
Raspberry Pi Vision

Machine Learning and
Facial Recognition on a
Single-Board Computer

SANDY ANTUNES | JAMES WEST

Jumpstarting

JUMPSTARTING
Raspberry Pi Vision
MACHINE LEARNING AND FACIAL RECOGNITION
ON A SINGLE-BOARD COMPUTER

Sandy Antunes and James West

Maker Media, Inc.
San Francisco

Copyright © 2018 Sandy Antunes and James West. All rights reserved.

Published by
Maker Media, Inc. 
1700 Montgomery Street, Suite 240 
San Francisco, CA  94111

Maker Media books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles (safari-
booksonline.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Publisher: Roger Stewart
Editor: Patrick DiJusto
Copy Editor: Elizabeth Welch
Proofreader: Scout Festa
Interior and Cover Designer: Maureen Forys, Happenstance Type-O-Rama

October 2018: First Edition

Revision History for the First Edition

2018-10-08 First Release

See oreilly.com/catalog/errata.csp?isbn=9781680455427 for release details.

Make:, Maker Shed, and Maker Faire are registered trademarks of Maker
Media, Inc. The Maker Media logo is a trademark of Maker Media, Inc.
Jumpstarting Raspberry Pi Vision and related trade dress are trademarks
of Maker Media, Inc. Many of the designations used by manufacturers and
sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this book, and Maker Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.
While the publisher and the author have used good faith efforts to ensure
that the information and instructions contained in this work are accurate,
the publisher and the author disclaim all responsibility for errors or omis-
sions, including without limitation responsibility for damages resulting from
the use of or reliance on this work. Use of the information and instructions
contained in this work is at your own risk. If any code samples or other tech-
nology this work contains or describes is subject to open source licenses or
the intellectual property rights of others, it is your responsibility to ensure
that your use thereof complies with such licenses and/or rights.

978-1-680-45542-7

corporate@oreilly.com
oreilly.com/catalog/errata.csp?isbn=9781680455427

Safari® Books Online

Safari Books Online is an on-demand digital library that delivers expert
content in both book and video form from the world’s leading authors in
technology and business. Technology professionals, software developers,
web designers, and business and creative professionals use Safari Books
Online as their primary resource for research, problem solving, learning,
and certification training. Safari Books Online offers a range of plans and
pricing for enterprise, government, education, and individuals. Members
have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly
Media, Prentice Hall Professional, Addison-Wesley Professional, Microsoft
Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John Wiley &
Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course
Technology, and hundreds more. For more information about Safari Books
Online, please visit us online.

How to Contact Us
Please address comments and questions to the publisher:

Maker Media, Inc. 
1700 Montgomery Street, Suite 240 
San Francisco, CA  94111

You can send comments and questions to us by email at
 books@makermedia.com.

Maker Media unites, inspires, informs, and entertains a growing community
of resourceful people who undertake amazing projects in their backyards,
basements, and garages. Maker Media celebrates your right to tweak, hack,
and bend any Technology to your will. The Maker Media audience continues
to be a growing culture and community that believes in bettering ourselves,
our environment, our educational system—our entire world. This is much
more than an audience, it’s a worldwide movement that Maker Media is
leading. We call it the Maker Movement.

To learn more about Make: visit us at make.co.

make.co
mailto:books@�makermedia.com

﻿ v

CONTENTS

Preface	 vii

1	 Introduction to the Raspberry Pi	 1
Gear	 2
Setting Up	 5
Adding Software	 6
Setting Up the Camera	 7
Going Headless: Accessing Your Pi	 9

2	 Time-Lapse Imaging Viewed via the Web	 13
Capturing Time Sequences Automatically	 14
Make the Pi into a Web Server	 16
The Pi as a Remote WiFi Hotspot	 21
Cleaning and Archiving	 23
Animating a Time-Lapse GIF	 25

3	 Pi Motion Detection	 27
What Is Motion Detection?	 28
Hardware	 29
Set Up Motion Detection	 29
Testing motion with GUI	 29
Testing motion with the Command Line	 30
Customizing motion	 31
Streaming motion Remotely	 35
Going Headless	 36

4	 Machine Learning: Identifying People in Images	 39
Step 1: Quick Face Boxing	 41
A Little Image Theory	 46
Step 2: Training Your Camera	 48
Step 3: Identifying Whose Face You Found	 49
Triggering and Future Steps	 53

PREFACE

If a camera takes a picture and no one notices, did it really hap-
pen? In this book, we’re going to show you how to make a work-
ing Raspberry Pi–based camera system so that you can capture
time-lapse images and view via WiFi, trigger the camera if motion
is detected, and even carry out basic facial recognition as an
introduction to machine learning methods.

Take a Raspberry Pi and add a camera module, and you have
a programmable camera. Add some software, and you can start
to do interesting surveillance and automatic object recognition
work with it. Activate the Pi as a WiFi node and you can do all
these wonderful things from a distance.

A good surveillance system does more than take pictures. It
should also turn those pictures into actionable information that
increases your knowledge. That’s now easily done in software,
and we’re going to show you how.

This book pulls together a set of little tricks—setting up Pi
cameras, making a Pi broadcast as a WiFi device, adding time
lapse and motion detection and face recognition, and sticking a
battery pack on it so it can function anywhere—to create porta-
ble spy cameras. We’ve used these rigs in everything from “Find
the Pi” party contests, to implementing privacy-respecting secu-
rity in our lab, to showing off modern tech like facial recognition.
Other uses could include monitoring deer and wildlife, checking
your house mailbox for mail arrival, and capturing time-lapse
sequences of natural events or traffic patterns.

Our first project will be to create a portable “SpyPi” camera
rig that broadcasts images via WiFi without needing a network—
you just have to log into it to see what the camera sees . It’s great
for a “find the camera” hunting challenge or stand-alone security.

vii

Jumpstarting Raspberry Pi Visionviii

The second project will involve setting up a time-lapse cam-
era that can do simple motion detection—perfect for monitor-
ing a location. The system will include automatic deletion of old
images after a week.

The third project will be to add facial detection and facial
recognition to your SpyPi. In the process, you’ll learn about the
tools and software installed by the end of these projects so that
you can go beyond this book and explore additional machine
learning methods.

So grab a Pi, an SD card, a USB camera, and a USB battery
pack, and let’s go!

Introduction to the
Raspberry Pi

In this book, we will be discussing how to take a Raspberry Pi
and turn it into a do-it-yourself security system. The following
chapters will cover projects ranging from taking time-lapse pho-
tos to using facial recognition. Before we get to any of those,
though, we need to spend some time preparing the Pi so that it’s
ready for those projects.

These setup processes may not be the most exciting informa-
tion covered in this book, but they are arguably the most crucial
for you to know. The Raspberry Pi is a versatile device, providing
a good base for a variety of projects. It is for that very reason
that knowing how to modify and customize your Pi to suit a given
project is critical.

This chapter will cover, among other things, how to install
software packages and connect to your Pi remotely. This knowl-
edge is useful in any Pi project and helps open up possibilities
for taking your projects further.

1

Jumpstarting Raspberry Pi Vision2

FIGURE 1.1: Raspberry Pi 3 with USB webcam

GEAR

You will need the following:

** A Raspberry Pi (the Pi 3 model is recommended, but any
model will work)—$35

** A microSD card (8GB minimum)—$6–$20

** A USB camera (or Pi-specific ribbon camera)—$10–$20

** A 5V battery pack (cell phone recharger, USB charge pack,
etc.)—$5–$10

** A USB WiFi module (only if you’re not using Pi 3 or Pi Zero
models, which have built-in WiFi)—$10–$15

For the initial setup, you will also need

** HDMI monitor and cable

** 5V Pi-compatible power supply (a microUSB phone charger
should work)

** USB mouse and keyboard

The following are strongly recommended but not mandatory:

** A USB power supply (2000mA or more)—$10

** A case—$5, or 3D-print your own with plans from
thingiverse.com

thingiverse.com

Introduction to the Raspberry Pi 3

raspberrypi.org lists online sites by country, so that’s a good
place to start. You can also buy kits that include everything listed
(and often more add-ons).

To make your project portable, you’ll need a standard USB
battery pack (the kind used to recharge phones and devices;
you can find them for $5–$10 at electronics or convenience
stores). The larger the pack, the longer the Pi will last. A five-
dollar 4000mAH (milliamp hours) device powered our project
for over four hours at an outdoor conference.

For the SD card, we recommend you get a name brand like
SanDisk, Kingston, PNY, Sony, Toshiba, or Samsung. Don’t get

Older Pi Models
Just to complicate things, if you have an older Pi Model A or B
(not an A+ or B+ or Pi 2 or Pi 3 or Pi Zero), it will require the
older, larger SD instead of a microSD card, but at this point the
older Pis are hard to find so you probably don’t have to worry
about it. The rule is simple: look at what physical form factor
card (SD or microSD) fits in your Pi, and buy that one. Typically,
you want to buy the latest model, which as of this writing is the
Pi 3 Model B+, because the newest model will be faster and have
more memory yet will be the same price as the other models.
But you can use an older one, especially if you already have it
lying around. There are different models of Pi. These are all fine:
Pi 3 Model B or Model B+, Pi 2 Model B, or even Pi 1 Model B+—
they all have four USB plugs so they’re easy to hook up to lots
of things. Avoid the “weird” ones (Pi Zero, Pi Compute Module,
or the old Model A) unless you really know about Pi. But it’s easy
to tell them apart—buy a $35 Pi and you’re likely good. Fun fact:
Raspberry Pis are always $35 because there’s only one vendor
and Raspberry Pis are intended for educational and maker use,
so they don’t change in price. Since all the models we can use
are the same price, there’s no reason not to buy the latest.

raspberrypi.org

Jumpstarting Raspberry Pi Vision4

a cheap generic card; they aren’t as reliable. The card must be
marked as SDHC (secure digital high capacity). The cards are
available at speeds of Class 2, 4, 6, or 10—the higher the num-
ber, the faster the card. As long as it’s at least Class 4, the actual
speed isn’t very important—the Raspberry Pi Foundation recom-
mends Class 6 or higher, but Class 4 work well for everything in
this book. For more details, you can visit www.raspberrypi.org/
documentation/installation/sd-cards.md.

For the camera, if it’s USB and it works on your PC or Mac or
laptop, it’ll most likely work on a Pi (we tested 11 different cam-
eras, including super-cheap generic ones!). Cameras for surveil-
lance don’t need to be fancy; they are just commodities. It’s the
software you’ll be installing that does the magic.

To begin, you’re going to hook up your Pi to a monitor, key-
board, and mouse, and use it like an ordinary computer. After
you finish getting everything set up and are ready to deploy the
device, you’ll ditch the keyboard, mouse, and HDMI monitor and
power cable; add the battery pack; and shift to “headless” mode,
where the Pi is accessible only via the Internet. In this mode,
you’ll interact with the Pi via a web browser, remote access tools
like VLC, or an SSH terminal.

We’ll cover a base loadout and setup, and we’ll include side-
bars on using other forms of gear. For example, any Pi models
(including the Pi Zero or original Pi Model A) can do everything
in this book; they just require a little extra setup. As for cam-
eras, a Pi can use either USB cameras, its own model of ribbon-
cable cameras, or special cameras that connect via the general-
purpose input/output (GPIO) pins that stick off the Pi board. As
we said, we recommend an inexpensive USB camera that you can
buy just about anywhere, but we’ll include notes on using other
cameras if you want to play around with alternatives.

www.raspberrypi.org/documentation/installation/sd-cards.md
www.raspberrypi.org/documentation/installation/sd-cards.md

Introduction to the Raspberry Pi 5

SETTING UP

Two ways to set up your Pi (based on the official Raspberry Pi
Software Guide at www.raspberrypi.org/learning/software-guide)
are as follows:

** Buy a preloaded SD card with NOOBS (New Out-of-Box
Software) or Raspbian.

** Buy a blank SD card and load either NOOBS or Raspbian
from http://raspberrypi.org/downloads.

Both lead to the same result—you first boot your new Pi with
your microSD card that has the operating system installed, and
then you follow its installation menu. Pro tip: If you’re in the
United States, you’ll have to reset the keyboard from UK style
to US style or else you’ll find all the punctuation marks are in
the wrong place (on the Pi, type sudo raspi-config and use the
location or keyboard settings menu to do this).

You’ll need to hook up the Pi to an HDMI monitor as well as a
keyboard and mouse for setup. You can also plug in a wired net-
work cable, or just wait and configure the built-in WiFi (Pi Model
3 or later, or add in a WiFi USB dongle if you have an earlier Pi
without built-in WiFi) to connect to your local network. Once
we finish this, you won’t need to use the monitor, keyboard, and
mouse to work with it, which is a great advantage of a Raspberry
Pi. You can work headless, with just the Pi itself and a power
source, wirelessly and with no extra attachments needed.

NOTE  Plug in the USB camera, ideally before you power up
the system. The Pi will auto-detect the camera upon boot; it
might not always detect the camera if you plug it in or remove
it while the Pi is running.

www.raspberrypi.org/learning/software-guide
http://raspberrypi.org/downloads

Jumpstarting Raspberry Pi Vision6

ADDING SOFTWARE

We’ll install all the free software you’ll need for this book at once.
Also, we’re not going to use the GUI or have you click any icons;
instead, you’ll run commands in the terminal by choosing Termi-
nal from the Start menu. (If you didn’t install a GUI, you’re already
in the terminal and ready to go.)

The command for installing software in Raspbian Linux is
sudo apt-get install SOFTWARENAME, which automatically finds and
installs the software via the Internet.

First make sure your operating system is current and up to
date by entering the following in the terminal on your Pi:

sudo apt-get update
sudo apt-get upgrade

FIGURE 1.2: sudo apt-get update

Next, install the software you’ll need to complete Chapter 1:

sudo apt-get install fswebcam -y
sudo apt-get install feh -y
sudo apt-get install python-picamera python3-picamera

Introduction to the Raspberry Pi 7

FIGURE 1.3: Installing fswebcam

Then, install the software for Chapter 2:

sudo apt-get install apache2 -y
sudo apt-get install imagemagick -y

Continue with the Chapter 3 software next:

sudo apt-get install motion -y

Finally, install the Chapter 4 software:

sudo apt-get install python-opencv -y
sudo apt-get install python-pip python3-pip -y
pip install numpy

Keep that terminal window open, because you’ll type more
commands in it. As a maker/hacker, you’ll find it’s quicker to type
and edit in this window rather than use a GUI.

SETTING UP THE CAMERA

Time to plug in your USB camera and do some initial diagnostics.
To capture images, you’ll use fswebcam as the primary program.
For more details (beyond our usage in this book), you can learn
more at www.raspberrypi.org/documentation/usage/webcams,
but let’s skip right to the real work.

When you typed sudo apt-get install fswebcam in the termi-
nal, you installed a package of programs that can control a USB
camera. You need to test them to make sure that they installed
correctly. Type the following in the terminal to check:

fswebcam image.jpg

http://www.raspberrypi.org/documentation/usage/webcams

Jumpstarting Raspberry Pi Vision8

FIGURE 1.4: Taking a test image with fswebcam

This command will tell the camera to take a snapshot of what-
ever it sees and save it to the current directory. If you are using
the GUI, you should see the image once you open the File Man-
ager. If you are working via the terminal, simply check the direc-
tory with the ls (list) command.

FIGURE 1.5: Finding the test image in the current directory

“Timed Out” Error
If fswebcam isn’t working and you’re getting the error message
Timed out waiting for frame! No frames captured, we have
a solution. The problem is that the system can’t tell what reso-
lution the camera is. To fix this, just force the resolution of the
camera in any call of fswebcam as follows:

fswebcam -r 320x240 image.jpg

If you are working through the Pi’s GUI, it’s a good idea to
open the test image and check to make sure that it is passable.
Not all cameras are the same in terms of quality, and a cheaper
model may be more prone to taking unusable photos. That being

Introduction to the Raspberry Pi 9

said, once you see your image and are able to recognize what the
image is of, your camera should be good enough for the next step.

FIGURE 1.6: Test image captured with fswebcam

Overexposed
A common problem found when using fswebcam with cheaper
USB cameras is that the photos taken have a tendency to be
overexposed. Fortunately, fswebcam is capable of automati-
cally adjusting its exposure by taking multiple frames. To tell
fswebcam to do this, use the following:

fswebcam image2.jpg -F n

where n is the number of frames fswebcam is to take. Most people
recommend taking 50 frames, though as few as 20 frames
should result in passable images without taking up too much

processing time.

GOING HEADLESS: ACCESSING
YOUR PI

All Raspberry Pis start with the default network name/ID of
raspberrypi, but you’ll change your machine name. This makes it

Jumpstarting Raspberry Pi Vision10

easier to find (in case other people stick a Raspberry Pi on the
same network) and more secure (since people won’t automati-
cally know the name of your machine). Start up the configuration
program:

sudo raspi-config

Click Change Hostname and give your machine a new name.
We suggest spypi, and that’s the example name we’ll use in this
book. Once you set this, it always stays that way. And now, on the
network, your machine can be found as spypi.local (thanks to a
built-in package called Avahi, if you were curious).

So instead of going to, say, Google or Makermedia.com, you
can point web browsers and other tools to spypi.local and find
it. Bear in mind this is only local; you won’t be able to connect to
your Raspberry Pi if you’re not on the same home or work net-
work you plugged your Pi into. The rest of the Internet can’t see
your PI, and that’s just what you want—private, not public, access.

We’ll also make your Pi remotely accessible, so even if it isn’t
hooked up to a monitor and keyboard you can still access it from
any Internet-connected device on the network with an SSH client
(on Windows, PuTTY; on Mac/Linux, ssh) as long as you set the
Pi to accept that. On the Pi, run sudo raspi-config and choose
Interfaces, then choose SSH and “Yes, enable SSH.” This allows
remote logins from authenticated users who know the Pi user-
name and password (as you do). The PuTTY or ssh client will let
you remotely access your Pi, removing the need for a keyboard,
mouse, and monitor.

To log into your Pi remotely, you’ll use SSH:

** In Windows: Install PuTTY from putty.org (freeware), and
then run the program. Enter spypi.local as the machine you
want to log into, with the username pi.

Introduction to the Raspberry Pi 11

** In macOS or Linux: Call up a terminal and log in with the
following:

ssh -X pi@spypi.local

FIGURE 1.7: Connecting with PuTTY

In either case, you’ll be prompted for your pi password. You
can change that password on your Pi by again entering sudo
raspi-config and using the Change Password option. (Part of
the ease of the Pi is that controlling the various options is pretty
simple.)

Using raspi-config
Perhaps in the future, beyond this book, you might get into add-
ing attachments and wires to your Pi. When you add switches,
sensors, motors, and other systems, the instructions will gen-
erally say something like “Enable the I2C interface” or “Make
the serial port accessible.” Again, those are just options in the
raspi-config tool that you can turn on or off. They are turned
off by default to make your Pi a little more secure. A core rule
of computer security is to not turn on a service or software or
port if you aren’t actively using it, because anything “open” is
also a potential opening a malicious program can exploit. The Pi
smartly keeps most options turned off, and then lets you easily
toggle options with raspi-config as needed.

mailto:pi@spypi.local

Jumpstarting Raspberry Pi Vision12

Multiple Cameras
Yes, you can put more than one USB camera on a Pi—as many
as there are open USB ports, in fact. The fswebcam program
defaults to the camera it finds using the device location /dev/
video0, but you can add other cameras. Once they are plugged
in and (hopefully) auto-recognized, see which ones exist by
entering

ls /dev/video*

Sample output for two cameras might look like

/dev/video0 /dev/video1

And now you can use fswebcam to point to a specific camera
like this:

fswebcam -d /dev/video0
fswebcam -d /dev/video1

Easy!

 Using the Pi Ribbon Camera
You can buy a special camera just for the Pi and use it instead
of a USB webcam. It plugs into the Pi using a ribbon cable. To
access it, instead of using fswebcam you can use the built-in util-
ities raspistill (for single pictures) and raspivid (for video).

Time-Lapse
Imaging Viewed

via the Web

The official title of this project is “A Surveillance Pi with Time-
Lapse Image Capture Accessed Remotely via the Web,” but we’ll
stick with the SpyPi name. In the first chapter we got the Rasp-
berry Pi to produce a single image; now we’re going to have it do
some bona fide surveillance. You’ll set up your SpyPi to automat-
ically take a picture every minute and also make a web page so
that you can remotely access the most current image at any time.
And we’ll talk about how you can combine the images to make a
single time-lapse animated GIF of the activity!

You’ll create all of this via the terminal, as in the previous
chapter. In this case, you’ll write scripts using the nano editor,
save them, and then run them with the Python language inter-
preter. Meanwhile, you’ll set up the web server in the background.
Finally, you’ll use a stand-alone tool to make the animated GIF.

2

Jumpstarting Raspberry Pi Vision14

A typical use case would be to set up your Pi in a forest or
over an area where you need to maintain security, or even to
capture traffic at a busy street intersection. Really, the legal uses
are up to you. Everything we make is configurable, so you can
make your system take one picture of road traffic every second,
or one picture of the sunset every minute, or one picture of your
house every hour. Best of all, you don’t need to be near your Pi to
view these images; just point your web browser to the Raspberry
Pi’s web page and watch the images from the luxury of your own
home.

FIGURE 2.1: Time series of a SpyPi surveillance of our basement floor,
showing a stuffed animal crossing. (Image brightness is due to camera.)

CAPTURING TIME SEQUENCES
AUTOMATICALLY

First, you’ll write a short script file using the Python language to
automatically run your camera with a regular time sequence. To
do this, you’ll use the nano editor to enter the program. Type the
following commands into the terminal:

nano timelapse.py

And enter the following code exactly as you see it. Python
is very touchy about indentations—be sure to indent the code
exactly as shown here. We’ll use 60 seconds (1 minute) as a delay
time, but you can change that value in the code to whatever you
need. Lines preceded by # are comments that explain the code.

Spy-Pi code version 1
this code takes an image every minute (60 seconds),
and overwrites the current image with the new one

Time-Lapse Imaging Viewed via the Web 15

import os
import time
choose a delay time in seconds by modifying the next line
delay = 60
below are the default location to put the files, and the name to
use
directory = "/home/pi/"
filename = "spycam"
stem = ".jpg"
webfile = directory + filename + stem
and this is the command to run.
mycommand = "fswebcam -d /dev/video0 -r 640x480 --no-banner"
this is the actual 'do stuff' part. It runs forever
while True:
 runme = mycommand + " " + webfile
 os.system(runme)
 time.sleep(delay)

FIGURE 2.2: What you’ll see in nano when you make this first Python script

This is a general structure we’ll use often in this book—using
Python as a wrapper around our external programs like fswebcam.
We’ll later add in a package called openCV for facial recognition.
Python is easy to learn and modify, and it will let us set time-lapse
loops and other tricks.

Once you’ve typed in this program, save it by pressing Ctrl-X
and name it timelapse.py. At the terminal prompt run it with

Jumpstarting Raspberry Pi Vision16

python timelapse.py. Your gadget is now taking a new picture
every 10 seconds, overwriting the old one. You can see the image
on the desktop or look at it within the window by typing feh
spycam.jpg.

FIGURE 2.3: Our first image: a stuffed animal on a piano!

This code will run forever, as long as the Raspberry Pi has
power. You can stop it at any time, fortunately, by pressing Ctrl-C.
There’s also a fancy way to run it in the background so that you
can type other things in the terminal—when you call it up, add
an &, as in

python timelapse.py &

Don’t do this yet. In the next chapter, we’ll talk about using
a routine called crontab to automatically run your code in the
background. If you do want to play around with using & to run the
program in the background, know that if you type fg it will bring
the program up again, at which point you can then press Ctrl-C
and kill it. Playing around with running scripts in the background
or bringing them to the foreground so you can nix them is a very
common Pi/Linux way to work on and run scripts.

MAKE THE PI INTO A WEB SERVER

To make your Pi into a web server so that you can point a browser
to it, you…well, actually, you already did this. Back in Chapter 1
when you typed sudo apt-get install apache2 -y you told the
Raspberry Pi to install a complete web server package. We’re just

Time-Lapse Imaging Viewed via the Web 17

going to make it easier to modify things. (You can also read more at
www.raspberrypi.org/documentation/remote-access/web-server/
apache.md.)

Here’s your default homepage, if you didn’t change your Pi’s
name:

http://raspberrypi.local/

If you did change it as we recommended, it’s

http://spypi.local/

and, if you are on your Pi, it can also see the page as

http://localhost/

FIGURE 2.4: The default web page auto-installed on your Pi (that you’ll
soon delete)

www.raspberrypi.org/documentation/remote-access/web-server/apache.md
www.raspberrypi.org/documentation/remote-access/web-server/apache.md
http://raspberrypi.local/
http://spypi.local/
http://localhost/

Jumpstarting Raspberry Pi Vision18

To make life easier, we’ll show you how to make a link to where
the Pi stores web pages so it will be easy for you to drop stuff into
your home directory. Type these two lines

ln -s /var/www/html /home/pi/web
sudo chown pi . *

to make a new directory in your home directory called web, which
is the location where any web page is stored. The chown line
makes it so you can write and edit stuff in that (otherwise, it’ll tell
you permission denied). Anything you put into the web directory
will be visible to the outside world via a browser, if the individual
knows the address of your Raspberry Pi. There’s already a default
page called index.html there. Let’s change it!

Go to the web directory:

cd web

Move the original index.html file to index-orig.html:

mv index.html index-orig.html

And create a new index.html file:

nano index.html

And now that you’ve invoked the nano editor, type the fol-
lowing into the file:

Hi

and then save the file and look at it in a browser.

FIGURE 2.5: The world’s simplest web page

Time-Lapse Imaging Viewed via the Web 19

Okay, it’s a very boring web page, but as you can see, any-
thing you put into index.html appears to your web visitors.

Now you’ll make a new index page that works with the cam-
era. You’ll also make a new Python script that automatically trig-
gers the camera. Together, the two work like this: Every 1 minute,
the Python script tells the Pi “Take a new picture and stick it in
the web directory.” Meanwhile, people visiting your new Pi web
page will see the most recent picture—and their browser will
automatically refresh itself every minute so it can catch when
the picture changes.

Also, that 1 minute is an arbitrary time setting that you can
change. If you think what the Pi can see will change faster or
slower, make it a different time (every 5 minutes, every 30 sec-
onds, every 5 seconds). Similarly, you can change the web
page to update more rapidly—but beware, it takes time to load
an image over the network via the web, so any web page that
refreshes faster than 1 minute might mean your browser hasn’t
even finished loading a picture before the next refresh happens.
Put another way, you should not take pictures faster than you
can serve them.

First, modify our previous timelapse.py script by changing the
one line that reads

directory = '/home/pi/'

to instead read
directory = '/home/pi/web/'

This will make the camera program write the image file into the
web-visible area.

We now need to put an HTML web file in that web area that
points to the picture. At the terminal prompt, type these two lines:

cd web
nano index.html

Jumpstarting Raspberry Pi Vision20

and then, when nano comes up, type this in the editor:

<html>
<head><title>SpyPi</title>
<meta http-equiv="refresh" content="60" />
</head>
<body>

Image refreshes every minute!
</body>
</html>

Now save this code (in nano, press Ctrl-X and name the file
index.html). Feel free to change SpyPi in the title and the Image
refreshes every minute! text. That’s just text for this demo and
it can be changed to read anything you want. The key part is
the meta keyword in the head tag, which sets the auto-refresh
to every 60 seconds. This triggers any visiting web browser to
reload the page every minute. You can set any time interval; one
minute is useful for tracking slow state changes such as the cam-
era being moved. Set it longer if you find it takes a long time to
load an image in your browser.

Let’s give it a try. Start the infinitely looping Python script:

python timelapse.py

and look at what’s in the web directory by pointing your smart-
phone or tablet to the web page http://spypi.local/.

You should see what the Pi sees in your web browser. It’s the
same test image as before, but now you can access it via your
web browser from a remote machine. Success!

http://spypi.local/

Time-Lapse Imaging Viewed via the Web 21

FIGURE 2.6: Sample image from our SpyPi, framed in your web browser

THE PI AS A REMOTE WIFI HOTSPOT

Right now, the Pi is running the web server and technically, the web
pages are visible to any other machine on its network. You can find
it from other machines via a web browser at http://spypi.local/.

This is great for a SpyPi that is able to log into your local WiFi
network. You can use the SpyPi at home or work, and you’ll be
able to check it from any machine on that network. You can place
the Pi so that it creates its own hotspot that enables people to
log into it, even if the Pi can’t connect to an external network.
This is great if you want to, say, place it in a forest to monitor
wildlife and still want to be able to log into it remotely.

http://spypi.local/

Jumpstarting Raspberry Pi Vision22

The “Find the Pi” Game
With the basic rig you’ve built, you now can play Find the Pi.
One person hides the Raspberry Pi rig—the Pi, camera, and
power supply, powered up and serving images—somewhere in
a given area, such as a park, a school, or a backyard, for instance.
The other players log into it with their smartphones or tablets
and, based purely on the image they see from the Pi, try to
figure out what the Pi is looking at and therefore where the Pi
must be hidden.

Good hiding places should be somewhat generic: players must
be able to see some clue that creates a puzzle. For example,
a totally dark image is useless, but a Pi that can barely see an
“exit” sign or indoor plant gives players a chance.

The person who finds the Pi can then choose a new hiding place
for it, and the game continues. Here’s an example of a picture
that makes you think, “I bet I could walk around the author’s
basement and figure out where the Pi is looking out.”

Time-Lapse Imaging Viewed via the Web 23

In this section, we’re going to set up the Raspberry Pi so it
doesn’t have to be connected to an existing network. Instead,
the Pi itself will create a WiFi hotspot that you can log into. This
means anyone close enough to be in WiFi range of the Pi can
connect to it.

To access your Pi, even without an Internet connection, follow
any of these three tutorials:

www.raspberrypi.org/documentation/configuration/wireless/
access-point.md

www.instructables.com/id/Make-Your-Pi-a-Local-Cloud-Server/

https://thepi.io/how-to-use-your-raspberry-pi-as-a-wireless-
access-point/

The software installed is two packages called HostAPD (that
makes your Pi a stand-alone Internet device) and DHCP (a net-
work standard for automatically assigning addresses and names
to devices that connect to your Pi). We’ll also toss in a firewall
called iptables. You’ll install them with the usual:

sudo apt-get install hostapd isc-dhcp-server iptables-persistent

and then follow any of the tutorial links. Once done, you can log
into your Pi as if it were its own Internet.

CLEANING AND ARCHIVING

At this point you are always serving up the current image. How-
ever, archiving past images moves the SpyPi past “toy” into “gen-
uine surveillance.” Let’s modify our Python script to save the
previous N days’ worth of images, where N is however many days
you want to keep.

http://www.raspberrypi.org/documentation/configuration/wireless/
http://www.instructables.com/id/Make-Your-Pi-a-Local-Cloud-Server/
https://thepi.io/how-to-use-your-raspberry-pi-as-a-wireless-access-point/
https://thepi.io/how-to-use-your-raspberry-pi-as-a-wireless-access-point/
https://thepi.io/how-to-use-your-raspberry-pi-as-a-wireless-access-point/

Jumpstarting Raspberry Pi Vision24

Type nano timelapse2.py in the terminal, and enter the follow-
ing code as is. Remember to maintain the proper indentations.

Spy-Pi code version 2
takes an image every minute, and saves 1 week (7 days) of data
it also makes the most current image available
import os
import time
import shutil
choose a delay time in seconds by modifying the next line
delay = 60
this says to save 7 days (1 week) at a time, feel free to change
to a different duration
savedays = 7
do not change this math code, it converts our savedays to how
often to retake a pic in secs
note that 1 day at 1 picture/minute is 10,080 files per week
waitcount = savedays * 24 * 60 * 60 / delay
below are the default location to put the files, and the name to
use
directory = '/home/pi/web/'
filename = "spycam"
stem = ".jpg"
also, this is the file the webserver expects
webfile = directory + filename + stem
and this is the command to run.
mycommand = "fswebcam -d /dev/video0 -r 640x480 --no-banner"
this is the actual 'do stuff' part. It runs forever
icount = 0
while True:
 icount += 1
 myfile = directory + filename + "_" + str(icount) + stem
 runme = mycommand + " " + myfile
 os.system(runme)
 # copy new file to the webfile location so it is web-visible
 shutil.copy(myfile, webfile)
 # new purge routine removes older images after expiration time
 inix = icount - waitcount
 if inix > 0:
 deleteme = directory + str(inix) + filename + stem
 os.remove(deleteme)
 time.sleep(delay)

Time-Lapse Imaging Viewed via the Web 25

Again, running python timelapse2.py will do three things:

	 1.	 Take a picture at the given interval (here, 1 minute).

	2.	 Save all the pictures it takes, up to the given period (here, 1
week), deleting older ones.

	3.	 As written, it restarts the image count at 0 whenever you
power up, so you lose old data and start afresh each time.

You may want to clean up when you stop or restart the time-
lapse routine. These two commands, typed into the terminal, will
get rid of all old files:

cd web
rm spycam*.jpg

Now you can rerun python timelapse.py without the clutter
from previous runs.

Using the Pi Ribbon Camera?
If you are using the Pi ribbon camera instead of a USB web cam-
era, just change the call from fswebcam (which automatically
finds the USB camera) to raspistill (which automatically uses
the Pi ribbon camera).

ANIMATING A TIME-LAPSE GIF

To view the archive of images, log into your Pi and either down-
load the set or view the images on the Pi. Or you can choose to
make them into an animated time-lapse GIF! Type in your termi-
nal the following sequence to build a GIF at any time.

Jumpstarting Raspberry Pi Vision26

First, if you didn’t install imagemagick in Chapter 1, type this:

sudo apt-get install imagemagick

Now, using your terminal, type these commands to go into
the directory with the files and turn all the images into a time-
lapse animated GIF file. Note the unit: delay is in hundredths of
a second, so 10 = 0.1 second between frames, and loop 0 = loop
infinitely:

cd web
convert -delay 10 -loop 0 spycam*.jpg timelapse.gif

Let’s look at it via the web. As before, you need to make
a web page that calls it. So in the web directory, make the file
timelapse.html:

cd web
nano timelapse.html

In that file, put these lines:

<html><body>

</body></html>

Now, with your web browser, point to

http://spypi.local/timelapse.html

And you can see your amazing animated time-lapse image!
The following is a tiled version of eight time-lapse images.

FIGURE 2.7: Tiled version of eight consecutive SpyPi time-lapse images

http://spypi.local/timelapse.html

Pi Motion
Detection

In this chapter, we will be discussing how to turn your Raspberry
Pi into a motion-detecting surveillance system. This is simpler to
accomplish than it sounds, since the software we need is ready
in a downloadable package for the Pi. Once it’s installed, we can
dive right into operating and fine-tuning the program.

As with the previous project, we’ll be working mostly from
within the terminal, though this chapter will cover how to view
the program’s output with the GUI. We will be using the nano
editor to help customize our program to suit our needs.

Motion detection allows for more selective and sophisticated
image capturing than just taking a photo every 10 seconds. Now
you can set up a wildlife camera that takes routine snapshots and
automatically records video whenever an animal walks by. We’ll
also show you how to set up filters so you can quickly find who’s
been knocking on your front door without having to look through
scores of images with the same view of your welcome mat. Last
but not least, you can connect your motion-detection system to
the Internet and watch what it sees wherever you are!

3

Jumpstarting Raspberry Pi Vision28

WHAT IS MOTION DETECTION?

Motion detection, in essence, is the search for changes in an
environment caused by an object moving. A program does this
by comparing two sets of input data about the environment and
deciding whether there is a significant difference between them.
In this chapter, we will compare literal images to try to detect
whenever something has moved.

It’s important to understand how one image is compared to
the last taken. Essentially, the program counts how many pixels
have changed since the last image. With this in mind, we must set
a threshold for the differences to be reported. If the threshold is
set at a low percentage of changed pixels, then the system will
flag minor events like branches or papers rustling in a breeze as
movement. If the threshold is set higher, it will take a more drastic
change to count as movement.

FIGURE 3.1: Environment before movement

FIGURE 3.2: Environment after movement

Pi Motion Detection 29

But not all changes to an image are caused by movement.
Suppose your camera is looking at a deserted street at twilight.
At the appropriate moment, the street lights will flicker to life.
The scene will change drastically—formerly dark shadows will
become warm pools of light. But does this count as movement?

This is where sensitivity comes in. Sensitivity refers to certain
parameters designed to help reduce the number of false posi-
tives reported by the system. If sensitivity is not taken into con-
sideration, the system will report any time there’s any significant
change between images. This is fine when someone walks in or
out of a room—but not when the light in the room is turned off.
We can screen out such events by including a contrast setting
with the camera.

HARDWARE

This chapter uses the same hardware listed in Chapter 1.

SET UP MOTION DETECTION

You will need to download the software needed for motion
detection. If you didn’t do so in Chapter 1, enter this command:

sudo apt-get install motion

While the packages are downloading, a prompt will come up
asking if you wish to continue with the installation. Just press Y
and then Enter to finish the download.

TESTING MOTION WITH GUI

The motion package is fairly ready to use once it’s installed. The
easiest way to test whether the program is operational is to work

Jumpstarting Raspberry Pi Vision30

using the Raspberry GUI. To get the package running, first enter
the command:

sudo motion

This command will start motion and have it record images. To
view what your camera is seeing, open the Pi’s web browser and
type in the address http://localhost:8081. This will establish a
connection to motion and display its images in the browser.

FIGURE 3.3: Streaming motion from localhost

When you first connect to the service, don’t be alarmed if
the images are small or the frame rate seems slow. These are the
default settings assigned to motion. We’ll go over how to recon-
figure the service in the next section.

TESTING MOTION WITH THE
COMMAND LINE

If you are only using the command line, testing motion isn’t too
complicated. The first thing you need to do is start motion:

sudo motion

http://localhost:8081

Pi Motion Detection 31

Now, because you don’t have the web browser to watch the
live feed from the camera, let the program run for a few seconds
before signaling it to stop. After running motion for about 30
seconds, enter the following to kill the program:

sudo service motion stop

Once motion is stopped, you can then try to look up the
images it took while it was running. By default, motion should
save its images to the current working directory. To check, type
the following:

ls

Once you execute this command, you should see a list of
JPEG files. Most are named with a time code followed by the
word snapshot. These are the snapshot images that motion takes
at a set rate to look for changes. There should also be an image
named lastsnap.jpg. This is the latest image taken by motion and
is updated each time motion captures a new photo. It is also what
you see when viewing motion in the browser.

The point of this test is to make sure motion is running as it
should in its default state. If the program is displaying what it sees
in the browser and it is writing files as described, then that means
motion is running fine. This test also acts as a quick introduction into
how to operate the program. You’re ready to move to the next step!

CUSTOMIZING MOTION

We mentioned earlier that it is possible to customize the settings
in motion in order to have the program suit your needs. Fortu-
nately, almost all these changes can be made and applied in a
single file: motion.conf.

To access motion.conf, open the file using nano:

sudo nano /etc/motion/motion.conf

Jumpstarting Raspberry Pi Vision32

FIGURE 3.4: motion.conf opened in nano

The configuration file for motion is lengthy to say the least,
but don’t be daunted. The different settings are documented and
explained within the file, and if you need additional information,
you can find plenty of online resources.

One of the perks of using nano to look at the file is that you
can search for keywords by pressing Ctrl-W. This makes navigat-
ing the file and finding specific settings much easier than having
to scroll down through the various configurations.

Let’s focus on some of the more basic options available.

NOTE  It is important to keep track of changes you make in
the configuration file. Needs vary from project to project and
mistakes are always a possibility, so unless you like the idea of
combing through the entire file for that one line of code, a record
of what you changed and what you changed it from is a good
thing to have on hand.

Pi Motion Detection 33

A good place to start in motion.conf is the height and width
values. As you saw, the default image in the browser is a bit on
the small side. That’s because the default values of height and
width are 240 and 320 pixels, respectively. If you want to view a
larger image, you simply need to replace those values with larger
numbers.

NOTE  To avoid weird dimensions with your images, you
should maintain the ratio between height and width (3:4). Also,
the valid range of dimensions is limited by your camera: you’re
never going to get a 1280×960 image from a camera with a
maximum resolution of 640×480.

For practice, let’s double height and width. Find those lines in
the file and edit them to say

width 640
height 480

Once you’ve specified the new dimensions, exit the file to test
them. To save the changes you made, press Ctrl-X followed by
Y, and then press Enter to reach the command line. Run motion
as you did in the previous section and see whether the image is
larger.

If the image in the browser is the same as before, you may
need to reboot the Pi to have the new settings take effect. To
initiate a reboot, at the command line type

sudo reboot

Once the Pi is rebooted and you are logged back in, you
should be able to start motion and see the changes.

One other value we should look at is threshold. The threshold
value determines how many pixels need to have changed

Jumpstarting Raspberry Pi Vision34

between two snapshots to trigger an event. By default, threshold
is set to trigger if 1,500 pixels have been changed.

Now recall what we said about the main principles of motion
detection at the beginning of this chapter. Although 1,500 may
sound like a high number, that is 1,500 pixels out of the entire
image. Using the default settings in motion, let’s calculate what
percentage 1,500 is of a 240×320 image:

240 × 320 = 76,800

1,500 / 76,800 = 0.02

Using the default settings, motion triggers an event whenever
there is a 2 percent difference between photos. That is far too
sensitive! With a threshold that low, an event could be triggered
by a fly buzzing by the camera. The sensitivity is increased even
more for a 480 × 640 image: 1,500 pixels represents a threshold
of 0.5 percent.

To make motion less sensitive and to help avoid drowning in
false alarms, let’s increase threshold. You can set threshold to
whatever you want, but for the sake of this project, shoot to make
it a manageable 25 percent. To find the correct number, simply
do the following calculations with your doubled dimensions:

480 × 640 = 307,200

0.25 × 307,200 = 76,800

Now that you know how many pixels equal a quarter of the
image, you can plug that number in the configuration file for
motion:

sudo nano /etc/motion/motion.conf

Find threshold and edit the line to say

threshold 76800

Pi Motion Detection 35

Now motion will trigger an event when you wave your hand
in front of the camera—but not when a bug flies around on the
other side of the room.

The rest of the configuration settings for motion are certainly
worth checking out and experimenting with, though doing so
would be a bit outside the scope of this book. If you’re inter-
ested in learning about the various settings, you can find a
good reference here: www.lavrsen.dk/foswiki/bin/view/Motion/
ConfigFileOptions.

STREAMING MOTION REMOTELY

Viewing motion remotely operates much like viewing it locally
on the Pi. Once it’s set up, you can stream what motion sees
from any web-enabled device, be it a phone, a laptop, or even
another Pi. Before you can do this, however, there are a few
things you’ll need.

First of all, you must enable remote streaming with motion.
Start by opening motion.conf:

sudo nano /etc/motion/motion.conf

Once the configuration file is open, find the stream_localhost
line. This value determines whether or not motion allows remote
streaming. To enable streaming, change it to read

stream_localhost off

With streaming now enabled, you just need to find the Pi’s IP
address so that you can connect to it. This is easy to do by typing
the following at the command line:

hostname -I

www.lavrsen.dk/foswiki/bin/view/Motion/ConfigFileOptions
www.lavrsen.dk/foswiki/bin/view/Motion/ConfigFileOptions

Jumpstarting Raspberry Pi Vision36

The output the command gives is the IP address of the Pi.
Armed with this knowledge, you can now stream motion from a
remote device. Making sure that the Pi is connected to the Inter-
net, open the web browser on your device and type the Pi’s IP
address in the address bar, followed by the port number 8081.
The bar should resemble the following:

http://192.165.76.3:8081

Start motion:

sudo motion

Enter the IP address and your browser should look just as it
did when you viewed motion locally on the Pi.

GOING HEADLESS

Streaming motion headlessly—that is, without connecting the Pi
to a monitor or keyboard—is simple enough to do. You know how
to watch the stream from motion remotely at this point, which is
half the battle. The other half is getting motion to run while the
Pi is headless.

There are two ways to accomplish this. The first is to connect
to the Pi from a remote computer via SSH and tell motion to run.

The other way is to have motion run automatically when the
Pi powers up. One of the best ways to do this is by using crontab.
The crontab (short for cron table) file is used for scheduling dif-
ferent commands and programs so that they run automatically
without the system administrator having to enter the same com-
mand every day.

To use crontab, first open the file for editing:

sudo crontab -e

http://192.165.76.3:8081

Pi Motion Detection 37

FIGURE 3.5: Selecting an editor for crontab

When you first open crontab, the system will ask you which
text editor you wish to use. At the prompt, select nano by typing
2 and pressing Enter. The crontab file should then open in the
command window.

Since you want to run motion at startup and not at any specific
time, we will ignore the traditional scheduling format. Instead,
scroll to the bottom of the file and enter the following:

@reboot motion

Now motion will run every time you boot up your Pi. Save your
edit and exit the file.

To test and make sure the changes you made work, reboot
your Pi:

sudo reboot

Then try to stream motion via the web browser. If everything is
operational, you should see the feed from motion in the window
without having to start the program manually.

Machine Learning:
Identifying People

in Images

So you’ve posted a photo to your favorite social media site
and it suddenly puts little boxes around each person’s face and
asks you to tag who they are. The first part—recognizing there’s
a face in the image—is facial detection. The second part is facial
recognition—putting a name to a face. The reason the site is ask-
ing you to name the people in the image? That’s so it can learn
to recognize that face in other pictures. Next thing you know,
it’ll be auto-suggesting people in other pictures—Facebook, for
example, is learning faces.

Now that you have a smart camera set up, we’re going to
add both facial detection (“there is a human face in the picture”)
and facial recognition (“and that face is my face!”). There are two
steps to this. First, we’ll install software that can detect whether

4

Jumpstarting Raspberry Pi Vision40

there is a face-shaped object in the image (facial detection); then
we’ll try to extract that object and see whose face it is (facial
recognition).

The same software does both—the first operation is quick,
and the second takes a little more effort. Just as with the pre-
vious projects, the software for doing the hard work is easy to

OpenCV
OpenCV, also known as the Open Source Computer Vision
Library (at https://opencv.org), is a library of over 2,500
image-handling algorithms. They can be used for everything
from interactive art, to mines inspection, to stitching maps
on the web or to advanced robotics. These algorithms can be
used to detect and recognize faces, identify objects, classify
human actions in videos, track camera movements, track mov-
ing objects, extract 3D models of objects, produce 3D point
clouds from stereo cameras, stitch images together to produce
a high-resolution image of an entire scene, find similar images
from an image database, remove red-eye from images taken
using flash, follow eye movements, and recognize scenery and
establish markers to overlay it with augmented reality.

In short, it’s free industry-grade software that is easily set up
via Python. We’ll use OpenCV to do facial detection as well as
facial recognition. If you decide to delve deeper into image pro-
cessing, the best part is that OpenCV can do a lot more than
just faces. If you want to dig deeper on the background theory
and advanced capabilities of machine learning as it applies to
images, you can read up on its full abilities at https://opencv.org.
We’ll work off their specific section on facial recognition here:

https://docs.opencv.org/2.4/modules/contrib/doc/facerec/
facerec_tutorial.html

https://opencv.org
https://opencv.org
https://opencv.org
https://docs.opencv.org/2.4/modules/contrib/doc/facerec/

Machine Learning: Identifying People in Images 41

install. It’s a package called OpenCV, and you probably already
installed it in Chapter 1. But if not, install it with

sudo apt-get install opencv
pip install numpy

(Numpy is a numerical library that is required by and speeds up
OpenCV.)

We’ll pull out the core parts of the tutorial for our specific
SpyPi work. To begin, we’ll get going with the core functionality
for your Pi system. After that, if you want to explore deeper, you
have all the tools you’ll need in place to do so.

STEP 1: QUICK FACE BOXING

Let’s start by downloading a ready-to-go facial recognition script
(from a user named Shantnu Tiwari, username shantnu) that finds
faces and draws boxes around them in real time. Navigate to this
website from your Pi:

https://github.com/shantnu/Webcam-Face-Detect

Click the Download button to download the zip file. Then, in
your terminal, unpack it:

unzip ../Downloads/Webcam-Face-Detect-master.zip

Then, to run it:

cd Webcam-Face-Detect-master
python webcam.py

Figure 4.1 shows the code in that webcam.py file.

https://github.com/shantnu/Webcam-Face-Detect

Jumpstarting Raspberry Pi Vision42

FIGURE 4.1: Code from Webcam-Face-Detect-master/webcam.py

That’s it. You will now see the view from your webcam, and
as the software detects a face, it will draw a box around the face.
The video is choppy, with slight delays between what you do and
what it shows; this is because it takes a while for the software to
run the facial detection. We’ll tackle what the software is doing
and add coolness to it, but this script is a great way to show how
easily you can do facial recognition on the Pi.

NOTE  Shantnu Tiwari, who provided this initial face-detection
script, has other code bits you can run on his GitHub site (https://
github.com/shantnu/). He runs the website pythonforengineers
.com, which includes the free online book Python for Scientists
and Engineers, as well as other ebooks he’s written.

https://github.com/shantnu/
https://github.com/shantnu/
pythonforengineers.com
pythonforengineers.com

Machine Learning: Identifying People in Images 43

Figure 4.2 shows the first result, the author “found” by the
software.

FIGURE 4.2: Author’s face found and boxed by SpyPi

It runs without you needing to understand it, but where is
the fun in that? Let’s go deeper. First, look at the script (click
it to open it in an editor, or if you use the terminal, type less
webcam.py). The script is very short and written in Python; it loads
the opencv library that handles the image processing as well as
an XML file that contains mathematical definitions created by
researchers that define what a computer will recognize as “a
face.” The script then calls up the web camera and runs a loop to
apply the face-finding algorithm.

The first five lines of text set up the OpenCV package and
the XML file. The while True: line says “loop forever.” The lines
marked with # are comments that describe what the following
lines in the code do. First the script captures a frame; then it
draws a rectangle around the frame and displays that frame in
the rectangle. The final two lines do cleanup. If you press Q at
any point during the demo, the program exits, which is handy
(and means you don’t need to press Ctrl-C as in earlier chapters).

This script is good enough to tell a person from a stuffed
animal or pet, as you can see in Figure 4.3. The accuracy of facial
recognition software (even in industrial uses) is still a work in

Jumpstarting Raspberry Pi Vision44

progress, so we’ll look at the sorts of errors you can expect, as
well as let you try different methods.

FIGURE 4.3: Face-finding test: person vs. stuffed animal. The software cor-
rectly found the person and did not match on the stuffed animal.

An interesting point about any image detection is that you
get to choose between a false positive—it matches a face even
if one isn’t there—and a false negative—there’s a face but it
doesn’t find it. Let’s look at some image examples of this basic
face-finding problem. Figure 4.4 contains both a false positive—it
“finds” a face in some wall tiles that isn’t really a person—and a
false negative—it fails to find the author’s face.

FIGURE 4.4: False positive (box but no face) and false negative (face and
no box)

It’s also worth noting that software relies on patterns, so if the
only thing in the field of view has some face-like aspects, such
as eyes, it might find a match. If a stuffed animal is the only thing
in the camera’s field of view, it’s not surprising if the software
sometimes (but not always) tries to tag it as a face. We do this as

Machine Learning: Identifying People in Images 45

humans—draw any two dots plus a line, and we’ll see a face. This
phenomenon, called pareidolia, means humans tend to see faces
in objects. Computer code can have the same problem. A classic
example is the face seen in an outlet (Figure 4.5).

FIGURE 4.5: Pareidolia—seeing faces in inanimate objects

We can run into this phenomenon with software, particularly
if we’re trying to fool it. The software doesn’t know what a “per-
son” or “object” is, and it’s looking for patterns. If you mess up the
patterns—put on Juggalo makeup, for example—you can confuse
facial recognition. Likewise, an object such as a toy made to look
like it has a face might find the software latching onto part of its
face-like structure to falsely match a face.

Jumpstarting Raspberry Pi Vision46

FIGURE 4.6: The stuffed animal region around the eyes fools the software
into thinking it’s a face.

Either way, you now have real-time facial detection working
on your SpyPi. Let’s build on this to do more.

Face Algorithms
OpenCV can automatically find a face-like object using one of
two built-in methods. Why two? One method (the Haar feature)
doesn’t find faces easily, but when it finds a face you can trust
that it’s actually a face (which means fewer false positives). The
other method (LBP) is faster and finds more faces, but it also
is more likely to tag something as a face that isn’t really a face
(which means more false positives). Since the code we started
with uses Haar, we’ll keep going with that.

A LITTLE IMAGE THEORY

How do you recognize someone? The most common human way
is to notice a specific feature or set of features that identifies a
specific person: that person with the dark hair and big nose, that
other person with the eyeglasses and red lips. We latch onto
these for quick identification.

Machine Learning: Identifying People in Images 47

When you do this with a group of people you’ve just met,
you compare them to one another. It’s no good saying “she’s the
one with dark hair” if everyone in the group has dark hair, so
you make quick comparatives for just that group—the one red-
head, the one with the narrow eyes, the one with glasses. This
kind of quick sorting out of a group is the Eigenfaces method
in OpenCV—within a group of known photos, it’s how you tell
one from another. The downside of this approach is that you can
later get confused if a person changes her hairstyle or takes off
his glasses (Clark Kent style!), or even if we see that person in
different lighting.

More often, you’ll want to make a list of features that let you
distinguish any face from the others: not just “the person with
glasses” but a checklist—“Glasses: yes/no. Dark hair: yes/no” and
so on. Then each person has a profile of features that you can
use to compare with others. That’s the Fisherfaces method in
OpenCV. Sure, the computer isn’t smart enough to know what
“glasses” or “hair” are, but it can teach itself that the “dark blob
at the top of the face-shape” is different from the “light blob at
the top of the face-shape”—and that’s practically the same thing
for our purposes.

Finally, you can go full-on machine thinking and instead of
extracting components of faces to make a checklist, you let the
computer do a pixel-by-pixel mapping of how faces change as
you scan left to right and up and down. So where we see an “eye,”
the computer just says, “There is a white zone with a non-white
dot in the middle.” That’s the Local Binary Pattern Histogram
(LBPH) method in OpenCV.

In Python, these modules are called as follows:

Eigenfaces: createEigenFaceRecognizer()

Fisherfaces: createFisherFaceRecognizer()

Local Binary Patterns Histograms: createLBPHFaceRecognizer()

Jumpstarting Raspberry Pi Vision48

These are the three different underlying algorithms available
in OpenCV, each with its own pluses and minuses. We’ll be using
LBPH, but (as you’ll see) you can change just one line in the code
to use the other algorithms.

STEP 2: TRAINING YOUR CAMERA

Once you have an algorithm, you need to train your camera with
the set of faces you think it will see. For example, if you want the
camera to identify any visiting students and you have a set of
student photos, you first make the software aware of what the
students look like; then the camera can not only detect that a
face exists but tag it and label it as whose face it is.

Now that your camera can detect a face, we want to make it
tell you whether that’s a specific known face, thus creating an ID
system. To do this, you’ll need an image of any and all faces you
want it to recognize so that you can “train” your camera system
to spot specific people.

So, take a bunch of pictures of the faces of people you want
to enter in its system. You’ll then train the system by loading
those in. Once trained, the program can then automatically rec-
ognize known individuals.

An untrained system can still put a rectangle around a face
and say “There is a face,” but for identification purposes, training
it is useful.

To get this started, first you’re going to modify the previous
code to make it easier to rework. We already did this and put it
up on GitHub at

https://github.com/sandyfreelance/SpyPi

Go get it and put it on your Pi, and we’ll walk through what it
does. This code will 1) display a new image every second, 2) draw
rectangles around faces, 3) match any faces it “knows,” and 4)

https://github.com/sandyfreelance/SpyPi

Machine Learning: Identifying People in Images 49

let you also train it by telling it to add a face to its memory. The
opening lines just set up the variables and load OpenCV and
other programs:

import cv2
import sys
import numpy
import time
import pickle
cascPath = "haarcascade_frontalface_default.xml"
faceCascade = cv2.CascadeClassifier(cascPath)
face_recog = cv2.createLBPHFaceRecognizer()
vid_cap = cv2.VideoCapture(0)
all_faces = [] # list to store 'known' faces in
face_count = 0
savefile = 'webfaces.dat'

After that, the code asks if you want to reload previously
saved “known” faces:

yn = raw_input("Do you want to import previously saved faces? y/n")
try:
 if yn[0] == "Y" or yn[0] == "y":
 infile = open(savefile,"rb")
 all_faces = pickle.load(infile)
 infile.close()
 face_count = len(all_faces)
 labels = range(face_count)
 face_recog.train(all_faces,numpy.array(labels))
 print face_count,"faces loaded"
except:
 print "No faces loaded"
 pass

Enough preamble.

STEP 3: IDENTIFYING WHOSE FACE
YOU FOUND

The meat of the code starts with the rectangle-drawing functions
from before and adds a little face recognition. First, we use the

Jumpstarting Raspberry Pi Vision50

same routines from the previous code that grab an image and
draw a box around it:
def detect_face(vid_cap, all_faces, face_recog, face_count):
 faces_found = [] # empty holder for storing what we find
 # Capture frame-by-frame
 ret, frame = vid_cap.read()
 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
 faces = faceCascade.detectMultiScale(
 gray,
 scaleFactor=1.1,
 minNeighbors=5,
 minSize=(30, 30),
 flags=cv2.cv.CV_HAAR_SCALE_IMAGE
)
 # Draw a rectangle around the faces
 for (x, y, w, h) in faces:
 cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)
 # also can put a trigger here

What does the comment #also can put trigger here mean? This
is where you can put code that triggers when any face is found,
in case you want to make an automatic door opener or something
similar. It’s just a comment indicating that this is a good place to
put instructions for facial detection (before they are recognized).

Now for the next bit. If we can draw a rectangle around a
face, we can extract just the face and then compare it with any
previous faces we might have stored in a list. We always convert
faces to grayscale, which removes color imbalance concerns (and
is also the format OpenCV expects). So do this:

extract just the face as its own image
thisface = frame[y:y+w, x:x+h]
grayface = cv2.cvtColor(thisface, cv2.COLOR_BGR2GRAY)
faces_found.append(grayface)

Here’s the fun part. It’s only one line that compares a new
face found with “known” faces, using OpenCV’s .predict method:

 if face_count > 0:
 id = face_recog.predict(grayface)
 print "Found face number",id[0]

Machine Learning: Identifying People in Images 51

And to close off this part, we again display it onscreen and
return any faces we found to our main calling program:

Display the resulting frame
cv2.imshow('Video', frame)
return faces_found

That wraps up the code for the new subroutine. Next we’ll put
in some bookkeeping and add in the OpenCV functions that do
the recognition. We again use a “keep looping until we tell you
otherwise” construct, and we allow for two different keypresses:

Q quits the program.

S saves the currently rectangle-highlighted face as a “known”
face.

So we train the system by pressing S when a known person is
there, and then the system automatically matches it to any new
faces found. You could move the training to its own program,
but having the script allow you to both train and predict made it
smaller and easier.

while True:
 faces_found = detect_face(vid_cap, all_faces, face_recog,
 face_count)
 checkme = cv2.waitKey(100)
 if checkme & 0xFF == ord('q'):
 print "Exiting"
 break
 if checkme & 0xFF == ord('s') and len(faces_found) > 0:
 # assumes we are storing one and only one face
 print "Storing a new face"
 face_count = face_count + 1
 all_faces.append(faces_found[0])
 labels = range(face_count)
 face_recog.train(all_faces,numpy.array(labels))

Yet again, all the real work is being done in the OpenCV
.train() method call. You pass it a list of faces you want it to
learn, and it handles the rest.

Jumpstarting Raspberry Pi Vision52

Now to wrap everything up by cleanly closing out our win-
dows (once the user presses the Q key), and then also saving
any faces you marked as known (by pressing S, perhaps multiple
times):

When everything is done, release the capture
video_capture.release()
cv2.destroyAllWindows()
also save any 'trained' faces
outfile = open(savefile,'wb')
pickle.dump(all_faces, outfile)
outfile.close()

How well does it work? In Figure 4.7 we pressed the S key to
tell the software to store this fine face it found.

FIGURE 4.7: Training your SpyPi to recognize me (runtime on left, video
capture on right)

Then I’ll move around and see if it can still find me. It can! It
keeps listing “Found face number 0” in its runtime window. You
can also modify the code and replace that line with, well, what-
ever you want your Pi to do. You can have it trigger an alarm, send
a message, and many other things, by combining other Jumpstart
guides with this one. We provide the face recognition; you add
the hardware.

So you can see how it saves trained data, Figure 4.8 shows
a new run that loads the automatically saved data from the pre-
vious run. It still recognizes me, because now I’m in its saved
trained data set.

Machine Learning: Identifying People in Images 53

FIGURE 4.8: Trained system keeps finding me (runtime on left, video cap-
ture on right).

And, to complete the tests, we check whether I can fool it
with a cunning disguise.

FIGURE 4.9: Even using a Santa hat does not fool the SpyPi face
recognizer.

TRIGGERING AND FUTURE STEPS

Once you have categorized found faces as either known or
unknown, you can add triggers to your code to make your Pi
react. Maybe you want it to flash an LED (or lock a door) if it sees
a face it doesn’t recognize. Or flash an LED (or open a door) if it
sees a face it does know. With the previous code and a little work
in Python, you can add in these “triggered” effects by editing the
code provided. Just take the line that prints “face not found” and
have it call a Python routine to carry out your automated wishes.

Jumpstarting Raspberry Pi Vision54

Using the Pi Ribbon Camera
As usual, if you are using the Pi ribbon camera instead of a USB
web camera, you just need to change a few lines in our examples
to repoint our code to the correct camera. We’re not going to
rewrite all the code here, but you should be able to figure out
the mods easily enough. To capture with a web camera, we were
using code with this type of call:

camera = cv2.VideoCapture(0)
retval,image=camera.read()
if retval:
 cv2.imwrite('test.jpg',image)

To use the Pi ribbon camera instead, you use constructs of this
form:

from picamera import *
camera = PiCamera()
camera.capture('image.jpg')

The picamera package is installed on the Pi automatically, and
full documentation is at http://picamera.readthedocs.io/.

Put simply, once code can find a face, it can act on that knowl-
edge. Building this system into a security system is one possi-
bility. Saving only images of faces is another surveillance-type
activity you can use it for. There’s not a lot of use for, for example,
one week of raw video, even if you can find faces. However, if you
capture faces only when they appear and put that together, you
have a video log of all the people who traveled past your system.

Add in our earlier motion-detection and time-lapse work, and
you have a system that can capture time-lapse images only when
there’s activity involving people with faces:

** Have it take pictures only when there’s motion (Chapter 3).

http://picamera.readthedocs.io/

Machine Learning: Identifying People in Images 55

** For those pictures, if there’s a face, have it save the image
of the face (this chapter).

** Build those into a time-lapse movie of “people who visited
us” (Chapter 2).

Faces are only the start. Using the same OpenCV libraries,
you can perform recognition of other objects, edge detection,
real-time color filtering or background subtraction, conversion to
black and white, motion trails, and all sorts of other image manip-
ulation (see https://pythonprogramming.net/loading-images-
python-opencv-tutorial/)—even converting images in near real
time to artistic styles like Van Gogh or A-ha/Take-On-Me stylings
(see https://larseidnes.com/2015/12/18/painting-videos-with-
neural-networks/).

At this point, armed with a Pi and some simple Python soft-
ware, you can bend image reality to do everything from recogni-
tion to alteration. Enjoy capturing and manipulating visual data!

https://pythonprogramming.net/loading-images-python-opencv-tutorial/
https://pythonprogramming.net/loading-images-python-opencv-tutorial/
https://larseidnes.com/2015/12/18/painting-videos-with-neural-networks/
https://larseidnes.com/2015/12/18/painting-videos-with-neural-networks/

