
Your Own PCBs

Learn How to Design
and Make Customized
Circuit Boards

SHAWN WALLACE

Jumpstarting

JUMPSTARTING
Your Own PCBs
LEARN HOW TO DESIGN AND MAKE
CUSTOMIZED CIRCUIT BOARDS

Shawn Wallace

Maker Media, Inc.
San Francisco

Copyright © 2018 Shawn Wallace. All rights reserved.

Published by
Maker Media, Inc.
1700 Montgomery Street, Suite 240
San Francisco, CA 94111

Maker Media books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles (safari-
booksonline.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Publisher: Roger Stewart
Editor: Patrick DiJusto
Copy Editor: Elizabeth Welch
Proofreader: Scout Festa
Interior and Cover Designer: Maureen Forys, Happenstance Type-O-Rama

September 2018: First Edition

Revision History for the First Edition

2018-09-24 First Release

See oreilly.com/catalog/errata.csp?isbn=9781680455076 for release details.

Make:, Maker Shed, and Maker Faire are registered trademarks of Maker
Media, Inc. The Maker Media logo is a trademark of Maker Media, Inc. Jump-
starting Your Own PCBs and related trade dress are trademarks of Maker
Media, Inc. Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trademarks. Where those desig-
nations appear in this book, and Maker Media, Inc. was aware of a trade-
mark claim, the designations have been printed in caps or initial caps. While
the publisher and the author have used good faith efforts to ensure that
the information and instructions contained in this work are accurate, the
publisher and the author disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the
use of or reliance on this work. Use of the information and instructions
contained in this work is at your own risk. If any code samples or other tech-
nology this work contains or describes is subject to open source licenses or
the intellectual property rights of others, it is your responsibility to ensure
that your use thereof complies with such licenses and/or rights.

978-1-680-45507-6
PDF: 978-1-680-45510-6

mobi: 978-1-680-45509-0
ePub: 978-1-680-45508-3

mailto:corporate@oreilly.com

Safari® Books Online

Safari Books Online is an on-demand digital library that delivers expert
content in both book and video form from the world’s leading authors in
technology and business. Technology professionals, software developers,
web designers, and business and creative professionals use Safari Books
Online as their primary resource for research, problem solving, learning,
and certification training. Safari Books Online offers a range of plans and
pricing for enterprise, government, education, and individuals. Members
have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly
Media, Prentice Hall Professional, Addison-Wesley Professional, Microsoft
Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John Wiley &
Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course
Technology, and hundreds more. For more information about Safari Books
Online, please visit us online.

How to Contact Us
Please address comments and questions to the publisher:

Maker Media, Inc.
1700 Montgomery Street, Suite 240
San Francisco, CA 94111

You can send comments and questions to us by email at
 books@ makermedia.com.

Maker Media unites, inspires, informs, and entertains a growing community
of resourceful people who undertake amazing projects in their backyards,
basements, and garages. Maker Media celebrates your right to tweak, hack,
and bend any Technology to your will. The Maker Media audience continues
to be a growing culture and community that believes in bettering ourselves,
our environment, our educational system—our entire world. This is much
more than an audience, it’s a worldwide movement that Maker Media is
leading. We call it the Maker Movement.

To learn more about Make: visit us at make.co.

mailto:books@�makermedia.com

 v

CONTENTS

1 Making PCBs with EAGLE 1
Getting Started 2
Using EAGLE 3
The Workflow 6
Libraries 6
User Language Programs 7
Getting PCBs Manufactured 8

2 Your First Board: A “Learn to Solder” Badge 11
Start with the Schematic 12
Laying Out the Board 15
Adding a Custom Silkscreen and Outline 18
Making Gerber Files for Manufacturing 22
Going Further 26

3 Make Your Own Minimal Arduino 27
Schematic Design 29
The Power Circuit 41
The GPIO Pins 44
The Reset Switch and Serial Header 46
The Design Rule Check 47
Going Further 48

4 Add a LoRa Radio to a Raspberry Pi Zero 49
Designing an EAGLE Library 50
Creating the Symbol 52
Creating the Package 55
Connecting the Symbol and Package in a Device 59
Using the New Device in a PCB Design 61
Adding a Ground Plane 64
Drawing a Custom Stopmask Layer 66
Going Further 67

Making PCBs
with EAGLE

Autodesk EAGLE (Easily Applicable Graphical Layout Editor) is
a collection of programs, each serving one part of the design pro-
cess. We’ll focus on the Schematic Editor and the Board Editor;
other EAGLE modules include Autorouter (which uses a simple
AI to trace circuit routes), the Parts Editor, the CAM Processor
(for creating machining-ready files), and a scripting interface for
writing user language programs (ULPs). This chapter is a quick
overview of the tools we’ll be using to create three different elec-
tronics projects in later chapters.

Designing a circuit board is not difficult but has some chal-
lenges specific to the application area that make having an elec-
tronic design automation (EDA) tool particularly useful. EAGLE
offers a few advantages over a non-EDA design tool:

 * Visualizing connections: Multisided PCBs can have compo-
nents on different sides and traces that zigzag between layers.

 * Hierarchical and parametric design: You should be able to
make designs that can inherit properties from modules and
be customized using data.

1

Jumpstarting Your Own PCBs2

 * Libraries: Electronics components come in a dizzying range
of packages and variations; tools for managing and organiz-
ing devices are critical.

 * Design rules: You can specify constraints and test your
design against them.

Another important consideration is how the electronics
designer fits into a larger product development cycle. Many EDA
tools are now offering closer integration with CAD tools—for exam-
ple, Altium and SolidWorks, or EAGLE and Autodesk Fusion 360.

GETTING STARTED

Autodesk offers a few different options for licensing your EAGLE
software. With EAGLE version 8, Autodesk moved to a subscrip-
tion model, which gives you a few choices:

 * The free version: Autodesk offers a free download aimed at
hobbyists and makers, with some limited features (a 12.4 sq.
in. size limit, for example).

 * EAGLE Standard: This is the version you need to subscribe
to if you are doing commercial PCB work. It’s $15 a month
with some limitations (e.g., an area of 24 sq. in.). Students
can get a free standard subscription for three years.

 * EAGLE Premium: The premium version is aimed at design
teams and provides additional tools for hierarchical design
and library management, and it removes all of the limita-
tions of the standard version.
Everything in this book can be done using the free version,

which you should download from Autodesk:

www.autodesk.com/products/eagle/free-download

http://www.autodesk.com/products/eagle/free-download

Making PCBs with EAGLE 3

We’ve exported all the library parts used in this book into an
easy-to-use custom library. You can grab the JumpstartEAGLE
library from http://github.com/moderndevice/JumpstartEAGLE
and place the LBR file in EAGLE’s lbr directory (see Chapter 4
for more on creating your own libraries for EAGLE).

USING EAGLE

EAGLE is a modular tool; you will often have several windows
open at once and will be flipping back and forth, so I suggest
using a large display. Also, I strongly suggest that you work with
a mouse with a scroll wheel if you’re using a laptop; the mouse
makes it easier to work with EAGLE, compared to the trackpad.
The mouse scroll wheel controls the zoom, which you’ll find your-
self using a lot.

The Control Panel
The control panel is where you access all the various EAGLE mod-
ules and manage libraries, plugins, 3D models, and CAM jobs.
There’s also documentation bundled with the application. The
control panel pops up when you first open EAGLE (Figure 1-1).

FIGURE 1-1: The control panel is a dashboard linking together the various
EAGLE modules.

http://github.com/moderndevice/JumpstartEAGLE

Jumpstarting Your Own PCBs4

The Schematic Design Module
The Board Editor (Figure 1-2) provides a set of tools for creating a
signal and component diagram that defines all the connections in
your circuit. Each module has its own set of tools for its task; the
Schematic Editor’s tools are aimed at creating networks of sig-
nals that connect to the pins of components. Schematics can be
organized into sheets to make them more readable and modular.

FIGURE 1-2: The schematic design tool

The Board Layout Module
The board design tool (Figure 1-3) is used to lay out pads and
traces on the various layers of the circuit board. In this book we
will be dealing only with boards that have copper on the top and
bottom, but EAGLE is capable of handling up to 16 layers in the
Premium version and 4 in the standard version.

Making PCBs with EAGLE 5

FIGURE 1-3: The Board Editor module

Chapter 2 goes into more detail on using the schematic and
board tools, and it introduces the layered model of PCB design.
The two-sided PCBs we’ll be making have eight layers, as shown
in Figure 1-4.

FIGURE 1-4: The eight layers of a printed circuit board, from top to bot-
tom: the Board Outline, the drill file, the top silkscreen, the top stopmask,
the copper top, the copper bottom, the bottom stopmask, and the bottom
silkscreen

Jumpstarting Your Own PCBs6

THE WORKFLOW

When designing a circuit board, you’ll follow these steps in order:

 1. Design and sourcing: Find parts, read the datasheets.

 2. Component device design: Find existing device libraries or
draw symbols and packages if necessary.

 3. Schematic Layout: Connect parts electrically with signals.

 4. Electrical Rule Check (ERC): Run an algorithm to identify
schematic errors.

 5. Board Layout: Place parts on the board and draw the actual
traces connecting them.

 6. Design Rule Check (DRC): Run an algorithm to identify lay-
out errors.

 7. Generate Gerber and drill files: Run the CAM Processor to
generate machining files.

LIBRARIES

An important consideration when choosing a design tool is how
it handles reusable libraries of components. In EAGLE, a compo-
nent or device is a member of a collection of devices called the
library. A device is composed of four parts: a schematic symbol,
a board package, a 3D model, and a device definition file that
makes the connections between the two views. EAGLE comes
with a large selection of device libraries, and most manufacturers
provide EAGLE libraries for their parts. There are a number of
repositories for EAGLE libraries:

 * Autodesk’s library collection: http://eagle.autodesk.com/
eagle/libraries

http://eagle.autodesk.com/eagle/libraries
http://eagle.autodesk.com/eagle/libraries

Making PCBs with EAGLE 7

 * Library.io: A tool for parametrically generating libraries of
devices and 3D models that can be synced with Fusion 360

 * Element 14’s community-contributed libraries:
www.element14.com/community/community/cadsoft_eagle/
eagle_cad_libraries

Autodesk has also introduced a new feature called managed
libraries. These are libraries of parts that live in the cloud at
Library.io and are available locally. Managed libraries are cre-
ated with manufacturers and partners like Adafruit, SparkFun,
Seeed, Würth Elektronik, and Nordic. Because they are centrally
managed, they’ll always be up to date.

Chapter 4 goes deeper into EAGLE’s libraries and shows how
to design your own library of devices.

NOTE Similar to libraries, design blocks are another new fea-
ture that allow you to create larger reusable modules of sche-
matics and board layouts. Design blocks are great for when you
have a number of repeating component groups.

USER LANGUAGE PROGRAMS

EAGLE has a plugin system, where you can write automation
scripts called ULPs. An example of a ULP that became integrated
into the main user interface is the Import Bitmap function; there
are also ULPs for doing convenient transforms like snapping all
parts to a grid or changing properties in bulk. A number of ULPs
come with the default distribution, available via the control panel
or the File menu.

ULPs are written in a custom scripting language that is
C-like, with all of the data structures of the schematic and board

www.element14.com/community/community/cadsoft_eagle/eagle_cad_libraries
www.element14.com/community/community/cadsoft_eagle/eagle_cad_libraries

Jumpstarting Your Own PCBs8

documents exposed via a relatively simple API. A trivial ULP
looks something like this:

int returnValue = dlgDialog("HW") {
 dlgLabel("Hello world");
 dlgPushButton("OK") {
 dlgAccept();
 }
};

GETTING PCBS MANUFACTURED

There are a few processes for making circuit boards from the
designs that we’ll be creating in this book. The process you
choose will depend on the application, safety, and the availability
of tools. Here are a few processes:

 * Etching: This is how all production run boards are made;
a stencil is applied to a copper clad board and corrosive
chemicals etch away the negative space to create copper
traces and pads. Common corrosives are ferric/cupric
chloride or ammonium/sodium persulfate. Each has its own
safety concerns and hazards.

 * Machining: This is an increasingly accessible way of mak-
ing circuit boards and involves using a precision milling
machine to cut away the negative space around your traces
and pads. Popularized in the fab labs, now there are many
desktop milling machines that are up to the task. Great for
prototyping a couple of boards but too time-consuming for
production work.

 * Sewing, printing, cutting: As soft electronics materials
become more commonplace, there are corresponding
processes for making circuits with conductive inks, thread,

Making PCBs with EAGLE 9

or foils. Most of these crafty processes introduce design
challenges of increased capacitance and resistance but are
totally viable.

Most people will probably not be manufacturing their own
boards in their own workshop and there are plenty of good rea-
sons why, not the least of which is that these days it is incredibly
affordable to get a small run of boards produced by a number of
vendors who specialize in short runs and prototype editions. Two
of the most popular are OSHPark (purple boards; http:// oshpark
.com) and Screaming Circuits (www.screamingcircuits.com/). These
services are great for getting three boards for a few dollars per
square inch. If you need 100 or more, expect to pay around $1.50
to $2 per board to start (some of that is startup tooling cost),
depending on the size of your PCB.

http://oshpark.com
http://oshpark.com
www.screamingcircuits.com/

Your First Board:
A “Learn to Solder”

Badge

For our first PCB project, we’ll start with a staple of many Maker
Faires: a “Learn to Solder” badge. This is the simplest of circuits:
two cycling RGB LEDs and a battery clip (see Table 2-1). Your
goal of this project is to get comfortable navigating EAGLE’s
toolbox and layers. You’ll also see how to create custom silk-
screen graphics and nonrectangular outlines.

TABLE 2-1: Blinky badge bill of materials

PART SOURCE PRICE ($)

(2) Cycling RGB LEDs Microtivity IL603 .20

Through-hole CR1220 battery clip Digi-Key 3000k-nd .42

To make this kit in a workshop setting, you’ll also need some
tie tack pins.

2

Jumpstarting Your Own PCBs12

Figure 2-1 shows what the finished product will look like.

FIGURE 2-1: A successfully soldered blinky badge board. These RGB LEDs
have a forward voltage of about 3V and slowly cycle through different colors.

START WITH THE SCHEMATIC

The Schematic Editor is where we connect all the components in
the circuit with networks of signals. Chapter 3 has a more robust
example of creating a schematic; this first project will have a very
simple schematic. You’ll be using many of the tools in the sche-
matic toolbar shown in Figure 2-2.

EAGLE separates CAD drawings into color-coded (and num-
bered) functional layers. In the Schematic Editor, part outlines are
on the Symbols (94) layer, labels on the Names/Values (95/96)
layers, and nets or signals on the Nets (91) layer. You can show
or hide the layers using the View F Layer Settings menu. The
current layer will show in the toolbar, so check that often to make
sure you’re drawing into the right layer.

To start, open the Schematic Editor by selecting File F
New F Schematic. The first tool you’ll use is the Add tool, which
allows you to add a symbol to the schematic area from one of
EAGLE’s device libraries. Chapter 4 shows how to create your

FIGURE 2-2: The Schematic Editor and the Board Editor share many of the
same tools, with a few differences.

Your First Board: A “Learn to Solder” Badge 13

own device libraries, but for this first project you will work with
the Jumpstart library that you installed in Chapter 1.

Keeping Schematics and Board
Layouts in Sync
When you create a new schematic, you’ll get a warning that “no
forward/ backward annotation will be performed.” Normally
you’ll have both the Schematic Editor and the Board Editor open
at once so EAGLE can keep them synced; this message just says
that there’s no board file open yet. Once you’ve created a board
from the schematic, the two files must be open at all times or
they will get out of sync (which is difficult to recover from).

Figure 2-1 shows what the finished product will look like.

FIGURE 2-1: A successfully soldered blinky badge board. These RGB LEDs
have a forward voltage of about 3V and slowly cycle through different colors.

START WITH THE SCHEMATIC

The Schematic Editor is where we connect all the components in
the circuit with networks of signals. Chapter 3 has a more robust
example of creating a schematic; this first project will have a very
simple schematic. You’ll be using many of the tools in the sche-
matic toolbar shown in Figure 2-2.

EAGLE separates CAD drawings into color-coded (and num-
bered) functional layers. In the Schematic Editor, part outlines are
on the Symbols (94) layer, labels on the Names/Values (95/96)
layers, and nets or signals on the Nets (91) layer. You can show
or hide the layers using the View F Layer Settings menu. The
current layer will show in the toolbar, so check that often to make
sure you’re drawing into the right layer.

To start, open the Schematic Editor by selecting File F
New F Schematic. The first tool you’ll use is the Add tool, which
allows you to add a symbol to the schematic area from one of
EAGLE’s device libraries. Chapter 4 shows how to create your

FIGURE 2-2: The Schematic Editor and the Board Editor share many of the
same tools, with a few differences.

Jumpstarting Your Own PCBs14

Use the Add tool to select the“CR1220TH” and“LED5MM”
parts, which you can place anywhere on the schematic, as shown
in Figure 2-3. One thing you’ll notice is that the naming of devices
and packages is nonstandardized, so you may have to pick your
way through a bunch of jargon when trying to find parts by dif-
ferent manufacturers. With EAGLE 8.7, Autodesk has put a lot
of effort into library management (see “Libraries” in Chapter 1),
but you may still want to spend some time looking through the
libraries to get your bearings.

In EAGLE, parts are connected using the Net tool, the green
drawing tool near the bottom of the toolbox. Each signal net that
you draw has a unique name, and nets have the special property
that anything with the same name will be considered connected
to the net whether or not they are visually connected by a line.
This allows for much cleaner schematics, but also means that you
need to be disciplined and organized about naming your nets

FIGURE 2-3: Place the three components somewhere on the schematic
layer. Use the Zoom To Fit tool to change your workspace to match your
part layout.

Your First Board: A “Learn to Solder” Badge 15

(see Chapter 3). Start connecting the battery and the LEDs using
the Net tool as shown in Figure 2-3.

In Chapter 3 you’ll make a much more involved schematic and
be more explicit about labeling voltages and ground signals, as well
as use the built-in Electrical Rule Check to proof your schematic.
For this first project, you’re all done with the schematic if it looks
like the one in Figure 2-3; time to move on to laying out the board!

LAYING OUT THE BOARD

Switch to the Board Layout tool using File F Switch To Board.
Your parts will initially appear to the side of your work area. Select
the Move tool and grab each part by its origin crosshair to move
it onto the white work area. The default white work area is about
6gn4g in the educational version; resize it using the Move tool to
shrink the boundary lines to about 1.5g square (Figure 2-4), and
then move the parts to the workspace (Figure 2-5).

FIGURE 2-4: Connect the positive side of the battery clip to the anode
(positive) side of the LEDs (top), and then the negative sides to the cath-
odes (bottom).

Jumpstarting Your Own PCBs16

FIGURE 2-5: Move the parts to the workspace. Note that in the educa-
tional version of EAGLE you cannot place objects outside the work area
once you have picked them up.

Things Won’t Move Without
TOrigins
You will need to have the TOrigins layer active for the part
selection crosshair to appear. If that layer is not active, you
won’t be able to move parts around since the crosshair will
not be visible. You can also lock parts in place so they can’t be

moved by accident using the Lock tool.

You’ll notice the yellow lines connecting the various pads of
the circuit; these are airwires that show the connections that
were made in the schematic tool. These airwires are a map for
routing the connections between the various parts.

One of the first things you should do when routing a board is
check the grid. Anything you draw or place will snap to the grid;
the grid can be your best friend, or it can be frustrating if parts
get “off grid.” The default grid is 100 mils (100 thousandths of an
inch = .1g), which is standard spacing on wireless breadboards or
headers but is too coarse for most routing. Select View F Grid
and set the grid to 50 mils (.05g) to start.

You can use the Move tool to manually position parts, or you
can use the Info tool to set a part’s position by typing in a value.
For this project our parts need to match up with a silkscreen

Your First Board: A “Learn to Solder” Badge 17

layer perfectly, so we will use the Info tool to type in exact x- and
y-coordinates. For each part, type in the coordinates shown in
Table 2-2 and click OK.

TABLE 2-2: Coordinates for the parts in the project

PART POSITION X (IN.) POSITION Y (IN.)

LED1 .32 .78

LED2 .92 .80

BATT .68 .29

There are many ways of routing traces in a circuit, and EAGLE
also has an Autorouter tool that applies some machine learning
to more complicated routing problems. For the circuits in this
book, we will manually route the traces.

Select the Route tool from the bottom of the first section
of the toolbox. A toolbar will appear that allows you to control
various routing behaviors, as shown in Figure 2-6.

FIGURE 2-6: The Routing toolbar selects the layer and trace width, and
also provides various constraints and helper functions for making routes
that follow your design rules.

Jumpstarting Your Own PCBs18

Start by connecting the LED cathodes and the negative pad
of the battery on the bottom layer (blue traces), with a 16 mil
(.016g) trace (Figure 2-7). Note that the pad/negative side of the
battery clip is on the bottom (blue) layer in the library. The green
pads are plated-through so they appear on both the top and
bottom layers.

FIGURE 2-7: Routing the bottom copper traces (left) and top copper (right)

Sixteen mils is a good starting point for general-purpose
traces; you’ll usually be able to fit in between pads without
changing layers, though sometimes you may need to go down
to 10 mils or so. Most general-purpose PCB houses guarantee a
lower limit of 6 mil traces for bulk PCB etching.

ADDING A CUSTOM SILKSCREEN
AND OUTLINE

If you don’t change any of the default settings, the Dimension,
tPlace, tNames, and tValues layers will be included on the silk-
screen layer. To see what the silkscreen layer looks like, go to the
Layers menu and deselect all layers except those four. You’ll also
be able to preview the silkscreen layer when you go to make your
final manufacturing files.

When adding text to the board, you should keep some general
guidelines in mind. PCB manufacturers use different resolution

Your First Board: A “Learn to Solder” Badge 19

meshes in their silkscreens and generally use a screen that’s just
fine enough to get the job done. If you have very fine lines they
may not reproduce well; a general rule of thumb for text is that
the smallest size should be 32 mil or so, and the thinnest line of
a letterform should be around 5 mil. To achieve this, zoom in on
your finest letterforms and use the Ratio property to adjust the
text to a proper weight. A 15 percent ratio at 32 mil is a good
minimum guideline.

In this first project, we’ll use the Text tool only to add some
polarity indicators on the LEDs; everything else will be a custom
image. You can use this technique to put a logo on your board, or
you can design your entire silkscreen layer in a graphics program
to use whatever typefaces and graphics you want.

To make a custom silkscreen bitmap, get a PNG version of
your board layout to draw on top of. The following steps show
one way to accomplish this, which assumes you’re using the Ink-
scape vector drawing tool. The important part is to get a PNG
image of your board that is the same dimensions as the EAGLE
representation:

 1. Select only the Pads, Vias, Dimension, and tPlace layers
from the Layers menu.

 2. Choose File F Export F Image.

 3. Fill in a resolution of 920 pixels per inch. Inkscape imports
images at 92dpi by default. We’re going to be scaling
it down to 10 percent of the original size to get a nice,
sharp image.

 4. Open your vector drawing program (Inkscape in this case)
and import the board PNG.

 5. In Inkscape, select Object F Transform F Scale and scale
the imported PNG to 10 percent of its size.

Jumpstarting Your Own PCBs20

Now that you have a nice, clean image of the board as a back-
ground, draw the silkscreen image using the vector tools. For
this project you can use the files that are included in the GitHub
repository if you want to skip the drawing step. In Inkscape,
select just the black vector objects (not the original board PNG)
and select Export. Export the PNG at a high resolution (400dpi
is good for most PCB manufacturers).

Next, convert that PNG to a black-and-white BMP image. If you
exported it from Inkscape, you’ll need to flatten the image as well
to remove the transparent background. In a raster image editing
program like the GIMP, open the file and then perform these steps:

 1. Select Image F Flatten Image.

 2. Select Image F Mode F Indexed F Use Black & White
(1-Bit) Palette.

 3. Select File F Export F Windows BMP Image (.bmp)
(Figure 2-8).

FIGURE 2-8: The dialog box for the Import Bitmap command

Your First Board: A “Learn to Solder” Badge 21

Next, return to EAGLE and import the bitmap onto a layer of
your board. Select File F Import F Bitmap. This runs an EAGLE
plugin (or user-defined program [UDP]) that is also available
under the UDP menu.

Specify the color you wish to import (black), select DPI as the
format, and enter 400 under Dots Per Inch. Use the default layer
200, though you can import bitmaps to any layer you want, even
the top and bottom copper or stopmask layers.

The script will import the bitmap onto the layer you specified,
and it will translate the image into hundreds of horizontal lines.
You won’t be able to edit it directly, and all the lines must be
moved as a group. It’s a little clunky, but here’s how to move the
whole silkscreen image:

 1. In the Layers menu, select only the 200 bmp layer.

 2. Use the Selection tool to grab the whole image.

 3. Select the Move tool.

 4. Right-click on one of the lines in the image and select Move
Group.

 5. Turn the other layers back on now that the image is selected.

NOTE The ULP script used by the Import Bitmap function
will change your grid along the way, so be sure to set it back to
something sane.

If you placed the LEDs and the battery clip in the exact posi-
tions mentioned earlier, the silkscreen should import exactly
aligned with the parts. When you go to make the final Gerber
files in the next section, be sure you assign layer 200 to the
silkscreen section of the CAM job.

Jumpstarting Your Own PCBs22

Finally, to make a custom outline for the PCB, you can draw into
the Dimension layer. The outline must be a watertight rectangle or
polygon; EAGLE 8.7 introduced a special layer that is generated
during the CAM process called the Board Outline. The outline is
calculated based on the shapes on the Dimension layer. Any out-
line will define the shape of the board, and any closed polygons
inside the bounds of the shape will be interpreted as cutouts.

MAKING GERBER FILES FOR
MANUFACTURING

The files you send to the PCB manufacturer are in the Gerber
file format, a standard CAM file format for PCBs. Gerber files are
created using the CAM Processor, which is available by selecting
the Manufacturing tab to the right side of the Board Layout tool
window. When you first open the Manufacturing tool, you’ll see
a rough preview of what your board will look like if you run the
default template for the CAM tools, as in Figure 2-9.

FIGURE 2-9: Drawing an outline into the Dimension layer with the Polygon
tool. Note that the outline needs to be watertight, so you can’t import a
bitmap to define the outline.

Your First Board: A “Learn to Solder” Badge 23

NOTE Many services allow silkscreen on the top and the bot-
tom of the board. To add a silkscreen design to the bottom,
you’ll have to add a new Gerber file to the CAM job with a .pls
extension.

To create the CAM files, open the CAM Processor from the
File menu. Note that this tool is context-sensitive whether you’re in
the schematic or board view, so make sure you’re in the board view.
Open the excellon.cam job to create the drill files (with extensions
.dri and .drd). You only need the DRD file; the DRI is just metadata.

Next, generate the Gerber files by opening the template_2layer.
cam job as in Figure 2-10. The only section you should need to dou ble-
check at this point is the Silkscreen tab (Figure 2-11); if you’ve
added a bitmap layer (or don’t want a layer on the silkscreen), be
sure to assign the correct layers on that tab.

FIGURE 2-10: The CAM Processor

Jumpstarting Your Own PCBs24

FIGURE 2-11: Removing tPlace and tNames from the Silkscreen Top and
adding 200bmp, the custom bitmap layer

To preview your files you’ll need a Gerber viewer tool. Gerbv
(Figure 2-12) is a good open source option if you’re on a Unix-
based system, or you can use ViewMate on Windows. If you’re
on a Mac, Gerbv is a little tricky to get up and running, so you
should try to use a package manager like MacPorts to install it.
The easiest solution to previewing Gerber files is to use the free
online tool from CircuitPeople.

Import the layers into your Gerber viewer (Gerbv is shown
here). I usually reorganize them from top to bottom to make it
easier to proof:

.drd

.plc

.stc

.cmp

.sts

.sol

Your First Board: A “Learn to Solder” Badge 25

FIGURE 2-12: The Gerbv tool, part of the open source gEDA suite of tools

Turn each layer on and off and inspect; if you tweak the layout,
rerun the CAM Processor.

NOTE If you move a part, remember to run the Excellon
drill job as well. Otherwise, your holes won’t match up with
your pads!

Bundle them up and send them out. A great service for small
runs is OSH Park, which grew out of the DorkbotPDX service and
merged with SparkFun’s BatchPCB service. The interface is well
designed and service is quick and consistent, with a free shipping
option. Your board will be bundled with dozens of others and will
come back with a distinctive purple soldermask. If you need more
than a dozen boards, it is more economical to go with another
service. There are many competitive options (and more popping
up in the United States); I’ve had good luck with the affordable
PCBCart service.

Jumpstarting Your Own PCBs26

GOING FURTHER

A great way to extend this project would be to add a switch. The
battery lasts about four days, but it would be nice if you could
turn it off. If the switch is a through-hole part, you’ll have to think
about how it affects the front-side design. If it is surface mount,
you’ll have to think through how you’ll teach kids to solder it easily.

Make Your Own
Minimal Arduino

The Really Bare Bones Board (RBBB) and its schematic were
originally designed by Paul Badger of Modern Device. It’s pretty
much the bare minimum needed for a useful Arduino-type devel-
opment board. The goal of this chapter is to delve into the details
of building a more complicated schematic and board layout, and
to learn the workflow of the Electrical Rule Check and Design
Rule Check. We’ll use through-hole parts, but you can easily
substitute surface mount parts. A surface mount version of the
project is provided with the support files to this book.

Although this is a minimalist project, there are still a dozen or
so parts needed to make a microcontroller board (see Table 3-1).

TABLE 3-1: Minimal Arduino BOM

PART SOURCE PRICE ($)

(1) Resistor 10K 1/8W Digi-Key 10KEBK-ND .03

(2) Electrolytic capacitor, 47μf Digi-Key P834-ND .10

(1) Resistor 1K 1/8W Digi-Key 1.0KEBK-ND .03

3

Jumpstarting Your Own PCBs28

PART SOURCE PRICE ($)

(1) Switch, pushbutton Digi-Key CKN9098-ND .17

(1) Ceramic resonator, 16MHz Digi-Key 535-9355-ND .20

(1) ATmega328P Digi-Key ATMEGA328-
PU-ND

1.96

(1) IC socket, 28-pin (optional) 4UCON 00820 .10

(1) Diode, 4005 Digi-Key 1N4007GOS-N .15

(1) Voltage regulator, L4931 Digi-Key 497-5838-1-N .50

(1) Power jack 4UCON 18742 .55

 (1) Pin header, 1n6 4UCON 00872 .03

(2) Ceramic capacitor, 0.1μf Digi-Key 478-3187-ND .10

You’ll find that once you build this particular schematic in
EAGLE it’s easy to incorporate in other designs, this is the core
of many Arduino-based designs, like the JeeNode in Figure 3-1.

FIGURE 3-1: The finished product (top). The JeeNode (bottom) is also
based on this foundation design, which has rearranged headers and a
radio module.

Make Your Own Minimal Arduino 29

SCHEMATIC DESIGN

To start designing the RBBB, choose the Add tool in EAGLE,
grab the Frame part from the RBBB library, and place it on the
canvas. It’s not essential, but it’s handy so you don’t have to keep
resizing your window as the schematic grows.

The Power Circuit
The five parts of the power circuit allow you to hook up a DC
input power supply or battery in the 6V to 12V range and provide
a clean 5V supply to the rest of the circuit.

The main component of the power circuit is the voltage reg-
ulator (see Figure 3-2). The key specs for a regulator are output
voltage, maximum output current, and dropout voltage (which
is the minimum difference needed between input and output).
The L4931 has a dropout of just 0.4V, so it can reliably output
5V given 6V (e.g., from four AA batteries). It provides current up
to 250mA, which is plenty for most microcontroller applications.

The two electrolytic capacitors filter noise on the input supply,
pick up slack when batteries fade, and handle momentary power
demand spikes. The regulator’s datasheet recommends 2.2μF
filter caps minimum; we’ll use 47μF. That should be stiff enough
for even the noisiest battery-powered breadboard experiments.

The power jack may seem big, but this is one of those human
interface decisions that really matter—this jack easily accommo-
dates a “wall wart” power supply. We’ll position it on the board
where it can be snipped off if it’s not needed, and we’ll provide a
two-pin auxiliary power header for optional wiring.

Almost any power diode will serve for short-circuit protec-
tion; this one is a common 4005 rated 1A, wired in parallel to
prevent damage if power is accidentally connected backward.

Jumpstarting Your Own PCBs30

Some designs opt for a series protection diode, but that would
introduce a 0.7V drop we can’t afford if we want to run from 6V.

Some rules of thumb:

 * A dot indicates that intersecting signal lines are connected;
lines that cross without a dot are just overlapping.

 * Stay on the grid. The most common mistakes come from
parts not lining up, looking like they’re connected when
they aren’t. Set it to 0.1 (100 mil) to start.

 * Each line (or net, or signal) has a unique name, and all sig-
nals with the same name are automatically connected, even
if there’s not a line between them. This is handy if you have
so many parts that drawing every line would make a pile of
spaghetti.

 * Each part should have a visible name and a value. You’ll
need to move the labels around to make them readable; use
the Smash tool to separate labels from parts, and then use
Move and Rotate to position them.

 * Drawing a schematic is about communicating a circuit
assembly to others. Think about whether you’re providing
everything they will need.

NOTE Some of these diagrams may look different from your
screen at first. You can use the Smash tool to separate the
labels, and then use Move so they’re readable.

Make Your Own Minimal Arduino 31

FIGURE 3-2: The schematic symbol for a voltage regulator and two capaci-
tors. The +5V and GND symbols are special parts in the “supply” library.

Select the Add tool, and choose the Regulator part from the
Jumpstart PCBs GitHub library you downloaded in Chapter 1.
Place the regulator somewhere in the upper-left quadrant. Use
the Add tool to place the two electrolytic caps, plus the GND
and +5V supply signals (under Supply), as shown in Figure 3-3.

FIGURE 3-3: Connecting the parts with nets and labeling the compo-
nents

Use the Net tool to connect the caps’ positive sides to the
regulator’s input and output and to connect their negative sides
to the regulator’s ground lead. Connect the regulator’s ground
lead to GND and its output to +5V.

Jumpstarting Your Own PCBs32

Use the Value tool to assign each capacitor a value of 47μF.
Add the Power_Jack part beside the regulator input (Fig-

ure 3-4). This jack is center-positive, which (outside of musical
electronics) is pretty standard. Connect its center pin to the reg-
ulator input and its sleeve to ground. If you get a Connect Net
Segments? dialog box, click Yes.

FIGURE 3-4: Adding a power jack

Add the diode (Figure 3-5). It will appear horizontally. Use the
Rotate tool to turn it cathode/negative side up. Then use the Net
tool to connect it across the regulator input and ground.

FIGURE 3-5: Adding a diode, which will protect the regulator if power is
applied in reverse polarity

Finally, drop in the 1n header (1n _Pinhead) for the optional
power input. Position it with Rotate, and then connect one pin to
power and one to ground (Figure 3-6).

Make Your Own Minimal Arduino 33

FIGURE 3-6: Pulling out the power input to a couple of header pins

The Microcontroller and Headers
The headers connect to the microcontroller’s general-purpose
inputs and outputs, and they provide points where you can solder
wires or headers for your particular project.

Add the microcontroller chip (ATmega) somewhere in the
middle of the schematic, and connect its two ground pins to the
GND supply signal as in Figure 3-7.

FIGURE 3-7: The ATmega328P is the microcontroller at the heart of your
typical Arduino.

Jumpstarting Your Own PCBs34

Place a 0.1μF capacitor near the ATmega’s power supply pin (7),
and connect it to power, ground, and pin 7 (see Figure 3-8).

FIGURE 3-8: At a minimum you should have a .1μF filter capacitor close to
the VCC power pin.

Place the resonator near clock pins 9 and 10, and connect its
three pins as shown. Make sure the center pin goes to ground
(see Figure 3-9). Create a signal line for all the other pins. Don’t
forget analog reference (AREF) on the left. Use Net to connect
a short signal to each pin, then use Label (right underneath) to
label each one.

NOTE EAGLE’s “group move” function does not work like
most modern drawing software. If you need to move several
parts at once, first use Zoom to zoom out, and then choose
Select and click-drag around the parts to be moved. Choose
Move, left-click on the selected objects, Ctrl-right-click to get
a menu, and choose Move Group.

Make Your Own Minimal Arduino 35

FIGURE 3-9: The 16MHz resonator attaches between the XTAL pins on the
microcontroller. This resonator is not quite as accurate as a crystal, but it
has internal capacitors so it simplifies the design and lowers the part count.
You can see the internal capacitors represented in the schematic symbol.

You’ll see EAGLE gives a default label to each signal, some-
thing like N$2. Now use the Name tool to rename each signal to
match its ATmega pin name (as in Figure 3-10).

FIGURE 3-10: Using the Name tool to rename all the nets attached to the
microcontroller pins

Jumpstarting Your Own PCBs36

Add the 1n16, 1n9, and 1n4 header blocks and repeat the pro-
cess of adding signals, adding labels, and changing names (as in
Figure 3-11).

0FIGURE 3-11: The three steps of adding the header blocks: placing the
parts, adding a net to each pin (EAGLE automatically gives you a label),
and renaming them to match the numbering scheme in Figure 3-10. The
order here was chosen to make routing the connections a bit easier.

The FTDI Serial Communications Header
The data interface is a 6-pin header connected to the ATmega’s
serial port (see Figure 3-12). The original Arduino had a USB port
and a Future Technology Devices International (FTDI) chip to
translate from USB to TTL Asynchronous Receiving and Trans-
mitting Protocol (UART). Moving this chip off the board and into

Make Your Own Minimal Arduino 37

the cable is an easy way to pare down the design. FTDI sells a
cable with a 6-pin connector, or you can use a USB-BUB or FTDI
Friend.

FIGURE 3-12: Place the 6-pin header and connect the RX (receive), TX
(transmit), GND, +5V, and EXT_RESET pins.

Some User Amenities
Many designs skimp on human factors, with tiny buttons, incon-
venient part arrangements, and indecipherable labels. Let’s not
do this. Our design includes a generously sized reset button and
an LED “pilot light” to clearly show when the board is powered
(Figures 3-13 and 3-14).

FIGURE 3-13: Three things have been added here: first, a pull-up resis-
tor on the reset line so the pin doesn’t “float” and randomly reset itself;
second, a capacitor in line with the RESET pin on the header so that the
Arduino software can automatically reset the board when programming;
and third, a decent-sized reset switch that will connect RESET to ground
when pushed.

Jumpstarting Your Own PCBs38

FIGURE 3-14: A pilot light wastes a little bit of current but is a handy
feature.

Position the switch, the 10K resistor, and the remaining 0.1μF
capacitor as shown. Connect one side of the switch to ground.

The switch is normally open but pulls RESET low when
pressed. The 10K resistor is connected between RESET and +5V
so that the pin is not “floating” (which can cause erratic behavior)
when the switch is open. During programming, the host com-
puter pulls EXT_RESET low to reset the chip before the boot-
loader starts loading code. The small capacitor keeps the timing
of this pulse within the limits expected by the system.

Finally, add an LED in series with a 1K current-limiting resistor.

Check the Circuit: Electrical Rule Check
Run the Electrical Rule Check (ERC) by selecting ERC from the
Tools menu. You’ll get a list of errors and warnings; click on them
to make any needed fixes. A common mistake is for lines to be
very close without actually connecting.

Once your schematic has passed the ERC, you’re ready to
start routing the board. EAGLE has a tool that will automatically

Make Your Own Minimal Arduino 39

route all the traces on the board following rules you specify in
Design Rule Check (DRC).

Route the Board
When you’re ready, select File F Switch To Board and you’ll be
asked if you want to create a new board from the current schematic
using the Board Editor. From now on you’ll always want to have both
schematic and board windows open whenever you’re doing work.
EAGLE will keep the two in sync, but only if they’re both open.

When you first open the Board Editor, you’ll see a jumble of
parts to the left and a rectangular work area to the right (Fig-
ure 3-15). The free version of EAGLE is limited to 4g n 3.2g, and
you’ll get a warning message if you try to place a part outside
this boundary.

FIGURE 3-15: When you first create the board, all your parts will be in a
jumble off to the side.

The black lines defining the boundary of the board layout are
drawn on the Dimension layer. Because we’re working from an
existing design, the first thing to do is to draw the actual bound-
aries of the board; the RBBB is 3.0g wide by 0.6g tall. This is
pretty much the smallest footprint in which you can fit all of the
parts while still leaving room for some labels.

Jumpstarting Your Own PCBs40

Choose the Line tool (see Figure 3-16) and select the Dimen-
sion layer from the top toolbar. Draw the Board Outline, as shown
in Figure 3-15. This defines the routed edge of the board; you
can draw complicated shapes as long as you keep in mind the
limitations of a router bit.

NOTE As with the schematic, it is very important to keep a
consistent grid. The general rule of thumb is to keep the grid as
coarse as you can until you need to make it finer. When routing
traces, you’ll need to set the grid to 0.025g (25 mils). Do that
now under View F Grid.

FIGURE 3-16: This toolbox for the board design tool has some of the same
tools as in the Schematic Editor, with a few additional tools.

Make Your Own Minimal Arduino 41

THE POWER CIRCUIT

Now let’s move some parts onto the board (Figure 3-17). Grab
a part by clicking its crosshair, which is the part’s “origin.” These
origins are on their own layers (tOrigins and bOrigins); if these
layers aren’t visible, you won’t be able to grab the part to move it.

FIGURE 3-17: Placing the regulator, capacitors, diode, and power jack. As
you move parts into place, you can use the Ratsnest tool to recompute
the airwires to their closest connection point.

As before, start with the power circuit. Move the power jack,
the regulator, the diode, the two power capacitors, and the aux-
iliary input header JP1 into place as shown. The exact placement
doesn’t matter too much, as long as you keep them in the right-
most 0.9˝ (or so) of the Board Outline.

You’ll notice the yellow “airwires” (unrouted connections) that
run between the various parts, which correspond to the way the
parts are connected in the schematic. As you move the parts, the
airwires will follow; keep an eye on how they’re connected when
you’re placing them and use the Rotate tool to turn parts around
to make connected points closer and easier to route.

It’s generally a good idea to place all the components first
and route them after, but in this case we can route as we go.
Select the Route Manually tool and use the default trace width
of 16 mils. Select the bottom layer, and then click on the topmost

Jumpstarting Your Own PCBs42

pad of the power jack; this is the Ground pad. You’ll see all the
other nearby ground pads become highlighted.

Route traces between all of the Ground pads, as shown in Fig-
ure 3-18. It’s good practice to avoid sharp corners, the behavior
of which you can change in the Wire Bend section of the toolbar.

Next, route traces to connect the positive side of the input
power pads as shown in Figure 3-19. Move the 0.1μf capacitor
(C3), the 1K resistor, and the “pilot light” LED onto the board
(Figure 3-20). Use the Rotate tool to position them correctly, and
then route the traces (see Figures 3-21 and 3-22).

FIGURE 3-18: Routing all of the ground connections for the power circuit
on the Bottom (blue) layer

FIGURE 3-19: Connecting all of the positive input power pads on the Top
(red) side of the board

Make Your Own Minimal Arduino 43

FIGURE 3-20: Moving the filtering capacitor and the pilot light onto
the board

FIGURE 3-21: Routing the three components

FIGURE 3-22: Placing the microcontroller chip and the header blocks. The
oscillator should go as close to the XTAL pins as possible. Note that all of
the airwires between the ATmega and the headers should be connected
in a straight line, as in the figure.

Jumpstarting Your Own PCBs44

THE GPIO PINS

Place the ATmega microcontroller, the three GPIO headers (JP2,
JP3, JP4), and the resonator, as shown in Figure 3-23.

Some notes on laying out the header pins:

 * Place the microcontroller with the semicircle notch facing
left. This indicates the side of the chip with pin 1.

 * Make sure that the headers are exactly 0.5˝ apart (on cen-
ter) on the y-axis. That way they’ll fit perfectly across the
“trench” in the center of a standard breadboard.

 * Make sure that the headers are oriented correctly. Depend-
ing on how you connected them in the schematic, you may
need to use the Rotate tool. JP2 should have +5V as the
leftmost pin, JP3 should have RESET on the left, and JP4
should have D4 on the left.

 * The resonator goes right next to ATmega pins 8, 9, and 10. The
high frequency signal lines between the resonator and the
chip should be as short as possible, and other signals should
be kept away from the area around and beneath the resona-
tor, to prevent unwanted radio frequency (RF) interference.
 Make all of these connections on the Top (red) layer.

FIGURE 3-23: Routing the connections between the ATmega pins and the
header blocks

Make Your Own Minimal Arduino 45

Start routing with the signal and power lines on the top
layer of the board (Figures 3-24 and 3-25). Another good rule
of thumb is to keep your ground connections all on the bottom
layer if possible. That way, they can all be connected together in
the largest possible ground plane.

Connect all the ground pads on the bottom layer.

FIGURE 3-24: Routing the +5V (pink highlight) and GND (yellow highlight)
signals

FIGURE 3-25: Move the remaining parts onto the board (top) and route
the traces on the bottom (middle). Finally, route the remaining three sig-
nals on the top layer.

Jumpstarting Your Own PCBs46

THE RESET SWITCH AND SERIAL
HEADER

At this point you should only have four parts left: the reset switch,
the 10K reset pull-up resistor, the reset capacitor, and the 1n6
serial header.

Now only two unrouted signals should remain as yellow “air-
wires” in your window. The +5V signal can be easily routed on the
top side to other traces on the board. The reset signal—connected
to the left top pad of the reset switch—will need to be routed
between the top and bottom using a via, which is a plated hole
that connects traces between two sides and/or layers of a PCB.

The solution is to add a via to jump over the trace by going to
the other side of the board.

To make a via, start a new trace by clicking on the first pad at
the reset switch. Route a path, as shown in Figure 3-26, until you
get to the open area just before your trace will hit other traces
on the bottom layer.

FIGURE 3-26: A typical routing problem: how to get from point A to point
B without crossing traces on the same side of the board

With the Routing tool still active, go to the toolbar and select
the top layer. Finish the route to the connecting pad on the top

Make Your Own Minimal Arduino 47

layer. When you finish the path, you’ll see the small plated via pad
appear, as shown in Figure 3-27.

FIGURE 3-27: EAGLE will add a plated through-hole via at the point that
the trace switches from the bottom to the top.

NOTE You can use the Change (wrench) tool to change many
attributes of a part after it has been placed or drawn. Change
the shape of your via from square to round by first selecting
Shape F Round from the pulldown menu and then clicking
the via.

THE DESIGN RULE CHECK

The Design Rule Check (DRC) is the board layout equivalent of
the ERC; select it from the Tools menu when you’re done with
the board. That will bring up a tabbed panel where you can set a
number of design constraints to test your board against.

For example, if your PCB fabricator tells you that traces
should be no closer than 6 mils, you can set that in the DRC and

Jumpstarting Your Own PCBs48

see if any traces come too close. Or if you’re making a beginner’s
kit and you want your pads to all be a little bit larger, you can
set this under the Restring tab. The default values are all pretty
good, though, so you don’t have to change anything here and it
should still turn out fine.

When you run the rule check, you’ll get a window with errors
and warnings (Figure 3-28). In some cases you may choose to
ignore or clear warnings if you know what you’re doing, but
unfixed errors will almost certainly result in a nonworking board.

FIGURE 3-28: Errors caught by the Design Rule Check

GOING FURTHER

That’s all there is to routing; the only steps left are to create the
silkscreen layer and the Gerber and drill files to be sent to the
PCB house.

Add a LoRa
Radio to a

Raspberry Pi Zero

A recent phenomenon in the Internet of Things area is the
proliferation of new, long-reaching radio modules, in particular
LoRa radios that can transmit data more than 10km in the open
ISM radio bands (434 and 912MHz in the United States, 868MHz
elsewhere). Also, the $10 Raspberry Pi Zero is a great option
when you need to embed more computing power than a micro-
controller in a project. In this chapter we will use surface-mount
parts to design an EAGLE library for a LoRa radio module, and
then connect it to a Raspberry Pi Zero (see Table 4-1).

NOTE This project is not technically a Raspberry Pi HAT
(Hardware Attached to the Top), which is a detailed spec for
Pi add-ons. It follows the physical form factor but is lacking a
couple of components, like an “auto identify” EEPROM (which
could be easily added). The GitHub repository for this book
contains designs for a second board that has the EEPROM and
16 channels of analog inputs.

4

Jumpstarting Your Own PCBs50

TABLE 4-1: LoRa for Pi bill of materials

PART SOURCE PRICE ($)

(1) RFM95 LoRa radio
module

Digi-Key 1597-1488-ND 7

(1) 10k SMT 1206 resistor Digi-Key 311-10.0KFRCT-ND .01

(1) 10uF SMT 1206 capacitor Digi-Key 587-1352-1-ND .10

(1) .1uF SMT 1206 capacitor Digi-Key 399-5615-1-ND .05

(1) SMA antenna edge
connector

Digi-Key
CON-SMA-EDGE-S-ND

1.77

(1) 2n20 female header 4UCON .35

The finished product is shown in Figure 4-1.

DESIGNING AN EAGLE LIBRARY

An EAGLE library is a collection of devices, so it may be more
accurate to say that we’re designing an EAGLE device in this

FIGURE 4-1: The finished board, with custom artwork on the silkscreen
layer and the top solder mask layer, as described in this chapter

Add a LoRa Radio to a Raspberry Pi Zero 51

chapter—a device that will reside in its own library. In EAGLE, a
device has three components:

 * Symbol: This is the representation of the device that
appears in the schematic view. It describes the interfaces
and signals of the part, and it provides pins to hook it up to
other parts.

 * Package: This how the part appears in the board design
tool, and it corresponds to the physical form factor of the
part. The package provides holes or pads for connecting
the part by traces to other parts. A device can come in sev-
eral different packages.

 * 3D package: EAGLE version 8 is much more integrated with
Autodesk’s Fusion 360; each library package part can have
a 3D model attached to it. The 3D model can be created in
Fusion 360 or in EAGLE’s built-in tool, or it can be imported
from 3D tools like SketchUp.

NOTE For some of the library functions to work, you’ll need
to be online and connected to Autodesk. Use the link under
your profile in the control panel to connect online. We’ll be cre-
ating a local library here; see Chapter 1 for more on EAGLE’s
managed library feature, which requires you to be online.

Start EAGLE on your computer. Select File F New F Library
to open a dialog box showing the various components of the
library part. We’ll start with the symbol. The Add symbol will
bring up a layout tool with a similar but slightly different toolbox
than the Schematic Editor.

When creating a device, you’ll need to have access to the
datasheet for the part in question, and you’ll have to do a little

Jumpstarting Your Own PCBs52

hunting to find the information necessary to interpret the part as
a device. At a minimum, you’ll be looking for a table showing the
pin numbering and functions, and a mechanical drawing show-
ing the size of the part and pads. You may also find suggested
application notes that will provide minimal hookup circuits and
recommendations for filters and such.

For example, the HopeRF LoRa RFM95 module we will be
using has a 121-page datasheet that can be downloaded from
Digi-Key or the manufacturer (it’s also in the GitHub repo):
www.hoperf.com/upload/rf/RFM95_96_97_98W.pdf.

Figure 4-2 shows the module and the pin assignments, which
appear on page 10 of the datasheet and are described in more
detail on page 11.

FIGURE 4-2: The pin descriptions from the module’s datasheet. Note that
pin numbering is counterclockwise from the upper-left pin 1.

CREATING THE SYMBOL

With this diagram in hand, we can start laying out the schematic
symbol for the part. Start with the Pin tool. Pins are connection
points for signals; they have one side with a “hot spot” for making
connections that should be facing outward from the part.

www.hoperf.com/upload/rf/RFM95_96_97_98W.pdf

Add a LoRa Radio to a Raspberry Pi Zero 53

NOTE EAGLE 8.7 has a “smart paste” feature that allows you
to create pin layouts by cutting and pasting tables of data from
a spreadsheet using the Paste tool. This can be handy if you
have a whole lot of pins and have a well-formatted datasheet.

You have a lot of leeway in how you lay out your symbol; it
doesn’t have to correspond to the physical layout and, in fact,
usually shouldn’t.

NOTE Don’t change your default grid for the symbol; you
want to make sure all of your pins are on grid!

Note that pins have default names numbered by the order
they were placed. Use the Name tool to change these names to
the physical pin that the signal corresponds to. Doing so will help
later when connecting the symbol to the package, and the names
will also appear on the schematic next to the pin to indicate the
mapping (see Figure 4-3).

FIGURE 4-3: Adding pins. Group pins functionally in the schematic symbol. In
this case, all the module’s IO pins are together on the right, the SPI communi-
cation interface is on the left, and power and the antenna are at the bottom.

Jumpstarting Your Own PCBs54

Use the Line tool to draw a box around the pin labels. Add a
label with the Text tool.

Each of the pins can be given additional attributes that help
EAGLE apply the design rules when checking your circuit for
correctness (see Figure 4-4). For example, each of the pins in the
symbol can have their directionality marked as inputs, outputs (or
both), or power pins. Use the Info tool to change the direction
attribute of the 3.3V and GND pins to PWR. This enables addi-
tional design checks; you could also change the direction of the
other pins to match the table on page 11 of the datasheet.

FIGURE 4-4: When you set the direction parameter, you indicate that the
power pins are in a special class. This allows EAGLE to make additional
checks with the design rules.

Save the library; by default it will be saved in the lbr directory
of your EAGLE installation. EAGLE libraries are XML files with an
eagle.dtd doctype and an .lbr extension. EAGLE also periodically
autosaves your work in a file in the same directory with a .l#1, .l#2,
etc. extension.

Add a LoRa Radio to a Raspberry Pi Zero 55

CREATING THE PACKAGE

Now let’s move on to the package, which is what will appear in
the board view. Some parts can have the same symbol but come
in various standard packages; you may see package names like
SOT23, DIP, DPACK, and QFN. The RFM module is in its own
custom package footprint, so call it something like RFM95_
MODULE in the Library Manager.

For the package, we need to find the mechanical drawing
of the part in the datasheet. Usually it is toward the end of the
document; for the RFM95 module, refer to the package drawing
on page 120 of the datasheet (see Figure 4-5).

FIGURE 4-5: Mechanical drawings for parts can range from the verbose to
the cryptic. This datasheet sketch is somewhere in between, with a couple
of ambiguous dimensions, like the pad size on the module and tolerances
for variations in parts.

Jumpstarting Your Own PCBs56

Some notes on interpreting mechanical drawings:

 * They are almost always in millimeters (mm) unless otherwise
specified. Sometimes Imperial dimensions aren’t labeled as
such but appear in parentheses.

 * Sometimes there is a suggested land pattern, and some-
times you need to calculate some dimensions.

 * In some cases, there may be additional application notes for
ground planes for heat dissipation.

 * When in doubt, get out some calipers and measure the
actual part.

 * After you draw a land pattern, print it out to scale and place
the actual part on the paper as a sanity check.

The RFM95 module is 16mm square, and there are eight pads
per side. By measuring the pads on the actual module, you’ll find
they are just about 1.5mm wide and a little more than 1.5mm long.
The datasheet says the pitch of the pads is 2mm on center, which
leaves .5mm between each pad. We will make pads that the mod-
ule can sit on, with a little bit of pad sticking out the side so the
module can be soldered by hand if needed. The pads will be
1.5mmn3mm so that they can be easily centered on the module
outline.

Start by setting the grid to something that matches the pad
pitch. In this case we can set a 1mm grid. Use the default pad size
to lay out 16 pads, as in Figure 4-6.

A few notes on pad placement:

 * Numbering starts with 1 in the upper left, then incrementing
counterclockwise.

Add a LoRa Radio to a Raspberry Pi Zero 57

 * Use the Pad tool and set the dimension to the default (we’ll
change the pad size in a minute).

 * Start at coordinate (–8, 15), and then place the pads 2mm
apart on the y-axis. Note that you should start at 15 because
the center of the pad is 1mm from the edge, as shown in the
datasheet.

 * As you place the pads, move counterclockwise.

When you’re done, pin 1 should be in the upper left, pin 9
in the lower right, and pin 16 in the upper right. We’ll use these
pin numbers later to hook up to the symbol, so they have to be
correct. Confirm with the Info tool if you need to.

FIGURE 4-6: Placing the default-sized pads

Now we’ll resize the pads using the Change Object Properties
tool. Go to the SMD submenu (for surface-mount pads) and select
the ellipsis (…), which allows you to type in a user- defined option.
In the dialog box that appears, type 3 x 1.25 (that’s width n height

Jumpstarting Your Own PCBs58

using the units set by the grid). After you click OK, you won’t get
much feedback that the tool is active, but move your crosshair
over the origin of each of the pads (note, as mentioned in Chap-
ter 2, that the TOrigins layer must be active) and click on a pad
to change its dimensions. It should look like Figure 4-7. Note that
the pad names will be easier to read when the pads are larger;
double-check them now.

FIGURE 4-7: Resizing the pads with the Change Object Properties tool

Pads will have default names like P$1; you can rename them
to match the mapping of the schematic pins to the pads on the
board layout.

Change the layer to tPlace and draw in the outline of the
module; this layer shows the dimensions of components for
placement. Add a dot on pin 1 and some descriptive text for land-
marks on the board (like the antenna). Confirm that the bounding
box is 16mmn16mm as specified in the datasheet.

Add a LoRa Radio to a Raspberry Pi Zero 59

NOTE You can also use EAGLE 8.7’s package wizard to para-
metrically generate the footprint of your package. This works
great if your part is a variation of one of the standard packages;
the wizard even automatically creates the 3D model for you. To
use the wizard, skip the Add Package button and go directly
to the Device area, where you’ll select Create With Package
Generator. An example is shown here.

CONNECTING THE SYMBOL AND
PACKAGE IN A DEVICE

Next we will create a device definition, which makes connections
between the symbols and packages of the library. In the Library
Manager, select Add Device and name it something like RFM95_
RADIO_MODULE. You’ll see the device connection panel, as
shown in Figure 4-8.

Jumpstarting Your Own PCBs60

FIGURE 4-8: The device connection panel

First, add the RFM95 symbol to the left pane using the Add
Symbol tool. Add the RFM95_MODULE to the right pane by
selecting New F Add Local Package. Then connect all of the
signal pins of the symbol to the pads of the package by clicking
the Connect button. When everything is connected, the dialog
box should look like Figure 4-9.

FIGURE 4-9: Connecting pins to signals. Use the Append option to con-
nect the multiple grounds (pins 1, 8, and 10) together.

Add a LoRa Radio to a Raspberry Pi Zero 61

USING THE NEW DEVICE IN A PCB
DESIGN

Now you’re ready to use the library. Restart EAGLE to load the
library automatically or load the library by choosing Library F
Open Library Manager F Use. We’ll also be using the Raspberry
Pi Zero library included in the GitHub repository, so load that as
well if you haven’t already.

To create the schematic, you’ll follow the process of placing
symbols described in Chapter 3. Start with the RFM95 module.
The Pi will communicate with the radio module using the SPI
serial communications pins. This is a three-wire communications
protocol (with a fourth chip select line).

Connect signals to

MOSI: Master Out/Slave In

MISO: Master In/Slave Out

SCK: Data clock

NSS: Chip select. This requires a 10k pull-up resistor so it
won’t be in a floating state.

The datasheet recommends a .1μF filter capacitor close to the
power pin on the RFM module, so add that. These will all be sur-
face-mount parts in the large, easy-to-hand-solder 1206 format
(0603 would be more common in production to save space). Add
a 10μF capacitor between power and ground as well to act as a
charge store for when the radio transmits. The radio part of the
schematic should look like Figure 4-10.

Jumpstarting Your Own PCBs62

FIGURE 4-10: Using the RFM95 radio module in a schematic. Connecting
the signals (top), then adding a pull-up resistor, a couple of capacitors to
power, and a coax antenna connector.

Next, add the Raspberry Pi part from the library. You’ll notice
that the schematic labels all the pins on the 40-pin Raspberry Pi
header. Find the SPI pins on the Pi (19, 21, and 23) and connect
them by drawing a signal and labeling it the same as on the radio
module. Connect the NSS select line to pin 31 (GPIO6) and the
radio reset to 33 (GPIO13). These will match the radio control
code that can be used later. Next, hook up power and ground and
you’re finished with the schematic (see Figure 4-11).

NOTE The RFM95 module operates at 3.3V and its logic pins
are not 5V tolerant. This is fine with the Pi, which is all 3.3V
logic levels, but the module will need protection if used with
5V devices.

Add a LoRa Radio to a Raspberry Pi Zero 63

Switch to the board view and move the parts onto the work
area. The Pi library device has an outline on the dimension layer,
so you can delete the default dimension lines and EAGLE will
figure out the board shape based on the library part. Place the
parts something like in Figure 4-12.

FIGURE 4-11: The finished Raspberry Pi Zero and radio module schematic

FIGURE 4-12: Placing the parts on the board

Route the top signals as in Figure 4-13. We’re going to add a
ground plane, so don’t worry too much if your ground signals are
all messy; they’ll all be combined into a single plane later.

Next, route the bottom signals (Figure 4-14). In this case, only
+3V and GND will be on the bottom.

Jumpstarting Your Own PCBs64

FIGURE 4-13: Routing the top signals

FIGURE 4-14: Routing the bottom signals

ADDING A GROUND PLANE

EAGLE allows you to draw polygons into layers and give them
signal names. Using the Ratsnest tool, the named polygon areas
will all be unioned together into a signal plane. This is commonly
used for turning extra board space into a ground plane, which
can help in noise reduction and heat dissipation.

To create a ground plane, first select the Polygon tool and
then draw a polygon box around the perimeter of the board.
It doesn’t matter how close you are to the edge; you’ll see in a
minute that it helps that the polygons do not overlap so they are
easier to select (Figure 4-15).

Add a LoRa Radio to a Raspberry Pi Zero 65

FIGURE 4-15: Drawing polygons for a ground plane on the bottom (blue)
and top (red) layers

Now select the Name tool and click the polygon. You’ll get a
dialog box like the one shown in Figure 4-16. Change the name
of the polygon to GND and it will be automatically connected to
all the other GND pads and traces. When you click the Ratsnest
button, you’ll see the polygon fill all of the empty space on the
bottom with a ground plane connected to GND.

FIGURE 4-16: Changing the name of the polygon to GND will result in all
of the ground connections contiguous with the polygon being merged
into a plane. The Isolate field will make sure that there is at least that
much clearance between the ground plane and any traces (16 mils in
this case).

Jumpstarting Your Own PCBs66

DRAWING A CUSTOM STOPMASK
LAYER

In Chapter 2 you saw how to import bitmap images into a cus-
tom silkscreen layer. You can also import bitmaps into other lay-
ers, like the top or bottom copper or stopmask layers. What is
nice about drawing into the stopmask layer is that any copper
left exposed by the stopmask will be plated in nickel or gold
(depending on your manufacturing process), effectively giving
you a second way of marking or decorating your boards. Use the
bitmaps included in the GitHub repository to create the graphic
shown in Figure 4-17.

Your manufacturer will usually remove any place that the
silkscreen ink overlaps with pads or stopmask, so you need to
account for this in generating the bitmap files (Figure 4-18).

FIGURE 4-17: Import a bitmap into the top stopmask layer (gray).

FIGURE 4-18: Import a bitmap into the silkscreen layer (blue shaded).

Add a LoRa Radio to a Raspberry Pi Zero 67

GOING FURTHER

Once you get your boards back, you have a couple of options for
assembling surface-mount parts (see Figure 4-19). This design is
easy enough to solder by hand with an iron or a hot-air rework
gun. If you’re making a bunch of boards, you may want to go the
solder paste route, in which case you’ll need a stencil to apply the
paste before placing the parts and cooking them.

You can order a metal solder stencil from your PCB manufac-
turer for around $20. Metal requires a laser in the 1000W range,
so most people can’t make one themselves. If you have access to
a school or makerspace with a lower-power laser, you can make
a perfectly fine stencil using Mylar or acetate. First export the
tcream layer as a black-and-white bitmap; that’s the paste layer.

The trick to creating a Mylar or acetate stencil is to use the
etching settings on your laser, rather than cutting the outlines
as vectors. If you’re using a 35W laser, try a speed setting of 15
and a power setting of 40 at 1200dpi (your settings may vary!).

FIGURE 4-19: A metal stencil (left) or DIY Mylar (right)

