1

x

L mc x mx
p

x cx x

c c

∂ ⎛ ⎞= = − − =⎜ ⎟∂ ⎝ ⎠
− −

 
    (14.4.2)

the Hamiltonian is obtained using a Legendre transformation 

 

2 2
2

22

2

1

1

mx x
H px L mc

cx

c

= − = + −

−

 
  (14.4.3)

Obtaining a common denominator

 

2

2

2
1

mc
H

x

c

=

−
  (14.4.4)

14.4.2 Relativistic 1D Harmonic Oscillator  
The relativistic Lagrangian for the 1D simple harmonic oscillator is

 
2

2 2

2

1
1

2

x
L mc kx

c
= − − −


 (14.4.5)

with corresponding Hamiltonian

 

2
2

2

2

1

2
1

mc
H kx

x

c

= +

−
  (14.4.6)

14.4.3 Charged Particle in Electric and Magnetic Fields 
The relativistic Lagrangian of a free particle of mass m and charge q moving in 
electric and magnetic fields with scalar potential V and magnetic vector potential 
A is

 
2

2

2
1

v
L mc q qV

c
= − − + ⋅ −v A  (14.4.7)
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where 2 2 2 2v x y z= + +    and x y zxA yA zA⋅ = + +v A    . Lagrange’s equations in 
Cartesian coordinates are

 0, 0 and 0
d L L d L L d L L

dt x x dt y y dt z z

∂ ∂ ∂ ∂ ∂ ∂
− = − = − =

∂ ∂ ∂ ∂ ∂ ∂  
  (14.4.8)

corresponding to

  ( )
2

2

0

1

x

d mx V
qA q q

dt x xv

c

⎡ ⎤
⎢ ⎥

∂ ∂⎢ ⎥+ − ⋅ + =⎢ ⎥ ∂ ∂
⎢ ⎥−
⎢ ⎥⎣ ⎦

v A


 (14.4.9)

 ( )
2

2

0

1

y

myd V
qA q q

dt y yv

c

⎡ ⎤
⎢ ⎥

∂ ∂⎢ ⎥+ − ⋅ + =⎢ ⎥ ∂ ∂
⎢ ⎥−
⎢ ⎥⎣ ⎦

v A


 (14.4.10)

 ( )
2

2

0

1

z

d mz V
qA q q

dt z zv

c

⎡ ⎤
⎢ ⎥

∂ ∂⎢ ⎥+ − ⋅ + =⎢ ⎥ ∂ ∂
⎢ ⎥−
⎢ ⎥⎣ ⎦

v A


 (14.4.11)

Combining these equations 

 ( )
2

2

0

1

d m
q q q V

dt v

c

⎡ ⎤
⎢ ⎥
⎢ ⎥+ − ∇ ⋅ + ∇ =⎢ ⎥
⎢ ⎥−
⎢ ⎥⎣ ⎦

v
A v A  (14.4.12)

and using 

 ( ) ( )× =∇ ⋅ − ⋅∇v B v A v A  (14.4.13)

with

 ( )d

dt t

∂
= + ⋅∇
∂

A A
v A  (14.4.14)

we obtain the Lorentz force equation

 ( )d
m q V

dt t


∂⎛ ⎞= − −∇ + ×⎜ ⎟∂⎝ ⎠

A
v v B  (14.4.15)
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or

 ( ) ( )d
m q

dt
 = + ×v E v B  (14.4.16)

Maple Examples
Lagrangian and Hamiltonian formalisms are demonstrated for the free particle 
and simple harmonic oscillator in the Maple worksheet below.

Key Maple commands: diff , dsolve , hamilton_eqs , simplify , solve , subs 

Maple packages: with(Physic s): with(DETools ):

restart

with(Physics) :

Setup(mathematicalnotation = true)

 [mathematicalnotation = true]

Lagrangian of a Free Particle

( )( )2

2 2

2

, 1
: 1 ( )

2

diff x t t
L m c sqrt k x t

c

⎛ ⎞
⎜ ⎟= − ⋅ ⋅ − − ⋅ ⋅
⎝ ⎠

 

( )
2

2
2

2

( )
: 1

2

d
x t

kx tdt
L mc

c

⎛ ⎞
⎜ ⎟
⎝ ⎠= − − −

LagEqn := diff(diff(L, diff(x(t), t)), t) = 0

( ) ( )

( )

( )

( )

2 2 2

2 2

3/2 22

2
22

: 0

11

d d d
m x t x t m x t

dt dt dt
LagEqn

dd
x tx t

dtdt c
cc

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠= + =
⎛ ⎞ ⎛ ⎞⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎜ ⎟ −−⎜ ⎟
⎝ ⎠

dsolve(LagEqn)

x(t) = _C1 t + _C2
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H := diff(L, diff(x(t), t))diff(x(t), t) – L

( )

( )

( )
2 2

2

22

2

: 1

1

d d
m x t x t

dt dt
H mc

cd
x t

dt

c

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠= + −
⎛ ⎞
⎜ ⎟
⎝ ⎠−

simplify(%)

( )

2

2
2

2

mc

d
x t c

dt

c

⎛ ⎞− +⎜ ⎟
⎝ ⎠

solve(p(t) := diff(L, diff((t), t))diff(x(t), t)) 

 

( )

( )

( )

( )2 22 2 2 2
,

p t c p t c

c m p t c m p t

−
+ +

H := simplify(subs(diff(x(t), t) = %[1], H))

( )

2

2 2

22 2

:
mc

H
c m

c m p t

=

+

diff(x(t), t) = simplify(diff(H, p(t))) 

( ) ( )

( )( )
( )

2

2 2
22 2

22 2

mc p td
x t

dt c m
c m p t

c m p t

=

+
+

Lagrangian and Hamiltonian of a Simple Harmonic Oscillator 

( )( ) ( )
2

22

2

, 1
: 1

2

diff x t t
L m c sqrt k x t

c

⎛ ⎞
⎜ ⎟= − ⋅ ⋅ − − ⋅ ⋅
⎝ ⎠

( ) ( )

2

2
2

2
: 1

2

d
x t

kx tdt
L mc

c

⎛ ⎞
⎜ ⎟
⎝ ⎠= − − −
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diff(diff(L, diff(x(t), t)), t) – diff(L, x(t)) = 0 

( ) ( )

( )

( )

( )

( )

2 2 2

2 2

3/2 22

2
22

0

11

d d d
m x t x t m x t

dt dt dt
kx t

dd
x tx t

dtdt c
cc

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠+ + =
⎛ ⎞ ⎛ ⎞⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎜ ⎟ −−⎜ ⎟
⎝ ⎠

H := diff(L, diff(x(t), t))diff(x(t), t) – L

( )

( )

( ) ( )

2 2

2
2

22

2

: 1
2

1

d d
m x t x t

kx tdt dt
H mc

cd
x t

dt

c

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠= + − +
⎛ ⎞
⎜ ⎟
⎝ ⎠−

solve(p(t) := diff(L, diff(x(t), t)), diff(x(t), t)) 

( )

( )

( )

( )2 22 2 2 2
,

p t c p t c

c m p t c m p t

−
+ +

H := simplify(subs(diff(x(t), t) = %[1], H))

( )
( )

( )

2 2
2 2

22 2

2 2

22 2

2

:

2

c m
kx t mc

c m p t
H

c m

c m p t

+
+

=

+

diff(x(t), t) = simplify(diff(H, p(t)))

( ) ( )

( )( )
( )

2

2 2
22 2

22 2

mc p td
x t

dt c m
c m p t

c m p t

=

+
+

diff(p(t), t) = -simplify(diff(H, x(t)))

( ) ( )d
p t kx t

dt
= −
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Hamilton’s Equations Using the DETools Package

HH := subs({x(t) = q1, p(t) = p1}, H))

2 2
2 2

2 2 2

2 2

2 2 2

2

:

2

c m
kq1 mc

c m pl
HH

c m

c m pl

+
+

=

+

with(DETools) :
hamilton_eqs(HH)

( ) ( ) ( ) ( ) ( )

( )( )

( )
( )

( )

( )
( )( )

( ) ( )

2

22 2

2 2
2 2 2 2

22 2

3/2
2 2 2

22 2

22 2

, :
2

2

, ,

2

kq1 t p1 td d
p1 t kq1 t q1 t

dt dt c m p1 t

c m
kq1 t mc c m p1 t

c m p1 t
p1 t q1 t

c m
c m p1 t

c m p1 t

⎡
= − = −

 +⎣
⎤⎛ ⎞
⎥⎜ ⎟+

⎜ ⎟ ⎥+⎝ ⎠  +   
 

+   +   

simplify(%[1][2])

( ) ( )

( )
( )( )

2

2 2
22 2

22 2

mc p1 td
q1 t

dt c m
c m p1 t

c m p1 t

=

+
+

14.5 MATLAB EXAMPLES 

Section 14.4 Relativistic Lagrangian Formulation  
Lagrange’s relativistic equation of motion describing a point charge in an electric 
field is obtained with the MATLAB script ‘relativistic_lagrangian.m.’ The equation 
of motion is then solved with the point charge initially at rest. 

Key MATLAB commands: assum e, dsolve , functionalDerivative , syms 

syms m q E c x(t)

T =  -m*c^2*sqrt(1-diff(x,t)^2/c^2);

V = q*E*x;
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L = T - V

eqn = functionalDerivative(L,x) == 0

assume(m>0);

assume(q>0);

assume(E>0);

assume(c>0);

Dx=diff(x,t);

conds=[x(0)==0,Dx(0)==0];

dsolve(eqn,conds)

The above script is exectuted at the Command line. 

>> relativistic_lagrangian

L(t) =

- E*q*x(t) - c^2*m*(1 - diff(x(t), t)^2/c^2)^(1/2)

eqn(t) =

-(m*diff(x(t), t, t) + E*q*(1 - diff(x(t), t)^2/c^2)^(3/2))/(1 - 

diff(x(t), t)^2/c^2)^(3/2) == 0

ans =

(c*(c^2*m^2)^(1/2))/(E*q) - (c*(E^2*q^2*t^2 + c^2*m^2)^(1/2))/(E*q)

>> pretty(ans)

        2  2            2  2  2    2  2

c sqrt(c  m )   c sqrt(E  q  t  + c  m )

------------- - ------------------------

     E q                   E q

14.6 EXERCISES

Section 14.1 Kinematics

1. At what speed does a meter stick move with respect to an observer who 
measures its length to be 1.0 cm?

2. A 1-km-long train approaches a tunnel that is 100 m long. How fast must 
the train travel relative to the tunnel for it to fit completely inside for a brief 
instant in a reference frame at rest with respect to the tunnel?

3. According to an observer O in the lab frame particle A moves at c/2 and 
particle B moves at –c/2. What is the speed of A with respect to B?

4. An observer O in the lab frame measures particle A with a velocity of 0.999c 
and particle B with a velocity of –0.99c. What is the speed of A with respect to 
B?

Section 14.2 Energy and Momentum

5. A proton with mass m = 938 MeV/c2 moves at 0.99c. Calculate its kinetic 
energy and total energy. 
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6. What is the speed of a particle with relativistic momentum p = mv equal to 
three times its classical momentum  p = mv? Leave your answer in terms of the 
speed of light c.

7. A rocket’s kinetic energy is three times its rest mass energy in a frame at rest 
with respect to the background stars. For every second that ticks by in the 
rocket frame how many seconds pass by in the frame at rest with respect to the 
background stars?

8. Calculate the speed v a particle of mass m in a frame where (a) its total energy 
is equal to three times its rest mass energy and (b) its kinetic energy is equal to 
its rest mass energy

9. Given  p = mv show that 3dp dv
m

dt dt
=

10. Given E = mc2 and  p = mv show that E2 = p2c2 + m2c4

11. A hypothetical particle of mass M initially at rest in the lab decays into particles 
of mass m moving with a speed c/2 relative to the laboratory frame. What was 
the initial mass M in terms of the mass m of the decay products?

12. Two hypothetical blobs of clay both of mass M are moving toward each other 
at speeds c/2 and c/3 relative to the laboratory frame. What is the final mass 
of the combined blobs after they stick together? What is the final speed of the 
combined blobs?

13. A particle of mass M, initially at rest in the laboratory frame, decays into two 
masses m1 and m2 moving in opposite directions at speeds v1 and v2. 
(a)  Write down relativistic equations for the conservation of energy and 

momentum.
(b)  For the special case where v1 = v2 = v write down an expression for m1 and 

m2 in terms of M and v.

14. An X-ray photon with wavelength  and frequency f scatters off an electron at 
an angle . The scattered X-ray wavelength and frequencies are  and f . The 
electron is scattered at an angle  with an energy Ee and momentum pe. Apply 
energy conservation  

2
e ehf m c hf E′+ = +

with momentum conservation in the x-direction 

cos cose

h h
p  

 
= +

′
and momentum conservation in the y-direction 

0 sin sine

h
p  


= −

′
using the relation 

2 2 2 2 4
e e eE p c m c= +
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to show Compton’s scattering formula

( )1 cosc   ′ = + −

where 0.00243 nmc

e

h

m c
 = = . 

λ
1

λ
2

λ
3

θ
2

φ
2

θ
1

φ
1

☺

☺

☺

☺

☺

Figure 14.6.1: A photon scatters off two electrons.

15. A photon Compton scatters off two electrons as shown in Figure 14.6.1. 
Calculate (a) the energy and (b) the wavelength 3 of the photon after 
scattering off the second electron in terms of 1 of 1 and 2. 

16. A photon Compton scatters off three electrons with each scattering angle 
equal to 60 degrees. What fraction of the initial energy of the photon remains 
after the third scattering event?

17. An X-ray Compton scatters off a stationary electron. By how much does the 
wavelength of the X-ray increase if the scattering angle is 180 degrees. Find the 
momentum and the kinetic energy of the electron.

18. A particle of mass M traveling along the x-axis at vi = c/3 decays into two 
particles of mass m = M/3. Each particle moves away with speed vf at an angle 
 above and below the x-axis.
(a)  Write down the relativistic equations for conservation of total energy and 

momentum.
(b)  Obtain values for vf and the angle . 

19. An electron and a positron (each with mc2 = 0.511 MeV) combine and 
annihilate with negligible initial kinetic energy. What is the frequency and 
wavelength of the emitted photons?

20. A positron traveling along the x-axis with a speed of 0.999c strikes a stationary 
electron producing two very high-energy photons. Calculate the energy of 
each photon and the angle  above and below the x-axis that the photons 
travel after the collision.
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Section 14.3 Electromagnetics in Relativity

21. An electron is accelerated across a potential difference of 108 V. What fraction 
of the speed of light v/c does the electron attain?

22. Over what potential difference must an electron be accelerated so that it 
attains a speed of 0.999c?

23. Two identical masses M each have a charge Q and are separated by a distance 
d. Apply conservation of energy with the relativistic form of the kinetic energy 
to calculate the final speed of the masses long after they are released (neglect 
their gravitational attraction). 

24. A particle of mass m and charge Q travels with a relativistic velocity v 
perpendicular to the direction of magnetic field B. What is the radius of 
curvature of the particle’s path?

25. A particle with charge Q and mass m is placed in an electric field E. Write 
a relativistic expression for the particle’s acceleration. What is the particle’s 
speed as a function of time?

26. A point charge q travels with a velocity 0
ˆv=v i  in the x-direction. Write the 

components of the electric field in Cartesian coordinates. Create a vector plot 
of the electric field in the x-y plane.

27. A point charge q of mass m is released from rest at x = 0 in an electric field 

0
ˆE=E i . Find the velocity of the charge as a function of position in the lab 

frame.

28. Write out explicitly 
2 3

32

3 2

A A
F

x x

∂ ∂
= −
∂ ∂

29. Write 
3

0
G

x





∂
=

∂
 out explicitly to obtain 0  ∇⋅ =B

30. Show that the inhomogeneous wave equations 2
0= −A J  and 2

0

V



= −  

can be written as 2
0A J = − .

31. Show that 

0
F FF

x x x

 
  

∂ ∂∂
+ + =

∂ ∂ ∂

32. Given the electromagnetic displacement tensor 

0

/ 0

/ 0

/ 0

x y z

x z y

y z x

z y x

D c D c D c

D c H H
D

D c H H

D c H H



⎛ ⎞
⎜ ⎟− −⎜ ⎟= ⎜ ⎟− −
⎜ ⎟⎜ ⎟− −⎝ ⎠
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and the magnetization-polarization tensor 

0

/ 0

/ 0

/ 0

x y z

x z y

y z x

z y x

P c P c P c

P c M M
M

P c M M

P c M M



⎛ ⎞
⎜ ⎟− −⎜ ⎟= ⎜ ⎟− −
⎜ ⎟⎜ ⎟− −⎝ ⎠

show that 
0

1
D F M  


= −

33. Given the 4-current Jv is a sum of free and bound currents 

free bJ J J  = +  where ( )free free free,J c = J  and ( )b b b,J c = J

show that freeD J 
∂ =  gives Maxwell’s equations in matter 

free∇⋅ =D

free
t

∂
∇× = +

∂
D

H J

Section 14.4 Relativistic Lagrangian Formulation 

34. Show the relativistic Lagrangian of a free particle 
2

2

2
1

v
L mc

c
= − −  becomes

2 21

2
L mc mv≈ − +

for v c
35. Write an expression for the relativistic Lagrangian and Hamiltonian of a 

simple harmonic oscillator in two dimensions and find the equations of 
motion.  

36. Given the Lagrangian for the electromagnetic field
1

4
L F F J A 

 = − −

show that 

,

0
v

L L

A Ax   

∂ ∂ ∂
− =

∂ ∂∂
gives Maxwell’s equations in the form

F J 
∂ =

where , / v
vA A x = ∂ ∂
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15Chapter

GENERAL 
RELATIVITY

Chapter Outline
15.1 The Equivalence Principle 

15.2 Tensor Calculus

15.3 Einstein’s Equations 

15.1 THE EQUIVALENCE PRINCIPLE

The results of special relativity are extended in the general theory that includes 
acceleration and gravity. The laws of physics are the same in all inertial and 
accelerated reference frames. There is no way to distinguish an accelerating frame 
from a frame at rest in a gravitational field as stated by the equivalence principle . 
Because of the equivalence between gravitational and inertial mass, a small mass m 
will experience the same acceleration as a large mass M released in a gravitational 
field where ma = mg  a = g and Ma = Mg  a = g. 

A famous thought experiment illustrates an important consequence of the 
equivalence principle. Observer 1 is in an upward accelerated elevator in the 
absence of gravity. Observer 2 is in an identical elevator at rest in a gravitational 
fi eld. Observer 1 releases a mass that appears to fall toward the fl oor. Observer 2 
releases an identical mass that falls in the gravitational fi eld. The measurements 
of Observers 1 and 2 are indistinguishable. Observer 1 now projects a laser 
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horizontally across the elevator. The beam strikes slightly lower on the opposite 
wall since the elevator has traveled upward during the travel time of the laser 
beam. Observer 2 repeats the experiment and obtains the same results. It is 
concluded that the light ray is deviated by gravity. 

15.1.1 Classical Approximation to Gravitational Redshift 
Consider a photon of initial energy Ei = hf projected upward from the surface of 
the earth. When the photon reaches a height H it has an energy efffE m gH hf ′= +  
where the effective mass

 eff 2

hf
m

c
=  (15.1.1)

Applying conservation of energy Ei = Ef

 
2

hf
hf gH hf

c
′= +  (15.1.2)

so that the frequency at height H has decreased

 2
1

gH
f f

c

⎛ ⎞′ = −⎜ ⎟
⎝ ⎠

 (15.1.3)

From the relation f = c

 2
1

gHc c

c 
⎛ ⎞= −⎜ ⎟′ ⎝ ⎠

 (15.1.4)

we find that the wavelength is redshifted at height H 

 
2

1
gH

c


′ =

⎛ ⎞−⎜ ⎟
⎝ ⎠

 (15.1.5)

15.1.2 Photon Emitted from a Spherical Star
Now consider a photon of frequency f emitted from the photosphere of a spherical 
star of radius R and mass M. The gravitational potential energy a distance r from 
the center of the star is 

 ( ) effg

GM
U r m

r
= −  (15.1.6)
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where r  R. At the surface of the star 

 ( ) effg

GM
U R m

R
= −  (15.1.7)

and our energy conservation equation is 

 
2 2

hf hfGM GM
hf hf

R rc c

⎛ ⎞ ⎛ ⎞′− = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (15.1.8)

Far from the star r R

 2
1

GM
f f

Rc

⎛ ⎞′ = −⎜ ⎟
⎝ ⎠

 (15.1.9)

This result differs from the correct expression obtained from general relativity 

 2

2
1

GM
f f

Rc

⎛ ⎞′ = −⎜ ⎟
⎝ ⎠

 (15.1.10)

15.1.3 Gravitational Time Dilation 
We can infer an expression for the time dilation in the gravitational field at the 
surface of a spherical body of radius R and mass M. Taking t = 1/f  and t = 1/f

 
2

2
1

t
t

GM

Rc

Δ′Δ =
⎛ ⎞−⎜ ⎟
⎝ ⎠

 (15.1.11)

for every second that ticks by on the surface of the gravitational mass 
1

2

2
1 1

GM

Rc

−
⎛ ⎞− >⎜ ⎟
⎝ ⎠

seconds tick by on an observer’s watch far away from the mass. 

Hence time slows down near a massive body. Also, when 
2

2GM
R

c
=  we have

1

2

2
1

GM

Rc

−
⎛ ⎞− → ∞⎜ ⎟
⎝ ⎠

. Evidently time stands still at the event horizon of a black hole 

relative to a distant observer. Note that gravitational time dilation is not symmetric 
as in the case of bodies in relative motion. In special relativity, observers in relative 
motion would see each other’s clocks ticking slowly. 

15.1.4 Comparison of Time Dilation Factors 

Example 15.1.1
At what speed would gravitational time dilation be comparable to the time 
dilation experienced by observers in relative motion? 
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Solution: Equating the time dilation factors 

 2

2

1 1

2
1

1
GM

v
Rc

c

=
⎛ ⎞ −−⎜ ⎟
⎝ ⎠

 (15.1.12)

and solving for v 

 

2

2

2
1 1

GM
v c

Rc

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

 (15.1.13)

For sufficiently weak fields where 
2

2
1

GM

Rc
<<  the binomial approximation gives

 escape2v v≈ where escape

2GM
v

R
=  (15.1.14)

Signals from global positioning satellites must be corrected to account for both 
special and general relativistic time dilations. 

15.2 TENSOR CALCULUS

General relativity offers a description of gravity as a curvature of spacetime. As 
John A. Wheeler succinctly summarizes: “Matter tells space how to curve and 
space tells matter how to move.” The mathematical description of gravity in 
general relativity requires the use of tensors. Topics in this section include tensor 
notation, line element and spacetime interval, the metric tensor in Cartesian and 
spherical coordinates, the raising and lowering of indices, dot and cross product, 
the Levi-Civita tensor, transformation properties of tensors, the quotient rule and 
covariant derivatives. The metric tensor is used in the computation of covariant 
derivatives involving Christoffel symbols.

15.2.1 Tensor Notation 
A tensor can be represented as an array of elements. The dimensionality of the 
array gives the rank (or order) of the tensor that can be determined by the number 
of indices. Scalars such as , , etc., have no indices and are rank zero tensors. 
Vectors such as x, Ai, etc., are tensors of rank one. Greek indices (, , , ,  , etc.) 
usually have four values—e.g., x = (x0, x1, x2, x3). Latin indices (i, j, k, n, m, etc.) 
usually correspond to three values—e.g., Ai = (A1, A2, A3). 
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Rank two tensors  with two indices can be formed by the product of two rank 
one tensors. For example, the product of the contravariant vectors A and B gives 
the N  N matrix C = AB for  = 0, 1, 2, 3 and  = 0, 1, 2, 3; we have the 16 
components 

 

0 0 0 1 0 2 0 3

1 0 1 1 1 2 1 3

2 0 2 1 2 2 2 3

3 0 3 1 3 2 3 3

A B A B A B A B

A B A B A B A B
C

A B A B A B A B

A B A B A B A B



⎛ ⎞
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (15.2.1)

The trace of C is found by setting two indices equal  = 

 0 0 1 1 2 2 3 3TrC C A B A B A B A B = = + + +  (15.2.2)

where we sum over repeated indices. 

15.2.2 Line Element and Spacetime Interval 
The line element in Cartesian coordinates

 
2 2 2 2d dx dy dz= + +  (15.2.3)

with spacetime interval 

 2 2 2 2 2 2ds c dt dx dy dz= − − −  (15.2.4)

is also expressed as

 ( ) ( ) ( ) ( )2 2 2 2
2 0 1 2 3ds dx dx dx dx= − − −  (15.2.5)

where x0 = ct, x1 = x, x2 = y, x3 = z.
The spacetime interval may be written in tensor notation 

 
2ds g dx dx 

=  (15.2.6)

where g is the metric tensor. In flat Minkowski spacetime, g = diag(1, 1, 1, 
1) or

 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

g 

⎛ ⎞
⎜ ⎟−⎜ ⎟= ⎜ ⎟−
⎜ ⎟⎜ ⎟−⎝ ⎠

 (15.2.7)

with signature (+, , , ). The signature (, +, +, +) is also common. The flat 
space metric is often written as . It is also common to refer to the spacetime 
interval as a “line element.”
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15.2.3 Raising and Lowering Indices 
A covariant vector has a lower index such as A = (A0, A1, A2, A3)
A contravariant vector is written with an upper index B = (B0, B1, B2, B3)
The index of a contravariant vector may be lowered using the metric tensor

 A g A  =  (15.2.8)

To raise the index of a covariant vector

 A g A 
=  (15.2.9)

where the inverse of g is written with superscripts g. It has the property that

 g g  
 =  (15.2.10)

where 
  is the Kronecker delta function. For an arbitrary vector A = (A0, A1, A2, 

A3)

 A0 = A0  A1 = A1 A2 = A2 A3 = A3 (15.2.11)

15.2.4 Metric Tensor in Spherical Coordinates
The line element in spherical coordinates is

 2 2 2 2 2 2 2sind dr r d r d  = + +  (15.2.12)

with spacetime interval 

 2 2 2 2 2 2 2 2 2sinds c dt dr r d r d  = − − −  (15.2.13)

In spherical coordinates, the metric tensor is

 2

2 2

1 0 0 0

0 1 0 0

0 0 0

0 0 0 sin

g
r

r





⎛ ⎞
⎜ ⎟−⎜ ⎟= ⎜ ⎟−
⎜ ⎟
⎜ ⎟−⎝ ⎠

 (15.2.14)

with inverse

 
2

2 2

1 0 0 0

0 1 0 0

1
0 0 0

1
0 0 0

sin

g
r

r





⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟= −⎜ ⎟
⎜ ⎟
⎜ ⎟−⎜ ⎟
⎝ ⎠

 (15.2.15)
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so that g g  
 =

15.2.5 Dot Product 
The metric tensor may be used to form the dot product between two vectors A 
and B

 0 1 2 3
0 1 2 3g A B A B A B A B A B A B  

 ⋅ = = = − − −A B  (15.2.16)

15.2.6 Cross Product
The cross product of vectors C = (C1, C2, C3) and D = (D1, D2, D3) may be expressed 
in tensor notion using the Levi-Civita tensor 

 ( ) ijk j ki
C D× =C D  (15.2.17)

In three dimensions, the Levi-Civita tensor can be shown as

 

1 even permutations

1              odd permutations

0 repeated indices
ijk

⎧
⎪= −⎨
⎪
⎩

  (15.2.18)

For even permutations 123 = 231 = 312 = 1, for odd permutations 321 = 213 = 
132 = 1 and for repeated indices 311 = 223 = etc. = 0. The Levi-Civita tensor can 
be generalized to N dimensions. The four-dimensional Levi-Civita tensor   
may be used to form a tensor such as

 S A B 
 =  (15.2.19)

For example, the component 

 3 4 4 3
12S A B A B= −  (15.2.20)

15.2.7 Transformation Properties of Tensors 
Components of a contravariant vector Av expressed in a primed coordinate system 
are 

 x
A A

x


 



′
′ ∂
=

∂
 (15.2.21)

The components of a covariant vector Av transform as

 
x

A A
x



 ′ ′

∂
=

∂
 (15.2.22)
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Contravariant, covariant and mixed tensors of rank two transform as

 x x
T T

x x

 
  

 

′ ′
′ ′ ∂ ∂

=
∂ ∂

 (contravariant) (15.2.23)

                                  
x x

T T
x x

 

   ′ ′ ′ ′

∂ ∂
=

∂ ∂
 (covariant)  (15.2.24)

                                   
x x

T T
x x

 
 
  

′
′

′ ′

∂ ∂
=

∂ ∂
 (mixed)  (15.2.25)

Mixed tensors of arbitrary rank  transform as 

 
x x x x x x

T T
x x x x x x

     
   
        

′ ′ ′
′ ′ ′

′ ′ ′ ′ ′ ′

∂ ∂ ∂ ∂ ∂ ∂
=

∂ ∂ ∂ ∂ ∂ ∂
 
    (15.2.26)

Objects that do not transform in accordance with the above rules are nontensors. 

15.2.8 Quotient Rule for Tensors 
Given that the contraction BA is a tensor for any arbitrary vector B, then A
is a tensor. The quotient rule for tensors holds if A is replaced by a quantity 
with any number of upper or lower indices. If the contraction of an entity A 



  

with an arbitrary tensor produces another tensor, then A 



  is a tensor.

Example 15.2.1
Given that the dot product between two vectors is invariant under a coordinate 
transformation 

 g A B g A B   
  

′ ′
′ ′⋅ = =A B  (15.2.27)

show that g is a tensor

Solution: We write

 
x x x x

g A B g A B g A B
x x x x

   
     

       

′ ′ ′ ′

′ ′ ′ ′
∂ ∂ ∂ ∂

= =
∂ ∂ ∂ ∂

 (15.2.28)

This must hold for any arbitrary A and B so that

 
x x

g g
x x

 

    

′ ′

′ ′
∂ ∂

=
∂ ∂

 (15.2.29)

Thus g is a tensor.
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15.2.9 Covariant Derivatives  
With metric signature (+, , , ), the derivative operator with respect to 
covariant components  is 

 0 1 2 3 0
, , , ,

x x x x x x





∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞∂ = = − − − = −∇⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 (15.2.30)

The derivative operator with respect to contravariant components is  

 
0 1 2 3 0

, , , ,
x x x x x x

 

∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞∂ = = = ∇⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 (15.2.31)

The gradient of a scalar function S with respect to a contravariant component 
gives a covariant vector 

 
S

S
x



∂
= ∂

∂
 (15.2.32)

This is written even more compactly using a comma (,) shorthand notation 
S = S,. 

The transformation rule for a covariant vector is 

 
x

A A
x



 ′ ′

∂
=

∂
 (15.2.33)

If we take the derivative of A′  with respect to x 
′

 
2A Ax x x

A
x x x x x x

  
 

     

′
′ ′ ′ ′ ′

∂ ∂∂ ∂ ∂
= +

∂ ∂ ∂ ∂ ∂ ∂
 (15.2.34)

or using the comma notation 

 , , , , , ,A x x A x A  
        ′ ′ ′ ′ ′ ′= +  (15.2.35)

Because of the second term, the derivative ,A ′ ′  does not transform as a tensor. 

We define the covariant derivative Dv of a covariant vector

 ,D A A A
     = − Γ  (15.2.36)

where the Christoffel symbol of the second kind 

 
1

2

rr r r
r r

g gg
g g

x x x

    
   

∂ ∂⎛ ⎞∂
Γ = Γ = + −⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

 (15.2.37)
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is obtained from the Christoffel symbol of the first kind

 
1

2

g gg

x x x

 
   

∂ ∂⎛ ⎞∂
Γ = + −⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

 (15.2.38)

by contraction with the metric tensor. The Christoffel symbols are nontensors. 
Examination of the above reveals  =  and 

 
 Γ = Γ . A colon (:) shorthand 

notation denotes a covariant derivative DvA = A. The semicolon (;) is also a 
common notation for the covariant derivative. The covariant derivative of a 
contravariant vector is

 
: ,A A A   
  = + Γ  (15.2.39)

The covariant derivative of a second rank tensor with covariant indices is 

 
: ,T T T T 

       = − Γ − Γ  (15.2.40)

For a mixed tensor with upper and lower indices 

 
: ,T T T T     
       = − Γ + Γ  (15.2.41)

In general

: ,  term (for each lower index)  term (for each upper index)T T 
   = − Γ + Γ 
 

 

 (15.2.42)

Maple Examples
Tensors are defined in the Maple worksheet below. Examples include the 
raising and lowering of indices, dot product, the Levi-Civita tensor, cross 
product, covariant derivatives and Christoffel symbols. The Maple command 
‘g_[lineelement]’ outputs the spacetime interval for a given metric tensor. Note 
that the default metric tensor 

 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

g 

−⎛ ⎞
⎜ ⎟−⎜ ⎟= ⎜ ⎟−
⎜ ⎟⎜ ⎟
⎝ ⎠

in Maple corresponds to the spacetime interval 

 ds2 = dt2 – dx2 – dy2 – dz2

with c = 1 and the indices ,  run from one to four and g00  g44 = 1. This 
convention is consistent with the signature used in this textbook where g = 
diag(1, -1, 1, 1). For a given metric tensor, Maple will simply output g44 if g00 is 
input at the Command line.  
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Key Maple commands: 
convert , D_[mu],  d_[mu],  Define , g_[ ]  , g_[lineelement]  ,Geodesics , LeviCivita,  
Simplify , SumOverRepeatedIndices  
Maple packages: with(Physics ):

restart

with(Physics) :

setup(mathematicalnotation = true)

 setup[mathematicalnotation = true]

Metric Tensor for Minkowski Space

g_[]

 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

g 

−⎛ ⎞
⎜ ⎟−⎜ ⎟= ⎜ ⎟−
⎜ ⎟⎜ ⎟
⎝ ⎠

g_[alpha, beta]g_[~beta, ~nu]

 g, g
,

Simplify(%)

 g 

Spacetime Interval from Metric Tensor  

g_[lineelement]

 Systems of spacetime Coordinates are: {X = (x1, x2, x3, x4)}

 ( ) ( ) ( ) ( )2 2 2 2
x x x x−∂ − ∂ − ∂ + ∂1 2 3 4

Define Tensors

Define(A, B, N, S)

 Defined objects with tensor properties

 {A, B, N, S, , , X, , g,, ,v, , , , }

Lowering the Index of a Contravariant Vector

g_[mu, nu]A_[~nu]

 g, A
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Simplify(%)

 A

Raising the Index of a Covariant Vector

g_[~mu, ~nu]A[nu]

 g, A

Simplify(%)

 A

Second Rank Mixed Tensor

B[mu]A[~nu]

 B A


Dot Product

g_[mu, nu]B[~nu]A[~mu]

 g, B
 A

SumOverRepeatedIndices(%)

 –A1B1 – A2B2 – A3B3 + A4B4

4-Index Levi-Civita Symbols

LeviCivita(a, b, c, d)

 a, b, c, d

LeviCivita(~a, ~b, ~c, ~d)

 a, b, c, d

LeviCivita[1, 2, 3, 4]

1

LeviCivita[~1, ~2, ~3, ~4]

1

LeviCivita[2, 1, 3, 4]

1

LeviCivita[1, 1, 3, 4]

0

LeviCivita[1, 2, 3, 3]

0
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3-Index Levi-Civita Symbols

LeviCivita[i, j, k]

 i, j, k

LeviCivita[1, 2, 3]

 1

LeviCivita[3, 2, 1]

 –1

LeviCivita[1, 2, 2]

 0

Cross Product

LeviCivita[1, 2, sigma, gamma]A[~sigma]B[~gamma]

 -1,2, ,  A
 B

SumOverRepeatedIndices(%)

 A3B4 – A4B3

Tolman Metric

g_[Tolman]
The Tolman metric in spherical coordinates

Default differentiation variables for d_, D_ and dAlembertian are: {X = (r, , , t)}
Systems of spacetime Coordinates are: {X = (r, , , t)}

( )

( )

( )
( ) ( )

2

2

2 2

,
0 0 0

1 2

0 , 0 0

0 0 , sin 0

0 0 0 1

R t r
r

E r
g

R t r

R t r





⎛ ⎞∂⎛ ⎞⎜ ⎟⎜ ⎟∂⎝ ⎠⎜ ⎟−
⎜ ⎟+
⎜ ⎟= −⎜ ⎟
⎜ ⎟

−⎜ ⎟
⎜ ⎟
⎝ ⎠

Spacetime Interval from Metric Tensor  

g_[lineelement]

 
( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

( )
( )

2
2 22 2 2

2
, 1 2 , sin

1 2

R t r r E r R t r
r

t
E r

  
∂⎛ ⎞− ∂ − + ∂ + ∂⎜ ⎟∂⎝ ⎠ + ∂

+



742 MATHEMATICAL METHODS FOR PHYSICS USING MATLAB AND MAPLE

Derivative of a Scalar

d_[mu](S(X))

(S(X))

Derivative of a Vector

d_(A[mu](X))

(A(X))(X)

Covariant Derivative of a Scalar

D_[mu](S(X))

(S(X))

Covariant Derivative of a Covariant Vector

D_[mu](A[sigma](X))

(A(X))
convert(%, d_)

 ( )( ) ( )
,A X A X

    ∂ − Γ

Covariant Derivative of a Contravariant Vector

D_[mu](A[~sigma](X))

(A(X))
convert(%, d_)

 
( )( ) ( )

,A X A X  
  ∂ + Γ

Covariant Derivative of a Mixed Tensor

D_[mu](N[gamma, ~sigma](X))

 ( )( )N X
 

convert(%, d_)

 ( )( ) ( ) ( )
, ,N X N X N X    

       ∂ − Γ + Γ

15.3 EINSTEIN’S EQUATIONS

The geodesic equations of motion of a body in curved spacetime are first 
developed in this section. The geodesic equations of motion are obtained from 
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the Schwarzschild metric. Next, the Ricci tensor, Ricci scalar and the Einstein 
tensor are obtained from the Riemann curvature tensor. Einstein’s field equations 
are obtained from the Einstein tensor and the stress energy tensor. 

15.3.1 Geodesic Equations of Motion  

Example 15.3.1
Find the geodesic equations of motion by requiring that the variation of the 
action integral is zero or

 0
ds dx dx

S ds d g d
d d d

 

     
  

= = = =∫ ∫ ∫  (15.3.1)

where the Lagrangian

 dx dx
L g

d d

 

  
=  (15.3.2)

Solution: Making the substitutions 
dx

x
d





= , 

dx
x

d





=  and g x x 

 =    into L 
we calculate

 0
d L L

d x x 

∂ ∂
− =

∂ ∂
 (15.3.3)

Evaluating the derivatives

 1/2
,

1

2

L
g x x

x

 
 

−∂
=

∂
   (15.3.4)

 
1/2 1/21

2

L
g x

x x


 


 − −∂ ∂

= =
∂ ∂


 

 (15.3.5)

 ( )1/2 1/2 1/2 1
,

1

2

d L d
g x g x g x x g x

d dx

    
    

    
 

− − − −∂
= = + −

∂
    


 (15.3.6)

where application of the chain rule above 
,

g g x
g x

x


  

  

∂ ∂ ∂
= =

∂ ∂∂
 .

Writing g,  as the average (g,  + g, )/2 the Euler-Lagrange equation becomes

 ( )1/2 1/2 1/2 1
, , ,

1 1 1

2 2 2
g x g g x x g x x g x     
           − − − −+ + − =      

 (15.3.7)
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Now   is proportional to 0L = . After multiplying by g   we have

 ( ), , ,

1
0,

2
g g x g g g g x x    

      + + − =    (15.3.8)

Since g g 
 =  and x x    is contracted with a Christoffel symbol of the 

second kind, the geodesic equations are 

 
2

2
0

d x dx dx

d dd

  

  

+ Γ =  (15.3.9)

These can be written as a first order system

 0
dv

v v
d


  


+ Γ =  (15.3.10)

For a particle moving in both gravitational and electromagnetic fields, the 
geodesic equations of motion are 

 
2

2

qd x dx dx dx
F g

d d m dd

   
 
   

+ Γ =  (15.3.11)

15.3.2 Alternative Lagrangian 
The geodesic equations of motions may also be obtained if we require

 0
dx dx

g d
d d

 

 
 

=∫  (15.3.12)

where our alternative Lagrangian L g x x 
′ =  

Example 15.3.2
Find the geodesic equation directly from the Schwarzschild metric in spherical 
coordinates with spacetime interval

 
1

2 2 2 2 2 2 2 2 2

2 2

2 2
1 1 sin

GM GM
ds c dt dr r d r d

c r c r
  

−
⎛ ⎞ ⎛ ⎞= − − − − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (15.3.13)

Solution: We obtain the geodesic equation from the alternate Lagrangian

 

1

2 2 2 2 2 2 2 21 1 sins sr r
L c t r r r

r r
 

−
⎛ ⎞ ⎛ ⎞′ = − − − − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

    (15.3.14)
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where rs = 2GM/c2. The Euler-Lagrange equation of motion for the t-equation is

 
2

0

2 1 0s

d dL dL

d dt dt

rd
c t

d r





′ ′
− =

⎡ ⎤⎛ ⎞
− − =⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦




  (15.3.15)

Thus, we have a constant of the motion proportional to the energy E 

 2
1 sr E

t
r mc

⎛ ⎞
− =⎜ ⎟

⎝ ⎠
  (15.3.16)

The r-equation is

1 2

2 2 2 2 2 2

2 2

1 2

2 2 2 2 2 2

2 2

0

2 1 1 2 2 sin 0

2 1 1 2 2 sin 0

s s s s

s s s s

d dL dL

d dr dr

r r r rd
r c t r r r

d r rr r

r r r r
r c t r r r

r rr r



 


 

− −

− −

′ ′
− =

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥ ⎢ ⎥− − − + − − − =⎜ ⎟ ⎜ ⎟
⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

⎛ ⎞ ⎛ ⎞
− + − − − − =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠



  

  

 (15.3.17)

The -equation is

 
2 2 2

0

2 sin cos 0

d dL dL

d dd

r r r

 
    

′ ′
− =

+ − =


  

 (15.3.18)

The -equation is

 

( )2 2

0

2 sin 0

d dL dL

d d d

d
r

d

  




′ ′
− =

=




  (15.3.19)

with a constant of the motion proportional to the angular momentum  

 2 2sinmr =    (15.3.20)

15.3.3 Riemann Curvature Tensor  
To form the Reimann curvature tensor, we subtract the second covariant 
derivatives

 ( ) ( ): : : : , : , :A A A A A A 
               − = − Γ − − Γ  (15.3.21)
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Evaluating the derivatives 

( ) ( ) ( )
( )

: : , , ,
,

, , , , , ,

A A A A A A A

A A A A A

    
                

       
                  

= − Γ − Γ − Γ − Γ − Γ

= − Γ − Γ − Γ + Γ Γ + Γ Γ − Γ

 (15.3.22)

while

 

( ) ( ) ( )
( )

: : , , ,
,

, , , , , ,

A A A A A A A

A A A A A

    
                

       
                  

= − Γ − Γ − Γ − Γ − Γ

= − Γ − Γ − Γ + Γ Γ + Γ Γ − Γ

 (15.3.23)

Subtracting expression (15.3.23) from (15.3.22)

( ) (
( ) )

: : : : , , , , ,

, , , , , ,

,

A A A A A A

A A A A A

A

  
                 

       
                  

    
      

− = − Γ − Γ − Γ

+ Γ Γ + Γ Γ − Γ − − Γ − Γ − Γ

+ Γ Γ + Γ Γ − Γ

 (15.3.24)
and canceling terms

 ( ): : : : , ,A A A     
              − = Γ Γ − Γ Γ − Γ + Γ  (15.3.25)

                   : : : :A A R A
       − =  (15.3.26)

where the Reimann tensor is

 , ,R       
        = Γ Γ − Γ Γ − Γ + Γ  (15.3.27)

The Reimann tensor has 256 components with 20 independent components. 
All the components are zero in flat spacetime and may be nonzero in curved 
spacetime. 

15.3.4 Ricci Tensor 
The 16-component Ricci tensor R is obtained by contracting the first and last 
indices of the Reimann tensor.

 
0 1 2 3

0 1 2 3R R R R R R
     = = + + +  (15.3.28)

The Ricci tensor is symmetric as R = R.
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15.3.5 Ricci Scalar 
The Ricci scalar R is formed by contraction of the Ricci tensor

 R g R
=  (15.3.29)

Both the Ricci tensor and Ricci scalar are zero in flat spacetime and may vanish in 
curved spacetime.

15.3.6 Einstein Tensor  
The Einstein tensor G is composed of the Ricci tensor, metric tensor and the 
Ricci scalar 

 
1

2
G R g R  = −  (15.3.30)

and has the property DG = G: = 0. 

15.3.7 Einstein’s Field Equations 
Written with covariant components, the field equations 

 
4

1 8

2

G
R g R T

c
  


− =   (15.3.31)

where the stress energy tensor T satisfies the continuity equation

 
: 0D T T   = =  (15.3.32)

15.3.8 Friedman Cosmology
In the Friedmann cosmology, the stress tensor is taken as that of a perfect fluid 
with energy density  and pressure p 

 ( )2 , , ,T diag c p p p =  (15.3.33)

The spacetime interval is

 ( )2 2 2 2 2 2 2 2 2 2

2

1
sin

1
ds c dt a t dr r d r d

kr
  

⎡ ⎤= − − −⎢ ⎥−⎣ ⎦
 (15.3.34)

where a is the scale factor related to the Hubble constant

 
a

H
a

=


 (15.3.35)

Values of k = 1, 0, 1 correspond to open, flat and closed universes, respectively. 
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15.3.9 Killing Vectors
Vectors V that satisfy Killing’s equation

 0D V D V   − =  (15.3.36)

are known as Killing vectors, pointing in directions that leave the metric tensor 
unchanged. The Killing vectors may also be written in contravariant form. 

Maple Examples
Examples of Einstein’s equations are given in the Maple worksheet below. 
Computed quantities include the geodesic equations of motion, Riemann tensor, 
Ricci tensor, and Ricci scalar for several metric tensors. Einstein’s field equations 
are obtained from the Einstein tensor and the stress energy tensor. 

Key Maple commands: Christoffel, Defi ne, dsolve, Einstein, g_[ ] , Geodesics, 
KillingVectors, Ricci, Riemann, Setup, SumOverRepeatedIndices

Maple packages: with(Physics):

Programming: for loops

restart

with(Physics) :

Setup(mathematicalnotation = true)

Schwarzschild Metric 

g_[sc]
Systems of spacetime Coordinates are: {X = (r, , , t)}

Default differentiation variables for d_, D_ and dAlembertian are: {X = (r, , , t)}
The Schwarzschild metric in coordinates [r, , , t]

Parameters: [m]

( )

2

, 22

0 0 0
2

0 0 0

0 0 sin 0

2
0 0 0

r

r m

r
g

r

r m

r

 


⎛ ⎞
⎜ ⎟− +⎜ ⎟

−⎜ ⎟
= ⎜ ⎟

−⎜ ⎟
⎜ ⎟−⎜ ⎟
⎝ ⎠
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Schwarzschild Metric: Christoffel Symbols

Christoffel[1, nu, alpha, matrix]

 

( )

( )

2

1, , 2

2

0 0 0
2

0 0 0

0 0 sin 0

0 0 0

m

r m

r

r

m

r

 


⎛ ⎞
⎜ ⎟

− +⎜ ⎟
⎜ ⎟

Γ = ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟−⎜ ⎟
⎝ ⎠

Christoffel[2, nu, alpha, matrix]

 

( ) ( )2, ,

0 0 0

0 0 0

0 0 sin cos 0

0 0 0 0

r

r

r   

−⎛ ⎞
⎜ ⎟−⎜ ⎟Γ = ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

Christoffel[3, nu, alpha, matrix]

 

( )

( ) ( )

( ) ( ) ( )

2

2

3, , 2 2

0 0 sin 0

0 0 sin cos 0

sin sin cos 0 0

0 0 0 0

r

r

r r
 



 

  

⎛ ⎞−
⎜ ⎟
⎜ ⎟−

Γ = ⎜ ⎟
− −⎜ ⎟

⎜ ⎟
⎝ ⎠

Christoffel[4, nu, alpha, matrix]

2

4, ,

2

0 0 0

0 0 0 0

0 0 0 0

0 0 0

m

r

m

r

 

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟Γ = ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

Geodesic Equations

Geodesics(tensornotation)

( ) ( ) ( )
2

,2

d d d
X X X

d dd

   
   

 

⎛ ⎞⎛ ⎞+ Γ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
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Schwarzschild Geodesic Equations for Planar Orbits

( ) ( ){ } [ ]0, , () 1
2

d Pi
subs Geodesics

d
   


⎛ ⎞
= =⎜ ⎟

⎝ ⎠

 ( )
( ) ( )

( )

2

2

2
d d

r
d d d

rd

  
  



⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠= −

( ) ( ){ } [ ]0, , () 3
2

d Pi
simplify subs Geodesics

d
   


⎛ ⎞⎛ ⎞
= =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

 

( )
( )( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

2 22
3

2 3

2 2 2
2

1
4

22

4
2

d r d
r r m

dd r m r

r d d
m m t m r r

d d


   

  


  

 

⎛ ⎛ ⎞ ⎛ ⎞⎜= − − +⎜ ⎟ ⎜ ⎟⎜ ⎝ ⎠ ⎝ ⎠⎝− +
⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎟+ − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎠

( ) ( ){ } [ ]0, , () 4
2

d Pi
subs Geodesics

d
   


⎛ ⎞
= =⎜ ⎟

⎝ ⎠

 ( )
( ) ( )

( ) ( )( )
2

2

2

2

d d
m r t

d d d
t

r r md

 
 
 

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠= −

−
Metric Search by Author

Setup(metric = Robertson)

[12, 9, 1] = [“Authors” = [“Robertson(1929, 1935, 1936)”, “Walker(1936)”], 

“PrimaryDescription” = “Generic”, “SecondaryDescription” = [“FRW”], “Comments” 

= [“k = 1. Use the orthonormal tetrad to calculate Killing vectors and then transform 

to coordinate frame”, 

“The parameter _s is the dtdt component of the trace-free Ricci tensor. The side 

condtion _s <> 0 fixes the Segre type”]]

[12, 9, 2] = [“Authors” = [“Robertson(1929, 1935, 1936)”, “Walker(1936)”], 

“PrimaryDescription” = “Generic”, “SecondaryDescription” = [“FRW”], “Comments” 

= [“k = 0”, “The parameter _s is the dtdt component of the trace-free Ricci tensor. The 

side condtion _s <> 0 fixes the Segre type”]]
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[12, 9, 3] = [“Authors” = [“Robertson(1929, 1935, 1936)”, “Walker(1936)”], 

“PrimaryDescription” = “Generic”, “SecondaryDescription” = [“FRW”], “Comments” 

= [“k = -1. Use [i] the orthonormal tetrad and [ii] the coordinate ordering [t, phi, 

theta, r] to calculate Killing vectors. Then transform to coordinate frame”, “The 

parameter _s is the dtdt component of the trace-free Ricci tensor. The side condtion _s 

 0 fixes the Segre type”]]

[12, 9, 4] = [“Authors” = [“Robertson(1929, 1935, 1936)”, “Walker(1936)”], 

“PrimaryDescription” = “Generic”, “SecondaryDescription” = [“FRWL, Friedmann-

Lemaître-Robertson-Walker”], “Comments” = [“Reduced-circumference polar 

coordinates of the FLRW metric”]]

[12, 9, 5] = [“Authors” = [“Robertson(1929, 1935, 1936)”, “Walker(1936)”], 

“PrimaryDescription” = “Generic” “SecondaryDescription” = [“FRWL, Friedmann-

Lemaître-Robertson-Walker”], “Comments” = [“Hyperspherical coordinates, Case 1, 

_k > 0”]]

[12, 9, 6] = [“Authors” = [“Robertson(1929, 1935, 1936)”, “Walker(1936)”], 

“PrimaryDescription”= “Generic”, “SecondaryDescription” = [“FRWL, Friedmann-

Lemaître-Robertson-Walker”], “Comments” = [“Hyperspherical coordinates, 

Case 2, _k = 0”]]

[12, 9, 7] = [“Authors” = [“Robertson(1929, 1935, 1936)”, “Walker(1936)”], 

“PrimaryDescription” = “Generic”, “SecondaryDescription” = [“FRWL, Friedmann-

Lemaître-Robertson-Walker”], “Comments” = [“Hyperspherical coordinates, Case 3, 

_k < 0”]]

[37, 13, 1] = [“Authors” = [“Robertson-Walker”], “PrimaryDescription” = “Generic”, 

“SecondaryDescription” = [“Robertson-Walker”]]

Warning, found more than one match for the keyword ‘Robertson’, as seen 
above. Please refine your ‘keyword’ or re-enter the metric ‘g_[…]’ with the 

list of three numbers identifying the metric, for example as in g_[12, 9, 1] or 
Setup(metric = [12, 9, 1])

Selecting a Metric from the Maple Database

Setup(metric = [12, 9, 1])
Systems of spacetime Coordinates are: {X = (t, r, , )}

Default differentiation variables for d_, D_ and dAlembertian are: {X = (t, r, , )}
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The Robertson(1929, 1935, 1936), Walker(1936)metric in coordinates [t, r, , ]
Parameters: [c, k, a(t)]

Comments : Hyperspherical coordinates, Case 3, _k < 0
Resetting the signature of spacetime from “… +” to ‘- +  + +’ in order to match the 

signature in the database of metrics:

( ) ( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( ) ( )( )

22
22

2 22 2 2

sinh
1,1 , 2,2 , 3,3 ,

cosh cos cosh cos 1
4,4

a t r k
metric c a t

k

a t r k r k

k

 

⎡ ⎧⎪⎢ ⎨= = − = =⎢ ⎪⎩⎣
⎤⎫⎪− − + ⎥⎬= − ⎥⎪⎭⎦

Display the Metric in Matrix Form

g_[]

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )

22
22

2 22 2 2

sinh
,0,0,0 , 0, ,0,0 , 0,0, ,0 ,

cosh cos cosh cos 1
0,0,0,

a t r k
g c a t

k

a t r k r k

k



 

⎡ ⎡ ⎤
⎢ ⎡ ⎤ ⎢ ⎥⎡ ⎤= − ⎣ ⎦⎣ ⎦⎢ ⎢ ⎥⎣ ⎦⎣

⎤⎡ ⎤
− − + ⎥⎢ ⎥− ⎥⎢ ⎥⎣ ⎦⎦

Kerr Metric: Rotating Black Holes

Setup(metric = [5, 29, 1])
Systems of spacetime Coordinates are: {X = (t, r, , )}

Default differentiation variables for d_, D_ and dAlembertian are: {X = (t, r, , )}
The Kerr(1963) metric in coordinates [t, r, , ]

Parameters: [a, m]
Comments : Boyer-Lindquist coordinates

( )
( )

( )
( )

( )

( )
( )

( )
( ) ( ) ( )

( ) ( ) ( )( ) ( )

( )

2 22 2

2 22 2 2 2

22 2
22 2

2 2

2 22 2 2 2 2 4

22 2

2 cos 2 sin
1,1 , 1, 4 , 2,2

cos cos

cos
, 3,3 cos , 4, 4

2

2 cos 2 sin

cos

mr r a mra
metric

r a r a

r a
r a

a mr r

a a mr r mr r a r

r a

 

 




 



⎡ ⎧⎪ − −⎢ = = =⎨
⎢ ⎪ + +⎩⎣

+
= = +

− +
⎤⎫⎪− + + + + ⎥= ⎬
⎥⎪+ ⎭⎦



GENERAL RELATIVITY 753

g_[]

( )

( )

( )

( )

( ) ( )

( )

( )

( ) ( ) ( )( ) ( )

( )

2 2 22 2 2 2
22 2

2 2 2 22 2 2 2

2 2 22 2 2 2 2 4

2 22 2 2 2

2 cos 2 sin cos
,0,0, , 0, ,0,0 , 0,0, cos ,0 ,

2cos cos

2 sin 2 cos 2 sin
,0,0,

cos cos

mr r a mra r a
g r a

a mr rr a r a

mra a a mr r mr r a r

r a r a



  


 

  

 

⎡⎡ ⎤ ⎡ ⎤− − + ⎡ ⎤⎢= − +⎢ ⎥ ⎢ ⎥ ⎣ ⎦
− +⎣ ⎦⎢ ⎥⎢ + +⎣ ⎦⎣

⎤⎡ ⎤− + + + + ⎥⎢ ⎥−
⎥⎢ ⎥+ +⎣ ⎦⎦

Kerr Metric: Inner and Outer Surfaces of Infinite Redshift

surf_redshift := solve(g_[1, 1] = 0, r)

Warning, solve may be ignoring assumptions on the input variables.

( ) ( )2 22 2 2 2_ : cos , cossurf redshift m m a m m a = + − − −

sr1 : = subs({m = 1, a = 0.99}, surf_redshift[1])

( )2
: 1 1 0.9801cossr1 = + −

sr2 : = subs({m = 1, a = 0.99}, surf_redshift[2])

( )2
: 1 1 0.9801cossr 2 = − −

Kerr Metric: Middle Two Event Horizons

surf_horrizon := solve(g_[~2, ~2] = 0, r)

Warning, solve may be ignoring assumptions on the input variables.

2 2 2 2_ : ,surf horrizon m a m m a m= + − + − +
sh1: = subs({m = 1, a = 0.99}, surf_horrizon [1])

 sh1: = 1.141067360

sh2: = subs({m = 1, a = 0.99}, surf_horrizon [2])

 sh2: = 0.8589326402

[ ] 1.4Pi 1.4Pi
, , , , theta 0 Pi,phi , ,

2 2

,

plot 3d sr1 sr 2 sh1 sh2 coords spherical

scaling constrained color gray

⎛ = = − =⎜
⎝

⎞= = ⎟
⎠
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Figure 15.3.1: Two event horizons (middle two surfaces) and two surfaces of infinite redshift (inner and outer 
surfaces) of a rotating black hole described by the Kerr metric. 

Godel Metric

Setup(metric = Goedel)
Systems of spacetime Coordinates are: {X = (t, x, y, z)}

Default differentiation variables for d_, D_ and dAlembertian are: {X = (t, x, y, z)}
The Goedel(1949) metric in coordinates [t, x, y, z]

parameters: []

( ) ( ) ( ) ( ) ( )
2 2

2 2 2 21,1 , 1, 4 , 2,2 , 3,3 , 4, 4
2

x
x a e

metric a a e a a
⎡ ⎤⎧ ⎫

= = − = − = = = −⎨ ⎬⎢ ⎥
⎩ ⎭⎣ ⎦

g_[]
2 2

2

2
,

2 2
2

0 0

0 0 0

0 0 0

0 0
2

x

x
x

a a e

a

g a

a e
a e

 

⎡ ⎤− −
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥− −
⎣ ⎦

Godel Metric: Ricci Tensor

Ricci[mu, nu, matrix]

,

2

1 0 0

0 0 0 0

0 0 0 0

0 0

x

x x

e

R

e e

 

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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Godel Metric: Einstein Tensor

Einstein[mu, nu, matrix]

,

2

1
0 0

2 2
1

0 0 0
2

1
0 0 0

2

3
0 0

2 4

x

x x

e

G

e e

 

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Godel Metric: Killing Vectors

Define(V)

Defined objects with tensor properties

 { }, , , , , , , , , , , , , , ,, , , , , , , , , , , , ,V R R C X g G                             ∂ Γ ∈D

KillingVectors(V)

[ ] [ ] [ ] [ ]
2 2

1,0,0,0 , , ,0, , 0,0,1,0 , 0,1,0, , 0,0,0,1 ,
2 2 2

x
x z z e

V V e V V z V    
−

−⎡ ⎤⎡ ⎤
= = − − = = − =⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

Setup(coordinates = spherical)

Spherical Coordinates: Robertson-Walker

( ) ( ) ( ) ( )2
2 2 22 2 2 2 2 2 2

2
: sin

1

a t
dsRW c dt a t r dtheta a t r theta dphi dr

K r
= − ⋅ ⋅ − ⋅ ⋅ − ⋅

− ⋅

( ) ( ) ( ) ( )2 2
2 2 22 2 2 2 2 2

2
: sin

1

a t dr
dsRW c dt a t r d a t r d

Kr
  = − − −

− +

Setup(metric = dsRW)

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2

2 2 22 2 2

2
1,1 , 2,2 , 3,3 , 4, 4 sin

1

a t
metric c a t r a t r

Kr


⎡ ⎤⎧ ⎫
⎢ ⎥⎨ ⎬= = = = − = −
⎢ ⎥−⎩ ⎭⎣ ⎦
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g_[]

( )

( )

( ) ( )

2

2

2
,

2 2

2 22

0 0 0

0 0 0
1

0 0 0

0 0 0 sin

c

a t

g Kr

a t r

a t r

 



⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= −⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥−⎣ ⎦

Ricci Tensor from the Riemann Tensor

SumOverRepeatedIndices(Riemann[~mu, 1, mu, 1])

 

( )

( )

2

2
3

d
a t

dt

a t

⎛ ⎞
⎜ ⎟
⎝ ⎠−

SumOverRepeatedIndices(Riemann[~mu, 2, mu, 2])

 

( ) ( ) ( )

( )

22
2

2

2 2

2 2

1

d d
Kc a t a t a t

dtdt

c Kr

⎛ ⎞ ⎛ ⎞+ + ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠−
−

SumOverRepeatedIndices(Riemann[~mu, 3, mu, 3])

 

( ) ( ) ( )
22

2 2

2

2

2 2
d d

Kc a t a t a t r
dtdt

c

⎛ ⎞⎛ ⎞ ⎛ ⎞+ +⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠

SumOverRepeatedIndices(Riemann[~mu, 4, mu, 4])

 

( ) ( ) ( ) ( )
22

22 2

2

2

2 2 sin
d d

Kc a t a t a t r
dtdt

c


⎛ ⎞⎛ ⎞ ⎛ ⎞+ +⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠
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simplify(Ricci[mu, nu, matrix])

( )

( )

( ) ( ) ( )

( )

( ) ( ) ( )

( ) ( ) ( )

2

2

22
2

2

2 2

22
2 2

2

2

2
2

2

3

,0,0,0 ,

2 2

0, ,0,0 ,
1

2 2

0,0, ,0 ,

2 2

0,0,0,

d
a t

dt
R

a t

d d
Kc a t a t a t

dtdt

c Kr

d d
Kc a t a t a t r

dtdt

c

d d
Kc a t a t a t

dtdt



⎡⎡ ⎤⎛ ⎞
⎢⎢ ⎥⎜ ⎟

⎝ ⎠⎢⎢ ⎥= −
⎢⎢ ⎥⎣ ⎦⎣
⎡ ⎤⎛ ⎞ ⎛ ⎞− − −⎢ ⎥⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎢ ⎥
⎢ ⎥−⎣ ⎦
⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞⎢ ⎥+ +⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠⎢ ⎥
⎢ ⎥⎣ ⎦

⎛ ⎞ ⎛ ⎞+ + ⎜⎜ ⎟ ⎝⎝ ⎠
( )

2
2 2

2

sin r

c


⎤⎡ ⎤⎛ ⎞
⎥⎢ ⎥⎜ ⎟⎟

⎠ ⎥⎝ ⎠⎢ ⎥
⎥⎢ ⎥⎣ ⎦⎦

Stress Energy Tensor

T := array(symmetric, sparse, 1 ... 4, 1 … 4) : 
T[1, 1] := p : T[2, 2] := p : T[3, 3] := p : T[4, 4] := rhoc2 : 

Einstein’s Field Equations

for mu from 1 to 4 do expand(Einstein[mu, mu]) 
[ ]
4

8 mu, mupi G T

c

⋅ ⋅ ⋅
=  end 

 
( )

( )

( )

2
2

2 2

2 2 4

3
83

d
a t

GpKc dt

ca t a t


⎛ ⎞
⎜ ⎟
⎝ ⎠+ =

 
( )

( )

( ) ( )

( )

2 2

2

2 42 2 2 2

2
8

1 1 1

dd
a t a ta t

GpK dt dt

Kr cc Kr c Kr


⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠+ + =
− − −

 
( ) ( ) ( )

2 2
22

2
2

2 2 4

2
8

dd
a t r a ta t r

Gpdt dt
Kr

c c c


⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠− − − =

 ( )
( ) ( ) ( ) ( ) ( )

2 2
22 22

2
22

2 2 2

2 sinsin
8

sin

dd
a t r a ta t r

Gpdt dt
Kr

c c c






⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠− − − =
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Wave Metric

Setup(metric = [25, 61, 1])
Systems of spacetime Coordinates are: {X = (t, x, y, z)}

Default differentiation variables for d_, D_ and dAlembertian are: {X = (t, x, y, z)}
The Stephani metric in coordinates [t, x, y, z]

Parameters: [1(t, z), 1(t, z), A(t, z)]
Comments: We assume here that gamma1 = gamma1(t, z) and Psi1 = Psi1(t, z)

[metric = {(1, 1) = -e21(t, z) – 21(t, z), (2, 2) = e21(t, z), (3, 3) = t2e-21(t, z), (4, 4) 
                                = e21(t, z) – 21(t, z)}]

g_[]

 

( ) ( )

( )

( )

( ) ( )

2 , 2 ,

2 ,

, 2 2 ,

2 , 2 ,

0 0 0

0 0 0

0 0 0

0 0 0

1 t z 1 t z

1 t z

1 t z

1 t z 1 t z

e

e
g

t e

e



 



− Ψ

Ψ

− Ψ

− Ψ

⎡ ⎤−
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Defi ne(V)
Defined as tensors

{ }, , , , , , , , , , , , , , ,, , , , , , , , , , , , ,R R V C X g G
                             ∂ Γ ∈D

KillingVectors(V)

[Vn = [0, 1, 0, 0], Vn = [0, 0, 1, 0]]

Einstein Tensor Component

Einstein[1, 1]

 
( ) ( ) ( )

2 2

, , ,1 t z t 1 t z t 1 t z
t z t

t


∂ ∂ ∂⎛ ⎞ ⎛ ⎞− Ψ − Ψ +⎜ ⎟ ⎜ ⎟
∂ ∂ ∂⎝ ⎠ ⎝ ⎠

Reduced Dimensions

Setup(dimension = 2)
The dimension and signature of the tensor space are set to : [2, - +]

Detected ‘t’, the time variable, in position 1. Changing the signature of the spacetime 
metric accordingly, to: + -

Systems of spacetime Coordinates are: {X = (t, x)}
[dimension = 2]
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Coordinates(X)
Systems of spacetime Coordinates are: {X = (x1, x2)}

{X}
xy_metric := dx12 + sin(x1)2dx22

xy_metric := dx12 + sin(x1)2 dx22 

Setup(metric = xy_metric)
[metric = {(1, 1) = 1, (2, 2) = sin(x1)2}]

Geodesics( )

 

( ) ( )( ) ( )( ) ( )

( )
( )( ) ( ) ( )

( )( )

22

2

2

2

sin cos ,

2cos

sin

d d
x1 x1 x1 x 2

dd

d d
x1 x 2 x1

d d d
x 2

x1d

   


  
 



⎡ ⎛ ⎞=⎢ ⎜ ⎟
⎝ ⎠⎣

⎤⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ⎥⎝ ⎠⎝ ⎠= − ⎥

⎥⎦

Christoffel[nonzero]
[, ,  = {(1, 2, 2) = -sin(x1) cos(x1), (2, 1, 2) = sin(x1) cos(x1), 

(2, 2, 1) = sin(x1) cos(x1)}

Higher Dimensions

Setup(dimension = 5)
The dimension and signature of the tensor space are set to : [5, + - - -]

Systems of spacetime Coordinates are: {X = (x1, x2, x3, x4, x5)}
[dimension = 5]

5metric := dx12 – dx22 – dx32 – dx42 – dx52 
5metric := dx12 – dx22 – dx32 – dx42 – dx52 

Setup(metric = 5 metric)
[metric = {(1, 1) = 1, (2, 2) = –1, (3, 3) = –1, (4, 4) = –1, (5, 5) = –1}]

g_[]

,

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

g  

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−=
⎢ ⎥

−⎢ ⎥
⎢ ⎥−⎣ ⎦Geodesics( )

( ) ( ) ( ) ( ) ( )
2 2 2 2 2

2 2 2 2 2
0, 0, 0, 0, 0

d d d d d
x5 x 4 x3 x 2 x1

d d d d d
    

    

⎡ ⎤
= = = = =⎢ ⎥

⎣ ⎦
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dsolve(%)

{x1() = _C9 + _C10,  x2() = _C7 + _C8, x3() = _C5 + _C6, x4() = _
C3 + _C4, x5() = _C1 + _C2)}

15.4 MATLAB EXAMPLES

A numerical solution to the geodesic equation of motion describing the orbit 
around a Schwarzschild black hole is demonstrated in this section.

Key MATLAB commands: function , global , ode45 , odeset , polarplot , RelTol 

Section 15.3 Einstein’s Equations 
The alternate Lagrangian describing Schwarzschild geodesics with  = /2 and 

 in the equatorial plane is

 

1

2 2 2 2 21 1s sr r
L c t r r

r r


−
⎛ ⎞ ⎛ ⎞′ = − − − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

   (15.5.1)

From the t-equation

 0
d dL dL

d dt dt

′ ′
− =  (15.5.2)

The constant of the motion proportional to the energy is

 2
1 sr E

t
r mc

⎛ ⎞
− =⎜ ⎟

⎝ ⎠
  (15.5.3)

From the -equation

 

( )2

0

2 0

d dL dL

d d d

d
r

d

  




′ ′
− =

=




  (15.5.4)

We have a constant of the motion proportional to the angular momentum 
2mr =  . The r-equation is

 1 2

2 2 2 2

2 2

0

2 1 1 2 0s s s s

d dL dL

d dr dr

r r r r
r c t r r

r rr r




− −

′ ′
− =

⎛ ⎞ ⎛ ⎞
− + − − − =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠



 
 (15.5.5)
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Substituting energy and angular momentum constants of motion to eliminate t  
and   in the r-equation

 

1 12 2
2

2 2 2 3

2
1 1 1 0

2 2
s s s s sr r r r rE

r r
mc r r rr r m r

− −
⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞+ − − − − − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

   (15.5.6)

To find a numerical solution describing the Schwarzschild orbits, we obtain the 
first order system

 

1 12 2
2

2 2 2 3

2

2
1 1 1

2 2
s s s s s

r v

r r r r rE
v v

mc r r rr r m r

mr


− −

=

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞= − − + − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

=







 (15.5.7)

Taking L = /m,  = E/mc and rs = 1 

 ( )
2 2 2

3

2

2 1
1

2 1

r v

v L
v

r r rr

L

r





=

− ⎛ ⎞= + −⎜ ⎟− ⎝ ⎠

=







 (15.5.8)

The derivative vector is specified in the MATLAB function ‘schwarzschild.m’ 
where ( ) ( ) ( ) ( ), , 1 , 2 , 3r r y y y ⎡ ⎤→ ⎣ ⎦  

function yp=schwarzschild(t,y)

 

global alpha L

      

yp= [y(2);(y(2)^2-alpha^2)/(2*y(1)*(y(1)-1))+2*L^2*(1-1/y(1))/y(1)^3;

           L/y(1)^2];

The MATLAB script ‘runsc.m’ calls the function ‘schwarzschild.m’ and 
numerically integrates the geodesic equations of motion over a time range t = 
[0, 1000] with initial conditions ( )0 0 0, , 10, 0.5,0r r  → −⎡ ⎤⎣ ⎦  using a Runge-Kutta 

algorithm. Increased numerical accuracy is achieved with smaller values of the 
relative tolerance ‘RelTol.’ A polar plot of (, r)  [y(:, 3), y(:, 1)] illustrates the 
orbital precession in Figure 15.4.1.

global alpha L

alpha = 3;

L=5;

opts=odeset('RelTol', 1e-5);

[t,y]=ode45(@schwarzschild,[0, 1000],[10;-0.5;0],opts);
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polarplot(y(:,3),y(:,1))

title('Schwarzschild orbit')

The above script is executed at the Command Line

>runsc

Schwarzschild orbit

270
300

60

30

0

330

240

210

180

150

120

0

40

30

20

10

90

Figure 15.4.1: MATLAB polar plot of the Schwarzschild orbit 
demonstrating precession of the semi-major axis.  

15.5 EXERCISES

Section 15.1 The Equivalence Principle

1. A photon is projected down in the earth’s gravitational field from a height H 
above the surface with initial wavelength . Using the classical approximation, 
show that the photon wavelength is blueshifted when it reaches the 
surface with a wavelength 

2
1

gH

c


′ =

⎛ ⎞+⎜ ⎟
⎝ ⎠

2. Calculate the redshift ()/ of a photon with initial wavelength  emitted 
from the surface of a spherical star of radius R and mass M using the classical 
approximation

(a) at a distance of r = 2R from the center of the star 
(b) very far from the star r  R
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Section 15.2 Tensor Calculus

3. Verify the relations involving the Levi-Civita tensor 
ijkij = 2k

ijkijk = 6

4. Show that A = A

5. Given that

0 / / /

/ 0

/ 0

/ 0

x y z

x z y

y z x

z y x

E c E c E c

E c B B
F

E c B B

E c B B



− − −⎛ ⎞
⎜ ⎟−⎜ ⎟= ⎜ ⎟−
⎜ ⎟⎜ ⎟−⎝ ⎠  

show that 

0 / / /

/ 0

/ 0

/ 0

x y z

x z y

y z x

z y x

E c E c E c

E c B B
F g F g

E c B B

E c B B


  

⎛ ⎞
⎜ ⎟− −⎜ ⎟= = ⎜ ⎟− −
⎜ ⎟⎜ ⎟− −⎝ ⎠

6. Verify the duality transformation 

1

2
G F 

=

where  is the Levi-Civita tensor with four indices and

0

0 / /

/ 0 /

/ / 0

x y z

x z y

y z x

z y x

B B B

B E c E c
G

B E c E c

B E c E c



− − −⎛ ⎞
⎜ ⎟−⎜ ⎟= ⎜ ⎟−
⎜ ⎟⎜ ⎟−⎝ ⎠

7. Evaluate the quantities FF and GF. 

8. Take the covariant derivative of the product D(AB) to show that the 

covariant derivative of a contravariant vector is : ,A A A   
  = + Γ

9. Show that 
g

x


  

∂
Γ + Γ =

∂
(a) using a symmetry property of 

1

2

g gg

x x x

 
   

∂ ∂⎛ ⎞∂
Γ = + −⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

(b) using the relation g: = 0
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Section 15.3 Einstein’s Equations

10. Show that the geodesic equations of motion 
2

2
0

d x dx dx

d dd

  

  

+ Γ =

can be obtained from an alternate Lagrangian of the form

 

dx dx
L g

d d

 

  
′ =

11. Find the nonzero Christoffel symbols corresponding to the 2D line element in 
polar coordinates
ds2 = dr2 + r2 d2 .
 Write the corresponding geodesic equations of motion directly from 
Lagrange’s equations where the alternate Lagrangian

2 2 2L r r ′ = +   

12. Find the Christoffel symbols 1
, Γ , 2

, Γ , 3
, Γ  and 4

, Γ  corresponding to the 
Schwarzschild metric tensor.

13. We may parameterize the geodesic equations using the angular coordinate 
instead of the proper time . From our line element ds = cd with  = /2 for 
equatorial orbits

1

2 2 2 2 2 2 21 1s sr r
c d c dt dr r d

r r
 

−
⎛ ⎞ ⎛ ⎞

= − − − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

we have
1

2 2 2 2 2 21 1s sr r
c c t r r

r r


−
⎛ ⎞ ⎛ ⎞

= − − − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

Substitute 
2

1 sr E
t

r mc

⎛ ⎞
− =⎜ ⎟

⎝ ⎠
  and 2mr =   above to show that

2 2
2 2

2 2 2 2
1 srE

r c
rm c m r

⎛ ⎞⎛ ⎞
= − + −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠



and divide 
2r  by the expression for 

2  to obtain we obtain 

2 2 2 2
4 4 2

2 2 2
1 srdr E m c

r r r
d rc

⎛ ⎞⎛ ⎞ ⎛ ⎞
= − + −⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠ 
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14. The spacetime interval corresponding to the Kerr metric describing rotating 
black holes can be expressed as

( ) ( )( )
2 222

2 2 2 2 2 2 2

2 2

sin
sinds dt a d r a d adt dr d

 
    

 

Δ
= − − + + − + +

Δ

where  = r2 – 2Mr + a2 and 2 = r2 + a2 cos2.
 Find the null geodesic equations with ds2 = 0 for equatorial trajectories 
 = /2.

15. Calculate the Ricci tensor, Ricci scalar and Einstein tensor for the Kerr metric.   

16. Calculate the scalar quantity 
RR



for the Schwarzschild and Kerr metrics. 

17. Given the spacetime interval in spherical coordinates 
ds2 = e2(r) dt2 – e2(r) dr2 – r2 d2 – r2 sin2 d2. 
calculate the corresponding Ricci tensor, Ricci scalar and Einstein tensor. 

18. Show that D(gR) = gR

19. The evolution of the scale factor in the Friedman model of a flat universe is

2 2

2

8

3

G
a a

c

 
=

For a matter-dominated universe where the density 3~ a −  show that 
a(t) = const  t2/3

with the age of the universe

11 2

36 m

t H
G 

−= =

where /H a a=  .
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16Chapter

RELATIVISTIC 
QUANTUM 
MECHANICS

Chapter Outline
16.1 Early Models 

16.2 Dirac Equation 

16.3 Solutions to the Dirac Equation   

16.1 EARLY MODELS

In this section, early relativistic models of the wave nature of matter are developed. 
The de Broglie wavelengths are combined with the relativistic energy-momentum 
relationship to obtain phase and group velocities of matter waves. Energy levels 
of the 1D square well are obtained. The Klein-Gordon equation, also based on 
the energy-momentum relation, is introduced. The Klein-Gordon probability 
current and Lagrangian density are explored. 

16.1.1 de Broglie waves 
For massless particles E = pc and E = hf = hc/. Thus, the wavelength of a photon is 
inversely proportional to its momentum

 
h

p
 =  (16.1.1)



768 MATHEMATICAL METHODS FOR PHYSICS USING MATLAB AND MAPLE

Louis de Broglie hypothesized that the wave particle duality of light extended to 
massive particles such as electrons. For a massive particle p = mv so the de Broglie 
wavelength of a particle such as an electron is given by

 
2

2
1

h v

mv c
 = −  (16.1.2)

The wave nature of particles was later confirmed by the Davisson-Germer 
experiment. To model the wave nature of massive particles, we substitute de 
Broglie’s relation p = k for particles with wave vector k = 2/ and energy E =  
into the mass energy relation E2 = p2c2 + m2c4

 ( )2 2 4c k m c = +   (16.1.3)

The wave speed, or phase velocity, is 

 
2

1p

mc
v c

k k

 ⎛ ⎞= = + ⎜ ⎟
⎝ ⎠

 (16.1.4)

That is evidently greater than the speed of light. The group velocity 

 

2 4
2 2

2g

d d m c
v c k

dk dk


= = +

  (16.1.5)

or

 2

1

g

c
v

mc

k

=
⎛ ⎞+ ⎜ ⎟
⎝ ⎠

 (16.1.6)

is interpreted as the actual speed of the particle that is less than the speed of light. 
The product of the group and phase velocities vgvp = c2. 

Example 16.1.1
Use the relativistic form of the momentum p = mv and the energy-momentum 
relation to find the phase and group velocities of a matter wave

Solution: The phase velocity is

 

2 4
2

2p

E m c
v c

k p p


= = = +  (16.1.7)
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Substituting p = mv 

 
2 4 2 4 2

2 2 2

2 2 2 2
1p

m c v c c
v c c c

k vm v c v

 ⎛ ⎞
= = + − = + − =⎜ ⎟

⎝ ⎠
 (16.1.8)

The group velocity is then

 2 2 2 4
g

E
v p c m c

k p p

∂ ∂ ∂
= = = +
∂ ∂ ∂

 (16.1.9)

 

2 2

2 4 2 4 2
2 2

2 2 2 2 2
1 1

g

c c
v v

m c v c v
c c

m v c v c

= = =
⎛ ⎞ ⎛ ⎞

+ − + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (16.1.10)

As before we find that vgvp = c2. 

Example 16.1.2
Use the relativistic energy-momentum relation to develop an expression for the 
energy levels of a particle with mass m inside a 1D square well using the de Broglie 
relation p = k with wave vector k = 2/ = n/L. Use the binomial expansion 
theorem to approximate the energy levels for large L. 

Solution: The energy-momentum relation 

 
2 2 2 2 4E k c m c= +  (16.1.11)

gives the quantized energy levels

 
2 2 2

2 2 4

2n

c
E n m c

L


= +


 (16.1.12)

Factoring mc2 from the square root

 

2 2
2 2

2 2 2
1nE mc n

m c L


= +


 (16.1.13)

For values of 
mc

L
n 




, the binomial theorem gives

 

2 2
2 2

2 2 2

1
1

2
nE mc n

m c L

⎛ ⎞
≈ + 

 


 (16.1.14)

or

 

2 2
2 2

22
nE mc n

mL


≈ +


 (16.1.15)



770 MATHEMATICAL METHODS FOR PHYSICS USING MATLAB AND MAPLE

This expression gives the energy levels obtained from the Schrödinger equation 
plus the rest mass energy of the electron.

16.1.2 Klein-Gordon Equation 
The Klein-Gordon (KG) equation was initially proposed as a relativistic equation 
of the electron. It was discarded because of its prediction of negative probability 
densities. Schrödinger went on to develop the nonrelativistic equation that bears 
his name. It turns out the KG equation is useful for describing massive particles 
with spin zero. To derive the KG equation for free particles in the absence of a 
position-dependent potential we begin with the energy-momentum relation

 E 2 = p2c2 + m2c4 (16.1.16)

Now we make the quantum replacements

 ˆ ˆandE i p
t i

∂
= = ∇

∂
   (16.1.17)

Substituting into the energy-momentum relation gives

 
2

2 2 2 2 2 4

2
c m c

t

∂
− = − ∇ +

∂
   (16.1.18)

Multiplying both sides by gives

 
2 2 2

2

2 2 2

1 m c

c t

⎛ ⎞∂
∇ − Ψ = Ψ 

∂  
 (16.1.19)

This may be written more compactly using the D’Alembertian operator 

 

2
2 2

2 2

1

c t

∂
≡ ∇ −

∂
  (16.1.20)

so that

 ( )2 2 0 − =  (16.1.21)

where

 
2 2

2

2

m c
 =


 (16.1.22)

16.1.3 Probability Current Density

We obtain the probability current density by multiplying the Klein-Gordon 
equation by 



RELATIVISTIC QUANTUM MECHANICS 771

 
2

2 2

2 2

1

c t


∂ Ψ
Ψ ∗∇ Ψ − Ψ ∗ = Ψ ∗Ψ

∂
 (16.1.23)

and subtracting the complex conjugate of the Klein-Gordon equation multiplied 
by 

 
2

2 2

2 2

1

c t


∂ Ψ ∗
Ψ∇ Ψ ∗− Ψ = ΨΨ ∗

∂
 (16.1.24)

Since Ψ ∗Ψ = ΨΨ∗  we obtain

 
2 2

2 2

2 2 2

1

c t t

⎛ ⎞∂ Ψ ∂ Ψ ∗
Ψ ∗∇ Ψ − Ψ ∗∇ Ψ = Ψ ∗ − Ψ⎜ ⎟

∂ ∂⎝ ⎠
 (16.1.25)

Substituting the probability current density 

 ( )pcd
2mi

= Ψ ∗∇Ψ − Ψ∇Ψ ∗J


 (16.1.26)

we obtain 

 pcd 2

2 1mi

t t tc

∂ ∂Ψ ∗ ∂Ψ⎛ ⎞∇⋅ = − Ψ − Ψ ∗⎜ ⎟∂ ∂ ∂⎝ ⎠
J

  (16.1.27)

Comparing the continuity equation 

 pcd
t

∂
∇⋅ = −

∂
J  (16.1.28)

we find the probability density is

 2

1

2mi t tc


∂Ψ ∗ ∂Ψ⎛ ⎞= Ψ − Ψ ∗⎜ ⎟∂ ∂⎝ ⎠


 (16.1.29)

Here,  can either be positive or negative and is not positive definite. 

16.1.4 Lagrangian Formulation of the Klein-Gordon Equation  

Example 16.1.3
Show that the Klein-Gordon equation is obtained by varying the Lagrangian 

 2 21 1

2 2
L m

  = ∂ ∂ −  (16.1.30)

with respect to  

Solution: Lagrange’s equation of motion is

 ( )
0

L L

x  
 

∂ ∂ ∂
− =

∂ ∂ ∂ ∂  (16.1.31)
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giving the Klein-Gordon equation in natural units

 21
0

2
m

  ∂ ∂ + =  (16.1.32)

Although the Klein-Gordon equation does not provide an adequate relativistic 
wave equation, it does find utility in the context of quantum field theory where  
is interpreted as a scalar field. 

Maple Examples
The following Maple worksheet illustrates the general solution to linear and 
nonlinear Klein-Gordon equations.  

Key Maple commands: diff , pdsolve

restart 

Klein-Gordon Equation 

assume(c > 0)

( )( ) ( )( ) ( )
2 2

2 2

1
: , , , , , , ,

m c
PDE1 diff psi x t t t diff psi x t x x psi x t

c

⋅
= − ⋅ = ⋅



( )
( ) ( )

2

2 2 22

2 2 2

,
,

: ,
x t

m c x txPDE1 x t
t c






∂
∂ ∂= − =
∂


 

pdsolve(PDE1)

( ) ( ) ( )( )

( ) ( ) ( )

( ) { }
1

2 3

2
1

, _ _

& where _ _ _ , _

_
, & and ,

2 22 _

x t F1 _ 1 F 2 _ 2

d d
F1 _ 1 c F1 _ 1 F 2 _ 2

d_ 1 d_ 2

m c F 2 _ 2 x t
_ 1 c x t _ 2

cc

  

  
 


 

=

⎡⎧ =⎨⎢
⎩⎣

⎫ ⎤⎛ ⎞⎪= = − + = +⎬ ⎥⎜ ⎟
⎝ ⎠⎦⎪⎭

 


Nonlinear Klein-Gordon Equation 

PDE2 := diff(psi(x, t), t, t) – alphadiff(psi(x, t), x, x) + gamma2psi(x, t) = 
betapsi(x, t)2

( ) ( ) ( ) ( )
2 2

22

2 2
: , , , ,PDE 2 x t x t x t x t

t x
     

⎛ ⎞∂ ∂
= − + =⎜ ⎟
∂ ∂⎝ ⎠
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pdsolve(PDE2)

( )

2 2
2

2

4 _
3 tanh _ _

32,
2 2

C 2 t
C 2x C1

x t

 





 

⎛ ⎞−⎜ ⎟− + +
⎝ ⎠= − +

16.2 DIRAC EQUATION

In the previous section, we obtained the Klein-Gordon equation with operator 
substitution into the energy-momentum relation. Because time derivatives in 
the Klein-Gordon equation are second order, it is necessary to specify both the 
initial value of the wavefunction (x, 0) and its time derivative ( ),0xΨ . Also, the 
calculated probability density was not positive definite. Below, the Dirac equation 
is introduced that is first order in space and time derivatives. Thus only (x, 0) 
is required to obtain a general solution. One of the crowning achievements of the 
relativistic theory of the electron is the prediction of antimatter. 

16.2.1 Derivation of a First Order Equation
Seeking a relativistic equation that is first order in time that is consistent with the 
Klein-Gordon equation we try

 

2 2 2 4 ˆp̂ c m c E i
t

 
∂Ψ

+ = =
∂


 (16.2.1)

where 2 2 2 2ˆ ˆ ˆ ˆ
x y yp p p p= + + . The square root on the left-hand side

 ( )2 2 2 2 2 2 2 4 2ˆ ˆ ˆ ˆ ˆ ˆ
x y y x x y y z zp c p c p c m c c p c p c p mc   + + + Ψ = + + + Ψ  (16.2.2)

with coefficients x, y, z and  on the right-hand side should satisfy 

 ( )2
2 2 2 2 2 2 2 4 2ˆ ˆ ˆ ˆ ˆ ˆ

x y y x x y y z zp c p c p c m c c p c p c p mc   + + + = + + +  (16.2.3)

Expanding the right-hand side
2 2 2 2 2 2 2 4 2 2 2 2 2 2

2 2 2 2 2 4

ˆ ˆ ˆ ˆ ˆ

ˆ cross terms

x y y x x y y

z z

p c p c p c m c c p c p

c p m c

 

 

+ + + = +

+ + +

 (16.2.4)

For this equation to be satisfied, all the cross terms should cancel and 
2 2 2 2 1x y z   = = = = . These conditions can be satisfied if i (x,y,z = 1,2,3) and 

 are matrices and we find that
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2

2

2

0

1

1

i j j i ij

i i

i

    

  





+ =

+ =

=

=

 (16.2.5)

There is no unique set of matrices that satisfies the conditions above. A common 
set of 4  4 matrices known as the Dirac-Pauli matrices are

 

1 2

3

0 0 0 1 0 0 0

0 0 1 0 0 0 0
 

0 1 0 0 0 0 0

1 0 0 0 0 0 0

0 0 1 0 1 0 0 0

0 0 0 1 0 1 0 0
  

1 0 0 0 0 0 1 0

0 1 0 0 0 0 0 1

i

i

i

i

 

 

−⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟−
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟−⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟−
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

 (16.2.6)

In terms of the Pauli spin matrices

 1 2 3

0 1 0 1 0
  

1 0 0 0 1

i

i
  

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (16.2.7)

The i and  are written more compactly as

 
1 2 3

1 2 3
1 2 3

0 0 0 1 0
   

0 0 0 0 1

  
   

  

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (16.2.8)

where each element above is a 2  2 matrix. Writing out the individual terms on 
the left-hand side of the Dirac equation

 

1 2

2

2
2

3 2

2

0 0 00 0 0

0 0 00 0 0
ˆ ˆ 

0 0 00 0 0

0 0 00 0 0

0 0 00 0 0

0 0 0 0 0 0
ˆ 

0 0 0 0 0 0

0 0 0 0 0 0

yx

yx

x y
yx

yx

z

z

z
z

z

icpcp

icpcp
c p c p

icpcp

icpcp

mccp

cp mc
c p mc

cp mc

cp mc

 

 

−⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟Ψ = Ψ Ψ = Ψ   −
        
⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟− ⎜ ⎟⎜ ⎟Ψ = Ψ Ψ = Ψ   −     − −   

 (16.2.9)
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where  is a four-component object known as a spinor 

 

1

2

3

4









⎛ ⎞
⎜ ⎟
⎜ ⎟Ψ =  
  
 

 (16.2.10)

Combining the terms above we write the Dirac equation explicitly as

 

2

1 1
2

2 2

2
3 3

2
4 4

ˆ ˆ ˆ0

ˆ ˆ ˆ0
ˆ

ˆ ˆ ˆ 0

ˆ ˆ ˆ 0

z x y

x y z

z x y

x y z

mc cp cp icp

mc cp icp cp
E

cp cp icp mc

cp icp cp mc

 

 

 

 

⎛ ⎞− ⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟+ −⎜ ⎟⎜ ⎟ ⎜ ⎟=⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟+ − − ⎝ ⎠ ⎝ ⎠⎝ ⎠

 (16.2.11)

16.2.2 Probability Current 
To obtain an expression for the probability current we write our first order Dirac 
equation

 ( )2ˆ ˆ ˆ
x x y y z zc p c p c p mc i

t
   

∂Ψ
+ + + Ψ =

∂
  (16.2.12)

compactly using index notation

 
2

k k
c mc i

i tx
 

∂Ψ ∂Ψ
+ Ψ =

∂∂
   (16.2.13)

where the repeated index k is summed from 1 to 3. Multiplying (16.2.13) on the 
left by †

 † 2 † †
k k

c mc i
i tx

 
∂Ψ ∂Ψ

Ψ + Ψ Ψ = Ψ
∂∂

   (16.2.14)

Forming the Hermitian conjugate of (16.2.13) and right multiplying by 

 
† †

2 †
k k

c mc i
i tx
 

∂Ψ ∂Ψ
− Ψ + Ψ Ψ = − Ψ

∂∂
   (16.2.15)

where †
k k =  and † = are Hermitian matrices. Subtracting (16.2.14) and 

(16.2.15) we obtain

 ( ) ( )† †
kk

c i
i tx


∂ ∂

Ψ Ψ = Ψ Ψ
∂∂

   (16.2.16)
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that is in the form of the continuity equation / t∇⋅ = −∂ ∂J  where the 
components of J are

 †k
kJ c = Ψ Ψ  (16.2.17)

and our now positive definite probability density

 
† = Ψ Ψ  (16.2.18)

16.2.3 Gamma Matrices 
Writing out the ˆ

xp , ˆ
yp  and ˆ

zp  operators and dividing by c

 
1

x y zi mc i
x y z c t

   
⎛ ⎞∂ ∂ ∂ ∂

− + + Ψ + Ψ = Ψ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
   (16.2.19)

with the gamma matrices defined as 0 =  and i = i

 

0 1

2 3

1 0 0 0 0 0 0 1

0 1 0 0 0 0 1 0
  

0 0 1 0 0 1 0 0

0 0 0 1 1 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1
  

0 0 0 1 0 0 0

0 0 0 0 1 0 0

i

i

i

i

 

 

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟− −
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

−⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟−⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟−
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

 (16.2.20)

The Dirac equation becomes

 ( ) 0i mc
 ∂ − Ψ =  (16.2.21)

where repeated indices are summed over

 
0 1 2 3

0 1 2 3x x x x


    

∂ ∂ ∂ ∂
∂ = + + +

∂ ∂ ∂ ∂
 (16.2.22)

This notation can be condensed using the “Feynman slash” notation where 
quantities contracted with the gamma matrices are abbreviated a a

 = . In 
natural units where  = c = 1 the Dirac equation appears in its most compact form 

( ) 0i m∂ − Ψ = .
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16.2.4 Positive and Negative Energies 
For particles at rest

 ( )0
0 0i mc ∂ − Ψ =  (16.2.23)

where 0 /c t∂ = ∂ ∂  and

 

1 1

2 22

3 3

4 4

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

i mc
t

 

 

 

 

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟

∂⎜ ⎟ ⎜ ⎟ ⎜ ⎟=⎜ ⎟ ⎜ ⎟ ⎜ ⎟− ∂
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠

  (16.2.24)

With solutions proportional to exp(-iEt/) we have

 
2 2

1 2

1 0

0 1
exp and exp

0 0

0 0

mc mc
i t i t 

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟= − = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 
  (16.2.25)

with positive energy E = +mc2 while 

 
2 2

3 4

0 0

0 0
exp and exp

1 0

0 1

mc mc
i t i t 

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 
  (16.2.26)

are negative energy solutions with E = mc2. The Pauli exclusion principle states 
that no two electrons can occupy the same quantum state. Dirac thus postulated 
that electrons with positive energy couldn’t simply cascade down to negative 
energies if all the negative energy states were already filled. The supposed filled 
negative energy states became know as the Dirac Sea. Excitations of negative 
energy states could produce positive energy electrons since the positive energy 
states are not filled, however. A vacancy (with positive energy) in the negative 
energy sea would be left behind, corresponding to the anti-electron. The anti-
electron was later discovered and Dirac was awarded the Nobel Prize in physics for 
his relativistic formulation of the electron. The anti-proton was later discovered. 
All particles in nature have associated anti particles, many of which are routinely 
produced in particle accelerators.  
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16.2.5 Lagrangian Formulation of the Dirac Equation 

Example 16.2.1
Show that the Dirac equation is obtained by varying the Lagrangian 

 
2L i mc

= Ψ ∂ Ψ − ΨΨ  (16.2.27)

with respect to Ψ  

Solution: Lagrange’s equation of motion is

 ( )
0

L L

x  

∂ ∂ ∂
− =

∂Ψ ∂ ∂ ∂ Ψ
 (16.2.28)

The second term is zero since the Lagrangian does not depend explicitly on ∂ Ψ . 
The Dirac equation is then obtained from

 2 0
L

i mc


∂
= ∂ Ψ − Ψ =

∂Ψ
  (16.2.29)

The conjugate of the Dirac equation is similarly obtained by varying L with 
respect to  

 ( )
0

L L

x  

∂ ∂ ∂
− =

∂Ψ ∂ ∂ ∂ Ψ  (16.2.30)

Maple Examples
The following Maple worksheet demonstrates the standard representation of 
gamma matrices. Trace and commutation operations are carried out with the 
gamma matrices and the related Pauli spin matrices.  

Key Maple commands: AntiCommutator , Commutator , Dagger , Dgamma , 
dimension , mathematicalnotation , Psigma , Setup , Trace , SumOverRepeatedIndices 

Maple packages: with(Physics ):

restart

Gamma Matrices

with(Physics) :
Setup(mathematicalnotation = true)

[mathematicalnotation = true]
Setup(Dgammarepresentation = standard)

Setting lowercaselatin letters to represent spinor indices
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Defined Dirac gamma matrices (Dgamma) in standard representation, 1, 2, 3, 4

[Dgammarepresentation = standard]

Dgamma[0]

4

Dgamma[0][ ]

( )4 ,

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

a b


⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥−
⎢ ⎥

−⎢ ⎥⎣ ⎦
Dgamma[4][ ]

( )4 ,

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

a b


⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥−
⎢ ⎥

−⎢ ⎥⎣ ⎦
Dgamma[1][ ]

( )1 ,

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

a b


−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Dgamma[2][ ]

( )2 ,

0 0 0

0 0 0

0 0 0

0 0 0

a b

I

I

I

I



⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎢ ⎥⎣ ⎦

Dgamma[3][ ]

( )3 ,

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

a b


−⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦
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Trace Relations 
map(Trace, [Dgamma[0]2, Dgamma[1]2, Dgamma[2]2, Dgamma[3]2])

[4, -4, -4, -4]
Trace(Dgamma[mu]Dgamma[nu])

4g, 

Dgamma[1][ ]Dgamma[2][ ]

( ) ( )1 2, ,

0 0 0

0 0 0

0 0 0

0 0 0

a b a b

I

I

I

I

 

−⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Dgamma[2][ ]Dgamma[1][ ]

( ) ( )1 2, ,

0 0 0

0 0 0

0 0 0

0 0 0

a b a b

I

I

I

I

 

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

 

Gamma 5 Matrix
IDgamma[1][ ]Dgamma[2][ ]Dgamma[3][ ]Dgamma[4][ ]

 

( ) ( ) ( ) ( )1 2 3 4, , ,,

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

a b a b a ba b
I    

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Dgamma[5][ ]

( )5 ,

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

a b


⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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Dgamma[5]Dgamma[5][ ]

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Trace(Dgamma[1]Dgamma[2]Dgamma[3]Dgamma[4])

0

Dgamma[mu]Dgamma[mu]



SumOverRepeatedIndices(%)

11 + 22 + 33 + 44 

Dagger(Dgamma[1])

1

Dagger(Dgamma[mu]Dgamma[nu]Dgamma[sigma])

 †, † †

AntiCommutator(Dgamma[1], Dgamma[2])

[1, 2]

Commutator(Dgamma[1], Dgamma[2])

[1, 2]

Gamma Matrices (Reduced Dimension) 

restart
with(Physics) :

Setup(mathematicalnotation = true)
[mathematicalnotation = true]

Setup(dimension = [3, ‘-‘], Dgammarepresentation = standard)
The dimension and signature of the tensor space are set to: [3, - - +]

Setting lowercaselatin letters to represent spinor indices
Defined Dirac gamma matrices (Dgamma) in standard representation, 1, 2, 3

[Dgammarepresentation = standard, dimension = 3, signature = - - +]
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Dgamma[1][ ]

( )1 ,

0

0a b

I

I


−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

Dgamma[2][ ]

( )2 ,

0 1

1 0a b


−⎡ ⎤
= ⎢ ⎥

⎣ ⎦

Dgamma[3][ ]

( )3 ,

1 0

0 1a b


⎡ ⎤
= ⎢ ⎥−⎣ ⎦

Pauli Spin Matrices 
for l from 1 to 3 do Psigma[l] = eval(Psigma[l]) end

1

0 1

1 0


⎡ ⎤
= ⎢ ⎥

⎣ ⎦

2

0

0

I

I


−⎡ ⎤
= ⎢ ⎥

⎣ ⎦

3

1 0

0 1


⎡ ⎤
= ⎢ ⎥−⎣ ⎦

Commutator(Psigma[1], Psigma[2])

1 2, 
−

⎡ ⎤⎣ ⎦

AntiCommutator(Psigma[1], Psigma[2])

1 2, 
+

⎡ ⎤⎣ ⎦
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Trace(Psigma[1])

0

16.3 SOLUTIONS TO THE DIRAC EQUATION

Plane wave solutions to the Dirac equation are first explored in this section. The 
Dirac equation is then written in a two-component form to separate positive and 
negative energy solutions. The two-component form of the Dirac equation is then 
developed for an electron in an electromagnetic field. 

16.3.1 Plane Wave Solutions
For plane solutions, we substitute 

 

1 1

2 2

3 3

4 4

exp

u

u Et
i i

u

u









⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⋅⎛ ⎞⎜ ⎟ ⎜ ⎟Ψ = = −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

p r

 
 (16.3.1)

into the Dirac equation 

 

2

1 1
2

2 2

2
3 3

2
4 4

ˆ ˆ ˆ0

ˆ ˆ ˆ0
ˆ

ˆ ˆ ˆ 0

ˆ ˆ ˆ 0

z x y

x y z

z x y

x y z

mc cp cp icp

mc cp icp cp
E

cp cp icp mc

cp icp cp mc

 

 

 

 

⎛ ⎞− ⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟+ −⎜ ⎟⎜ ⎟ ⎜ ⎟=⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟+ − − ⎝ ⎠ ⎝ ⎠⎝ ⎠

 (16.3.2)

with ˆ /E i t= ∂ ∂  and p̂ i= − ∇  to obtain

2

1 1
2

2 2

2
3 3

2
4 4

0 0 0 0

0 0 0 0

0 0 00

0 0 00

z x y

x y z

z x y

x y z

mc cp cp icp E

mc cp icp cp E

Ecp cp icp mc

Ecp icp cp mc

 

 

 

 

⎛ ⎞− ⎛ ⎞ ⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟+ −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟=⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟− −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟+ − − ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

 (16.3.3)

where ˆ
x xp pΨ = Ψ , etc. Cancelling the exponential on both sides we obtain an 

eigenvalue equation for the energies and amplitudes 
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2

1
2

2

2
3

2
4

0

0
0

0

0

z x y

x y z

z x y

x y z

mc E cp cp icp u

mc E cp icp cp u

ucp cp icp mc E

ucp icp cp mc E

⎛ ⎞− − ⎛ ⎞⎜ ⎟⎜ ⎟− + −⎜ ⎟⎜ ⎟ =⎜ ⎟⎜ ⎟− − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟+ − − − ⎝ ⎠⎝ ⎠

 (16.3.4)

16.3.2 Nonplane Wave Solutions
For nonplane solutions with harmonic time dependence, we take

 

( )
( )
( )
( )

1

2

3

4

exp
Et

i









⎛ ⎞
⎜ ⎟

⎛ ⎞⎜ ⎟Ψ = −      
 

r

r

r

r


 (16.3.5)

If  = (x, t) then the Dirac equation becomes

 

( )
( )
( )
( )

2

1
2

2

2
3

2
4

1

2

3

4

0 0 /

0 / 0

0 / 0

/ 0 0

0 0 0

0 0 0

0 0 0

0 0 0

mc i c x x

mc i c x x

xi c x mc

xi c x mc

E

E

E

E

















⎛ ⎞− ∂ ∂ ⎛ ⎞
⎜ ⎟⎜ ⎟− ∂ ∂⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟− ∂ ∂ −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟− ∂ ∂ − ⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠





  (16.3.6)

The components 1 and 4 are related by

 
( )
( )

2 4
1

2 1
4

mc E i c
x

mc E i c
x







∂
− =

∂
∂

− − =
∂




 (16.3.7)

and the components 2 and 3 are related by

 

( )
( )

2 3
2

2 2
3

mc E i c
x

mc E i c
x







∂
− =

∂
∂

− − =
∂




 (16.3.8)
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16.3.3 Nonrelativistic Limit
To develop the nonrelativistic limit of the Dirac equation we begin with the 
Hamiltonian form

  
2 2

1 2 3
ˆ ˆ ˆ ˆ

x y zH c p c p c p mc c mc     = + + + = ⋅ +p  (16.3.9)

and express the  and  matrices as

 
0 1 0

 
0 0 1

i

i
i


 



⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

 (16.3.10)

with each element representing a 2  2 matrix and  = (1, 2, 3) as the Pauli spin 
matrices. Writing the four-component  in terms of “upper”   and “lower”   
components 

 




⎛ ⎞
Ψ =  

 




 (16.3.11)

where   and   are each two component spinors corresponding to positive and 
negative energy solutions, respectively. The Dirac equation is now expressed in 
terms of these upper and lower components

 2
0 1 0

0 0 1
i c mc

t i

   

   

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂
= ⋅∇ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟−∂ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

     
  (16.3.12)

The top equation is

 
2i c mc

t i


  

∂ ⎛ ⎞= ⋅∇ +⎜ ⎟∂ ⎝ ⎠

     (16.3.13)

and the bottom equation is

 
2i c mc

t i


  

∂ ⎛ ⎞= ⋅∇ −⎜ ⎟∂ ⎝ ⎠

     (16.3.14)

In the nonrelativistic limit, the time dependence of  is dominated by the negative 
exponential

 

2

e
mc

i t 

 

−⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠





  (16.3.15)

where  and  are more slowly varying in time. Since

 

2

2 e
mc

i t

i mc i
t t

  

  

−⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂
= +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦




   (16.3.16)
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our system is now

 
2

0 0
2

0
i c mc

t i

  

   

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂
= ⋅∇ −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

  (16.3.17)

For mc2 large compared to  , the bottom equation becomes

 
22mc c

i
  

⎛ ⎞≈ ⋅∇ 
 


 (16.3.18)

The small component  is on the order of v/c smaller than the large component .
The bottom equation can now be used to eliminate  from the top equation 

where the time dependence of  is given by

 
2

1

2
i

t m i


 

∂ ⎛ ⎞≈ ⋅∇ ∂  

  (16.3.19)

16.3.4 Dirac Equation in an Electromagnetic Field
In an electromagnetic field with vector potential A and scalar potential V 

 2e
i c mc eV

t i c
 

 ∂ ⎛ ⎞Ψ = ⋅ ∇ − + + Ψ  ∂   
A

  (16.3.20)

The Dirac equation is expressed in terms of the positive and negative energy 
solutions

 2
0 1 0

0 0 1

e
i c mc eV

t i c

    

    

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ⎛ ⎞= ⋅ ∇− + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ −∂ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
A

       
 (16.3.21)

The top equation is

 ( )2e
i c eV mc

t i c


  

∂ ⎛ ⎞= ⋅ ∇− + +⎜ ⎟∂ ⎝ ⎠
A

     (16.3.22)

and the bottom equation is

 ( )2e
i c eV mc

t i c


  

∂ ⎛ ⎞= ⋅ ∇− + −⎜ ⎟∂ ⎝ ⎠
A

     (16.3.23)

Factoring the negative exponential time dependence in the nonrelativistic limit 
with mc2 large compared to   and eV, the bottom equation is approximately

 
22

c e

i cmc


 

⎛ ⎞≈ ⋅ ∇ − 
 

A


 (16.3.24)
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Substitution into the top equation gives

 

2
1

2

e
i eV

t m i c


  

⎡ ⎤∂ ⎛ ⎞= ⋅ ∇− +⎢ ⎥⎜ ⎟∂ ⎝ ⎠⎣ ⎦
A

  (16.3.25)

Using the identity 

 ( )( ) ( ) ( )i  ⋅ ⋅ = ⋅ + ⋅ ×a b a b a b  (16.3.26)

we expand

 
2 2

e e e e
i

i c i c i c i c
 

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⋅ ∇− = ∇− + ⋅ ∇− × ∇−⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

A A A A
   

 (16.3.27)

The cross product becomes

 
e e e e

i c i c ic ic

⎛ ⎞ ⎛ ⎞∇− × ∇− = − ∇× − ×∇⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

A A A A
   

 (16.3.28)

and we obtain the Pauli equation

 
2

1

2 2

e e
i eV

t m i c mc


 

⎡ ⎤∂ ⎛ ⎞≈ ∇ − − ⋅ +  ∂    
A B

   (16.3.29)

describing a nonrelativistic electron in an electromagnetic field where  is the 
two-component Pauli spinor.

Maple Example
The following Maple worksheet illustrates a plane wave solution to the Dirac 
equation.  

Key Maple commands: algsubs , Eigenvalues , Eigenvectors , Matrix 

Maple packages: with(LinearAlgebra ):

restart

Plane Wave Solutions

with(LinearAlgebra) :
A:= Matrix([[mc2, 0, cpz, cpx – Icpy], [0, mc2, cpx + Icpy, –cpz], [cpz, cpx – 
Icpy, –mc2, 0], [cpx + Icpy, –cpz, 0, –mc2]])
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2

2

2

2

0

0
:

0

0

z x y

x y z

z x y

x y z

mc cp cp Icp

mc cp Icp cp
A

cp cp Icp mc

cp Icp cp mc

⎡ ⎤−
⎢ ⎥

+ −⎢ ⎥
= ⎢ ⎥− −⎢ ⎥

⎢ ⎥+ − −⎣ ⎦
Eigenvectors(A)[2]

( )

( )

( )

2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2

2 2 2

, ,

, ,

, ,

y xz

x y z x y z

y x z

x y z x y z

y x z

x y z x y z

z

c Ip pcp

mc c m p p p c mc c m p p p c

c Ip p cp

mc c m p p p c mc c m p p p c

c Ip p cp

mc c m p p p c mc c m p p p c

cp

mc c m

⎡⎡ −
⎢ −⎢
⎢⎢− + + + + − + + + +⎣⎣

⎤−
− ⎥

⎥− − + + + − − + + + ⎦
⎡ +

−⎢
⎢− + + + + − + + + +⎣

−
− −

( )
2 2 2 2 2 2 2 2 2

, ,

1,0,0,1 , 1,0,0,1 ,

y x

x y z x y z

c Ip p

p p p c mc c m p p p c

⎤+
⎥
⎥+ + + − − + + + ⎦

⎤⎡ ⎤ ⎡ ⎤
⎥⎢ ⎥ ⎢ ⎥
⎥⎢ ⎥ ⎢ ⎥
⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎦

algsubs ( )2 2 2 2 ,%x t zp p p p+ + =

( ) ( )

( ) ( )

2 2 2 2 2 2 2 2 2 2 2

2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2

, , ,

,

, , , ,

1,0,0,1 , 0,1,1,0

y x y xz

z

y x y xz z

c Ip p c Ip pp

cm c m p mc c m p c mc c m p c

p

cm c m p

c Ip p c Ip pp p

mc c m p c cm c m p cm c m p mc c m p c

⎡⎡ − −
⎢ − −⎢
⎢⎢− + + − + + − − +⎣⎣

⎢ ⎥
−⎢ ⎥

+ +⎢ ⎥⎣ ⎦
⎡ ⎤+ +

−⎢ ⎥
⎢ ⎥− + + − + + + + − − +⎣ ⎦
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦

,

⎤
⎥
⎥
⎥⎥ ⎦
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Eigenvalues(A)

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

x y z

x y z

x y z

x y z

c m p p p c

c m p p p c

c m p p p c

c m p p p c

⎡ ⎤+ + +
⎢ ⎥
⎢ ⎥− + + +⎢ ⎥
⎢ ⎥+ + +⎢ ⎥
⎢ ⎥
− + + +⎢ ⎥⎣ ⎦

algsubs ( )2 2 2 2 ,%x t zp p p p+ + =

2 2 2

2 2 2

2 2 2

2 2 2

c m p c

c m p c

c m p c

c m p c

⎡ ⎤+
⎢ ⎥
⎢ ⎥− +
⎢ ⎥
⎢ ⎥+
⎢ ⎥
⎢ ⎥− +⎣ ⎦

16.4 MATLAB EXAMPLES 

A leapfrog finite difference time domain  (FDTD) numerical approximation to 
the 1D Dirac equation is demonstrated in this section. The routine below is for 
demonstration purposes in applying a leapfrog method to a system of first order 
equations. Numerical solution of the Dirac equation for various applications is an 
active area of research. The reader is encouraged to consult additional references 
for numerical codes in pursuing research problems. Comparison of the results 
of numerical simulation with analytical solutions and periodically checking 
normalization is recommended.

Key MATLAB commands: meshc , subplot 

Programming: for loops, function statements

Section 16.3 Solutions to the Dirac Equation
Nonplane wave solutions to the 1D Dirac equation are obtained from 

 

( )
( )
( )
( )

( )
( )
( )
( )

2

1 1
2

2 2

2
3 3

2
4 4

ˆ0 0 , ,

ˆ0 0 , ,ˆ
ˆ , ,0 0

, ,ˆ 0 0

x

x

x

x

mc cp x t x t

mc cp x t x t
E

x t x tcp mc

x t x tcp mc

 

 

 

 

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟=⎜ ⎟⎜ ⎟ ⎜ ⎟−⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟− ⎝ ⎠ ⎝ ⎠⎝ ⎠

 (16.5.1)
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with ˆ /E i t= ∂ ∂  and ˆ /p i x= − ∂ ∂ . The two coupled sets of equations are

 

2 4 1
1

2 1 4
4

mc i c i
x t

mc i c i
x t

 


 


∂ ∂
− =

∂ ∂
∂ ∂

− − =
∂ ∂

 

 
 (16.5.2)

and

 

2 3 2
2

2 32
3

mc i c i
x t

mc i c i
x t

 





∂ ∂
− =

∂ ∂
∂∂

− − =
∂ ∂

 

 
  (16.5.3)

We will solve

 

4 1
1 2

1 4
4 2

i i
mc x tmc

i i
mc x tmc

 


 


∂ ∂
− =

∂ ∂
∂ ∂

− − =
∂ ∂

 

   (16.5.4)

rescaling x and t 

 

1 4
1

4 1
4

i
t x

i
t x

 


 


∂ ∂
= − −

∂ ∂
∂ ∂

= −
∂ ∂

 (16.5.6)

Using the MATLAB script below, a FDTD method solves for 1(x, t) and 4(x, t) 
with initial conditions 1(x, 0) and 4(x, 0).
A forward difference scheme is used for time derivatives

 
( ) ( )1, ,n m n mx t x t

t

 
 + −

≈
∆

  (16.5.7)

Using a central difference scheme

 ( ) ( )1 1/2 1 1/2, ,

2

n m n mx t x t

x

 
 + + − +−

′ ≈
∆

  (16.5.8)

to calculate spatial derivatives, our fi nite difference equations are

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

4 1 1/2 4 1 1/2
1 1 1 1

1 1 1/2 1 1 1/2
4 1 4 4

, ,
, , ,

2

, ,
, , ,

2

n m n m

n m n m n m

n m n m

n m n m n m

x t x t
x t x t i x t t

x

x t x t
x t x t i x t t

x

 
  

 
  

+ + − +
+

+ + − +
+

 −
= − + ∆ 

∆  
 −

= + − ∆ 
∆  

 (16.5.9)
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In one dimension, the Courant stability condition is / .t x cΔ ≤ Δ  The notation 
tm+1/2 indicates that the spatial derivatives are calculated in-between time steps tm 
and tm+1. The real and imaginary parts of 1 and 4 are plotted in Figure 16.4.1 as 
a function of x and t. 

Nmax =200; % number of spatial steps

Mmax=1500;  % number of time steps

 

% initialize arrays 

psi1=zeros(Nmax,Mmax);

psi4=zeros(Nmax,Mmax);

dpsi1=zeros(Nmax,Mmax);

dpsi4=zeros(Nmax,Mmax);

 

% time and space steps 

dt=0.005;

dx=0.05;

% initialize psi1 

f=@(x)exp(-x^2)*(2/pi)^(1/4);

 

for n=1:Nmax

x=-5.0+n*dx;

psi1(n,1)=f(x);

end

 

% perform the finite difference equations

for m=1:Mmax-1 

 

for n=2:Nmax-1

dpsi1(n,m)=(psi1(n+1,m)-psi1(n-1,m))/2*dx;

end 

 

for n=2:Nmax-1

psi4(n,m+1)=psi4(n,m)+(1i*psi1(n,m)-dpsi1(n,m))*dt;

end

 

for n=2:Nmax-1

dpsi4(n,m)=(psi4(n+1,m+1)-psi4(n-1,m+1))/2*dx;

end

 

for n=2:Nmax-1

psi1(n,m+1)=psi1(n,m)-(1i*psi1(n,m)+dpsi4(n,m))*dt;

end

 

end

 

% plot the real and imaginary parts of psi1 and psi4

figure

colormap(bone)

 

subplot(2,2,1)       

meshc(real(psi1))           

title('Re(psi1)')
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xlabel('time step')

ylabel('x')

 

subplot(2,2,2)       

meshc(imag(psi1))           

title('Im(psi1)')

xlabel('time step')

ylabel('x')

 

subplot(2,2,3)       

meshc(real(psi4))           

title('Re(psi4)')

xlabel('time step')

ylabel('x')

 

subplot(2,2,4)       

meshc(imag(psi4))           

title('Im(psi4)')

xlabel('time step')

ylabel('x')

Re(psi1) Im(psi1)

Re(psi4) Im(psi4)

Time step Time stepX X

Time step Time stepX X

500
1000
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0

1
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–1

0
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200
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0
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Figure 16.4.1: Spatial and temporal evolution of the Dirac spinor components 1(x, t) and 4(x, t). 
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16.5 EXERCISES

Section 16.1 Early Models

1. Write relativistic expressions for the energy levels of massive particles confined 
to 2D and 3D boxes of length L.

2. Consider a massive particle in a 1D square well of width L. For what value of L 
is the kinetic energy of the particle comparable to its rest mass energy?

3.  For a dispersive wave packet use ( )2 2 4c k m c = + 

to calculate ( ) ( ) ( )( )1
,

2

i kx k t
x t a k e dk





∞
−

−∞

Ψ = ∫
where

( ) ( )1
,0

2

ikxa k x e dx


∞
−

−∞

= Ψ∫
and

( )
2

0,0 x ik xx e− +Ψ =

4. For plane wave solutions to the Klein-Gordon equation 
(x, t) = ei(kx – t) 

show that
2 2 2

2

2 2

m c
k

c


− + =


5. Find a general solution to the quasilinear Klein-Gordon equation 

2 2
2 3

2 2t x
  

∂ Ψ ∂ Ψ
− + Ψ = Ψ

∂ ∂

Section 16.2 Dirac Equation 

6. Verify the following identities involving gamma matrices
 +  = 2 g 

( )
†

0 0    =

7. Calculate the 5 matrix defined as 5 = i0123

8. Show that 5

4!

i    
     =

9. Show that 5 + 5 = 0
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10. Verify the trace identities
Tr() = 0
Tr() = 4 g

11. Write out terms of the Dirac equation explicitly for massless particles where

0i
ii  ∂ =

Section 16.3 Solutions to the Dirac Equation 

12. Show that (a)(b) = (ab) + i(a  b)

13. Given the Lagrangian of a relativistic electron in a magnetic field

2e
L i A mc

c


   

⎛ ⎞= ∂ − −⎜ ⎟
⎝ ⎠


calculate

( )
0

L L

x  
 

∂ ∂ ∂
− =

∂ ∂ ∂ ∂

to show that the Dirac equation becomes

2 0
e

i A mc
c


   

⎛ ⎞∂ − − =⎜ ⎟
⎝ ⎠


Show that the Lagrangian is invariant under the transformation 
( ) ( ) ( ), ,

ie x ie x
e e A A x     Λ − Λ→ → → + ∂ Λ

14. Model a particle in a box of length L in one dimension with the spinor  = 
(x, t) given by

( )
( )
( )
( )

1

2

3

4

exp

x

x Et
i

x

x









⎛ ⎞
⎜ ⎟

⎛ ⎞⎜ ⎟Ψ = −      
 



.

Take ( )4 4 sin
n x

x A
L




⎛ ⎞= ⎜ ⎟
⎝ ⎠

 with 2 = 3 = 0 and n = 1, 2, 3, … 

(a)  Use the relations 
( )
( )

2 4
1

2 1
4

mc E i c
x

mc E i c
x







∂
− =

∂
∂

− − =
∂




 to fi nd 1(x) and the energy 

levels E 

(c) Find A4  A4 from the normalization condition †

0

1
L

dxΨ Ψ =∫
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(d) Find ( )
1

†
1 4

0 0

4

0 0 0

0 0 0 0
* 0 0 *

0 0 0 0

0 0 0

L L

x

x
x x dx dx

x

x



 



⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟= Ψ Ψ =   
    
  

∫ ∫

(e) Find ( )†
1 4

0 0

1

4

ˆ * 0 0 *

0 0 0

0 0 0 0

0
0 0 0

0 0 0

L L

p p dx

i
x

i
x dx

i
x

i
x

 





= Ψ Ψ =

∂⎛ ⎞−⎜ ⎟∂⎜ ⎟⎛ ⎞∂⎜ ⎟⎜ ⎟−⎜ ⎟∂ ⎜ ⎟
⎜ ⎟⎜ ⎟∂⎜ ⎟− ⎜ ⎟⎜ ⎟∂⎜ ⎟⎝ ⎠⎜ ⎟∂

−⎜ ⎟∂⎝ ⎠

∫ ∫









15. For a particle in the 1D square well above

take ( )3 3 sin
n x

x A
L




⎛ ⎞= ⎜ ⎟
⎝ ⎠

 with 1 = 4 = 0 and n = 1, 2, 3, … 

(a)  Use the relations 
( )
( )

2 3
2

2 2
3

mc E i c
x

mc E i c
x







∂
− =

∂
∂

− − =
∂




 to fi nd 2(x) and the energy 

levels E

(b) Find A3  A3 from normalization
(c) Find x 
(d) Find p
Note that 

1

2

3

4

0

0
exp and exp

0

0

a b
a b

E t E t
i i









⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟Ψ = − Ψ = −               
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 are interpreted as different spin states where the electron may exist in a 
superposition of these orthogonal states. In this simple model, 4 and 3 are 
proportional to sin(nx/L) and are properly zero at x = 0, L. However, 1 and 
2 are proportional to cos(nx/L) and suffer a discontinuity in magnitude at x 
= 0, L. If the difference in energy levels is negligible compared to the rest mass 
energy, then 1 and 2 are small compared to 4 and 3 . This analysis may 
also be extended to model an electron confi ned to a fi nite potential well where 
the components of  are nonzero at x = 0, L. 

16. Given the Dirac spinor  = (x, y, t) with harmonic time dependence exp(-
iEt/) find differential equations relating the components
(a) 1 and 4

(b) 2 and 3 
 Create a code to numerically evaluate the spinor components with arbitrary 
time dependence. 

17. Create an animation or a surface plot of the time-dependent solution to the 
Dirac equation 

( ) ( ) ( ) ( )

( ) ( ) ( )

2
2 2

1

2 2
4

, exp cos sin

, exp sin

mc
t x A dp p ipx Et i Et

E

cp
t x iA dp p ipx Et

E







∞

−∞
∞

−∞

⎡ ⎤Γ
= −Γ + −⎢ ⎥

⎣ ⎦

Γ
= − −Γ +

∫

∫

 where 2 2 2 4E p c m c= + , is the width of the wave packet and A is a 
normalization factor. The integrals above must be evaluated numerically. 
 A concise introduction to the Dirac equation including the square well 
potential is available in Introduction to Quantum Mechanics by Chalmers W. 
Sherwin. See the b ibliography for more information.
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APPENDIX

Legendre’s Differential Equation:  ( ) ( )21 2 1 0x y xy y′′ ′− − + + =  ,

Legendre Polynomials: ( ) ( ), cos .y A P x B Q x x = + =     The Q(0) and are 
often discarded. 

Rodrigues’ Formula: 

 ( )21
( ) 1

2 !

d
P x x

dx
= −

 
  

 ( ) ( ) ( ) ( )/2

odd even 

1 !!
0 0,  0 1

!!
P P

−
= = − 

 



 ( ) ( ) ( ) ( ) 1 1,  1P P x P x= − = − 
  

Generating Function:


2

0

1
( )

1 2

∞

=

=
− +

∑ 




P x r
rx r

Orthogonality Relation:


1

1

2
( ) ( )

2 1
P x P x dx ′ ′

−

=
+∫   

Associated Legendre’s Differential Equation:

 ( ) ( )
2

2

2
1 2 1 0

1

m
x y xy y

x

⎡ ⎤
′′ ′− − + + − =⎢ ⎥

−⎣ ⎦
 

Associated Legendre Polynomials: ( ) ( ), cosm m
m my A P x B Q x x = + =    , 

Spherical Harmonics: 
( )
( )

!2 1
( , ) (cos )

4 !
m m im

m
Y P e

m

  


−+
=

+ 
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Rodrigues’ Formula: 

 ( )
( ) ( )

/2
2

2
1

1
2 !

m
m

m

m

x d
P x x

dx

+

+

−
= −

 
  

 ( ) ( ) ( )
/2

21
mm

m

m

d
Q x x Q x

dx
= − 

Generating Function:

 
( ) ( )

( )

/2
2

1/2
2

2 ! 1
( )

2 ! 1 2

m
m

m

m
m

m

m x r
P x r

m rx r

∞

+
=

−
=

− +
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Orthogonality Relation:

 
( )

( )

1

1

2 !
( ) ( )

2 1 !
m m

mm

m
P x P x dx

m
 ′

′ ′ ′

−

+
=

+ −∫   


 

Laguerre’s Differential Equation: ( )1 0xy x y ny′′ ′+ − + =

Laguerre Polynomials: ( )ny L x=

Rodrigues’ Formula: 

 ( ) ( )
n

x n x
n n

d
L x e x e

dx

−=

Generating Function:

( ) ( )/ 1

01 !

nrx r
n

n

L x re

r n

− − ∞

=

=
− ∑

Orthogonality Relation:

2

0

( ) ( ) ( !)x
n n nne L x L x dx n

∞
−

′ ′=∫
Associated Laguerre’s Differential Equation:

 ( ) ( )1 0xy m x y n m y′′ ′+ + − + − =

Associated Laguerre Polynomials: ( )m
ny L x=
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Rodrigues’ Formula: 

 ( )1
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!

n
m x m n m x
n n
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L x e x x e

n dx

− + −=

Generating Function:
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− −
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Orthogonality Relation:
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0
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n
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∞
−
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−∫

Hermite’s Differential Equation: 2 2 0y xy ny′′ ′− + =

Hermite Polynomials: ( )ny H x=

Rodrigues’ Formula: 

 

( )2 2

odd 

/2 /2
even 

( ) ( 1)

(0) 0
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Orthogonality Relation:

2
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Symbols

3D Cartesian Coordinates, 506
3D conformal mappings, 430
3D delta function, 289
3D Spherical Coordinates, 522
4-velocity, 714

A

abs
Maple, 24
MATLAB, 355

action integral, 442
add

Maple, 145653
addition theorem of spherical 

harmonics, 525
Airy’s Diff erential Equation, 245
Algebra, 142
algsubs

Maple, 787
Ampere-Maxwell Equation, 551, 556
Amperes’ law for magnetic materials, 538
angular momentum matrices, 92
angular momentum operators, 617
angular momentum quantization, 44
animate

Maple, 608
Annihilation

Maple, 608
annihilation and creation operators, 606
anticommutator, 61
AntiCommutator

Maple, 778
Array

Maple, 299309313653
assign

Maple, 592
associated Laguerre polynomials, 620
associated Legendre functions of the 

second kind, 297
Associated Legendre Polynomials, 297
associated Legendre polynomials of the fi rst 

kind, 297
assume

Maple, 831119345397592601608
666716

MATLAB, 723
Assume

Maple, 183
atmospheric pressure, 280
Autonomous Systems, 264
Average Energy and Particle Number, 

670–671
Axially Symmetric Potentials, 517524

B

Benoit Mandelbrot, 468
Bernoulli’s equation, 208
Bernoullis equation, 43
besseli

MATLAB, 384
BesselI

Maple, 318
besselj

MATLAB, 323
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BesselJ
Maple, 318

BesselJZero
Maple, 318

BesselK
Maple, 318

Bessel’s diff erential equation, 316
Bessel’s Diff erential Equation, 249
Bessel’s modifi ed diff erential equation, 316
BesselY

Maple, 318
binomial

Maple, 148
Binomial Approximations, 144
binomial coeffi  cients, 144
Binomial Th eorem, 143–144
Black Body Radiation, 152673
Boltzmann Factor and Partition Function, 

656
Boltzmann formula, 652
Born interpretation, 586
Bose-Einstein distribution, 673
Bose Einstein Statistics, 672
Boundary conditions at a charged 

surface, 538
Boundary conditions at a surface current, 538
bound current, 556
bound state solutions, 596
Bra

Maple, 608
BurningShip

Maple, 472
butterfl y eff ect., 463

C

Calculus of Variations, 440
Canonical Ensemble, 655
Cantor comb, 468
Cantor Set, 468
capacitance, 499
capacity dimension, 470
Cartesian Coordinates, 126
Cauchy-Riemann equations, 413
Cauchy-Riemann Equations, 395

Cauchy-Riemann equations in polar coordi-
nates, 428

Cauchy’s Integral Formula, 400
Cauchy’s Integral Th eorem, 399
Chain Rule for Derivatives, 26
ChangeBasis

Maple, 54
Chaotic Dynamics, 463
Chaotic Maps, 471
characteristic equation, 106229
Charged Particle in Electric and Magnetic 

Fields, 718
chemical potential, 671
Christoff el symbol of the second kind, 737
Circle

Maple, 191
Classical Approximation to Gravitational 

Redshift , 730
Classifi cation of Diff erential Equations, 221
ClausiusMossotti relation, 42
coeff 

Maple, 239
collect

Maple, 8
combine

Maple, 81631
Common Denominator, 3
Common Identities, 14
Common Integrals and 

Derivatives, 27
Commutator

Maple, 778
Comparison of Canonical and Grand 

Canonical Ensembles, 671
Comparison of Electrostatics and 

Magnetostatics, 530
Comparison of Time Dilation Factors, 731
complementary solution, 238
Complete elliptic integral, 150
Completely Inelastic Collisions, 705
Completeness Relation, 295
completeness relation for spherical 

harmonics, 299
Completing the Square, 3
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Complex
Maple, 24

Complex Arithmetic, 20
Complex Conjugate, 21
Complex Conjugate of a Matrix, 65
Complex Numbers, 20
Complex Plane, 22
complexplot3d

Maple, 154
complex propagation constant, 558
Complex Roots, 20
Composite Systems, 659
conformal

Maple, 415
conformal3d

Maple, 415
Conformal Mapping, 412413
conj

MATLAB, 3795
conjugate

Maple, 299592608
continuity equation, 364551
Continuous Energy Distributions, 663
contour

MATLAB, 478208426
contourf

MATLAB, 208
Contourplot

Maple, 168
contourplot3d

Maple, 522
contour plots, 166
Convergence of Series, 142
convert

Maple, 81624145239252345660
739

coordplot
Maple, 129

coordplot3d
Maple, 129

Covariant Derivatives, 737
covariant form of the Lorentz force 

equation, 714
Covariant formulation of Maxwell’s 

equations, 711

Cramer’s rule, 76
Creation

Maple, 608
Critically Damped Oscillator, 231
Critical Points, 109124
cross

MATLAB, 95
CrossProduct

Maple, 54191
curl

MATLAB, 208
Curl

Maple, 191201543
Curl in Cartesian Coordinates, 188
Curl in Curvilinear Coordinates, 189
Curl of a Vector Field, 188
Curl of Vector Fields, 186
Cylindrical Coordinates, 126174182189

195204

D

D
Maple, 31252266592
MATLAB, 276

Dagger
Maple, 778

d’Alembertian operator, 365565
Damped Harmonic Oscillator, 229
damped harmonic oscillators with driving, 

237
de Broglie waves, 767
Debye temperature, 676
Debye Th eory of Specifi c Heat, 674
Defi ne

Maple, 739
Defi nite Integrals, 27
Degeneracy, 615
Degree, 222
del2

MATLAB, 208
delta function, 318
Delta Function in Spherical 

Coordinates, 289
Delta Function Potential, 602
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denom
Maple, 8

Derivation of Eulers Formula, 28
Derivatives, 25
Derivatives of Trigonometric and Hyperbolic 

Functions, 28
derivative with respect to a contravariant 

component, 737
derivative with respect to a covariant 

component, 737
det

MATLAB, 95
determinant

Maple, 92
Determinant

Maple, 76
DEtools

Maple packages, 266
DETools

Maple, 720
dfi eldplot

Maple, 266
Dgamma

Maple, 778
Diagonal Matrix, 64
diff 

Maple, 3122522723223967137299
252263266309350313318367
371592601608660720772

MATLAB, 37
Diff erential Form of Gauss’ Law, 291
Diff erentiating Across the Integral Sign, 116
Diff usion Equation, 365
dimension

Maple, 778
Dirac

Maple, 293345351
Dirac Delta Function, 287
Dirac’s quantization condition, 559
Direct Product, 61
displacement current, 552
display

Maple, 273318
divergence

MATLAB, 208

Divergence
Maple, 183197201

Divergence of a Vector Field, 180
Divergence of Vector Fields, 180
Divergence Th eorem, 203
d_[mu]

Maple, 739
D_[mu]

Maple, 739
dot

MATLAB, 95
Dot Product, 735
DotProduct

Maple, 54183
Double Integrals, 124
Drag Force on a Falling Body, 435
Drag Force Proportional to the 

Velocity, 434
dsolve

Maple, 225227232239252263266
371318273503608720

MATLAB, 276723
dual fi eld tensor, 713

E

eff ective capacitance, 44
Eigenvalues, 78

Maple, 787
eigenvectors

Maple, 85
Eigenvectors, 78

Maple, 787
Einstein’s Field Equations, 747
Einstein summation convention, 698
Einstein Tensor, 747
Electric dipole moment, 537
electric displacement, 557
electric fi eld in a wedge, 502
Electricity and Magnetism, 530
electric susceptibility, 538
electromagnetic 4-current, 712
electromagnetic energy density, 560
electromagnetic fi eld tensor, 711
electromotive force, 552
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Electrostatic Examples, 532
Electrostatics in 1D, 495
Elements of Calculus, 25
Ellipse

Maple, 191
Elliptic Integrals, 149
elliptic partial diff erential equation, 364
Embed

Maple, 472
energy levels of hydrogen, 43
Energy Momentum Relation, 704
energy stored in a magnetic fi eld, 538
energy stored in the electric fi eld, 538
Energy Units, 707
equation of the fi eld lines, 167
Equivalence Principle, 729
Error Functions, 137
escape speed, 43
Essential singularity, 402
Euler-Lagrange equation, 441
Eulers Formula, 22
Euler’s scheme, 273
eval

Maple, 232608
evalc

Maple, 592
evalf

Maple, 824318592129145318415
666679707

Even and Odd Functions, 7
Exact Diff erential Equations, 223
Excited States of the Harmonic Oscillator, 

607608
expand

Maple, 816197145201292299239
309313371318382503529608
660

Expansions in Orthogonal Functions, 295
Exponential and Logarithmic Equations, 5
ezcontour

MATLAB, 208
ezcontourf

MATLAB, 208
ezmesh

MATLAB, 208
ezplot3

MATLAB, 156
Ezsurfc

Maple, 168

F

factor
Maple, 8503660
MATLAB, 37

Fermi-Dirac distribution, 677
Fermi-Dirac Statistics, 676
Fermi energy, 677
Fermi temperature, 678
fft  

MATLAB, 355
Field Lines, 166
Fieldplot

Maple, 168
fi eldplot3d

Maple, 176
Fieldplot3d

Maple, 168
Finite Diff erence Time Domain, 789
First Derivatives, 199
First Derivatives of Products, 199
First Order Diff erential Equations, 225
First Order PDEs, 363
Fixed Points, 269
FlowLine

Maple, 168
Flux

Maple, 183
Flux Th rough a Surface, 180
force between two current loops, 536
FormalPowerSeries

Maple, 145
fourier

Maple, 345
MATLAB, 355

Fourier coeffi  cients, 360
Fourier Cosine Series, 333
Fourier Exponential Series, 334
Fourier Series, 331
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Fourier Sine Series, 333
Fourier Transforms, 341
Four Vector Notation, 697
Fractal, 468
Fractal Dimension, 470
Fractals\

-EscapeTime
Maple, 472

free current, 556
Free Energy and Entropy, 657
Fresnel integrals, 163
Frobenius’ theorem, 248
FromJet

Maple, 367
fsolve

Maple, 16
function

MATLAB, 760
functional, 441
functionalDerivative

MATLAB, 478723
fzero

MATLAB, 37

G

g_[ ]
Maple, 739

GAMMA
Maple, 154

Gamma Functions, 150
Gauge Transformation, 566
Gauss’ divergence theorem, 370
Gauss’ divergence theorem, 204
Gaussian Integrals, 135
Gauss’ Law for dielectrics, 538
Gauss’s divergence theorem, 289
Generating Function, 

308312316
Generating Functions, 298
Geodesic Equations of Motion, 743
Geodesics

Maple, 739
geometric series, 659
Geometric Series, 140

GetConstants
Maple, 8

Gibbs Factor, 670
g_[lineelement]

Maple, 739
global

MATLAB, 276760
gradient

MATLAB, 208
Gradient, 172

Maple, 176197201503543
Gradient in Curvilinear 

Coordinates, 173182
Gradient of Scalar Fields, 172
Gradient Th eorem, 203
Grand Canonical Ensemble, 

669670
Grand Potential, 671
Gravitational Time Dilation, 731

H

hamilton_eqs, 720
Hamiltonian Mechanics, 447
Hamilton’s Equations of Motion, 447
HankelH1

Maple, 318
HankelH2

Maple, 318
Harmonic Oscillator, 604
harmonic series, 143
Heat Equation, 369375
heat fl ux vector, 370
Heaviside

Maple, 239293345351
Heaviside Step Function, 292
Heisenberg uncertainty principle, 589
Helmholtz equation, 380
Helmholtz Equation, 366
Helmholtz Equation in Cylindrical 

Coordinates, 380
Helmholtz Equation in Spherical 

Coordinates, 381
Hénon-Heiles system, 285
hermiteH
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MATLAB, 323
HermiteH

Maple, 335608
Maple packages, 313

Hermite Polynomials, 312
Hermite’s diff erential equation, 312
Hermite’s Diff erential Equation, 247
Hermitian Conjugate, 65
Hertz dipole antenna, 560
Higher Order Diff erential Equations, 231
hist

MATLAB, 681
holonomic constraint, 444
Homogeneous Equations, 226
Hookes law, 42
Hydrogen Radial Wavefunctions, 618
Hyperbolic Functions, 23
hyperbolic PDE, 365

I

Identity Matrix, 62
ilaplace

MATLAB, 355
Im

Maple, 24397
imag

MATLAB, 37478426
ImageTools

Maple, 472
implicitplot

Maple, 397516522549
implicitplot3d

Maple, 76
Improper Integrals, 29
Incomplete elliptic integral, 149
Indefi nite Integrals, 27
Index Labels, 142
Infi nitesimal Rotations, 91
Infl ection point, 110
information entropy, 653
inhomogeneous diff erential 

equations, 237
Inhomogeneous Equations, 226
Inhomogeneous Wave Equations, 564

int
Maple, 3167119137154292299309

313335345516522608
MATLAB, 37156

Int
Maple, 543

Integral and Diff erential Forms of Gauss’s 
Law, 496

Integral Functions, 149
Integral representation of Bessel 

functions, 318
integral representation of the delta function, 

288
Integrals of Even and Odd Functions, 30
Integrals of Logarithmic Functions, 117
Integrals of Trigonometric and Hyperbolic 
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