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PREFACE

Linear algebra is one of the most widely used mathematical theories 
and has applications in virtually every area of mathematics, including 
multivariate calculus, differential equations, and probability theory. The 
purpose of this book is to bridge the gap between the abstract theoretical 
aspects and the computational applications of linear algebra. The aim of this 
book is two-fold: to introduce the fundamental concepts of linear algebra 
and to apply the theorems in computation-oriented applications. There are 
many good introductory texts on linear algebra, and the intention of this 
book is to be a supplement to those texts, or to serve as a text for senior 
undergraduate students or first year graduate students, whose interests are 
computational mathematics, science, engineering, and computer science. 
The presentation of the material combines definitions and proofs with 
an emphasis on computational applications. We provide examples that 
illustrate the use of software packages such as Mathematica, Maple, and 
Sage.

This book has evolved from our experience over several years of teaching 
linear algebra to mixed audiences of upper division mathematics majors, 
beginning graduate students, and students from the fields of science and 
engineering that rely heavily on mathematical methods. Our goal in writing 
this book has been to develop a text that addresses the exceptional diversity 
of the audience, and introduce some of the most essential topics about 
the subject of linear algebra to these groups. To accomplish our goal, we 
have selected material that covers both the theory and applications, while 
emphasizing topics useful in other disciplines.

Throughout the text, we present a brief introduction to some aspects 
of abstract algebra that relate directly to linear algebra, such as groups, 
rings, modules, fields and polynomials over fields. In particular, the last 
section of this book is dedicated to the matrix decomposition over principle 
ideal domains, because this structure theorem is a generalization of the 
fundamental theorem of finitely-generated abelian groups, and this result 
provides a simple framework to understand various canonical form results 
for square matrices over fields. 

We use the material from the book to teach our own elective linear 
algebra course, and some of the solutions to the exercises are provided 
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by our students. It is our hope that this book will help a general reader 
appreciate the abstract mathematics behind the  real applications.

By design, each chapter consists of two parts: the theoretical background 
and the applications, which make the book suitable for a one semester 
course in linear algebra that can be used in a variety of contexts. For an 
audience composed primarily of mathematics undergraduate majors, the 
material on the theories of abstract vector spaces, linear transformations, 
linear operators, orthogonal bases, and decomposition over rings can be 
covered in depth. For an applied mathematics course with students from 
the fields of science and engineering that rely heavily on mathematical 
methods, the material on applications of these areas such as linear codes, 
affine or projective transformations, geometry of transformations, matrix in 
graph theory, image processing, and QR decomposition, can be treated with 
more emphasis. In the applications, we allow ourselves to present a number 
of results from a wide range of sources, and sometimes without detailed 
proofs. The applications portion of the chapter is suitable for a reader who 
knows some linear algebra and a particular related area such as coding 
theory, geometric modeling, or graph theory. Some of the applications can 
serve as a guide to some interesting research topics.

The prerequisite for this book is a standard first year undergraduate course 
in linear algebra. In Chapter 1 and Chapter 2 we start with a quick review of 
the fundamental concepts of vector spaces and linear transformations. To 
better understand the behavior of a linear transformation, we discuss the 
eigenvectors in Chapter 3, where the eigenvectors act as the “axes” along 
which linear transformations behave simply as stretching, compressing, 
or flipping, and hopefully make understanding of linear transformations 
easier. Because one can perform some operations on vectors by performing 
the same operations on the basis, we study orthogonal bases in Chapter 4. 
In particular, we study linear transformations relative to orthonormal bases 
that faithfully preserve the linear properties and the metric properties. 
Finally, in Chapter 5, we focus on the matrix decomposition over real or 
complex numbers and over principle ideal domains.

This book should be thought of as an introduction to more advanced 
texts and research topics. The novelty of this book, we hope, is that the 
material presented here is a unique combination of the essential theory of 
linear algebra and computational methods in a variety of applications.
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C H A P T E R1
VECTOR SPACES

1.1 Vector Spaces

Linear algebra is an area of mathematics which deals with vector spaces 
and linear mappings between vector spaces. The fundamental subjects 
studied in linear algebra includes lines, planes, and subspaces. For exam-
ple, the condition under which a set of n hyperplanes intersect in a single 
point can be investigated via finding the condition for a system of linear 
equations to have a unique non-trivial solution. This system of linear equa-
tion can be represented by vectors and matrices. In this section, we will 
focus on the vector spaces.

We will first recall the notation of a set. A set is a collection of distinct 
objects, the objects are called elements of the set. For instance, all integer 
numbers form a set   {..., 2, 1, 0, 1, 2, ...}.

A set X is called an empty set, denoted by , if X has no elements. We 
denote x  X if an element x is included in a set X, otherwise denote x  X. 
For two sets X and Y, we call X a subset of Y (or Y a superset of X), denoted 
by X  Y (or Y  X), if all the elements of X are included in Y. Note that 
the empty set is a subset of any set. We say X is a strict (alternatively proper 
in some references) subset of Y (or Y is a strict superset of X), denoted by
X  Y (or Y  X) if X  Y and there is an element y such that y  Y and 
y  X.

We give three basic operations for two sets:

1. Union of two sets X and Y is the set of elements which are in X, in Y, or 
in both X and Y, denoted by X  Y  {a | a  X or a  Y};
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2. Intersection of two sets X and Y is the set of elements which are in both 
X and Y, denoted by X  Y  {a | a  X and a  Y};

3. Difference of two sets X and Y is the set of elements in X but not in Y, 
denoted by X\Y  {a | a  X and a  Y}.

Definition 1.1.1

A ring R consists of a set with two operations (, ) : R  R  R with 
the properties:

1. Addition is commutative and associative.

2. There is a unique element 0  R, such that x  0  x for all x  R.

3. To each x  R, there corresponds a unique element x  R such that
 x  (x)  0.

4. Multiplication is associative.

5. Multiplication is distributive over addition on the left (and/or right).

If the multiplication is commutative, then R is called a commutative 
ring. If there is a unique non-zero element 1  R such that x  1  1  
x  x for all x  R, then the ring is called a ring with identity. If for each 
non-zero element x  R, there corresponds a unique element y  R such that 
x  y  y  x  1, then we say R is a division ring.

For a ring R, if R satisfies the first three conditions, then (R, ) is a 
commutative or abelian additive group. When a ring R is with unity, 
then (R, ) is a commutative multiplicative group.

Basically, a field is an algebraic structure in which every linear equation 
in a single variable can be solved.

Definition 1.1.2

Let  be a set with two operations (, ) :      with the following 
properties, then  is a field.

1. Addition is commutative and associative.

2. There is a unique element 0  , such that x  0  x for all x  .

3. To each x  , there corresponds a unique element x   such that 
x  (x)  0.

4. Multiplication is commutative and associative.
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5. There is a unique non-0 element 1   such that x  1  x for all x  .

6. To each non-zero x  , there corresponds a unique element x1   
such that x  x1  1.

7. Multiplication is distributive over addition.

We recall that the set of rational numbers , the set of real numbers , 
and the set of complex numbers , are all fields with the usual addition and 
multiplication, and     .

We know that the difference between rings and fields is that fields are 
commutative division rings. The main difference between rings and fields 
is that one can divide in fields, but in general one cannot always divide in 
rings. For instance, the set of integers is a commutative ring; if we include 
all the multiplicative inverses of non-zero integers, then we get a field, the 
field of rational numbers. A polynomial ring is a commutative ring formed 
from the set of polynomials in one or more indeterminates, or variables, 
with coefficients in another ring. For example [x] is a polynomial ring 
in one variable with coefficients in . If we include all the multiplicative 
inverses of non-zero polynomials, then we get a field, the field of rational 
functions, (x).

One can verify that the set of n  n matrices over  is a ring, but not a 
commutative ring. This ring has identity, i.e., the n  n identity matrix, but 
this is not a ring with unity.

A vector space, or sometimes called a linear space, is a collection of 
objects called vectors that satisfies certain properties.

Definition 1.1.3

A vector space or linear space V over a field  consists of a non-
empty set V together with two operations  : V  V  V, and  :   V  V 
which satisfy the following:

1. A rule (or operation) , called vector addition, which associates with each 
pair of vectors a, b  V a vector a  b  V, called the sum of a, b, in such 
a way that

 (a) addition is commutative

 (b) addition is associative

 (c) there is a zero vector 0 which is additive identity

 (d) for each vector a  V, there is –a  V, such that a  (a)  0.



4 • LINEAR ALGEBRA

2.  A rule (or operation) , called scalar multiplication, which associates 
with each c   and a vector a  V a vector ca  V, called the product, 
such that for all a, b  V and c1, c2  

 (a) 1 a  a

 (b) (c1c2) a  c1 c2 a)

 (c) c(a  b) c  a  c  b

 (d) (c1  c2)  a  c1  a  c2  a.

Definition 1.1.4

A subset W of a vector space V is called a subspace of V if W itself is a 
vector space under the addition and scalar multiplication inherited from V.

EXAMPLE 1.1.1

Let [x] be the collection of all polynomials in one variable x, i.e., the 
polynomial ring with one variable with coefficients over the field . Then 
[x] with the usual polynomial addition and multiplication by constants is 
a vector space over . Polynomials of degree n are completely determined, 
by the coefficient of xk for k  0, , n. To check that is a vector space, one 
needs to know how addition and scalar multiplication by elements of [x] 
are defined.

A matrix is an important object in linear algebra. A matrix is a rectan-
gular array of numbers or expressions, called entries of the matrix, arranged 
in rows and columns.

EXAMPLE 1.1.2

Let Mnn() be the set of n  n matrices with entries in . Then Mnn() 
is a vector space over  with the usual addition and scalar multiplication. 
Moreover, if we let Dn() and Un() be the set of diagonal matrices and 
upper triangular matrices in Mnn(), then Dn() and Un() are subspaces 
of Mnn().

EXAMPLE 1.1.3

An n  n matrix A  (ajk) where aij denotes the entry of the i-th row 
and j-th column over the field  of complex numbers is Hermitian or 
self-adjoint if
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,jk ka a j=  for each j, k; the bar denoting complex conjugation.

The set of all Hermitian matrices is not a subspace of the space of all 
n  n matrices over .

EXAMPLE 1.1.4

Let Mmn([x]) be the set of m  n matrices with entries in [x]. Then 
Mmn([x]) is a vector space over [x] with the usual addition and scalar 
multiplication. In fact, Mmn([x]) is isomorphic to (Mmn())[x]. For in-
stance, 3  3 polynomial matrix of degree 2:

 

2

2

2

4 5 4 0 0 0 0 1 0 5 0

0 3 2 0 0 20 0 3 0 0 0 0

2 11 0 3 0 0 0 7 03 2 7 11 0

x x

x x x

x x

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ −+ − ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 

Definition 1.1.5

Suppose that R is a ring and 1 is its multiplicative identity. A left 
R-module M is a set together with two operations  : M  M  M with an 
abelian group (M, ), and an operation  : R  M  M such that for all r, 
s  R and x, y  M, we have: 

 

( )

( )

( ) ( )

1

r x y x x r y

r s x r x s x

rs x r s x

x x

∗ + = ∗ + ∗
+ ∗ = ∗ + ∗

∗ = ∗ ∗
∗ =

 

The operation  of the ring on M is called scalar multiplication. The nota-
tion RM indicates a left R-module M. A right R-module M or MR is defined 
similarly, except that the ring acts on the right; i.e., scalar multiplication 
takes the form  : M  R  M, and the above axioms are written with scalars 
r and s on the right of x and y.

If a ring is non-commutative there is a difference between a left and 
right action. A given left action does not in general define a right action. 
Over a commutative ring there is no difference between a left and right 
module.

A module is abstractly similar to a vector space, but it uses a ring to 
define coefficients instead of the field used for vector spaces. In fact, a vector 
space is a module over a field, but in general, modules have coefficients 
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in much more general algebraic objects. It is easy to see that Hermitian 
matrices is not a module over .

Following are a few theorems which can be verified by the definition 
directly.

Theorem 1.1.1

A non-empty set W  V is a subspace of a vector space V if and only if the 
following hold:

1. For all x, y  W, x  y  W;

2. For every x  W, and scalar a, the vector x  W.

Definition 1.1.6

If U, W are subspaces of the vector space V, then we define the sum of 
U, W to be

 U  W  {x  y | x  U, y  W}

Similarly, if Ui are subspaces of V, then the sum of Ui is

 Ui  Uk  {xi    xk | xi  Ui, i  1,, k}. 

Remark: We note that the union of two vector subspaces is not a vector or 
subspace.

Theorem 1.1.2

Suppose U, W are subspaces of the vector space V. Then U  W, and 
U  W are subspaces of V.

Definition 1.1.7

Let U1,...,Uk be subspaces of a vector space V. We say V is a direct sum 
of U1,  ,Uk and write V  U1  U2    Uk if

1. Every vector x  V can be written as x  y1  y2   yk with yi  Ui;

2. If yi, wi  Ui, and y1   yk  w1   wk, then yi  wi for all 
i  1,, k.

There is a similar definition, namely, the direct product iI Vi of a 
family of vector spaces V consists of the set of all tuples xi  Vi with i  I 
where addition and scalar multiplication is performed component wise, and 
I is either a finite or infinite index set. For example, the direct product is the 
same as Cartesian product. If X and Y are two sets, then X  Y, the Cartesian 
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product of X and Y is a set made up of all ordered pairs of elements of X and 
Y, i.e., if x  X, y  Y, then (x, y)  X  Y.

EXAMPLE 1.1.5

Take V  3. We can describe all subspaces: {0}, 3, all lines and planes 
through the origin.

Given any two distinct lines U1 and U2 through the origin, we can take 
the plane U1  U2 that they span.

Given a plane U through the origin, and a line W through the origin 
not in that plane, then U  W  3. Furthermore, every vector v  3 is a 
unique sum of a vector of U and another vector in W, that is 3  U  W.

Using the definition of direct sum, one can verify the following theorem:

Theorem 1.1.3

Let U1,...,Uk be subspaces of a vector space V. Let 1 ,i kW U Ui U= + + + +   
i.e., sum of all Uj for j  i. Then V  U1    Ui   Uk if and only if

1. V  U1    Uk;

2. Ui  Wi  {0} where 0  V for each i.

EXAMPLE 1.1.6

Let   {Wi | i  I} be a collection of subspaces of V where the index 
set I can be finite or infinite. It is clear that |iI Wi is a subspace of V. If I 
is a finite set, then the set of all finite sums of the vectors from iIWi is also 
a subspace of V, and denote this as iIWi. If I is an infinite set, let

 { }| , ,i i i i

i I i I

W i I
∈ ∈

= ∈ ∀ ∈∑ ∑w w w  

where iIwi means that all wi  0 except possibly for finitely many i  I. 
Therefore, regardless whether I is a finite or infinite set, with the above 
notation iIWi is a subspace of V.

Theorem 1.1.4

Let  be an infinite field and V be a vector space over . Then V cannot 
be the union of a finite number of proper subspaces (subspaces that are 
strictly contained in V).
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Proof:  We will prove the claim by contradiction. Let Wi  V for i  
1,...,n be proper subspaces of V. Suppose 1 .n

i iV W==   Without loss of 
generality, we assume that 1 2 .n

i iW W=⊄ 

Let w  W1 1 2\ ,n
i iW W=∈ w and let v  V\W1. Consider the set U  

{w  av | a  }. Since  is infinite, U is infinite. Hence U  Wk is infinite 
for some index k where k  1, 2,, n.

Suppose k  1. If (w  av), (w  bv)  U  Wk for some distinct a, b  
, then b(w  av) a(w  bv)  (b  a)w  Wk. And hence w  Wk, con-
tradicting the assumption that 1 2\ .n

i iW W=∈ w  Thus, k  1. But this is 
not possible, since Wk  W1 is a subspace, (w  av)  (w  bv)  (a  b)
v  W1, which yields v  W1. This contradicts v  V\W1. Therefore, we 
proved the original claim.

Notice that the above theorem may not be true if  is a finite field. For 
example, let   2, and the elements of the vector space is coming from 
the finite field 2. Then V  {(0, 0), (1, 0), (0, 1), (1, 1)}. Let subspaces 
V1  {(0, 0), (1, 0)}, V2  {(0, 0), (0, 1)}, and V3  {(0, 0), (1, 1)}, then 
V  V1  V2  V3.

1.2 Linea r Span and Linear Independence

Definitio n 1.2.1

A vector b  V is said to be a linear combination of the vectors a1,, 
an in V if there exist scalars c1,, cn in  such that

 
1

.
n

i i

i

c
=

=∑b a  

The set of all linear combinations of a1,,an is called the span of 
a1,,an, and it is denoted by Span (a1,,an).

If a vector space V  Span(a1,,an), then we say that (a1,,an) spans 
V, and (a1,,an) is a spanning sequence for V.

A vector space V is finitely generated if it is possible to find a finite 
sequence of vectors (a1,,an) such that V  Span(a1,,an).

EXAMPLE 1.2.1

The real vector space 3 has {(2, 0, 0), (0, 1, 0), (0, 0, 1)} as a spanning 
set. {(1, 2, 3), (0, 1, 2), (1, 0.5, 3), (1, 1, 1)} is also a spanning set for 3. 
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But, the set {(1, 0, 0), (0, 1, 0), (1, 1, 0)} is not a spanning set of 3, since (0, 
0, 1)  3 is not in the span of this set. The span of this set is the space of 
all vectors in 3 whose last component is zero.

EXAMPLE 1.2.2

Let A  (a1,,am), and B  (b1,,bm) be two spanning sequences 
of a vector space V. Define the union of the two sequences A and B by 
A  B  (a1,,am, b1,,bn). It is easy to check that Span(A)  Span(B)  
Span(A  B).

Theorem 1.2.1

Let A  (a1,,am) be a sequence such that ai  V. Then

1. Span(A) is a subspace of V;

2. If W is a subspace of V, and A  W, then Span(A)  W.

Proof: One can check the claim by using the definition of span. The sec-
ond claim says that Span(A) is the “smallest” subspace of V which contains 
A. If W contains A, and W  C Span(A), then W  Span(A).

Theorem 1.2.2

Let A  (a1,,am) be a sequence such that ai  V are distinct vectors. 
If there exists a vector ai for some i such that 1 ,m

i j j i j jc= ≠= ∑a a  then 
Span(A)  Span(A \ {ai}).

Proof: It is easy to see that Span(A)  Span(A \ {ai}). To see Span(A)  
Span(A \ {ai}), let b  Span(A), then

1

1

1 1, 1

1

1 1 1,

, ,

( ) ( ) ( )

m

j j j

j

i m m

j j i j j j j

j j j i j i

i m m

j i j j j i j j j i j j

j j i j j i

b a a

a a c a

a a c a a c a a c

=

−

= = ≠ = +

−

= = + = ≠

= ∈

⎛ ⎞
= + +⎜ ⎟⎜ ⎟

⎝ ⎠

= + + + = +

∑

∑ ∑ ∑

∑ ∑ ∑

a

a a a

a a a

    Span(A \ {ai})

Thus, Span(A)  Span(A \ {ai}).
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So far, we have seen that any finite subset A of a vector space V de-
termines a subspace Span(A) of V. If we let A denote the set of all subsets 
of V, and  denote the set of all subspaces of V, then there is a function 
Span : A   which sends a subset A  A to Span(A)  . One can show 
that Span is a function with the following properties:

1. If A1  A2  A, then Span(A1)  Span(A2)  .

2. If w  Span(A), then there exists a subset A  A such that w  
Span(A).

3. A  Span(A) for all A  A.

4. For every A  A, Span(Span(A))  Span(A).

5. Let v, w  V, if v  Span(Au{w})\Span(A), then w  Span(A{v}).

We observe that if a certain element of a spanning set can be spanned 
by the other elements of the spanning set, then one can reduce the number 
of elements in the spanning set. This introduces the following concept.

Definition 1.2.2

A finite sequence of vectors a1,,an from a vector space V is linearly 

dependent if there are scalars c1, ... ,cn, not all zero, such that 
1

.
n

i ii
c

=
=∑ a 0  

The sequence is said to be linearly independent if

 11
0.

n

i i ni
c c c

=
= ⇒ = =∑ a 0

An infinite set of vectors is linearly dependent if it contains a finite sub-
set that is linearly dependent. Otherwise, this infinite set of vectors is called 
linearly independent. 

It is easy to check that if a spanning set contains repeated vectors, or 
if one of the vectors is a linear combination of the other vectors, then the 
spanning set is linearly dependent.

Theorem 1.2.3

Let A  (a1,,an) be a linearly independent sequence of vectors of a 
vector space V. Then

1. If b  Span(A), then A  {b}  {a1,, an, b} is a linearly indepen-
dent set.

2. If x  Span(A), then x can be uniquely expressed as

 
1

, .
n

i i i

i

c c
=

= ∈∑ x a
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Proof: We will prove the linearly independent relation by contra-
diction, that is, suppose there exists c, c1, , cn not all zero such that 

1
.

n

i ii
c c

=
+ =∑ a b 0  Since A is a linearly independent sequence, we must 

have that c  0,

1 1

n n
i

i i i

i i

c
c c

c= =

+ = ⇒ = −∑ ∑a b 0 b a

This is impossible since b  Span(A).

To show the second claim, suppose

1 1

, ,
n n

i i i i i i

i i

c k c k
= =

= = ∈∑ ∑ x a a

Since A is a linearly independent set

1

( ) , 0,
n

i i i i i i i

i

c k c k c k
=

= − ⇒ − = ⇒ =∑ 0 a

Hence, the expression is unique.

EXAMPLE 1.2.3

Let V  Mmn(). For any 1  i < m and 1  j  n, let ei,j be the 
m  n matrix whose (i, j)-th entry is 1, and all other entries are zero. It is 
easy to see that eij for 1  i  m and 1  j  n are linearly independent 
since

 , ,

1 ,1

0,i i j i j

i m j n

c
≤ ≤ ≤ ≤

= ⇒ =∑ e 0 c  

where 0 is the m  n matrix with entries all zero. Moreover, Mmn() is 
spanned by the eij for 1  i  m and 1  j  n.

1.3 Bases for Vector  Spaces

Definition 1.3.1

A finite set subset   {v1, , vn} of a vector space V is called a finite 
basis for V provided

1. v1,, vn are linearly independent, and

2. v1,, vn span V.
Consequently, if v1,  vn is a list of vectors in V, then these vectors form a 
basis if and only if every v  V can be uniquely written as

 v  a1v1  a2v2  anvn, a1,, an  .
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If there is an infinite set of linearly independent and spanning elements, 
then this set is called an infinite basis. This basis is called a Hamel basis.

EXAMPLE 1.3.1

We see in Example 1.2.3,

   {ei,j | 1  i  m, 1  j  n} 

form a basis for the vector space V  Mmn().

EXAMPLE 1.3.2

Let V  [x]. Then   {1  x0, x, x2,} form a basis of V.

Theorem 1.3.1

If V is generated by n vectors v1,,vn, then any sequence of vectors with 
more than n vectors is linearly dependent.

Proof: Let (a1, , ak) with k > n be a sequence of vectors of V. If 
a1  V, then a1,v1,,vn are linearly dependent. There exists a vector say vn 
 V  Span(a1,v1,,vn-1). We repeat this process, and obtain V  Span(an, 
an-1,,a1). Then an1  V, and an1, an, an1,, a1 are linearly dependent. 
Thus, we conclude that any sequence of vectors with more than n vectors 
is linearly dependent.

Theorem 1.3.2

Let V  Span(v1,,vn) be a finitely generated vector space. Then V has a 
basis with at most n elements.

Proof: Let v1,,vn generate V, that is V  Span(v1,,vn). If v1,,vn 
are linearly independent, then   {v1,,vn} is a basis for V. If v1,,vn 
are linearly dependent, then there exists a vector say vn such that vn  
Span(v1,, vn1). Then by Theorem 1.2.5, V  Span(v1,, vn1). We 
repeat the process to obtain a set   {v1,,vm} with m < n such that  is 
a basis of V. Therefore, if V  Span(v1,,vn), then the basis   {v1,,vm} 
of V is such that m  n.

From this proof, we see that one can obtain a basis from a spanning set. It is 
also easy to see that if V is a finitely generated vector space such that every 
linearly independent sequence from V has at most n vectors. Then V has a 
basis with at most n vectors. Moreover, if a vector space V has a basis with n 
elements, then any subspace of V has a basis with at most n elements.
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Theorem 1.3.3

If 1 and 2 are two bases of a finitely generated vector space V, then 
|1|  |2|, i.e., the two bases contain the same number of elements.

Proof: Let 1  {a1, , am} and 2  {b1,..., bn}. Then V  Span(1), 
hence V has a basis with at most m elements, thus n  m. On the other 
hand, V  Span(2), hence V has a basis with at most n elements, thus 
m  n. Therefore, we must have that m  n. Hence, |1|  |2|, i.e., the 
two bases contain the same number of elements.

Suppose V is not finitely generated, i.e., has no finite basis. Let 1 and 
2 be two bases with infinitely many elements. Consider the function 
f : 1  Span(2). For any w  1, there exists a unique finite subset 

w  2 such that 
1

( )
N

I II
f c

=
=∑w v  where {v1, , vn}  w. By car-

dinal arithmetic, |1|  | 
1
, | | |w∈ ′= w    where 

1
.B∈′ − w w   Since 

1 2 ,B∈ ⊆w w    and both span V, we must have that 
1 2 .B∈ =w w    

Therefore, |1|  |2|. Exchange the two bases, and with the same proof, 
we can show that |2| > |1|. Hence, when V has no finite bases, we still 
have |1|  |2|. We can conclude that the cardinality of any bases (finite 
or infinite) for a vector space over  are the same.

Definition 1.3.2

If V is a finitely generated vector space, then n, the number of vectors 
in a basis of V is called the dimension of V. We write dim V  n. If V is not 
finitely generated, we denote dim V  .

It is easy to check the following results:

Theorem 1.3.4

Let V be a vector space and dim V  n, and W is a subspace of V. Let 
S  (v1, , vm) be a sequence of vectors from V. Then

1. If S is linearly independent, then m  n.

2. If S spans V, then m  n.

3. If S is linearly independent and m < n, then S can be extended to 
a basis.

4. If S spans V and m > n, then some subsequence of S can form a 
basis.
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5. If m  n and S is linearly independent, then S spans V and S is a 
basis.

6. If m  n and S spans V, then S is linearly independent and S is a 
basis.

7. dim(W)  n; and dim W  n if and only if W  V.

8. There exists a subspace U of V such that W  U  V and W  U  
{0}.

9. If W, U are subspaces of V, then dim(W)  dim(U)  dim(W  U) 
 dim(W  U).

Definition 1.3.3

If V is a finite-dimensional vector space, an ordered basis for V is a 
finite sequence of vectors which is linearly independent and spans V. If 
  {b1,, bn} is an ordered basis for V. Given v  V, then there is a unique 

n-tuple (c1,, cn) such that 
1

.
n

i ii
c

=
=∑v b  Then ci is called the i-th coordi-

nate of v relative to the ordered basis . The coordinate vector of v 

relative to the ordered basis  is 
1

.

n

c

c

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

c To indicate the dependence of 

this vector c on the basis, we denote this coordinate vector as [v].

From this definition, one can proof the following results.

Theorem 1.3.5

Let V be an n-dimensional vector space over the field , and let 
  {b1,, bn} and 1 ,...,{ }n′ ′ ′= b b  be two ordered bases of V, where 

bi  [bi1,,bin]T and 1[ ..., ] .T
i i inb b′ ′ ′=b  Then there is a unique, necessarily 

invertible, n  n matrix P with entries in  such that

[v]  P[v]; [v]  P1[v], "v  V.

The columns of P are given by

,j j B
P ⎡= ⎤⎣ ⎦′b  j  1, ,n. In fact P  1, 

where 1 means the inverse of the matrix formed by the basis elements. 
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Proof: We observe
[ ] [ ]

[ ] [ ]

[ ]

[ ] [ ]

1

1

1

1 1

where  invertible matrix

.j j j j j j

P P

P

P P P P

′

−
′

−
′

−
′

− −

′= =

′=

′= =

=

′ ′ ′ ′= ⇒ = ⇒ = ⋅ ⇒ = ⎡ ⎤⎣ ⎦

v v v

v v

v

v v

b b

 

 



 



 

 

 

    

Theorem 1.3.6

Suppose P is an n  n invertible matrix over . Let V be an n-dimensional 
vector space over , and let  be an ordered basis of V. Then there exits 
a unique ordered basis  of V such that

 [v]  P[v]; [v]  P1 [v], " v  V.

Proof: Let   P, this is a basis since P and  are invertible matrices. 
By Theorem 1.3.10,  satisfies the two stated conditions.

Suppose there exist two bases 1′  and 2′  and both satisfy the two stated 
conditions, then

 [ ] [ ] [ ] [ ] [ ]
1 2 1 2

,P P′ ′ ′ ′= = ⇒ = ∀v v v v v v    

Again by Theorem 1.3.5

 1
1 2 1 2 .I −′ ′ ′ ′= ⇒ =     

Thus such basis is unique.

EXAMPLE 1.3.3

Any finite set of vectors can be represented by a matrix in which its 
columns are the coordinates of the given vectors. As an example in dimen-
sion 2, consider a pair of vectors obtained by rotating the standard basis 
counterclockwise for 45°. The matrix whose columns are the coordinates of 
these vectors is

 
1 2 1 2

1 2 1 2
M

⎛ ⎞−
= ⎜ ⎟⎜ ⎟
⎝ ⎠
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1.4 Linear System of Equations

A linear equation is given as
 a1x1  a2x2    anxn  b, 

where x1, x2,  , xn are variables, a1, a2,  , an   are coefficients of the 
equation and b   is the constant term. The coefficients of the equation 
can also be written in the form of the coefficient vector a  (a1, a2, , an). 
The linear equation is called a homogeneous linear equation if the constant 
term is zero.

A linear system of equations consists of m linear equations

 

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

n n

n n

m m mn n m

a x a x a x b

a x a x a x b

a x a x a x b

+ + + =⎧
⎪ + + + =⎪
⎨
⎪
⎪ + + + =⎩






  (1.1)

where x1, x2,  , xn are variables of the linear system. For an xi, we assume 
there at least exists a k such that aki  0, otherwise the variable xi can be 
eliminated from the linear system. A set of number s1,.,sn is a solution of 
the linear system (1.1), if all the linear equations become identical equa-
tions by substituting s1,  ,sn for xi,, xn. The linear system is called a 
homogeneous linear system if all the constant terms are zero.

EXAMPLE 1.4.1

Consider three simple linear systems over a field 

 
1 2 1 2 1 2

1 2 1 2 1 2

3 3 4
, , and

1 2 2 4 1

x x x x x x

x x x x x x

+ = + = + =⎧ ⎧ ⎧
⎨ ⎨ ⎨− = + = + =⎩ ⎩ ⎩

 

The first linear system has the unique solution x1  2, x2  1, the sec-
ond linear system has the solution x1  c, x2  2  c where c   can be any 
constant, this solution has a free variable c and means infinite number of 
numerical solutions. The third linear system has no solution.

To solve a linear system of equations, a well known method is to trans-
form the linear system to an equivalent simple linear system, a trapezoidal 
linear system based on Gaussian elimination. We consider three elemen-
tary transformations:

 (i) Exchange two equations in the linear system;

 (ii) Multiple by a non-zero constant to an equation in the linear system;

 (iii)  Add an equation to another equation in the linear system.
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Theorem 1.4.1

For a linear system of equations, the solution set is invariant under any 
elementary transformations on the original linear system.

Proof: The elementary transformation (i) only changes the order of the 
individual equations, but the system is the same. Hence, the solution set 
stays the same under such transformation.

The elementary transformation (ii) only multiplies one individual 
equation by a non-zero scalar, producing an equivalent equation. Hence, 
the new system is equivalent to the original system, and the solution set is 
invariant under such transformation.

To show that the solution set is the same under elementary transfor-
mation (iii), we first let c1, , cn be a solution of the original linear system. 
Suppose we add the i-th equation to the j-th equation, i.e., the j-the equa-
tion is updated as

 (ai1  aj1)x1    (ain  ajn)xn  bi  bj

We need only show that c1, , cn is the solution of this new equation. In 
fact from ai1c1    aincn  bi and aj1c1   ajncn  bj we have

 (ai1  aj1)c1    (ain  ajn)cn  bi  bj

Conversely, we start with the updated linear system. Update the i-th 
equation by multiplying by 1, using elementary transformation (II), we 
get a new linear system having the same solution. Update this new linear 
system by adding the j-th equation to the updated i-th equation, we get 
back the original linear system having the same solution similar to the 
above discussion.

Notice that ai1  0 for some i and one can exchange the first equation 
and the i-the equation if a11  0. Therefore, we may assume a11  0 in 
linear system (1.1), we multiple aj1/a11 to the first equation and add the 
result to the j-th equation for j  2,  ,n. After the transformation, we 
obtain a new linear system (to avoid many symbols we here still use the aij 
and bj to represent the updated coefficients).

 11 1 12 2 1 1

2 2 2

n n

k k n n

mk k mn n m

a x a x a x b

a x a x b

a x a x b

+ + + =⎧
⎪ + + =⎪
⎨
⎪
⎪ + + =⎩
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where k is the least number associated to xk whose coefficient a2k is non-
zero in the updated m  1 equations and k  2. Note that if there is no 
such k, then the system is equivalent to the first equation. Otherwise, re-
peat the similar transformation process for the updated m  1 equations, 
we obtain

 

11 1 12 2 13 3 1 1

2 2 1 1 2 2

3 1 3 3

n n

k k k k n n

l n n

ml l mn n m

a x a x a x a x b

a x a x a x b

a x a x b

a x a x b

+ +

+ + + + =⎧
⎪ + + + =⎪⎪ + + =⎨
⎪
⎪

+ + =⎪⎩








 

where l  k  1 and a3l  0. Repeat the transformation process and 
we finally can get the linear system in the trapezoidal form

 

11 1 12 2 13 3 1 1

2 2 1 1 2 2

3 1 3 3

10

0

n n

k k k k n n

l n n

rs s rn n r

r

m

a x a x a x a x b

a x a x a x b

a x a x b

a x a x b

b

b

+ +

+

+ + + + =⎧
⎪ + + + =⎪
⎪ + + =
⎪
⎪
⎨ + + =⎪
⎪ =
⎪
⎪
⎪ =⎩










 (1.2)

where a11, a2k, a3l, , ars are all non-zero and 1 < k < l <  < s  n, 
r  m. Notice that there is no equation of the form 0  bi if r  m. For 
this trapezoidal linear system, variables xsi,  , xn are free or inde-
pendent variables, and the variables xi, xk, xl, , xs are the dependent 
variables with nonzero coefficients, which can be expressed in terms 
of the free variables.

Theorem 1.4.2

The linear system of equations (1.2) has solutions if and only if 
br1i   bm  0. Furthermore, the solution is unique if and only if r 
 n and bri    bm  0; there are an infinite number of solutions if 
and only if r < n and br1    bm  0.
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Proof: Suppose br1i    bm  0. Fix the free variables with ran-
dom values cri, ,cn and substitute them into the r-th equation, we 

have rs x r ra x b b′+ =  where rb′  is a number in . Then 
r r

s s
rs

b b
x c

a

′−
= =  

is solved easy. Similarly, substitute cr, cr1,  , cn into the r  1-th 

equation we solve xl  cr1 for some variable xl. Repeat the similar pro-
cess for i-th equation i r  2, , 1 we will find a solution c1, , cr, 
cr1, , cn of (1.2).

If one of br1,, bm is non-zero w.l.o.g, bm  0, then the equation 
0  bm is a contradictory equation and leads to no solution for (1.2).

If r  n and br1    bm  0, then there is no free variables and 
the above solving process shows that the solution is unique.

If r < n and br1    bm  0, then then free variables can be any 
value, i.e., there are infinite number of solutions.

Two linear systems are equivalent if they have the same solutions or 
no solution simultaneously. By Theorem 1.4.1 and Theorem 1.4.2, we have

Corollary 1.4.1. A linear system is equivalent to a trapezoid linear system.

1.5 A First Look at Determinants

Consider a simple linear system

 11 1 12 2 1

21 1 22 2 2

0ij

a x a x b
a

a x a x b

+ =⎧
≠⎨ + =⎩

 (1.3)

Multiply the first equation by a22, and multiply the second equation by a12, 
we have

 a11a22x1  a12a22x2  b1a22,
 a12a21x1  a12a22x2  b2a12.

Subtracting the second equation from the first equation, we get a new 
equation with x2 being eliminated

 (a11a22  a12a21)x1  b1a22  b2a12.

Similarly, xi can be eliminated in the system (1.3) to get
 (a11a22  a12a21)x2  b2a11  b1a21.

Then we can solve for x1 and x2 if a11a22  a12a21  0. Precisely,

 
1 22 2 12 2 11 1 21

1
11 22 12 21 11 22 12 21

and
b a b a b a b a

x
a a a a a a a a

− −
=

− −  



20 • LINEAR ALGEBRA

For numbers a, b, c, d, we can consider that ad  bc is a value computed 

from the matrix .
a b

c d

⎛ ⎞
⎜ ⎟
⎝ ⎠

 We call this value the determinant of the matrix 

and denote it by .
a b

c d

Proposition 1.5.1. If a11a22  a12a21  0, then the solution of (1.3) is

 

1 12 11 1

2 22 21 2
1 2

11 12 11 12

21 22 21 22

,

b a a b

b a a b
x x

b a a a

b a a a

= =  

The matrix consisting of the coefficients of a linear system and its deter-
minant play import roles in solving the linear system, more details can be 
found in following chapters.

1.6   Using Computer Algebra Systems to 
Perform Computations

Computer software programs such as Mathematica [Wol15], Maple 
[Map16], Sage [SJ05], and R [R C13] incorporate algorithms to simplify 
and compute linear systems. In this section, we include some of the 
computational examples provided by students using a variety of software 
programs.

For example, to perform a row reduction on a rectangular matrix, “Row 
Reduce” function gives the row reduced matrix of any matrix.

In[1]:  RowReduce[{{1, 2, 3, 1, 0, 0}, {4, 5, 6, 0, 1, 0},
{7, 8, 9, 0, 0,1}}]

Out[1]  {{1, 0, -1, 0, -8/3, 5/3}, {0, 1, 2, 0, 7/3, -4/3},
{0, 0, 0, 1, -2, 1}};

One of the most important uses of matrices is to represent and solve 
linear systems. This section will discuss how to solve linear systems with 
Mathematica [Wol15].

Solving a linear system involves solving a matrix equation Ax  b, where 
A  {aij} is an m  n matrix and b  {bi} is a column vector given in (1.1). 
This is a set of m linear equations in n unknowns. If m  n, then the system 
is said to be square. If m > n, i.e., there are more equations than unknowns, 
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then the system is said to be over determined. If m < n, i.e., there are fewer 
equations than unknowns, then the system is said to be under determined.

The “LinearSolve” function in Mathematica [Wol15] is designed to 
solve linear systems directly.

Find the solution to Ax  b where A is a square matrix with exact 
arithmetic:

In[1]: A  {{1, 1, 1}, {1, 2, 3}, {1, 4, 9}}; 
b  {1, 2, 3};
LinearSolve[A, b]

Out[1]{-1/2, 2, -1/2}

Find a solution for a rectangular matrix:

In[1]: A{{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}};
b{13, 14, 15};
LinearSolve[A, b]

Out[1] {-25/2,51/4,0,0}

The “Linear Solve” function is not limited to solve a system when b is a 
column vector, it also solves Ax  b for x when b is a matrix:

In[1]: A  {{1, 1, 1}, {1, 2, 3}, {1, 4, 9}}; 
b  {{1, 2}, {3, 4}, {5, 6}};
LinearSolve[A, b]

Out[1]{{-2,-1},{4,4},{-1,-1}}

Sage [SJ05] is a free computer algebra system. Following is an example to 
obtain an echelon form of a given matrix.

M  random_matrix(ZZ, 3, 4) 
print M 

[-2 -1  1  2]

[ 6  1  3  0]

[-2  2  1 -7]

M.echelon_form()

[ 2  0 11  1]

[ 0  1  6 -3]

[ 0  0 18  0]

Three elementary row operations to a given matrix can also be obtained via 
Sage. The following example shows how to multiply a non-zero constant to 
an equation in the linear system, exchange two equations in the linear sys-
tem, or add an equation to another equation in the linear system.
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Cmatrix(QQ, [[2,3,5,7],[9,3,4,6],[7,9,2,1],[3,0,4,8]]); C
[2 3 5 7]

[9 3 4 6]

[7 9 2 1]

[3 0 4 8]

DC.with_rescaled_row(0,3); D 
[ 6  9  15 21]

[ 9  3   4  6]

[ 7  9   2  1]

[ 3  0   4  8]

EC.with_swapped_rows(0,2); E 
[7 9 2 1]

[9 3 4 6]

[2 3 5 7]

[3 0 4 8]

FC.with_added_multiple_of_row(1,3,2); F 
[ 2  3  5  7]

[15  3 12 22]

[ 7  9  2  1]

[ 3  0  4  8]

Another potential use of Sage is looking at the basis of vector spaces along 
with looking at the basis of the intersection of vector spaces.

V  (QQ^3).span([vector(QQ,[1,2,3]),vector(QQ,[3,4,9])])
W  (QQ^3).span([vector(QQ,[4,6,12]),vector(QQ,[3,2,12])]) 
print("Basis of V")

V.basis_matrix() 

print("Basis of W")

W.basis_matrix()

print("Basis of the intersection") 

V.intersection(W).basis_matrix()

Basis of V 

[1 0 3]

[0 1 0]

Basis of W 

[ 1 0 24/5]

[ 0 1 -6/5]

Basis of the intersection 

[ 1 3/2 3]

R [R C13] is a programming language and free software environment for 
statistical computing and graphics that is supported by the R Foundation 
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for Statistical Computing. We may use R in linear algebra. For example, we 
may compute the determinate of a matrix by R.

[languageR]
Mmatrix(c(7,4,6,3,8,4,7,15,2,6,3,9,-3,6,-17,3),nrow4,ncol4)
M

 [,1] [,2] [,3] [,4]

[1,] 7 8 2 -3

[2,] 4 4 6 6

[3,] 6 7 3 -17

[4,] 3 15 9 3

det(M)

[1] -6930

Using R, one can also test linear independence relationships among given 
vectors, and determine the rank of the vector spaces.

[languageR]
N  matrix(c(1,0,0,0,2,5,4,-1,-1,0,1,2,0,-10,7,3,-4,-10,-8,2),
nrow4,ncol5,dimnameslist(c("A","B","C","D"),
paste("v",1:5,sep"")))
N

  v1 v2 v3  v4  v5 

A  1  2 -1   0  -4 

B  0  5  0 -10 -10 

C  0  4  1   7  -8 

D  0 -1  2   3   2 

mN <- N[,q$pivot[seq(q$rank)]] 

mN

  v1 v2 v3  v4 

A  1  2 -1   0 

B  0  5  0 -10 

C  0  4  1   7 

D  0 -1  2   3 

qr(N)$rank 

[1] 4

1.7 Applications of Vector Spaces

Vector spaces are applied throughout mathematics, science, and engi-
neering. Vector spaces may be generalized in several ways, leading to more 
advanced notions in geometry and abstract algebra. In this section, we will 
discuss a few applications.
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1.7.1 Code

In this section, we will see how vectors can be used to design codes 
for detecting errors that may occur in data transmission. A linear code of 
length n and rank k is a linear subspace C with dimension k of the vector 
space n

q  where q is the finite field with q elements. Such a code is called 
a q-ary code. If q  2 or q  3, the code is described as a binary code or a 
ternary code, respectively. The vectors in C are called codewords. The size 
of a code is the number of codewords and equals qk.

In practice, to transmit a message consisting of words, numbers, or 
symbols, one begins by encoding each “word” of the message as a binary 
vector, that is, a vector with entries in 2. A binary code is a set of binary 
vectors of the same length called code vectors. The process of converting 
a message into code vectors is called encoding, and the reverse process is 
called decoding.

For example, a message “buy” is represented by a binary code 1011. 
One way of encoding is to attach a binary “tail” to the binary code to detect 
the error—attaching a “1” if the binary code contains an odd number of 1s, 
otherwise, attaching a “0”. Thus, all encoded binary words have an even 
number of 1’s. Therefore, 1011 will be encoded as 10111, and we know 
that an error has occurred if the word is distorted to 00111. Therefore, the 
message to be transmitted consists of binary vectors and a simple error-
detecting code called a parity check code. A parity check code is created by 
appending an extra component, called a check digit, to each vector so that 
the parity, i.e., the total number of 1’s is even.

To generalize this process in terms of vectors, let the message be the 
binary vector a  [a1,,an]  2 ,n  and the parity check code vector is 
v  [a1,  ,an,a]  1

2 ,n+  where the check digit a is chosen such that

a1    an  a  0  2, equivalently 1  v  0, 1  [1,, 1]  1
2 .n+

The vector 1  [1,1,  , 1], is called a check vector. Parity check codes 
are special cases of the more general check digit codes in a q-ary code.

For example, let a message be represented by a vector a  [a1,, an]  
[2, 2, 0, 1, 2]  5

3 ,  and the parity check code vector is v  [2, 2, 0, 1, 2, a] 
 6

3 ,  then the check digit must be

 1 v  2  2  1  2  a  1  a  0  3  a  2.

Thus the parity check code becomes v  [2, 2, 0, 1, 2, 2].
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Simple check digit code may detect a single error, but it will not be able 
to detect other types of common errors such as the accidental permuting 
of two digits. For example, the binary codes 1011 and 0111 both contain an 
odd number of 1’s so the added parity check code cannot detect the error if 
the message “buy” represented by a binary code 1011 is distorted to 0111. 
Next, we will discuss how to use matrices to design codes that can correct 
as well as detect certain types of errors.

First, we encode a message represented by a vector a  2
k  by using a 

matrix transformation 2 2: ,k nT →   for some n > k. The vector T(a)  Ga  
v is called the code vector, and the matrix G is called the generator matrix 
for the code. To exam whether a received vector b is a code vector, we de-
fine a parity check matrix P to be such that Pv  0 for the code.

For example, a message “sell” represented by a binary code vector 
a  [0101]T is encode by the generator matrix G to get the code vector v as 
the following

 
4 7
2 2

1 0 0 0 0

0 1 0 0 1
0

0 0 1 0 0
1

0 0 0 1 1: , ( )
0

1 1 0 1 0
1

1 0 1 1 1

0 1 1 1 0

T T G

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥→ = = = =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

  a a v

The parity check matrix

 

1 1 0 1 1 0 0

1 0 1 1 0 1 0

0 1 1 1 0 0 1

P

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

If the vector v is received then Pv  0, and it is correct. On the other 
hand, if v  [0111010]T is received, then compute

 

0

1

11 1 0 1 1 0 0 0

11 0 1 1 0 1 0 1

00 1 1 1 0 0 1 1

1

0

P

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥′ = =⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

v
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Since Pv  0, the code is distorted. Furthermore, Pv  [0 1 1]T is the 
same as the third column of the parity check matrix P, and this tells us the 
error is in the third component of the received message v. Thus, by chang-
ing the third component of v, we recover the correct code vector v.

1.7.2 Hamming Code

In telecommunication, Hamming codes are a family of linear error-
correcting codes that were invented by Richard Hamming in 1950. The 
binary Hamming code first introduced has check matrix

 

0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1

H

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

The elements of this matrix are in 2. The Hamming code C of length 
7 is the space of H, i.e.,

 { }7
2 | .C H∈ =v v 0=  

The Hamming distance dH between any two words of the same length 
is defined as the number of coordinates in which they differ.

Proposition 1.7.1. The minimum distance between binary Hamming 
codewords is 3.

Proof: Suppose x, y  C are two code words from a Hamming code. Then 
x  y  C.

If dH (x, y)  1, then H(x  y) is a column of H, which is non-zero. But 
this is not possible since if (x  y) is a Hamming code word, then H(x  y) 
 0.

If dH(x, y)  2, then H(x  y)  0 if and only if there are two columns of 
H which are linearly dependent. But this is not the case.

Hence dH(x, y)  3 for all code words x, y. Every check matrix for a 
binary Hamming code will have three columns that are linearly dependent, 
so in fact some code words are of distance 3.

Linear codes like C are identified by their length, dimension, and mini-
mal distance. Thus C is referred as (7, 4, 3), because its length is 7, its di-
mension is 4, and its minimum distance is 3.

1.7.3 Linear Code

Below, we give formal definition and theorem to generalize this idea.
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Definition 1.7.1. 

If k < n, then any n  k matrix of the form k
G

A

⎡ ⎤
= ⎢ ⎥
⎣ ⎦


 where A is an 

(n  k)  k matrix over 2 is called a standard generator matrix for an 
[n, k] binary code 2 2: .k nT →   Any (n  k)  n matrix of the form P  [B 
nk] where B is an (n  k)  k matrix over 2 is called a standard parity 
check matrix. The code is said to have length n and dimension k.

The following theorem will help us to identify when G can be a stan-
dard generator matrix for an error-correcting binary code, and also, given 
G, tell us how to find an associated standard parity check matrix P.

Theorem 1.7.1

If 
k

G
A

⎡ ⎤
= ⎢ ⎥
⎣ ⎦


 is a standard generator matrix and P  [B n-k] is a standard 

parity check matrix, then P is the parity check matrix associate with G if 
and only if A  B. The corresponding binary code [n, k] is (single) error-
correcting if and only if the columns of P are non-zeros and distinct.

Proof: Let ai be the i-th column of A.

() Let P be the standard parity check matrix associated with G for the 
same binary code a. Then for every 2 ,kZ∈x  we have PGx  0. Thus,

2[ ] ( ) ,
k k

n kPG B B A B A
A−
⎡ ⎤

= = + = + = ∀ ∈⎢ ⎥
⎣ ⎦

   x x x x x 0 x  

Hence
 Bx  Ax  Ax over 2.

Let x  ei, the i-th standard basis vector in 2 ,k  then we have

 bi  Bei  Aei  ai,  "i,  B  A.
() If B  A, then

 2[ ] ( ) 2 0,
k k

n kPG B B A A
A−
⎡ ⎤

= = + = = ∀ ∈⎢ ⎥
⎣ ⎦

 x x x x x  

Thus, P is the standard parity check matrix associated with G for the same 
binary code a.

Finally, to see that the pair G, P determines an error-correcting code if 
the columns of P are non-zeros and distinct, let x be a message vector in 

2 ,k and let the corresponding code vector be v  Gx, and Pv  0.
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() Suppose there is an error in the i-th component of the received code 
vector v. Then v  v  ei, and

 Pv  P(v  ei)  Pv  Pei  0  pi  pi

where pi is the i-th column of P, which indicates exact component that 
the error occurs.

() If P has a zero column, say pi  0, then an error in the i-th column 
will not be detected, since Pv  0. Moreover, if pi  pj, then we cannot 
pinpoint the column that the error occurs.

We observer that k
G

A

⎡ ⎤
= ⎢ ⎥
⎣ ⎦


 and P  [B nk] guarantee that the col-

umns of G and the rows of P are linearly independent. Theorem 1.7.3 
states that G and P are associated with the same code if and only if A  
B, which is equivalent to the condition that PG  . Moreover, PG   
means that Pgi  0 for every column gi of the matrix G. Thus, vector v is a 
code vector if and only if v is in the column space of the matrix G, that is v 
 Ga for some vector 2 .k∈a  Since elementary row or column operations 
do not affect the row or column spaces of the given matrix. Therefore, if 
P is a parity check matrix, E is an elementary matrix, and v a code vector, 
then

EPv  E(Pv)  E0  0,

and EP is also a parity check matrix. Therefore, any parity check matrix 
can be converted into another one by means of a sequence of row opera-
tions.

The properties of row or column operation of a matrix in linear algebra 
provide ways of construction new code. Below, we give a new definition:

Definition 1.7.2

For n > k, and an n  k matrix G and an (n  k)  n matrix P over 2
k  are 

generator matrix and a parity check matrix, for an [n, k] binary code C 
if the following conditions are all satisfied:

1. The columns of G are linearly independent.

2. The rows of P are linearly independent.

3. PG  .
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We call two codes C1 and C2 equivalent if there is a permutation matrix 
M such that

 {Mx : x  C1}  C2.

1.7.4 Golay Code

Golay codes are the most interesting codes constructed up to 1996. In 
mathematics and electronics engineering, a binary Golay code is a type of 
linear error-correcting code used in digital communications. Golay codes 
were used to transmit the color images of Jupiter and Saturn within a con-
strained telecommunications bandwidth by the Voyager 1 and 2 spacecraft.

Definition 1.7.3

(Extended binary Golay codes) Let G be the matrix G  [12 A]T, where 
12 is the 12  12 identity matrix and A is the 12  12 matrix

 

0 1 1 1 1 1 1 1 1 1 1 1

1 1 1 0 1 1 1 0 0 0 1 0

1 1 0 1 1 1 0 0 0 1 0 1

1 0 1 1 1 0 0 0 1 0 1 1

1 1 1 1 0 0 0 1 0 1 1 0

1 1 1 0 0 0 1 0 1 1 0 1
,

1 1 0 0 0 1 0 1 1 0 1 1

1 0 0 0 1 0 1 1 0 1 1 1

1 0 0 1 0 1 1 0 1 1 1 0

1 0 1 0 1 1 0 1 1 1 0 0

1 1 0 1 1 0 1 1 1 0 0 0

1 0 1 1 0 1 1 1 0 0 0 1

TA A A

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= =⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

The binary linear code with generator matrix G is called the extended 
binary Golay code and will be denoted by G24.

Proposition 1.7.1 (Properties of the extended binary Golay code)

1. The length of G24 is 24 and its dimension is 12.

2. A parity-check matrix for G24 is the 12  24 matrix H  [A12].

3. The code G24 is self-dual, i.e., 1
2424 .G G=

4. Another parity-check matrix for G24 is [12 A]  G.
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5. Another generator matrix for G24 is matrix [A 12]
T.

6. The minimum distance of G24 is 8.

Proof: We will leave the proof as an exercise for the readers. Observed 
that a generator matrix for the dual code is a parity-check matrix for the 
original code and vice versa. The dual of the dual code is always the original 
code. For more details concerning item 3, please see the following discus-
sion concerning dual code.

In coding theory, the dual code of a linear code C is the linear code 
defined by

 
1

2

1

| ,  0,
n

n
i i

i

C x x c C
=

⎧ ⎫⎪ ⎪
= ∈ = = ∀ ∈⎨ ⎬
⎪ ⎪⎩ ⎭

∑ x c c  

Proposition 1.7.2 Let C be an [n, k] binary code with generator matrix 
G Then C is an [n, n  k] code with parity check matrix GT.

Proof: 20, ( ) 0, for all kC C G⊥∈ ⇔ ⋅ = ∀ ∈ ⇔ ⋅ = ∈x x c c x a a

But

2( ) ( ) ( ) 0,  ,T T T T T k TG G G a G G⋅ = = = = ∀ ∈ ⇔ =x a a x a x x a x 0

This means that C^ is the null space of GT, and GT is an k  n matrix of rank 
k. Hence C has dimension n  k. GT is a parity check matrix of C.

As a conclusion, vector spaces are very important in coding theory. The 
theory of error-correcting codes is a relatively recent application of math-
ematics to information and communication systems. It turns out that a rich 
set of mathematical ideas and tools from linear and abstract algebra can be 
used to design good codes.

1.8  Exercises

1. Identify which of the following sets are subspaces of 3, and state the 
reasons.

 (a) V  {(x, y, z)  3 | x  2y  11}.

 (b) V  {(x, y, z)  3 | x  2y  5z  0}.

 (c) V  {(r, r  2,0)  3}.

 (d) The set of all polynomials f(x), with f(7)  0.
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2. Assume that v and w are linear independent vectors. Prove that v, w, 
(v  w) are linear dependent vectors.

3. Prove that all polynomials f(x) with degree not greater than 3 constitute 
a vector space.

4. Given V  {(2, 5, 3), (1, 0, 2)} and W  {(2, 0, 5), (3, 5, 5)}. Is the in-
tersection of Span(V) and Span(W) a vector space? If so, what is the 
dimension?

5. Let B  {(1, 0, 1), (0, 2, 0), (1, 2, 3)} and C  {(1, 0, 0), (2, 0,1), (0,1, 3)} 
be two bases of 3. Let the coordinates of a vector v relative to B and C 
be (x, y, z) and (a, b, c). Write the relation between these coordinates in 
matrix notation.

6. Let U and V both be 2-dimensional subspaces of 5, and let W  U  V. 
Find all possible values for the dimension of W.

7. Let U and V both be 2-dimensional subspaces of 5, and define W  U  
V  {w | w  u  v, u  U, v  V}. Show that W is a linear space, and find 
all possible values for the dimension of W.

8. Let A : n  k be a real matrix, not necessarily square. Show that if the 
columns of A are linearly dependent, then A is not one-to-one.

9. Find a 3  3 matrix that acts on 3 as follows: it keeps the x-axis fixed but 
rotates the yz-plane by 60 degrees.

10. Let 
1 1

.
3 3

A
− −⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 Find all 2  2 matrices, B such that AB  0. Does 

{B  M2×2 | AB  0} form a subspace of 2  2 matrices? If so, find a basis.

11. Let V be the vector space over all real 2  2 matrices. Let W be the 
subset of V consisting of all symmetric matrices. (a) Prove that W is a 
subspace of V. (b) Find a basis of W. (c) Determine the dimension of W.

12. A matrix A is called skew-symmetric if AT  A. Let V be the vector space 
over all real 2  2 matrices. Let W be the subset of V consisting of all 
skew-symmetric matrices. (a) Prove that W is a subspace of V. (b) Find a 
basis of W. (c) Determine the dimension of W.
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13. A Vandermonde matrix is often used in applications. Calculate the 
square of the Vandermonde matrix

 
1 2 3

2 2 2 2
1 2 3

1 1 1 1
1 2 3

1 1 1 1

n

n

n n n n
n

x x x x

x x x x

x x x x− − − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦





    



 

14. Calculate the images resp. the pre-images of the line

ax  by  c  0

 and the conic section

 ax2  2bxy  cy2  0 

 under the affine mapping

 (x, y)  (a11x  a12y  C1, a21x  a22y  c2) 

where a11a22 a12a21  0.

15. Show that if f : 2  2 is an injective, affine mapping, then f maps 
conic sections onto conic sections. For which f is the image of a circle 
also a circle?

16. If Q is the conic

{(x, y)  2 | a11x
2  2a12xy  a22y

2  2b1x  2b2y  c  0}

and

 

11 12 1
11 12

21 22 2
12 22

1 2

,

a a b
a a

A D a a b
a a

b b c

⎡ ⎤
⎡ ⎤ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

 

Show that the conic has the form

 {(x, y) : XT DX  0}, where 

1

x

X y

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

17. Show that if z1 and z2 are distinct complex numbers, then

 1 1

2 2

1

det 1 0

1

z z

z z

z z

⎡ ⎤
⎢ ⎥ =⎢ ⎥
⎢ ⎥⎣ ⎦

 

is the equation of the straight line through z1 and z2
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18. For which values of t do the following 4-vectors form a basis of 4?

 (1, t, 3, 4), (t, t, 3, 4t), (1, t, 3t, 4), (1, 1, 3, 4t).

19. For which values of t the following matrices form a basis in M22

 
2 1 2 1 2 1 1

, , , .
2 3 2 3 1 2 2 2 1

t t t t

t t t t t

+⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦





C H A P T E R2
LINEAR TRANSFORMATIONS

 2.1 Linear Transformations

In mathematics, a linear map, or a linear transformation, or, in some 
contexts, a linear function, is a mapping V a W between two algebraic struc-
tures, that preserves the operations of addition and scalar multiplication. 
Linear maps can often be represented as matrices, and simple examples 
include rotation and reflection linear transformations. One of the important 
special cases is that when V  W, the map is called a linear operator, or an 
endomorphism of V. In the language of abstract algebra, a linear map is 
a module homomorphism of modules over a given ring. In fact, ring and 
module are regarded as one of the most important subjects in abstract al-
gebra and the theory of ring and module is so extensive which includes that 
vector spaces. In this chapter, we will focus on linear transformations of 
vector spaces, and touch a few topics in ring and module homomorphisms.

Recall, if a function f maps from a set X, namely the domain into a set 
Y, codomain, then for each x  X, the element f(x)  Y is called the image 
of x, and {x  X | f(x)  y} is the pre-image of y. The range of f, denoted by 
range(f), is the set of all images, range(f)  { f(x) | x  X}. A linear function, 
or linear transformation, or a linear map between vector spaces is a function 
that preserves some of the algebraic properties of vector spaces.

Definition 2.1.1

Let V and W be vector spaces over the field F. A linear transformation 
from V into W is a function T from V into W such that

 T(cv  w)  cT(v)  T(w), "v, w  V, c  .
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The set of all linear transformation from V to W will be denoted by 
(V, W).

EXAMPLE 2.1.1

Consider L : 2  3, a linear transformation, defined by L([x, y]T)  
[y, 2x  2y, x]T, then this linear transformation can be given as a matrix 
multiplication such that

 

0 1

( , )  whe[ re 2 2

1

]

0

T x
L x y A A

y

⎡ ⎤
⎡ ⎤ ⎢ ⎥= = −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

In algebra, a module homomorphism is a function between modules 
that preserves module structure.

Definition 2.1.2

Let M and N be left modules over a ring R, then a function f : M  N 
is called a module homomorphism or a R-linear map if for any x, y  M 
and r  R,

1. f(x  y)  f(x)  f(y),

2. f(rx)  rf(x).

If M, N are right modules, then the second condition is replaced with 
f(xr)  f(x)r. The pre-image of the zero element under f is called the kernel 
of f or the null space of f. The set of all module homomorphisms from 
M  N is denoted by HomR(M, N). It is an abelian group with respect to 
addition, but is not necessarily a module unless R is commutative.

Remark: In general, if T  Hom (M, N), then

1. ker(T)  {m  M | T(m)  0}.

2. im(T)  {n N |  m  M, T(m)  n}.

3. T is injective, or monomorphism, or one-to-one, if ker(T)  {0}.

4. T is surjective, or epimorphism, or onto, if im(T)  N.

5. T is bijective, or isomorphism, if T is both injective and surjective.

6. M and N are said to be isomorphic, M  N if there exists an isomorphism 
T  Hom(M, N).
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Since a vector space is a module over a field, therefore, linear transfor-
mations of vector spaces are special cases of module homomorphisms.

EXAMPLE 2.1.2

Let R   be a ring. Let M  m, and N  n be two R-modules. Let 
f : M  N be a R-module homomorphism. One can check that 
HomR(M, N)  gcd(m; n).

Definition 2.1.3

If V is a vector space over the field F, a linear operator on V is a linear 
transformation from V into V.

Definition 2.1.4

A linear transformation T is non-singular if T()  0 implies that   0. 
That is, the null space of T is {0}.

Theorem 2.1.1

Let T be a linear transformation from V into W. Then T is non-singular if 
and only if T carries each linearly independent subset of V onto a linearly 
independent subset of W.

Proof: Let T : V  W be a linear transformation and non-singular, and 
v1, …,  vn linearly independent. To show T(v1),, T(vn) are linearly in-
dependent, consider

 c1T(v1)  cnT(vn)  0  where ci  ,

 T(c1v1   cnvn)  0  since T is a linear transformation 

 c1v1   cnvn  0 since T is non-singular

 c1   cn  0  since v1,  vn are linearly independent.

Thus, T(v1), T(vn) are linearly independent.

To show T is non-singular, we only need to show that T(v)  0 implies 
v  0. To do so, let v1,   vn be a basis of V, and v  c1v1   cnvn, then

 T(v)  T(c1v1  cn,vn)  0

0  c1T(v1)  cnT(vn)  c1   cn  0

 since T(v1), T(vn) are linearly independent
                    v  c1v1  cnvn  0
Thus T is non-singular.
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EXAMPLE 2.1.3

In 2-dimensional space 2 linear maps are described by 2  2 real ma-
trices relative to the standard basis. These are some examples:

1. Rotation by 90 degrees counterclockwise:

 
0 1

1 0
A

−⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 

2. Rotation by angle  counterclockwise:

 
cos sin

sin cos
A

 

 

−⎛ ⎞
= ⎜ ⎟
⎝ ⎠

3. Reflection against the x-axis:

 
1 0

0 1
A

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

4.  Reflection against the y-axis:

 
1 0

0 1
A

−⎛ ⎞
= ⎜ ⎟
⎝ ⎠

5.  Scaling by k > 0 in all directions:

 
0

0

k
A

k

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

6.  Horizontal shear mapping:

 
1

0 1

m
A

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

7.  Vertical squeeze mapping, k > 1:

 
1 0

0 1/
A

k

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

8.  Projection onto the y-axis:

 
0 0

0 1
A

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

2.2 Ran k a nd Nullity of a Linear Transformation

Definition 2.2.1

Let V and W be vector spaces over the field , and let T be a linear 
transformation from V into W. The null space of T is the set of all vectors 
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v  V such that T(v)  0. If V is finite-dimensional, the rank of T is the 
dimension of the range of T, and the nullity of T is the dimension of the 
null space of T.

EXAMPLE 2.2.1

Let [s] denote the ring of polynomials in a single variable s with coef-
ficients from the field . A polynomial vector v  ([s])w is a vector of size 
w with each entry being a polynomial. The degree n of a vector v  ([s])w 
is the maximum amongst the degrees of its polynomial components. Alter-
natively we can write v as a polynomial of degree n with the coefficients 
being the vectors from w. Hence, ([s])w  w[s]. Similarly a polynomial 
matrix   gw [s] is a matrix of size g  w with the entries from [s]. The 
degree of a polynomial matrix is the maximum of the degrees amongst its 
polynomial entries. A polynomial matrix can be written as a polynomial in 
s with coefficients being the matrices from gw. The null space of  is 
{v  w [s] | Rv  0}.

Theorem 2.2.1

Let V and W be finite-dimensional vector spaces over the field , let T  
(V, W) be a linear transformation from V into W. Then

1. If T is injective, then dim V  dim W.

2. If T is surjective, then dim V  dim W.

3. If dim V  dim W, then T is an isomorphism if and only if T is 
injective or T is surjective.

4. rankT  nullityT  dim V.

Proof: Let   {b1,   bn} be a basis for V. 

1. Since T is injective, T(b1), T(bn) are a linearly vectors in W. 
Hence independent n  dim W.

2. Since T is surjective, {T(b1), T(bn)} generates W, i.e., W  
Span(T(b1),  T(bn)). Hence n  dim(W).

3. () If T is an isomorphism, then it is both injective and bijective. 
() If T is injective, then T(b1), T(bn) are linearly indepen-
dent. Since dimV  dimW, T(b1), T(bn) form a basis for W. 
Hence T is surjective. Therefore, T is an isomorphism.
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On the other hand, if T is surjective, then W  Span(T(b1),  
T(bn)), so {T(b1),  T(bn)} contains a basis. Since dim V  dim W, 
T(b1),   T(bn) in fact form a basis. Let T(v)  0 for some 

1
.

n

i ii
c

=
=∑v b Then ( )

1 1
( ( )

n n

i i i ii i
T T c c T

= =
= = =∑ ∑0 v) b b  implies 

all ci  0. Thus 
1

.
n

i ii
c

=
= =∑0 b 0  Thus ker T  {0}, hence T is in-

jective. Therefore, T is an isomorphism.

4. Let k  nullityT, and let b1,  bk be the basis for ker T, and let 
b1,  bk, bk+1,  bn is a basis for V. We will show that rank 
T  n  k, that means we need to show that T(bk+1),  T(bn) 
form a basis for imT. To do so, we let w  imT, so there exists v  
V such that T(v)  w. Thus,

 

1 1 1 1

( ) ( ) ( ),
n k n n

i i i i i i i i

i i i k i k

T T c T c c T c T
= = = + = +

⎛ ⎞ ⎛ ⎞
= = = + =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ ∑ ∑w v b b b b  

where the last equality holds since bi for i  1,  k are the basis for ker 
T. Thus imT  Span(T(bk+1),  T(bn)). Moreover, T(bk+1),  T(bn) 
must be linearly independent, otherwise, there would be ci for i  k 
 1,  n, not all zero, such that ( )1 1( ) ,n n

i k i i i k i ic T T c= + = +∑ = ∑ =b b 0

which implies that 1 ker( ).n
i k i ic T= +∑ ∈b But this is impossible, since 

b1,  bk form a basis for ker T, which in turn would imply b1, 
bn are linearly dependent, contradicting the fact they form a basis 
for V. Therefore, T(bk+1), T(bn) are linearly independent and 
span imT, hence rankT  dim(imT)  n  k. Thus, dim V  n  k  
(n  k)  nullityT  rankT.

Theorem 2.2.2

(Sylvester’s theorem) Let V, W and Y be finitely generated vector space 
over a field , and a  (V, W),   (W, Y) are linear transformations. 
Then

1. nullity()  nullity() nullity().

2. rank()  rank()  dim W  rank()  min{rank(), rank()}.
Proof: To prove the first claim, we let   |im() the restriction of 
to im(). Then ker()  ker(), therefore nullity ()  nullity(). 
Hence,
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     nullity()  dim(V)  rank()

  [dim(V)  rank()]  [rank()  rank()]

  nullity()  nullity()  nullity()  nullity().

To show the second claim, we note that im()  im(), so

   rank()  dim(im()) < dim(im())  rank().

Furthermore, since im()  im(), and rank of any linear transformation 
is not greater than the dimension of its domain, we must have rank() 
 rank(). Thus,

rank()  min{rank(), rank()}.

rank()  rank()  dim(W)

  [dim(V)  nullity()]  [dim(W)  nullity()]  dim(W)

  dim(V)  [nullity()  nullity()]   by claim 1 

  dim(V)  nullity()

  rank().

Hence, we proved the claim.

Remark 

Let P  (V, W), A  (W, Y), and Q  (Y, Z), where V, W, Y, Z are 
finitely generated vector spaces. Then

1.  If P is surjective, then rankA  rank(AP).

2.  If Q is injective, then rankA  rank(QA).

3.  If P, Q are isomorphisms, then rankA  rank(QAP).

Definition 2.2.2

The column rank of an m  n matrix A is the dimension of the sub-
space of m spanned by the columns of A. Similarly, the row rank is the 
dimension of the subspace of the space n of row vectors spanned by the 
rows of A.

Theorem 2.2.2

If A is an m  n matrix with entries in the field , then

row rank (A)  column rank (A)
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Proof: To show this, we need to observe that there exist an invertible 
m  n matrix Q and an invertible n  n matrix P such that A1  QAP has 

the block form 1

0

0 0

I
A

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 where I is an r  r identity matrix for some 

r, and the rest of the matrix is zero. The matrices P, Q in fact are the 

products of elementary matrices, i.e., the row or column operations on A. 
(Note that P and Q are invertible matrices, hence they are isomorphisms, 
and preserve rank.) For this matrix, it is obvious that row rank  column 
rank  r. The strategy is to reduce an arbitrary matrix to this form.

Remark: Another proof for the claim rankT  nullityT  dim V:

Let A be an m  n matrix with r linearly independent columns, that 
is rank(A)  r. We will produce an n  (n  r) matrix X whose columns 
form a basis of the null space of A. Thus the nullity of A is equal to the 
rank of X.

Without loss of generality, assume that the first r columns of 
A are linearly independent. So, we can write A  [A1 A2], where A1 is 
m  r with r linearly independent column vectors and A2 is m  
(n  r), each of whose n  r columns are linear combinations of the col-
umns of A1, that is, A2  A1B for some r  (n  r) matrix B. Hence, A  
[A1 A1 B]. Let

 ,
n r

B
X

I −

−⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 

where Inr is the (n  r)  (n  r) identity matrix, so X is an n  (n  r) 
matrix such that

 1 1 1 1[ ] 0
n r

B
AX A A B A B A B

I −

−⎛ ⎞
= = − + =⎜ ⎟

⎝ ⎠
 

Therefore, each of the n  r columns of X is a particular solution of 
Ax  0. Furthermore, the n  r columns of X are linearly independent 
because Xu  0 will imply u  0:

 

n r

B B
X

I −

− −⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= ⇒ = ⇒ = ⇒ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

u 0
u 0 u 0 u 0

u 0
 

Therefore, the column vectors of X form a set of n  r linearly inde-
pendent solutions for Ax  0.
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Definition 2.2.3

Short exact sequences are exact sequences of the form

 0 0
gf

A B C→ → → →  

where f is an injective map and g is a surjective map, and the image of f is 
equal to the kernel of g.

The short exact sequence is called split if there exists a homomorphism 
h : C  B such that the composition g ° h is the identity map of C. It follows 
that B  A  C.

If 0 0
gf

A B C→ → → → is a short exact sequence of vector spaces, then 
dim A  dim C  dim B. In addition, A  ker(g) and C  im(g).

To generalize this, we have if

 0  V1  V2   Vr  0

is an exact sequence of finite-dimensional vector spaces, then

 

1

( 1) dim( ) 0
r

i
i

i

V
=

− =∑  

2.3 Representation of Linear Transformations by Matrices

Usually, a linear operator can be represented by a matrix. Let V be a 
finite dimensional vector space over the field , and let   {b1,  bn} be 
an ordered basis for V. This linear transformation can be represented by a 
matrix P, where the columns of P are given by

 Pj  [T(bj)],
   j  1, n.

This matrix P is called a matrix representation of the linear transfor-
mation T.

EXAMPLE 2.3.1

Let T : 3  3 be defined by T(a1, a2, a3)  (3a1  a2, a1  a3, a1  a3). 
Consider the standard ordered basis   {e1, e2, e3}. With respect to this ba-
sis the coordinate vector of an element a  (a1, a2, a3) is [a]  [a1, a2, a3]

T. 

The matrix representation of T is 

3 1 0

1 0 1 .

1 0 1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟−⎝ ⎠
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On the other hand, if we choose a basis   {b1  (1, 0, 0), b2  (1, 1, 0), 
b3  (1, 1, 1)}. Then the coordinate vectors of a and T(a) are [a]  [a1  a2, 
a2  a3, a3]

T, and [T(a)]  [2a1  a2  a3, 2a3, a1  a3]
T. The columns of ma-

trix P are the coordinate vectors of T(b1), T(b2), T(b3) relative to the basis .

 1 2 3

3 2 4 3 4 2

( ) 1 0 , ( ) 1 0 , ( ) 2 2

1 1 1 1 0 0

T T T

  

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

b b b

  

 

The matrix representation of T with respect to this basis is 

2 3 2

0 0 2 .

1 1 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

Definition 2.3.1

Let   {1,  n} be an ordered basis for V, and   {1,  m} 
be an ordered basis for W. If T is any linear transformation from V into W, 
then T is determined by its action on the vectors j:

 1

1

( ) , [ ] ( ) ( , , ) , 1, .
m

T
j ij i j j mj

i

T A T T A A j n  ′→ ′→
=

= = = =⎡ ⎤⎣ ⎦∑     
 

Then the matrix A  (Aij) of size m  n is called the matrix of T relative to 
the pair of ordered basis  and .

Theorem 2.3.1

Let V and W be finite-dimensional vector spaces over  of dimension n 
and m respectively. Let  and  be the basis for V and W. Then the map 
 : (V, W)  Mmn() defined by the matrix 

(T)  [T]  Mmn(). Then the following diagram commutates

       

TV W⎯⎯→  

 ( )Tn m⎯⎯⎯→ 
where the isomorphisms are the coordinate mappings.

In this setting, the following result follows directly.

Theorem 2.3.2

Let V be a finite-dimensional vector space over the field , and let

 1 1, , ,{ , ,} { }n na a  ′ ′ ′= =    
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be the ordered bases for V. Suppose T is a linear operator on V. If P  [P1,
  Pn] is the n  n matrix with columns ,j jP ′= ⎡ ⎤⎣ ⎦

then

[T]  P1 [T] P

Alternatively, if U is the invertible operator on V defined by ( ) ,j jU  ′=  
j  1,   n, then

[ ] [ ] [ ]1
T U T U

−
→′ ′→ =       

Proof: The proof follows from the diagram below:

 
[ ]( , ) ( , )TV V→⎯⎯⎯⎯→    

                                                           
P P1

[ ]( , ) ( , )TV V′ ′→′ ′⎯⎯⎯⎯→  

Definition 2.3.2

Let A, B be n  n matrices over the field . We say that B is similar to 
A over  if there is an invertible n  n matrix P over  such that B  P1AP.

Furthermore, from the above definition, we can see that if we let V be 
an n-dimensional vector space over the field  and W an m-dimensional 
vector space over . Let  be an ordered basis for V and  be an ordered 
basis for W. For each linear transformation T from V into W, there is an 
m  n matrix A with entries in  such that

 [T()]  A[],    V.

Moreover, for fixed bases  and , T  A is a one-one correspondence 
between the set of all linear transformations from V into W and the set of all 
m  n matrices over the field .

This matrix A is called the matrix of T relative to the ordered bases 
 and . In case V  W and   , we call A matrix of T relative to the 
ordered basis .

From the above definition, we can show that

Theorem 2.3.3

Let V be an m-dimensional vector space over the field  and W an 
m-dimensional vector space over . Let  be an ordered basis for V and 
 be an ordered basis for W. For each pair of ordered basis  and  for 
V, W respectively, the function which assigns to a linear transformation 
T its matrix relative to  and  is a bijection between (V, W) and the 
space of all m  n matrices over the field .
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Proof:  Let  : (V, W)  Mmn(), where (T)  [T]. We need to 
show this map is one-to-one and onto.

To show  is one-to-one, note that, since every linear transforma-
tion is uniquely defined by its evaluation on the basis. If (T)  (S) for 
some T, S  (V, W), then [T]  [S], which means every column 
[T(bi)]  [S(bi)] for i  1,, n. Thus T(bi)  S(bi) for every bi  . 
Therefore, T  S.

To see  is onto, let A  {aji}  Mmn(). Define a linear transforma-
tion T : V  W by T(bi)  1 ,n

j ji ja= ′∑ b  hence [T(bi)]   [a11,, ami]
T. 

Thus (T)  A, therefore,  is onto.

In the next section, we will show that (V, W) is a vector space, and 
 : (V, W)  Mmn() is a linear transformation. Hence, Theorem 2.4.1 
implies (V, W) @ Mmn(),  and the following results follow directly.

Theorem 2.3.4

Let V be an n-dimensional vector space over the field , and let W be 
an m-dimensional vector space over . Then the space (V, W) is finite-
dimensional and has dimension mn.

Theorem 2.3.5

Let V, W, Z be finite-dimensional vector spaces over the field . Let T be 
a linear transformation from V into W, and U be a linear transformation 
from W into Z. If ,  and ² for V, W, Z respectively, if A is the matrix 
of T relative to the pair , ², and B is the matrix of U relative to the pair 
, ², then the matrix of the composition UT relative to the pair , ² is 
the product matrix C  BA.

2.4 The Algebra of Linear Transformation

Let V be a finite-dimensional vector space over the field , let T and U 
be a linear transformation from V into W. For any v  V, the function (T  
U) defined by

 (T  U)(v)  T(v)  U(v)

is a linear transformation from V into W. If c  , the function cT defined 
by

 (cT)(v)  c(T(v)),
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is a linear transformation from V into W. The set of all linear transfor-
mation from V into W, together with the addition and scalar multiplication 
defined above, is a vector space over the field .

Theorem 2.4.1

For each pair of ordered basis  and  for V, W respectively, the func-
tion which assigns to a linear transformation T its matrix relative to  and 
 is a bijection between (V, W) and the space of all m  n matrices over 
the field .

Lemma Let V be an n-dimensional vector space over the field  and W 
an m-dimensional vector space over . Let  be an ordered basis for V 
and  be an ordered basis for W. Let  : (V, W)  Mmn() be defined 
by (T)  [T]. Then  is a linear transformation.

Proof: Let T, S  (V, W). For every bi  , (cT S)(bi)  cT(bi)  
S(bi), therefore,

[(cT  S)(bi)]  [cT(bi)  S(bi)]  c[T(bi)]  [S(bi)]
Thus,
 [cT  S]  c[T]  [S],

hence  is a linear transformation.

Definition 2.4.1

A vector space A over a field  is said to be an associative algebra 
over  if in addition to the vector space operations, there is a function 
 : A  A  A named multiplication such that (a, b)  ab satisfies:

1.  (ab)c  a(bc) for all a, b, c  A, (multiplication associative);

2. (a  b)c  ac  bc and a(b  c)  ab  ac for all a, b, c  A, (right and left 
distribution);

3. (ka)b  a(kb)  k(ab) for all a, b  A and k  F.

If there exists an element 1  A such that 1a  a1  a for all a  A, then A 
is an algebra with multiplicative identity.

Since the set of all linear transformation from V into V is a vector space 
over the field , we have that (V, V) is an algebra with identity over . We 
note that the multiplication of two linear transformation is in fact the com-
position of these transformations. The multiplicative identity is the identity 
transformation.
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Definition 2.4.2

Let A and B be algebra over . An algebra homomorphism from A to 
B is a linear transformation  : A  B such that (ab)  (a)(b) for all 
a, b  A. An algebra isomorphism from A to B is a homomorphism which 
is bijective. Moreover, if  : A  B is an isomorphism, then A and B are 
isomorphic algebras.

Definition 2.4.3

The function T from V into W is called invertible if there exists a func-
tion U from W into V such that UT is identity function on V and TU is iden-
tity function on W. If T is invertible, the function U is unique and is denoted 
by T1. T is invertible if and only if

1. T is 11, that is T()  T() implies   , and

2. T is onto, that is, the range of T is all of W.

By the Definition of invertible linear transformation, we have that

Theorem 2.4.2

Let V and W be vector spaces over the field  and let T be a linear trans-
formation from V into W. If T is invertible, then the inverse function T1 
is a linear transformation from W onto V.

Moreover, let V and W be finite-dimensional vector spaces over the 
field  such that dim V  dim W. If T is a linear transformation from V 
into W, then the following are equivalent:

1. T is invertible;

2. T is non-singular;

3. T is onto, that is, the range of T is W;

4. If {1, n} is a basis for V, then {T(1), T(n)} is a basis for 
W;

5. For any basis {1,  n} for W, there exists some basis {1,  
n} for V such that T(i)  i for i  1, n.

Definition 2.4.4

If V and W are vector spaces over the field , any invertible linear trans-
formation T : V  W is called an isomorphism of V onto W. If there exists 
an isomorphism of V onto W, we say that V is isomorphic to W. 
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Definition 2.4.5

A group consists of the following:

1. A set G;

2. A rule or operation which associates with each pair of elements x, y  G 
an element xy  G in such a way that

 a. x(yz)  (xy)z, for all x, y, z  G (associativity);

 b. there is an element e  G such that ex  xe  x for every x  G;

 c.  to each element x  G there corresponds an element x1  G such 
that xx1  x1 x  e.

A group is called commutative if it satisfies the condition xy  yx for each 
x, y  G.

We see that the collection of invertible linear transformations in 
(V, V), denoted as GL(V) forms a group, called general linear group on V. 
Moreover, since any element of (V, V), is isomorphic to a square matrix, 
the invertible linear transformation corresponds an invertible square ma-
trix. The general linear group is a non-commutative group.

2.5 Applications of Linear Transformation

All linear transformations are formed by combining simple geometric 
processes such as rotation, stretching, shrinking, shearing, and projection. 
As a consequence linear transformations are important in computer graph-
ics. For instance, to represent a 3-dimensional object on a 2-dimensional 
computer screen, or to look at the object from various angles, projections 
and rotations come into play. In addition, motion effects can be achieved by 
simply shrinking an object to make it appear to move away from the viewer. 
Linear transformations and matrices are also an important tool if we want 
to control the motion of a robot.

This geometric point of view is obviously useful when we want to model 
the motion or changes in shape of an object moving in the plane or in 3- 
space. However, this can be extended to higher dimensions as well. The 
idea that any matrix can be thought of as the product of simpler matrices 
that correspond to higher-dimensional versions of rotation, reflection, pro-
jection, shearing, dilation, and contraction is of enormous importance to 
both pure and applied mathematicians. 
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2.5.1 Affine Transformations

In mathematics, affine geometry is Euclidean geometry without the 
metric notions of distance and angle. Playfair’s axiom (i.e., given a line L and 
a point P not on L, there is exactly one line parallel to L that passes through 
P) is fundamental in affine geometry. Affine geometry is developed on the 
basis of linear algebra. An affine space is a set of points equipped with a set 
of transformations called affine transformations, functions between affine 
spaces that preserve points, straight lines, and parallelism of lines.

Definition 2.5.1

Let X and Y be two affine spaces, then every affine transformation T : 
X  Y is of the form T(x)  Mx  b, where M is a linear transformation on 
X and b is a vector in Y.

An affine transformation does not necessarily preserve angles between 
lines or distances between points, though it does preserve ratios of dis-
tances between points lying on a straight line. Examples of affine transfor-
mations include translation, scaling, similarity transformation, reflection, 
rotation, shear mapping, and compositions of them in any combination and 
sequence. Unlike a linear transformation, an affine transformation need not 
preserve the zero point in a linear space. Thus, every linear transformation 
is affine, but not every affine transformation is linear.

In affine 3-space, a rigid motion, a transformation consisting of rota-
tions and translations, is a transformation that when acting on any point p, 
generates a transformed point T(p)  Rp  t, where R is a 3  3 orthogonal 
matrix (i.e., the columns of the matrix are pairwise orthogonal, and each 
column is of unit length) representing the rotation with det(R)  1, and 
t  3 a 3-dimensional translation vector.

For any rotation matrix R acting on n, RT  R1, the rotation is an or-
thogonal matrix, and thus det R  1. Since the inverse of a rotation matrix 
is its transpose, also a rotation matrix. The product of two rotation matrices 
is a rotation matrix. Multiplication of n  n rotation matrices is not commu-
tative for n > 2. Moreover, any identity matrix is a rotation matrix, and that 
matrix multiplication is associative. Thus, the rotation matrices for n > 2 
form a special non-commutative orthogonal group, and denoted by SO(n), 
the group of n  n rotation matrices. Multiplication of rotation matrices cor-
responds to composition of rotations, applied in left-to-right order of their 
corresponding matrices. 
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Convert all points in 3-space to homogeneous coordinates:

 

1

x
x

y
y

z
z

⎡ ⎤
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥→⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦

⎣ ⎦

 

The following matrices constitute the basic affine transformations in 
3-space, expressed in homogeneous form: 

1. Translate: 

1 0 0

0 1 0

0 0 1

0 0 0 1

x

y

z

Δ⎡ ⎤
⎢ ⎥Δ⎢ ⎥
⎢ ⎥Δ
⎢ ⎥
⎣ ⎦

 

2. Scale: 

0 0 0

0 0 0

0 0 0

0 0 0 1

x

y

z

s

s

s

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

3. Shear: 

1 0

1 0

1 0

0 0 0 1

xy xz

yx yz

zx zy

h h

h h

h h

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

4. Three basic rotations in 3-space: 

Rotation about the x-axis: 

1 0 0 0

0 cos sin 0

0 sin cos 0

0 0 0 1

x x

x x

 

 

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Rotation about the y-axis: 

cos 0 sin 0

0 1 0 0

sin 0 cos 0

0 0 0 1

y y

y y

 

 

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎣ ⎦

Rotation about the z-axis: 

cos sin 0 0

sin cos 0 0

0 0 1 0

0 0 0 1

z z

z z

 

 
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦
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The rotations determine an amount of rotation about each of the in-
dividual axes of the coordinate system. The angles x, y and z of rotation 
about the three axes are called the Euler angles. An off axis rotation can be 
achieved by combining combining Euler angle rotations via matrix multi-
plication. Since affine translformations are not commutative, the order of 
rotation affects the end result.

2.5.2 Projective Transformations

The idea of a projective space relates to perspective, that is, the way a 
camera projects a 3D scene to a 2D image. All points that lie on a projection 
line through the entrance pupil of the camera are projected onto a common 
image point. Hence, the vector space is 3 with the origin being the camera 
entrance pupil, and the projective space corresponds to the image points.

The real n-dimensional projective space or projective n-space, ,n
  is 

the set of the lines in n1 passing through the origin, or

 1: { / ~}n n+= ≠ 0 
where (x0,   xn) ~ (y0,  yn) if (x0,   xn)  (y0,  yn) for some   0.

The elements of the projective space are commonly called points. The 
projective coordinates of a point x  [x0 : : xn] where (x0,   xn) is any 
element of the corresponding equivalence class. The colons and the brack-
ets emphasizing that the right-hand side is an equivalence class, which is 
defined up to the multiplication by a non-zero constant.

Geometric objects, such as points, lines, or planes, can be given a rep-
resentation as elements in projective spaces based on homogeneous coor-
dinates. Transformations within and between projective spaces are called 
projectivities and are the fundamental concern of projective geometry. Cer-
tain properties such as collinearity, concurrency, tangency, and incidence 
remain invariant under the action of a projectivity, and they are referred to 
as projective invariants.

A projective transformation from n
  to n

  is an invertible (n  1)  
(n  1) matrix P. P acts on the projective n-space as the following:

0 0

,

n n

x y

Px P y

x y

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

   where P is an invertible (n  1)  (n  1) matrix. 

x and y are homogeneous coordinates for a point in a projective n-space. 
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Lemma Let P be a real projective transformation represented by a nons-
ingular (n  1)  (n  1) matrix , , 0( ) .n

i j i jp P ==  Then the following assertions 
are equivalent:

1. The restriction of P to n  {[x0 : : xn1 : 1]  n} is an affine transfor-
mation;

2. P0,n P(n1),n  0;

3. P fixes the hyper-plane xn  0 at infinity.

Proof: 1  2: If 

 

0 0

1

, ,
1 1 0

 then 

1

n

n n i i n n
n n i

n

x y

P y P x P
x y

y

−

− − =

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= = +
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

∑
 

 

If P induces an affine transformation, then we must have yn  0 for all xi  
, and this implies P0,n   P(n1),n  0. Since det P  0, we must have 
Pn,n  0. Thus, by rescaling, Pn,n  1.

Conversely, if P0,n   P(n1),n  0 and Pn, n  1, then

 

0 0

1 1

 ,

1 1
n n

x y

P
x y− −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 
and this is an affine transformation.

2  3: If P0,n  P(n1),n  0, then

0 0

1 1

 ,

0 0
n n

x y

P
x y− −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 
hence the hyper-plane xn  0 is preserved.

Conversely, if 

 

0 0

0 1
1 1

 , , , ,

0 0

n
n n

x y

P y y
x y −

− −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= ∀ ∈
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 


then P0,n   P(n1),n  0. 
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Proposition Let Pi  [xi : yi : Zi], for i  1, 2, 3, 4 be four points in the 
projective plane, no three of which are collinear. Then there is a unique 
projective transformation sending the standard frame, namely [1 : 0 : 0],
[0 : 1 : 0], [0 : 0 : 1] and [1 : 1 : 1] to P1, P2, P3 and P4.

Proof: Since Pi for i  1, 2, 3 are non-collinear, we must have that

 

1 2 3

1 2 3

1 2 3

det 0

x x x

y y y

z z z

⎡ ⎤
⎢ ⎥ ≠⎢ ⎥
⎢ ⎥⎣ ⎦

 

In projective space

[1 : 0 : 0]  [a1 : 0 : 0], [0 : 1 : 0]  [0 : a2 : 0], [0 : 0 : 1]  [0 : 0 : a3], 
ai 0. Hence, there exists a 3  3 matrix P such that

 
1

2

3

1
1 2 3 1 2 3

1
1 2 3 1 2 3

1
1 2 3 1 2 3

0 00 0

0 0 0 0

0 0 0 0

a

a

a

a x x x x x x

P b y y y y y y

c z z z z z z

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⇒ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦

Hence P is an invertible matrix. Hence this is a projective transformation.

Now P4 will be the image of [1 : 1 : 1] if and only if P4  P[1, 1, 1]T. 

Hence, 
3 3 3

4 1 1 1: : .ii i

i i i

Tyx z
i i ia a aP = = =

⎡ ⎤= ∑ ∑ ∑⎣ ⎦  One can check P4 is linearly inde-

pendent from any two of P1, P2, P3.

Corollary: Let Pi and Qi for i  1, 2, 3, 4 be two sets of four points in the 
projective plane such that no three Pi and no three Qi are collinear. Then 
there is a projective transformation sending Pi to Qi for i  1, 2, 3, 4.

Proof. Let P denote the projective transformation that sends the standard 
frame to the Pi, and let Q denote the transformation that does the same 
with the Qi. Then QP1 is the projective transformation sending Pi to Qi.

Proposition An invertible projective transformation preserves the de-
gree of curves in projective space.

Proof: An invertible projective transformation maps a monomial xiyjzk of 
degree m  i  j  k either to 0 or to another homogeneous polynomial of 
degree m. We claim the case that the image being zero is not possible. Let 
P be a projective transformation, and f(x, y, z) is a curve of degree m. If 
T(f(x, y, z))  0, then f(x, y, z)  T1(0)  0 since T is invertible. It is not pos-
sible. Hence, the projective transformations preserve the degree of curves.
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2.6 Exerc ises

1. Let V be a vector space and f : V  R be a linear map. If z  V is not in 
the null space of f, show that every x  V can be decomposed uniquely 
as x  v  cz, where v is in the null space of f and c is a scalar.

2. Let V  2 and W  3. Define L : V  W by L(x, y)  (x  y, x, y).Let 
F  {(1, 1), (1, 1)}, G  {(1, 0, 1), (0, 1, 1), (1, 1, 0)}. (a) Find the matrix 
representation of L using the standard bases in both V and W. (b) Find 
the matrix representation of L using the standard basis in V and the 
basis G in W. (c) Find the matrix representation of L using the basis F in 
2 and the standard basis in 3. (d) Find the matrix representation of 
L using the bases F and G.

Remark  Here we include a solution provided by Andrew Crutcher, a 
student of this class. We can utilize the following code to find the matrix 
representation of an arbitrary T from B1 to B2 or 

1 2
[ ] .B BT   With this code 

we can take care of parts a, b, c, and d easily.

[stylepyStyle]
def matrix_rep(T,B1,B2):

  A  matrix.zero(QQ,T.nrows(),T.ncols())
  areBasis  B1.is_invertible() and B2.is_invertible() 
  if areBasis and T.ncols()  B1.ncols() and
     T.nrows()  B2.nrows():
     B2inv  B2.inverse() 
     for colNum in xrange(0,T.ncols()):

      A.set_column(colNum,B2inv*T*B1.column(colNum)) 

  return A

Lmatrix(QQ,3,2, [1,-1,1,0,0,1])
Fmatrix(QQ,2,2, [1,1,-1,1])
Gmatrix(QQ,3,3, [1,0,1,0,1,1,1,1,0])
E22matrix.identity(2)
E33matrix.identity(3)
print("a) L from standard to standard")

matrix_rep(L,E22,E33)

print("b) L from standard to G")

matrix_rep(L,E22,G)

print("c) L from F to standard")

matrix_rep(L,F,E33) 

print("d) L from F to G") 

matrix_rep(L,F,G)
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This results in the following output.

[stylepyStyle]
(a) L from standard to standard 

[ 1 -1]

[ 1  0]

[ 0 1]

(b) L from standard to G 

[ 0  0]

[ 0  1]

[ 1 -1]

(c) L from F to standard 

[ 2 0]

[ 1 1]

[-1 1]

(d) L from F to G 

[ 0 0]

[-1 1]

[ 2 0] 

3. Let B  {b1,, bn} be a basis for n and let T : n  n be defined as 
follows.

 

1 1

n n

k k k k k

k k

T a a b
= =

⎛ ⎞
=⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑b b  

First show that T is a linear transformation. Next show that the matrix of 
T with respect to this basis, [T]B is

 
1

n

b

b

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  

If E  {e1,  en} be the standard basis for n. Show that 
[T]E  (b1  bn)[T]B(b1  bn)1

4. If V be the vector space of 2  2 matrices and 
1 2

.
0 3

KM
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 If T: V  V 

be a linear transformation defined by T(A)  AM  MA for every A  V. 
Then what is the dimension of kernel of T?

5. Let P be the vector space of all polynomial functions on  with real 
coefficients. Define linear transformations T, D : P  P by (Dp)(x)  
p(x) and (Tp)(x)  x2p(x) for all x  . Find matrix representations for 
the linear transformations D  T, DT, and TD (with respect to the usual 
basis {1; x; x2} for the space of polynomials of degree two or less).
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6. Let A is an n  n matrix over  of rank k. Define

L  {B n  n matrix over  | BA  0}

and

R  {Cn  n matrix over  | AC  0}.

Show that L and R are linear spaces and compute their dimensions. 

7. Find the null space of the matrix 

1 2 3 4 5

2 3 4 5 6

1 0 2 0 6

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

8. Let p1  x3  x  1, p2  2x3  x2, p3  x2  x  1, q1  x3  1, 
q2  x3  x2  1, q3  x3  x be polynomials. Is it true that Span {p1, p2, p3} 
 Span{q1, q2, q3}? 

9. Find the kernel of the linear transformation from 4  2 with the 

following matrix: 
1 2 3 4

.
2 3 4 5

⎡ ⎤
⎢ ⎥
⎣ ⎦

 Is the range of the transformation the 

same as 2?

10. What is the dimension of the subspace of 4 spanned by the column 
vectors

(1, 2, 3, 4), (1, 1, 1, 1), (3, 4, 5, 6), (5, 7, 9, 11).

Also find the kernel of the linear transformation from 4  4 with the 
matrix formed by the above column vectors. 

11. Is the function T : M22  P2 defined by 

 
2 2( )

a b
T ax bx c c d

c d

⎡ ⎤
= + + +⎢ ⎥

⎣ ⎦
 

a linear transformation? 

12. Compute the dimension of the range of T where T : 3  P2 is the 
linear transformation

 ( ) ( )2 .a b x a c

a

T b

c

⎡ ⎤
⎢ ⎥ =⎢ ⎥ +

⎥

+

⎦

+

⎢⎣

 

13. Let S  {e1, e2} denote the standard ordered basis for 2 and let 
B  {x  1; x  2} be a basis for P1. Let T : 2  P1 be the linear a 

transformation 2( ).
a

T ax a b
b

⎡ ⎤
= + +⎢ ⎥

⎣ ⎦
 Find [T]SB.
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14. Is the linear transformation T : P2  3 given by T(ax2  bx  c)  
a b

ac

b c

+⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥+⎣ ⎦

 an isomorphism of P2 onto 3?

15. Let A be a linear transformation from 6  4 find the dimensions of 
the kernel and range of A, where

 

1 0 3 0 2 8

0 1 5 0 1 4

0 0 0 1 7 9

0 0 0 0 0 0

A

− −⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎣ ⎦

 

Also identify a basis for the column space and a basis for the null space.

16. Let f :   be defined by f(x)  2x  3. Show f is one-to-one and onto; 
find an inverse map f1.

17. Suppose a linear mapping F : V  U is one-to-one and onto. Show that 
the inverse mapping F1 : U  V is also linear.

18. Consider the linear operator T on 3 defined by

 T(x, y, z)  (2x; 4x  y; 2x  3y  z).

Show T is invertible, find formulas for T1, T2, and T2.

Remark Below, we include a solution provided by Andrew Crutcher via 
computer software. Note to show T is invertible all we have to do is show 
ker(T)  {0}. 

Let T(x, y, z) = 0  

2 0

4 0

2 3 0

x

x y

x y z

=

− =

+ − =

 
0

0

3 0

x

y

y z

=

=

− =


0

0

0

x

y

z

=

=

=

 ker(T) = {0}
 T is invertible.

Knowing the matrix for T is 

2 0 0

4 1

2 3 1

⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥−⎣ ⎦

 allows us to utilize SAGE to 

calculate T1, T2, T2

[stylepyStyle]
T  matrix(QQ,3,3,[2,0,0,4,-1,0,2,3,-1]) 
print("T"); T 
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print("T^-1"); T.inverse() 

print("T^2"); (T)^2 

print("T^-2"); (T.inverse())^2

This results in the following output.

[stylepyStyle]
T

[ 2 0  0]

[ 4 -1 0]

[ 2 3 -1]

T^-1 

[1/2 0  0]

[ 2 -1  0]

[ 7 -3 -1]

T^2

[ 4  0 0]

[ 4  1 0]

[14 -6 1]

T^-2

[ 1/4  0 0]

[ -1   1 0]

[-19/2 6 1]

19. The set S  {e3t, te3t, t2e3t} is a basis of a vector space V of functions 
f :   . Let D be the differential operator on V; that is, Df  df/dt. 
Find the matrix representation of D relative to the basis S. 

20. Suppose that the x-axis and y-axis in the plane 2 are rotated counter-
clockwise 30° to yield new X-axis and Y-axis for the plane. Find 
(a) The unit vectors in the direction of the new X-axis and Y-axis. (b) The 
change-of-basis matrix P for the new coordinate system. (c) The new 
coordinates of the points A  (1, 3), B  (2, 5), and C  (a, b).

21. Let T : 3  2 be defined by T(x, y, z)  (2x  y  z, 3x  2y  4z). 
(a) Find the matrix A representing T relative to the bases S  {(1, 1, 1), 
(1, 1, 0), (1, 0, 0)}, and S  {(1, 3), (1, 4)}. (b) Verify that, for any v  3, 
A[v]S  [Tv]S.

22. Determine whether or not each of the following linear maps is nonsin-
gular. If not, find a non-zero vector v whose image is 0. (a) F : 2  2 
defined by F(x, y)  (x  y, x  2y). (b) G : 2  2 defined by G(x, y)  
(2x  4y, 3x  6y).





C H A P T E R3
LINEAR OPERATORS

3.1 Characteristic and Minimal Polynomials

Definition 3.1.1

Let T be a linear transformation represented by a matrix A. If there is a 
vector x in V  0 such that

 Ax  x, for some   ,

then  is called the eigenvalue of A with corresponding eigenvector x.

If A is a k × k square matrix A  (aij) with an eigenvalue , then the cor-
responding eigenvectors satisfy

 Ax  x  (A  )x  0

As shown in Cramer’s rule, a linear system of homogenous equations has 
non-trivial solutions if and only if the determinant vanishes, so the condi-
tion for existence of the solutions is given by

 det(A  )  0.

This equation is known as the characteristic equation of A, and the left-
hand side is known as the characteristic polynomial.

Therefore, we have the following theorem:

Theorem 3.1.1

Let T be a linear operator on a finite-dimensional space V and let c be a 
scalar. The following are equivalent:

(a) c is an eigenvalue of T;

(b) The operator (T  c) is singular;

(c) det(T  c)  0.
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Proof: The proof directly follows the definition. The scalar c is an eigen-
value of T if and only if Tv  cv for some non-zero vector v if and only if 
(T  c)v  0 if and only if det(T  c)  0, i.e., (T  c) is singular.

Lemma: Suppose T(v)  cv. If f is any polynomial, then (f(T))(v)  (f(c))(v).

Proof:  Let f(x)  anxn  an1x
n1    a1x  a0. Then

      (f(T ))(v)  (anTn  an1T
n1    a1T  a0)(v)

          an (cnv)  an1 (c
n1v)  a1(cv)  a0v

          (ancn  an1 c
n1  a1c  a0)v

          (f(c))(v)

Theorem 3.1.2

Every operator on a finite-dimensional, non-zero, complex vector space 
has an eigenvalue.

Proof: Suppose V is a complex vector space with dimension n > 0 and T a 
linear operator. Let 0  v  V. Then

 v, Tv, T2v, , Tnv

is not linearly independent, because dim V  n and we have n  1 vectors. 
Thus there exist complex numbers ao, , an, not all 0. Assume an  0, such 
that

 a0v  a1Tv    anTnv  0.

In case an  0, then go to the next highest non-zero ak, note that k  1. Make 
the ai’s the coefficients of a polynomial, which by the fundamental theorem 
of algebra has a factorization

 a0  a1x    anxn  c(x  1)  (x  n)

where c is a non-zero complex number, each i  , and the equation holds 
for all x  . We then have

 a0v  a1Tv    anTnv  c(T  1)  (T  n)(v)

Thus 1, , n are eigenvalues of T.

Moreover, we see that two matrices A, B are similar, then A  P1BP for 
some invertible matrix P, then

 det(A  )  det(P1BP  )  det(P1(B  )P)  det(B  ).
Hence we conclude that similar matrices have the same characteristic 
polynomial.
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The algebraic multiplicity A(i) of the eigenvalue is its multiplicity 
as a root of the characteristic polynomial, that is, the largest integer ki such 
that (  i)

ki divides evenly that polynomial.

Suppose a k  k matrix A has d, d  k, distinct eigenvalues. Hence the 
characteristic polynomial of A factors into the product of k linear terms over 
 with some terms potentially repeating, the characteristic polynomial can 
instead be written as the product d terms each corresponding to a distinct 
eigenvalue and raised to the power of the algebraic multiplicity,

 1 2
1 2

1

det( ) ( ) ( ) ( ) ,d

d
kk k

d i

i

A k k      
=

− = − − − =∑   

The subspace generated by the eigenvectors corresponding to an eigen-
value  is called an eigen-subspace associated with . The dimension of an 
eigen-subspace associated with an eigenvalue  is called the geometric 
multiplicity of the eigenvalue , i.e. dim ker(  ). It is a proven result 
that the geometric multiplicity is at most equal to the algebraic multiplicity 
of a particular eigenvalue.

Definition 3.1.2

Let T be a linear operator on the finite-dimensional space V. We say 
that T is diagonalizable if there is a basis for V each vector of which is a 
eigenvector of T.

The following corollary is an easy observation from the above defini-
tion.

Corollary: Let  be a basis for a finite-dimensional vector space V such that 
 diagonalize T. Then [T] has all eigenvalues on the main diagonal. More-
over, the number of repetition of an eigenvalue is the algebraic multiplicity 
of that eigenvalue.

Definition 3.1.3

The companion matrix of the monic polynomial

 p(t)  c0  c1t  cn1t
n1  tn

is the square matrix defined as

 

0

1

2

1

0 0 0

1 0 0

0 1 0( ) ,

0 0 1

T

i

n

c

c

cC p c

c −

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−= ∈
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦
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With this convention, with standard basis   {e1, , en}, one has

 (CT)(ei)  (CT)i(e1)  ei+1,  i < n,

and e1 generates the vector space V as a [CT]-module over a field , and 
we call ei are CT cycles basis vectors.

A Vandermonde matrix is a m  n matrix

 

2 1
1 1 1

2 1
2 2 2

2 1
3 3 3

2 1

1

1

,1

1

n

n

n

n
m m m

  

  

  

  

−

−

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦






    



  

or

 
1

, , ,j
i j i i j −= ∀

The determinant of a square Vandermonde matrix can be expressed as

 det( ) ( )j i

i i j n

 
≤ < ≤

= −∏  

This is called the Vandermonde determinant or Vandermonde poly-
nomial. If all the numbers ai are distinct, then it is non-zero.

As it turns out, the roots of the characteristic polynomial of a compan-
ion matrix C, i.e., det(C  x)  0 are precisely the roots of the polynomial 
p(x). The eigenvector corresponding to the eigenvalue j is Vandermonde 
vector 11,  ,. ,[ ] .n T

j j  −=v   Then, if j is a root of p(x), and v is a Vander-
monde vector such that 11, ,...,[ ,]n T

j j  −=v  then 

 

0

1

1 12

1 1
1

1

0 0 0
1

1 0 0

0 1 0

0 0 1

T

j j

j

n n j
j j

n n i n
j i i j j

n

c

c
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− −

− −
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−
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Definition 3.1.4

Let T : V  V be a linear operator on a finite-dimensional vector space 
over the field . We shall denote by Tk the composition of T with itself k 
times, and for any polynomial

 p(t)  aktk  a0 
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we set

 p(T)  ak Tk    a1T  a0;
and say that p is monic if ak  1. A minimal polynomial T of the linear 
operator T is a monic polynomial of minimal degree such that T(T)  0.

Let us recall that a polynomial ring [x] is the subspace  spanned by 
the vectors 1, x, x2, . An element of [x] is called a polynomial over . Let 
 be a field. An ideal in [x] is a subspace M  [x] such that fg  M when-
ever f  [x], and g  M. The set M  d[x], all multiples df of d by arbitrary 
f  [x] is an ideal. The ideal M is called the principal ideal generated by d. 
But if 1 [ ],n

i iM d x== ∑   then M is generated by d1, , dn.

If T is a linear operator on a finite-dimensional vector space V over 
the field . Then the minimal polynomial for T is in fact the unique monic 
generator of the ideal of polynomials over  which annihilate T. Moreover, 
the characteristic and minimal polynomial for T have the same roots, except 
possibly for multiplicity. Hence we can summarize as below remark:

Remark: Let T : V  V be a linear operator on a finite-dimensional vector 
space V over the field . Then:

 (a)  the minimal polynomial T of T exists, has degree at most n  dim V, 
and is unique;

 (b)  if p  [t] is such that p(T)  0, then there is some q  [t] such that 
p  qT.

The minimal polynomial can be explicitly computed. Take v  V, and let d 
be the minimal non-negative integer such that the elements in {v, T(v), , 
Td(v)} are linearly dependent. Clearly d  n; d  0 if and only if v  0, and 
d  1 if and only if v is an eigenvector of T. Since elements in {v, T(v), , 
Td(v)} are linearly dependent, there exist a0, , ad1   such that

 Td(v)  ad1T
d1(v)  a1T(v)  a0v  0

Note that we can assume the coefficient of Td(v) is 1 because of the mini-
mality of d, and then set

 T,v(t)  td  ad1t
d1    a1t  a0.

By definition, v  ker T,v(T); more precisely, T,v(T) is the monic poly-
nomial p(T) of least degree such that v  ker p(T). Now, if p  [t] is any 
common multiple of T,v1

 and T,v2
 for any two vectors v1 and v2, then both 

v1 and v2 belong to ker p(T). More generally, if   {v1, , vn} is a basis of 
V, and p is any common multiple of T,v1

,  ,T,vn
, then   ker p(T), and 

p(T)  0. We have the following result:
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Theorem 3.1.3

Let T : V  V be a linear operator on a finite-dimensional vector space V 
over the field . Let   {v1, , vn} be a basis for V. Then T is the least 
common multiple of T,v1

,  ,T,vn
.

Proof: Let p  [t] be the least common multiple of T,v1
,  ,T,vn

. Since 
p(T)  0, and so T | p. Conversely, for j  1, , n, let

 T  qj,T,vj
  rj, with deg rj < deg t,vj

Then

 0  t (T)vj  qj(T)(vj)T,vj
 (T)(vj)  rj(T)vj  rj(T)vj;

and the minimality of the degree of t,vj
 forces rj  0. Since every t,vj

 | T, 
their least common multiple p | T, and hence p  T.

In linear algebra, the Cayley-Hamilton theorem states that every 
square matrix over a commutative ring satisfies its own characteristic equa-
tion. When the ring is a field, the Cayley-Hamilton theorem is equivalent 
to the statement that the minimal polynomial of a square matrix divides its 
characteristic polynomial. Below we only state the theorem:

Theorem 3.1.4

(Cayley-Hamilton). Let T be a linear operator on a finite-dimensional 
vector space V. If f is the characteristic polynomial for T, then f(T) = 0; 
i.e., the minimal polynomial divides the characteristic polynomial. (Note, 

if the characteristic polynomial is 
1
( ) ,i

k d
ii

f x c
=

= −∏  ci distinct, di  1, 

then the minimal polynomial 
1
( ) ,1 ).i

k r
i i ii

p x c r d
=

= − ≤ ≤∏

3.2 Eigenspaces and  Diagonalizability

For a given linear operator T : V  V, a non-zero vector v and a constant 
scalar c are called an eigenvector and its eigenvalue, respectively, when 
Tv  cv. For a given eigenvalue c, the set of all v such that Tv  cv is called 
the c-eigenspace. The set of all eigenvalues for an operator is called its 
spectrum. When the operator T is described by a matrix A, then we’ll asso-
ciate the eigenvectors, eigenvalues, eigenspaces, and spectrum to A as well. 

Theorem 3.2.1

Each c-eigenspace is a subspace of V.
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Proof: Suppose that x and y are c-eigenvectors and k is a scalar. Then 

 T(x  ky)  T(x)  kT(y)  cx  kcy  c(x  ky), k  . 

Therefore x  ky is also a c-eigenvector. Thus, the set of c-eigenvectors 
forms a subspace.

Definition 3.2.1

Let V be a vector space and T a linear operator on V. If W is a subspace 
of V, we say that W is invariant under T if for each vector w  W, the vector 
T(w)  W. That is T(W)  W.

Lemma: Let c1 and c2 be two distinct eigenvalues of a linear operator 
T : V  V. Let Wi be the space of eigenvectors associated with the eigen-
value ci. Then

 (a) Wi is a subspace of V and it is invariant under T;

 (b) W1  W2  {0}.

Proof: First we note that Wi  ker(T  ci), hence it is a subspace. To 
prove this is invariant, let v, w  Wi, then T(av  bw)  aT(v)  bT(w)  
ac1v  bc1w  c1(av  bw). Hence this is invariant under T.

To show the second claim, let v  W1  W2, then

T(v)  c1v, and T(v)  c2v,  c1v  c2v  (c1  c2)v  0, Þ v  0, since 
c1  c2.

The above result shows that several eigenvectors correspond to a single 
eigenvalue, and an eigenvector cannot correspond to two (or more) distinct 
eigenvalues.

Hence, we have the following result:

Lemma 3.2.1: Let T : V  V be a linear operator on a finite-dimensional 
vector space V over the field . If T has distinct eigenvalues, then any ei-
genvectors corresponding to these eigenvalues respectively are linearly in-
dependent.

Proof: Assume the opposite, that is 1 ii i
n n a= = =∑ v 0  for some ai  0, where 

vi is the eigenvector corresponding to eigenvalue ci. Without loss of gener-
ality, let us assume that v1, , vn1 are linearly independent, and

 
1

1 1

n n

i i n n i i

i i

a a a
−

= =

= ⇒ = −∑ ∑v 0 v v  

Applying the linear operator T, we have
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1 1

( )
n n

i i i i i

i i

T T a a c
= =

⎛ ⎞
= = =⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑0 0 v v  

and hence

 

1 1 1

1 1 1 1

1

1

(

n n n n

i i i i i i n n n i i i n i i

i i i i

n

i i n i

i

a c a c a c a c c a

a c c

− − −

= = = =

−

=

= = + = −

= −

∑ ∑ ∑ ∑

∑

0 v v v v v

)v

 

Since vi are linearly independent, we must have ai(ci  cn)  0 for i  1, , 
n  1. Since not all ai’s are zero, ci  cn for some i, a contradiction since ei-
genvalues are distinct.

Corollary: Suppose V is finite-dimensional. Then each operator on V has at 
most dim V distinct eigenvalues.

Proof: Let T be a linear operator on V. Suppose c1, , cn are distinct ei-
genvalues of T. Let v1, ,vn be corresponding eigenvectors. Then Lemma 
3.2.1 implies that the list v1, , vn is linearly independent. Thus n  dim V 
as desired.

Recall that the matrix of a linear map from one vector space to another 
vector space dependeds on a choice of a basis of each of the two vector 
spaces. Now that we are studying operators, which map a vector space to 
itself, the emphasis is on using only one basis. In this section, we consider 
the matrices of operators are square arrays, rather than the more general 
rectangular arrays that we considered earlier for linear maps.

A central goal of linear algebra is to show that given a linear operator 
T, there exists a basis of V with respect to which T has a reasonably simple 
matrix. To make this vague formulation a bit more precise, we might try to 
choose a basis of V such that the matrix representation of the linear opera-
tor has many zeros as possible.

Recall a matrix is called upper triangular if all the entries below the 
diagonal equal 0. Typically we represent an upper-triangular matrix in the 
form

 





∗ 
 
 
  


1

0

0 0 n

 

Upper triangular matrices can be considered reasonably simple for n  0; 
almost half of its entries in an n  n upper triangular matrix are 0.
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Theorem 3.2.2

Suppose T is a linear operator, and v1,, vn is a basis for V. Then the 
following are equivalent:

1. The matrix of T with respect to v1,, vn is upper triangular;

2. Tvj  Span(v1,, vj) for each j  {1,, n};

3. Span(v1,, vj) is invariant under T for each j  {1,, n}.

Proof: The equivalence of the first two statements follows easily from the 
definitions.

Obviously (3) implies (2). Hence to complete the proof, we need only 
prove that (2) implies (3).

Thus suppose (2) holds. Fix j  {1,, n}. From (2), we know that

Tv1  Span(v1)  Span(v1,, vj)

Tv2  Span(v1, v2)  Span(v1,, vj)


Tvj  Span(v1, . . . , vj).

Thus if v is a linear combination of v1,, vj, then Tv  Span(v1,, vj). 
Hence Span(v1,, vj) is invariant under T, completing the proof. 

It is easy to see that the matrix of an operator in any basis  for V is

 [T  ]  [T]  []
If we now look for the coordinates of an eigenvector corresponding to the 
eigenvalue  in basis , then

 [T  ] [x]  ([T]  [])[x]  0

Theorem 3.2.3

Suppose V is a finite-dimensional complex vector space and T is a linear 
operator on V. Then T has an upper-triangular matrix with respect to 
some basis of V.

Proof: We will use induction on the dimension of V. Clearly the desired 
result holds if dim V  1. 
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Suppose now that dim V > 1 and the desired result holds for all complex 
vector spaces whose dimension is less than dim V. Let c be any eigenvalue 
of T. Let

 W  range(T  c).
Because (T  c) is not surjective dim W < dim V. Furthermore, W is invari-
ant under T, since for any v  W,

 Tv  (T  c)v  cv  W, since (T  c)v  W, cv  W.

Thus T is an operator on W. By our induction hypothesis, there is a basis v1,
, vm of W with respect to which T has an upper-triangular matrix. Thus 
for each j we have

 Tvj  Span(v1,, vm).

Then, we can extend v1,, vm to a basis v1, , vn of V. For k  m  1, we 
have

 Tvm1  (T  c)vm1  cvm1.

Since the basis for range of T  c is {v1,,vm}, we must have that Tvm1 
 Span(v1,,vm,vm1). Repeating this process, the equation above shows 
that Tvk  Span(v1,, vk) for all k  m  1,, n. Hence T has an upper 
triangular matrix with respect to the basis v1, , vn of V.

Theorem 3.2.4

Suppose T is a linear operator has an upper-triangular matrix with respect 
to some basis of V. Then the eigenvalues of T are precisely the entries on 
the diagonal of that upper-triangular matrix.

Proof: Suppose   {v1,, vn} is a basis for V with respect to which T has 
an upper-triangular matrix 

 





∗ 
 =
 
  


1

[ ] 0

0 0 n

T   

Then

 

1

[ ] 0

0 0 n

T

 



 

− ∗ 
 − =
 
 − 

 

Hence [T  ] is not invertible if and only if  equals one of the numbers 
i for i  1,, n. Thus [T  ] is not invertible if and only if the kernel of 
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(T  ) is non-trivial. Therefore, there exists a non-zero vector v such that 
(T  )v  0, that is, Tv  v. Thus A is an eigenvalue of T if and only if it 
equals one of the numbers i for i  1,, n.

We will see the relationship between the eigenvalues and the 
invariant subspaces. First, we will introduce the concept of vector space 
decomposition.

Definition 3.2.2

Let W1,, Wk be subspaces of the vector space V. We say that W1,, 
Wk are independent if

w1    wk  0, wi  Wi  wi  0, i.

Remark:  Note this says that the

1. 1 { };k
i iW= = 0  

2. Wj  (W1    Wr)  {0} for all r < j, and for all j;

3. Each 1 1,k
i i kW=∈∑ = + +w w w w  with wi  Wi;

4. The expression w  w1    wk with wi  Wi is unique.

Suppose W1,, Wk are independent subspaces of V where 1 ,k
i iV W== ∑  

and i is an ordered basis for Wi for 1  i  k. Then   (1,, k) is an 
ordered basis for V. Let T be a linear operator on V, and Ti  T|Wi. Then Ti 
is a linear operator on Wi. If A  [T] and Ai  [Ti]i, then A has the block 
form 

 

1

2

0 0

0 0

0 0

A

A
A

A

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦




  


 

Thus, A is a direct sum of the matrices A1,, Ak.

The following lemma is a direct consequence from the definition of 
independent vector subspaces.

Lemma 3.2.2: Let V be a finite-dimensional vector space. Let W1,, Wk 
be subspaces of V, and W  W1    Wk. The following are equivalent:

1. Wi are independent;

2. For each j, 2  j  k, we have Wj  (W1    Wj1)  {0}.

3. If i is an ordered basis for Wi, 1  i  k, then the sequence   (1,, 
k) is an ordered basis for W.



72 • LINEAR ALGEBRA

Definition 3.2.3

If any of the conditions of the above lemma holds, then the sum 
W  W1Wk is direct or W is the direct sum of W1,, Wk, and we write

 W  W1    Wk.

Lemma 3.2.3: Let T be a linear operator on a finite-dimensional space V. 
Let c1,, ck be the distinct eigenvalues of T, and let Wj be the space of 
eigenvectors associated with the eigenvalue cj. If W  W1    Wk, then

 dim W  dim W1  dim Wk.

In fact, if Bi is an ordered basis for Wi, then   (1,, k) is an ordered 
basis for W.

Proof: Since Wi  Wj  {0} for i  j, W1,, Wk are independent sub-
spaces. Hence by definition, W is the direct sum of W1,, Wk. Therefore,

 W  W1  W2    Wk,  dim W  dim W1    dim Wk.

We can summarize that:

Theorem 3.2.5

Let T be a linear operator on a finite-dimensional space V. Let c1,, ck 
be distinct eigenvalues of T and let Wj be the null space of (T  cj). The 
following are equivalent:

1. T is diagonalizable;

2. The characteristic polynomial for T is f  (x  c1)
dl  (x  ck)

dk, and 
dim Wi  dj, for i  1,, k.

3. W1  Wk  W1   Wk  V, and dim W  dim W1 dim Wk.

Proof: (1  3) Assume that T is diagonalizable. Then we can find a basis 
 for V consisting of eigenvectors for T. Each of these vectors is associated 
with a particular eigenvalue, so write c1, ,ck for the distinct ones. We can 
then group together the elements of  associated with cj, span them, and 
call the resulting subspace Wj. It follows then that

 W1    Wk  W1   Wk  Span  V.

(3  2) Now assume that 3 holds. Then build a basis i of size ni of each 
Wi. Since the ci’s are eigenvalues, the i’s consist of eigenvectors for eigen-
value ci and ni > 1 for all i. Now, set   (1,, k) is a basis for V and [T]

 is a diagonal matrix with distinct entries c1, , ck, with each ci repeated 
ni times. By computing the characteristic polynomial of the matrix [T], we 
find that item 2 holds.
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(2  1) Now if 2 holds, then d1    dk  dim V, because the character-
istic polynomial of [T] equals dim V. Therefore,

 dim V  dim W1  dim Wk.

Because each ci is a root of the characteristic polynomial, it is an eigenvalue 
and therefore has an eigenvector. This means each dim Wi  1. Let i be 
a basis for Wi. As the ci’s are distinct, the Wi’s are independent subspaces, 
and so

 W1    Wk  Wi    Wk.

This means   (1,, k) is a basis for W1    Wk. Since it has size of 
dim V, it is in fact a basis for V. But each vector of  is an eigenvector for T 
so T is diagonalizable.

Now, let us recall the minimal polynomial T(x) of T, and factor it com-

pletely into irreducible factors, to get 
1

( ) ( ( )) .
k r

iiT x p x
=

=∏  We then con-

sider the linear transformations (pi(T))ri, and their null spaces Vi. Each Vi 

is T-invariant, since if v  Vi, then T(v)  Vi. To see this, we note that 
(pi(T))ri(v)  0 since v  Vi where Vi is the null space of (pi(T))ri. Now we 
check (pi(T))ri(Tv)  T((pi(T))ri(v))  T(0)  0. Thus Tv  Vi.

Theorem 3.2.6

Let the minimal polynomial of T be ( )( )
1

( ) ik r

T ii
x p x

=
=∏  where pi(x) 

is irreducible for i  1,, k, and Vi is the null space of linear transfor-

mations (pi(T))ri. Then V  V1    Vk, is a direct sum of T-invariant 
subspaces.

Proof: Let qi(x)  T(x)/pi(x)ri, so that qi(x) contains all but one of the irre-
ducible factors of T(x). Note that if i  j, then T(x) |qi(x)qj(x). Since q1(x),
,qk(x) are relatively prime, 1{ ( )gcd( ) 1} ,k

ii xq = =  there must exist polynomi-
als a1(x),, ak(x) such that 1 ( ) ( ) 1.k

i i ia x q x=∑ =

Let Ei  i(T)qi(T). Then 1 1 ( ) ( )k k
i i i i iE a T q T= =∑ = ∑ =  . For i  j, EiEj  

T(T)q(T)  , i.e., zero operator, for some polynomial q(x). Thus

 V  V  (E1    Ek)V  E1V    EkV.

We only need to show that EiV  Vi for all i. First show EiV  Vi. Let 
v  EiV. Then v  (ai(T)qi(T))(w), for some w  V, so

(Pi(T)ri)(v)  (pi(T)ri)(ai(T)qi(T))(w)
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  ai(T)(pi(T)ri qi(T))(w) 

  ai(T)T(T)w  0.

Thus, EiV  Vi. 

Now we show Vi  EiV. Let v  V. Then (pi(T)ri)(v)  0, and so for all 
i, j  i, (qj(T))(v)  0, since qj(T) has pi(T)ri as a factor. Thus Ejv  0 for all 
i, j  i. But

   E1  Ek

so

 1

1

( ) 0
k

k i i i

i

E E E E E V
=

= + + = = + + + + + ∈∑v v v 0 0 v 0    

Thus Vi  EiV. Therefore, Vi  EiV, and V  V1    Vk.

Now, we will show that Vi  Vj  {0}. Without loss of generality, we will 
show the case for i  1, j  1. For this, we will show that E1 : V1  V1 is a 
bijection. Let v1  V1. Thus, there exists a v  V such that E1v  v1. Since v 
 u1  w for some u1  V1 and w  V2  Vk. So v1  E1v  E1(u1  w)  
E1u1  E1w  E1u1  0  E1u1. Therefore, E1 : V1  V1 is onto. Since dim 
V1 is finite, E1 is a bijection. Therefore, each Ei is a bijection.

Now, let 0  v  Vi  Vj for i  j. EjEiv  0. However, Ei is a bijection, u 
 Eiv  0. Since Ej is a bijection, 0  Eju  EjEiv  0, a contradiction. Thus, 
Vi  Vj  {0}. Thus, 1 .k

i iV V== ⊕  

Theorem 3.2.7

Let T : V  V be a linear operator on a finite-dimensional vector space V 
over the field . Then T is diagonalizable if and only if T is of the form

 T(x)  (x  c1)  (x  ck). (3.1)

where c1,, ck be the distinct eigenvalues of T.

Proof: If T is diagonalizable, it has a basis formed by eigenvectors. Let b 
be an eigenvector corresponding to an eigenvalue ci. Then Tb  cib  0. So 
x  ci is a factor of the minimal polynomial, which can be computed just one 
linear factor for each of the distinct eigenvalue on the diagonal of T.

Conversely, let the minimal polynomial of T be 
1
(( .) )

k

T ii
x cx

=
= −∏  

Then V is a direct sum of the null spaces of (T  ci), which shows that there 
exists a basis for V consisting of eigenvectors, and so T is diagonalizable.

Let A be a square n  n matrix with n linearly independent eigenvec-
tors, v1,, vn. Then A can be factorized, or has an eigen-decomposition as

 A  QAQ1 
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where Q is the square n  n matrix whose i-th column is the eigenvector 
vi of A and A is the diagonal matrix whose diagonal elements are the cor-
responding eigenvalues, i.e., An  i. Note that only diagonalizable matrices 
can be factorized in this way. Essentially, A is a linear operator on n with 
respect to the standard basis, and Q is a change of bases matrix from basis 
formed by eigenvectors to standard basis.

3.3 Jordan  Canonical Form

We recall that a subspace W of V is called T-invariant if T(v)  W for 
all v  W. A special case occurs with eigenvectors: the vector v is an ei-
genvector of T if and only if the 1-dimensional subspace it determines is a 
T-invariant subspace. Lets use these ideas in talking about diagonalization. 
Instead of saying that T can be diagonalized if and only if there is a basis for 
V consisting of eigenvectors of T, we can now say that T can be diagonalized 
if and only if V can be written as a direct sum of 1-dimensional T-invariant 
subspaces. It is this statement that can be generalized.

For a diagonalizable transformation, we have a very nice form. How-
ever it is not always true that a transformation is diagonalizable. For ex-
ample, it may be that the roots of the characteristic polynomial are not in 
the field. Sometimes, even if the roots are in the field, they may not have 
multiplicities equal to the dimensions of the eigenspaces. So we look for a 
more general form. Instead of looking for a diagonal form, we look for a 
block diagonal form.

When the subspace W is invariant under the operator T, then T induces 
a linear operator TW on the space W. The linear operator TW is defined 
by TW()  T() for   W. Note TW  T since the domain and T and Tw 
are different. When V is finite-dimensional, the invariance of W under T 
has a simple matrix interpretation. Suppose we choose an ordered basis 
  {1,, n} for V such that   {1, , r} is an ordered basis for 
W(r  dim W  n). Let A  [T] so that

 
1

n

j ij i

i

T A 
=

=∑  

Since W is invariant under T, the vector Tj,  W for all j  r. This means

 
1

, .
r

j ij i

i

T A j r 
=

= ≤∑
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This means that 

 Aij  0 if j  r, and i > r. 

Thus A is a block matrix 

 ,
0

B C
A

D

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

B is r  r matrix, C is r  (n  r) matrix and D is (n  r)  (n  r) matrix. B is 
the matrix of the induced operator TW in the ordered basis .

Definition 3.3.1

A Jordan normal form or Jordan canonical form of a linear operator J 
on a finite-dimensional vector space is an upper triangular matrix of block 
diagonal matrices Ji

 

1

P

J

J

J

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

  

where each block Ji, namely Jordan block of A, is a square matrix of the 
form

  

1

,
1

i

i
i

i

J







⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦


 where i are the eigenvalues. 

In general, Jordan canonical form must be in block diagonal form, where 
each block has a fixed scalar on the main diagonal, and 1’s or 0’s on the 
superdiagonal. These blocks are called the primary blocks. The scalars 
for different primary blocks must be distinct. Each primary block must 
be made up of secondary blocks with a scalar on the main diagonal and 
only 1’s on the superdiagonal (if a secondary block is of size 1  1, then it 
contains the scalar only). These blocks must be in order of decreasing size 
(moving down the main diagonal).

Definition 3.3.2

Let W1  W2 be subspaces of V. Let  be a basis for W1. Any set  of 
vectors such that    is a basis for W2 is called a complementary basis 
to W1 in W2.

Lemma 3.3.1: Let T : V  V be a linear transformation. Let {v1,, vk} be 
a complementary basis to N(Tm) in N(Tm1), i.e., the null space of Tm in the 
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null space of Tm1. Then {T(v1),, T(vk)} is part of a complementary basis 
to N(Tm1) in N(Tm). 

Proof: Since vi  N(Tm1), we have Tm1(vi)  0, so Tm(T(vi))  0, and 
therefore T(vi)  N(Tm). Also, since vi is in the complementary basis to 
N(Tm) in N(Tm1), Tm(vi)  0.

We want to show that for each i  1, , k, T(vi)  N(Tm1). Assume the 
opposite, i.e., Tm1(T(vi))  0 for some i. But then Tm(vi)  Tm1(T(vi))  0 
which is a contradiction.

Now, we will show that {T(v1),,T(vk)} are linearly independent. Sup-
pose the

 c1T(v1)   ckT(vk)  0, i.e., c1T(v1)  ckT(vk)  N(Tm1),

then

 Tm(c1v1   ckvk)  Tm1(c1T(v1)   ckT(vk))  0

Hence c1v1   ckvk  N(Tm). Since {v1,, vk} form a complementary 
basis to N(Tm) in N(Tm1), csv1    ckvk  0. But this implies that ci  0 
for all i since {v1,, vk} is a part of basis for N(Tm1), thus linearly inde-
pendent. This shows that {T(v1),, T(vk)} are linearly independent, and 
also linearly independent of any vectors in N(Tm1), so they are part of a 
complementary basis to N(Tm1) in N(Tm).

Theorem 3.3.1

(Jordan canonical form) If the characteristic polynomial of T is a product 
of linear factors, then it is possible to find a matrix representation for T 
which has Jordan canonical form.

In particular, suppose that f(x)  (x  c1)
d1  (x  ck)

dk is the characteris-
tic polynomial of T and suppose that T(x)  (x  c1)

r1  (x  ck)
rk is the 

minimal polynomial of T. Then the matrix for T has primary blocks of size 
di  di corresponding to each eigenvalue ci, and in each primary block the 
largest secondary block has size ri  ri.

Proof: By the primary decomposition Theorem 3.2.6, we can obtain a 
block diagonal matrix, and then we can deal with each primary block sepa-
rately. This reduces the proof to the case in which the characteristic poly-
nomial is (x  c)d and the minimal polynomial is (x  c)r where 0 < r  d.

Choose a complementary basis v1,, vk to N((T  c)r1) in N((T  c)r). 
By the previous lemma, we have

 (T  c)(v1),, (T  c)(vk)

are linearly independent. 
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Starting with ( ) 1{( ) } ,i
k
iT c =− v  we find additional vectors w1,, wt to 

complete a complementary basis to N(T  c)r2 in N(T  c)ri. Then con-
tinue this procedure until we have found a basis for N((T  c)r) (note, this 
is the eigenspace corresponding to the eigenvalue c). Then consider the 
ordered basis:

  (T  c)r1(v1), (T  c)r2(v1),, v1,

 (T  c)r1(v2), (T  c)r2(v2),, v2,

 
 (T  c)r1(vk), (T  c)r2(vk),, vk,

 (T  c)r2(w1), (T  c)r3(w1),, w1,

 
 (T  c)r2(wt), (T  c)r3(wt),, wt,

 
 u1,, um.

Note  (T  c)r1(v1), (T  c)r1(v2),, (T  c)r1(vk) are eigenvectors for 
T corresponding to the eigenvalue c. But there may be more eigenvectors 
corresponding to the eigenvalue c, which we denoted by u1,, um. Finally, 
we write T  c  (T  c). Then,

 T((T  c)jvi)  c(T  c))j (vi)  (T  c))j1(jvi).

Hence the matrix representation of T relative to the basis  has the Jordan 
block form.

The following corollary follows directly from the proof of the above 
theorem.

Corollary 3.3.1: If a square matrix A has Jordan canonical form J, then 
A is similar to its Jordan canonical form, i.e., A  PJP1 for some invertible 
matrix P. Note that the columns of P are the basis vectors we constructed, 
in the proof above.

Theorem 3.3.2

Let A and B be n  n matrices over the field of complex numbers. Then A 
and B are similar if and only if they have the same Jordan canonical form, 
up to the order of the eigenvalues.

Proof: The assumption that the matrices have complex entries guaran-
tees that their characteristic polynomials can be factored completely, and 
so they can be put into Jordan canonical form. 
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If A and B are similar, then they represent the same linear transforma-
tion T. Therefore, A and B have the same characteristic polynomial, and the 
same minimal polynomial. Since the Jordan canonical form is constructed 
from the zeros of the characteristic polynomial of T, and the dimensions of 
the corresponding generalized eigenspaces, which are given by the minimal 
polynomial, therefore, the primary Jordan blocks are the same. However, 
we have no way to specify the order of the eigenvalues. Thus A and B have 
the same Jordan canonical form, except for the order of the eigenvalues.

Conversely, if A and B have the same Jordan canonical form JA and JB 
respectively, except for the order of the eigenvalues, then the matrices in 
Jordan canonical form are easily seen to be similar, i.e., JA ~ JB. By the pre-
vious corollary, A ~ JA ~ JB ~ B. Since similarity is an equivalence relation, 
it follows that A and B are similar.

Hence, in summary, suppose that T is a linear operator on V and that 
the characteristic polynomial for T can be factored as

( )1
1( ) ,

dk
k

df x c x c= −  -  where ci are distinct elements in , di  1.

Then the minimal polynomial of T is

 ( ) 21
1) 1( ,

rr
k i ip x c x c r d= − − ≤ <

If Wi is the null space of (T  ci)ri, then the primary decomposition says

 V  W1   Wk

and that the operator Ti  T|Wi has minimal polynomial (x  ci)
ri. Let Ni 

be the linear operator on Wi defined by Ni  Ti  ci. Then Ni has minimal 
polynomial xri. On Wi, T acts like Ni  ci. Suppose, we choose a basis for 
the subspace Wi such that the matrix of Ti in this ordered basis will be the 
direct sum of matrices

 

1 0 0

0 1 0

0 0 0 ,   with 

1

0 0 0

i

c

c

c c c

c

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥ =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦





  


 

The size of the matrices will decrease as one reads from left to write. A 
matrix of the form is called an elementary Jordan matrix with characteristic 
value c. 
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Let 

1

2

0 0

0 0

0 0 k

A

A
A

A

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦




  


 of matrices A1,, Ak, where each Ai is of 

the form 

 

( )
1

( )
2

( )

0

0 0
,

0 0
i

i

i

i

i
n

J

J
A

J

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦




  



 

Where 
( )i
jJ  is an elementary Jordan matrix with characteristic value ci. The 

sizes of the matrices 
( )i
jJ  decrease as j increases. An n  n matrix A that satis-

fies the conditions above is said to be in Jordan form.

If B is an n  n matrix over the field , and if the characteristic poly-
nomial of B factors completely over , then B is similar over  to an n  n 
matrix A in Jordan form, and A is unique up to a rearrangement of the order 
of its characteristic values. We call A the Jordan form of B.

If A is a real matrix, its Jordan form can still be non-real since the ei-
genvalues may be complex numbers. We here give a real Jordan form for 
a matrix. Note that the complex roots always come as a pair of conjugate 
complex numbers. Let k  k  ik and k k ki  = −  be a pair of complex 
conjugate eigenvalues. Let v  a  ib be an eigenvector of k  ik, then

 A(a  ib)  (k  ik)(a  ib)  (ka  kb)  i(ka  kb).

Comparing the real part and imagery part of the two sides of this equation, 
Aa  ka  kb and Ab  ka  kb. We may represent the complex vector 
v  a  ib as a matrix [a b] where the first column represents the real part 
of v, and the second column the imaginary part of v. Thus, each complex 
vector v can be represented by a pair of two real vectors a and b. Writing 
this in matrix form, we have

 [ ][ ]
k k

k k

A a b a b
 

 
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
 

For each pair of conjugate eigenvalues, we find a such pair of vectors. For 
the eigenvalue that has multiplicity greater than one, we can find the vec-
tors using a process similar to the process used in Theorem 3.3.1. Note that 
all the vectors are real and the Jordan block for a complex eigenvalue   i 
with multiplicity m is 
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2 2

1 0

0 1

1 0

0 1

k

m m

J

 

 

 

 

 

 
×

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦




 

3.4 Trace

Definition 3.4.1

If A  Mnn() is an n  n matrix over , 

 

11 12 1

21 22 2

1 2

n

n

n n nn

a a a

a a a
A

a a a

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠




   


 

then the trace of A is the sum of the diagonal entries of A, that is, 
trace(A) = a11  a22  ann.

We have the following properties of the trace.

Theorem 3.4.1

Let A, B  Mnn(), and c  . Then
trace(cA)  ctrace(A), trace(A B) = trace(A )trace(B), 
trace(AB) = trace(BA). 

Proof: Let A  (aij, and B  (bij). Then

     trace(cA)  trace(caij) 
1 1

n n

ii ii

i i

ca c a
= =

= =∑ ∑  ctrace(A).

trace(A  B)  trace (aij  bij) 
1 1 1

( )
n n n

ii ii ii ii

i i i

a b a b
= = =

= + = +∑ ∑ ∑
          trace(A)  trace(B). 

And 

 

1

1 1 1 1 1

1

trace( )

trac

trace

e( )

n n n n n

ik kj ik ki ki

k i k k i

n

ki ij

i

a b a b b a kB

Bb a

A

A

= = = = =

=

⎛ ⎞⎡ ⎤
= = =⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
⎛ ⎞⎡ ⎤

= =⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

∑ ∑∑ ∑∑

∑
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Corollary 3.4.1:  If A is similar to B, then trace(A)  trace(B).

Proof: By definition, A is similar to B, then A  P1BP, and

trace(A)  trace(P1BP) = trace(P1PB)  trace(B). 

It is known that a square matrix A is always similar to its Jordan form, that is 
A  PJP1 for some invertible matrix P. Given an eigenvalue i, its geometric 
multiplicity is dim(ker(A  i)), and it is the number of Jordan blocks corre-
sponding to i. The sum of the sizes of all Jordan blocks corresponding to the 
eigenvalue i is its algebraic multiplicity. A is diagonalizable if and only if, for 
every eigenvalue  of A, its geometric and algebraic multiplicities coincide.

With these properties,

 1

1 1

trace( ) trace( ) trace( ) det( ) det( )
kk

i i

i i

A PJP J A J −

= =

= = = = =∑ ∏  

3.5 Determinants

Recall definition of a rin g (Definition 1.1.1), we can see that Mnn() is 
a non-commutative ring with identity over .

Definition 3.5.1

Let K be a commutative ring with identity, n a positive integer, and 
let D be a function which assigns to each n  n matrix A over K a scalar 
D(A)  K. We say that D is n-linear if for each i, 1  i  n, D is a linear func-
tion of the ith row when the other (n - 1) rows are held fixed. That is

 
1

1 1

, ,  , ,

, , , ,

( )

( , ) ( , ), 1, ,, ,,
i i n

i n i ncD D K

c

c

D

i n

  

  



  = + =

+

′ ∈

′ 
     

Lemma 3.5.1: A linear combination of n-linear function is n-linear.

Definition 3.5.2

Let D be an n-linear function. We say D is alternating or alternate 
if A is a matrix obtained from A by interchanging two rows of A, then 
D(A)   D(A).

Note if D is alternate, then D(A)  0 whenever two rows of A are equal.

Definition 3.5.3

Let K be a commutative ring with identity, and let n be a positive inte-
ger. Suppose D is a function from n  n matrices over K into K. We say that 
D is determinant function if D is n-linear, alternating, and D()  1.
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Recall, a permutation is a function that reorders the set of integers {1,
, n}. The value in the i-th position after the reordering  is denoted by 
i. The set of all such permutations (also known as the symmetric group on 
n elements) is denoted by Sn. For each permutation , sgn() denotes the 
signature or sign of , a value that is 1 whenever the reordering given by a 
can be achieved by successively interchanging two entries an even number 
of times, and 1 whenever it can be achieved by an odd number of such 
interchanges. Below, we give the formal definition.

Definition 3.5.4

A sequence (k1,, kn) of positive integers not exceeding n, with the 
property that no two of the ki are equal, is called a permutation of degree 
n. The permutation is called even/odd if the number of transpositions (i.e., 
the interchange of two elements) used is either even or odd. The sign or 
signature of a permutation is

 
  1 if  is even

sign( )
1 if  is odd





⎧

= ⎨−⎩
 

Under the operation of composition, the set of permutations of degree n is 
a group. This group is usually called the symmetric group of degree n.

Definition 3.5.5

Let K be a commutative ring with identity and let n be a positive inte-
ger. There is precisely one determinant function on the set of n  n matrices 
over K and it is the function det defined by

 
1

det( ) sgn( ) ,
i

n

n

i

S i

A a 



∈ =

= ∑ ∏  

where the sum is computed over all permutations a of the set {1, 2,, n}

Remark: Below are some properties of determinant.

1. det(n)  1 where n is the n  n identity matrix.

2. det(AT)  det(A).

3. det(A1) 11
det( )

det( )
A

A
−= =  if A1 exists.

4. For square matrices A, B of equal size,

 det(AB)  det(A) det(B).
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5. det(cA)  cn det(A) for an n  n matrix and c  K.

6. If A is a triangular matrix, i.e. aij  0 for i > j (or, i < j), then

 11 22

1

det( )
n

nm ii

i

A a a a a
=

= =∏

7. Consider an n  n matrix as n columns, the determinant is an n-linear 
function. Hence, the elementary column operation—replacing column 
Ci by Ci  Cj where   K, and all other columns are left unchanged, 
then the determinant of A is unchanged. (A similar result holds for 
rows.)

8. If in a matrix, any row or column is 0, then the determinant of that 
particular matrix is 0. (A similar result holds for rows.)

9. If some column can be expressed as a linear combination of the other 
columns, its determinant is 0. (A similar result holds for rows.)

10. Suppose that A is a matrix of size n  n over a field , then the following 
are equivalent.

— A is non-singular.
— A row-reduces to the identity matrix.
— The null space of A contains only the zero vector.
—  The linear system Ax  b has a unique solution for every possible 

choice of b.
— The columns of A are a linearly independent set.
— A is invertible. 
— The column space of A is n.
— The columns of A are a basis for n

— The rank of A is n.
— The nullity of A is zero.
— det(A)  0.

Definition 3.5.6

The i,j cofactor of a cofactor matrix C  (Cij), is a signed version of a 
minor Mij defined by 

 Cij  (1)ij Mij

where Mij is the determinant of a submatrix of original matrix A deleting 
the i-th row and j-th column. We can use this in the computation of the 
determinant of a matrix A by expansion of the j-column
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1

det( )
n

ij ij

i

A a C
=

=∑  

The n  n matrix adjA is the transpose of the matrix of cofactors of A, is 
called the classical adjoint of A.

 (adjA)ij  Cji  (1)ij Mji.

One can write down the inverse of an invertible matrix by computing its 
cofactors by using Cramer’s rule.

 

11 12 1

21 22 2

1 2

n

n

n n nn

C C C

C C C
C

C C C

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦




   


 

Then the inverse of A is the transpose of the cofactor matrix times the re-
ciprocal of the determinant of A:

 1 1

det( )
TA C

A
− =  

Hence, we have the following theorem: 

Theorem 3.5.1

Let A be an n  n matrix over K where K is a commutative ring with 
identity. Then A is invertible over K if and only if det A is invertible in K. 
When A is invertible, the unique inverse for A is

A1  (det A)1 adjA.

In particular, an n  n matrix over a field is invertible if and only if the 
determinant is different from zero.

 3.6 Generalized Companion Matrix

Let p(t) be a m  n matrix with polynomial entries,

 1
0 1 1( ) ( ) ,d d

d d ip t c c t c t c t c−
−= + + + + ∈  

Use the concept companion matrix, we define n  n matrices A, B over the 
field .
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 0 1 2 1

0 1 0 0

0 0 1 0

,

0 0 0 1

1 0 0

0 1 0

0 0 0

0 0

i

d d

d

A c

c c c c

B

c

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ∈
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦






    






   




 

Then it is straightforward to compute

 p(t)  (1)d1 det(A  tB).

The matrix pencil (A, B) is called the companion pencil of p(t) and can be 
used to compute the roots of p(t) as the roots of p(t) coincide with the ei-
genvalues of the pencil (A,B).

We can generalize this concept to polynomial matrices.

Definition 3.6.1

Let P(t) be a m × n matrix with polynomial entries,

 P(t)  C0  C1t    Cd1td1  Cdtd, Ci  mn 

Define the generalized companion matrix ((d  1)m  n)  dm matrices A, 
B:

 

0 2 1

0 0 0

0 0 0

,  is the transpose,

0 0 0

T
i

T T T T
i d d

A C

C C C C− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦









    




  the identity matr

0 0

0 0

0

ix.

0

0 0

m

T
d

mB

C

×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣

=

⎦
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Proposition 3.6.1: For all t   and all v  m, 

 

1

( ) ( )T

d

t
P t A tB

t −

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⇔ − =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

v

v
v 0 0

v


 

Proof: The straightforward computation will give the above property.

Without loss of generality, assume m  n. Since rankP(t)  rankPT(t), we 
say that t0   drops rankP(t) if and only if rankP(t0) < m. Hence we have

Theorem 3.6.1

rankP(t) < m  rank(A  tB) < dm.

Proof: Suppose there exists a t0 that drops rankP(t), i.e., P(t0) < m. Then 
there exists v  0 such that P(t)v  0. Hence, this is equivalent to say that 
(A  tB)x  0 has a non-trivial solution. Hence rank(A  tB) < dm. Similarly, 
we have the other direction.

3.7 Solu tion of Linear System of Equations

Review the system of equations consists of linear equations: 

 

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

n n

n n

m m mn n m

a x a x a x b

a x a x a x b

a x a x a x b

+ + + =⎧
⎪ + + + =⎪
⎨
⎪
⎪ + + =⎩






  (3.2)

The system can be written in the form of matrix Ax  b where 

 
11 1 1 1

1

, ,
n

m mn n n

a a x b

A

a a x b

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

x b


    


 

If A is a square matrix and nonsingular, then the linear system Ax  b 
has a unique solution x  A1b for every possible choice of b.
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Theorem 3.7.1

(Cramer’s rule). Let A be a nonsingular n  n matrix, the Ax  b has a 
unique solution x  [c1,, cn]T with

 

11 1 1

1

11 1 1

1

, 1,

n

n n nn
k

k n

n nk nn

a b a

a b a
c k n

a a a

a b a

= =

 
    

 


 
    

 

 

where the numerator is the determinant of the matrix A in which the k-th 
column is replaced by b.

Proof: A is a non-singular, the unique solution of Ax  b is x  A1b. Let 
[c1,, cn]T be the solution. Then, substitute bk  ak1c1   akncn, and we 
have

 

11 11 1 1 1

1 1 1

11 1 1

1

,

n n n

n n nn n nn

k n

k

n nk nn

a a c a c a

a a c a c a

a a a

c

a a a

+ +

+

=

  
    

  
 

    
 

  

since determinant is n-linear and alternating.

Hence, the formula in this theorem gives another presentation of the 
solution.

Let b  0, then Ax  0 is a linear system of homogenous equations. The 
solutions of Ax  0 form a linear space, we leave this proof to the interested 
readers.

The solutions of Ax  b and the solutions of Ax  0 are closely related. 
Let x0 be a solution of Ax  b and xh be a solution of Ax  0, then x0  xh is 
a solutions of Ax  b. Suppose x1  x2 are solutions of Ax  b, then x1  x2 
is a solution of Ax  0.

Theorem 3.7.2

Let A be an m  n matrix and S be the solution space of the homogenous 
linear system Ax  0, then

dim S  rankA  n.
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Proof: Let dim S  s and v1, , vs form a basis of S. We extend v1, , 
vs to a basis v1, , vs, vs1, , vn of n. A induces a linear transformation 
from n to n, v  Av, and the image space is spanned by Avs1, , Avn, so 
rankA  dim Span{Avs1, , Avn}.

Notice that the dimension of Span{Avs1,, Avn} is n  s, otherwise, 
there exist s1,, n, not zero simultaneously, such that

 A(s1vs1  nvn)  0.

This means that s1vs1  nvn  S, which is impossible since v1, , 
vs, vs1, , vn is a basis for n.

Therefore, rankA  dimSpan{Avs1, , Avn}  n  s, equivalently, 
dim S  rankA  n.

3.8 Some Applicatio ns of Matrices

We give some examples to illustrate the applications of matrices in dif-
ferent areas.

3.8.1 Linear Program ming

Linear programming is an optimization method that is applied to a 
mathematical model with linear constraints. One of the most basic proper-
ties of linear program is the characterization of the program. In [Tiw04], the 
author shows the termination is related to eigenvalues of the corresponding 
matrix. We here review the results as an application of the eigenvalues and 
Jordan canonical form. 

Consider a linear program (algorithm) of the form

 P1 : while (Bx > 0) {x : Ax}

where Bx  0 represents a conjunction of linear inequalities over the state 
variables x and x :  Ax represents the linear assignments to each of the 
variables. The program P1 will terminate on a state x  c if a Bc 0. The 
Program P1 is said to terminate if it terminates on all initial values in  for 
the variables in x.

Proposition 3.8.1 [Tiw04] If the linear loop program P1, defined by ma-
trices A and B is non-terminating, then there exists a real eigenvector v of 
A, corresponding to positive eigenvalue, such that Bv  0.
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EXAMPLE 3.8.1

Let the linear program be 

 while ([1 1] x  0)
1 1

:
0 1

−⎧ ⎫⎡ ⎤⎪ ⎪
=⎨ ⎬⎢ ⎥

⎪ ⎪⎣ ⎦⎩ ⎭
x x  

The matrix A has two eigenvalues 1 and 1. The eigenvector associated to 

the positive eigenvalue 1 is 
1

.
2

⎡ ⎤
⎢ ⎥
⎣ ⎦

 Then [1 1]x  [1 1]
1

1 0
2

⎡ ⎤
= − ≥⎢ ⎥

⎣ ⎦
 and this 

program is terminating.

In the iteration computation induced by x :  Ax, we need to compute 
Ak for the k-th iteratiom. Jordan canonical form can help to reduce the 
computation.

Let P be an invertible matrix such that P1AP  J where J  Diag(J1,  
J2, , JK) is the real Jordan form of A and each Jordan block Ji is either of 
the two forms:

 

1

, ,
1

i i

i i

i i

D

D

D







⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦




 
   

where D
 

 
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
 and is the 2 2 identity matrix. Then P1 can be re-

written to an equivalent form

 P2 : while (By > 0) {y : Jy}

where y  P1x.

Suppose the 

1

1

i

i
i

i

J







⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦


  is of size mi  mi, then the k-the 

power of this block can be given explicitly as 
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( ) ( ) ( )
( ) ( )

( )

11 2
1 2 1

21
1 2

1
1

0

0 0

0 0 0

i

i

i

i

k mk k k k k k
i i i m i

k mk k k k
i i m i

k
i

k k k
i i

k
i

J

   

  

 



− +− −
−

− +−
−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦





    





 

Note that i can be replaced by Di if 

i

i
i

i

D

D
J

D

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦







3.8.2 Geometric Transformation

In computer graphics and computer-aided design, the transformations, 
such as translations, rotations, and scaling, are basic operations for geomet-
ric objects. These transformations can be easily implemented by multiplica-
tion of certain matrices- Let (x, y, z) be a point in 3, its homogeneous form 
in 3 is (x, y, z, 1). Given a point in homogeneous form (x, y, z, w), w  0, 
its affine form is (x/w, y/w, z/w)  3.

Translation

For a given point, a translation means to move the point to a new po-
sition This can be mathematically achieved by adding a vector to a point; 
for instance, move (x, y, z, 1) to (x  x0,y  y0, z  z0,1). The translation of 
an arbitrary point (x, y, z, 1) by a vector (x0, y0, z0) can be implemented by 
multiplying (x, y, z, 1)T by the following matrix 

 

0

0
0 0

0
0

1 0 0

0 1 0

0 0 1

0 0 0 1

( , , )

x

z
z

T x y
y

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

and we have 
0 0 0 )( , , 0 0 0( ,  ,  ,  1) ( ) , , ,1T T

x y zT x y z x x y y z z= + + +  

Scaling 

Scaling is used to change the length of a vector. A scaling in homoge-
neous coordinate is to transform (x, y, z, 1) to (sxx, syy, szz, 1). A geomet-
ric object is enlarged if its scaled parameters sx,sy, sz are greater than one. 
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A scaling transformation can be implemented by multiplying (x, y, z, 1)T by 
the following matrix

 

0 0 0

0 0 0
( ,

0 0
)

0 0

,
0

0 1

x

y
x y z

z

s

s

s
S s s s

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

and we have ( , ), ( ,  ,  ,  1)  , ,1( )
x y z

T T
S S S x y zsS x y z x s y s z= +  

Rotations

Another transformation of geometric objects is rotation with respect to 
a coordinate axis. A rotation about the x-axis by angle a counter- clockwise 
with right-hand rule is represented by a rotation matrix:

 ,

1 0 0 0

0 cos( ) sin( ) 0

0 sin( ) cos( ) 0

0 0 0 1

xR 

 

 

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

and we have

 ,

cos( ) sin( )

sin( ) cos( )

1 1

x a

x x

y y z
R

z y z

 

 

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥+
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

The matrix Rx, is called the basic (or elemental) rotation matrix about the 
x-axis. Similarly, the basic rotation matrices about y axis and z axis are the 
following:

 

,

,

cos( ) 0 sin( ) 0

0 1 0 0

sin( ) 0 cos( ) 0

0 0 0 1

cos( ) sin( ) 0 0

sin( ) cos( ) 0 0

0 0 1 0

0 0 0 1

y

z

R

R





 

 

 

 

−⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

−⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦
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The above transformations can be easily combined. A rigid transforma-
tion of a vector space preserves distances between every pair of points. A 
rigid transformation is obtained by combining only translations and rota-
tions.

3.8.3 Matrices in Graph Theory

A graph G consists of a set of vertices V(G)  {v1, v2, , vm} and edges 
E(G)  e1, e2, , en. We generally represent a finite graph by its adjacency 
matrix A(G)  (aij)mm which is a square matrix with the entries 0 or 1, pre-
cisely,

 
1 ( )

0 ( )

i j

ij
i j

v v E G
a

v v E G

∈⎧⎪
= ⎨ ∈⎪⎩

 

For example, a given graph is shown in Fig. 3.1;, its adjacency matrix is

e
2

e
1

e
4

e
5

e
3

v
1

v
2

v
3

v
4

Figure 3.1 A simple graph

 

0 1 1 0

1 0 1 1
( )

1 1 0 1

0 1 1 0

A G

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

A commonly used property of the adjacency matrix is: the number of the 
paths from vi to vj with length n is exactly ( )n

ija  where ( )( )( ) .n n
ijA G a= .

For this example, 

 

2

3

2 1 1 2

1 3 2 1
( )

1 2 3 1

2 1 1 2

2 5 5 2

5 4 5 5
( )

5 5 4 5

2 5 5 2

A G

A G

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦
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Check the paths from v1 to v2: there is one path with length one, one path 
path with length two and five pathes with length three. Note that we can 
use the same edge more than one time. 

Another important matrix of the graph is Laplacian matrix L(G). Let 
D(G) be the degree matrix of a graph G, it is a diagonal matrix whose (i, i) 
entry is the degree of i-th vertex. Continue the example,

 

2 0 0 0

0 3 0 0
( )

0 0 3 0

0 0 0 2

D G

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

The Laplacian matrix of G is defined by L(G)  D(G)  A(G) and

 

2 1 1 0

1 3 1 1
( )

1 1 3 1

0 1 1 2

L G

− −⎡ ⎤
⎢ ⎥− − −⎢ ⎥=
⎢ ⎥− − −
⎢ ⎥

− −⎣ ⎦

 

There are many properties of a Laplacian matrix such as

1. L(G) is symmetric and positive-semidefinite;

2. The number of times 0 appears as an eigenvalue of L(G) is the number 
of connected components in the graph;

3. The second smallest eigenvalue of L(G) is the algebraic connectivity (or 
Fiedler value) of G.

For this simple example, the eigenvalues of L(G) are 0, 2, 4 and 4. The 
number of connected components is obvious one and the algebraic connec-
tivity of G is two according to the property of the Laplacian matrix.

3.8.4  Positional Relationship of Two Ellipsoids

Ellipsoids have a small number of geometric parameters and are ex-
cellent for approximating a wide class of convex objects in simulations of 
physical systems. Detecting a collision or overlap of two ellipsoids has prac-
tical applications in computer graphics, computer animation, virtual reality, 
robotics, CAD/CAM, etc. An algebraic equation of an ellipsoid can be writ-
ten in a quadric form XTAX  0 with respect to a symmetric matrix A where 
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X  (x, y, z, w)T. Based on discussion on the associated matrices, one can 
give an algebraic condition for the separation of ellipsoids in 3-dimensional 
Euclidean space, [WWK01]. 

Consider two ellipsoids  : XTAX  0 and  : XTBX  0 in homogeneous 
coordinates. Their characteristic polynomial is defined as

 f() det(A  B),

and f()  0 is called the characteristic equation. Assuming that the interior 
of  is defined by XTAX < 0, and the interior of  is defined by XTBX < 0 
the algebraic conditions for the position relationships are:

The two ellipsoids are separated by a plane if and only if f()  0 has two 
distinct positive roots.

The two ellipsoids touch each other externally if and only if f()  0  has 
a positive double root.

Note that the characteristic equation f()  0 always has at least two 
negative roots. As soon as two distinct positive roots are detected, not nec-
essary to compute the exact roots, one may conclude that the two ellipsoids 
are separated.

EXAMPLE 3.8.2

[WWK01] Consider the sphere A : x2  y2  z2  25  0 and the ellipsoid 
 : (x  9)2/9  y2/4  z2/16  1  0. Their associated symmetric matrices are

 

1
9

1
4

1
16

1 0 0 0 0 0 1

0 1 0 0 0 0
,

0 0 1 0 0 0 0

0 0 0 25 1 0 8

A B

⎡ ⎤−⎡ ⎤
⎢ ⎥⎢ ⎥ −⎢ ⎥⎢ ⎥= =
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

− − −⎢ ⎥⎣ ⎦ ⎣ ⎦

 

The four roots of the characteristic equation are 6.25, 1.5625, 0.60111 and 
4.6211. Since there are two distinct positive roots,  and  are separated.

3.9 Exercises

1. Let 

1 2 1

3 5 4 .

3 1 2

A

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥− −⎣ ⎦

Find th e sums of the principal minors of A of 

orders 1, 2, and 3, respectively. 
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2. Let 

1 1 1

2 3 4 .

5 8 9

B

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Find: det B, adjB, and find B1 using adjB. 

3. Let .
a b

A
c d

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 Find: adj A. Show that adj(adj A)  A. When does 

A  adjA?

4. Find the characteristic polynomial of 

1 2 3

0 3 2 ,

1 3 0

A

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

5. Consider the quadratic form f(x, y)  2x2  4xy  5y2  (x, y)A(x, y)T. 
Find matrix A. Can you diagonalize matrix A. Identify the change of 
variables so that f(x, y) can be written as AX2  BY2.

Remark: Below is a solution provided by Andrew Crutcher via SAGE.
A  matrix(QQ,2,2,[2,-2,-2,5])
eigens  A.eigenvectors_right(); eigens
for eigen in eigens:

  print "Eigenvalue: ",eigen[0] 

  print "Eigenvector: ",eigen[1][0] 

  print "Multiplicity: ", eigen[2]

P  matrix.zero(QQ,A.nrows())
D  matrix.zero(QQ,A.nrows()) 
for coln in range(0,len(eigens)): 

  v  (QQ"A.nrows()).zero_vector() 
  v.set(coln,eigens[coln][0]) 

  D.set_column(coln,v)

  ev  eigens[coln][1][0]
  P.set_column(coln,ev)

P.inverse()*A*P 

print "P"; P 

print "D"; D

This would result in the following output.

[(6, [(1, -2)], 1), (1, [(1, 1/2)], 1)] 

Eigenvalue: 6 

Eigenvector: (1, -2)

Multiplicity: 1 
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Eigenvalue: 1 

Eigenvector: (1, 1/2) 

Multiplicity: 1 

[6 0]

[0 1]

P

[ 1    1]

[ -2 1/2]

D

[6 0]

[0 1]

6. Find the minimal polynomial and characteristic polynomial of the matrix 
2 2 5

3 7 15 .

1 2 4

A

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

 

Remark: Here we include the following solutions provided by Andrew 
Crutcher via SAGE.
A  matrix(QQ,3,3,[2,2,-5,3,7,-15,1,2,-4]) 
print "Eigenvalues:", A.eigenvalues()

print "Characteristic:", A.characteristic_polynomial() 

print "Minimal:", A.minimal_polynomial()

This would result in the following output.

Eigenvalues: [3, 1, 1]

Characteristic: x^3 - 5*x^2  7*x - 3 
Minimal: x^2 - 4*x  3

7. Let 
2 4

.
2 6

A
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
 (a) Find all eigenvalues and corresponding eigenvec-

tors. (b) Find matrices P and D  is non-singular and D  P1AP is diago-
nal.

Remark: We include a solution computed by SAGE provided by Andrew 
Crutcher.
A  matrix(QQ,2,2,[3,-4,2,-6])
eigens  A.eigenvectors_right(); eigens
for eigen in eigens:

  print "Eigenvalue: ",eigen[0]

  print "Eigenvector: ",eigen[1][0] 

  print "Multiplicity: ", eigen[2]

P  matrix.zero(QQ,A.nrows())
D  matrix.zero(QQ,A.nrows()) 
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for coln in range(0,len(eigens)): 

  v  (QQ"A.nrows()).zero_vector() 
  v.set(coln,eigens[coln][0]) 

  D.set_column(coln,v)

  ev  eigens[coln][1][0]
  P.set_column(coln,ev)

P.inverse()*A*P

print "P"; 

P print "D"; D

This would result in the following output.

[(2, [ (1, 1/4) ], 1), (-5, [ (1, 2) ], 1)] 

Eigenvalue: 2 

Eigenvector: (1, 1/4)

Multiplicity: 1 

Eigenvalue: -5 

Eigenvector: (1, 2)

Multiplicity: 1 

[ 2  0]

[ 0 -5]

P

[  1 1]

[1/4 2]

D

[ 2  0]

[ 0 -5] 

8. Let 
2 2

.
1 3

A
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (a) Find all eigenvalues and corresponding eigenvec-

tors. (b) Find matrices P and D such that P is non-singular and 
D  P1AP is diagonal. (c) Find A6 and f(A), where f(t)  t4  3t3  6t2  
7t  3. (d) Find a matrix  such that 3  A and B has real eigenvalues.

Remark: Again, we include a solution by SAGE provided by Andrew 
Crutcher. 
A  matrix(QQ,2,2,[2,2,1,3]) 
print "a)"

eigens  A.eigenvectors_right(); eigens 
for eigen in eigens:

  print "Eigenvalue: ",eigen[0]

  print "Eigenvector: ",eigen[1][0]

  print "Multiplicity: ", eigen[2]

P  matrix.zero(QQ,A.nrows())
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D  matrix.zero(QQ,A.nrows()) 
for coln in range(0,len(eigens)):

  v  (QQ"A.nrows()).zero_vector()
  v.set(coln,eigens[coln][0])

  D.set_column(coln,v)

  ev  eigens[coln][1][0]’
  P.set_column(coln,ev)

print "b)"

P.inverse()*A*P 

print "P"; P 

print "D"; D 

print "c)" 

print "A"6"; A"6 

def f(x):

  return x"4-3*x"3-6*x"27*x3 
print "f(A)";f(A)

This would result in the following output.

a)

[(4, [(1, 1)], 1), (1, [(1, -1/2)], 1)] 

Eigenvalue: 4 

Eigenvector: (1, 1)

Multiplicity: 1 

Eigenvalue: 1 

Eigenvector: (1, -1/2)

Multiplicity: 1

b)

[4 0]

[0 1]

P

[ 1 1] 

[ 1 -1/2] 

D

[4 0]

[0 1]

c)

A"6

[1366 2730] 

[1365 2731] 

f(A)

[ 1 -2]

[-1  0]
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For part d), let 13 , ,ij ijC D B PCP−= =  and remember A  PDP1. Also 
note that if we take a diagonal matrix E and raise it to power (E3  F), 
realize that Fij  (E3)ij  (Eij)

3 since when we do matrix multplication the 
only non-zero elements are on the diagonal and they will be only multi-
plied by themselves.

Note B3  PCP1PCP1PCP1  PCCCP1  PC3P1  PDP1  A, 
so B3  A. 

9. Let 

4 2 2

6 3 4 ,

3 2 3

A

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

 and 

3 2 2

4 4 6 .

2 3 5

B

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

Find characteristic polyno-

mial of each matrix, and find the minimal polynomial of each matrix.

Remark:
A  matrix([[4, -2, 2],[6, -3, 4], [3, -2, 3]]) 
B  matrix([[3, -2, 2],[4, -4, 6], [2, -3, 5]]) 
Print "A: characteristic:", A.characteristic_polynomial()

Print "A: minimal poly: ", A.minimal_polynomial()

Print "B: characteristic:", B.characteristic_polynomial()

Print "B: minimal poly: ", B.minimal_polynomial() 

This would result in the following output.

A: characteristic: x^3 - 4*x^2  5*x - 2
A: minimal poly: x^2 - 3*x  2
B: characteristic: x^3 - 4*x^2  5*x - 2
B: minimal poly: x^3 - 4*x^2  5*x - 2

10. Find a matrix A whose minimal polynomial is t3  8t2  5t  7. 

Remark: The minimal polynomial of the companion matrix is the poly-
nomial.
def f(x):

  return x^3-8*x^25*x7 
C  matrix([[0,1,0],[0,0,1],[-7,-5,8]]); C.transpose()
C.minimal_polynomial() 

f(C)

This would result in the following output.

[0 0 -7]

[1 0 -5]

[0 1  8]

x^3 - 8*x^2 + 5*x + 7 

[0 0 0]
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[0 0 0]

[0 0 0]

11. Use the trace and the determinant of the matrix
4 1

2 1
A

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 to find the 

eigenvalues, and then deduce that it is diagonalizable. Find the eigen-
values of A2 and A1 if it exits.

12. Determine the Jordan normal form of 

4 2 2

6 3 4 ,

3 2 3

A

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

 and 
3 2 2

4 4 6 .

2 3 5

B

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

Remark The following is a solution using Sage provided by Andrew 
Crutcher.
A  matrix([[4, -2, 2],[6, -3, 4], [3, -2, 3]])
B  matrix([[3, -2, 2],[4, -4, 6], [2, -3, 5]])
print "A Jordan form:"; A.jordan_form()

print "A Jordan form (no subdivides):";

   A.jordan_form(subdividefalse)
print "B Jordan form:"; B.jordan_form()

print "B Jordan form (no subdivides):"; 

   B.jordan_form(subdividefalse) 

This would result in the following output.

A Jordan form:

[2|0|0]

[---]
[0|1|0]

[---]
[0|0|1]

A Jordan form (no subdivides):

[2 0 0]

[0 1 0]

[0 0 1]

B Jordan form:

[2|0 0]

[- ]

[0|1 1]

[0|0 1]

B Jordan form (no subdivides):
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[2 0 0]

[0 1 1]

[0 0 1]

13. Find the eigenvectors and a basis of each eigenspace of the matrices 
over 

 

1 1 1
4 5

, 3 3 1 , ,
2 2

6 2 4

3 2 2 0
5 1 1

2 3 2 0
3 1 1 , ,

2 2 1 0
6 2 0

2 4 6 1

A B C c

D A E

−⎡ ⎤
−⎡ ⎤ ⎢ ⎥= = − =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎢ ⎥− −⎣ ⎦

−⎡ ⎤
− −⎡ ⎤ ⎢ ⎥−⎢ ⎥ ⎢ ⎥= = − =⎢ ⎥ ⎢ ⎥−

⎢ ⎥− ⎢ ⎥⎣ ⎦ − − −⎣ ⎦

 

Are these matrices diagonalizable over . Find a Jordan normal form of 
them over , and a Jordan basis.

Remark: Solution provided by Andrew Crutcher via Sage is included be-
low:
Eigenvalues[{{4, -5}, {2, -2}}]

Eigenvalues[{{1, -1, 1}, {3, 3, -1}, {-6, -2, 4}}] 

Eigenvectors[{{1, -1, 1}, {3, 3, -1}, {-6, -2, 4}}] 

This would result in the following output. Note I is 1I = −  for Wolfram

{11, 1-1}
{3  1 Sqrt[5], 3-1 Sqrt[5], 2}
{{-(1/6) I (2 I  Sqrt[5]), -(1/2),
1}, {1/6 I (-2 I  Sqrt[5]), -(1/2), 1}, {0, 1, 1}}

Since B has a real eigenvalue, this eigenvalue has a corresponding 
eigenvector which would be basis for the eigenspace of that eigenvalue 
v  [0, 1, 1]. Note since A, B have complex eigenvalues this means 
we cannot diagonalize them over  or find their Jordan form over . 
Going back to SAGE, we can compute the rest of the eigenvalues and 
eigenvectors.

C  matrix(QQ,[[1,1,0],[-2,4,0],[1,-1,2]])
D  matrix(QQ,[[5,-1,-1],[3,1,-1],[6,-2,0]])
E  matrix(QQ,[[3,2,-2,0],[2,3,-2,0],[2,2,-1,0],[-2,-4,6,-1]])

mats  [C,D,E]
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for matlndex in range(0,len(mats)): 

  print "Matrix",chr(ord(’C’)matIndex) 
  print "Eigenvalues: ", mats[matIndex].eigenvalues()

  for eigenInfo in mats[matIndex].eigenvectors_right(): 

    print "Eigenvalue: ",eigenInfo[0]

    print "Eigenvectors (basis of eigenspace for this 

           eigenvalue):"

    print eigenInfo[1]

    #print eigen

print "Diagonalizable: ", mats[matIndex].is_diagonalizable()

print "Jordan Form"

mats[matIndex].jordan_form()

This would result in the following output.

Matrix C

Eigenvalues: [3, 2, 2]

Eigenvalue: 3

Eigenvectors (basis of eigenspace for this eigenvalue):

[

(1, 2, -1)

]

Eigenvalue: 2

Eigenvectors (basis of eigenspace for this eigenvalue):

[

(1, 1, 0),

(0, 0, 1)

]

Diagonalizable: True

Jordan Form

[3|0|0]

[---]
[0|2|0]

[---]
[0|0|2]

Matrix D

Eigenvalues: [2, 2, 2]

Eigenvalue: 2

Eigenvectors (basis of eigenspace for this eigenvalue): 

[

(1, 0, 3),

(0, 1, -1)

]

Diagonalizable: False Jordan Form [2 1|0]
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[0 2|0]

[ -]
[0 0|2]

Matrix E

Eigenvalues: [3, -1, 1, 1]

Eigenvalue: 3

Eigenvectors (basis of eigenspace for this eigenvalue): 

[

(1, 1, 1, 0)

]

Eigenvalue: -1

Eigenvectors (basis of eigenspace for this eigenvalue): 

[

(0, 0, 0, 1)

] 

Eigenvalue: 1

Eigenvectors (basis of eigenspace for this eigenvalue): 

[

(1, 0, 1, 2),

(0, 1, 1, 1)

]

Diagonalizable: True Jordan Form [ 3| 0| 0| 0]

[--------]
[ 0|-1| 0| 0]

[--------]
[ 0| 0| 1| 0]

[--------]
[ 0| 0| 0| 1]

14. Find the eigenvectors and a basis of each eigenspace of the matrices 
over C

 

2 1 0 0

4 5 1 2 0 0
,

2 2 1 1 1 0

0 2 2 1

A B

⎡ ⎤
⎢ ⎥−⎡ ⎤ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥−⎣ ⎦
⎢ ⎥

− −⎣ ⎦

 

Are these matrices diagonalizable over ? Find a Jordan normal form of 
them over , and a Jordan basis.

Remark: A solution provided by Andrew Cruther is included below via 
Sage.
A  matrix([[4, -5],[2,-2]])
B  matrix([[2,1,0,0],[1,2,0,0],[1,1,1,0],[0,-2,2,-1]]) 
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mats  [A,B]
for matIndex in range(0,len(mats)):

  print "Matrix",chr(ord(’AC’)matIndex) 
  print "Eigenvalues: ", mats[matIndex].eigenvalues() 

  for eigenInfo in mats[matIndex].eigenvectors_right():

    print "Eigenvalue: ",eigenInfo[0]

    print "Eigenvectors (basis of eigenspace for this 

           eigenvalue):" 

    print eigenInfo[1]

    print "Multiplicty: ", eigenInfo[2]

This would result in the following output. 

Matrix A

Eigenvalues: [1 - 1*I, 1  1*I]
Eigenvalue: 1 - 1*I

Eigenvectors (basis of eigenspace for this eigenvalue): 

[(1, 0.6000000000000000?  0.2000000000000000?*I)] 
Multiplicty: 1 

Eigenvalue: 1  1*I
Eigenvectors (basis of eigenspace for this eigenvalue):

[(1, 0.6000000000000000? - 0.2000000000000000?*I)] 

Multiplicty: 1 

Matrix B

Eigenvalues: [3, -1, 1, 1]

Eigenvalue: 3

Eigenvectors (basis of eigenspace for this eigenvalue): 

[

(1, 1, 1, 0)

]

Multiplicty: 1 

Eigenvalue: -1

Eigenvectors (basis of eigenspace for this eigenvalue): 

[

(0, 0, 0, 1)

]

Multiplicty: 1 

Eigenvalue: 1

Eigenvectors (basis of eigenspace for this eigenvalue): 

[

(1, -1, 0, 1),

(0, 0, 1, 1)

]

Multiplicty: 2
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Since for both matrices, the multiplicty of each eigenvalue is the same 
as the dimension of the eigenspace for that eigenvalue, this would mean 
that each matrix is diagonalizable over  and the diagonalization of each 
matrix is also the Jordan normal form. JA will denote the Jordan form of 
matrix A. 

 

3 0 0 0

1 0 0 1 0 0
,

0 1 0 0 1 0

0 0 0 1

A B

i
J J

i

⎡ ⎤
⎢ ⎥− −⎡ ⎤ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥+⎣ ⎦
⎢ ⎥
⎣ ⎦

 



C H A P T E R4
ORTHOGONAL BASES

 4.1 Inner Product Spaces

Definition 4.1.1

An inner product space is a vector space V along with a function ,
called an inner product:

 ,: V  V  , where  is a field,

which is

1. positive definite, i.e., u, u> 0 with equality if and only if u  0,

2. symmetric, i.e., u, v v, u,

3. bilinear, i.e., for any a, b  ,

au  v, w au, w)  v, w, and u, bv  w bu, v u, w.

Thus an inner product is a positive definite, symmetric bilinear form on 
the vector space V.

There are a few definitions that arise from the inner product defini-
tion. First, the norm of x  V is defined as

 ,=x x x  

It is well defined by the non-negativity axiom of the Definition of the inner 
product space. The norm can be considered as the length of the vector x. 
One can prove the Cauchy-Schwarz inequality, that is:

 |x, y|  |x|  |y|, x, y  V,
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with equality if and only if x and y are linearly dependent. An immediate 
consequence of the Cauchy-Schwarz inequality is that it justifies defining 
the angle between two non-zero vectors x and y in the case    by the 
identity

 
,  

angle( ,  ) arccos
| | | |

=
⋅

yx
x y

x y  

We will say that non-zero vectors x, y  V are orthogonal if and only if 
their inner product is zero, i.e., x, y 0.

Definition 4.1.2

Let W be a subspace of the inner product space V and let {w1,, 
wn} be a basis for W such that (wi, wj) 0 if i  j, then this basis is called an 
orthogonal basis. Furthermore, if (wi, wi)  1 then this basis is called an or-
thonormal basis.

Lemma 4.1.1 If v1,, vk  V are non-zero, pairwise orthogonal vectors, 
i.e., vi  0 and (vi, vj)  0 for all i  j, then they are linearly independent.

Proof: Suppose

 c1v1  ck vk  0.

Let us take the inner product of this equation with any vi. Using linearity 
of the inner product and orthogonality, we compute

0  (c1v1ckvk), vi c1v1, vick vk, vi civi, vi ci|vi|
2.

Therefore, if vi  0, then ci  0. Since this holds for all i  1, , k, the lin-
ear independence of v1,, vk follows.

As a direct consequence, any collection of non-zero orthogonal vectors 
forms a basis for its span.

Theorem 4.1.1

Suppose v1,, vk  V are non-zero, pairwise orthogonal vectors of an 
inner product space V. Then v1, , vk form an orthogonal basis for their 
span W  Span{v1, , vk}  V, which is therefore a subspace of dimension 

k  dim W. In particular, if dim V  k, then v1, , vk form a orthogonal basis 
for V.

There are a few advantages of orthogonal and orthonormal bases. For 
instance, one of the key issues one encounters is to express other vectors 
as linear combinations of the basis vectors that is, to find their coordinates 
in the prescribed basis. In general, this is not an easy task, since this 
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requires solving a system of linear equations. Computing a set of solutions 
may require a considerable effort in case of high-dimensional situations. 
However, this problem can be eliminated if the basis is orthogonal, or, even 
better, orthonormal. This is the crucial insight underlying the efficiency in 
computational problems.

Theorem 4.1.2

Let v1, , vn  V be an orthonormal basis for an inner product space V. 
Then one can write any vector v  V as a linear combination

v  c1v1  cnvn

in which its coordinates

ci  v, vi i  1,,n,

are explicitly given as inner products. Moreover, its norm

 
22

1 1

,
n n

i i

i i

c
= =

= =∑ ∑v v v  

Proof: Let us compute the inner product of

 v  c1v1  cnvn

with one of the basis vectors. Using the orthonormality conditions

 
0

,
1j i

i j

i j

≠
=

=
v v  

Hence

 v, vi ci.

To prove the norm formula, we use the property

 22

1 1 1 1

, , ,
n n n n

i j i j i i

j i i i

v c c c
= = = =

= = = =∑∑ ∑ ∑v v vv v v  

Since moving from an orthogonal basis to its orthonormal version is 
elementary, simply by dividing each basis vector by its norm, it is e nough to 
use an orthogonal basis. 

4.2 Gram-Schmidt Process to Produce Orthonormal Basis

We understand that it is more convenient to use orthogonal or 
orthonormal bases, a natural question arises: how can we construct them? 
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A practical algorithm known as the Gram-Schmidt process is one of the 
premier algorithms of applied and computational linear algebra.

In mathematics, particularly linear algebra and numerical analysis, 
the Gram-Schmidt process is a method for orthonormalizing a set of vec-
tors in an inner product space, most commonly the Euclidean space n, 
equipped with the standard inner product. The Gram-Schmidt process 
takes a finite, linearly independent set S  {v1, , vk} for k  n and gener-
ates an orthogonal set S  {u1, , uk} that spans the same k-dimensional 
subspace of n as S.

We define the projection operator by the vector projection of v onto 
u:

 ,
proj ( )

,
=u

v u
v u

u u
 

This operator projects the vector v orthogonally onto the line spanned 
by the vector u. If u  0, we define proju(v)  0, i.e., the projection map 
is the zero map, sending every vector onto the zero vector. The Gram-
Schmidt process then works as follows:

u1  v1, 1
1

1

=
u

w
u

 

u2  v2 – proju1
(v2), 

2
2

2

=
u

w
u

u3  v3  proju1
(v3)  proju1u2

 (v3), 
3

3
3

=
u

w
u

u4  v4 – proju1(v4)  proju2 (v4)  proju3
 (v4), 

4
4

4

=
u

w
u

  
1

1

proj ( )
j

k

k k k

j

u v
−

=

= −∑ u v   
k

k
k

=
u

w
u

The vectors u1, , uk are orthogonal vectors, and the normalized vec-
tors w1, , wk form an orthonormal set. The calculation of the sequence 
u1, , uk is known as the Gram-Schmidt orthogonalization, while the cal-
culation of the sequence w1, , wk is known as the Gram-Schmidt ortho-
normalization as the vectors are normalized. One can check that this set of 
vectors indeed contains pairwise orthogonal unit vectors. The general proof 
proceeds by mathematical induction.
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EXAMPLE 4.2.1

Consider 3 with the dot product as the inner product space. Let P be 
the plane spanned by vectors x1  (1, 2, 2) and x2  (1, 0, 2). Find an ortho-
normal basis for P, and extend it to an orthonormal basis for 3.

Proof:  We note that x1, x2 is a basis for the plane P, since the two vectors 
are linearly independent over , and we can extend it to a basis for 3 by 
adding one vector from the standard basis. For instance, vectors x1, x2, x3  
(0, 0, 1) form a basis for 3 because the determinant of the matrix formed 
by x1, x2, x3 is non-zero.

Now, using the Gram-Schmidt process, we orthogonalize the basis xi as 
the following:

 v1  x1  (1, 2, 2),

 

2 1
2 2 1

2 1

3 1 3 2
3 3 1 2

1 1 2 2

, 3
( 1,0,2) (1,2,2) ( 4/3, 2/3,4/3)

, 9

, ,

, ,

2 4/3
(0,0,1) (1,2 ,2) ( 4/3, 2/3, 4/3)=(2/9, 2/9, 1/9)

9 4
w

= − = − − = − −

= − −

= − − − − −

x v
v x v

v v

x v x v
v x v v

v v v v
 

So {v1, v2, v3} is an orthogonal basis for 3 while {v1, v2} is an orthogonal 
basis for P. We only need to normalize the vectors,

 

1
1

1

2
2

2

3
3

3

(1/3, 2/3, 2/3),

( 2/3, 1/3, 2/3),

(2/3, 2/3, 1/3),

= =

= = − −

= = −

v
w

v

v
w

v

v
w

v

 

Therefore, {w1, w2} is an orthonormal basis for P, and {w1, w2, w3} is an 
orthonormal basis for 3.

Remark 4.2.1: Let W be a subspace of an inner product finite-dimen-
sional vector space V. Let S  {v1, , vk} be a basis for W, we can extend S 
to a basis B  {v1, , vk, vk1, , vn} for V. By the Gram-Schmidt process, 
we obtain an orthogonal basis B’  {u1, , uk, uk1,, un} for V. Note that 

S  {u1, , uk} is an orthogonal basis for W. Moreover, for any a  Span(uk1, 
, un), a is orthogonal to any b  W. In the next section, we will see that 

{uk1, , un} form a basis  for the orthogonal complement of W in V.
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4.3 Orthogonal Complements and Projections

In this section, we first introduce a concept of an orthogonal complement.

Definition 4.3.1

Let W be a subspace of the inner product space V. The orthogonal 
complement of W is the set

 W   {v  V|(v, w)  0, w W}.

Furthermore, let the projection of x onto y be

 
,

proj ( )
,

= =p y

x y
x

y y
 

Theorem 4.3.1

Suppose that p is the orthogonal projection of x onto the space spanned 
by y. Then p and x  p are orthogonal.

Proof: Since two vectors are orthogonal if and only if their inner product 
is zero, we check

 

2
, ,

, , , , , 0
, ,

⎛ ⎞
− = − = − =⎜ ⎟

⎝ ⎠

x y x y
p x p p x p p y x y y

y y y y
 

so p and x  p are orthogonal.

Definition 4.3.2

Let W be a finite dimension subspace of the inner product space V and 
let {w1,, wn} be an orthogonal basis for W. If v is any vector in V then the 

orthogonal projection of v onto W is the vector:

 
1

,

,

n
i

i
i ii

W
=

=∑ v w
p w

w w
 

If {w1, , wn} is an orthonormal basis for W, then the orthogonal projection 
of v onto W is the vector:

 
1

,
n

i i

i

W
=

=∑p v w w

We can prove the following theorem. 
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Theorem 4.3.2

Let V be an n-dimensional inner product space and W a subspace of V. 
The following hold:

1. W is a subspace of V;

2. W  W  {0};

3. dim W  dim W  n;

4. W  W  V.

Proof: (1) First note that 0  W. Now suppose that w1, w2  W. Then 
wi, v  0 for all v  W for i  1, 2. Moreover, for some a, b  , aw1  bw2, 
v aw1, v  bw2, v  0, so aw1  cw2  W. Thus W is a subspace of V.

(2) Let v  W  W, then 

v, w 0,  w  W  (v, v)  0  v  0  W  W  {0}.

(3) From Remark 4.2.1, V  W  W. By the second claim, and the 
dimension of subspaces

dim V  dim W  dim W − dim W  W  n  dim W  dim W

(4) From Remark 4.2.1 and the Definition of W, for every vector v  
V, there are vectors w  W and u  W such that v  w  u. If v  w  u, 
then w − w  u − u  0  W  W. Thus, w  w and u  u. By the Defi-
nition of direct sum, for every vector v  V, there are unique vectors W  
W and u  W such that v  w  u.

Now we will consider the following problem: Given an inner product 
vector space V, a subspace W, and a vector v  V, find the set of vectors 
w  W which are the closest to v, that is the norm |v − w| is the smallest, i.e.,

 u  W, |v − w|  |v − u|.

Theorem 4.3.3

Let V be a vector space with inner product ,. Let W  V be a sub-
space and v  V. If (v − w)  W, then |v − w| < |v − u| for all u  W and 
|v − w|  |v − u| if and only if w  u. Thus w  W is closest to v. 

Proof: First we note that |v − w|  |v − u| if and only if |v − w|2  |v − u|2. 
Note that the square of the norm, ||2  ,, and calculate

|v − u|2  |(v − w)  (w − u)|2  |v − w|2  |w − u|2

since v − w  W, w − u  W, and (v − w, w − u) 0. Thus,

 |v − u|2 > |v − w|2 since |w − u|2  0.
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The equality in the above expression holds if and only if |w − u|2  0 if 
and only if w  u.

Theorem 4.3.4

Let V be a vector space with inner product ,. Let W  V be a subspace 
and v  V. If w  W is the closest to v, then v  w  W.

Proof: Since w  W is the closest to v, we know that |v  w|  |v  u| for 
all u  W. Therefore the function f :    such that

 f(t)  |v  w  tx|2  x  W,

has a minimum value at t  0. We have

  f(t)  v − w  tx, v − w  tx

  v − w, v − w2tv − w, x t2x, x
 |v − w|2 2tv − w, x t2|x|2.

Thus, f(t)  2(v − w, x)  2t|x|2 and since 0 is a critical number, f(0)  
2(v − w, x)  0. As x  W is arbitrary, it follows that v − w  W.

The idea behind the construction of the vector w such that v − w ± W 
is the Gram-Schmidt orthogonalization process.

Theorem 4.3.5

Let V be a vector space with inner product ,. Let W  V be a subspace 
and assume that {v1, , vn} is an orthogonal basis for W. For v  V let

 2
1

,n
i

i

i i

w
=

=∑
v v

v
v

Then v  w  W (or equivalently, w is the vector in W closest to v).

Proof: 

 
2

1

2

, , ,

,
, ,

,
, ,

0

j j j

n
j

j i j

i i

j

j j j

j

=

− = −

= −

= −

=

∑

v w v v v w v

v v
v v v v

v

v v
v v v v

v

 

Hence v  w  vj. Since {v1, …, vn} is a basis for W, this implies that 
v − w  W.
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One of the application problems related to orthogonal projection is the 
numerical approach to understand the least squares problem. When we try 
to fit one line on more than two points, we tend to face a problem that the 
linear equation Ax  b has no solution because there are more equations 
than the number of variables. In other words, the linear system is incon-
sistent and b is not in the column space of A. To handle this situation, we 
can regard Ax as an approximation of b, the optimal solution is to obtain x 
such that |b − Ax| is the smallest. Hence, instead of solving Ax  b, our goal 
is to find a vector x such that |b − Ax| is the smallest. Therefore, if A is a 
m × n matrix and b  m, a least squares solution of Ax  b is a vector x  
n such that |Ax − b|  |Ay − b| for all y  n.

To do this, we recall that the column space C of A coincides with the 
image ( range) of A, since if A1, …, An are the columns of A and e1, …, en 
are the standard unit coordinate vectors in n, then Aei  Ai. Moreover if 
we assume that rankA  n, then ker(A)  {0}.

Theorem 4.3.6

For any m × n matrix A,

 (imA)  ker(AT).

Proof: Let V  imA  m, where the columns of A are denoted by A1, …, 
An, then

 V  {w  m | Ai  w  0, i  1, …, n} 

                     {w  m | 0,T
iA =w   i  1, …, n} 

               {w  m | ATw  0}

               ker(AT).

Theorem 4.3.7

(The approximation theorem). The orthogonal projection pW(x) is closer 
to x than any other vector of W.

Proof: For any y  W,

 x − y  (x − pW (x))  (pW(x) − y)

and (x − pW (x)) ± W, and pW(x) − y  W. The Pythagorean theorem (for 
general Euclidean spaces) now shows that

 |x − y|2  |x − pW(x)|2  |pW(x) − y|2  |x − pW(x)|2

with equality if and only if y  pW(x).
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Theorem 4.3.8

Let A be an m  n matrix with rank n, and let P denote an orthogonal 
projection onto the image of A. Then for every y  m, the equation 
Ax  Py has a unique solution a  n. Moreover, a is the best approximate 
solution to the equation Ax  y, in the sense that for any x  n, |Aa − y|  
|Ax  y| with equality if and only if x  a.

Proof: By definition, the orthogonal projection Py belongs to the image 
of A. Therefore Aa  Py for some a  n. Moreover, a is uniquely deter-
mined, since if Ax1  Ax2, then A(x1 − x2)  0 and x1 − x2  ker(A), and 
x1  x2 since ker(A)  {0}. By the approximation theorem, we know that 
|Py − y|  |Ax − y| for every x  n, with equality if and only if Ax  Py. 
Substituting Aa  Py, we obtain that |Aa − y|  |Ax − y|.

Theorem 4.3.9

If the null space of A is {0}, then the solution of the normal system of 
equations AT Ax  ATy exists and equals the least squares solution of 
Ax  y.

Proof: Let A be a matrix of size m  n. Note since (ATA)T  ATA, so ATA 
is a symmetric matrix. Thus, for an eigenvector v of ATA, then ATAv  v 
for some , and

 |v|2  vT(v)  vTATAv  (Av)  (Av)  0.

Thus   0. Suppose ATA is singular, then there exists v  0 such that 
ATAv  0, hence 0  vTATAv  (Av)  (Av). This implies that Av  0, i.e., the 
null space of A is not {0} contradicting to the condition. Thus, ATA must be 
non-singular.

Then, the system ATAx  ATy has a unique solution of the form 
a  (ATA)1ATy. Thus AT(y − Aa)  ATy −ATAa  0, hence y − Aa  ker AT  
(imA). Thus, y − Aa  y − Py for an orthogonal projection P of y onto the 
imA. Thus Aa  Py, and a is the least square solution for the system Ax  y. 
Therefore, the solution of the normal system of equations ATAx  ATy exists 
and equals the least squares solution of Ax  y.

From the proof of the above theorem, we have that the solution for the 
system ATAx  ATy is a  (ATA)1ATy, so Aa  A(ATA)1ATy. We have shown 
that a is the least square solution, then A(ATA)1AT can be considered as the 
orthogonal projection matrix onto imA. Thus, we conclude as the following.
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Corollary 4.3.1: Let A be an m  n matrix, then the matrix of the orthogonal 
projection onto the image of A is A(ATA)1AT.

Now, as an application of orthogonal projection, let us see the least 
squares approximation problem: given n data (x1, y1), …, (xn, yn)  2, we 
would like to find a line L of the form y  mx  b which is the “closest fit” 
for the given data points, in the sense that the “least squares error” term

 
2

1

( , ) ( )
n

i i

i

S m b mx b y
=

= + −∑  

is as small as possible. To find a formula for the “least squares regression 
line” L, we note that the system of n equations in the two unknowns m, b

 mx  b  y, x  (x1, …, xn)
T, b  (b, …, b)T, y  (y1, …, yn)

T

is over-determined. Assume that at least two of the the xi’s are distinct, then 
the matrix

 
1 1

,

1n

x

A

x

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

   

has rank 2, and the system we are trying to solve can be written as 

 ,
m

A
b

⎡ ⎤
= = ⎢ ⎥

⎣ ⎦
v y v  

In general, y may not lie in the image of A, so this system typically has 
no solution. However, let P denote orthogonal projection onto the col-
umn space of A. Then Theorem 4.3.8 states that there is a unique solution 
v  (m0, b0) to the equation Av  Py, and this solution minimizes the quan-
tity |Av − y|2. Since |Av − y|2  S(m, b), it follows that the line L is given by 
the equation y  m0x  b0. 

Theorem 4.3.10

The least squares regression line L is given by the equation y  m0x  b0, 
where

 0 0 0

( ) ( )
,

( ) ( )
m b y m x

− ⋅ −
= = −

− ⋅ −

x y y

x x

x

x x
 

Where

 
1 1

1 1
, , ,

n n

i i

i i

x y

x x y y x y
n n

x y= =

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = = =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∑ ∑    
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Proof: Theorem 4.3.9 states that the least squares solution v satisfies the 

equation ATAv  ATy where 
1

0

0

1

and .

1n

x
m

A
b

x

⎡ ⎤
⎡ ⎤⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦

v   Compute

 ; ,T Tnx
A A A

nx n ny

⋅ ⋅⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

y
x x x y

 and solve ATAv  ATy

 
1

2 2 2

1
( )T T

nx y

n nx x y
A A A

nx nyn n x nx
−

⋅ −⎡ ⎤
⎢ ⎥− ⋅ − ⋅ + ⋅⎡ ⎤ ⎡ ⎤ ⎣ ⎦= = =⎢ ⎥ ⎢ ⎥− ⋅⋅ − ⋅ −⎣ ⎦ ⎣ ⎦

v y

x y

x y x y x x

x xx x x x
 

Therefore

 0
0 02 2

0

, ,
m nx y x y

m b
b nx n nx

⋅ − − ⋅ + ⋅⎡ ⎤
= = =⎢ ⎥ ⋅ − ⋅ −⎣ ⎦
v

x y x y x x

x x x x

Now, note that 2nx⋅ = ⋅ =x x x x  and .nx y⋅ = ⋅ = ⋅ =y yx x y x  Thus 

 
2 ( ) ( ),  ( )( ).nx nx y⋅ − = − ⋅ − ⋅ − = − −x x x x x y x x yx x y  

From the equations above it follows that

 0 2

) ( )

) )

nx y
m

nx

⋅ − − ⋅ −
= =

− ⋅ −⋅ −

y yx y (x x

(x x (x xx x

Therefore the solution is

 0
0 0 0

0

( ) ( )
, where , .

( ) ( )

m
m b y m x

b

⎡ ⎤ − ⋅ −
= = = −⎢ ⎥ − − −⎣ ⎦

y y
v

x x

x x x x

EXAMPL E 4.3.1

Suppose the three data points are (1, 2), (2, 5), (3, 7). Then 

 
( )

( ) ( )

2, 14 / 3, (1,  2,  3) ,  2,  5,  7

1,  0,  1 8 / 3,1 / 3,  7 / 3 .

T

TT

Tx y= = = =

− = − − =

x y

x x y y -

 

 0 0 0

( ) ( )
5/2, 14/3 (5/2)(2) 1/3.

( ) ( )
m b y m x

− ⋅ −
= = = − = − = −

− − −

y yx x

x x x x

Therefore, the least squares regression line is given by the equation

 
5 1

2 3
y x= −  
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4.4 Orthogonal Projections and Reflections

Matrices whose columns form an orthonormal basis of n relative to the 
standard Euclidean dot product play a distinguished role, they are called 
orthogonal matrices. Such matrices appear in a wide range of applications 
in geometry, physics, mechanics, and special functions. In particular, cal-
culations involving spatial rotations are described in terms of orthogonal 
matrices, and orthogonal matrices are an essential ingredient in the QR 
algorithm for computing eigenvalues of matrices. In this section, we will 
study the orthogonal matrices.

Definition 4.4.1

A square matrix Q is called an orthogonal matrix if it satisfies

 QTQ  I

The orthogonality condition implies that one can easily invert an orthogonal 
matrix:

 Q1  QT.

In fact, a matrix is orthogonal if and only if its inverse is equal to its trans-
pose.

Theorem 4.4.1

A matrix Q is orthogonal if and only if its columns form an orthonormal 
basis with respect to the Euclidean dot product on n.

Proof: Let u1, …, un be the columns of Q. Then 1 , ,T T
nu u  are the rows 

of the transposed matrix QT. The (i, j)-th entry of the product QTQ is given 
as the product of the i-th row of QT times the j-th column of Q. Thus, the 
orthogonality requirement implies

 
0

,
1

T
i j i j

i j

i k

≠⎧
⋅ = ⋅ = ⎨ =⎩

u u u u  

which are precisely the conditions for u1, …, un to form an orthonormal 
basis.

Corollary 4.4.1: An orthogonal matrix has determinant det Q  ±1.

Proof: We observe that

det(QTQ)  det(QT) det(Q)  (det(Q))2  1  det()  det(Q)  1.

Corollary 4.4.2: The product of two orthogonal matrices is also orthogonal. 
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Proof: Let Q1,Q2 be two orthogonal matrices, then

 1 2 1 2 2 1 1 2 2 1 1 2 2 2( ) ( ) ( )T T T T T TQ Q Q Q Q Q Q Q Q Q Q Q Q Q= = = =   

and so the product matrix is also orthogonal.

This property says that the set of all orthogonal matrices forms a group. 
The  orthogonal group lies at the foundation of Euclidean geometry, as well 
as rigid body rotation, computer graphics and animation, and many other 
areas.

4.4.1 Orthogonal Projection Matrix

Let a1, …, ak linearly independent vectors in n and W  Span(a1, …, 
ak). We will study how to construct projections and reflections matrices, 
and use these matrices to find an orthogonal projection of a given vector 
onto W, and reflection of a given vector x  n through W.

To do so, we will note that the orthogonal projection of x onto W is in 
fact another vector x  W such that (x − x) y for all y  W. Since W  
Span(a1, …, ak), we must have

 ai  (x − x)  0, i  1, 2, …, k.

Now let A be an n × k matrix, k  n, with columns a1, …, ak that are linearly 
independent vectors in n. Then the above relation means

 AT(x − x)  0,  ATx  ATx
since x  W, there exist C  [c1, …, ck]

T such that x  A[c1, …, ck]
T  AC. 

Therefore,

 ATx  ATx  ATAC. 

Thus, by the proof of Theorem 4.3.9, we know that if the A has linearly 
independent columns, then ATA is invertible. By the relation ATx  (ATA)C, 
we obtain C  (ATA)1(ATx), and

 x  AC  A(ATA)1 (AT x)  (A(ATA)1AT)x.

The matrix

 Q  A(ATA)1AT

is called the orthogonal projection matrix onto the subspace W. We check 
that Q has the following two properties:

          QT  (A(ATA)1AT)T  A(ATA)1AT  Q,

 Q2  (A(ATA)1AT)(A(ATA)1AT)  A(ATA)1AT  Q.
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EXAMPLE 4.4.1

Compute the projection matrix Q for the 2-dimensional subspace W of 
4 spanned by the vectors (1, 1, 0, 2) and (1, 0, 0, 1). What is the o rthogo-
nal projection of the vector x  (0, 2, 5, 1) onto W?

To answer the question, we let 

1 1

1 0
. Then

0 0

2 1

A

−⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

  

 

1

1

1 1

1 0 6 1 1 1 0 2
( )

0 0 1 2 1 0 0 1

2 1

10/11 3/11 0 1/11

3/11 2/11 0 3/11

0 0 0 0

1/11 3/11 0 10/11

T TQ A A A A

−
−

−⎡ ⎤
⎢ ⎥ ⎡ ⎤ ⎡ ⎤⎢ ⎥= = ⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎣ ⎦
⎢ ⎥
⎣ ⎦

−⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
−⎣ ⎦

 

Hence, the image of orthogonal projection is Qx  (7/11, 1/11, 0, 4/11)T

4.4.2 Reflection Matrix

Now, let us use the result of orthogonal projection matrix to analyze 
what is the reflection of x across W, where W is a (hyper-)plane through the 

origin, { }1| 0 .n n
i i iW w c w== ∈ ∑ =  We note that W  c  (c1, …, cn)T, is 

the normal vector of the (hyper-)plane W. Then the orthogonal projection 
of a vector x  n onto W is given by the orthogonal projection matrix Q, 
which is

 x  Qx, where Q  c(cT c)1 cT  (cTc)1 ccT , since cTc  .

Now, if we scale c so that c is a unit vector, then we have

 Q  ccT.

Now, let x be the image of the reflection of x across W, then the distance 
between x and x is twice as much as the distance between x and x. Hence, 
we have

 x  x − 2x  ( − 2Q)x  ( − 2ccT)x,

where Q is the matrix representation of orthogonal projection onto W. The 
matrix
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HW   − 2ccT, where c is a unit normal vector for the plane W is 
called the reflection matrix for the plane W and sometimes is also called the 
Householder matrix.

EXAMPLE 4.4.2

Compute t he reflection of the vector x  (1, 3, 4) across the plane 
2x  y  7z  0.

To answer the question, we let 
2 2 2

(2, 1,7) (2, 1,7)
,  then

542 ( 1) 7

T T− −
= =

+ − +
c  

 

23/27 2/27 14/27
(2, 1,7) (2, 1,7)

2 2/27 26/27 7/27
27

14/27 7/27 22/27

T
T

WH

−⎡ ⎤
− − ⎢ ⎥= − = − = ⎢ ⎥

⎢ ⎥− −⎣ ⎦

cc   

Hence, the image of reflection is HWx  (39/27,48/27,123/27)T.

4.5 Properties of Symmetric Matrices

Definition 4.5.1

Let ,  be the standard inner product on n. The real n × n matrix A 
is symmetric if and only if

 Ax, y x, Ay x, y  n.

Since this Definition is independent of the choice of basis, symmetry is a 
property that depends only on the linear operator A and a choice of inner 
product. 

The above Definition suggests that a symmetric matrix is a square ma-
trix that is equal to its transpose. Formally, matrix A is symmetric if

 A  AT.
Because if A  AT, then

 Ax, y (Ax)Ty  xTATy  xTAy  x, Ay.

On the other hand, if Ax, y x, Ay, then let x  ei and y  ej, then 

 Ax, y Aei, ej Ai, ej Aji, Ai is the i-th column of A,

 x, Ay ei, Aej ei, Aj Aij, Aj is the j-th column of A,
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thus,
 Ax, y)  x, Ay)  Aij  Aji  AT  A.

Symmetric matrices play an important role in a broad range of applications. 
Not only are the eigenvalues of a symmetric matrix necessarily  real, the 
eigenvectors always form an orthogonal basis. Hence it is the most common 
topic to study in terms of orthogonal bases.

To introduce the next theorem, we first define a Hermitian matrix.

Definition 4.5.2

A Hermitian matrix or self-adjoint matrix is a complex square matrix 
that is equal to its own conjugate transpose, that is, the element in the i-th 
row and j-th column is equal to the complex conjugate of the element in the 

j-th row and i-th column, for all indices i and j:

 or T
ij jia a A A= =  

Hermitian matrices can be understood as the complex extension of real 
symmetric matrices. If the conjugate transpose of a matrix A is denoted by 
A, then the Hermitian property can be written concisely as

 A  A.

Lemma 4.5.1 If A is a symmetric matrix, x is an eigenvector of A, and y is 
orthogonal to x, then

 y  Ax, Ax  x, Ay  Ax

Proof: To show y  Ax, note that x  y  0, and

 Ax  y  lx  y  0.

To show Ay  x,

 Ay  x  (Ay)Tx  yTATx  yT(Ax)  yTx  y  x  0.

Finally,

Ay  Ax  (Ay)T(Ax)  yTATx  yT(Ax)  yTx  2y  x  0.

Theorem 4.5.1

Let A  AT be a real symmetric n × n matrix. Then

1. All the eigenvalues of A are real.

2. Eigenvectors corresponding to distinct eigenvalues are orthogonal.

3. There is an orthonormal basis of n consisting of n eigenvectors of A.
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Proof: First, if A  AT is real, symmetric, then

 Av  w  v  Aw.

Note in n,  is the regular dot product, and in n we have

 T⋅ =v w v w .

To prove property (1), we note that if    then

 Av  v  lv  v  |v|2.

On the other hand,

 v  Av  v  v  
2T  =vv v  .

Hence

 2 2   = ⇒ =v v

Thus   .

To prove (2), suppose

 Av  av, Aw  bw, a  b 

Then

 av  w  Av  w  v  Aw  v  bw  bv  w.

This in turn implies (a  b)(v  w)  0. Since a  b, we must have that

 v  w  0.

Thus distinct eigenvalues correspond to orthogonal eigenvectors.

To prove the final statement, if all the eigenvalues of A are distinct, 
then the corresponding eigenvectors are orthogonal and they form a basis. 
By normalization, we obtain an orthonormal basis.

To prove the general case, we proceed by induction on the size n of the 
matrix A. Let T : n  n be the linear transformation defined by Tx  Ax.

To start, the case of a 1 × 1 matrix is trivial. Suppose A has size n × n. 
We know that A has at least one real eigenvalue, 1, and v1 is the associated 
eigenvector. Let V  Span(v1), and

 V  {w  n|v1  w  0}

denote the orthogonal complement to V.

We note that A defines a linear transformation on V since for any 
w  V, then by Lemma 4.5.1, v1  Aw  Av1  w  1v1  w  0. Thus, A 
restricted to V is a linear transformation from V to V. Let y1, …, yn1 be 
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an orthonormal basis for V, then   {v1/|v1|,y1, …,yn1} is an orthonormal 
basis for n. The matrix representation of T relative to the basis  is a block 

matrix, 1 0
.

0 A

⎡ ⎤
⎢ ⎥′⎣ ⎦

 The first column is [T(v1)], the coordinate vector of 

the image of the linear transformation T on v1. By Lemma 4.5.3, for any 
yj  V, T(yj)  Ayj 

 v1, hence the first row must be [, 0, …, 0]. Moreover, 
( )ijA a′ ′=  is symmetric, since

 
( ) ( ) ( ) ( )

( ) ( ) ( )

T T T
ij j i j i j i i i

T
i i j j j i ji

a T A A A

T T a

′ = ⋅ = ⋅ = =

′= = ⋅ = ⋅ =

y y y y y y

y y y y

y y

y y
 

Thus, A is an (n  1)  (n  1) symmetric matrix, and by induction hypoth-
esis, the eigenvectors of A form an orthonormal basis u2, …, un for V. 
Then appending the unit eigenvector u1  v1/|v1|, we obtain the orthonor-
mal basis for n consisting of n eigenvectors of A.

The orthonormal eigenvector basis serves to diagonalize the symmetric 
matrix, resulting in the following spectral factorization formula. 

Theorem 4.5.2

(Spectral decomposition) Let A be a real, symmetric matrix. Then there 
exists an orthogonal matrix Q such that

 A  QAQ1  QAQT,

where A  diag(1, , n) is a real diagonal matrix. The eigenvalues of A 

appear on the diagonal of A, while the columns of Q are the corresponding 
orthonormal eigenvectors.

Proof: From the proof of the previous theorem, we can construct a basis 
 for n consisting of n orthonormal eigenvectors of A. Let Q be a matrix 
whose columns are the basis elements of . Let T : n  n be the linear 
transformation defined by Tx  Ax. Then the matrix representation of T 
relative to  is a diagonal matrix A with eigenvalues being the diagonal 
entries. Q is a change of basis matrix such that A  [T]  QAQ1 where  
denotes the standard basis.

Definition 4.5.3

An n × n symmetric matrix A is called positive definite if it satisfies 
xTAx > 0 0  x  n.

More generally, an n  n Hermitian matrix A is said to be positive defi-
nite if 0 < xAx  , 0  x  n, x denotes the conjugate transpose of x.
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The negative definite, positive semi-definite, and negative semi-defi-
nite matrices are defined in the same way, i.e., the expression xAx is re-
quired to be always n egative, non-negative, and non-positive, respectively.

Theorem 4.5.3

A symmetric matrix A  AT is positive definite if and only if all of its eigen-
values are strictly positive.

Proof: () Let  be an eigenvalue with correspon ding eigenvector v, then

 0 < xTAx  v  Av  v  v  |v|2.

Hence we must have that  > 0.

() On the other hand, if i > 0 for all the eigenvalues, then let v1, , vn be 
a orthonormal basis in n consisting of the eigenvectors of A, then

 
1 1 1 1

2

1 1 1

0, since , 0

T Tn n n n
T

i i i i i i i i

i i i i

Tn n n

i i i i i i i i

i i i

X Ax c A c c c A

c c c c 

= = = =

= = =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
= = > ≠ ≠⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ ∑ ∑

∑ ∑ ∑

v v v v

v v x 0

 

4.6 QR Factorization

In linear algebra, a QR decomposition, or QR factorization of a 
square matrix is a decomposition of a matrix A into a product A  QR of an 
orthogonal matrix Q and an upper triangular matrix R. If A is a real matrix, 
then Q is an orthogonal matrix, i.e., QTQ  , and if A is a complex matrix, 
then Q is a unitary matrix, i.e., QQ  ).

In general, when A is an m × n matrix, with m  n, as the product of an 
m × m unitary matrix Q and an m x n upper triangular matrix R,

 
1R

A QR Q
⎡ ⎤

= = ⎢ ⎥
⎣ ⎦  

where R1 is an n × n upper triangular matrix,  is an (m − n) × n zero matrix.

The QR factorization can be obtained by the Gram-Schmidt process 
applied to the columns  of the full column rank matrix A  [a1, … , an].

Let inner product v, w v�w in the real case, or v, w vw for the 
complex case.
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Recall the projection:

 
,

proj
,e

=e

e a
a e

e  

then:

 

1

1 2

1
1 1 1

1

2
2 2 2 2

2

3
3 3 3 3

1

1

3
3

,

 proj ,

 proj proj ,

                                                                

proj ,
j

n

n n n n

j

n

n

−

=

= =

= − =

−

− =

−

=

= =

∑

u

u a

u a e

u a

u

u

u

u
e

u

u
a

u

u
a a e

u a a e

u

u

u

 

 

Express the columns ai, i  1,  , n, over our newly computed orthonormal 
basis: 

a1  e1, a1e1

a2  e1, a2e1  e2, a2e2

a3  e1, a3e1  e2, a3e2 e3, a3e3

      

1

,
n

n j n j

j=

=∑a e a e
 

where

 ei, ai |ui|. 

Write this in a matrix form A  QR where: 

[ ]

1 1 1 2 1 3

1 2 1 3
1

3 3

, , ,

0 , ,
, , and

0 0 ,nQ R

⎛ ⎞
⎜ ⎟
⎜ ⎟= = ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

e a e a e a

e a e a

e a
e e







   

EXAMPLE 4.6.1

Consider the matrix 

1 1 0

1 0 1 .

0 1 1

A

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 Let
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 a1  (1, 1, 0)T, a2  (1, 0, 1)T, a3  (0, 1, 1)T. 

Performing the Gram-Schmidt procedure, we obtain 

 

1 1

1
1

1

2 2 2 1 1

2
2

2

3 3 3 1 1 3 2 2

3
3

3

(1,1,0)

1
(1,1,0) ;

2

1 1 1
( ) (1,0,1) (1,1,0) (1, 1,2)

22 2
1

(1, 1,2) ;
6

( ) ( )

1 1 2
(0,1,1) (1,1,0) (1, 1,2) ( 1,1,1)

2 6 3
1

( 1,1,1)
3

T

T

T T T

T

T T T T

T

= =

= =

= − ⋅ = − ⋅ = −

= = −

= − ⋅ − ⋅

= − − − = −

= = −

u a

u
e

u

u a a e e

u
e

u

u a a e e a e e

u
e

u

 

Hence, A  QR where

         1 2 3

1 1 1

2 6 3
1 1 1

[ , , ]
2 6 3

2 1
0

6 3

Q

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥= = −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

e e e  

 

1 1 1 2 1 3

2 2 2 3

3 3

1 1
2

2 2, , ,
3 1

0 , , 0
6 6

0 0 ,
2

0 0
3

R

⎡ ⎤
⎢ ⎥

⎛ ⎞ ⎢ ⎥
⎜ ⎟ ⎢ ⎥= =⎜ ⎟ ⎢ ⎥
⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎢ ⎥

⎢ ⎥⎣ ⎦

e a e a e a

e a e a

e a

Two alternative technique can be applied for QR decomposition.

Givens rotation: For 2-dimensional vector v  (v1, v2)
T, one can find a ro-

tation matrix 2

cos( ) sin( )

sin( ) cos( )
G

 

 

−⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 such that ( )2 2
2 1 2 1 2( , ) ,0

T
TG v v v v= +  
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where 1

2 2
1 2

cos( )
v

v v
 =

+
 and 2

2 2
1 2

sin( ) .
v

v v
 =

+
 For a m-dimensional 

vector v  (v1, …, vi, …, vm)T, a rotation matrix

 

1 0 0 0

0 0

( , )

0 0

0 0 0 1

m

c s

G i j

s c

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

  
    
  

    
  

    
  

 

Will rotate v to a vector whose j-th element is zero, i.e.,

 ( )2 2
1 2( , ) , , , ,0, ,

T

m i mG i j v v v v= +v     

Notice that Gm(i, j) is an orthogonal matrix. Rotate each column of the m × 
n matrix A such that

 
1

1 3 2

( , ) (2, ) (1, )
m m m

m m m

j n j j

R
G n j G j G j A

= + = =

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

∏ ∏ ∏   

where R1 is an n × n upper triangular matrix,  is an (mn) × n zero matrix.

Let

 

1

1 3 2

( , ) (2, ) (1, )
m m m

m m m

j n j j

Q G n j G j G j

−

= + = =

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠
∏ ∏ ∏  

and 1
,

R
R

⎡ ⎤
= ⎢ ⎥
⎣ ⎦  then QR is a QR decomposition of A.

Householder transformation: Householder transformation is a lin-
ear transformation that describes a reflection about a plane or hyperplane 
containing the origin. For any two vectors v, w with same length, v, w are 
reflections of each other with respect to a hyperplane which passes through 

the origin and is orthogonal to the unit vector .
−

=
−

v w
u

v w
 In fact, the ma-

trix P    2uu will define a linear transformation such that w  Pv and 
P is called a Householder matrix having the following properties:
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1. P  P;

2. PP  ;
3. P2  ;
4. diag(, P) is also a household matrix;

5. det(P)  1.

To find a QR decomposition of A, we construct a Householder matrix P1 

where v is the first column of A, and w  Pv is a column 11 ,0 ,[ ], 0 Ta   such 
that

 
(1)

11 1 1
1 (1)

2 1 1 1

n

n n n

a A
P A

A

× −

− × − × −

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦0


 

Construct a Householder matrix 2P for the first column of (1)
1 1n nA − × −  such 

that

 
(1)

22 1 2(1)
2 1 1 (2)

2 1 2 2

n
n n

n n n

a A
P A

A

× −
− × −

− × − × −

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦0



Let 
1 1

2
1 1 2

1
,

n

n

P
P

× −

− ×

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

0

0   we have

 

(1)
11 12 1 2

(2)
2 1 22 1 2

(2)
2 1 2 1 2 2

0

n

n

n n n n

a a A

P P A a A

A

× −

× −

− × − × − × −

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦0 0

 



Repeat the constructions for Householder matrices and get Pn … P1A 

1R⎡ ⎤
⎢ ⎥
⎣ ⎦

  R. Then Q  (Pn …P1)
1  P1 … Pn and R form a QR decomposition 

of A.

4.7 Sing ular Value Decomposition

In linear algebra, the singular value decomposition (SVD) is a 
factorization of a real or complex matrix. It is a generalization of the spectral 
factorization. It has many useful applications.
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Definition 4.7.1

A non-negative real number a is a singular value for an m  n matrix 
M if and only if there exist unit-length vectors u in m and v  n such that

 Mv  u and Mu  v

The vectors u and v are called left-singular and right-singular vectors for , 
respectively.

Definition 4.7.2

The singular value decomposition (SVD) of an m  n real or complex 
matrix M is a factorization of the form

 M  UV ,

where U is an m  m real or complex unitary matrix,   diag(1, , k) 

where 1   k  0, k  min(m, n), is an m  n rectangular diagonal ma-
trix with non-negative real numbers on the diagonal, and V is an n  n real 
or complex unitary matrix. The diagonal entries i of  are known as the 
singular values of M. The columns of U and the columns of V are called the 
left-singular vectors and right-singular vectors of M.

Remark 4.7.1 Let M be a real m  n matrix. Let U  [u1, …, um] and 
V  [v1, …, vn]. From the relations

 Mvj  j uj; MT uj  j vj; j  1, …, k

it follows that

 
2 .T

j j jM M = vv  

Hence, the squares of the singular values are the eigenvalues of MTM, 
which is a symmetric matrix.

Remark 4.7.2 If M  mn, then MTM is symmetric positive semi-definite 
matrix, and the singular values of M are defined to be the square roots of 
the eigenvalues of MTM. The singular values of M will be denoted by 1, , 
n. It is customary to list the singular values in decreasing order so it will be 
assumed that 1    n.

The singular value decomposition (SVD) can also be written as

 1 1 1
T T

m m mM  = + + u vu v   

You should see a similarity between the singular value decomposition and the 
spectral decomposition stated in Theorem 4.5.2. In fact, if M is symmetric, 
then SVD and spectral decomposition are the same. In general, singular 
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value decomposition of a matrix is not unique. The right singular vectors 
are orthonormal eigenvectors of MTM. If an eigenspace of this matrix is 
1-dimensional there are two choices for the corresponding singular vector, 
these choices are negatives of each other. If an eigenspace has dimension 
greater than one then there are infinitely many choices for the orthonormal 
eigenvectors, but any of these choices would be an orthonormal basis of the 
same eigenspace.

EXAMPLE 4.7.5

Find the SVD of M, where 
3 2 2

.
2 3 2

M
⎡ ⎤

= ⎢ ⎥−⎣ ⎦

Proof: First, we compute the singular values by finding the eigenvalues 
of MMT.

 
17 8

,
8 17

TMM
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 det(MMT – )  l2 – 34  225  ( – 25)( – 9)

1 225 5, 9 3 = = = =
 

Second, we will find the right singular vectors by finding an orthonormal set 
of eigenvectors of MTM.

 

13 12 2

12 13 2 .

2 2 8

TM M

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

The eigenvalues of MTM are 25, 9, and 0. Moreover, MTM is symmetric, so 
the eigenvectors are orthogonal. Now to compute the eigenvectors of MTM 
corresponding to the eigenvalues 25, 9, 0 are

 1 2 3

1/ 2 1/ 18 2/3

1/ 2 , 1/ 18 , 2/3 ,

0 1/34/ 18

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = − = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

v v v  

Hence so far we have

 

1/ 2 1/ 2 0
5 0 0

1/ 18 1/ 18 4/ 18
0 3 0

2/3 2/3 1/3

TM U V U

⎡ ⎤
⎢ ⎥⎡ ⎤

= ∑ = −⎢ ⎥⎢ ⎥
⎣ ⎦ ⎢ ⎥− −⎣ ⎦
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To find U, we realize that Mvi  iui, thus 
1

i i
i

M


= vu  .

 1 2

1/ 2 1/ 2
[  ]

1/ 2 1/ 2
U

⎡ ⎤
= = ⎢ ⎥

−⎢ ⎥⎣ ⎦
u u

Thus, we have the final SVD of M:

 

1/ 2 1/ 2 0
1/ 2 1/ 2 5 0 0

1/ 12 1/ 18 4/ 18
0 3 01/ 2 1/ 2

2/3 2/3 1/3

TM U V=

⎡ ⎤
⎡ ⎤ ⎢ ⎥⎡ ⎤

= −⎢ ⎥ ⎢ ⎥⎢ ⎥
−⎢ ⎥ ⎣ ⎦ ⎢ ⎥⎣ ⎦ − −⎣ ⎦

∑  

Mathematica [Wol15], Maple [Map16], MATLAB [TM], Sage [SJ05], and 
many other computer software programs can compute matrix decomposi-
tions. Maple [Map16] is a symbolic and numeric computing environment, 
and is also a multi-paradigm programming language developed by Maple-
soft. Below, we will provide an example to illustrate how to use Maple to 
perform SVD. We first create a matrix A, and then perform singular value 
decomposition via Maple.

>A:Matrix(3,4,(i,j)->ij-1);

1 2 3 4

: 2 3 4 5

3 4 5 6

A

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

>SingularValues(A,output['S','U′,'Vt']);

 

17

13.0111937212366 0.417672938745049 0.408248290463862

0.841925144210536 0.564

0.811715867513632

, 0.12006323114663727113803818 0.816496580927721

0.571557740

6

0.7117812888625875.034905542 1 5520−

−⎡ ⎤
⎢ ⎥ − − −⎢ ⎥
⎢ ⎥ −

−

×⎣ ⎦ 0.4082482904620368 3863

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  

 

0.283023303767278 0.413232827790139 0.543442351813000 0.673651875835862

0.787335893710336 0.359497746914449 0.0683403998814394 0.496178546677328

0.409743990033253 0.817239269719659 0.405246569339561 0.002

−

−

− − −

−

− 24871034684536

0.363469204516187 0.179220467659466 0.731966678229628 0.547717941372907

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

− −⎣ ⎦

 

4.8 Applications of SVD and QR Decompositions

We give two applications of SVD and QR decompositions.
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4.8.1 Image Processing

In image processing, we can represent digital images as matrices. 
Consider a gray scale image having m  n pixels:, it can be represented 
as an m  n matrix. For color images, we need three numbers per pixel, 
for each color: red, green, and blue (RGB). Then the image processing 
turns to matrix analysis. For instance, we can easily rotate an image and add 
two images. Here we give a classic image compression method based on 
singular value decomposition (SVD).

Let M be an m  n matrix of an image; there is a factorization of the 
form

 M  UV,

where U is an m  m real or complex unitary matrix,   diag(1, …, k) 
where 1 … k  0, k  min(m, n), is an m × n rectangular diagonal matrix 
with non-negative real numbers on the diagonal, and V is an n × n real or 
complex unitary matrix. Let U  [u1, …, um] and V  [v1, …, vn]. The singu-
lar value decomposition (SVD) of M can also be written as

 1 1 1
T T

m m mM  = + +u v u v  

Following the fact 1  …  k  0, most of the information of the image is 
included in terms which have greater singular values. This motives people 
to compress the image by dropping the terms with smaller singular values. 
For instance, we only need to store l(m  n  1) numbers if we use

 1 1 1
T T

i i iM  = + +u v u v 

instead of storing mn numbers by using matrix M. We compare the results 
for different l with an example. The image with 512 × 512-pixels shown at 
the left in Fig. 4.1 is a photo of one of the authors and the right image in 
Fig. 4.1 is the compressed one with l  1. The left image in Fig. 4.2 is the 
compressed one with l  50 and the right one is with l  100.

Note, in terms of storage, the original image requires mn  512  512 
 262144 numbers. If l  100, then the storage for compressed image is 
l(m  n  1)  100(512  512  1)  102500, which is about 39% of the 
original storage. This saves 60% of storage space, without compromising 
the quality of the image.
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Original image                          Compressed image with l = 1
Figure 4.1 Image compression

Compressed image with l = 50          Compressed image with l = 100
Figure 4.2 Image com pression (cont.)

4.8.2 QR Decomposition and GCD

The matrix can used in some algebraic computations, as a benefit of 
this situation, we can generalize the computation to numerical way. Let two 
polynomials f(x) and g(x) as

 f(x)  fmxm  fm1x
m1  f1x  f0,

 g(x)  gnxn  gn1x
n1  g1x  g0. 

The Sylvester matrix of f and g is an (m  n)  (m  n) matrix consist of the 
coeffic ients of f and g. 

 

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 1 0

0 0 0

0 0 0

0 0 0

0 0 0
( , )

0 0 0

0 0 0

0 0 0

0 0 0

m m

m m

m m

n n

n n

n n

f f f f

f f f f

f f f f
S f g

g g g g

g g g g

g g g g

−

−

−

−

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦




    





    


 

n

m

⎫
⎪
⎬
⎪
⎭

⎫
⎪
⎬
⎪
⎭

The Sylvester matrix has the following property [Lai69]:
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Theorem 4.8.1

(Suppose the Sylvester matrix has the QR decomposition as S(f, g)  QR 
where Q is orthogonal and R is upper triangular. Then the last non-zero 
row of R gives the coefficients of the GCD of f and g. Precisely, let Rd be 
the last non-zero line of R, then the GCD of f and g can be written as

1

1

1

m n

m
d

x

R x

+ −

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦




 

We can check the property with a simple example. Suppose that 

f(x)  x3  2x2  2x  1, g(x)  x2  3x  2, 

then the Sylvester matrix is

1 2 2 1 0

0 1 2 2 1

1 3 2 0 0( , )

0 1 3 2 0

0 0 1 3 2

S f g

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Compute the QR decomposition matrices as

 

1/2 2 1/10 10 1/2 1/20 10 1/4 2

0 1/5 10 0 1/10 10 1/2 2

1/2 2 1/10 10 1/2 1/20 10 1/4 2

3 10
0 1/5 10 1/2 1/4 2

20

0 0 1/2 1/4 10 1/4 2

Q

⎡ ⎤− −
⎢ ⎥
⎢ ⎥
⎢ ⎥

− −⎢ ⎥=
⎢ ⎥
⎢ ⎥− −
⎢ ⎥
⎢ ⎥−⎣ ⎦

 

                      

2 5/2 2 2 2 1/2 2 0

7 10
0 1/2 10 10 1/5 10

10
0 0 2 3 1

0 0 0 3/5 10 3/5 10

0 0 0 0 0

R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦
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The last line non-zero line of R is 0 0 0 3/5 10 3/5 10⎡ ⎤⎣ ⎦ , by the 
above theorem, the GCD of f(x) and g(x) should be

 

1

1[0 0 0 3/5 10 3/5 10] 3/5 10( 1)

1

m n

m

x

xx

+ −

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥ = +
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦





One can find GCD(f, g)  x  1 which is exactly equal to ( )3/5 10 1x +  up 
to a non-zero constant scalar.

When small perturbations are applied to the coefficients of the polyno-
mials, the GCD obtained after the perturbation may be different from the 
original GCD. But for the engineering purposes, the new GCD should be 
close to the original GCD since only small perturbations are introduced. 
It is difficult to use the Euclidean algorithm numerically. The QR de-
composition focuses on matrix computations and gives a way to compute 
a numerical approximation. Add perturbations to the two polynomials f 
and g, we have

 f(x)  x3  2x2  2x  1.001, g(x)  x2  3x  1.999.

Using the numerical GCD method based on QR factoring [CWZ04], one 
can find an approximate GCD as

                       0.706937684158446  0.707275837786569x

  0.707275837786569(x  0.999521892859819).

Thus, the approximate GCD is x  0.99952 1892859819.

4.9 Exercises

1. Consider the vectors a  (1, 5) and b  (3, 4) in 2. Find the inner prod-
uct of these two vectors and find the angle between them.

2. Find k so that (1, 2, k, 3) and (3, k, 7, 5) are orthogonal vectors in 4.

3. Let W be the subspace of 4 spanned by (1, 2, 3, 1) and (2, 4, 7, 2). 
Find a basis of the orthogonal complement W of W.
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4. Let S consist of the following vectors in 4:

(1, 1, 0, 1), (1, 2, 1, 3), (1, 1, 9, 2), (16, 13, 1, 3).
Is S orthogonal and a basis of 4? If so, find the coordinate of vector (a, 
b, c, d) in 4 relative to the basis S.

5. Find an orthogonal basis, and an orthonormal basis for the subspace 
spanned by the following vectors:

(1, 1, 1, 1), (1, 1, 2, 4), (1, 2, 4, 3).

6. Project the vector 

2

1

4

⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟
⎝ ⎠

 orthogonally onto the line 

3

1 |

3

c c

−⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟−⎝ ⎠⎩ ⎭

 . 

7. In 4, project v 

1

2

1

3

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

onto the line

1

1 |

1

1

c c

−⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟⋅ ∈⎪ ⎪⎜ ⎟⎨ ⎬⎜ ⎟−⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭



8. Compute the orthogonal projection matrix Q for the subspace W  
4 spanned by (1, 2, 0, 0) and (1, 0, 1, 1). Then find the image of the 
orthogonal projection of the vector (3, 2, 1, 5) onto W. 

9. Compute the reflection matrix for reflection across the plane x  y – 
z  0. Then find the image of the reflection of the vector (1, 2, 3).

10. Compute the QR decomposition of matrix 

1 1 4

1 4 2

1 4 2

1 1 0

A

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥−⎣ ⎦

 

11. Compute the QR decomposition of matrix 

1 2 0

0 1 1

1 0 1

A

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

12. Compute the SVD decomposition of matrix 

3 1

1 3

1 1

A

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦
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13. Compute the SVD decomposition of matrix 

3 1

1 3

1 1

A

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

14. Compute the SVD decomposition of matrix 

2 0 8 6 0

1 6 0 1 7

5 0 7 4 0

7 0 8 5 0

0 1 0 0 7

A

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦





C H A P T E R5
MATRIX DECOMPOSITION

5.1 Decomposition over  or 
In linear algebra, a matrix decomposition or matrix factorization is a 

factorization of a matrix into a product of matrices. There are many dif-
ferent matrix decompositions; each finds use among a particular class of 
problems. Below, we provide a list of common decompositions based on 
their applications.

5.1.1 Decompositions to Solve Linear Systems

In general, the following decompositions are commonly used to solve 
systems of linear equations.

1. LU decomposition: applicable to square matrix A

 A  LU,

where L is lower triangular and U is upper triangular.

2. Rank factorization: applicable to m  n matrix A of rank r

 A  CF,

where C is an m  r full column rank matrix and F is an r  n full row 
rank matrix.

3. Cholesky decomposition: applicable to square, symmetric, positive 
definite matrix A

 A  LL,

where L is a lower triangular matrix with positive diagonal entries. The 
Cholesky decomposition is unique, it is also applicable for complex 
Hermitian positive definite matrices.
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4. QR decomposition: applicable to m  n matrix A

 A  QR,

where Q is an orthogonal matrix of size m  m, and R is an upper trian-
gular matrix of size m  n. For details of QR decomposition, please refer 
to Section 4.6.

5.1.2 Decompositions Based on Eigenvalues

1. Eigen-decomposition, also called spectral decomposition: applicable to 
square matrix A with distinct eigenvectors (not necessarily distinct eigen-
values).

 A  QQ1,

where  is a diagonal matrix formed from the eigenvalues of A, and the 
columns of Q are the corresponding eigenvectors of A. For details, see 
Section 3.2.

2. Jordan decomposition, also called Jordan normal form, or Jordan 
canonical form, applicable to a square matrix A. Jordan normal form 
generalizes the eigen-decomposition to cases where there are repeated 
eigenvalues and cannot be diagonalized. For details, see Section 3.3.

3. Spectral decomposition for a real, symmetric matrix A.

 A  QQT,

where  is a diagonal matrix formed from the eigenvalues of A, and Q 
is an orthogonal matrix, whose columns are the corresponding orthonor-
mal eigenvectors of A. For details, see Section 4.5.

4. Singular value decomposition: applicable to m  n matrix A.

 A  UV,

where  is an m  n matrix where the only non-zero entries are the non-
negative diagonal entries in non-increasing order, U and V are unitary 
matrices, and V denotes the conjugate transpose of V (or simply the 
transpose, if V contains real numbers only). The diagonal elements of 
 are called the singular values of A. For details of SVD, please refer to 
Section 4.7.

5.1.3 Examples

LU Decomposition

In many applications involving solving systems of linear equations, one 
needs to solve Ax  b for many different vectors b with a fixed nonsingular 
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matrix A. Gaussian elimination with pivoting is the most efficient and ac-
curate way to solve a linear system. The key component of this method is to 
decompose A itself.

We observe if a system is in the following form

 

11 1 1

22 2 2

0 0 0

0 0 0

0 0 0 nn n n

a x b

a x b

a x b

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦




      


 

then the system has a unique solution that is easy to obtain

 . 1, ,i
i

ii

b
x i n

a
= =   

On the other hand, if the system is given as a lower triangular matrix as

 

11 1 1

21 22 2 2

31 32 33

0 0 0

0 0
;

nn n n

a x b

a a x b

a a a a x b

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦




      


then the system can be solved via forward substitution and has a unique 
solution

 

1

1
. 1, ,

i

i ij jj
i

ii

b a x
x i n

a

−

=
−

= =
∑



Also, if the matrix is given in an upper triangular form

 

11 12 13 1 1 1

22 23 2 2 20
;

0 0 0

n

n

nn n n

a a a a x b

a a a x b

a x b

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦




      


then the system can be solved via backward substitution and has a unique 
solution

 
1

. , ,1

n

i ij jj i
i

ii

b a x
x i n

a

= +
−

= =
∑



LU decomposition, or LU factorization, stands for “lower upper,” which 
factors a matrix as the product of a lower triangular matrix and an upper 
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triangular matrix. The LU decomposition can be viewed as the matrix form 
of Gaussian elimination. Let A be an n  n nonsingular square matrix. One 
can perform row operation on A via a sequence of elementary matrices 
E1, , Ek to obtain an upper triangular matrix

 U  Ek  E1A.

Hence,

 1 1 1 1 1 1
1 1 1( ) , where .k k kA E E U E E U LU L E E− − − − − −= = = =    

Since each Ei is a lower triangular matrix, the product of the inverse of 
elementary matrices is a lower triangular matrix. Thus A can be factored as

 

11 11 12 13 1

21 22 22 23 2

31 32 33

0 0 0

0 0 0

0 0 0

n

n

nn nn

l u u u u

l l u u u
A LU

l l l l u

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 
 

         
 

Furthermore, if A is a nonsingular matrix, then for each L, the upper tri-
angular matrix U is unique but an LU decomposition is not unique. There 
can be more than one such LU decomposition for a matrix A. For example

 
4 3 1 0 4 3 4 3 4 0 1 3/4

, or
6 3 1.5 1 0 3/2 6 3 6 1 0 3/2

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

This is because when we compute LU decomposition by elementary trans-
formations, the matrix U depends on the matrix L. To find out the unique 
LU decomposition, it is necessary to put some restriction on L and U ma-
trices. For example, we can require all the entries of its main diagonal to 
be ones.

Therefore, given a system of linear equations in a matrix form

 Ax  b,

to solve the equation for x given A and b, we can decompose A  LU , then 
the solution is done in two logical steps: first, solve the equation Ly  b for 
y via forward substitution; then solve the equation Ux  y for x via backward 
substitution.

Remark 5.1.1: Not all non-singular matrices have an LU factorization. 
It is a proven result [HJ85] that: A matrix A  (aij)1  i, j  n has an LU 
factorization if and only if the leading principal submatrices Ak of A are 
nonsingular for k  1,, n.
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The leading principal submatrix Ak  (aij)1  i, j  k consists of the en-
tries from the first k rows and k columns of A.

Rank Decomposition

Given an m  n matrix A of rank r, a rank decomposition or rank fac-
torization of A is a product A  CF , where C is an m  r matrix and F is an 
r  n matrix.

Every finite-dimensional matrix has a rank decomposition. Since the 
rankA  r, there are r linearly independent columns in A; equivalently, the 
dimension of the column space of A is r. Thus, let c1,, cr be any basis for 
the column space of A and let C  [c1, , cr]. Therefore, every column vec-
tor of A is a linear combination of the columns of C. That is, if

 A  [a1,, an], ai  m

then the j-th column of A can be expressed as

 aj  f1jc1  f2jc2  frjcr,

where fij are the scalar coefficients of aj in terms of the basis c1,, cr. This 

implies that A  CF, where ,
1, 1{ }i m j r

i jijF f = =
= ==  is an r  n matrix. For example,

 

1 3 1 4

2 7 3 9

1 5 3 1

1 2 0 8

A

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 with reduced echelon form

1 0 2 0

0 1 1 0

0 0 0 1

0 0 0 0

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Then C is obtained by removing the third column of A, and F is formed by 
removing the last row of zeroes in the reduced echelon form. Thus

 A  CF, where  

1 3 4
1 0 2 0

2 7 9
, 0 1 1 0

1 5 1
0 0 0 1

1 2 8

C F

⎡ ⎤
−⎡ ⎤⎢ ⎥

⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦

⎣ ⎦

 

We note that the rank decomposition is not unique. If A  C1F1 is a rank 
factorization, then C2  C1R and F2  R1F1 gives another rank factorization 
for any invertible r  r matrix R.

Cholesky Decomposition

In linear algebra, the Cholesky decomposition or Cholesky factoriza-
tion is a decomposition of a Hermitian, positive-definite matrix A into the 
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product A  LL of a lower triangular matrix L with real and positive diago-
nal entries and its conjugate transpose L. If A has real entries, L has real 
entries as well, and A  LLT.

Every Hermitian positive-definite matrix (and thus also every real-val-
ued symmetric positive-definite matrix) has a unique Cholesky decomposi-
tion, that is, there is only one lower triangular matrix L with strictly positive 
diagonal entries such that A  LL. If the matrix A is Hermitian and positive 
semi-definite, then it still has a decomposition of the form A  LL where 
the diagonal entries of L are allowed to be zero. However, the decomposi-
tion need not be unique when A is positive semi-definite.

The algorithm to calculate the matrix L for the decomposition is a 
modified version of Gaussian elimination. The recursive algorithm starts 
with i : 1 and

 A1 : A.

At step i, after performing Gaussian elimination to matrix A1, the matrix Ai 
has the following form:

 

1i

i ii i

i i

I

A a

B

−

∗

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎝ ⎠b

0 0

0 b

0

 

where i−1 denotes the identity matrix of dimension i − 1. Define the matrix 
Li by

 

1

1

:

1

i

i ii

i i
ii

L a

a

−

−

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

b

0 0

0 0

0





then

 1i i i iA L A L∗
+=  

where

 

1 1

1 1 ( )

( )

1 ,

1

i i

i i i i i n i

i n i
i i i

ii

I b

A b b

b
B

a

−
∗

+ −

∗ −

⎛ ⎞ ⎡ ⎤
⎜ ⎟ ⎢ ⎥ ⎡ ⎤= = ⎣ ⎦⎜ ⎟ ⎢ ⎥
⎜ ⎟ ⎢ ⎥⎣ ⎦−⎜ ⎟
⎝ ⎠

0 0

0 0 b b

0 0 b b
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Repeat this for i  1,, n, and An+1  . Hence, the lower triangular matrix

 L : L1L2Ln

Mathematica [Wol15], Maple [Map16], MATLAB [TM], Sage [SJ05], and 
many other computer software packages can compute matrix decomposi-
tions. MATLAB is a popular multi-paradigm numerical computing environ-
ment developed by Math Works. MATLAB allows matrix manipulations, 
plotting of functions and data, implementation of algorithms, creation of 
user interfaces, and interfacing with programs written in other languag-
es, including C, C, C#, Java, Fortran, and Python. MATLAB is a power 
tool for both students and engineers. Below, we use MATLAB to create a 
Pascal’s matrix, then perform LU decomposition, QR decomposition, and 
Cholesky decomposition for this Pascal’s matrix.

>>Xpascal(4) %generate a Pascal’s matrix
X 
1 1 1 1

1 2 3 4

1 3 6 10

1 4 10 20

>> [L,U]lu(X) %LU decomposition
L 
1.0000  0 0 0

1.0000  0.3333  1.0000  0

1.0000  0.6667  1.0000  1.0000

1.0000  1.0000  0 0

U 
1.0000  1.0000  1.0000  1.0000

     0 3.0000  9.0000  19.0000

     0 0 -1.0000  -3.3333

>> [Q,R]qr(X) %QR decomposition
Q 
-0.5000  0.6708  0.5000  0.2236

-0.5000  0.2236  -0.5000  -0.6708

-0.5000  -0.2236  -0.5000  0.6708

-0.5000  -0.6708  0.5000  -0.2236

R 
-2.0000  -5.0000  -10.0000  -17.5000

      0 -2.2361  -6.7082  -14.0872

      0 0 1.0000  3.5000

      0 0 0 -0.2236

>> Rchol(X) %Cholesky decomposition, where RL^* 
R 
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1 1 1 1

0 1 2 3

0 0 1 3

0 0 0 1

Since we investigated decomposition associated with the eigenvalues in 
previous chapters, below we only provide a few examples.

Eigen-decomposition

EXAMPLE 5.1.1

Taking a matrix 
1 0

.
1 3

A
 

=  
 

Since

 det(A − )  (1 − )(3 − )  0.

There are two eigenvalues 1  1 and 2  3.

If   1, then Av  1v gives 
2

.
1

− 
=  

 
v  

If   3, then Av  3v gives 
0

.
1

 
=  

 
v

Thus the eigen-decomposition is

 
1

11 0 2 0 1 0 2 0

1 3 1 1 0 3 1 1
A A Q Q

−
−− −       

= = = =       
       

Jordan Canonical Decomposition

EXAMPLE 5.1.2

Suppose an n  n matrix A is of the form

 

5 4 2 1

0 1 1 1
.

1 1 3 0

1 1 1 2

A

 
 − − =
 − −
 − 

Check that

  det(A − )  0    1, 2, 4, 4.
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We check that the dimension of the eigenspace corresponding to the 
eigenvalue 4 is 1, so A is not diagonalizable. However, there is an invertible 
matrix P such that A  P1J P, where

 

2 0 0

0 1 0 0
.

0 0 4 1

0 0 0 4

J

 
 
 =
 
 
 

where J is the Jordan normal form of A.

Of course, we can hand compute matrices J and P for Example 5.1.2, 
but many computer software packages have built in code to complete this 
task. The following is a Sage [SJ05] code for the computation of Jordan ca-
nonical form in Example 5.1.2.

Amatrix(QQ, [[5, 4, 2, 1],[0,1,-1,-1], [-1,-1,3,0],[1,1,-1,2]]) 
A.jordan_form(transformationTrue)
([2|0|0 0] 

[-----] 
[0|1|0 0]

[-----] 
[0|0|4 1] 

[0|0|0 4],

[ 1  1  1 1] 

[-1 -1  0 0] 

[ 0  0 -1 0]

[ 1  0  1 0])

Spectral Decomposition

EXAMPLE 5.1.3

Let 
3 2

.
2 3

A
 

=  
 

 We continue with Sage code to obtain the minimal 

polynomial, eigenvalues, and eigenvectors.

Bmatrix(QQ, [[3, 2],[2,3]]) 
B.minpoly()

x^2 - 6*x  5
B.eigenvalues() 

[5, 1] 

B.eigenmatrix_left()
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([5 0],[0 1], [ 1 1],[ 1 -1])

Hence the eigen-decomposition is

 
1

1 1 5 0 1 1
.

1 1 0 1 1 1
A

−
     

=      − −     
Since A is a symmetric matrix, we can compute an orthonormal basis to 
obtain a spectral decomposition

 
1

1/ 2 1/ 2 5 0 1/ 2 1/ 2

0 11/ 2 1/ 2 1/ 2 1/ 2
A

−
    

=     
− −        

 

5.2 Iterative Methods to Solve Linear Systems Numerically

Solving linear systems or matrix equations is a classical problem in 
matrix computations. In general, there are four methods to solve a linear 
system.

1. Use Cramer’s rule to solve the system, if the matrix is a full-rank square 
matrix.

2. Compute the inverse or pseudoinverse of the system matrix.

3. Use matrix decomposition methods.

4. Use iterative methods.

Note that computing and applying the inverse matrix is much more expen-
sive and often numerically less stable than applying one of the other algo-
rithms. Hence the first two options are not used in matrix computations, 
especially for high-dimensional matrices.

The inverse of nonsingular square matrix A can be computed by the 
methods like Gauss-Jordan or LU decomposition. If A is not square, then 
ATA and AAT become square. Hence, it may be possible to apply Gauss-
Jordan or LU decomposition to compute the inverse of ATA or AAT. Other-
wise, a pseudoinverse (an inverse-like matrix) can be computed by singular 
value decomposition (SVD). Please see Section 5.1.1 for details of using 
ma- trix decompositions to solve linear systems.

In this section, we will focus on iterative methods to solve Ax  b. 
A method of this type is a mathematical procedure that begins with an 
approximation to the solution, x0, then generates a sequence of improved 
approximations x1,, xn that converge to the exact solution. This approach 
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is appealing in engineering because it can be stopped as soon as the n-th 
approximation has an acceptable precision. Iterative methods are often 
useful for large and sparse system, but iterative methods can be unreliable; 
since for some problems they may have slow convergence, or they may not 
converge at all. There are two fundamental iterative methods: the Jacobi 
method and the GaussSeidel method.

5.2.1 Jacobi Iiterative Method

First, the Jacobi iterative method is an algorithm for determining the 
solutions of a diagonally dominant system of linear equations. A square ma-
trix A  (aij) where aij denotes the entry in the i-th row and j-th column is 
said to be diagonally dominant if

 
1

ii ij

j

a a
≠

≥ ∑  for all i.

Let Ax  b be a square system of n linear equations, where:

 

11 12 1 1 1

21 22 2 2 2

1 2

, ,

n

n

n n nn n n

a a a x b

a a a x b
A

a a a x b

     
     
     = = =
     
     
     

x b




       

Then A can be decomposed into a diagonal component D, and the remain-
der R:

 A  D  R where 

11 12 1

22 21 2

1 2

0 0 0

0 0 0
,and 

0 0 0

n

n

nn n n

a a a

a a a
D R

a a a

   
   
   = =
   
   
   

 
 

       
 

We note that R  L  U where L and U are the strictly lower and upper 
parts of A.

Then the solution is then obtained iteratively via

       x(k+1)  D−1(b − Rx(k)),

  Tx(k)  C, where T  −D−1R and C  D−1b,

where x(k) is the k-th iteration of x and x(k1) is the (k  1)-th iteration of x. 
The the solution for the system is

 ( 1) ( )

1

1
, 1,2, , .k k

i i ij j
ii j

x b a x i n
a

+

≠

 = = =
 
 

∑   

We will use the following example to illustrate the method.
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EXAMPLE 5.2.1

Let

 
(0)2 1 11 1

,  and ,
5 7 13 1

A
     

= = =     
     

b x

where x(0) is the initial approximation. Then, the above procedure yields

      x(k+1)  D−1(b − Rx(k))

     Tx(k)  C, where T  −D−1R and C  D−1b, and

 

1 1/2 0 0 0 0 1
,  and ,

0 1/7 5 0 0 0

1/2 0 0 0 0 1 0 1/2

0 1/7 5 0 0 0 5/2 0

1/2 0 11 11/2
.

0 1/7 13 13/7

D L U

T

C

−      
= = =     

     
− −         = + =        − −         

     
= =     

     

The iteration gives

 

(1)

(2)

0 1/2 1 11/2 5.0 5

5/7 0 1 13/7 8/7 1.143

0 1/2 5.0 11/2 69/14 4.929

5/7 0 8/7 13/7 12/7 1.714

        process repeats until an acceptable pr

−         
= + = ≈         −         

−         
= + = ≈         − − −         

x

x



(25)

ecision is achieved

7.111
.

3.222

 
=  − 

x

5.2.2 Gauss-Seidel iterative method

The Gauss-Seidel iterative method is very similar to the Jacobi method. 
But unlike the Jacobi method, the Gauss-Seidel method includes succes-
sive displacement. That is, the computation of x(k+1) uses only the elements 
of ( 1)k

ix +  that have already been computed, and only the elements of x(k) that 
have not yet to be advanced to the (k  1)-th iteration.

Let Ax  b be a square system of n linear equations, where:

 

11 12 1 1 1

21 22 2 2 2

1 2

, ,

n

n

n n nn n n

a a a x b

a a a x b
A

a a a x b

     
     
     = = =
     
     
     

x b




     



MATRIX DECOMPOSITION • 153

Then A can be decomposed into its lower triangular component and its 
strictly upper triangular component given by:

 A L  U where 

11 12 1

22 21 2

1 2

0 0 0

0 0 0
,

0 0 0

n

n

nn n n

a a a

a a a
L U

a a a

∗

   
   
   = =
   
   
   

 
 

       
 

The system of linear equations Ax  b can be rewritten as:

 Lx  b − Ux.

The Gauss-Seidel method now solves the left-hand side of the above ex-
pression for x, using previous value for x on the right hand side:

 ( 1) 1 ( ) ( )( )k k kL U T C+ −
∗= − = +xx b x  

where 1 1 andT L U C L− −
∗ ∗= − = − b

Using the lower triangular matrix L, the elements of x(k+1) can be com-
puted sequentially using forward substitution:

 
1

( 1) ( 1) ( )

1 1 1

1
, 1,2, ,

i n
k k k

i i ij j ij j
ii j j

x b a x a x i n
a

−
+ +

= = +

 
= − − =  

 
∑ ∑   

The procedure terminates when an acceptable precision is achieved.

We will use the following example to illustrate this method.

EXAMPLE 5.2.1

Let Ax  b be the following:

 
(0)16 3 11 1

,  and ,
7 11 13 1

A
     

= = =     −     
b x

where x(0) is the initial approximation. Then

 

( 1) 1 ( ) ( )

1

1

( ,  where

16 0 0 3
,

0 11 0 0

0.000 0.1875

0.000 0.1193

0.6875

0.7443

k k kL U T C

L U

T L U

C L

+ −
∗

∗

−
∗

−
∗

= − = +

   
= =   −   

− 
= − =  − 

 
= =  − 

x b x x

b
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The iteration formula gives:

(1) 0.000 0.1875 1.0 0.6875 0.5000

0.000 0.1193 1.0 0.7443 0.8636

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x

 

(2) 0.000 0.1875 0.5000 0.6875 0.8494

0.000 0.1193 0.8636 0.7443 0.6413

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x

(3) 0.000 0.1875 0.8494 0.6875 0.8077

0.000 0.1193 0.6413 0.7443 0.6678

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x

(4) 0.000 0.1875 0.8077 0.6875 0.8127

0.000 0.1193 0.6678 0.7443 0.6646

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x

(5) 0.000 0.1875 0.8127 0.6875 0.8121

0.000 0.1193 0.6646 0.7443 0.6650

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x

(6) 0.000 0.1875 0.8121 0.6875 0.8122

0.000 0.1193 0.6650 0.7443 0.6650

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x

(7) 0.000 0.1875 0.8122 0.6875 0.8122

0.000 0.1193 0.6650 0.7443 0.6650

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x

The algorithm converges to the exact solution, and we check that:

 1 0.8122
.

0.6650
A− ⎡ ⎤

= ≈ ⎢ ⎥−⎣ ⎦
x b  

5.3 Matrix over Principle Ideal Domain

5.3.1 Matrix Decomposition over PID

In abstract algebra, a principal ideal domain, or PID, is an integral do-
main  in which every ideal is principal, i.e., can be generated by a single 
element. More generally, a principal ideal ring is a non-zero commutative 
ring whose ideals are principal. The distinction is that a principal ideal ring 
may have zero divisors whereas a principal ideal domain cannot.

Principal ideal domains behave somewhat like the integers, with respect 
to divisibility: any element of a PID has a unique decomposition into prime 
elements; any two elements of a PID have a greatest common divisor. If 
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gcd(x, y)  1 for x and y in a PID, then every element of the PID can be 
written in the form ax  by for some a, b in this PID.

Furthermore, one of the important properties of a PID is that if 
(a1)    (a2)  is an increasing sequence of ideals, then there is an n 
such that (an)  (an+1)  . To see this, we note that (ai) is also an ideal, 
and must be generated by an element b in a PID. Therefore, (ai)  (b), 
and this forces (an)  (an+1)    (b).

In this section, we will discuss the structure theorem for finitely gen-
erated modules over a principal ideal domain from the point of view of 
matrices.

Let R be a principal ideal domain and let M be a finitely generated R-
module. If {m1,, mn} is a set of generators of M, then we have a surjective 
R-module homomorphism

 1

1

: , ( , , )
n

n
n i i

i

R M r r r m
=

→ →∑  

Let K  ker   11{( ) |, , 0 ,}n
i

n
n i ir r R r m= =∑∈  then M > Rn/K. It is known 

that K is finitely generated. Suppose that {a1, , am}  Rn is a generating 
set for K, where ai  (ai1, ai2,, ain), then we will refer to the matrix (aij) 
over R as the relation matrix for M relative to the generating set {m1,, 
mn} of M and the generating set {a1,, am}  Rn of K. In the language of 
commutative algebra, K is call the syzygy module of the generating set 
{m1,, mn} of M.

Lemma 5.3.1 Let M be a finitely generated R-module, with ordered gen-
erating set {m1,, mn}. Suppose that the submodule K is generated by {a1,
, am}. Let A be the m  n relation matrix relative to these generators.

1. Let P  Mmm(R) be an invertible matrix. If [l1,, lm] are the rows of PA, 
then they generate K, and so PA is the relation matrix relative to [m1,, 
mn] and [l1,, lm].

2. Let Q  Mnn(R) be an invertible matrix and write Q−1  (qij) If

 ,j ij i

i

t q m=∑  for 1  j  n,

then [t1,, tn] is a generating set for M and the rows of AQ generate the 
corresponding relation submodule. Therefore, AQ is a relation matrix 
relative to [t1,, tn].



156 • LINEAR ALGEBRA

3. Let P and Q be m  m and n  n invertible matrices, respectively. If B  
PAQ, then B is the relation matrix relative to an appropriate ordered set 
of generators of M and of the corresponding relation submodule.

Proof: 

1. Notice the matrix multiplication gives

 

1 1 1 1

A

m n n n

m m m

P P A P

m m m

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = =⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

I

I

      

In addition that P is an invertible matrix, A  P−1[l1,, Im]T. Hence, the 
rows of the matrix A can be expressed in terms of {l1,, lm}. Matrix A 
can be considered as a relation matrix relative to the generating set {m1,
, m}  M and {l1,, lm}  Rn.

2. Notice the matrix multiplication gives

 

1 1 1 1
1

n n n n

t m m t

Q Q

t m m t

−
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⇔ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

   

Thus, {t1,, tn} is a generating set for M. In addition,

 

1 1 1

( )

n n n

m t m

A A Q AQ

m t m

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

   

yields that the rows of AQ generate the corresponding relation submod-
ule. Therefore, AQ is a relation matrix relative to {t1,, tn}.

3. The claim follows directly from (1) and (2).

Proposition 5.3.1 Suppose that A is a relation matrix for an R-module M. 
If there are invertible matrices P and Q for which

 

1

2

0 0

0 0

0 0 0

0 0 n

a

a
PAQ

a

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦






 

is a diagonal matrix, then ( )1 ./n
i iM nR a=≅ ⊕
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Proof: The matrix PAQ above is the relation matrix for an ordered gener-
ating set [m1,, mn] relative to a relation submodule generated by the rows 
of PAQ. If f : Rn  M is a homomorphism such that f (r1,, rn)  1 ,n

i i ir m=∑  
then K  ker(f). Thus, / .nM R K≅  Since K is also the kernel of the surjective 
R-module homomorphism 1: /( )n n

i ig R R a=→⊕  such that g(r1,, rn)  (r1  
(a1),, rn  (an)). Thus, 1/ /( ).n n

i iM R K R a=≅ ≅ ⊕

Definition 5.3.1

Let R be a principal ideal domain and let A be a p  n matrix with en-
tries in R. We say that A is in Smith normal form if there are non-zero a1,
, am  R such that ai | ai+1 for each i < m, and

 

1

2

.

0

0

m

a

a

aA

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦





 

Theorem 5.3.1

If A is a matrix with entries in a principal ideal domain R, then there are 
invertible matrices P and Q over R such that PAQ is in Smith normal 
form.

Proof: We will only illustrate the argument for the case of 2  2 matrix. 

Consider ,
a b

c d

⎡ ⎤
⎢ ⎥
⎣ ⎦

 and let e0  gcd(a, c), and hence e0  ax  cy for some 

x, y  R. Thus

 
0

0

where  1.,  a x c y
a b e a b

c d e c d

′⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥′⎣ ⎦ ⎣

′ ′+ =
⎦

since

 

1

,
x y c y

a c a x

− ′ −⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥′ ′ ′−⎣ ⎦ ⎣ ⎦

and

 

1
0 0

0

row operaiton
.

0since | ( )

x y a b e bx dy e u

a c c d aa cc ba dc ve aa cc

− +⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= ⎯⎯⎯⎯⎯⎯⎯⎯⎯→⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥′ ′ ′ ′ ′ ′ ′ ′− − + − + − +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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An similar treatment applied to the first row via multiplying on the right 

by an invertible matrix and obtain a matrix to the form 1 0e⎡ ⎤
⎢ ⎥∗ ∗⎣ ⎦

where e1  

gcd(e0, u).

Continuing this process, alternating between the first row and the first 
column, will produce a sequence of elements e0, e1,such that ei+1 | ei, 
i  0. As ideals, this says (e0)  (e1)    (en)   (e), since increasing 
sequence of principal ideals stabilizes in PID. Thus, in finitely many steps 
multiplying by invertible matrices Pi and Qi, we derive

 1 1

0

or ,

0

n n

e

C D
a b

P P Q Q
c d

e C

D

⎧⎡ ⎤
⎪⎢ ⎥
⎣ ⎦⎪⎡ ⎤ ⎪= ⎨⎢ ⎥

⎣ ⎦ ⎪ ⎡ ⎤⎪ ⎢ ⎥⎪ ⎣ ⎦⎩

    where e | C.

Thus, one more row or column operation, we have a diagonal matrix 
0

.
0

e

D

⎡ ⎤
⎢ ⎥
⎣ ⎦

Now, let g  gcd(e, D), then e  ge and D  gD and there exists m, n  
R such that g  em  Dn, hence,

 
0 0 0 0 0

.
0 0

e e e e D g

D em D g em Dn D g D ge D

′−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
→ → → →⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥′ ′= + −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Thus,

 
0

,
0

a b g
P Q

c d ge D

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥′ ′−⎣ ⎦ ⎣ ⎦

and we conclude that there are invertible matrices P and Q over R such that 
PAQ is in Smith normal form.

A consequence of the existence of a Smith normal form is the following 
structure theorem of finitely generated modules over PID.

Corollary 5.3.1: Suppose M is a finitely generated module over a PID R, 
then there are elements a1,, am  R such that ai | ai+1, i  1,, m − 1, 
and t   0 such that 1/( ) · /( ) .t

mM R a R a R≅ ⊕ ⊕ ⊕  

Proof: Let A be a relation matrix for M, and let B be its Smith normal 
form, i.e., for some invertible matrices P, Q,
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1

2

.

0

0

m

a

a

aPAQ B

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦





Proposition 5.3.1 implies

 
( ) ( ) ( ) ( )
( ) ( )

1

1 0

 / / / 0 / 0

/ / ,for some 

m

m

M R a R a R R

R a R a Rt t ≥

≅ ⊕ ⊕ ⊕ ⊕ ⊕

≅ ⊕ ⊕ ⊕ ∈
 


 

Hence, we proved our claim.

It is known that a polynomial ring in x over the field , [x] is a PID, 
and in the remainder of this section, we will focus on the case when 
R  [x]. Let A  Mn() be an n  n matrix, then we can consider n as a 
finitely generated [x]-module via

 [x]  n  n : f (x)m  f(A)m.

Let e1,, en be the standard basis for n. Now, we consider a [x]-module 
homomorphism:

 
1

1 1

: [ ] : ( ( ), , ( )) ( ) ( )
n n

n n
n i i i i

i i

x f x f x f x f A 
= =

→ = =∑ ∑e e    

Note, if A  (aij), then

 

1

1 1

1 1 1 1 1

( , , , )
i

in n n n n

i i ni n

i i i i i
ni

a

x x x x A a a

a


= = = = =

⎡ ⎤
⎢ ⎥= = = = + +⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ∑ ∑ ∑ ∑e e e e  

thus

 
1 1

1 1 1

1

( ) 0.

1
i

n n n

i ni n

i i i

x a a x A
= = =

⎡ ⎤⎛ ⎞ ⎢ ⎥= + + = − =⎜ ⎟⎜ ⎟ ⎢ ⎥
⎝ ⎠ ⎢ ⎥⎣ ⎦

∑ ∑ ∑e e e  

Hence, x − A is a relation matrix relative to [e1,, en].

From now on, let v1,, vn be the rows of x − AT , and let E1,, En 
be the standard basis vectors of [x]n.
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Lemma 5.3.2: Let 1 ( ) [ ] .n n
i i if x x=∑ ∈E   Then there are gi(x)  [x] and 

bi   such that

 
1 1 1

( ) ( ) .
n n n

i i i i i i

i i i

f x g x b
= = =

= +∑ ∑ ∑E v E

Proof: We will prove the claim by induction on 1max(deg( ( ))) .n
i if x =  

If m  0, then fi(x) are constant, hence let bi  fi(x), and the claim is true.

Assume that for m > 0, and the claim is true for polynomial vectors 
[f1(x),, fn(x)] whose maximal degree is no more than m. Hence, for 
i  1,, n. by division algorithm, fi(x)  qi(x)(x − aii)  ri, where deg(qi(x))  
deg(fi(x)) − 1, ri  . Consider

 [f1(x), 0,, 0]  [q1(x)(x − a11)  r1, 0,, 0]

  q1(x)[(x − a11), 0,, 0]  [r1, 0,, 0]

  q1(x)[(x − a11), −a21,, −an1]  [r1, q1(x)a21,, q1(x)an1]

  q1(x)v1  [r1, q1(x)a21,, q1(x)an1].

Notice, that the entries of the second polynomial vector has degree strictly 
less than deg(f1(x)). Repeating this process for each fi(x), we have

 
1 1 1

( ) ( ) ( ) , deg( ( )) deg( ( ))
n n n

i i i i i i i i

i i i

f x q x h x h x f x m
= = =

= + < <∑ ∑ ∑E v E  

  
1 1 1

( ) ( )
n n n

i i i i i i

i i i

q x h x b
= = =

 
= + +  

 
∑ ∑ ∑v v E  by induction hypothesis

 
1 1 1 1

( ( ) ( )) ( )
n n n n

i i i i i i i i i

i i i i

q x h x b g x b
= = = =

= + + = +∑ ∑ ∑ ∑v E v E

Thus, the claim is true by induction.

Proposition 5.3.2. If  is a [x]-module homomorphism defined by

 
1

: [ ] : ( ( ), , ( )) ( ) ,
n

n n
n i i

i

x f x f x f x 
=

→ = ∑ e  

then ker() is generated by the rows of x − AT. 

Proof: Let M be the submodule of [x]n generated by v1,, vn, the rows 
of x − AT. To show M  ker(), we first note that vi  ker(), thus M  
ker(). Thus, we only need to show that ker()  M .
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Let 1
n
i=∑ fi(x)Ei  ker(), and by Lemma 5.3.,

 
1 1 1

( ( ) ( ) , ( ) [ ],  .
n n n

i i i i i i i i

i i i

f x g x b g x F x b
= = =

= + ∈ ∈∑ ∑ ∑E v E 

Since vi  ker(), we must have that 
1

(ker ).
n

ii ib 
=

∈∑ E  Moreover,

 
1 1

0, 1, , .
n n

n
i i i i i

i i

b b b i n
= =

⎛ ⎞
= ∈ ⇒ = ∀ =⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑E e  

Thus,

 
1 1

( ) ( ) .
n n

i i i i

i i

f x g x M
= =

= ∈∑ ∑E v

Thus, ker()  M .

Therefore, we conclude ker()  M.

Since [x]/(1) is the zero module, with the above notation, we can 
conclude that

Corollary 5.3.2: If

 
1

1

1

( )

( )m

B
f x

f x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦





 

is the Smith normal form of A, then as a [x]-module,

 [ ] ( ) [ ] ( )1/ ( ) / ( )n x f x x fm x≅ ⊕ ⊕    

The invariant factors of n are f1(x),, fm(x).

It is difficult to hand compute Smith normal form. Many computer 
algebra systems have build-in code to compute Smith normal form. Below, 
we present one simple example via Maple. In this example, we first create 
a matrix Ax over the ring [x], then, we compute the Smith normal form 
of matrix Ax.
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>Ax: Matrix([[1,2*x,2*x^22*x],[1,6*x,6*x^26*x],[1,3,x]]);

 

2

2

1 2 2 2

: 1 6 6 6

1 3

x x x

Ax x x x

x

⎡ ⎤+
⎢ ⎥

= +⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 >S : SmithForm(Ax);

 
2

1 0 0

: 0 1 0

0 0 3/2

S

x x

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥+⎣ ⎦

5.4 Exercises

1. Find LU decompositions for the matrices

 

1 4 7
3 4

, 2 5 8
1 2

3 6 9

A B

⎡ ⎤
⎡ ⎤ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

2. Verify the following Cholesky decomposition

 
25 15 5 5 0 0 5 3 1

15 18 0 3 3 0 0 3 1

5 0 11 1 1 3 0 0 3

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

3. Verify the following Cholesky decomposition

 
25 50 5 0 5 10

50 101 10 1 0 1

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

4. Verify the following QR decomposition

 

3 6 3/5 0
5 10

4 8 4/5 0
0 1

0 1 0 1

−⎡ ⎤ ⎡ ⎤
−⎡ ⎤⎢ ⎥ ⎢ ⎥− = ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

5. Find LU, Cholesky, QR decomposition for the matrix 
3 4

.
1 2

A
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

6. Find eigenvalue decompositions of the following matrices if possible:

 

1 4 7
3 4

, 2 5 8 .
1 2

3 6 9

A B

⎡ ⎤
⎡ ⎤ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦



MATRIX DECOMPOSITION • 163

7. Find a SVD of the matrix

 

1 2

3 4
.

0 0

0 0

A

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

8. Consider matrix 
2 11

.
10 5

A
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
Determine a SVD. This decomposition 

is not unique, and find another SVD.

9. Suppose A is an n  n matrix over the complex numbers, and A SV is 

a SVD. Find an eigenvalue decomposition of the Hermitian 
0

.
0

A

A

∗⎡ ⎤
⎢ ⎥
⎣ ⎦

10. Find a Jordan decomposition of the matrix 

3 1 0

1 1 0 .

3 2 2

A

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

11. Write the matrix 
1 1 0

0 1 2

0 0 1

A

− −⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

in Jordan canonical form.

12. Apply Jacobi iterative method to solve

 5x − 2y  3z  −1

 −3x  9y  z  2

 2x − y − 7z  3.

13. Apply Jacobi iterative method to solve

 5x − 2y  3z  −1

 3x  9y  z  2

 2x − y − 7z  3.

Continue iterations until two successive approximations are identical 
when rounded to three significant digits.

14. Apply the Gauss-Seidel iterative method to solve

 5x − 2y  3z  −1

 3x  9y  z  2

 2x − y − 7z  3.
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Continue iterations until two successive approximations are identical 
when rounded to three significant digits.

15. Apply other methods to solve 

 5x − 2y  3z  1

 3x  9y  z  2

 2x − y − 7z  3.
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geometric multiplicity of the 

eigenvalue, 63
Golay codes, 29
group, 49

H
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Hermitian matrix, 123

I

independent, 71
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inner product space, 107–109
invariant under a linear operator, 69
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isomorphic algebras, 48
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J

Jordan block, 76
Jordan canonical form, 76
Jordan normal form, 76

K
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L
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linear operator, 35 
linear space, 3
linear transformation, 35–38
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matrix representation, 43, 55
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ordered basis, 14
orthogonal, 107–139
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orthogonal projection, 119–122 
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parity check matrix, 25
PID, 154
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principal ideal ring, 154 
projective space, 52 
projectivities, 52
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QR decomposition, 126
QR factorization, 126

R

rank, 38–43
rank decomposition, 145 
right-singular vector, 131 
rigid motion, 50
ring, 2 
rotation, 92–93
row rank, 41

S

scaling, 91–92
self-adjoint, 4
self-adjoint matrix, 123
set, 1
short exact sequence, 43
singular value, 130
singular value decomposition, 130–133
Smith normal form, 157 
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Spectral decomposition, 125
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130–133
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T
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