
G
ettin

g
 S

tarted
 w

ith
 A

d
afru

it C
ircu

it P
layg

ro
u

n
d

 E
xp

ress

Getting Started
with Adafruit Circuit
Playground Express

The Multipurpose Learning and
Development Board with Built-In
LEDs, Sensors, and Accelerometer

Mike Barela

Maker Media, Inc.
San Francisco

Getting Started
with Adafruit Circuit
Playground Express
THE MULTIPURPOSE LEARNING
AND DEVELOPMENT BOARD
WITH BUILT-IN LEDS, SENSORS,
AND ACCELEROMETER

Mike Barela
Foreword by Limor “Ladyada” Fried

Copyright © 2018 Mike Barela. All rights reserved.

Printed in Canada.

Published by
Maker Media, Inc.
1700 Montgomery Street, Suite 240
San Francisco, CA 94111

Maker Media books may be purchased for educational, business, or
sales promotional use. Online editions are also available for most titles
(safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Publisher: Roger Stewart
Editor: Patrick Di Justo
Copy Editor: Elizabeth Welch
Proofreader: Scout Festa
Interior and Cover Designer and Compositor: Maureen Forys,
Happenstance Type-O-Rama
Indexer: Valerie Perry, Happenstance Type-O-Rama

September 2018: First Edition

Revision History for the First Edition

2018-09-15 First Release

See oreilly.com/catalog/errata.csp?isbn=978-1-68045-488-8 for release details.

Make:, Maker Shed, and Maker Faire are registered trademarks of Maker
Media, Inc. The Maker Media logo is a trademark of Maker Media, Inc. Getting
Started with Adafruit Circuit Playground Express and related trade dress are
trademarks of Maker Media, Inc. Many of the designations used by manu-
facturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and Maker Media, Inc. was
aware of a trademark claim, the designations have been printed in caps or
initial caps. While the publisher and the author have used good faith efforts
to ensure that the information and instructions contained in this work are
accurate, the publisher and the author disclaim all responsibility for errors or
omissions, including without limitation responsibility for damages resulting
from the use of or reliance on this work. Use of the information and instruc-
tions contained in this work is at your own risk. If any code samples or other
technology this work contains or describes is subject to open source licenses or
the intellectual property rights of others, it is your responsibility to ensure that
your use thereof complies with such licenses and/or rights.

978-1-68045-488-8

corporate@oreilly.com
oreilly.com/catalog/errata.csp?isbn=978-1-68045-488-8

Safari® Books Online

Safari Books Online is an on-demand digital library that delivers expert
content in both book and video form from the world’s leading authors in
technology and business. Technology professionals, software developers, web
designers, and business and creative professionals use Safari Books Online as
their primary resource for research, problem solving, learning, and certification
training. Safari Books Online offers a range of plans and pricing for enterprise,
government, education, and individuals. Members have access to thousands
of books, training videos, and prepublication manuscripts in one fully search-
able database from publishers like O’Reilly Media, Prentice Hall Professional,
Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press,
Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann,
IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For
more information about Safari Books Online, please visit us online.

How to Contact Us

Please address comments and questions to the publisher:

Maker Media, Inc.
1700 Montgomery Street, Suite 240
San Francisco, CA 94111

You can send comments and questions to us by email at books@makermedia.com.

Maker Media unites, inspires, informs, and entertains a growing community
of resourceful people who undertake amazing projects in their backyards,
basements, and garages. Maker Media celebrates your right to tweak, hack, and
bend any Technology to your will. The Maker Media audience continues to be a
growing culture and community that believes in bettering ourselves, our envi-
ronment, our educational system—our entire world. This is much more than an
audience, it’s a worldwide movement that Maker Media is leading. We call it the
Maker Movement.

To learn more about Make: visit us at make.co.

makezine.com

Contents

	 Foreword	 ix
	 Preface	 xi

1	 Introducing Circuit Playground Express	 1

2	 A Tour of Circuit Playground Express	 7
Circuit Playground Express Outputs	 10
Circuit Playground Express Inputs	 12
Powering Your Circuit Playground Express	 13
Operating System Software Setup	 17
Chapter Questions	 20

3	 Getting Started with Microsoft MakeCode	 21
Connecting a Circuit Playground Express to a Computer	 22
MakeCode: Your First Program	 24
Uploading MakeCode to Circuit Playground Express	 30
Modifying a Program	 39
Saving a Program	 44
Under the Hood: JavaScript	 46
Wrap-Up	 48
Chapter Questions	 48

4	 Microsoft MakeCode and Interactivity	 49
Using Buttons	 50
Shake, Rattle, and Roll	 63
Making the Accelerometer Display Multiple Animations	 67

vi GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

Using the Slide Switch	 70
Your Turn: Slide Switch	 74
JavaScript	 74
Wrap-Up	 76
Chapter Questions	 76

5	 Advanced Microsoft MakeCode	 77
Sound and Music	 78
Listening for Sounds	 85
Wrap-Up	 92
Chapter Questions	 92

6	 Coding with CircuitPython	 93
CircuitPython vs. Other Python Implementations	 95
Installing CircuitPython	 96
Text Editors	 102
Eject or Sync the Drive after Writing	 103
Using Mu	 105
Creating Python Code	 107
Examining the CircuitPython Blink Code	 114
Output from Circuit Playground Express
to the Computer	 115
The Adafruit Circuit Playground Express Library	 119
Running Code on Express via the REPL	 124
Wrap-Up	 126
Chapter Questions	 126

7	� Using the Circuit Playground Express
CircuitPython Library	 127
Reading Sensors	 128
File Input and Output	 131
Capacitive Touch and Music	 142
Emulating a Computer USB Keyboard	 155

viiCONTENTS

Mouse Emulation	 161
Wrap-Up	 165
Chapter Questions	 165

8	 Using the Arduino Development Environment	 167
The Arduino Programming Language	 170
Installing the Arduino IDE	 171
Structure of an Arduino Program	 177
Uploading Code to Circuit Playground Express	 184
The Circuit Playground Arduino Library	 191
Circuit Playground Library Functions	 195
Example Code	 199
Libraries and Compatibility	 201
Wrap-Up	 204
Chapter Questions	 205

A	 Troubleshooting	 207
USB Cable and Power Issues	 207
Connectivity Issues	 210
CircuitPython Issues	 213
Arduino IDE Issues	 215
Common Arduino Library Problems	 215
Error Messages	 218
Usage Issues	 219
Manufacturer Support	 221

B	 Reference Materials	 223
On the Internet	 223
Publications	 225

	 About the Author	 227
	 Index	 229

Foreword

The story of Circuit Playground begins maybe eight years ago.
Adafruit was still an apartment company then. My partner

and I were chatting with a middle school superintendent who
told us that the school was being pitched STEM (science, tech-
nology, engineering, and mathematics) education products for its
students (the products were similar to tablets with sensors that
could plug in). But at $500 each, the school could afford only one
per classroom. So twenty-plus kids would have to share.

At the time, Arduino was becoming popular—it’s a lot less
expensive! But younger students struggled with learning C++
(especially if they were coming from block-based Scratch pro-
gramming), and the setup could get complicated since Arduino
requires a special development environment.

For a long time, I didn’t have a solution to these problems. The
slick technology was just too expensive, and the low-cost edu-
cational kits were too hard to use. But eventually, enough stuff
was invented (low-cost ARM Cortex microcontrollers! NeoPixels!
Embedded Python!) that we were able to make the ultimate cir-
cuit board for teaching coding and electronics.

That’s where Circuit Playground comes in. Easy to use, fun to
program, and affordable for any student, it works with the Mac,
Windows, Linux, Chrome OS, and even Android! You can use it at
home, at school, at work, or on a library computer—no software
needs to be installed.

We poured all the know-how and experience we’ve had over
10 years of selling educational electronics to create something

x GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

for everyone. Whether you want to build cosplay props, scientific
experiments, robotics, or spy gadgets—in drag-n-drop Microsoft
MakeCode, interpreted CircuitPython, or Arduino—Circuit Play-
ground Express will be your companion as you learn and create.

—Limor “Ladyada” Fried, founder and engineer, Adafruit

Preface

Adafruit Circuit Playground Express provides a low-cost way to
explore programming, sensing, and interaction. The Express

is a microcontroller-based electronics and software development
board. It is programmable in Microsoft MakeCode, JavaScript,
and Python and with the Arduino development environment. Its
built-in motion, temperature, and light sensors let Circuit Play-
ground Express sense the world around it. Its 10 NeoPixel lights
and speaker allow Circuit Playground Express to communicate
with the outside world.

Circuit Playground Express is different from many beginning
electronics available today. Out of the package, Circuit Playground
Express can be connected to a computer that runs any operating
system. Load Microsoft MakeCode in an Internet-connected web
browser, and in less than 15 minutes you’ll have an interactive
project all your own.

Think—would you fancy clothes or shoes with LEDs that
dance to movement and music? Would you like a musical synthe-
sizer that plays your choice of sounds, even using fruit as your
input? Perhaps a light-up pin that makes Star Trek–like sounds
when tapped? All these and many, many more can be built using
Circuit Playground Express right out of the package!

This book provides the information to get you started using
Circuit Playground Express quickly. The information and ideas
in the book may be the foundations for your own projects and
explorations.

xii GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

WHO THIS BOOK IS FOR

This book is for the enthusiast, the student, the curious person
who wishes to expand their knowledge of making through inter-
activity, sensing, lights, or sound.

Skills that are useful in working through this book:

** A knowledge of the fundamentals of what software and
hardware are.

** Experience with desktop or laptop computers running an
operating system such as Microsoft Windows, Apple macOS,
Chrome OS/Chromebook, or Linux. Skills include navigating
a filesystem and selecting specific files to use.

** Use of a graphical Internet web browser. Many are available,
including Chrome, Firefox, Safari, Internet Explorer, and
Microsoft Edge.

** Use of a text-based editor on one of the listed operating sys-
tems and the ability to open a text file, change the file, and
save the file both to the computer disk and to a flash drive
connected to the computer.

Working with Circuit Playground Express is suitable for
beginners who do not know electronics or programming. After
you finish reading, you can use this book as a reference for the
techniques presented.

PREPARATION

There is no required reading to work with this book, but here are
some suggested resources that you may draw on to better under-
stand particular subjects as the book progresses.

xiiiPREFACE

MakeCode
The Microsoft MakeCode.org website (https://makecode.com/#learn)
is a good reference. Adafruit has a free tutorial on learning Make-
code (https://learn.adafruit.com/makecode). Adafruit continually
publishes new projects and tutorials on Circuit Playground Express
at learn.adafruit.com (https://learn.adafruit.com/). Finally, Adafruit
has support forums for assistance at forums.adafruit.com (https://
forums.adafruit.com/).

Python Basics
The website python.org (www.python.org) provides free materi-
als (www.python.org/about/gettingstarted/) to help you learn the
Python programming language.

Arduino
The book Getting Started with Arduino, Second Edition, by Massimo
Banzi (co-creator of Arduino), is a good resource to start with. I
also recommend the Adafruit Learn Arduino series (https://learn
.adafruit.com/lesson-0-getting-started), available for free online.
Both offer an introduction to the Arduino open source electronics
prototyping platform, including programming.

WHAT YOU WILL WANT TO HAVE ON HAND

To program Circuit Playground Express, you will need a Windows,
Mac, or Chromebook computer with a USB port. You need Inter-
net access to run the Microsoft MakeCode editor and to download
example code, rather than typing it in yourself.

xiv GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

A Good USB Type A Male-to-Male
Micro-B Cable
I cannot stress this enough: get a good USB cable for programming
Circuit Playground Express. Please consider buying a substantial
USB type A male end to type Micro-B male cable, 3 feet (1 meter)
long or so (longer or shorter is fine). Frustration and questions
come when unworkable USB cables are pressed into service. Such
cables, more often than not, do not have the USB data wires
required for communicating between the computer and the Cir-
cuit Playground Express. Worn cables may work intermittently
when bent just right—never good. A good cable will save you
hours of grief.

Overall, working with Circuit Playground Express requires
very little knowledge other than how to observe and how to
innovate.

CONVENTIONS USED IN THIS BOOK

The following typographical conventions are used in this book:

** Menu selections are shown by a series of options separated
by the F symbol (e.g., choose Tools F Board).

** Keyboard entries are shown in boldface (for example, enter
adafruit).

** Monospaced font is used for program listings, as well as
within paragraphs to refer to program elements such as
variable or function names, filenames, file extensions, data-
bases, data types, environment variables, statements, and
keywords.

xvPREFACE

Examples
This book is here to help you get your job done. In general, you
may use the code in this book in your programs and documenta-
tion. You do not need to contact us for permission unless you’re
reproducing a significant portion of the code. For example, writ-
ing a program that uses several chunks of code from this book
does not require permission. Selling or distributing a CD-ROM of
examples from Make: books does require permission. Answering
a question by citing this book and quoting example code does not
require permission. Incorporating a significant amount of exam-
ple code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution
usually includes the title, author, publisher, and ISBN. For exam-
ple: Getting Started with Adafruit Circuit Playground Express, by
Mike Barela (Maker Media). Copyright 2018, 978-1-68045-485-7.

If you feel your use of code examples falls outside fair use or the
permission given here, feel free to contact us at bookpermissions@
makermedia.com.

Introducing
Circuit Playground

Express

The world around us is becoming increasingly interactive.
Objects react to people and people react to objects. We inter-

act with smart assistants like Amazon Alexa, Google Assistant,
Apple Siri, Microsoft Cortana, and IBM Watson. Though “smart,”
they require a constant connection to the Internet and expensive
interface boxes.

Smart objects may be more modest and special purpose, often
for a very low cost. We may wish to wear clothing that blinks when
we walk or that indicates when something is happening, such as
the weather getting colder. The technology needed to run these
and similar projects is modest in comparison to corporate smart
assistants. Small, programmable electronics can be programmed
by you, at any time, for any purpose you would like. The Adafruit
Circuit Playground Express is one such programmable device (see
Figure 1.1).

1

2 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

FIGURE 1-1. Circuit Playground Express from Adafruit Industries

You may have heard of some of the devices behind the pro-
liferation in personal programmable electronics. The Arduino
and Raspberry Pi are probably the best known; the micro:bit is
also being introduced into classrooms. These and other devices
often require a good number of external components to do much
beyond basic demonstrations. There are few learning boards at an
affordable price that do not require extra parts.

Enter Limor “Ladyada” Fried (Figure 1-2). She studied engi-
neering at the Massachusetts Institute of Technology (MIT).
Starting in her dorm room, she published electronic projects on
the Internet for free. People started asking if she sold the parts
used in her designs, and she did so, founding the company Ada-
fruit Industries, LLC. She moved the company from MIT to Man-
hattan in 2005, and Adafruit has grown due to Ladyada’s popular
lineup of information and electronic products.

3Introducing Circuit Playground Express

FIGURE 1-2. Limor “Ladyada” Fried, engineer and founder of
Adafruit

Limor likes to call Adafruit “a learning company that sells
electronics” rather than a company that just provides parts and
generic support. Adafruit has well over fifteen hundred tutorials
on the Adafruit Learning System at https://learn.adafruit.com/ to
guide people on a wide range of electronic projects using its prod-
uct line. Adafruit provides guides under the Circuit Playground
name. This includes electronic characters (see Figure 1-3), videos,
and easy-to-use electronics.

FIGURE 1-3. The Adafruit Circuit Playground characters

https://learn.adafruit.com/

4 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

The electronics beginner products are near and dear to the
Adafruit mission. They answer the question, “Can we produce an
affordable device, allowing people to learn and interact quickly
and easily?”

The result is the Circuit Playground line of products, which were
designed from the start to be user friendly and packed with features,
at a price any hobbyist or classroom can afford. The first board was
Circuit Playground Classic (Figures 1-4 and 1-5, left). Later, Adafruit
refined the design, creating Circuit Playground Express (Figures 1-4
and 1-5, right). The Express is the focus of this book.

FIGURE 1-4. Circuit Playground Classic (left) and Circuit Play-
ground Express (right)

FIGURE 1-5. On the back, identifying Circuit Playground Classic
(left) and Circuit Playground Express (right)

5Introducing Circuit Playground Express

Circuit Playground Express is tiny—only 2g (5cm) in diame-
ter. This small space is filled with miniature electronics goodness.
Fourteen inputs and 20 outputs provide a number of ways to
sense and interact. At its heart is the powerful yet easily program-
mable Microchip ATSAMD21 microcontroller. A small flash chip
enables Circuit Playground Express to act like a USB flash storage
drive (sometimes called a thumb drive). It can be powered from
a USB cable connected to a computer or via an attached battery
pack. The board’s capabilities easily allow for many different types
of projects.

The Circuit Playground Express ease of use extends to pro-
gramming as well. Programming sounds complicated, and it was in
early electronics design. But modern products such as Circuit Play-
ground Express are designed with ease of coding baked in. Circuit
Playground Express can be programmed in Microsoft MakeCode,
an environment similar to the Scratch programming language. The
board can also be programmed with CircuitPython, an onboard
subset of the popular Python language. Finally, Express may be
programmed via the Arduino Integrated Development Environ-
ment (IDE), using the C and C++ programming languages along
with hundreds of existing public domain code libraries. All three
methods of programming are available at no cost.

Freedom is part of the Circuit Playground Express design.
Adafruit freely provides all the information available to under-
stand and build the board through open source. Open source is a
movement where hardware and software are freely available for
study or reuse. The spirit of open source hardware and software
has been adopted by a large number of people and companies
worldwide, accelerating the ability to design new things by uti-
lizing concepts from other open source projects. And this con-
cept enables us to study and understand how Circuit Playground
Express functions, allowing for a better understanding of what is
going on “behind the scenes.”

6 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

Throughout this book, you will learn the various ways to
interact with a Circuit Playground Express. The examples will
demonstrate the basics. Readers are encouraged to go beyond the
examples to build their own projects and to realize their own cre-
ative ideas.

In the next chapter, we’ll look in-depth at the capabilities of
Circuit Playground Express, plug it in, and “kick the tires.”

A Tour of Circuit
Playground

Express

L et’s look at Circuit Playground Express in detail. On the front
you’ll see the features outlined in Figure 2-1.

FIGURE 2-1. The features of Circuit Playground Express

2

8 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

The microcontroller is the heart of the board. It processes
input, makes detailed calculations, and presents outputs.

As of this writing, the chip used on Circuit Playground
Express is the ATSAMD21G18A-AU manufactured by Microchip
Technology (formerly Atmel). This processor has more features
than the typical Arduino and runs at a speed eight times faster
than the Arduino Uno. The extra processing capability of the
microcontroller allows for advanced features such as multiple
inputs and outputs, true analog output, Universal Serial Bus
(USB) communications with a host computer, and hardware-as-
sisted capacitive touch control.

For the technically minded, the microcontroller is based on
the ARM Cortex-M0+ running at 48MHz. It has 48 input/output
pins, 256KB of flash memory, and 32KB of static random access
memory (SRAM). Some of the flash memory is used by a boot-
loader program to allow the user to easily interact with Circuit
Playground Express, and the rest is available for user code.

As faster processors become available at affordable prices, it
is conceivable that Adafruit may substitute a new chip for the
ATSAMD21 or otherwise enhance the design. But Adafruit has
assured customers that the functionality of any revised Circuit
Playground Express will be the same to the user. Newer boards
may have more flash memory, operate faster, or have a feature or
two in addition to the capabilities we’ll discuss, but all the pro-
grams and concepts in this book will remain on point for years
to come.

The flash memory chip works like a flash drive (or a thumb
drive or SD card) to store files when using CircuitPython. Space
is small by modern standards, only 2MB, but this is usually plenty
for a Python program. This chip may also be accessed via the Ardu-
ino programming environment, but it takes more code than to
access it via CircuitPython. Microsoft MakeCode also stores its
programs in the flash memory.

9A Tour of Circuit Playground Express

Best Advice in This Book:
Get a Good USB Cable
USB A male–to–USB micro B cables may be available
in most households due to the proliferation of elec-
tronics in our lives. But not all USB cables are made
the same. Some have power wires to recharge devices
only, often found with external “cell phone recharging”
batteries. Such power wiring–only cables will not be
able to make data connections, meaning you cannot
use that cable to program your device. Other cables
may be of poor quality or stressed in some way to make
poor connections. Flexing between the connector and
cable makes wiring fray and become intermittent.

When you get your Circuit Playground Express, I strongly
suggest that you also get a new, compatible USB cable
to use with your projects. Adafruit sells good cables
as product ID 592. Good cables are also available from
mobile phone outlets, electronics shops, and online.
Again, spend a bit extra to ensure the USB cable pur-
chased is a quality cable; the lowest price on eBay may
not buy the reliable cable you hope for.

The USB port is typically used to connect your Circuit Play-
ground Express to a computer to program. The connector is USB
micro B, the same connector used in many consumer electronic
devices, including non-Apple phones and tablets.

The USB connector can also be used for communications in
your projects, similar to other USB devices you use with a com-
puter. The port is also the default text output device in Circuit-
Python and Arduino programs. You can use a terminal emulator
application on your computer to see messages from USB.

10 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

The USB port may also emulate a PC keyboard, mouse, or
other human interface device (HID in USB speak). There are many
projects that use the HID capability of boards, including Circuit
Playground, to create fun devices.

CIRCUIT PLAYGROUND EXPRESS OUTPUTS

Starting with the outputs, the board has

** 10 mini NeoPixels. Each NeoPixel contains three light-
emitting diodes (LEDs): one each red, green, and blue. A
NeoPixel can display most colors on the color spectrum.

** A red-only LED marked D13 (familiar to users of Arduino
boards), which can provide a user-programmable status
indication.

** A speaker capable of monophonic (single-channel) sound
output, connected to the microcontroller’s digital-to-analog
converter and through a class D audio amplifier. This is
a much higher quality of sound than many other boards
(which may use a piezo transducer to make sounds).

** A green-only LED marked On, used to let you know the
board has power.

** 14 connection pads around the outside. The output pads are
marked A0, A1, A2, A3, SCL A4, SDA A5, RX A6, and TX A7.
The pads have a hole to allow multiple connection methods,
including wiring, connection via spring-loaded “alligator”
clips, or conductive thread.

** Pad A0 can also output an analog voltage, via the same pin
that drives the onboard speaker.

** An infrared (IR) transmitter that can transmit remote-con-
trol codes, as well as send messages between Circuit Play-
ground Express boards.

11A Tour of Circuit Playground Express

What Are NeoPixels?
You can purchase NeoPixels in single packages, but
they are difficult to use individually. Since NeoPixels are
digital, they cannot be simply connected to a battery.
They also need a driver chip sending complex digital
control codes. Fortunately, Adafruit and other manu-
facturers place the chips on circuit boards and flexible
strips with one or more NeoPixels in various numbers
and shapes, as shown in the following graphic.

The microcontroller and
software available in Cir-
cuit Playground Express
understand NeoPixel
control. Adafruit pro-
vides free software for
many products to inter-
act with NeoPixels using
easy-to-understand code
concepts.

NeoPixels can be set to 255 shades each of red, green,
and blue (abbreviated RGB) light simultaneously. With
the three LEDs on the same device, the colors mix
to create different shades of light on the color spec-
trum. If you would like to experiment with selecting a
color by adjusting the corresponding numbers for the
RGB values throughout the book, you can go to www
.w3schools.com/colors/colors_rgb.asp and adjust the
sliders to see the results for various values of red,
green, and blue. You can then input the resulting color
numbers into code to have Circuit Playground Express
display those colors.

Through the USB port, lights, speaker, and pins, Circuit Play-
ground Express can let you know a great deal of information.

www.w3schools.com/colors/colors_rgb.asp
www.w3schools.com/colors/colors_rgb.asp

12 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

Additional digital or analog information may be sent by the
microcontroller to the output pins. These signals can communi-
cate with other devices or components such as displays or even
additional NeoPixels.

CIRCUIT PLAYGROUND EXPRESS INPUTS

Knowing what we can use for output, let’s look at the information
inputs:

** A motion sensor (using an LIS3DH triple-axis accelerometer
chip) that can also detect taps and free fall.

** A temperature sensor, which uses a heat-sensitive resistor
(thermistor) for sensing.

** An infrared receiver, which can receive remote-control codes,
as well as receive messages from other Circuit Playground
Express boards.

** A light sensor, measuring light intensity. With some code,
this can also be used to look for the colors of light emitted
from an object.

** The seven pads numbered A1 to A7 can act as capacitive
touch inputs. They can also be used for analog or digital
signal inputs. Note that pad A0 is used for analog speaker
output, so its use as an input is complicated by additional
circuitry and should not be used for capacitive touch.

** Two push-button switches, labeled A and B.

** A slide switch.

** A digital sound sensor, which uses microelectromechanical
system (MEMS) technology, rather than the typical piezo
sensor, to act as a microphone. MEMSs are etched on silicon

13A Tour of Circuit Playground Express

as tiny mechanical devices on a chip. They can be controlled
electrically, or their movement can be read electrically.

** A reset button in case a program gets “stuck” (mostly for
Arduino) or to load new programs.

We will go through the software available to use the inputs
and outputs of Circuit Playground Express.

POWERING YOUR CIRCUIT
PLAYGROUND EXPRESS

The JST battery connector allows for connecting a battery from
3 to 6 volts DC to power the board. This input has reverse-polarity,
over-current, and thermal protections. This allows Circuit Play-
ground Express to survive some accidental battery connections
without damage, although it is best to always be careful with your
connections. Check twice, connect once.

Be Careful of the Voltage on the
JST Input!
If you supply less than 3 volts direct current (DC) on
the JST battery connector, Circuit Playground Express
will not power on.

If you supply over 6 volts DC (like a 9-volt battery), it
will probably damage the board permanently.

You should use the recommended battery types noted
in “Batteries—On the Go!.”

And never connect Circuit Playground Express directly
to the building power (wall socket, mains) without a
suitable power converter. Doing so would be unsafe
and probably cause a fire!

14 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

Batteries—On the Go!
Using a battery pack allows Circuit Playground Express
projects to be taken nearly anywhere! Here are the
suggested methods for safely powering the board.

From the USB port, you can plug in a USB cable from
your desktop or laptop computer. Mac, PC, or Linux
computers work great for USB power.

A 5-volt “cell phone external battery pack” such as
the models available at Adafruit (www.adafruit.com/
?q=battery%20pack) works great connected to the
Circuit Playground Express USB port.

If you design a power-hungry project using external
components, such as a large number of NeoPixels
or other lights, you should use either a wall/mains-
powered 5-volt power supply or a larger battery pack.

When using AA or AAA batteries, it is best to consider
a 4.5-volt pack using three cells. You can connect
these to the proper JST connector for the board or
buy preassembled battery packs. Adafruit sells the
following models:

*	3 x AAA Battery Holder with On/Off Switch and
2-Pin JST, Product ID: 727

*	3 x AAA Battery Holder with On/Off Switch, JST,
and Belt Clip, Product ID: 3286

*	3 x AA Battery Holder with On/Off Switch, JST,
and Belt Clip, Product ID: 3287

A smaller, coin cell holder is available as the 2 n 2032
Coin Cell Battery Holder – 6V output with On/Off
switch, Adafruit Product ID: 783. Though smaller, this
pack will not power a hungry circuit for a long time,
and the coin cells are more expensive than AA and
AAA batteries.

www.adafruit.com/?q=battery%20pack
www.adafruit.com/?q=battery%20pack

15A Tour of Circuit Playground Express

The circuitry on the board will use either the battery input
power or USB power, safely switching from one to the other. If
both sources of power are connected, Circuit Playground Express
will use whichever input has the higher voltage. The device works
great with a lithium-polymer battery or the Adafruit 3 × AAA bat-
tery packs with a JST connector on the end. The connector allows
for swapping batteries if they run out of juice.

There is no built-in battery charging circuitry in Circuit Play-
ground Express, which means that you can use alkaline or lith-
ium batteries safely. Unfortunately, that also means rechargeable
batteries must be recharged by removing them from the Circuit
Playground Express project and charging them in the manufac-
turer’s approved charger.

What Is a LiPo battery?
Lithium-polymer (LiPo) batteries are often used in
wearable or portable projects. Their thin size and
rechargeability make them very popular with experi-
menters. They come in multiple sizes (see the follow-
ing graphic); the larger batteries last longer.

16 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

Several Different LiPo Battery Sizes
With the correct JST connector as used on Circuit
Playground Express, you can get LiPo batteries in
sizes from 350 milliamp-hours (mAh) to a whopping
6600mAh, with the larger sizes thicker and heavier.

A program not using NeoPixels may use less than
20 milliamps (mA). Lighting all 10 NeoPixels, as in the
demonstration program, may draw up to 30mA. Using
all NeoPixels at maximum brightness will draw more
current, but doing this is rarely required.

To get an estimate for runtime from a battery, divide
the capacity of the battery by the battery rating. For
a small 150mAH battery, 150 mAh / 30 mA = 5 hours.

The time might be for a perfect, fully charged bat-
tery. If you plan to depend on a period of operation
for a project, consider testing the battery capacity
beforehand. Then consider carrying a spare battery
for actual use.

A selection of batteries and chargers are avail-
able on the Adafruit website (www.adafruit.com/
category/916).

That’s our tour of Circuit Playground Express. One more
thing: On the back of the board, there is a place to write your
name! Identifying the board as yours may be handy in a class-
room environment or if you’re working with friends. That space
can accommodate some tape to write your name if the board is
being borrowed.

www.adafruit.com/category/916
www.adafruit.com/category/916

17A Tour of Circuit Playground Express

Use Only the Manufacturer’s
Battery Chargers
It is vital that you use only the chargers provided by
the manufacturer. Using other charging methods for
batteries, especially lithium-based batteries, may
cause fires (this is why they are often banned from
airplanes).

With proper charging and use, LiPo batteries are safe
and convenient.

But if you are unsure, stick to AA or AAA battery packs
for light to moderate use and D cell packs for heavy
or prolonged use lasting many hours.

OPERATING SYSTEM SOFTWARE SETUP

Fortunately, no software driver installation is needed for the
following operating systems. You can safely proceed to the next
chapter.

** Windows 10 (if you have Windows 7 or Windows 8, keep
reading)

** macOS

** Linux

** Chromebook

NOTE  You need to install drivers only for Windows 7
and Windows 8. Windows 10 and non-Windows oper-
ating systems have drivers built in.

18 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

If your computer does not run Windows 7 or 8, you can skip
the following driver section and go to the next chapter.

If you are using Windows 7 or Windows 8, you will need
to install device driver software to support Circuit Playground
Express. Circuit Playground Express will not work on Windows
Vista, Windows XP, or earlier versions of Windows. If you have
an older computer, you may consider using a “live CD” to boot
into Linux temporarily to use Circuit Playground. Linux runs on
hardware that may be “too old” for Windows.

The process to install the driver on Windows 7 and 8 is as
follows:

	1.	Type the following into your browser address line:
https://github.com/adafruit/Adafruit_Windows_Drivers/
releases/latest

	2.	Your web browser should ask you about downloading a file
(Figure 2-2). Click Save File to download the file adafruit_
drivers.exe.

FIGURE 2-2. The browser prompting a user to save the Adafruit
drivers executable file

Run the driver software installer by clicking the filename or
clicking Open. Because drivers for other boards are also in the
package (that are not open source), Adafruit is obligated to have
you agree to the installation (Figure 2-3).

19A Tour of Circuit Playground Express

FIGURE 2-3. Agreeing to install the software driver package

Only the first driver is required, but you are free to install
drivers for other Adafruit products at the same time (Figure 2-4).

FIGURE 2-4. Selecting which drivers to install from the driver
package

You will see the screen shown in Figure 2-5 when everything
is done.

20 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

FIGURE 2-5. The progress bar and completing the
driver installation

That’s it! If you’re using Windows 7 or 8, you should be set to
plug in your Circuit Playground Express and start working.

CHAPTER QUESTIONS

	1.	How many physical switches are on Circuit Playground
Express?

	2.	Can a Circuit Playground Express light up in orange or blue?
Which parts, if any, can do this?

	3.	How might you power Circuit Playground from a vehicle?

Getting Started
with Microsoft

MakeCode

Enough background information! It is time to plug Circuit
Playground Express into a computer and get a feel for what

it can do.
If you have not had a chance to get a Circuit Playground

Express yet, you can still go to the Microsoft MakeCode section
and start to program, because the MakeCode environment has a
Circuit Playground Express simulator to show you what the code
will do. You can then save that code and run it on Circuit Play-
ground Express when you are able to get one. Figure 3-1 shows
the MakeCode logo.

FIGURE 3-1. The MakeCode logo (Credit: Microsoft)

3

22 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

CONNECTING A CIRCUIT PLAYGROUND
EXPRESS TO A COMPUTER

You will want to set up the following environment. Sit in front of
a computer connected to the Internet. You should have on hand
the following:

** A Circuit Playground Express Board (the back of the board
says ATSAMD21 @ 48MHz and Circuit Playground Express
and not just Circuit Playground). If you find you have a Cir-
cuit Playground Classic (labeled 32u4 @ 8MHz), then you’ll
need to get a Circuit Playground Express to use MakeCode.

** A good USB cable (Figure 3-2). It should have a male A plug
on one side and a micro B plug on the other, and it should
be long enough that it can comfortably reach to your work-
space. The Adafruit product ID for a 3f/1m (meter) cable
is 592.

FIGURE 3-2. A 3f/1m USB cable with male A to micro B
connectors

23Getting Started with Microsoft MakeCode

Plug the small micro B connector into the Circuit Playground
Express USB micro B socket. Note in Figure 3-2 that the smaller
micro B plug is shaped like a letter D; one side is rounded. Be sure
you place that rounded side into the rounded part of the micro B
USB connector on Circuit Playground Express. It should only fit
one way (see Figure 3-3). The plug does not have to fit all the way
into the socket.

Never Force a USB Connection!
Nearly all types of USB connectors are made to plug into
the socket one way. You will need to look at the plug
shape, then look at the cable, then plug in the cable so
that the shapes match. If you insert the cable upside
down, it will not fit and it may break the connector—a
sad mistake. When placed correctly, the cable and the
USB socket on Circuit Playground Express should be a
snug fit but never forced.

FIGURE 3-3. The shape of the micro B USB plug and socket. Mate
the shapes the same way, curved side to curved side.

24 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

Next, plug the USB “full-size” A connector into a USB socket
on your computer.

Wow!
Did that scare you? It did me when I first tried it! The default

program on Circuit Playground Express runs as soon as the device
has power. The program from the factory blinks the 10 NeoPixel
lights and plays tones.

If your Circuit Playground Express does not appear to do
anything, the board may have been used before, which would
likely remove the factory demonstration program. No worries!
You should see the green “On” LED lit at a minimum, letting you
know it has power.

NOTE  You can silence the demonstration program
by moving the slide switch tab toward the speaker. The
lights will continue to flash but the sound will stop.

With an indication Circuit Playground Express is connected to
the computer, it is time to write some code!

MAKECODE: YOUR FIRST PROGRAM

If you have never developed computer code in your life or you
have some coding skills in another programming language, you
should try MakeCode on your Circuit Playground Express.

No software installation is required: MakeCode (https://
makecode.com/) runs in any modern web browser on most operat-
ing systems. Once the web app has been loaded from the Internet,
all its features will continue to work, even if you disconnect the
computer from the Internet.

https://makecode.com/
https://makecode.com/

25Getting Started with Microsoft MakeCode

MakeCode provides the following:

** A block editor (similar to the Scratch programming environ-
ment) and a JavaScript editor to create programs, with the
ability to convert back and forth between visual and text-
based program representations

** A web-based simulation of the physical device (Circuit Play-
ground Express, micro:bit, and several other development
products are supported) so that students can edit and test
their programs, even if they don’t have a device (or if they
left it at home or school)

** A self-guided “Getting Started” experience to introduce the
basic features of the programming environment, as well as a
set of projects for making and coding

** A compiler that instantaneously creates an executable file to
download/copy to Circuit Playground Express

** A sharing feature so that students can share their programs
with students, teachers, parents, and friends

MakeCode also adapts to the screen size of your computer; it
works well on desktops, laptops, tablets, and even smartphones.
For this introduction, let’s assume you are using a desktop, lap-
top, or Chromebook.

Start your web browser software. The web browser software
should be fairly modern and capable, such as Chrome, Edge, Safari,
or Firefox. In your browser, type https://makecode.adafruit.com/
into the address bar and press Enter. You should see a screen fairly
similar to the one in Figure 3-4. The background image and the
screen size may be a bit different, but that’s fine.

26 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

FIGURE 3-4. The Google Chrome browser opening MakeCode

Click the blue New Project square under My Projects. You
should get the screen shown in Figure 3-5.

FIGURE 3-5. The MakeCode screen for Circuit Playground Express

27Getting Started with Microsoft MakeCode

The Circuit Playground Express on the screen in the upper
left is a functioning simulator. Anything done to program Circuit
Playground Express can be simulated in MakeCode.

Look at the screen in Figure 3-6. There’s a picture of a Circuit
Playground Express in the upper-left corner. You can see a rain-
bow stack of command blocks running vertically down the center,
and there’s a green block shaped sort of like the letter C, with the
word forever on it.

FIGURE 3-6. A close-up of the MakeCode screen

NOTE  Your computer no longer needs an Internet
connection once you start MakeCode. MakeCode will
continue to run in your web browser. The sharing por-
tion of the environment will not work, but the coding
environment will. When you later reconnect to the
Internet, the MakeCode environment will fully work
with the sharing feature. This capability is great if you
take your computer on the go. An Internet or WiFi con-
nection is not required to continue to use MakeCode.

The colored blocks group is to the right of the Circuit Play-
ground Express replica and below the search box. These buttons
provide different functional code blocks to use in coding. If you

28 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

click one, MakeCode will show you the group of commands. For
example, clicking the LIGHT button “pops out” to the right vari-
ous code blocks related to working with the 10 NeoPixels around
the board (see Figure 3-7).

FIGURE 3-7. Clicking the LIGHT button pops out light-specific
programming blocks.

You can click each of the buttons representing functional
groups to get a feel for all the code blocks available for Circuit
Playground Express in MakeCode. The available blocks may
change from board to board—Circuit Playground Express has a
great number of blocks to take advantage of all the functionality
built into the device.

At this point, let’s jump right in to using MakeCode. With your
mouse, move to the blue block under the LIGHT heading marked
set all pixels to that has a red circle next to it. Hold down your
left mouse button and move the mouse to the empty part of the
forever green letter C–like block. Release the mouse button. Your
screen should look like the one in Figure 3-8. If the blocks did not
appear to “click together,” move the blue block so that it interlocks
with the green block.

29Getting Started with Microsoft MakeCode

FIGURE 3-8. Moving the set all pixels to block into the green
forever block

You have just completed a functional program! What is this
code doing?

The forever block is a code loop that says “examine all the
blocks between the top and the bottom of the green area, and
do those command(s) over and over, one after another, forever”
(hence the block name forever).

You will note the Circuit Playground Express simulator now
has all the NeoPixels set to red. The simulation is already running
your code! Congratulations, you have written your first MakeCode
program and it is running in the simulator. Just like that!

The color of the set all pixels to block is red by default.
Default means that it’s the command or color or value that will
be automatically chosen when the block is used. You could change
the color by clicking the red circle and selecting a different color.

Let’s change things. On the blue set all pixels to block,
click the red circle and click blue. Immediately, all the pixels in the
Circuit Playground Express simulator turn blue (see Figure 3-9)!
Feel free to select different colors. NeoPixels can be set to tens of
thousands of colors. Change the color to blue when done so you
know what color you set here.

30 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

FIGURE 3-9. The program that sets all NeoPixels to blue

Next we’ll program your physical Circuit Playground Express.
It takes just a couple of steps to put the code on the board and
have it run. Note that this is not required if you have not yet
acquired a board yet—you can skip the next section and come
back later.

UPLOADING MAKECODE TO CIRCUIT
PLAYGROUND EXPRESS

Though simulating code in the MakeCode environment gives
you a feel for what the commands are doing, there is a satisfying
knowledge when that code actually does something in the phys-
ical world.

The steps that follow outline how to send the code to a Circuit
Playground Express board that is connected to the computer via a
USB connection. The explanation appears a bit long, but the steps
become second nature after you practice a time or two.

There are only two steps to download your completed Make-
Code program:

Step 1: Connect your board via USB and enter bootloader
mode.

Step 2: Compile and download the UF2 file into your board
drive.

We will go through these two steps in detail.

31Getting Started with Microsoft MakeCode

The UF2 File Format
Every file on a computer is structured or formatted to
be recognized as containing data for a specific pur-
pose. For example, files with the extension .tif are
JPEG compressed images/pictures, and files with the
extension .doc or .docx are Microsoft Word files.

Microsoft has created a file format for use with micro-
controllers like Circuit Playground Express. A UF2 file
provides information in a basic format that can easily
be recognized by a microcontroller. If you are curious,
the specifications on what a UF2 file is and code that
makes use of UF2 files are here: https://github.com/
microsoft/uf2.

UF2 can be used for two different types of files. The
first is for bootloaders, the basic code placed on a
microcontroller to instruct it how to do basic tasks
and read/write to devices connected to it. The second
type of file is for code files placed in a filesystem.

For MakeCode, the code placed on Circuit Playground
Express will be in the UF2 file format.

Step 1: Bootloader Mode
Connect your board to your computer via a USB cable. Press
the Reset button once to put the board in bootloader mode
(Figure 3-10).

NOTE  If this is your first time running MakeCode
or if you have previously installed Arduino or Circuit
Python, you may need to press the Reset button twice
to get your board into bootloader mode.

https://github.com/microsoft/uf2
https://github.com/microsoft/uf2

32 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

FIGURE 3-10. Pressing the Circuit Playground Express Reset but-
ton to get into bootloader mode

When Circuit Playground Express is in bootloader mode, all 10
NeoPixel LEDs will turn red briefly, and then turn green. Verify
that your status LED (marked “D13,” next to the USB jack) is also
pulsing red.

NOTE  If the NeoPixel LEDs all stay red after you
press the Reset button, either the computer is still
installing drivers (please wait a minute; Windows
takes some time to install updates) or you have a bad
USB connection. If you keep getting red NeoPixels, try
a new USB cable.

33Getting Started with Microsoft MakeCode

You may want to ensure your USB cable is not “charge
only.” The cable needs to be a fully functional USB
cable that can transfer data. You may also need to
use a different USB port on your computer, or a port
that is not connected to a USB hub of some sort. USB
errors are not intuitive, but swapping things around
will usually result in a good connection, as long as you
have a good cable from the host computer to Circuit
Playground Express.

Once your LEDs are all green, you should see a drive named
CPLAYBOOT appear in your drive list in your operating system
file explorer (see Figure 3-11).

FIGURE 3-11. The CPLAYBOOT drive in Windows Explorer (left) and
in the Mac Finder (bottom right)

This is the onboard “thumb drive/flash drive.” The flash drive
is the space to which you copy your program files. If you are not
familiar with the files portion of your computer, you may want to
have someone come over and show you where the CPLAYBOOT
drive is located.

We are now ready to compile our code and download it to the
board!

34 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

Step 2: Compile and Download
Let’s first verify that our code compiles properly in MakeCode.

MakeCode has a built-in simulator that reloads and reruns
code when restarted. This is an easy way to ensure that our code
compiles and to simulate it before moving it onto the board.

There are five button icons below the image of Circuit Play-
ground Express on the MakeCode screen (see Figure 3-12). From
left to right they are as follows:

** Stop: Stops the code from running

** Refresh: Restarts the code running

** Step: Goes through a program step by step

** Audio: Turns sound on and off

** Full Screen: Toggles the simulation in a full-screen window

The refresh button reloads the simulator with your latest ver-
sion of block code.

FIGURE 3-12. The simulated Circuit Playground Express with the
five control buttons. The refresh button is highlighted in yellow.

35Getting Started with Microsoft MakeCode

NOTE  What if a message pops up when you click
the refresh button? If you receive a “We could not run
this project” error, please check over your code for
errors. For the simple program that lights the NeoPix-
els, there should not be a message. If you code a more
complicated program, this message lets you know to
recheck the program steps in the code blocks.

If your board is working in the simulator, it’s time to download
it to your actual Circuit Playground Express. Click the Download
button (Figure 3-13). It will generate a UF2 file and then download
it to your computer.

FIGURE 3-13. The Download button

A nice graphic explains moving a file from your computer file
explorer to the Circuit Playground Express CPLAYBOOT flash
drive (Figure 3-14).

FIGURE 3-14. When the code download is complete, these steps
are displayed.

36 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

General Steps to Copy Over Your Program (not
specific to any operating system)

	1.	Ensure your board is in bootloader mode by pressing the
Reset button once (or twice if necessary). When in boot-
loader mode, all the NeoPixel LEDs are lit green.

	2.	Find the UF2 file generated by MakeCode in your file
explorer. Copy it to the CPLAYBOOT drive.

	3.	The D13 LED on the board will blink while the file is trans-
ferring. Once it’s done transferring your file, the board will
automatically reset and start running your code, just like in
the simulator.

Windows

	1.	Open Windows File Explorer (Windows key + E key) and
locate the circuitplayground-Untitled.uf2 file you generated
(or whatever name you saved it as). It’s probably in your
Downloads folder unless you saved it somewhere like the
desktop, a personal flash drive, or a program save folder.

	2.	Either copy and paste the file to your CPLAYBOOT volume
or drag and drop it as shown in Figure 3-15.

FIGURE 3-15. Two side-by-side File Explorer windows, one
containing the program UF2 file, the other the contents of the
CPLAYBOOT drive on Circuit Playground Express

37Getting Started with Microsoft MakeCode

macOS

** Open Finder and locate the file named circuitplayground-
untitled.uf2. You can copy and paste this file to the
CPLAYBOOT volume or drag and drop it from the same
Finder window.

NOTE  If you want to avoid the copying process, you
can download your programs directly to the board.
To do this, change the download location in your
web browser program to the main directory of your
CPLAYBOOT drive.

Chromebook

	1.	Your Circuit Playground Express will be recognized by your
Chromebook. All the NeoPixels will be lit green when it is
ready to download a file. If the NeoPixels are not lit, press
the Reset button once to put the board into flash drive mode
and turn the NeoPixels green. A small pop-up will notify you
that a new drive was detected called CPLAYBOOT.

	2.	Click the Download button. In the window that appears,
click CPLAYBOOT on the left. You may change the filename
of your program, listed at the bottom of the pop-up window,
from circuitplayground-Untitled.uf2 to anything you like,
but be sure it ends in .uf2.

	3.	Click Save. The red D13 LED on the board should blink red
as the program transfers (this might happen too quickly
for you to see). Circuit Playground Express will reboot after
the download, on its own, and your program should now be
running.

38 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

Done!
The program is running; the NeoPixels are lit. Your program
should run as soon as Circuit Playground Express detects that you
have saved a valid UF2 file to the onboard flash. For the previous
program that turned all NeoPixels to blue, the physical Circuit
Playground Express on the desk should have all the NeoPixels
displaying blue, unless you selected another color when you were
done. That is your code running on Circuit Playground Express.

Congratulations, you just programmed a computer!
In the off chance the board did not reset itself, you can press

the Reset button twice (the first press places it into bootloader
mode, the second tells it to run current program mode). You will
want the NeoPixel LEDs all green and a flash drive called CPLAY-
BOOT to show up on your computer. If you believe you are having
problems, check Appendix A for issues and advice.

What Happens if the Power Is Removed?
All the programming methods you can use on Circuit Playground
Express store code in flash memory. Just like a thumb/flash
drive, the program will stay on Circuit Playground Express even
though the power is removed. No battery is needed to keep the
program on the board and ready for its next use.

This is in contrast to large computers where, if you turn off
the computer, the current program is no longer in memory and
the operating system is probably upset that it did not get to shut
down gracefully!

You should save all your code on a backup drive such as a sec-
ond thumb/flash drive or a hard drive. If by some means you were
not able to save your last program on your computer, you can plug
in your Circuit Playground Express via a USB cable and copy the
last program back onto the computer. If you are in a classroom
setting, your instructor may provide more information on saving
your programming.

39Getting Started with Microsoft MakeCode

MODIFYING A PROGRAM

The first program was simple in order to get to a level of comfort
with MakeCode. Next we’ll modify the program to do something
more dynamic.

Go back to your MakeCode program browser window. It
should look as we left it, with the first program written in the
coding space (Figure 3-16).

FIGURE 3-16. Our first program revisited

Click the blue set all pixels to block with your left mouse but-
ton and drag the block away from the forever block (Figure 3-17).

FIGURE 3-17. The set all pixels to block is moved outside the
forever loop block.

40 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

Now let’s make some better-looking lighting effects using
another LIGHT group block. Click the LIGHT code block group but-
ton and look for the show animation blue block (Figure 3-18). Drag
that block (Figure 3-19) into the forever block where the set all
pixels to block had been (Figure 3-20).

FIGURE 3-18. Clicking the LIGHT button brings up a list of blocks
related to LEDs. The show animation block is the second one
down the list.

FIGURE 3-19. The show animation block

You can get rid of the set all pixels to block by right-clicking
it (to highlight it) and pressing the Delete key (Del) on the key-
board. The block should disappear from the coding space.

What will the code do with the show animation block inserted?
A quick look at the simulator will show you that the lights are
now multicolored. The forever loop keeps the animation running
indefinitely. The multicolor animation is popular, and it can be
used for many projects.

41Getting Started with Microsoft MakeCode

FIGURE 3-20. The show animation block placed into the forever
loop block

You can download this program to your Circuit Playground
Express if you wish. But changing a couple of things may be
helpful.

There are two things you can change on the show animation
block. If you click the triangle next to the colored wheel, a list of
preprogrammed animations will pop up. This allows you to set
different animations. Feel free to select each animation, and then
see what the simulator will do. Set it back on “rainbow” when you
are done.

The second changeable item on the show animation block is
the number of milliseconds (ms) to perform the animation (1ms
= 1/1000 of a second). This can range from 100ms (a tenth of a
second) to 2000ms (2 seconds). If you change this value at this
point, does anything happen?

No; as the forever loop immediately starts the animation after
the time you set, it does not appear to affect the single animation.
To show how we can add some time to the forever loop, we will
click the green LOOPS block group, select the green pause block,
and place it under the blue show animation block so that you have
a program that looks like the one in Figure 3-21.

42 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

FIGURE 3-21. Clicking the green LOOPS block shows several code
blocks. Select pause, left-click, and drag the block under the show
animation block.

When you drag the pause block under the show animation block,
the forever block will “open wider” to allow the pause block to fit
inside (Figure 3-22).

FIGURE 3-22. The pause block placed inside the forever loop
under the show animation block

Change the time value on both the show animation and pause
blocks to 500ms—500 milliseconds is 0.5 (one half) second.
Those times are slow enough to see with the eye.

43Getting Started with Microsoft MakeCode

The program will now perform the rainbow animation, wait
500ms (half a second), and then show the rainbow animation
again, repeating continuously. The simulator does not appear to
show anything different. At this point, we’ll add a second show
animation block from the LIGHT block and another pause block from
the LOOPS block. Make a stack within the forever loop that con-
tains show animation, pause, show animation, then pause, as shown
in Figure 3-23.

FIGURE 3-23. The program with two show animation and two
pause blocks

The rainbow effect spins, then pauses, spins, then pauses
on the simulator. On the Circuit Playground Express board, you
might not even see the pauses. It is time to change some of the
values. Change the time values for the animations to 2 seconds on
each show animation block by clicking the black triangle next to the
number 500 and selecting the value 2000ms. It is still simulating
a rainbow. Time to change the second animation to something
different, say the purple comet. Your screen should look like the
one in Figure 3-24.

44 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

FIGURE 3-24. Two different animations, each running for 2 seconds

What is the new code doing? It loops forever, first displaying a
rainbow animation for 2 seconds, waiting half a second, then dis-
playing a changing purple animation for 2 seconds, then waiting
half a second before starting all over again. This is a nicer effect
than all red in the first program.

Using the instructions for downloading a program to an actual
Circuit Playground Express, download this code to the board.
Does it behave the same way as in the simulator?

Your Turn: MakeCode
Adjust the types of animation. How many animations does Make-
Code provide? The time each animation runs can be changed.
What happens when you make it rather short? The pause time
can also be changed; how does that change the action? This exper-
imentation will give you an idea what each part of the program
is doing.

SAVING A PROGRAM

At any time, you can save your MakeCode to a file on your com-
puter. When you decide to save a program, use the blue box next

45Getting Started with Microsoft MakeCode

to the pink Download box. Type a descriptive name for your
program (I called it two animations) and click the disk icon (see
Figure 3-25).

FIGURE 3-25. The file save box is blue, next to Download. Type a
filename and click the disk icon to save.

The operating system should show a Save As box that looks
like the File Explorer (Windows) or Finder (Mac). On Chrome-
book, you will see a screen that lets you save the file to a number
of places like Google Drive or to a disk drive such as a personal
flash drive if you have one plugged in. You can save the file any-
where you like. You may want to create a directory called Programs
(or another name you will remember). Your instructor may tell
you where to save your programs if you’re in a class.

If you are using a shared computer, consider saving the pro-
gram on a thumb/flash drive. The drive doesn not need to have
a large capacity, since all the programs in this book are rather
small files.

Where Did the Demonstration
Program Go?
Once you load a UF2 code program that replaces the
file current.uf2 on Circuit Playground Express, you will
no longer have the demonstration program that came
with the board. Never fear—you can download the
original demonstration code on the Adafruit Learn-
ing System page here: https://learn.adafruit.com/
adafruit-circuit-playground-express/downloads.

https://learn.adafruit.com/adafruit-circuit-playground-express/downloads
https://learn.adafruit.com/adafruit-circuit-playground-express/downloads

46 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

When you save the program—for example, my two animations
program—the file saved will be named two-animations.uf2. Make-
Code replaces spaces with the dash character -. And the name
is suffixed with the .uf2 file extension, as noted earlier, which
informs the software on a computer and the firmware on Circuit
Playground Express that the contents are to be executed as code.
A UF2 file cannot be edited with a text editor on the computer; it
can only be modified within MakeCode.

UNDER THE HOOD: JAVASCRIPT

JavaScript is a programming language, commonly used to pro-
grammatically build web pages. It turns out that Microsoft is very
clever in its construction of MakeCode. While we have been using
the blocks in the MakeCode editor, behind the curtain, it has also
been writing a JavaScript program.

For most applications, you can forget that the JavaScript is
there. You don’t need to interact with the JavaScript if you do not
wish to. But it’s fun to see what is happening.

On the MakeCode screen, look at the top middle. You’ll
see an oval, one side labeled BLOCKS and the other labeled { }
JAVASCRIPT (see Figure 3-26).

FIGURE 3-26. The BLOCKS and JAVASCRIPT buttons at the top of
the MakeCode screen

If you click the word JAVASCRIPT in the top bar, the code
window will change from MakeCode blocks to JavaScript (see Fig-
ure 3-27). If you look at how the JavaScript is written, you can see
the loops method to create the forever block and the pause blocks.
The light.showAnimation function calls built-in code that creates

47Getting Started with Microsoft MakeCode

the animations we selected on the Circuit Playground Express
NeoPixels.

FIGURE 3-27. Clicking the JAVASCRIPT button replaces the Make-
Code blocks with JavaScript code. The program behaves the
same as the blocks used previously.

JavaScript is not terribly complicated if you compare the
MakeCode blocks to the JavaScript. The hard part is knowing
which commands represent which actions, and the syntax (the
way the code must be spelled out) is more complicated and exact-
ing. If you misplace a parenthesis, the JavaScript program fails to
compile. For this reason, JavaScript is best left to more advanced
projects or those who feel comfortable with learning a more com-
plex programming language. Feel free to click the BLOCKS but-
ton to replace the JavaScript with the code blocks. There is little
chance you can “break the code” (make it not compile and work)
using the blocks in MakeCode.

If you would like to learn more about MakeCode and JavaScript,
Microsoft has documentation at https://makecode.com/docs.

Your Turn: JavaScript
Change the code in MakeCode, then switch the view to JavaScript.
Can you determine what changed? If you adjust numbers in

https://makecode.com/docs

48 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

JavaScript, such as the times of the animations or pauses, does
the corresponding MakeCode change also?

WRAP-UP

In this chapter, you have learned to use Circuit Playground Express
on a computer and how to use MakeCode to code, download, and
execute programs. The next chapter explores more capabilities of
Circuit Playground Express using MakeCode.

CHAPTER QUESTIONS

	1.	Can you directly use either an Apple USB-C or Lightning
cable to connect a computer to Circuit Playground Express?

	2.	What is the address of the website to go to the MakeCode
editor for Circuit Playground Express?

	3.	Can MakeCode be used to program other types of learning
electronics?

	4.	What is the name of the block in which other blocks are
placed to have Circuit Playground Express run the com-
mands over and over?

Microsoft
MakeCode and

Interactivity

M icrosoft MakeCode is an easy way to access, visualize, and
program the Circuit Playground Express. There are Make-

Code commands to access nearly all the capabilities on the board.
In this chapter, you’ll use MakeCode to explore Circuit Playground
Express features. I’ll introduce some additional methods for cre-
ating programs as we need them.

4

50 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

USING BUTTONS

The most influential input device in the history of electronics is
the button. Pressing a push button informs an electrical circuit
that the user wants something to happen. Circuit Playground
Express has two push buttons on its board (labeled A and B) that
users can program to do what they wish (Figure 4-1). There is a
third, smaller push button labeled Reset between the two larger
buttons—it cannot be programmed to do anything by the user
since the system uses it to reset the board.

FIGURE 4-1. The two buttons on Circuit Playground Express, “A”
on the left, “B” on the right

The push buttons provide interactivity with Circuit Play-
ground Express projects. Code is used to “listen” whether the
buttons are being pushed and to do something when activated.
Without code, users can press the buttons all they want and noth-
ing will happen, since there is no code “listening” or waiting to see
if buttons have been pressed.

51Microsoft MakeCode and Interactivity

The NeoPixel animations in the previous chapter were pre-
selected in the code. We could not change the animations after
the program started running without changing the code. Buttons
allow interactivity while the code is running—for example, “If I
press button A, then change the animation.”

The code concept that allows Circuit Playground Express to
know something has changed while the code is running is called
a variable. The variable is a number that we’ll use in a program.
A program may have one variable or many, but code usually does
not need many variables to do its job.

What Is a Variable?
A variable is a small piece of computer memory that
contains a value that might change. Think of a variable
as a scratchpad for numbers or information you are
working with.

For example, in the previous chapter we used the
pause block several times, set for 500ms each time.
Suppose we wanted to change that to 750ms. We
could go through the code and change each block,
but if you’re using a lot of pause blocks, that approach
can get tedious.

We could instead create a variable (call it x) that con-
tains the value 500 milliseconds and use it throughout
our program in every pause block. If we then want to
increase the pause to 750ms, we don’t need to change
every pause block. We only need to change the value
of x!

MakeCode is very clever, so variables are not needed
often. In Python and other languages, coders must
anticipate when and where they will need variables
to read and write information. It’s not difficult if we
ease into how and why to use a variable when needed.

52 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

For the next program, a variable will be used to remember if a
button has been pressed. At the start of the program, our scratch-
pad variable will be set to 0. Every time the button is pushed, the
variable is incremented (increased) by 1.

To get started, use your computer browser to open MakeCode
at https://makecode.adafruit.com/#editor. With a clean program-
ming area, start pulling blocks to make a program that changes
animations according to button pushes. From the green LOOPS
group, get the forever block (if it is not already on screen) and
the new on start block. From the purple INPUT group, drag the on
button block to the programming area (see Figure 4-2).

FIGURE 4-2. The main code blocks used in working with buttons

Now click the light blue LOGIC group button and drag the
if...then...else block (the one shaped like a letter “E”) into the
forever block (Figure 4-3).

The if...then...else block is placed inside the forever loop
(Figure 4-4).

https://makecode.adafruit.com/#editor

53Microsoft MakeCode and Interactivity

FIGURE 4-3. The LOGIC group of blocks contains the if...then
and if...then...else blocks.

FIGURE 4-4. The if...then...else block added to the
forever loop

The if...then...else block allows a program to ask a question.
In this program, the statement will ask, “What value is the vari-
able we’ll create?”

54 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

What Are Conditional, if...then, and
if...then...else Blocks?
In code, when a value needs to be compared with
another value, an if statement makes the compari-
son. For example, check out the following:
If I feel hungry,
 then I will eat an apple,
else
 I will go for a bike ride.

This is called a conditional statement. It asks what
your condition is. You will be either hungry or not hun-
gry. If you are hungry, you eat. If not, you ride your
bike. Deciding what to do depending on certain con-
ditions is what coding is all about. For a button, this
can be written in sentence form as
If the button is pressed
 then light the green light.

or
If the button is pressed
 then light the green light
else
 light the red light.

The second example adds this part of the condition:
“What if the first part is not true?”

In code, this may look like the following pseudo (not
quite) code:
if button pressed
 turn green LED light on
else
 turn red LED light on

55Microsoft MakeCode and Interactivity

The previous code would have a red LED light always
on unless the button is pushed, in which case the
green LED light would go on. You can also read the
word else as otherwise.

The else part of a conditional may have multiple steps,
as many as we want. Here’s an example:
if food is red
 Your meal is an apple
else if food is orange
 Your meal is a pumpkin
else if food is green
 Your meal is grapes
else if food is yellow
 Your meal is a banana
else
 I don't know what food you are looking at

The final else is the condition that if “you questioned
something multiple times, this is what to do if none
of the conditions are true.”

The code from this point forward will use the if
statement block to compare something and make a
decision based on whether a condition is true or not
(false).

At this point, on the if...then...else block, click the circled
plus sign (+) five times so we get additional blank else if spaces
(Figure 4-5). The program uses one if statement for each type of
animation the program will cycle through.

This action will expand the number of checks, as shown in
Figure 4-6.

56 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

FIGURE 4-5. Expanding an if statement with additional else cases

FIGURE 4-6. Expanding the if..then..else block to accommo-
date seven statements

57Microsoft MakeCode and Interactivity

At this point, none of the if statements have a comparison to
test. The LOGIC group has a 0 = 0 block that is the right shape
to put into the if statement (Figure 4-7).

FIGURE 4-7. Selecting the conditional block 0 = 0 from the LOGIC
block group

Add 0 = 0 blocks to all the blank slots in the if statement.
Now open the VARIABLES block group. If you only see “Make

a Variable...” then click that and create a variable named item.
There are three types of variable blocks, and the program will
use all three. Start by dragging the oval item block and place it
on the left circle on each 0 = 0 conditional we just placed in the
if statements (item replaces the leftmost 0). Each conditional
should then read item = 0 (Figure 4-8).

58 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

FIGURE 4-8. All of the conditionals are in the if statements.

Place a set item to 0 block in the on start block, as shown in
Figure 4-9.

FIGURE 4-9. An item variable is added to each conditional and a
set item to 0 is placed in the on start block.

59Microsoft MakeCode and Interactivity

The program next uses the final variable type of block, change
item by 1. Add that block by placing it inside the on button A click
block (Figure 4-10).

FIGURE 4-10. Adding change item by 1 to the on button A click
block

For each item = 0, change the numbers so they look like the
ones in Figure 4-11. Also add a set item to 0 block in the very last
slot of the if statement.

60 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

FIGURE 4-11. Setting each if statement to check for a different
number, and adding the set item to 0 block at the end

The next step is to fill in all the empty spaces in the if block.
Open the LIGHT block group and put a show animation in each of
the vacant block spots (Figure 4-12).

The Positioning of Code Blocks on
the Screen
The blocks that are rounded at the top, shaped like
the letter C, such as forever and on start, do not have
to be stacked in a straight line up and down, as shown
in the examples. They can be anywhere in the pro-
gramming part of the screen. You are free to position
them to make your code readable to you and others.

61Microsoft MakeCode and Interactivity

FIGURE 4-12. Adding show animation blocks to the if statement

Once you have all the show animation blocks filled in, the add-
ing blocks part is done. At this point, change the second through
sixth show animation blocks to show one of each type of animation,
as in Figure 4-13.

The completed program is shown in Figure 4-14.
Go ahead and try running the code in the simulator and on

a physical Circuit Playground Express. Pressing the A button
changes the animation, cycling through all six light sequences
before returning to the first.

Ensure you save a copy of your program at this point. We will
change it later and we must be able to get back to that program
at some point.

62 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

FIGURE 4-13. Changing the show animation blocks to display dif-
ferent animations

FIGURE 4-14. The final push button program. It’s a bit more work
than previous examples, but worth it.

63Microsoft MakeCode and Interactivity

How does it work? The on start block sets the variable item
to 0. It is clearer now that the value of item is the type of ani-
mation the board should display. The on button A click block
increments the variable item by 1. The variable item then tells the
forever loop which animation the user wants to display. There are
six animations in MakeCode. If the button is pressed and item is
incremented from the number 5 to the number 6 (higher than the
number of animations available), the last else statement sets item
back to 0, indicating the first animation.

This code would work well in a wearable project if you want
to try different animations of the NeoPixel lights. Or it could be
used as an accent light, perhaps under a shelf, lighting up the
area below.

Your Turn: Buttons
The challenge: Change the code to use the B button to go backward
through the animation list (very handy if you skip over one ani-
mation and don’t want to click the button six more times).

Hint: You can have more than one on button click block. You
have the option to change A to B.

SHAKE, RATTLE, AND ROLL

A very satisfying way to make interactivity, especially in wearable
electronics, is to have a project react when it detects movement.
The most common reaction is to have the project blink a light,
although making various sounds or emulating a computer mouse
are also popular.

The hardware on Circuit Playground Express that provides
motion sensing is the LIS3DH 3-axis XYZ accelerometer chip
(Figure 4-15), located in the center of the board. You can use it
to detect tilt, gravity, and motion, as well as tap and double-tap
strikes on the board.

64 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

FIGURE 4-15. The accelerometer motion-sensing chip on Circuit
Playground Express

You can see that there is marking next to the chip on the
board. The mark indicates that when you have Circuit Playground
Express on a flat surface with the USB port at the 12 o’clock posi-
tion, that movements straight ahead are positive Y, movements
to the right are positive X, and movements bringing the board
straight up off the surface are positive Z.

What does all this mean? The sensor measures changes in
movement in three directions—the three dimensions of the space
around us. Circuit Playground Express can measure this move-
ment and assign number values to each of the three ways in which
the board moves.

Let’s return to the MakeCode display in your computer web
browser. If the MakeCode screen is not already in front of you, go
ahead and set it up as discussed in Chapter 3. Click New Program
to start fresh.

65Microsoft MakeCode and Interactivity

Click the forever block and press Delete on the keyboard to
remove it. Do the same for any other blocks until the screen is
clear. Go to the purple INPUT block and drag the on shake block
to the code part of the screen. Your screen should look like
Figure 4-16.

FIGURE 4-16. The on shake block

The new on shake block watches the accelerometer chip. If it
registers any significant values, which indicate movement, it will
execute the code inside the block. It reads the three X, Y, and Z
values and performs all the comparisons in the background. Very
handy!

Notice the small purple SHAKE button on the Circuit Play-
ground Express simulation picture has appeared (Figure 4-17).

66 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

This button is shown when you add code blocks that use the
accelerometer.

FIGURE 4-17. The colored SHAKE button on the Circuit Playground
Express simulator between the black microcontroller square and
the silver USB socket

Move your mouse around the picture of the board or click the
SHAKE icon within the simulator with your mouse. This makes
the board look like it is bending and twisting. The MakeCode envi-
ronment does that to simulate shaking the board as if it were in
your hand.

Next, add the code for making lights come on when the board
is shaken. This will require two blocks from the light blue LIGHT
block group: show animation and clear. clear is near the bottom
of the list of LIGHT blocks.

Now change the value 500 in the show animation block to 2000,
as shown in Figure 4-18. This change allows the animation to go
on for two seconds after a shake instead of the default 500ms
(half a second).

67Microsoft MakeCode and Interactivity

FIGURE 4-18. The shake code

The code is done. Click the purple SHAKE button on the Cir-
cuit Playground Express simulator. You should see the board light
up for two seconds when shaken.

You can now download the code to Circuit Playground Express
to see it for yourself.

Your Turn: Shake (Part One)
Change the animation to one of the other five animation types.

MAKING THE ACCELEROMETER DISPLAY
MULTIPLE ANIMATIONS

Looking at what numbers the accelerometer outputs to the micro-
controller is fun in the scientific sense. A very popular use for

68 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

Circuit Playground Express is to use an accelerometer shake as a
method of changing the color of the NeoPixels. The code blocks
from the previous chapter can be added to the shake code we made
in this chapter.

Build the code shown in Figure 4-19 by dragging the appropri-
ate color blocks into the program area. Do not worry about any
values for the moment; focus only on the blocks and what order
to place them in.

FIGURE 4-19. The code for changing lights as a result of shaking

The set item to red VARIABLES block creates a number in our
scratch memory. The program uses one value, item, to remember
what type of animation we are currently using so we can change
to another one.

69Microsoft MakeCode and Interactivity

Change the default values of certain blocks:

	1.	Change the animations to run for 2000ms (two seconds)
each.

	2.	For the second set item to block (the first in the on shake
loop), change the value from 0 to 1.

	3.	For the comparison, go to the red VARIABLES group to get the
a variable named item and place it in the left side of the 0 = 0
block in place of the zero.

	4.	Drag the comparison block to replace the value true in the if
statement.
Your code should look like the program in Figure 4-20.

FIGURE 4-20. The working shake and lights code

70 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

It’s a bit complex, but the code does exactly what we want.
Try it in the simulator. If you shake Circuit Playground Express,
it shows the rainbow animation. Shake it again, and it shows
shimmering white lights. Shake once more, you get the Rainbow
animation again, and so on.

If you have your hardware Circuit Playground Express, go
ahead and download the code. MakeCode will create a UF2 pro-
gram file, which you will put on the flash memory on Circuit Play-
ground Express (see Chapter 2).

Note that one shake makes rainbow lights and another shake
makes shimmery lights. This code, as is, is very often used in
wearables. Makers have sewn their Circuit Playground Express
into badges, skirts, shoes, and even hair clips and hats. Interactive
lights are very popular projects.

Save your code at this point.

Your Turn: Shake (Part Two)
The animation stops after two seconds and the lights go out.
Change the code so that more animations will run and so that
the lights will remain on at the end of the animation.

USING THE SLIDE SWITCH

If you are using Circuit Playground Express in a blinky project
or on a piece of clothing, you may want to change the anima-
tions according to your choice. For example, the project displays
some animation like rainbows until your mood changes, and you
decide you would like shimmery lights instead. You could use the
push buttons to make the change, but let’s use another Circuit
Playground Express feature: the slide switch. This component is
located between the center accelerometer and the battery plug
(see Figure 4-21).

71Microsoft MakeCode and Interactivity

FIGURE 4-21. The location of the slide switch

It would be perfect to have one animation display if the switch
is moved to the right and another animation display if the switch is
moved to the left. Then your animation remains the same until you
change it.

Figure 4-22 shows the MakeCode for changing an animation
based on the position of the slide switch.

Most of the MakeCode is reusing blocks previously used:

** The on start block sets our one variable item to 0. This vari-
able helps determine if the switch is moved.

** The forever loop checks to see which position the switch is
in by checking the variable item using an if statement block.
If item is 0, then the switch is in the position it was when
the program started. If the variable is 1, then the switch has
been moved in the opposite direction.

72 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

** One new block is used twice: on switch moved from the pink
INPUT group. Place two copies of this block into the code
space. One should be set to on switch moved right, the other
to on switch moved left.

FIGURE 4-22. The MakeCode for changing an animation based on
the slide switch’s position

Complete the program and try it in the simulator. Double-
check that the slide switch does change the animation. If not,
check your program again against the sample shown. If the sim-
ulation is working, go ahead and load the code to Circuit Play-
ground Express. With this code, your project will be selectable
between two different animations. If this project is used as a dec-
oration or on a costume, the animation is changeable via a simple
switch.

Figure 4-23 shows one final MakeCode program. The pro-
gram combines the concepts in the chapter to provide a very
classy effect. The code will blink an animation on the NeoPixels
when shaken. If you wish to change the animation, you move the

73Microsoft MakeCode and Interactivity

slide switch. So your Circuit Playground Express is, say, rainbow
when you move. Then you can change it later with the switch to
be blinky instead. This code saves you from having to bring a com-
puter and change the code when you tire of the animations.

FIGURE 4-23. Animations when Circuit Playground Express
shakes. This version uses the slide switch to change animations.

Most of this code should seem familiar from previous exam-
ples. The code would be much simpler if there were a condition
to check for “Has the slide switch changed?” but there is no block
for that function. The variable item is used to hold the fact that
the switch has changed.

74 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

The animation does not run continuously in this example. It
runs for two seconds after a shake is detected, and then stops. The
clear block at the end of the on shake loop ensures the NeoPixels
are off. For wearables, this saves battery life.

To recap, this code will display colored lights when shaken,
and it will sparkle white lights if the slide switch is moved to the
other position. Be it a snow globe or a colorful wearable, this code
is very useful.

Once more, save your code at this point.

YOUR TURN: SLIDE SWITCH

The challenge: Load or code the simple if shake then set animation
code from the start of the “Shake, Rattle, and Roll” section. Add
code blocks that will allow the code to work if the slide switch is
in one position but disables the animation if the switch is in the
opposite position.

How might the code for this challenge be useful? The slide
switch can be used to “turn off” what Circuit Playground Express
is doing to save power or stop making lights on movement. It is
not a true off/on switch, since it can be programmed via code
to do many things. But if the slide switch is not in use for other
input, having the ability to stop what certain code is doing (rather
than unplugging the power) is very handy and it does not take
much code to achieve that result.

JAVASCRIPT

For JavaScript fans, each of the programs written for this chap-
ter have their corresponding JavaScript code. The corresponding
JavaScript is accessible by clicking the JAVASCRIPT button next
to the BLOCKS button in the top center of the MakeCode screen
in the web browser (Figure 4-24).

75Microsoft MakeCode and Interactivity

FIGURE 4-24. To switch from MakeCode Block View Mode to
JavaScript Mode, use your mouse to click the JAVASCRIPT but-
ton. Clicking the BLOCKS button changes the view back.

The JavaScript for the slide switch code is shown in Figure 4-25.

FIGURE 4-25. The JavaScript for the slide switch changing anima-
tions code written in Figure 4-23

The JavaScript code turns out to be very readable. This is due
to precoded functions in JavaScript that handle the Circuit Play-
ground Express specialized hardware and capabilities. Methods
are available for checking the switches and displaying NeoPixel
animations.

JavaScript can be used instead on the block editor, but learn-
ing JavaScript is more than can be accomplished in this Getting
Started book.

76 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

WRAP-UP

We covered use of the various switches on Circuit Playground
Express. We also reviewed the accelerometer and how to use it in
MakeCode when the board is shaken or tapped.

You also learned about new code blocks in MakeCode:

** Variables

** if .. then conditional checks

** The on start block used to set up the board prior to the for-
ever code running

** New blocks such as on button, on switch, and on shake that
react to something happening

Behind the scenes in the web browser, MakeCode is also build-
ing JavaScript code that is identical to the MakeCode block pro-
gram. The programmer should not need to change the JavaScript,
because the MakeCode block code is identical to the JavaScript
code in functionality.

CHAPTER QUESTIONS

	1.	Besides the on start and forever code blocks, can you list
other code blocks that can also host other code blocks?

	2.	Can the Reset switch be used in normal program interactiv-
ity on Circuit Playground Express?

	3.	Can the on shake block contain other code blocks? If so,
name some.

	4.	Can Circuit Playground Express be programmed in JavaScript
without using the blocks editor?

Advanced
Microsoft
MakeCode

In this chapter we are going to use Microsoft MakeCode to take
advantage of more of the Circuit Playground Express compo-

nents and combine them for interesting effects.

If you have not browsed all of the block groups in MakeCode, I
encourage you to do so. There are 15 code block groups to explore.
Actually, the EXTENSIONS block group contains even more groups—
and the possibility for more as the product evolves.

With the ease of MakeCode, it takes only a couple of min-
utes to get something interesting, put it together, and see what

5

78 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

happens. The projects in this chapter will provide some ideas on
a variety of applications.

SOUND AND MUSIC

Circuit Playground Express uses hardware (Figure 5-1) to convert
digital signals to analog output to create sound via the onboard
speaker. This is in contrast to many other microcontroller projects
that toggle a digital signal to a piezo transducer, which is harsh
sounding. While the sound from the Circuit Playground Express
is good, the speaker is still monophonic, outputting to one channel
as opposed to two (stereo).

MakeCode has built-in code to take advantage of the Circuit
Playground sound output in an easy-to-use format.

FIGURE 5-1. The Circuit Playground Express speaker (right) and
amplifier (left)

79Advanced Microsoft MakeCode

What Is Sound?
Sounds are vibrations in the air around us. Sound can be generated
by movement—our hands clapping, a bird chirping, or a musical
instrument. Our ears are sensors that translate the air pressure
changes into electrical signals, which our brains then interpret.
Mechanical systems can do the same translation that our ears do
for electronics; these are called microphones or transducers.

One aspect of a sound is its frequency. Frequency refers to how
fast the air pressure changes when a sound is made. Think of a
big tuba: the sound is a low bump, bump, bump. Then a flute: a
high-pitched tweet, tweet. Those sounds are at different sound
frequencies (see Figure 5-2).

FIGURE 5-2. Representations of sounds: the red at a low fre-
quency, purple at a high frequency. Source: Wikipedia

Frequency is measured in cycles per second, called hertz. The
sound in the red line above has fewer cycles during the period
of time represented, so the frequency is less than that of the
sound representations below it. The purple line has the highest
frequency. If we connect each wave to a musical instrument, the
red one could be a tuba and the purple one a flute, with other
instruments between them.

A sound may, by design, be a short alert or a longer melody.
Emergency tones are usually sounded for a minute or more,
whereas a piano key is most often struck once and the sound

80 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

is quite short. That is duration, the time a tone is heard that we
record in units of seconds.

Finally, the height of each frequency represents how loud a
sound is. Loudness, or volume, is a measurement of how loud the
sound is to our ear. You can adjust a music player to play very
softly or at ear-splitting loudness.

Music
Knowing what sounds are and how we characterize their proper-
ties, we can better appreciate what we call music. Music can basi-
cally be defined as “sound organized in time.” Most of us think
of music as not just sound, but specific musical notes. What are
musical notes, and how can we get Circuit Playground Express to
play them?

Each musical note represents a specific frequency and dura-
tion of sound. Western musical tradition is built around seven
main notes (and five additional “accidental” notes). You probably
know them as “Do-Re-Me-Fa-So-La-Ti.” You can sing those notes
in a low pitch (at low frequencies) or a very high pitch (at higher
frequencies). In musical notation, the syllables above are given
the letters C-D-E-F-G-A-B. In some languages other symbols are
used, but the English convention is widespread.

MakeCode has code blocks for easily playing musical notes on
the Circuit Playground Express speaker. The play tone block will
output a tone at a selected frequency for a predetermined length
of time, called a beat.

Start a new MakeCode project and select the blocks for the
program in Figure 5-3. The musical blocks are in the bright red
MUSIC block group.

81Advanced Microsoft MakeCode

FIGURE 5-3. A very simple piano playing two different musical
notes

You can use the simulator in MakeCode to press the Circuit
Playground Express Button A and Button B. What happens? But-
ton A plays a tone when pressed and Button B plays a tone as well.
In the program, the tones are both named “A” but one is a Middle
A and the other a High A. When selecting the value to put into
the play tone block, you’ll see a piano-style keyboard appear (Fig-
ure 5-4). A number is in the circle, and when your mouse hovers
over a key, the key name is displayed below the keyboard. When
you select the piano key marked “Middle A,” the number in the
play tone circle is 440.

82 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

FIGURE 5-4. Clicking the frequency value circle brings up a key-
board, if needed.

It turns out the musical note called “Middle A” by musicians is
called “440 hertz” by those who measure frequency. Each musical
note has a specific frequency. For the Button B block, when you
hover your mouse over “High A,” you get the value 880 (hertz)
and a key more to the right of the keyboard.

You can select different musical notes in your code and then
play them on Circuit Playground Express. As you change the val-
ues, you hear different musical tones. Each separate tone is called
a note; 440 hertz is the frequency for the musical note called “Mid-
dle A.” Doubling the frequency from 440 to 880 hertz makes the
note sounds different; 880 hertz is called a “High A.” Mathemat-
ical relationships exist between musical notes, stemming from
how human ears hear the notes that make up music. If you want
to see a chart of the frequency for each musical note, visit www.
arduino.cc/en/Tutorial/toneMelody.

How can MakeCode output music with multiple notes, to form
a tune (a sequence of notes)? Basic music is made by selecting
different notes for a certain length of time. The MakeCode in Fig-
ure 5-5 allows Circuit Playground Express to make a part of a
tune. Note the values for the beat (length of tone) for each musi-
cal block to make the tune sound right.

www.arduino.cc/en/Tutorial/toneMelody
www.arduino.cc/en/Tutorial/toneMelody

83Advanced Microsoft MakeCode

FIGURE 5-5. MakeCode that plays a bit of a tune

In the simulator (or if you’ve uploaded the code to your Circuit
Playground Express, on the board itself), move the slide switch
to the left to trigger the tune. If the switch is already at the left,
move it to the right, then back to the left again. The tune will play.
Move the switch to the right, then to the left again, and the tune
will play again.

You can see that playing even a partial tune takes a fair num-
ber of blocks. Your favorite song would be much, much longer to
set up in block code. Each note has a specific duration (time the
note is played). Some songs add rest (pauses between notes). If
these values are changed to something random, you start to get
a musical mess. Music turns out to be a very structured list of
sounds.

84 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

Is the Board Polyphonic?
With only one speaker and limited hardware capability
within the Circuit Playground Express microcontroller,
the sound output is limited to making one musical
tone at a time (monophonic).

Polyphonic is the ability to play more than one musi-
cal note at a time, similar to the capability of a piano
or a musical synthesizer. Many forms of music require
the ability to play multiple notes at once for the piece
to sound and play correctly. Unfortunately, Circuit
Playground Express does not have the capability to
do multiple-tone output.

Songs with simple notes played sequentially (one at
a time) work fine.

Circuit Playground Express can also play short clips of
sound (often called WAV or wave files) that may con-
tain polyphonic sound. But limited hardware capabil-
ity makes the length of the sounds that can be stored
and played rather short. Playing WAV files in Circuit-
Python is discussed in Chapter 7.

This program also allows the tempo to change. Tempo is the
speed or the pace of the music. Normally, if you want to speed up
or slow down a piece of music, you need to manually change the
durations of the notes. MakeCode has a feature that allows tempo
changes behind the scenes. You can press the A button or the B
button to slow down or speed up the tune in this program.

How Can Sound Help My Project?
Projects up to this point have used light to provide indications.
Lights work well if you are constantly watching them, but if

85Advanced Microsoft MakeCode

you look away, you may miss the information the lights want to
display.

With sound, projects may be created that are silent until an
alert is needed. Here are some of the uses for this:

** Make a sound if light is detected

** Make a sound if something is too hot or too cold

** Make a sound if movement is detected

LISTENING FOR SOUNDS

Circuit Playground Express also has a microphone for sound
input. The microphone is a digital type (see Figure 5-6) that may
be different from analog microphones used in other microcontrol-
ler projects. This section will demonstrate how to use the Circuit
Playground Express microphone in MakeCode.

FIGURE 5-6. The Circuit Playground Express microphone

86 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

The firmware for the microphone is still under development
as of this writing, so the number of functions available is not as
expansive as for other sensors. The engineers at Microsoft have
used the microphone in MakeCode for a very useful feature: loud
sound detection. Detecting a change in sound has many uses in
everyday life. You can have Circuit Playground Express listen for a
noise such as a door opening or closing. It could listen for the loud
sound made by a car horn or a washing machine/dryer buzzing at
the end of a cycle.

The next project uses sound detection to mimic a product that
performs an action if two hand claps are made within a short
time. The commercial product turns on and off electrical appli-
ances like a light. With the Circuit Playground Express version,
you are not limited to performing only one action. You can turn
NeoPixels on and off to simulate a lamp, or you can program other
actions such as playing a song, simulating a computer keyboard,
or any other actions you can dream up.

The on loud sound main block is in the purple INPUT block
group. Drag it onto a blank MakeCode screen (Figure 5-7).

FIGURE 5-7. The on loud sound main block in MakeCode

This block will execute the code within it if you make a loud
sound such as a hand clap. You can try the code in Figure 5-8 to
have the NeoPixel lights change every time one clap is heard by
Circuit Playground Express.

87Advanced Microsoft MakeCode

FIGURE 5-8. A single loud noise turns the lights on and off.

In this code, a threshold (an upper limit) to the loudness of the
sound can be set. A variable called lights-on-off-state is created
and set to 0 to track whether the lights are on or off, and to ensure
that the NeoPixels are off. Then the code waits in the on loud
sound loop for a clap. When the board “hears” a loud noise, it exe-
cutes the code. In our example, if the variable lights-on-off-state

88 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

is 0, the lights must be off, so they are set to on and the variable is
set to the value 1 to help remember they are on. If lights-on-off-
state has the value 1, then the code knows that there has been a
previous clap and the new clap will turn the lights off using the
clear block code. The variable is set to 0 to let the program know
the lights are off.

Try the code yourself on the simulator or by uploading the
code to your Circuit Playground Express. In the simulator, having
an on clap block triggers a circle to appear to the bottom left of
the picture of the board (Figure 5-9). Using the mouse, move the
line within the circle to raise and lower a virtual sound level. For a
clap simulation, start with a low value and quickly move it to the
top for a high level and back down again.

FIGURE 5-9. The sound level simulation circle appears when an on
sound block is used. Grab the horizontal line in the circle with a
mouse and move it down, then up, then down to simulate a clap.

89Advanced Microsoft MakeCode

What will happen in this program if you clap twice?
The first clap will turn the lights on; then the second will turn

them off. This is not exactly like a commercial clap detector. Try
another loud sound like a cough. The board will most likely think
that sound is a clap and toggle the lights. To prevent uninten-
tional loud sounds from activating the lights, the commercial
product looks for two loud noises within a short duration. It is
less likely that two loud sounds might occur within a second or
two, so it makes for a good signal to activate a device.

The previous code needs to be modified to tell if two claps
happen within a certain time. It turns out that 1.5 seconds is a
good value, and this is what the code in Figure 5-10 will test for.
The value may be changed later as needed.

FIGURE 5-10. The final two-clap activation code

90 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

For this version, another variable is needed to count claps.
Create a new variable called clap_count.

When the loud noise is detected, the clap_count variable is
incremented by 1 to note a clap was detected. Then different
actions are done depending on the number of claps:

** If the number of claps counted is 1, then the current time
Circuit Playground Express has been running is stored in
the variable first-clap-time. While the board does not have
a clock telling the time of day, it can keep track of the time
since you plugged it into power, which is also helpful. That
time is available in your programs via the green block millis
(ms), which displays the board running time in milliseconds
(thousandths of a second).

** If the number of claps detected is 2, then the fun begins.
The current time from the millis (ms) block is read and the
previous time stored in first-clap-time is subtracted. This
results in the time between the first clap and the second
clap. If that time is less than or equal to my chosen 1500
milliseconds (which is the same as 1.5 seconds), then it goes
to the code that toggles the lights as used in the previous
example.

** If, for some reason, the board detects two claps but the claps
are not within 1.5 seconds, then clap_count is set back to
0. This helps if you were to clap once, then cough perhaps 2
seconds later—that would not trigger the board.

Try this code in the simulator. You will have to move the line
in the sound circle up and down quickly twice to get the lights
to turn on, then twice quickly for them to go out. Upload the
code to the Circuit Playground Express board. Now you can try
the clapping yourself. One clap should not trigger it, and two or

91Advanced Microsoft MakeCode

more claps spaced more than a second and a half would likewise
be ignored. Two quick claps will set it on; two more quick claps
will set it off. You can change the value 1500 to, say, 1000 for a
fast activation or 2000 for a slower activation.

Be sure you save your code for reference later.

Your Turn: Sound Sensor
Change the code so that

** two claps plays some musical notes

** it takes three fast claps to trigger

Project Ideas: Advanced Clapping
Here are a couple of ideas for taking the sound activation concept
to more advanced projects.

** MakeCode allows for external NeoPixel control—that is,
hooking a strip of NeoPixels up to one or more of the data
lines and controlling them. A subblock of the LIGHTS group,
named NEOPIXEL, controls external NeoPixels connected
to Circuit Playground Express. See Adafruit product ID 3812
for external NeoPixels.

** Here’s an advanced technique: Lamp control, like the com-
mercial Clapper, is possible with certain components. Ada-
fruit sells the Controllable Four Outlet Power Relay (www.
adafruit.com/product/2935). One control pin and ground can
be connected to the power relay green terminals and turned
on and off via MakeCode blocks in the red PINS block group.
The power relay safely isolates the small signals used on Cir-
cuit Playground Express and the dangerous power line volt-
age and current. Remember: Never connect any wall outlet
wiring directly to Express; it could cause serious injury.

www.adafruit.com/product/2935
www.adafruit.com/product/2935

92 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

WRAP-UP

Sound is an excellent notification method. Many people focus a
project to use multicolored lights to notify the user of a situation. If
distracted, a person may not see the lights. Sound is an attention-
getter that does not need to be watched to notice.

Sensing sound is an especially good method to alert a user in
case a radio communications method like WiFi or Bluetooth is
not available. People with limited mobility might be able to clap
to have an action done. Sound detection is also useful in alarm
systems to signal the breaking of glass or the sound of a door
opening. Once you’ve explored the basics of sound detection, look
into additional projects with larger microcontrollers that perform
speech recognition (which takes more processing power than Cir-
cuit Playground Express has onboard).

CHAPTER QUESTIONS

	1.	Take a short tune and work to translate it into MakeCode.
Feel free to browse the Internet for songs already tran-
scribed by others.

	2.	Can you describe how Circuit Playground Express might
make a room alarm by sensing a sound and alerting a person
inside?

Coding with
CircuitPython

In this chapter, an alternate way to program Circuit Playground
Express is demonstrated using a language called Python. Python

is the fastest-growing programming language in use today and is
taught in schools and universities. It’s a high-level programming
language, which means it’s designed to be easy to read, write, and
maintain. Figure 6-1 shows Blinka, the CircuitPython mascot.

FIGURE 6-1. The Adafruit CircuitPython mascot: Blinka

6

94 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

The change from using the graphical Microsoft MakeCode
to using text-based programming may seem like a huge one. It
is not. The Python programming language has been gaining a
steady following, significantly in the Raspberry Pi community.
Why? Because Python is easy to use, and because the language
was designed from the start to be easy to improve, extend, and
grow. The same Python code can run on a small wearable, on to
other computers, on up to a supercomputer, with perhaps only a
slight change.

Python includes modern programming commands and it
supports code extensions, called modules. (In some computer
languages, like Arduino, these are called libraries.) Modules are
code packages that can be used by a Python program to perform
specific tasks. For example, there are modules to perform complex
number crunching or to graphically plot data. And nearly all mod-
ules are open source software—code available on the Internet at
no cost and freely shared.

Module vs. Library
There’s some discussion in the computing field as to
whether code that is imported into Python is a module
or a library. To remain consistent with CircuitPython
documentation, I’ll use the term library most often. Just
think of the terms as interchangeable for this book.

 Unlike the Arduino environment, where all coding is done
on a desktop or laptop, compiled into machine code, and then
loaded onto the circuit board, Python is an interpreted language.
This means that the hardware can interpret and act on each com-
mand you type, practically instantaneously. There’s no need to
compile and upload your code to see if it works.

95Coding with CircuitPython

CircuitPython provides interactivity via a Read–Eval–Print
Loop (REPL, pronounced rep-ul). On your computer you can type
Python commands into the REPL, and the board will process and
respond to each line of programming entered. This allows the user
to see what specific commends do in real time rather than per-
forming multiple steps to get code into a processor for execution.

CIRCUITPYTHON VS. OTHER PYTHON
IMPLEMENTATIONS

CircuitPython is the implementation of Python created by Ada-
fruit for several products, including Circuit Playground Express. It
is a fork (derivative) of MicroPython, a version of Python written
by Damien George to run on microcontrollers.

CircuitPython adds hardware support for a range of Adafruit
Industries microcontrollers. It allows users with limited hardware
experience to easily program their devices. No previous experi-
ence necessary—it’s really simple to get started!

All CircuitPython code is run from the Circuit Playground
Express internal flash drive/thumb drive, the space used previ-
ously to put MakeCode onto the board.

CircuitPython excels at the following:

** Very fast development: Write the code, save the file, and it
runs immediately. No compiling required.

** REPL: You can start interactive programming with the REPL.

** Easy code changes: Since your code lives on the flash drive,
you can edit it whenever you like, and you can also keep mul-
tiple files around for easy experimentation.

** It’s Python! CircuitPython is completely compatible with
Python (it just adds hardware support).

96 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

** Strong hardware support: There are many more modules
for external sensors and capabilities than in MakeCode (but
not as many as Arduino, yet).

** File storage: CircuitPython’s data storage ability makes it
great for data logging, playing audio clips, and otherwise
interacting with files. MakeCode doesn’t currently have
support for file storage, and Arduino has limited support at
present.

See Appendix B for more Python resources.

INSTALLING CIRCUITPYTHON

If you are sure your board already has the latest CircuitPython
release, you can skip this section (for example, a teacher says you
are all set or you have already placed CircuitPython on your Cir-
cuit Playground Express).

If you would like the latest version of CircuitPython, go ahead
and follow along. Updating the software is the same as installing
a fresh copy.

How do you know which version of CircuitPython is on your
Circuit Playground Express? Connect your Circuit Playground
Express to your computer. After a moment, the flash drive CIR-
CUITPY should appear (Figure 6-2). If your Express does not show
a new CIRCUITPY drive but shows a CPLAYBOOT drive, then it
needs to have CircuitPython loaded; see the how-to in the next
section.

If the board is providing a CIRCUITPY drive, you should see a
file on the drive called boot_out.txt; see Figure 6-3.

97Coding with CircuitPython

FIGURE 6-2. The CIRCUITPY flash drive in Windows Explorer

FIGURE 6-3. The boot_out.txt and code.py files on the CIRCUITPY
flash drive

If you open the boot_out.txt file (usually by double-clicking it
with the mouse), the file contains information on the version of
CircuitPython placed on the board. When I updated my board for
this book, the boot_out.txt file contained the following:

Adafruit CircuitPython 3.0.0 on 2018-05-04; Adafruit Cir-

cuit Playground Express with samd21g18

98 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

You can compare the version number (in this case 3.0) with
the latest version on the Adafruit website and decide if a more
up-to-date version is available.

In the off chance you believe the board has failed and Circuit-
Python no longer works as it did, you can install the latest version
to set it up fresh.

Downloading the Latest Version of
CircuitPython
When you looked for CircuitPython on your Circuit Playground
Express, you might not have found it. If there is no CIRCUITPY
drive, there might be a CPLAYBOOT drive. This indicates the
board was being used for MakeCode or something else (see Fig-
ure 6-4). No worries—this is easily fixed. You can also check to
ensure your CircuitPython installation is up to date.

FIGURE 6-4. When you plug Circuit Playground Express in and
you get a CPLAYBOOT drive rather than a CIRCUITPY drive, don’t
worry—that’s easily fixed.

Use your Internet web browser to go to https://github.com/
adafruit/circuitpython/releases/latest. Scroll down to the list of
CircuitPython files, and choose the file that contains the text
circuitplayground_express in the filename. When you click the
file, the operating system will display a box that asks you where
to save the UF2 file that is the CircuitPython code. You can save

https://github.com/adafruit/circuitpython/releases/latest
https://github.com/adafruit/circuitpython/releases/latest

99Coding with CircuitPython

it to any file directory you like; just remember where you save it.
On Windows this can be the desktop or the Downloads or Documents
folder. You can also save the file to a personal flash drive.

Remembering the Gotchas from
Chapter 2
If you are running Windows 7, you will need a software
driver installed to have your computer recognize the
Circuit Playground Express board correctly.

Be sure you use a high-quality USB-to-MicroUSB cable
with both power and data lines. Old cables, or cables
that are used only to charge another device, will not
work and will almost certainly lead you to frustration.

Plug your Circuit Playground Express into your computer and
ensure the green power LED is on. Find the Reset button on your
board. It’s the small button located in the center of the board.

Tap this button once to enter the bootloader. The NeoPixels
on the board will flash red and then stay green. A new drive will
show up on your computer. The drive will be called CPLAYBOOT
(see Figure 6-5).

FIGURE 6-5. The CPLAYBOOT drive appears when you reset
the board.

If you do not see this drive on your computer, don’t be discour-
aged. Tap the Reset button twice. The rhythm of the taps on the
Reset button needs to be correct, and sometimes it takes a try or

100 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

two. If you have a Circuit Playground Express and it’s fresh out of
the bag, pressing the button once will probably do it.

The number of presses to get the green circle and CPLAYBOOT
drive depends on what software was used previously: MakeCode,
CircuitPython, or Arduino. There is no “wrong” way—use one
press or two, as long as the CPLAYBOOT drive shows up in the
operating system.

Take the UF2 file you saved from the web and drag it onto the
CPLAYBOOT drive (or otherwise initiate a copy of the file to the
Circuit Playground Express CPLAYBOOT drive). The red D13 LED
will flash as the file is transferred and the NeoPixels will blink and
then go out.

If everything is successful, your computer will show a new
flash drive named CIRCUITPY. This is your indication that
you now have CircuitPython ready on your Circuit Playground
Express. Your computer, for instance Windows 10, may pop up
a message that it is setting up a new device called Circuit Play-
ground. This is fine.

On the drive, you should see a file named boot_out.txt on the
CIRCUITPY drive.

Now it’s time to check whether you have the latest version
of CircuitPython on your Circuit Playground Express. Open the
boot_out.txt file, and you will see information on the version of
CircuitPython that was placed on the board:

Adafruit CircuitPython 3.0.0 on 2018-05-04; Adafruit

CircuitPlayground Express with samd21g18

It is possible that your board will show a version number
greater than 3.0. Version 3.0.0 was released in 2018 (with addi-
tional releases planned after that) as Adafruit provides additional
functionality. samd21g18 looks like a gamer tag but it is the manu-
facturer’s name for the microcontroller on the board.

101Coding with CircuitPython

Do I Have to Install CircuitPython
Regularly? Must I Upgrade?
You have to install CircuitPython only once unless you
are switching back and forth between CircuitPython,
MakeCode, and Arduino. Installing once, you are free
to code all you like without going through the install
process again until you want to upgrade. Upgrades
from Adafruit may come out periodically, adding addi-
tional features or fixing issues noted by users. Often,
it is worth upgrading if you want to use new features
or there is a major update. If you have a project you
intend to use and it works well, consider keeping
things the way they are.

I’m Having Weird Installation
Issues!
Don’t worry! The problem could be a corrupt flash
drive, which is not the end of the world (or your
board!). If this happens, follow the steps found in
Appendix A.

Now that the Circuit Playground Express board is ready, it’s
time to code in Python. First, though, you need to make a deci-
sion. The process of creating code files involves typing in text,
much like the JavaScript we saw in MakeCode. What software
should you use to create the code files? Python commands (code)
will be saved into a text-based file. For that we need a text-editing
program.

102 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

TEXT EDITORS

Unless you are typing in the REPL (more on using the REPL later
in the chapter), you’ll want to type your CircuitPython code in
a text editor. A text editor is a program on a PC, Mac, Linux, or
Chromebook that accepts text input and allows you to edit the
text and save the final result to disk.

No one wants to type complex programs into the REPL over
and over. One typing mistake and we’d have to start all over. If we
store the program text in a file, we can save it for later use.

Text editors come standard with all operating systems:

** PC/Windows: Notepad, Wordpad, Microsoft Word

** Linux: Nano, Vim, EMACS

** Mac: TextEdit, Pages, TextMate

** Chromebook: Caret, Google Docs, Writebox, Text

If you are in a learning environment, your teacher will often
tell you which editor to use and guide you on how to use it. If
you’re going through on your own, you are free to select your own
text editor. Full-fledged word processors such as Microsoft Word,
Google Docs, and Mac Pages do not save plain text by default. A
more basic editing program often works best.

Try the Mu Editor (if possible). Mu is a simple editor that
runs on Windows, macOS, Raspberry Pi, and Linux (the list may
expand to other platforms as the developers have time). A serial
console is built right into the Mu program so that you get imme-
diate feedback from your board’s serial output and easily use the
REPL in the same program!

If you find you cannot use Mu, use the text editor of your
choice.

For Chromebook, the examples will be using the Caret editor.
A separate terminal emulation program is needed to type com-
mands into the REPL and to receive REPL and program output

103Coding with CircuitPython

from CircuitPython. This book will use the Chromebook terminal
emulator Beagle Term to perform serial input and output. Both
applications are free in the Chrome OS app store.

NOTE  Mu will be shown in most examples. Mu is the
recommended editor for Windows, Mac, and Linux.
Please consider using it (unless you have a favorite
editor already!). This eliminates the need for using
two programs, a text editor and a terminal emula-
tion program, to interact with the Circuit Playground
Express serial input and output. Mu is not required. If
you are more experienced, another editor and a ter-
minal program will work fine.

WARNING  Ensure that you use an editor that
writes out files completely when you save a file to
disk. It is so easy to write your code in an editor and
fail to save the code to disk. Many “good” editors will
prompt you to save your work, but some do not. Both
Notepad (the default Windows editor) and Notepad++
can be slow to write. You need to click the save icon
to ensure your data is saved, and you must be sure to
eject the drive.

EJECT OR SYNC THE DRIVE AFTER
WRITING
If you are using a problematic text-editing program, not all is lost!
You can still make it work.

On Windows, you can eject or safely remove the CIRCUITPY
drive by right-clicking the drive in File Explorer and clicking Eject.
It won’t actually eject, but it will force the operating system to

104 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

save your file to disk. On Linux, use the sync command in a ter-
minal to force the write to disk.

When a program edit is complete, save a copy somewhere safe,
such as a hard drive or data flash drive, to ensure that you have a
copy for later use.

Installing Mu on Windows or Mac
The first step is to download the latest version of Mu. If you are
using Windows, you must be running Windows 7 or higher. For
macOS you must be running 10.12 (Sierra) or higher (Mac users
with lower versions can try the Linux instructions that follow, but
that is not guaranteed to work, according to the author of Mu).

The main Mu repository is located on the web at http://
codewith.mu.

Select the latest version for your operating system. Down-
load and save the Mu installation file to your desktop, download
folder, or wherever is handy. Run the installation program. The
installation process is operating system dependent (Figure 6-6).
Windows installation programs ending in .exe or .msi can be run
by double-clicking. macOS has its own install package.

FIGURE 6-6. The Mu program icon on Windows (left) and Mac
(right) when placed on the desktop. Icons are subject to change
by the Mu developers.

http://codewith.mu
http://codewith.mu

105Coding with CircuitPython

Once you have the program installed on your computer, you’re
ready to start coding Python.

Installing Mu on Linux
Each Linux distro is a little different, so use the following as a
guideline. See https://codewith.mu/en/howto/install_with_python
for details.

	1.	Open a terminal window.

	2.	Mu requires Python version 3. If you haven’t installed
Python yet, do so via your command line using something
like sudo apt-get install python3.

	3.	You’ll also need pip3 (or pip if you have only Python 3
installed); try running pip3 --version. If your system does
not have pip installed, run sudo apt-get install python3-pip.

	4.	Finally, run pip3 install mu_editor.
You can now run Mu directly from the command line.

USING MU

Mu attempts to automatically detect a Circuit Playground Express
plugged into a computer. Before starting Mu, please plug in your
CircuitPlayground Express and make sure it shows up as a CIR-
CUITPY drive in your computer’s file explorer.

Once Mu is started, you will be prompted to select your mode
(Figure 6-7). Please select Adafruit CircuitPython.

106 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

FIGURE 6-7. The Mu Select Mode screen

If you get a warning that the Circuit Playground Express can-
not be found (Figure 6-8), ensure you have the board plugged into
your computer. Check to see if the CIRCUITPY drive shows up in
the available disk drives on your computer. If you are still having
issues, see Appendix A for troubleshooting tips.

FIGURE 6-8. The warning that’s shown if your Circuit Playground
Express is not plugged in when Mu is started

107Coding with CircuitPython

You should now see the main Mu screen (Figure 6-9).

FIGURE 6-9. The Mu main editing window

Now that Mu is available, it is time to start coding Python.

CREATING PYTHON CODE

Plug your Circuit Playground Express via a known good USB cable
into your computer. Your file explorer should show that a new
flash drive is available named CIRCUITPY. (If you do not see the
drive, see the earlier section “Downloading the Latest Version of
CircuitPython” or Appendix A.)

Start the Mu editor. Usually you double-click the Mu icon in
Windows or click the Mac icon. If you are on a Chromebook, run
Caret or the editor you have chosen.

As with MakeCode, a good first program to create is one that
makes a light on the board blink. Here are the general steps:

	1.	You set up the board environment before starting the main
forever loop.

	2.	You create a loop that continually runs—in this case, turn-
ing an LED on, waiting, turning the LED off, waiting, then
rerunning the loop.

108 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

Generic Python code does not know it will be running on a Cir-
cuit Playground Express. To assist Python with hardware-specific
tasks, the creators of Circuit Playground Express have easy-to-use
code that performs operations on the board, such as performing
digital input and output.

In the larger Python world, thousands of modules and librar-
ies are available for performing a wide variety of useful tasks. For
the smaller CircuitPython, memory size limits the number of
libraries a bit. Adafruit is committed to providing a wide variety
of functionality for their CircuitPython products.

Why use a library? Libraries are great for two reasons:

** Libraries allows code portability. If you take your Circuit-
Python code for Circuit Playground Express and place it on
another CircuitPython product such as an Adafruit Feather
M0, the code will run (if you haven’t used board-specific
capabilities). The underlying hardware may be very different,
but the authors of the library have done the translation from
Python to hardware coding.

** Libraries allow a person to focus on their project and not the
nuts and bolts of a specific hardware architecture. It is but
one premise of open source software: someone has taken the
time to write (hopefully useful) code to do something you
would also like to do, such as code that makes a motor turn
on and off. Coding the low-level motor control via hardware
can be rather difficult. If the project designer can import a
library to easily code something like motor.on and motor.off,
the designer can focus more on a project and not have to inti-
mately know how to control the motors on the circuit level.

The programmers at Adafruit have written a library for
CircuitPython to interact with the Circuit Playground Express

109Coding with CircuitPython

board’s built-in hardware. It is called adafruit_circuitplayground
.express. The library has a number of useful functions, which we
will use in examples in this chapter.

Installing the Adafruit
CircuitPython Libraries
Adafruit and contributors have created a large num-
ber of libraries to handle the built-in hardware on
Circuit Playground Express and other devices that
may be added onto the board (like a display, for
example). You can find the file necessary to add
this capability here: https://github.com/adafruit/
Adafruit_CircuitPython_Bundle/releases.

You will need to determine the CircuitPython release
you are running on your board, which you can do by
opening the boot_out.txt file on the CIRCUITPY flash
drive when you plug the board in. As of this writing,
there were versions for a 3.0.0 branch and a 3.0.0
branch. Since I am running the 3.0.0 version of Cir-
cuitPython, I chose the corresponding 3.0.0 zip file
and saved it on my computer.

Open the zip file and you will see many small files
used for a variety of input and output devices.

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases

110 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

With the zip file open on your computer, highlight and
copy the lib directory (which contains all the files and
subfolders we need) to the CIRCUITPY drive. It will
take some time and consume about 400KB of space.
This still leaves plenty of room on the drive for pro-
grams. Be sure to use the eject function of your file
explorer program (sync in Linux) to ensure all writes
are made to the Circuit Playground Express flash
memory before disconnecting the board from USB.

Now Circuit Playground Express should be set to use
a wide variety of prebuilt libraries. If you ever need
to refresh the library with the latest code, follow the
same procedure.

To use the entire code library, you include the following com-
mand at the top of a Python program:
import adafruit_circuitplayground.express

Whenever you want to use a function in the module, you
will need to type the function name, such as when reading the
A Button:
button_read = adafruit_circuitplayground.express.button_a

Fortunately, we can shorten the function calls due to
some Python, behind the scenes. Here is how to refer to the

111Coding with CircuitPython

adafruit_circuitplayground.express module by using the handy
acronym cpx:
from adafruit_circuitplayground.express import cpx
Objects to Circuit Playground Express objects can now be
referred to their abbreviated form
button_read = cpx.button_a

Much better to read—and less typing.
For the blinking D13 LED, we’ll use the Circuit Playground

Express library in CircuitPython.
Type the following code into your text editor:

import time
from adafruit_circuitplayground.express import cpx
while True:
 cpx.red_led = True
 time.sleep(1)
 cpx.red_led = False
 time.sleep(1)

For the lines after while True:, you should indent the code.
Indenting (putting space before the text on a line) is done by
either typing four spaces or pressing the Tab key. This informs
Python that the code should all be contained in the statement
above it. The while True: provides a forever-style loop as in Make-
Code or the loop() function in Arduino. The value True will always
be true so while True: will always loop all the statements within it.

To Tab or to Space
Some coders prefer to indent code using spaces. Many
Python programmers indent with the Tab key, which is
equal to a set number of spaces. Neither is wrong, but
all agree that you should not mix tabs and spaces or
you may end up with a Python error that will not be
obvious to fix. Some text editing programs might put
an actual tab character into the text file. The editor
might convert a tab to multiple spaces. Consistency is
the important thing. Using Tab will almost never make
someone later editing your code question your choice.

112 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

Now save your program to a disk. You will want a place to store
a copy of your code for later use; this can be a hard disk, a flash
drive, or online storage like Google Drive.

When you save the program, use the filename blink.py. The
.py at the end is called the file extension, and it lets you and others
know the text file contains Python code. Also, save the program as
code.py. This is the name CircuitPython recognizes as the current
program you wish to run.

Program Names
The CircuitPython file you copy over to run on Circuit
Playground Express should always be called code.py.
This is so the Python interpreter knows the name of
the code you want to run.

If you use mycoolprog.py or anything else, the board will
not know that file is the code you wish to run. Feel
free to use a more descriptive name on your backup
storage device copies—for example, music-on-tilt.py.

The CircuitPython authors state there are four filenam-
ing options for the code the board will run: code.txt,
code.py, main.txt, and main.py. CircuitPython looks for
those files, in that order, and then runs the first one
it finds. The author and Adafruit suggest using code.py
as your code file.

Still, it is important to know that the other options
exist. If your program doesn’t seem to be updating
as you work, make sure you haven’t created another
code file that’s being read instead of the one you’re
working on.

Throughout the book, we will use code.py as the
CircuitPython program to run.

113Coding with CircuitPython

Running the Python Code
Okay, so at this point you have your Python program. Let’s get
that code running.

Plug in your Circuit Playground Express, via USB, to your com-
puter. The board should show up as a flash memory drive named
CIRCUITPY.

Copy the file code.py you saved earlier via your computer’s file
program over to your CIRCUITPY drive.

If you are using the Mu editor, you can use the save button
to save the file to Circuit Playground Express if you named the
program code.py. If you need a “Save as” function to make the
copy, double-click the filename on the Mu tab that contains the
program name. A dialog box will appear allowing you to name and
save the code wherever you wish.

The red D13 LED next to the USB connector should now be
flashing. The Python code is working!

On the off chance your code is not working:

** Be sure the green power LED is on and you see the CIR-
CUITPY flash drive.

** Be sure your file is called code.py (and not blink.py or some-
thing else). Unlike MakeCode filenames, the py file on the
board must be named code.py.

** You can press the Reset button and that should restart the
Python code if it is not running already.

** Double-check your Python program against the earlier list-
ing. The indented text should not mix tabs and spaces. You
must indent the text as shown. In Python, that indicates the
text is in a loop like MakeCode.

114 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

EXAMINING THE CIRCUITPYTHON
BLINK CODE

Without going into the details of the entire Python programming
language, we can understand what the code is doing by comparing
the code to similar actions in MakeCode.

Modules are similar to the code blocks in MakeCode that
allow you to select blocks of a specific type—for example, LOOPS
for blocks that perform looping actions, LIGHT for blocks that turn
LEDs on and off, and so on. What we do not have at hand are
the range of statements that can be created in each library—the
library building blocks. Let’s explore them.

The while True: statement is the same as the forever loop
in MakeCode. The code within the while True: loop will be exe-
cuted “forever.” The code that follows while can be any math-
ematic statement that evaluates to a True or False condition.
It could be x < 3 or another comparison that is evaluated as
True or False. Here we just use True, so in essence while True:
always loops (it never exits because the constant value True is
never False).

The code in the while loop is similar to the code used in
MakeCode. The LED is turned on by setting the value of the
object cpx.red_led to True. The time function waits 1 second.
The LED is turned off by setting the value of the object cpx.
red_led to False. Then another second elapses before starting
the loop again.

With additional examples, you’ll see more Python state-
ments and library functions that build on the work of the blink
example.

115Coding with CircuitPython

Using the Internal (Frozen)
CPX Library
The CPX library is always available to CircuitPython
programs. As of CircuitPython version 2.3.0, CPX is a
frozen library. A frozen library is part of the core of
CircuitPython as of version 3.0.0 and higher. No file
in the Circuit Playground Express /lib directory is
required to support the CPX library.

If you have upgraded from a CircuitPython version
prior to 3.0.0 and you have library files in the /lib sub-
folder on the CIRCUITPY drive, you will want to delete
the CPX library in /lib. You do this by deleting the
directory and files in /lib/adafruit_circuitplayground/.
That way, you can be sure that you are using the fro-
zen version of the CPX library.

OUTPUT FROM CIRCUIT PLAYGROUND
EXPRESS TO THE COMPUTER

Earlier when we programmed Circuit Playground Express using
MakeCode, there were no blocks that allowed the user to interac-
tively communicate with the board. The computer allowed you to
code and let you see what that code would do. But there was no
ability for the code to take computer input or format output to
the computer. Fortunately, CircuitPython has greater flexibility
when performing input and output.

Up until now, the USB connection has provided two functions:

** Power the board via the USB cable

** Enable loading code and reviewing files on the device as if
the board is a flash memory drive

Universal Serial Bus (USB) provides a number of other
functions that are very useful. This capability can be used by

116 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

programming in CircuitPython (or later in Arduino). Two addi-
tional functions that are extremely useful are

** Input and output to the connected computer over USB—
typically called serial communications

** Human Interface Device (HID) mode, which allows the board
to emulate devices such as a keyboard or a mouse

Serial Output
Time to modify our first Python program. Add the line that starts
with print below the while True: statement to your code:

import time
from adafruit_circuitplayground.express import cpx
while True:
 print("Hello CircuitPython!")
 cpx.red_led = True
 time.sleep(1)
 cpx.red_led = False
 time.sleep(1)

Please make sure it is indented and typed correctly with two
double quotation marks and two parentheses.

The print statement will send the function argument to the
serial output (out the USB port back to your computer).

Here is where using the Mu editor helps. If you do not have
Mu, skip ahead for how to get the serial output.

Click the Serial icon, the fifth icon from the left with a double
arrow icon on it (see Figure 6-10).

FIGURE 6-10. The Serial icon in the Mu editor, fifth from the left,
has a double arrow icon.

117Coding with CircuitPython

The Serial screen acts both as a command input/output win-
dow and as an interactive REPL Python environment.

Once you have typed in the print line, your screen should look
similar to the one in Figure 6-11. You can adjust the size of each
window; in Figure 6-11, I expanded the Serial window to show
more of what is being output by Circuit Playground Express.
Left-click and hold the mouse on the light gray line between the
code and Serial windows, adjust, and then release the left mouse
button.

FIGURE 6-11. With the Serial window open, serial output can be
seen.

Every two seconds, you should see the words Hello, Circuit
Python! display on the screen. If you don’t see the text at the bot-
tom of the screen, press Ctrl+D to restart the program.

118 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

The print function allows the user to print text and numbers
through the USB port on Circuit Playground Express to the host
computer. With the Mu editor, the text shows up in the Serial
window.

If you are not using Mu, the text can be seen by any program
that opens Circuit Playground Express as a serial device. On a Mac,
the screen command opens up a compatible serial connection.
On Windows, you need a terminal emulation program such as
PuTTY. On Chromebooks, you need a terminal program such
as Beagle Term.

If you’re using a Chromebook, plug in your Circuit Playground
Express, and then run Beagle Term. You should get a screen sim-
ilar to the one in Figure 6-12 with a /dev/ttyACM0 or ACM1 port
already filled in. If you need to switch ports to a different USB
device, do it here. Then click the Connect button (the other set-
tings are fine).

FIGURE 6-12. Beagle Term on Chromebook, settings screen

Figure 6-13 shows the corresponding Beagle Term output
from the CircuitPython print statement.

Once you have a method for getting data from Circuit Play-
ground Express to your computer, what data might be output?

119Coding with CircuitPython

FIGURE 6-13. Chromebook serial output to Beagle Term for the
Hello CircuitPython demo

With all the sensors on the board, it would be great to use Cir-
cuit Playground Express to measure things like temperature and
light intensity and send them back to the computer to record for
later use. The larger NeoPixel LED lights can indicate certain val-
ues measured by the board, but actual numbers for values makes
the output easier to use for measurements. You can do so easily
(and you will in the next chapter) when you learn more about
functions available for program use.

The Circuit Playground Express code library has the functions
that let you use all the capabilities of the board. The next section
will list them all for reference.

THE ADAFRUIT CIRCUIT PLAYGROUND
EXPRESS LIBRARY

To effectively use the capabilities of Circuit Playground Express
in CircuitPython, we need a reference for all the library functions
available. This section lists the functions available as of this writ-
ing. An up-to-date list (for example, if Adafruit changes or adds
to the library) is located at http://circuitpython.readthedocs.io/
projects/circuitplayground/en/latest/api.html.

http://circuitpython.readthedocs.io/projects/circuitplayground/en/latest/api.html
http://circuitpython.readthedocs.io/projects/circuitplayground/en/latest/api.html

120 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

All the code fragments in Table 6-1 assume you have the
Python import statement at the top of your code like this:
from adafruit_circuitplayground.express import cpx

NOTE  A parameter is a value that you provide to
a function to set the behavior of that function. For
example, in the two statements print(3.0) and print(x)
the value 3.0.0 and the variable x are considered the
parameters used for the print function.

TABLE 6-1. Adafruit Circuit Playground Express library functions
and usage

ACTION CPX LIBRARY USAGE
Accelerometer x, y, z = cpx.acceleration

print((x, y, z))

Button A if cpx.button_a:

 print("Button A pressed!")

Button B if cpx.button_b:

 print("Button B pressed!")

Slide Switch print("Slide switch:", cpx.switch)

(True to the left, False to the right)

Red (D13) LED cpx.red_led = True

time.sleep(1)

cpx.red_led = False

time.sleep(1)

(True turns LED on, False turns LED off)

Temperature
Sensor Value

temperature_c = cpx.temperature

temperature_f = temperature_c * 1.8 + 32

print("Temperature celsius:",
temperature_c)
print("Temperature fahrenheit:",
temperature_f)

121Coding with CircuitPython

ACTION CPX LIBRARY USAGE
Light Sensor Value print("Light Value:", cpx.light)

Play WAV file cpx.play_file("laugh.wav")

The WAV file must be on the board flash drive.

Play a tone on
the speaker (fixed
duration)

Parameters:

frequency (integer)—The frequency of the
tone in Hz

duration (decimal)—The duration of the tone
in seconds

cpx.play_tone(440, 1.0) # 440 hz for 1
second

Play a tone on the
speaker (until told
to stop)

Parameter: frequency (integer)—The fre-
quency of the tone in Hz

cpx.start_tone(262)

Stop playing a tone
previously started
with start_tone

cpx.stop_tone()

Detect the board
being tapped

cpx.detect_taps = 1

if cpx.tapped:

 print("Single tap detected!")

Detect the
board being
double-tapped

cpx.detect_taps = 2

if cpx.tapped:

 print("A double-tap detected!")

Detect when board
is shaken

Parameter: shake_threshold (integer)—The
threshold shake must exceed to return True
(default: 30). Lower = more sensitive; keep
above 10.

if cpx.shake():

 print("Shake detected!")

if cpx.shake(100):

 print("Hard shake detected!")

Set NeoPixel LEDs Set the color of NeoPixels; values are Red,
Green, Blue, and can each range from 0 (off)
to 255 (full on):

cpx.pixels[9] = (30, 0, 0)

122 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

ACTION CPX LIBRARY USAGE
Set NeoPixel LEDs
(continued)

Pixels are numbered counterclockwise from
cpx.pixels[0] through cpx.pixels[9].

You can also use a hexadecimal value in the
format 0xRRGGBB (decimal 30 = hex 0x1e):

cpx.pixels[9] = 0x1e0000

All the pixels can be lit to the same color
value specified using cpx.pixels.fill:

cpx.pixels.fill((30, 0, 0))

To turn off all pixels, set them to (0, 0, 0):

cpx.pixels.fill((0, 0, 0))

Set NeoPixel
brightness

Set the brightness of all pixels (from 0.0 to
1.0):

cpx.pixels.brightness = 0.3

Pads A1 through A7
being touched

The touch pads are around the edge of the
board.

if cpx.touch_A1:

 print('Touched pad A1')

Change A1 to A2, A3, A4, A5, A6, A7 for other
pads.

123Coding with CircuitPython

ACTION CPX LIBRARY USAGE
Set touch pad
sensitivity

Parameter: adjustment (integer)—The desired
threshold increase; higher numbers make the
touch pads less sensitive.

cpx.adjust_touch_threshold(200)

while True:

 if cpx.touch_A1:

 print('Touched pad A1 hard')

CircuitPython API Documentation
You can get the information for using the libraries built
to implement Circuit Playground Express–specific
hardware control functions at http://circuitpython
.readthedocs.io/.

The code that makes up how our program communi-
cates with a predefined set of code written by another
group is often called an applications programming
interface (API). If you like, you can look at the source
code for Circuit Playground Express library functions in
the Adafruit GitHub repository at https://github.com/
adafruit/Adafruit_CircuitPython_CircuitPlayground/
blob/master/adafruit_circuitplayground/express.py.

Go ahead and try some of these functions in your own code. To
get ideas on how others are using CircuitPython on Circuit Play-
ground Express, visit https://learn.adafruit.com/category/express
and look for projects that are using CircuitPython.

http://circuitpython.readthedocs.io/
http://circuitpython.readthedocs.io/
https://github.com/adafruit/Adafruit_CircuitPython_CircuitPlayground/blob/master/adafruit_circuitplayground/express.py
https://github.com/adafruit/Adafruit_CircuitPython_CircuitPlayground/blob/master/adafruit_circuitplayground/express.py
https://github.com/adafruit/Adafruit_CircuitPython_CircuitPlayground/blob/master/adafruit_circuitplayground/express.py
https://learn.adafruit.com/category/express

124 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

RUNNING CODE ON EXPRESS VIA
THE REPL

Earlier in the chapter, we used the Serial window in Mu (or Beagle
Term for Chromebook) to view the output from a CircuitPython
file. Within the Serial window, you can press Ctrl-C to get to the
REPL. The REPL is an interactive method for entering commands
into CircuitPython and getting feedback.

First, connect your Circuit Playground Express board to your
computer with a USB cable. Run the Mu editor (Windows/Mac)
or Beagle Term (Chromebook).

If all is good, you will see the editor window shown in Fig-
ure 6-14. Click the REPL button, which has a keyboard icon.

FIGURE 6-14. Start the Serial by clicking the Serial icon at the
top of the Mu screen and press Ctrl-C to get the >>> prompt.

The editor window will split in half (Figure 6-15). The REPL is
in the bottom portion.

The Serial window will show your serial output/input. But it
will also communicate with the board. If you press Ctrl-D, the code
will start again without doing a full board reset (which pressing
the button onboard does).

125Coding with CircuitPython

FIGURE 6-15. The Serial window at the bottom of Mu

If you press any other keyboard key, you enter the REPL itself
(Figure 6-16). Now any commands you type into the window will
be interpreted as CircuitPython commands.

FIGURE 6-16. Typing CircuitPython commands into the REPL

If you would like to import a library (Figure 6-17), you can do
so first and then you can use library functions after that.

FIGURE 6-17. Importing a library in the REPL

126 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

The code you type is interactive, but there is no mechanism to
save your code. This is why writing code in a text editor is best for
code you will be changing.

WRAP-UP

CircuitPython provides a great way to program Circuit Playground
Express using a programming language gaining in popularity.
CircuitPython also exposes additional functionality on Circuit
Playground Express, including the ability to read and write files
placed on the onboard flash memory.

You can also type CircuitPython commands into the REPL if
you need to perform a short list of actions.

In the next chapter, some of the more advanced uses of
CircuitPython for Circuit Playground Express will be covered.

CHAPTER QUESTIONS

	1.	What is an interpreted computer language?

	2.	In MakeCode, the web interface places a binary UF2 file onto
Circuit Playground Express when the download button is
used. How is code placed onto Circuit Playground Express
in CircuitPython, and where is the mechanism to turn code
into binary machine commands?

	3.	What is the CircuitPython equivalent command to the
MakeCode forever loop?

	4.	Which CircuitPython function outputs information from
Circuit Playground Express to the connected computer?

Using the Circuit
Playground Express

CircuitPython
Library

W riting Circuit Playground Express programs that interact
with the board’s features is greatly simplified by using

the specialized CircuitPython library provided by Adafruit. The
library, introduced in Chapter 6, allows project creators to focus
on their goals and not spend unnecessary time figuring out the
internals of the board.

In this chapter, the Circuit Playground Express CircuitPython
library will be used to read the sensors on the board. The data is first
displayed in the Serial window and then to a spreadsheet. Finally,
the board’s exterior pads are set up for capacitive touch switching,
letting you coax music out of fruit from your refrigerator.

7

128 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

READING SENSORS

In Microsoft MakeCode, reading sensor values involved pulling in
the correct blocks. But MakeCode does not really provide for an
easy way to manipulate data over time or to put the data some-
where for later use.

CircuitPython excels at data manipulation. From simple data
gathering to complex calculations and plotting, CircuitPython is
the language to choose.

To demonstrate the abilities of CircuitPython, the following
program will get things started. The program will

	1.	Read the temperature in Celsius.

	2.	Read the light intensity from the light sensor.

	3.	Output the data to the serial output connection to the host
computer.

	4.	Wait a bit.

	5.	Do everything over again.
Looking at the list of library functions in the adafruit_

circuitplayground.express module in the previous chapter, the
value used to read the temperature in Celsius is cpx.temperature
and the value used to read the light intensity is cpx.light. Thank
you to the library authors for handling all the low-level interfac-
ing to the hardware!

Libraries Installed?
If you did not install the Adafruit libraries to the Cir-
cuit Playground Express flash memory subdirectory
/lib, discussed in Chapter 6, please go back and do
so now. The libraries will be used extensively in this
chapter.

129Using the Circuit Playground Express CircuitPython Library

First import the modules. You need the adafruit_

circuitplayground.express module to read the sensors, and you
need the time module to use the sleep function.

import time
from adafruit_circuitplayground.express import cpx

Next we need to set up a forever type loop that takes the light
and temperature readings, prints them out to the serial output,
waits a set period of time, then loops back to do it again.

import time
from adafruit_circuitplayground.express import cpx
while True:
 print("Temperature:", cpx.temperature, ", Light
Intensity:", cpx.light)
 time.sleep(1)

Type this code into your text editor, such as Mu or Caret. Save
a copy on your computer as temp-light.py. Then save the code on
your Circuit Playground Express CIRCUITPY drive as code.py.

In the Mu REPL window, you should see the program’s serial
output in Figure 7-1. On a Chromebook, similar output should be
visible in Beagle Term.

FIGURE 7-1. The temperature and light code running in Mu

130 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

The temperature is in degrees Celsius and the light intensity
is a relative level. Note the light sensor has not been calibrated on
Circuit Playground Express; you should look for changes in light
rather than think of the values as accurate readings.

Go ahead and place a finger over the temperature sensor on
the board (see Figure 7-2).

FIGURE 7-2. The locations of the Circuit Playground Express light
and temperature sensors

The values for temperature should go up due to body heat
being usually warmer than the room temperature. If you release
the sensor, the temperature should gradually go down (if you blow
on the sensor, the values may go down more rapidly).

Now use your hand to shade the light sensor. Covered up, it
should register 5 or below. In fluorescent light, the reading should
be about 8 or 9. Holding the sensor to a white portion of the com-
puter display should provide a reading over 20.

Reading the Circuit Playground Express sensors and writing
the output is perfect for scientific sensing and analysis.

131Using the Circuit Playground Express CircuitPython Library

Your Turn: Sensor Values
Change the code in the following ways:

** Instead of temperature and light, print out the three values
for the accelerometer chip in the center of the Circuit Play-
ground Express. The chip shows acceleration (changes in
movement speed). With a print statement displaying the cpx.
acceleration.x, cpx.acceleration.y, and cpx.acceleration.z
components, move and shake the board to watch how the
values change. Describe how these x-, y-, and z-axis values
vary by what type of movement you make. Look at Circuit
Playground Express in the lower-left corner of the central
accelerometer chip to see a diagram describing which motion
changes which value. If you would like to try this interactively
in Mu, skip to the end of the next section.

** The accelerometer action is simplified by the shake function.
Print out the True or False returned by cpx.shake. After you
are familiar with what the shaking of the board will produce
as far as True or False, adjust the sensitivity of the shake by
including a number parameter, for example, cpx.shake(50).
Adjust the number to see how it affects the shake detection.

** Diving deep: Interested in sound and how you might code a
CircuitPython implementation of a VU sound meter? See
the tutorial at https://learn.adafruit.com/adafruit-circuit-
playground-express/playground-sound-meter to learn more.

FILE INPUT AND OUTPUT

Printing Circuit Playground Express sensor data to the serial out-
put (viewable via the Mu Serial window or a serial terminal like
Beagle Term) works well for recording data, but this process is far
from convenient. The data may be captured via a screen shot, but
a picture is not that helpful. The data may also be available via the

https://learn.adafruit.com/adafruit-circuit-playground-express/playground-sound-meter
https://learn.adafruit.com/adafruit-circuit-playground-express/playground-sound-meter

132 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

operating system “cut-and-paste text” capability. But it probably
will not be formatted well and is inconvenient to use long term.

The easy, professional way to capture data from Circuit Play-
ground Express is to have the code write output to a file that can
be used on the computer later. Writing out to a file also means
you do not have to physically be there to watch the results of an
experiment to record results. A CircuitPython program can take
a Circuit Playground Express sensor measurement every 10 min-
utes for an hour. After all, we have a programmable microcontrol-
ler—have it do the tedious work.

 The question for the past 70 years in computing is: How
should the data be written to a file to have it easily read back
again? Text files with easily read text would be the best format
for information to be used in word processing. But text is not
well suited to processing numeric data, a problem solved 35 years
ago with the creation of VisiCalc, the first spreadsheet. Today,
spreadsheets are used for both tiny data sets and vast amounts
of data. Your computer likely can use Microsoft Excel, Google
Sheets, Apple Numbers, or an open source suite such as Apache
OpenOffice or LibreOffice.

Most spreadsheets read and write data in their own, native
(proprietary) binary format. Even if we knew these exotic data
formats, coding CircuitPython to read and write the proprietary
formats would be laborious and redundant.

Fortunately, all spreadsheets do understand the comma-sepa-
rated values (CSV) file format, a text-based format from the early
1980s. CSV output can be read by many programs, including
spreadsheets, data presentation programs, databases, and word
processors.

The typical format of a CSV file consists of values separated by
commas with a return/newline/enter character at the end of each

133Using the Circuit Playground Express CircuitPython Library

line. Take the temperature and light intensity readings from the
previous section. This is how the data might look in CSV format:

Temperature, Light Intensity
22.9232, 6
22.8362, 7
22.8145, 7
22.9015, 7
22.9232, 6
22.8796, 7
22.8580, 7

Each set of values is separated by a comma. The first line is the
titles of the columns of numbers. (Sometimes double quotes are
put around each value, but that is not usually necessary.) Each set
of values is on its own line of text. This is just one way to write
out the data, but it is a format that most programs easily digest.

Currently, when CircuitPython boots up, it sets the files on
the built-in flash drive such that the operating system can read
and write files and programs can only read files but not write
a file. Read-only is the term used when a program can read files
but not write them. If you were to try to write a file in a Circuit
Python program when the CIRCUITPY drive was in the read-only
file mode, your program would stop with an error.

You can set the CIRCUITPY flash storage to writable by a pro-
gram. Just create a short program named boot.py and put it in on
the drive (in the main or root directory):

boot.py
Set Circuit Playground Express flash chip to program
writeable
If toggle switch is right,
flash is program writeable and file access is frozen
If toggle switch is left,
flash chip file access ok, file writes give an error
https://learn.adafruit.com/cpu-temperature-logging-
with-circuit-python/writing-to-the-filesystem
writing-to-the-filesystem

134 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

2018 Mike Barela for Getting Started with Circuit
Playground Express 2018 MIT License
import storage
from adafruit_circuitplayground.express import cpx
storage.remount("/", cpx.switch)

Save this code on your hard drive/permanent storage and to
your CIRCUITPY drive as boot.py. Use your operating system to
eject the drive (or pressing Reset once will do), then unplug your
Circuit Playground Express from the USB cable and then plug
it back in. The code allows a program to write to the flash drive
(write file access) if the slide switch is to the right (with the USB
port up). If you wish to remove the file write capability of the
flash drive, move the slide switch back to the left, press the Reset
button, and see Figure 7.3 for the slide switch settings.

FIGURE 7-3. Using the boot.py program to allow switching the
flash drive from filesystem access to program read/write access

135Using the Circuit Playground Express CircuitPython Library

Switching the Filesystem Write
Capability
Unfortunately, changing the flash to allow a pro-
gram to write a file sets the flash drive so you cannot
change files using your computer operating system!
It is either-or. This is inconvenient but manageable
using some boot.py code to use the Circuit Playground
Express onboard toggle switch. The following graphic
shows the error in Windows when you try to copy a
file to the CIRCUITPY drive when the drive has been
set to read-only for file access via boot.py.

boot.py runs only on first boot of the device. If you
change the toggle switch setting, you’ll have to press
the Reset button (or eject the CIRCUITPY drive, then
unplug Circuit Playground Express from power and
plug it back in).

If you want to use the toggle switch for an appli-
cation that interferes with its use for switching the
filesystem write status, remove boot.py or rename it
to something else. If you need both the toggle switch
and filesystem switching, another switch method
should be considered such as detecting whether push
button A or B or both are pressed on boot.

136 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

The modified CircuitPython program that provides for CSV
data output follows. Note that it is based on the temperature and
light example we used earlier, but it could just as well be any mea-
surement you want to make with your Circuit Playground Express
with the proper changes.

Read Temperature and Light Intensity, output as a CSV file
Mike Barela for Getting Started with Circuit Playground
Express 2018 MIT License
import time
from adafruit_circuitplayground.express import cpx
Set NeoPixel 0 to green (status), NeoPixel 1 to collecting
data
cpx.pixels[0] = (0, 90, 0) # coded red, green, blue cpx.
pixels[1] = (0, 0, 90) # Pixel 1 blue when collecting data
num_readings = 10 # set to any finite value you want
we try to open/create the file for append access and write
the heading line. If an error occurs, go to except try:
try:
 with open("/temp-light.csv", "a") as fp:
 fp.write('Temperature, Light Intensity\n') # headings
 for x in range(0, num_readings):
 temp = cpx.temperature
 fp.write(str(temp) + "," + str(cpx.light) + "\n")
 # Change the value of sleep time below in seconds
 # 1 minute=60 sec, 5 mins=300 sec, 1 hour=3600...
 time.sleep(1)
 if cpx.button_a:
 break
 # Done, set NeoPixel 1 to green also
 cpx.pixels[1] = (0, 90, 0)
except OSError as e:
 # set NeoPixel 1 off and blink NeoPixel 0 (status)
 #	 depending on the OS error
 cpx.pixels[1] = (0, 0, 0)	 # Blank NeoPixel 1
 message_color = (99, 0, 0)	 # Red for problem
 if e.args[0] == 28:	# Device out of space
 message_color = (228, 160, 40) # set to Orange
 elif e.args[0] == 30:	 # Device is read only
 message_color = (181, 90, 0) # set to Yellow
for x in range(1, 10): # Flash 10 times
 cpx.pixels[0] = message_color
 time.sleep(1)
 cpx.pixels[0] = (0, 0, 0)
 time.sleep(1)

137Using the Circuit Playground Express CircuitPython Library

Note the new use of the try/except blocks. Within the try
block, we have placed code that might produce a Python error at
runtime. With files and operating systems, a number of errors may
crop up. The disk you are attempting to write to may be read-only.
Or there may be so many files on the disk that there is no free
space for more data. The except block contains code that will han-
dle errors to inform the user there is a problem. In the previous
code, the error type (in the strangely named variable e.args[0]) is
tested to see if there are disk errors. If the errors are Out of Space
or Read Only, the NeoPixel colors are set to Orange and Yellow,
respectively, to let the user know the specific error. The value Red
is used if any other error is detected. Similar error testing can be
used for other errors, as noted in Python reference materials.

Edit the program to ensure you are collecting the number of
data points you want at the time interval you want. Perhaps start
with a short time interval, like one second, as a test; then later
you can extend it.

Save the program on your permanent storage with a name like
temp-light-csv.py. Then save a copy onto your Circuit Playground
Express CIRCUITPY drive as code.py. Unplug your board and plug
it back in again.

If your board shows a red #0 NeoPixel, then the program ran
into a general problem. Orange indicates your flash drive is full.
Yellow indicates you need to put the boot.py program onto your
drive as noted earlier to enable write access and to ensure the
toggle switch is set to the right, which is away from the speaker.

When the program is running, NeoPixel #0 should light up green,
and NeoPixel #1 should be blue. The program is now collecting tem-
perature and light values. When it is done, the second NeoPixel will
turn green as well. If you set long time periods between readings or
you collect a lot of data, the data collection could take quite a while.

When the program is done, you will have two green NeoPixels.
Switch the slide switch back to the opposite value and press

138 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

the Reset button once. You can now read and write files on the
CIRCUITPY flash drive again.

Using your computer, you should see the file temp-light.csv
in the main directory of the CIRCUITPY drive. You can view the
file two ways:

** Open the file with your text editor. You will need to ensure
you type the entire filename, temp-light.csv, and ensure you
are pulling the file from the CIRCUITPY drive.

** If you have a spreadsheet program permanently loaded on
your computer, selecting the temp-light.csv file (in Windows:
double-left-click) will load the file into your spreadsheet pro-
gram. If not, open your spreadsheet and specifically load the
file on the CIRCUITPY drive. You might have to copy the file
onto your computer drive (or the cloud for Google) if you have
problems.

Figure 7-4 is a screenshot of Microsoft Excel when the
temp-light.csv file is loaded. The data is in two spreadsheet col-
umns, with row 1 containing the headings.

FIGURE 7-4. The temp-light.csv file loaded into Microsoft Excel

139Using the Circuit Playground Express CircuitPython Library

Loading the CSV file into other spreadsheets should provide a
similar view. If you open the file in a text editor or word processor,
you will see the values similar in appearance to a spreadsheet, but
columns may not align and there will be commas between values.

Once you have the data in a file, you can easily use it. Spread-
sheets usually have a single command to graph the output. Fig-
ure 7-5 shows the values graphed in Excel after I chose Insert F
Line Charts F 2D Line Plot.

FIGURE 7-5. Graphing the temperature and light intensity values
in Microsoft Excel

As you have seen, there’s a bit more involved when you’re
working with the operating system using Python. Fortunately,
Circuit Playground Express has encapsulated many of the “tough
to do” work inside the library so that users can focus on their
projects.

NOTE  When you decide to write other programs
that do not require writing to the flash drive, con-
sider renaming boot.py to something else, say boot-py.
txt. This will “free up” the slide switch for other use.

140 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

Mu Plotting
Mu has an internal plotting capability somewhat similar to the
data plotting done in the previous section. Why, you ask, was all
the file work introduced? The Mu plot method is very handy for
seeing what data is doing while things are actually happening but
has the downside of not being able to save the data. But the plot
mode is an excellent way to get instant feedback on what a sensor
is doing.

First, one more Python data type is needed. A tuple is a group
of several numbers or objects. A tuple can be used by Python as
a whole unit or group. Usually, a tuple is enclosed in parentheses
as follows:

 () # An empty Tuple
 (5,) # One item Tuple
 (5, 3) # Two item Tuple
 (5, 3, 8) # Three item Tuple
 (9, 2, 1, "spam") # A four item Tuple

Mu uses data written to the serial output of a board to provide
a real-time plot of those numbers on a graph compared to time.

Take the following sensor code, similar to previous examples;
this code reads the three-axis accelerometer in the center of Cir-
cuit Playground Express. Three values are produced: the accelera-
tion of motion in the x, y, and z directions. The values are written
to the serial output as a tuple (within parentheses).

import time
from adafruit_circuitplayground.express import cpx
while True:
 # Read motion sensor into values x, y, z
 x, y, z = cpx.acceleration
 # Print Tuple of acceleration values to serial out
 print((x, y, z))
 # Wait 1/10 second before getting a new value
 time.sleep(0.1)

141Using the Circuit Playground Express CircuitPython Library

Figure 7-6 shows a view of Mu with the Serial window open
showing the serial output as a three-item tuple of decimal num-
bers. When we click the Plotter icon at the top portion of the
Mu window, an additional window opens next to the Plotter
and Mu automatically plots the tuple data. The plot in Figure 7-6
shows three values, which change over time as Circuit Playground
Express is moved.

FIGURE 7-6. The motion sensor data output as a tuple with Mu
plotting the data as the values are generated

If the data is not coming out to the Serial window, press Ctrl-D
to reset the code.

You can modify the time between samples by changing the
time.sleep value.

For getting a feel for what individual sensors can do, the Mu
plot capability is wonderful. For saving data for later use, it is
not as convenient as having data in a CSV file to plot yourself.
Another factor is you have to use Mu, which is not available for
Chromebooks.

142 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

Your Turn: Data Logging
To explore data logging:

** Choose which sensors you would like to monitor. Modify one
of the programs we’ve looked at to output the sensor values
you have chosen. If using the file method, be sure to select
your own filename, ending in .csv. Does your data contain
more than one or two values? Which lines of code are mod-
ified to output additional values? If using Mu plotting, be
sure to print the parentheses and a comma if the tuple has
less than two values, for example, (temp,) for a one-value
tuple.

** How would the code change if you wanted to record a sensor
value every half hour for a day? Note that Circuit Playground
Express will “sleep” for long periods, seeming not to do any-
thing; collecting data for science often requires patience to
get a complete data set.

** Bonus: Add a column to record the time of each measure-
ment. Hint: The time.clock() function returns the time since
the board was last booted. Unfortunately, there is no real-
time clock onboard to get an hour-of-the-day time.

** Extra Credit: boot.py uses the slide switch to inform Circuit
Playground Express if the flash drive can be written to or
if it is in “normal” operating system file access mode. Can
you describe another way a user could inform boot.py which
mode to set on boot? Note there are multiple ways to read an
input on the board.

CAPACITIVE TOUCH AND MUSIC

Besides the three switches located on Circuit Playground Express,
the outside pads marked A1 through A7 can switch states based

143Using the Circuit Playground Express CircuitPython Library

on touch. The ability to touch an electrically conductive object and
have it register as a change, which can be likened to a switch being
activated, is called capacitive touch.

In electronics, capacitance is the ability to store electrical
charge. It turns out human skin collects electrons fairly well.
Walking across a carpet and then getting a shock when touching
something is an example. You can rub a balloon on your hair and
make the balloon stick to your head (or spike up your hair). This
is because the balloon rubs some electrons off your hair, giving
the hair a net positive charge while the balloon gathers a negative
charge. Positive and negative charges attract, so the balloon and
your hair stick together. In electronics, storing electrical charge
is the job of a component called a capacitor. The amount of charge
a capacitor can hold is called capacitance.

The Circuit Playground Express microcontroller has special
circuitry onboard to read the change in capacitance of pads A1
through A7, and then register it. A library function can be used
to read the pad like a push-button switch.

The next program uses the Circuit Playground Express library
functions for capacitive touch and for playing tones from the
onboard speaker. When you touch the A1 through A7 pads, the
capacitance of your body is combined with the capacitance of
the touchpad, thereby changing it. That change causes Circuit
Playground Express to play different sounds. This code uses the
Python if statement to test which pad was touched.

import time
from adafruit_circuitplayground.express import cpx
cpx.adjust_touch_threshold(50) # Set to be fairly sensitive
while True:
 if cpx.touch_A1:
 cpx.play_tone(440,1) # Note A4
 if cpx.touch_A2:
 cpx.play_tone(494,1) # Note B4
 if cpx.touch_A3:
 cpx.play_tone(523,1) # Note C5
 if cpx.touch_A4:

144 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

 cpx.play_tone(587,1) # Note D5
 if cpx.touch_A5:
 cpx.play_tone(659,1) # Note E5
 if cpx.touch_A6:
 cpx.play_tone(698,1) # Note F5
 if cpx.touch_A7:
 cpx.play_tone(784,1) # Note G5
 time.sleep(1)

Try this program. When you touch the outside pads marked
A1 through A7, it plays musical notes.

The cpx.play_tone function is used to play a one-second tone
at a specified frequency. The frequency numbers used are not
nice, round numbers, but they do produce the pure musical notes
noted in the comments.

How do you know which frequency plays which pure musi-
cal notes? You look on the Internet. View https://pages.mtu.edu/
~suits/notefreqs.html in your web browser to find a list of musical
notes and their corresponding frequencies.

Feel free to select any musical note frequencies you like. Or
you can select non-note frequencies, such as 100 through 700
hertz. In that case, you may notice the tones do not sound “pure,”
as they do with musical instruments.

You can also adjust the sensitivity of the touchpads up or down
to your taste. The touch sensitivity may depend on the humidity
in the air and other factors.

NOTE  Pads A1 through A7 can be used for capacitive
touch. Why not pad A0? A0 is used for analog voltage
output and so it cannot be set up for touch input.

It’s simple to use the CircuitPython library functions to add
touch sensing as something to check for, and then act on. But you
are not limited to just touching the side tabs.

https://pages.mtu.edu/~suits/notefreqs.html
https://pages.mtu.edu/~suits/notefreqs.html

145Using the Circuit Playground Express CircuitPython Library

It turns out that the A1 to A7 pads can be extended using a
conductive material. Conductive materials are usually metals, which
allow for the free movement of electricity from one place to another.
In electronics, this most often takes the form of wires—metal in
long, cylindrical lengths. You can connect the bare end of wires to
Circuit Playground Express; touching the ends should trigger the
switch. It turns out that electricity likes a solid connection from
one place to another, and wrapping a wire through the hole of the
touchpad is not sturdy enough. For permanent connections, solder
(a soft metal that melts with heat and cools to form a bond) is used.
Given that Circuit Playground Express may be used for many proj-
ects, a less permanent connection method is probably best.

In comes alligator clips—tiny metal “jaws” with a spring inside
to hold the two sides together (Figure 7-7). When squeezed, the
sides open. They can be connected on the pad of Circuit Play-
ground Express (the large hole in the pad helps make a good
mechanical connection). See Figure 7-8. The other end of the wire
has a sturdy pin.

FIGURE 7-7. Alligator clips with wires. Shown is Adafruit product
number 3255.

146 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

FIGURE 7-8. Alligator clip wires connected to capacitive touch-
pads A1 to A7

NOTE  When Circuit Playground Express first powers
on, the internal code calibrates the touchpads (sets
them up for optimum performance). If you extend the
pads with wires and other objects, you may need to
press the Reset button for the code to recalibrate to
the new project configuration.

At this point you can touch the end of the wires when you run
the capacitive touch CircuitPython code and get the seven musical
notes. But the wires still have not helped in making an easy-to-use
project. For a musical instrument, like a piano, keys are ergonom-
ically designed to fit human fingers to activate musical sounds.

You can use an index card or other stiff piece of paper to lay out
piano-style keys (see Figure 7-9). Then you can use tape to secure
the wire ends to the correct places, making sure the exposed wire
can be touched by a finger. Much more ergonomic!

147Using the Circuit Playground Express CircuitPython Library

FIGURE 7-9. Laying out a piano-style keyboard for capacitive
touch use

To make the contact area between the end of the wire and a
finger, get a flat, conductive material to make a larger pad. Some
folks have soldered copper pennies to the end of the wires. An eas-
ier way is to use copper tape (Figure 7-10). Metallic copper is rolled
very thin, backed with a tape adhesive, and placed on rolls. If you
cut some lengths to firmly touch the wires, you have seven copper
keys to use. Remember to reset your board at this point, as Circuit
Playground Express will need to recalibrate to the new copper pads.

FIGURE 7-10. Copper tape makes excellent capacitive touch pads;
use scissors to cut to fit.

148 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

Copper tape can also be used as circuit wires and for other
types of electrical crafting. It does not flex well, so when using it
in an application that bends or moves a great deal (like wearable
electronics), consider using wires or conductive thread.

The Music Machine
Having demonstrated a piano-style “musical instrument,” a more
creative project is at hand. Not all instruments have to have piano-
like keys. This is where people have been very creative.

For this next project, gather the following materials:

** Circuit Playground Express

** Alligator clip to wire end wires, Adafruit #3255 or similar

** 7 pieces of fruit (any kind: apples, limes, lemons, bananas, etc.)

Clip the alligator ends of the wires to the Circuit Playground
Express pads marked A1, A2, A3, A4, A5, A6, and A7.

Press the other end of each wire into one piece of fruit—one
fruit to one wire, no doubling up (Figure 7-11).

FIGURE 7-11. Inserting the wire into a piece of fruit. The lime does
not feel a thing, honest.

149Using the Circuit Playground Express CircuitPython Library

You should now have a setup that looks similar to Figure 7-12
or Figure 7-13.

FIGURE 7-12. A fruit music machine using all limes. Photo credit:
Kattni Rembor for Adafruit

FIGURE 7-13. Using different fruit types. Photo credit: John Park
for Adafruit

150 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

Hints for the Best Results
Be sure to spread the pieces of fruit out so they do
not touch each other and that the wires do not cross.

Press the Reset button on Circuit Playground Express
when you change the touch configuration to allow the
board to calibrate the capacitive touch circuitry for
the new configuration.

The previous code for touch music works okay but does not
have the best sound possible. Running the code in Example 7-1,
you’ll have a much more hip musical instrument.

The code in Example 7-1 also has some visual cues incorpo-
rated—when something is touched, a message is printed to the
serial port and the 10 NeoPixels will light in different colors.

Example 7-1. The improved touch music code
Fruit touch music synthesizer for Circuit Playground Express
Original by Kattni Rembor for Adafruit Industries
from adafruit_circuitplayground.express import cpx
while True:
 if cpx.switch:
 print("Slide switch off!")
 cpx.pixels.fill((0, 0, 0))
 cpx.stop_tone()
 continue
 if cpx.touch_A4:
 print('Touched A4!')
 cpx.pixels.fill((15, 0, 0))
 cpx.start_tone(262)
 elif cpx.touch_A5:
 print('Touched A5!')
 cpx.pixels.fill((15, 5, 0))
 cpx.start_tone(294)
 elif cpx.touch_A6:
 print('Touched A6!')
 cpx.pixels.fill((15, 15, 0))
 cpx.start_tone(330)

151Using the Circuit Playground Express CircuitPython Library

 elif cpx.touch_A7:
 print('Touched A7!')
 cpx.pixels.fill((0, 15, 0))
 cpx.start_tone(349)
 elif cpx.touch_A1:
 print('Touched A1!')
 cpx.pixels.fill((0, 15, 15))
 cpx.start_tone(392)
 elif cpx.touch_A2 and not cpx.touch_A3:
 print('Touched A2!')
 cpx.pixels.fill((0, 0, 15))
 cpx.start_tone(440)
 elif cpx.touch_A3 and not cpx.touch_A2:
 print('Touched A3!')
 cpx.pixels.fill((5, 0, 15))
 cpx.start_tone(494)
 elif cpx.touch_A2 and cpx.touch_A3:
 print('Touched A2 and A3 at the same time!')
 cpx.pixels.fill((15, 0, 15))
 cpx.start_tone(523)
 else:
 cpx.pixels.fill((0, 0, 0))
 cpx.stop_tone()

The new code will play a musical note for as long as you touch
the pad (fruit). When you are not touching anything, the cpx.
stop_tone function at the bottom turns the sound off.

Also, if you touch the fruits connected to A2 and A3 at the
same time, it will make a new tone, giving you eight keys (which
can make a full octave).

If you have no reaction, move the slide switch. The slide switch
makes the project not light up or play tones even when the fruit is
touched. This is to provide some peace and quiet at home or in a
classroom when you are not playing the instrument. Note the cpx.
pixels.fill; it takes a tuple of three numbers for the red, green,
and blue values for the NeoPixels.

If the touch is not very sensitive, use the following function
after importing the libraries. You may have to adjust the value to
be higher or lower than 50 for best results with your setup.

cpx.adjust_touch_threshold(50) # Set to be fairly sensitive

152 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

This same code will work without the fruit as done earlier,
either with wires in a piano layout or just by touching the pads.
Feel free to try it out.

Using Sound Files
At this point, the code in MakeCode and CircuitPython has focused
on making individual musical notes. The CircuitPython library for
Circuit Playground Express can also play sounds encoded in WAV
format with specific encoding parameters.

The syntax for using the library is

from adafruit_circuitplayground.express import cpx
cpx.play_file("laugh.wav")

The file must be loaded onto the Circuit Playground Express
flash drive. In the previous code, the file laugh.wav would be in
the top-level (root) directory. If you put sounds in subdirectories,
specify the subdirectory name before the filename:

cpx.play_file("/sounds/laugh.wav")

NOTE  WAV files must be encoded at 22,050kHz
or less, 16-bit, and in mono (not stereo). For assis-
tance in determining if the sound files you have
meet these requirements, see a recent guide on
the Adafruit website at https://learn.adafruit.com/
microcontroller-compatible-audio-file-conversion.

The following program (Example 7-2) is a modification of the
touch program listed earlier. The musical notes are replaced with
seven WAV files. The samples used in this program are of the cor-
rect encoding and are freely available in a ZIP format file at http://
adafru.it/fruitBoxSamples (scroll down to the fruitBoxSamples.zip
button to download).

https://learn.adafruit.com/microcontroller-compatible-audio-file-conversion
https://learn.adafruit.com/microcontroller-compatible-audio-file-conversion
http://adafru.it/fruitBoxSamples
http://adafru.it/fruitBoxSamples

153Using the Circuit Playground Express CircuitPython Library

Example 7-2. The touch WAV sound program
Touch wave file player for Circuit Playground Express
The .wav files can be downloaded
from adafru.it/fruitBoxSamples
from adafruit_circuitplayground.express import cpx
while True:
 if cpx.switch:
 print("Slide switch off!")
 cpx.pixels.fill((0, 0, 0))
 cpx.stop_tone()
 continue
 if cpx.touch_A4:
 print('Touched A4!')
 cpx.pixels.fill((15, 0, 0))
 cpx.play_file("fB_elec_blip2.wav")
 elif cpx.touch_A5:
 print('Touched A5!')
 cpx.pixels.fill((15, 5, 0))
 cpx.play_file("fB_bd_zome.wav")
 elif cpx.touch_A6:
 print('Touched A6!')
 cpx.pixels.fill((15, 15, 0))
 cpx.play_file("fB_bass_hit_c.wav")
 elif cpx.touch_A7:
 print('Touched A7!')
 cpx.pixels.fill((0, 15, 0))
 cpx.play_file("fB_drum_cowbell.wav")
 elif cpx.touch_A1:
 print('Touched A1!')
 cpx.pixels.fill((0, 15, 15))
 cpx.play_file("fB_bd_tek.wav")
 elif cpx.touch_A2:
 print('Touched A2!')
 cpx.pixels.fill((0, 0, 15))
 cpx.play_file("fB_elec_hi_snare.wav")
 elif cpx.touch_A3:
 print('Touched A3!')
 cpx.pixels.fill((5, 0, 15))
 cpx.play_file("fB_elec_cymbal.wav")
 else:
 cpx.pixels.fill((0, 0, 0))
 cpx.stop_tone()

154 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

The code plays one of seven WAV files depending on which
touchpad is touched. The slide switch silences the sounds. If you
have no sound, check the slide switch.

The WAV files can be recordings of anything. The BBC in the
United Kingdom has a free noncommercial library they released in
2018 full of sounds. You’ll find it at http://bbcsfx.acropolis.org.uk/.

The freeware program Audacity can record WAV files or con-
vert files from one format to another. The WAV files should be
small, with a 22,050 kHz sample rate (or lower), 16-bit PCM, and
monophonic. You really cannot put full songs on Circuit Play-
ground Express. The sound is good but it’s not like an MP3 player,
and songs in WAV format are very large.

Your Turn: Capacitive Touch
If you would like to work on capacitive touch in programs, try the
following changes and answer the following questions:

** At the end of the music program, extra if statements were
added to make a new tone if both A2 and A3 were touched
at the same time. You can extend the program to add tones
for when other combinations of pads are touched together—
maybe add a new tone if three pads are touched together or a
push button is used?

** What other NeoPixel colors can be used when a pad or pads
are touched? Remember, the values for each color are tuples
of red, green, blue and each value can range from 0 to 255. An
online color picker is available at www.w3schools.com/colors/
colors_rgb.asp.

** Try out different WAV sound files on your Circuit Play-
ground Express.

http://bbcsfx.acropolis.org.uk/
www.w3schools.com/colors/colors_rgb.asp
www.w3schools.com/colors/colors_rgb.asp

155Using the Circuit Playground Express CircuitPython Library

EMULATING A COMPUTER USB KEYBOARD

An excellent example of applying Circuit Playground Express to
real-world uses is programming the board to act as a keyboard
and/or a computer mouse. The USB interface standard has spe-
cific, standard protocols for human interface devices (HIDs).
HIDs include keyboards, mice, MIDI musical codes, and more. The
microcontroller on Circuit Playground Express has the necessary
capability to control the USB port to emulate an HID device. The
following example will demonstrate this application.

For this application, an additional library is needed to
implement all the hardware-level communication on USB. For-
tunately, Adafruit provides an open source library for imple-
menting HID on Circuit Playground Express. The adafruit_hid
library is available via GitHub at https://github.com/adafruit/
Adafruit_CircuitPython_HID.

USB Port Recognition
In normal CircuitPython mode, Circuit Playground
Express will emulate a flash drive called CIRCUITPY
when plugged into USB.

When you program the board to act as a USB keyboard
or mouse, the board should work both as a flash drive
named CIRCUITPY and as a keyboard/mouse at the
same time.

If you have issues, unplugging Circuit Playground
Express and plugging it back in appears to work fine
to get both functions working.

To remove keyboard and/or mouse functionality,
rename code.py on the drive and press Reset. You may
also load another CircuitPython program as code.py on
the board or delete the code.py program file.

https://github.com/adafruit/Adafruit_CircuitPython_HID
https://github.com/adafruit/Adafruit_CircuitPython_HID

156 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

Table 7-1 is a quick overview of the key functions available in
the HID library. First, there are press and release key functions. To
simulate pressing the A key, that key would first programmatically
be pressed, then released. Those functions are done by the press
and release_all functions. To combine a press and a release, the
send function performs a press and a release_all.

TABLE 7-1. Library functions in the adafruit_hid library

LIBRARY
FUNCTION CIRCUITPYTHON CODE
Defining a key-
board object for
use

from adafruit_hid.keyboard import Keyboard

kbd = Keyboard()

Defining indi-
vidual keys,
including Shift
and Ctrl

from adafruit_hid.keycode import Keycode

kbd = Keyboard()

kbd.press(Keycode.CONTROL, Keycode.X)

kbd.release_all()

kbd.press(Keycode.RIGHT_ARROW)

kbd.release_all()

kbd.send(Keycode.SHIFT, Keycode.A)

First are modifiers (if needed) such as Ctrl, Shift,
Alt, then the key itself. The send function com-
bines the press and release_all functions.

For a list of key codes, see https://github.com/
adafruit/Adafruit_CircuitPython_HID/blob/master/
adafruit_hid/keycode.py.

Defining key-
board layout
and sending
strings of text

from adafruit_hid.keycode import Keycode

from adafruit_hid.keyboard_ layout_us import
KeyboardLayoutUS

kbd = Keyboard()

layout = KeyboardLayoutUS(kbd)

Type 'abc' then Enter (a newline).

layout.write('abc\n')

https://github.com/adafruit/Adafruit_CircuitPython_HID/blob/master/adafruit_hid/keycode.py
https://github.com/adafruit/Adafruit_CircuitPython_HID/blob/master/adafruit_hid/keycode.py
https://github.com/adafruit/Adafruit_CircuitPython_HID/blob/master/adafruit_hid/keycode.py

157Using the Circuit Playground Express CircuitPython Library

LIBRARY
FUNCTION CIRCUITPYTHON CODE
Retrieve the
necessary
key codes for
a particular
character

from adafruit_hid.keyboard import Keyboard

from adafruit_hid.keyboard_layout_us import
KeyboardLayoutUS

kbd = Keyboard()

layout = KeyboardLayoutUS(kbd)

Get the keycodes to type a '$'.

The method will return (Keycode.SHIFT,
Keycode.FOUR).

keycodes = layout.keycodes('$')

Press a key and
release a key

from adafruit_hid.keyboard import Keyboard

from adafruit_hid.keycode import Keycode

Set up a keyboard device.
 kbd = Keyboard()

Press and hold the shifted '1' key to get
'!' (exclamation mark).
 kbd.press(Keycode.SHIFT, Keycode.ONE)

Release the ONE key
 kbd.release(Keycode.ONE)

Note: Most often it is easier to code to use the
Release All Keys function.

Release all keys from adafruit_hid.keyboard import Keyboard

from adafruit_hid.keycode import Keycode

Set up a keyboard device

kbd = Keyboard()

Type control-x

kbd.press(Keycode.CONTROL, Keycode.X)

kbd.release_all()

Type capital 'A'

kbd.press(Keycode.SHIFT, Keycode.A)

kbd.release_all()

158 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

HID Is a Frozen Library
The HID library is always available to CircuitPython
programs. As of CircuitPython version 2.3.0, HID is a
frozen library. A frozen library is part of the core of
CircuitPython as of version 2.3.0 and higher. No file
in the Circuit Playground Express /lib directory is
required to support the HID library.

If you have upgraded from a CircuitPython version
prior to 2.3.0 and you have library files in the /lib
subfolder on the CIRCUITPY drive, you will want to
delete the HID library in /lib. You do this by deleting
the directory and files in /lib/adafruit_hid/. This will
ensure you are using the frozen version of the HID
library.

The online documentation is also available at https://
circuitpython.readthedocs.io/projects/hid/en/latest/.

Support for Non-US Keyboards
Is Lacking
As of this book’s publication, the adafruit_hid library
only provides the keyboard layout KeyboardLayoutUS.
More KeyboardLayout classes may be added to handle
non-US keyboards and the different input methods
provided by various operating systems.

If the host is expecting a non-US keyboard, the char-
acter to key mapping provided by KeyboardLayoutUS
will not always be correct. Different keypresses will
be needed in some cases. For instance, to type an A
on a French keyboard (AZERTY instead of QWERTY),
Keycode.Q should be used.

https://circuitpython.readthedocs.io/projects/hid/en/latest/
https://circuitpython.readthedocs.io/projects/hid/en/latest/

159Using the Circuit Playground Express CircuitPython Library

Circuit Playground Express’s two onboard buttons will be used
to act like two keys on a USB keyboard. You, the programmer, are
not limited to emulating the 104 or so keys on a standard key-
board. It would be unproductive having the left button emulate an
A key and the right a B key, for example. There are some interest-
ing multiple key combinations that may be helpful. In addition,
you can program multiple keys (to spell out a long series of text
characters) with one button press.

The following are listings for CircuitPython programs to per-
form interesting keyboard emulation tasks. The Alt-Tab func-
tionality works for Microsoft Windows and Chrome OS. Ctrl-K
appears to work in Google Docs and perhaps other applications.
Feel free to change the code to functions your computer will
recognize.

import time
from adafruit_hid.keyboard import Keyboard
from adafruit_hid.keycode import Keycode
from adafruit_circuitplayground.express import cpx
kbd = Keyboard() # Create a keyboard object to work with
while True:
 # press ALT+TAB to swap windows
 if cpx.button_a:
 kbd.press(Keycode.ALT, Keycode.TAB)
 kbd.release_all()
 # press CTRL+K, which in a web browser will open
 # the search dialog
 elif cpx.button_b:
 kbd.press(Keycode.CONTROL, Keycode.K)
 kbd.release_all()
 time.sleep(0.1)

Here is another CircuitPython program that outputs text:

Circuit Playground Express Keyboard Emulation Example
2018 for Getting Started with Circuit Playground Express
import time
from adafruit_hid.keyboard import Keyboard
from adafruit_hid.keyboard_layout_us import KeyboardLayoutUS
from adafruit_circuitplayground.express import cpx
kbd = Keyboard()

160 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

layout = KeyboardLayoutUS(kbd)
while True:
 if cpx.button_a:
 # Type your name followed by Enter (a newline).
 layout.write('Kim Possible\n')
 # text should not be too long
 time.sleep(0.1)

Type the program into your editor, such as Mu or Caret. Check
for mistakes.

Plug your Circuit Playground Express board into the USB cable
connected to your PC. When the USB flash drive CIRCUITPY
appears, download your code to the drive with the file named
code.py.

Unplug your board and plug it back in. Circuit Playground
Express should now be running as a USB keyboard. You can verify
this by going to the operating system device manager and looking
for a new device (see Figure 7-14).

FIGURE 7-14. The Windows Control Panel F Devices and Printers
shows a new keyboard named Circuit Playground Express (the
first device, circled in blue).

Open up a text editor or word processor. Press the A and B
keys to see what they do. Look up other key codes, edit the pro-
gram, and try your codes.

161Using the Circuit Playground Express CircuitPython Library

For the second demonstration, the CPX and HID libraries are
very large. If you put in much text for the button to activate, a
memory error may occur. In that case, first ensure you are using
CircuitPython 2.3.0 or later and that you are using the frozen
version of the CPX library (see the “Using the Internal (Frozen)
CPX Library” sidebar in Chapter 6). If you still experience issues,
go to learn.adafruit.com and search for the CircuitPython Essen-
tials guide for performing low-level button recognition coding.
Using low-level libraries will save more memory than using the
CPX library but at the cost of greater code complexity.

Your Turn: Keyboard Emulation
Change the code to

** Try out different types of keypresses or strings.

** Advanced: Use the capacitive touchpads as extra keys and
program so that when the pads are touched, selected USB
keypresses are performed.

MOUSE EMULATION

The Adafruit HID library for CircuitPython also has functions for
performing mouse functions such as clicking the mouse buttons,
using the scroll wheel, and moving the mouse cursor.

Here are the functions for mouse emulation. At the beginning
of your Python code, you should import the Mouse library:

from adafruit_hid.mouse import Mouse
m = Mouse()

The functions available are shown in Table 7-2.

learn.adafruit.com

162 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

TABLE 7-2. Adafruit HID functions for mouse emulation

LIBRARY
FUNCTION CIRCUITPYTHON CODE
Click
mouse
button(s)

m.click(Mouse.LEFT_BUTTON)

m.click(Mouse.RIGHT_BUTTON)

m.click(Mouse.MIDDLE_BUTTON)

call below does both buttons

m.click(Mouse.LEFT_BUTTON |

Mouse.RIGHT_BUTTON)

Press
and hold
mouse
button(s)

m.press(Mouse.LEFT_BUTTON)

m.press(Mouse.RIGHT_BUTTON)

m.press(Mouse.MIDDLE_BUTTON)

m.press(Mouse.LEFT_BUTTON |

Mouse.RIGHT_BUTTON)

Release
mouse
button(s)

m.release(Mouse.LEFT_BUTTON)

m.release(Mouse.RIGHT_BUTTON)

m.release(Mouse.MIDDLE_BUTTON)

m.release(Mouse.LEFT_BUTTON |

Mouse.RIGHT_BUTTON)

Double-
click left
button

m.click(Mouse.LEFT_BUTTON)

m.click(Mouse.LEFT_BUTTON)

Move the
mouse
cursor
and scroll
wheel

move(x=0, y=0, wheel=0)

Parameters:

*	 x—Move the mouse along the x-axis. Negative is to
the left; positive is to the right.

*	 y—Move the mouse along the y-axis. Negative is
upward on the display; positive is downward.

*	 wheel—Rotate the wheel this amount. Negative is
toward the user; positive is away from the user.
The scrolling effect depends on the host.

Values should be from –127 to 127 (this may be
expanded in future code releases, so check the latest
Adafruit API documentation).

163Using the Circuit Playground Express CircuitPython Library

LIBRARY
FUNCTION CIRCUITPYTHON CODE
Move the
mouse
cursor
and scroll
wheel
(continued)

Move 100 to the left. Do not move up and down.

Do not roll the scroll wheel.

m.move(-100, 0, 0)

Same, with keyword arguments.

m.move(x=-100)

Move diagonally to the upper right.

m.move(50, 20)

Same

m.move(x=50, y=-20)

Roll the mouse wheel away from the user

m.move(wheel=1)

Roll the mouse wheel towards the user

m.move(wheel=-1)

The following is a demonstration program for the mouse capa-
bility. The A and B buttons emulate the mouse left- and right-
click. Touching pads A2, A3, A4, or A5 (the upper pads) scrolls up;
touching A6, A7, or A1 scrolls down.

Circuit Playground Express Mouse Emulation Example
2018 for Getting Started with Circuit Playground Express
from adafruit_hid.mouse import Mouse
from adafruit_circuitplayground.express import cpx
m = Mouse()
cpx.adjust_touch_threshold(50) # adjust sensitivity
while True:
 if cpx.button_a:
 m.click(Mouse.LEFT_BUTTON)
 elif cpx.button_b:
 m.click(Mouse.RIGHT_BUTTON)
 elif cpx.touch_A2 or cpx.touch_A3 or cpx.touch_A4 or cpx.
touch_A5
 m.move(wheel=+1)
 elif cpx.touch_A6 or cpx.touch_A7 or cpx.touch_A1
 m.move(wheel=-1)

164 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

Although mouse emulation can be useful, in general it is often
limited to mouse clicks in applications such as assistive technology
where someone may not be able to use standard mouse buttons.

One important application using the mouse movement fea-
ture is mouse jiggling—the emulation of mouse movement every
few seconds to keep screen savers and logout programs from ter-
minating a running program.

Your Turn: Mouse Emulation
Change the code to make your own custom mouse commands:

** How would you code a “mouse jiggler” program?

Project Ideas: CircuitPython
Here are several ideas on taking this chapter’s concepts to more
advanced projects:

** Data logging: With serial communications, the data from
sensors onboard the Circuit Playground Express and others,
perhaps connected via the electronic pads, can be displayed
and recorded. What type of applications would benefit from
the data collected by the board? Think about all the sensors
mentioned earlier in the book and think creatively.

** Assistive technology: Many people cannot operate a stan-
dard keyboard or mouse. Others may have difficulty pushing
a standard push button. How can the Circuit Playground
Express capability to translate keypresses, even capacitive
touch, to other actions be helpful in assistive technology?

** With data coming out of the USB serial port, a computer-
based program could look for specific text from Circuit Play-
ground Express. Messages such as “Thirsty,” “Light Needed,”
“Earthquake!,” “Intruder!,” or “Help!” could be output by the
board and read on the PC for action. Describe ways in which
Circuit Playground Express might provide an alert for action.
Draw a diagram of how this might work.

165Using the Circuit Playground Express CircuitPython Library

WRAP-UP

This chapter provided some information and examples for cre-
ating CircuitPython programs using the onboard capabilities of
Circuit Playground Express. It is a topic that could fill an entire
book itself.

I suggest you continue your exploration in three ways:

** Continue to explore the CircuitPython libraries available.
It is fun and rather easy to combine sensor input functions
with output functions to realize many different and interest-
ing projects.

** Look at the CircuitPython projects on the Adafruit Learning
System at https://learn.adafruit.com/category/express. The
CircuitPython guides provide many new CircuitPython pro-
gramming methodologies you might wish to place into your
own projects.

** Many people publish CircuitPython projects on the Inter-
net—check out what others are doing.

CHAPTER QUESTIONS

	1.	Think of an example using code from this chapter and Cir-
cuit Playground Express to make a device to assist someone
with limited mobility, who might have a hard time using a
standard keyboard or mouse. Describe your idea.

	2.	The boot.py file runs CircuitPython when the board reboots
or is powered on. This could be useful for running some code
besides the code in code.py. Describe what CircuitPython
code you might put in boot.py.

	3.	What Python statements provide for triggering certain code
if an error is detected in the program?

https://learn.adafruit.com/category/express

Using the Arduino
Development
Environment

The popularity of the Arduino ecosystem for programming
electronics has been growing for the last 10 years. Arduino

grew from people who believed that it should be easy (and free)
to program microcontrollers, especially for nontechnical Makers.
The standard hardware built by the Arduino team provided inspi-
ration for a variety of people, from hobbyists to fashion designers.

8

168 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

As the use of Arduino grew, so did both the company’s soft-
ware and hardware support. On the hardware side, Arduino issued
more development boards with differing capabilities, expanding
the number of people interested in using their hardware. Other
companies joined in developing hardware and using open source
programming software to allow the same easy programming
experience that Arduino enjoyed. On the software side, useful
hardware attracted talented programmers who developed excel-
lent software. Similar to Python libraries, Arduino libraries were
developed by the community growing around the Arduino hard-
ware. The software support is, arguably, the greatest asset in the
Arduino world today. Due to a large number of software develop-
ers, it is now possible to program many different microcontrollers
with nearly the same Arduino code.

The Arduino software consists of two parts. The first is a micro-
controller-specific bootloader, which is software on the microcon-
troller chip that communicates with a user’s PC. Some call this
software firmware to differentiate it from user-written code.

The other software is on the user’s PC. It is called the Arduino
integrated development environment (IDE). There are two ver-
sions: one that is downloaded software for specific types of oper-
ating systems (Windows, Mac, Linux) and a newer one, Arduino
Create, which is web based.

The Arduino IDE is similar to Microsoft MakeCode in that it
presents users with a software development environment where
they can create code and download that code to the microcontrol-
ler (Figure 8-1).

Unfortunately, the newer Arduino environment for the web,
Arduino Create, does not support Circuit Playground Express.

If you are in Chrome, navigate to the Chrome web store,
https://chrome.google.com/webstore/. Search for “Arduino Create”
and you will find the application shown in Figure 8-2. The app
costs 99 cents per month.

https://chrome.google.com/webstore/

169Using the Arduino Development Environment

FIGURE 8-1. The Arduino IDE software

FIGURE 8-2. Arduino Create, a new Arduino environment for
Chromebooks, but it does not support Circuit Playground Express
and has a monthly fee.

170 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

This chapter provides the basics for getting started using the
Arduino IDE to create programs for Circuit Playground Express.

THE ARDUINO PROGRAMMING
LANGUAGE

The Arduino language is very much like the C programming
language—but not exactly. Similar to C, it has added libraries to
allow users to easily program the hardware in a microcontroller
project. The hardware-specific code is in a library, so the syntax
(the particular functions used by the user) stays the same if the
type of microcontroller changes.

Also, more advanced software features are available in Ardu-
ino but are not commonly used. This includes programming in
C++, an object-oriented version of C. But the Arduino developers
encourage use of C programming to allow others to easily under-
stand Arduino IDE programs.

Arduino programs are called sketches to distinguish them from
other types of programs. Arduino sketches have the file extension
.ino. Library files take after standard C programs and have the
extension .h, which refers to a header file.

Note that learning Arduino is a bit less intuitive than either
MakeCode or Python. If you want to learn to program quickly,
start with MakeCode first. If you are a more experienced program-
mer and want more control, Arduino is great!

Why would users want to code their Circuit Playground
Express using Arduino when MakeCode and CircuitPython are
available? Arduino provides capabilities not available in the other
languages:

** Library support: Arduino has an extensive set of libraries,
and both internal and additional libraries are provided as
open source by groups worldwide.

171Using the Arduino Development Environment

** Hardware support: Arduino code likely exists to interface a
microcontroller to other hardware. For instance, most Ada-
fruit hardware has examples coded in Arduino to assist their
users. The company is working to provide more CircuitPy-
thon interface code, but it lags behind Arduino code.

** Memory: As C was developed to use code memory very effi-
ciently to run on early computers, today the Arduino IDE–
produced code is smaller and more memory efficient than
in other languages. A complex CircuitPython program may
use all of the Circuit Playground Express memory, whereas
an equivalent Arduino program might take only a small
fraction of the memory, leaving additional space for more
functionality.

** Speed: As the Arduino IDE compiles C code into machine
binary code, the resulting code runs very fast.

NOTE  If you are in a classroom environment, the
Arduino environment is most likely already configured
on your computer. If advised by your instructor, you
can skip the installation and setup sections. You may
want to follow the instructions later if you wish to
configure an Arduino development environment for
your own computer.

INSTALLING THE ARDUINO IDE

This section will guide you in downloading and installing the
Arduino software on your computer. As of this writing, the Ardu-
ino Create web-based development environment does not provide
the same breadth of hardware support as the software version.
The one benefit of the web version is Chrome OS support.

172 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

The Arduino official website is at www.arduino.cc. If you search
for “Arduino” on the web, you may find many results that provide
Arduino information, but arduino.cc is the official website. On
the site, you’ll find many resources for learning to use Arduino
to program projects. It is worth your time to browse the site for
information on using the Arduino IDE and writing Arduino code.

Downloading the Software
In a web browser on your PC, navigate to www.arduino.cc/en/
Main/Software. Download the software for your operating system
(Figure 8-3).

FIGURE 8-3. Downloading the Arduino software from the
arduino.cc website

Install the software according to your operating system pro-
tocol. The installer should put an icon on your desktop (which is
a teal circle with the Arduino logo inside).

www.arduino.cc
www.arduino.cc/en/Main/Software
www.arduino.cc/en/Main/Software

173Using the Arduino Development Environment

The program is rather large compared to similar programs.
This is due to using different open source software to compile a
sketch into different hardware architectures. One of the benefits
of Arduino is the breadth of different hardware supported.

Configuring the Arduino IDE
Circuit Playground Express is natively supported in the Arduino
IDE, so it is easy to set up compared to other Arduino-compatible
boards.

Start the software by double-clicking the Arduino icon.
Then, open the Boards Manager by navigating to the Tools F
Board menu and selecting Boards Manager at the top of the list
(Figure 8-4).

FIGURE 8-4. The Boards Manager menu in Arduino

A screen appears with additional software packages for the
IDE. They are on the computer but not installed by default.

If you do not see “Arduino SAMD Boards (32-bits ARM Cor-
tex-M0+),” you can type Arduino SAMD in the top search bar
and look for the SAMD entry. On the right, ensure the version is
1.6.16 or later (the latest software is usually the best selection).
Then click the Install button (Figure 8-5). Configuring the addi-
tional software will take a minute or two.

174 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

FIGURE 8-5. Select the SAMD Boards. Select the latest version,
then click the Install button.

I recommend that you exit the Arduino software and rerun it
to ensure the changes have taken effect. Select Quit and reopen
the Arduino IDE. You should now be able to select and upload to
the new boards listed in the Tools F Board menu. Select the Cir-
cuit Playground Express board, as shown in Figure 8-6.

FIGURE 8-6. Selecting Adafruit Circuit Playground Express from
the Tools F Board menu

175Using the Arduino Development Environment

Note that on Windows 10, operating support for communicat-
ing with many Adafruit boards is built in. If you have Windows 7,
you will need a driver installed for the PC to recognize Circuit
Playground Express.

Install Arduino Drivers (Windows 7
Only)
When you plug in the board, you may have to install
a driver. First, go to https://github.com/adafruit/
Adafruit_Windows_Drivers/ and download the 32-bit
(x86) or 64-bit (x64) depending on your version of
Windows. Select which drivers you want to install. If
you will be using other Adafruit products, you should
consider installing all of the drivers listed, so you
don’t have to install additional ones later.

For an in-depth how-to, a tutorial with screen shots
on the driver installation is available at https://learn.
adafruit.com/adafruit-circuit-playground-express/
adafruit2-windows-driver-installation.

Selecting the Serial Port
Plug Circuit Playground Express into your computer with a
known good USB cable. Wait for the board to be recognized by
the operating system (it just takes a few seconds). The operating
system of the computer will create a serial/COM port to provide
communication between the computer and Circuit Playground
Express. Select the value with the label Circuit Playground Express
(Figure 8-7).

https://github.com/adafruit/Adafruit_Windows_Drivers/
https://github.com/adafruit/Adafruit_Windows_Drivers/
https://learn.adafruit.com/adafruit-circuit-playground-express/adafruit2-windows-driver-installation
https://learn.adafruit.com/adafruit-circuit-playground-express/adafruit2-windows-driver-installation
https://learn.adafruit.com/adafruit-circuit-playground-express/adafruit2-windows-driver-installation

176 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

FIGURE 8-7. Selecting the Circuit Playground Express COM port

If you do not see a communications port labeled Circuit Play-
ground Express as in Figure 8-7:

	1.	Ensure that you have connected the micro-USB end of the
cable correctly into the Circuit Playground Express silver
USB port (not the black plug-in opposite).

	2.	Ensure that the other end of the USB cable is connected to a
USB port on your computer.

	3.	You should see the green power light if it’s plugged in cor-
rectly; if not, check again.

	4.	Try again to see if the computer sees the board by clicking
the Tools F Port again (even if it was on the screen).

If it’s not there still, try the next steps.

	5.	If your computer has multiple USB ports, try a different
physical USB port. At times, the operating system might not
detect Circuit Playground Express on a specific port, espe-
cially if the port is on a USB hub.

	6.	Check again via Tools F Port.

If it’s still not selectable in the menu:

	7.	Try another USB cable. Even if Circuit Playground Express
powered up (green light), some cables (like for phones)

177Using the Arduino Development Environment

might be “charge only” and lack the data wires necessary for
communications.

When you are able to select the correct communications port,
the Arduino IDE should be ready for programming Circuit Play-
ground Express.

STRUCTURE OF AN ARDUINO PROGRAM

Arduino code has two main sections. The first is in a function
called setup. This routine is run once at the beginning of the pro-
gram. It is equivalent to the on start block in MakeCode, or the
statements that come before a while True loop in CircuitPython.
The second function used in Arduino code is called loop. It is
exactly like the MakeCode forever loop and the CircuitPython
while True loop. Any code in the loop function will run over and
over again. It’s where you put code to constantly monitor a project
and/or provide interactivity.

When you open a new Arduino program in the Arduino IDE by
selecting File F New, the following program template will auto-
matically be filled in:

void setup() {
// put your setup code here, to run once:
}
void loop() {
// put your main code here, to run repeatedly:
}

At this point, you can start typing in code or pasting it from
another source such as a code editor. We’ll discuss a few more
basics that would be useful for you to learn at this point before
typing in a program.

Like CircuitPython (but not MakeCode), Arduino uses librar-
ies to bring specific hardware and specialized software function-
ality to a program. The Arduino team has implemented a default

178 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

set of libraries for use on typical hardware. They are documented
on the arduino.cc site under Reference. Also, thousands of third-
party Arduino-compatible libraries are available for use. A major-
ity of third-party libraries are open source, which means they are
free to use (but usually require attribution of the original author).

The typical Arduino code looks like this:

/* The documentation at the top of the program starts with a
forward
slash followed by a star. All text will be treated as
comments until ended by a star followed by a forward slash.
*/
/* Declare libraries as the first thing in a program */
#include <arduino.h>
#include <anotherlibrary.h>
/* This is where you declare variables used by all functions
*/
/* 3 different variables are below, c is initialized to 0 */
int a;
long b;
float c = 0.0;
/* All non-function statements in C end in a semicolon */
/* functions and statements like if enclose the contents in
{ } */
void setup() { /* place any setup code in this function */
 if(c == 0.0) {
 a = 1;
 b = 2;
 }
}
void loop() {
/* code is executed forever in a loop placed here */
/* The variable d is only used in this loop */
 int d;
 d = a + b + c;
}

Looking at the structure of the sketch, several comments are
placed in the code. They start with /* and end in */. A comment
can span multiple text lines (as at the beginning of the previous
code) or just part of a single line. Single-line comments may also
be started with two forward slash characters (//).

179Using the Arduino Development Environment

You can include libraries in your code by listing them in a C
include statement at the start of the code. The syntax is a hashtag
sign (#) immediately followed by the word include, then a library
name enclosed within less than (<) and greater than (>) symbols.
Library names are identical to the filename of the library on your
computer and have an .h file extension that labels the file as a header
file. The arduino.h library contains all hardware interaction func-
tions for Arduino code and is usually included first. Some coders do
not include arduino.h (or forget to do so); the code will not show an
error because the Arduino IDE will automatically include the library
if it is missing, but it is a best practice to explicitly list #include
<arduino.h> as the first actual (non-comment) line in the code.

Any other libraries are “included” after arduino.h. The
sketch example lists a library on the user’s computer named
anotherlibrary.h. There is no limit to the number of librar-
ies that may be used in a sketch. But a good practice is to not
include a library you do not intend to use. Why? The unused
code in the library will bloat the sketch. Many microcontrollers,
like Circuit Playground Express, have limited flash and program
memory. Free memory is memory that can be used for more
functionality later in development.

In Arduino, you must declare—that is, explicitly name—each
variable before you use it. The default availability (called scope)
of a variable in C is within the block where you declare and use it.
Variable names can be upper- and lowercase letters, numbers, and
the underscore (_) symbol. By convention, most variable names
are lowercase.

The variable type is a new concept. You must explicitly declare
what type of variable will be used in the program. Here’s a list of
variable types:

** int (integer)—A value without a decimal point. Typical
ranges for an integer are –32,768 to 0 to 32,767. Examples
are 279, 1001, 0, –23, –990.

180 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

** long—A large integer; can be a value from –2,147,483,648 to
2,147,483,647.

** float (floating-point numbers)—Numbers with a decimal
point and a fractional amount. Examples are 3.1415, –22.2,
0.0, 430000.01. Numbers can be as large as 3 n 10 to the
38th power.

** char (a single character)—For example, reading serial data
may involve a receive function providing a character value
when data is received. A character may be any symbol on the
keyboard (0 to 255).

** A unsigned short integer, uint8_t, is often used by functions;
it also ranges from 0 to 255.

So when a variable is to be used in a program, you declare the
variable by stating its type, stating the variable name, and finish-
ing with an end-of-statement semicolon. Optionally in a declara-
tion, you may set the initial value. In the previous example, the
variable a is declared as an int. The variable b is declared as a long
(large integer). Finally, the variable c is declared as a float deci-
mal number and initialized (set at start) to 0.0. Like all single-line
lines of code in C, the declaration ends in a final semicolon (;)
character.

The three example variables are declared before the setup
and loop functions. If variables are declared between the include
statements and the setup function, they are considered global
variables, which means they are usable by any function the user
writes in the program (but not in library code). So a global vari-
able may be changed by setup and/or loop and/or any other func-
tion the user creates.

Now look at the loop function. We declare an additional int
variable named d. This variable can be used only in the loop func-
tion. setup or any other functions will not see it. Using global vari-
ables can help simplify variable use, but note that if there was a

181Using the Arduino Development Environment

global variable d and a local variable declaration named d, that
function will use the local variable instead of the global variable,
and that could lead to confusion. Local function variables are
often used for loop counters or intermediate math results.

In the Arduino IDE, having to declare each variable can be tedious
and complicated when compared with Python. Why? C is a strongly
typed language in comparison to CircuitPython. Every variable must
be declared and placed where it needs to be, depending on how it
will be used. Python variables, on the other hand, are just another
object that the program manipulates. If the program encounters a
new object, it deals with it. Languages that are not strongly typed
can be easy to code, but they do not allow the fine-tuning that C
and other strongly typed languages have. Most often, the hidden
firmware code that is between the user program and the hardware
is coded in C and compiled into native hardware machine language.
This is due to the small code and data sizes of C code, which does not
require the overhead of object manipulation of Python.

Compared to variables, the function declarations are fairly
straightforward:

** The Arduino functions setup and loop are the same as the
MakeCode on start and forever loop blocks. setup will be
executed once at the beginning of a program; loop will con-
tinue to run until Circuit Playground Express is reset or a
new sketch is loaded.

** Functions in C/Arduino that do not return any value (and
both setup and loop do not), are declared (or labeled) void to
say there is no return value. It does not matter to us other
than it should be placed before the name of the functions.

** After a function name is a list of variables to send into a
function surrounded by parentheses. As setup and loop do
not have function values, there is no text between the open-
ing and closing parentheses.

182 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

** The body (code to be executed) of the function starts with
a curly open brace, {, and ends with a curly closed brace, }.
This is similar to the indented portion of a Python loop.

Code within a function is indented as in Python. But unlike
Python, indentation in Arduino is optional (but highly recom-
mended). The curly braces, { and }, enclose the function code as
a block, so it is not the indentation that defines the block as in
Python. Also, lines of code in if statements and other loops like
while are also indented. Generally, several spaces are used for each
loop or if statement (although some use more or less, and some
use tabs). The Arduino IDE will not give an error due to differ-
ing indentation (or a lack of indentation). But anyone looking at
code or maintaining it after being written will thank the original
programmer if the code is indented consistently and commented
well, and is easy to follow.

The best way to understand a language is to see an example.
For Arduino, the standard example is a program that blinks a sin-
gle LED light. The following code sets up the Circuit Playground
Express D13 red LED and makes it blink:

/* Blink Sketch for Circuit Playground Express */
#include <arduino.h>
void setup() {
/* initialize digital pin 13 (the red LED) as an output */
 pinMode(13, OUTPUT);
}
// the loop function runs over and over again forever
void loop() {
 // turn the LED on (HIGH is the voltage level)
 digitalWrite(13, HIGH);	
 delay(1000);	// wait for a second
 // turn the LED off by making the voltage LOW
 digitalWrite(13, LOW);
 delay(1000);	// wait for a second
}

183Using the Arduino Development Environment

The function pinMode takes two values: the pin number on the
board (D13 is the small LED on a majority of Arduino-compatible
boards) and a second value that sets the pin to be an OUTPUT. If you
need to read a value from a Circuit Playground Express data pad,
you could use the same function with the number of the pad and
the value INPUT.

The function digitalWrite also takes two values: the pin num-
ber to work with and a value of HIGH or LOW. HIGH puts a voltage of
3.3 volts on the pin; LOW sets the voltage to 0. For pin D13, there
is the LED plus a current limiting resistor connected to ground
(0 volts). If the pin is switched to 3.3 volts (which is HIGH) by the
program, electric current flows and the LED lights. If the program
switches the value to LOW, there is no electrical current and the
LED is dark.

The function delay takes an integer that is the number of milli-
seconds to wait (sleep). A value of 1000 is 1000 milliseconds, which
is one second. Unlike in Python, the delay function is part of the
Arduino library and so no reference to a time library is needed.

The knowledge needed to write an equivalent LED blink
program is much higher for Arduino than for CircuitPython or
MakeCode. You have to learn the syntax for the C programming
language and a list of functions to perform actions on the hard-
ware. The entire reference for Arduino functions is available at
www.arduino.cc/reference/en/.

If you would like to learn more about the C programming lan-
guage, there are many sites on the Internet to help you. I like
www.tutorialspoint.com/cprogramming/—it is clear and has less
technical asides than others. The classic book The C Programming
Language, by Brian Kernighan and Dennis Ritchie, is excellent and
holds up well.

www.arduino.cc/reference/en/
www.tutorialspoint.com/cprogramming/

184 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

NOTE  In C reference material, the main program
is called main. In the Arduino programming language,
the required functions are setup and loop. When
the Arduino IDE compiles the code, it sticks in the
required main for the C language, which calls setup
once and calls loop in a forever-style loop. So when
you read a C reference, keep this in mind. Also, not
all C standard functions are defined in the Ardu-
ino reference language. Consult www.arduino.cc/
reference/en/ for details on which functions Arduino
supports.

UPLOADING CODE TO CIRCUIT
PLAYGROUND EXPRESS

The Arduino IDE directly programs Circuit Playground Express
via the USB connection. This is why the IDE requires the serial
information for the board’s connection to the PC. It is not possi-
ble to copy a code file, such as a UF2 file, to the board for Ardu-
ino programming. It is not a terribly difficult process—just a bit
different.

Open the Arduino IDE on your computer. Copy or type in the
Blink sketch. Choose File F Save As and save your file as blink.ino
(Figure 8-8). All Arduino sketches end in an .ino extension.

Next the code will be compiled (changed) from Arduino/C to
binary code and loaded to Circuit Playground Express.

www.arduino.cc/reference/en/
www.arduino.cc/reference/en/

185Using the Arduino Development Environment

FIGURE 8-8. Choosing File F Save As and saving the sketch

Uploading a Sketch
Uploading an Arduino sketch is similar to loading a MakeCode pro-
gram or a CircuitPython program. But there are some differences.

In CircuitPython, Circuit Playground Express acts like a flash
drive connected to the programming computer. Arduino is closer
to MakeCode in that the Arduino IDE puts the code on Circuit
Playground Express and sets it running. There is no flash drive.
And if you had previously set the board up for CircuitPython, that
environment is wiped free.

Plug Circuit Playground Express into the computer USB port
via a USB cable (again, a known good cable, please). To check if the
board is recognized by the operating system, choose Tools F Port
to see what device(s) the Arduino IDE recognizes.

186 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

WARNING  If you have been using the Circuit Play-
ground Express CircuitPython environment, the board
acts like a flash drive. If you program an Arduino
sketch onto the board, the flash drive should not be
erased. But this behavior is not guaranteed.

If you have Python programs or other files on the
board, save the files to another disk.

The CircuitPython programming environment can be
reloaded back onto the board. You may see the Cir-
cuitPython files are still there.

Please keep a backup of all files from Circuit Play-
ground Express on another drive, be it a dedicated
flash drive, the computer hard drive, or a network
storage device.

The connection of the USB cable will create a serial commu-
nications (COM) port. If you do not see a COM port for Circuit
Playground Express under Tools F Port, check your cable and
your computer connection.

At times, the computer may not detect that Circuit Play-
ground Express is connected to the computer. In this instance,
the board should be placed in bootloader mode. To get into boot-
loader mode, press the small Reset button on the board twice.
All the circular NeoPixel LEDs should glow red momentarily,
then a steady green. If the LEDs are not green, press Reset twice
(not too fast or slow) to have them turn green (Figure 8-9).
There is a sweet spot to the button pushes; it may take a couple
of tries.

187Using the Arduino Development Environment

FIGURE 8-9. Press the Circuit Playground Express Reset button
twice for bootloader mode.

You can now select the port corresponding to Circuit Play-
ground Express from the Tools F Port menu. The serial port
should be indicated by the IDE as a Circuit Playground Express
board (Figure 8-10).

After the correct communications port is set, Circuit Play-
ground Express should be communicating with the computer. At
this point, the Arduino IDE converts the Arduino code to machine
binary runnable code and loads it via serial—very different from
CircuitPython.

188 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

FIGURE 8-10. Selecting the serial COM port in the Arduino IDE
Tools F Port menu

The process of taking the Arduino code and converting it to
binary code that Circuit Playground Express can run directly is
called compiling. With CircuitPython, the code is converted to
binary on the board itself. With Arduino, the binary code is gen-
erated inside the Arduino IDE and then loaded onto the board
(Figure 8-11).

189Using the Arduino Development Environment

FIGURE 8-11. The code verification and compilation in the Arduino
IDE Sketch menu

When you click Verify/Compile, the IDE will check the code to
make sure it is 100 percent correct in terms of a valid C code with
valid include files. If any syntax errors are detected, verification
will stop with an error stating where the problem was found. If
the code verifies correctly, the IDE will compile the code and gen-
erate the corresponding binary code. At the end of the process,
the size of the binary file and the maximum code size for Circuit
Playground Express will be displayed. Most programs will never
reach the maximum code size, unlike older boards with smaller
internal flash memory sizes.

To upload the file, select Sketch F Upload from the Arduino
IDE menu (Figure 8-12). When you upload a file, any file on Circuit
Playground Express will be replaced by the new binary file. The
CIRCUITPY flash drive will not be shown until CircuitPython is
reloaded onto the board.

190 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

FIGURE 8-12. Uploading the compiled code to Circuit Playground
Express

With the Blink example, the red D13 LED next to the USB
connector on Circuit Playground Express should be blinking one
second on, one second off.

The process of editing a program in the IDE and then using
Sketch F Verify/Compile and Upload will become second nature
the more you use the program. I cannot say the same for some
errors you might encounter.

If the program will not verify, read the error message dis-
played in the black portion of the IDE. You might need to expand
the IDE window size to see messages clearly. Check for the basics:

** All variables are declared either globally after the include
statements or within a function as appropriate.

** You have semicolons where needed and enclose multiline state-
ments like functions, if statements, etc. in curly braces, { }.

** You must have both a setup function and a loop function—
they are not optional, although you do not need to have any
code in them.

191Using the Arduino Development Environment

You can look up error messages in a web-based search engine
to look for more esoteric causes.

THE CIRCUIT PLAYGROUND ARDUINO
LIBRARY

As in CircuitPython, there are low-level functions like digitalRead
and digitalWrite that can access both onboard sensors and com-
municate over the outer signal pads. Also, as in CircuitPython,
Adafruit has an open source library where you can easily access
sensor values and light NeoPixels without having to perform low-
level function calls. Why would it be preferable to use the Circuit
Playground library versus Arduino native pin functions?

** It takes significantly less time to use the library, allowing you
to focus more on the functionality you want with a project.

** Some code, as for NeoPixels, is just a rather complicated set
of signal timing code best left under the hood.

** Some sensors, like temperature and light, provide values
that must be mathematically changed to get standard units.
This is done by the library so that you do not have to type in
the code from a reference sheet.

The coding adage is “If it’s been done by someone else, con-
sider using that and avoiding reinventing the wheel.”

Note that the Arduino library combines support for the Ada-
fruit Circuit Playground “classic” board (based on the Atmel 32u4
chip) and the Circuit Playground Express. The function calls noted
will work with Express. Some of the examples in the library pack-
age are tailored for one or the other boards, so it’s good to keep
that in mind. If there are two similar examples, look for the one
with Express in the name.

192 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

Installing the Circuit Playground
Arduino Library
The Arduino IDE has a Library Manager built into the program.
From the menu bar in the upper-left corner of the window, select
Sketch F Include Library F Manage Libraries (Figure 8-13).

FIGURE 8-13. Choosing Manage Libraries

The window shown in Figure 8-14 opens. In the search box,
type adafruit and press Enter to list Arduino libraries by Ada-
fruit Industries. Scroll down the list until you get to Circuit
Playground.

Click the Adafruit Circuit Playground library box. You will see a
Select Version drop-down box and an Install button (Figure 8-15).
Select the largest number for the version and click Install. If the
library is already installed, you can click the Update button.

193Using the Arduino Development Environment

FIGURE 8-14. The Adafruit Circuit Playground library in the Ardu-
ino Library Manager

FIGURE 8-15. Installing and updating the Adafruit Circuit Play-
ground Arduino library

In Figure 8-15, the computer already had version 1.6.2 of the
library installed and version 1.8.0 was available. Clicking the
Update button provided the latest software for using the Circuit
Playground.

At this point, when you wish to use the Circuit Playground
library (or any other installed library), choose Sketch F Include
Library, and then select the library you want from the list
(Figure 8-16).

194 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

FIGURE 8-16. Selecting the Adafruit Circuit Playground library
from the Sketch menu

Clicking the library name Adafruit Circuit Playground will put
the following line in your code:

#include <Adafruit_CircuitPlayground.h>

If you need to relocate the #include statement below com-
ments or other library include lines, that’s fine. Just remember
all include lines should come before any program code.

NOTE  If you would like to browse the code, view exam-
ples, note a bug, or contribute code, Circuit Playground
library source code is located on GitHub at https://
github.com/adafruit/Adafruit_CircuitPlayground.

https://github.com/adafruit/Adafruit_CircuitPlayground
https://github.com/adafruit/Adafruit_CircuitPlayground

195Using the Arduino Development Environment

CIRCUIT PLAYGROUND LIBRARY
FUNCTIONS

Table 8-1 lists the functions available in the Circuit Playground
Arduino library. Note that the Serial.println statements are
examples of printing to the serial port (the console area at the
bottom of the Arduino IDE window). They are nearly identical to
the print statements in CircuitPython, but the Arduino function
call must end in a semicolon like all C statements.

You can put any code you wish with the call; using a C if state-
ment is just one way to test for the value.

TABLE 8-1. Adafruit Circuit Playground Arduino library functions

LIBRARY FUNCTION ARDUINO CODE
begin Necessary function to initialize library

functions.

void setup() {

 CircuitPlayground.begin();

}

begin can contain an optional value,
brightness, for the NeoPixel brightness.

void setup() {

 CircuitPlayground.begin(50);

}

Test for Express Test to see if the board is a Classic or an
Express:

void setup() {

 CircuitPlayground.begin();

 if(!CircuitPlayground.isExpress()
) {

 Serial.Println("Board is not an

Express!");

 while(1) ; // infinite loop

 }

}

196 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

LIBRARY FUNCTION ARDUINO CODE
Button A (left) if (CircuitPlayground.leftButton()) {

 Serial.println("Left button
pressed!");

}

Button B (right) if (CircuitPlayground.rightButton()) {

 Serial.println("Right button
pressed!");

}

Slide switch if (CircuitPlayground.slideSwitch()) {

 Serial.println("Slide to the left");

 } else {

 Serial.println("Slide to the right");

}

(True to the left, False to the right)

Red (D13) LED CircuitPlayground.redLED(HIGH);
delay(100);

CircuitPlayground.redLED(LOW);
delay(100);

(HIGH turns LED on; LOW turns LED off)

Temperature sensor
value

float temp_c, temp_f;

temp_c = CircuitPlayground.
temperature();

temp_f = CircuitPlayground.
temperatureF();

Serial.println(temp_c);

Serial.println(temp_f);

Light sensor value Serial.print("Light sensor: ");

Serial.println(CircuitPlayground.
lightSensor());

Values range from 0 to 1023; 300 is com-
mon for indoor light.

197Using the Arduino Development Environment

LIBRARY FUNCTION ARDUINO CODE
Play a tone on
the speaker (fixed
duration)

Parameters:

frequency (16-bit integer)—The frequency of
the tone in Hz

duration (16-bit integer)—The duration of
the tone in milliseconds

wait (Boolean)—The wait duration length
after tone in millisecond

// Play a 440 hertz tone for
1 millisecond

 CircuitPlayground.playTone(440, 100, 0);

Stop playing a tone
previously started
with playTone

CircuitPlayground.speaker.end();

Get accelerometer
readings

float x, y, z;

x = CircuitPlayground.motionX();

y = CircuitPlayground.motionY();

z = CircuitPlayground.motionZ();

Set accelerometer
range

CircuitPlayground.setAccelRange(value);

Replace value with one of the following:
LIS3DH_RANGE_2_G (smallest but greatest
precision); LIS3DH_RANGE_4_G (middle, mid-
dle precision); LIS3DH_RANGE_8_G (largest,
least precise)

Detect the board
being tapped

uint8_t c, clickThreshold, tapValue;

CircuitPlayground.setAccelTap(c,
clickThreshold);

tapValue = CircuitPlayground.
getAccelTap();

Set c to 1 to detect single taps only and
to 2 to detect double taps as well.
clickThreshold sets sensitivity (0–255).
tapValue will be set to 0 (no tap), 1 (single
tap), 2 or 3 (double tap).

Read the onboard
microphone

int x;

x = CircuitPlayground.soundSensor();

Values around 0 are silent; –500 to 500 are
loud.

198 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

LIBRARY FUNCTION ARDUINO CODE
Get color sensor
values

uint8_t r, g, b;

CircuitPlayground.senseColor(r, g, b);

Each color value range is 0 minimum to 255
maximum.

Set NeoPixel LEDs Set the color of NeoPixels.

Use a hexadecimal value in the format
0xRRGGBB Hex value 0x00 to 0xFF (0 to 255):

CircuitPlayground.setPixelColor(9,
0xFF0000);

Pixels are numbered counterclockwise from
0 through 9.

The function can also be called with each
red/green/blue value:

CircuitPlayground.setPixelColor(9,
255, 0, 0);

To set the NeoPixel brightness for all pixels
(0 to 255; default is 30):

CircuitPlayground.setBrightness(50);

To turn off all pixels:

CircuitPlayground.clearPixels();

199Using the Arduino Development Environment

LIBRARY FUNCTION ARDUINO CODE
Pads A1 through A7
being touched

The touchpads are around the edge of the
board.

if(CircuitPlayground.readCap(A1,
samples)) {

 Serial.println("Touched pad A1");

}

The value samples is optional and defaults
to 10. Change A1 to A2, A3, A4, A5, A6, A7 for
other pads.

EXAMPLE CODE

Unlike with MakeCode and CircuitPython, Arduino may be best
learned by reviewing examples, and using existing code is often
encouraged. This is especially true in open source software. Just
make sure that if you use someone else’s code, you attribute the
author, usually in a comment.

The first programs for Circuit Playground Express you should
review are the example programs provided by Adafruit. The

200 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

example files are in the Arduino IDE under File F Examples F
Adafruit Circuit Playground (Figure 8-17).

FIGURE 8-17. Finding the Circuit Playground examples in the
Arduino IDE

Again, there is no distinction (for the most part) between
Circuit Playground Classic and Circuit Playground Express in the
example code and when using the library. Most demonstration
programs are coded to work with both boards.

But there are a few small differences in the example code. Cir-
cuit Playground Express has hardware such as the infrared sensor
and LED that the Classic does not. Also, the boards use different
microphones.

Study how certain examples like demo and mega_demo go about
demonstrating functionality on Circuit Playground Express. If
you wanted to implement a project similar to some of the demon-
stration functionality, consider how you might take the demo
code, remove what is not needed, and add what you want.

201Using the Arduino Development Environment

Example Projects on the Adafruit
Learning System
Some of the Arduino Circuit Playground Express examples refer
to projects. Those projects and many more are fully described in
the Adafruit Learning System.

The Adafruit Learning System has examples for most of their
products. They have a special section for Circuit Playground
Express at https://learn.adafruit.com/category/express. The exam-
ples may be for MakeCode, CircuitPython, or Arduino.

Browse the examples and look for the Arduino examples to
see what’s available.

Your Turn: Arduino Examples
Here are suggestions for your use of Circuit Playground Express
with the Arduino IDE:

** Explore the example code in the Arduino IDE for Circuit Play-
ground. Some code is more interesting than others, as some
projects assume there is additional building or attachments
to a project. Take two demonstration programs, compile
them in the Arduino IDE, and load them onto Circuit Play-
ground Express.

** Review the examples in the Adafruit Learning System that
use the Arduino IDE. Pick one to review how the author
designed the project and the code. Note how the pro-
gram used library functions to implement device-specific
functionality.

LIBRARIES AND COMPATIBILITY

A big allure of programming in Arduino is the hundreds of code
libraries that have been written over the past 10 years. These

https://learn.adafruit.com/category/express

202 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

libraries were developed to interface to a wide variety of hard-
ware: sensors, displays, networking, storage, and more.

A good selection of libraries is available in the Library Man-
ager discussed earlier. Others are only available via a personal
website or GitHub repository.

If you have a library you have found for one particular project,
there is a method for using the code. In the disk folder you are
using to save your code, create a subdirectory called libraries.
Place your library code in that folder. The Arduino IDE should
check that folder first before looking in the Library Manager. For
example, if your Arduino sketch is in a folder named myproject,
a library named awesome in the local library would be in a folder
called myproject/libraries/awesome.

NOTE  More information on library installation is
available at www.arduino.cc/en/Guide/Libraries.

Library Compatibility Issues
There is a problem with the vast array of Arduino libraries on the
Internet. Some libraries have been coded to take advantage of
features on one specific microcontroller. Early Arduino hardware
used the Atmel (now Microchip Technology) AVR ATmega series
of processors. These were 8-bit microcontrollers; the chips had
smaller amounts of memory and ran slowly compared to today’s
processors such as Circuit Playground Express.

To overcome the limitations of the older AVR processors,
some programmers coded AVR-specific hacks to access features
or speed up portions of their code. For the processor and project
they were using, this worked. When new Arduino compatibles

www.arduino.cc/en/Guide/Libraries

203Using the Arduino Development Environment

came along in intervening years, the library no longer worked.
Some libraries were updated, but many were not.

Circuit Playground Express and other products by Adafruit
have wide compatibility with frequently used libraries. This is
because Adafruit has invested in writing code to support the
modern features of their products. Unfortunately, with third-
party boards, they may or may not work with Circuit Playground
Express.

Working with Third-Party Libraries
If your project relies on a library on the Internet, here’s how to see
if it will work as you wish.

	1.	Read the documentation for the library. Look for which
boards the library might have been designed for. Look to see
when the library was last updated by the author(s). Older,
poorly maintained libraries may not have added compatibil-
ity for modern processors such as the SAMD series used by
Circuit Playground Express and Arduino MKR1000.

	2.	If the library is usable, download it and place the code files
in a library/libraryname folder in your project folder on your
storage device.

	3.	In your code, go ahead and code basic library functionality
or create a quick test program to use the library. Be sure to
#include the library.

	4.	Try to verify and compile the program that uses the library.
Were there errors? If you saw errors, you may or may not be
able to change the code in your program or in the library to
have the program work with Circuit Playground Express.

If you have used due diligence in trying to make the library
work and it doesn’t, here’s how to seek help:

** Check with the library author(s) to ask questions.

204 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

** Go to the Adafruit support forum for Circuit Playground
Express at https://forums.adafruit.com/viewforum.php?f=58.

** Go to the Arduino support forum at https://forum.arduino.cc/.
Look for a forum specific to your issue.

Be sure in each help location to state that you are trying to use
the library with Circuit Playground Express from Adafruit. Also
report what specific errors you are seeing.

WRAP-UP

Using the Arduino environment provides some powerful tools for
building projects on Circuit Playground Express. The cost for a
new user is fairly high:

** Learning Yet Another Programming Language (YAPL)

** Learning how Arduino designs code and learning the basics
of the C programming language

** Understanding what functionality standard Arduino librar-
ies provide

** Exploring the Adafruit Circuit Playground library

** Optional: Exploring third-party Arduino libraries for desired
functionality

And here are the benefits of using Arduino:

** The code runs very fast.

** The amount of open source software for Arduino is huge.

** Many microcontroller programmers may already know how
to program in Arduino.

** Arduino code may be portable across different
microcontrollers.

https://forums.adafruit.com/viewforum.php? f=58
https://forum.arduino.cc/

205Using the Arduino Development Environment

On the last point, as this is a Getting Started series book, most
readers are likely not experienced Arduino programmers. This
explains why the book focuses on MakeCode and CircuitPython.

If you intend on programming microcontrollers on a regular
basis, certainly learning Arduino is a great thing to do. See Appen-
dix B for additional materials to learn Arduino coding and use.

CHAPTER QUESTIONS

	1.	The Arduino programming language code is based on what
classic programming language? Would studying this lan-
guage help in crafting good Arduino code? Are resources
available on the Internet to learn this language?

	2.	What are the equivalent Arduino code statements for Make-
Code on start and forever loops?

	3.	No wrong answer: Which programming language would you
like to use for programming Circuit Playground Express?
One of the three listed in the book? Or do you like another
language available?

Troubleshooting

Running into problems and solving them is a defining part of
the Maker experience. This appendix will help you resolve

many common issues you may face when working with Circuit
Playground Express.

Most issues fall into the following categories:

** Cable issues

** Connectivity issues

** Software issues

** Common library problems

** Error messages

** Usage issues

** Manufacturer support

A

208 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

USB CABLE AND POWER ISSUES

NOTE  Many Circuit Playground Express issues are
ultimately traced to a bad USB cable or a power issue.

To get an older USB Micro-B cable, you may scrounge in a box
of old cables to find something that works. This approach does
not always get you the reliable cable you need. Problems you may
encounter include the followinsg:

** Some USB Micro-B cables have only power wires and no sig-
nal wires (they were designed for charging devices only).

** The cable connections are broken or intermittent, due to
flexing (often at one end or the other). This can happen if
the cable was heavily used.	

** The wire gauge of the cable is insufficient (an uncommon
issue, but it might happen with smaller or more inexpensive
cables, often sourced from discount suppliers).

** A connector is cracked, dirty, or broken inside.

With power, be sure the green “On” LED is steadily green at all
times. With data, you can go into Microsoft MakeCode and create
a small test program and see whether Circuit Playground Express
will load the code and execute it. Using MakeCode is simplest at
this point since it requires no external software other than a web
browser and the website https://makecode.adafruit.com/. If you do
not have Internet connectivity, you can code simple programs in
CircuitPython or Arduino to accomplish a similar result.

You may think, “This cable works for my phone—it should be
good.” However, the phone may not use the data wires per stan-
dard USB specifications, or it may have only power wires. That the

https://makecode.adafruit.com/

209Troubleshooting

cable works for a phone is not a sufficient indication that the cable
will work 100 percent in Circuit Playground projects.

Here are some power troubleshooting steps:

	1.	Check your connections and USB port to make sure that
everything connects well.

	2.	If there is a problem, try swapping the cable for a thicker,
more substantial one, or consider purchasing a new one.

	3.	As a final check, disconnect the USB cable and connect your
Circuit Playground Express to external power. You have
three choices:

** Connect a charged LiPo battery to the JST battery con-
nector opposite the USB connector.

** Use a “Phone Rescue” battery, the type that uses a
rechargeable battery and a USB-to-micro-B cable, often
to provide extra power to a mobile phone or tablet.

** Adafruit sells a battery pack taking three AAA cells and
provides a battery connector suitable for Circuit Play-
ground Express (Adafruit product # 727). Be sure the
on-off switch is in the on position.

Buying a good, substantial cable (Adafruit #2008 or similar)
from a local shop or reputable online supplier will remedy many
issues.

If at this point you have tried to power the board using mul-
tiple methods and the power On LED will not glow green and the
board appears dead, see the section “Manufacturer Support,” later
in this appendix.

If you plugged the board in and there was a flash and now it
appears dead, wait about 10 minutes and try again with all exter-
nal connections removed. There could have been a short circuit if
metal touched bridged pads on the bottom of the board.

210 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

At this point, if you apply proper power and you do not get a
green On LED next to the USB port, Circuit Playground Express
may be “dead.” It can happen to electronics, especially if they are
treated poorly. If your Circuit Playground Express is new, contact
the manufacturer. If the board has been working for a while and
you know you did something to make it no longer work, you may
need to get another Circuit Playground Express. It happens at
times—it is part of the experimentation process.

CONNECTIVITY ISSUES

Circuit Playground Express may have problems talking to a larger
computer used to program the device. First review the “USB Cable
and Power Issues” section prior to diagnosing connectivity issues
to ensure the problem is not power or cable related.

Problems with connectivity include the following:

** Intermittent communications on USB 3 ports on computers
(USB 3 connectors often have blue plastic inside them)

** Compatibility issues on USB ports on some versions of the
Linux operating system

** USB ports not recognizing Circuit Playground Express

Connectivity problems generally do not result in error mes-
sages. Look at these possible situations:

General communications: Is your USB cable connected to
a USB 3 port?

Reconnect your Circuit Playground Express to a USB 2 port
if you have one available. If you are using a USB 2 hub, try to
plug into the main port and not the hub. If you use a hub, a
powered hub would be better to ensure the current available
is enough for your project.

211Troubleshooting

I get the green power LED, but my Circuit Playground
Express appears to not communicate in any way; my
program is not loaded.

Check the “USB Cable and Power Issues” section.

I cannot find Circuit Playground Express in the list of
devices in Windows.

In Windows, Circuit Playground Express shows up under
the “Unspecified” category of devices (Figure A-1). In Device
Manager, it is under Ports (COM & LPT) as a USB Serial
Device, with the Windows communications port listed in
parentheses (Figure A-2).

FIGURE A-1. Circuit Playground Express listed in Windows 10
Devices and Printers section of Control Panel

212 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

FIGURE A-2. Windows Control Panel Device Manager listing Cir-
cuit Playground Express as a USB Serial Device (COM10 here)

The COM port may be numbered differently depending on
the port your Circuit Playground Express is plugged into.

I’m using VMware [or another virtual machine program]

and I’m having issues.

Some VM programs have problems connecting to “real”
computer USB ports. This is not a problem limited to Circuit
Playground Express but applies to any USB device. See the
VMware or other software forums for USB-specific advice.

Both Microsoft MakeCode and CircuitPython will not work

with my Circuit Playground.

Check that you have Circuit Playground Express. The differ-
ence between the Express and the Circuit Playground Classic

213Troubleshooting

is discussed in Chapter 1. Circuit Playground Classic does
not run MakeCode or CircuitPython.

My Circuit Playground Express worked when I first got it,

but it is acting up now. What could be the problem?

First, check your power connections; if they are not good,
correct them. Next, if you have connected external com-
ponents, your circuit could be electrically problematic or
miswired. Remove any connections and try to load a basic
Blink sketch in one of the programming languages to test it
out. If it works outside your project, check your project con-
nections. If the power On light does not come on, check the
“USB Cable and Power Issues” section.

Can I charge a LiPo rechargeable battery to power my

Circuit Playground Express?

You can use a LiPo battery for Circuit Playground Express,
but note the board cannot recharge the LiPo if it’s plugged
into a USB port. Unplug the battery from your Circuit Play-
ground Express and charge the battery with a circuit board
specifically designed to recharge the battery safely. Adafruit
sells several types of LiPo recharging boards; product #s
1304 and 1904 work well at a low cost. The size of the LiPo
battery will determine how long the battery will last—the
larger the battery, the longer it will power the board. You can
save power in a project by using NeoPixels sparingly. Con-
sider using the slide switch to programmatically “turn off”
the NeoPixels.

214 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

CIRCUITPYTHON ISSUES

I edit my program and copy it to the CIRCUITPY drive

but Circuit Playground Express doesn’t behave as if it

recognizes the code.

The CircuitPython file you copy over to run on Circuit Play-
ground Express should always be called code.py. This is so
that the Python interpreter knows the name of the code you
want to run.

If you use a name like mycoolprog.py, the board will not know
that file is the code you wish to run. Feel free to use a more
descriptive name on your backup storage device copies—for
example, music-on-tilt.py.

There are four options for filenames for the code the
board will run: code.txt, code.py, main.txt, and main.py.
CircuitPython looks for those files, in that order, and then
runs the first one it finds.

Adafruit highly suggests that you use the filename code.py.

If your program doesn’t seem to be updating as you work,
make sure you haven’t created another code file that’s being
read instead of the one you’re working on.

My CircuitPython program cannot find the libraries/

modules it needs to work.

CircuitPython looks for library code in the subdirectory
/lib on the onboard flash drive. Go to Chapter 6 to review
the process to copy all of the Adafruit CircuitPython librar-
ies into /lib. The libraries use approximately 400KB of
space. Even with all Adafruit libraries loaded into /lib, there
should be plenty of room for other code on the CIRCUITPY
drive. See Chapter 6 for more details on installing the Ada-
fruit CircuitPython libraries.

215Troubleshooting

I plug in the Circuit Playground Express and I get a

CIRCUITPY drive. But I cannot get the CircuitPython

code.py to copy over or run when it should.

Double-check if you are using the modified boot.py for
writing files listed in Chapter 7. If that code is running,
first move the slide switch back to file mode. You can then
rename boot.py to boot-py.old on the CIRCUITPY drive and
press Reset to get the flash drive back to standard operation.

If you have a file on your Circuit Playground Express named
code.txt, run it instead of code.py. Rename or delete code.txt
and ensure your code is named code.py.

Finally, in a rare event, the flash chip may have an issue.
Follow these steps to erase the flash chip and enable normal
operation:

	1.	Type this short program and save it to the CIRCUITPY
drive as code.py:

import storage storage.erase_filesystem()

	2.	Click the Reset button on the board to ensure the code
is run.

	3.	Now see if you can copy a CircuitPython program of your
choice to the board and have it run.

If you are still having issues, follow the instructions in Chap-
ter 6 on reinstalling the latest version of CircuitPython.

ARDUINO IDE ISSUES

At this point you have gone through the connectivity issues, and
everything seems to be working. But you appear to be having
errors in the Arduino IDE, either during the compile/verify stage
or during upload.

216 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

I get several errors when I try to upload a program from

the Arduino IDE.

Make sure you’ve selected Circuit Playground Express in the
Tools F Board menu and have selected the proper serial
port in Tools F Port. If you switch back to another Ardui-
no-compatible board, change the settings appropriately.

COMMON ARDUINO LIBRARY PROBLEMS

There are many problems you can have with using libraries. The
most common library-related error messages take the form “XXXX
does not name a type” or “YYYY not declared in this scope.” They
mean that the compiler could not find the library. This can be due
to any of the following causes:

The library is not installed.

See the steps in Chapter 6 on how to install a library correctly.

Arduino cannot find the library folder.

The IDE will find standard libraries and libraries installed
only in the sketch libraries folder.

The specific library folder must be at the top level of the
libraries folder. If you put it in a subfolder, the IDE will not
find it.

You do not have a “Sketchbook” folder.

It is there, but on a Windows or macOS machine it is named
Arduino (on Linux it is named Sketchbook).

A library is incomplete.

You must download and install the entire library. Do not
omit or alter the names of any files inside the libraries
folder.

217Troubleshooting

A folder name is wrong.

The IDE will not load files with certain characters in the
name. Unfortunately, it does not like the dashes in the ZIP
filenames generated by GitHub. When you unzip the file,
rename the folder so that it does not contain any illegal char-
acters. Simply replacing each dash (-) with an underscore
(_) usually works. If the folder has the word master on the
end (usually preceded by a dash), remove that also. The best
method to see what the library name should be is to look at
the sample code to see what the sample expects the library
name to look like.

The library name is spelled incorrectly.

The name specified in the #include line of your sketch must
match exactly (including capitalization!) the name in the
library. If it does not match exactly, the IDE will not be able
to find it. The example sketches included with the library will
have the correct spelling. Just cut and paste from there to
avoid typographical errors.

You have a wrong version of a library or multiple copies of

the same library in accessible folders.

If you have multiple versions of a library, the IDE will try
to load all of them. This will result in compiler errors. It is
not enough to simply rename the library folder; it must be
moved outside of the sketchbook libraries folder so the IDE
will not try to load it.

One library depends on another library.

Some libraries are dependent on other libraries. For exam-
ple, most of the Adafruit graphic display libraries are depen-
dent on the Adafruit-GFX library. You must have the GFX
library installed to use the dependent libraries. This is true

218 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

as well for libraries that use I2C that also expect the Wire
library.

The IDE needs to be restarted.

The IDE searches for libraries at startup. You must shut
down all running copies of the IDE and restart before it will
recognize a newly installed library.

I found a wonderful Arduino library that does what I need,

but when I try to use it on my Circuit Playground Express,

I get errors. What can I do?

The library you found was probably coded for other micro-
controllers. Those libraries might use large memory spaces
or hardware in other microcontrollers, which may not work
on Circuit Playground Express. If you understand how the
library code works, you may be able to fix some errors your-
self. Performing a Google search for the library name may
produce pages where others encountered the same circum-
stance and recoded the library.

Does a library I found on the Internet work with Circuit

Playground Express?

Because there are hundreds of libraries out there written by
all sorts of people, it may or may not work. Many libraries
expect an Arduino Uno and not the larger processor on Cir-
cuit Playground Express. But it doesn’t hurt to try—see the
previous question to proceed.

ERROR MESSAGES

Error messages may fall into the general categories listed here.

219Troubleshooting

Arduino Compilation Issues

Advanced: Can I write code that will compile one way

for Circuit Playground and another for Circuit Playground

Express in Arduino?

Yes, the Arduino IDE internal preprocessor provides separate
definitions for the boards that can be tested. Circuit Play-
ground Classic can be tested using AVR; see the following
sample code:

#ifdef __AVR__ // Circuit Playground 'classic'
#include "utility/CPlay_CapacitiveSensor.h"
#else
#include "utility/Adafruit_CPlay_FreeTouch.h"
#include "utility/IRLibCPE.h"
#endif

Arduino Upload Errors
Be sure you have done the following:

	1.	Ensure you have a known good USB cable with both power
and data lines.

	2.	Set the Tools F Board menu to Circuit Playground Express.

	3.	Ensure Tools F Port is set to the communications port that
your operating system assigns when you plug in the board.
Often the port will say “Circuit Playground Express” next to
it, but it might not if things are being balky.

	4.	If there are still issues, press the Reset button to see if the
Arduino IDE will recognize the board.

The Arduino Serial Monitor
While using Arduino, you should use the Serial.print and
Serial.println functions to provide feedback in the Arduino serial
monitor as to what the board is doing while coding and debug-
ging. Select Tools F Serial Monitor to see the output (unlike Mu,

220 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

the output goes to a separate window that you must specifically
open after the program is running). The Serial.print statements
can later be commented out for a final “ready to use” program.

USAGE ISSUES

You may encounter the following issues while using Circuit Play-
ground Express.

Can other pads besides A1, A2, A3, A4, A5, A6, and A7 do

capacitive touch? I would like to have more capacitive

touch inputs.

Unfortunately, those are the only pads that work with capac-
itive touch. A0 does not “do” touch, and neither do the other
pads. Consider using two Circuit Playground Express boards
to add to the number of touchpads. Adafruit sells capacitive
touch expansion boards, but the coding would be complex.
It’s best to use multiple Circuit Playground Express boards.

Windows 7 (or Windows 8) is not recognizing the board.

See Chapter 2 to learn how to install drivers for Windows 7
and 8. Windows 10, macOS, and Linux do not need drivers.

I would like to try using the Arduino IDE in Linux. What are

the pitfalls I need to look out for?

The software may need access to the USB port, but this is
controlled by root. You may need to set the USB port for
dial-out. Check the Adafruit support forums for Linux issues
specific to Circuit Playground Express at https://forums
.adafruit.com/viewforum.php?f=58.

https://forums.adafruit.com/viewforum.php?f=58
https://forums.adafruit.com/viewforum.php?f=58

221Troubleshooting

Will a Circuit Playground Express interface to the

hardware I have?

The answer is possibly. Two factors are involved: voltage
compatibility and software support.

The input and output pads for Circuit Playground Express
are 3.3 volts. The external circuitry should work with a dig-
ital output of 3.3 volts. External circuitry should never put
more than 3.3 volts on an input/output pin because this
might damage the board (5 volts on the USB connector is
fine, though).

Depending on the function of an external circuit, code will
be required to make the circuit function. Sometimes code is
easy, or it could be quite complex. It is beyond the scope of
this Getting Started book to discuss all the external circuits
that can be connected and programmed with the board. You
may have to experiment and read up on the subject in other
resources.

Are the Circuit Playground Express EAGLE CAD circuit

board (PCB) layout files available?

Yes; see https://github.com/adafruit/Adafruit-Circuit-
Playground-Express-PCB.

MANUFACTURER SUPPORT

Adafruit Industries makes customer service and satisfaction a
cornerstone of its business. If you still have problems after trou-
bleshooting, you can visit the Adafruit forums (https://forums
.adafruit.com/) to describe your situation. The helpful forum mod-
erators will be able to assist with additional troubleshooting.

You’ll also find many tutorials on using Circuit Playground
Express and other Adafruit products at https://learn.adafruit.com/.

https://github.com/adafruit/Adafruit-Circuit-Playground-Express-PCB
https://github.com/adafruit/Adafruit-Circuit-Playground-Express-PCB
https://forums.adafruit.com/
https://forums.adafruit.com/
https://learn.adafruit.com/

222 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

After posting to the Adafruit forum, if it is evident your board
is defective, Adafruit may replace it (at their discretion). Treat
your electronics with care and they should last nearly forever. Just
don’t spill your drink on it or take it to Burning Man, and then
suspect it was a factory fault.

Reference
Materials

The main subjects of this book—how to write code in Micro-
soft MakeCode, how to use CircuitPython, and how to use

the Arduino IDE—could each easily be the basis for its own full-
length book. In this Getting Started series book, we explored each
subject in the space available.

In the following sections, other resources for information are
listed for further study. Also consider that new information on the
subjects in this book will be published after this book goes to print.
Using a search engine of your choice can help if you have exhausted
the information in this book and the references that follow.

ON THE INTERNET

The Internet provides a wealth of information. All of the refer-
ences noted are free to view. Adafruit Industries materials are
generally licensed so that you can use the materials any way you
want (with attribution).

B

224 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

Circuit Playground Express

** Adafruit Circuit Playground Express Guide: https://learn
.adafruit.com/adafruit-circuit-playground-express

** Adafruit Customer Support forums: https://forums.adafruit.com/

Microsoft MakeCode

** Microsoft MakeCode for Circuit Playground Express: https://
makecode.adafruit.com

** The main Microsoft MakeCode site: https://makecode.com

** Adafruit Learn Microsoft MakeCode: https://learn.adafruit
.com/makecode

** Information on the UF2 file format: https://github.com/
microsoft/uf2

Python and CircuitPython

** Adafruit Welcome to CircuitPython! https://learn.adafruit
.com/welcome-to-circuitpython

** Adafruit CircuitPython Essentials: https://learn.adafruit
.com/circuitpython-essentials

** The Python Software Foundation, Python for Beginners:
www.python.org/about/gettingstarted/

** The Beginners Guide for Programmers: https://wiki.python
.org/moin/BeginnersGuide/Programmers

** CircuitPython API Reference: http://circuitpython
.readthedocs.io/en/latest/

** A list of CircuitPython resources maintained by Adafruit:
https://github.com/adafruit/awesome-circuitpython

https://learn.adafruit.com/adafruit-circuit-playground-express
https://learn.adafruit.com/adafruit-circuit-playground-express
https://forums.adafruit.com/
https://makecode.adafruit.com
https://makecode.adafruit.com
https://makecode.com
https://learn.adafruit.com/makecode
https://learn.adafruit.com/makecode
https://github.com/microsoft/uf2
https://github.com/microsoft/uf2
https://learn.adafruit.com/welcome-to-circuitpython
https://learn.adafruit.com/welcome-to-circuitpython
https://learn.adafruit.com/circuitpython-essentials
https://learn.adafruit.com/circuitpython-essentials
www.python.org/about/gettingstarted/
https://wiki.python.org/moin/BeginnersGuide/Programmers
https://wiki.python.org/moin/BeginnersGuide/Programmers
http://circuitpython.readthedocs.io/en/latest/
http://circuitpython.readthedocs.io/en/latest/
https://github.com/adafruit/awesome-circuitpython

225Reference Materials

Arduino

** Primary Arduino website: www.arduino.cc

** Arduino Language Reference: www.arduino.cc/reference/en/

** Arduino Tutorials: www.arduino.cc/en/Tutorial/

** C Tutorial: www.tutorialspoint.com/cprogramming/index.htm

** Adafruit Circuit Playground Express Guide: https://learn
.adafruit.com/adafruit-circuit-playground-express

** Adafruit Ladyada’s Learn Arduino: https://learn.adafruit
.com/ladyadas-learn-arduino-lesson-number-0

Chrome OS

** Caret Text Editor: https://chrome.google.com/webstore/detail/
caret/fljalecfjciodhpcledpamjachpmelml?hl=en

** Beagle Term Terminal Emulator: https://chrome.google.com/
webstore/detail/beagle-term/gkdofhllgfohlddimiiildbgoggdpoea
?hl=en

** YouTube video on using a Chromebook with Circuit Play-
ground Express: www.youtube.com/watch?v=B-PfKv7DCbc

PUBLICATIONS

The following resources may help you learn some of the concepts
in this book:

** Getting Started with Arduino, Second Edition, by Massimo
Banzi (co-creator of Arduino)

** Programming Arduino: Getting Started with Sketches,
by Simon Monk

** Once you’ve grasped the basics of setting up the Ardu-
ino IDE, check out books and other resources on creating

https://www.arduino.cc
www.arduino.cc/reference/en/
www.arduino.cc/en/Tutorial/
www.tutorialspoint.com/cprogramming/index.htm
https://learn.adafruit.com/adafruit-circuit-playground-express
https://learn.adafruit.com/adafruit-circuit-playground-express
https://learn.adafruit.com/ladyadas-learn-arduino-lesson-number-0
https://learn.adafruit.com/ladyadas-learn-arduino-lesson-number-0
https://chrome.google.com/webstore/detail/caret/fljalecfjciodhpcledpamjachpmelml?hl=en
https://chrome.google.com/webstore/detail/caret/fljalecfjciodhpcledpamjachpmelml?hl=en
https://chrome.google.com/webstore/detail/beagle-term/gkdofhllgfohlddimiiildbgoggdpoea?hl=en
https://chrome.google.com/webstore/detail/beagle-term/gkdofhllgfohlddimiiildbgoggdpoea?hl=en
https://chrome.google.com/webstore/detail/beagle-term/gkdofhllgfohlddimiiildbgoggdpoea?hl=en
www.youtube.com/watch?v=B-PfKv7DCbc

226 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

projects based on Arduino. Browsing your favorite technical
bookstore will provide a wide range of books and magazines.

** There are many books on learning Python, but it is very
difficult to recommend any one title as a companion for a
Getting Started book. Most Python books are written for
more experienced programmers or extensively use concepts
such as object-oriented language constructs unnecessary for
beginners.

About the Author

Engineer and Maker Mike Barela is currently a consultant for
Adafruit Industries, LLC. He recently retired as a senior For-

eign Service officer and security engineer for the U.S. Department
of State. Mike is a graduate of Whitman College (mathematics/
physics) and the California Institute of Technology (electrical
engineering). He has also worked at Hewlett-Packard, the Caltech/
NASA Jet Propulsion Laboratory, and Boeing. An avid electronics
enthusiast, he started with a workbench and Radio Shack parts in
high school. Mike is the author of the book Make: Getting Started
with Adafruit Trinket as well as tutorials on the Adafruit Learning
System at https://learn.adafruit.com/.

Numbers
3-axis XYZ accelerometer chip,

63–64
440 hertz frequency, 82

Symbols
//, using with Arduino, 178
/* and */, using with Arduino, 178
#0 Neopixel, red, 137

A
A and B buttons

CPX library usage, 120
mouse emulation, 163
using, 50, 81

A1-A7 pads
Arduino code, 199
conductive materials, 145
switching states, 142–143
using, 12

AA and AAA batteries, 13–14
accelerometer chip. See also chip

Arduino code, 197
CPX library usage, 120
described, 12
displaying animations, 67–70
three-axis, 140–141

Adafruit
described, 3
GitHub repository, 123
website, 3

Adafruit Circuit Playground. See
Circuit Playground

adafruit_hid library
downloading, 155
functions, 156–157

alligator clips, 145–146
amplifier and speaker, 78
analog output and digital

signals, 78
animations. See also blinking

animation
displaying, 67–70
MakeCode, 44

Arduino
Adafruit Circuit Playground

Express, 174
benefits, 170–171
blinking D13 LED, 182
Boards Manager menu, 173
body of code, 182
C include for libraries, 179
capabilities, 170–171
char variable, 180
code sample, 178
code verification and

compilation, 188–189
comments, 178
communications port, 176
compilation issues, 218
delay function, 182–183
digitalWrite function,

182–183
downloading software, 172–173
driver installation, 175
example code, 199–201
float variable, 180
function declarations, 181–182
IDE (Integrated Development

Environment), 5
IDE configuration, 173–175
IDE installation, 171–177

Index

230 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

indenting code, 182
int variable, 179
language, 170–171
libraries, 178–179, 191–194
libraries and compatibility,

201–203
library functions, 195–199
logo, 167
loop function, 177, 180–181
overview, 167–170
pinMode function, 182–183
program structure, 177–183
versus Python, 181
reference materials, 225
SAMD Boards, 173–174
serial COM port, 188
serial port selection, 175–177
serial-monitor issues, 219
setup function, 177, 181
third-party libraries, 203–204
uint8_t variable, 180
upload errors, 218–219
uploading code, 184–191
uploading sketches, 185–191
variable declarations, 179–180

Arduino Create, 168–169
Arduino IDE (integrated

development environment)
vs. MakeCode, 168
troubleshooting issues, 215

Arduino library problems,
troubleshooting, 215–218

arduino.h library, 179
assistive technology, 164
ATSAMD21G18A-AU chip, 8
audio file conversion, 152

B
backup drive, using, 38, 186
batteries

charging, 17
connecting, 13–16

Beagle Term, Chromebook,
118–119

beat of music, 80

begin function, Arduino code, 195
blink code, examining in

CircuitPython, 114
Blinka mascot, 93
blinking animation, 72–73,

107–112. See also animations
blinking D13 LED, 111, 113, 182
blink.py program, saving, 112
blocks, changing default values, 69
BLOCKS button, 46
board being shaken, detecting, 121
board being tapped

Arduino code, 197
detecting, 121

boot_out.txt file, 96–97
bootloader mode

Arduino, 168
MakeCode, 31–33
placing board in, 186–187

boot.py file
saving, 134
using, 135

browser software, 25
Button A and B functions, Arduino

code, 196
buttons. See also interactivity;

MakeCode; push button
program
A and B, 50
code blocks, 52

C
C, strongly typed language, 181
C programming language, 183–184
capacitive touch

inputs, 12
and music, 142–148
working on, 154

Caret editor, 102–103
change item by 1, adding, 59
checks, expanding number of, 55
chip, Circuit Playground Express, 8.

See also accelerometer chip
Chrome OS, reference materials,

225

231INDEX

Chromebook
Beagle Term, 118–119
copying over programs, 37

Circuit Playground
characters, 3
Classic, 4

Circuit Playground Express
Arduino library, 191–194
battery pack, 13–14
capturing data, 132
chip, 8
connecting to computer, 22–24
features, 1–2, 4–5, 7
flash memory chip, 8
inputs, 12–13
keeping backups, 186
library, 119–123
library functions, 195–199
library source code, 194
MakeCode screen, 26–27
microcontroller, 8
output to computer, 115–119
outputs, 10–12
powering, 13–16
reference materials, 224
running, 27
running code via REPL,

124–126
serial output, 116–119
simulation, 34
uploading MakeCode, 30–38
usage issues, 219–220
USB cable, 115–116
variables, 51–52

circuitplayground_express, 98
CIRCUITPY flash drive

ejecting or syncing, 103–104
setting to writable, 133–134
using, 96–97, 100

CircuitPython. See also Python
adafruit_hid library

functions, 156–157
API documentation, 123
benefits, 95–96
Blinka mascot, 93

on Circuit Playground Express,
123

code.py file, 112
CPX library, 115
downloading, 98–101
examining blink code, 114
filenaming options, 112
installing, 96–100
installing and upgrading, 101
installing libraries, 109–110
interactivity, 95
mouse emulation, 162–163
program names, 112
vs. Python implementations,

95–96
reference materials, 224
REPL (Read-Eval-Print-Loop),

95
restarting, 117
software drivers, 99
text editors, 102–103
version, 96, 98, 100
while loop, 114

CircuitPython issues,
troubleshooting, 213–215

CircuitPython libraries. See also
libraries
capacitive touch, 142–148, 154
data logging, 142
emulating USB keyboard,

155–161
file input and output, 131–139
mouse emulation, 161–164
Mu plotting, 140–141
music machine, 148–152
reading sensors, 128–131
sound files, 152–154

claps, simulating, 88–90
code

restarting, 124
saving, 38

code blocks. See also MakeCode
buttons, 52
number of groups, 77
positioning on screen, 60

232 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

code.py file, 112
color picker, 154
color sensor values, Arduino code,

198
comments, including in Arduino,

178
computer USB keyboard,

emulating, 155–161
conditional block, LOGIC group, 57
conditional statements, 54
conductive materials, using with

A1-A7 pads, 145–146
connection pads, 10
connectivity issues,

troubleshooting, 210–213
copper tape, capacitive touch pads,

147–148
copying over programs, 36–37
CPLAYBOOT drive

CircuitPython, 98–100
MakeCode, 33, 37

CPX library, 115, 120–123
cpx.play_tone function, 144
CSV (comma-separated values)

format, 132–133, 136

D
D13 LED. See also LEDs (light-

emitting diodes)
Arduino code, 196
blinking, 111, 113, 182
CPX library usage, 120

data logging, 142, 164
demonstration code,

downloading, 45
digital signals and analog output,

78
digital sound sensor, 12
.doc and .docx files, 31
downloading

CircuitPython, 98–101
demonstration code, 45
programs in MakeCode, 30–38

drivers, installing, 18–20
duration of tone, 80

E
error message, 218–219
Excel

temperature and light
sensitivity, 139

temp-light.csv file, 138
except block, 136–137
Express. See Circuit Playground

Express

F
file formats, 31

CSV (comma-separated values),
132–133, 136

files, input and output, 131–139
filesystem write capability,

switching, 135
firmware, Arduino, 168
flash drive/thumb drive,

MakeCode, 33
flash memory chip, 8
forever block

MakeCode, 29
removing, 65

forever loop
light and temperature settings,

129
MakeCode, 40–43

frequency of sounds, 79–80
Fried, Limor “Ladyada,” 2–3
frozen library

CPX, 115
HID (Human Interface Device)

mode, USB, 158
fruit music machine, 148–152

G
George, Damien, 95
graphical MakeCode, 94

H
Hello, CircuitPython! 117
HID (Human Interface Device)

mode, 115–116, 155, 158
High A, 82

233INDEX

I
IDE (Integrated Development

Environment), 5
if block, filling empty spaces,

60–61
if statements

adding show animation
blocks, 60–62

checking for numbers, 60
comparison tests, 57
conditionals in, 57–58
expanding, 56

if.then blocks, 54
if.then.else blocks, 52–56
infrared receiver, 12
input and output, 131–139. See also

serial output
inputs, Circuit Playground Express,

12–13
installing

Arduino IDE (integrated
development environment),
171–177

Circuit Playground Arduino
library, 193

CircuitPython, 96–98
CircuitPython libraries,

109–110
drivers on Windows 7 and 8,

18–20
Mu Editor, 104–105

interactivity, CircuitPython, 95. See
also buttons

interpreted language, Python, 94
IR (infrared) transmitter, 10
item variables, adding to

conditionals, 58

J
JavaScript, 46–48, 74–75
JST battery connector, 13

K
keyboard functionality. See also

USB keyboard

lack of support, 158
removing, 155

keyboard shortcuts, restarting
CircuitPython, 117

L
LEDs (light-emitting diodes), 10,

54–55. See also D13 LED
libraries, importing in REPL, 124.

See also CircuitPython libraries
libraries vs. modules, 94, 108–109,

114–115, 119–123
LIGHT code block, MakeCode, 40.

See also temperature and light
code

light sensor, 12
CPX library usage, 120

light sensor value, Arduino code,
196

lights
changing due to shaking, 68
turning on, 66

lights code. See also temperature
and light code
controlling with claps, 90–91
Python, 107–112
sound turning on and off, 87
working, 69–70

lights-on-off-state variable,
87–88

Limor, 2–3
Linux, 17
LiPo (lithium-polymer) battery,

15–16
LIS3DH accelerometer chip, 12,

63–64
LOGIC group, conditional block, 57
LOOPS block group, MakeCode,

41–42

M
macOS, copying over programs, 37
MakeCode. See also buttons; code

blocks
animations, 44

234 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

versus Arduino IDE (integrated
development environment),
168–169

Audio button, 34
bootloader mode, 31–33
changing colors, 29–30
code blocks, 27–28
compiling and downloading,

34–37
copying over programs, 36–37
CPLAYBOOT drive, 33
downloading programs, 30–38
error message, 35
features, 24–25
forever block, 29
forever loop, 40–43
Full Screen button, 34
graphical vs. text-based, 94
LIGHT button, 28
LIGHT code block, 40
logo, 21
LOOPS block group, 41–42
modifying programs, 39–44
opening, 52
pause block, 42
reference materials, 224
Refresh button, 34
running programs, 38
screen for Circuit Playground

Express, 26–27
set all pixels to block, 29,

39–40
show animation block, 40–42
starting, 25–26
Step button, 34
Stop button, 34
thumb drive/flash drive, 33
uploading to Circuit Playground

Express, 30–38
USB cable and port, 33
using, 28–30

manufacturer support, 221
MEMS (microelectromechanical

system), 12–13

microcontroller, Circuit Playground
Express, 8

microphones
Arduino code, 197
and sound, 79, 85–86

MicroPython, 95
Microsoft Excel

temperature and light
sensitivity, 139

temp-light.csv file, 138
Microsoft MakeCode. See

MakeCode
Middle A note, 82
modules vs. libraries, 94, 108–109,

114–115, 119–123
monophonic vs. polyphonic, 84
motion sensor, 12, 63–64, 140–141
mouse functionality

emulating, 161–164
removing, 155

mouse jiggling, 164
Mu Editor

installing, 104–105
plotting capability, 140–141
Serial icon, 116
serial output, 141
Serial window, 124–125
temperature and light code,

129–130
using, 102–103, 105–107

music and capacitive touch, 142–148
music machine, 148–152
musical frequencies, 80–82
musical notes, selecting, 82

N
NeoPixels

Arduino code, 198
blinking animation, 72–73
described, 10–11
changing colors, 29–30
CPX library usage, 121–122
lighting in colors, 150–151
red #0, 137

235INDEX

number, creating in scratch
memory, 68

O
on loud sound main block, 86–87
on shake block, 65
on start block, adding set item

to 0, 58
open source, 5
operating system software, 17–20
outputs, Circuit Playground

Express, 10–12

P
pad A0, 10
pads A1-A7

CPX usage, 122
described, 12

parameter, defined, 120
pause block, MakeCode, 42, 51
piano notes, 81
piano-style keys, laying out,

146–147
play tone block, 80
playing WAV files and tones, 121
polyphonic vs. monophonic, 10,

78, 84
power, removing, 38
power issues, troubleshooting,

207–209
print statement, 116, 118
programming options, 5
programs

copying over, 36–37
downloading in MakeCode,

30–38
modifying, 39–44
running in MakeCode, 38
saving, 44–46

pseudo code, 54
publications, 225–226
push button program, finalizing,

62. See also buttons
push-button switches, 12

Python. See also CircuitPython
versus Arduino, 181
benefits, 94
creating code, 107–112
libraries, 108–110
reference materials, 224
referring to modules,

110–111
running code, 113
tab vs. space, 111

R
Raspberry Pi, 2
red LED. See D13 LED
REPL (Read-Eval-Print-Loop)

CircuitPython, 95
running code, 124–126
typing commands, 102–103

Reset button, 13, 99–100
rests, adding to songs, 83

S
saving code, 38, 44–46
scratch memory, creating

numbers, 68
sensors

Circuit Playground Express, 12,
63–64

code, 140–141
reading, 128–131

serial output. See also input and
output
Circuit Playground Express,

116–119, 124
Mu Editor, 141

set all pixels to block,
MakeCode, 29, 39–40

set item to 0
adding to if statement, 59
placing in on start block, 58

SHAKE button, 65–67
shake code, 69–70
shake_threshold parameter, 121
shaking, changing lights, 68

236 GETTING STARTED WITH ADAFRUIT CIRCUIT PLAYGROUND EXPRESS

show animation block, changing
value in, 66–67

show animation blocks
adding to if statement, 60–62
MakeCode, 40–42

slide switch
CPX library usage, 120
freeing up, 139
using, 12, 70–74, 82–83

slideSwitch function, Arduino
code, 196

software drivers, installing, 18–20
songs, adding rests, 83
sound files, 152–154
sound level simulation circle, 88
sound output, 10
sound sensor, 12
sounds

enhancing projects, 84–85
listening for, 85–91
on loud sound main block,

86–87
representation, 79–80

speaker and amplifier, 10, 78
spreadsheets, CSV format, 132–

133, 138
SRAM (static random access

memory), 8
switches, 12

T
temperature and light code, Mu,

129–130. See also lights code
temperature and light sensitivity,

Excel, 139
temperature sensor

Arduino code, 196
CPX library usage, 120
described, 12

temp-light.csv file, 138
Test for Express function, Arduino

code, 195
text editors, CircuitPython,

102–103
text-based programming, 94

thermistor, 12
thumb drive/flash drive,

MakeCode, 33
.tif files, 31
tones

Arduino code, 197
duration, 80
playing, 144
playing and stopping on

speaker, 121
touch and sensitivity, CPX usage, 123
touch music code, 150–151
touch WAV sound program, 153
transducers, 79
troubleshooting issues

Arduino IDE, 215
Arduino library, 215–216
cable and power, 207–209
CircuitPython, 213–215
connectivity, 210–213
error message, 218–219
usage, 219–221

try/except blocks, 136–137
tunes, forming, 82–83

U
UF2 file format, 31
USB cable

functions, 115–116
and MakeCode, 33
and port, 9–10
troubleshooting issues,

207–209
USB flash storage drive, 5
USB keyboard, emulating, 155–161.

See also keyboard functionality
USB port recognition, 155

V
variable blocks, change item by

1, 59
variables, 51–52

declaring in Arduino, 179–180
lights-on-off-state, 87–88
values, 53–54

237INDEX

VARIABLES block group, 57, 68
VU sound meter, coding, 131

W
WAV files

CPX library usage, 121
library, 154
playing sounds, 152

web browser software, 25
websites

Adafruit GitHub repository,
123

Adafruit Learning System, 3
adafruit_hid library, 155
Arduino functions, 183
Arduino library installation,

202
audio file conversion, 152
BBC WAV files, 154

C programming language,
183–184

Circuit Playground Express
library, 119

Circuit Playground library
source code, 194

CircuitPython API
documentation, 123

color picker, 154
demonstration code, 45
HID library, 158
MakeCode and JavaScript, 46
VU sound meter, 131

while loop, CircuitPython, 114
Windows, copying over programs,

36–37
Windows 7 or 8, 18–20
Windows 10, 17
write capability, switching, 135

