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About This Book 

Welcome to “Advanced Statistical Methods.” This book is designed to be a compre-
hensive and practical guide to understanding and utilizing some of the fundamental 
tools in statistical analysis for real-world applications. Whether you are a student, 
researcher, or professional in any field, this book aims to equip you with the necessary 
knowledge and skills to harness the power of data and make informed decisions. 

The world we live in today is inundated with data, and the ability to analyze 
and interpret this information is crucial. In this context, regression analysis serves 
as a powerful tool to establish relationships between variables and predict future 
outcomes. With regression, we can explore cause-and-effect relationships and iden-
tify patterns that can help us better understand and optimize various processes. 
Through real-world case studies, we will explore how regression can be applied 
to fields as diverse as economics, marketing, healthcare, and more. 

Index numbers, another vital topic covered in this book, play an integral role in 
measuring changes in economic and social indicators over time. Understanding how 
to construct and interpret index numbers is essential in tracking inflation, calcu-
lating purchasing power, and comparing economic performance across different 
periods. We will examine various methodologies and case studies that demonstrate 
the practical significance of index numbers in different scenarios. 

Vital statistics offer a unique perspective on understanding population dynamics 
and health trends. We will delve into the analysis of birth rates, death rates, population 
growth, and other demographic indicators that have profound implications for public 
policy, healthcare planning, and social development. Through the lens of real-life 
applications, we will witness how vital statistics can inform decision-making at 
local, national, and global levels. 

Time series analysis is another critical aspect of this book, enabling us to discern 
patterns and trends within data that evolves over time. From financial market fore-
casting to climate change predictions, time series analysis is central to numerous 
fields. We will explore various time series models, including moving averages, auto 
regressive models, and more, while examining case studies that demonstrate their 
efficacy and limitations.
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xii About This Book

Throughout this book, the focus remains firmly on practical applications. Each 
chapter includes hands-on examples and case studies that bridge the gap between 
theory and real-world problem-solving. We will leverage popular statistical soft-
ware and programming languages to demonstrate how these methodologies can be 
implemented effectively. 

It is my sincere hope that this book will empower you to harness the full potential 
of statistical tools in your professional endeavors. By the end of this journey, you 
should feel confident in applying these methods to analyze data, draw meaningful 
insights, and make informed decisions that drive positive change. 

So, let’s embark on this enriching journey through the realm of applied analytics 
together, as we explore the diverse landscape of regression, index numbers, vital 
statistics, and time series, and unlock the potential of data-driven decision-making. 

Happy learning and analyzing!
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Fig. 1.1 A comic on reactive and predictive data 

What is regression analysis? 

Regression analysis is a statistical technique used to examine the relationship between 
a dependent variable and one or more independent variables. It aims to find the best-
fitting mathematical model that describes the relationship between variables and 
enables predictions or explanations based on that model. 

Why use regression analysis? 

Regression analysis is used for several purposes, including: 

Prediction: It helps predict the value of the dependent variable based on known 
values of independent variables. (Copyright 2015 by Modern Analyst Media L.L.C) 
(Fig. 1.1). 

Explanation: It provides insights into how independent variables are related to the 
dependent variable, allowing researchers to understand the underlying mechanisms 
and factors influencing the outcome. 

Control: Regression analysis can help control for the effects of confounding variables 
by including them as independent variables in the model.
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Fig. 1.2 Quote on regression 

How does regression analysis work? 

Regression analysis involves several steps: 

Data collection: Gather data on the dependent variable and independent variables of 
interest. 

Model selection: Choose the appropriate regression model based on the nature of 
the data and research question (e.g., linear regression, multiple regression, logistic 
regression, etc.). 

Model estimation: Estimate the coefficients of the regression equation that best fit 
the data. 

Model assessment: Evaluate the goodness of fit of the model to determine how well 
it explains the relationship between variables. 

Interpretation: Interpret the coefficients of the regression equation to understand the 
direction and magnitude of the relationship between variables. 

Where is regression analysis used? 

Regression analysis is widely used in various fields, including (Fig. 1.2): 

Economics: To study the relationship between economic variables such as GDP, 
inflation, and unemployment.
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Finance: To predict stock prices, analyze risk factors, and understand the determinants 
of asset returns. 

Social sciences: To examine the impact of variables such as education, income, and 
demographics on social outcomes. 

Marketing: To analyze the relationship between marketing expenditures, customer 
behavior, and sales. 

Healthcare: To identify risk factors, predict patient outcomes, and analyze the 
effectiveness of treatments. 

When to use regression analysis? 

Regression analysis can be used when there is a relationship between a dependent 
variable and one or more independent variables. 

The relationship can be reasonably assumed to be linear or can be transformed to 
approximate linearity. 

Sufficient data is available to estimate the model parameters reliably. 

Note: Regression analysis assumes certain assumptions about the data, such as 
linearity, independence of errors, and homoscedasticity, which should be evaluated 
before applying the method. 

1.1 Difference Between Correlation and Regression 

See Table 1.1. 

Table 1.1 Differences between correlation and regression 

Correlation Regression 

Relationship between variables in terms of 
numbers 

Mathematical relationship between variables 

Examines the relationship and there are no 
distinction b/w independent and dependent 
variables 

The difference between variables is clearly 
highlighted 

Spurious correlations can exist No spurious correlations 

We understand how the variables move together We study the changes in one variable 
(dependent) when there is a unit change in 
another (independent) variable



6 1 Regression

1.2 Different Types of Regression Analysis 

Regression analysis encompasses various types of regression techniques, each 
designed to address specific research questions or data characteristics. Here are some 
of the main types of regression and their typical usage: 

Linear Regression: Linear regression is the most fundamental type of regression 
analysis. It examines the linear relationship between a dependent variable and one or 
more independent variables. It is used when the relationship between variables can 
be approximated by a straight line. Linear regression finds applications in various 
fields, including economics, social sciences, finance, and engineering. 

Multiple Regression: Multiple regression extends linear regression by considering 
the relationship between a dependent variable and multiple independent variables. It 
is used to analyze how a combination of factors influences the dependent variable. 
Multiple regression is valuable when studying complex relationships and determining 
the relative importance of various predictors. 

Polynomial Regression: Polynomial regression is an extension of linear regression 
that allows for modeling nonlinear relationships between variables. It involves using 
higher-order polynomials to fit curves instead of straight lines. Polynomial regression 
is used when the relationship between variables exhibits a curvilinear pattern. 

Logistic Regression: Logistic regression is utilized when the dependent variable 
is categorical or binary (e.g., yes/no, success/failure). It models the probability of 
an event occurring based on independent variables. Logistic regression finds appli-
cations in areas such as medical research, social sciences, and marketing, where 
predicting binary outcomes is important. 

Ridge Regression and Lasso Regression: Ridge regression and Lasso regression are 
used when dealing with multicollinearity, a situation where independent variables 
are highly correlated. These techniques introduce regularization to the regression 
model, helping to reduce the impact of multicollinearity and prevent overfitting. 
Ridge regression and Lasso regression are particularly useful in situations where 
there are more predictors than observations. 

Time Series Regression: Time series regression is employed when analyzing data 
collected over time, where the order of observations is crucial. It considers the 
temporal component and the relationship between the dependent variable and one or 
more independent variables. Time series regression is commonly used in financial 
analysis, economics, and forecasting. 

Nonlinear Regression: Nonlinear regression is used when the relationship between 
the dependent variable and independent variables cannot be adequately described by 
a linear equation. It allows for more flexible modeling of complex relationships by 
using nonlinear functions or transformations. Nonlinear regression finds applications 
in various fields, such as physics, biology, and environmental sciences.
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These are some of the main types of regression analysis. Choosing the appropriate 
regression technique depends on the nature of the data, the research question, and 
the underlying assumptions. It is essential to understand the characteristics of each 
regression type to select the most suitable approach for a given analysis. 

1.3 Regression Lines 

At the heart of regression analysis lies the regression line, a fundamental concept 
that enables us to model and predict values based on observed data. By fitting a line 
through observed data points, regression analysis provides valuable insights into the 
strength and direction of the relationship. Understanding regression lines is crucial 
for researchers, analysts, and decision-makers across various disciplines, enabling 
them to make informed predictions and draw meaningful conclusions from data. 

1.3.1 Definition 

A regression line is a straight line that best represents the relationship between two 
variables in a scatter plot. It serves as a mathematical model to estimate the average 
value of one variable (dependent variable) based on the known values of another 
variable (independent variable). 

1.3.2 Types of Regression Lines 

There are two primary types of regression lines (Fig. 1.3):

a. Simple Linear Regression Line: This type of regression line represents the rela-
tionship between two variables when there is a linear association. It is defined 
by the equation 

Y = a + bX, 

where Y is the dependent variable, X is the independent variable, a is the 
intercept, and b is the slope. 

b. Multiple Regression Line: In cases where more than one independent variable 
influences the dependent variable, multiple regression is used. The regression line 
becomes a multidimensional plane or hyperplane that represents the relationship 
among all the variables involved.
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Fig. 1.3 Regression lines

1.3.3 Fitting a Regression Line 

To find the best-fitting regression line, the method of least squares is commonly 
employed. This method minimizes the sum of the squared differences between the 
observed data points and the corresponding predicted values on the line. The resulting 
regression line passes through the center of the data cloud, capturing the general trend 
of the relationship. 

1.3.4 Interpreting a Regression Line 

The regression line provides valuable insights into the relationship between variables. 
Key elements of interpretation include: 

a. Slope: The slope of the regression line (b) represents the change in the dependent 
variable associated with a one-unit change in the independent variable. A positive 
slope indicates a positive relationship, while a negative slope suggests a negative 
relationship. 

b. Intercept: The intercept (a) represents the predicted value of the dependent vari-
able when the independent variable is zero. It is the point where the regression 
line intersects the y-axis. 

c. Goodness of Fit: The closeness of the data points to the regression line is a 
measure of the goodness of fit. The coefficient of determination (R-squared) quan-
tifies the proportion of the variation in the dependent variable that is explained 
by the independent variable(s).
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1.3.5 Practical Applications 

Regression lines have a wide range of applications across various fields: 

a. Economics: Regression analysis is used to study the relationships between 
economic variables such as GDP, inflation, and unemployment. 

b. Social Sciences: Regression lines help analyze the impact of independent vari-
ables on dependent variables, such as studying the effect of education level on 
income. 

c. Finance: Regression analysis is used to model stock prices, analyze risk factors, 
and estimate returns on investments. 

d. Medicine: Regression lines aid in predicting patient outcomes based on medical 
variables, such as predicting the progression of a disease based on various 
biomarkers. 

1.3.6 Properties of Regression Lines 

Regression lines can be considered as graphical representations of regression equa-
tions. Since there are two regression equations there will be two regression lines that 
will follow the properties mentioned below: 

The lines intersect at a point, which is denoted as (X , Y ). 
The closer the lines are to each other, the greater the correlation will be. 
When the correlation is equal to 0, there is no correlation or linear relationship 

between the regression lines. Therefore, the lines will be perpendicular to each other. 
When correlation is equal to 1, the regression lines are perfectly correlated. The 

two lines will coincide and there will be one single line visible. 

1.4 Regression Equations 

The regression equation is a fundamental component of regression analysis as it 
provides a mathematical representation of the relationship between variables. Regres-
sion equations provide a mathematical representation of the relationship between 
variables in a regression model. They enable researchers and analysts to quantify 
and predict the impact of independent variables on the dependent variable. Under-
standing regression equations is crucial for conducting robust statistical analyses and 
making informed decisions in various domains.
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1.4.1 Definition 

A regression equation is a mathematical formula that describes the relationship 
between variables in a regression model. It represents the best-fitting line or curve 
that minimizes the difference between the observed data points and the predicted 
values. 

The equation is typically written in the form: Y = b0 + b1X1 + b2X2 +  · · ·  
+ bnXn, where Y is the dependent variable, X1, X2, …, Xn are the independent 
variables, b0 is the intercept, and b1, b2, …, bn are the regression coefficients. 

1.4.2 Components of a Regression Equation 

a. Dependent Variable (Y): The variable being predicted or explained by the 
regression model. 

b. Independent Variables (X1, X2, …, Xn): The variables used to predict or explain 
the dependent variable. 

c. Intercept (b0): The value of the dependent variable when all independent variables 
are zero. 

d. Regression Coefficients (b1, b2,…, bn): The coefficients that represent the change 
in the dependent variable associated with a one-unit change in the corresponding 
independent variable, holding other variables constant. 

1.4.3 Interpretation of Regression Coefficients 

Each regression coefficient in the equation has its own interpretation. For instance, 
a positive coefficient indicates that an increase in the corresponding independent 
variable leads to an increase in the dependent variable, while a negative coefficient 
suggests the opposite. The magnitude of the coefficient reflects the strength of the 
relationship between the variables. 

1.4.4 Different Regression Equations 

Simple Linear Regression Equation: In simple linear regression, there is only one 
independent variable. The equation takes the form: Y = b0 + b1X, where Y is the 
dependent variable, X is the independent variable, b0 is the intercept, and b1 is the 
slope coefficient. The slope coefficient represents the change in Y associated with a 
one-unit change in X. 

Multiple Regression Equation: Multiple regression involves more than one inde-
pendent variable. The equation expands as follows: Y = b0 + b1X1 + b2X2 +  · · ·
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+ bnXn, where Y is the dependent variable, X1, X2, …, Xn are the independent vari-
ables, and b1, b2, …, bn are the respective regression coefficients. Each coefficient 
represents the change in Y associated with a one-unit change in the corresponding 
independent variable, holding other variables constant. 

1.4.5 Practical Applications 

Regression equations have widespread applications across various fields. They are 
extensively used in economics, finance, social sciences, healthcare, and many other 
disciplines. For example, they can be employed to predict sales based on adver-
tising expenditure, determine the impact of education on income, or forecast stock 
prices using historical data. Regression provides valuable insights into relation-
ships between variables, helping professionals make evidence-based decisions and 
predictions. 

Some examples are as follows: 

Economics 

Demand and price elasticity: Regression analysis can be used to estimate the impact 
of price changes on the demand for a product or service, helping businesses optimize 
pricing strategies. 

Economic growth: Researchers often employ regression analysis to study the deter-
minants of economic growth, examining factors such as investment, education, and 
technological progress.
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Social Sciences 

Education and income: Regression analysis can explore the relationship between 
education level and income, controlling for other variables such as age, gender, and 
occupation, to assess the impact of education on earnings. 

Crime rates: Regression analysis can be used to investigate the factors influencing 
crime rates, such as poverty, unemployment, and law enforcement expenditures. 

Finance: Stock price prediction: Regression models can be employed to analyze 
historical stock prices and other financial indicators to forecast future stock prices, 
aiding investors in making informed decisions. 

Risk analysis: Regression analysis can help financial institutions assess the risk 
associated with lending by examining factors such as credit score, income, and debt-
to-income ratio. 

Marketing: Customer behavior: Regression analysis can be used to understand 
consumer behavior, such as the impact of advertising expenditure on sales or the 
influence of pricing on customer purchasing decisions. 

Market segmentation: Regression models can assist in identifying different 
customer segments based on demographic or psychographic variables, enabling 
targeted marketing campaigns. 

Healthcare: Disease prognosis: Regression analysis can be applied to predict the 
prognosis of a disease based on patient characteristics, laboratory results, and medical 
history, aiding in treatment planning. 

Health outcomes: Researchers often use regression models to investigate the 
relationship between health outcomes (e.g., mortality rates, patient satisfaction) and 
various factors, including treatment methods and patient demographics. 

1.5 Simple Linear Regression 

It is a statistical approach that helps in understanding the relationship between 2 
continuous variables that are quantitative. It is used in all those fields where there is 
quantitative data like forecasting, ML models, etc. The important thing in forecasting 
simple linear regression is that the dependent variable must be continuous and the 
independent variable can be measured as continuous or categorical. 

This method has 2 objectives: 

(a) To model the relationship between variables under study. 
(b) Forecasting new observations based on relationship derived. 

In simple linear regression there are 2 variables—independent (X) and dependent 
(Y) and we have to find a relationship between X and Y and we can have the following 
approaches:
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Deterministic: We can predict the output variables using a function of independent 
variable. 

For example, all well-known formulae such as area of cylinder, volume of a triangle, 
Ohm’s law, etc. 

Random: There may be no relationship between variables or relationships may exist 
only during certain time period and not during other periods. Most of the studies 
defines a random relationship as a “No relationship between variables.” 

For example, we spend Rs.500 on a lucky draw and win up to Rs.100. In this 
scenario, we definitely cannot say that for every 500 rupees we spend, we can earn 
a 100 rupee. 

1.5.1 Properties of Regression Coefficients in Simple Linear 
Regression 

In simple linear regression, there is only one independent variable, and the regression 
equation takes the form: 

Y = b0 + b1X 

where Y is the dependent variable, X is the independent variable, b0 is the intercept, 
and b1 is the regression coefficient. 

The regression coefficient, b1, represents the slope of the regression line, which 
indicates the change in the dependent variable (Y) associated with a one-unit change 
in the independent variable (X). It quantifies the strength and direction of the linear 
relationship between the variables. 

1.5.2 Interpreting the Regression Coefficient 

Positive coefficient (b1 > 0): A positive coefficient indicates a positive relationship 
between the independent and dependent variables. For every one-unit increase in the 
independent variable, the dependent variable is expected to increase by the value of 
the coefficient. Conversely, for a one-unit decrease in the independent variable, the 
dependent variable is expected to decrease by the coefficient value. 

Negative coefficient (b1 < 0): A negative coefficient indicates a negative relation-
ship between the independent and dependent variables. For every one-unit increase 
in the independent variable, the dependent variable is expected to decrease by the 
absolute value of the coefficient. Similarly, for a one-unit decrease in the independent 
variable, the dependent variable is expected to increase by the absolute value of the 
coefficient.
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Zero coefficient (b1 = 0): A coefficient of zero suggests no linear relationship 
between the independent and dependent variables. In this case, changes in the 
independent variable have no effect on the dependent variable. 

It’s important to note that the regression coefficient provides information about 
the average relationship between the variables in the sample data. However, it does 
not necessarily imply causation, and other factors should be considered to establish 
causal relationships. 

To estimate the regression coefficients (b0 and b1), statistical techniques such 
as the method of least squares are commonly used to find the best-fitting line that 
minimizes the sum of squared differences between the observed data points and the 
predicted values. 

Understanding the regression coefficients in simple linear regression is crucial for 
interpreting and drawing insights from the relationship between the variables under 
study. 

The two regression coefficients have the following properties 

• Both the coefficients must have the same sign. 
• If one of the regression coefficients is greater than 1 then the other should be less 

than 1. 

The geometric mean of regression coefficients is equal to correlation coefficient, 

r = ∓ √
byx ∗ bxy 

1.5.3 Estimating the Regression Equations from the Given 
Data in Case of Simple Linear Regression 

To estimate the regression equation in simple linear regression, you need a set of data 
consisting of pairs of observations for the dependent variable (Y) and the independent 
variable (X). The regression equation represents the relationship between these two 
variables. 

Let’s assume you have a dataset with the following observations: 

(X1, Y1) (X2, Y2) (X3, Y3) ... (Xn, Yn) 

To estimate the regression equation, you need to find the slope (β1) and the 
intercept (β0) that best fit the data. The regression equation is given by: 

Y = β0 + β1 ∗ X 

To estimate the slope (β1) and intercept (β0), you can use the least squares method. 
This method minimizes the sum of the squared differences between the observed Y
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values and the predicted Y values based on the regression equation. The formulas to 
estimate the slope and intercept are as follows: 

β1 = ∑
((
Xi − X

)(
Yi − Y

))
/∑

((
Xi − X

)2)

β0 = Y − β1 ∗ X 

where 
Xi is the value of the independent variable for observation i. 
X̄ is the mean of the independent variable values. 
Yi is the value of the dependent variable for observation i. 
Ȳ is the mean of the dependent variable values. 
By calculating the slope (β1) and intercept (β0) using these formulas, you can 

estimate the regression equation for the data. 

1.5.4 Examples of Calculating Regression Equations 
from Given Data 

Example 1: Housing Prices 

Suppose you want to estimate the relationship between the size of houses (in square 
feet) and their corresponding prices (in dollars). You collect data for 10 houses, as 
follows (Table 1.2). 

To estimate the regression equation, we’ll calculate the slope (β1) and intercept 
(β0) using the formulas mentioned earlier: 

Step 1: Calculate the means: X = (1500 + 1800 +  · · ·  +  2000 + 1600)/10 = 1850

Table 1.2 Table of prizes of 
houses based on their sizes House size (X) Price (Y) 

1500 2,00,000 

1800 2,50,000 

2200 3,00,000 

1400 1,90,000 

2400 3,20,000 

1700 2,30,000 

1900 2,60,000 

2100 2,80,000 

2000 2,70,000 

1600 2,10,000 
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Y = (200,000 + 250,000 +  · · ·  +  270,000 + 210,000)/10 = 240,000 

Step 2: Calculate
∑

((Xi−X)(Yi−Y))∑
((Xi−X)2) 

= 

((1500 − 1850)(200,000 − 240,000) + (1800 − 1850)(250,000 − 240,000) 
+  · · ·  +  (1600 − 1850)(210,000 − 240,000)) 
((1500 − 1850)2 + (1800 − 1850)2 +  · · ·  +  (1600 − 1850)2) 

= 
−35,000 

1,650,000 
≈ −0.0212 

Step 3: Calculate β0: 

β0 = Y − β1 ∗ X = 240,000 − (−0.0212) (1850) ≈ 278,900 

The estimated regression equation is: price = 278,900 − 0.0212 * Size of the 
house 

Example 2: Advertising and Sales: Suppose you want to examine the relationship 
between advertising expenditures (in dollars) and corresponding sales (in units) for 
a certain product. You collect data for 8 different advertising campaigns, as follows 
(Table 1.3). 

Following the same steps as in the previous example: 

Step 1: Calculate the mean: 

X = (1000 + 1200 +  · · ·  +  1300 + 1400)/8 = 1250 
Y = (50 + 60 +  · · ·  +  65 + 70)/8 = 62.5 

Step 2: Calculate

Table 1.3 Advertising 
expenditure tabulated against 
the sales 

Advertising expenditure (X) Sales (Y) 

1000 50 

1200 60 

1500 70 

900 45 

1800 80 

1100 55 

1300 65 

1400 70 
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Table 1.4 Production 
tabulated with respect to the 
electricity consumed 

Production (X) Electricity usage (Y) 

4.51 2.48 

3.58 2.26 

4.31 2.47 

5.06 2.77 

5.64 2.99 

4.99 3.05 

5.29 3.18 

5.83 3.46

∑
((Xi − X)(Yi − Y))
∑

((Xi − X)2) 

= 

(1000 − 1250)(50 − 62.5) + (1200 − 1250)(60 − 62.5) 
+  · · ·  +  (1400 − 1250)(70 − 62.5) 

(1000 − 1250)2 + (1200 − 1250)2 +  · · ·  +  (1400 − 1250)2) 

= 
−8750 

350,000 
≈ −0.025 

Step 3: Calculate β0: β0 = Y − β1 ∗ X = 62.5 − (−0.025) ∗ (1250) ≈ 93.75. 

Step 4: The estimated regression equation is: Sales = 93.75 − 0.025 * Advertising 
expenditure. 

Example: For the electricity usage and production data given below compute the 
regression equations. In this dataset production is the independent variable, and 
electricity usage Y is the dependent variable (Table 1.4). 

Solution: 

See Table 1.5.
The equation of regression can be written as, 

Y = β0 + β1x 

β1 = 
n

∑
xy − (

∑
x

∑
y) 

n
∑

x2 − (
∑

x)2 

β0 = y − β1x

β1 = 
12(169.25) − (58.62)(34.15) 

12(291.22) − (58.62)2 

β1 = 
2031 − 2001.873 

3494.64 − 3436.3044
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Table 1.5 Calculation of regression equation for the electricity consumed and production values 

Production (X) Electricity usage (Y) XY X2 

4.51 2.48 11.1848 20.34 

3.58 2.26 8.0908 12.82 

4.31 2.47 10.6457 18.58 

5.06 2.77 14.0162 25.60 

5.64 2.99 16.8636 31.81 

4.99 3.05 15.2195 24.90 

5.29 3.18 16.8222 27.98 

5.83 3.46 20.1718 33.98 

4.7 3.03 14.241 22.09 

5.61 3.26 18.2886 31.4721 

4.9 2.67 13.083 24.01 

4.2 2.53 10.626 17.64 

58.62 34.15 169.626 291.22

= 
29.127 

58.3356

β1 = 0.4993 

x =
∑

x 

n 
= 

58.62 

12 
= 4.885 y =

∑
y 

n 
= 

34.15 

12 
= 2.8458 

β0 = y − β1x 
= 2.8458 − 0.4993(4.885) 
= 2.8458 − 2.4391 

β0 = 0.4067 
y = 0.4067 + 0.4993x 

Example 3. A survey was conducted to study the relationship between expenditure 
(in Rs.) on accommodation (x) and expenditure on food and entertainment (y) and 
the following results were obtained (Table 1.6). 

Coefficient of correlation, r = 0.57. 
Write down the regression equation and estimate the expenditure on food and 

entertainment if the expenditure on accommodation is Rs.200.

Table 1.6 Table to study the relationship between the expenditure and accommodation 

Item Mean Standard deviation 

Expenditure on accommodation 173 63.15 

Expenditure on food and entertainment 47.8 22.98 
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Solution: 
Let expenditure on accommodation be X. 
Let expenditure on food and entertainment be Y. 
Given: x = 173 y = 47.8 σx = 63.15 σy = 22.98 r = 0.57. 
Given X = 200, find Y. 
We have to use Y on X 

Y − y = byx
(
X − X

)

byx = 
rσ y 
σx 

= 0.57
(
22.98 

63.15

)
= 0.2074 

Y − 47.8 = 0.2074(200 − 173) 
Y − 47.8 = 5.5998 

Y = 53.3998 

Note: The method of estimating the regression equation in simple linear regression 
is closely related to finding the line of best fit. In fact, the regression equation itself 
represents the line of best fit. 

The line of best fit, also known as the fitted line or the regression line, is a straight 
line that represents the best approximation of the relationship between the indepen-
dent variable (X) and the dependent variable (Y) based on the given data points. It is 
called the “best fit” because it minimizes the overall distance between the line and 
the data points. 

In simple linear regression, the line of best fit is determined by estimating the slope 
(β1) and the intercept (β0) of the regression equation. The slope represents the rate 
of change of the dependent variable with respect to the independent variable, while 
the intercept represents the value of the dependent variable when the independent 
variable is zero. 

The process of estimating the regression equation involves finding the values of 
β0 and β1 that minimize the sum of the squared differences between the observed Y 
values and the predicted Y values based on the regression equation. This method is 
known as the least squares method. 

In summary, the method of estimating the regression equation in simple linear 
regression and finding the line of best fit are closely related. The regression equation 
provides the mathematical representation of the line of best fit, while the least squares 
method is used to determine the values of the slope and intercept that minimize the 
overall error between the line and the data points. 

1.5.5 Line of Best Fit 

In regression analysis, the line of best fit refers to the straight line that best represents 
the relationship between the independent variable(s) and the dependent variable in a
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linear regression model. It is also known as the regression line or the least squares 
line. 

The line of best fit is determined by minimizing the sum of the squared differences 
between the observed data points and the corresponding predicted values on the line. 
This technique is called ordinary least squares (OLS) regression. 

Mathematically, the line of best fit is represented by the equation: 

y = mx + b 

where y is the dependent variable (the variable we want to predict). 

x is the independent variable (the variable used to predict y). 

m is the slope of the line, representing the change in y for a one-unit change in x. 

b is the y-intercept, representing the value of y when x is zero. 
The slope (m) and the y-intercept (b) are estimated using statistical methods 

to minimize the sum of squared residuals, which are the differences between the 
observed y-values and the predicted y-values on the line. The line that minimizes the 
sum of squared residuals is considered the best fit line. 

Once the line of best fit is determined, it can be used to predict the values of the 
dependent variable for given values of the independent variable(s) within the range 
of the data. The line can also be used to assess the strength and direction of the 
relationship between the variables, as well as to identify any outliers or influential 
points that deviate significantly from the line. 

Example 1: Height and Weight 

Let’s consider a dataset that includes the heights (in inches) and weights (in pounds) 
of individuals. We want to find the line of best fit to predict weight based on height 
(Table 1.7). 

Step 1: Calculate the means of x and y:

Table 1.7 Table showing the height and weight of individuals 

Height (Y) 
(inches) 

Weight (X) 
(pounds) 

x − x y − y (x − x)2 (y − y)2 (x − x)∗(y − y) 

125 64 − 3 − 11.7 9 136.89 − 34.9 
140 68 1 3.3 1 10.89 3.3 

160 72 5 23.3 25 542.89 116.5 

110 60 − 7 − 26.7 49 713.89 186.9 

135 66 − 1 − 1.7 1 2.89 1.7 

155 70 3 18.3 9 335.89 55 

825 400 − 2 4.8 94 1743.34 330.5 
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Table 1.8 Table with distance covered along with time taken 

Distance (X) Time (Y) x − x y − y (x − x)2 (y − y)2 (x − x)∗(y − y) 
50 3.5 − 125 − 6.73 15,625 45.15 845.63 

100 6.8 − 75 − 3.43 5625 11.79 257.25 

150 9.2 − 25 − 1.03 625 1.06 25.75 

200 12.1 25 1.87 625 3.5 46.75 

250 14.8 75 4.57 5625 20.89 343.13 

300 17.5 125 7.27 15,625 52.91 1139.38 

mean(x) = x = (64 + 68 + 72 + 60 + 66 + 70)/6 = 67kg 
mean(y) = y = (125 + 140 + 160 + 110 + 135 + 155)/6 = 136.7 inches 

Step 2: Calculate the differences from the means: x − mean(x): [− 3, 1, 5, − 7, − 
1, 3] y − mean(y): [− 11.7, 3.3, 23.3, − 26.7, − 1.7, 18.3]. 

Step 3: Calculate the squared differences:
∑

(x − x)2 = [9, 1, 25, 49, 1, 9]:
∑

(y − y)2 = [136.89, 10.89, 542.89, 713.89, 2.89, 335.89] 

Step 4: Calculate the product of the differences: [− 34.9, 3.3, 116.5, 186.9, 1.7, 55]. 

Step 5: Calculate the slope (m): m = ∑[(x − mean(x))(y − mean(y))]
∑[(x − mean(x))2 ] = 330.5/94 ≈ 3.511. 

Step 6: Calculate the y-intercept (b): b = y − (m *x) = 136.7 − 3.511 * 67 ≈ −  
95.24. 

Therefore, the line of best fit is: y  = 3.511x − 95.24. 

Example 2: Time and Distance. 
Let’s consider a dataset that records the time (in hours) it takes to travel a certain 

distance (in miles). We want to find the line of best fit to predict time based on 
distance (Table 1.8). 

Step 1: Calculate the means of x and y: 

Mean (x) = (50 + 100 + 150 + 200 + 250 + 300)/6 = 175 miles 

Mean (y) = (3.5 + 6.8 + 9.2 + 12.1 + 14.8 + 17.5)/6 = 10.23 h 

Step 2: Calculate the differences from the means. (Column 3 & 4). 

Step 3: Calculate the squared differences: (Column 5 & 6). 

Step 4: Calculate the product of the differences: (Column 7 & 8).
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Table 1.9 Table scores in 
sports and pre board exam of 
few students 

Scores in sports (X) Scores in preboard exam (Y) 

10 20 

12 10 

15 18 

10 12 

Step 5: Calculate the slope (m): 

m = ∑
[
(x − mean(x))(y − mean(y))

]

∑
[
(x − mean(x))2

] = 
3253.89 

44450 
≈ 0.0733 

Step 6: Calculate the y-intercept (b): 

b = y − m ∗ x· = 10.23 − 0.0733 ∗ 175 ≈ −0.42 

Therefore, the line of best fit is: y = 0.0733x − 0.42 

1. Consider the scores of selected students in college with respect to sports and 
exams. Find the regression equation and line of best fit (Table 1.9). 

Solution: 

See Table 1.10. 

x =
∑

x 

n 
= 

47 

4 
= 11.75 y =

∑
y 

n 
= 

60 

4 
= 15 

a =
∑

xy
∑

x2 
= 5 

16.75 
= 0.2985 

b =
∑

y 

n 
= 15 

y = 0.2985x + 15.

Table 1.10 Solution table for calculating the regression equation for the scores obtained in sports 
and preboard exam 

x y X = x − x Y = y − y XY X2 

10 20 − 1.75 5 − 8.75 3.0625 

12 10 0.25 − 5 − 1.25 0.0625 

15 18 3.25 3 9.75 10.5625 

10 12 − 1.75 − 3 5.25 3.0625 

47 60 0 0 5 16.75 
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Note: This method can also be done without transforming x and y. We compute all 
the required values and use the normal equations. 

Compute and fit multiple regression model to the following data (Table 1.11). 
Calculate the regression sums:

∑
x2 1 = ∑X2 

1 −
[
(∑X1) 

n 

2]
= 38767−

[
(555)2 

8

]
= 38767−

[
308025 

8

]

∑
x2 1 = 38767 − 38503.125 = 263.875

∑
x2 2 = ∑X2 

2 −
[
(∑X2) 

n 

2]
= 2823−

[
(145)2 

8

]

= 2823−2628.125 = 194.875
∑

x2 2 = 194.875

∑x1y = ∑X1y − ∑X1∑y 

n 

= 101895− 
(555)(1452) 

8 

= 101895 − 
805860 

8 
= 101895−100732.5

∑x1y = 1162.5

∑x2y = ∑X2y − ∑X2∑y 

n 

= 25364 − 
(145)(1452) 

8 
= 25364 − 26317.5

∑x2y = −953.5

Table 1.11 Table of values to compute the regression lines 

y X1 X2 X1 
2 X2 

2 X1 y X2 y X1X2 

140 60 22 3600 484 8400 3080 1320 

155 62 25 3844 625 9610 3875 1550 

159 67 24 4489 576 10,653 3816 1608 

179 70 20 4900 400 12,530 3580 1400 

192 71 15 5041 225 13,632 2880 1065 

200 72 14 5184 196 14,400 2800 1008 

212 75 14 5625 196 15,900 2968 1050 
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∑x1x2 =
∑

X1X2 −
(

∑X1∑X2 

n

)

= 9859 − 
(555)(145) 

8 
= 9859 − 10059.375

∑x1x2 = −200.375.

We calculate b0, b1 etc. 

b0 = y − b1X1 − b2X2 

b1 =
∑

x2 2
(∑

x1y
) − (∑

x1x2
)(∑

x2y
)

∑
x2 1(

∑
x2 2) −

(∑
x1x2

)2 

b2 =
∑

x2 1
(∑

x2y
) − (∑

x1x2
)(∑

x1y
)

∑
x2 1(

∑
x2 2) −

(∑
x1x2

)2 

b1 = 
194.875 × 1162.5 − (−200.375)(−953.5) 

263.875(194.875) − (−200.375)2 

= 
226542.1875 − 191057.5625 
51422.64063 − 40150.14063 

= 
35484.625 

11272.5 
b1 = 3.1479 

b2 = 
263.875 × (−953.5) − (−200.375)(1162.5) 

263.875(194.875) − (−200.375)2 

= 
−251604.8125 + 232935.9375 

11272.5
= 

−18668.875 

11272.5 
= −1.6557 

y =
∑ y 

n 
= 

1452 

8 
= 181.5 

X1 =
∑ X 1 

n 
= 

555 

8 
= 69.375 

X2 =
∑ X 2 

n 
= 

145 

8 
= 18.125 

b0 = y − b1X1 − b2X2 

= 181.5 − (3.1479)(69.375) − (−1.6557)(18.125) 
= 181.5 − 218.3856 + 30.0096 = −6.867 

ŷ = b0 + b1x1 + b2 
x2 = −6.867 + 3.148x1 − 1.656x2.
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1.5.6 Evaluation of Model Goodness of Fit in Simple 
Regression: Understanding R-squared and Adjusted 
R-squared 

Introduction: In simple regression analysis, assessing the goodness of fit of a model 
is crucial to understand how well it explains the relationship between the dependent 
variable and the independent variable. Two commonly used measures for evaluating 
model fit are R-squared (coefficient of determination) and adjusted R-squared. This 
article aims to explain these measures, their interpretation, and their significance in 
assessing the quality of a simple regression model. 

R-squared: R-squared is a statistical measure that represents the proportion of the 
variance in the dependent variable that can be explained by the independent vari-
able(s) in a regression model. It ranges between 0 and 1, where 0 indicates that the 
independent variable(s) has no explanatory power, and 1 indicates a perfect fit. 

Interpretation of R-squared: The interpretation of R-squared depends on the context 
and the nature of the data. A higher R-squared value suggests that a larger proportion 
of the variation in the dependent variable can be accounted for by the indepen-
dent variable(s). Conversely, a lower R-squared value indicates that the independent 
variable(s) has less explanatory power. It is important to note that R-squared alone 
does not determine the accuracy or validity of a model, and other factors should be 
considered for a comprehensive evaluation. 

Limitations of R-squared: While R-squared is a widely used metric, it has certain 
limitations. R-squared tends to increase when additional independent variables are 
added to the model, even if those variables do not have any meaningful impact on 
the dependent variable. This is where adjusted R-squared comes into play. 

Adjusted R-squared: Adjusted R-squared addresses the limitation of R-squared by 
adjusting for the number of independent variables in the model. It takes into account 
the degrees of freedom and penalizes the inclusion of irrelevant variables. Adjusted 
R-squared is always lower than or equal to R-squared. 

Interpretation of Adjusted R-squared: Adjusted R-squared is a more conservative 
measure of model fit compared to R-squared. It considers the trade-off between the 
number of variables and the improvement in model fit. A higher adjusted R-squared 
indicates that the independent variable(s) explain a larger proportion of the variation 
in the dependent variable, considering the number of variables in the model. It helps 
prevent overfitting by penalizing the inclusion of unnecessary variables. 

Comparing R-squared and Adjusted R-squared: When deciding between R-squared 
and adjusted R-squared, it is essential to consider the complexity of the model and the 
number of variables included. If the model contains only one independent variable, 
R-squared and adjusted R-squared will be identical. However, as the number of 
variables increases, adjusted R-squared becomes a more reliable measure of model 
fit.
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Conclusion: Evaluating the goodness of fit is crucial in simple regression analysis to 
determine the effectiveness of the model in explaining the relationship between the 
dependent and independent variables. R-squared provides a measure of the proportion 
of variance explained, while adjusted R-squared adjusts for the number of variables 
in the model. Both measures have their significance and should be interpreted in 
conjunction with other evaluation criteria to draw valid conclusions about the model’s 
quality. 

1.6 Interpretation of the Standard Error of the Estimate 

The standard error of the estimate (SE) is a measure of the average distance between 
the observed values of the dependent variable and the predicted values obtained from 
a regression model. It quantifies the variability or scatter of the data points around 
the regression line. A smaller SE indicates less dispersion of the data points and a 
better fit of the model. 

Interpreting the SE involves considering the context of the data and the scale of the 
dependent variable. Typically, the SE is reported in the same units as the dependent 
variable. For example, if the dependent variable represents sales in dollars, the SE 
would be expressed in dollars. 

The SE can be used to estimate the precision of the predicted values. It provides a 
range within which we can expect the actual values of the dependent variable to fall 
with a certain level of confidence. Specifically, approximately 68% of the observed 
values are expected to lie within one standard error of the estimate from the predicted 
values, and about 95% are expected to lie within two standard errors. 

Example 1: Suppose you conducted a survey to estimate the average height of adults 
in a particular city. After collecting data from a sample of 100 individuals, you 
calculated the mean height to be 170 cm with a standard error of 2 cm. In this case, 
the standard error indicates the average amount of sampling variation in the mean 
height estimates. You can interpret it as follows: “Based on our sample, we estimate 
that the average height of adults in this city is 170 cm, with a margin of error of 
2 cm.”  

Example 2: Let’s say you performed an experiment to investigate the effect of a 
new drug on blood pressure. After conducting the experiment on a sample of 50 
participants, you calculated the mean reduction in blood pressure to be 10 mmHg, 
with a standard error of 1.5 mmHg. In this scenario, the standard error represents 
the precision of the estimate. You could interpret it as: “We found that the average 
reduction in blood pressure due to the new drug is 10 mmHg, and this estimate is 
reasonably precise with a standard error of 1.5 mmHg.” 

Example 3: Consider a regression analysis where you’re examining the relationship 
between income (independent variable) and education level (dependent variable). 
After analyzing a dataset of 200 individuals, you obtain a regression coefficient of
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0.25 with a standard error of 0.05. In this case, the standard error is associated with 
the precision of the regression coefficient estimate. You could interpret it as: “The 
estimated coefficient for income is 0.25, indicating that a one-unit increase in income 
is associated with a 0.25 unit increase in education level, on average. The estimate 
is quite precise, given the standard error of 0.05.” 

Remember, the standard error provides information about the precision or vari-
ability of an estimate. It helps quantify the margin of error and indicates the reliability 
of the estimated parameter. 

1.7 Significance of the Model 

Assessing the significance of a regression model involves evaluating whether the 
relationship between the independent variable(s) and the dependent variable is statis-
tically significant. This is typically done by conducting hypothesis tests, such as the 
t-test or F-test, on the regression coefficients. 

The t-test is used to test the significance of individual coefficients in simple regres-
sion or multiple regression models. It determines whether the coefficient is signifi-
cantly different from zero, implying that the independent variable has a statistically 
significant impact on the dependent variable. A significant coefficient suggests that 
the variable is likely to have a meaningful effect on the outcome. 

The F-test is used to test the overall significance of the regression model. It assesses 
whether the regression model as a whole provides a better fit to the data compared 
to the null model (i.e., a model with no independent variables). A significant F-test 
indicates that the independent variable(s) collectively have a significant impact on 
the dependent variable. 

In both tests, the significance level (alpha) is specified to determine the threshold 
for accepting or rejecting the null hypothesis. The commonly used threshold is 0.05, 
meaning that if the p-value associated with the test statistic is below 0.05, the result 
is considered statistically significant. 

Interpreting the significance of the model involves considering both the statistical 
and practical significance. A statistically significant model implies that the rela-
tionship between the variables is unlikely to have occurred by chance. However, it 
is important to assess the practical significance by considering the magnitude and 
direction of the coefficients and their relevance in the specific context or domain. 

The standard error of the estimate provides a measure of the average distance 
between observed and predicted values, while the significance of the model deter-
mines whether the relationship between the variables is statistically meaningful. Both 
interpretations are essential in evaluating the accuracy and practical relevance of the 
regression model.
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1.8 A Few Case Studies that Demonstrate the Application 
of Linear Regression 

Housing Prices: A common use case for linear regression is predicting housing prices. 
A dataset can be collected, including features such as the size of the house, number 
of bedrooms, location, and age. By applying linear regression, you can estimate 
the relationship between these features and the house prices, allowing you to make 
predictions for new houses based on their characteristics. 

Sales Forecasting: Linear regression can be used to predict sales based on various 
factors, such as advertising expenditure, promotional activities, and historical sales 
data. By analyzing the relationship between these variables, you can develop a model 
that forecasts future sales based on the given inputs. 

Stock Market Analysis: Linear regression can be applied to analyse stock prices and 
predict future trends. By examining historical stock data and considering relevant 
factors like company performance, economic indicators, or news sentiment, you can 
build a regression model to estimate future stock prices. 

Customer Lifetime Value (CLV): Linear regression can be used to predict customer 
lifetime value, which is the projected revenue a company expects to earn from 
a customer during their entire relationship. By using historical data on customer 
purchases, engagement, and other relevant factors, you can create a model to estimate 
the future value of customers and optimize marketing strategies accordingly. 

Demand Forecasting: Linear regression can help predict the demand for a product 
or service. By analyzing historical sales data and considering variables such as 
price, promotional activities, seasonality, and economic indicators, you can develop 
a regression model that estimates future demand and assists in inventory planning 
and production optimization. 

These case studies demonstrate how linear regression can be applied in various 
domains to make predictions and gain insights from data. Keep in mind that real-
world applications often involve more complex models and techniques, but linear 
regression serves as a foundational tool in data analysis and prediction. 

1.9 Polynomial Regression 

In the realm of predictive modeling, polynomial regression stands out as a versatile 
technique that can capture complex relationships between variables. While linear 
regression assumes a linear connection between the dependent and independent vari-
ables, polynomial regression extends this concept by introducing higher-order terms. 
By incorporating polynomial functions, this regression method can uncover nonlinear 
patterns and provide a more accurate representation of the underlying data.
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1.9.1 Understanding Polynomial Regression 

Polynomial regression is a form of regression analysis where the relationship between 
the independent variable (X) and the dependent variable (Y) is modeled as an nth-
degree polynomial. In simple terms, it allows us to fit a curve instead of a straight 
line to the data points. This technique is particularly useful when a linear relationship 
fails to capture the true nature of the data. 

Polynomial Regression Equation: 
The polynomial regression equation can be represented as: 

Y = β0 + β1X + β2X2 + β3X3 +  · · ·  +  βnXn + ε 

Here, Y is the dependent variable, X represents the independent variable, βn denotes 
the regression coefficients for the respective powers of X, and ε is the error term. The 
degree of the polynomial is denoted by “n,” which determines the flexibility of the 
curve. 

1.9.2 Benefits of Polynomial Regression 

Capturing Nonlinear Relationships: Polynomial regression enables the discovery of 
nonlinear relationships that may exist in the data. By including higher-order terms, 
it can represent curves, bends, and fluctuations, providing a better fit to complex 
patterns. 

Improved Model Accuracy: The ability to capture nonlinear relationships often 
results in improved prediction accuracy compared to linear regression. Polynomial 
regression allows for a more precise representation of the data, especially when the 
underlying relationship is curved or has multiple turning points. 

Flexibility and Interpretability: Polynomial regression offers flexibility in model 
selection. By choosing an appropriate degree for the polynomial, researchers can 
control the trade-off between bias and variance. Additionally, the coefficients of 
the polynomial equation provide insights into the magnitude and direction of the 
relationships. 

Extrapolation Capability: Polynomial regression can extend predictions beyond the 
range of the observed data. While extrapolation should be approached cautiously, 
polynomial models can be useful for estimating values outside the known range 
based on the fitted curve.
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1.9.3 Challenges and Considerations 

Overfitting: Polynomial regression models with high degrees can become overly 
complex and prone to overfitting. Overfitting occurs when the model captures noise 
or random variations in the data, leading to poor generalization on new, unseen data. 
Regularization techniques such as ridge regression or Lasso regression can help 
mitigate this issue. 

Model Selection: Choosing the appropriate degree of the polynomial is crucial. A 
degree that is too low may result in an oversimplified model that fails to capture the 
underlying patterns, while a degree that is too high may lead to overfitting. Model 
evaluation techniques, such as cross-validation, can aid in determining the optimal 
degree. 

Data Availability: Polynomial regression often requires a sufficient amount of data to 
accurately estimate the coefficients. As the degree increases, the number of required 
data points grows exponentially. Insufficient data can lead to unstable and unreliable 
coefficient estimates. 

Polynomial regression provides a powerful tool for modeling nonlinear relation-
ships in predictive analytics. By capturing the complexity of data through curves 
and bends, it allows for improved accuracy and a deeper understanding of the under-
lying patterns. While challenges such as overfitting and model selection exist, proper 
techniques and considerations can maximize the benefits of polynomial regression. 
When linear regression falls short, polynomial regression emerges as an invaluable 
technique in the data scientist’s toolbox. 

Case Study: 

Ref: https://online.stat.psu.edu/stat462/node/159/. 
78 Blue gills were randomly studied in a lake. The following dataset was obtained. 

X1: Age of fish (Predictor variable). 

X2: length of the fish. (Response variable). 
The researchers were interested in how the length of fish is related to age. 

Step 1: A scattered plot of data was drawn and suggested a positive trend in data 
which implies that the age of fish and the length of fish are proportional. However, 
this trend does not appear to be linear but it shows a curvilinear relationship. 

Step 2: Using the data, estimated equation was obtained by: 

length = 13.62 + 54.05 ∗ (Age) − 4.719(Age)2 

Step 3: Using this equation, a plot was drawn (this is a fitted line plot). 

Step 4: By understanding the output of the analysis, we can draw conclusions.

https://online.stat.psu.edu/stat462/node/159/
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Step 5: When the data was processed in a software, we generated ANOVA table as 
output. The model summary was R2 = 80.11%, and confidence interval was (160.386, 
171.418). 

Step 6: With this output, we can conclude that 80.1% of variation in the length of the 
fish is affected by the age of the fish. Also, we can be 95% confident that the length 
of randomly selected fish lies in the confidence interval. 

Case Study 2: 

Exam Scores and Study Time 

Researchers wanted to examine the relationship between study time and exam scores 
for a group of students. They collected data on the number of hours each student 
studied (X1) and their corresponding exam scores (X2). The analysis suggested a 
curvilinear relationship between study time and exam scores. 

Step 1: Scatter Plot 

A scatter plot was drawn, indicating a curvilinear trend between study time and exam 
scores. 

Step 2: Estimated Equation 

An estimated equation was obtained: 

Exam Score = 60.72 + 5.28 ∗ (Study Time) − 0.63 ∗ (Study Time)2 . 

Step 3: Fitted Line Plot 

A plot was drawn using the estimated equation to visualize the fitted relationship 
between study time and exam scores. 

Step 4: Analysis Conclusion 

The analysis concluded that the relationship between study time and exam scores is 
curvilinear. 

Step 5: ANOVA Table 

An ANOVA table was generated as the output of the analysis. 
The model summary showed an R-squared value of 73.89%. 
The confidence interval for the predicted exam scores was (82.48, 91.76). 

Step 6: Conclusions 

Approximately 73.89% of the variation in exam scores can be explained by study 
time. 

With 95% confidence, the exam scores of a randomly selected student are expected 
to fall within the confidence interval (82.48, 91.76). 

Case study 3: Temperature and Plant Growth
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Researchers conducted a study to explore the relationship between temperature and 
plant growth. They recorded the average daily temperature (X1) and the corre-
sponding plant growth measurements (X2). The analysis suggested a curvilinear 
relationship between temperature and plant growth. 

Step 1: Scatter Plot 

A scatter plot was drawn, indicating a curvilinear trend between temperature and 
plant growth. 

Step 2: Estimated Equation 

An estimated equation was obtained: 

Plant Growth = 2.34 + 0.85 ∗ (Temperature) − 0.09 ∗ (Temperature)2 . 

Step 3: Fitted Line Plot 

A plot was drawn using the estimated equation to visualize the fitted relationship 
between temperature and plant growth. 

Step 4: Analysis Conclusion 

The analysis concluded that the relationship between temperature and plant growth 
is curvilinear. 

Step 5: ANOVA Table 

An ANOVA table was generated as the output of the analysis. 
The model summary showed an R-squared value of 67.52%. 
The confidence interval for the predicted plant growth was (6.24, 9.78). 

Step 6: Conclusions 

Approximately 67.52% of the variation in plant growth can be explained by 
temperature. 

With 95% confidence, the plant growth for a randomly selected day is expected 
to fall within the confidence interval (6.24, 9.78). 

1.10 Multiple Regression 

Multiple regression is a statistical technique used to explore the relationship between 
a dependent variable and two or more independent variables. It extends the principles 
of simple linear regression to account for multiple predictors and enables us to 
understand how different factors interact to influence the outcome of interest.
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• Dependent Variable: The dependent variable, also known as the outcome variable 
or the response variable, is the variable that we want to predict, explain, or under-
stand better using multiple regression. It represents the quantity or characteristic 
that is affected or influenced by the independent variables. For example, in a study 
examining the factors affecting a person’s salary, the dependent variable would 
be the individual’s salary. 

• Independent Variables: Independent variables, also known as predictor variables 
or explanatory variables, are the variables that are hypothesized to have an impact 
on the dependent variable. These variables are considered the potential causes 
or factors that may influence the outcome of interest. In the salary example, the 
independent variables might include years of experience, level of education, job 
title, and geographic location. 

• Assumptions: Multiple regression relies on several assumptions to ensure the 
validity and reliability of the results. It is important to assess whether these 
assumptions hold true in the data before drawing conclusions. The key assump-
tions of multiple regression include: 

Linearity: There should be a linear relationship between the independent variables 
and the dependent variable. This means that the change in the dependent variable 
is proportional to the change in the independent variables, holding other variables 
constant. 

Independence: The observations should be independent of each other, meaning that 
there should be no systematic relationship or dependence between the residuals (the 
differences between the observed and predicted values) of the regression model. 

Homoscedasticity: The residuals should have constant variance across all levels of 
the independent variables. Homoscedasticity implies that the spread of the resid-
uals should not systematically increase or decrease as the predicted values of the 
dependent variable change. 

Absence of Multicollinearity: The independent variables should not be highly corre-
lated with each other. Multicollinearity occurs when there is a strong linear rela-
tionship between two or more independent variables, which can make it difficult to 
separate their individual effects on the dependent variable. 

Violations of these assumptions can lead to biased estimates, invalid inferences, 
and less accurate predictions. Therefore, it is important to assess these assump-
tions through various diagnostic tools, such as residual plots, scatterplots, correlation 
matrices, and tests specifically designed for each assumption. 

By ensuring that these assumptions are met or appropriately addressed, researchers 
can have confidence in the validity of the multiple regression analysis and the 
interpretations drawn from the results. 

Case study 1: Consider the following data (Table 1.12):
Following the same steps as in Example 1, we obtain the following results: 

b1 ≈ 2.4; b2 ≈ 1.8; b0 ≈ 5.4
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Table 1.12 Table of values 
to understand computing 
multiple regression 

Observation X1 X2 Y 

1 1 3 12 

2 2 5 15 

3 3 7 18 

4 4 9 21 

5 5 11 24

Therefore, the multiple regression equation for this example is: 

Y ≈ 5.4 + 2.4X1 + 1.8X2 

These examples demonstrate the manual calculations involved in determining 
the regression coefficients and the multiple regression equation for a given set of 
data. However, it is worth noting that in practice, statistical software or spreadsheet 
programs are typically used to perform these calculations, as they can handle larger 
datasets more efficiently and provide additional statistical measures and diagnostics. 

In multiple regression analysis, there are several statistical measures that can be 
used to evaluate the goodness of fit of the model. Here are some commonly used 
measures, including the R-squared and adjusted R-squared, along with examples: 

R-squared (coefficient of determination): R-squared is a measure of how well the 
regression model fits the observed data. It represents the proportion of the variance 
in the dependent variable that is explained by the independent variables in the model. 
R-squared ranges from 0 to 1, with higher values indicating a better fit. 

Example: Let’s say we have a multiple regression model that predicts a student’s 
exam score (dependent variable) based on their study time, sleep hours, and previous 
exam score (independent variables). If the R-squared value is 0.80, it means that 80% 
of the variance in the exam scores can be explained by the study time, sleep hours, 
and previous exam score included in the model. 

Adjusted R-squared: Adjusted R-squared is an adjusted version of R-squared that 
takes into account the number of predictors in the model. It penalizes the inclusion 
of unnecessary variables and provides a more conservative measure of the model’s 
goodness of fit. 

Example: Suppose we have another multiple regression model with five independent 
variables predicting housing prices. The R-squared value is 0.75, and the model has 
10 predictors. The adjusted R-squared value is 0.70, indicating that the inclusion of 
some predictors may not contribute significantly to the model’s fit, and the adjusted 
R-squared adjusts for this by slightly reducing the R-squared value. 

F-test: The F-test assesses the overall significance of the regression model by 
comparing the fit of the full model (with predictors) to the fit of a reduced model
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(without predictors). It evaluates whether the inclusion of independent variables 
significantly improves the fit of the model. 

Example: Let’s consider a multiple regression model that predicts a person’s income 
based on their age, education level, and work experience. The F-test result yields a 
p-value of 0.001, which is below the significance level of 0.05. This indicates that 
the regression model, with the included predictors, provides a significantly better fit 
than a model without any predictors. 

These measures, such as R-squared, adjusted R-squared, and the F-test, help 
assess the goodness of fit of a multiple regression model and provide insights into 
how well the model explains the relationship between the dependent variable and 
the independent variables. 

1.10.1 A Few Case Studies Where Multiple Linear 
Regression Has Been Applied 

Housing Price Prediction: Multiple linear regression can be used to predict housing 
prices based on various factors such as location, square footage, number of bedrooms 
and bathrooms, and other relevant features. The dataset would include information 
about these independent variables and the corresponding sale prices as the dependent 
variable. By fitting a multiple linear regression model, one can identify the significant 
predictors and estimate the impact of each variable on the housing prices. 

Sales Forecasting: In retail and sales industries, multiple linear regression can be 
employed to forecast sales based on factors like advertising expenditure, promotional 
activities, competitor prices, and other market variables. By analyzing historical sales 
data along with the independent variables, a regression model can be built to predict 
future sales figures, aiding in demand planning and resource allocation. 

Credit Risk Assessment: Multiple linear regression can be utilized in credit risk 
assessment to predict the likelihood of default for borrowers. By considering various 
financial and personal variables of the borrowers, such as income, credit history, 
debt-to-income ratio, and employment status, a regression model can be built to 
assess the creditworthiness of individuals or businesses. This information can guide 
lending institutions in making informed decisions about granting loans and setting 
appropriate interest rates. 

Employee Performance Analysis: Multiple linear regression can be applied in the 
field of human resources to analyse the factors influencing employee performance. 
Independent variables could include variables such as education level, years of expe-
rience, training programs attended, job satisfaction, and other relevant factors. By 
examining these predictors, the regression model can help identify the significant 
factors that contribute to employee performance and guide HR policies and practices.
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Each case study requires careful selection of variables and data analysis techniques 
to build an effective regression model that provides valuable insights. 

1.11 Logistic Regression 

Logistic regression is a widely used statistical technique in the field of machine 
learning and data analysis. It is particularly effective for binary classification prob-
lems, where the goal is to predict whether an observation belongs to one of two 
classes. This article aims to provide a comprehensive overview of logistic regression, 
explaining its underlying principles, assumptions, and practical applications. 

1.11.1 What is Logistic Regression? 

Logistic regression is a supervised learning algorithm that models the relationship 
between a set of independent variables (features) and a binary dependent vari-
able (target). Unlike linear regression, which predicts continuous values, logistic 
regression estimates the probability of an observation belonging to a particular class. 

1.11.2 Working Principle 

The fundamental concept behind logistic regression is the logistic function, also 
known as the sigmoid function. The sigmoid function maps any real-valued number 
to a value between 0 and 1, making it suitable for representing probabilities. In 
logistic regression, the sigmoid function is used to transform the linear combination 
of input features into a probability score, indicating the likelihood of the observation 
belonging to the positive class. 

1.11.3 Model Training and Optimization 

The logistic regression model is trained using a method called maximum likelihood 
estimation (MLE). The objective is to find the optimal set of coefficients that maxi-
mize the likelihood of observing the given data. This process involves iteratively 
adjusting the coefficients using optimization algorithms such as gradient descent.
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1.11.4 Assumptions of Logistic Regression 

Logistic regression assumes that the relationship between the features and the log-
odds of the target variable is linear. Additionally, it assumes that the observations 
are independent and that there is little to no multicollinearity among the independent 
variables. Violations of these assumptions can lead to biased or inefficient estimates. 

1.11.5 Evaluation and Interpretation 

To evaluate the performance of a logistic regression model, various metrics such as 
accuracy, precision, recall, and the receiver operating characteristic (ROC) curve are 
commonly used. Additionally, logistic regression coefficients can be interpreted as 
the change in the log-odds of the target variable associated with a one-unit change 
in the corresponding feature, providing insights into the importance and direction of 
the variables. 

1.11.6 Practical Applications 

Logistic regression finds extensive applications across multiple domains, including 
healthcare, finance, marketing, and social sciences. It is used for predicting disease 
outcomes, credit risk assessment, customer churn analysis, sentiment analysis, and 
more. Logistic regression’s simplicity, interpretability, and ability to handle both 
categorical and continuous variables make it a valuable tool in the data scientist’s 
toolkit. 

Logistic regression is a powerful and widely used statistical technique for binary 
classification problems. By estimating the probability of an observation belonging 
to a particular class, logistic regression provides valuable insights and predictions. 
Understanding its underlying principles, assumptions, and practical applications can 
empower data analysts and machine learning practitioners to leverage this versatile 
tool effectively. 

1.11.7 Logit Function 

The logit function is a key component of logistic regression, and it plays a crucial 
role in transforming the linear combination of input features into a probability score. 
The logit function is the inverse of the sigmoid function and is commonly used to 
model binary outcomes.
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Mathematically, the logit function is defined as the natural logarithm (basee) of  
the odds ratio. Given a probability p, the odds ratio is calculated as p/(1 − p). Taking 
the logarithm of the odds ratio yields the logit function, denoted as logit(p). 

The formula for the logit function is as follows: 

logit(p) = log
(

p 
1 − p

)

The logit function maps the probability values ranging from 0 to 1 to a range 
from negative infinity to positive infinity. This transformation is important because it 
allows for a linear relationship between the independent variables and the log-odds 
of the target variable in logistic regression. 

The logit function has several useful properties. First, it transforms probabilities to 
a scale where the relationship with the predictors can be modeled linearly. Second, it 
converts multiplicative relationships into additive relationships, which simplifies the 
estimation process. Lastly, the logit function is symmetric, meaning that it maps both 
extremely low and extremely high probabilities to values close to negative infinity 
and positive infinity, respectively. 

In logistic regression, the logit function is used to model the relationship between 
the independent variables and the log-odds of the target variable. By estimating the 
coefficients of the independent variables through model training, logistic regression 
calculates the log-odds of the target variable for a given set of predictor values. These 
log-odds can then be transformed back into probabilities using the sigmoid function, 
allowing for classification into one of the two classes. 

Overall, the logit function is a fundamental mathematical tool in logistic regres-
sion, enabling the modeling and prediction of binary outcomes based on the 
relationship between input features and the log-odds of the target variable. 

1.11.8 Binary Outcome 

In logistic regression, a binary outcome variable is a categorical variable that can take 
on only two possible values. These values are typically represented as 0 and 1, or as 
“success” and “failure,” “yes” and “no,” or any other meaningful pair of categories. 
Binary outcomes are often referred to as dichotomous variables. 

Examples of binary outcome variables include: 

Whether a customer will churn or not (0 for no churn, 1 for churn) 

Whether a student will pass an exam or not (0 for fail, 1 for pass) 

Whether a patient has a disease or not (0 for healthy, 1 for diseased).
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1.11.9 Probability and Odds 

In logistic regression, we are interested in estimating the probability of the binary 
outcome occurring given a set of predictor variables. The probability (p) is a value 
between 0 and 1, representing the likelihood of the outcome happening. It is often 
denoted as P(Y = 1), where Y represents the binary outcome. 

The odds of an event occurring are defined as the ratio of the probability of the 
event happening to the probability of it not happening. Mathematically, odds = p/ 
(1 − p). Odds can range from 0 to infinity, where odds less than 1 indicate a lower 
probability, odds equal to 1 indicate an equal probability, and odds greater than 1 
indicate a higher probability. 

In logistic regression, we model the logarithm of the odds, known as the logit 
function, as a linear combination of the predictor variables. By transforming the 
probability into the logit, we ensure that the predicted values lie between negative 
and positive infinity, making them suitable for linear regression. 

1.12 Which Regression to Use and When? 

The choice of regression technique depends on various factors, including the nature 
of the data and the research objective. Here are ten cases and the corresponding 
regression techniques commonly used (Table 1.13): 

1. Predicting House Prices: Multiple linear regression is often used when there are 
multiple predictors (e.g., square footage, number of bedrooms) to estimate the 
price of a house. 

2. Forecasting Stock Market Returns: Autoregressive integrated moving average 
(ARIMA) models are suitable for time series data, making them valuable for 
predicting future stock market returns.

Table 1.13 Table to understand “When to use which method of regression?” 

Types of regression When to use? 

Univariate Only one quantitative response variable is present 

Multivariate Only two or more quantitative response variables are need 

Simple Only one predictor variable is needed 

Multiple Requires, two or more predictive variables 

Linear All parameters are linear. Sometimes we transfer the variable 
to make it linear 

Non-linear Relationship between response and predictor is linear 

Analysis of Variance (ANOVA) All predictors are quantitative variables
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3. Analyzing Marketing Campaigns: Logistic regression is employed to model 
the relationship between binary outcomes (e.g., purchase vs. no purchase) and 
predictors (e.g., age, income) in marketing campaigns. 

4. Predicting Student Performance: Support vector regression (SVR) is effective 
for predicting continuous outcomes, such as student test scores, based on various 
features like study hours and attendance. 

5. Determining Credit Risk: Binary logistic regression is commonly used in credit 
risk assessment to predict the likelihood of loan default based on factors such 
as income, credit history, and loan amount. 

6. Analyzing Customer Churn: Cox proportional hazards model is suitable for 
survival analysis and is often used to predict customer churn in industries like 
telecommunications or subscription-based services. 

7. Estimating Sales Volume: Poisson Regression is useful when the dependent vari-
able represents count data, such as the number of products sold, and predictors 
include factors like price and advertising expenditure. 

8. Modeling Disease Progression: Generalized linear models (GLMs) are versa-
tile and can handle a wide range of scenarios, including modeling disease 
progression based on factors like age, genetic markers, and lifestyle variables. 

9. Forecasting Energy Consumption: Time series regression, such as the autore-
gressive integrated moving average with exogenous variables (ARIMAX) can 
be employed to predict energy consumption by incorporating external factors 
like weather conditions. 

10. Predicting Customer Lifetime Value: Survival analysis, specifically the Kaplan– 
Meier estimator or Cox Proportional Hazards Model, can be used to estimate 
the expected lifetime value of customers based on their purchase history and 
time of churn. 

Remember, the choice of regression technique may vary based on the specific 
dataset, assumptions, and objectives of the analysis. It is essential to consider the 
characteristics of your data and consult with domain experts to determine the most 
appropriate regression technique for your case. 

1.13 Caution While Using Regression Analysis 

While regression analysis is a powerful statistical tool for analyzing relationships 
between variables, it is important to exercise caution and be aware of potential pitfalls. 
Here are a few points to keep in mind when using regression analysis: 

1. Causation versus correlation: Regression analysis can only establish correlations 
between variables and does not imply causation. Just because two variables are 
correlated does not mean that one causes the other. Additional evidence and 
careful interpretation are needed to establish causality.
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2. Linearity assumption: Regression analysis assumes a linear relationship between 
the predictor variables and the response variable. If the relationship is nonlinear, 
the results may be misleading. Consider exploring alternative regression models 
or transforming variables to address nonlinearity. 

3. Outliers: Outliers can have a significant impact on the regression model, affecting 
the slope, intercept, and overall fit. It’s important to identify and handle outliers 
appropriately. Outliers may need to be removed or their effects mitigated through 
robust regression techniques. 

4. Multicollinearity: When predictor variables are highly correlated with each other, 
multicollinearity occurs. This can lead to unstable coefficient estimates and diffi-
culty in interpreting the results. Check for multicollinearity using diagnostic tests 
and consider methods such as variable selection or principal component analysis 
to address the issue. 

5. Overfitting: Overfitting occurs when a regression model fits the noise or random 
fluctuations in the data rather than the underlying relationship. Overfit models 
may perform well on the training data but generalize poorly to new data. Regu-
larization techniques like ridge regression or cross-validation can help mitigate 
overfitting. 

6. Assumptions: Regression analysis relies on certain assumptions such as linearity, 
independence of errors, constant variance of errors, and normality of residuals. 
Violations of these assumptions can affect the validity of the results. Diagnostic 
tests and residual analysis should be performed to assess the model’s assumptions. 

7. Extrapolation: Regression models are reliable within the range of the observed 
data. However, extrapolating beyond that range is risky and may lead to unreliable 
predictions. Be cautious when making predictions outside the range of the data 
used to build the model. 

8. Data quality: Regression analysis assumes that the data used is accurate, reliable, 
and representative. Carefully examine the data for missing values, measurement 
errors, and potential biases that could affect the analysis. Preprocess the data 
appropriately before conducting regression analysis. 

It’s important to approach regression analysis with a critical mindset and consider 
the limitations and assumptions involved. Additionally, consulting with experts or 
statisticians can help ensure accurate interpretation and appropriate use of regression 
analysis for your specific research or analysis. 

Here are some real-life examples illustrating the cautionary points mentioned: 

1. Causation versus correlation: A study finds a positive correlation between ice 
cream sales and crime rates. While the correlation is observed, it does not imply 
that ice cream consumption causes an increase in crime. The common underlying 
factor could be warmer temperatures, leading to both increased ice cream sales 
and higher crime rates. 

2. Linearity assumption: A researcher assumes a linear relationship between adver-
tising spending and sales. However, upon analyzing the data, they find that the 
relationship is curvilinear, with diminishing returns on advertising effectiveness
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beyond a certain point. Failing to account for nonlinearity can lead to inaccurate 
predictions and decision-making. 

3. Outliers: In a study analyzing the relationship between income and happiness, one 
participant reports an exceptionally high income. This outlier disproportionately 
influences the regression results, artificially inflating the estimated impact of 
income on happiness. Handling outliers appropriately is crucial to avoid biased 
or misleading conclusions. 

4. Multicollinearity: In a regression model examining the factors influencing 
employee performance, it is discovered that job satisfaction and work-life balance 
are highly correlated. This multicollinearity can make it challenging to isolate the 
individual effects of each variable accurately, potentially leading to unreliable 
coefficient estimates. 

5. Overfitting: A data scientist develops a regression model to predict stock prices 
based on various economic indicators. By including a large number of predictors, 
the model achieves near-perfect fit on historical data. However, when tested 
on new data, the model fails to generalize well, highlighting the problem of 
overfitting. 

6. Assumptions: In a study investigating the impact of class size on academic perfor-
mance, the residuals of the regression model exhibit heteroscedasticity, meaning 
the variability of errors increases as class sizes become larger. This violates 
the assumption of constant variance, and the model’s estimates and statistical 
inferences may become unreliable. 

7. Extrapolation: A company uses a regression model to forecast product demand 
based on historical sales data. However, when the model is applied to predict 
sales in a new market where consumer behavior differs significantly, the forecasts 
prove inaccurate due to extrapolating beyond the range of observed data. 

8. Data quality: A researcher conducts a regression analysis on a dataset containing 
missing values. Failing to appropriately handle these missing values can intro-
duce bias and affect the accuracy of the results. Imputing missing data using 
appropriate methods or removing observations with missing values can help 
ensure the integrity of the analysis. 

These examples illustrate the importance of understanding the limitations and 
potential pitfalls associated with regression analysis, and the need for careful 
consideration and scrutiny in real-life applications. 

1.14 Outliers in Regression Analysis 

Regression analysis is a powerful statistical tool used to establish relationships 
between variables and predict outcomes. However, in real-world data, outliers can 
significantly impact the accuracy and reliability of regression models. Outliers are 
data points that deviate significantly from the general trend of the dataset and can 
distort the estimated relationships between variables. Outliers can significantly affect
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the validity and reliability of regression analysis. Understanding the causes and 
consequences of outliers is crucial for researchers and data analysts to make informed 
decisions regarding outlier handling. Employing appropriate outlier detection tech-
niques and implementing suitable remedies can lead to more accurate regression 
models and more reliable predictions, enhancing the overall quality of statistical 
analyses. Mathematically, we can say that the response variable “y” does not follow 
the general trend of rest of data. Outliers will lead to error in the regression equation 
as a result of which these lines will not be accurate in predicting other data values. 

1.14.1 Causes of Outliers in Regression Analysis 

Outliers can arise due to various reasons, including data entry errors, measurement 
inaccuracies, natural variability, or extreme events. They can be caused by random 
chance or may indicate genuine deviations in the data. Outliers can be univariate 
(occurring in a single variable) or multivariate (occurring in multiple variables 
simultaneously). 

1.14.2 Impact of Outliers on Regression Analysis 

Outliers can have several adverse effects on regression analysis: 

(a) Biased Estimates: Outliers can substantially influence the slope and intercept 
of the regression line, leading to biased coefficient estimates. 

(b) Reduced Model Fit: Outliers can introduce heteroscedasticity (unequal vari-
ance) and nonlinearity, affecting the assumptions of regression models and 
reducing the overall goodness-of-fit. 

(c) Inaccurate Predictions: The presence of outliers can lead to inaccurate predic-
tions, as the regression model may prioritize fitting these extreme values rather 
than the underlying pattern of the data. 

(d) Decreased Statistical Significance: Outliers can inflate the standard errors of 
coefficient estimates, reducing the statistical significance of the relationships 
between variables. 

1.14.3 Detecting Outliers in Regression Analysis 

Several methods can be used to identify outliers in regression analysis: 

(a) Residual Analysis: Plotting the residuals (the differences between observed and 
predicted values) can reveal patterns in the data, including outliers.
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(b) Cook’s Distance: Cook’s distance measures the influence of each observation on 
the entire regression model. Large Cook’s distances indicate potential outliers. 

(c) Z-Scores: Calculating the Z-scores for each data point can help identify extreme 
values that deviate significantly from the mean. 

(d) Mahalanobis Distance: This metric measures the distance of each data point 
from the centroid of the data, considering correlations between variables. 

1.14.4 Handling Outliers in Regression Analysis 

Once outliers are detected, various strategies can be employed to mitigate their impact 
on regression analysis: 

(a) Transformation: Applying transformations to the data, such as logarithmic or 
power transformations, can reduce the impact of outliers and improve model fit. 

(b) Robust Regression: Robust regression techniques, like the Huber or Tukey 
bisquare methods, give less weight to outliers during the estimation process. 

(c) Data Cleaning: If outliers are due to data entry errors, correcting or removing 
these data points may improve the accuracy of the analysis. 

(d) Data Stratification: Separating the data into subgroups based on certain charac-
teristics can help handle outliers in specific subsets without affecting the entire 
dataset. 

1.14.5 Removing Outliers on Regression Lines 

Removing outliers is a common practice in data analysis and regression modeling to 
improve the accuracy and reliability of the regression line. Outliers are data points 
that significantly deviate from the overall pattern of the data and can have a substantial 
impact on the regression line’s slope and intercept. 

Here’s a step-by-step guide on how to remove outliers from a regression analysis:

1. Visualize the Data: Plot the data points on a scatter plot to identify any potential 
outliers. Outliers are usually data points that are far away from the general trend 
of the data. 

2. Set Criteria for Identifying Outliers: There are several methods to identify 
outliers, such as using the Z-score or the interquartile range (IQR). The Z-score 
measures how many standard deviations a data point is from the mean, while 
the IQR is the range between the 25th and 75th percentiles. Data points that fall 
outside a certain range of Z-scores or outside the IQR can be considered outliers. 

3. Calculate the Regression Line: Before removing outliers, calculate the initial 
regression line using all data points. This will serve as a baseline for comparison 
after removing the outliers. 

4. Identify Outliers: Apply the chosen outlier detection method to the data and 
identify the data points that meet the criteria for being outliers.
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Fig. 1.4 Outliers 

5. Remove Outliers: Once you have identified the outliers, remove them from the 
dataset. Depending on the context and the data, you can either exclude them 
completely or replace them with more appropriate values (e.g., mean, median). 

6. Recalculate the Regression Line: With the outliers removed, calculate the 
regression line again using the modified dataset. 

7. Assess Model Performance: Compare the performance of the regression model 
before and after removing the outliers. Common metrics like R-squared, mean 
squared error (MSE), or root mean squared error (RMSE) can be used for eval-
uation. If the model’s performance improves significantly after removing the 
outliers, it indicates that the outliers were indeed affecting the model’s accuracy. 

8. Interpret Results: Once you have obtained a more reliable regression line, 
interpret the results and draw conclusions based on the updated model (Fig. 1.4). 

It’s important to note that the decision to remove outliers should be made judi-
ciously. Sometimes outliers represent genuine data points, extreme values, or unique 
events that are essential for understanding the underlying phenomenon. Removing 
outliers indiscriminately without a proper justification can lead to biased and inaccu-
rate results. Always exercise caution and domain knowledge when handling outliers 
in data analysis.
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What are Index Numbers? 

Index numbers are a type of economic indicator that represent the relative change in 
the value of a variable (e.g., price, quantity, production, income, etc.) compared to a
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base period or a reference point. They are used to simplify complex data and present 
it in a more understandable and comparable form. 

Why Use Index Numbers? 

• Comparative analysis: Index numbers allow you to compare different time periods 
or geographical regions in a standardized manner. This helps in understanding the 
magnitude and direction of changes. 

• Tracking changes over time: Index numbers help track trends and identify patterns, 
such as inflation, economic growth, market performance, and consumer behavior. 

• Forecasting: By analyzing historical index data, you can make predictions about 
future trends and potential outcomes. 

• Policy decisions: Governments and policymakers use index numbers to assess the 
effectiveness of their policies and make data-driven decisions. 

• Business performance: Companies use index numbers to evaluate their financial 
performance, monitor market trends, and benchmark against competitors. 

How to Calculate Index Numbers? 

To calculate an index number, follow these steps: 

• Select a base period and assign it a value of 100. This period acts as a reference 
point. 

• Collect data for the variable of interest for the current period and the base period. 
• Divide the current value by the base period value and multiply by 100 to get the 

index number. 

Mathematically, the formula is: Index number = (Current value/Base period value) 
× 100. 

When to Use Index Numbers? 

You can use index numbers in various scenarios: 

• Tracking inflation: Consumer Price Index (CPI) and Producer Price Index (PPI) 
are used to monitor changes in price levels over time. 

• Economic indicators: Index numbers like the Gross Domestic Product (GDP) and 
Industrial Production Index help gauge economic performance. 

• Financial market analysis: Index numbers, such as stock market indices (e.g., S&P 
500, Dow Jones), show the overall performance of the market. 

• Performance evaluation: Companies use indices to assess sales, production, and 
other key performance indicators. 

In summary, index numbers are a valuable tool for comparing data, analyzing 
trends, making predictions, and aiding decision-making across various fields. They 
are especially useful when dealing with complex datasets and time-series anal-
ysis. However, it is essential to understand their limitations and context-specific 
applicability before interpreting and using them to draw conclusions.



50 2 Index Numbers

2.1 Introduction 

Index numbers are statistical measures used to track changes over time in a particular 
variable or group of variables. 

Few characteristics are: 

1. Index numbers are specialized averages as they can be used to compare different 
types of items with different units. They are calculated by units of consumption, 
rather than units of measurement. For example, milk, oil, etc., are measured in 
liters, rice, wheat, etc., in terms of kgs, and eggs, etc., per dozen. We can use 
index numbers though all these are in different units. 

2. Index numbers are expressed in percentages of relative changes, but the sign “%” 
is not used. 

3. Index numbers measure those changes which cannot directly be measured, e.g., 
“price level,” “Economic activity,” “Cost of living,” etc. 

4. Index numbers are meant for comparing over made over different intervals of 
time with reference to a particular base year. 

5. Index numbers have universal application as they are used to ascertain changes 
in different sectors of study. 

6. Index numbers are also an example of summary statistics. 
7. They are simple tools measuring relative changes and are expressed in terms of 

percentage. 
8. The index number is usually expressed as 100 times the ratio to the base value. 
9. Comparisons can also be made with multiple entities with different unit values, 

thus making index numbers a specialized average. 

2.2 Definitions 

Index numbers measure the net change in the magnitude of a set of related variables. 
Some popular definitions are as follows: 

Dr. A. L. Bowely: Index number is a statistical tool that measures changes in a variable 
or a group of variables over time or other aspects. 

Wessel, Willett, and Simone: An index number is a special type of average that 
provides a measurement of relative changes from time to time or from place to place. 

Croxton and Cowden: Index numbers are devices for measuring differences in the 
magnitude of a group of related variables. 

Spiegel: An index number is a statistical measure designed to show changes in a 
variable or a group of related variables with respect to time, geographic location, or 
other characteristics.
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2.3 Important Uses of Index Numbers 

1. Index numbers measure changes in price level and indicate inflationary or 
deflationary tendencies in the data. 

2. Index numbers help in calculating the real value of money or purchasing power 
of money. 

3. Index numbers can be used to make measuring adjustments in the wages of 
employees. The wages of employees can be increased as per the increase in the 
Cost-of-Living index number. 

4. Index numbers guide economic and business policies. For example, the relative 
changes in production are given by index numbers of industrial production. 

5. Trends and tendencies of various phenomena over time are given by index. For 
example, index numbers can be used to track changes in various economic indica-
tors, such as inflation, GDP, stock market performance, and consumer spending. 
They can also be used to analyze changes in other fields, such as education, 
health, and demographics. 

6. By using index numbers, researchers and analysts can identify patterns and trends 
in the data that might not be immediately apparent from looking at the raw data. 
This information can be used to make informed decisions about future policies or 
investments and to understand how various phenomena are changing over time. 

2.3.1 Index Numbers in Analytics 

In analytics, comparing data based on time, quality, quantity, money, and value 
is a very common practice. For example, an agronomist decides to analyze soil 
degradation on a piece of land. Certain aspects of his study may include, 

– A check on the alkalinity, acidity, and salinity of soil with respect to a specific 
period. 

– The quality of production of the main crop and the alternative crops that are grown 
across the year. 

– The number of fertilizers and chemicals used on the soil to decipher the rate of 
growth of microorganisms that destroy the crop. 

– Change in the number of crimes after a new law has been introduced, etc. 

We use index numbers to calculate the rate of change in various fields in different 
variables, over time, place, and categories. Index numbers provide a way to compare 
the relative changes in a variable over different periods or locations. They are often 
used to track changes in the prices of goods and services, but can also be used to 
track changes in other variables such as production levels, employment rates, and 
economic growth.
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2.3.2 Index Numbers in Nation Building 

Index numbers play a crucial role in nation building by providing valuable informa-
tion and insights for policymakers, businesses, and citizens. Here are some ways in 
which index numbers contribute to nation building: 

1. Economic Monitoring and Policy Formulation: Index numbers, such as the 
Consumer Price Index (CPI), Wholesale Price Index (WPI), and Gross Domestic 
Product (GDP) growth rate, help monitor and assess the overall economic health 
of a nation. Policymakers rely on these indicators to understand trends, identify 
areas of concern, and formulate appropriate economic policies. Index numbers 
provide insights into inflation, economic growth, productivity, and other key 
economic indicators, helping policymakers make informed decisions to foster 
sustainable economic development. 

2. Assessing Standard of Living: Index numbers related to household income, 
poverty rates, and living standards provide valuable insights into the well-being 
of citizens. These indicators help policymakers understand the distribution of 
income, identify vulnerable populations, and design targeted policies to alleviate 
poverty, improve living conditions, and promote social development. By moni-
toring and analyzing index numbers related to standard of living, nations can 
strive for inclusive growth and ensure the welfare of their citizens. 

3. Sectoral Analysis and Resource Allocation: Index numbers enable policymakers 
to analyze and understand the performance of different sectors within the 
economy. For instance, the Industrial Production Index (IPI) provides insights 
into the manufacturing sector’s performance, while the Agricultural Price Index 
(API) tracks price changes in the agricultural sector. By examining these sectoral 
index numbers, policymakers can allocate resources, implement targeted policies, 
and promote balanced development across various sectors, ensuring sustainable 
economic growth and job creation. 

4. Business Decision-Making: Index numbers provide crucial information for busi-
nesses to make informed decisions. For instance, the Business Confidence Index 
(BCI) helps gauge the sentiments and expectations of businesses, enabling 
them to plan investments, expand operations, or adjust strategies based on the 
prevailing economic conditions. Additionally, index numbers related to consumer 
spending, purchasing power, and market demand assist businesses in developing 
pricing strategies, forecasting demand, and identifying market opportunities. 

5. Investor Confidence and Economic Development: Reliable index numbers foster 
investor confidence and attract foreign direct investment (FDI). Investors use 
these indicators to assess the economic potential and stability of a nation. Index 
numbers such as GDP growth rate, inflation rate, and ease of doing business 
rankings influence investment decisions. By maintaining accurate and transparent 
index numbers, nations can attract investment, promote economic development, 
and create employment opportunities. 

6. Monitoring Sustainable Development Goals (SDGs): Index numbers are instru-
mental in tracking progress toward the Sustainable Development Goals (SDGs)
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outlined by the United Nations. These goals encompass areas such as poverty 
eradication, education, healthcare, gender equality, and environmental sustain-
ability. Index numbers related to these areas provide a quantitative measure of 
progress, enabling policymakers to identify gaps, prioritize interventions, and 
track the impact of policies and initiatives aimed at achieving the SDGs. 

Thus, index number is a reliable tool used for quick and easy comparisons. This 
tool is predominantly used in all fields of study due to its practicality, importance, 
and simplicity. 

2.3.3 Index Numbers Are Economic Barometers 

A lot of econometric concepts use this tool to compare, analyze, and understand 
trends of many economic factors of life and industries. 

Index numbers are often used as economic barometers because they provide a 
useful way to track changes in economic variables over time. An index number is a 
statistical measure that compares a current value of a variable to its value at some base 
period, which is typically set to 100. By comparing current values to a base period, 
index numbers allow us to see how the variable has changed over time relative to 
its original level. Some examples of economic variables that are often tracked using 
index numbers include: 

1. Inflation: Inflation is the rate at which the general level of prices for goods and 
services is rising. The Consumer Price Index (CPI) is one commonly used index 
number that tracks changes in the cost of living over time. 

2. Stock market performance: The Dow Jones Industrial Average and the S&P 500 
are two index numbers that are commonly used to track changes in the stock 
market over time. 

3. Gross Domestic Product (GDP): GDP is the total value of goods and services 
produced within a country’s borders in a given period. GDP index numbers can 
be used to track changes in economic growth over time. 

By tracking changes in these and other economic variables using index numbers, 
policymakers, investors, and others can gain insights into the overall health of the 
economy and make informed decisions about future actions. 

Some case studies on index numbers as economic barometers: 

1. Purchasing Managers’ Index (PMI) as an Economic Barometer: The PMI is an 
index that provides insight into the manufacturing sector’s economic activity. It 
measures factors such as new orders, production levels, employment, supplier 
deliveries, and inventories. During the global financial crisis of 2008–2009, the 
PMI numbers dropped significantly worldwide, indicating a contraction in manu-
facturing activity. This decline in the PMI served as a barometer for the overall 
health of the economy, reflecting the impact of the crisis on businesses and 
consumer demand.
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2. Leading Economic Index (LEI) as an Economic Barometer: The LEI is a 
composite index that combines multiple economic indicators to provide an overall 
picture of the economy’s direction. It aims to predict changes in economic activity 
before they occur. A case study can focus on the United States and the Great 
Recession of 2007–2009. The LEI declined before the recession officially began, 
serving as a barometer for the impending economic downturn. By analyzing 
the leading economic indicators, policymakers, economists, and businesses can 
anticipate shifts in economic activity and take proactive measures. 

3. Stock Market Indices as Economic Barometers: Stock market indices, such as the 
S&P 500 or the Dow Jones Industrial Average, are often considered barometers 
of economic health. They provide insights into investor sentiment and overall 
market conditions. A case study could examine the relationship between stock 
market indices and economic recessions. For example, during the dot-com bubble 
burst in the early 2000s, stock market indices experienced significant declines, 
signaling an economic slowdown. These index movements acted as barometers, 
reflecting the market’s assessment of the economy. 

4. Consumer Confidence Index (CCI) as an Economic Barometer: The CCI 
measures consumers’ sentiments and expectations regarding the overall state 
of the economy. It is an essential index for understanding consumer behavior 
and economic activity. A case study could focus on the impact of the COVID-19 
pandemic on consumer confidence and economic barometers. As the pandemic 
unfolded, consumer confidence declined significantly in many countries, indi-
cating a decrease in consumer spending and overall economic activity. The CCI 
served as a barometer for the economic impact of the pandemic on consumer 
behavior and sentiment. 

These case studies demonstrate how various index numbers act as economic 
barometers, providing valuable insights into economic activity, market conditions, 
and consumer sentiment. By monitoring and analyzing these indices, policymakers, 
economists, and businesses can make informed decisions, anticipate economic shifts, 
and take timely measures to mitigate risks or leverage opportunities. 

2.3.4 Index Numbers and Agriculture 

The Ministry of Statistics and Program states that index numbers are very useful in 
the prediction of the agricultural progress of the country which is one of the vital 
and primary sources of income for the nation. This department uses index numbers 
to study the trends over time with respect to:

• Type of the crop. 
• The area under cultivation. 
• The quantity of yield.
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Fig. 2.1 Depicting 
purchasing power of money 

• The productivity of the crop. 
• Soil fertility. 
• Prices/profits earned. 

Besides this, the department also calculates index numbers in terms of trade 
between agricultural and non-agricultural sectors for a better understanding of the 
market. 

Value index numbers are one of the frequently used index numbers to understand 
the value (quantity * price) of money which is also called the purchasing capacity with 
respect to time. Figure 2.1 aims to depict the purchasing abilities of groceries over a 
period of time. It is an example of how price and quantity are inversely proportional 
to each other. 

2.4 The Base Year 

The values of the year which are considered as a base for comparison are called 
the base year. For example, India conducts a decennial (once in 10 years) census. 
The 16th Indian census was in the year 2021. Therefore, comparisons can be made 
based on basic population characteristics such as household composition, expendi-
ture, income, and size. These values are compared with the previous census values 
of the year 2011. So, in this case, 2011 becomes the base year and 2021 becomes the 
current year values (Fig. 2.2).

• The base and current years can be chosen by the analyst at his convenience. 
• The base year value is set to 100 by default.
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Fig. 2.2 Base year 

• Base year values are represented by 0 and current year values are represented by 1. 
• Example: If P denotes price and Q denotes quantity, P1 refers to the price of the 

current year and Qo refers to the quantity value of the base year. 
• The notation P01 refers to the price index number of the current year. 

Example 1 These are the prices of a microscope of a lab. Calculate the index numbers 
considering (Table 2.1). 

a. 1981 as base period. 
b. Base period as 1974–1976. 

Table 2.1 Prices of microscope from 1974 to 1982 

Year 1974 1975 1976 1977 1978 1979 1980 1981 1982 

Price of commodity 1200 1500 1235 1345 1455 1290 1546 1234 1654 

Table 2.2 Index numbers with base period as 1981 and 1974–1976 as a base 

Year Price of commodity Index number 1981 = 100 Index numbers with 1974–1976 as 
base 

1974 1200 1200 
1234 ∗ 100 = 97.24 1200 

3935 ∗ 100 = 30.49 

1975 1500 1500 
1234 ∗ 100 = 121.55 1500 

3935 ∗ 100 = 38.11 

1976 1235 1235 
1234 ∗ 100 = 100.08 1235 

3935 ∗ 100 = 31.38 

1977 1345 1345 
1234 ∗ 100 = 108.99 1345 

3935 ∗ 100 = 34.18 

1978 1455 1455 
1234 ∗ 100 = 117.90 1455 

3935 ∗ 100 = 36.97 

1979 1290 1290 
1234 ∗ 100 = 104.53 1290 

3935 ∗ 100 = 32.78 

1980 1546 1546 
1234 ∗ 100 = 125.28 1546 

3935 ∗ 100 = 39.28 

1981 1234 1234 
1234 ∗ 100 = 100 1234 

3935 ∗ 100 = 31.35 

1982 1654 1654 
1234 ∗ 100 = 134.03 1654 

3935 ∗ 100 = 42.03
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Table 2.3 Performance index of various sectors of economy 

Year Agriculture Manufacture Construction Retail Hospitality 

2010 100 100 100 100 100 

2011 102.6 104 105.3 103 100.1 

2012 109.9 110.7 118.1 111.8 100.9 

2013 118.4 106.5 115.2 120.3 101.5 

2014 121.8 105.1 124.1 121.7 102.1 

2015 125.6 101.2 126.3 125.4 102 

Solution 

The general formula is given as, Index Number = Price of current year Price of base year ∗ 100. 

Price of the base period 1974–1976 will be 1200 + 1500 + 1235 = 3935. 

Example: Consider the following example where the mayor at a conference presents 
the earnings in different sectors of the economy in a city. The year 2010 is the base 
year with the index of all sectors being 100. 

The mayor concludes that the earnings from the agriculture and retail industry are 
progressive, but the manufacturing and hospitality industry earnings are poor and 
are declining. Let’s calculate the percentage changes to check. For the year 2015, 
the income from the agriculture industry has progressed by 22.41%

(
125.6−102.6 

102.6

)
, 

whereas the hospitality sector has scaled up by just 1.89%
(
102−100.1 

100.1

)
over a period 

of 5 years starting from 2011. This was simple to calculate and decipher only because 
the values in the tables are the index values. Table 2.2 depicts 102.6 and 104 for the 
year 2011 under the agriculture and manufacturing departments, respectively. This 
is a comprehensive value of all the factors of assessment such as social, economic, 
and financial aspects of the industry. Therefore, an index is a composite statistic. 
Therefore, it is an aggregate of many indicators (Table 2.3). 

2.5 Types of Index Numbers Based on Methods 
of Calculation 

1. Relative index numbers: In this method, the price of each item in the current 
year is expressed as a percentage of the price in the base year. 

Price IndexRelative method = 
Price in the given year 
Price in the base year 

∗ 100 = 
P1 

P0 
∗ 100 

The best example of a simple relative average is the Wholesale Price Index or 
W.P.I.
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Suppose the WPI is 128%, this simply means that the value of a representative 
basket of wholesale goods has increased by 28% with respect to the price of the base 
year. 

2. Aggregate Index numbers: As the name suggests, this is a comprehensive value 
of all the sub-entities. An aggregate price index number refers to a single value 
that includes prices of all sub-items in a given year and it is expressed in terms 
of the percentage of the base year. In this method, equal importance is given to 
all the sub-items and the prices are quoted in the same units. 

Pr i ce  Index  Aggregate method = 
Aggregate price in the given year 
Aggregate price in the base year 

∗ 100 

=
∑

P1∑
P0 

∗ 100 

where
∑

P1 and
∑

P0 are the total prices of various commodities in the current and 
base year, respectively. 

3. Weighted index numbers: A type of index number in which rational weights 
are assigned to various entities as per their importance. It is calculated as, the 
ratio between the summation of the product of weights with price relatives and 
the summation of the weights. 

Weighted price index numbers = ∑WP
∑W 

∗ 100 

Industrial Production Index (I.P.I) is the best example of the weighted average of 
quantity relatives. I.I.P reveals the change in the industrial production and is defined 
as, 

I.I.P01 =
∑

q1*W∑
W , where q1 is the quantity of the current year and W is the weight 

of the entity. 

Example: Consider the following simple example to get a better understanding of the 
relative and aggregative method of calculating index numbers (Tables 2.4 and 2.5). 

The simple average price relative of commodities is calculated as: 

P01 = 746.63/4 = 186.65

Table 2.4 Relative and aggregate method of calculating index numbers 

Commodities Base price Current price Calculation 

A 9 18.5 (18.5/9) * 100 = 205.55 
B 14 27.8 (27.8/14) * 100 = 198.57 
C 37 62.5 (62.5/37) * 100 = 168.91 
D 26.5 46 (46/16.5) * 100 = 173.58 
Total 86.5 154.8 746.63 
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The aggregate price relative of commodities is calculated as: 

P01 =
∑

P1∑
P0 

∗ 100 = (154.8/86.5) ∗ 100 = 178.95 

Example: A local newspaper about prices of limestone for construction purpose 
stated that, “In 1996 the average price of a commodity was 25% more than in 1995, 
but 20%less than in 1994 and it was 70% more than in 1997.” 

a. Let us simplify the information and tabulate it for better understanding. 
b. Also let us rewrite the information with price relatives using 1995 as base period. 
c. How are the index numbers changing if we consider the average price of 1994 

and 1995 as base? 

Solution 

a. Let us consider the price of limestone for the year 1996 is 100. 

Therefore, for year 1995, the prices are expected to rise by 25% which means, 

Price in 1995 = 
100 

125 
× 100 = 80. 

For the year 1994, is 20% less, which means, 

Price in 1994 = 
100 

80 
× 100 = 125 

For the year 1997, is 70% more, which means, 

Price in 1997 = 
100 

170 
× 100 = 58.82. 

b. Price relatives using 1995 as base period will be, 

P01(1994) = 
125 

80 
× 100 = 156.25

Table 2.5 Price index of 
limestone Year Price index Index numbers 

Base (1995) 
Index numbers 
Base 102.5 

1994 125 156.25 121.95 

1995 80 100 78.05 

1996 100 125 97.56 

1997 58.82 73.52 57.39 
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P01(1995) = 100 

P01(1996) = 
100 

80 
× 100 = 125 

P01(1997) = 
58.82 

80 
× 100 = 73.52 

c. Average price of 1994 and 1995 = 80+125 
2 = 102.5 

If 102.5 is taken as a base average, then the price relatives would be: 

P01(1994) = 
125 

102.5 
× 100 = 121.95 

P01(1995) = 
80 

102.5 
× 100 = 78.05 

P01(1996) = 
100 

102.5 
× 100 = 97.56 

P01(1997) = 
58.82 

102.5 
× 100 = 57.39 

Consider the tabulated information, for a better understanding. 

2.6 Price Relative 

A price relative is simply a ratio between current and base year prices expressed in 
terms of percentages. These price relatives are then averaged to get the index number. 
The average chosen could be arithmetic mean, geometric mean, or even median. 

The most commonly used weights are the product of the value of the base year 
which is p0q0. The weighted average of price relative is when weights are attached to 
the unweighted price relatives. The weighted average using simple arithmetic mean 
is given as: 

P01 =
∑[

P1 
P0 

∗ 100
]

∗ p0q0
∑

p0q0 
=

∑
w P

∑
w 

Here, price relative P = [p1/ p0] ∗ 100 and weights w = p0q0. 
The weighted average using geometric mean is given as:
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P01 = antilog
)∑

w log P
∑

w

)
. 

2.6.1 The Price, Quantity, and Value Index Numbers 

Example: A trader made note of the price and quantity of 10 ml of unadulterated 
eucalyptus oil that he sold for 5 years. After two years of selling, he felt that the 
product will continue to have more demand even if the price was increased to 65 
from 52. Do you think that the price rise was justified? Compute the price, quantity, 
and value index and also interpret the results (Table 2.6). 

Solution 

By default, the initial year of study is considered to be the base year, and thus, the price 
and quantity values of 2015 will be considered as the base values for calculations. 
The value of an entity is defined as the product of the price and quantity of the entity. 

Price Index for 2016 = (52/50) *100, for 2017 is (65/50) *100, for 2018 = (65/ 
50) *100, and so on. Similarly, quantity index for 2016 = (240/200) *100, for 2017 
= (120/200) *100, and so on. Thus, the value index is also computed in the same 
manner. 

Interpretation: Only the quantity index for the years 2017 and 2018 is less than 100. 
This means that the quantity sold is 40% and 5% lesser than the base period of 2015. 
One of the probable reasons could be the sudden increase in the price, yet over a 
period of time, the value of the product was understood, and thus, the quantity index 
increased as the demand rose. Hence, the price rise was justified. The value index 
however remained very positive and progressive throughout the period of study.

Table 2.6 Price and quantity index calculation for eucalyptus oil 

Year Price Price index Quantity Quantity 
index 

Value Value index 

2015 50 100 200 100 10,000.00 100 

2016 52 ↑ 104 240 ↑ 120 12,480.00 ↑ 124.8 
2017 65 ↑ 130 120 ↓ 60 12,320.00 ↑ 123.2 
2018 66 ↑ 132 190 ↓ 95 18,000.00 ↑ 180 
2019 75 ↑ 150 235 ↑ 117.5 20,480.00 ↑ 204.8 
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Fig. 2.3 Price, quantity, and value index numbers 

2.7 Consumer Price Index Number—C.P.I. 

CPI is a very extensively used economic indicator of price change. Economists have 
consolidated a set of goods that are often purchased and termed it “the basket of 
goods.” CPI refers to the rate of change in the prices of a basket of goods. Thus, CPI 
is also called the Cost-of-Living index as it is used to understand the consumption 
pattern and composition of all household items. The unweighted CPI formula is 
(Figs. 2.3 and 2.4) 

C.P.I. = 
Cost of a basket of goods in a given year 

Cost of a basket of goods in the base year 
∗ 100

In the basket of goods, the commodities are categorized into different groups and 
weights are attached based on their importance. 

Therefore, weighted price index numbers =
∑

WP∑
W ∗ 100 

where P = [p1/p0]∗100 and W is the weights. 
For example, if we say, CPI with the base year of 2000 is 560 in August 2011. 

We mean that a person buying a certain essential basket of commodities paid 100 
rupees in the year 2000 now pays 560 rupees for the same basket of commodities in 
August 2011. A general increase in prices in an economy is called inflation. Let’s 
understand CPI and inflation with a simple example. Consider the situation where 
we pack picnic bags for kids in the year 1995 and 2005 (Table 2.7).

Total cost (1995) would be:
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Fig. 2.4 Comic on inflation by Walt Handlesman

Table 2.7 Price and quantity 
of junk foods such as chips, 
cooldrinks, and chocolates 

Chips Cooldrinks Chocolates 

Price 1995 5 15 10 

Quantity 1995 3 2 5

(5 ∗ 3) + (15 ∗ 2) + (10 ∗ 5) = 15 + 30 + 50 = 95 rupees. 

Now after 10 years, we still pack the bag with the same items and quantity, but the 
prices would have certainly increased. Therefore, chips, cool drinks, and chocolates 
now cost 10, 25, and 30 rupees, respectively. 

Total cost (2005) would be: 

(10 ∗ 3) + (25 ∗ 2) + (30 ∗ 5) = 30 + 50 + 150 = 230 rupees. 

C.P.I. is just an index value, indexed to 100 in the base year. To compute C.P.I, let 
us consider the year 1995 as the base year and 2005 will be the current year. 

C.P.I.(2005) = (230/95) ∗ 100 = 242.10.
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Fig. 2.5 Which shows the C.P.I. and Consumer Food Price Index (C.F.P.I) values on a monthly 
basis 

2.7.1 How is the CPI Market Basket Determined? 

The CPI market basket is developed from detailed expenditure information provided 
by families and individuals on what they actually bought. There is a time lag between 
the expenditure survey and its use in the CPI. For example, CPI data in 2020 and 
2021 was based on data collected from the Consumer Expenditure Surveys for 2017 
and 2018. In each of those years, about 24,000 consumers from around the country 
provided information each quarter on their spending habits in the interview survey. 
To collect information on frequently purchased items, such as food and personal 
care products, another 12,000 consumers in each of these years kept diaries listing 
everything they bought for 2 weeks. Over the 2 years, the expenditure information 
came from approximately 24,000 weekly diaries and 48,000 quarterly interviews 
used to determine the importance, or weight, of the item categories in the CPI index 
structure. (https://www.bls.gov/cpi/questions-and-answers.htm) (Fig. 2.5). 

This is the data from the Ministry of Statistics and Programme Implementation., 
Government of India. Which shows the C.P.I. and C.F.P.I. (Consumer Food Price 
Index) values on a monthly basis. https://www.rba.gov.au/education/resources/dig 
ital-interactives/inflation-explorer/. 

2.7.2 Some Case Studies on Consumer Price Index (CPI) 
Numbers 

1. The United States CPI during an Economic Downturn: During the global finan-
cial crisis of 2008–2009, the United States experienced a significant economic 
downturn. The CPI reflected this downturn, as consumer prices decreased due to

https://www.bls.gov/cpi/questions-and-answers.htm
https://www.rba.gov.au/education/resources/digital-interactives/inflation-explorer/
https://www.rba.gov.au/education/resources/digital-interactives/inflation-explorer/
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decreased demand and deflationary pressures. The CPI numbers showed a decline 
in prices for various goods and services, including housing, transportation, and 
consumer durables. This information was crucial for policymakers to understand 
the extent of the economic crisis and make informed decisions to stimulate the 
economy. 

2. Inflation in Venezuela: Venezuela has faced a severe economic crisis marked 
by hyperinflation in recent years. The country’s CPI numbers skyrocketed as 
a result, reflecting the rapid increase in prices. In 2018, the inflation rate in 
Venezuela reached an astronomical level, with the monthly CPI increasing by 
hundreds or even thousands of percentage points. These alarming CPI numbers 
highlighted the economic instability and the challenges faced by the Venezuelan 
population in affording basic necessities. 

3. CPI and Price Changes in Japan: Japan experienced a prolonged period of defla-
tion, known as the “Lost Decade” in the 1990s and early 2000s. The CPI numbers 
during this period showed a consistent decline in prices across various sectors. 
This deflationary environment posed challenges for the Japanese economy, as 
falling prices can discourage consumer spending and investment. Policymakers 
closely monitored the CPI numbers to assess the effectiveness of their economic 
policies and implement measures to combat deflation. 

4. Impact of COVID-19 on CPI: The COVID-19 pandemic had a significant impact 
on consumer prices worldwide. During the initial stages of the pandemic, there 
were disruptions in the global supply chains, which led to supply shortages 
and price increases for certain goods. However, as lockdown measures were 
implemented and consumer spending declined, the demand for many goods and 
services decreased, resulting in deflationary pressures. CPI numbers reflected 
these changes, showing fluctuations in prices for essential items like food, 
healthcare services, and transportation. 

These case studies illustrate how CPI numbers can provide valuable insights into 
economic trends, such as recessions, hyperinflation, deflation, and the impact of 
external factors like pandemics on consumer prices. Monitoring and analyzing CPI 
data are essential for policymakers, economists, and businesses to make informed 
decisions and understand the overall health of an economy (Fig. 2.6).

2.7.3 The Weighting Pattern for 2019-Based CPI for General 
Households 

The CPI weights reflect the relative importance of each good or service in the 
basket. The Department of Statistics Singapore has showcased the weighting 
pattern for the 2019-based CPI which was derived from the expenditure values 
obtained from the Household Expenditure Survey (H.E.S.) conducted between 
October 2017 and September 2018 and updated to 2019 values by taking into 
account price changes between 2017/18 and 2019. The weights for CPI are
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Fig. 2.6 CPI weighting pattern

as follows: https://www.singstat.gov.sg/find-data/search-by-theme/economy/prices-
and-price-indices/related-info/faq-on-cpi. 

Example: An enquiry into the budgets of middle-class families of a certain town 
revealed that on an average the percent expenses on different groups of expenditure 
were as follows. Food 40, rent 20, clothing 12, fuel and light 10, and miscellaneous 
18. The group index numbers for the current year as compared with a fixed base 
period were respectively 380, 170, 325, 230, and 270. Calculate the Consumer Price 
Index number for the current year (Table 2.8). 

Table 2.8 Calculating CPI 
using weights and index 
numbers 

Groups Weight (W ) Index number (I) I * W 

Food 40 380 15,200 

Rent 20 170 3400 

Clothing 12 325 3900 

Fuel and light 10 230 2300 

Miscellaneous 18 270 4860 

Total 100 29,660

https://www.singstat.gov.sg/find-data/search-by-theme/economy/prices-and-price-indices/related-info/faq-on-cpi
https://www.singstat.gov.sg/find-data/search-by-theme/economy/prices-and-price-indices/related-info/faq-on-cpi
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Solution 

Consumer Price Index number is given as CPI =
∑

I*W∑
W = 29660/100 = 296.60. 

2.7.4 Calculation of CPI 

In most of the scenarios, CPI is considered as “standard of living.” We must be very 
watchful of the two related terms. Though cost is one of the important factors for 
judging the standard of living of people, there are several other aspects which are 
sometimes ignored. These can be size of the family, region of study, education and 
employment, and many more. 

The Sixth International Conference of Labor Statistics held under I.L.O. in 1949 
recommended that “Cost of Living index number should be appropriately renamed 
as consumer price index numbers or retail price index numbers.” 

There are two types of CPI calculation methods: 

– Family budget method. 
– Aggregate expenditure method. 

Aggregate expenditure method: In this method, we consider quantity consumed 
to be as weights. Hence, we multiply the current year price with base year quantity 
and take the sum aggregate. This value is again divided by the aggregate expenditure 
of that commodity in the base year to obtain the final value that represents CPI. 

Family budget method as the name suggests, is a concept, wherein family budgets 
are studied for a large section of population. The consumption is considered as weight 
here across variety of consumer goods. This is an example of weighted average of 
price relative method

∑
WP  
W . 

Consider this example in which we need to compute CPI for 1982 with base period 
being 1975. Let’s solve using both the methods discussed (Tables 2.9 and 2.10). 

Solution 

Aggregate Expenditure Method: 

CPI = ∑p1q0

∑p0q0 
× 100 = 

297.8 

214.31 
× 100 = 138.95

Table 2.9 Consumer goods with quantity and prices of year 1975 and 1982 

Year Commodity Wheat Urad Dal Milk Onion Sugar Tea Kerosene 

1975 Quantity 1.57 3.17 1.5 0.5 4 17 1.12 

Price 58 5 30 15 6 0.5 20 

1982 Price 1.95 1.45 3 0.75 4.7 22 1.85
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Table 2.10 Calculation of aggregate expenditure method and family budget method for various 
commodities 

Commodity P0 q0 P1 Weights p0q0 p1q0 P = P1 P0 
∗ 100 W ∗ P 

Wheat 1.57 58 1.95 91.06 113.1 124.20 11,310.00 

Urad Dal 3.17 5 1.45 15.85 7.25 45.24 725.00 

Milk 1.5 30 3 45 90 200.00 9000.00 

Onion 0.5 15 0.75 7.5 11.25 150.00 1125.00 

Sugar 4 6 4.7 24 28.2 117.50 2820.00 

Tea 17 0.5 22 8.5 11 129.41 1100.00 

Kerosene 1.12 20 1.85 22.4 37 165.18 3700.00 

Total 214.31 297.8 932.04 29,779.99

Family Budget Method: 

CPI = ∑WP

∑W 
= 

29779.99 

214.31 
= 139.05. 

2.8 Wholesale Price Index Number (WPI) 

WPI is the economic barometer that indicates the inflation levels in the economy with 
respect to wholesale prices of commodities. From the production units, throughout 
the supply chain of distribution, there is a price that is added at each level. Wholesale 
price is the amount that is added at a stage where the finished product from the 
warehouse is distributed to various retail stores/local supermarkets, etc. (Fig. 2.7). 

Initially there were a total of 112 commodities that were categorized into six major 
groups by the economic advisor. Later the Standard International Trade Classification

Fig. 2.7 WPI 
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comprised 555 individual quotations. Quotation of prices was collected through 
official sources like State Bank of India, Trade associations, Chamber of Commerce, 
etc. (Table 2.11). 

Over a period of time, index numbers of wholesale prices in India, revised 
series was published weekly by the Economic Adviser using weighted arithmetic 
mean. These weekly index numbers were then averaged to monthly index numbers 
(Table 2.12).

The latest announcement by the economic advisor about the wholesale prices in 
the country: 

From the official website, consider the below tabular information from the 
Economic Survey, Government of India, 2004–2005. Calculate and increase/decrease 
in the CPI and WPI to understand the economy in general and comment on the 
solution thus obtained (Table 2.13).

The calculation for industrial workers (Fig. 2.8):

Table 2.11 Index numbers of wholesale prices of major groups and sub-groups 

Index number of wholesale prices 

By major groups and sub-groups 

Major group/sub-groups 1994–95 1999–00 2000–01 2001–02 

I. Primary articles 115.8 158.0 162.5 168.4 

1. Food articles 112.8 165.5 170.5 176.1 

2. Non-food articles 124.2 143.0 146.5 152.9 

3. Minerals 104.9 110.4 113.5 119.3 

II. Fuel, power, light, and lubricants 108.9 162.0 208.1 226.7 

III. Manufactured products 112.3 137.2 141.7 144.3 

1. Food products 114.1 151.3 145.7 145.4 

2. Beverages, tobacco, and tobacco products 118.3 174.1 179.8 193.8 

3. Textiles 118.2 115.0 119.9 119.3 

4. Wood and wood products 110.9 193.9 180.0 174.4 

5. Paper and paper products 106.1 149.6 165.4 172.8 

6. Leather and leather products 109.7 154.6 149.6 141.0 

7. Rubber and plastic products 106.4 123.6 125.5 126.0 

8. Chemicals and chemical products 116.6 155.2 164.4 169.0 

9. Non-metallic mineral products 110.9 127.4 133.9 144.0 

10. Basic metals, alloys, and metal products 108.4 135.0 140.3 140.7 

11. Machinery and machine tools including 
electricity machinery 

106.0 116.1 123.0 129.1 

12. Transport equipments and parts 107.4 135.4 143.4 146.8 

All commodities 112.6 145.3 155.7 161.3 

Source Office of the economic adviser, Ministry of Industry 
(Statistical Pocket Book India 2002, Page 207), Base: 1993–94 = 100 
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Table 2.13 CPI and WPI of workers 

Year CPI of industrial 
workers (1982 = 
100) 

CPI of urban 
non-manual 
employees 

CPI agricultural 
laborers (1986–87 = 
100) 

WPI (1993–94 = 
100) 

1995–96 313 257 234 121.6 

1996–97 342 283 256 127.2 

1997–98 366 302 264 132.8 

1998- 99 414 337 293 140.7 

1999–00 428 352 306 145.7 

2000–01 444 352 306 155.7 

2001–02 463 390 309 161.3 

2002–03 482 405 319 166.8 

2003–04 500 420 331 175.9 

Economic survey, Government of India, 2004–05

Year 1996 − 97 = 
342 − 313 

313
∗ 100 = 9.26% and so on. 

The calculation for agricultural laborers:

Fig. 2.8 Index numbers of wholesale prices for the month of December 2022 (base year 2011–12) 
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Year 1996 − 97 = 
256 − 234 

234
∗ 100 = 9.40% and so on. 

Similar calculations are done for Wholesale Price Index (W.P.I.) (Table 2.14).
The datasets are comparable as they are CPI values of different divisions of 

laborers, and also, they have a fixed base year. Many fluctuations can be noticed 
in each category of workers; none of them depicts sustainable progress. 

2.8.1 Some Case Studies on WPI

1. Indian WPI and Inflation: India’s Wholesale Price Index (WPI) is a measure of 
the average change in the selling prices received by domestic producers for their 
goods and services at the wholesale level. In the past, WPI numbers in India have 
been used as an indicator of inflation. A case study could focus on a period of high 
inflation in India, such as during 2010–2011. The WPI numbers during this period 
showed a significant increase in prices, driven by factors such as rising crude 
oil prices, food inflation, and global commodity price fluctuations. These WPI 
numbers were crucial for policymakers in assessing the inflationary pressures on 
the economy and formulating appropriate monetary and fiscal policies to manage 
inflation. 

2. Impact of GST Implementation in India: The Goods and Services Tax (GST) is 
a comprehensive indirect tax implemented in India in 2017. It replaced multiple 
taxes levied by the central and state governments. The implementation of GST 
had a significant impact on WPI numbers in various sectors. A case study could 
focus on specific industries like manufacturing or services and examine how the 
WPI numbers changed after the introduction of GST. The study could highlight 
the impact of tax rate changes, input tax credits, and the overall ease of doing 
business on the WPI numbers in different sectors. 

3. WPI and Supply Chain Disruptions: Supply chain disruptions, such as natural 
disasters or geopolitical events, can have an impact on WPI numbers. For 
example, a case study could analyze the WPI numbers during the 2011 earth-
quake and tsunami in Japan. The disruption caused by the disaster affected 
industries like automobile manufacturing, electronics, and machinery. The WPI 
numbers reflected the increase in prices of affected goods due to supply short-
ages and disruptions in production. This case study would demonstrate how WPI 
numbers can capture the impact of supply chain disruptions on wholesale prices 
and provide insights into the economic consequences of such events. 

4. WPI and Agricultural Price Fluctuations: Agricultural products play a significant 
role in WPI calculations. Fluctuations in agricultural prices can impact the overall 
WPI numbers. A case study could examine the WPI numbers during a period of 
agricultural price volatility, such as a drought or a bumper crop year. The study 
could focus on specific agricultural commodities and analyze how their price
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changes influenced the WPI. This analysis would help understand the relationship 
between agricultural production, market dynamics, and the WPI.

These case studies highlight the importance of WPI numbers in assessing infla-
tionary pressures, understanding the impact of policy changes, supply chain disrup-
tions, and agricultural price fluctuations. The WPI provides valuable information 
for policymakers, businesses, and economists to make informed decisions related to 
pricing, production, and economic policies. 

2.9 Tax Price Index Numbers-TPI 

Tax price index numbers refer to indices that measure changes in tax rates or tax 
burdens over time. In simpler terms it is an answer to the question, by how much 
should the consumer income rise in order to match the existing purchasing power in 
an economy. Let us consider that John’s annual disposable income is 60,000$. In the 
following year, the inflation and tax rates are hiked by 2.5 and 3.25%, respectively. 
In order to maintain the same level of purchasing power, his disposable income is 
expected to rise by 5.75%. This way, T.P.I. is a more sophisticated index number 
that accounts for many factors such as retail prices and direct taxes. While tax price 
index numbers are less commonly used compared to other types of index numbers, 
here is a case study that showcases their potential application. 

2.9.1 Case Study: Tax Reform and Tax Price Index Numbers 

In 2017, the United States implemented comprehensive tax reform, known as the 
Tax Cuts and Jobs Act (TCJA). The TCJA aimed to simplify the tax system, promote 
economic growth, and reduce the tax burden on businesses and individuals. Tax price 
index numbers could be utilized to analyze the impact of this tax reform on taxpayers 
and the overall economy (Fig. 2.9).

1. Tax Burden Analysis: Tax price index numbers can help assess the changes in the 
tax burden on different income groups and industries. By comparing tax price 
index numbers before and after the tax reform, policymakers and economists can 
evaluate how the tax burden shifted across various income levels. This analysis 
would provide insights into the distributional effects of the tax reform and its 
impact on income inequality. 

2. Business Competitiveness: Tax price index numbers can be used to gauge the 
impact of tax reforms on business competitiveness. Lower tax rates or changes 
in tax structures can affect businesses’ investment decisions, profitability, and 
international competitiveness. By tracking tax price index numbers, policymakers 
can monitor changes in tax burdens and assess how these changes influence 
business decisions, job creation, and economic growth.
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Fig. 2.9 Tax and price index numbers (Jan 1987 = 100) 

3. Behavioral Effects: Tax price index numbers can shed light on the behavioral 
changes induced by tax reforms. For example, if tax rates on certain goods or 
services are reduced, tax price index numbers can indicate whether there is a 
shift in consumption patterns or increased economic activity in specific sectors. 
This information can be useful for policymakers to understand the response of 
taxpayers to tax incentives and tailor policies accordingly. 

It is important to note that tax price index numbers may face challenges due to 
complexities in tax systems, including multiple tax rates, exemptions, and deductions. 
The calculation of tax price indices requires accurate and comprehensive tax data, 
which may not always be readily available. Nonetheless, by utilizing tax price index 
numbers, policymakers can evaluate the effects of tax reforms, make data-driven 
decisions, and assess the overall impact on taxpayers and the economy. 

T.P.I. is published by Office of National Statistics by setting the base value of 
January 1987 as 100. In January of 2017, the rate of inflation as measured by the index 
rose 3.1% over the previous 12 months. This number is relatively low, historically 
speaking. For example, the TPI reflected a 25.5 year-over-year change in January 
1975, reflecting the need for incomes to rise 25.5% over the 12-month for a person 
to maintain the same purchasing power and quality of life. 

2.10 Crime Index Numbers 

Crime index numbers are composite statistical measures that provide a quantitative 
assessment of the overall crime situation in a particular region or jurisdiction. They 
provide a comprehensive and quantitative understanding of crime rates, patterns, 
and trends within a given area or jurisdiction. These indices help policymakers, 
law enforcement agencies, researchers, and communities make informed decisions, 
allocate resources effectively, and develop targeted crime prevention strategies. By
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monitoring crime index numbers over time, stakeholders can assess the impact of 
interventions, evaluate public safety, and work toward fostering safer societies. 

These indices are typically derived from a combination of crime-related data, such 
as reported offenses, arrests, convictions, and other relevant information collected by 
law enforcement agencies. By aggregating these data points, crime index numbers 
offer a summarized view of the prevalence and severity of different types of crimes 
within a given area. 

2.10.1 Components of Crime Index Numbers 

1. Reported Crimes: One of the primary components of crime index numbers is 
the count of reported crimes. This includes offenses reported to law enforce-
ment agencies by victims or witnesses, encompassing various categories such as 
violent crimes (e.g., homicide, assault), property crimes (e.g., burglary, theft), 
and other types of criminal activities. 

2. Clearance Rates: Clearance rates indicate the proportion of reported crimes that 
have been resolved or closed by law enforcement agencies. They reflect the 
effectiveness of investigations and the ability to identify and apprehend suspects. 
Higher clearance rates may indicate more successful law enforcement efforts and 
serve as an indicator of public safety. 

3. Arrests and Convictions: The number of arrests and convictions resulting from 
reported crimes is another key component of crime index numbers. It signifies the 
criminal justice system’s ability to apprehend perpetrators, bring them to trial, 
and secure convictions. Tracking the rate of arrests and convictions helps gauge 
the effectiveness of law enforcement and judicial processes in combating crime. 

4. Crime Rates: Crime rates, including violent crime rates and property crime 
rates, are vital components of crime index numbers. These rates are calcu-
lated by dividing the number of reported crimes by the population size and are 
often expressed per 1000 or 100,000 residents. Crime rates provide a standard-
ized measure that facilitates comparisons across different jurisdictions and time 
periods. 

2.10.2 Significance of Crime Index Numbers 

1. Crime Prevention and Resource Allocation: Crime index numbers play a crucial 
role in formulating targeted crime prevention strategies. By analyzing crime 
patterns and trends, policymakers and law enforcement agencies can identify 
high-crime areas and allocate resources accordingly. These indices help priori-
tize interventions, such as increased patrols, community policing initiatives, or 
enhanced security measures, to address specific crime hotspots effectively.
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2. Assessing Public Safety: Crime index numbers provide a benchmark for assessing 
public safety and evaluating the success of crime reduction efforts. A declining 
crime index may indicate improved safety and suggest that implemented strate-
gies are yielding positive results. Conversely, an increasing crime index can 
signal the need for additional interventions and policy adjustments to ensure 
public safety. 

3. Research and Evaluation: Crime index numbers serve as valuable data sources 
for researchers studying crime patterns, risk factors, and the effectiveness of 
crime prevention programs. By analyzing long-term trends and correlating crime 
indices with various socioeconomic variables, researchers can gain insights into 
the underlying causes of crime and identify evidence-based strategies to reduce 
criminal activities. 

4. Community Engagement: Crime index numbers foster community engagement 
and collaboration in crime prevention efforts. By disseminating crime statis-
tics and indices to the public, communities can gain awareness of local crime 
issues, encouraging citizens to adopt preventive measures and work alongside 
law enforcement agencies. Community involvement and vigilance are crucial in 
reducing crime and improving overall public safety. 

Neighborhood Scout’s Crime Index is a value ranging between 0 and 100, where 
100 is referred to as the safest score. A crime index of 75 means that the neighborhood 
is 75% safer than the other neighborhoods of America. 

F.B.I. or Federal Bureau of Investigation is responsible for compiling all the crime 
statistics on an annual basis and presenting the crime index or the National Uniform 
Crime Report. Similar to the idea of a “basket of goods” in the calculation of C.P.I., 
the F.B.I. has also consolidated all crimes into major eight crimes divided into two 
branches, namely violent crime and property related crime. These major categories 
are: 

1. Murder. 
2. Forcible Rape. 
3. Larceny-theft 
4. Burglary. 
5. Motor Vehicle Theft. 
6. Aggravated Assault. 
7. Arson. 
8. Robbery. 

There was always a need for a meaningful weighted index number that compre-
hends all these crime data and incorporates a legitimate measure of harm/pain/loss 
as weights. The resulted index number forms a base for the penalty or punishment 
that the accused/offender deserves.
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The C.C.H.I.—Cambridge Crime Harm Index—May 2020, is one among the 
latest research in the field of crime that uses index numbers to measure the harm that 
each type of offense causes to the victims, based on which a baseline punishment 
can be ascertained and ordered to the accused in the court of justice C.C.H.I. was 
proposed by Lawrence Sherman, Peter William Neyroud and Eleanor Neyroud in 
2016. 

This index is not just useful in criminal justice but is also used as an impor-
tant reference code by ATHENA—System of Criminal Recording and Management 
System used by various forces in the United Kingdom to improvise and ease the 
addition of CCHI scores to the available police data. 

2.11 Environmental Quality Index 

Environmental Quality Index: The Environmental Quality Index is a measure of the 
environmental health and sustainability of a region. It considers various environ-
mental indicators such as air and water qualities, waste management, biodiversity, 
and natural resource conservation. The index helps gauge the overall environmental 
performance and highlights areas that need improvement. 

Uses and Applications: 

• Assessing the environmental impact of policies and projects. 
• Monitoring progress toward environmental goals and targets. 
• Comparing the environmental performance of different countries or regions. 
• Raising awareness about environmental issues and encouraging sustainable 

practices.
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Example: To calculate the Environmental Quality Index (EQI) for a particular region 
based on different environmental parameters. For this example, let us consider a 
simplified EQI that takes into account four environmental parameters: air quality, 
water quality, biodiversity, and waste management. 

Step 1: Define the Environmental Parameters 
Let us define the ideal ranges for each parameter: 

– Air Quality: Ideally Air Quality Index (AQI) is below 50, indicating good air 
quality. 

– Water Quality: Ideally, the Water Quality Index should be above 80, indicating 
good water quality. 

– Biodiversity: Ideally, a Biodiversity Index is above 75, indicating high biodiver-
sity. 

– Waste Management: Ideally, a Waste Management Index is above 70, indicating 
effective waste management practices. 

Step 2: Collect Data 
Let us assume we have data for the region as follows: 

– Air Quality (AQI): 65. 
– Water Quality Index: 75. 
– Biodiversity Index: 80. 
– Waste Management Index: 68 

Step 3: Calculate Scores for Each Parameter 
To calculate the scores for each parameter, we will use a simple linear scoring 

system where higher values result in higher scores (0–100). For parameters within 
the ideal range, the score will be 100, and for values outside the ideal range, the score 
will decrease linearly. 

(a) Air Quality Score: 

Air Quality Score = 100 − (abs(ideal_ AQI − actual AQI) ∗ 2) 
Air Quality Score = 100 − (abs(50 − 65) ∗ 2) 
Air Quality Score = 100 − (15 ∗ 2) 
Air Quality Score = 100 − 30 
Air Quality Score = 70 

(b) Water Quality Score: 

Water Quality Score = 100 − (abs(ideal_Water_quality − actual_water_quality) ∗ 1.25) 
Water Quality Score = 100 − (abs(80 − 75) ∗ 1.25) 
Water Quality Score = 100 − (5 ∗ 1.25) 
Water Quality Score = 100 − 6.25 
Water Quality Score = 93.75
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(c) Biodiversity Score: 

Bio diversity Score = 100 − (abs (ideal_ biodiversity − actual_ biodiversity)∗1.33) 
Bio diversity Score = 100 − (abs (75 − 80)∗1.33) 
Bio diversity Score = 100 − (5 ∗ 1.33) 
Bio diversity Score = 100 − 6.65 
Bio diversity Score = 93.35 

(d) Waste Management Score: 

Waste Management Score = 100 − (abs (ideal_ waste_ management 

actual_ waste_ management)∗ 2) 
Waste Management Score = 100 − (abs(70 − 68) ∗ 2) 
Waste Management Score = 100 − (2 ∗ 2) 
Waste Management Score = 100 − 4 
Waste Management Score = 96 

Step 4: Calculate the Environmental Quality Index (EQI) 

To calculate the overall EQI, we take the average of the scores obtained for each 
parameter. 

Environmental Quality Index(EQI)=(Air Quality Score + Water Quality Score 

+ Biodiversity Score + Waste Management Score)/4 

Environmental Quality Index(EQI) = (70 + 93.75 + 93.35 + 96)/4 
Environmental Quality Index(EQI) = 353.1/4 
Environmental Quality Index(EQI) ≈ 88.275 

Step 5: Interpretation 

The calculated Environmental Quality Index (EQI) is approximately 88.275 out of 
100. This indicates that the overall environmental quality in the region is relatively 
good, with minor room for improvement in some parameters, particularly air quality. 
However, it is essential to conduct a comprehensive analysis and consider other 
relevant environmental factors to have a complete understanding of the region’s 
environmental health and potential areas of concern. Additionally, environmental 
policies and initiatives can be formulated based on the EQI to improve the region’s 
environmental sustainability.
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2.12 The Health Index 

The Health Index is a composite measure that evaluates the overall health status and 
healthcare system performance of a population. It incorporates indicators such as 
life expectancy, mortality rates, disease prevalence, access to healthcare services, 
and public health initiatives. 

Uses and Applications: 

• Benchmarking the healthcare system against international standards. 
• Identifying health disparities and areas requiring targeted interventions. 
• Assessing the effectiveness of public health programs and policies. 
• Informing healthcare resource allocation and planning. 

Example: Consider this data related to calculating a Health Index for an individual 
based on different health parameters. For this example, let us consider a simplified 
Health Index that takes into account three health parameters: Body Mass Index (BMI), 
Blood Pressure (BP), and Cholesterol levels. 

Step 1: Define the Health Parameters 

Let us define the ideal ranges for each parameter: 

– BMI: Ideally between 18.5 and 24.9. 
– Blood Pressure (BP): Ideally below 120/80 mmHg. 
– Cholesterol: Ideally total Cholesterol below 200 mg/dL. 

Step 2: Collect Data 

Let us assume we have data for an individual as follows: 

– BMI: 26.5. 
– Blood Pressure (BP): 130/85 mmHg. 
– Cholesterol: 210 mg/dL. 

Step 3: Calculate Scores for Each Parameter 

To calculate the scores for each parameter, we will use a simple linear scoring system 
where higher values result in lower scores (0–100). For parameters within the ideal 
range, the score will be 100, and for values outside the ideal range, the score will 
decrease linearly. 

(a) BMI Score: 

BMI score = 100 − (abs (ideal_ BMI − individual_ BMI)∗ 4) 
BMI score = 100 − (abs (22.2 − 26.5) ∗ 4) 
BMI score = 100 − (4.3 ∗ 4) 
BMI score = 100 − 17.2 
BMI score = 82.8
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(b) Blood Pressure (BP) Score: 

For Blood Pressure, we will calculate the average of systolic and diastolic scores. 

Systolic Score: 

Systolic score = 100 − (abs(ideal_ systolic − Individual_ systolic) ∗ 0.5) 
Systolic score = 100 − (abs(120 − 130) ∗ 0.5) 
Systolic score = 100 − (10 ∗ 0.5) 
Systolic score = 100 − 5 
Systolic score = 95 

Diastolic Score: 

Diastolic score = 100 − (abs (ideal_diastolic − individual_diastolic) ∗ 0.5) 
Diastolic score = 100 − (abs(80 − 85) ∗ 0.5) 
Diastolic score = 100 − (5 ∗ 0.5) 
Diastolic score = 100 − 2.5 
Diastolic score = 97.5 

BP Score (average of systolic and diastolic scores): 

BP Score = (Systolic Score + Diastolic Score)/2 
BP Score = (95 + 97.5)/2 
BP Score = 192.5/2 
BP Score = 96.25 

(c) Cholesterol Score: 

Cholesterol score = 100 − (abs (ideal_ Cholesterol − individual_ Cholesterol) ∗ 0.5) 
Cholesterol score = 100 − (abs(200 − 210) ∗ 0.5) 
Cholesterol score = 100 − (10 ∗ 0.5) 
Cholesterol score = 100 − 5 
Cholesterol score = 95 

Step 4: Calculate the Health Index 

To calculate the overall Health Index, we take the average of the scores obtained for 
each parameter.
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Health Index = (BMI Score + BP Score + Cholesterol Score)/3 
Health Index = (82.8 + 96.25 + 95)/3 
Health Index = 273.05/3 

Step 5: Interpretation 

The calculated Health Index is approximately 91.02 out of 100. This indicates that 
the individual’s health is generally good, with minor room for improvement in some 
health parameters (specifically BMI and Blood Pressure). It is essential to consult a 
healthcare professional for personalized advice and recommendations on maintaining 
and improving overall health. 

2.13 Education Index Number 

“Education is not the learning of facts, but the training of the mind to think.”—Albert 
Einstein. 

The Education Index is a statistical measure that assesses the education level and 
literacy rate of a population. It is typically used to compare the education perfor-
mance of different countries or regions. The index is often constructed using indi-
cators such as literacy rates, enrollment ratios, and educational attainment levels. A 
higher Education Index value indicates a higher level of education and human capital 
development in a particular area. 

The Education Index is one component under the Human Development Index 
(H.D.I.) which is a key value depicting the performance of the states upon evaluating 
all the factors of an education system. https://www.insightsonindia.com/2021/06/07/ 
education-index-ranking/. 

Performance Grading Index, P.G.I., is a tool used by the Ministry of Education to 
evaluate all the indicators of education in every state of the country. The latest scores 
of P.G.I. (2019–2020) are depicted in Fig. 2.10.

Andaman and Nicobar, Punjab, Chandigarh, Kerala, and Tamil Nadu are the states 
in the A++ category scoring over 900 out of 1000 points, whereas states such as 
Bihar and Meghalaya scored the least mainly due to the lack of infrastructure and 
educational facilities. 

Education Index (E.I.) = 
Mean Years of Schooling Index (MYSI) 

Expected Years of Schooling Index (EYSI) 

Mean Years of Schooling Index (MYSI) = 
Mean Years of Schooling 

15 

MYSI is the average number of completed years of education for a population 
that is 25 years and above. The index is divided by 15 which is forecasted as the 
maximum indicator for 2025.

https://www.insightsonindia.com/2021/06/07/education-index-ranking/
https://www.insightsonindia.com/2021/06/07/education-index-ranking/
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Fig. 2.10 Performance grading index of India

Expected Years of Schooling Index (EYSI) = 
Expected Years of Schooling 

18 

EYSI for a child who is of age to start school is defined as, what is the expected 
number of schooling years that the child would receive if the age-specific enrolments 
rates prevail throughout the child’s life. The index is divided by 18, which is the 
general age at which students are awarded a master’s degree. 

For example, in a region where the expected year of schooling is given as 24 and 
the mean years of schooling is 26, the Education Index would be 

Education Index (E.I.) = 
Mean Years of Schooling Index (MYSI) 

15 
Expected Years of Schooling Index (EYSI) 

18 

= 
(26/15) 
(24/18) 

= 
1.733 

1.333 
= 1.3 

These various index numbers provide valuable data and insights into different 
aspects of society and can be instrumental in decision-making, policy formulation, 
and addressing various challenges. As with any index, the construction and selection 
of indicators should be carefully considered to ensure the index’s relevance and 
accuracy in capturing the intended information.
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2.14 Types of Index Number Based on Weights 
and Formula 

2.14.1 Laspeyre’s Index—Output Inflator 

Named after a German economist Étienne Laspeyre, this method of index calculation 
was formulated in 1871. His rationale was to choose base year values as weights. 
Therefore, this method is also called base weighted index which was applicable at 
times when the effect of price rise had to be reduced (Figs. 2.11 and 2.12). 

Laspeyre’s index =
∑ (

Xc,tn

) ∗ ∑(
X '
c,t0

)

∑(
Xc,t0

) ∗ ∑(
X '
c,t0

) ∗ 100

where X' is the weights for calculating the index number of X. (c, tn) refers to cost 
at time tn and (c, t0) refers to cost in the base year. 

Laspeyre’s price index = P L 01 =
∑

p1q0∑
p0q0 

∗ 100 

In price index calculation the reason to opt for Laspeyre’s index was to reduce the 
price rise to adjust the inflation. But this idea became a setback as it was a condition 
of upward bias. This method of index calculation helps you understand, how much 
of the total price increase is due to the variation in the quantity levels and how much 
is due to inflation. In case we need to compute the quantity index number (QL 

01), 
then the base year price of the commodity will be the weights. The formula is thus, 
QL 

01 =
∑

q1 p0∑
q0 p0 

∗ 100. 

2.14.2 Paasche’s Index—Output Deflator 

In 1875, Hermann Paasche, a German economist believed in adding current year 
values as weights. This gives a better reflection of the consumption pattern. There-
fore, this method is also called the current weighted index. But this method of index 
calculation understates the inflation therefore Paasche’s index method was not appli-
cable/effective in all fields of study. The formula to calculate the price index number 
given by Paasche is (Fig. 2.13) 

Paasche’s index =
∑(

Xc,tn

) ∗ ∑ (
x '
c,tn

)

∑(
Xc,t0

) ∗ ∑(
Xc,tn

) ∗ 100

where X' is the weights for calculating the index number of X. (c, tn) refers to cost 
at time tn and (c, t0) refers to cost in the base year.
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Index Numbers 
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Simple 
aggregate 
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aggregate 

Laspeyr's 
Method 
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Method 

Dorbish and 
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method 

Fisher's method 

Marshall 
Edgeworth's 

method 

Kelly's method 

Weighted 
average of 
relatives 

Fig. 2.11 Classification of index numbers with respect to their calculations

Paasche’s price index = P P 01 =
∑

p1q1∑
p0q1 

∗100 

Interpretation: This formula helps you decipher the difference in price in today’s 
basket of goods in today’s dollars versus the price for the same basket of goods in
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Fig. 2.12 Étienne 
Laspeyre’s

Fig. 2.13 Hermann Paasche

base year dollars? Analysts who need to measure the real value of output for a specific 
period will find this measure useful. In case we need to compute the quantity index 
number (Q P 01), then the current year price of the commodity will be the weight. The 

formula is thus, QL 
01 =

∑
q1 p1∑
q0 p1 

∗ 100 [11]. The picture above shows the comparison 
between both Laspeyre’s and Paasche’s index numbers created from the Private Non-
Residential Investment Deflator. Prices of domestic corporate goods and major goods 
included in the Machinery Statistics were compared and brought into alignment to 
create the indexes. Weights were derived from the production value listed in the 
Machinery Statistics (Fig. 2.14).

2.14.3 Fisher’s Ideal Formula 

Sir, Ronald Aylmer Fisher, is the Father of Statistics for his immense contribution in 
the field of applying and discovering statistical methods in genetics and the design 
of experiments.



88 2 Index Numbers

Fig. 2.14 Visual representation of Laspeyre’s and Paasche’s index numbers

Hald, Anders mentioned Fisher as “A genius who almost single-handedly 
created the foundations for modern statistical science” in their book, A History of 
Mathematical Statistics (1998). 

He also formulated a weighted aggregate index number using a geometrical 
average of Paasche’s and Laspeyre’s indices (Fig. 2.15). 

Fisher’s Ideal Index 

= √
Paasche’s Index ∗ Laspeyr’s Index ∗ 100 

=
/∑

(Xc,tn ) ∗
∑

(X '
c,t0)∑

(Xc,t0 ) ∗
∑

(X '
c,tn ) 

∗
∑

(Xc,tn ) ∗
∑

(X '
c,tn )∑

(Xc,t0 ) ∗
∑

(X '
c,tn ) 

∗ 100 

where X ' is the weights for calculating index number of X. (c, tn) refers to cost at 
time tn and (c, t0) refers to cost in the base year. 

Therefore, the price index number defined as per Fisher’s formula is given as,

Fig. 2.15 Sir Ronald A 
Fisher 
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Fig. 2.16 Why is Fisher’s Index the ideal one 

P F 01 =
/∑

p1q1∑
p0q1 

∗
∑

p1q0∑
p0q0 

∗ 100 

And the quantity index number would be, Q01 F
∑

q1 p1∑
q0 p1 ∗

∑
q1 p0∑
q0 p0 

. 

Note: Why is Fisher’s index called an ideal one? 
This method of calculation reveals the unbiased value of today’s basket of goods 

being constructed in constant dollars. This formula evens out the biasedness of under-
stating and overstating inflation by reducing it into half by choosing a geometric 
mean. This method also allows for some variations in the characteristics of the base 
weights (Fig. 2.16). 

Demerits 

Boddington has remarked that “Unfortunately, while this formula apparently meets 
most of the mathematical requirements of a perfect index formula, it is objected to on 
the score that it is not clear what it measures, i.e., the result combines both price and 
volume changes when usually we want the one to be separated from the other”. Few 
statisticians are of an opinion that there exists a need for an alternative and all-purpose 
formula for calculating weighted aggregate index numbers. This is because Fisher’s 
method of calculation goes pointless even with one missing value. We must also note 
that the collection of all the data points may be time consuming and expensive at 
times. Though the calculation is not tedious, ambiguity arises when both current and 
base year values are used as weights as we cannot confidently identify the cause of 
inflation.
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2.14.4 Dorbish and Bowley 

These were economists who considered using the arithmetic average of both 
Laspeyre’s and Paasche’s indices. 

Paasche’s Index + Laspeyr’s Index 
2

=
∑

(Xc, tn )∗
∑

(X '
c,t0 

)
∑

(Xc, t0 )∗
∑

(X '
c,t0 

) +
∑

(Xc, tn )∗
∑

(X '
c,tn )∑

(Xc, t0 )∗
∑

(X '
c,tn ) 

2 

where X ' is the weights for calculating the index number of X. (c, tn) refers to cost at 
time tn and (c, t0) refers to cost in the base year. For example, the price index number 
defined by Dorbish and Bowley would be, 

PDB 
01 =

)
P L 01 + P P 01 

2

)
∗ 100 =

∑
p1q0∑
p0q0 

+
∑

p1q1∑
p0q1 

2
∗ 100 

But the result was vulnerable to the outliers and the simple average was pointless 
in many cases. 

2.14.5 Marshall–Edgeworth’s Index 

To overcome the drawbacks of Dorbish and Bowley, Economic Statisticians, Marshall 
(1887) and Edgeworth (1925) considered the total of both current and base year 
quantities. 

Marshall-Edgeworth’s Index =
∑

Xc,tn ∗
(
X '
c,t0 + X '

c,tn

)

∑
Xc,t0 ∗

(
X '
c,t0 + X '

c,tn

)

where X ' is the weights for calculating the index number of X. (c, tn) refers to cost at 
time tn and (c, t0) refers to cost in the base year. For example, the price index number 
is defined as, 

PME 
01 =

[∑
p1(q0 + q1)∑
p0(q0 + q1)

]
∗ 100 =

[∑
p1q0 + p1q1∑
p0q0 + p0q1

]
∗ 100
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2.14.6 Kelly’s Index Number 

Truman L Kelly suggested considering a weight that is an arithmetic average of 
base and current year quantities. Consider X

'
as an arithmetic mean of weights

(
X '
c,t0 + X '

c,tn

)
/2, the formula is thus,

∑
Xc,tn ∗X '

∑
Xc,t0∗X

' . 

where X ' is the weights for calculating the index number of X. (c, tn) refers to 
cost at time tn and (c, t0) refers to cost in the base year. For example, the price index 
number is defined as, 

P K 01 =
∑

p1 ∗ q
∑

p0q 
∗ 100 where q = 

q1 + q0 
2 

Though this idea overcomes a few disadvantages of Dorbish’s and Bowley’s 
indices, yet the application remained inappropriate in many real-time scenarios. 
Therefore, economists experimented with geometric and harmonic mean of weights. 

2.14.7 Walsh’s Index Number 

Walsh was one such economist who modified Kelly’s index by using a geometric 
average instead of an arithmetic mean. Geometric mean in general is more accurate 
than simple average since it considers the compounding effect of two time periods. 
Another important advantage of this formula is the base period which can be changed 
without necessitating a corresponding change in the weights. 

Consider X̃ ' =
/
X'

c,t0 ∗ X'
c,tn , the formula is thus,

∑
Xc,tn ∗ ̃X '∑
Xc,t0∗ ̃X ' . 

where X ' is the weights for calculating the index number of X. (c,  tn) refers to cost at 
time tn and (c, t0) refers to cost in the base year. For example, the price index number 
is defined as, 

PW 
01 =

∑
p1 ∗~q

∑
p0 ∗~q 

∗ 100 where ~q = 
√
q1 ∗ q0. 

2.15 Criteria for a Good Index Number 

Despite all our efforts, there can be errors in the construction of index numbers. 
These are mainly classified into 

– Homogeneity errors: In such cases, the composition of commodities of index 
numbers is not on the same level.
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– Sampling errors: In certain situations where a sample of prices/quantities is 
collected to summarize the price/quantity index numbers, there are chances of 
the sample not being representative of the population. This gives rise to sampling 
errors. 

– Formula errors: Formula errors can be such as the application of the incorrect 
formula. 

2.15.1 Tests on Index Numbers 

These are statistical techniques used to assess the quality and reliability of index 
numbers, which are used to measure changes in a particular variable over time. 
Index numbers are essential for comparing economic, financial, or other data across 
different periods. Some common tests applied to index numbers include: 

1. Time-Reversal Test: The Time-Reversal Test is used to check the reliability and 
consistency of an index by reversing the time-series data and recomputing the 
index. If the index is accurate, the value obtained from the reversed data should 
be approximately the reciprocal of the original index. In mathematical terms, if 
the original index is I(t), then the time-reversed index would be 1/I(t). 

2. Factor Reversal Test: The factor reversal test is similar to the time-reversal test, 
but it involves reversing the weights or factors used to construct the index. By 
reversing the weights and recomputing the index, you can check if the index 
remains consistent and reliable. 

3. Resampling Test: The resampling test involves randomly reshuffling the data 
points to create new datasets. Then, you recalculate the index using each of these 
new datasets and compare the results to the original index. This test helps assess 
the stability and robustness of the index. 

4. Linking Test: The linking test is conducted when there is a change in the base 
period of the index. It involves comparing the index values before and after the 
change to ensure the continuity and consistency of the index series. 

5. Time-Series Analysis: Various time-series analysis techniques, such as autocor-
relation and seasonality analysis, can be applied to index numbers to identify 
patterns, trends, and potential data issues. 

6. Unit Test: The unit test is performed to ensure that the index remains unaffected 
when the unit of measurement is changed. For example, if the index is calculated 
in dollars, the unit test checks if the index remains the same when converted into 
another currency. 

7. Plausibility Check: Plausibility checks involve comparing the index results with 
other economic indicators and related data to see if they align logically and are 
reasonable. 

It is important to note that these tests are not exhaustive, and the choice of specific 
tests may vary depending on the nature of the data and the purpose of the index. 
The ultimate goal is to ensure the accuracy, consistency, and reliability of the index
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numbers so that they can be used effectively for various economic and analytical 
purposes. 

2.15.2 Time-Reversal Test (T.R.T.) 

Does your index number work both the ways, forward and backward? 
I01 = Is the index number calculated for time “1” with base time “0.” Similarly, 

I10 is the index number for year “0” on year “1.” 
The time-reversal test is thus expressed as, I01 ∗ I10 = 1. 
The index number calculated backward is the reciprocal of the index number 

calculated forward. Fisher’s index number satisfies the Time-Reversal Test. 
The analogy goes this way, and the price of a commodity ranges from Rs 5 to Rs 

20 between the years, 1980 and 1990. This means that in the year 1990, the product 
is 4 times that of the price in 1980. In the year 1980, the product price is only 25% 
of the cost in 1990. 

The product 4 ∗ 0.25 = 1. 
Let us decipher through the formula, consider the price index number given by 

Fisher, 

P P 01 =
/∑

p1q1∑
p0q1 

∗
∑

p1q0∑
p0q0 

When time subscripts are interchanged, we get, 

P P 10 =
/∑

p0q0∑
p1q0 

∗
∑

p0q1∑
p1q1 

P P 01 ∗ P P 10 = 1 

Therefore, the Time-Reversal Test is satisfied. 
The other methods that satisfy the test are, 

– The simple geometric mean of price relatives. 
– Marshall–Edgeworth formula of index numbers.
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– Kelly’s method as it is a weighted geometric mean of price relatives with fixed 
weights. 

– Fisher’s index numbers. 

2.15.3 Factor Reversal Test (F.R.T.) 

Does your index number validate the change in the value according to the change in 
price and quantity? 

The idea behind the test has a very simple logic. Let us consider, P01 and Q01 

are the price and quantity index numbers that are defined at period “1” with “0” 
as the base period, respectively. V01 is defined as a value index number which is 
defined as V01 = P01 ∗ Q01. Let us take an example from history where machinery 
revolutionized the handcraft industry. During the period between 1990 and 1995, the 
cost of hand-weaved baskets increased by 20% and the production surged by 9 times. 
This means the value index number must indicate an 18% rise (20% rise in price and 
9 times rise in production levels) to satisfy the factor reversal test. 

Let us look at why Laspeyre’s index doesn’t satisfy the F.R.T., but only Fisher’s 
method of index numbers satisfies F.R.T. Let’s consider Laspeyre’s method. 

P L 01 =
∑

p1q0∑
p0q0 

, QL 
01 =

∑
q1 p0∑
q0 p0 

V L 01 =
∑

q1 p1∑
q0 p0 

When we multiply P L 01 ∗ QL 
01 =

∑
p1q0∑
p0q0 

∗
∑

q1 p0∑
q0 p0 

=
∑

p1q0∗∑
q1 p0 

(
∑

p0q0)
2 /= V L 01 . On the  

other hand, let’s look at Fisher’s method,

/∑
(Xc,tn ) ∗

∑(
X '
c,t0

)

∑
(Xc,t0 ) ∗

∑(
X '
c,t0

) ∗
∑

(Xc,tn ) ∗
∑(

X '
c,tn

)

∑
(Xc,t0 ) ∗

∑(
X '
c,tn

)

P F 01 ∗ QF 
01 =

/∑
q1 p0∑
q0 p0 

∗
∑

q1 p1∑
q0 p1 

∗
∑

p1q1∑
p0q1 

∗
∑

p1q0∑
p0q0 

=
/∑

p1q1∑
p0q0 

∗
∑

q1 p1∑
q0 p0 

=
∑

q1 p1∑
q0 p0
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which is the value index defined. 
Let us compute the Fisher’s index number for data collected from a household on 

their grocery with specific units of measurement and understand how the formula 
satisfies T.R.T. and F.R.T. (Tables 2.15 and 2.16). 

Solution 

The Fisher’s index number is calculated as, 
For Time-Reversal Test, 

P F 01 =
/∑

p1q1∑
p0q1 

∗
∑

p1q0∑
p0q0 

∗ 100 and P F 01 =
/∑

p0q0∑
p1q0 

∗
∑

p0q1∑
p1q1 

∗ 100 

T.R.T. = P F 01 ∗ P F 01 = 1(ignoring the 100) 

T.R.T. =
{/

8400 

21280 
∗ 
22505.5 

16756

}

∗
{/

16756 

22505.5 
∗ 
16756 

8400

}

= √
1 = 1 

For factor reversal test,

Table 2.15 Price and quantity of products along with base and current years 

Items Base year Current year 

Quantity Price Quantity Price 

Wheat 12 326 15 560 

Rice 15 550 18 650 

Oil 5 250 9 354 

Pulses 8 400 10 512 

Spices 1.5 96 2.5 113 

Table 2.16 Calculation for time and factor reversal tests 

Items Base year Current year 

Quantity 
q0 

Price 
p0 

Quantity 
q1 

Price 
p1 

p1q0 p0q0 p1q1 p0q1 

Wheat 12 326 15 560 6720 3912 8400 4890 

Rice 15 550 18 650 9750 8250 11,700 9900 

Oil 5 250 9 354 1770 1250 3186 2250 

Pulses 8 400 10 512 4096 3200 5120 4000 

Spices 1.5 96 2.5 113 169.5 144 282.5 240 

Total 41.5 1622 54.5 2189 22,505.5 16,756 28,688.5 21,280 
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F.R.T. = V F 01 = P F 01 ∗ QF 
01 =

∑
p1q1∑
p0q0 

P F 01 =
/∑

p1q1∑
p0q1 

∗
∑

p1q0∑
p0q0 

and QF 
01

/∑
q1 p1∑
q0 p1 

∗
∑

q1 p0∑
q0 p0 

P F 01 ∗ QF 
01 =

{/
28688.5 

21280 
∗ 
22505.5 

16756

}

∗
{/

28688.5 

22505.5 
∗ 
21280 

16756

}

= 

⎧ 
⎨ 

⎩

/)
28688.5 

16756

)2 
⎫ 
⎬ 

⎭ = 
28688.5 

16756 
=

∑
p1q1∑
p0q10 

= V F 01 

Thus, Fisher’s index satisfies both T.R.T and F.R.T. 

2.15.4 Unit Test 

This test states that the method of constructing index numbers should be independent 
of units of measurement. This makes comparison simpler by bringing all the values 
to equal levels. For example, consider the entities in any household budget, petrol is 
in liters, rice is in quintals, electricity in watts consumed, cloth in meters, and others. 
Since the rule is very simple, all the methods except for the simple aggregate method 
will satisfy the unit test. 

2.15.5 Circular Test 

The circular test is an extension of the Time-Reversal Test (TRT). Consider a period 
of 2 years with three index values computed based on the shiftability of the base 
period. For example, if an index is constructed for the year 2015 with the base of 
2014 and another index for 2014 with the base of 2013, then it should be possible 
for us to directly get an index for the year 2015 with the base of 2013. If the index 
calculated directly does give a consistent value, then the circular test is said to be 
satisfied. 

P01 ∗ P12 ∗ P20 = 1 

The main idea behind this test is to check if the index number is adhered to the 
changes in time even base period is not fixed. 

– Simple aggregative method. 
– Fixed weight aggregative method.
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– Kelly’s method. 

In a simple aggregative method, 

P01 = 
P1 
P0 

, P12 = 
P2 
P1 

, P20 = 
P0 
P2 

P01 ∗ P12 ∗ P20 = 
P1 
P0 

∗ 
P2 
P1 

∗ 
P0 
P2 

= 1 

In the fixed weight aggregative method, which also satisfies circular test, weights 
q will be added to each price element. 

2.16 Shifting the Base Year 

Practically, index number calculations can be made more meaningful when base 
years are dynamic than fixed. This is because with the passage of time the base 
values are also affected due to numerous economic and social factors (Fig. 2.17). 

Fig. 2.17 Visual explanation of base shifting
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Table 2.17 Index numbers for the year 2010 till 2014 

Year 2010 2011 2012 2013 2014 

Index 100 120 124 136 140 

Table 2.18 Index number 
calculation with base period 
2010 and 2012 

Year Base 2010 Base 2012 

2010 100 (100/100) * 100 = 80.64 
2011 120 (120/100) * 100 = 120 
2012 124 (124/120) * 100 = 103.33 
2013 136 (136/103.33) * 100 = 131.61 
2014 140 (140/131.61) * 100 = 106.37 

There can be two scenarios in which we can alter the base period (Tables 2.17 
and 2.18). 

– Using a fixed base period approach, we move from an older to a newer base. For 
example, few socioeconomic indexes such as Cost-of-Living Index, Health Index, 
Labor Index, and Happiness Index are calculated with a difference of 10-year base 
period starting from the year of the census enumeration. 

2.17 Chain Base Index and Link Relatives 

Chain base index numbers are a method used in economics and statistics to calculate 
the relative changes in a particular variable’s value over time. The process involves 
setting a particular period as the base period and then comparing the values of subse-
quent periods with the base period. The base period value is given a base index 
number of 100 to facilitate comparisons. 

For example, if you have data on the prices of a basket of goods for different 
years, you can choose one year (e.g., 2020) as the base year. Then, you calculate the 
price index for each subsequent year by dividing the price of the basket of goods in 
that year by the price of the same basket in the base year (2020) and multiplying by 
100. 

Chain base index numbers are particularly useful when comparing changes over 
time and avoiding the problem of a fixed base period, which can become outdated 
and not reflective of the current economic situation. 

Link relatives are a way to express the percentage change in a variable between 
two adjacent periods, usually months or years. They are calculated by taking the 
ratio of the value in the current period to the value in the previous period and then 
expressing the change as a percentage. 

The formula to calculate the link relative is:
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Table 2.19 Index number calculation using chain base index numbers 

Year 2010 2011 2012 2013 2014 

Index 100 120 124 136 140 

Chain-based index 
numbers 

100 (100/ 
120) * 100 = 
83.33 

(120/ 
124) * 100 = 
96.77 

(124/ 
136) * 100 = 
91.17 

(136/ 
140) * 100 = 
97.14 

Table 2.20 Calculation of chain indices for Channapatna toys 

Year 2000 2001 2002 2003 2004 2005 

Chain indices 108 85 67 96 102 88 

Link Relative = (Value in the current period/Value in the previous period) ∗ 100 

Link relatives are useful for understanding short-term changes in a variable, but 
they don’t take into account long-term trends or the cumulative effect of multiple 
changes over time. 

Chain base index numbers and link relatives are both methods used to analyze 
changes in variables over time. Chain base index numbers are useful for under-
standing the relative changes in a variable with respect to a chosen base period, 
while link relatives provide a quick way to analyze the percentage change between 
two adjacent periods. 

Example: For the following data let us see how to shift the base from 2010 to 2012. 

Chain Base Index Number: 

Example: At the famous Channapatna toys, we have collected the chain indices of 
wooden toys for Montessori kids. From the chain base index numbers given below, 
obtain the fixed base index numbers to help a researcher understand the purchasing 
pattern of the toys (Tables 2.19 and 2.20). 

Solution 

(Tables 2.21 and 2.22). 

Table 2.21 Calculation of 
fixed based index numbers 
from chain indices 

Year Chain index number Fixed base index number 

2000 108 108 

2001 85 (108 × 85/100) = 92 
2002 67 (92 × 67/100) = 62 
2003 96 (62 × 96/100) = 60 
2004 102 (60 × 102/100) = 61 
2005 88 (61 × 88/100) = 54
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Table 2.22 Calculation of link relatives and chain relatives for prices of jute and tea from 2002 to 
2005 

Particulars Year 

2002 2003 2004 2005 

Jute Quantity (in 100 kg.) 851 725 712 612 

Price (Rs.100 kg.) 215 325 304 296 

Tea Quantity (in 100 kg.) 188 172 230 196 

Price (Rs/per 100 kg.) 556 755 896 802 

Solution 

(Tables 2.23 and 2.24).

Example 2: The database given below is the wholesale prices from a petrochemincal 
manufacturing industry. Construct chain index numbers for the year 2008=09 to 
2011–12 from the following Table 2.24.

Solution 

Link Relatives 

Link relatives for year 2009 − 2010 = 
153.8 

174.6 
∗ 100 = 113.52 

Link relatives for year 2009 − 2010 = 
144.5 

168.2 
∗ 100 = 116.40 

Link relatives for year 2009 − 2010 = 
166.6 

172.5 
∗ 100 = 103.54 

Link relatives for year 2009 − 2010 = 
162.8 

176.2 
∗ 100 = 108.23 

Chain Relatives (Table 2.25) 

Chain index for year 2009 − 2010 = 100 

110.42 
∗ 100 = 110.42 

Chain index for year 2010 − 2011 = 
110.42 

118.35 
∗ 100 = 130.68 

Chain index for year 2011 − 2012 = 
130.68 

110.72 
∗ 100 = 144.69
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Table 2.24 Indices for wholesale prices of petrochemical manufacturing industry 

Year Index numbers of wholesale prices 

Primary articles (A) Fuel group (B) Manufactured 
products (C) 

All commodities (D) 

2008–2009 153.8 144.5 166.6 162.8 

2009–2010 174.6 168.2 172.5 176.2 

2010–2011 208.2 196 203.8 210.5 

2011–2012 224.4 228.2 222.2 230.8

Table 2.25 Calculation of chain indices for wholesale prices of petrochemical manufacturing 
industry 

Link relatives 

2008–2009 (Base Year) 2009–2010 2010–2011 2011–2012 

A 100 113.52 119.24 107.78 

B 100 116.40 116.53 116.43 

C 100 103.54 118.14 109.03 

D 100 108.23 119.47 109.64 

Total of L.R. 400 441.70 473.38 442.88 

Average of L.R. 100 110.42 118.35 110.72 

Chain index 100 110.42 130.68 144.69 

2.18 Splicing of Index Numbers 

Splicing refers to a method in which two datasets are combined by merging the base 
values. When comparing two series of datasets, it is always recommended to have 
the same base periods since this puts the datasets at equal levels. Take a look at how 
the splicing of data is done. (Table 2.26).

Example: Consider the old and new series in the following problem. The solutions 
are explained in the table with calculations (Table 2.27).

Example: Consider this information where the aggregate values of prices and quanti-
ties are mentioned. Let us simplify the data by calculating two price indices in Series 
A with qo as weights and Series B with q3 as weights. Using the data let us combine 
both the series into one continuous series by splicing.
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Table 2.27 Example of splicing data with Series A and Series B 

Year Series A Series B Series B spliced to series A Series A spliced to series B 

1984 100 100 100 
160 × 100 = 62.5 

1985 120 120 100 
160 × 120 = 75 

1986 140 140 100 
160 × 140 = 87.5 

1987 160 100 160 
100 × 100 = 160 100 

160 × 160 = 0 

1988 115.56 160 
100 × 115.56 = 184.89 115.56 

1989 128.89 160 
100 × 128.89 = 206.22 128.89 

1990 144.44 160 
100 × 144.44 = 231.11 144.44

2.19 Deflating Index Numbers 

Deflating index numbers are a statistical technique used to adjust or remove the effect 
of price changes from a specific economic indicator or index. It allows for a more 
accurate comparison of the underlying data over time by eliminating the impact of 
inflation or deflation. 

Index numbers are often used to measure changes in economic variables like 
consumer prices, production levels, or economic growth. However, over time, these 
index numbers may be affected by changes in the general price level, making it diffi-
cult to interpret the true underlying trends. To address this, deflating index numbers 
involve dividing the index number by a price index, typically a measure of the average 
price level over a given period. The resulting deflated index provides a value that 
represents the indicator’s real changes, adjusting for the impact of price fluctuations. 

The formula for deflating an index number is as follows: 

Deflated Index = (Nominal Index/Price Index) ∗ 100 

Here’s a step-by-step explanation of how to deflate an index number: 

1. Obtain the nominal index: This is the original index you want to adjust for 
inflation or deflation. For example, it could be a Consumer Price Index, a GDP 
index, or a production index. 

2. Obtain the price index: This is the average price level for the corresponding 
period, often represented as a price index like the Consumer Price Index (CPI) 
or Producer Price Index (PPI). 

3. Divide the nominal index by the price index: This step involves dividing the 
nominal index number by the price index value for the same time period. 

4. Multiply by 100: This step is optional but is often done to express the deflated 
index as a percentage. 

The resulting deflated index provides a more accurate representation of the 
changes in the underlying indicator, eliminating the influence of price changes. This
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allows for better comparisons of data over time and provides a clearer picture of 
actual economic trends. 

Deflating index numbers are commonly used in economic analysis, financial 
reporting, and other fields where accurate comparisons across time periods are 
necessary (Table 2.28).

Example: Consider the physical volume of inventory at paint manufacturing unit in 
Rajasthan. The data for 6 years is given below, and with respect to base year 2010, 
compute the deflated inventory. 

Solution 

Deflated income is calculated as: (Inventory/WPI) * 100. 
Consider 2005 year as base period. The volume of inventory will be 100. As the 

years progressed, the levels decreased (Table 2.29).
Volume of inventory is calculated as: 

100 
deflated inventory of base year *Deflated inventory of the current year . 
For example, volume of inventory in year 2007 is calculated as, (100/ 

726.06) * 525.82 = 72.42. 

2.20 Note on Real Income 

Real income refers to the purchasing power of the income. In simple terms, inflation-
adjusted income is called real income. 

Real income 

Real income = 
Nominal  income  

C P I  

Example: Consider a scenario where the CPI and nominal income of an employee 
are inversely proportional. 

As we can notice from Table 2.30, though the earnings have certainly increased, 
the real income of the person has decreased because the purchasing power of the 
money is reduced. (Real income < nominal income for the year 2000 and 2005.) 
This means that the goods worth 36,585.37 in the year are reduced to 22,500.

Example: The annual wages (in Rs.) of workers are given along with consumer price 
indices. Find: (i) the real wages, (ii) the real wage indices (Tables 2.31 and 2.32).

Solution 

Additional Notes 

In summary, index numbers contribute significantly to nation building by providing 
essential information for economic monitoring, policy formulation, resource alloca-
tion, business decision-making, investor confidence, and tracking progress toward
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Table 2.29 Physical volume of inventory at paint manufacturing unit in Rajasthan 

Year Inventory (thousands) W.P.I. Deflated inventory Volume of inventory 

2005 785.6 108.2 726.06 100.00 

2006 647.8 105.5 614.03 84.57 

2007 578.4 110 525.82 72.42 

2008 464.6 103.9 447.16 61.59 

2009 441.7 110.6 399.37 55 

2010 400.8 111.5 359.46 49.51

Table 2.30 Real income 

Year CPI (approx.) Nominal income Calculation Value 

1980 82 Rs. 30,000 (30,000/82) * 100 Rs. 36,585.37 

2000 172 Rs. 40,000 (40,000/172) * 100 Rs. 23,255.81 

2005 200 Rs. 45,000 (45,000/200) * 100 Rs. 22,500

Table 2.31 Wages and CPI of workers 

Year 2001 2002 2003 2004 

Wages 1890 1756 2345 3214 

CPI 100 145 350 150 

Table 2.32 Calculation of real wages using annual wages and CPI of workers 

Year Wages Price index Real wages = (Wages/Price 
Index) * 100 

Real wage 1980 = 100 

2001 1890 100 (1890/100) * 100 = 1890 (1890/1890) * 100 = 100 
2002 1756 145 (1756/145) * 100 = 1211.03 (1211.03/1890) * 100 = 64.07 
2003 2345 350 (2345/350) * 100 = 670 (670/1890) * 100 = 35.44 
2004 3214 150 (3214/150) * 100 = 2142.67 (2142.67/1890) * 100 = 113.36

socioeconomic development goals. By leveraging accurate and reliable index 
numbers, nations can make informed decisions, promote inclusive growth, and work 
toward sustainable development and prosperity. 

Some real-life examples of how index numbers have been used for policymaking: 

1. Using Consumer Price Index (CPI) for Monetary Policy: Central banks often use 
the CPI to gauge inflationary pressures and adjust monetary policy accordingly. 
For instance, the Reserve Bank of India (RBI) relies on CPI numbers to set 
interest rates. In 2016, the RBI adopted a policy framework that targeted a specific 
inflation rate based on CPI. By closely monitoring the CPI, the central bank
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can make decisions on whether to tighten or loosen monetary policy to control 
inflation and promote price stability. 

2. Adjusting Social Security Benefits using Index Numbers: Governments use index 
numbers to adjust social security benefits and pensions to account for changes 
in the cost of living. For example, in the United States, social security benefits 
are annually adjusted based on the changes in the CPI. This ensures that the 
purchasing power of retirees and social security recipients is maintained as the 
cost of living changes over time. 

3. Infrastructure Investment based on Infrastructure Index: Countries often develop 
infrastructure indices to assess the quality and performance of their infrastruc-
ture systems. These indices help policymakers identify areas requiring invest-
ment and prioritize infrastructure development projects. For instance, the Global 
Infrastructure Hub developed the Global Infrastructure Outlook, which uses an 
index to assess the infrastructure needs of various countries and guide investment 
decisions. 

4. Using Education Index to Monitor Education Policy: Education indices, such 
as the Programme for International Student Assessment (PISA) index, are used 
to assess the quality of education systems across countries. Policymakers can 
utilize the insights from these indices to identify areas for improvement, formulate 
education policies, and allocate resources effectively. For example, countries like 
Finland and South Korea have used PISA scores to inform education reforms and 
improve educational outcomes. 

5. Monitoring Sustainable Development Goals (SDGs): Index numbers are instru-
mental in tracking progress toward the SDGs. For instance, the United Nations 
Development Programme (UNDP) publishes the Human Development Index 
(HDI) to measure and compare countries’ progress in areas such as health, educa-
tion, and income. Policymakers use HDI data to assess the impact of policies 
on human development, identify areas for improvement, and allocate resources 
accordingly. 

These examples demonstrate how index numbers are utilized to inform policy 
decisions in various domains, such as monetary policy, social security, infrastructure 
investment, education, and sustainable development. By leveraging index numbers, 
policymakers can make data-driven decisions, target interventions effectively, and 
monitor the outcomes of their policies.
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What is a time series? 

A time series is a collection of data points ordered chronologically and recorded at 
successive time intervals. These data points can be taken over various frequencies, 
such as seconds, minutes, hours, days, months, or years. Time series data is commonly 
used in fields like economics, finance, weather forecasting, stock market analysis, 
epidemiology, and more. 

Why is time series analysis important? 

Time series analysis provides valuable insights into the underlying patterns and trends 
present in the data. By understanding these patterns, businesses and researchers can 
make informed decisions, forecast future values, detect anomalies, identify season-
ality, and perform trend analysis. It helps in understanding the dynamic behavior of 
a system and can be used for predictive modeling. 

How is time series analysis conducted? 

Time series analysis involves several steps, including: 

• Data collection: Gathering data at regular intervals. 
• Data cleaning: Handling missing values, outliers, and errors. 
• Visualization: Plotting the data to observe trends and patterns visually. 
• Decomposition: Separating the data into trend, seasonality, and residual compo-

nents. 
• Modeling: Applying statistical methods like ARIMA (AutoRegressive Integrated 

Moving Average), SARIMA (Seasonal ARIMA), or machine learning algorithms 
for forecasting. 

• Evaluation: Assessing the model’s performance and making adjustments if 
necessary. 

When to use time series analysis? 

Time series analysis is used when the data points have a temporal ordering and the 
focus is on understanding how the data changes over time. It is employed in scenarios 
where past values are indicative of future behavior, such as stock market predictions, 
weather forecasting, sales forecasting, and more. Time series analysis is not suitable 
for non-sequential data, where the order of observations does not matter. 

Where is time series analysis applied? 

Time series analysis finds applications in various fields, including: 

• Finance: Analyzing stock prices, currency exchange rates, and economic indica-
tors. 

• Economics: Studying GDP, inflation rates, and unemployment data. 
• Meteorology: Forecasting weather patterns and climate change trends. 
• Epidemiology: Tracking disease outbreaks and analyzing health data. 
• Operations Research: Optimizing inventory management and supply chain 

forecasting.
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In this dynamic world, we notice that many aspects of life change over time. Time 
series analysis is a statistical technique used to analyze and understand patterns in 
sequential data that is collected over time. Time series analysis is a complex field that 
requires a deep understanding of statistical modeling and data analysis techniques. 

3.1 Definition 

A time series consists of statistical data which are collected, recorded, or observed 
over successive increments.—Patterson. 

A time series is a set of statistical observations arranged in chronological order.— 
Morris Hamburg. 

Time series refers to the collection of observations through repeated measurements 
over time. There are two ways in which information can be collected based on the 
interval of time which is REGULAR and IRREGULAR. As shown in Fig. 3.1 depicts 
time series data collected at regular and irregular intervals of time. 

Before we start with any statistical methods, we must always ensure that the data 
collected is based on a specific time period, like hours/seconds/month/year/bi-annual/ 
quarterly, etc. In general, time is plotted on the X axis of the graph. 

Examples: 

• One best example of time series charts is the one collected from an ECG device, 
(Echocardiogram) which constantly monitors the activity of the heart. 

• Sensex is also an example of how stock prices fluctuate during the hours of trade. 
• Another familiar time series graph is the functioning of CPU and cache memory 

shown by the control panel.

Fig. 3.1 Time series data collected at regular and irregular intervals of time. https://www.influx 
data.com/what-is-time-series-data/ 

https://www.influxdata.com/what-is-time-series-data/
https://www.influxdata.com/what-is-time-series-data/


3.2 Basic Concepts in Time Series Analysis 113

3.2 Basic Concepts in Time Series Analysis 

1. Time series data: Time series data is a set of observations or measurements that 
are taken at regular intervals over a period of time. For example, daily stock prices 
over a year, monthly rainfall data for a region, hourly electricity consumption 
data for a building, etc. 

2. Trend: The trend refers to the long-term pattern of a time series, which can be 
either increasing, decreasing, or stable over time. 

3. Seasonality: Seasonality refers to the periodic fluctuations that occur in a time 
series within a year or a shorter period. For example, sales of air conditioners 
would be high in the summer months and low in the winter months. 

4. Stationarity: A time series is said to be stationary if the statistical properties 
of the series, such as mean and variance, remain constant over time. This is 
an important concept in time series analysis as many statistical models assume 
stationarity. 

5. Autocorrelation: Autocorrelation measures the correlation between observa-
tions at different points in time. If there is a high correlation between observations 
at different points in time, it suggests that the time series is not random and has 
some structure. 

6. Moving average: A moving average is a statistical technique that is used to 
smooth out short-term fluctuations in a time series. It involves taking the average 
of a certain number of observations over a rolling time period. 

7. Exponential smoothing: Exponential smoothing is another smoothing tech-
nique that is used to remove noise from a time series. It assigns weights to 
past observations and gives more weight to recent observations. 

8. Forecasting: Forecasting is the process of using historical data to make predic-
tions about future values of a time series. There are many statistical models used 
in time series forecasting, including ARIMA, exponential smoothing, and neural 
networks.
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3.3 Uses of Time Series 

Time series analysis has a wide range of applications across various fields due to its 
ability to analyze and extract valuable insights from sequential data. Its versatility 
and ability to handle sequential data make it an indispensable tool in various domains 
for understanding, predicting, and optimizing time-dependent phenomena. 

1. Forecasting: Time series analysis is widely used for forecasting future values 
of a time series. This is applicable in numerous domains such as sales fore-
casting, demand forecasting, stock market prediction, weather forecasting, 
and economic forecasting. Forecasting helps organizations make informed 
decisions, optimize resources, and plan for the future. 

2. Trend Analysis: Time series analysis can identify and analyze long-term trends 
in data. This is useful for understanding patterns, identifying growth or decline 
in variables, and making strategic decisions. Trend analysis is commonly used 
in finance, economics, marketing, and social sciences. 

3. Seasonal Analysis: Time series analysis helps in detecting and understanding 
seasonal patterns within a dataset. This is particularly useful in industries like 
retail, tourism, agriculture, and energy, where demand and sales vary with 
seasons. Seasonal analysis enables businesses to optimize operations, plan 
inventory, and allocate resources effectively. 

4. Anomaly Detection: Time series analysis can identify anomalies or outliers 
in data. This is valuable in various domains such as fraud detection, network 
monitoring, quality control, and cybersecurity. Detecting unusual patterns helps 
in detecting abnormalities, potential risks, and taking timely corrective actions. 

5. Pattern Recognition: Time series analysis techniques, such as autocorrelation 
and spectral analysis, can reveal hidden patterns and dependencies within a 
dataset. This is beneficial in fields like signal processing, audio and speech 
recognition, image processing, and pattern recognition in general. 

6. Decision-Making and Strategy Development: Time series analysis provides 
valuable insights for decision-making and strategy development. It helps busi-
nesses and organizations understand historical patterns, make informed choices, 
optimize processes, and develop effective strategies to achieve their goals. 

7. Econometrics and Financial Analysis: Time series analysis plays a crucial role 
in econometrics and financial analysis. It helps economists, financial analysts, 
and policymakers analyze economic indicators, stock market data, interest rates, 
exchange rates, and other financial variables. Time series models assist in under-
standing the relationships between variables, predicting financial market trends, 
and assessing risk. 

8. Process Monitoring and Control: Time series analysis is used for monitoring 
and controlling processes in manufacturing, engineering, and other industries. 
By analyzing time-dependent data, it helps in process optimization, identifying 
deviations, maintaining quality standards, and ensuring efficient operations.
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9. Analyse: The best example of this is, the performance appraisal program that the 
HR department conducts in a company. When we analyse data based on the time, 
we can decipher the behavior of the variable. Other examples are, Chemical 
reactions, simulations, output from production units, etc. Statistical Quality 
Control (S.Q.C) is one branch that analyses the performances of production 
units over time. 

10. Forecast: This is predominantly why we use time series analysis. In a lot of 
studies, time series and forecasting are paired along. With time series, we can 
identify approximate indicators that enable us to forecast the behavior of data 
with some prior information. 

11. Compare: By comparing two or more datasets analyzed based on time, we 
understand the performance, factors contributing to the difference, and many 
other aspects. Vital Statistics is one branch of statistics, that deals with the 
population and life events of living beings. In this study, comparisons are made 
between cohorts (Fig. 3.2). 

Fig. 3.2 Different ways of representing time series data



116 3 Time Series

3.4 Mathematical Models of Time Series 

Model building and forecasting are usually carried out based on the assumption 
that the data is by default distributed normally. These are the two popularly used 
methods, where the components of the time series are either simply added together 
or multiplied together based on the requirement of analysis. 

(a) Additive model 

Y = T + S + C + I 

(b) Multiplicative model 

Y = T ∗ S ∗ C ∗ I 

Y refers to the original time series data, T = Trend, S = Seasonal index, C 
= Cyclic variation and I = Irregular variations. 

Let us take a visual look at the components of a time series plot for 
better understanding. In this example, we will also understand the additive and 
multiplicative preprocessing techniques in a better way. (Content taken from 
the site: https://www.encora.com/insights/a-visual-guide-to-time-series-decomposi 
tion-analysis) (Fig. 3.3). 

Consider the dataset of 144 monthly observations from the “international airline 
passengers” time series dataset for the year 1949–1960. 

One predominant use case of time series data is for forecasting, before we predict 
the data, we shall try to decompose the data for deeper understanding, the additive

Fig. 3.3 Time series data set for the year 1949–1960 

https://www.encora.com/insights/a-visual-guide-to-time-series-decomposition-analysis
https://www.encora.com/insights/a-visual-guide-to-time-series-decomposition-analysis
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and multiplicative model refers to the different ways in which these elements/patterns 
of time series are combined. (These concepts are dealt with later in the chapter). 

Let us consider the Additive model first: 
Using the moving average method to smoothen the data, we extract the trend 

component of the time series using the moving averages method (which is explained 
later in this chapter) in order to understand the direction of the movement of data. 

In Fig. 3.4 we can see the trendline across the data. Now when we eliminate the 
trend from the data we will be left with seasonal, cyclic and random variations, in 
such case, the graph looks like the one shown in Fig. 3.5. In the graph depicting the 
detrended values, the seasonal variations are very prominent and thus can be extracted 
using averaging monthly values. In several scenarios, the trend and seasonality are 
the two predominant components of time series Seasonality plot: In Fig. 3.6, we have  
seasonality plot with seasonal component. 

Hence what is now left is the cyclic variation and the residual/error component 
in the time series. Cyclic variations can be ignored for this specific time series data 
as there is no strong evidence of a long-term pattern of the data. Therefore, post 
extraction of seasonality component, the time series with just the residual terms will 
be as shown in Figs. 3.7 and 3.8.

Finally, let’s see the additive model overview by putting together all the graphs 
on a single timeline. There is loss of data at the ends of the time series due to the 
extraction process. 

Disadvantages of additive model: 

The basic idea behind the extraction of various components of time series is to 
understand the nature of the factors affecting the data. In additive model when these 
factors are clubbed together after extraction slightly varies from the original data. 
Let us check what we just said. In Fig. 3.9, the difference between the original data

Fig. 3.4 Trendline for the time series data



118 3 Time Series

Fig. 3.5 Detrended time series data 

Fig. 3.6 Seasonality plot with seasonal component

and the data with trend and seasonality extracted values which are added together 
(additive model).

In order to significantly bridge the gap between the original data and the extracted 
components, a multiplicative model of time series is better than that of additive 
model. Take a note at figure for a better understanding. 

The disadvantage that is associated with the additive model of time series data is 
there is a loss of data at the beginning and at the end of the series when we extract 
the trend line. Also during seasonal decomposition, the method assumes that the 
seasonal pattern repeats itself for all the years of study, which may not hold true 
for longer series of data as the patterns tend to change. There are also more robust
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Fig. 3.7 Error component of time series 

Fig. 3.8 Graph depicting all the components of time series

methods such as seasonal and rend decomposition using loess, STL decomposition 
and exponential smoothening and forecasting methods to overcome demerits. 

3.5 Descriptive Statistics Used in Regression Analysis 

Descriptive statistics are important in time series analysis to summarize and under-
stand the characteristics of the data. Here are some commonly used descriptive 
statistics for time series (Fig. 3.10):
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Fig. 3.9 Graph depicting trend + seasonality of time series. Additive model

Fig. 3.10 Graph depicting trend* seasonality of time series. Multiplicative model 

1. Mean: The mean or average of a time series represents the central tendency of 
the data. It provides information about the typical value of the series over time. 

2. Variance and Standard Deviation: Variance measures the dispersion or spread of 
the time series data points around the mean. Standard deviation is the square root 
of the variance and provides a measure of the average deviation from the mean.
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3. Skewness: Skewness measures the asymmetry of the distribution of the time 
series data. A positive skewness indicates a longer tail on the right side of the 
distribution, while a negative skewness indicates a longer tail on the left side. 

4. Kurtosis: Kurtosis measures the peakedness or flatness of the distribution of the 
time series data. High kurtosis indicates a more peaked distribution with heavier 
tails, while low kurtosis indicates a flatter distribution. 

5. Min and Max: The minimum and maximum values in a time series represent the 
lowest and highest observations in the dataset, providing insights into the range 
and extreme values. 

6. Quantiles: Quantiles, such as the median (50th percentile) or quartiles (25th 
and 75th percentiles), divide the time series data into equal portions, providing 
information about the spread and central tendency of the distribution. 

7. Autocorrelation: Autocorrelation measures the correlation between a time series 
and its lagged values. It provides insights into the temporal dependence and 
persistence of the series. 

8. Cross-Correlation: Cross-correlation measures the correlation between two 
different time series at various lags. It helps understand the relationship and 
lagged dependencies between two variables. 

9. Lagged Autocorrelation: Lagged autocorrelation coefficients, such as the partial 
autocorrelation function (PACF) or autocorrelation function (ACF), are used 
to identify the significant lagged relationships in a time series. They provide 
information about the lagged dependencies and potential autoregressive (AR) or 
moving average (MA) components in the data. 

These descriptive statistics help summarize the properties, distribution, central 
tendency, variability, and relationships within a time series. They provide a basis for 
understanding the behavior and characteristics of the data, and they can be used to 
guide subsequent modeling, forecasting, or hypothesis testing in time series analysis. 

3.6 Stationary and Non-stationary Data 

Stationarity and non-stationarity are important concepts in time series analysis that 
describe the behavior and properties of a time series. 

3.6.1 Stationarity 

A time series is considered stationary when its statistical properties remain constant 
over time. In a stationary time series, the following conditions hold: 

1. Constant Mean: The mean of the time series remains constant over time, regard-
less of the specific time point. It indicates that the series does not exhibit a 
long-term trend.
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2. Constant Variance: The variance of the time series remains constant over time. It 
implies that the level of volatility or dispersion of the data points does not change 
systematically. 

3. Constant Autocovariance: The autocovariance, which measures the linear rela-
tionship between the values of the time series at different time points, remains 
constant for all pairs of observations with the same time lag. It indicates that the 
correlation structure of the time series does not change over time. 

Stationarity is desirable in time series analysis because it simplifies modeling 
and forecasting. Many statistical techniques and models assume stationarity or work 
better with stationary data. Stationary time series are often easier to interpret and 
analyze, as they exhibit consistent patterns and behaviors. 

Like how a story is generally expected to start with a phrase, “Once upon a time”, 
during time series analysis, we generally assume that the data is stationary. Example 
of stationary data: Heart rate captured for a normal heart from ECG. 

3.6.2 Non-stationarity 

A non-stationary time series, on the other hand, does not exhibit constant statistical 
properties over time. Non-stationarity can arise due to various reasons, including 
trends, seasonality, changing variances, or other time-dependent patterns. Non-
stationarity makes it challenging to model and predict the behavior of the time series 
accurately. 

Common types of non-stationarity include: 

1. Trend: A time series with a systematic increase or decrease in its mean over time. 
Trend can be linear, quadratic, exponential, or any other form. 

2. Seasonality: A repeating pattern with a fixed period, such as daily, weekly, or 
yearly cycles. Seasonality can cause variations in the mean and variance of the 
time series. 

3. Changing Variance: Heteroscedasticity refers to the presence of changing vari-
ance in a time series. The level of volatility or dispersion may increase or decrease 
over time. 

4. Unit Root: A time series with a unit root is non-stationary. It implies that the 
series has a stochastic trend and does not revert to a stable mean over time. 

Handling Non-stationarity 

Non-stationarity in a time series needs to be addressed before applying certain 
statistical techniques. Common approaches for handling non-stationarity include: 

1. Detrending: Removing the trend component from the time series to make it 
stationary. This can be achieved through techniques like differencing or using 
regression models to model and remove the trend.
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2. Seasonal Adjustment: Removing the seasonal component from the time series 
using methods such as seasonal differencing or seasonal decomposition of time 
series. 

3. Transformation: Applying mathematical transformations, such as logarithmic 
transformation or power transformations, to stabilize the variance and make the 
series stationary. 

4. Differencing: Taking differences between consecutive observations (first-order 
differencing, second-order differencing, etc.) to eliminate trends or seasonality. 

By addressing non-stationarity, a time series can be transformed into a stationary 
form, making it more amenable to traditional time series models and statistical 
techniques. 

3.7 Linear and Non-linear Time Series 

Consider a data point Xt in a time series. If this data point is a linear combination of 
past, future and error terms are called linear time series. 

Xt = Xt−1 + Xt+1 + errorterm. 

Otherwise, it is called non-linear time series. Non-linear time series are of different 
variety of curves that a non-linear regression model can fit. These are asymmetric 
and also dynamic at times. 

Time series data can exhibit linear or non-linear patterns and relationships. This 
distinction refers to the nature of the underlying behavior or dependencies within the 
time series. Let’s explore the concepts of linear and non-linear time series: 

3.7.1 Linear Time Series 

A linear time series is one in which the relationship between the observations and 
their past values can be described by linear equations. In other words, the behavior 
of the time series follows a linear trend, and the impact of past values on future 
values is linearly related. Linear time series are relatively straightforward to model 
and analyze using linear regression-based methods. 

Common examples of linear time series models include: 

1. Autoregressive (AR) Model: An AR model expresses the current value of a time 
series as a linear combination of its past values and a white noise error term. 
The relationship between the current value and lagged values is captured by 
coefficients.
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2. Moving Average (MA) Model: An MA model represents the current value as a 
linear combination of past error terms and a white noise error term. The model 
considers the impact of previous error terms on the current value. 

3. Autoregressive Moving Average (ARMA) Model: The ARMA model combines 
both AR and MA components. It captures the linear relationship between the 
current value, past values, and previous error terms. 

Linear time series models assume that the relationships between variables are 
constant and linear over time. They are widely used for forecasting and modeling 
various economic, financial, and business time series. 

3.7.2 Non-linear Time Series 

In contrast, non-linear time series exhibit relationships or patterns that are not 
adequately described by linear equations. Non-linear time series often involve 
complex dynamics, interactions, or dependencies between variables that cannot be 
captured by linear models. 

Non-linear time series models are more flexible and can capture various types of 
non-linear behavior, such as exponential growth, oscillations, or non-linear trends. 
Some examples of non-linear time series models include: 

1. Non-linear Autoregressive (NAR) Model: NAR models capture non-linear rela-
tionships between the current value and its lagged values, often using functions 
like polynomials or trigonometric functions. 

2. Non-linear Moving Average (NMA) Model: NMA models incorporate non-linear 
dependencies between past error terms and the current value. 

3. Non-linear Autoregressive Moving Average (NARMA) Model: NARMA models 
combine non-linear autoregressive and moving average components to capture 
non-linear dependencies in the time series. 

Non-linear time series models require more complex estimation techniques and 
can be computationally intensive. They are often used when the underlying data 
or phenomena exhibit non-linear behavior or when linear models fail to capture 
important dynamics. 

It’s important to note that the distinction between linear and non-linear time series 
is not always clear-cut. In practice, the linearity assumption can be tested using 
statistical tests, and more advanced models like non-linear autoregressive integrated 
moving average (NARIMA) or machine learning algorithms can be employed to 
capture non-linear behavior in time series data (Fig. 3.11).
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Fig. 3.11 Pictorial representation of all 4 components of time series 

3.8 Components of Time Series 

(a) Trend 

• Refers to the general tendency of data to either increase or decrease or 
stagnate over a defined period of time. 

• We must note that the general increase or decrease need not be consistent. 
• It is often called secular trend. 

(b) Seasonal variations 

• Seasonal variations in time series are a component of time series in which 
there is a rhythmic short-term pattern created periodically (every season). 

• In a graph/chart, seasonal variations are recognized as repeated rise and fall 
patterns across a time frame. 

(c) Cyclic Variations 

• Cyclic variations are also oscillatory movements where the period of 
oscillation is greater than one year.
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• These oscillations are not uniform and not necessary to be of equal intervals 
of time too. 

(d) Random/Irregular variations 

• As the name suggests, this element of time series are referred to as irregular 
fluctuations without a definite pattern. 

• These are unpredictable, purely random and accidental changes. 
• These variations are generally short-term. 

3.8.1 Trend/Secular Trend 

Methods of measurement of Trend 
General tendency of data to either increase or decrease is referred to as TREND. 

There are different ways of determining the trend which are 

1. Freehand or Graphical Method 
2. Method of Semi-Averages 
3. Method of moving averages 
4. Method of Least Squares. 

Freehand or Graphical Method 

The flexible and easiest method of estimating the trend. The process is to first draw 
a histogram and then trace the flow of data using a line trying to accurately reflect 
the long-term tendency of data. 

Advantages: 

• This is a simple method for getting an overview of data. 
• It does not include any mathematical procedures.
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Fig. 3.12 Annual indices of IIP for primary goods 

Disadvantages: 

• Sometimes involves personal bias and judgment of the investigator handling the 
data. 

• Not suitable for in-depth analysis and forecasting. 

Method of Semi-Averages 

A slightly more meaningful method compared to freehand method. Here we calculate 
the average of certain period of time (Semi-Average) and then join the dots to make 
an accurate trend line. 

Example: 

Consider the annual indices of industrial production as per use-based classification. 
The graph below represents the trend line that can be drawn using the two semi-
average values of 5 period duration (Fig. 3.12). 

Calculation: 

Average of I.I.P Values from 2012–2017 = 128+164+194+142+130 
5 = 151.6 

Average of IIP Values from 2017–2022 = 150+230+262+290+100 
5 = 206.4 

Method of Moving Averages 

• The main idea behind moving averages is to smoothen the noise in the data for a 
specific period of time. 

• To reduce random variations.
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• The higher the period the more the lag. The analyst must decide on the best time 
frame that serves the purpose. 

• For financial investors, to understand the support and resistance of stock, 50-
day to 200-day moving averages are calculated. Whereas daily stock traders use 
shorter look-back periods such 2-day to 5-day moving averages for their short-
term trading purposes. 

Note: M.A.C.D 
https://ecgtrade.com/what-is-macd-indicator-strategy.html 
MACD is an acronym for Moving Average Convergence Divergence. 

• This tool is used to identify moving averages that are indicating a new trend, 
whether it’s bullish or bearish. After all, our top priority in trading is being able 
to find a trend, because that is where the most money is made. 

• The first is the number of periods that is used to calculate the faster moving 
average. 

• The second is the number of periods that is used in the slower moving average. 
• And the third is the number of bars that is used to calculate the moving average 

of the difference between the faster and slower moving averages. For example, if 
you were to see “12, 26, 9” as the MACD parameters (which is usually the default 
setting for most charting packages), this is how you would interpret it 

• The 12 represents the previous 12 bars of the faster moving average. 
• The 26 represents the previous 26 bars of the slower moving average. 
• The 9 represents the previous 9 bars of the difference between the two moving 

averages. This is plotted by vertical lines called a histogram (the green lines in 
the chart above) (Fig. 3.13).

Calculation of Moving Averages 

For Odd number of years: Method of calculation for a calculation of moving average 
with odd number of years. Like 3, 5 and 7. 

Here is an example of how calculations are made for a period of 3 years (Table 3.1, 
3.2 and 3.3).

Example: 3 yearly moving average

https://ecgtrade.com/what-is-macd-indicator-strategy.html


3.8 Components of Time Series 129

Fig. 3.13 Moving average convergence and divergence graph

Table 3.1 Example for calculating 3 year moving average calculation 

Year Values 3 year moving total 3 year moving average 

2001 a – – 

2002 b a + b + c = g g/3 

2003 c b + c + d = h h/3 

2004 d c + d + e = i i/3 

2005 e d + e + f = j j/3 

2006 f – – 

Table 3.2 Number for registrations received by a government school 

Year Number of registrations received 3-year moving total 3-year moving average 

1985 200 – – 

1986 400 1400 466.67 

1987 800 2200 733.33 

1988 1000 2600 866.67 

1989 800 2750 916.67 

1990 950 2950 983.33 

1991 1200 3150 1050.00 

1992 1000 3600 1200.00 

1993 1400 3900 1300.00 

1994 1500 – –
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Table 3.3 Example for 5 yearly moving average 

Year Value 5 Yearly moving total 5 Yearly moving average 

1988 687 – – 

1989 656 – – 

1990 639 3450 690 

1991 712 3418 683.6 

1992 756 3440 688 

1993 655 3565 713 

1994 678 3476 695.2 

1995 764 3440 688 

1996 623 – – 

1997 720 – –

Consider the time series data of number of registrations received by a government 
school. Calculate the 3-year moving average for this data. 

Example: 5 yearly moving average. 
For even number of years: 
With even number of years is similar to that of odd number of years, but another 

step for centering the average is added to position the average. Here is an example 
of how calculations are made for a period of 4 years, where the moving average are 
w, x, y, and z. There are 4 data points lost in this process. 2 at the beginning and 2 at 
the end. 

Example: 4 yearly moving average (Table 3.4).

Method of Least Squares 

The best and most precise method of calculating trend line. 
Conditions to be followed: 
Rule 1: The sum of deviations from the arithmetic average is zero. ∑(Y–Yc) = 0. 
where Y is the mean and Yc is the deviation from Y. The overall difference when 

summed up is 0.  
Rule 2: ∑(Y − Yc)2 is minimum. 
The sum of the square of deviations from the actual and the computed value of Y 

is the least. 
Fitting of a trend line using the linear method:

∑
XY = a

∑
X + 

b
∑

X2 + c
∑

X3 . 
Original Equation: Y = a + b ∗ (X)165 = a.0 + 700b + c.0 
Adding summation to all terms we get, 700b = 165. 
Equation 1: ∑Y = n ∗ a + b ∗ (∑X) b = 165 700 = 0.24. 
Adding summation of x to all the terms to equation 1, we get,
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Table 3.4 Example for 4 yearly moving average 

Year Values 4 Yearly moving total 4 Yearly moving average 4 Yearly centered moving 
average 

1960 530 – – – 

1961 390 – – – 

1851 462.75 

1962 460 460.00 

1829 457.25 

1963 471 465.75 

1897 474.25 

1964 508 493.38 

2050 512.5 

1965 458 514.88 

2069 517.25 

1966 613 520.00 

2091 522.75 

1967 490 550.50 

2313 578.25 

1968 530 – – – 

1969 680 – – –

Equation 2: ∑XY = a ∗ (∑X) + b ∗ ∑X2 . 

Example: Given below are the figures for rice production (in lakh kg.) by a farmer. 
He claims that his production is profitable despite the fluctuations. His son who is 
an agronomist disagrees with his father and says that soil degradation with excessive 
of fertilizers is the reason for poor production. Plot the trend line and comment on 
the data available. Also, estimate the production for the year 1982. The farmer is 
positive about the increase in production, and his son disagrees with him (Tables 3.5 
and 3.6). 

Solution 

Now, 

Yc = a + bX

Table 3.5 Rice produced by a farmer from 1991 to 1999 

Year 1991 1992 1993 1994 1995 1996 1997 1998 1999 

Value 300 450 700 720 650 675 700 950 1000
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Table 3.6 Table to calculate trend line for the production of rice by farmer 

Year Production 
(Quintals) 

Deviation 
from 1995 

Trend value Short-term 
fluctuations 

Y X X2 XY Yc Y–Yc 

1991 300 −4 16 −1200 399.1 −99.1 

1992 450 −3 9 −1350 470.02 −20.02 

1993 700 −2 4 −1400 540.94 159.06 

1994 720 −1 1 −720 611.86 108.14 

1995 650 0 0 0 682.78 −32.78 

1996 675 1 1 675 753.7 −78.7 

1997 700 2 4 1400 824.62 −124.62 

1998 950 3 9 2850 895.54 54.46 

1999 1000 4 16 4000 966.46 33.54 

Total of 9 
Years 

6145 0 60 4255 0

a =
∑

y 

N 
= 

6145 

9
= 682.78 

b =
∑

xy
∑

x2 
= 

4255 

60 
= 70.92 

Equation of the trend line = Yc = 682.78 + 70.92X. 
We can notice that the total of short-term fluctuations column that has the values 

of Y−Yc is 0. Which again means that the total sum of deviations around the mean 
is zero. 

Note: Fitting of a quadratic equation needs changes in both the regression equation 
as well as the normal equation. 

Example: The table below shows the production of A2 pasteurized cow milk from 
the main branch of a milk factory. Fit a second-degree parabola for the data given 
below (Table 3.7). 

Y c = a + bX + cX2

Table 3.7 Production of A2 pasteurized cow milk from the main branch of a milk factory 

Year 1975 1980 1985 1990 1995 2000 2005 

Production 12 14 10 11 18 16 19 
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Solution 

The equation for a parabola trend line = 
The values of a,b, and c can be obtained by solving the following equations,

∑
Y = Na + b

∑
X + c

∑
X2 

100 = 7a + b.0 + 700c 

7a + 700c = 100—Equation 1

∑
X2 Y = a

∑
X2 + b

∑
X3 + c

∑
X4 

10,675 = 700a + b.0 + 122,500c 

700a + 122,500c = 10,675 − Equation 2 

Solving for variables a and c we get (Table 3.8), 

a =
∑

Y − c
∑

X2 

N
= 

100 − (0.012)(700) 
7

= 13 

b =
∑

XY
∑

X2 = 
165 

700 
= 0.24 

c = 
N

∑
X2 Y − ∑

X2 ∑
Y 

N
∑

X4 − (
∑

X2)2 
= 

(7)(106,75) − (700)(100) 
(7)(122,500) − (700)2 

= 0.012 

Therefore, the equation of the trend line is,

Table 3.8 Table representing the calculations to estimate the production of rice for the year 2010 

Year Production 
units in 
thousands (Y) 

Calculations Trend 
Values YcDeviation 

from 1990 
(X) 

X2 X3 X4 XY X2Y 

1975 12 −15 225 −3375 50,625 −180 2700 12.10 

1980 14 −10 100 −1000 10,000 −140 1400 11.80 

1985 10 −5 25 −125 625 −50 250 12.10 

1990 11 0 0 0 0 0 0 13.00 

1995 18 5 25 125 625 90 450 14.50 

2000 16 10 100 1000 10,000 160 1600 16.60 

2005 19 15 225 3375 50,625 285 4275 19.30 

N = 7 100 0 700 0 122,500 165 10,675 
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Fig. 3.14 Quadratic fitting of trend for production of rice 

Yc = 13 + 0.24X + 0.012X2 

The estimate for year 2010 is given by (Fig. 3.14) 

Y2010 = 13 + (0.24)(20) + (0.012)(400) = 22.6 

3.9 Seasonal Variations 

Seasonal fluctuations in time series refer to the regular/periodic fluctuations in the 
time series that are less than a period of one year. The elimination of seasonal variation 
from the time series is called deseasonalization. Deriving the seasonal fluctuations 
from a time series. 

1. Additive model: S = Y – (T  + C + I) 
2. Multiplicative model: S = Y 

T∗C∗I ∗ 100 

We can usually identify an additive or multiplicative time series from its variation. 
If the magnitude of the seasonal component changes with time, then the series is 
multiplicative. Otherwise, the series is additive. Notice that the magnitude of the 
seasonal component—the difference between the maximum point of the series and 
the red line is relatively constant from 2011 onward in the additive model (Fig. 3.15).
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Fig. 3.15 Additive and multiplicative model of seasonal variation. Image from Nikolaos 
Kourentzes 

3.9.1 Methods of De-Seasonalizing Data 

1. Method of simple averages. 
2. Ratio to trend method. 
3. Ratio to moving average method. 

Method of Simple Averages 

Description: 
For this method, we require the data that is divided into a defined period of time, 

either quarterly/monthly/weekly/hourly, etc. This is one of the crude and simplest 
methods extracting the seasonal effect of time series. 

Merits and demerits: 

This method assumes that the time series data is free from trend and cyclic varia-
tions. It averages out seasonal fluctuations and reduces the effect of irregularities. 
This makes the process simple but reduces its practicality with respect to real-life 
applications (Tables 3.9 and 3.10).

Example: 

Grand average = 
Sum of 4 Quarterly Averages 

4
= 

72.6 + 71.4 + 72 + 72.4 
4 

= 
288.4 

4 
= 72.1 

Calculation of seasonal indices
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Table 3.9 Quarterly data to understand de-seasonalizing data by the method of simple average 

Years I Quarter II Quarter III Quarter IV Quarter 

2008 70 65 60 75 

2009 75 70 75 70 

201 72 75 70 72 

2011 76 72 75 75 

2012 70 75 80 70 

Table 3.10 Calculation of seasonal indices by method of simple average 

Years I Quarter II Quarter III Quarter IV Quarter 

2008 70 65 60 75 

2009 75 70 75 70 

2010 72 75 70 72 

2011 76 72 75 75 

2012 70 75 80 70 

Quarterly total 363 357 360 362 

Quarterly average 72.6 71.4 72 72.4 

Seasonal indices 100.69 99.03 99.86 100.42

S.I for I Quarter = 
Average of I Quarter 

Grand Average
∗100 = 

72.6 

72.1
∗100 = 100.69 

S.I for II Quarter = 
Average of II Quarter 

Grand Average 
∗100 = 

71.4 

72.1 
∗100 = 99.03 

S.I for III Quarter = 
Average of III Quarter 

Grand Average 
∗100 = 

72 

72.1
∗100 = 99.86 

S.I for IV Quarter = 
Average of IV Quarter 

Grand Average
∗100 = 

72.4 

72.1
∗100 = 100.42 

Ratio to Trend Method 

This method provides seasonal indices free from trend and is an improved version 
of the simple average method as it assumes that seasonal variation for a given period 
is a constant fraction of the trend. 

Merits and demerits: 

In this method, the process assumes that the seasonal variations in time series are a 
factor of the trend values. Therefore, in the process of extraction, the original values
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are expressed in terms of the percentage of the trend values. Though this method is 
an improvement over the first method of deseasonalization. The practical usage of 
this method is still limited as they ignore the cyclic effect of time series data. This 
method also holds an advantage of no-loss-data over the “ratio to moving averages 
method.” 

Problem: Quarterly purchases of anesthesia doses for a hospital is listed below, 
derive the seasonal pattern from the data and check if we can deduce any information 
from it (Table 3.11). 

Solution 

Computation of trend (Tables 3.12 and 3.13). 
Trend values for Quarter 1: 

a1 =
∑

Y1 

N 
= 

224 

5 
= 44.8 b1 =

∑
XY1

∑
X2 = 

68 

10 
= 6.8 

Yc1 = 44.8 + 6.8X 
Yc2 = a2 + b2X 

Trend values for Quarter 2:

Table 3.11 Quarterly data to understand de-seasonalizing data by the method of ratio to trend 

Year 1st Quarter 2st Quarter 3st Quarter 4st Quarter 

2011 40 46 38 52 

2012 32 48 42 46 

2013 36 36 54 62 

2014 52 68 76 72 

2015 64 50 74 88 

Table 3.12 Calculation of seasonal indices by ratio to trend method 

Year Quarter 
1 

Quarter 
2 

Quarter 
3 

Quarter 
4 

X 
Deviation 
from 2013 

X2 XY1 XY2 XY3 XY4 

Y1 Y2 Y3 Y4 

2011 40 46 38 52 −2 4 −80 −92 −76 −104 

2012 32 48 42 46 −1 1 −32 −48 −42 −46 

2013 36 36 54 62 0 0 0 0 0 0 

2014 52 68 76 72 1 1 52 68 76 72 

2015 64 50 74 88 2 4 128 100 148 176 

N = 
5 

224 248 284 320 0 10 68 28 106 98
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Table 3.13 Table representing seasonal variations and trend values 

Year Trend values 

YC1 YC2 YC3 YC4 

2011 31.2 44 35.6 44.4 

2012 38 46.8 46.2 54.2 

2013 44.8 49.6 56.8 64 

2014 51.6 52.4 67.4 73.8 

2015 58.4 55.2 78 83.6 

Year Seasonal variations 

Quarter 1 Quarter 2 Quarter 3 Quarter 4 

2011 78 95.65 93.68 85.38 

2012 118.75 97.5 110 117.83 

2013 124.44 137.78 105.19 103.23 

2014 99.23 77.06 88.68 102.5 

2015 91.25 110.4 105.41 95

a2 =
∑

Y2 

N 
= 

248 

5 
= 49.6 b2 =

∑
XY2

∑
X2 

= 
28 

10 
= 2.8 

Yc2 = 49.6 + 2.8X 

Trend values for Quarter 3: Yc3 = a3 + b3X 

a3 =
∑

Y3 

N 
= 

284 

5 
= 56.8 b3 =

∑
XY3

∑
X2 = 

106 

10 
= 10.6 

Yc3 = 56.8 + 10.6X 

Trend values for Quarter 4: Yc4 = a4 + b4X Yc4 = a4 + b4 X 

a4 =
∑

Y4 

N
= 

320 

5 
= 64 b4 =

∑
XY4

∑
X2 = 

98 

10 
= 9.8 

Yc4 = 64 + 9.8X 

Computing the seasonal indices 
Variation for quarter 1 values = Yc1 

Y1 
∗ 100. 

For year 2011 = 31.2 40 = 78 and so on 
Variation for quarter 2 values = Yc2 

Y2 
∗100. 

For year 2011, = 46 44 = 95.65 and so on. 
Variation for quarter 3 values = Yc3 

Y3 
∗100. 

For year 2011 = 38 
35.6 = 93.68 and so on.
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Variation for quarter 3 values = Yc3 
Y3 

∗100. 
For year 2011 = 52 

44.40 = 85.38 and so on. 

3.9.2 Ratio to Moving Averages Method 

The ratio to moving averages (RMA) method is a technical analysis tool used to 
identify trends and potential buy or sell signals in financial markets. It involves 
calculating the ratio of two moving averages of an asset’s price, typically a short-
term moving average and a long-term moving average. The RMA method is based 
on the idea that crossovers between these moving averages can indicate shifts in the 
market’s momentum. 

Suppose we have the following daily closing prices of a stock over a 10-day 
period: 

Day 1: $50. 
Day 2: $52. 
Day 3: $55. 
Day 4: $58. 
Day 5: $54. 
Day 6: $53. 
Day 7: $49. 
Day 8: $47. 
Day 9: $48. 
Day 10: $52. 
We’ll calculate two moving averages: a short-term moving average (SMA) over 

5 days and a long-term moving average (LMA) over 10 days. 

1. Calculate the short-term moving average (SMA): 

SMA = (Day 1 + Day 2 + Day 3 + Day 4 + Day 5)/5 
SMA = (50 + 52 + 55 + 58 + 54)/5 
SMA = 269/5 
SMA = 53.8 

2. Calculate the long-term moving average (LMA): 

LMA = (Day 1 + Day 2 + Day 3 + Day 4 + Day 5 + Day 6 + Day 7 + Day 8 
+Day 9 + Day 10)/10 

LMA = (50 + 52 + 55 + 58 + 54 + 53 + 49 + 47 + 48 + 52)/10 
LMA = 518/10 
LMA = 51.8
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Now that we have calculated both the short-term SMA and the long-term LMA, 
we can find the ratio: 

Ratio = SMA/LMA 

Ratio = 53.8/51.8 
Ratio ≈ 1.038 

The ratio we obtained is approximately 1.038. In the RMA method, traders and 
analysts often use specific threshold values to generate buy or sell signals. If the 
ratio crosses above a certain threshold (e.g., 1), it may indicate a bullish trend and a 
potential buy signal. Conversely, if the ratio falls below a threshold (e.g., 1), it may 
indicate a bearish trend and a potential sell signal. 

Keep in mind that this is a simplified example, and in real-world scenarios, traders 
often use more sophisticated techniques, additional indicators, and historical data 
to make well-informed decisions. Technical analysis tools like the RMA method 
should be used in conjunction with other methods and risk management strategies 
for successful trading. 

3.10 Time Series and Stochastic Processes 

Time series analysis is a statistical method used to analyze and interpret data that is 
collected over time. In time series, observations are recorded in a sequential order at 
regular intervals, such as hourly, daily, monthly, or yearly. Examples of time series 
data include stock prices, temperature readings, and monthly sales figures. 

Stochastic processes, on the other hand, are mathematical models that describe 
the evolution of a system over time. They are used to model situations where there is 
inherent randomness or uncertainty in the underlying processes. Stochastic processes 
can be used to generate time series data that exhibit specific statistical properties. 

There are different types of stochastic processes, and one common type is the 
Markov process. A Markov process is a sequence of random variables where the 
probability distribution of each variable depends only on the previous variable in the 
sequence. This property is known as the Markov property or memorylessness. 

Another important concept in time series analysis is stationarity. A stationary 
time series is one whose statistical properties, such as mean and variance, do not 
change over time. This assumption is often made when applying various statistical 
techniques to analyze time series data. 

Time series analysis involves several key steps. First, exploratory data analysis is 
performed to understand the patterns and characteristics of the data. This includes 
examining plots, calculating summary statistics, and checking for trends, seasonality, 
and outliers. 

Next, various techniques are applied to model and forecast the time series. These 
techniques can include autoregressive integrated moving average (ARIMA) models,
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which capture both the autoregressive and moving average components of the time 
series. Other approaches include exponential smoothing models, state space models, 
and machine learning methods such as recurrent neural networks (RNNs) or long 
short-term memory (LSTM) networks. 

Once a model is selected, it can be used for forecasting future values or analyzing 
the underlying patterns and relationships in the data. Model diagnostics and validation 
are important to ensure the model’s adequacy and reliability. 

Thus, time series analysis and stochastic processes are important tools for under-
standing and modeling data that evolves over time. They provide insights into 
the patterns, trends, and behavior of time-dependent data, enabling us to make 
predictions, detect anomalies, and uncover underlying relationships. 

3.10.1 Difference Between Time Series and Stochastic 
Process 

While time series and stochastic processes are related concepts, they have some key 
differences. 

1. Definition and Focus: Time series specifically refers to a sequence of obser-
vations recorded at regular intervals over time. The focus is on analyzing and 
understanding the patterns, trends, and characteristics of the data in the time 
domain. Time series analysis aims to model, forecast, and make inferences about 
the future behavior of the data based on its historical patterns. 

On the other hand, a stochastic process is a mathematical model that describes the 
evolution of a system over time. It is a broader concept that encompasses time series 
but is not limited to it. Stochastic processes provide a framework for modeling random 
phenomena, incorporating randomness, uncertainty, and dependencies. Stochastic 
processes can generate time series data, but they can also describe other types of 
random processes, such as spatial processes or random walks. 

2. Mathematical Formalism: Time series analysis typically focuses on the statistical 
properties and modeling techniques specific to analyzing time-dependent data. 
It involves analyzing autocorrelation, trend estimation, seasonality, and other 
time-related patterns. Methods such as autoregressive integrated moving average 
(ARIMA) models, exponential smoothing, and spectral analysis are commonly 
used in time series analysis. 

Stochastic processes, on the other hand, are more abstract mathematical models. 
They are defined in terms of probability theory and often involve concepts such 
as Markov chains, transition probabilities, and probability distributions. Stochastic 
processes provide a mathematical framework to model randomness, capture depen-
dencies, and study the behavior of random variables over time or other dimensions. 

3. Applications: Time series analysis finds applications in various fields such as 
finance, economics, engineering, environmental sciences, and social sciences.
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It is used to analyze and forecast economic indicators, stock prices, weather 
patterns, and many other time-dependent phenomena. 

Stochastic processes have broader applications beyond time series analysis. They 
are used in fields such as physics, biology, operations research, and machine learning. 
Stochastic processes can model phenomena such as particle movement, population 
dynamics, traffic flow, optimization problems, and more. 

Thus, time series analysis is focused specifically on analyzing and modeling time-
dependent data, while stochastic processes provide a mathematical framework for 
modeling randomness and dependencies in various domains beyond just time series. 
Time series can be seen as a specific type of stochastic process that deals with 
sequential data recorded over time. 

3.10.2 Examples of Stochastic Processes 

There are various examples of stochastic processes that are commonly used to model 
real-world phenomena. Here are a few examples: 

1. Random Walk: A random walk is a simple example of a stochastic process. It 
represents a sequence of random steps taken in a random direction. Each step is 
determined by a random variable, and the process evolves based on the cumulative 
sum of these random variables. Random walks are used to model phenomena such 
as stock prices, population growth, and particle movement. 

2. Brownian Motion: Brownian motion is a specific type of random walk where 
the steps are normally distributed with zero mean and constant variance. It is 
named after the botanist Robert Brown, who observed the erratic movement of 
pollen particles suspended in a liquid. Brownian motion is widely used to model 
various phenomena, including financial markets, diffusion processes, and thermal 
fluctuations. 

3. Poisson Process: A Poisson process is a stochastic process that models events 
occurring randomly over time. It is characterized by the property that the number 
of events in any time interval follows a Poisson distribution. Poisson processes are 
used to model phenomena such as the arrival of customers at a service counter, the 
occurrence of earthquakes, or the arrival of photons in a digital communication 
system. 

4. Markov Chain: A Markov chain is a stochastic process that transitions between 
a set of states according to a probability distribution. The probability of tran-
sitioning to a particular state depends only on the current state and not on the 
past history. Markov chains are widely used in various applications, including 
modeling weather patterns, stock market behavior, and language generation. 

5. Autoregressive (AR) Process: An autoregressive process is a stochastic process 
where the current value depends linearly on its past values and a random error 
term. The term “autoregressive” refers to the fact that the process regresses
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on itself. AR processes are used to model time series data with temporal 
dependencies, such as stock prices, economic indicators, and weather data. 

6. Moving Average (MA) Process: A moving average process is a stochastic process 
where the current value depends linearly on the past random error terms and a 
random error term in the current period. It represents a weighted sum of past 
error terms. MA processes are commonly used in time series analysis, often in 
conjunction with autoregressive processes, to model and forecast data. 

7. Gaussian Process: A Gaussian process is a stochastic process where any finite 
set of observations follows a multivariate normal distribution. It is defined by 
a mean function and a covariance function, which capture the prior knowledge 
about the process. Gaussian processes have applications in machine learning, 
spatial statistics, and optimization. 

These examples represent just a small subset of the wide range of stochastic 
processes used in different fields. Each process has its own characteristics and math-
ematical properties, making them suitable for modeling specific types of phenomena 
and providing insights into the behavior of random variables over time. 

3.11 What Are Lagged Values? 

Lagged values, in the context of time series analysis, refer to the values of a variable 
at previous time points. When analyzing a time series, it is common to consider 
the relationship between an observation at a particular time point and its past 
observations. 

The concept of lagged values arises from the idea that the current value of a time 
series may be influenced by its past values. By examining the relationship between the 
current value and lagged values, we can gain insights into the temporal dependencies 
and patterns present in the data. 

The lag of a variable represents the number of time units (such as days, months, 
or years) by which the observation is shifted backward in time. For example, a lag of 
1 indicates that the observation at time t is compared to the value at time t-1, while 
a lag of 2 compares the value at time t to the value at time t-2. 

Lagged values are often used in time series analysis for various purposes, 
including: 

1. Autocorrelation: Lagged values are used to calculate autocorrelation, which 
measures the correlation between a time series and its lagged values. Autocorre-
lation helps identify any temporal patterns or dependencies in the data, such as 
seasonality or trend. 

2. Autoregressive Models: In autoregressive models, the current value of a time 
series is modeled as a linear combination of its past values. Lagged values are used 
as predictors in the model to capture the temporal dependencies. For example, 
an AR(1) model uses the value at the previous time step (lag 1) as a predictor.
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3. Forecasting: Lagged values can be used as features in forecasting models. By 
including lagged values as predictors, we can leverage the information from 
previous time points to make predictions about future values. 

4. Time Series Decomposition: Lagged values are used in time series decomposition 
techniques such as seasonal decomposition of time series (e.g., using seasonal 
and trend components). These techniques help separate the time series into its 
underlying components, such as trend, seasonality, and residuals. 

By examining the relationship between a time series and its lagged values, we 
can uncover important temporal patterns, dependencies, and dynamics in the data, 
enabling us to make more accurate predictions and gain insights into the underlying 
behavior of the time series. 

3.12 Graphical Representation of Time Series 

There are several graphical representations commonly used to visualize time series 
data. These visualizations help to understand the patterns, trends, and other charac-
teristics present in the data. Here are some of the most commonly used graphical 
representations of time series: 

1. Time Plot: A time plot is a simple line graph where the time series observations 
are plotted on the y-axis against time on the x-axis. This plot shows the changes 
in the values of the time series over time, allowing for visual inspection of trends, 
seasonality, and other patterns. 

2. Seasonal Plot: A seasonal plot is a variation of the time plot that focuses on the 
seasonal patterns in the data. It displays the data for multiple seasonal periods, 
typically in a single year, in separate panels or overlaid on top of each other. This 
plot helps to identify repeating patterns and seasonality effects. 

3. Scatter Plot: A scatter plot is useful when examining the relationship between 
two variables in a time series. It displays individual data points as dots on a graph, 
with one variable on the x-axis and the other on the y-axis. This plot can reveal 
any correlation or patterns between the two variables. 

4. Histogram: A histogram is a graphical representation that shows the distribution 
of values in a time series. It divides the range of values into bins and displays the 
frequency or count of observations falling into each bin. Histograms can provide 
insights into the shape of the distribution, such as whether it is symmetric, skewed, 
or has multiple peaks. 

5. Box Plot: A box plot, also known as a box-and-whisker plot, provides a summary 
of the distribution of a time series. It displays the minimum, maximum, median, 
and quartiles of the data. This plot can help identify outliers, the spread of the 
data, and the presence of skewness.
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6. Autocorrelation Plot: An autocorrelation plot, also called a correlogram, shows 
the correlation of a time series with its lagged values. It plots the autocorrelation 
coefficient on the y-axis against the lag on the x-axis. This plot is useful for 
identifying any significant lagged relationships or seasonality effects. 

7. Spectral Plot: A spectral plot, often obtained through a technique called spec-
tral analysis, provides insights into the frequency components present in a time 
series. It displays the power or amplitude of each frequency on the y-axis against 
frequency on the x-axis. This plot can be useful for detecting periodicities and 
dominant frequencies in the data. 

These graphical representations can be created using various software tools like 
Python’s Matplotlib, R’s ggplot2, or other specialized time series analysis software. 
Each plot provides a different perspective on the time series data and can aid in 
identifying patterns, trends, seasonality, outliers, and other important features of the 
data. 

3.13 General Overview of the Steps Involved in Time Series 
Data Processing 

1. Data Collection: The first step in time series data processing is collecting the 
data. This can be done through various means such as sensors, databases, or web 
scraping, depending on the source of the data. 

Data collection in time series refers to the process of gathering and recording data 
points over a specific period at regular intervals. It involves systematically capturing 
observations or measurements of a variable of interest at different points in time. Here 
are some common methods and considerations for data collection in time series: 

1. Sampling Frequency: Determine the frequency at which data will be collected, 
such as hourly, daily, weekly, monthly, etc. The choice of frequency depends on 
the nature of the phenomenon being measured and the purpose of the analysis. 

2. Data Sources: Identify the sources from which the time series data will 
be collected. This can include sensors, instruments, databases, surveys, web 
scraping, or any other means that provide access to the required information. 

3. Data Quality: Ensure the quality and reliability of the collected data. Implement 
measures to minimize errors, missing values, outliers, and other data issues. 
Data cleaning and preprocessing techniques may be necessary to address any 
anomalies or inconsistencies in the collected data. 

4. Data Storage and Organization: Establish a suitable data storage system 
and structure to efficiently manage and retrieve the collected time series 
data. Consider using databases, spreadsheets, or specialized time series data 
management tools.
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5. Data Documentation: Maintain documentation that describes the data collection 
process, including details such as the data source, sampling frequency, measure-
ment units, any transformations or adjustments applied, and any relevant 
metadata. 

6. Data Security and Privacy: Implement appropriate measures to ensure data 
security and protect the privacy of individuals or organizations associated with 
the collected time series data. Adhere to relevant data protection regulations 
and best practices. 

7. Data Validation: Validate the collected data against established criteria to ensure 
its accuracy and consistency. This may involve cross-checking with other data 
sources or using statistical techniques to identify potential issues. 

8. Data Continuity: Aim for consistent and uninterrupted data collection over the 
desired time period. Ensure that the data collection process remains active and 
operational, taking into account potential disruptions, maintenance schedules, 
or changes in data sources. 

9. Data Documentation Updates: Continuously update and maintain the documen-
tation as new data is collected or changes occur in the data collection process. 
This helps in preserving the context and integrity of the time series data for 
future analysis. 

10. Ethical Considerations: Consider ethical implications associated with the 
data collection process, such as informed consent, data anonymization, and 
adherence to ethical guidelines and regulations. 

It’s important to plan and execute the data collection process carefully to 
ensure the availability of high-quality time series data that accurately represents 
the phenomenon under study. 

2. Data Cleaning: Once the data is collected, it is essential to clean it to handle 
missing values, outliers, and any other inconsistencies and get it ready for 
analysis. Steps in Data cleaning in Time series are as follows: 

1. Handling Missing Values: Missing values can be problematic in time series data, 
as they disrupt the continuity and can affect subsequent analysis. You can handle 
missing values by either removing the corresponding time points or imputing 
them with appropriate values. Imputation methods include forward filling, back-
ward filling, interpolation, or using advanced imputation techniques such as 
regression-based imputation. 

2. Outlier Detection and Treatment: Outliers are extreme values that deviate signif-
icantly from the majority of the data points. Outliers can occur due to measure-
ment errors or other anomalies. Identifying and treating outliers is essential for 
accurate analysis. Outliers can be detected using statistical methods such as the Z-
score, percentile-based methods, or visual inspection. Treatment options include 
removing the outliers or transforming them to minimize their impact. 

3. Handling Irregular Sampling: Time series data may sometimes have irregular 
sampling intervals or missing time points. In such cases, you might need to 
resample the data to a regular interval using techniques like interpolation or 
downsampling. This ensures uniformity and consistency in the time series data.
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4. Addressing Seasonality and Trends: Time series data can exhibit seasonality 
(repeating patterns) and trends (long-term changes). It’s important to identify and 
remove or model these components to better understand the underlying patterns 
and relationships. Techniques such as seasonal decomposition or detrending can 
help separate the seasonality and trend components from the data. 

5. Data Transformation: In some cases, transforming the data can improve its prop-
erties or make it more amenable to analysis. Common transformations include 
logarithmic transformation, differencing, or scaling the data to a specific range. 
These transformations can help stabilize variance, reduce skewness, or remove 
trends in the data. 

6. Handling Data Inconsistencies: Time series data might also suffer from inconsis-
tencies or errors such as duplicate entries, incorrect timestamps, or inconsistent 
units. It’s crucial to carefully check for such inconsistencies and rectify them to 
ensure the integrity of the data. 

7. Data Normalization: Normalizing the data can be useful when working with 
multiple time series with different scales or units. Normalization techniques such 
as min–max scaling or z-score normalization can bring the data to a common 
scale and facilitate meaningful comparisons. 

Remember that the specific data cleaning steps may vary depending on the char-
acteristics of your time series data and the analysis objectives. It’s essential to 
thoroughly understand the data, carefully review its quality, and apply appropriate 
cleaning techniques to ensure reliable and accurate results in subsequent time series 
analysis. 

3. Data Transformation: Time series data often exhibits non-linear patterns and 
trends. To make the data more suitable for analysis, various transformations 
can be applied, such as taking logarithms, differencing, or applying Box-Cox 
transformations. These transformations help stabilize the variance and make the 
data more stationary. 

Data transformation in time series refers to the process of altering the original time 
series data to make it more amenable for analysis or to satisfy certain assumptions 
of statistical models. It involves applying mathematical or statistical operations to 
the data to achieve specific objectives. Here are some common data transformation 
techniques used in time series analysis: 

1. Logarithmic Transformation: Taking the logarithm of the data values is often 
used to stabilize the variance when the data exhibits exponential growth or decay. 
This transformation can be useful when the variability of the data increases with 
the magnitude of the values. 

2. Box-Cox Transformation: The Box-Cox transformation is a power transforma-
tion that generalizes the logarithmic transformation. It allows for a wider range 
of transformations by introducing a parameter (lambda) that determines the 
type and degree of transformation applied. The optimal lambda value can be 
estimated through statistical techniques.
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3. Difference Transformation: Differencing involves computing the differences 
between consecutive observations in the time series. It is commonly used to 
remove trends or seasonality from the data, making it more stationary. First-
order differencing subtracts each value from its preceding value, while higher-
order differencing can be performed if additional differencing is necessary. 

4. Seasonal Difference Transformation: In the presence of seasonal patterns, 
seasonal differencing can be applied to remove the seasonality from the data. 
It involves computing the differences between observations from the same 
season but in different years. Seasonal difference can be combined with regular 
differencing for further stabilization of the data. 

5. Scaling and Standardization: Scaling and standardization techniques are used 
to normalize the data by shifting and rescaling it. Common methods include 
min–max scaling, where the data is scaled to a specific range (e.g.: 0 to 1), and 
z-score standardization, which transforms the data to have a mean of 0 and a 
standard deviation of 1. 

6. Smoothing Techniques: Smoothing methods, such as moving averages or expo-
nential smoothing, can be applied to reduce noise and short-term fluctuations 
in the data. These techniques help reveal underlying patterns and trends by 
averaging out random variations. 

7. Fourier Transformation: Fourier transformation is used to decompose the time 
series into its frequency components. This transformation is particularly useful 
for identifying periodic patterns or seasonality in the data. 

8. Data Aggregation: Aggregating the data by combining multiple observations 
into larger time intervals (e.g., from hourly to daily) can help reduce noise and 
provide a clearer picture of the overall trends and patterns. 

9. Data Discretization: Discretization involves converting continuous time series 
data into discrete intervals or categories. This can be useful for analyzing data 
in a categorical or interval-based framework. 

10. Winsorization: Winsorization is a technique that replaces extreme values 
(outliers) in the data with less extreme values. This helps mitigate the influence 
of outliers on the analysis. 

These are just a few examples of data transformation techniques used in time 
series analysis. The choice of transformation method depends on the characteristics 
of the data and the specific objectives of the analysis. It’s important to consider the 
impact of the transformation on the interpretation and results of subsequent analyses. 

4. Resampling: Time series data may be collected at irregular intervals or have a 
high-frequency resolution that is not required for the analysis. Resampling tech-
niques such as upsampling (increasing frequency) or downsampling (decreasing 
frequency) can be applied to align the data with the desired time intervals. 

Resampling in time series refers to the process of changing the frequency or 
granularity of the data by aggregating or disaggregating the original observations. 
It involves converting the time series data from one time scale to another, such as 
increasing or decreasing the frequency or changing the time intervals. Resampling is



3.13 General Overview of the Steps Involved in Time Series Data Processing 149

useful for various purposes, such as aligning data to a common time frame, smoothing 
the data, or preparing it for different types of analyses. Here are two common types 
of resampling techniques used in time series analysis: 

1. Upsampling (Increasing Frequency): 

• Upsampling involves increasing the frequency of the data by creating new 
observations within the existing time intervals. This is typically done to convert 
lower-frequency data into higher-frequency data. For example, converting 
daily data to hourly data. 

• To upsample the data, interpolation techniques such as linear interpolation, 
spline interpolation, or nearest-neighbor interpolation can be used to estimate 
the values for the new time points. 

• Upsampling can also involve introducing missing values or NaN (Not-a-
Number) values for the new time points if there is no available data. 

2. Downsampling (Decreasing Frequency): 

• Downsampling involves decreasing the frequency of the data by aggregating 
or summarizing the existing observations over larger time intervals. This is 
typically done to convert higher-frequency data into lower-frequency data. 
For example, converting hourly data to daily data. 

• Various aggregation methods can be used for downsampling, including taking 
the average, sum, maximum, minimum, or other statistical measures of the 
original observations within each new time interval. 

• Downsampling can also involve selecting a representative value from the 
original data, such as selecting the first value, the last value, or the value at a 
specific timestamp within each new time interval. 

When resampling, it’s important to consider the characteristics of the data and the 
objectives of the analysis. Some additional points to keep in mind: 

• When upsampling, the interpolation method chosen should be appropriate for the 
data and the intended analysis. Linear interpolation is commonly used, but other 
methods can be more suitable for specific situations. 

• When downsampling, the aggregation method selected should preserve the desired 
information from the original data. Different aggregation methods may be more 
appropriate depending on the nature of the variable and the analysis being 
performed. 

• It’s crucial to validate and assess the quality of the resampled data, especially 
when introducing new values or aggregating data. Ensure that the resampled data 
accurately represents the underlying patterns and trends in the original time series. 

Resampling is a powerful technique for aligning, transforming, or summarizing 
time series data to meet the specific requirements of an analysis or model. The choice 
of resampling method depends on the nature of the data, the desired time scale, and 
the objectives of the analysis.
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5. Smoothing: Smoothing techniques in time series analysis are methods used to 
remove noise or irregularities from a time series dataset in order to identify 
underlying patterns and trends more easily. These techniques help in reducing 
the effects of short-term fluctuations and random variations, allowing for a 
clearer representation of the underlying signal. Some commonly used smoothing 
techniques are as follows: 

(a) Moving Average: In this technique, a sliding window of fixed width moves 
across the time series, and the average of the data points within the window 
is calculated. This average value is then used as the smoothed value for 
that time point. Moving averages can be simple, where each data point is 
given equal weight, or weighted, where more recent data points are assigned 
higher weights. 

(b) Exponential Smoothing: This method assigns exponentially decreasing 
weights to past observations. It uses a weighted average approach, with 
more weightage given to recent observations and diminishing weightage 
as you move back in time. Exponential smoothing is widely used for fore-
casting and has different variations such as simple exponential smoothing, 
Holt’s linear method, and Holt-Winters’ method for seasonal data. 

(c) Savitzky-Golay Filter: This technique is commonly used for smoothing time 
series data, particularly when dealing with noisy data. It applies a polynomial 
regression within a moving window and replaces each data point with the 
value obtained from the regression. The Savitzky-Golay filter preserves the 
shape and trends of the original data while removing high-frequency noise. 

(d) LOESS (Locally Weighted Scatterplot Smoothing): LOESS is a non-
parametric regression technique that estimates the relationship between vari-
ables based on local subsets of the data. It fits a separate regression line to 
different segments of the data and produces a smoothed curve that captures 
the underlying pattern without assuming a specific functional form. 

(e) Fourier Transforms: Fourier transforms are used to decompose a time series 
into its frequency components. Smoothing can be achieved by filtering out 
high-frequency noise or removing specific frequency components that are 
not of interest. Fourier smoothing techniques are particularly useful when 
dealing with periodic or seasonal data. 

(f) Kalman Filtering: Kalman filtering is an optimal recursive algorithm used 
to estimate the state of a dynamic system based on noisy observations. It is 
commonly used for smoothing and forecasting time series data, especially 
when the underlying system has a known linear structure. 

The choice of technique depends on the characteristics of the data and the specific 
goals of the analysis. It is often helpful to experiment with different methods and 
compare the results to determine the most suitable approach for a given application. 

6. Feature Extraction: Time series data can often be represented by a large number 
of data points, making it challenging to analyze. Feature extraction involves 
extracting relevant characteristics from the time series. Feature extraction in
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time series analysis refers to the process of deriving relevant and informative 
characteristics, known as features, such as statistical measures (mean, variance), 
frequency domain features (FFT coefficients), or time-domain features (autocor-
relation) from raw time series data. These features capture important patterns, 
trends, or statistical properties of the data and are used as input variables in various 
analysis or modeling tasks. These features can help in subsequent analysis or 
modeling. 

Feature extraction helps simplify the data representation, reduce dimensionality, 
and enhance the performance of subsequent algorithms or models. Here are some 
common techniques used for feature extraction in time series analysis: 

1. Statistical Features: 

• Mean: Average value of the time series. 
• Variance: Measure of the spread or dispersion of the data. 
• Skewness: Measure of the asymmetry of the data distribution. 
• Kurtosis: Measure of the peakedness or flatness of the data distribution. 
• Autocorrelation: Measure of the similarity between observations at different 

lags. 
• Percentiles: Values that divide the data into specific proportions (e.g., 

quartiles). 

2. Frequency Domain Features: 

• Fast Fourier Transform (FFT) Coefficients: Magnitudes or phases of the 
frequency components in the time series. 

• Power Spectral Density: Distribution of power across different frequencies. 
• Wavelet Transform Coefficients: Representations of the time series at different 

scales and resolutions. 

3. Time-Domain Features: 

• Rolling Statistics: Moving averages, standard deviations, or other statistical 
measures computed over a sliding window. 

• Lagged Values: Previous observations at specific lags. 
• Change-based Features: Differences or rates of change between consecutive 

observations. 
• Entropy: Measure of the unpredictability or complexity of the data. 

4. Shape-based Features: 

• Slope: Trend or rate of change over a specific time interval. 
• Peaks and Valleys: Identifying the maximum and minimum points in the time 

series. 
• Shapelets: Subsequences or patterns that represent specific shapes or motifs 

in the time series.
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5. Waveform Characteristics: 

• Rise and Fall Times: Duration of the ascending and descending parts of the 
waveform. 

• Amplitude: Maximum and minimum values within the waveform. 
• Waveform Moments: Statistical measures such as mean, variance, skewness, 

and kurtosis computed over the waveform. 

6. Recurrence Plot-based Features: 

• Recurrence Quantification Analysis (RQA): Measures derived from recur-
rence plots, such as determinism, entropy, or laminarity. 

• Distance Measures: Distances between recurrence points or line segments in 
the recurrence plot. 

These are just a few examples of feature extraction techniques used in time series 
analysis. The choice of features depends on the specific characteristics of the data, 
the analysis objectives, and the algorithms or models being used. It is often beneficial 
to combine multiple features to capture different aspects of the time series and to 
experiment with feature selection or dimensionality reduction methods to improve 
the efficiency and performance of the analysis. 

7. Modeling and Analysis: Once the data is processed and transformed, various 
time series analysis techniques can be applied. This may include methods like 
autoregressive integrated moving average (ARIMA), seasonal decomposition of 
time series (STL), or more advanced approaches like state space models or deep 
learning models. 

Modeling and analysis in time series refers to the process of developing mathe-
matical or statistical models to understand and predict the behavior of the time series 
data. It involves applying various techniques and algorithms to uncover patterns, 
trends, relationships, and dependencies within the data, as well as making forecasts 
or extrapolations into the future. Here are some key steps involved in modeling and 
analyzing time series data: 

1. Data Preprocessing: Before modeling, it’s crucial to preprocess the time series 
data. This may include handling missing values, addressing outliers, normalizing 
or transforming the data, and ensuring the data is stationary if required. 

2. Model Selection: Choose an appropriate model based on the characteristics of 
the time series data and the objectives of the analysis. Common time series 
models include autoregressive integrated moving average (ARIMA), exponential 
smoothing models, state space models, and recurrent neural networks (RNNs). 

3. Model Fitting: Estimate the parameters of the chosen model using the available 
time series data. This involves optimization techniques such as maximum likeli-
hood estimation (MLE) or least squares estimation (LSE) to find the best-fitting 
parameters that minimize the difference between the model and the observed 
data.



3.13 General Overview of the Steps Involved in Time Series Data Processing 153

4. Model Evaluation: Assess the performance and goodness-of-fit of the model 
using appropriate evaluation metrics. This may include measures such as mean 
squared error (MSE), mean absolute error (MAE), Akaike Information Criterion 
(AIC), or Bayesian Information Criterion (BIC). Comparison with benchmark 
models or baseline models is also important. 

5. Model Diagnostics: Examine the residuals or errors of the fitted model to 
check for any patterns, autocorrelation, heteroscedasticity, or other violations 
of assumptions. Diagnostic tests such as Ljung-Box test or Durbin-Watson test 
can be used to assess the quality of the model. 

6. Forecasting and Prediction: Utilize the fitted model to make future predictions 
or forecasts. This involves projecting the time series values beyond the observed 
data and estimating the associated uncertainty or prediction intervals. 

7. Model Interpretation and Analysis: Interpret the parameters and results of the 
model to gain insights into the underlying patterns, trends, and relationships 
within the time series. Analyze the coefficients or weights of the model to 
understand the contribution and significance of different factors or variables. 

8. Sensitivity Analysis and Scenario Testing: Perform sensitivity analysis by 
assessing the impact of changes in model parameters or assumptions on the 
forecasts. Test different scenarios or what-if analyses to understand the potential 
outcomes under varying conditions. 

9. Visualization and Reporting: Present the results of the modeling and analysis 
in visual and interpretable forms. Use plots, charts, and graphs to illustrate 
the patterns, trends, and forecasted values. Prepare a comprehensive report 
summarizing the methodology, findings, and conclusions. 

The modeling and analysis process may involve iterations and refinements based 
on the results and insights gained. It’s important to select appropriate models, validate 
their assumptions, and continually assess the accuracy and reliability of the forecasts 
to ensure robust and meaningful analysis of time series data. 

8. Evaluation and Visualization: Finally, the results of the analysis need to be evalu-
ated to assess the model’s performance and its ability to capture the patterns and 
trends in the data. Visualizations such as line plots, scatter plots, or autocorrela-
tion plots can be used to visualize the processed time series and the results of the 
analysis. Evaluation and visualization are crucial steps in time series analysis to 
assess the performance of models, validate assumptions, and effectively commu-
nicate the results. Here are some key aspects of evaluation and visualization in 
time series analysis: 

1. Evaluation Metrics: 

• Mean Squared Error (MSE): Measures the average squared difference 
between the predicted and actual values. 

• Mean Absolute Error (MAE): Measures the average absolute difference 
between the predicted and actual values. 

• Root Mean Squared Error (RMSE): Square root of the MSE, providing a 
measure in the same unit as the data.
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• Mean Absolute Percentage Error (MAPE): Measures the average 
percentage difference between the predicted and actual values. 

• Forecast Error Variance Decomposition (FEVD): Decomposes the fore-
cast error variance into contributions from different factors or variables. 

2. Accuracy and Residual Analysis: 

• Plotting Actual vs. Predicted: Visualize the actual and predicted values to 
assess the accuracy of the model. 

• Residual Analysis: Plot the residuals (errors) to check for patterns, autocorre-
lation, heteroscedasticity, or other violations of assumptions. Use diagnostic 
tests like Ljung-Box test or Durbin-Watson test. 

3. Forecast Visualization: 

• Time Series Plots: Display the observed data and forecasted values on a time 
series plot to compare their trends and patterns. 

• Prediction Intervals: Visualize the prediction intervals to convey the uncer-
tainty associated with the forecasts. This can be done using shaded regions or 
error bars around the point forecasts. 

• Rolling Forecast Origin: Plot the rolling forecasts over time to track the 
model’s performance as new data becomes available. 

4. Seasonality and Trend Analysis: 

• Seasonal Decomposition: Decompose the time series into its seasonal, trend, 
and residual components using methods like Seasonal Decomposition of Time 
Series (STL) or X-12-ARIMA. 

• Seasonal Subseries Plots: Plot subsets of the data corresponding to each season 
to observe any seasonal patterns or variations. 

• Trend Analysis: Plot the trend component of the decomposed time series to 
visualize the long-term trend. 

5. Correlation and Autocorrelation Analysis: 

• Autocorrelation Function (ACF) Plot: Visualize the autocorrelation coeffi-
cients at different lags to identify significant lags and assess the presence of 
seasonality or dependence in the time series. 

• Partial Autocorrelation Function (PACF) Plot: Examine the partial autocor-
relation coefficients to identify the order of autoregressive (AR) terms in the 
model. 

6. Heatmaps and Contour Plots: 

• Heatmaps: Use color-coded heatmaps to display patterns in multivariate time 
series data or correlation matrices. 

• Contour Plots: Plot two variables against time on a 2D contour plot to visualize 
the joint behavior and relationships over time.
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7. Interactive Visualizations: 

• Interactive Dashboards: Build interactive dashboards or applications to allow 
users to explore and interact with time series data, select variables, adjust 
parameters, and visualize results dynamically. 

• Interactive Plots: Use tools like Plotly or Bokeh to create interactive plots, 
allowing users to zoom, pan, and hover over data points for detailed 
information. 

The choice of evaluation metrics and visualization techniques depends on the 
specific objectives, characteristics of the time series data, and the models used. 
Effective evaluation and visualization help in understanding the model’s perfor-
mance, identifying areas of improvement, validating assumptions, and effectively 
communicating the insights and findings derived from the analysis of time series 
data. 

3.14 Graphical Representation of Time Series 

There are several graphical representations commonly used to visualize time series 
data. These visualizations help to understand the patterns, trends, and other charac-
teristics present in the data. Here are some of the most commonly used graphical 
representations of time series: 

1. Time Plot: A time plot is a simple line graph where the time series observations 
are plotted on the y-axis against time on the x-axis. This plot shows the changes 
in the values of the time series over time, allowing for visual inspection of trends, 
seasonality, and other patterns. 

2. Seasonal Plot: A seasonal plot is a variation of the time plot that focuses on the 
seasonal patterns in the data. It displays the data for multiple seasonal periods, 
typically in a single year, in separate panels or overlaid on top of each other. This 
plot helps to identify repeating patterns and seasonality effects. 

3. Scatter Plot: A scatter plot is useful when examining the relationship between 
two variables in a time series. It displays individual data points as dots on a graph, 
with one variable on the x-axis and the other on the y-axis. This plot can reveal 
any correlation or patterns between the two variables. 

4. Histogram: A histogram is a graphical representation that shows the distribution 
of values in a time series. It divides the range of values into bins and displays the 
frequency or count of observations falling into each bin. Histograms can provide 
insights into the shape of the distribution, such as whether it is symmetric, skewed, 
or has multiple peaks.
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5. Box Plot: A box plot, also known as a box-and-whisker plot, provides a summary 
of the distribution of a time series. It displays the minimum, maximum, median, 
and quartiles of the data. This plot can help identify outliers, the spread of the 
data, and the presence of skewness. 

6. Autocorrelation Plot: An autocorrelation plot, also called a correlogram, shows 
the correlation of a time series with its lagged values. It plots the autocorrelation 
coefficient on the y-axis against the lag on the x-axis. This plot is useful for 
identifying any significant lagged relationships or seasonality effects. 

7. Spectral Plot: A spectral plot, often obtained through a technique called spec-
tral analysis, provides insights into the frequency components present in a time 
series. It displays the power or amplitude of each frequency on the y-axis against 
frequency on the x-axis. This plot can be useful for detecting periodicities and 
dominant frequencies in the data. 

These graphical representations can be created using various software tools like 
Python’s Matplotlib, R’s ggplot2, or other specialized time series analysis software. 
Each plot provides a different perspective on the time series data and can aid in 
identifying patterns, trends, seasonality, outliers, and other important features of the 
data. 

3.15 Time Series Visualization: Techniques and Examples 

Time series visualization plays a crucial role in understanding patterns, trends, 
and anomalies in temporal data. By employing effective visualization techniques, 
we can gain valuable insights and make informed decisions. This article explores 
various visualization methods for time series data, accompanied by examples that 
demonstrate their application. 

1. Line Plots: Line plots are fundamental for visualizing time series data. They show 
the trend and fluctuations over time, providing a clear depiction of how values 
change. For instance, a line plot can be used to visualize the daily closing prices 
of a stock over a year, revealing any upward or downward trends. 

2. Seasonal Plots: Seasonal plots help identify recurring patterns within a time 
series. By aggregating data based on specific time intervals, such as months 
or quarters, and plotting them together, seasonal patterns become evident. An 
example would be a seasonal plot showing the monthly average temperature 
variations throughout the year. 

3. Decomposition Plots: Decomposition plots help decompose a time series into 
its constituent components: trend, seasonality, and residuals. This allows for a 
detailed examination of each component’s contribution to the overall behavior 
of the series. For instance, decomposing a retail sales time series might reveal an 
increasing trend, seasonal spikes during holidays, and random fluctuations due 
to external factors.
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4. Lag Plots: Lag plots, also known as scatterplots, help visualize the correlation 
between a time series and its lagged values. By plotting a time series against 
its lagged version, we can assess if there is any autocorrelation present. For 
example, a lag plot might show a positive correlation between today’s stock 
prices and prices from the previous day, indicating some degree of persistence. 

5. Boxplots: Boxplots provide a concise summary of the distribution of a time 
series at different time points or groups. By displaying quartiles, outliers, and 
median values, boxplots help identify variations, central tendencies, and potential 
anomalies. Boxplots can be useful in visualizing monthly sales for multiple years, 
allowing for comparisons and the detection of outliers. 

6. Heatmaps: Heatmaps are effective for displaying time series data with multiple 
dimensions or variables. They use colors to represent values, allowing patterns 
and relationships to be easily identified. For instance, a heatmap can visualize 
hourly electricity consumption over several months, highlighting peak and off-
peak hours across weekdays and weekends. 

7. Interactive Visualizations: Interactive visualizations, such as interactive line plots 
or interactive heatmaps, enable users to explore time series data dynamically. 
They offer features like zooming, panning, and tooltips, enhancing the ability to 
analyze and interact with the data. Interactive visualizations can be particularly 
useful when dealing with large datasets or when examining detailed patterns. 

Time series visualization techniques play a vital role in understanding and 
interpreting temporal data. Line plots, seasonal plots, decomposition plots, lag 
plots, boxplots, heatmaps, and interactive visualizations are powerful tools that 
aid in uncovering patterns, trends, and anomalies. By utilizing these techniques, 
analysts can gain valuable insights and make informed decisions based on the visual 
exploration of time series data. 

Remember, in practice, the choice of visualization techniques depends on the 
specific characteristics of the time series data and the insights sought. Experi-
menting with various visualization methods can lead to a deeper understanding of 
the underlying patterns and facilitate effective communication of findings. 

Note: Time series graphs and visualization are closely related but not exactly the 
same. 

A time series graph specifically refers to a graphical representation of the time 
series data, where the observations are plotted against time. It is a specific type of 
visualization that focuses on displaying the temporal patterns and trends in the data. 

Time series graphs commonly use a line plot, where the time points are represented 
on the x-axis, and the corresponding values of the time series are plotted on the 
y-axis. This type of graph allows for the visual examination of the changes and 
fluctuations in the data over time. Time series graphs may also include additional 
elements such as trend lines, seasonal components, or confidence intervals to enhance 
the understanding of the data. 

On the other hand, data visualization is a broader term that encompasses various 
techniques and approaches to represent data visually. It includes not only time series
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graphs but also other types of visualizations such as scatter plots, histograms, bar 
charts, heatmaps, and more. 

Data visualization aims to present data in a visually appealing and informative 
way, allowing users to explore patterns, relationships, and insights that might not be 
apparent in raw data. While time series graphs are a specific type of data visualization 
focused on time-dependent data, there are numerous other visualization techniques 
that can be applied to time series or other types of data. 

In summary, time series graphs are a specific type of visualization technique used 
to represent time series data, while data visualization encompasses a broader range 
of techniques used to represent data in visual form. Time series graphs are a subset of 
data visualization techniques that specifically focus on representing time-dependent 
patterns and trends. 

3.16 Additional Topics 

Autocorrelation and partial autocorrelation are important concepts in time series 
analysis that help identify and model the temporal dependencies or relationships 
within a time series. They provide insights into the lagged relationships between the 
observations and are useful for determining the appropriate order of autoregressive 
(AR) and moving average (MA) components in time series models. Let’s delve into 
the definitions and applications of autocorrelation and partial autocorrelation: 

Autocorrelation (ACF): Autocorrelation measures the correlation between a time 
series and its lagged values. It quantifies the linear relationship between a data point 
and its historical observations at different time lags. The autocorrelation function 
(ACF) is commonly used to plot and analyze the autocorrelation. 

The ACF at lag k, denoted as ACF(k), measures the correlation between the time 
series at time t and the time series at time t-k. A positive autocorrelation indicates 
a positive linear relationship between the current observation and the observation at 
the lagged time point, while a negative autocorrelation indicates a negative linear 
relationship. 

The ACF plot visualizes the autocorrelation at different lags. It helps identify 
significant lagged relationships and patterns in the time series. For example, if the 
ACF plot shows significant autocorrelation at lag 1 and gradually diminishes as the 
lag increases, it suggests the presence of an autoregressive (AR) component in the 
time series. 

Partial Autocorrelation (PACF): The partial autocorrelation measures the linear 
relationship between two variables while controlling for the influence of the inter-
mediate observations. It quantifies the direct association between a data point and its 
historical observations, removing the indirect effects through the intermediate lags. 

The partial autocorrelation function (PACF) is used to plot and analyze the partial 
autocorrelation. The PACF at lag k, denoted as PACF(k), measures the correlation 
between the time series at time t and the time series at time t-k, considering the 
intermediate lags.
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The PACF plot displays the partial autocorrelation at different lags. It helps iden-
tify the significant direct relationships between observations and is particularly useful 
in determining the order of autoregressive (AR) components in a time series model. 
In the PACF plot, significant partial autocorrelation at lag k suggests the inclusion 
of an AR(k) component in the model. 

By examining the ACF and PACF plots and identifying significant autocorrelation 
and partial autocorrelation, we can determine the appropriate order of AR and MA 
components in autoregressive integrated moving average (ARIMA) models or other 
time series models. 

These tools enable us to model and understand the temporal dependencies and 
patterns in time series data, leading to more accurate modeling, forecasting, and 
analysis of time-dependent phenomena. 

ARIMA models are widely used in time series analysis for modeling and fore-
casting data. ARIMA models combine autoregressive (AR), moving average (MA), 
and differencing components to capture the temporal dependencies and patterns 
present in a time series. The acronym ARIMA stands for: 

1. Autoregressive (AR) Component: The autoregressive component captures the 
linear relationship between the current value of the time series and its past values. 
It assumes that the current value is a linear combination of its lagged values and 
a white noise error term. The order of the AR component is denoted by the 
parameter p, representing the number of lagged terms included in the model. 

2. Integrated (I) Component: The integrated component refers to differencing the 
time series to make it stationary. Differencing helps remove trends and non-
stationarity from the data. The differencing order is denoted by the parameter d, 
representing the number of times differencing is applied to achieve stationarity. 

3. Moving Average (MA) Component: The moving average component captures 
the linear relationship between the current value of the time series and past error 
terms (residuals). It assumes that the current value is a linear combination of 
the error terms and a white noise error term. The order of the MA component 
is denoted by the parameter q, representing the number of lagged error terms 
included in the model. 

ARIMA models are specified as ARIMA(p, d, q), where p, d, and q represent the 
order of the AR, I, and MA components, respectively. 

The steps involved in building an ARIMA model are as follows: 

1. Data Preparation: Preprocess the time series data by handling missing values, 
outliers, and transforming it to achieve stationarity if necessary. 

2. Model Identification: Determine the appropriate orders (p, d, q) by analyzing 
the autocorrelation function (ACF) and partial autocorrelation function (PACF) 
plots of the differenced data. These plots help identify the significant lagged 
relationships and guide the selection of the model orders. 

3. Parameter Estimation: Use maximum likelihood estimation or other optimization 
techniques to estimate the model parameters. This involves fitting the AR, I, and 
MA components to the data.
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4. Model Diagnostic Checking: Evaluate the residuals of the model to ensure that 
they follow the assumptions of white noise (i.e., no systematic patterns or corre-
lations). Diagnostic checks include examining the autocorrelation of residuals 
and performing statistical tests. 

5. Model Forecasting: Use the estimated model parameters to forecast future values 
of the time series. Forecasting can be done using various techniques, such as 
one-step ahead forecasting or multistep ahead forecasting. 

ARIMA models provide a flexible framework for modeling a wide range of time 
series data, capturing various temporal patterns and dependencies. ARIMA models 
are widely applicable in numerous domains, including finance, economics, sales 
forecasting, demand planning, supply chain management, environmental sciences, 
and many others. Their flexibility, interpretability, and ability to capture both short-
term and long-term dependencies make them valuable tools for analyzing and 
understanding time-dependent data. 

ARIMA models are versatile and widely used in time series analysis. They offer 
several applications and benefits in understanding, modeling, and forecasting time-
dependent data. Here are some common usages of ARIMA models: 

1. Trend Analysis and Forecasting: ARIMA models are effective for analyzing 
and forecasting time series data with trend components. They capture the linear 
relationships between the current value and its lagged values, allowing for trend 
estimation and prediction. ARIMA models can identify and model trends in 
economic indicators, stock prices, population growth, and other time-dependent 
phenomena. 

2. Seasonal Analysis and Forecasting: Seasonal ARIMA (SARIMA) models, which 
extend the basic ARIMA framework to incorporate seasonality, are used to 
analyze and forecast data with seasonal patterns. SARIMA models capture both 
the autoregressive and moving average components along with seasonal differ-
encing. They are valuable for understanding and predicting seasonal behavior in 
areas such as sales forecasting, demand planning, and climate analysis. 

3. Anomaly Detection: ARIMA models can be employed for detecting anomalies 
or outliers in time series data. By fitting the model to the historical data and 
comparing the observed values with the model’s predicted values, deviations from 
the expected behavior can be identified as potential anomalies. This is useful for 
detecting unusual events, outliers, or data points that deviate significantly from 
the normal pattern. 

4. Time Series Decomposition: ARIMA models are used for decomposing a time 
series into its underlying components, such as trend, seasonality, and residuals. 
This decomposition helps isolate and analyze the individual elements of the time 
series, providing insights into their respective contributions and behaviors. 

5. Forecasting Future Values: ARIMA models are primarily utilized for time series 
forecasting. By estimating the model parameters and utilizing past observations, 
ARIMA models can generate predictions for future values. The forecasted values 
provide valuable insights for decision-making, planning, resource allocation, and 
operational management in various domains.
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6. Impact Analysis and Scenario Planning: ARIMA models can be employed to 
assess the potential impact of specific events or interventions on a time series. 
By modifying the model inputs or parameters, it is possible to simulate different 
scenarios and predict the resulting effects on the time series. This aids in 
evaluating the potential outcomes of various interventions or policy changes. 

7. Model Selection and Comparison: ARIMA models serve as a benchmark or 
reference when comparing and evaluating the performance of other time series 
models. By establishing the predictive accuracy and goodness of fit of an ARIMA 
model, it becomes easier to assess the effectiveness and relevance of alternative 
modeling techniques. 

ARCH (Autoregressive Conditional Heteroscedasticity) and GARCH (General-
ized Autoregressive Conditional Heteroscedasticity) models are widely used in time 
series analysis to model and forecast volatility, particularly in financial data. These 
models are designed to capture the time-varying variance, or heteroscedasticity, often 
observed in financial time series. 

ARCH Models: ARCH models were introduced by Engle (1982) and are based on 
the idea that the variance of a time series is autocorrelated and depends on past squared 
errors or residuals. The key assumption of ARCH models is that the conditional 
variance is a function of lagged squared residuals. 

In an ARCH(p) model, the current conditional variance is modeled as a linear 
combination of the past p squared residuals, where p represents the order of the 
ARCH model. The ARCH(p) model is given by: 

Var(t) = αo + α1ε
2 (t − 1) + α2ε

2 (t − 2) +  · · ·  +  α_pε2 (t − p) 

Here, Var(t) represents the conditional variance at time t, ε(t) is the residual at time t, 
and αO, α2,…,  α_p are the model parameters that need to be estimated. The ARCH(p) 
model captures the autocorrelation in squared residuals, allowing for the modeling 
of time-varying volatility. 

GARCH Models: GARCH models, introduced by Bollerslev (1986), are an exten-
sion of ARCH models that incorporate both autoregressive and moving average 
components to capture the volatility dynamics more accurately. 

In a GARCH(p, q) model, the conditional variance at time t is modeled as a linear 
combination of past squared residuals and past conditional variances. The GARCH(p, 
q) model is given by: 

Var(t) = αo + α1 ε
2 (t − 1) + α2 ε

2 (t − 2) +  · · ·  +  α_pε2 (t − p) 
+β1 Var(t − 1) + β2Var(t − 2) +  · · ·  +  β_q Var(t − q) 

The additional terms β1Var(t − 1) + β3Var(t − 2) +  · · ·  +β_qVa r(t − q) capture 
the autoregressive behavior of the conditional variance itself. The GARCH(p, q) 
model captures both the short-term and long-term persistence of volatility. 

Estimation and Inference: The parameters of ARCH and GARCH models can 
be estimated using various methods, such as maximum likelihood estimation or
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the method of moments. Estimation involves optimizing the likelihood function or 
minimizing the sum of squared residuals. 

Model diagnostic checks are crucial to ensure that the model adequately captures 
the volatility dynamics. These checks include examining the residuals for autocor-
relation, normality, and other statistical properties. If the residuals exhibit residual 
autocorrelation, other model specifications or extensions may be considered. 

Applications: ARCH/GARCH models find extensive applications in financial 
econometrics, particularly in modeling and forecasting asset returns, volatility, 
and risk. They provide valuable insights into the time-varying volatility patterns, 
conditional variances, and risk measures. 

Some common applications of ARCH/GARCH models include: 

1. Volatility Forecasting: ARCH/GARCH models allow for accurate and dynamic 
forecasting of volatility, which is essential for risk management, option pricing, 
and portfolio optimization. 

2. Risk Measurement: ARCH/GARCH models provide measures of conditional 
variances and volatility that are crucial for estimating risk measures such as 
Value at Risk (VaR) and Expected Shortfall (ES). 

3. Portfolio Optimization: By incorporating volatility forecasts from ARCH/ 
GARCH models, portfolio managers can better estimate risk and construct 
optimal portfolios. 

4. Financial Market Analysis: ARCH/GARCH models help analyze the behavior 
of financial time series, investigate volatility clustering, and examine the impact 
of news and events on market volatility. 

In summary, ARCH and GARCH models have become prominent tools in 
modeling and forecasting volatility in financial time series. By capturing time-varying 
variances and autocorrelation in squared residuals, these models provide valuable 
insights into the risk dynamics of financial assets, enabling better risk management 
and decision-making.
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What are vital statistics? 

Vital statistics refer to quantitative data about vital events in a population. These 
events include births, deaths, marriages, divorces, and adoptions. Vital statistics 
provide details about these events, including dates, locations, and characteristics 
of the individuals involved.
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How are vital statistics collected? 

Vital statistics are typically collected by government agencies responsible for civil 
registration systems. These systems record and document vital events that occur 
within a jurisdiction. Data is collected through the completion of legal documents 
such as birth certificates, death certificates, marriage licenses, and divorce decrees. 
These documents are filled out by individuals, healthcare professionals, or other 
authorized personnel and are then registered with the relevant government agency. 

When are vital statistics used? 

Vital statistics are used for various purposes, including: 

• Demographic analysis: Vital statistics help in studying and understanding popu-
lation dynamics, such as birth rates, death rates, and migration patterns. These 
statistics provide insights into population growth, aging trends, and changes in 
the population’s structure. 

• Public health monitoring: Vital statistics help public health officials monitor 
and assess the health of a population. They can track mortality rates, causes of 
death, and disease prevalence, enabling the identification of health trends and the 
development of targeted interventions. 

• Social and economic planning: Vital statistics are crucial for social and economic 
planning at both national and local levels. They inform policymakers and 
researchers about population trends, fertility rates, life expectancy, and other 
factors that influence resource allocation, infrastructure development, and social 
programs. 

• Research and policy development: Vital statistics serve as a foundation for scien-
tific research and policy development in various fields, including sociology, 
demography, public health, and economics. Researchers and policymakers rely on 
these statistics to inform their work, make evidence-based decisions, and develop 
effective strategies. 

Why are vital statistics important? 

Vital statistics play a vital role in society for several reasons: 

• Policy formulation and evaluation: Governments use vital statistics to develop and 
evaluate policies related to healthcare, education, social welfare, and other areas. 
Accurate and up-to-date data on vital events help policymakers make informed 
decisions and assess the impact of their policies. 

• Resource allocation: Vital statistics guide the allocation of resources, such as 
healthcare facilities, educational institutions, and social services. Understanding 
population dynamics helps in identifying areas with specific needs and distributing 
resources accordingly. 

• Monitoring progress: Vital statistics enable the monitoring of progress toward 
national and international goals. For example, they help track progress in 
achieving targets related to reducing child mortality, improving maternal health,
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or combating communicable diseases, as set by the United Nations’ Sustainable 
Development Goals (SDGs). 

• Historical and genealogical research: Vital statistics are valuable for historical 
and genealogical research, allowing individuals to trace their ancestry and under-
stand their family history. These records provide insights into past populations, 
migration patterns, and societal changes. 

How do vital statistics work? 

• Data Collection: Vital statistics data is collected from various sources, including 
civil registration systems, hospitals, health departments, and census surveys. 
Governments and relevant organizations typically manage the collection and 
compilation of this data. 

• Registration of Vital Events: Vital events like births, deaths, marriages, and 
divorces are officially registered by the concerned authorities. This registration 
ensures that accurate and comprehensive data is available for analysis. 

• Data Processing: Once collected, the data is processed, verified, and compiled 
into databases or statistical systems. The data is organized and made accessible 
for analysis and research. 

• Data Analysis: Researchers and statisticians analyze the data to derive mean-
ingful insights. They study trends, patterns, and relationships between various 
vital events to understand the population’s characteristics and changes over time. 

• Demographic Indicators: Vital statistics are used to calculate various demographic 
indicators, such as birth rates, death rates, fertility rates, infant mortality rates, life 
expectancy, and migration rates. These indicators provide valuable information 
about population health, age distribution, and other demographic factors. 

• Policy and Planning: Governments, policymakers, and public health officials use 
vital statistics to make informed decisions about resource allocation, healthcare 
planning, and social policy. The data helps identify areas of concern and formulate 
strategies to address specific demographic and health challenges. 

• Public Health Surveillance: Vital statistics play a crucial role in public health 
surveillance. Monitoring mortality rates, disease outbreaks, and other health indi-
cators helps identify emerging health threats and assess the effectiveness of public 
health interventions. 

4.1 Introduction 

This is a branch of statistics that accounts for every vital event in human life in a legal 
way for harmony in society. Vital statistics are a fundamental component of demo-
graphic and public health research, providing essential information about the popu-
lation’s characteristics, events, and changes over time. These statistics encompass 
a range of crucial data, such as births, deaths, marriages, annulments, separations, 
adoptions and divorces, forming the backbone of demographic analysis and health 
surveillance. By meticulously recording and analyzing vital events, governments
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and organizations gain valuable insights into population dynamics, health trends, 
and social patterns. These statistics play a pivotal role in guiding policy decisions, 
resource allocation, and the development of targeted interventions to promote the 
well-being of societies worldwide. In this context, the accurate and comprehensive 
collection of vital statistics is vital to understanding and addressing the needs and 
challenges of diverse communities in a rapidly evolving world (Fig. 4.1). 

The term vital statistics is also used for individual measures of these vital events. 
Thus, a birth rate is an example of vital statistics and analysis of birth rate trends is an 
example of a vital statistic application. Other demographically significant life events 
such as change of residence (migration), change of citizenship (naturalization), and 
name changes are not recorded, mainly because information on these is usually 
obtained from other statistical systems such as population registers. They are an 
important national source of information for understanding public health (Table 4.1).

Every country will have a division for collecting and maintaining the records of 
vital events of people under the National Centre for Health Statistics (NCHS). The 
categories of data collected are:

Fig. 4.1 Vital statistics—a study of population demographics 
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Table 4.1 Details collected and their respective statistical units mentioned in the public records

• Birth data. 
• Mortality data. 
• Fetal death data. 
• Marriages and divorces. 
• Survey reports on maternal and infant health. 
• Survey reports of mortality follow-back survey. 

4.2 Advantages of Vital Statistics 

For an individual: 

• Vital statistics are much for much use of an individual and the family. 
• Birth certificate issued by the registering authority is a crucial document that 

identifies the existence and identity of a child in society. 
• Marital status of an individual is recognized and acknowledged with the formal 

marriage certificate issued by the registrar in a form of acceptance from the 
government for two individuals to live together.
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For legal aspects: 

• Registering for all the vital events is mandatory. Government records are valid 
proof of the land owned and other valuable assets in your name, your relationship 
status, and your sole existence in society. 

• This will keep the individual safe from fraudsters. 

For administrators/planning committees. 

• Investments and allocations in the budget for various programs that promote 
societal health consider the vital statistical data as a base. 

• Population trends analyzed thoroughly for city expansion projects, population 
control programs, etc. Hospitals and medical facilities are provided based on the 
health/economic conditions of society. 

• Vital statistics serve as the foundation for actuarial science, which includes life 
insurance. 

• Policy planners, administrators, and others need vital statistics to estimate popu-
lation trends and forecasts, and these are required for planning and evaluation of 
economic and social development programs. 

• Death rates are used by epidemiologists and medical researchers to identify 
hazardous occupations, compute the life expectancy of an individual in certain 
areas, etc. 

For the world and its health:

• UNESCO, UNICEF, WHO, and ILO are few organizations that served the world, 
and a general understanding of trends and patterns in the population of the specific 
region and specific period under study is necessary before any welfare schemes 
and programs are compiled. 

• The mortality figures aid in our efforts to enhance community health. For instance, 
statistics on communicable diseases assist the health authorities in enhancing the 
hygienic state of the affected area and medical institutions. 

• These statistics help us to predict the future population structure of a country or 
region.
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Fig. 4.2 All the important 
life events from birth to 
death of a human 

• To get an idea about the changes in the population profile of a region, we need vital 
statistics in terms of age, gender, religion, births, deaths, migration, marriages, 
etc (Fig. 4.2). 

4.3 Common Terminologies Used in Vital Statistics 

1. Live Births: A live birth is defined as the delivery of a child who displayed any 
kind of life; the term “live births” refers to births overall, excluding stillbirths. 

2. Marriage: Acceptance of two people who agree to love together adhering to the 
societal and legal rules. 

3. Death: An irreversible cessation of circulatory/respiratory functions or the entire 
brain and brain stem is considered as death. 

4. Fatal death: Refers to the intrauterine death of a fetus at any time during 
pregnancy. 

5. Still birth: This refers to the delivery of a viable fetus dead. They usually occur 
in the later pregnancy periods such as, post 20/28 weeks of pregnancy.
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6. Vital events: All the important events in one’s life starting from birth to death are 
termed as vital events, such as birth, marriage, divorce, adoption, partnership in 
business, purchase of land/asset, and death. All the vital events are registered in 
the civil register as a proof of record. 

7. Cohort: Hypothetical group of people under study. 
8. Morbidity: Refers to the state of having a disease or being exposed to a disease 

in the population. At times, morbidity refers to medical problems that may or 
may not arise due a treatment. 

4.4 Sources of Data in Vital Statistics: 

The three methods of data collection for the vital statistics system are: 

1. Registration Method: 

This method consists of the continuous and permanent recording of births, deaths, 
marriages, migrations, etc. This practice is made mandatory by the government, and 
the documents are well-verified and certified by the allotted departments. 

The registration of birth and death is done under the provisions of a central Act 
namely the Registration of Births and Deaths (RBD) Act of 1969 and State Rules 
framed on the basis of Model Rules, 1999. 

The report “Vital Statistics based on Civil Registration System” for the year 2019 
at the national level has been released on June 15, 2021. The proportion of registered 
births and deaths has witnessed a steady increase over the years. The registration 
level of births for the country has gone up to 92.7% in 2019 from 82.4% in 2011, 
whereas on the other hand, registration level of deaths during 2019 has increased to 
92.0% from 66.4% in 2011. 

Here is a sample birth certificate document issued by the state of Maharashtra 
(Fig. 4.3).

2. Census Method: 

This is the term used for enumerating the population of a country and provides 
the most important statistical information such as age, gender, marital status, level
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Fig. 4.3 Birth certificate issued by the government of Maharashtra, health department

of education, occupation, and religion. However, since it is conducted once in ten 
years, data for the other years is calculated using mathematical formulae. Population 
censuses typically use one of the two approaches: 

• De facto—meaning enumeration of individuals as of where they are found in the 
census, regardless of where they normally reside.
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• De jure—meaning enumeration of individuals as of where they usually reside, 
regardless of where they are on census day. 

3. Survey—Along with census enumerations, there are various other surveys 
conducted for specific research and also with a requirement of collecting 
comprehensive data. Few of them are 

• National Sample Survey Organisation. (NSSO). 
• National Family Health Survey (NFHS). 
• District Level Household Surveys (DLHS-RCH). 

4.5 Measurement of Population 

The measurement of population in vital statistics involves the collection, recording, 
and analysis of data related to various vital events that occur within a population. 
Vital statistics primarily focus on four key components: births, deaths, marriages, and 
divorces. These events are crucial for understanding the dynamics of a population 
and providing essential information for demographic and public health research. 

1. Births: The measurement of births involves recording the number of live births 
within a specified geographic area and time period. This data includes information 
about the child, such as date and time of birth, gender, birth weight, and the 
parents’ demographic characteristics. 

2. Deaths: Vital statistics capture data on deaths, providing insights into mortality 
patterns within a population. Information collected includes the date, time, and 
cause of death, as well as demographic details of the deceased individual. 

3. Marriages: The measurement of marriages involves recording the number of 
legal unions between individuals within a specific jurisdiction and time frame. 
Data collected typically includes the date and location of the marriage and the 
demographic characteristics of the spouses. 

4. Divorces: Vital statistics also encompass data on divorces, indicating the disso-
lution of marriages within a population. This information includes the date and 
location of the divorce and the demographic details of the individuals involved.
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To ensure the accuracy and comprehensiveness of vital statistics, governments 
and relevant organizations establish registration systems. Civil registration systems, 
often managed by national or regional authorities, are responsible for recording and 
maintaining vital events’ data. These systems serve as the primary source of vital 
statistics, and the data collected is usually compiled into vital registration reports. 

The measurement of population through vital statistics is a vital aspect of demo-
graphic analysis, as it enables researchers, policymakers, and public health experts 
to gain insights into population trends, growth rates, mortality rates, age struc-
tures, and other demographic characteristics. This information is critical for making 
informed decisions, planning public services, and addressing the evolving needs of 
a population. 

4.5.1 Calculation of Intercensal Estimates 

Intercensal estimates refer to population estimates that are made for the time period 
between two consecutive decennial censuses. In many countries, official censuses are 
conducted every ten years to collect detailed demographic data about the entire popu-
lation. However, the information obtained from a single census becomes outdated 
quickly due to population growth, migration, and other demographic changes. Inter-
censal estimates bridge the gap between two censuses, providing up-to-date and 
reliable population figures for each year. 

Here are some key aspects of intercensal estimates: 

1. Purpose: The primary purpose of intercensal estimates is to provide policy-
makers, government agencies, researchers, and the public with accurate and 
timely information about the current population size and its characteristics. These 
estimates help in planning and allocating resources for various services such as 
education, healthcare, housing, and infrastructure. 

2. Data Sources: Intercensal estimates are typically based on a combination of data 
sources. These may include the most recent census data, administrative records 
(e.g., birth and death registrations, immigration records), and survey data (e.g., 
household surveys). Data from other relevant sources, such as tax records and 
social security data, may also be used to improve the accuracy of the estimates. 

3. Methods: Various statistical methods are employed to develop intercensal esti-
mates. One common approach is the cohort-component method, which projects 
population changes by age and sex using data on births, deaths, and net migration 
during the intercensal period. Other methods, such as time series analysis and 
demographic modeling, may also be used depending on data availability and the 
level of detail required. 

4. Demographic Components: Intercensal estimates typically involve the analysis 
of three key demographic components: births, deaths, and migration. By tracking 
changes in these components, statisticians can estimate the population’s growth 
or decline during the intercensal period.
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5. Confidence Intervals: Intercensal estimates are not exact figures but rather statis-
tical estimates. To account for uncertainty in the data and methods used, confi-
dence intervals are often provided. These intervals represent a range within which 
the true population figure is likely to lie with a certain level of confidence. 

6. Revisions: As more accurate data becomes available or methodologies are 
refined, intercensal estimates may be subject to revisions. Governments and 
statistical agencies usually release revised estimates periodically to reflect these 
improvements. 

Intercensal estimates play a crucial role in maintaining updated population data 
between official censuses. They are essential tools for policymakers and researchers 
in understanding population dynamics, identifying demographic trends, and making 
informed decisions about public policy and resource allocation. 

Methods for Calculating Intercensal Data 

1. Linear Interpolation Method 

Pt = P0 + 
n 
N 

(P1 − P0) 

where 

Pt Estimate of a given population at a given inter censual year t. 
P0 Population in the previous census. 
N Difference between two census years and “n” is the number of years between 

the given year and the previous census year. 
P1 Population in the succeeding census. 

Example: The population of the island was 124 million in the census 1991. They 
conduct decennial census enumeration. In the year 2001, the value rose to 234 million. 
Calculate the total population of the island in the year 1996. 

Pt = P0 + 
n 

N 
(P1 − P0) 

P1996 = 124 + 
5 

10 
(234−124) = 179. 

The estimate for the population value for the year 1996 is 179. 

Example: A population estimate was to be calculated to compute the crude birth rate 
for a popular city, North Charleston in South Carolina for the year 1979. 

Birth in country in 1999 = 3561. 
1970 census count = 181,935. 
1980 census count = 223,814. 
Population projection for the year 1980
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= 181,935 + 
111 

120 
(223,814 − 181,935) 

= 181,935 + 0.925∗41879 = 220,673 

2. Intercensus estimation with mid-year Population. 

This estimate is vital for the socioeconomic planning programs. In this method, we 
assume that the population growth is linear and the yearly change in the population 
sizes are equal. Intercensus estimation with mid-year population involves estimating 
the population of a region or country for a specific time period between two official 
census counts. This estimation is usually done for the mid-year point between the 
two census years. It is important for various planning purposes, resource allocation, 
and policy decisions. 

Mid-year Population = Population at the last official census * (1 + Average 
Annual Growth Rate)  ̂ Number of years. 

where: 
Population at the last official census: The population recorded during the last 

official census. 
Average Annual Growth Rate: The average annual growth rate of the population 

between the two census years. It is calculated as (Population at the next official 
census/Population at the last official census)  ̂ (1/Number of years) − 1. 

Number of years: The time difference (in years) between the mid-year point you 
want to estimate and the last official census. 

• Remember to use consistent units for population and time to get accurate results. 

Example 1: Suppose Country X conducted its last official census on January 1, 2020, 
and recorded a population of 50 million. The next official census is scheduled for 
January 1, 2025. We want to estimate the population of Country X for July 1, 2023, 
using the intercensus method. 

Step 1: Calculate the time interval between the two census years: The time between 
January 1, 2020, and January 1, 2025, is 5 years. 

Step 2: Determine the time difference between the last census and the mid-year popu-
lation estimate: The time between January 1, 2020, and July 1, 2023, is approximately 
3.5 years. 

Step 3: Calculate the average annual growth rate: The average annual growth rate 
can be calculated using the formula: Average Annual Growth Rate = (Population at 
2025 census/Population at 2020 census)  ̂ (1/Number of years) − 1. 

Average Annual Growth Rate = (Population at 2025 census/Population at 2020 
census)  ̂ (1/5) − 1 Average Annual Growth Rate = (50 million/50 million)^(1/5) − 
1 Average Annual Growth Rate = 1^0.2 − 1 Average Annual Growth Rate = 0.1487 
or 14.87%
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Step 4: Estimate the mid-year population for 2023: To estimate the population for 
July 1, 2023, we will use the formula: Mid-year Population = Population at 2020 
census * (1 + Average Annual Growth Rate)  ̂ Number of years. 

Mid-year Population = 50 million * (1 + 0.1487)  ̂ 3.5 Mid-year Population = 
50 million * 1.532 Mid-year Population ≈ 76.6 million. 

So, the estimated population of Country X for July 1, 2023, using the intercensus 
method with mid-year population, is approximately 76.6 million. 

Example 2: Suppose Country Y conducted its last official census on April 1, 2019, 
and recorded a population of 80 million. The next official census is scheduled for 
April 1, 2024. We want to estimate the population of Country Y for October 1, 2022, 
using the intercensus method. 

Step 1: Calculate the time interval between the two census years: The time between 
April 1, 2019, and April 1, 2024, is 5 years. 

Step 2: Determine the time difference between the last census and the mid-year 
population estimate: The time between April 1, 2019, and October 1, 2022, is 
approximately 3.5 years. 

Step 3: Calculate the average annual growth rate: The average annual growth rate 
can be calculated using the formula: Average Annual Growth Rate = (Population at 
2024 census/Population at 2019 census)  ̂ (1/Number of years) − 1. 

Average Annual Growth Rate = (Population at 2024 census/Population at 2019 
census)  ̂ (1/5) − 1 Average Annual Growth Rate = (80 million/80 million)  ̂ (1/5) 
− 1 Average Annual Growth Rate = 1^0.2 − 1 Average Annual Growth Rate = 0 
or 0% 

Step 4: Estimate the mid-year population for 2022: To estimate the population 
for October 1, 2022, we will use the formula: Mid-year Population = Population at 
2019 census * (1 + Average Annual Growth Rate)  ̂ Number of years. 

Mid-year Population = 80 million * (1 + 0)  ̂ 3.5 Mid-year Population = 80 
million * 1 Mid-year Population = 80 million. 

So, the estimated population of Country Y for October 1, 2022, using the 
intercensus method with mid-year population, is approximately 80 million. 

In this example, the average annual growth rate is 0% because the population 
remained the same between the two census years. This can happen if there is no 
significant population change or if the population increase and decrease balanced 
out during the period. 

3. Compound growth rate formula 

The compound growth rate formula for intercensal data is used to calculate the 
average annual growth rate of a population between two census years. This formula 
helps estimate the rate at which the population is growing or declining over a specific 
period. 

The formula for compound growth rate (CGR) is as follows: 
CGR = (Population at the end of the period/Population at the beginning of the 

period)  ̂ (1/Number of years) − 1.
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where: 

• Population at the end of the period: The population recorded during the later 
census year. 

• Population at the beginning of the period: The population recorded during the 
earlier census year. 

• Number of years: The time interval between the two census years (usually in 
years). 

Let us use this formula in the previous Example 1 to calculate the compound 
growth rate for Country X between January 1, 2020 (last official census) and January 
1, 2025 (next official census): 

CGR = (Population at 2025 census/Population at 2020 census)  ̂ (1/5) − 1 CGR  
= (50 million/50 million)  ̂ (1/5) − 1 CGR  = 1^0.2 − 1 CGR  = 0.1487 or 14.87% 

The calculated compound growth rate is approximately 14.87%. This means that, 
on average, the population of Country X is growing at a rate of about 14.87% per 
year between the census years of 2020 and 2025. 

Example 1: Suppose City A conducted its last official census on January 1, 2010, and 
recorded a population of 500,000. The next official census is scheduled for January 
1, 2025, and it records a population of 800,000. Calculate the compound growth rate 
for City A between these two census years. 

Step 1: Determine the time interval between the two census years: The time between 
January 1, 2010, and January 1, 2025, is 15 years. 

Step 2: Calculate the compound growth rate (CGR): CGR = (Population at the end 
of the period/Population at the beginning of the period)  ̂ (1/Number of years) − 1 
CGR = (800,000/500,000)  ̂ (1/15) − 1 CGR  = 1.6  ̂ (1/15) − 1 CGR  ≈ 0.0332 or 
3.32% 

The calculated compound growth rate for City A between 2010 and 2025 is 
approximately 3.32%. 

Example 2: Suppose Country B conducted its last official census on July 1, 2018, and 
recorded a population of 12 million. The next official census is scheduled for July 1, 
2023, and it records a population of 15 million. Calculate the compound growth rate 
for Country B between these two census years. 

Step 1: Determine the time interval between the two census years: The time between 
July 1, 2018, and July 1, 2023, is 5 years. 

Step 2: Calculate the compound growth rate (CGR): CGR = (Population at the end 
of the period/Population at the beginning of the period)  ̂ (1/Number of years) − 
1 CGR  = (15,000,000/12,000,000)  ̂ (1/5) − 1 CGR  = 1.25  ̂ (1/5) − 1 CGR  ≈ 
0.0471 or 4.71% 

The calculated compound growth rate for Country B between 2018 and 2023 is 
approximately 4.71%.
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4. Natural Increase and the net migration method 

Natural increase and the net migration method are two approaches used in demog-
raphy and population studies to estimate intercensal data, particularly the population 
change between two censuses or population counts taken at different points in time. 
Both methods are essential for understanding population dynamics and planning 
various public policies. Let us delve into each method: 

1. Natural Increase Method: Natural increase refers to the difference between the 
number of births and the number of deaths in a population over a specific period. 
To estimate population change using the natural increase method, follow these 
steps: 

Step 1: Calculate the number of births during the intercensal period. Step 2: Calculate 
the number of deaths during the intercensal period. Step 3: Determine the difference 
between the number of births and the number of deaths. This gives you the natural 
increase for the period. Step 4: Add the natural increase to the population at the 
beginning of the intercensal period to obtain the estimated population at the end of 
the period. 

Population at the end of the period = Population at the beginning + Natural 
Increase. 

2. Net Migration Method: Net migration refers to the difference between the number 
of people who have moved into an area (in-migration) and the number of people 
who have moved out of the area (out-migration) over a specific period. To estimate 
population change using the net migration method, follow these steps: 

Step 1: Calculate the number of people who have migrated into the area (in-migration) 
during the intercensal period. Step 2: Calculate the number of people who have 
migrated out of the area (out-migration) during the intercensal period. Step 3: Deter-
mine the difference between in-migration and out-migration. This gives you the net 
migration for the period. Step 4: Add the net migration to the population at the begin-
ning of the intercensal period to obtain the estimated population at the end of the 
period. 

Population at the end of the period=Population at the beginning + Net Migration. 
It is important to note that the accuracy of these methods depends on the quality 

of data collected during censuses and the reliability of demographic statistics, such 
as birth and death registration systems and migration records. 

For more accurate estimates, demographers often combine both the natural 
increase method and the net migration method to account for all components of popu-
lation change (births, deaths, and migration). This approach is commonly referred to 
as the demographic accounting method and provides a comprehensive understanding 
of how a population changes over time.
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Example 1: Natural Increase Method. 
Let us consider a hypothetical population in a town between two censuses, where 

the population at the beginning of the intercensal period (initial population) was 
50,000, and the data collected during the period is as follows: 

Number of births: 2500 Number of deaths: 1000. 

Step 1: Calculate the natural increase. Natural Increase= Number of births−Number 
of deaths Natural Increase = 2500 − 1000 Natural Increase = 1500. 

Step 2: Calculate the estimated population at the end of the period. Population at the 
end of the period = Population at the beginning + Natural Increase Population at 
the end of the period = 50,000 + 1500 Population at the end of the period = 51,500. 

So, based on the natural increase method, the estimated population at the end of 
the intercensal period is 51,500. 

Example 2: Natural Increase Method. 
Let us consider another hypothetical population, this time with different data: 
Population at the beginning of the intercensal period: 800,000 Number of births: 

20,000 Number of deaths: 8000. 

Step 1: Calculate the natural increase. Natural Increase= Number of births−Number 
of deaths Natural Increase = 20,000 − 800 Natural Increase = 12,000. 

Step 2: Calculate the estimated population at the end of the period. Population at 
the end of the period = Population at the beginning + Natural Increase Population 
at the end of the period = 800,000 + 12,000 Population at the end of the period = 
812,000. 

So, based on the natural increase method, the estimated population at the end of 
the intercensal period is 812,000. 

Example 1: Net Migration Method. 
Now, let us work out an example using the net migration method. Consider the 

following data for a city: 
Population at the beginning of the intercensal period: 300,000 Number of people 

who migrated into the city (in-migration): 25,000 Number of people who migrated 
out of the city (out-migration): 12,000. 

Step 1: Calculate the net migration. Net Migration = In-migration − Out-migration 
Net Migration = 25,000 − 12,000 Net Migration = 13,000. 

Step 2: Calculate the estimated population at the end of the period. Population at the 
end of the period = Population at the beginning + Net Migration Population at the 
end of the period = 300,000 + 13,000 Population at the end of the period = 313,000. 

So, based on the net migration method, the estimated population at the end of the 
intercensal period is 313,000. 

Example 2: Net Migration Method. 
Let us consider another example with different data:
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Population at the beginning of the intercensal period: 1000,000 Number of people 
who migrated into the city (in-migration): 50,000 Number of people who migrated 
out of the city (out-migration): 30,000. 

Step 1: Calculate the net migration. Net Migration = In-migration − Out-migration 
Net Migration = 50,000 − 30,000 Net Migration = 20,000. 

Step 2: Calculate the estimated population at the end of the period. Population at 
the end of the period = Population at the beginning + Net Migration Population at 
the end of the period = 1,000,000 + 20,000 Population at the end of the period = 
1,020,000. 

So, based on the net migration method, the estimated population at the end of the 
intercensal period is 1,020,000. 

In real-world scenarios, demographers often combine both methods to get a more 
accurate estimate of population change by considering both natural increase and net 
migration. 
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4.6 Rates and Ratios of Vital Event 

Consider a population study between time periods [t1 and t2], and there are n1 
people born, n2 people married, n3 number of people dead, and n4 number of people 
divorced. To turn these facts into some information with utility, we transform them 
into rates and ratios. 

Rates refer to “per thousand people,” and ratios are values used for comparison. 
The most frequently used ratio in vital statistics is the sex ratio, employment ratio, 
and literacy ratio. 

1. Birth Rate (Rate): The birth rate refers to the number of births per thousand 
people in the population between time periods [t1 and t2]. It can be calculated 
as follows: Birth Rate = (Number of births/Total population) * 1000 

Example: If there were 500 births in a population of 10,000 between t1 and t2, the 
birth rate would be: Birth Rate = (500/10,000) * 1000 = 50 births per thousand 
people. 

2. Marriage Rate (Rate): The marriage rate represents the number of marriages per 
thousand people in the population between time periods [t1 and t2]. It can be

https://doi.org/10.1007/s11113-015-9359-8
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4624462/table/T1/?report=objectonly
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4624462/table/T1/?report=objectonly
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calculated as follows: Marriage Rate = (Number of marriages/Total population) 
* 1000 

Example: If there were 300 marriages in a population of 15,000 between t1 and t2, 
the marriage rate would be: Marriage Rate = (300/15,000) * 1000 = 20 marriages 
per thousand people. 

3. Death Rate (Rate): The death rate is the number of deaths per thousand people in 
the population between time periods [t1 and t2]. It can be calculated as follows: 
Death Rate = (Number of deaths/Total population) * 1000 

Example: If there were 200 deaths in a population of 8000 between t1 and t2, the 
death rate would be: Death Rate = (200/8000) * 1000 = 25 deaths per thousand 
people. 

4. Divorce Rate (Rate): The divorce rate refers to the number of divorces per thou-
sand married people in the population between time periods [t1 and t2]. It can be 
calculated as follows: Divorce Rate = (Number of divorces/Number of married 
people) * 1000 

Example: If there were 50 divorces among 400 married people between t1 and t2, the 
divorce rate would be: Divorce Rate = (50/400) * 1000 = 125 divorces per thousand 
married people. 

5. Sex Ratio (Ratio): The sex ratio is a ratio of the number of males to females in 
the population. It helps in understanding the gender distribution. Sex Ratio = 
(Number of males/Number of females) 

Example: If there are 600 males and 700 females in the population, the sex ratio 
would be: Sex Ratio = 600/700 ≈ 0.86. 

6. Employment Ratio (Ratio): The employment ratio represents the proportion of 
employed individuals in the population. It is usually expressed as a percentage. 
Employment Ratio = (Number of employed individuals/Total population) * 100 

Example: If there are 400 employed individuals in a population of 2000, the 
employment ratio would be: Employment Ratio = (400/2000) * 100 = 20% 

7. Literacy Ratio (Ratio): The literacy ratio is the proportion of literate individuals 
in the population. It is also typically expressed as a percentage. Literacy Ratio = 
(Number of literate individuals/Total population) * 100 

Example: If there are 1200 literate individuals in a population of 1800, the literacy 
ratio would be: Literacy Ratio = (1200/1800) * 100 = 66.67% 

These rates and ratios provide valuable information about the population, enabling 
comparisons and insights into various aspects of the study.
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4.7 Mortality and Death Rates 

Mortality and death rates are important demographic indicators used to measure the 
occurrence of deaths within a specific population over a particular period. While the 
terms are related, they have slightly different meanings: 

1. Mortality Rate: Mortality rate refers to the number of deaths in a given population 
within a specific time frame, typically expressed as the number of deaths per 1000 
or 100,000 individuals in the population. Mortality rates can be calculated for 
various groups, such as age-specific mortality rate (deaths within a specific age 
group), infant mortality rate (deaths of infants under one year old), or Maternal 
Mortality Rate (deaths related to pregnancy and childbirth). 

Mortality rates are essential for assessing the health status of a population, 
identifying patterns of diseases, and measuring the effectiveness of healthcare 
interventions. 

2. Death Rate: The death rate, also known as the Crude Death Rate, is a broader 
measure that represents the total number of deaths within a population per year, 
usually per 1000 or 100,000 people. It is calculated by dividing the number of 
deaths in a given year by the mid-year population and multiplying by a constant 
(e.g., 1000 or 100,000). 

The death rate provides a general overview of mortality in a population and is 
often used to compare mortality levels across different regions or countries. 

It is important to note that both mortality and death rates are essential statistics for 
public health and epidemiology, helping researchers and policymakers understand 
health trends, identify risk factors, and formulate strategies to improve overall popu-
lation health. These rates can also vary significantly based on factors such as access to 
healthcare, lifestyle behaviors, infectious disease prevalence, socioeconomic status, 
and environmental conditions.
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• Are death rates and mortality rate the same? 

A mortality rate is a measurement of how frequently people die within a given 
population during a certain period of time. It just depends on what you want 
to measure—illness or death—because mathematically, morbidity and mortality 
metrics are frequently equivalent. The population size at the mid-point of the time 
period is typically used as the denominator when mortality rates are calculated using 
vital data (such as counts of death certificates). 

Both mortality and death rates are essential for understanding the health status of 
a population, identifying potential health issues, and evaluating the impact of public 
health interventions. These rates can vary significantly across different regions and 
can be used to compare the health outcomes of different populations. 

Example 1: Calculating Mortality Rate. 
Suppose we want to calculate the mortality rate for a specific age group (20– 

29 years old) in a town over the course of one year. In that period, there were 15 
deaths among individuals aged 20–29 years. 

Step 1: Identify the relevant information: 

• Number of deaths in the age group (20–29): 15 

Step 2: Calculate the mortality rate: Mortality Rate = (Number of deaths/Total 
population in the age group) × 1000. 

If the total population of the age group (20–29) is 5000, then the mortality rate 
would be: Mortality Rate = (15/5000) × 1000 = 3 deaths per 1000 individuals in 
the age group. 

Example 2: Calculating Death Rate. 
Now, let us calculate the death rate for an entire country over the course of one 

year. During that year, the country’s total population was 10 million, and the number 
of deaths recorded was 100,000. 

Step 1: Identify the relevant information: 

• Total number of deaths in the country: 100,000 
• Total population of the country: 10,000,000 

Step 2: Calculate the death rate: Death Rate = (Number of deaths/Total 
population) × 1000. 

Death Rate = (100,000/10,000,000) × 1000 = 10 deaths per 1000 individuals in 
the country. 

In this example, the death rate for the country is 10 deaths per 1000 individuals.
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4.7.1 Crude Mortality Rate or the Crude Death Rate 

The Crude Mortality Rate (CMR) or Crude Death Rate (CDR) is a vital demo-
graphic indicator used to measure the number of deaths in a population per unit of 
time, usually expressed as the number of deaths per 1000 or 100,000 people in the 
population. It provides a general overview of the mortality level in a particular region 
or country and is commonly used in public health, epidemiology, and demography. 

The formula to calculate the Crude Mortality Rate is: 
Crude Mortality Rate (CMR) = (Number of Deaths/Total Population) × Multi-

plier. 
where: 

• Number of Deaths: The total number of deaths in the specified population during 
a given period (e.g., a year). 

• Total Population: The estimated or actual population of the area or country at the 
mid-point of the specified period. 

• Multiplier: To convert the CMR to a per 1000 or 100,000 scale, a multiplier is 
used. If you want to express it per 1000, the multiplier is 1000; if you want to 
express it per 100,000, the multiplier is 100,000. 

Here are a couple of solved examples to illustrate how to calculate the Crude 
Mortality Rate: 

Example 1: Let us say we have a small town with a population of 10,000 people, and 
during the year 2022, a total of 50 deaths occurred. 

CMR = (50/10,000) × 1000 CMR = 0.005 × 1000 CMR = 5 deaths per 1000 
people. 

Example 2: Now, consider a larger city with a population of 500,000. During the 
same year 2022, there were 1800 deaths. 

CMR = (1800/500,000) × 1000 CMR = 0.0036 × 1000 CMR = 3.6 deaths per 
1000 people. 

It is important to note that the Crude Mortality Rate does not take into account 
the age distribution of the population, which can significantly impact mortality rates. 
To get more detailed insights into mortality patterns, age-specific mortality rates and 
other measures are used. Nonetheless, the Crude Mortality Rate remains a valuable 
and straightforward tool for comparing mortality levels between different regions or 
for tracking changes in mortality over time. 

4.7.2 Cause-Specific Mortality Rate and Age-Specific 
Mortality Rate 

The mortality rate for a population attributable to a certain cause is known as the 
Cause-Specific Mortality Rate. The number of fatalities linked to a certain cause is
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the numerator. The population’s size at the period’s halfway point continues to serve 
as the denominator. The percentage is often given per 100,000 people. 

A mortality rate that is only applicable to a certain age group is called an Age-
Specific Mortality Rate. The denominator is the number of people in that age group 
in the population, while the numerator is the number of deaths in that age group. 

4.7.3 Neonatal Mortality Rate 

Newborn mortality rate is also known as neonatal mortality rate. Neonatal mortality 
specifically refers to the number of deaths occurring in the first 28 days (0–27 days) 
of life per 1000 live births in a given year. This indicator focuses on the early stage of 
infancy when newborns are most vulnerable and at higher risk of mortality. Neonatal 
mortality is an essential measure to assess the health and well-being of newborns 
and to track progress in improving maternal and child health outcomes. 

Typically, the newborn mortality rate is determined annually. Because it accounts 
for both the mother’s and the baby’s health throughout pregnancy and the first year 
after, it is a widely used indicator of health status. Access to prenatal care, the 
prevalence of prenatal maternal health behaviors (like alcohol or tobacco use and 
proper nutrition during pregnancy, etc.), postnatal care and behaviors (like childhood 
immunizations and proper nutrition), sanitation, and infection control are just a few 
examples of the many factors that have an impact on the health of the mother and 
child. 

The neonatal period includes the first 28 days after birth but not beyond. Therefore, 
the number of infant deaths under the age of 28 days constitutes the numerator of 
the neonatal mortality rate. The number of live births reported within the same time 
period serves as the denominator for both the neonatal mortality rate and the infant 
mortality rate. The standard way to express the neonatal death rate is per 1000 live 
births. 

As per the last knowledge update in September 2021, the global newborn mortality 
rate was declining but still remained a significant public health concern. The newborn 
mortality rate refers to the number of deaths of infants aged 0 to 28 days per 1000 live 
births in a given year. It is an important indicator of the overall health and healthcare 
system of a country. 

According to data from the World Health Organization (WHO) and the United 
Nations Children’s Fund (UNICEF), the global newborn mortality rate was estimated 
to be around 18 deaths per 1000 live births in 2019. This means that approximately 
2.8 million newborns died in the first month of life worldwide that year. 

It is crucial to note that newborn mortality rates can vary significantly between 
different countries and regions. In high-income countries, the rates tend to be much 
lower compared to low-income and resource-limited countries, where access to 
quality healthcare and other factors can influence the survival of newborns. 

It is recommended to check more recent sources, such as the WHO or UNICEF 
websites, for the latest data on newborn mortality rates.
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The period from 28 days of age up to but excluding 1 year of age is known as the 
post-neonatal phase. Therefore, the number of fatalities among children between the 
ages of 28 days and but not including 1 year over a specific time period constitutes 
the numerator of the post-neonatal mortality rate. The number of live births reported 
within the same time period serves as the denominator. The standard way to express 
the post-neonatal death rate is per 1000 live births. 

It is often used in discussions related to infant mortality to distinguish between 
neonatal mortality (deaths that occur within the first 28 days of life) and post-neonatal 
mortality (deaths that occur between 28 days and one year of age). 

To summarize: 

• Neonatal mortality: Deaths that occur within the first 28 days (0–27 days) of life. 
• Post-neonatal mortality: Deaths that occur between 28 days and one year 

(364 days) of age. 

Together, neonatal and post-neonatal mortality rates provide a comprehensive 
view of infant mortality, which is an essential indicator for assessing the health and 
survival of infants during their first year of life. 

4.7.4 Maternal Mortality Rate (M.M.R) 

Maternal Mortality Rate (MMR) refers to the number of maternal deaths that occur 
during pregnancy or within 42 days of termination of pregnancy (regardless of 
the duration and site of the pregnancy), per 100,000 live births in a given time 
period. It is a crucial indicator of the overall health and well-being of women in a 
particular country or region and reflects the effectiveness of a healthcare system in 
providing proper maternal care and reducing preventable deaths related to pregnancy 
and childbirth. 

High Maternal Mortality Rates are often associated with inadequate access to 
quality healthcare, limited availability of skilled birth attendants, poor nutrition, and 
socioeconomic factors. Conversely, lower Maternal Mortality Rates are generally 
observed in regions with better healthcare infrastructure, prenatal care, access to 
skilled healthcare professionals, and a focus on maternal health. 

It is important to track and reduce Maternal Mortality Rates to improve maternal 
health and promote safer pregnancies and childbirth experiences for women glob-
ally. The World Health Organization (WHO) and various other organizations and 
governments regularly collect and publish data on Maternal Mortality Rates to assess 
progress and target interventions to address maternal health issues. 

MMR = (Number of Maternal Deaths/Number of Live Births) × 100,000. 
Let us say we have the following data for a specific region in a given year: 
Number of maternal deaths = 50 Number of live births = 10,000. 
Now, we can calculate the MMR using the formula: 
M.M.R = (50/10,000) × 100,000 = 500.
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Therefore, the Maternal Mortality Rate (MMR) for this specific region in the given 
year is 500 maternal deaths per 100,000 live births. This means that, on average, 
there were 500 maternal deaths for every 100,000 live births during that year in that 
particular region. 

4.7.5 Sex-Specific Mortality Rate 

The sex-specific mortality rate is a measure that calculates the number of deaths 
in a specific sex group (e.g., males or females) per a given population’s size. It is 
typically expressed as the number of deaths per 1000 individuals of that sex in a given 
time period. To calculate the sex-specific mortality rate, you will need the number 
of deaths and the population size for the specific sex group. 

Example: Suppose we have the following information for a population in a specific 
time period: 

• Number of deaths among males: 400. 
• Total population of males: 15,000. 

To calculate the sex-specific mortality rate for males: 

Step 1: Divide the number of deaths by the total population of males. Mortality rate 
= Number of deaths/Total population of males Mortality rate = 400/15,000. 

Step 2: Calculate the rate per 1000 individuals by multiplying the result from Step 
1 by 1000. Mortality rate per 1000 males = (400/15,000) * 1000 Mortality rate per 
1000 males = 26.67. 

Step 3: Round the mortality rate to an appropriate number of decimal places, if 
needed. Rounded mortality rate per 1000 males = 26.7 

So, the sex-specific mortality rate for males in this example is approximately 
26.7 deaths per 1000 males in the given time period. Remember that this is just an 
example, and actual mortality rates will vary depending on the population and time 
frame being studied. 

4.7.6 Race-Specific Mortality Rate 

Race-specific mortality rate refers to the death rate within a particular racial or ethnic 
group due to specific causes, such as diseases, accidents, or other health-related 
factors. This rate is calculated as the number of deaths within a specific racial or 
ethnic group divided by the total population of that group, multiplied by a constant 
(usually 1000 or 100,000) to express the rate per 1000 or 100,000 individuals. 

Health disparities, including differences in mortality rates, have been observed 
among different racial and ethnic groups. These disparities can be influenced by 
various factors, including access to healthcare, socioeconomic status, environmental
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factors, lifestyle choices, and historical injustices. Understanding and addressing 
these disparities are critical to promoting health equity and improving overall public 
health. 

It is essential to note that discussing race-specific mortality rates should be 
approached with sensitivity, as the concept of race is complex and influenced by 
social, historical, and political factors. Healthcare professionals and policymakers 
must be mindful of the potential implications and avoid perpetuating stereotypes or 
promoting discrimination based on race or ethnicity. Instead, efforts should focus on 
identifying and addressing the underlying causes of health disparities and ensuring 
equitable access to healthcare for all individuals, regardless of their racial or ethnic 
background. 

Let us consider a hypothetical situation with two racial groups: Group A and 
Group B. We will calculate the race-specific mortality rate for each group based on 
the number of deaths from a specific cause within a given time period. 

Example: Time Period: January 1, 2023, to December 31, 2023. 
Cause of Death: Heart Disease. 
Population of Group A: 50,000 Number of Deaths from Heart Disease in Group 

A: 500. 
Population of Group B: 70,000 Number of Deaths from Heart Disease in Group 

B: 400. 

Step 1: Calculate the mortality rate per 100,000 individuals for each group. 
Mortality Rate for Group A: (500/50,000) * 100,000 = 1000 deaths per 100,000 

individuals. 
Mortality Rate for Group B: (400/70,000) * 100,000 = 571.43 deaths per 100,000 

individuals. 

Step 2: Compare the race-specific mortality rates. 
In this example, the race-specific mortality rate for Group A due to heart disease 

is 1000 deaths per 100,000 individuals, while the rate for Group B is 571.43 deaths 
per 100,000 individuals. 

Note: that this is a simplified hypothetical example for illustrative purposes. In 
reality, race-specific mortality rates are calculated using more comprehensive data 
from various sources and over extended periods to identify trends and patterns accu-
rately. Additionally, considering more causes of death and a broader range of racial 
or ethnic groups would provide a more comprehensive analysis of health disparities. 
Health authorities and researchers use such data to develop targeted interventions and 
policies aimed at reducing health inequalities and promoting health equity among 
different populations.
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4.7.7 Age-Specific Death Rates 

A.S.D.R = 
Number of deaths among people in a particular age 

Total number of people in the particular age
∗ 1000 

Example: Consider the number of deaths and population in the 65–69 age group 
during a particular year in a hypothetical country. 

Suppose we have the following data: 

• Number of deaths in the 65–69 age group: 500. 
• Population of the 65–69 age group: 25,000. 

We will calculate the age-specific death rate (ASDR) for this age group using the 
formula mentioned earlier: 

ASDR = (Number of deaths in the age group/Population of the age group) × K 

Let us assume we want to express the death rate per 1000 population (K = 1000). 

ASDR = (500/25,000) × 1000 
ASDR = 20 

The age-specific death rate for the 65–69 age group is 20 deaths per 1000 popu-
lation. This means that, during the specified time period, there were 20 deaths for 
every 1000 people within the 65–69 age group. 

Note: Age-specific death rates can vary significantly between different age groups 
and populations. By calculating and analyzing these rates for various age groups, 
policymakers and researchers can gain insights into the health status and mortality 
patterns within different segments of the population, which can inform targeted public 
health interventions and policy decisions. 

Example 2: Consider the following data (Table 4.2).
Did age-specific death rates in 2020 change from 2019 for those aged 1 year and 

over? 
From 2019 to 2020, death rates increased for each age group 15 years and over. 

Rates increased 20.8% for age group 15–24 (from 69.7 deaths per 100,000 population 
in 2019 to 84.2 in 2020), 23.8% for 25–34 (128.8 to 159.5), 24.5% for 35–44 (199.2 
to 248.0), 20.7% for 45–54 (392.4–473.5), 17.6% for 55–64 (883.3–1038.9), 17.4% 
for 65–74 (1764.6 to 2072.3), 16.0% for 75–84 (4308.3–4997.0), and 15.0% for 85 
and over (13,228.6–15210.9) (Fig. 4.3). Rates for age groups 1–4 and 5–14 did not 
change significantly from 2019 to 2020 (Fig. 4.4).

Statistically significant increase in age-specific death rate from 2019 to 2020 
NOTES: Rates are plotted on a logarithmic scale. Source: National Centre for Health 
Statistics, National Vital Statistics System, Mortality.
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Table 4.2 Number of deaths and death rates for ages 1 year and over, United States 2019 and 2020 

Age group (years) 2019 2020 

Number Ratel Number Ratea 

1–4 3676 23.3 3529 22.7 

5–14 5497 13.4 5623 13.7 

15–24 29,771 69.7 35,816 84.2 

25–34 59,178 128.8 73,486 159.5 

35–44 82,986 199.2 104,490 248.0 

45–54 160,393 392.4 191,142 473.5 

55–64 374,937 883.3 440.549 1038.9 

65–74 555,559 1764.6 674,507 2072.3 

75–84 688,027 4308.3 822,084 4997.0 

85 and over 873,746 13,228.6 1,012,805 15,210.9 

Source: National center for health statistics, national vital statistics system, mortality 
a Deaths per 100,000 population

Fig. 4.4 Bar graph for deaths 100,000 population in year 2019 and 2020 categorized based on age

4.7.8 Standardized Death Rates 

Standardized death rates, also known as age-standardized death rates or age-adjusted 
death rates, are a statistical measure used to compare mortality rates between different 
populations or across different time periods, while accounting for differences in age
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distributions. Since the risk of death generally increases with age, comparing raw 
death rates between populations with different age structures can be misleading. 

To calculate standardized death rates, the age-specific death rates in the population 
of interest are adjusted to a standard population with a fixed age distribution. This 
standardization process allows for a more meaningful and fair comparison of death 
rates, as if the populations being compared had the same age distribution. 

The steps to calculate age-standardized death rates are as follows: 

1. Obtain age-specific death rates: Gather data on the number of deaths for different 
age groups within the population of interest. For example, you might have death 
rates for age groups 0–4, 5–9, 10–14, and so on. 

2. Obtain the standard population: Choose a standard population with a fixed age 
distribution, such as the World Health Organization (WHO) standard popula-
tion or another suitable reference population. The WHO standard population is 
designed to be broadly representative of the world population. 

3. Calculate the weighted average: Calculate the weighted average of the age-
specific death rates, using the standard population as the weights. The formula 
is usually given as: 

Standardized Death Rate = �

(
Population − specific Death Rate_i 

∗ Standard Population Proportion_i

)

where i refers to the age group and the summation is performed over all age groups. 

4. Standardize the rate: The final step is to express the weighted average as a rate 
per a specified unit of the standard population (e.g., per 1000 or 100,000 people) 
to obtain the standardized death rate. 

Standardized death rates are particularly useful when comparing mortality across 
regions or countries with different age structures, as they allow for more accurate 
comparisons and facilitate better understanding of health disparities and trends. 

It is important to note that the process of standardization is just one aspect of 
understanding mortality patterns. When interpreting death rates, it is essential to 
consider other factors such as the cause of death, underlying health conditions, access 
to healthcare, and socioeconomic factors that may influence mortality in different 
populations (Fig. 4.5).

Example 1: Consider the following data (Table 4.3):
Data Source: Web-based Injury Statistics Query and Reporting System 

(WISQARS) [online database] Atlanta; National Center for Injury Prevention and 
Control. Available from: https://www.cdc.gov/injury/wisqars. 

The table provided the number of deaths from all causes and from accidents (unin-
tentional injuries) by age group in the United States in 2002. Review the following 
rates. Determine what to call each one, then calculate it using the data provided. 

a. Unintentional-injury-specific mortality rate for the entire population

https://www.cdc.gov/injury/wisqars
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Fig. 4.5 Bar graph for number of deaths per 100k population categorized based on countries. 
https://www.statista.com/chart/24258/countries-with-the-highest-number-of-covid-19-deaths/

Table 4.3 All cause and unintentional injury mortality and estimated population by age group, for 
males alone—United States, 2002 

Age 
group 
(years) 

All races, both_sexes All races, Males 

All_causes Unintentional 
injuries 

Estimated 
population 
(1000) 

all causes Unintentional 
injuries 

Estimated 
population 
(1000) 

0–4 32,892 2587 19,597 18,523 1577 10,020 

5–14 7150 2718 41,037 4198 1713 21,013 

15–24 33,046 15,412 40,590 24,416 11,438 20,821 

25–34 41,355 12,569 39,928 28,736 9635 20,203 

35–44 91,140 16,710 44,917 57,593 12,012 22,367 

45–54 172,385 14,675 40,084 107,722 10,492 19,676 

55–64 253,342 8345 26,602 151,363 5781 12,784 

65 + 
years 

1,811,720 33,641 35,602 806,431 16,535 14,772 

Not 
stated 

357 85 0 282 74 0 

Total 2,443,387 106,742 288,357 1,199,264 69,257 141,656

https://www.statista.com/chart/24258/countries-with-the-highest-number-of-covid-19-deaths/
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This is a cause-specific mortality rate given as: 

= 
Number of unintentional injury deaths in the entire population 

Estimated midyear population 

∗ 100, 000 
= (106, 742/288, 357, 000) × 100, 000 
= 37.0 unintentional-injury-related deaths per 100,000 population 

b. All-cause mortality rate for 25–34 year olds 

This is an age-specific mortality rate. 

Rate = 
Number of deaths from all the causes among people aged between 25−34 years 

Estimated midyear population of 25−34 year
∗ 100,000 

= 103.6 deaths per 100, 00025−34 year olds 

c. All-cause mortality among males 

This is a sex-specific mortality rate. 

Rate = 
Number of deaths from all causes among males 

Estimated midyear population of males
∗ 100,000 

= (1, 199, 264/141, 656, 000) × 100,000 
= 846.6 deaths per 100,000 males 

d. Unintentional-injury-specific mortality among 25–34 year old males 

This is a cause-specific, age-specific, and sex-specific mortality rate. 

Rate = 
Number of unintentional injury deaths among 25−34 year old males 

Estimated midyear population of 25−34 year old males
∗ 100,000 

= (9, 635/20, 203,000) × 100,000. 
= 47.7 unintentional-injury-related deaths per 100,00025−34 year olds 

Example 2: Compare Town A and Town B based on their standardized death rates, 
which town is healthier? When standardized population values are given (Table 4.4).

Solution: For Town A (Table 4.5).

S.D.R(Town A) =
∑

PA∑
P 

= 
190,915.92 

17900 
= 10.665 

For Town B (Table 4.6).
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Table 4.4 Population of Town A and Town B with standardized population values given 

Age group (years) Town A Town B Standard population 

Population Death Population Death 

0–10 years 5603 42 3781 28 2500 

10–25 years 12,674 58 20,987 105 3700 

25–60 years 6764 61 4532 54 6800 

60 years and above 8765 168 3378 67 4900

Table 4.5 Calculation of standardized death rate for Town A 

Age group 
(years) 

Town A 

Population Death Standard 
population 

A.S.D.R P.A 

0–10 years 5603 42 2500 7.50 18,739.96 

10–25 years 12,674 58 3700 4.58 16,932.30 

25–60 years 6764 61 6800 9.02 61,324.66 

60 years and 
above 

8765 168 4900 19.17 93,919.00 

Total 17,900 190,915.92

Table 4.6 Calculation of standardized death rate for Town B 

Age group 
(years) 

Town B A.S.D.R Standardised 
population (P) 

PA 

Population Death 

0–10 years 3781 28 7.41 2500 18,513.62 

10–25 years 20,987 105 5.00 3700 18,511.46 

25–60 years 4532 54 11.92 6800 81,023.83 

60 years and 
above 

3378 67 19.83 4900 97,187.69 

Total 17,900.00 215,236.60 

S.D.R (Town A) =
∑

PA∑
P 

= 
215,236.60 

17,900 
= 12.023 

Inference: Town A is healthier than Town B since, the S.T.D.R(A) < S.T.D.R(B). 

Example: Keeping Town A as a base for comparison, compare both towns and 
conclude on their health based on their S.T.D.R value (Table 4.7).

Solution 

Let us consider Town A (Table 4.8).
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Table 4.7 Deaths from Town A and Town B 

Age group (years) Town A Town B 

Population Death Population Death 

0–10 years 15,903 34 18,764 40 

10–25 years 12,454 65 19,764 134 

25–60 years 7784 87 8799 65 

60 years and above 8765 190 9087 99

Table 4.8 Calculation of S.D.R for town A 

Age group (years) Town A 

Population Death A.S.D.R Population *A.S.D.R 

0–10 years 15,903 34 2.14 34,000 

10–25 years 12,454 65 5.22 65,000 

25–60 years 7784 87 11.18 87,000 

60 years and above 8765 190 21.68 1,90,000 

Total 44,906 376 40.21106587 3,76,000 

S.D.R(Town A) =
∑

PA∑
P 

= 
376,000 

44,906 
= 8.37 

For Town B (Table 4.9), 

S.D.R (Town B) =
∑

PB∑
P 

= 
478,000 

56414 
= 8.47 

Inference: Town A is healthier than Town B since, the S.T.D.R(A) < S.T.D.R(B). 

Example: In 2001, a total of 15,556 homicide deaths occurred among males and 4853 
homicide deaths occurred among females. The estimated 2001 mid-year populations 
for males and females were 139,913,000 and 144,984,008, respectively.

Table 4.9 Calculation of S.D.R for Town B 

Age group (years) Town B 

Population Death ASDR Population *A.S.D.R 

0–10 years 18,764 40 2.13 40,000 

10–25 years 19,764 134 6.78 1,34,000 

25–60 years 8799 65 7.39 65,000 

60 years and above 9087 99 16.30 2,39,000 

Total 56,414 338 32.60 4,78,000 
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a. Calculate the homicide-related death rates for males and for females. 
b. What type(s) of mortality rates did you calculate in Question 1? 
c. Calculate the ratio of homicide-mortality rates for males compared to females. 
d. Interpret the rate you calculated in Question 3 as if you were presenting 

information to a policymaker. 

1. Homicide-related death rate for males. 

= (Number of homicide deaths among males/Total male population) × 100, 000 
= 15, 556/139, 913, 000 × 100, 000 = 11.1183 

This means that 11.1183 homicide deaths per 100,000 population among males. 
Homicide-related death rate for females. 

= (Number of homicide deaths among females/Total female population) × 100,000 
= 4853/144,984,008 × 100,000 = 3.347 

This means that 3.347 homicide deaths / 100,000 population among females. 

2. These are cause-specific and sex-specific mortality rates. 
3. Homicide-mortality rate ratio is given as 

= Homicide death rate of males/Homicide death rate of females 

= 11.1183/3.347 = 3.321 

4. Because the homicide rate among males is higher than the homicide rate among 
females, specific intervention programs are required to be set up to target males 
and females differently. 

Note: Mortality rates can be of various combinations of categories based on gender, 
skills, education levels, types of diseases, stages of pain, age, etc. Most of the 
researchers keep age as a base of their studies. Few interesting facts on mortality 
rates are as follows: For example, 

• 9 out of every 10 maternal deaths in Asia–Pacific occur in just 12 countries. 
The facts stated in an article from UNFPA, United Nations Population Fund, 
were very astonishing that in the year 2015, 92% of the maternal deaths which 
is approximately 78,000 occurred in just 12 countries. This was an example of 
region-based classification of MMR. Countries such as Myanmar, New Guinea, 
Philippines, and Timor-Leste have over 100 deaths per 100,000 live births. (https:// 
asiapacific.unfpa.org/en/news/maternal-mortality-asia-pacific-5-key-facts) 

• OurWorldData.org states that many countries in South Africa have death rates 
due to HIV/AIDS greater than 100 per 100,000 population. In Mozambique, it 
was over 200 per 100,000 population, whereas in Europe the rates were less 
than 1 per 100,000 population. https://ourworldindata.org/hiv-aids#death-rates-
are-high-across-sub-saharan-africa

https://asiapacific.unfpa.org/en/news/maternal-mortality-asia-pacific-5-key-facts
https://asiapacific.unfpa.org/en/news/maternal-mortality-asia-pacific-5-key-facts
https://ourworldindata.org/hiv-aids#death-rates-are-high-across-sub-saharan-africa
https://ourworldindata.org/hiv-aids#death-rates-are-high-across-sub-saharan-africa
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Problem: Consider the following data (Table 4.10): 
Problem: The number of new cases and deaths from diphtheria declined dramat-

ically from the 1940s through the 1980s, but remained roughly level at very low 
levels in the 1990s. The death-to-case ratio was actually higher in the 1980s and 
1990s than in 1940s and 1950s. From these data one might conclude that the decline 
in deaths is a result of the decline in cases, that is, from prevention, rather than from 
any improvement in the treatment of cases that do occur (Table 4.11). 

Proportionate mortality for diseases of the heart, 25–44 years. 

= (Number of deaths from diseases of heart/Number of deaths from all causes) × 100 
= 16,283/128,294 × 100 
= 12.6% 

Proportionate mortality for assault (homicide), 25–44 years.

Table 4.10 Deaths due to diphtheria from 1940 to 1999 

Decade Number of new cases Number of deaths Death-to-case ratio (*100) 

1940–1949 143,497 11,228 7.82 (Given) 

1950–1959 23,750 1710 7.20 

1960–1969 3679 390 10.60 

1970–1979 1956 90 4.60 

1980–1989 27 3 11.11 

1990–1999 22 5 22.72 

Table 4.11 Deaths categorized age-wise 

Age group (years) Deaths Age mid-point Years to 65 Y.P.L. L 

Total 14,095 291,020 

0–4 12 2.5 62.5 750 

5–10 25 10 55 1375 

15–24 178 20 45 8010 

25–34 1839 30 35 64,365 

35–44 5707 40 25 142,675 

45–54 4474 50 15 67,110 

55–64 1347 60 5 6735 

65+ 509 – – – 

Not stated 4 – – – 

Total 14,095 
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= (Number deaths from assault (homicide)/#deaths from all causes) × 100 
= 7367/128,924 
= 5.7% 

In brief (Table 4.12):

4.8 Birth Rates 

Birth rates refer to the number of live births per 1000 individuals in a population over 
a specified period, typically calculated annually. It is a crucial demographic indicator 
used to understand population dynamics and can provide insights into a country’s 
social, economic, and health conditions. 

High birth rates often occur in less developed countries or regions with limited 
access to family planning and healthcare services. Factors contributing to high birth 
rates include a lack of education, limited access to contraceptives, cultural or religious 
beliefs, and the need for labor in agricultural or traditional economies. 

Conversely, low birth rates are typically observed in more developed countries 
with higher levels of education, better access to healthcare and family planning, 
urbanization, and changing societal attitudes toward family size and roles. In some 
cases, low birth rates can lead to concerns about population aging and a declining 
workforce, which may impact economic productivity and social welfare systems. 

Governments and policymakers monitor birth rates closely to plan for future 
healthcare, education, and infrastructure needs, as well as to assess the potential 
impacts on the labor force and overall economic growth. Birth rates can also influence 
discussions about immigration policies, as some countries may use immigration to 
offset population decline or sustain workforce growth. 

It is important to note that birth rates can vary significantly between countries 
and regions and can change over time due to various social, economic, and political 
factors. Additionally, the global trend of birth rates has seen a general decline over 
the past few decades as many countries experience demographic transitions, moving 
from high birth and death rates to lower and more stable levels. 

Birth rates, a key demographic indicator plays a crucial role in shaping the popu-
lation dynamics of a country or region. Understanding birth rates requires a compre-
hensive examination of various factors, including social, economic, cultural, and 
healthcare-related elements. In this article, we delve into the significance of birth 
rates, their historical trends, and the underlying drivers that influence these rates in 
different parts of the world. 

Historical Overview 

Birth rates have been subject to significant fluctuations throughout history. In pre-
modern societies, high birth rates were common due to various factors such as 
agrarian economies, lack of effective contraception methods, and high child mortality
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Table 4.12 Brief note about all death rates 

Measure Numerator Denominator Per Advantages Disadvantages 

Crude death 
rate 

Annual deaths Annual mean 
population 

1000 Considers the 
entire 
population, 
simple to 
compute 

It assumes that 
the risk of 
exposure to 
death is uniform 
in the 
population. 
Hence not 
suitable for 
comparison 

Cause-specific 
death rate 

Number of deaths 
assigned to a 
specific cause 
during a given 
interval of time 

Number of 
people 
exposed to the 
cause under 
study or 
mid-interval 
population 

1000 Ideal for 
research 

Usability is 
limited 

Death-to-cause 
ratio 

Number of deaths 
assigned to a 
specific cause 
during a given 
interval of time 

Number of 
new cases of 
same disease 
reported 
during the 
given interval 
of time 

1000 Special use case 
under 
cause-specific 
death rate 

Usability is 
limited 

Neonatal 
mortality rate 

Number of deaths 
among children 
less than 28 days 
of age during a 
given interval of 
time 

Number of 
live births 
during the 
given interval 
of time 

1000 The rates are for 
a specific 
predefined 
purpose. The 
information 
required for the 
computation 
can be collected 
easily compared 
to other ratios 

The main 
drawback is 
under 
registration of 
live births, and 
often fetal 
deaths are 
recorded as 
infant deaths 
that leads to 
incorrect values 

Post-neonatal 
mortality rate 

Number of deaths 
among children 
28–364 days of 
age during a 
given interval of 
time 

Number of 
live births 
during the 
given interval 
of time 

1000 

Infant mortality 
rate 

Number of deaths 
among children < 
1 year of age, 
excluding fetal 
deaths during a 
given interval of 
time 

Number of 
live births 
during the 
given interval 
of time 

1000 

Maternal 
mortality rate 

Number of 
women deaths 
caused due to 
pregnancy during 
a given interval 
of time 

Number of 
live births 
during the 
given interval 
of time 

1000 Most of the 
health 
information 
recording 
systems are 
inaccurate



4.8 Birth Rates 201

rates. With the onset of industrialization and modernization, birth rates began to 
decline in many parts of the world. 

During the mid-twentieth century, the global population witnessed an unprece-
dented surge, known as the “baby boom,” mainly in developed countries after World 
War II. Advances in healthcare, improved sanitation, and economic prosperity were 
primary factors contributing to this boom. However, in the latter half of the twentieth 
century, birth rates started declining steadily in many developed nations, while some 
developing regions experienced slower declines. 

Factors Influencing Birth Rates 

1. Economic Development: Economic factors significantly impact birth rates. As 
societies transition from agrarian to industrial economies, there is typically a 
decline in birth rates. Industrialization leads to urbanization, increased education, 
and more opportunities for women outside traditional roles, leading to delayed 
marriages and lower fertility rates. 

2. Education and Women’s Empowerment: Education, particularly for women, has 
been linked to reduced birth rates. Educated women tend to marry later and 
have fewer children as they pursue careers and become financially indepen-
dent. Education also raises awareness about family planning and the use of 
contraceptives. 

3. Family Planning and Contraception: Access to family planning services and 
contraceptive methods plays a crucial role in influencing birth rates. Countries 
with comprehensive family planning programs typically have lower birth rates 
due to the wider availability of contraceptive options. 

4. Cultural and Religious Norms: Cultural and religious beliefs can influence atti-
tudes toward family size and contraceptive use. In some societies, large families 
may be encouraged, while in others, there may be strong religious or cultural 
restrictions on contraception. 

5. Healthcare and Infant Mortality: Countries with better healthcare systems and 
lower infant mortality rates tend to have lower birth rates. When child survival is 
uncertain, families may choose to have more children to ensure that some survive 
to adulthood. 

6. Government Policies: Government policies, such as family planning initiatives, 
parental leave, and child subsidies, can influence birth rates. Some countries offer 
incentives to encourage families to have more children, while others promote 
family planning and small family sizes. 

Global Variation in Birth Rates 
Birth rates vary significantly across regions and countries. As of the early twenty-

first century, several general trends have emerged: 

1. Developed Countries: Most developed countries experience relatively low birth 
rates, often below the replacement level (around 2.1 children per woman). These 
low rates can lead to population aging and potential labor force shortages. 

2. Developing Countries: Many developing countries still have relatively high birth 
rates, but they have been declining. However, the pace of decline varies widely
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between nations, with some experiencing rapid drops, while others see slower 
changes. 

3. Sub-Saharan Africa: This region tends to have the highest birth rates globally. 
Factors like high child mortality rates, low access to education, and limited 
healthcare contribute to this trend. 

4. Eastern Europe: Some countries in Eastern Europe have experienced sharp 
declines in birth rates due to economic uncertainties, changing social norms, 
and emigration. 

Implications of Birth Rates 

1. Population Growth: Birth rates are a significant driver of population growth. 
Countries with high birth rates experience rapid population growth, while those 
with low birth rates may see population stagnation or decline. 

2. Aging Population: Low birth rates combined with increasing life expectancy 
contribute to an aging population in many developed countries. This demographic 
shift poses challenges for social welfare systems and the labor market. 

3. Dependency Ratio: Birth rates influence the dependency ratio, which measures 
the number of non-working individuals (children and the elderly) supported by 
the working-age population. High birth rates can lead to a larger dependent 
population, potentially straining resources. 

4. Economic Impact: Birth rates can affect economic productivity and consumption 
patterns. Rapid population growth may lead to increased demand for goods and 
services, while an aging population might reduce the size of the labor force. 

4.8.1 Some Interesting Statistics About Birth Rates 

1. Global Birth Rate (2021): The global birth rate was estimated to be approxi-
mately 18.5 births per 1000 people in 2021. This rate represents a decline from 
previous decades but still contributes to global population growth. 

2. Niger: Highest Birth Rate: Niger, a country in Sub-Saharan Africa, has one of 
the highest birth rates globally. As of 2021, the birth rate in Niger was around 
44 births per 1000 people, reflecting the region’s high fertility levels. 

3. Singapore: Lowest Birth Rate: Singapore has one of the lowest birth rates in the 
world. In 2021, the birth rate was approximately 7.9 births per 1000 people. This 
low rate has implications for the country’s aging population and workforce. 

4. European Union (EU) Average Birth Rate: The average birth rate in the Euro-
pean Union was around 9.3 births per 1000 people in 2021. Many European 
countries have experienced declining birth rates and population aging. 

5. United States: Below Replacement Level: The United States has experienced 
a decline in birth rates over the past few decades. As of 2021, the US birth 
rate was below the replacement level, with approximately 11.8 births per 1000 
people.
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6. Japan: Aging Population: Japan has been facing one of the most significant 
challenges with an aging population and declining birth rates. In 2021, the birth 
rate in Japan was approximately 7.9 births per 1000 people. 

7. India: Declining Birth Rates: Despite being one of the most populous countries 
globally, India has experienced a decline in birth rates in recent years. As of 
2021, the birth rate was around 17.9 births per 1000 people. 

8. Teenage Birth Rates: Teenage birth rates vary widely across countries. For 
instance, the United States has seen a decline in teenage birth rates in recent 
years, with approximately 16.7 births per 1000 females aged 15–19 in 2021. 

9. Educational Attainment and Birth Rates: There is a clear inverse relationship 
between women’s educational attainment and birth rates. Women with higher 
levels of education tend to have fewer children. For example, in many European 
countries, birth rates are lower among women with higher education degrees. 

10. Fertility Rate vs. Birth Rate: The fertility rate, which measures the average 
number of children a woman is expected to have during her lifetime, can differ 
from the birth rate. Countries with below-replacement-level birth rates may 
still have a total fertility rate above 2.1 due to differences in age structure and 
mortality rates. 

These statistics highlight the diversity in birth rates across countries and regions, 
with some facing challenges related to high birth rates and rapid population growth, 
while others are dealing with low birth rates and potential population decline. Under-
standing these variations is essential for formulating effective population policies and 
social welfare strategies to address the unique demographic challenges each country 
faces. 

4.8.2 Fertility Rates 

Fertility rates, a critical demographic indicator, play a central role in shaping a 
country’s population structure and growth. This measurement represents the average 
number of children a woman is expected to have during her reproductive years, typi-
cally between the ages of 15 and 49. Understanding fertility rates is crucial for govern-
ments, policymakers, and researchers as it provides valuable insights into population 
dynamics, family planning, and social and economic development (Fig. 4.6).

Global Trends in Fertility Rates 

Fertility rates have undergone significant changes over the past century. In the early 
twentieth century, most countries had high fertility rates, with women having an 
average of five or more children. However, with societal and economic transforma-
tions, fertility rates have been declining in many regions since the mid-twentieth 
century.
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Fig. 4.6 Decline in birth rates

Factors Influencing Fertility Rates 

Numerous factors influence fertility rates, and they can vary between countries and 
regions. Some of the key factors include: 

1. Economic Development: As countries progress economically, fertility rates often 
decline. Industrialization and urbanization lead to increased education, employ-
ment opportunities, and access to family planning services, all of which contribute 
to lower fertility rates. 

2. Education and Women’s Empowerment: Women’s education and empowerment 
play a significant role in shaping fertility rates. Educated women tend to marry 
later and have fewer children, as they prioritize career advancement and family 
planning. 

3. Access to Family Planning Services: Availability and accessibility of family plan-
ning services and contraceptives influence family size decisions. Countries with 
well-established family planning programs typically experience lower fertility 
rates. 

4. Cultural and Social Norms: Cultural and social factors, including traditional 
beliefs about family size and gender roles, can impact fertility rates. In some 
societies, large families are still preferred, while others may have strong support 
for smaller families. 

5. Child Mortality and Healthcare: High child mortality rates can influence fertility 
decisions. In regions with higher child mortality, parents may choose to have 
more children as a form of social insurance against child loss. 

6. Government Policies: Government policies related to family planning, parental 
leave, child benefits, and childcare can influence fertility rates. Pro-natalist poli-
cies may encourage higher birth rates, while pro-family policies might support 
work-life balance and women’s employment.
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Implications of Fertility Rates 

1. Population Growth or Decline: Fertility rates directly impact population growth. 
A TFR above 2.1 leads to population growth, while a TFR below 2.1 may result 
in population decline over time. 

2. Aging Population: Low fertility rates contribute to population aging. As birth 
rates decline and life expectancy increases, the proportion of elderly individuals 
in the population rises, posing challenges for pension systems and healthcare 
services. 

3. Labor Force and Economic Impact: Fertility rates influence the size and compo-
sition of the labor force. A shrinking workforce due to low birth rates can impact 
economic productivity and sustainability of social welfare programs. 

4. Dependency Ratio: Fertility rates affect the dependency ratio, which measures 
the number of non-working individuals (children and the elderly) supported by 
the working-age population. High fertility rates can lead to a larger dependent 
population. 

The Measurement of Fertility Rates 

Fertility rates are usually measured using three main indicators: the Total Fertility 
Rate (TFR) Age-Specific Fertility Rate (ASFR), and General Fertility rate (GFR). 

1. Total Fertility Rate (TFR): The Total Fertility Rate represents the average number 
of children a woman would have if she were to pass through her reproductive 
years (ages 15–49) experiencing the prevailing age-specific fertility rates for 
each year. A TFR of 2.1 is considered the replacement level, meaning that, on 
average, each woman would give birth to enough children to replace herself and 
her partner in the population. 

2. Age-Specific Fertility Rate (ASFR): The Age-Specific Fertility Rate refers to the 
number of live births per 1000 women in specific age groups (e.g., 15–19, 20–24, 
25–29, etc.) during a given period, usually a year. 

3. General Fertility Rate (GFR): The General Fertility Rate is a key demographic 
indicator that measures the number of live births per 1000 women of reproductive 
age (usually defined as women aged 15–49) in a given population during a specific 
period, typically a year. 

The General Fertility Rate provides valuable information about the fertility 
patterns and reproductive behavior of women within a particular population. It is a 
more specific indicator compared to the Total Fertility Rate (TFR), which represents 
the average number of children a woman is expected to have during her reproductive 
years. It is commonly used in demographic studies and by policymakers to monitor 
and analyze changes in birth rates over time. 

Calculating the General Fertility Rate involves dividing the number of live births 
in a specific time period by the number of women in the reproductive age group and
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then multiplying the result by 1000 to express it as the number of births per 1000 
women. 

The formula for calculating the General Fertility Rate (GFR) is as follows: 
GFR = (Number of Live Births in a Specific Time Period/Number of Women 

Aged 15–49) × 1000. 

Example 1: If a country had 100,000 live births in a year and the number of women 
aged 15–49 in that country was 1,000,000, the General Fertility Rate would be: 

GFR = (100,000/1,000,000) × 1000 = 100 births per 1000 women aged 15–49. 
TFR represents the average number of children a woman would give birth to 

during her reproductive years, assuming that the current age-specific fertility rates 
remain constant throughout her lifetime. 

TFR = (Total number of live births)/(Number of women aged 15–49). 
TFR = 100,000/1000,000 TFR = 0.1 
The Total Fertility Rate for this country is 0.1, which means that, on average, each 

woman in the reproductive age range gives birth to 0.1 children. 
ASFR is usually calculated for five-year age groups (e.g., 15–19, 20–24, 25–29, 

and so on) within the reproductive age range. Since we only have the total number 
of live births for the entire reproductive age range, we will not be able to calculate 
specific ASFR values in this case. 

Example 2: Calculate the TFR, GFR, and ASFR for the following data (Tables 4.13 
and 4.14). 

Solution 

ASFR in the above solution is computed using the formula, 

A.S.F.R = 
No of live births in a specific period of fertile period of women 

Women population in the age group
∗ 100 

The GFR is given as, 

G.F.R = No of live births occuring in a year 

Average population of women of child bearing age 
∗ 100 

44, 888 
532, 660 

= 8.42

Table 4.13 Data to calculate 
the TFR, GFR, and ASFR Age (years) Women population Number of births to women 

15–19 88,790 345 

20–24 70,910 14,544 

25–29 72,660 16,740 

30–34 78,920 12,267 

35–39 75,100 876 

40–44 79,620 56 

45–49 66,660 60
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Table 4.14 Solution for calculating the TFR, ASFR, and GFR for the data 

Age (years) Women population Number of births to women ASFR 

15–19 88,790 345 3.89 

20–24 70,910 14,544 205.11 

25–29 72,660 16,740 230.39 

30–34 78,920 12,267 155.44 

35–39 75,100 876 11.66 

40–44 79,620 56 0.70 

45–49 66,660 60 0.90 

Total 532,660 44,888 608.083

Net Production Rate 

T.F.R = 5 ∗
∑

A.S.F.R = 5 ∗ 608.0825 = 3040.413 

This refers to a demographic measure used to estimate population growth. It is also 
known as the net reproduction rate or the net reproductive rate. The net production 
rate specifically focuses on the female population and measures the average number 
of daughters that would be born to a woman during her lifetime, given the current 
age-specific fertility rates. 

Here is how the net production rate is calculated: 

1. Age-Specific Fertility Rates: The first step is to determine the age-specific fertility 
rates, which represent the number of live births occurring to women in specific 
age groups. These rates are usually calculated per 1000 women of that age group. 

2. Cohort Component Method: The net production rate uses a cohort-component 
method to estimate the average number of daughters born to a woman over her 
reproductive lifetime. This method involves tracking a hypothetical cohort of 
females throughout their reproductive ages (usually from 15 to 49 or 15 to 50). 

3. Summation: For each age group, the number of daughters expected to be born 
to each woman in the cohort is multiplied by the corresponding age-specific 
fertility rate. The products are then summed across all age groups to obtain the 
net production rate. 

Interpretation: 

• If the net production rate is greater than 1, it indicates that each generation 
of women is producing more daughters than themselves, leading to population 
growth. 

• If the net production rate is equal to 1, it suggests that each generation of women 
is replacing themselves, and the population is stable (zero population growth). 

• If the net production rate is less than 1, it means that each generation of women 
is producing fewer daughters than themselves, leading to population decline.
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The net production rate is a crucial tool in understanding population dynamics, 
fertility patterns, and long-term population projections. It helps demographers 
and policymakers make informed decisions about issues such as family planning, 
healthcare, and social services. 

Example 3: Calculate the net production rate from the following data (Table 4.15): 

Solution 

N.P.R = i ∗
∑

S ∗ W.S.F.R = 5 ∗ 221.97 = 1109.86, 

whereirefers to the class interval. 
N.P.R. per women = 1.109 

Conclusion: Since the N.P.R is greater than 1, the population is said to be on a 
rise. 

Net production rates, also known as population growth rates or natural increase 
rates, are important statistics in demography that provide insights into the dynamics 
of a population. These rates are calculated by comparing the number of births and 
deaths within a population over a specific period. Here are some interesting facts 
about net production rates and related vital statistics: 

1. Net Production Rate Calculation: The net production rate is typically calculated 
as the difference between the crude birth rate (CBR) and the Crude Death Rate 
(CDR) of a population. It is expressed as a percentage or a decimal. The formula 
is as follows: 

Net Production Rate = (Crude Birth Rate − Crude Death Rate) × 100

2. Positive and Negative Rates: When the crude birth rate exceeds the Crude 
Death Rate, the net production rate is positive, indicating population growth.

Table 4.15 Women population, survival rates, and number of female births to women, categorized 
based on their age 

Age (years) Women population No of births to 
women 

W.S.F.R Survival rate (S) S*W.S.F.R 

15–19 4806 102 21.2 0.9540 20.25 

20–24 5423 432 79.7 0.9470 75.44 

25–29 5434 318 58.5 0.9370 54.83 

30–34 3814 168 44.0 0.9290 40.92 

35–39 3567 76 21.3 0.9170 19.54 

40–44 3221 27 8.4 0.9050 7.59 

45–49 2611 10 3.8 0.89 3.41 

Total 1133 236.97 6 221.97 
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Conversely, if the Crude Death Rate surpasses the crude birth rate, the net 
production rate is negative, indicating population decline.

3. Replacement-Level Fertility: The net production rate required for a population 
to replace itself without migration is called the replacement-level fertility. It is 
typically slightly above 2.0, accounting for mortality and childlessness. If the net 
production rate is above the replacement level, the population is growing; if it is 
below, the population is declining. 

4. Demographic Transition: The net production rate is closely linked to the demo-
graphic transition theory. As societies undergo economic and social development, 
they typically experience a transition from high birth and death rates to low birth 
and death rates. This transition leads to population growth in the early stages and 
eventual stabilization in later stages. 

5. Impact of Net Production Rates on Age Structure: High net production rates 
contribute to a youthful population with a large proportion of children and 
young adults. Conversely, low or negative net production rates result in an aging 
population with a higher proportion of older individuals. 

6. Regional Variations: Net production rates vary significantly across countries and 
regions due to differences in socioeconomic factors, cultural norms, access to 
healthcare, and family planning practices. Developing countries generally have 
higher net production rates compared to developed countries. 

4.9 Marriage and Divorce Statistics 

Marriage and divorce statistics vary across different countries and regions, but some 
common trends observed globally are as follows: 

Marriage Statistics: 

1. Marriage Rates: The number of marriages per 1000 people in a given population. 
2. Average Age at Marriage: The average age at which people get married. This has 

generally been increasing in many developed countries, with more individuals 
choosing to marry later in life. 

3. Marriage Duration: The average length of marriages before divorce or separation. 
4. Marital Status: The percentage of the population that is married, divorced, 

widowed, or never married. 

Divorce Statistics:

1. Divorce Rates: The number of divorces per 1000 married individuals in a given 
population. 

2. Average Age at Divorce: The average age at which people get divorced. 
3. Divorce Reasons: The most common reasons cited for divorce, such as infidelity, 

financial issues, and communication problems. 
4. Divorce Duration: The average time it takes for a divorce to be finalized.
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Fig. 4.7 Marriage and divorce rates in the United States (per 1000). Source https://blogs.sas.com/ 
content/sastraining/2015/08/04/marriage-and-divorce-in-the-us-what-do-the-numbers-say/ 

5. Divorce Rates Among Different Demographics: How divorce rates vary among 
different age groups, socioeconomic backgrounds, and cultural or religious 
affiliations. 

It is important to note that while these statistics provide insights into marriage and 
divorce trends, they can vary greatly depending on the cultural, societal, and legal 
norms of each country or region (Fig. 4.7). 

Interesting Divorce Facts

• In the United States, there is one divorce approximately every 36 s. That is nearly 
2400 divorces per day, 16,800 divorces per week, and 876,000 divorces a year 
[iii]. 

• The average length of a first marriage that ends in divorce is 8 years [iv]. 
• The probability of a first marriage ending in separation or divorce in the first 

5 years is 20% and in 10 years is 33% [v]. 
• The average age for couples going through divorce is 30 years old. 
• On average, a person spends about two years thinking about divorce before taking 

action. 
• About 3 out of every 4 divorced people will remarry [vi]. 
• People wait an average of 3 years after a divorce to remarry (if they remarry at 

all). 
• Six percent of divorced couples end up remarrying each other [vii].

https://blogs.sas.com/content/sastraining/2015/08/04/marriage-and-divorce-in-the-us-what-do-the-numbers-say/
https://blogs.sas.com/content/sastraining/2015/08/04/marriage-and-divorce-in-the-us-what-do-the-numbers-say/


4.9 Marriage and Divorce Statistics 211

Fig. 4.8 Cost of divorce https://financesonline.com/divorce-statistics/ 

• The US government stopped collecting detailed marriage and divorce statistics in 
1996, so other data sources, such as the US Census and independent researchers, 
are used to estimate divorce rates and other statistics (Fig. 4.8). 

https://www.mckinleyirvin.com/family-law-blog/2012/october/32-shocking-div 
orce-statistics/ 

Many anticipated that the COVID-19 pandemic would be problematic for married 
couples. After all, 4 in 10 adults in the United States reported signs of mental health 
issues during the pandemic (Panchal et al., 2021). Surprisingly, divorces dropped 
across nearly all United States. A survey even shows that couples deepened their 
bonds while on lockdown. 

https://financesonline.com/divorce-statistics/#2 

• The number of troubled marriages dropped from 40% in 2019 to 29% in 2020 
during the pandemic (Wang, 2020). 

• Similarly, the number of divorces in Florida declined by 28% (Steverman, 2021). 
• But the biggest decline in divorces recorded among American States occurred in 

New Hampshire, with a decrease of 36.4% (Manning & Payne, 2020). 
• Conversely, divorces in Arizona increased by 9% (Wang, 2020). 
• 58% of married Americans admit the COVID-19 lockdown made them value their 

partner more (Wang, 2020). 
• With many employees working from home due to the pandemic, 50% of married 

US couples were able to spend more time with each other and have deepened their 
relationship (Wang, 2020). 

• 44% of people who increased their income during the pandemic revealed that 
COVID-19 did not cause stress to their marriage (Wang, 2020). 

• However, 45% of couples whose incomes declined state that the pandemic caused 
stress to their marriage (Wang, 2020). 

• Unfortunately, reports of domestic violence increased by 27% in Jefferson 
Country, Alabama, 22% in Portland, and 18% in San Antonio, Texas (Boserup, 
2020).

https://financesonline.com/divorce-statistics/
https://www.mckinleyirvin.com/family-law-blog/2012/october/32-shocking-divorce-statistics/
https://www.mckinleyirvin.com/family-law-blog/2012/october/32-shocking-divorce-statistics/
https://financesonline.com/divorce-statistics/#2
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• In Saudi Arabia, the divorce rate increased by 30% during the lockdown period 
(Barakat, 2020). 

• And in the same way, the number of divorces in China surged by 10–20% 
(Chamadia, 2020). 

4.10 Life Tables 

Introduction: The average additional years that a person could anticipate to live if 
present mortality trends persisted for the remaining years of their lives is known as 
life expectancy. According to the current age-specific death rates, a life table is a 
tabular representation of life expectancy and the likelihood of dying at each age or 
age group for a given population. 

The life table provides an organized, comprehensive view of the mortality in a 
population. 

4.10.1 Why Do We Need Life Tables? 

• On the basis of the current death rate, a life table is used to predict the population 
for the future. 

• Based on age-specific death rates, it aids in calculating the average life expectancy. 
• To determine the causes of certain death rates, male and female death rates, etc., 

the method of creating a life table can be used. 
• The net migration rate can be calculated using the survival rates in a life table 

based on age distribution at 5- or 10-year intervals. 
• Population trends at the local, national, and international levels can be compared 

using life tables. 
• Marriage trends and variations in them can be estimated by building a life table 

depending on the age of the marriage. 
• For the analysis of socioeconomic data in a nation, several decrement life tables 

relating to cause-specific death rates, male and female death rates, etc. can be 
produced in place of a single life table. 

• The creation of family planning programs that address infant mortality, maternal 
mortality, health programs, etc. makes use of life tables in particular. They may 
also be employed to assess family planning initiatives. 

• Life insurance firms now utilize life tables to assess the average life expectancy 
of individuals, separately for males and females. They assist in calculating the 
premium that a person in a given age group must pay. 

• Additionally, the life table gives the insurance company financial support so it will 
not suffer a loss and enables it to pay the insured sum to the decedent’s legitimate 
heirs in the event of the insured person’s death before the policy’s maturity.
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4.10.2 Examples Where Life Tables Are Used 

A life table is a table-based summary of a community’s mortality experiences over 
a specific time period. The life table displays the number of people living and dying 
at each age based on a cohort’s experience. It also indicates the likelihood of dying 
and living separately. The life table depicts a cohort’s life history. 

• A cohort is a group of people who were born at the same time and died under 
similar circumstances. 

• Actuaries use the life table to calculate premium rates for people of various ages. 
• It aids in determining the accuracy of census figures, death and birth registrations. 
• It aids in assessing the impact of family planning on population growth. 
• It allows us to assess the increase in life span as a result of new scientific 

discoveries, sophisticated medical treatments, and better living conditions. 
• Migration estimates can be derived from the life table. 

4.10.3 Other Applications of Life Tables 

Aside from its use in insurance life tables, it can be used to conduct comparative 
analyses of mortality conditions across countries or regions. The following are some 
of the applications of life tables: 

1. Calculation of mortality due to specific causes: For comparisons, life tables are 
calculated for different groups of the population such as sex (male/female), age 
distribution (different age groups), religion, and region. The mortality statistics 
may prompt us to investigate the specific causes of death in various groups of 
people. 

2. Comparison of mortality conditions: The best indices of mortality are life 
expectancy at birth and other ages. These indices vary greatly from place to 
place and over time. Because of improved health care, life expectancy in most 
countries has steadily increased over time. 

3. Population projections: The life tables were also used to create population projec-
tions by age and gender. This is useful in estimating the population size at some 
future point. 

4.10.4 Limitations of Life Tables 

Life tables are created using demographic data from sources such as the census and 
SRS. As a result, life table estimates suffer from all of the drawbacks of a statistical 
measure based on population censuses and vital records. Age and mortality regis-
tration data may be incomplete or biased. Because infant mortality has a significant 
impact on life expectancy, under-reporting of this indicator, which is common in 
many countries, can have a significant impact on the results of the tables.
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Furthermore, significant differences in specific age groups with high mortality 
may be overlooked because they have little effect on overall life expectancy. 

It is generally not recommended to create life tables for small populations at the 
local or subregional level because migratory movements affect population structure 
more than at the regional or national levels. In these cases, a very small number of 
deaths can be obtained, resulting in inaccurate calculations of the table’s columns. 

4.11 Life Tables—Basic Notations 

See Table 4.16. 

4.11.1 Life Expectancy 

Life expectancy is a critical measure in demographic analysis. It represents the 
average number of years a person is expected to live from a given age under the 
assumption that current age-specific mortality rates remain constant throughout their 
lifetime. Life expectancy is often reported at birth, but it can also be calculated for 
any age group. The indicator is a powerful reflection of the overall health and living 
conditions within a population.

Table 4.16 Life table notations 

S. No. Notation Definition 

1 x, x + n Age interval or period of life between two exact ages stated in years 

2 nqx Proportion of persons alive at the beginning of the age interval who die 
during the age interval 

3 lx Of the starting number of newborns in the life table (called the radix of the 
life table, usually set at 100,000) the number living at the beginning of the 
age interval (or the number surviving to the beginning of the age interval) 

4 ndx The number of persons in the cohort who die in the age interval (x, x + n) 
5 nLx Number of years of life lived by the cohort within the indicated age 

interval (x, x + n) (or person-years of life in the age interval) 
6 Tx Total person-years of life contributed by the cohort after attaining age x 

7 e0 x The average number of years of life remaining for a person alive at the 
beginning of age interval x 
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4.11.2 Abridged Life Table 

Abridged life tables are invaluable tools for understanding population health and 
mortality patterns. Their simplicity and efficiency make them widely used in demog-
raphy and vital statistics. By providing critical information about life expectancy 
and mortality rates across age groups, abridged life tables assist policymakers, 
researchers, and public health professionals in making informed decisions to improve 
the well-being of populations around the world. 

While traditional life tables provide comprehensive insights into population 
mortality, they require extensive data and substantial computational efforts, making 
them resource-intensive and time-consuming to construct. To address this challenge, 
demographers developed abridged life tables as a more practical alternative. 

Abridged life tables offer a simplified version of the standard life table. Instead of 
reporting mortality rates for each age, they group ages into intervals, such as five-year 
or ten-year age groups. By using these age intervals, abridged life tables significantly 
reduce the amount of data needed while still providing reasonably accurate estimates 
of life expectancy and other mortality indicators. 

4.11.3 Construction of Abridged Life Tables 

The construction of abridged life tables involves several steps: 

1. Age Grouping: The first step is to group the population into appropriate age 
intervals. The choice of intervals depends on the available data and the specific 
research or policy objectives. 

2. Exposure and Deaths: The number of individuals exposed to the risk of dying (i.e., 
the population within each age group) and the number of deaths that occurred in 
each age group during the observation period are recorded. 

3. Probability of Dying: The probability of dying, often referred to as the age-
specific mortality rate, is calculated for each age interval. This is done by dividing 
the number of deaths in an age group by the population within that age group. 

4. Life Expectancy: Using the probability of dying, one can calculate the life 
expectancy for each age interval. These life expectancies are then used to calculate 
the overall life expectancy for the entire population. 

4.11.4 Significance of Abridged Life Tables 

Abridged life tables are an indispensable tool in population health analysis due to 
their numerous advantages:
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1. Resource Efficiency: Abridged life tables require less data and computation 
compared to standard life tables, making them more accessible and quicker to 
construct. 

2. Policy Insights: Governments and public health authorities use abridged life 
tables to gain insights into the mortality patterns of specific age groups. This 
information aids in the design and evaluation of targeted health interventions. 

3. International Comparisons: Abridged life tables allow for easy comparison of 
mortality patterns between different countries or regions, enabling researchers 
to identify disparities and trends. 

4. Projection Purposes: These life tables serve as a foundation for projecting future 
mortality trends, assisting in long-term planning for healthcare and pension 
systems. 

4.11.5 Limitations 

Despite their advantages, abridged life tables do have some limitations. The grouping 
of ages may lead to a loss of granularity, making it difficult to capture subtle varia-
tions in mortality within specific age groups. Additionally, because they assume that 
mortality rates remain constant within each interval, they may not account for certain 
factors that influence mortality changes over time. 

Example: In a city of Bangladesh, the people were exposed to a certain airborne 
disease that arouse due to a typhoon in the region. This typhoon has a few suspended 
harmful particles in the air which has led to many lung congestion and breathing issues 
in people aged above 40 years. Starting with 10,000 persons of age 40, construct a 
mortality table up to the age 50, using the following values of qx from the mortality 
rates. The medical researcher wants to understand the death patterns in the city also 
predict the probability that a person aged 40 will live for 5 more years with good 
health conditions (Tables 4.17 and 4.18). 

Table 4.17 Effect of epidemics in Bangladesh 

Age (x) 40 41 42 43 44 45 

Mortality rate (qx) 0.0122 0.0135 0.0138 0.0145 0.0148 0.0151 

Age (x) 46 47 48 49 50 

Mortality rate 
(qx) 

0.0165 0.017 0.0178 0.0186 0.0198
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Table 4.18 Solution table 

Age (x) qx px lx dx nLx Tx ex 0 

40 0.0122 0.98780 10,000 122 9939 1,01,634 10.16343 

41 0.0135 0.98650 9878 133 9811 91,695 9.282777 

42 0.0138 0.98620 9745 134 9677 81,884 8.402967 

43 0.0145 0.98550 9610 139 9540 72,207 7.513554 

44 0.0148 0.98520 9471 140 9401 62,666 6.616747 

45 0.0151 0.98490 9331 141 9260 53,265 5.708635 

46 0.0165 0.98350 9190 152 9114 44,005 4.788491 

47 0.017 0.98300 9038 154 8961 34,891 3.8 60438 

48 0.0178 0.98220 8884 158 8805 25,930 2.918554 

49 0.0186 0.98140 8726 162 8645 17,124 1.962384 

50 0.0198 0.98020 8564 170 8479 8479 0.9901 

Total 8394 

Solution 

The probability that t the person aged 40 will live for 5 more yars = 
l45 
l40 

= 
9331 

10000 
= 0.9331 

4.12 Case Studies Related to Vital Statistics 

Infant Mortality Rate Reduction: 

In a particular country, the government implemented various interventions to address 
the high infant mortality rate (IMR). These interventions included improving access 
to prenatal care, promoting breastfeeding, enhancing healthcare infrastructure, and 
strengthening immunization programs. Over a five-year period, the IMR decreased 
significantly from 45 deaths per 1000 live births to 25 deaths per 1000 live births. 
This case study highlights the effectiveness of targeted interventions in reducing 
infant mortality. 

Aging Population and Life Expectancy: 

A country experienced a significant increase in life expectancy due to improved 
healthcare and socioeconomic conditions. As a result, the proportion of the popu-
lation aged 65 and above increased substantially. This demographic shift posed 
challenges for the healthcare system, retirement planning, and social support struc-
tures. The government responded by implementing policies to accommodate the
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needs of the aging population, including healthcare reforms, long-term care facili-
ties, and pension reforms. This case study demonstrates the implications of an aging 
population on vital statistics and the need for appropriate policy responses. 

Maternal Health and Maternal Mortality Reduction: 

A region with high Maternal Mortality Rates implemented a comprehensive maternal 
health program. This program focused on improving access to skilled birth atten-
dants, ensuring emergency obstetric care, promoting family planning, and educating 
communities about maternal health issues. As a result, Maternal Mortality Rate 
decreased significantly over a period of five years. This case study emphasizes the 
importance of addressing maternal health to reduce maternal mortality and improve 
vital statistics related to maternal and child health. 

Epidemiological Investigation of Disease Outbreak: 

During an outbreak of a novel infectious disease, epidemiologists conducted a 
detailed investigation to understand the patterns and impact of the disease. They 
collected data on the number of cases, age distribution, geographic distribution, and 
mortality rates. Through rigorous analysis, they identified risk factors, transmission 
pathways, and effective control measures. This case study illustrates how vital statis-
tics, along with epidemiological investigations, play a crucial role in understanding 
and managing disease outbreaks. 

Population Growth and Urbanization: 

In a developing country, rapid urbanization led to a significant increase in popula-
tion size and density in urban areas. This population growth posed challenges in 
providing adequate housing, healthcare, education, and infrastructure. The govern-
ment implemented urban planning strategies, such as building affordable housing, 
improving transportation networks, and expanding healthcare facilities, to address 
these challenges. This case study highlights the interplay between population growth, 
urbanization, and the need for well-planned infrastructure and services to sustain 
healthy and thriving communities.
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